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Abstract

The notion that DNA changes could drive the growth of cancer was first
speculated more than a century ago, and has acquired overwhelming evidence
in the past several decades. The recent decrease in cost of next-generation
sequencing has spurred the growth of cancer sequencing studies that catalog
mutations observed in cancer. However, the vast majority of mutations in can-
cer do not increase the fitness of cancer cells. As a consequence, computational
methods have become essential to distinguish the specific driver mutations im-
plicated in cancer by leveraging statistical patterns of genetic variation ob-
served across many cancer samples.

Here, I introduce several new computational methods to analyze cancer
drivers at different levels of resolution — including at the gene (20/20+), pro-
tein region (HotMAPS), and mutation (CHASMplus) level. I use these meth-
ods to interrogate fundamental questions regarding cancer driver mutations,
such as their cancer type specificity, commonness or rarity, and the characteris-

tics of oncogenes and tumor suppressor genes. Different types of cancer varied
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ABSTRACT

substantially on the precise cancer driver genes and the balance of oncogenes
versus tumor suppressor genes, but shared clusters of cancer driver genes were
seen in cancer types with a common cell of origin. Results also indicate a promi-
nent emerging role for rare driver mutations, suggesting interpretation of a
cancer genome will need to be increasingly personalized, as a patient’s driver
mutation may have not been previously observed.

I also probe the efficacy of computational methods, which is difficult because
there is no accepted gold-standard. I first analyze consequences expected ana-
lytically, and then compare existing methods on newly developed benchmarks.
I found many prior computational methods do not appropriately model the het-
erogeneity of mutations expected by chance.

The recent completion of The Cancer Genome Atlas has provided a unique
capability to understand cancer at an unprecedented scale. I comprehensively
discover both cancer driver genes and mutations across nearly 10,000 cancers
from 33 cancer types. This revealed 299 cancer driver genes and >3,000 driver
mutations. Although this expansive analysis found 59 novel genes not previ-
ously associated as cancer drivers, some evidence points to diminishing returns

for future driver discovery.
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Chapter 1

Introduction

Cancer is a disease defined by aberrant proliferation of cells that have ac-
quired invasiveness into surrounding tissues of the human body [1]. As a
whole, cancer is estimated to have caused 600,000 deaths in the United States
in 2017 [2]. The biological process of cancer development has been associ-
ated with numerous hallmarks known to circumvent the otherwise restricted
growth of a normal cell [3]. The ongoing effort to reduce cancer mortality,
whether by prevention or new treatments, may require a deeper understand-
ing of the processes that lead to the development and progression of cancer.
Given the limited throughput to study human cancers experimentally [4], my
dissertation is focused on developing new computational methods to identify
mutational drivers of cancer from the big data arising through large-scale DNA

sequencing. Specifically, I will analyze protein-coding mutations that happen
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somatically, i.e., starting from embryogenesis, mutations that occur in the cells

of the body (excluding germ cells), and therefore are not inherited.

1.1 Cancer as a genetic disease

Cancer’s foundation as a genetic disease was first proposed more than a cen-
tury ago by observations of cells with chromosomal aberrations [5]. There was
only sparse support for this hypothesis until the observation that chicken cells
contained a homologous sequence to a gene in a known cancer-related virus,
avian sarcoma virus, [6] and, further, that a single nucleotide change at codon
12 of the human gene HRAS could oncogenically transform bladder cells [1,7].
Endogenous human genes, when mutated, could therefore contribute to the
growth of cancer. As a technical note, I will refer to such genes that contain mu-
tations which increase the net growth of cells toward cancer as “cancer driver
genes”. However, it was not clear at the time whether all such cancer driver
genes would fit the mold of HRAS. Now it is understood that cancer driver
genes fall into two broad categories, oncogenes and tumor suppressor genes.
Oncogenes, like HRAS, acquire mutations that generate gain-of-function, while
tumor suppressor genes acquire mutations that cause loss of function. Origi-
nally the view of tumor suppressor genes was as biallelic loss-of-function of

both gene copies (the “two-hit hypothesis” [8]), such as by the combined effect
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of a deletion (or loss-of-heterozygosity) and a mutation, like RB1 in retinoblas-
toma [9] and TP53 in colorectal cancer [10]. However, for some tumor suppres-
sor genes that are either haploinsufficient or dominant-negative, the mutation
of only one copy may be sufficient [11-13].

A particular driver mutation may be neither necessary nor sufficient for the
development of cancer. Rather, carcinogenesis, the development of cancer, often
is a multi-step process (estimated 2-8 [14]) involving several driver mutations,
where the combined effect of multiple mutations is sufficient. In the case of
colorectal cancer, it is estimated 3 mutational drivers are required [15]. The
driver mutation at each step causes a clonal expansion of cells because of their
selective growth advantage; thus, leading to progression from a small adenoma
to a large adenoma and eventually to a carcinoma in colorectal cancers [16]. As
an example, a particular cancer’s sequence of driver mutations could initiate
with an APC gene mutation followed by a KRAS mutation and subsequent
TP53 mutations. But particular driver mutations are not necessarily exclusive
to each stage that leads to colorectal cancer [16]. Moreover, in another patient’s
cancer, driver mutations in different genes could also lead to colorectal cancer
[17]. Lastly, even within a single tumor, there may be multiple competing sub-
clones with different compositions of driver mutations (termed “intra-tumor
heterogeneity”). Carcinogenesis, therefore, is not a simple fixed linear path

of driver mutations, but instead a remarkably heterogeneous mix of multiple
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possible paths.

Only in the past decade have improvements in DNA sequencing technology
made cancer sequencing studies feasible for cataloging large numbers of muta-
tions in human cancers. The first wave of cancer sequencing studies [18-20] an-
alyzed common cancers, such as breast and colorectal cancers, and sequenced
only targeted portions of the exome (the regions encoding genes). Due to tech-
nical limitations and prohibitive cost, they employed a Discovery-Validation
study design where mutations were first detected more comprehensively in a
smaller number of samples but then validated against a larger set of sam-
ples. Although soon after, milestone studies would sequence the whole-exome
of pancreatic cancers [21] and glioblastoma multiforme [22]. Also, in the same
year, the first pilot project of the The Cancer Genome Atlas (TCGA) analyzed
glioblastoma multiforme [23], the beginning of a consortium that would ana-
lyze thousands of human cancers in the coming years. The genomic breadth of
sequencing was expanded by several whole-genome sequencing studies analyz-
ing a few samples in leukemia, lung cancer, and melanoma [24-26]. By 2011
the TCGA analyzed 316 ovarian carcinoma samples by whole-exome sequenc-
ing [27], which started to reach the large sample sizes necessary for statisti-

