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Abstract 

Our cognition is heavily dependent on our ability to form memories out of our 

experiences. The hippocampus is necessary for the formation of new memories 

and their retrieval for planning our future behavior. Hippocampal area CA1 local 

field potential (LFP) exhibits high frequency (100- 250 Hz) events known as 

sharp-wave ripples (SWRs). These events that occur during slow-wave sleep and 

awake restfulness have been shown to be important for the consolidation of 

spatial memory. During exploration, CA1 pyramidal cells, which receive 

excitatory inputs from entorhinal cortex (EC) and hippocampal area CA3, show 

location-specific activity known as place fields. However, the mechanism of 

formation of SWRs and place fields in the presence of these two inputs is not yet 

well understood. Using high-density multi-tetrode recording and reversible 

optogenetic manipulation, I found that the silencing of hippocampal area CA3’s 

Schafer collateral (SC) projections to CA1 decimates SWRs. Furthermore, SC 

silencing substantially suppresses hippocampal place cell activity during 

exploration but does not change the position of place fields. Moreover, temporal 

coding in CA1 place cells, as reflected in their theta phase precession ability, 

remains intact without CA3 input. These findings shed light on the functional 
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interconnections between hippocampal subregions that support episodic 

memory. 

Hippocampal structure and function is disrupted in several psychiatric disorders 

such as schizophrenia. The calcineurin mouse model of schizophrenia whose 

synaptic activity is impaired by deleting the calcineurin phosphatase gene in its 

forebrain shows behavioral and cognitive abnormalities recapitulating symptoms 

of schizophrenia and is therefore a good candidate for examining hippocampal 

neural circuit dysfunctions.  Using multi-tetrode recording, we found that CA1 

SWRs in these mice become overabundant and the reactivation of place cells 

during SWRs is abolished. However, place cells preserve their normal activity 

during exploration. This selective disruption in SWRs provides a mechanism for 

underlying impairments in information processing that may contribute to the 

cognitive impairments in schizophrenia. Overall, the research and technical 

advances described in this dissertation represent a step towards understanding 

hippocampal neural ensemble activity as is reflected in SWRs and place cell 

responses.  
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Chapter 1: Introduction 

In our daily life, to take our best decisions and actions we need to recruit 

many essential cognitive processes. Recalling memory of our past experiences is 

one such crucial cognitive process to achieve these goals. The scientific 

community has uncovered several distinct memory systems, including 

declarative memory, which is memory of events and facts which can be explicitly 

recalled, and non-declarative memory, which is memory of skills, e.g. how to 

ride a bike, an classical and operant conditioning which are not explainable in 

words (Schacter, 1996). A particular type of declarative memory is called 

episodic memory, which is the memory of specific events which are vividly 

recalled as a personal experience rather than as a learned fact, like where a 

person parked his car (Tulving, 1972). It is a mental imagery which may contain 

temporal and spatial components. Study into the neural basis of episodic 

memory was sparked several decades ago, when neurosurgeons discovered that 

lesions in the medial temporal lobe (MTL) meant to alleviate severe epilepsy had 

the side effect of amnesia, later defined as a dramatic impairment in episodic 

memory (Scoville and Milner, 1957). In a separate line of work, neurologists and 

psychiatrists also found that the MTL is one of the severely damaged brain 
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regions in patients of Alzheimer’s disease and to a lesser degree schizophrenia, 

two disorders with known memory impairments (Bäckman et al., 2004; Paul and 

Harrison, 2004). These findings, and others, have implicated the MTL in the 

neural basis of episodic memory, and sparked interest in understanding how this 

circuitry is disrupted in psychiatric disorders.  

The MTL is the home for a deep seahorse-shaped brain structure called the 

hippocampus. Psychologists had theorized that the brain builds a “cognitive 

map” of the spatial environment (Tolman, 1948), and the hippocampus became a 

candidate structure for this cognitive map. Because the hippocampus is highly 

conserved across species and detailed in vivo study of it necessitates invasive 

experimental techniques, researchers turned to rodents as a model system. 

However, how this cognitive map was represented by neurons in the 

hippocampus was still not known.  

Clues about the neural basis of a cognitive map were discovered when 

researchers probed the hippocampus while rodents explored spatial 

environments (O’Keefe and Nadel, 1978). In vivo extracellular recording from 

hippocampal neurons found that each cell only gets activated when the animal is 

in a particular location in the environment, dubbed a neuron’s place field, as if 
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each neuron was encoding one particular spatial position. Because each cell with 

a place field, called a place cell, could represent any position in the environment, 

together as a population place cells in the hippocampus encode the entire spatial 

environment.  Indeed, later work found that lesions of the hippocampus in 

rodents caused selective impairments in memory-guided spatial navigation tasks 

(Morris et al., 1982).  These surprising discoveries provided some evidence for 

the existence of a neural substrate for a cognitive map.  

Besides this place-related activity during active locomotion through an 

environment, when rodents groom, are quietly resting, or asleep, the 

extracellular hippocampal electrophysiological activity shows unique high-

frequency events known as sharp-wave ripples (SWRs) (Buzsáki, 2015). 

Pharmacological or electrophysiological suppression of SWRs results in 

impairments in memory-guided navigation tasks (Girardeau and Zugaro, 2011). 

To find the link between the sequential activation of place cells when animals 

actively run and SWR burst activity during rest, the activity of place cells during 

SWR events was examined more closely. Researchers found that simultaneously 

with SWRs, ensembles of place cells were sequentially reactivated in the same 

order as during running through positions (Foster and Knierim, 2012).  This 

reactivation was proposed to be a mechanism for consolidation of the recent 
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experience and a contributing factor to future decision making. Together, these 

signature hippocampal activities during run and rest may be a neural substrate 

for the cognitive map and the formation of episodic memories.   

However, the neural mechanisms for expression of place cell responses and 

generation of these information-rich SWRs are not yet well understood. 

Spatially-modulated responses in hippocampus are hypothesized to arise from 

the extrahippocampal flow of spatial information to the structure, with place cell 

responses during locomotion in hippocampal output area CA1 are hypothesized 

to be generated by inputs from the extrahippocampal medial entorhinal cortex 

(MEC) input (Brun et al., 2002). Meanwhile, SWRs, observed across the extent of 

the hippocampus, are thought to be generated within the hippocampus, likely 

generated in the highly recurrent neural network of intermediate hippocampal 

area CA3 and then propagated to hippocampal area CA1 (Buzsáki, 1984, 2015). 

However, previous work using lesioning and genetic methods has found that 

suppressing EC input to CA1 did not eliminate place cell response in CA1 and, 

on the other hand, removing CA3 inputs to CA1 did not greatly suppress the 

incidence of SWRs (Brun et al., 2002; Nakashiba et al., 2009). One explanation for 

these unexpected results may be the chronic nature of these lesioning and genetic 
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techniques, which can provide a long time frame for compensatory neural 

mechanisms to recover the function.  

In my doctoral research, I used optogenetics, an acute silencing technique 

with a higher temporal resolution, to explore the effect of suppressing CA3 

inputs to CA1on the formation of SWRs and expression of place cell responses. I 

also investigated whether SWRs and place cell responses can be considered 

cognitive biomarkers for psychiatric diseases, using a rodent model of 

schizophrenia. In the rest of this chapter, the background for the problems will 

be presented in further detail. In Chapter 2, in addition to general methodology, I 

describe the method development I did for simultaneous axon silencing and cell 

body recording in the hippocampus. Chapter 3 describes the findings on the 

mechanisms of SWR generation and place cell responses. Chapter 4 shows the 

extent of disruption in SWRs and place cell responses in an animal model of 

schizophrenia. Chapter 5 concludes this dissertation with a general summary, 

implications, and potential future work. 

The hippocampus and episodic memory    

Early hints that the hippocampus is critical for episodic memory were 

discovered as an unexpected memory deficit side effect presented following 

neurosurgical intervention for severe epilepsy. On September 1st, 1953, an 
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epilepsy patient named Henry Molaison, later known as patient H.M. (1926– 

2008), underwent a bilateral medial temporal lobectomy that removed significant 

parts of both MTLs, including hippocampus, parahippocampal cortices, and EC, 

with the hope of alleviating his seizures. This resection rendered his entire 

anterior hippocampus and EC non-functional. Although his seizures abated, 

H.M. developed severe anterograde amnesia and mild retrograde amnesia. He 

was unable to form new memories of events or to remember some life events that 

had happened only a few years before the surgery (Scoville and Milner, 1957; 

Hasselmo, 2012). For example, he was able to meet and have conversations with 

someone he had not met before, but did not recognize or remember the earlier 

meeting if he met the same person even just a few minutes later. However, H.M. 

was able to learn new motor skills, without remembering his past practice 

sessions, and to recognize words he had seen previously as more familiar than 

words he had not seen (Corkin, 2002). This early work with H.M. spurred 

decades of subsequent research and helped transform the field of cognitive 

neuropsychology and the neuroscience of memory (Squire and Wixted, 2011). 

Human memory is often divided into short-term, at the scale of seconds to 

minutes and largely spared in H.M., and long-term, which can be retrieved 

during the entire lifespan of an individual but was unable to be formed by H.M 
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after his surgery (Squire and Wixted, 2011). Long-term memory may be further 

divided into implicit, or non-declarative, and explicit, or declarative. Procedural 

memory, one form of implicit memory, is the unconscious development of motor 

skills, such as how to ride a bicycle. This memory was intact in patient H.M., 

suggesting evidence for its independence from the MTL.  

The selective deficit in explicit memory following MTL removal led to more 

sophisticated examination of this distinct memory system (Hasselmo, 2012). 

Psychologist Endel Tulving categorized distinct components of explicit memory 

into the knowledge of facts (semantic memory) and the memory of past 

experiences and autobiographical events occurred in specific times and places () 

( episodic memory, Tulving, 1972). He further speculated episodic memory as a 

mental trace through an already-shaped mental framework of the external world 

(Tulving, 1972). The case of patient H.M. and later patients showed that episodic 

memory is MTL-dependent. The hippocampus was hypothesized to be 

responsible for formation of new long-term memories and these memories will 

gradually be transferred from hippocampus and stored in cortical areas such as 

prefrontal cortex for later memory retrievals, a process called memory 

consolidation (Marr, 1971). Therefore, while memory formation is MTL-

dependent memory retrieval is independent of hippocampus, only after 
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consolidation period. Cognitive psychologist Edward Tolman called the spatial 

representation of the surrounding environment in humans and rodents a 

“cognitive map” (Tolman, 1948). Researchers thus hypothesized that the deficits 

seen in episodic memory following lesions to the MTL may have resulted from 

an obliteration of the cognitive map, as the foundation upon which episodic 

content was built had been removed (O’Keefe and Nadel, 1978).  

In addition to formation of episodic memories, the hippocampus has also 

been shown to be crucial for the prediction and imagination of future events  

(Buckner, 2010). Episodic memory and imagining new events share common 

psychological processes, such as visualization of an event within a rich spatial 

context , retrieval of multisensory information, and a narrative structure with a 

sense of presence (Schacter, 1996; Rubin et al., 2003). Patients with hippocampal 

damage show impairments not only in episodic memories but also when 

imagining new experiences (Hassabis et al., 2007). The patients’ imagined 

experiences particularly lacked a coherent spatial setting and were instead 

composed of only a few fragmented images. Therefore, the hippocampus is 

essential for envisioning both past and future experiences. 
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Functional magnetic resonance imaging (fMRI) studies have demonstrated 

that there is a “default-mode network” (DMN), comprised brain regions such as 

the hippocampus and prefrontal cortex, that is activated when individuals are in 

an awake rest state but not focusing on any specific, demanding task (Buckner, 

2013).  The DMN, which is essential for successful episodic memory retrival and 

imagination, is hyperactive in individuals with schizophrenia, autism-spectrum 

disorders, and Alzheimer disease (Buckner et al., 2008; Rugg and Vilberg, 2012).  

The mechanisms for simultaneous DMN network activity, especially at neural 

ensemble level, are not well understood.  Therefore, examining hippocampal 

ensemble activity may shed light on the mechanisms and functions of this rest-

state brain activity.  

The hippocampal circuitry 

The hippocampal formation is a deep structure receiving inputs from 

entorhinal cortex (EC) and subcortical structures (Andersen et al., 2009). Its 

output projections target numerous regions, including the parahippocampal 

gyrus, consisting of EC and perirhinal cortex, and areas in prefrontal cortex 

(Strange et al., 2014). Distinct inputs, outputs, and interconnections of excitatory 

pyramidal neurons and a wide variety of inhibitory interneurons form a versatile 

information processing circuit in the hippocampus, as well as maintain the 
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balance between excitation and inhibition that can generate stable state-

dependent oscillations.  

Neuromodulators also play crucial role in hippocampal circuitry. 

Hippocampus receives a variety of neuromodulatory inputs, such as cholinergic, 

dopaminergic, and serotoninergic, from subcortical structures that influence 

hippocampal activity in a state-dependent manner (Hasselmo, 1999; Thomas, 

2015; Wang et al., 2015). For example, lesioning medial septum, the source of 

cholinergic projections to hippocampus, impairs spatial memory as well as theta 

(5-10 Hz) rhythm in hippocampus and EC during run (Lee et al., 1994; Brandon 

et al., 2014).  However, the selective contributions of neuromodulatory inputs to 

the EC-hippocampus system requires further investigations. 

Behavioral studies in rodents following lesions to hippocampus, especially 

using tasks that rely on spatial memory, shed light on the function of this brain 

region. Lesions to dorsal hippocampus result in impairments in both spatial 

reference memory, the ability to learn a constant association between a fixed 

spatial location and a reward outcome, and spatial working memory, the ability 

to maintain trial-specific spatial information for a limited time, while lesions in 

ventral hippocampus do not cause a significant impairment (Morris et al., 1982; 
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Moser et al., 1993; Pothuizen et al., 2004).  This and similar work suggests dorsal 

hippocampus is crucial for spatial learning and memory, while other work has 

implicated ventral hippocampus in affective processes such as fear conditioning 

(Cenquizca and Swanson, 2007). Similarly, lesions of EC, a prominent input to 

the hippocampal formation, causes distinct spatial and non-spatial deficits 

depending on the site of injury: lesions of MEC impair spatial memory, while 

lesions of lateral entorhinal cortex (LEC) affect non-spatial learning such as object 

recognition (Van Cauter et al., 2013). In other words, MEC and LEC provide the 

spatial “context” and “content” of an experience to the hippocampus, 

respectively  (Knierim et al., 2013; Knierim and Neunuebel, 2016). These findings 

implicated dorsal hippocampus and EC together as the crucial substrate for 

spatial information processing. This resulted in further research on these two 

regions, the interactions between them, and the contribution of modulatory 

inputs to them. The neural substrate of these components of memory system at 

single cell level will be discussed in the section “Place cells” of this chapter.  

To better understand the functional organization of the dorsal hippocampus, 

a detailed knowledge of its subregions and their inputs and outputs is required. 

The hippocampus is composed of the dentate gyrus (DG) and areas CA3, CA2, 

and CA1 (Andersen et al., 2009). EC communicates with all of these hippocampal 
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subregions through the projections of the perforant path.  EC layer II neurons 

send axons to DG, CA3 and CA2, while EC layer III projects specifically to CA1 

via the temporoammonic branch of the perforant path (TA).  Lesions of the TA 

have demonstrated that direct EC input to CA1 is necessary for consolidation of 

memory in rats  (Remondes and Schuman, 2004).  

The first stage of the EC-hippocampal information processing occurs in DG. 

Excitatory neurons there, known as granule cells, show divergent responses in 

partially-similar environments to potentially establish non-overlapping sets of 

neural ensembles in downstream area CA3, a phenomenon known as spatial 

pattern separation and crucial for episodic memory (Marr, 1971; Leutgeb et al., 

2007; Knierim and Neunuebel, 2016) . Granule cells send their axons, known as 

mossy fibers, to CA3.  

CA3 is a highly recurrent circuit composed of subregions CA3c (adjacent to 

DG), CA3b, and CA3a (adjacent to CA2). Due to their dense recurrent axon 

collaterals CA3 neurons are then able to strengthen synapses between each other, 

in a way that triggering a subset of neurons activates an already-established 

pattern in CA3 neural ensembles.  This makes CA3 essential for accomplishing 

spatial memory tasks in the presence of partial environmental cues, a function 
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known as spatial pattern completion (Gold and Kesner, 2005; Leutgeb and 

Leutgeb, 2007; Knierim and Neunuebel, 2016). The dense recurrent axons in CA3 

and direct inputs from EC layer II and mossy fibers may result in complex 

cellular dynamics in this hippocampal region. CA3 sends this information to 

CA1 through its Schaffer collaterals (SCs), completing a trisynaptic connection 

between EC and CA1. CA2 is a small area interposed between CA3 and CA1 that 

receives input from  MEC and LEC and is important for memory of social 

interactions and priming of specific neural activity in CA3 and CA1 (Jones and 

Mchugh, 2011; Hitti and Siegelbaum, 2014; Oliva et al., 2016).  

CA1, the principal output of the hippocampal formation, processes 

converging inputs from EC via the TA, CA3 via the SCs, and CA2 and then sends 

the output to cortical areas such as EC, subiculum, and prefrontal cortex. CA1 

circuitry is under the combined influence of extrahippocampal sensory-driven 

cortical TA input and intrahippocampally-generated SC input. The firing 

patterns of both inputs are able to induce post-synaptic modifications in CA1 

pyramidal cells, a phenomenon known as synaptic plasticity (Malenka and Bear, 

2004; Bannerman et al., 2014) . Synaptic plasticity, found in the hippocampus and 

other brain regions, has become the dominant theory for the neural basis of 

learning and memory at the synaptic level and is the persistent, bi-directional, 



14 

 

input-triggered change in synapse efficacy, either strengthening of synapses, 

known as long-term potentiation (LTP), or weakening of synapses, known as 

long-term depression (LTD) (Malenka and Bear, 2004; Bannerman et al., 2014). 

However, it is still unknown exactly how activity patterns in hippocampal 

circuits seen during behavior facilitate learning and memory, though induction 

of synaptic plasticity is a proposed mechanism (Buzsáki, 1986, 1989). 

The hippocampus and psychiatric disorders 

Memory disorders such as amnesia and Alzheimer’s disease are often 

characterized by heavy damage to the hippocampus (Bäckman et al., 2004). 

Hippocampal cell death and concomitant reduction in hippocampal volume are 

early brain symptoms for Alzheimer’s disease, and Alzheimer’s patients have 

problem in forming new short-term memories (Small et al., 2011). Moreover, 

hippocampal structure and function is also disrupted in some major psychiatric 

disorders such as schizophrenia (Paul and Harrison, 2004; Heckers, 2010; Barch 

and Ceaser, 2012). Schizophrenia is a devastating neurodevelopmental disorder 

affecting 1% of human society with positive symptoms (e.g. hallucinations and 

delusions), negative symptoms (e.g. social withdrawal and anhedonia), and 

cognitive symptoms (problems in attention, executive function, and working 

memory)  (Fatemi and Folsom, 2009; Mesholam-Gately et al., 2009).  Although 
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positive and negative symptoms are key to diagnosis of this disease and may 

potentially be ameliorated by antipsychotic medications, cognitive deficits also 

interrupt patients’ daily lives and are usually resistant to treatment.  

Among the symptoms of schizophrenia, cognitive deficits may be the subject 

of systems-level study in genetic animal models of the disease (Fernando and 

Robbins, 2011; Jones et al., 2011; Kvajo et al., 2012; Sigurdsson, 2016). Mouse 

models of schizophrenia are usually produced by deleting or duplicating a gene 

or a locus in mouse corresponding to genes that are found mutated in families 

with severe schizophrenic and schizoaffective persons (Nestler and Hyman, 

2010; Fernando and Robbins, 2011; Jones et al., 2011; Sigurdsson, 2016). In 

addition, mutant mice with cognitive impairments in learning and memory and 

symptoms such as isolation and anhedonia are sometimes considered as models 

for schizophrenia.  

 Given their roles in learning and memory, hippocampus and prefrontal 

cortex have been intensively studied in the context of memory and cognitive 

deficits in mouse models of schizophrenia (Toulopoulou et al., 2003; Boyer et al., 

2007; Nestor et al., 2007; Bonner-Jackson et al., 2008; Leavitt and Goldberg, 2009; 

Sigurdsson, 2016). For example, a mouse model of schizophrenia which has 
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disrupted communication between hippocampus and prefrontal cortex, show 

deficits in a spatial working memory task with alternating reward locations 

(Sigurdsson et al., 2010). However, the majority of these mouse models of 

schizophrenia either fail to recapitulate the cognitive deficits of schizophrenia or 

their genetic mutations are not clearly relevant to genetic disruption of 

schizophrenia patients.  Moreover, dysfunctions in the neural ensemble activity 

of hippocampus in rodent models of schizophrenia have not been 

comprehensively explored (Sigurdsson, 2016). 

The calcineurin mouse model of schizophrenia may be a good candidate for 

examining hippocampal neural circuit dysfunctions and to some extent studying 

symptoms of this disease (Suh et al., 2013). Calcineurin is a Ca2+-sensitive protein 

phosphatase important for synaptic plasticity and forebrain-specific calcineurin 

knockout (KO) mice with deleted  calcineurin in their excitatory cells show 

behavioral and cognitive abnormalities recapitulating symptoms of 

schizophrenia (Zeng et al., 2001; Miyakawa et al., 2003). In comparison to other 

mouse models, these mice satisfy three compelling features. First, a profile of 

behavioral impairments recapitulating those seen in schizophrenia patients; 

second, adult-onset altered synaptic activity essential for learning and memory; 

and third, although not the major gene, reported  association of this mutated 
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gene with schizophrenia (Zeng et al., 2001; Gerber et al., 2003; Miyakawa et al., 

2003; Gerber and Tonegawa, 2004).  

Calcineurin KO mice exhibit a comprehensive array of behavioral 

impairments characteristic of schizophrenia patients (Goldman-Rakic, 1994; 

Elvevåg and Goldberg, 2000), including impairments in latent inhibition, pre-

pulse inhibition, and social interaction (Miyakawa et al., 2003), as well as a severe 

deficit in working memory (Zeng et al., 2001). Furthermore, although not a major 

gene in schizophrenia research, the mutated calcineurin gene (PPP3CC) has been 

shown to map to chromosomal loci previously implicated in schizophrenia by 

genetic linkage studies (Gerber et al., 2003; Eastwood et al., 2005; Liu et al., 2007; 

Yamada et al., 2007; Murata et al., 2008; Wada et al., 2012, 2017). Although, this 

linkage to schizophrenia was challenged by some other population studies 

(Kinoshita et al., 2005; XI et al., 2007; Sanders et al., 2008; Kyogoku et al., 2011). 

Moreover, hippocampal synapses in these mice are unable to normally weaken 

their activity during persistent stimulations (Zeng et al., 2001). Taken together, 

these features suggest that the calcineurin KO provides a unique opportunity to 

investigate the neural basis of dysfunction in a schizophrenia model (Suh et al., 

2013).        
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Place cells  

As described previously, early researchers found that CA1 pyramidal 

neurons display spatially-restricted firing fields, and so were called “place cells” 

with their spatial receptive fields known as “place fields” (O’Keefe and 

Dostrovsky, 1971; O’Keefe, 1976). These place cells, which later were also found 

in CA3 and DG, together cover a whole environment, and can therefore as a 

population represent any location in the local environment. Place cells do not 

show a topographic map, unlike, for example, retinotopic maps found in the 

visual system; physically adjacent cells do not have adjacent fields, which is 

hypothesized to potentially increase the capacity of the hippocampus to save 

arbitrary associations (Redish et al., 2001; Smith and Häusser, 2010). Place cells 

were proposed to be a neural building block of the cognitive map in the brain, 

robustly representing allocentric spatial relationships in an environment, as well 

as the animal’s own position in that environment (Moser et al., 2008). In addition 

to spatial information processing, hippocampal place cells were later shown to 

represent temporal aspects of extended experiences, another component of 

episodic memory (MacDonald et al., 2011).   

While searching for upstream sources of spatial coding that might contribute 

spatial information to the hippocampal circuit, researchers found that MEC 
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pyramidal cells depict multiple firing fields forming a periodic triangular grid 

covering the whole environment, and such cells were named grid cells (Fyhn et 

al., 2004; Hafting et al., 2005). Some other MEC pyramidal cells responded 

selectively to boundaries of explored environments, the animal’s head direction 

in terms of compass coordinates, and speed, and such cells were termed border, 

head direction, and speed cells, respectively (Sargolini et al., 2006; Solstad et al., 

2008; Kropff et al., 2015). Taken together as one circuit, hippocampal place cells 

and entorhinal grid cells may be considered as the substrate for a metric system 

of spatial navigation and memory (Moser et al., 2008; Buzsáki and Moser, 2013). 

Given their potentially central role in both navigation and episodic memory, the 

firing properties of these cells and mechanisms of their response formations 

called for further exploration.  

Place cells, which represent particular positions in an environment, usually 

express stable place fields for many days in that same environment. However, 

changes in environmental cues may result in rescaling of place cell firing rate, 

called rate remapping, or even an abrupt change in the location of all place fields, 

called global remapping (Muller and Kubie, 1987; Bostock et al., 1991; Anderson 

and Jeffery, 2003; Leutgeb et al., 2005b, 2006). MEC grid cells show concomitant 

realignments only in instances when global remapping in ensemble of 
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hippocampal place cells occurs, and remain unchanged during manipulations 

that lead to rate remapping of place cells (Fyhn et al., 2007; Bush et al., 2014).  

During exploration, the hippocampal local field potential (LFP), which 

reflects local neural ensemble activity, is dominated by a theta rhythm of 5-10 Hz 

(Vanderwolf, 1969). This prominent rhythm contributes to the fine temporal scale 

activity of place cells. While traversing its place field, a place cell fires at 

progressively earlier theta phases, a phenomenon known as theta phase 

precession (O’Keefe and Recce, 1993). Theta phase precession is stronger in CA1 

than CA3 (Mizuseki et al., 2012). Furthermore, during theta oscillations, place cell 

activity at the ensemble level depicts temporal coordination in the form of 

forward sweeps through the animal’s upcoming running trajectory, and which 

may be useful for navigational planning (Dragoi and Buzsáki, 2006; Foster and 

Wilson, 2007; Johnson and Redish, 2007; Foster and Knierim, 2012; Gupta et al., 

2012). Although first suggested to be a consequence of phase precession in 

individual place cells, theta sequences show a dissociation with phase precession 

in a novel environment (Feng et al., 2015). They appear in rat hippocampus only 

after the first traversal of a novel track, while phase precession emerges from the 

first traversal, suggesting theta sequences may arise from a different mechanism 

than simple phase precession (Feng et al., 2015). The mechanisms of formation of 
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hippocampal theta rhythm, theta phase precession, and theta sequences require 

further explorations. 

Higher-frequency rhythmic activity during run may also play crucial role in 

hippocampal information processing. Theta-dominated LFP contains slow 

gamma (25-55 Hz) and fast gamma (65-110 Hz) rhythms riding preferentially on 

different phases of  theta cycles (Colgin et al., 2009; Carr et al., 2012; Bieri et al., 

2014; Zheng et al., 2016).  Correlational analysis shows that slow and fast gamma 

are synchronized with their counterpart oscillations in CA3 and MEC, 

respectively, indicating their possible origins (Colgin et al., 2009).  Furthermore, 

place cells perform prospective coding mostly during slow gamma time spans 

and retrospective coding during fast gamma, which may be a possible 

interference prevention mechanism in CA1 that allows preferential weighting of 

signals coming from CA3 or EC in different circumstances (Bieri et al., 2014). 

However, the differential contributions of CA3 and EC to CA1 gamma 

oscillations are not yet causally shown.    

Pharmacological and surgical lesions of CA3 have demonstrated that EC 

inputs to CA1 are sufficient to establish robust place fields and that spatial 

recognition tasks can be performed in the absence of CA3 input, though spatial 
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recall is impaired (Brun et al., 2002). These findings imply that EC has a capacity 

for directly transferring stable and precise positional information into CA1 place 

cells. This view is in accordance with DG and medial septum lesion studies that 

found disrupted normal activity in CA3 with unaffected CA1 place cell 

responses (McNaughton et al., 1989; Mizumori et al., 1989; Wang et al., 2014).   

However, different studies have found contradictory effects of EC lesions on 

hippocampal activity (Bush et al., 2014). Following MEC lesioning, a reduction in 

the percentage of active place cells as well as the spatial information content and 

stability of their place fields was observed in a familiar environment, but 

nevertheless place cell responses did not get eliminated (Miller and Best, 1980). 

Another study demonstrated that CA1 place cell responses persist after 

pharmacological lesioning of MEC layer III cells, which directly project to CA1, 

though a subset of place fields become larger and stability of place fields during 

later exposure to the same environment is somewhat reduced (Brun et al., 2008). 

In contrast, though comprehensive lesion of the whole EC does not eliminate 

place cell responses, it does reduce CA1 place field size and firing and induces 

global remapping in place fields when animals are re-exposed to the same 

environment (Van Cauter et al., 2008). However, surgically removing the entire 

MEC does not perturb place cell responses, except their theta phase precessions 
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(Hales et al., 2014; Schlesiger et al., 2015). On the other hand, pharmacological 

silencing of MEC increases CA1 place field size and theta power, decreases in-

field firing rate, and also induces substantial global remapping (Ormond and 

McNaughton, 2015). Moreover, LEC lesions result in slight rate remapping in 

hippocampal place cells (Lu et al., 2013). These contradictory findings from these 

studies seem to indicate that in a familiar environment, MEC, but not CA3, input 

is critical for completely normal expression of place fields in CA1, though none 

of these inputs are essential for the existence of location-specific activity in CA1 

pyramidal cells.  

As with CA3 lesions, genetically deleting NMDA receptors in CA3 pyramidal 

cells to impair hippocampal synaptic plasticity does not affect spatial reference 

memory or place cell responses (Nakazawa et al., 2002, 2003). However, exposing 

these transgenic mice to partial environmental cues to examine their pattern 

completion ability uncovered deficits in task performance as well as rate 

remapping in CA1 place cells (Nakazawa et al., 2002), suggesting plasticity is 

nevertheless critical for activity patterns more complex than the expression of 

place fields. Likewise, comprehensive genetic blockade of SCs does not change 

the field properties of CA1 pyramidal cells (Nakashiba et al., 2009).  These mice 

had SCs which were not able to induce action potentials in CA1, and showed 
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normal spatial reference memory but deficits in contextual fear memory 

(Nakashiba et al., 2008, 2009). Interestingly, both CA3 NMDA deletion and SC 

silencing, while preserving place cell responses, reduced firing of fast-spiking 

interneurons by around 50% (Nakazawa et al., 2002, 2003).  The proposed 

mechanism for preservation of CA1 place cell responses despite a loss of major 

CA3 input is that CA1 pyramidal cells receive less input, provide less excitation 

to fast-spiking interneurons within the local circuit, and produce a resulting 

disinhibition of pyramidal cells that compensates for the reduced CA3 to CA1 

excitatory input. In a complementary study, genetic blockade of MEC layer III, 

the direct input to CA1, did not affect spatial reference memory, place field, or 

interneuron characteristics, but did impair spatial working memory (Suh et al., 

2011). The genetic inactivation techniques used in these studies are chronic, 

requiring at least four weeks for effects to emerge.  Therefore, a variety of 

compensatory mechanisms could potentially have developed to rescue 

hippocampal circuit function. 

Overall, physical, pharmacological, and genetics methods depriving CA1 of 

input from CA3 or EC failed to abolish CA1 place cell activity. Each of these 

studies reports largely preserved and normal place field activity, except MEC 

layer III pharmacological lesions which caused somewhat larger place fields.  
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This is quite unexpected because CA3 and EC are the main carriers of positional 

information to CA1 circuitry.  One possible explanation may be that all the 

methods used in these studies are chronic, where neural recordings are 

performed several weeks after inactivation. Therefore, compensatory and 

homeostatic mechanisms may play intricate roles in balancing CA1 circuit 

activity during this recovery period after intervention. Acute circuit modulation 

methods may rule out the effects of chronic compensatory mechanisms and 

reveal hippocampal ensemble dynamics in real-time. 

Optogenetics is a millisecond-timescale, cell-type-specific in vivo method 

which uses light for activating or silencing neural ensembles (Boyden et al., 

2005). Its temporal resolution, cell-type specificity, and ability to manipulate 

axonal projections makes it a leading technique for understanding neural basis of 

behavior in a wide range of animals (Tye and Deisseroth, 2012; Liu et al., 2015). It 

also has been influential in better understanding hippocampal function and 

circuitry (Liu et al., 2012; Ramirez et al., 2013; Song et al., 2013; Zhang et al., 2013; 

Stark et al., 2014, 2015; Miao et al., 2015; Rueckemann et al., 2016).  

Optogenetic stimulation of retrogradely-labelled MEC pyramidal cells shows 

that diverse grid cells, head-direction cells, and border cells project to the 



26 

 

hippocampus, possibly affecting place cell responses (Zhang et al., 2013). 

Moreover, transient optogenetic silencing of MEC results in non-reversible global 

remapping in a subset of CA1 place cells, though the overall ensemble spatial 

information remains intact  (Rueckemann et al., 2016). However, partial 

optogenetic inactivation of either MEC or MEC axons projecting to CA3 induces 

instantaneous global remapping in CA3 place cells (Miao et al., 2015). The 

difference in the reversibility of remapping observed in these two studies might 

be explained by the recording area in the hippocampus (Miao et al., 2015; 

Rueckemann et al., 2016). While CA1 place cells exhibit significant hysteresis in 

changing their firing patterns, CA3 place cell show fast remapping to changes in 

an environment (Leutgeb et al., 2005a). Moreover, both studies report that place 

cells do not change their field size when MEC input is suppressed (Miao et al., 

2015; Rueckemann et al., 2016). This suggests that intrahippocampal circuity may 

be responsible for refining place fields. Therefore, a complementary study to 

directly assess real-time influence of CA3 inputs on CA1 place cell response, by 

transient optogenetic silencing of SCs, may further uncover the mechanisms of 

hippocampal function.  
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Sharp-wave ripples 

In contrast to theta-dominated LFP during preparatory behavior, primarily 

explorative running, the hippocampus shows signature irregularly-occurring 

events during consummatory behavior, such as drinking, eating, grooming, 

immobility, and sleep.  These high frequency (100- 250 Hz) events, which have 

durations around 100 milliseconds, are known as sharp-wave ripples (SWRs) and 

usually occur every one or two seconds when an animal is in such “off-line” 

brain states (Buzsáki et al., 1983; Buzsáki, 2015). SWRs are found in both CA1 

and CA3 and are composed of a broad excitation response, known as sharp-

wave, which leads to fast network oscillations known as a ripple.  

SWRs are thought to be a vehicle for transferring hippocampus-based 

memory to neocortical and subcortical areas to enter long-term memory, a 

process known as memory consolidation (Buzsáki, 2015). They may also be 

crucial for route planning and decision making (Jadhav et al., 2012; Buzsáki, 

2015). fMRI studies in monkeys show that during SWRs, most of  neocortex and 

the limbic system are activated (Logothetis et al., 2012). Moreover, subcortical 

structures such as ventral striatum and ventral tegmental area show coordinated 

activity with hippocampal SWRs (Lansink et al., 2009; Gomperts et al., 2015). On 

the other hand, selective electrical disturbance of SWRs in awake or sleeping 
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rodents impairs spatial learning and memory  (Girardeau et al., 2009; Ego-

Stengel and Wilson, 2010; Jadhav et al., 2012). This raises interesting questions 

about the information content of neural ensemble spiking during SWRs, such as 

how exactly its disruption results in memory deficits. 

Hippocampal ensemble recording from rodents running in a track showed 

that place cells that were sequentially active on the track are sequentially, but in a 

time-compressed format, reactivated during SWRs that occur while the rodent is 

paused on the track and also during later sleep, a phenomenon called 

hippocampal replay (Wilson and McNaughton, 1994; Nádasdy et al., 1999; Louie 

and Wilson, 2001; Lee and Wilson, 2002; Foster and Wilson, 2006; Diba and 

Buzsáki, 2007; Davidson et al., 2009; Karlsson and Frank, 2009; Carr et al., 2011). 

SWR-based replays may be the instantiation of fast mental time travel from the 

current time backward to a recent experience or from now to future possible 

actions, respectively known as reverse and forward replays (Foster and Wilson, 

2006; Diba and Buzsáki, 2007). Reverse replays are sensitive to the magnitude of 

reward animal receives, showing their distinct role in memory consolidation, 

while forward replays are more crucial for goal-directed navigational planning 

(Pfeiffer and Foster, 2013; Ambrose et al., 2016).  
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The mechanisms that form novel SWR-based sequences, as well as theta 

sequences during run, are not well understood (Mehta et al., 2002; Lisman et al., 

2005; Pfeiffer and Foster, 2015). Replays are heavily dependent on mechanisms of 

SWR generation and are thought to be reliant on CA3’s autoassociative dynamics 

and slow gamma (Pfeiffer and Foster, 2015).  Better understanding of the 

mechanism of generation of SWRs may shed further light on mechanisms for 

emergence of replays.  

It is unclear from where CA1 SWRs are initiated. While some evidence 

supports CA3 as critical locus, others propose CA2 as the initiator. CA3 is the 

most intensive recurrent- associational system in the brain and may be the best 

candidate area for the formation of regenerative ensemble bursts (Traub and 

Wong, 1982; Wittner et al., 2007). Indeed, axons of each CA3 pyramidal cell 

project to one to two thirds of the septo-temporal axis of the rat hippocampus (Li 

et al., 1994; Wittner et al., 2007). The skewed distribution of inter-SWR intervals 

and lognormal distribution of SWR amplitudes suggest that generation of these 

ensemble bursts is a stochastic process (Sullivan et al., 2011; Mizuseki et al., 

2012). SWRs  may stochastically emerge from fluctuations in synchrony of 

coincidentally firing CA3 pyramidal cells, in the presence of neocortical inputs 



30 

 

such as slow oscillations and sleep spindles  (Siapas and Wilson, 1998; 

Vladimirov et al., 2013; Schlingloff et al., 2014).  

In vitro studies also support the role of CA3 in generation of SWRs. High 

frequency stimulation of SC-CA1 synapses in slices not only induces LTP, but 

also increases sharp wave incidence rate in CA1 (Buzsáki, 1984). Early lesion 

studies also support CA3 as the origin of sharp waves, since sharp waves survive 

and are even enhanced after neocortex removal (Jouvet et al., 1959; Buzsáki et al., 

1983; Suzuki and Smith, 1988a), EC lesion (Bragin et al., 1995; Ylinen et al., 1995), 

and septal and fimbria-fornix lesions (Buzsáki et al., 1983). Moreover, isolated 

CA3 slices also generate sharp-wave-like events while isolated CA1 slices are not 

able to show these specific events (Colgin et al., 2004; Hofer et al., 2015). Overall, 

these studies propose that SWRs are a default emergent property of the CA3 

collateral system in the hippocampus. 

Correlational studies of in vivo electrophysiological activity in hippocampus 

suggest that synchronous CA3 pyramidal cell bursts induce depolarizing sharp 

waves in apical dendrites of CA3 and CA1 pyramidal cells which result in fast 

oscillation of locally interacting pyramidal cells and interneurons (Buzsáki et al., 

1983; Buzsáki, 1986, 2015; Suzuki and Smith, 1988b; Sullivan et al., 2011; Stark et 
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al., 2014, 2015). However, simultaneous hippocampal ensemble recordings 

further clarified that most sharp wave events are generated earliest in CA2 and 

transferred to CA3a, CA3b, and CA3c, respectively, and from CA3c invade CA1 

(Csicsvari et al., 2000; Oliva et al., 2016). This is in accordance with anatomical 

evidence that the extent of recurrent axons declines from distal CA3a (i.e. 

adjacent to CA2) to proximal CA3c (i.e. close to DG) (Ishizuka et al., 1990; Li et 

al., 1994; Wittner et al., 2007).  

Generally, while the role of CA2 in SWR initiation is proposed to be stronger 

in the awake state, CA3 mostly takes the lead in triggering SWRs in sleep (Oliva 

et al., 2016). CA2 pyramidal cells also fire differentially to SWR, with one 

population of CA2 neurons ramping up before SWRs and then becoming 

suppressed during SWRs, while other CA2 neurons phasically increase their 

firing rate during SWRs (Kay et al., 2016; Oliva et al., 2016). A small subset of 

CA1 SWRs are directly induced by CA2 without apparent involvement of CA3 

(Oliva et al., 2016). However, these findings were based on correlational analysis 

with delays highly dependent on sharp wave and ripple detection criteria (Oliva 

et al., 2016).  For example, SWRs may still be initiated in CA3 but reach their 

peak power in CA2 sooner than CA3 itself, leading to statistical detection of the 



32 

 

SWR first in CA2. Taken together, these correlational studies support CA2-CA3a 

as initiators of SWRs.   

The sharp wave propagation system in CA3 may be suppressed by changes 

in glutamate release, and cholinergic and cannabinoid receptors (Hasselmo, 2006; 

Robbe et al., 2006). For example, selective optogenetic activation of medial 

septum, the main source of cholinergic input to CA3, suppresses SWR incidence 

and increases theta power in anesthetized and freely moving mice 

(Vandecasteele et al., 2014). Other subcortical neuromodulators may have similar 

suppressive effects on SWR occurrence (Wang et al., 2015). Also, different 

subtypes of interneurons may play distinct roles in the initiation and persistence 

of SWRs (Csicsvari et al., 1999; Klausberger and Somogyi, 2008; Varga et al., 2012; 

Buzsáki, 2015).  

However, in transgenic mice, selective genetic blockade of SCs, which serve 

as the synaptic output relay from CA3 to CA1, surprisingly does not change the 

rate of incidence of SWRs in CA1, but instead alters the quality of SWRs, 

reducing the peak frequency of the majority of SWRs (from ~150 Hz to ~110 Hz) 

as well as the pairwise reactivation of CA1 place cells during SWRs in post-

experience sleep (Nakashiba et al., 2009). A follow-up study using the same 
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transgenic mice confirmed these findings, and further showed that the slow 

gamma rhythm in CA1, which was thought to be induced by CA3, remains 

unchanged as well (Middleton and McHugh, 2016). However, the temporal 

resolution of these genetic blockades was on the order of weeks and possible 

compensatory mechanisms may play crucial roles in the persistence of ripples. 

For example, some CA3 interneurons project to CA1 stratum lacunosum-

molecure (SLM) layer and inhibit excitatory MEC inputs (Buzsáki, 2015). 

Therefore, in addition to the intended blockade of SCs, these CA3 interneuron 

projections may also be suppressed in the mutant mice, resulting in a dominant 

effect of EC in CA1 ripple generation. Overall, these studies show that the 

formation of SWRs and SWR-associated replays may be more complex than the 

current CA3-based theory.   

These genetic SC silencing studies leave open the possibility that non-

hippocampal extrinsic inputs to CA1, such as MEC, in certain cases are able to 

induce ripples, though perhaps not necessarily sharp waves, in CA1. Indeed, 

although CA1 pyramidal cells are very poorly connected, CA1 ripples and 

sequential neural activity can be induced by direct optogenetic activation of a 

subset of CA1 pyramidal cells, possibly due to biophysical properties of neurons 

and intricate local interactions of pyramidal cells and different subtypes of 
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interneurons (Thomson and Radpour, 1991; Stark et al., 2014, 2015). In another 

study, Ca2+ imaging of hippocampal slices shows that, in subiculum, not only are 

many neurons activated after CA1 SWRs, but also a fraction of neurons fire 

before SWRs (Norimoto et al., 2013). This finding supports a direct role of EC 

layer III, or even other subiculum-projecting regions, such as prefrontal cortex, in 

triggering some ripples in both subiculum and CA1. However, other work has 

challenged this conclusion, by demonstrating SWR time-lag between CA1 and 

subiculum in which CA1 precedes subiculum, and failing to find EC layer III 

neurons firing before or during CA1 SWRs (Chrobak and Buzsáki, 1994, 1996; 

Mizuseki et al., 2009). Overall, it remains unknown how intrinsic CA3 input 

competes or cooperates with extrinsic EC input over CA1 ensemble activity.   

Unanswered questions 

To summarize, these studies with their diverse approaches and techniques 

attempted to explain the contribution of extrinsic EC and intrinsic CA3 inputs in 

the expression of place cell responses and the generation of SWRs in CA1. 

Almost all place cell studies failed to find significant disruption in CA1 place 

fields when CA3 input is disrupted (Brun et al., 2002; Nakazawa et al., 2002, 

2003, Nakashiba et al., 2008, 2009). Likewise, EC input disruption did not 

demolish CA1 place fields, although some cells showed larger fields, remapped 
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fields, or impaired theta phase precession (Brun et al., 2008; Hales et al., 2014; 

Miao et al., 2015; Schlesiger et al., 2015; Rueckemann et al., 2016). While these 

studies therefore show slightly more prominent control by entorhinal input, the 

fundamental question of how these CA1 place cells express robust responses in 

the absence of one of their major inputs remains unanswered.  

The origin of SWRs remains similarly elusive. Although the majority of 

studies showed CA3 is essential for SWRs in CA1, others did not demonstrate a 

key influence from CA3. A major theory supported by correlation studies 

proposes that SWRs are triggered by CA2 and transferred to CA3a, CA3b, and 

CA3c, respectively, and from CA3c invade CA1 (Csicsvari et al., 2000; Oliva et 

al., 2016). In contrast, genetic silencing of SCs do not affect occurrence of SWRs 

(Nakashiba et al., 2009; Middleton and McHugh, 2016).  However, the studies 

described above that have directly intervened in the hippocampal circuit have 

used methods which are chronic and cannot rule out compensatory and 

homeostatic effects. Therefore, a more temporally-specific, transient approach to 

manipulating hippocampal circuitry and inputs may shed light on the 

mechanisms of formation of SWRs. 
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Proceeding from this background, the work described in this dissertation 

addresses the following three main questions. First, what is the role of CA3 in the 

expression of CA1 place cell responses? Besides being highly recurrent, CA3 is 

the major projection to dorsal CA1, and likely carries rich positional information 

to CA1. While weeks of recovery post-lesion may allow place cell responses to 

reemerge in CA1 even while lacking CA3 input, transient optogenetic silencing 

will prevent such a compensatory mechanism. If CA3 is critical for relaying 

spatial information to generate CA1 place cell responses, transient optogenetic 

silencing of SCs is expected to result in substantial effects on CA1 place fields, 

such as loss of stability and spatial specificity. Also, hippocampal rhythms (such 

as theta, slow gamma, and fast gamma) during active exploration, as well as 

coordination of cellular activity with these rhythms, will be explored, to better 

understand how higher order firing properties of CA1 neurons, beyond basic 

spatial receptive fields, depend on CA3 input.  