cally implicating cancer drivers.
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1.2 Positive selection and the statistical

identification of cancer drivers

Cancer sequencing studies quickly made it evident that driver mutations
only constitute a small percentage of the potential 100’s or 1,000’s of mutations
observed with a single exome [14]. The major question is therefore not what
mutations are detected in cancer but, rather, which mutations are drivers as
opposed to “passengers” that do not contribute to tumorigenesis? Because the
vast majority of mutations are passengers, it is difficult to distinguish a driver
mutation from many passenger mutations; also, like a driver mutation, many
passenger mutations may be completely clonal in a particular cancer sample,
because they happened before the founding clone’s driver mutation [28, 29].
Passenger mutations effectively hitchhike off of the selective growth advan-
tage provided by driver mutations. The key distinction is, when considered
across many cancer samples, that driver mutations are positively selected for
in cancer and therefore should be disproportionately represented. Computa-
tional methods have therefore evaluated signals of positive selection in can-
cer at various scales, including at the protein, domain/region, and mutation
level [30]. Although the precise way positive selection is statistically measured
varies [31], the essence is to analyze patterns of mutations across many sam-

ples and rule out the possibility that the mutations are explainable by a ran-
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dom background accumulation of mutations alone.

As a consequence, identifying positive selection of driver mutations also re-
quires understanding the converse, how passenger mutations accumulate in
cancer. Passenger mutations have only <1% of non-silent mutations elimi-
nated by negative selection, indicating that most of the variability in the num-
ber of passenger mutations is due to mutation rates rather than selection [32].
A simple model is that passenger mutations accumulate at a universal back-
ground rate per base across the genome [20], after adjustments for the nu-
cleotide sequence context. This model fails to capture key mutational processes
in cancer, such as the background mutation rate varying by over two orders
of magnitudes between cancer types [33] and also varying patient-by-patient,
especially when a tumor has defective DNA damage repair or mutagen expo-
sure [34]. Moreover, regional variation within the genome of replication tim-
ing, gene expression, and chromatin structure leads to ~3-fold differences in
the background mutation rate [33]. In certain cancers, kataegis causes genom-
ically localized hypermutation [35]. Accurate models therefore need to account
for the greater dispersion caused by this mutational heterogeneity.

A focus for many large cancer sequencing studies has been to identify can-
cer driver genes, usually done in one of three ways. The most common ap-
proach, which I term as a significantly mutated gene method, has been to com-

pare the number of mutations within a gene to that expected by a background
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mutation rate [18, 20, 36,37]. The accuracy of the background mutation rate,
therefore, becomes the critical parameter to estimate. Recent improvements in
estimating regional variation in mutation rate across the genome lead to re-
duced false positives in the method MutSigCV [38,39]. The second approach,
functional impact bias, evaluates whether a gene contains mutations that are
skewed towards higher predicted impact [40]. The score of a mutation usually
reflects either evolutionary conservation of the protein sequence or machine
learning methods that predict the deleteriousness of a variant. Lastly, evalu-
ating the positional clustering of mutations has also been used at the sequence-
and structure-level of a protein [38,41-55]. However, not all tumor suppressor
genes may exhibit mutational clustering, and therefore these methods may be
better at identifying oncogenes due to their highly localized activating muta-
tions.

Although a cancer driver gene, by definition, contains a driver mutation,
not all mutations within a cancer driver gene are necessarily cancer drivers.
Especially considering the large size of genes, passenger mutations will be ob-
served in large numbers when analyzing many cancer samples [32]. To address
this issue, recent methods, known as hotspot mutation detection, have there-
fore focused on smaller regions, such as protein domains [55], protein-protein
interfaces [40], and individual codons [9].

However, if driver mutations are in separate locations of the protein se-
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quence, hotspot detection based on protein sequence may lose statistical power.
Often this results from residues being far apart in protein sequence but ac-
tually proximal in the folded protein structure. Since there is a relationship
between protein structure and function [56,57], I and others have developed
computational methods for hotspot detection in 3D space of protein structure
[41,43,45,46,48,52-54,58]. Hotspot detection in protein structure has the ad-
vantage of generating plausible hypotheses about the function of the mutation
given the spatial proximity to known functional sites in the protein [43,59].
Cancer driver prediction at the level of individual mutations has largely
focused on missense mutations, the most common type of protein-coding mu-
tation in cancer [14]. Typically, machine learning approaches have been used
to leverage features characterizing mutations. Although features vary sub-
stantially by method [39, 60-65], they usually include inter-species evolution-
ary conservation of the protein sequence, features of the local protein envi-
ronment, molecular function annotations, and biophysical characterizations of
the amino acid substitution. Cancer-focused machine learning methods have
previously tried to enhance performance by training cancer type-specific mod-
els [26,66] or boosting data with synthetic passenger missense mutations [26].
Despite the capability of utilizing many features, with the exception of a few
gene-level features in ParsSNP [25], machine learning methods typically have

not used mutational patterns characterizing the genetic variation observed in
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human cancers. Furthermore, a systematic comparative study of 15 methods
concluded that none of them were sufficiently reliable for experimental or clin-
ical follow-through [49]. I, and others, have hypothesized that determining the
impact of missense mutations requires proper context [59,67], which have not
been sufficiently leveraged in a comprehensive manner from the current gener-
ation of methods. Context includes both prior knowledge about the functional
importance of genes or gene subregions in which a mutation occurs, and muta-
tional patterns that are now evident from cancer sequencing studies of many

thousands of patients.

1.3 Large-scale cancer driver discovery

The application of computational methods to identify mutational drivers of
cancer has expanded with the growth in sample size of cancer sequencing stud-
ies [33,36,51,55,58,66,68-73]. A comprehensive analysis of 3,281 cancers com-
prising 12 cancer types from the TCGA revealed 125 associated cancer driver
genes [66]. A subsequent study identified 224 cancer driver genes in 21 cancer
types, and further suggested by sub-sampling analysis that the discovery of
new cancer driver genes does not show evidence of saturation at current sam-
ple sizes [69]. Combined with the low mutation frequency of many identified

cancer driver genes, it has been hypothesized there is a “long tail” of drivers of
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increasing rarity, with more cancer drivers on the horizon [74,75]. Prior statis-
tical power calculations suggest this is reasonable given driver genes estimated
at a 2% frequency of cancers may require sample size as high as 5,000 for cer-
tain cancer types with high mutation rate and, in total across all cancer types,
100,000 sequenced cancer samples may be needed [69]. This is well above the
number of samples per cancer type available in The Cancer Genome Atlas.
Only a relatively few studies have started to focus on identifying cancer
drivers at sub-gene resolution. Initially, studies focused on identifying pro-
tein domains [49,50]. More recently, studies have progressed to varying sized
hotspots and towards codon-level resolution [38,42,76]. However, I and others
have noted such approaches currently are biased towards finding hotspot re-
gions in oncogenes as opposed to tumor suppressor genes. This is a result of
tumor suppressor genes having loss-of-function driver mutations that are more

diverse and spread over a larger region of the protein [43].

1.4 Relevance to current study

Ultimately, computational methods have progressively sought to understand
whether a particular mutation in a patient’s cancer is a cancer driver mutation.
However, given current approaches may require 100,000 cancer samples to just

identify cancer driver genes, identifying particular driver mutations within
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those genes may require an even greater number of sequenced cancers. Due
to the millions of mutations currently being identified in human cancers, labo-
rious experimental validation of all mutations is not feasible because of lack of
throughput [4,59]. A more statistically powerful computational method would
be greatly beneficial to the cancer genomics community; enabling improved
utilization of cancer sequencing studies. Insight into cancer driver mutations
can be of substantial clinical relevance, such as indicators of prognosis [22,77],
therapeutic response [78], drug targets [79], and as biomarkers for early detec-
tion of cancer [80].

My dissertation covers four primary aims: (1) the modeling of somatic mu-
tations, (2) development of new computational methods, (3) benchmarking of
computational predictions, and (4) systematic driver discovery across thou-
sands of human cancer samples. Where pertinent, results of methodological
benchmarks (3) and systematic driver discovery (4) are combined in the same
chapter as the corresponding developed computational method (2).

Although there are many existing computational methods, I find that prior
methods have not yet adequately combined multiple signals of positive selec-
tion of driver mutations in cancer. I hypothesize better characterization of
cancer drivers, particularly those that occur at relatively low prevalence, can
be obtained by a carefully designed machine learning approach, which lever-

ages mutational patterns in cancer sequencing studies that are characteristic
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of oncogenes and tumor suppressor genes. Moreover, I show that combining
multiple scales of information - including at the gene, region, and mutation
level - has substantial benefits.

It has been difficult to evaluate progress in this area because many pub-
lished methods do not rigorously compare their relative merits to those devel-
oped by others. I establish extensive benchmarks for cancer driver prediction
to address this shortcoming. Importantly, I develop novel metrics to assess the
current landscape of predictions, which addresses the need for rigorous evalua-
tion criteria given the lack of a true gold standard for predicting cancer drivers.
My analysis points to the strengths and weaknesses of each of the currently
available methods and offers guidance for improving them in the future.

The recent completion of The Cancer Genome Atlas has provided a unique
capability to understand cancer at an unprecedented scale. Here, I predicted
protein-coding driver mutations in nearly 10,000 cancers and characterize the
landscape of drivers across human cancers. This involves interrogating funda-
mental questions regarding cancer and driver mutations, such as their cancer
type specificity, commonness or rarity, the balance and characteristics of onco-
genes and tumor suppressor genes, and the likely future trajectory of cancer

driver discovery.
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Statistically modeling the
accumulation of somatic

mutations 1n cancer

Somatic mutations accumulate randomly in all cells of the body, starting
from the beginning of embryogenesis through the entire lifetime of an individ-
ual [81]. Somatic mutations arise because of both endogenous and exogenous
sources, or from a mutator phenotype acquired in a cancer cell. Endogenous
sources include intrinsic DNA replication mistakes, damage caused by free
radicals from metabolism, and spontaneous deamination of nucleotides [82].
In contrast, exogenous sources originate from the environment and include

ultraviolet radiation [82] and various mutagenic chemicals like aristolochic

13
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acid [83]. Also, defective DNA damage repair in a cancer cell may lead to a
mutator phenotype where a substantial number of unrepaired mutations be-
come fixed, such as defective mismatch repair genes leading to microsatellite
instability [84]. Each mutational source leaves a mark on the cancer genome
that reflects the mutational signatures during the lifetime of the cell’s progeny
leading to cancer [82].

An essential first step towards implicating cancer driver genes from a can-
cer sequencing study requires understanding how mutations accumulate in

cancer.

2.1 Variability in the background accu-

mulation of mutations

To investigate the potential for using elevated mutation rate per base as
a means to detect cancer drivers, I sought to examine the background vari-
ability of mutation rate in human cancers. The median background muta-
tion rate per base for each cancer type in my pan-cancer data set (see Ap-
pendix B) [85] varied by over two orders of magnitude (Figure 2.1), with in-
dividual samples varying over an even larger range, which is consistent with
prior observations [33,34]. Because only a small fraction of the total somatic
mutations in any common solid tumor affects driver genes, the remaining mu-

14
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tations can be considered passengers. The total number of mutations (drivers
plus passengers) per base is therefore only slightly larger than the number of
passenger mutations per base, and, for simplicity, I refer to this number as
the background mutation rate. Mutation rates are also known to vary across
the genome [33] and are influenced by nucleotide sequence context, gene ex-
pression, chromatin state, transcription factor occupancy, replication timing,
DNA strand, and perhaps by a variety of factors that have yet to be discov-
ered [34,86—-88]. For example, melanoma mutations in The Cancer Genome
Atlas (TCGA) are predominately C to T transition mutations, which is not seen
in other cancer types (Figure 2.2).

However, mutation rate is not the only statistic capable of statistically im-
plicating cancer drivers. One alternative is to use ratiometric features that
normalize for the total number of mutations within a gene. For example, the
ratio of non-silent to silent mutations within a gene is relative to silent mu-
tations. Figure 2.1 shows the variability of the median ratio of non-silent to
silent mutations for cancer types in our pancancer set. Ratiometric features
had significantly less variability among cancer types than background muta-
tion rates. The considerably lower variability suggests less covariates would

need to be modeled when developing a statistical model of somatic mutations.
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Figure 2.1: Background mutation rate is more variable than the ratio of non-
silent to silent mutations across 34 cancer types in data from [69,89]. Boxplots
are plotted on a log10 scale. The top boxplot shows the mutation rate in coding
sequence for the samples in our pancancer dataset. The bottom boxplot shows
the ratio of nonsilent to silent mutations in coding sequence for the same sam-
ples. A pseudocount for a silent mutation was added for each sample to avoid
dividing by zero. Notches indicate bootstrap 95% confidence interval (1,000 it-
erations) for the median. Outliers, defined as 1.5¥*IQR away from the first and
third quartile, are not shown.
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Figure 2.2: Transition and transversion proportions are shown for 6 nu-
cleotide changes from 33 cancer types available from the The Cancer Genome
Atlas (https:/synapse.org/MC3). The stacked proportion bar chart is sorted by
increasing transition/transversion fraction.
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2.2 Expected consequence of variable back-