Second, what is the role of CA3 in the formation of CA1 SWRs? Despite 

contradictory findings from earlier work, I hypothesize that CA3 plays a causal 

role in the formation of CA1 SWRs during consummatory behaviors. I therefore 

expect optogenetic silencing of SCs to decimate the occurrence of SWRs, both 
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during sleep and awake restfulness. If SWR occurrence is not abolished, 

abnormalities in partially silenced SWRs will be examined.  

Third, are place cell responses during run and SWRs during rest differently 

impaired in calcineurin mouse model of schizophrenia? Since these mice show 

deficits in spatial working memory and hippocampal synaptic plasticity, I 

hypothesize that CA1 place cells responses, SWRs, or both are disrupted. 

Moreover, hippocampal synapses in these mice show severely decreased LTD, 

while LTP is mildly enhanced (Zeng et al., 2001).Therefore, since excitatory 

synapses will be more effective I hypothesize that the hippocampus is more 

hyperactive, potentially with over-abundance of SWRs. Any impairment found 

in place fields or SWRs will shed light on state-dependent mechanisms for spatial 

learning and memory. 

To address the first two questions, I devised a method for in vivo optogenetic 

silencing of SCs (Chapter 2). The animals were injected with a virus to bilaterally 

express the light-sensitive proton pump Archaerhodopsin (eArch3.0) opsin in 

their SCs. A novel bilateral “optetrode”, consisting of two optical fiber cannulas 

and up to forty tetrodes, was implanted over dorsal CA1. Either in the sleep box 

or during track traversals, I simultaneously recorded from CA1 neurons, CA1 
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LFP, and transiently and reversibly silenced SCs.  In this experimental paradigm, 

the real-time effect of CA3 input on CA1 place cell responses and SWRs could 

thus be examined.  

In answering the first question, I found that continuous CA3 input is 

necessary for the expression of place fields in CA1 pyramidal cells (Chapter 3). 

During silencing of SCs, the majority of place cell responses were demolished. 

Moreover, place cells that were partially silenced did not show global 

remapping. This may suggest that precise positional information on where a 

place cell fires comes from MEC, but the rate coding, i.e. the extent that a cell 

fires around that position, is dependent on CA3.  

In answering the second question, I also found that SC input is essential for 

the formation of SWRs in CA1, both during sleep and during rest periods on the 

track (Chapter 3). Silencing SCs decimates SWR incidence and the associated 

neuronal spiking in a reversible way in both cases. This shows that CA3 has an 

indispensable role in the chain of causality for the formation of SWRs.  

For addressing the third question, hippocampal place cell and SWR activity of 

calcineurin-KO mice traversing a track were examined (Chapter 4). In 

collaboration with the laboratory of Susumu Tonegawa at Massachusetts 
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Institute of Technology, which produced these transgenic mice and collected 

their electrophysiological data, I studied hippocampal neural circuit dysfunction. 

Surprisingly, while SWR incidence rate was dramatically increased, CA1 place 

field characteristics did not show any deficit (Suh et al., 2013). Although SWRs 

occurred more often, pair-wise reactivation of place cells during their time spans, 

which reflects the information content associated with replays, is sharply 

reduced. Since CA3, in contrast to CA1, is not genetically affected in these 

forebrain-specific calcineurin gene-deleted mice, the dissociations found in 

effects on CA1 place fields and SWRs may not be CA3-dependent (Suh et al., 

2013). This brain state-dependent deficit may be explained by biophysical 

changes in CA1 cells or selective impairments in extrinsic inputs to CA1, such as 

EC input.  

 To conclude, this dissertation investigates formation mechanisms of 

hippocampal ensemble activity (Chapter 5). I found that the recurrent neural 

network of CA3 is necessary for the formation of place cell responses and SWRs 

in the rodent hippocampus. Moreover, disrupting hippocampal synaptic 

plasticity may selectively disrupt hippocampal ensemble activity in a particular 

brain states. These findings have significant implications in understanding the 

neural substrate of the cognitive map and episodic memory. Future work with 
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intricate techniques and experimental designs may shed further light on neural 

mechanisms of hippocampus-dependent cognition.  
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 Chapter 2 : General Methods  

In this chapter, general methodologies as well as optogenetic technical 

developments for simultaneous SC silencing and multielectrode recording will 

be discussed. Detailed methods for studying neural ensembles in the calcineurin 

mouse model of Schizophrenia will be mentioned in Chapter 4.  

Animal Training 

Male Long-Evans rats (2-3 months old, 250-400 g) were used for this study. 

All procedures were approved by Johns Hopkins University Animal Care and 

Use Committee and followed US National Institutes of Health animal use 

guidelines. Animals were housed on a standard, non-inverted, 12-h light cycle. 

Rats were food-restricted to achieve 85–90% of their normal weight and then 

trained to traverse a 165-cm linear track to receive a liquid chocolate-flavored 

reward (200 μl, Carnation) at wells in either side of the track. Rats were trained 

for either 20 min or 30 complete laps (whichever was shorter) once per day for 3-

5 consecutive days. 
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Figure  2.1: Schematic of research design. 

a) Each rat undergoes two surgeries; one for virus injection and the other for drive 

implantation. b) CA3a-b is injected with eArch3.0-containing AAV and eArch3.0 

gradually gets expressed in CA3 pyramidal cell bodies, recurrent collaterals, and SCs, all 

shown in orange. c) Optical fiber and tetrodes of the implanted optetrode gradually get 

adjusted until they reach stratum oriens and stratum pyramidale, respectively. CA1 LFP 

and cellular activity is recorded while silencing CA3 input to CA1.  

Optogenetic setup 

Each trained rat underwent two surgeries (Figure  2.1a). The first surgery was 

for injecting adeno-associated virus (AAV) containing light-sensitive protein 

Archaerhodopsin (eArch3.0) to CA3 (Figure  2.1b). At least four weeks after 
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injection, when CA3 cells bodies and SCs strongly expressed eArch3.0 gene, the 

optetrode drive was implanted (Figure  2.1c). After a few days of adjusting 

tetrodes and optical fibers, hippocampal LFP and spiking activity in dorsal CA1 

were able to be recorded while silencing SC input (Figure  2.1c). The details of 

each of these steps are as follows.  

 

Figure  2.2: eNpHR3.0 expression in CA3 

In a coronal slice of rat brain injected with AAV5_CamKIIa_eArch3.0_EYFP construct, 

CA3 area expresses eYFP-tagged Halorhodopsin (eNpHR3.0). Note that, CA1 area 

receives poorly eYFP-expressing SCs in their stratum radiatum and stratum oriens.  

Virus transduction (first surgery) 

AAVs provide diverse solutions to optogenetic experiments by offering low 

immunogenicity and diverse levels of neural tissue spread, genetic transduction, 
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cell body and neurite expression, and anterograde vs retrograde labeling (Yizhar 

et al., 2011). Recombinant AAV2 (rAAV2) vectors pseudotyped with various 

serotype packaging systems (e.g., rAAV2/1 to rAAV2/9, referred to simply as 

AAV1 to AAV9) are the most used viral vectors for optogenetic applications. 

Among these available AAVs, I chose AAV5 due to its transduction efficiency 

and high expression level (Yizhar et al., 2011).  

Different opsins, such as genetically enhanced chloride ion pump 

Halorhodopsin (eNpHR3.0) and proton pump Archaerhodopsin (eArch3.0)  have 

been developed for optogenetic silencing of neural circuits (Gradinaru et al., 

2010). In the beginning, I used eNpHR3.0 for expression verification in CA3 cell 

bodies and SCs (Figure  2.2). However, I found that eArch3.0 acquires much 

higher expression level, especially in SC axon terminals which are the region of 

interest in my silencing experimental design (Figure  2.4). Therefore, I used 

eArch3.0 in conjunction with CamKIIa promotor that specifically targets 

pyramidal cells and not interneurons (Gradinaru et al., 2010). All viral constructs 

were provided from University of North Carolina Vector Core under material 

transfer agreement with Karl Deisseroth laboratory.  
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Figure  2.3: Injection sites in dorsal and intermediate CA3. 

Six injection sites shown in red are overlaid on rat brain atlas (Paxinos and Watson, 

2007). Black circles display the location of optetrode implanted in second surgery.  

Four experimental (EXP) rats were injected with 

AAV5_CamKIIa_eArch3.0_EYFP and two control (CON) rats were injected with 

AAV5_CamKIIa_ EYFP in each of six sites in their dorsal and intermediate CA3a, 

and b. A total of 6 µL of virus (1 µL in each site) were stereotaxically injected in 

each rat (AP= -3.1 mm, ML = ±3.5, and DV= -3.5), (AP= -4.0 mm, ML = ±4.3, and 

DV= -4), and (AP= -4.7 mm, ML = ±4.8, and DV= -4.8) where AP, ML, and DV 
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stand for anterior-posterior in relation to bregma, medio-lateral, and dorso-

ventral axes in relation to surface of skull, respectively. Figure  2.3 depicts these 

six injection sites in dorsal and intermediate CA3 as well as implantations sites of 

fibers and tetrodes.  

Four to six weeks after AAV injections, eArch3.0 became expressed in CA3a-b 

cell bodies and axons including SCs (Figure  2.4). As expected, while SCs reaching 

CA1 stratum radiatum and stratum oriens express eArch3.0, CA1 cell bodies do 

not express this opsin (Figure  2.4). Also, CA2 pyramidal neurons were to some 

extent affected by viral transduction (Figure  2.4). However, since CA2 axons 

mainly project to CA1 striatum oriens where the optic fibers are to be placed 

below them, they will not be under laser light cone (van Strien et al., 2009; Dudek 

et al., 2016).  

Optetrode design (second surgery) 

A bilateral optetrode with two optical fibers (200 μm diameter) and up to 40 

tetrodes (20 tetrodes in each hemisphere) was designed (Figure  2.5). For 

monitoring the position of each optical fiber in the brain, one tetrode was glued 

to each fiber, too. Both fibers and all of tetrodes where independently adjustable. 

Each tetrode consists of a twisted bundle of four 17.8 μm platinum/10% iridium 
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wires (Neuralynx), and by gold-plating the tip of each tetrode an impedance of 

<150 kΩ was achieved before implantation.  

 

Figure  2.4: eArch3.0 is expressed in CA3 but not CA1 pyramidal cells. 

In a coronal slice of rat brain, CA3 and partially CA2 cell bodies and axons express GFP-

tagged eArch3.0. Zooming in CA3a region shows that the majority of pyramidal cells is 

affected by virus and strongly express eArch3.0. In contrast, CA1 pyramidal cells do not 

express this opsin but still receive eArch3.0-expressing SCs in their stratum radiatum 

and stratum oriens.  
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This design outperforms the existing optetrodes in difference ways. First, 

while the existing optetrodes  are mostly unilateral and with only few (up to 16) 

tetrodes, this design is bilateral with 40 tetrodes  (Halassa et al., 2011; Siegle et al., 

2011; Anikeeva et al., 2012; Voigts et al., 2013, Figure  2.5). Second, in most of 

these optetrodes, tetrodes are either fixed to the optical fiber or either tetrodes or 

fiber are not individually adjustable. In contrast, in our design both fibers and 

tetrodes are individually and independently adjustable. 

Optetrode implantation (second surgery) 

At least four weeks after viral injection, optetrodes were implanted on rats. A 

bone screw firmly connected to the rat’s skull worked as electrical ground. 

Following surgical implantation, optical fibers and tetrodes were slowly lowered 

into the dorsal CA1 pyramidal layer over a few days using characteristic LFP 

patterns (mostly SWRs) and neural firing patterning as a guide. Placement of 

tetrodes and recordings were performed as previously described (Foster and 

Wilson, 2006; Pfeiffer and Foster, 2013). Optical fibers were adjusted to stay in 

stratum oriens, i.e. 100-200 µm above the pyramidal layer, to be able to silence a 

broad region in dorsal CA1.   
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Figure  2.5: The designed optetrode outperforms existing designs. 

a-d) Existing optetrodes are unilateral and have many fewer (4-16) tetrodes (Halassa et 

al., 2011; Siegle et al., 2011; Anikeeva et al., 2012; Voigts et al., 2013). In most of these 

optetrodes, the tetrodes are fixed to the optical fiber or either tetrodes or fiber is not 

individually adjustable. e) Our designed optetrode with 40 tetrodes. Both fibers and 

tetrodes are individually and independently adjustable.  

LFP and cellular unit recording  

All data were collected using Digital Lynx data acquisition system 

(Neuralynx, Boseman, MT). The rat’s position was tracked in darkness via blue 

and red LEDs mounted on the optetrode, and continuously recorded at 30 

frames/s by an overhead camera. Analog neural signals were digitized at 32,000 
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Hz. The threshold for spike (extracellular action potential) detection was set to 60 

μV. LFP data was digitally filtered between 0.1 and 500 Hz and recorded at 3,200 

Hz after ten times downsampling. Individual units were also identified by 

manual clustering based on spike waveform peak amplitudes using a custom 

software (xclust2, Matt A. Wilson, MIT). Only well-isolated cluster with high 

complex spike index (CSI) were considered as putative pyramidal cells and 

included in later analysis. CSI is defined as the percentage of spikes with first lag 

interspike intervals that fall between 2 and 15 ms and whose second spike 

amplitude is smaller than the first (McHugh et al., 1996b). A minority (< %10) of 

clustered units identified as putative fast-spiking inhibitory neurons on the basis 

of their spike width, low CSI (close to zero), and high firing rate.  
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Figure  2.6: Experimental design and stimulation paradigm. 

a) Schematic of an experimental session containing recordings from a rat in a sleep box, 

followed by linear track traversals, and then returning to the same sleep box. . b) In the 

sleep box, optical silencing is performed by four pulse trains each lasting 400 seconds.  

Each train consists of ten 20-s-long stimulations separated by ten 20-s-long light off time 

spans.  c) For the track traversal session, light is manually and consecutively turned on 

and off for ON and OFF laps. For each ON lap, the light is continuously on while the rat 

was traversing the track, staying at one end of the track and returning to the first 

position.    
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Task Design 

A recording day consisted of a one-hour recording session in a sleep box 

(“Pre” rest session), followed by either 30 traversing laps or 20 min (whichever 

was shorter) on a familiar 165 cm linear track (‘Run” session), and one hour of 

recording in the sleep box (“Post” rest session). Figure  2.6 depicts the task design 

and recording/stimulation paradigm. In each rest session, light was delivered in 

four pulse trains each lasting 400 seconds. Each pulse train consisted of 

alternating 20-s light on stimulation periods (“ON” periods) followed by 20-s 

light off periods (“OFF” periods), with this on/off cycle repeating 10 times 

(Figure  2.6b). Light was delivered from a 532 nm (green) laser and the estimated 

light power at the tips of optical fibers in each hemisphere was around 100 

mW/mm2 (3.25 mW). Laser commands were generated by a custom-written 

MATLAB (Mathworks) graphic user interface and were delivered to laser by 

multifunction data acquisition device NI USB-6341(National Instruments).  

Next, rats were put on a familiar linear track. For the Run session, light was 

manually and consecutively turned on and off for ON and OFF laps (Figure  2.6c). 

For each ON lap light was continuously on while the rat was traversing the track, 

staying at one end of the track and returning to the first position. The stimulation 

paradigm for “Post” rest sessions where similar to “Pre” rest sessions.  
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Figure  2.7: SWR detection algorithm. 

 A 6-s sample of z-scored raw LFP recorded from dorsal CA1 (top). Whenever, the 

envelope of smoothed, ripple-band filtered LFP, passes 5 SD, it was detected as a SWR 

(middle). In the wavelet spectrogram of raw LFP (bottom), five detected SWR events 

show a clear isolated activity in the ripple frequency band (100-250 Hz) of the LFP 

spectrogram. Red time spans show detected ripple activity.   

Analysis 

LFP analysis 

Tetrodes that were able to detect any SWRs were included in the LFP analysis, 

regardless of whether they showed any modulation by light or not. For SWR 

detection in the sleep box study, only Pre rest sessions where analyzed and, 

using a speed threshold of 7 cm/s, moments that rat intensely moved where 
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excluded from the analysis. One electrode from each acceptable tetrode was 

considered for LFP analysis (Figure  2.7 top). The LFP signal of each electrode 

was denoised for 60 Hz electric noise and its 180 Hz harmonic using a second-

order IIR notch filter. Then, denoised LFP was filtered at SWR frequency range 

(100–250 Hz) with a fifth-order Butterworth band-pass filter. The envelopes of 

each band-passed LFP were obtained using the absolute value of its Hilbert 

transform. After applying a Gaussian smoothing filter with 5 ms standard 

deviation, the envelope was z-scored (Figure  2.7 middle).  

Events that passed 5 standard deviations (i.e., mean + 5 SD of averaged non-

z-scored envelope) for more than 3 ms were considered as SWR events, and 

SWRs that were less than 20 ms apart were merged and considered as one 

extended ripple. The beginning and end of each SWR were defined as where the 

smoothed envelope crossed its mean value (i.e., zero for the z-scored signal) 

(Figure  2.7 middle). Tetrodes with SWR incidence rate of more than 0.05 ripples/s 

(e.g. at least one ripple on average in every 20 s either during OFF or ON 

periods) during sleep box recording were considered for further analysis. This 

tetrode selection criterion was decreased to 0.02 ripples/s in rest periods for 

linear track recording sessions.   
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Morlet wavelet scalogram with bandwidth of 10 was used for spectrogram 

visualization of raw LFP (Figure  2.7 bottom). SWR power was obtained by 

applying Welch’s method on each individual non-z-scored non-enveloped SWR 

and then averaging over calculated powers. Furthermore, using Welch’s method, 

the power of raw LFP signals during Run was calculated and, in particular, theta 

(5–10 Hz), slow gamma (25-55 Hz), and fast gamma (65-110 Hz) powers for ON 

and OFF laps were compared.  

Place field calculation and features 

All the place cell analyses, except spatial coherence, were done on 1-D place 

fields. 1-D Place fields were obtained by binning the linear track using 2 cm bins, 

and these raw place fields were smoothed by applying a Gaussian filter with a 

2.4 cm SD. Only cells that showed a peak field firing rate of more than 3 Hz 

either in OFF or ON conditions were considered as place cells. Also, all analyses 

were done independently on directional fields and OFF and ON conditions. 

Therefore, for the same direction, two place fields were calculated, one by only 

considering OFF laps and the other only by considering ON laps. 

 The size of place fields was calculated as the number of 2-cm-wide bins 

above 1 Hz threshold. Major place field size was calculated by only considering 

the longest portion of place field which was continuously above 1 Hz.  



56 

 

Directionality index of each place field was defined as the percentage of its 

dominant direction (the direction that a specific cell has higher peak firing) 

divided by the summation of both leftward trajectory and rightward trajectory 

firing rates. The sparsity index ranges from 0 to 1, where a lower value means a 

less diffuse and more spatially specific place field (Skaggs et al., 1996). Having 2 

cm bins (n = 90) each having firing rate of fi and occupancy time of ti, sparsity is 

defined as:  

Sparsity  =
(∑ 𝑝𝑖 .𝑓𝑖)2 𝑛

𝑖=1

∑ 𝑝𝑖 .𝑓𝑖
2𝑛

𝑖=1
 

where pi is the occupancy probability: 𝑝𝑖 =  𝑡𝑖 ∑ 𝑡𝑖𝑛
𝑖=1⁄ .  

Spatial information, which is the amount of information about an animal’s 

position by each spike of a place cell, is calculated as follows (Skaggs et al., 1996):  

Spatial Information =  � 𝑝𝑖
𝑛

𝑖=1

𝑓𝑖
𝑓

 𝑙𝑙𝑙2
𝑓𝑖
𝑓

 

Where f is the mean firing rate, 𝑓 = ∑ 𝑝𝑖𝑓𝑖𝑛
𝑖=1 .   

The center of mass (COM) of a place field was calculated using the following 

equation: 
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COM =  
∑ 𝑥𝑖 . 𝑓𝑖𝑛
𝑖=1
∑ 𝑓𝑖𝑛
𝑖=1

 

where 𝑥𝑖 is the ith position bin on the track. 

The skewness of each place field was defined as: 

Skewness =  
∑ 𝑓𝑖 .𝑛
𝑖=1 (𝑥𝑖 − 𝑚𝑚𝑚𝑚(𝑥))3

𝜎𝑥
3/2.∑ 𝑓𝑖𝑛

𝑖=1
   

with 𝜎𝑥 defined as: 

𝜎𝑥 =
∑ 𝑓𝑖 .𝑛
𝑖=1 (𝑥𝑖 − 𝑚𝑚𝑚𝑛(𝑥))2

∑ 𝑓𝑖𝑛
𝑖=1

 

Spatial coherence, which quantifies smoothness and local orderliness of a 

place field, is the autocorrelation of each place field with its nearest neighbor 

average (Muller et al., 1989). To do this, the 6 × 165 cm linear track was binned 

into 2 × 2 cm bins and the new firing map for each pixel was calculated as the 

average firing rate of the eight unsmoothed neighbor pixels. Then, the 2-D 

correlation coefficient between the original unsmoothed firing map and the new 

one was calculated and to be statistically comparable we applied a Fisher 

transform (or z-transform, z=arctanh(r)) on correlation coefficients before 

calculating Z-values. Spatial correlation, which was defined as the normalized 
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Pearson correlation coefficient of place fields in light OFF and light ON 

conditions, was also Fisher-transformed for statistical comparison.  

Theta phase preference and phase precession 

For each tetrode, instantaneous theta phase was calculated using Hilbert 

transform of theta-band filtered LFP. Then, for each place cell, spikes and LFP 

timestamps were used to linearly interpolate theta phase for each spike. The 

degree of modulation of each place cell by theta phase was obtained by 

calculating its circular mean resultant vector (MRV). MRV may vary from 0 (no 

phase preference) to 1 (every spike occurred at the same theta phase).  