ground mutation rate

2.2.1 Increased mutational heterogeneity results
in reduced statistical power or increased

false positives

I analyzed the possible impact of unexplained variability in background mu-

tation rate on expected false-positive driver gene predictions. First, I applied a
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binomial model previously used for driver gene detection power analysis [69].
The model assumes a gene-specific background mutation rate i, which is set to
a relatively high value, corresponding to genes in the 90th percentile of genes
for mutation rate. I used the binomial distribution to set the critical value for
driver gene prediction, that is, the number of mutations required for a gene to
be considered significantly different from the background. Next, I modeled the
situation where the genes actually had mutation rates that varied around p us-
ing a beta-binomial model. I estimated the false positives expected under the
binomial, after a highly conservative multiple-testing correction (Bonferroni),
for levels of variability [beta-binomial coefficients of variation (CVs)], and for
sample size ranging up to 8,000 (Figure 2.3). Levels of variability defined by
CVs (CV = 0.05, 0.1, and 0.2) were chosen to approximate low, medium, and
high unexplained variation around the mean. As the number of samples in-
creased, so did the number of expected false positives. At the low end of back-
ground mutation rates (0.5 mutations per megabase (MB)), the expected false
positives remained low, even when 8,000 samples were evaluated, regardless
of the level of variability. At an intermediate background mutation rate of 3.0
mutations per MB and with high unexplained variability, 1,000 false positives
were expected from 8,000 samples. At a high background mutation rate (10.0
mutations per MB), both medium and high unexplained variability produced

many thousand expected false positives.
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Figure 2.3: Expected false positives for a mutation rate-based predictor that
identifies genes with increased mutation rate over background.

I reasoned that unexplained variability might also have an impact on power
calculations to estimate how many samples must be sequenced to find the ma-
jority of cancer driver genes. To this end, I repeated previous calculations per-
formed with a binomial power model, in which the required sample size was
estimated to be 600-5,000 per cancer type [69]. The previous analysis was pa-
rameterized to detect intermediate frequency driver genes, having 2-20% mu-
tation rates above background per sample, with background defined by genes in
the 90th percentile of background mutation rates. First, I calculated the sam-
ple size required to detect 90% of these drivers, given exome-wide backgrounds
of 0.1-10 mutations per MB, and a conservative estimate of 2% effect size (see
subsection 2.2.2 for details). Next, I calculated the sample size required if the
gene mutation rate varied around the original estimate, using a beta-binomial
model with different CVs (CV = 0.05, 0.1, 0.2). The binomial power model was

in accord with previous estimates. However, when unexplained variability was
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Figure 2.4: Sample size required for near-comprehensive detection of
intermediate-effect driver genes (90% detection and 2% effect size/increase
with respect to background). Results are shown for scenarios with no unex-
plained variability (black), low (blue), medium (green), and high (red) unex-
plained variability (CVs of 0.0, 0.05, 0.1, and 0.2, respectively). The number of
required samples for the mutation rate-based method becomes very large for
moderate-to-high mutation rates and levels of unexplained variability.

taken into account, the number of required samples increased sharply, partic-

ularly for higher background mutation rates (Figure 2.4).

2.2.2 Statistical models of mutation rate

Now I will describe the implementation of the statistical models used to
evaluate the effects of unexplained variability in the mutation rate on false
positives and statistical power. The first model assumes a correctly estimated
background mutation rate p for a particular gene (binomial model) and the

second model assumes that gene background mutation rate varies around u
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(beta-binomial model). I used a binomial model similar to previously developed
for driver gene power analysis [69]. The gene-specific mutation rate factor F,
calculated by MutsigCV [69] was set to represent a gene at the 90th percentile,
given an exome-wide background mutation rate of =, so that p = F,r (F, =
3.9). Average gene length (L) was set to 1,500 bases and 3/4 mutations were
assumed to be non-silent. Effective gene length for non-silent mutations was
therefore adjusted as L.y = 3/4L. Gene background mutation rate was cal-
culated using the total number of potentially mutated bases that could yield
a non-silent mutation (N,;;), which is the effective gene length multiplied by
number of samples (S). A predicted driver was defined as a gene with signif-
icantly higher non-silent mutation rate per base than that gene’s background

mutation rate, where non-silent mutation rate per base is the following:

P:es —1— ((1 _ P:)Le” _ T)lfLEH (21)

and r is the fraction of samples with non-silent mutations in the gene above
background. Exome-wide background mutation rates of (r = 0.5e-6, 3e-6, or
10e-6) were considered.

The beta-binomial was designed to model several levels of unexplained vari-
ability around p. To parameterize the beta-binomial with low, medium, and
high variability levels, I used different coefficients of variation (CVs) for the

mutation rate (0.05, 0.1, 0.2). Beta-binomial o and § parameters were com-
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puted as follows:

o pd—p)
Of_'u((CV*,u,)Q 1) (2.2)
_ p(l—p)

To compute the number of false positives expected from a binomial model
when unexplained variability is present, I examined the probability that the
number of mutations in a gene from a beta-binomial model (K3;) would meet or
exceed the critical value (for a genome-wide significant driver gene at a = 5e-6)

by the binomial, k;:

E[FP] =g Fyn_,,[Kep > ky (2.4)

where g is the total number of human genes (assumed 18,500) and both
models use the same mean mutation rate x and total number of potentially
mutated bases N.yy.

A similar model is applicable to the effect of various levels of unexplained
variability in mutation rate on the power to detect driver genes. I reproduced
the binomial model power analysis of [69] to estimate the number of samples
required for 90% power to detect genes in the 90th percentile of gene-specific
background rate, with 2% mutation rate above background (r = 0.02). Us-

ing Equations 2.2 and 2.3 to parameterize the beta-binomial model, I calcu-
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lated the number of samples required for 90% power at a Bonferroni genome-
wide significance level of 5e-6. Samples were iteratively added until there was
greater than or equal to 90% probability that a driver gene with mutation rate
1 would be found significant.

As a technical detail, discrete distributions often do not obtain exactly the
stated significance level, but rather achieve at least the target significance
level. Depending on the precise critical count threshold, the actual significance
level varies on how overly conservative it is. This results in a jagged power
curve for discrete data [90], and consequently I found the minimum number of

samples required to achieve 90% power.