To calculate theta phase precession, circular-linear regression was used 

(Kempter et al., 2012).  A linear model 𝜑(𝑥) = 2π𝑎𝑎 + φ0 was fit into phase- 

position circular-linear pairs {𝑥𝑖 ,𝜑𝑖}𝑖=1𝑛 for each place cell independently for ON 

and OFF place fields. Precession slope 𝑎 was varied between range ∁=  (−5, 0)  to 

find optimal 𝑎� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∁ 𝑅(𝑎)  that maximizes R(a), the MRV of the circular 

errors between the measured phase 𝜑𝑖 and the model predictions 𝜑(𝑥): 

𝑅(𝑎) =  ��
1
𝑛

 � cos (
𝑛

𝑖=1

𝜑𝑖 − 2𝜋𝜋𝑥𝑗)�
2

+ �
1
𝑛

 � sin (
𝑛

𝑖=1

𝜑𝑖 − 2𝜋𝜋𝑥𝑗)�
2
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If 𝑎∗ found to exactly match border sides of ∁ it will not be considered a 

precession. Next, phase offset φ�0 is calculated as follows: 

φ�0 = 𝑎𝑎𝑎𝑎𝑎𝑎2
∑ sin (𝜑𝑖 − 2𝜋𝑎�𝑥𝑖)𝑛
𝑖=1

∑ cos (𝜑𝑖 − 2𝜋𝑎�𝑥𝑖)𝑛
𝑖=1

 

Now, to examine the statistical significance of the circular-linear correlation, 

the circular-linear correlation coefficient is first calculated: 

𝜌 =  
∑ sin(𝜑𝑖 − 𝜑�)𝑛
𝑖=1 sin(𝜃𝑖 − 𝜃̅)

�∑ sin(𝜑𝑖 − 𝜑�)2  ∑ sin(𝜃𝑖 − 𝜃̅)2𝑛
𝑖=1

𝑛
𝑖=1  

 

where 𝜑� =  ∑ sin(𝜑𝑖)𝑛
𝑖=1

∑ cos(𝜑𝑖)𝑛
𝑖=1

 and 𝜃̅ =  ∑ sin(𝜃𝑖)𝑛
𝑖=1

∑ cos(𝜃𝑖)𝑛
𝑖=1

, and 𝜃𝑖 = 2𝜋|𝑎�|𝑥𝑖(𝑚𝑚𝑚 2𝜋) is the 

linearly fitted phase. To determine statistical significance, the scaled correlation 

was calculated. For large n and under the null hypothesis that phases are from an 

uncorrelated Gaussian random distribution, the scaled correlation is given by 

𝑧 =  𝜌�𝑛 
𝜆02 𝜆20
𝜆22

 

where 

𝜆𝑖𝑖 =  
1
𝑛
� sin𝑖(𝜑𝑖 − 𝜑�)

𝑛

𝑘=1
sin𝑗(𝜃𝑖 − 𝜃̅)   
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Given z, the significance value can be derived from the cumulative normal 

distribution: 

𝑝 = 1 − erf�
|𝑧|
√2
�. 

Statistical analysis 

For most analyses, if data points had a Gaussian distribution (checked by 

Lilliefors test), depending on the type of comparison a paired-sample or two-

sample t-test was applied. For non-Gaussian distributions, depending on the 

type of comparison the non-parametric paired-sample Wilcoxon signed rank test 

or two-sample Wilcoxon rank sum test (aka Mann–Whitney U (MWU) test)  was 

used. The effect of optogenetic silencing of CA3 SCs on several properties of CA1 

SWR and place cell activity (e.g. SWR incidence rate and peak in-field firing rate) 

was tested using five statistical comparisons. The first two comparisons were 

between OFF vs ON conditions in EXP and CON. The next two statistical 

analyses consisted of comparing EXP vs CON separately in OFF and ON 

conditions. For the fifth analysis, the modulation index for each feature defined 

as (ON - OFF)/(ON + OFF) was calculated and EXP and CON sets were 

compared.  For COM, this index was simply defined as (ON - OFF)/180. 
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 Chapter 3 : The role of CA3 in neural ensemble 

activity in CA1 

Hippocampal area CA1 local field potential (LFP) exhibits high frequency 

(100- 250 Hz) events known as sharp-wave ripples (SWRs). These events occur 

during both slow-wave sleep and awake restfulness and have been shown to be 

important for the consolidation of spatial memory. During exploration, CA1 

pyramidal neurons show location-specific modulation of firing rates, with the 

location of maximum activity known as a place field. However, the mechanisms 

of formation of SWRs and place fields are not well understood. Here we report 

that, using multi-tetrode recording and reversible optogenetic manipulation, the 

silencing of Schafer collateral (SC) projections from CA3 to CA1 greatly 

diminishes the incidence rate of SWRs. Furthermore, SC silencing substantially 

suppresses hippocampal place cell activity and enhances theta rhythm in LFP 

during exploration. These findings shed light on the functional interconnections 

between hippocampal subregions that support episodic memory. 

Introduction 

Hippocampus has been shown to be crucial for the formation of a spatial 

cognitive map and episodic memory (O’Keefe and Nadel, 1978). Hippocampal 
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pyramidal cells respond selectively to particular locations in an environment, 

and are therefore called, “place cells” (O’Keefe and Nadel, 1978). These place 

cells are sequentially reactivated during SWR events, a phenomenon known as 

hippocampal replay (Wilson and McNaughton, 1994; Nádasdy et al., 1999; Lee 

and Wilson, 2002; Foster and Wilson, 2006; Diba and Buzsáki, 2007; Davidson et 

al., 2009; Karlsson and Frank, 2009; Carr et al., 2011).  However, the mechanisms 

for the formation of place fields and SWRs are still unclear. In particular, the 

contribution of hippocampal area CA3 and entorhinal cortex (EC), the main 

cortical projection to hippocampus, in the expression of these neural responses in 

CA1 is not well understood.  

Simultaneous hippocampal ensemble recordings have provided evidence that 

synchronous pyramidal neuron bursts in the highly recurrent network of CA3 

induce depolarizing sharp waves in apical dendrites of CA3 and CA1 pyramidal 

neurons, which result in ripple-frequency oscillation of locally interacting 

pyramidal cells and interneurons (Buzsáki et al., 1983; Buzsáki, 1986, 2015; 

Suzuki and Smith, 1988b; Sullivan et al., 2011; Stark et al., 2014, 2015).  

Further work has suggested that most of sharp wave events are generated in 

CA2 and CA3a (near CA2), then transferred to CA3b, and CA3c (near dentate 
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gyrus), and from CA3b-c invade CA1 (Csicsvari et al., 2000; Oliva et al., 2016). 

However, these findings were based on correlational analysis with delays highly 

dependent on sharp wave and ripple detection criteria (Oliva et al., 2016).  For 

example, SWRs may still be initiated first in neural ensembles in CA1 but reach 

their peak power in CA2 earlier than CA3 itself and, consequently, be detected 

sooner.  

 When SC projections from CA3 to CA1 were genetically silenced over the 

time course of a few weeks, surprisingly the number of SWRs did not change, 

while the average peak frequency of SWRs decreased (Nakashiba et al., 2009; 

Middleton and McHugh, 2016). However, these studies are based on chronic 

causal manipulations that are prone to compensatory homeostatic plasticity 

mechanisms such as inhibition adjustment and synaptic scaling which  may be 

on the timescale of hours to days (Turrigiano et al., 1998; Vogels et al., 2011; Keck 

et al., 2017; Turrigiano, 2017). Therefore, a causal but transient approach using 

optogenetics may shed light on the formation mechanisms of SWRs.  

Many studies with diverse approaches and techniques have attempted to 

explain the contribution of internally-generated CA3 input and extrinsic EC, 

especially position-tuned medical EC (MEC), inputs in the expression of place 
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cell responses in CA1. Previous work has found either no or only slight 

disruption in CA1 place fields when CA3 input is impaired in rodents exploring 

a familiar environment (Brun et al., 2002; Nakazawa et al., 2002, 2003, Nakashiba 

et al., 2008, 2009). Pharmacological and surgical lesions of CA3 have 

demonstrated that other inputs to CA1, probably predominantly EC inputs, are 

sufficient to establish robust place fields (Brun et al., 2002). This is in accordance 

with dentate gyrus and medial septum lesion studies that found disrupted 

activity in CA3 with unaffected CA1 place cell responses (McNaughton et al., 

1989; Mizumori et al., 1989; Wang et al., 2014). Likewise, either genetically 

deleting NMDA receptors in CA3 pyramidal cells or comprehensive genetic 

blockade of SCs does not change the field properties of CA1 pyramidal cells in 

mice traversing familiar tracks (Nakashiba et al., 2009).  These findings imply 

that other input to CA1, such as from EC, is crucial for the expression of already-

established place fields in CA1. 

In contrast to the relatively consistent lack of major effects on CA1 place fields 

following CA3 manipulations, EC input disruption using a variety of methods 

has often found inconsistent effects (Bush et al., 2014). EC input disruption using 

physical, pharmacological, genetic, and optogenetic techniques has not been 

shown  to demolish the persistence of CA1 place fields as well, but has been 
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found to cause some cells showed larger place fields, remapped fields, or 

impaired theta phase precession (Brun et al., 2008; Hales et al., 2014; Miao et al., 

2015; Schlesiger et al., 2015; Rueckemann et al., 2016).  

Following MEC lesioning, a reduction in the percentage of active place cells 

as well as the spatial information content and stability of their place fields was 

observed in a familiar environment, but nevertheless, place cell responses did not 

get eliminated (Miller and Best, 1980). CA1 place fields have been shown to 

expand following lesion of the medial EC (MEC) layer III cells that directly 

project to CA1 (Brun et al., 2008) or pharmacological silencing of all of MEC 

(Ormond and McNaughton, 2015). However, other groups have found surgical 

removal of MEC to cause no change in place field sizes in CA1 (Hales et al., 2014; 

Schlesiger et al., 2015), while lesion to the entirety of EC can cause place field 

sizes to decrease (Van Cauter et al., 2008). Moreover, lateral EC (LEC) lesions 

result in decreases firing rate in hippocampal place cells (Lu et al., 2013). 

 Similarly, different groups have found inconsistent effects of MEC 

manipulation in the degree to which place cells remap upon re-exposure to the 

same environment. While LEC lesions only resulted in a slight rate remapping 

(Lu et al., 2013), lesions to whole EC or  whole MEC, as well as MEC optogenetic 
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silencing result in global remapping in a subset of CA1 place fields (Brun et al., 

2008; Van Cauter et al., 2008; Miao et al., 2015; Ormond and McNaughton, 2015; 

Rueckemann et al., 2016). Moreover, physical and pharmacological lesions of 

MEC suppress CA1 theta power (Ormond and McNaughton, 2015) and phase 

precession (Hales et al., 2014; Schlesiger et al., 2015), respectively.  

These contradictory findings from these studies indicate that in a familiar 

environment, EC input is critical for completely normal expression of place fields 

in CA1, though not essential for the existence of location-specific activity in CA1 

pyramidal cells. On the other hand, while CA3 lesion and genetic silencing 

studies have failed to find a major effect on CA1 place fields, they were also 

chronic manipulations and prone to compensatory mechanisms. Therefore, 

whether a real-time manipulation of CA3 inputs would affect CA1 place cell 

responses remains unknown.  

In this study, we used transient optogenetic silencing of SCs to address the 

following two main questions. First, what is the role of CA3 in the expression of 

CA1 place cell responses? Besides being highly recurrent, CA3 is the major 

projection to dorsal CA1, and likely carries rich positional information to CA1. 

While weeks of recovery post-lesion may allow place cell responses to reemerge 
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in CA1 even while lacking CA3 input, transient optogenetic silencing will 

prevent such a compensatory mechanism. If CA3 is critical for relaying spatial 

information to CA1 in order to generate place cell responses, transient 

optogenetic silencing of SCs is expected to result in substantial effects on CA1 

place fields, such as loss of stability and spatial specificity. Second, what is the 

role of CA3 in the formation of CA1 SWRs? Despite contradictory findings from 

earlier work, we hypothesize that CA3 plays a causal role in the formation of 

CA1 SWRs during consummatory behaviors. We therefore expect optogenetic 

silencing of SCs to greatly diminish the occurrence of SWRs, both during sleep 

and awake rest. 

We found that continuous CA3 input is necessary for the expression of place 

fields in CA1 pyramidal cells. During optogenetic silencing of SCs, the majority 

of place cells had the firing rates in their place field almost completely silenced. 

However, place cells that were partially silenced did not show global remapping, 

and instead simply had lower peak firing rates in their same characteristic place 

field. This suggests that precise positional information on where a place cell fires 

comes from EC or other inputs, but the extent that a cell fires around that 

position is dependent on CA3. We also found that SC input is essential for the 

formation of SWRs in CA1, both during sleep and during rest periods on the 
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track. Silencing SCs drastically reduced SWR incidence and the associated 

neuronal spiking in a reversible way in both behavioral states. This shows that 

CA3 has an indispensable role in the chain of causality for the formation of 

SWRs. 

CA3 input is necessary for SWRs in CA1 during sleep 

We designed and implanted a bilateral optetrode consisting of two optical 

fibers and up to 40 tetrodes in rats expressing the light-sensitive proton pump 

Archaerhodopsin (eArchT3.0) in their dorsal CA3 pyramidal cells and SCs 

(Figure  3.1). Tetrodes were gradually lowered into the pyramidal layer of dorsal 

CA1. Using a tetrode attached to each optical fiber, the fibers were similarly 

gradually lowered and positioned slightly above the pyramidal layer 

(Figure  3.1a-b).  Although viral injections were targeted for distal CA3a-b 

regions, some CA2 pyramidal cells were potentially affected (Figure  3.1c). 

However, as expected, in contrast to CA3 cell bodies and SCs, CA1 pyramidal 

cells were not affected (Figure  3.1c-f). 
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Figure  3.1: Strategy for control of CA3 input to CA1 during recording of 
CA1 activity. 
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a-b) Each rat undergoes two surgeries. The first for virus injection (a) and the second for 

optetrode implantation (b). CA3a-b is injected with eArch3.0-containing adeno-

associated virus (AAV) and eArch3.0 gradually gets expressed in CA3 pyramidal cell 

bodies, recurrent collaterals, and SCs (shown in red). The optical fiber and tetrodes of 

the implanted optetrode are gradually adjusted until they are able to shine light on and 

record from the CA1 pyramidal layer, respectively. CA1 LFP and cellular activity is 

recorded while silencing CA3 input to CA1. c-f) eArch3.0 is expressed in CA3 but not 

CA1 pyramidal cells. In a coronal slice of rat brain, CA3 (and possibly CA2) cell bodies 

and axons express GFP-tagged eArch3.0 (c). In a magnified view, the CA3a region 

shows pyramidal cells strongly express the GFP-tagged eArch3.0 (d and e). In contrast, 

CA1 pyramidal cells do not express this opsin but still receive eArch3.0-expressing SCs 

in their stratum radiatum and stratum oriens, above and below the pyramidal layer, 

respectively (f).  

Four eArchT3.0-expressing experimental (EXP) and two GFP-only expressing 

control (CON) rats were implanted (See Chapter 2). SWRs were detected on a 

total of 233 and 106 tetrodes in EXP and CON rats, respectively, and these 

tetrodes were chosen for further analysis. When rats were at rest in a sleep box, 

CA1 SWR incidence rates were significantly suppressed in the majority of EXP 

tetrodes during light ON periods (OFF: 0.32 ± 0.01 SWR/s (mean ± standard 

error); ON: 0.23 ± 0.01 SWR/s, paired-sample t-test, F(1, 224) = 128.08, p < 10-23, 

Figure  3.2a-b), while CON tetrodes slightly increased their SWR incidence rate 

under illumination  (OFF: 0.28 ± 0.01; ON: 0.31 ± 0.01, paired-sample t-test, F(1, 

105) = 33.13, p < 10-7, Figure  3.2b). These significant yet opposing effects of light 
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were observed in all individuals rats (Figure  3.3a). Moreover, the degree of 

modulation of SWR incidence (SWR modulation index = [ON – OFF]/[ON + 

OFF], see Chapter 2) was significantly different in CON and EXP rats (CON: 0.03 

± 0.01; EXP: -0.19 ± 0.02, two-sample Wilcoxon rank sum test, z(1, 329) = 10.28, p< 

10-24, cumulative density plot is shown in Figure  3.2c). The increased SWR 

incidence in CON tetrodes might be due to the depolarization effect of heat 

induced by continuous laser light (3.5 mW, 100 mW/mm3, 20 s ON periods) on 

dorsal CA1 (Stujenske et al., 2015). EXP tetrodes also show a significant decrease 

in power spectral density in the ripple frequency band of their raw LFPs (OFF: 

4.6 × 104 ± 4.8 × 103; ON: 3.3 × 104 ± 3.2 × 103, paired-sample t-test after logarithmic 

transformation, F(1, 224) = 99.50, p < 10-18, Figure  3.2f), reaffirming the 

suppression of SWR activity during rest state, while CON tetrodes slightly 

increase their ripple frequency band activity (OFF: 8.1 × 104 ± 6.6 × 103; ON: 8.2 × 

104 ± 6.5 × 103, paired-sample t-test after logarithmic transformation, F(1, 105) = 

10.03, p < 0.01, Figure  3.2f). Multi-unit spikes were also significantly suppressed 

in EXP tetrodes during ON condition (CON: OFF: 21.96 ± 2.85 spikes/s and ON: 

22.04 ± 2.86 spikes/s, paired-sample t-test after logarithmic transformation, F(1, 

99) = 2.55, N.S.; EXP: OFF: 22.70 ± 1.87 spikes/s; ON: 17.02 ± 1.53 spikes/s, paired-

sample t-test after logarithmic transformation, F(1, 213) = 95.95, p < 10-18, 
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Figure  3.2d). This effect was significant in all individual EXP rats except rat EXP3 

(Figure  3.5b). Moreover, the degree of modulation ( [ON-OFF]/[ON+OFF]) of 

rest-state spiking activity was significantly different in CON and EXP rats (CON: 

-0.01 ± 0.01; EXP: -0.19 ± 0.02, two-sample Wilcoxon rank sum test, z(1, 312) = 

6.42, p< 10-9, cumulative density plot is shown in Figure  3.2e). These findings 

pinpoint CA3 as critical for the generation of SWRs and rest-state baseline 

spiking activity in CA1.  

In spite of the difficulty of estimation of tetrode position in the brain in 

relation to the optic fiber due to potential deviation of each tetrode and the 

nonlinearity of modulation effect due to silencing traversing axons, we found a 

significant correlation between horizontal distance from fiber optic and the 

degree of modulation of SWR incidence rate by light only among EXP rats (CON: 

r= 0.16; F(1,329) = 2.8, N.S.; EXP: r= 0.26, F(1,329) = 15.9, p < 10-4,  Figure  3.4). This 

suggests a key contributor to the heterogeneity between modulations at different 

sites (Figure  3.2) was simply light intensity there, rather than necessarily true 

functional diversity. 
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Figure  3.2: CA3 input is necessary for SWRs in CA1. 

a) An example tetrode in CA1 region which the detected SWRs in its filtered LFP 

envelope show strong modulation by SC silencing. Red traces are periods in the LFP that 

meet criteria for SWR detection. b) Wavelet scalogram of raw LFP from the same tetrode 

in (a). Green horizontal bars denote 20-s long light ON periods intermingled by 20-s 

light OFF periods. c) SWR incidence rate for each tetrode in light ON vs. light OFF 
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conditions. Each dot represents a tetrode and red and blue represent EXP and CON rats, 

respectively. d) Multi-unit activity for each tetrode in light ON vs. light OFF conditions. 

Each dot represents a tetrode and red and blue represent EXP and CON rats, 

respectively. e) Cumulative density plot of the amount of modulation of SWR incidence 

rate calculated from all CON (blue) and EXP (red) tetrodes. f) Cumulative density plot of 

the amount of modulation of spiking activity by light in CON (blue) and EXP (red) 

tetrodes. g) Power spectral density (PSD) of raw LFP during light OFF (black) and light 

ON (green) conditions. The LFP power in the ripple frequency range (100- 250 Hz) is 

marked by horizontal black bars.  ** and *** denote p < 0.01 and p < 0.001, respectively. 

 

Figure  3.3 Effect of light on rest-state CA1 activity in individual rats 

a) SWR incidence rate for each tetrode in light ON vs. light OFF conditions colored for 

individual CON (left) and EXP (right) rats. b) Multi-unit activity for each tetrode in light 

ON vs. light OFF conditions colored for individual CON (left) and EXP (right) rats. In all 

of these scatter plots, each dot represents a tetrode. 
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Figure  3.4: SWR modulation correlates with the tetrodes distance to optical 
fiber 

The relationship between the horizontal distances of each tetrode from optical fiber and 

the modulation of the incidence of SWRs by light. A SWR modulation of -1 means 

complete silencing of SWR incidence, negative values correspond to decreases in SWR 

incidence, 0 means no effect of light on SWR rate, and positive values correspond to 

increases in SWR incidence with light. Each dot represents a tetrode and red and blue 

represent EXP and CON rats, respectively.  