2.3 A Monte Carlo simulation approach

2.3.1 Implementation

Given the previously highlighted limitations of using the mutation rate, I
decided to instead model ratiometric features and statistically condition on the
total number of mutations within a gene. This strategy tries to limit the ef-
fect of nuisance covariates influencing mutation rate that are not always mea-
sured or known. Briefly, for each gene, single nucleotide somatic mutations

were moved with uniform probability to any matching position in the gene se-
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quence, holding the total number of single nucleotide somatic mutations fixed
(Fig. 5). A matching position was required to have the same nucleotide base
context (C*pG, CpG*, TpC*, G*pA, A, C, G, T) as the observed position. This
method of generating a null distribution controls for the particular gene se-
quence, gene length, and mutation’s nucleotide sequence context. The number
of somatic mutations remains the same, but the mutation consequence of a so-
matic mutation may change. For example, a somatic mutation that generates
a missense mutation may generate a nonsense mutation in its new position.
Since mutations that result in insertions and deletions will not change their
mutation consequence type by being randomly moved to another position in
the same gene, they were moved to a random position in a different gene. The
gene was selected based on a multinomial model, with probability proportional
to the coding DNA sequence length of the originating gene. This results in a
multinomial model with a large number of categories (equal to the total num-
ber of protein-coding genes) and number of trials being the total number of
indel mutations.

The simulated mutations allow calculating the statistical significance of an
arbitrary test statistic computed from the mutation data. Let’s say there is
a function 7' of some set of mutation(s) M. I can then compute an estimated

p-value based on the simulated mutations M° as follows,
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BT (MP) : T(MP) > T(M), i € 1.5}
Z{T(MP) i€ 1.5}

P(M) = (2.5)

where m is the estimated p-value and S is the total number of simula-

tions.

2.3.2 Comparison to simulations in CHASM

A related simulation method was first established in the method Cancer-
specific High-throughput Annotation of Somatic Mutations (CHASM) [39]. How-
ever, there were several limitations that needed to be addressed. First, mu-
tations are now simulated in a cohort-level manner, rather than considering
each unique mutation in isolation. This allows computation of test statistics
that may be a function of many mutations found in a single region, a single
gene, or in multiple genes. Second, the original CHASM simulations assumed
a background rate for mutations at certain nucleotide contexts (termed 'passen-
ger tables’). Instead, I condition on the observed nucleotide sequence context
and randomly select another position with the same context. Third, I do not
assume a homogenous mutation rate for single nucleotide mutations in genes
across the genome (highlighted as problematic above). Fourth, my Monte Carlo
simulations also apply to all coding mutations, rather than just missense mu-

tations. Lastly, an issue with the original simulations by CHASM was that it
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assumed every mutation in a cancer driver gene was a cancer driver, which
we know not to be the case. As a consequence, the simulations from CHASM
blacklisted all simulated mutations in likely cancer driver genes. Here, I do

not blacklist simulated mutations in driver genes.

2.3.3 Application to salivary gland adenoid cys-
tic carcinoma (ACC)

2.3.3.1 ACC overview

As part of the statistical analysis, I analyzed coding mutations from 25
whole-genome sequenced Adenoid Cystic Carcinomas (ACC) [91]. Specifically,
it was noticed that several chromatin regulator genes had more than one non-
silent mutation. The question was whether these chromatin regulator genes
had a high proportion of truncating mutations, suggesting that they could be

tumor suppressor genes.

2.3.3.2 Model of truncating point mutations

I performed a randomization-based statistical test of increased proportion
of truncating mutations (K) out of total non-silent mutations (N) for genes

involved in chromatin regulation, controlling for the effect of gene sequence
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and the nucleotide sequence context of the mutation. For each gene 7, our test

statistic was

:#{t:tEK}

T;
IV

,whereK ¢ N (2.6)

Truncating mutations were defined as any nonsense, consensus splice-site
mutations, or out-of-frame insertions/deletions (frameshift). Monte Carlo sim-
ulations were performed to approximate the null probability distribution of
the test statistic 7. Because frameshift mutations do not change consequence
when moved to a different position, in the Monte Carlo sample, they were re-
tained with probability equal to the observed proportion of frameshift muta-
tions out of all mutations (maximum likelihood estimate), otherwise they were
changed to a non-truncating mutation. After each iteration of this sampling
procedure, the number of mutations in a gene is always the same, but the mu-
tation consequence of each mutation may change. Thus, the test statistic T; for
the gene will change values at each iteration, and repeated iterations yield a
null distribution of test statistics to estimate the P value of the gene’s observed

test statistic. For the gene group analysis, my test statistic was

Sttt K
B Et‘eclNil

T: (2.7)

and it was computed both for the observed and simulated mutations. A one-
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tailed empirical P value was calculated as the fraction of Monte Carlo samples
in which the observed value of the test statistic was equal to or higher than the
simulated value. Increasing the number of iterations of Monte Carlo sampling
increases the precision of the P value; 10,000,000 iterations were chosen to

achieve adequate precision.

2.3.3.3 Results

Several genes with well-known roles in chromatin regulation were mutated
in multiple tumors: MLL2, MLL3, EP300, SMARCA2, SMARCC1, and KDMG6A.
The proportion of truncating mutations (nonsense codons, splice-site alterations,
or out of-frame insertions and deletions) out of the total number of non-silent
mutations in these genes was high (6 of 11), significantly greater than expected
by chance (P = 3.8e-6). Furthermore, MLL2 and EP300, when considered in-
dividually, had a significantly higher proportion of truncating mutations than
expected by chance (P = 0.008 for MLL2 and P = 0.01 for EP300). This finding is
consistent with the hypothesis that several of these genes played an important

role in these cancer samples.
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2.4 Conclusions

The goal in this chapter was to first understand “how” somatic mutations ac-
cumulate in the absence of selection so as to, later, correctly interpret “which”
mutations are cancer drivers in the presence of positive selection. A recent
study indicates there is limited purifying selection of point mutations in can-
cer [32], suggesting the lack of incorporating negative selection in statistical
models is not a major concern. I have shown in this chapter that background
mutation rate is highly variable at multiple scales and therefore is difficult to
statistically model. This can either lead to increased false positives or reduced
statistical power when attempting to identify cancer driver genes. However,
many of the known covariates are not at the same resolution as genes, as they
vary across the genome at the scale of megabases [88], while nearly all genes
span <1MB. I therefore developed Monte Carlo simulations to test any arbi-
trary test statistic by conditioning on the total number of mutations within a
gene while accounting for nucleotide sequence context. The flexibility of the
Monte Carlo simulations will be critical in later chapters when evaluating the

significance of results from machine learning methods.
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Chapter 3

20/20+: a machine learning
method to predict cancer driver

genes

3.1 Introduction

The first exomic analyses attempted to identify candidate driver genes as
those having more mutations than expected from some presumed background
somatic mutation rate, corrected for base context, gene size, and other vari-
ables [19,92]. Subsequent work has considerably refined the variables involved
in determining whether a gene is more mutated in cancers than expected by

chance. This has led to a variety of “significantly mutated gene” methods that
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adjust for covariates such as replication timing and gene expression as well
as including more sophisticated metrics of mutational base contexts [33, 73].
Although methods have been extended to utilize gene expression to identify
cancer drivers [93—-98], I will focus solely on driver gene analysis based on so-
matic point mutations.