We found subtle abnormalities in the expression of SWRs (Figure  3.5). SWR 

power peak frequency was slightly decreased in EXP rats during ON periods 

(OFF: 144.60 ± 0.71 Hz; ON: 140.57 ± 0.69 Hz, paired-sample t-test, F(1, 224) = 

79.10, p < 10-15, Figure  3.5b), though a slight decrease was also observed in CON 

tetrodes (OFF: 146.95 ± 1.20 Hz; ON: 146.33 ± 1.12, paired-sample t-test, F(1, 105) 

= 6.86, p < 0.05, Figure  3.5b). The decline in SWR power peak frequency in EXP 



76 

 

tetrodes is consistent with previous genetic SC silencing studies (Nakashiba et 

al., 2009). SWR amplitude was also significantly increased in OFF vs ON states in 

EXP rats (CON: OFF: 7.61 ±  0.07 sd and ON: 7.55 ±  0.08 sd, paired-sample t-test, 

F(1, 105) = 2.33 , N.S.; EXP: OFF: 8.22 ±  0.11 sd and ON: 7.67 ±  0.09 sd,  paired-

sample t-test, F(1, 224) = 49.81, p < 10-10,  Figure  3.5c). This  may be due to 

rebound excitation effects caused by seconds-long SC silencing which results in 

stronger population bursts (Cobb et al., 1995; Harris et al., 2001; Girardeau et al., 

2009; Ellender et al., 2010; Papatheodoropoulos, 2010; Stark et al., 2013; Wang et 

al., 2015). Moreover, SWR duration was shorter in EXP compared to CON 

tetrodes either in OFF (CON: 121.06 ± 1.04 ms; EXP: 104.48 ± 0.80 ms, two-sample 

t-test, F(1, 330) = 146.25, p < 10-27) or ON (CON: 121.37 ± 0.93; EXP: 104.65 ± 1.23, 

two-sample t-test, F(1, 330) = 77.26, p < 10-16, Figure  3.5d) states which was due to 

shorter SWRs in Rat EXP4 (OFF: 96.51 ± 0.98 ms; ON: 90.19 ± 1.04 ms, F(1,84) = 

13.64, paired-sample t-test, p < 10-5). However, there was no significant effect on 

modulation of SWR duration in CON (paired-sample t-test, F(1, 105) = 0.23, N.S.) 

and EXP (paired-sample t-test, F(1, 224) = 0.04, N.S.) tetrodes, independently 

(Figure  3.5d). These findings, most notably the decline in power peak frequency 

of SWRs, show that SWRs that occur in the SC silencing condition have subtle 

abnormalities in their properties.  
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Figure  3.5: Effect of light on SWR characteristics. 

a) PSD of raw LFP only during SWR time windows and separately calculated for light 

OFF (black) and light ON (green) conditions in CON (left) and EXP (right) tetrodes. The 

horizontal black bar denotes the ripple frequency ban. b-d) Ripple peak power 

frequency (b), z-scored SWR amplitude (c), and SWR duration (d)  calculated from 

SWRs occurring in OFF and ON conditions.  *, **, *** denote p < 0.05, p < 0.01, and p < 

0.001, respectively.  
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CA3 input is necessary for awake SWRs in CA1 during explorative 
behavior 

It is not clear whether awake SWRs during rest periods of an explorative 

behavior are generated by a mechanism different than those occurring during 

rest periods in sleep (Buzsáki, 2015; Oliva et al., 2016). Therefore, we investigated 

the effect on SWRs recorded in CA1 while silencing SCs. Rats experienced 

alternating ON and OFF laps while running on a linear track (Figure  3.6a). ON 

laps consisted of forward run, a pause at one end of the track to consume fluid 

reward, and then a run to the other end of the track. LFP and spiking activity 

during consummatory and rest periods, time windows that rats had low speed 

movements, were investigated (Figure  3.6a). SC silencing strongly suppressed 

the incidence rate of SWRs in EXP tetrodes, while slightly increasing the 

incidence rate in CON tetrodes (CON: OFF: 0.11 ± 0.01 SWR/s and ON: 0.16 ± 0.01 

SWR/s, paired-sample t-test after logarithmic transformation, F(1, 86) = 78.14, p < 

10-12; EXP: OFF: 0.23 ± 0.01 SWR/s and ON: 0.17 ± 0.01 SWR/s paired-sample t-test 

after logarithmic transformation, F(1,201) = 81.12, p < 10-15; Figure  3.6b). These 

results were observed among all individual rats, except rat CON1 which SWR 

incidence rate did not change by light (Figure  3.8a).  Multi-unit spikes were also 

significantly suppressed in EXP tetrodes during rest periods on the linear track 

(CON: OFF: 39.01 ± 8.81 spikes/s and ON: 39.71 ± 9.79 spikes/s, paired-sample 



79 

 

Wilcoxon signed rank test, z(1, 84) = 0.29, N.S.; EXP: OFF: 22.87 ± 2.10, ON: 17.61 

± 1.76, paired-sample Wilcoxon signed rank test, z(1, 199) = 7.33, p < 10-13, 

Figure  3.6c) and individual EXP rats while did not significantly change in CON 

rats (Figure  3.7). Similarly, rest-state spiking activity in reward zones of the linear 

track in EXP putative pyramidal cells are suppressed during ON periods (CON: 

OFF: 2.50 ± 0.25 Hz and ON: 2.56 ± 0.25 Hz, paired-sample t-test after logarithmic 

transformation, F(1, 153) = 0.36, N.S., EXP: OFF: 2.37 ± 0.14 Hz and ON: 1.78 ± 

0.16 Hz, paired-sample Wilcoxon signed rank test, z(1, 339) = 6.30, p < 10-9, 

Figure  3.7).  This effect was significant in all individual EXP rats while CON rats 

did not individually show any significant change (Figure  3.7c). These findings 

further support the critical role of CA3 in the generation of awake SWRs and 

rest-state spiking activity in CA1. 

We found subtle abnormalities in the expression of awake SWRs on linear 

track comparable to the effects in sleep box (Figure  3.8). SWR peak power 

frequency showed significant yet opposing modulations with SC silencing, by 

being increased in CON tetrodes and decreased in EXP tetrodes (CON: OFF: 

160.74 ± 1.94 Hz and ON: 163.52 ± 2.05 Hz, paired-sample Wilcoxon signed rank 

test, z(1, 77) = -3.46, p < 0.001; EXP: OFF: 149.75 ± 1.14 Hz and ON: 143.90 ± 1.92 

Hz;  paired-sample Wilcoxon signed rank test, z(1, 165) = 3.54, p < 0.001; 
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Figure  3.8). Moreover, SWR peak power frequency was lower in EXP SWRs 

occurring during light OFF period compared to CON (Wilcoxon rank sum test, 

z(1, 245) = -5.11, p < 10-6, Figure  3.8). Moreover, awake SWR amplitude in EXP 

tetrodes was slightly lower than CON tetrodes (CON: 7.74 ± 0.21 s.d. and 7.39 ± 

0.22 s.d., paired-sample t-test, F(1, 86) = 1.95, N.S.; EXP: OFF: 7.50 ± 0.22 s.d. and 

6.82 ± 0.16 s.d., paired-sample Wilcoxon signed rank test, z(1, 201) = 2.55, p = 0.01, 

Figure  3.8) . Similar to the sleep box, while SWR duration was significantly 

shorter in EXP compared to CON tetrodes both in ON and OFF states, neither 

EXP nor CON showed a modulation by light (CON: OFF: 124.20 ± 2.55 ms and 

ON: 125.87 ± 1.86 ms, paired-sample Wilcoxon signed rank test, z(1, 86) = -1.03, 

N.S.; EXP: OFF: 96.65 ± 1.26 ms and ON: 95.33 ± 1.64 ms, paired-sample t-test, 

F(1, 184) = 0.02, Figure  3.8). Overall, these findings may indicate that the 

mechanisms for awake SWR generation in CA1 during the rest period of an 

explorative task are similar to the ones during slow-wave sleep and quite 

wakefulness in sleep box.   
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Figure  3.6: CA3 input is necessary for awake SWRs in CA1 in exploratory 
behavior. 

a) An example tetrode in CA1 region shows strong SWR modulation by SC silencing 

(above) when a rat stays at one end of track. Each magenta star marker (above) and 

signal (below) depicts a detected SWR event. The thick black line shows the moments 

that the rat’s speed was less than 7 cm/sec (“rest” time spans). b) Incidence of SWR 

events for each tetrode in light ON vs. light OFF conditions only considering rest 

moments. c)  multi-unit spiking activity in each tetrode in light  ON vs. light OFF 

conditions. d) Single unit spiking activity for each putative pyramidal cell recorded from 

CA1 in light ON vs. light OFF conditions.  In b and c, each dot represents a tetrode. In d, 

each dot it represents a CA1 pyramidal cell. Blue and red colors represent EXP and CON 

rats, respectively.  Tetrodes or cells that were completely silenced were assigned with a 

fixed low value only for visualization purpose in these logarithmic plots. 
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Figure  3.7: SC silencing effect on CA1 activities of individual explorative 
rats 

a) Awake SWR incidence rate for each tetrode in light ON vs. light OFF conditions 

colored for individual CON (left) and EXP (right) rats. b) Multi-unit spiking activity for 

each tetrode in light ON vs. light OFF conditions colored for individual CON (left) and 

EXP (right) rats. c) Single unit spiking activity for each putative pyramidal cell recorded 

from CA1 in light ON vs. light OFF conditions colored for different rats.  In a and b, each 

dot represents a tetrode. In c, each dot represents a CA1 pyramidal cell. Tetrodes or cells 

that were completely silenced were assigned with a fixed low value only for 

visualization purpose in these logarithmic plots. 
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Figure  3.8: Subtle abnormalities in awake SWRs 

a-c) Ripple peak power frequency (a), z-scored SWR amplitude (b), and SWR duration 

(c) calculated from SWRs occurring in OFF and ON conditions in CON (left) and EXP 

(right) rats.  ** and *** denote p < 0.01 and p < 0.001, respectively.  

CA3 input is necessary for normal place cell responses 

Although chronic lesioning and genetic silencing studies do not show a major 

contribution from CA3 in expression of CA1 place fields in a familiar 

environment, transient optogenetic silencing of CA3 could demonstrate a real-

time effect. 219 and 488 cell clusters were manually defined in neural spike 

recordings from CON and EXP rats in run sessions, respectively, and among  

them 140 and 325 clusters showed qualified place fields in at least one direction 

on the familiar linear track (see Chapter 2). Also, 9 and 49 putative fast-spiking 

interneurons were defined in CON and EXP rats, respectively. Overall, CON and 

EXP place cells respectively expressed 233 and 534 qualified directional place 
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fields in either ON or OFF periods which were calculated independently 

(Figure  3.9). Laser illumination did not impair expression of place fields in CON 

place cells (Figure  3.9a-b and Figure  3.11). In contrast, the majority of EXP place 

fields substantially, or in many cases completely, were suppressed (Figure  3.9c-d 

and Figure  3.12). In addition, a few silent cells became active by expressing place 

fields and some place cells also enhanced their in-field activity (Figure  3.13).  

Figure  3.10 also shows the effect of SC silencing on CA1 place fields separated by 

rats. Rat EXP1 is not shown in this figure due to its low number of qualified place 

fields, although three out of its four fields were strongly modulated and 

suppressed by light.  Altogether, CA1 cell populations in EXP rats show a 

general decrease in their place field firing which requires further analysis 

(Figure  3.9 and Figure  3.10).  
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Figure  3.9: SC silencing suppresses place fields in CA1. 

a) Top: two example CA1 place fields for light OFF (black) and ON (green) conditions in 

a CON rat. Bottom: Rat position as a function of time during linear track traversals (thin 

line), overlaid with spiking activity of the above place cell (dots). Spikes in OFF and ON 

conditions are shown as black and green dots, respectively. b) All 236 CON place fields 

sorted by their OFF peak firing position on the linear track. Each row depicts color map 

of a place field in light OFF (left) and light ON (right) conditions. Both OFF and ON 

fields are normalized by maximum peak firing rate in either conditions. c-d) Two 
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example CA1 place field (c) and all 534 sorted fields from EXP rats (d). Details are as 

described for a-b.  

 

Figure  3.10: Place cell firing in CON and EXP rats. 

a-b) All place fields for two CON (a) and three EXP rats (b) are sorted by their peak 

firing position on linear track during light OFF condition. Each row depicts color map of 

a place field in light OFF (left) and ON (right) conditions. Both OFF and ON fields are 

normalized by maximum peak firing rate in either conditions. Because only four place 

fields were recorded in Rat EXP1, it is excluded from b for visualization purposes. 
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Figure  3.11: Examples of CON place fields 

Seven examples of CA1 place fields for light OFF (black) and ON (green) conditions in 

CON rats. In bottom of each place field panel, rat position is shown as a function of time 

during linear track traversals (thin line), overlaid with spiking activity of the above place 

cell (dots). Spikes in OFF and ON conditions are shown as black and green dots, 

respectively. 
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Figure  3.12: Examples of suppressed EXP place fields 

Eight examples of CA1 place fields for light OFF (black) and ON (green) conditions in 

EXP rats. In bottom of each place field panel, rat position is shown as a function of time 

during linear track traversals (thin line), overlaid with spiking activity of the above place 

cell (dots). Spikes in OFF and ON conditions are shown as black and green dots, 

respectively. 
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Figure  3.13: Examples of emerged and enhanced EXP place fields 

Eight examples of CA1 place fields for light OFF (black) and ON (green) conditions in 

EXP rats. In bottom of each place field panel, rat position is shown as a function of time 

during linear track traversals (thin line), overlaid with spiking activity of the above place 

cell (dots). Spikes in OFF and ON conditions are shown as black and green dots, 

respectively. 

 



90 

 

We quantified the effect of SC silencing on place cell properties and we found 

that the majority of place fields are heavily suppressed during light ON periods 

(Figure  3.14a). Place field peak firing (CON: OFF: 12.79 ± 0.64 Hz and ON: 13.20 ± 

0.64 Hz, paired-sample t-test after logarithmic transformation, F(1, 235) = 0.65, 

N.S.; EXP: OFF: 8.98 ± 0.29 Hz and ON: 7.03 ± 0.33 Hz, paired-sample Wilcoxon 

signed rank test, z(1, 533) = 8.81, p < 10-17, Figure  3.14a) and place field size (CON: 

OFF: 100.74 ± 3.26 cm and ON: 99.96 ± 3.18 cm, paired-sample Wilcoxon signed 

rank test, z(1, 235) = 0.87, N.S.; EXP: OFF: 109.30 ± 2.42 cm and 74.52 ± 2.74 cm;  

paired-sample Wilcoxon signed rank test, z(1, 533) = 14.47, p < 10-4, Figure  3.14b) 

were significantly suppressed in EXP place cells during run. In addition to place 

cells, the firing rate of putative interneurons also slightly decreased in EXP 

animals (CON: OFF: 22.56 ± 3.79 Hz and ON: 21.49 ± 3.56 Hz, paired-sample t-

test after logarithmic transformation, F(1, 16) = 1.65, N.S.; EXP: OFF:  23.40 ± 1.97 

Hz and ON: 21.00 ± 1.78, paired-sample t-test after logarithmic transformation, 

F(1, 88) = 8.99, p < 0.005).  On the other hand, spatial information, which 

measures how much information a spike gives about animal’s position, while is 

significantly decreased in EXP place fields in light OFF condition compared to 

CON, which may be due to their slightly larger place fields, significantly increase 

in light ON condition (CON: OFF: 0.90 ± 0.04 bits/spike and ON: 0.84 ± 0.04 
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bits/spike, paired-sample t-test after logarithmic transformation, F(1, 235) = 5.52, 

p < 0.02;  EXP: OFF: 0.57 ± 0.02 bits/spike and ON: 0.89 ± 0.04 bits/spike, paired-

sample t-test after logarithmic transformation, F(1, 494) = 93.29, p < 10-19; also to 

compare light OFF conditions in CON and EXP rats: two-sample t-test after 

logarithmic transformation, F(1, 729) = 78.06, p < 10-17,  Figure  3.14c). The increase 

in spatial information is consistent with the decreased peak firing rate and field 

size in light ON condition in EXP place cells. Overall, these results show that the 

extent of CA1 place cell firing pattern is heavily dependent on CA3 input.  

To find whether SC silencing results in changes in the peak position of place 

field we calculated the center of mass (COM) and spatial correlation, two field 

properties that are independent of the magnitude of place cell firing. These, these 

measures showed converging results (Figure  3.14d and Figure  3.15). During light 

ON condition, COM slightly shifted rightward in both CON and EXP rats (CON: 

OFF: 95.62 ± 2.13 cm and 97.56 ± 2.19, paired-sample t-test, F(1, 225) = 7.81, p < 

0.01; EXP: OFF: 88.69 ± 1.58 cm and ON: 90.91 ± 1.75 cm, paired-sample t-test, F(1, 

338) = 5.17, p < 0.05, Figure  3.14d). Place fields with low spatial coherence (< 0.2) 

are excluded from COM and spatial correlation analyses. This slight shift is 

because of the delay caused by the manual switching of laser light when rats 

start to run which results in place fields with suppressed tails at the beginning of 



92 

 

the track in some recording sessions (Figure  3.16d). In other words, this is simply 

a sampling error, where specific parts of the track where light was turned on 

were poorly or not at all sampled, leading to measured field positions during ON 

laps that were shifted artifactually.  

 

Figure  3.14: SC silencing suppresses CA1 place cell activity. 

a-d) Four place field characteristics including peak firing rate (a), field size (b), spatial 

information (c), and center of mass (COM, d) are plotted in light ON vs. light OFF 
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conditions. In all plots, each dot represents a place field and red and blue colors 

represent EXP and CON rats, respectively.  

 

Figure  3.15: Cumulative density analysis depicts remapping-like effects in 
CA1 place fields 

a-b) Cumulative density plot of the absolute value of the modulation index of peak 

firing rate (a) and absolute shift in COM (b) of place fields during light ON vs. light OFF 

conditions in CON (blue) and EXP (red) rats. c-d) Spatial (c) and PV (d) correlation of 

place fields in light ON vs. light OFF conditions.   

However, the extent of the shift in COM was significantly greater in EXP 

compared to CON place fields (|∆COM|: CON:  6.59 ± 0.48 cm and EXP: 11.70 ± 

0.66 cm, two-sample Wilcoxon rank sum test, z(1, 563) = -6.16, p < 10-9, 

cumulative density plot is shown in Figure  3.15b). On the other hand, spatial 

correlation and population vector (PV) correlation, which compares cell 

population responses for each track position bin, significantly decreased in EXP 

place fields (spatial correlation: CON: 0.81 ± 0.01 and EXP: 0.64 ± 0.02, two-

sample t-test after Fisher Z transform, F(1, 563) = 71.26, p < 10-15, cumulative 
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density plot is shown in Figure  3.15c; PV correlation: CON: 0.87 ± 0.01 and EXP: 

0.69 ± 0.01, paired-sample Wilcoxon signed rank test after Fisher Z transform, 

z(1, 729) = 8.24, p < 10-16, cumulative density plot is shown in Figure  3.15d).   

Overall, no shift in COM but a decline in spatial correlation may be explained 

by a “subtractive” rather than a “scalar” (e.g. multiplicative) suppression model 

(Figure  3.16). While different extents of subtractive suppression do not change 

COM, spatial correlation which is sensitive to the firing pattern gradually 

declines due to the cut tails of a place field during light ON condition 

(Figure  3.16). Therefore, removing CA3 inputs to CA1 results in substantial 

decrease in place cell firing rate, resembling the phenomenon of “rate 

remapping”, where place cells change their place field peak firing in response to 

changes in environmental cues, but do not undergo a major shift in place field 

positions.  

 

Figure  3.16: Place fields undergo subtractive suppression and resemble rate 
remapping 
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a-c) A simple subtractive suppression model (a) may explain both the lack of change in 

COM (b) and decrease in spatial correlation (c). In this schematic place cell varying the 

amount of place field suppression from 0.1 to 9.9 Hz results in nonlinear changes in 

spatial correlation while COM remains unchanged. (d) a hypothetical place field shows 

a rightward shift in its COM  if animal is not exposed to a fraction of the linear track 

during light ON (green) condition. Two small vertical lines show calculated COMs. 

Black and green, denote light OFF and light ON conditions, respectively.  

 

Figure  3.17: SC silencing increases theta power during explorative behavior 

a) PSD of raw CA1 EEG during track traversals in light OFF (black) and light ON (green) 

conditions. The theta frequency band (5-10 Hz) is marked by the black bar. b) PSD of Z-

scored CA1 LFP. Same format as a. *** denotes p < 0.001.  

SC silencing increases theta power and place cell theta locking 

During exploration, the hippocampal LFP is dominated by a theta rhythm of 

5-10 Hz that is essential for the fine temporal scale activity of place cells. While 

traversing its place field, a place cell fires at progressively earlier theta phases, a 

phenomenon known as theta phase precession (O’Keefe and Recce, 1993; Skaggs 

et al., 1996). However, the mechanisms of formation of hippocampal theta 
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rhythm, and associated neural activity resulting in theta phase precession are not 

well understood (Hales et al., 2014; Vandecasteele et al., 2014; Schlesiger et al., 

2015; Middleton and McHugh, 2016).  

Therefore, we next examined the contribution of CA3 input to CA1 

synchronous activity during exploratory behavior. CA1 theta power during run 

increased in EXP tetrodes during ON laps (CON: OFF: 996.82 ± 105.82 µV2 and 

ON: 1042.20 ± 145.05 µV2, paired-sample t-test after logarithmic transformation, 

F(1, 89) = 2.14, N.S.; EXP: OFF: 1757.77 ± 461.25  µV2 and ON: 2261.69 ± 521.78, 

paired-sample t-test after logarithmic transformation, F(1, 211) = 12.82, p < 5 × 10-

4, Figure  3.17a).  Z-scored EEG shows similar increase in theta power in EXP 

tetrodes, though CON tetrodes show slightly decreased theta power in ON 

periods (CON: OFF: 32.37 ± 2.49 and ON: 25.96 ± 2.31, paired-sample Wilcoxon 

signed rank test, z (1, 89) = 3.80, p < 5 × 10-4; EXP: OFF: 16.27 ± 1.04 and ON: 20.66 

± 1.35,  paired-sample Wilcoxon signed rank test, z (1, 211) = -4.72, p < 10-5, 

Figure  3.17b).  The lower z-scored theta power values in EXP compared to CON 

is due to lower frequency background activity in EXP tetrodes which scaled the 

normalization. These results show that suppressing CA3 input to CA1 increases 

theta-dominated activity in CA1 circuit, which might happen by disinhibition of 

cortical and medial septal inputs to CA1 (Vandecasteele et al., 2014).  
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Moreover, we found increased rhythmicity in spiking activity when CA3 

input to CA1 was inhibited during run (Figure  3.18). In EXP animals and during 

light ON condition, not only the preferred phases of place cells to theta rhythms, 

at an ensemble level, became uniformly distributed (CON: OFF: 2.16 ± 0.09 rad, 

Rayleigh test for circular non-uniformity, z(1, 165) = 20.88, p < 10-9 and ON: 2.21 ± 

0.09 rad, Rayleigh test for circular non-uniformity, z(1, 179) = 13.26, p < 10-5, two-

sample Watson-Williams test, F(1, 344) = 0.07, N.S.; EXP: OFF: -0.14 ± 0.07 rad, 

Rayleigh test for circular non-uniformity, z(1, 325) = 3.21, p < 0.05; ON: -1.11 ± 

0.09 rad, Rayleigh test for circular non-uniformity, z(1, 240) = 0.20, N.S.; only 

place fields with significant tuning to theta were considered for these analyses, 

Figure  3.18 and Figure  3.19c), but also their locking strength measured by 

circular mean resultant vector (MRV) did significantly increase (CON: OFF: 0.28 

± 0.01 and ON: 0.27 ± 0.01, two-sample t-test after logarithmic transformation, 

F(1, 344) = 1.46, N.S.; EXP: OFF 0.24 ± 0.01 and ON: 0.30 ± 0.01, two-sample t-test 

after logarithmic transformation, F(1, 564) = 19.56, p < 10-4, Figure  3.18 and 

Figure  3.19a).  
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Figure  3.18: Examples of place cell theta locking 

a) Four examples of place cell theta locking in CON rats. Theta phase preference of 

individual place fields is shown during light OFF (top polar plot) and light ON (bottom 

polar plot) conditions. The red bar in each polar plot indicates the MRV for each 
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condition. The bottom panel shows each associated place field in OFF (black) and ON 

(green) conditions. b) Four examples of place cell theta locking in EXP rats. Same format 

as (a). 

To remove the possible effect of place field peak firing on MRV values, CON 

and EXP data were corrected by a linear regression model driven from CON 

data. EXP fields with significantly tuned spiking to theta showed an increase in 

their MRVs in light ON compared to the CON light ON condition (CON: 0.08 ± 

0.01; EXP: 0.11 ± 0.01, two-sample Wilcoxon rank sum test, z(1, 316) = -2.59, p < 

0.01, Figure  3.19b). MRVs were corrected by a linear regression model driven 

from CON data and only place fields with significant tuning to theta in both light 

OFF and light ON conditions were considered for these analyses. Moreover, 

while CON phases show a statistically significant preference at a population 

level, EXP phases lose their population preference during light ON condition 

(CON: OFF:  2. 17 ± 0.09 rad, Rayleigh test for circular non-uniformity, z(1, 166) = 

20.88, p < 10-9 and ON: 2.21 ± 0.09, Rayleigh test for circular non-uniformity, z(1, 

180) = 13.26, p < 10-5; two-sample Watson-Williams test for circular comparison of 

OFF vs ON mean phases in CON place fields: F(1, 344) = 0.07, N.S.;   EXP: OFF: -

0.14 ± 0.07, Rayleigh test for circular non-uniformity, z(1, 326) = 3.21, p < 0.05 and 

ON: -1.1 ± 0.09 rad, Rayleigh test for circular non-uniformity, z(1, 240) = 0.20, 
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N.S.; only place fields with significant phase preference were considered for this 

analysis). These results imply that while CA3 input is essential for the tuning of 

theta phase preference of CA1 place cells, it inhibits the extent of locking of place 

cell spikes to theta rhythm.  