An alternative method to finding cancer drivers employs a ratiometric ap-
proach. Rather than attempting to determine whether the observed mutation
rate of a gene in cancers is higher than expected by chance, these methods sim-
ply assess the composition of mutations normalized by the total mutations in a
gene. The ratiometric 20/20 rule [14] evaluates the proportion of inactivating
mutation and recurrent missense mutations in a gene of interest. Other ra-
tiometric approaches use mutation functional impact bias [40, 99], mutational
clustering patterns [51,55,89], or patterns of mutation composition [89].

Here, I describe a machine-learning-based, ratiometric method (20/20+) that
formalizes and extends the original 20/20 rule and enables automated integra-

tion of multiple features of positive selection.

3.2 Original 20/20 rule

The original 20/20 rule was a manually designed set of decision rules to

identify cancer driver genes as either an oncogene or tumor suppressor gene
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(Figure 3.1) [14]. The name derives from the rule that oncogenes should have
at least 20% of mutations being recurrent (observed more than once) and tumor
suppressor genes should have at least 20% inactivating mutations (i.e., frame
shift indels, nonsense mutations, etc.). In addition, there are count thresh-
olds that are specifically tuned for analyzing a specific version of the COSMIC
database [100]. When I applied this rule to a later version of COSMIC, it had
inadequate specificity (data not shown). Moreover, scaling the count thresh-
olds relative to database size also produced similar results, which suggests
additional manual curation of results would be necessary. Consistent with this
observation, the 20/20 rule had good performance at distinguishing oncogenes

versus tumor suppressor genes within already pre-defined driver genes [101].

3.3 Machine learning prediction of can-

cer driver genes

20/20+ utilizes a machine learning algorithm called Random Forests to pre-
dict cancer driver genes. The advantage of machine learning is that multiple
features can automatically be incorporated when making predictions. The ran-
dom forest algorithm was chosen because they outperformed logistic regres-
sion, boosting, and support vector machines (data not shown). I will first go
over the mathematical background of random forests and then describe the
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Figure 3.1: Decision tree underlying 20/20 rule. Each gene is input into the
tree and oncogene (OG) and tumor suppressor gene (T'SG) score computed.
Thresholds of each score and the numerator of the OG score (recurrence count)
and TSG score (inactivating count) are used to determine whether a gene is an
OG, TSG, or passenger.
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implementation in 20/20+.

3.3.1 Mathematical overview of random forests

3.3.1.1 Decision tree

The base component of a random forest is the decision tree, which, effec-
tively, is a hierarchically organized set of questions. Since my focus will be
on classification, a decision tree 7(X) will return 1 if the prediction is a can-
cer driver and O for a passenger. A decision tree is constructed from a set of

possible questions Q = {Q1, ..., Qn}, with a question taking the following form,

Q(X) — Ingc (31)

where [ is the indicator function, X; is the 1’'th feature value, and c is a con-
stant. The question asked by a decision tree depends on the previous question
asked. To keep track of order of questions, the index of the first question will
be denoted p;, where p; € {1... N}. The second question will therefore be a
function of the answer from the first question, po = p2(a;), where a; = Q,,.
More generally there is a series of questions 3, = {Q,, = a1,...,Q),_, = an_1}
prior to the n’th question.

Each question will split training examples depending on the answer to the

question. The goal of the decision tree is to utilize questions that reduce the
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uncertainty in the distribution of class labels. I will regard the distribution of
class labels as the probability of observing a class label given the answer to a

question n as follows,

p=Pr(Y =1|Q, =k, B,) (3.2

where k is the answer to the question and p; is the proportion of labeled
drivers. For the decision tree algorithm, the best question defined by minimiz-

ing the expected gini impurity at each step:

1
Pn = arg minQZPr[Qb = klpr(1 — p) (3.3)
1<b<N - 1o

There are various practical criteria to decide when to stop asking further
questions in a decision tree, but I will not cover this here. Assuming a deci-

sion tree is constructed, the predicted class is chosen by the most likely class

following the terminal question.

7m(X) = argmax Pr(Y = [|5,) (3.4)
I

where [ € {0, 1} is the class label and g, contains the history of answers for

all questions.
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3.3.1.2 Random Forest

A random forest is an ensemble of many randomized decision trees [102,
103], where each tree is trained on a random selection of training set examples
and candidate features, via a recursive splitting process [104]. This involves
constructing each tree 7; from a bootstrapped sample of the training data D; =
{(X(4),Y(4)),...}iz1.m- Then instead of allowing all questions for each split, a
random subset of questions is used Q* C @, were the number of features s is
usually taken to be proportional to the square root of the total features p, |s| =
v/P- Lastly, once J decision trees are constructed, random forest predictions
result in a score between 0 and 1 that reflects the proportion of trees agreeing

with the class label of cancer driver:
1
F(X) = jjz:;ﬁj()f) (3.5)

3.3.2 Random Forest implementation

Although the above mathematical description of a random forest was in
terms of two classes (drivers and passengers) for simplicity, random forest clas-
sification also extends to multi-class classification. 20/20+ uses a three-class
classifier which predicts a gene as either an oncogene, tumor suppressor genes,

or passenger gene. I used the set of oncogenes and tumor suppressor genes
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identified by the original 20/20 rule as a training set [14]. Considering can-
cer driver genes (oncogenes or tumor suppressor genes) constitute only a small
proportion of all genes, I labeled all other genes as passenger for the purpose

of training.