 

Figure  3.19: SC silencing increases place cell theta locking and diminishes 
population phase preference. 

a) Place cell theta locking strength measured by MRV in CON (left) and EXP (right) 

place fields during light OFF (black) and light ON (green) conditions. Only place fields 

with significant tuning to theta were considered for these analyses.  b) Cumulative 

distribution of the corrected absolute difference of MRV in light OFF and light ON 

conditions shows a rightward shift in EXP (red) versus CON (blue) rats. *** denotes p < 
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0.001. c) Distribution of the preferred phases of place fields in light OFF (black) and light 

ON (green) conditions in CON (left) and EXP (right) rats. Red arrow denotes the 

population MRV. 

In spite of increased theta locking in EXP place cells during light ON 

condition, theta phase precession is not impaired in these cells. While phase 

precession slopes of all place fields become slightly steeper (CON: OFF: -1.64 ± 

0.1 and ON: -1.60 ± 0.10, paired-sample Wilcoxon signed rank test, z(1, 235) = -

0.37, N.S.; EXP: OFF: -1.5 ± 0.07 and ON: -1.77 ± 0.09, paired-sample Wilcoxon 

signed rank test, z(1, 399) = 2.47, p < 0.05), place fields with statistically 

significant slopes did not change during light ON condition (CON: OFF: -1.65 ± 

0.14 and -1.72 ± 0.13,  two-sample Wilcoxon rank sum test, z(1, 201) = 0.33, N.S.; 

EXP: OFF: -1.44 ± 0.11 and ON: -1.62 ± 0.13, two sample Wilcoxon rank sum test, 

z(1, 288) = 1.36, N.S., Figure  3.20 and Figure  3.21). On the other hand, the 

distribution of phase offsets of phase precession regression lines were not 

significantly different  from uniform distribution and therefore were not 

statistically comparable in light OFF and light ON conditions in either CON or 

EXP place cell populations (CON: OFF: 3.00 ± 0.01 rad, Rayleigh test for circular 

non-uniformity, z(1, 99) = 1.16, N.S. and ON: -2.65 ± 0.01 rad, Rayleigh test for 

circular non-uniformity, z(1, 106) = 3.89, p < 0.05; EXP: OFF: 1.28 ± 0.01 rad, 
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Rayleigh test for circular non-uniformity, z(1, 196) = 0.15, N.S.; ON: 2.92 ± 0.01 

rad, Rayleigh test for circular non-uniformity, z(1, 131) = 1.10, N.S.; only place 

fields with significant phase precession were considered for this analysis). 

Overall, these findings show that even with the lack of CA3 input, CA1 place 

cells could significantly entrain to the theta rhythm, without theta phase 

precession being affected. Moreover, they imply that CA3 might inhibit theta 

activity in CA1, and that phase precession in CA1 place cells either is generated 

locally or comes from outside the hippocampus, possibly from MEC.  
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Figure  3.20: Examples of place cell theta phase precession 

a) Four examples of place cell theta phase precession in CON rats. Top: each dot 

represents the theta phase of individual spikes occurring either during light OFF (black) 

or light ON (green) conditions in relation to its relative position on the linear track. 

Bottom: associated place fields in light OFF (black) and light ON (green) conditions. b) 

Four examples of place cell theta phase precession in EXP rats. Same format as in (a) 
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Figure  3.21: SC silencing does not affect phase precession slope 

Phase precession slope does not significantly change in light ON (green) versus light 

OFF (black) conditions in place fields with significant phase precession in CON (left) 

and EXP (right) rats.  

Discussion 

We have shown that CA3 input to CA1 is necessary for the formation of 

SWRs in hippocampal output circuitry during consummatory behavior. 

Transient optogenetic silencing of SCs dramatically decreases the incidence rate 

of CA1 SWRs and partially degrades the normal properties of the ones that still 

occur under the silencing.  Furthermore, during preparatory behavior, CA1 place 

fields are heavily suppressed in absence of CA3 input. Although the extent of 

place cell firing is significantly reduced, CA1 cells do not show major global 

remapping. Moreover, while SC silencing enhances the entrainment of CA1 place 

cells to theta rhythm and abolishes the population preference among phases, but 

does not affect theta phase precession in these cells (Figure  3.19 and Figure  3.21). 
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Altogether, CA3 is essential in the formation of SWRs, the normal expression of 

place field firing in CA1, and plays an inhibitory role to theta-dominated activity 

in CA1.  

There are two pathways, direct and indirect, for cortical information to reach 

the hippocampus that are crucial for spatial memory (van Strien et al., 2009). The 

direct input is the monosynaptic temporoammonic branch of the perforant path 

(TA) from EC layer III to CA1. Indirect inputs consist of the trisynaptic pathways 

from EC layer II to DG to CA3 to CA1 as well as the disynaptic pathway from EC 

layer III to CA2 to CA1 (van Strien et al., 2009). Both direct and indirect inputs 

have been shown to be important for spatial learning and memory (Brun et al., 

2002, 2008; Nakazawa et al., 2003; Remondes and Schuman, 2004; Nakashiba et 

al., 2008; Suh et al., 2011; Van Cauter et al., 2013).  

However, at the electrophysiological level, neither manipulations of CA3 nor 

EC have shown major causal effects on formation of CA1 SWRs and expression 

of place fields. This might be explained by the chronic manipulation approaches 

used in these studies. For example, in the chronic absence of CA3 or CA3 inputs, 

EC direct input may be able to homeostatically compensate, e.g. by stronger 

inputs from EC to CA1 pyramidal cells and interneurons or by suppression of 



106 

 

inhibitory input from CA3 interneurons to CA1 SLM layer (Buzsáki, 2015). 

Therefore, we investigated whether the transient optogenetic approach may 

reveal the real-time contribution of CA3 in the formation of SWRs and 

expression of place fields in CA1. 

We have demonstrated that CA3 is necessary for the formation of SWRs and 

expression of place fields in CA1. Although viral injections were aimed for the 

CA3a-b regions, a fraction of CA2 pyramidal cells were affected by virus and 

expressed eArchT3.0. However, CA2 axons mostly project to the stratum oriens 

layer of CA1, while the optical fiber terminated below the CA1 stratum oriens 

and almost in the pyramidal layer (van Strien et al., 2009; Dudek et al., 2016). 

This placement at pyramidal layer was achieved by attaching a tetrode to each 

optical fiber as a position readout to reach the specific LFP and cellular activity  

of pyramidal layer. Therefore, the volume of stratum oriens under the light cone 

was negligible in respect to the large volume of stratum radiatum were most of 

CA3 projections end up (van Strien et al., 2009; Dudek et al., 2016). In light of 

this, our experimental design almost exclusively investigates the effect of CA3 

input on CA1 neural activity.  On the other hand, CA3 and CA2 are both 

elements of the indirect pathway for EC to communicate with CA1, and thus 

even if CA2 projections are also silenced, this does not substantially influence 
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our interpretation of how the direct and indirect pathways contribute to CA1 

place cell activity.  

 

Figure  3.22: A possible model explaining E/I imbalance. 

a) In our study, local SC silencing suppresses excitatory drive to both CA1 pyramidal 

cells (triangles) and interneurons (circles) and decreases their firing rate (top). However, 

while CA1 pyramidal cells have poor interconnections, fast-spiking interneurons 

compose an intensely-connected network possibly enabling interneurons affected by 

light to be rescued by unaffected interneurons (below).  b) In contrast, genetic SC 

silencing globally suppresses CA3’s excitatory drive to almost all CA1 pyramidal cells 

and interneurons, resulting in circuit-level decrease in interneuron firing rate (top). This 

results in disinhibition of CA1 pyramidal cells which cancels out the decrease in 

excitatory drive (below).  
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We showed that while CA1 place cells are dramatically suppressed, light only 

slightly decreases the firing rates of fast-spiking interneurons. This overall 

decrease in excitation/inhibition (E/I) balance is in contrast to previous genetic 

studies that showed preserved E/I balance in CA1 place cells, but around 50% 

decrease in CA1 interneuron firing (Nakazawa et al., 2002; Nakashiba et al., 2009; 

Middleton and McHugh, 2016). Explaining these different results may be 

difficult mainly due to the different techniques used in these studies. While our 

transient optogenetic silencing is local in space and acute in time, the genetic 

silencing studies are global in space, silencing almost all SCs, and chronic in 

time.  

It is challenging to dissect the influence of these two differences, 

simultaneously. Only considering the local versus global silencing, this different 

E/I balance in inputs that CA1 pyramidal cells receive may generally be 

explained (Figure  3.22). In our study, SC silencing suppresses excitatory drive to 

both CA1 pyramidal cells and interneurons. However, while CA1 pyramidal 

cells have poor interconnections, fast-spiking interneurons compose a densely-

connected network possibly enabling interneurons affected by light to be rescued 

by unaffected interneurons (e.g. through gap junctions) (Figure  3.22a).  

Therefore, normal interneuron firing rate results in overinhibition of CA1 
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pyramidal cells. In contrast, genetic SC silencing globally suppresses CA3’s 

excitatory drive to almost all CA1 pyramidal cells and interneurons, resulting in 

a circuit-level decrease in interneuron firing rate (Nakazawa et al., 2003; 

Nakashiba et al., 2009; Figure  3.22b). This results in disinhibition of CA1 

pyramidal cells which cancels out the decrease in excitatory drive. Therefore, in 

global SC silencing CA1 place cells preserve their normal activity. 

However, E/I imbalance cannot explain the increase in run theta power under 

SC silencing. We found that SC silencing, although not affecting animal behavior, 

modulates CA1 LFP by suppressing SWRs during rest state and increasing theta 

power during run. This is consistent with selective optogenetic activation of 

medial septum, the main source of cholinergic input to CA3, which suppresses 

SWR incidence and increases theta oscillations in anesthetized and freely moving 

mice (Vandecasteele et al., 2014). Therefore, CA3 input is crucial for shifting CA1 

circuitry from theta-dominated state associated with preparatory behavior to 

SWR-dominated off-line state associated with consummatory behavior.  

Our findings show that despite being suppressed, place cells do not globally 

remap. This suggests precise positional information comes from outside 

hippocampus, possibly from an integration of MEC grid, border, and head-
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direction cell responses (Bush et al., 2014). This is consistent with previous MEC 

manipulation studies reporting global remapping and disrupted theta precession 

in CA1 place cells (Brun et al., 2008; Hales et al., 2014; Miao et al., 2015; Schlesiger 

et al., 2015; Rueckemann et al., 2016).  MEC grid cells show concomitant 

realignments only in instances when global remapping in ensemble of 

hippocampal place cells occurs, and remain unchanged during manipulations 

that lead to rate remapping of place cells (Fyhn et al., 2007; Bush et al., 2014). 

These results further suggest that the extent of spatial firing in CA1 place 

fields is controlled by input from CA3. In contrast to previous studies, which 

suggested the sufficiency of EC for expression of CA1 place fields (Brun et al., 

2002; Nakazawa et al., 2002, 2003, Nakashiba et al., 2008, 2009), we showed that 

the existence of place cell responses is highly dependent on continuous CA3 

input. Indeed, neonatal studies have shown that place cells appear before grid 

cells (Langston et al., 2010; Wills et al., 2010), and disrupting grid cell responses 

in adult rats does not affect normal hippocampal place cell activity (Koenig et al., 

2011). This evidence further supports the role of CA3 in the formation and 

expression of place cell responses in CA1. 
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Impaired preferred phase distribution and intact phase precession may 

suggest they are dissociable phenomena. We showed that at a population level 

while place cells increase their entrainment to theta, they lose their population 

phase preference. This uniform distribution of phases in lack of CA3 input 

resembles the uniformity of phase offsets in phase precession occurring in the 

first lap of traversing a novel linear track where recurrent network of CA3 is not 

presumably yet trained enough to maturely influence the population activity in 

CA1 (Feng et al., 2015).  On the other hand,  intact phase precession during SC 

silencing is consistent with previous MEC manipulation studies showing 

disrupted theta precession in CA1 place cells (Brun et al., 2008; Hales et al., 2014; 

Miao et al., 2015; Schlesiger et al., 2015; Rueckemann et al., 2016). Altogether, 

these findings imply that while sensory-driven cortical input controls timing of 

spiking activity in individual place cells, CA3 input induces synchrony among 

CA1 place cells at an ensemble level (Middleton and McHugh, 2016).  

Overall, we showed that CA3 input to CA1 is necessary for the formation of 

SWRs, the expression of place fields, and the control of ensemble-level timing in 

CA1 place cells. These findings shed light on the function of hippocampal 

circuitry in spatial memory. Future studies may investigate the effect of transient 
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silencing of this pathway on hippocampal output in novel environments and 

navigational planning.  
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 Chapter 4 : Hippocampal ensemble activity in a 

mouse model of schizophrenia 

In the previous chapter, I examined the contribution of CA3 input to CA1 

place cell and SWR activity during rats’ preparatory and consummatory 

behaviors, respectively. The contributions of cortical and CA3 inputs to CA1 in 

these behavioral states can also be studied from a synaptic plasticity viewpoint. 

Transgenic mice with selective abruptions in proteins essential for synaptic 

plasticity are plausible candidates for this aim. Therefore, I investigated the 

calcineurin knock-out mice which not only show impairments in learning and 

memory but also exhibit cognitive symptoms of schizophrenia. The findings of  

project which was a collaboration with Susumu Tonegawa laboratory at MIT, is 

published in journal Neuron (Suh et al., 2013) . Tonegawa laboratory generated 

this mouse model and did the electrophysiological recordings. Dr. David Foster 

and I did all the data analysis for this work.  The rest of this chapter is from the 

material of that paper, with some minor modifications and updated literature 

review in specific sections. 

We recorded neural activity in the hippocampus of freely behaving mice with 

a forebrain-specific knockout of the synaptic plasticity-mediating phosphatase 
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calcineurin, that were previously shown to exhibit behavioral and cognitive 

abnormalities, recapitulating the symptoms of schizophrenia. Calcineurin 

knockout (KO) exhibited a 2.5-fold increase in the abundance of sharp-wave 

ripple (SWR) events during awake resting periods and single units in KO were 

overactive during SWR events. Pairwise measures of unit activity, however, 

revealed that the sequential reactivation of place cells during SWR events was 

completely abolished in KO. Since this relationship during the post-experience 

awake rest periods has been implicated in learning, working memory and 

subsequent memory consolidation, our findings provide a novel mechanism 

underlying impaired information processing, potentially resulting in the 

cognitive impairments in schizophrenia. 

Introduction 

Cognitive disorders such as schizophrenia are associated with multiple 

genetic and environmental factors, but presumably involve systematic 

impairments of information processing in specific neural circuits. Animal models 

can provide insight into such disorders by associating impairments at a 

behavioral level with disruption of distinct mechanisms at a neural circuit level 

(Arguello and Gogos, 2006). Furthermore, the ability to monitor the activity of 

individual neurons is a key advantage of using the animal models.  However, 
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very little previous work has examined neural information processing in such 

models. In this study, we applied high-density electrophysiological recording 

techniques to investigate information processing at a circuit level in a mouse 

model of schizophrenia. 

We [i.e. Tonegawa laboratory] previously generated a mouse model that 

offered three features: first, an altered synaptic plasticity; second, a profile of 

behavioral impairments recapitulating those seen in schizophrenia patients; and 

third, an preliminary association of the mutated gene with schizophrenia (Zeng 

et al., 2001; Gerber et al., 2003; Miyakawa et al., 2003; Gerber and Tonegawa, 

2004). Specifically, mice with a forebrain-specific knockout (KO) of the only 

regulatory subunit of calcineurin, a major phosphatase expressed in the brain, 

are severely deficient in long-term depression (LTD) at hippocampal synapses, 

while long-term potentiation (LTP) is mildly enhanced (Zeng et al., 2001), 

leading to a left-ward shift in the BCM curve (Dudek and Bear, 1992). The KO 

mice exhibit a comprehensive array of behavioral impairments characteristic of 

schizophrenia patients (Goldman-Rakic, 1994; Elvevåg and Goldberg, 2000), 

including impairments in latent inhibition, pre-pulse inhibition and social 

interaction (Miyakawa et al., 2003), as well as a severe deficit in working memory 

(Zeng et al., 2001). Furthermore, the mutated calcineurin gene (PPP3CC) was 
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shown to map to chromosomal loci previously implicated in schizophrenia by 

genetic linkage studies (Gerber et al., 2003; Eastwood et al., 2005; Liu et al., 2007; 

Yamada et al., 2007; Murata et al., 2008; Wada et al., 2012, 2017). However, the 

linkage to schizophrenia was not found in some other human population studies 

(Kinoshita et al., 2005; XI et al., 2007; Sanders et al., 2008; Kyogoku et al., 2011). 

Taken together, these features suggest that the calcineurin KO may provide a 

worthy opportunity to investigate the neural basis of dysfunction in a 

schizophrenia model.  

The hippocampus is a brain structure critical for episodic memory (Scoville 

and Milner, 1957; Olton and Samuelson, 1976; Gaffan, 1994; Steele and Morris, 

1999) and spatial learning (Morris et al., 1982). In freely moving rodents, the 

hippocampus exhibits distinct activity profiles dependent on behavioral state 

(Buzsáki, 1989), suggesting distinct modes of information processing within the 

structure. During running, hippocampal electroencephalogram (EEG) exhibits a 

4-12 Hz theta rhythm (Vanderwolf, 1969; Skaggs et al., 1996), and hippocampal 

principal neurons exhibit location-specific responses, known as place fields, as 

reported in rats (O’Keefe and Dostrovsky, 1971), mice (McHugh et al., 1996a), 

monkeys  (Matsumura et al., 1999) and humans (Ekstrom et al., 2003). By 

contrast, during awake rest periods, hippocampal EEG is distinguished by sharp-
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wave-ripple (SWR) events (Buzsáki, 1989) and hippocampal principal neurons 

take part in extended sequences of coactivity, which replay previous behavioral 

episodes (Foster and Wilson, 2006; Diba and Buzsáki, 2007; Davidson et al., 2009; 

Gupta et al., 2010)  as well as preplay subsequent behavioral episodes (Dragoi 

and Tonegawa, 2012, 2013). 

There is substantial evidence linking schizophrenia with damage to the 

hippocampus (Weinberger, 1999). Dysfunction of the hippocampus and related 

medial temporal lobe structures has also been reported in schizophrenia patients 

(Small et al., 2011), together with selective impairments in learning and memory. 

In addition, abnormal brain activity in schizophrenia patients was detected in 

various brain structures, including the hippocampus, during rest periods 

(Buckner et al., 2008) and during passive task epochs (Harrison et al., 2007). Since 

the pattern of impairments of calcineurin KO mice – synaptic plasticity changes 

in the hippocampus and hippocampal-dependent behavioral phenotypes such as 

working memory – suggested that hippocampal function might be affected in 

this mouse model of schizophrenia, we targeted the hippocampus for 

electrophysiological recordings in freely behaving KO and littermate controls 

(CT) and investigated changes in information processing during exploratory 

behavior and resting periods. 
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Experimental Procedures 

Mouse Breeding 

To obtain the conditional knockout (KO) mice, we followed the breeding 

paradigm published previously (Zeng et al., 2001).  Briefly, female homozygous 

for the floxed CNB (fCN) allele and carrying the CaMKII-Cre transgene was 

crossed to male homozygous fCN to produce KO and littermate fCN control 

(CT).  All mice were maintained in a pure C57BL/6 background and housed in a 

room with a 12-hr light/dark cycle (light on at 7 am) with access to food and 

water ad libitum. Tail DNA was collected to identify the genotypes of animals 

using PCR.  All procedure relating to animal care and treatment conformed to 

the Institutional and NIH guidelines. 

In vivo recording 

Male mice (KO and CT) between 12-16 weeks of age were anesthetized i.p. 

with avertin (300 mg/kg, 1.25% solution) and implanted with a microdrive 

hosting six independently adjustable tetrodes.  The tetrode tips were gold-plated 

before surgery in order to reduce impedances to 200-250 kOhms. The tetrodes 

were positioned above the right hippocampus (AP -1.8 mm, ML 1.6 mm) to aim 

for dorsal CA1. The microdrive was secured to the skull using watch screws and 

dental cement and a screw fixed to the skull served as a ground electrode.  The 
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tetrodes were lowered over 10-14 days in steps of 40 um until ripple and the 

hippocampal units could be identified.  One designated electrode was targeted to 

the white matter above hippocampus to record a reference signal.  Recorded unit 

signals were amplified 8 k to 20 k times and high-pass filtered above 6 kHz, 

whereas EEG signals from the same tetrodes were amplified 5 k times and band-

pass filtered between 1 and 475 Hz.  The animal’s position was tracked with a 30 

frames/sec camera using a pair of infrared diodes attached to the animal’s head.  

Hippocampal activity was recorded using a 16-channel Neuralynx recording 

system, (Neuralynx, Bozeman, MT) while mice were in either a square enclosure 

(17 x 17 x 17 cm; “sleep box”), or a linear track (76 x 10 cm). The recording 

session consisted of one “RUN” epoch on the track (40-60 min) bracketed by two 

“SLEEP” epochs (30-60 min) in which the animal rested quietly in the sleep box 

in the same room.  Following the recording session, manual clustering of spikes 

was done with XCLUST2 software (developed by M.A. Wilson, MIT).  At the end 

of the experiment, mice were given a lethal dose of avertin and an electric current 

(50 mA) was delivered to create a small lesion at the tip of each tetrode.  Animals 

were then transcardially perfused with 4% paraformaldehyde in 1 x phosphate-

buffered saline and brains were removed, sliced in 50 um with a Vibratome, and 

mounted on slides to verify the recording positions.  All experiments were 
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conducted and analyzed by [Tonegawa laboratory] researchers blind to the 

genotype of the individual animals.  

Neural data analysis 

Ripple analysis: One electrode from each tetrode that had at least one cluster 

was considered for EEG analysis. EEG signal of each electrode was denoised for 

60 Hz electric noise and its 180 Hz harmonic using a second-order IIR notch 

filter.  Denoised EEG was filtered at ripple frequency range (100-240 Hz) with a 

fifth-order Butterworth band-pass filter. The envelopes of each band-passed EEG 

were obtained using the absolute value of its Hilbert transform and these 

envelopes were averaged over all electrodes. After applying a Gaussian 

smoother with 5 ms standard deviation, the averaged envelope was z-scored. 

Events that passed 5 standard deviations (i.e. mean + 5 sd of averaged non-z-

scored envelope) for more than 3 ms were considered as ripples, and ripples that 

were less than 20 ms apart were merged and were considered as one extended 

ripple. The beginning and end of each ripple were considered as where the 

smoothed envelope crossed its mean value (i.e. zero for z-scored signal). Ripples 

events that happened when mice were not immobilized were excluded. Mice 

were considered as immobilized when their head speed was below 0.5 cm/s. 

Ripple power was obtained by applying Welch’s method on each individual 
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non-z-scored non-enveloped ripples and then averaging over calculated powers. 

Morlet wavelet scalogram with bandwidth of 10 was used for spectrogram 

visualization of raw EEG. The same ripple-finding algorithm was also applied 

for gamma frequency range (25-80 Hz), to investigate if the impairment in EEG 

power is only selective for ripple events or can be found in gamma activity when 

animal is in immobilized state.  Also, using Welch’s method, the power of raw 

EEG signals during run was calculated and, in particular, theta (4-12 Hz) powers 

for CT and KO mice were compared. For a robustness analysis, EEGs were 

filtered with 50-Hz-wide frequency filters ranging from 50 Hz to 600 Hz with 40 

Hz overlap between two consecutive filters. 

Cluster analysis: Manual clustering of spikes was done based on spike 

waveform peak amplitude using XCLUST2 software (M.A. Wilson, MIT). 

Putative interneurons were also excluded from analysis on the basis of their 

spike width. To compare the quality of clusters in mice genotypes a modified 

Lratio value for each cluster of a tetrode was calculated (Schmitzer-Torbert et al., 

2005; Pfeiffer and Foster, 2013): 

𝐿𝑟𝑟𝑟𝑟𝑟 = �� �1 − 𝐶𝐶𝐶𝜒𝑑𝑑2 �𝐷𝑖,𝐶
2 ��

𝑖 ∉ 𝐶

� /𝑛𝑠 
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where 𝑖 ∉  𝐶  is the set of spikes that do not belong to target cluster C and Di,C 

is the  Mahalanobis distance of these spikes from this cluster.   𝐶𝐶𝐶𝜒𝑑𝑑2  is the 

cumulative distribution function of  𝜒2 distribution with df = 4 (feature space for 

clusters is four dimensional).  𝑛𝑠 is the total number of spikes from all the 

clusters (including target cluster C) of the tetrode. 

Place cell analysis: All the place cell analyses, except spatial coherence, were 

done on 1-D place fields. These 1-D place fields were obtained by using 2 cm bins 

on linear track, and these raw place fields were smoothed by applying a 

Gaussian smoother with a 2.4 cm standard deviation. Place field size was 

calculated as the number of 2-cm-wide bins above 1 Hz threshold. Sparsity and 

spatial information are defined as described in Chapter 2. 

Spatial coherence which quantifies smoothness and local orderliness of a 

place field is the autocorrelation of each 2-D place field with its nearest neighbor 

average (Muller and Kubie, 1989). To do this, 10×70 cm linear track was binned to 

2 cm × 2 cm bins and the new firing map for each pixel was calculated as the 

average firing rate of 8 unsmoothed neighbor pixels. Then, 2-D correlation 

coefficient between original unsmoothed firing map and the new one was 
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calculated and to be statistically more meaningful this coefficient became Fisher-

transformed (z-transformed).   

For visualization purpose, 2-D place fields were calculated using 1×1 cm bins 

smoothened with a 1-cm standard deviation Gaussian smoother. 

Burst analysis: For each place cell spikes that happened in less than 10 ms 

apart during run were considered as in-burst spikes. For each burst, amplitude 

difference was defined as the average of the change in peak of new spike 

waveform in relation to previous spike waveform. These calculated values were 

averaged over all bursts and using ISI of in-burst spikes, each cell was able to be 

shown as one point in a 2-D (amplitude difference versus ISI) feature space.   

Reactivation analysis: For each ripple, spikes happening from 300 ms before 

it to 300 ms after it were considered as ripple-associated spikes, and cells with at 

least one spike in one ripple were called “active cells”. Only these ripple-

associated spikes were considered for calculation of pair-wise cross-correlogram. 

For each pair of cells the histograms of these spikes were calculated in 5 ms bins. 

Each histogram was smoothed with a 5-sample moving-average smoother. Then, 

cross-correlation of this pair of smoothed histograms was calculated. Calculation 

was performed for all the cell-pairs for each mouse and averaged over the cell-
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pairs that their place field peaks fall within same 3-cm-binned distance. These 

cross-correlograms were averaged and normalized for all mice in different 

genotypes and shown only for visualization purpose. However, for statistical 

analysis of reactivation, the average of spike timing of each pair was calculated. 

Knowing the place field distance of all pairs, each pair becomes a point in a 2-D 

(spike separation versus place field distance) coordinate space. Regression was 

used to fit these points, and the amount of correlation and its statistical 

significance measured the extent to which pairs of cells with spatially separated 

fields fired at longer temporal separations during ripples, compared with pairs 

of cells with spatially proximal fields. To further confirm this, pair cells with less 

10 cm distance between their place fields were considered as “close” cells while 

cells with more than 40 cm distance were considered as “far” cells. The average 

relative spike timing of these “close” and “far” cells was calculated for each 

genotype. 

Furthermore, to directly compare pairs between CT and KO, a 3-way nested 

analysis of variance (ANOVA) was used which considered distance between 

pairs (“far” versus “close” categories) and genotypes (CT versus KO categories) 

as fixed-effect factors, and mice as a random-effect factor “nested” in genotypes. 

Only the F-values and p-values for the interactions between genotype and close-
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far distance are reported here. Moreover, to investigate if the mean of correlation 

coefficients is significantly different in CT versus KO we use z-test. To be 

statistically comparable we applied a Fisher transform (or z-transform, 

z=arctanh(r)) on correlation coefficients before calculating Z-values. 

Results 

To characterize hippocampal activity in our mouse model, we employed 

microdrives with multiple independently adjustable tetrodes to record single-

unit spikes and EEG from the CA1 subregion of the dorsal hippocampus of freely 

behaving KO mice (N = 7) and floxed littermate CT (N = 5).  

Overabundance of SWR in calcineurin KO mice 

We hypothesized that the bias toward enhanced synaptic strength in KO 

would lead to an increase in excitability in hippocampal circuits. We therefore 

analyzed hippocampal EEG in KO and CT during both running and awake non-

exploratory periods. During immobility, both groups exhibited SWRs, defined as 

increases in amplitude in the ripple frequency band (100-240 Hz), and typically 

lasting up to hundreds of milliseconds (Figure  4.1A). However, the non-Z-scored 

EEG in KO exhibited a significant increase in ripple power compared to CT 

(Mann-Whitney, p < 0.05; Figure  4.1B). By contrast, there was no increase in 

power in either the gamma band (25-80 Hz; Mann-Whitney, NS; Figure  4.1C) 
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during non-exploratory period or theta band (4-12 Hz; Mann-Whitney, NS; 

Figure  4.1D) frequency during run.   

To investigate further the specific increase in ripple-related activity, we 

quantified the characteristics of SWR events. No change was found in the 

duration (CT: 88.35 ± 3.6 ms; KO: 88.36 ± 2.42 ms; F(1, 10)=1.17e-5, NS) or Z-scored 

amplitude (CT: 7.06 ± 0.32 sd; KO: 7.72 ± 0.12 sd; F(1, 10)=4.8, NS) of SWRs. The 

abundance of SWRs, however, was 2.5 times greater (CT: 0.089 ± 0.02 s-1; KO: 

0.224 ± 0.014 s-1; F(1,10)=31.7, p < 0.001; Figure  4.1E). We then varied our analysis 

parameters in order to test how robust the results were. Varying the SWR 

detection threshold, in standard deviations from the mean, we found a consistent 

effect as the amplitude threshold was increased (Figure  4.1F). Indeed, at 8 

standard deviations, the number of SWRs was a full order of magnitude greater 

in KO than CT.  
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Figure  4.1: Increased hippocampal ripple activity in calcineurin KO mice 
during awake resting periods. 

 (A) Examples of EEG recording from CT (left) and KO (right) mice.  Each EEG trace is 

shown as z-scored raw EEG (top), envelope of smoothed ripple-band-filtered EEG 

(middle) and wavelet power spectrogram of raw EEG (bottom). Note that sharp waves 

and their associated ripples are clearly isolated events in this spectrogram. (B-C) 

Comparison of spectral power of EEG filtered at ripple (b, 100-240 Hz) and gamma (c, 
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25-80 Hz) frequency bands, in both cases for EEG. (d) Comparison of spectral power of 

z-scored raw EEG filtered at theta (4-12 Hz) band during run. (e) Comparison of ripple 

abundance during awake resting period. (f) Quantitative measurement of ripple 

abundance at different threshold factors (standard deviations of z-scored, smoothed, 

filtered EEG).  (g) The abundance of EEG events measured by a 50 Hz frequency 

window that filtered raw EEG at different frequency bands. 

 

Figure  4.2: Cluster robustness in preserved in KO. 

Lratio which is a measure of cluster robustness is not significantly different in KO and CT, 

either by (a) including all spikes of each place cell or (b) by including only spikes 

happening during SWRs. 

We further conducted a robustness analysis varying the frequency range for 

which events were defined, for a 50 ms window, varied from 50 Hz to 600 Hz in 

10 Hz steps (Figure  4.1G). There were significantly more events over a wide 

range of frequencies, between 100 Hz and 480 Hz (all windows in the range were 

significant at p < 0.05, two-sample t-test), however, the most significant zone was 

between 120 Hz and 150 Hz (all windows in this range were significant at p < 

0.001, two-sample t-test). This range matched the frequency of peak at ripple 
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power (CT: 149.8 ± 5.3 Hz; KO: 143.4 ± 4.4 Hz; F(1,10)=0.83, NS; Figure  4.1B). 

Taken together, these results indicate that calcineurin KO exhibit higher 

excitability in the EEG during immobility, whereas EEG activity associated with 

active exploration does not appear to be affected. 

Normal place fields in calcineurin KO during exploratory behavior 

Across multiple species, hippocampal pyramidal neurons are active in 

spatially restricted regions of an environment during exploration, a pattern of 

activity referred to as place fields (O’Keefe and Dostrovsky, 1971; Wilson and 

McNaughton, 1993; McHugh et al., 1996a; Matsumura et al., 1999; Ekstrom et al., 

2003). Given the great increase in ripple activity in the EEG during rest periods 

and the overall shift in synaptic plasticity toward potentiation (Zeng et al., 2001), 

we next hypothesized that higher excitability in KO may be manifested in the 

activity of individual neurons. We therefore isolated single unit activity in 

pyramidal neurons simultaneously recorded from CA1 during running (Total 

cells: CT: N = 59, KO: N = 122; simultaneously: CT: 11.8 ± 1.0 cells per mouse; KO: 

17.4 ± 2.1 cells per mouse; Figure  4.3A) and analyzed units (CT: N = 48; KO: N = 

92) that formed good place fields on the track. Fine quantification revealed no 

differences in these responses across multiple measures (Figure  4.3 and 

Figure  4.2).  
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Figure  4.3: Similar basic properties of place cells in CT and KO mice in run 
periods. 

 (A) Examples of color-coded firing rate maps of CA1 place cells during run on a 10 x 76 

cm linear track. Peak firing rates in Hz are shown above each rate map. (B-G) 

Quantitative description of place fields of CT and KO mice: (B) size of place field, (C) 
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mean in-field firing rate, (D) directionality, (E) sparsity, (F) spatial information, and (G) 

spatial coherence. (H-J) Quantification of spike activity during burst: (H) number spikes 

per burst per cell, and (I) the proportion of spikes, which were burst spikes, per cell. (J) 

The percentage of attenuation in spike amplitude within bursts as a function of in-burst 

inter-spike interval (ISI) for each cell (CT: 48 cells; KO: 97 cells). 

Specifically, single units in KO exhibited normal place field sizes (F(1,138) = 

0.01, NS; Figure  4.3B), normal firing rates within place fields (F(1,138) = 0.56, NS; 

Figure  4.3C), no difference in the normal tendency of units to fire more in one 

direction than another (F(1,138) = 0.19, NS; Figure  4.3D), and no difference in 

sparsity (F(1,138) = 0.85, NS; Figure  4.3E), which is a measure of the localization 

of place fields (Jung et al., 1994). In addition, no difference was observed in 

spatial information index (F(1,138) = 0.02, NS; Figure  4.3F), which measures how 

informative a spike from a place cell is (Markus et al., 1994), and spatial 

coherence (F(1,138) = 0.92, NS; Figure  4.3G),  which measures the local 

smoothness of a firing rate pattern of spikes (Muller and Kubie, 1989). 

Next, to determine whether excitability might be evident in the precise timing 

of single spikes, we further examined run-time unit activity on a finer timescale. 

Since hippocampal single units exhibit complex spikes, made up of a burst of 

several spikes occurring between 2-10 ms apart (Quirk and Wilson, 1999), we 

first measured the number of spikes during bursts. Both KO and CT units 
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exhibited similar numbers of spikes per burst (F(1,142) = 0.01, NS; Figure  4.3H) 

and a similar percentage of burst spikes (F(1,142) = 0.40, NS; Figure  4.3I). 

Interestingly, however, we found that bursts in KO tended to be faster, as 

measured by burst inter-spike interval (CT: 5.70 ± 0.70 ms; KO: 4.99 ± 0.78 ms; 

F(1,142) = 29.16, p < 10-6; Figure  4.3J), and extracellular spike amplitude 

attenuation, which is associated with complex spikes (Quirk and Wilson, 1999; 

Harris et al., 2001), was also increased in KO (CT: 2.84 ± 0.39 %; KO: 5.93 ± 0.38 %; 

F(1,142) = 31.36, p < 10-6; Figure  4.3J). Taken together, these results indicated that 

the spatial representation at the level of single cells in KO appears to be 

preserved during exploratory behavior, in spite of the bias toward enhanced 

synaptic strength and little change in spike timing during bursts. 

Overactivity of place cells in calcineurin KO during SWRs 

Since the place responses of single units in calcineurin KO were largely 

normal during run, we next examined whether unit activity during immobile 

periods, specifically SWRs, was also unaltered. In both KO and CT mice, single 

units exhibited spikes during SWR events (Figure  4.4A). Place cells in KO, 

however, fired more than double the number of spikes during each SWR event as 

compared to those in CT (CT: 1.11 ± 0.14 spikes per SWR; KO: 2.56 ± 0.54 spikes 

per SWR;F(1,81)=4.84, p < 0.05; Figure  4.4B). Given that SWR events were also 



133 

 

more abundant in KO mice (Figure  4.1E), the compounded effect of both 

increased abundance of SWR events and increased spikes within each event 

could be illustrated as the firing rate of in-SWR spikes per each second of SWR 

events. Indeed, KO displayed a six-fold increase in the firing rate during SWR 

events compared to CT (CT: 0.10 ± 0.02 spikes/s; KO: 0.62 ± 0.13 spikes/s, 

F(1,78)=13.40, p < 0.0005; Figure  4.4C).  

In principle, this increase in spiking activity may not by itself imply an 

alteration in the organization of information during each SWR. For example, the 

patterns of spikes associated with SWRs might be preserved, while being both 

enhanced and more frequent. However, such a possibility requires that the 

identity of cells participating in SWRs would not be altered. Alternatively, 

overexcitability during SWRs might lead to a degradation of SWR-associated 

information. To address this issue, we further analyzed the participation of single 

units across different SWRs. We found that single units in KO participated in a 

significantly greater fraction of SWR events than CT, increasing from around a 

third of SWRs to over half (CT: 35.39 ± 3.44 %; KO: 54.47 ± 4.00 %; F(1,86)=11.63,  

p < 0.001; Figure  4.4D). This finding indicate that neurons in KO were active 

during more than the normal number of SWR events, raising the possibility that 

spikes in KO may add noise rather than signal to SWR events. Therefore we 
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analyzed the coactivity of simultaneously recorded units during SWRs and 

determined whether and how the information content of SWRs was affected in 

calcineurin KO. 

 

Figure  4.4: Increased spike activity of place cells in calcineurin KO mice 
during ripple events. 

 (A) A representative train of spikes is displayed with simultaneously recorded EEG 

filtered in ripple frequency range, for CT and KO.  Ripple events are highlighted in red.  

(B) The number of spikes per ripple event per participating cell, ie for cells that fired at 

least one spike during the ripple event. (C) The number of average in-SWR spikes per 

per cell, per each second of awake resting period. (D) The fractional participation in 

ripples ie the fraction of ripple events for which a cell fired at least one spike, averaged 

across all cells.  
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Abolished spatial information content of reactivation events in 
calcineurin KO  

It has been demonstrated that awake SWR events are associated with 

temporally sequenced activity patterns of hippocampal place cells, referred to as 

“replay” due to the resemblance to spatial activity patterns in prior behavioral 

experience (Foster and Wilson, 2006; Diba and Buzsáki, 2007; Davidson et al., 

2009; Karlsson and Frank, 2009; Gupta et al., 2010). It has also been shown that 

SWR events are associated with consolidation of previously encoded memory 

(Girardeau et al., 2009; Nakashiba et al., 2009; Ego-Stengel and Wilson, 2010), 

with encoding of a novel experience (Dragoi and Tonegawa, 2012, 2013) and, 

more interestingly, with spatial working memory (Jadhav et al., 2012). Therefore, 

we hypothesized that temporal sequences of place cells associated with SWRs in 

KO may be affected. Since the sequential replay suggests a distinct relationship 

between pairs of simultaneously recorded place cells, in which the distance 

between the cells’ place fields (measured using their peaks) should correlate with 

the temporal spike separation between cells during SWRs (Karlsson and Frank, 

2009), we applied this analysis to pairs of simultaneously recorded place cells in 

KO and CT mice. We first noted that mean inter-spike intervals between pairs of 

cells were significantly shorter in KO than CT (CT: 82.58 ± 7.32 ms; KO: 29.3 ± 

2.03 ms; F(1,428)=80.46, p < 10-17). This result is in accordance with the general 
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increase in spike rates during SWRs noted earlier. We then considered the 

relationship between place field distance and temporal spike separation for pairs 

of cells. We created a representation of activity across the population by 

generating cross correlograms of spike trains during SWRs for each pair of cells, 

and then imaging each correlogram as a colorized row vector positioned on the y 

axis at a height corresponding to the distance between the place fields of those 

cells. When two or more correlograms occupied the same distance value, they 

were averaged together. In CT, this analysis revealed a distributed “V”-like 

pattern indicative of a replay-like relationship, as has been reported in rats 

(Karlsson and Frank, 2009) (Figure  4.5A, left). Strikingly, in contrast, the pattern 

was very different for KO, with a tight concentration around the null relative 

spike timing at all distances (Figure  4.5A, right).  

Next, to verify whether the abnormal pattern in the correlogram in KO mice 

indicated a fundamentally disordered organization at the level of pairs of cells, 

we measured the mean temporal spike separation for each pair of cells, thus 

illustrating each pair of cells as a tuple of place field distance and mean spike 

separation (Figure  4.5B). There was a clear and significant positive correlation 

between place field distance and temporal spike separation in SWRs among cell 

pairs in CT (r = 0.21, F=6.65, p < 0.01), indicating that hippocampal unit activity 
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during SWRs conveyed temporally structured information about the spatial 

distance of place fields. By contrast, the relationship between cell pairs in KO 

was completely abolished (r = -0.007, F=0.015, NS). We also further quantified 

these pairwise effects by binning the data into “close” and “far” categories on the 

basis of the distance between place fields in a pair. Specifically, pairs of cells with 

place field peaks less than 10 cm apart were categorized as “close”, whereas pairs 

of cells with place field peaks more than 40 cm apart were categorized as “far”. 

CT exhibited a strong difference between these categories (F(1,76)=8.94, p < 0.01; 

Figure  4.5C, left), whereas KO exhibited no difference at all (F(1,194)=0.22, NS; 

Figure  4.5C, right). Furthermore, within-group comparison of “far” and “close” 

pairs also showed a significant decrease with this measure in KO (3-way 

ANOVA, F(1)=7.36, p < 0.05), and the mean of correlation coefficients is also 

significantly different between the genotype (z-test, Z=2.15, p < 0.05). 
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Figure  4.5: Impaired reactivation of spatial experience on the linear track 
during awake resting periods on the linear track in calcineurin KO mice. 

(a) For each pair of neurons, the pair-wise cross-correlogram of the two spike trains 

around ripple events (± 300 ms) is plotted at a y position given by the linear distance 

between the corresponding two place field peaks.  Wherever more than one pair 

occupies the same y position (ie has the same inter-peak spatial distance), the cross-

correlograms have been averaged. Pairwise data from all sessions are shown together on 

the left for CT and on the right for KO. (b) Distribution of temporal spike separations 

during ripples of all pairs of neurons is plotted as a function of the distance between 
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place field peaks on the track.  (c) Comparison of the average spike separation for pairs 

of cells with place field peaks less than 10 cm apart (close cells) and pairs of cells with 

place field peaks more than 40 cm apart (far cells). (d-f) For KO mice, the reactivation 

assessment shown in (b) was reanalyzed while only extra spikes (d), only extra ripples 

(e), or both extra spikes and ripples (f) were randomly decimated. 

Since the increased abundance of SWRs and increased number of spikes 

during SWRs can contribute to the abolished spatial information content in KO, 

we further analyzed the data under three conditions. First, to exclude the 

possibility of the effect of the increase in spike numbers in KO having an effect, 

we randomly decimated spike numbers from spike trains to match their average 

quantity equal to CT spikes (Figure  4.5D; 3-way nested ANOVA, F(1)=5.21, p < 

0.05 and z-test, Z=2.66, p < 0.01). Second, to exclude a possibility of the effect of 

the increase in SWR abundance in KO having an effect on abolished spatial 

information content, we randomly decimated the number of SWR events 

(Figure  4.5E; 3-way nested ANOVA, F(1)=7.74, p < 0.05 and z-test, Z=2.53, p < 

0.05). Finally, we combined both decimations to analyze cell pairs in KO under 

the same SWR abundance and spike rates as CT (Figure  4.5F; 3-way nested 

ANOVA, F(1)=11.14, p < 0.01, and z-test, Z=2.33, p < 0.05). Under any condition, 

the flat relationship between place field distance and mean spike separation was 

still unaffected in KO. Therefore, neither increased abundance nor increased 
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spike rate by themselves account for the failure of cell pairs in KO to exhibit 

normally structured coactivity, but rather the fundamental relationship between 

spike times during SWRs and represented place fields during run has been 

completely abolished in KO. 

Discussion 

We applied high-density electrophysiology recording to a mouse model of 

schizophrenia, in which functional calcineurin protein is deleted specifically in 

excitatory neurons from the forebrain. Our primary aim was to detect disruption 

of information processing in the hippocampus, which may underlie the 

schizophrenia-like behavioral impairments of the model mice. We demonstrated 

that calcineurin KO mice displayed a selective disruption in rest-related neural 

information processing. Hippocampal EEG in KO exhibited enhanced power in 

the ripple band, but not gamma or theta, and a 2.5-fold increase in the abundance 

of SWR events during awake resting periods. This abnormality was strikingly 

selective, since CA1 neurons in KO exhibited normal place fields during active 

exploratory behavior. By contrast, the same neurons were profoundly overactive 

during SWRs and participated in a greater fraction of SWR events. Furthermore, 

pairwise measures of unit activity during SWRs revealed that a normal linear 

relationship between spatial separation of place fields during run and temporal 



141 

 

separation of spikes during resting periods was completely abolished in KO. The 

spared place cell activity during run and degraded SWR-based trajectory events 

during rest have also been found in rats with blocked NMDA receptors (Silva et 

al., 2015).  Therefore, specific impairments in synaptic plasticity result in state-

dependent disruptions in hippocampal circuit activity. Moreover, we present a 

selective form of disruption of neural information processing in an animal model 

of schizophrenia.  