3.3.2.1 Features

I designed a set of 24 predictive features and whose feature importance is
shown in Figure 3.2, as assessed by the mean decrease in gini impurity. A de-
scription of the features can also be found in Table 3.1. Many of the features
are components of the 20/20 rule OG and TSG scores, and I included several ra-
tiometric features not in the original 20/20 rule, for example, ratio of missense
to silent mutations, as well as features that represented mutation functional
impact and gene importance. Normalized missense entropy, a measure of posi-

tional clustering, was calculated as follows:

Ek — - Ei p@ ]'Og2 p@ (3.6)
log, k

where k is the total number of missense mutations in a gene and p; = (count
of missense mutations in the I'th codon)/k. Three of the 24 features represented
p-values and were calculated using the monte carlo simulation described in

section 2.3.
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Feature Importance in Random Forest
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Figure 3.2: Random Forest feature importance ranking for the 24 predictive
features. The mean decrease in Gini index is plotted for each feature. Error
bars indicate SD when feature importance calculation was repeated on 10 dif-
ferent cross-validation partitions. CCLE, Cancer Cell Line Encyclopedia [33];
HiC, 3D chromatin interaction capture [33]; MGAEntropy, Shannon entropy in
column of a vertebrate genome 46-way alignment corresponding to location of
the mutation [105]; SNV, single-nucleotide variant; VEST, Variant Effect Scor-
ing Tool [106].
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Feature name Source Description

silent fraction Calculated from mutations Fraction of mutations that are silent mutations
nonsense fraction Calculated from mutations Fraction of mutations that are nonsense mutations
splice site fraction Calculated from mutations Fraction of mutations that are 2bp « splice site

missense fraction

Calculated from mutations

Fraction of mutations that are missense mutations

recurrent missense fraction

Calculated from mutations

Fraction of mutations that are recurrent missense

frameshift indel fraction

Calculated from mutations

Fraction of mutations that are frameshift indel mutations

inframe indel fraction Calculated from mutations Fraction of mutations that are inframe indel mutations
lost start and stop fraction Calculated from mutations Fraction of mutations that are either lost start or lost stop mutations
lized mi: position Py Calculated from mutations See above

missense to silent

Calculated from mutations

Ratio of missense to silent mutations. A pseudo count is added to silent
mutations to avoid divide by zero.

non-silent to silent

Calculated from mutations

Ratio of non-silent to silent i A pseudo count is added to silent
mutations to avoid divide by zero.

normalized mutation entropy

Calculated from mutations

Normalized entropy score (see above). Missense mutations are binned
together based on codon position. Each silent mutation is regarded in its own
bin. Potentially inactivating mutations (nonsense, splice site, lost stop, and
lost start) mutations are grouped into a single bin.

mean missense MGAEntropy

Calculated from mutations.

MGAEntropy scores obtained from

Mean MGAEntropy score for missense mutations (30). MGAEntropy for a
missense mutation is the entropy of the column for a protein-translated

SNVBox (30). version of UCSC's 46-way vertebrate ali
mean VEST score Calculated from mutations Mean score. Score for missense mutations are taken as the VEST score, silent
mutations receive a score of 0, and other mutations receive a score of 1.
inactivating SNV p-value Calculated from mutations Statistical significance of proportion of inactivating mutations. SNV=single

nucleotide variant.

missense entropy p-value

Calculated from mutations

Statistical significance of normalize missense position entropy

missense VEST p-value

Calculated from mutations

One-tailed tatistical significance of proportion of having higher mean VEST
score for missense mutations

missense combined p-value

Calculated from mutations

Combined p-value composed of missense entropy and missense VEST p-value
using Fisher's method

gene degree BioGrid Number of other genes that are connected in the BioGrid interaction network

gene betweenness centrality BioGrid Fraction of shortest paths that pass through a gene's node in the BioGrid
interaction network

gene length Longest SNVBox transcript CDS length of reference transcript

expression CCLE MutsigCV (4) Average expression of a gene in the Cancer Cell Line Encyclopedia

replication time MutsigCV (4) DNA replication time during cell cycle

HiC compartment MutsigCV (4) HiC measures open vs closed chromatin

Table 3.1: Features used in 20/20+. Features use mutations that are
small somatic variants, including single base substitutions and small inser-
tions/deletions. CCLE = cancer cell line encyclopedia. SNV = single nucleotide
variant. SNVBox = database of features of single nucleotide variants. Biogrid
= database of gene networks.
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3.3.2.2 Handling class imbalance

With only 54 OGs and 71 TSGs labeled by the original 20/20 rule, the num-
ber of passenger genes far exceeds the number of labeled driver genes, creating
a problematic class imbalance [107]. I used a subsampling approach, previ-
ously recommended for random forests [108], in which, for my case, the pas-
senger genes are sampled at a 1:1 ratio to OGs plus TSGs. To compensate for
the remaining OG and T'SG imbalance, the Random Forest is trained with class
weights inversely proportional to the sampled frequency of the class. Predic-
tions were made with a random forest of 200 trees. The number of trees only
had minor impact on the overall performance.

Because of the limited number of driver genes, I decided to use 10-fold cross-
validation instead of a train-test split of the data to evaluate performance. Out-
of-bag estimates of performance by random forests is also an alternative, but
it does not generalize to scenarios with biologically correlated predictions. The
procedure of 10-fold cross-validation was repeated five times (1,000 trees in
total), and the resulting scores from each gene were aggregated to limit minor

fluctuations in scores due to randomization in the cross-validation folds.

3.3.2.3 Random forest prediction

Each gene was scored as the fraction of trees that voted for oncogene, tumor

suppressor gene, or passenger gene. A driver score for a gene was calculated as
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the sum of the oncogene and tumor suppressor gene scores. The purpose of a
general driver score was included for cases where the gene was likely a cancer
driver but the precise type of cancer driver gene was hard to determine (i.e.

oncogene or tumor suppressor gene).

3.4 Statistical significance

The statistical significance of each gene score was computed with an exten-
sion of the Monte Carlo simulation algorithm described in section 2.3. For each
gene, the Monte Carlo simulation was repeated 10 times, and for each simula-
tion all 24 features were computed. In this process, protein interaction network
features (degree and betweenness) were, additionally, permuted as a pair. The
features of gene length, replication timing, HiC value, and average Cancer Cell
Line Encyclopedia (CCLE) gene expression were not altered. Next, each “sim-
ulated” gene was scored with the Random Forest previously trained on the real
data. The resulting OG, TSG, and driver scores for all simulated genes were
used as an empirical null distribution. To compute a P value for a gene score,
I used the fraction of simulated genes with a score equal to or greater than
the score. P values were adjusted by the Benjamini-Hochberg method [109] for

multiple hypotheses. I compute a Benjamini-Hochberg q-value as follows,
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q(i) = min (1}_1_21 % 1) (3.7

where p(7) is the i’th smallest p-value, ¢(:) is the corresponding g-value, n is
the total number of p-values, and min; , is the cumulative minimum from in-
dex n toi. Consistent with other driver gene prediction methods, I considered a
gene to be significant (¢ < 0.1) if any of the OG, TSG, or driver scores were sig-
nificant. The strategy of converting p-values to g-values is for convenience and

does not change the significant p-values by the procedure originally outlined

by Benjamini and Hochberg [109].