What mechanism might underlie the increase in SWRs in KO mice? The shift 

in plasticity away from LTD and toward LTP (Zeng et al., 2001) would suggest 

an increase in excitability, which may produce an increase in the SWR number. 

In support, an electrophysiological study of CA1-CA3 slices producing 

spontaneous SWRs demonstrated that SWR abundance increases after LTP 

induction, and that this effect is dependent on NMDA receptors (Behrens et al., 

2005). Next, how can the lack of LTD affect the temporal organization of place 

cell activity during ripple? It has been shown that the reactivation of 

hippocampal firing patterns reflects a recent experience in the environment the 

animal explored. Since the animal visited several places in space, the replay of 

place cell sequence could be resulted from the formation of asymmetric 

associations between place cells during exploration. Experimental results and 
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computational models suggested that place fields expand backwards relative to 

the direction in which the animal is running as an experience- and synaptic 

plasticity-dependent manner (Mehta et al., 1997; Ekstrom et al., 2001), and this 

asymmetry strengthens the association between cells with neighboring place 

fields. Since the calcineurin KO showed the abnormality in synaptic plasticity, 

neighboring place cells in KO could not make a proper association by synaptic 

weight. In addition, the increased excitability in KO hippocampus during ripples 

events drives the abnormal association more, therefore, consequently leads to the 

excessive temporal binding without direction. 

Our results suggest that information processing during awake resting periods 

may play a critical role in normal brain function. Recently, there has been 

increasing interest in resting-state brain function and a related set of brain 

regions known as the “default mode network” (DMN), including the 

hippocampal formation as well as posterior cingulate cortex, retrosplenial cortex 

and prefrontal cortex (Raichle et al., 2001; Buckner and Carroll, 2007; Buckner et 

al., 2008; Broyd et al., 2009). It has also been proposed that the complex 

symptoms of schizophrenia could arise from an overactive or inappropriately 

active DMN (Buckner et al., 2008). For example, within schizophrenia patients, 

increased DMN activity during rest periods was correlated with the positive 
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symptoms of the disorder (e.g. hallucinations, delusions, and thought confusions) 

(Garrity et al., 2007). In addition, another study reported that DMN regions were 

correlated with each other to a significantly higher degree in schizophrenia 

patients compared to controls (Zhou et al., 2007). Here we demonstrated that the 

offline activity in the hippocampus, one of the DMN regions, is disrupted in 

calcineurin KO mice, thus providing the first evidence for DMN dysfunction in 

an animal model of schizophrenia. 

Our finding that the basic physiological properties of place cells are normal in 

KO, despite their displaying a range of spatial learning impairments reinforces 

the conclusion drawn in many previous studies that place fields per se may not 

provide a robust indicator of spatial learning and memory (McHugh et al., 2007; 

Nakashiba et al., 2008; Suh et al., 2011). For instance, mice in which the projection 

from the layer III principal cells of the MEC to hippocampal area CA1 was 

specifically blocked by transgenic tetanus toxin displayed normal basic 

properties of CA1 place fields including field size, mean firing rate, and spatial 

information, and yet these mice exhibited impairments in spatial working 

memory (Suh et al., 2011). On the other hand, the precise and complete blockade 

of CA3 input to CA1 by transgenic tetanus toxin resulted in specific deficits both 

in the SWR frequency and SWR-associated co-reactivation of CA1 cells during 
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sleep, which correlate with a deficit in memory consolidation at the behavioral 

level (Nakashiba et al., 2009). Likewise, disruption of neural activity during 

SWRs by electrical micro-stimulation causes learning impairment (Girardeau et 

al., 2009; Ego-Stengel and Wilson, 2010). These and our present findings add to 

the growing evidence that more complex aspects of place cell activity, such as 

SWR-associated features, may be necessary elements of hippocampal 

information processing for learning and memory (Wilson and McNaughton, 

1994; Foster and Wilson, 2006; Diba and Buzsáki, 2007; Nakashiba et al., 2009; 

Jadhav et al., 2012). Therefore, disruption of the temporal order of hippocampal 

place cell spikes during SWRs in KO mice suggests a novel mechanism 

underlying the cognitive impairments observed in schizophrenia. 

The increase in SWR events provide a model that might unify several 

disparate aspects of schizophrenia: (1) the role of NMDA receptors in 

schizophrenia (the “glutamate hypothesis” (Olney and Farber, 1995) which is 

consistent with altered SWR abundance resulting from an imbalance in NMDA-

receptor dependent synaptic plasticity mechanisms; (2) the cognitive symptoms 

of schizophrenia, which may be accounted for by SWR-mediated disruption of 

DMN function; (3) the presence of psychosis and disordered thinking in 

schizophrenia, which may result from abnormal memory reactivation in cortical 



145 

 

areas caused by abnormal memory reactivation in the hippocampus; and (4) 

abnormalities in dopaminergic signaling (the “dopamine hypothesis” (Carlsson, 

1977), which may result from the effect of increased SWR abundance on 

downstream dopaminergic circuits (Pennartz et al., 2004; Lansink et al., 2009). 

Therefore, our findings provide a novel link that SWR activity may constitute a 

point of convergence across disparate schizophrenia models, and a new insight 

into the neural basis of the cognitive disorder. 
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 Chapter 5 : General Discussion 

The hippocampus translates our life experiences into episodic memories, a 

process impaired during some psychiatric and neurological disorders. Cortical 

inputs to the hippocampus and computations within its different subregions 

perform this memory encoding and later memory retrieval during preparatory 

and consummatory behavioral states. However, the state-dependent 

contributions of subregions of the cortico-hippocampal network at the single 

neuron and the neural ensemble level are not yet completely understood. In 

particular, EC spatial information reaches CA1 through a “direct” monosynaptic 

pathway and an “indirect” CA3/CA2-mediated multisynaptic pathway. 

However, it is not clear how these direct and indirect pathways communicate 

with CA1 for spatial information processing.  

Rats usually demonstrate either preparatory behaviors, such exploration, 

ambulation, etc., or consummatory behavioral, such as  immobility, eating, 

grooming, etc., and this behavioral distinction maps  well onto the dichotomy of 

theta—SPW-R hippocampal states (Buzsáki, 2015).  I have shown that during 

preparatory behavior, the highly recurrent network of CA3 is necessary for the 

expression of place fields in CA1. The potential effect of CA2 was ruled out by 
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both careful injection of virus to CA3 and by placing optical fibers, which were 

attached with one readout tetrode, either in CA1 pyramidal layer or the lower 

part of CA1 stratum oriens for not illuminating CA2 projections by light (van 

Strien et al., 2009; Dudek et al., 2016). I propose that while precise positional 

information for “where” a CA1 place cell to fire on a familiar environment comes 

from EC, the extent of “how” to fire around that position comes from 

concurrently-active place cells in CA3. SC silencing therefore decimates place 

fields, but does not result in major global remapping, although some shift in 

place field location yet within the range of original place field may occur under 

light. I also proposed that CA3 competes with EC over CA1 ensemble activity to 

shift it from a theta-dominated rhythm to SWR-dominated offline brain state. 

Indeed, suppressing CA3 input to CA1 enhances theta power and theta locking 

strength, emphasizing the role of EC in CA1 theta entrainment. However, 

suppressing CA3 input to CA1 does not change theta phase precession, which 

proposes that other inputs such EC input are responsible for the temporal coding 

in CA1. I have also demonstrated that CA3, the essential component of indirect 

pathway from EC to CA1, is necessary for formation of SWRs during 

consummatory behavior. Silencing CA3 input to CA1 dramatically decreases 

occurrence rate of CA1 SWRs. Therefore, sequential reactivation of CA1 



148 

 

ensembles during SWRs, which is a proposed mechanism for memory 

consolidation and navigational planning, is also dependent on excitatory input 

from CA3. Overall, the indirect pathway and especially the self-organizing 

network of CA3 are indispensable for normal hippocampal output during both 

preparatory and consummatory behavioral states.  

The calcineurin mouse model of schizophrenia with its impaired synaptic 

plasticity shows state-dependent deficits in hippocampal ensemble activity. 

While place cells are expressed normally during preparatory behavior, SWR 

incidence rate increases and SWR-associated replay degrades during 

consummatory behavior. In these mice, the calcineurin protein is selectively 

deleted from EC and CA1, while CA3 cell bodies and axons express this protein 

normally (Zeng et al., 2001). Therefore, synaptic plasticity is not only degraded in 

both the presynaptic and postsynaptic components of the MEC-CA1 

monosynaptic pathway but also in the postsynaptic part of the CA3-to-CA1 

projection. Although it is not yet studied in these mice, the direct pathway is thus 

expected to show an even stronger deficit in synaptic plasticity than the 

examined indirect pathway.  Because these animals have normal SCs and 

impaired CA1 synapses, it is challenging to explain the selective deficit in CA1 

place cell ensemble activity. In other words, it is not clear whether deficits in 
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plasticity at synaptic inputs from EC or CA3 induces more abnormal LTP/LTD 

ratio in CA1 place cells. Additionally, in this chronic adult-onset gene deletion 

study, compensatory mechanisms may play a critical role in rescuing 

hippocampal function.  

Nevertheless, increased LTP/LTD ratio and subsequent increase in excitability 

may explain the increase in SWRs in calcineurin KO mice. In support of this 

hypothesis, an electrophysiological study of CA3-CA1 slices producing 

spontaneous SWRs demonstrated that SWR abundance increases after LTP 

induction (Behrens et al., 2005). However, how can the plasticity shift in KO mice 

degrade the temporal organization of place cell activity during SWRs? Several 

models have proposed that synaptic plasticity occurring during exploratory 

running behavior may drive associations between successively active place cells 

and sculpt the sequences that can be subsequently generated (Jensen and 

Lisman, 1996; Mehta et al., 2002). Synaptic plasticity that is excessive and 

unbalanced toward potentiation in calcineurin KO mice might cause excessive 

temporal binding between place cells during running behavior, despite the fact 

that the activity of the place cells during running is normal. Hence, this excessive 

temporal binding would then be inaccurately manifested during the information 
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retrieval process associated with SWRs and would degrade hippocampal 

replays.  

By using these two complementary approaches, I probed how the fine 

temporal structure of activity in the integration region of the hippocampus, CA1, 

responds when the relative influence of its two major inputs, CA3 and MEC, is 

manipulated. I found several similarities and differences between the findings of 

these two optogenetic and genetic manipulations studies. First, while a balance 

interplay of both EC and CA3 pathways is essential for the expression of a spatial 

firing field in CA1 place cells, but the extent to which they fire in their field, or 

even in some cases if they fire at all, can be powerfully controlled by CA3. 

Second, CA3 input is necessary for the generation of SWRs, as virtually no SWRs 

occurred with SC silencing. Excessive potentiation in the CA3 and presumably 

EC pathways to CA1 actually increased the number of SWRs, but it is unclear 

whether silencing EC would have also abolished SWR incidence. Third, despite 

increasing the incidence of SWRs and the participation of individual place cells 

in firing during SWRs, perturbing information transfer from CA3 to CA1 

substantially decreased the temporal ordering of spiking activity during replays. 

Therefore, CA3 pathway satisfactorily appears critical for the normal function of 
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SWRs, by being crucial for the generation of SWRs and the normal information 

content of replays.  

However, numerous differences in the methods used here are worth noting. 

First, the calcineurin KO mice had impaired information transfer between EC 

and CA1, due to both increased potentiation and disruption of normal 

information processing in EC, and CA3 to CA1 due postsynaptic impairments in 

synaptic plasticity, while silencing the SC between CA3 and CA1 simply 

decreased the relative influence of CA3 input. Second, CA1 cell bodies and EC 

projections to CA1 are genetically aberrant in the calcineurin KO mice, but they 

are unaffected in SC silencing study. Third, SC silencing was applied in a 

temporally acute manner within each session, while calcineurin deletion was 

chronic and could induce long term homeostatic plasticity. Fourth, SC silencing 

was local in space and specifically targeted only the CA3 to CA1 projection, 

while the calcineurin deletion affected all CA1 and EC pyramidal cells. It is 

therefore important to keep these differences in mind when interpreting the 

different effects of manipulating CA3 and EC input to CA1. 

With these considerations in mind, I can conclude that rats with silenced SCs, 

in contrast to calcineurin KO mice, show substantial impairments in their place 
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field expression during preparatory behavior.  However, both of them show 

disrupted SWRs during consummatory behavior. One explanation for this is that 

during run, EC and CA3 are competing over CA1 place cell activity via 

excitatory and inhibitory projections modulating local pyramidal cells and 

interneurons. Because the CA1 synapses of calcineurin KO mice have abnormally 

higher potentiation to CA3 and EC inputs, an overall balance between these two 

excitatory inputs is still preserved. Therefore, place fields are normally expressed 

in these mice. However, during rest, where CA3 wins the competition with EC 

on dominion over CA1 neural activity, SWRs become more abundant than 

normal. This implies that during preparatory behavior both EC and CA3 are 

essential for normal hippocampal output while during consummatory behavior, 

CA3 is more indispensable.  

Implications 

The findings discussed in this dissertation have broader implications. It has 

long been held that  self-organized sequential activation of neuronal assemblies 

is the neural basis of cognition (Hebb, 1949). These sequential activities are found 

in cortical and hippocampal structures during preparatory and consummatory 

behaviors  (Pastalkova et al., 2008; Foster and Knierim, 2012; Harvey et al., 2012). 



153 

 

Our findings affirm the distinct causal role of highly-recurrent brain areas such 

as CA3 in producing sequential ensemble activity.    

SWR-associated sequential trajectory events, presumably initiated by the 

information-rich excitatory input from CA3 to CA1, are important for memory 

storage and recall as well as planning (Diba and Buzsáki, 2007; Davidson et al., 

2009; Karlsson and Frank, 2009; Foster and Knierim, 2012; Jadhav et al., 2012; 

Pfeiffer and Foster, 2013, 2015). These prospective hippocampal ensemble 

activities during SWRs give diverse options to the brain for decision making and 

might be the neural basis for priming creative thoughts in humans (Buzsáki, 

2015). Everyday we might experience tens of thousands of involuntary thoughts. 

The frequency of these “mind pops” increases in drowsiness between waking 

and sleep, the brain state with abundant SWRs (Gordon, 2013). Creative 

individuals have reported to come up with novel ideas and unexpected solutions 

to their challenges during this drowsy less externally-focused mental state 

(Bristol and Viskontas, 2006). Because we know SWRs are likely useful for 

consolidating and using newly acquired information, it is not too large of a 

logical jump to hypothesize they may be involved in these spontaneous and 

unexpected creative thoughts in humans. This intriguing idea would implicate 



154 

 

CA3, the potential SWR generator in the hippocampus, as a key primer of 

involuntary creative thought.  

Involuntary episodic thoughts occur in intrusive forms of “racing” and 

“crowded” thoughts in many mental disorders, including bipolar disorder, 

depression, obsessive-compulsive disorder (OCD), attention deficit hyperactivity 

disorder (ADHD), anxiety, and schizophrenia (Brewin et al., 2010; Piguet et al., 

2010). On the other hand, calcineurin KO mice and several mouse models of 

psychiatric diseases selectively show aberrant  SWR activity (Boone et al., n.d.; 

Phillips et al., 2012; Suh et al., 2013; Ishikawa et al., 2014; Witton et al., 2014; 

Altimus et al., 2015; Gillespie et al., 2016; Nicole et al., 2016). Therefore, these 

intrusive thoughts in patients might be caused by SWRs that are abnormal either 

in incidence rate, information content, or both.  CA3 as the potential generator of 

SWRs may therefore be specifically disrupted in these patients (Behrendt, 2010). 

For example, CA3 and CA2 are hyperactive in schizophrenia patients (Behrendt, 

2010; Li et al., 2015).  This accumulation of converging evidence might transform 

the definition of schizophrenia, and perhaps other mental disorders, to a disease 

of synaptic plasticity, with certain symptoms, such as intrusive thoughts, traced 

to specific aberrant circuits such as CA3 (Tamminga et al., 2012; McCullumsmith, 

2015).  



155 

 

Future work 

Real-time SWR detection and manipulation is a potentially fruitful direction 

of future research. Although there is evidence that local optogenetic activation of 

CA1 neurons can produce sequential activity among them, whether this is 

distinct from mechanisms of normal replay generation in poorly-connected CA1 

pyramidal cells is not yet clearly understood (Thomson and Radpour, 1991; Stark 

et al., 2015). In other words, it is not clear if CA3 only sends an initiation signal to 

CA1 via sharp waves, while the sequential activity itself is coordinated within 

CA1, or continuously instructs all steps of mental navigation to CA1. This can be 

examined by online detection of CA1 SWRs in conjunction with suppressing SCs 

for a short period of time (e.g. 10-20 ms) at the middle of SWRs. If CA3 only 

sends the “go” signal to CA1, this intermediate silencing might not affect 

decoded replays in CA1. In contrast, if continuous input from CA3 is needed, 

this suppression would interrupt completion of CA1 replay, possibly by causing 

abnormal leaps in trajectory events to new locations. While this idea is 

technically challenging, online replay decoding algorithm (ORDEAL) method, 

recently developed in our lab, may be an important step towards its feasibility 

(Ambrose, 2016).  
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For examining the effect of CA3 input on well-stablished and stable CA1 

place fields, the experiments described in this dissertation were all performed on 

familiar linear tracks. However, the auto-associative network of CA3 needs 

positional information from MEC, either directly or via DG, to form its own de 

novo place cell response and influence spatial tunings in CA1 place cells 

(Nakazawa et al., 2004). Therefore, CA3 may contribute differently to CA1 place 

fields in a novel environment, when a new episodic memory will require the 

encoding of new spatial information.  Transgenic mice with disrupted synaptic 

plasticity in CA3 show larger CA1 place fields compared to control mice in a 

novel linear track but these fields are not significantly different from control 

fields in later re-exposures to track (Nakazawa et al., 2003). On the other hand, 

because behavior on a linear track does not require decision making about where 

to explore, it is not an appropriate setting for examining navigational planning.  

Therefore, more complex spatial environments, such as the W-maze and open 

field, could be used to study the contribution of CA3 on CA1 ensemble activity 

during navigational planning and decision making. For example, it is important 

to investigate if prospective and retrospective SWR-associated trajectory events 

depend differently on CA3 input (Jadhav et al., 2012; Pfeiffer and Foster, 2013). 
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Overall, novel and complex environments may shed further light on the selective 

contributions of CA3 to CA1 place cell and SWR activity.  

Other complementary questions about hippocampal function can be 

addressed by this novel optetrode. While some optogenetic studies showed the 

effect of MEC on hippocampal place cell responses, the contribution of EC input 

in CA1 SWRs and replays are not yet investigated (Miao et al., 2015; 

Rueckemann et al., 2016). Therefore, temporoammonic pathway (TA) silencing 

with a similar experimental design would shed light on the direct contribution of 

either MEC or LEC in CA1 place fields, SWRs, and replays. I hypothesize that 

such an experiment would uncover no major effect on SWRs and replays but 

global remapping in CA1 place fields. Also, according to the previously-

described competition between EC and CA3 over CA1 activity, TA silencing may 

result in shifting the hippocampus away from the theta-dominated state by 

causing a decrease in theta power and disrupting theta phase precession. Indeed, 

some MEC lesion studies have found remapped place fields and impaired theta 

phase precession in some CA1 place cells and a decrease in CA1 theta power 

(Brun et al., 2008; Zhang et al., 2013; Hales et al., 2014; Miao et al., 2015; 

Schlesiger et al., 2015; Rueckemann et al., 2016). Therefore, a transient 
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optogenetic silencing may reveal intricate contributions of the major components 

of EC on hippocampal output.  

Gain of function studies may also further clarify the contribution of CA3 and 

EC to CA1 SWRs and place fields. It is quite informative to explore in what 

stimulation frequency ranges optogenetic activation of SCs and possibly TA 

induces ripples in CA1 circuitry. One may also examine if such induced ripples 

cause sequential activity in CA1 (Stark et al., 2014, 2015). Furthermore, 

previously-described theta versus SWR state competition model predicts that EC 

and CA3 are pivotal in inclining the hippocampus to these two states, 

respectively. This model can be tested by activating the input pathway in the 

CA1 state in which it is not usually active and examine if this stimulation can 

cause a state transition. For example, I predict activating TA during quiet 

wakefulness abolishes SWRs and causes a sustained increase in theta power. 

Oppositely, it might be possible to generate SWR-like activity by stimulating SCs 

during run. Overall, these diverse experiments may further elucidate 

hippocampal circuit.  

Emerging neural circuit recording and manipulation techniques are 

broadening the capability of neuroscientists to address more fundamental 
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questions about hippocampal circuitry.  In vivo two-photon calcium imaging of 

place cells has revealed their location-dependent activity in physical and virtual 

environments  (Dombeck et al., 2010; Ziv et al., 2013; Pfeiffer et al., 2014; 

Rickgauer et al., 2014; Sheffield and Dombeck, 2015; Villette et al., 2015; 

Danielson et al., 2016; Malvache et al., 2016). Although the time course of calcium 

transients in synapses is orders of magnitudes slower than actual action 

potentials, the subcellular spatial resolution of this technique, capability to 

simultaneously monitor hundreds of neurons, ability to distinguishably screen 

neurons in different planes of pyramidal layer, and weeks-long imaging stability 

make it a compelling method to study place cells.  

High-resolution two photon calcium imaging combined with axon 

photometry could resolve whether there are different activity properties at 

dendritic spines receiving EC input and spines receiving CA3 input in CA1 

stratum oriens and stratum radiatum. Moreover, just as replay itself was only 

discoverable when the number of simultaneously recorded neurons was large 

enough new hippocampal network phenomena may be observed. In addition, a 

combination of calcium imaging and optogenetic stimulation may reveal the 

contribution of CA3 and EC inputs to a vast number of place cells (Rickgauer et 

al., 2014). Simultaneous multi-plane imaging of CA1 stratum pyramidale may 
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not only reveal functional specificity of superficial and deep place cells but also 

differences in the extent of inputs they receive (Danielson et al., 2016). 

Furthermore, long-term imaging stability allows for monitoring changes in the 

amount of EC and CA3 inputs that dendritic spines in CA1 place cells receive in 

a novel environment and re-exposures to the same environment in next days. 

Therefore, calcium imaging is an important method to study the formation 

mechanisms of place cells, SWRs, and SWR-associated neural sequences.  

These ideas are just a few of the potential directions for future research on 

neural mechanisms for spatial information processing. This dissertation 

describes my work to better understand hippocampal circuit, how it function in 

health and disease and its critical role in the neural basis of episodic memory and 

the cognitive map.   
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