3.5 Conclusions

In this chapter, I developed a new method, 20/20+, which addresses two ma-
jor issues with the original 20/20 rule: use of a limited number of features and
a lack of a statistically principled threshold to limit false positives. 20/20+ uses
the random forest algorithm to make predictions using a non-linear combina-
tion of features. Importantly, 20/20+ uses ratiometric features to normalize ar-
tifactual differences between cancer types and regions of the genome. Because
Random Forests do not intrinsically include hypothesis testing techniques, I
used simulated mutations to assess the statistical significance of scores. P-

values were estimated from a simulated null distribution, controlling for se-
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quence composition, and corrected for multiple testing with the Benjamini-
Hochberg method [109]. The application and benchmarking of 20/20+ will be

considered in Chapters 4 and 7.
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Chapter 4

Benchmarking cancer driver

gene predictions

Rigorous and unbiased evaluation is necessary to inform users about the
comparative utility of prediction methods. In many investigative domains,
there is a generally accepted gold standard against which predictions can be
benchmarked [110,111]. However, only a limited number of genes have been
fully vetted as cancer drivers. In previous work, driver prediction has been
benchmarked by significant overlap with the Cancer Gene Census (CGC) [112],
which is a manually curated list of likely but not necessarily validated driver
genes [40,55] or by agreement with a consensus gene list of drivers predicted by
multiple methods [70]. To our knowledge, a systematic framework for the eval-

uation of somatic mutations that can be generally applied has not been previ-
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ously developed. Eight methods were evaluated: MutsigCV [33], ActiveDriver
[71], MuSiC [73], OncodriveClust [565], Oncodrive M [40], Oncodrive FML [99],
Tumor Suppressor and Oncogenes (TUSON) [89], and 20/20+ [85].

In this chapter, I present a framework for such evaluations. The framework
has five components, some of which have been previously applied in isolation,
but not as part of a unified system. I considered overlap with CGC, agreement
between methods, comparison of observed vs. theoretical P values, number of
significant genes predicted, and prediction consistency on independent parti-
tions of the dataset. To implement this framework, I first collected 729,205
published somatic mutations from 34 cancer types (Figure 4.1) [69,89]. These
mutations were composed of single base substitutions and in-frame and out-
of-frame insertions and deletions (indels) of less than 10 bp. I then compared

various methods on the full pancancer set.

4.1 Overlap of the Driver Genes Predicted

by Each Method

First, I assessed overlap of the predicted driver genes with the CGC. I con-
sidered only those CGC genes typed as somatic, missense, frameshift, non-
sense or splice site, excluding translocations, large amplifications/deletions,
and other mutation consequence types not addressed in our study, yielding
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Figure 4.1: Summary of evaluation dataset. The evaluation dataset consisted
of mutations spanning 34 cancer types. All included mutations were small
somatic variants. Cancer types are ordered from Left to Right by number of
samples, ranging from 15 for soft-tissue sarcoma to 1,093 for breast adenocar-
cinoma, with an average of 232 samples per cancer type. These cancer types
span a wide range of solid and several liquid cancers, including multiple tis-
sues and cell types of origin, different background mutation rates, and differ-
ent numbers of available samples. For each cancer type, total mutations and
number of available samples are shown.
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a total of 188 CGC genes. Although the driver genes predicted by all methods
were enriched for CGC genes, the predicted drivers by any individual method
did not contain a majority of CGC genes (Figure 4.2A). Three methods (20/20+,
MutsigCV, and TUSON) had substantially higher fractions of predicted drivers
in the CGC than the other methods. When I considered a subset of 99 CGC
genes supported by functional studies [68], the results were very similar. The
ranking of methods by fraction predicted was essentially the same as with the
full CGC, with the three methods listed above having substantially higher frac-
tions than the rest.

Genes predicted by more than one method may be more likely to be true
drivers [70]. For each method, I calculated the fraction of predicted drivers
that were unique or predicted by at least one, two, or three other methods (Fig-
ure 4.3). As shown in Figure 4.3, there was little consensus in prediction of
driver genes among the methods. The majority (59-80%) of genes identified by
MuSiC, ActiveDriver, OncodriveClust, OncodriveFML, or OncodriveFM were
not observed by any of the other seven methods. The fractions of genes identi-
fied by TUSON, 20/20+, and MutsigCV that were not identified as driver genes
in at least one of the other seven methods was 14%, 19%, and 33%, respectively.
Although it is likely that some of the uniquely predicted drivers are bona fide,
I could not find convincing literature support for the top-ranked unique predic-

tions of MuSiC, ActiveDriver, and the Oncodrive methods.
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Figure 4.2: Outputs of eight driver prediction methods run through the eval-
uation protocol. (A) Fraction of predicted driver genes (q 0.1) that are found in
the Cancer Gene Census (CGC) (downloaded April 1, 2016). Raw count of pre-
dicted driver genes indicated on Top of each bar. (B) Divergence from uniform
P values, measured as mean log fold change (MLFC) between a method’s ob-
served and desired theoretical P values. (C) Number of predicted driver genes.
Driver gene is defined as having Benjamini-Hochberg adjusted P value, ¢ < 0.1.
(D) Consistency of each method measured by TopDrop consistency (TDC) at
depth of 100 in the method’s ranked list of genes. Error bars indicate +/-1 SEM
across 10 repeated splits of the data.
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Figure 4.3: Fraction of predicted driver genes for each method by consensus
among methods. Fraction of predicted drivers unique to each method, predicted
by two to three methods or predicted by more than three methods are shown.
A predicted driver gene is defined by Benjamini-Hochberg adjusted P value
(¢g<0.1)
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4.2 Observed vs. Expected P Values

Given the lack of agreement among these various methods, I compared P
values reported by each method to those expected theoretically. Such com-
parisons are often used in statistics and can indicate invalid assumptions or
inappropriate heuristics. Theoretically, the P value distribution should be ap-
proximately uniform after likely driver genes are removed [113]. Therefore,
I removed all genes predicted to be drivers by at least three methods after
Benjamini-Hochberg multiple-testing correction (¢ < 0.1) and any remaining
genes in the CGC. I assumed that the number of bona fide driver genes not
removed by this procedure would be small enough to have minimal impact on
the P value distribution. To quantify the differences between the observed P
values and those expected from a uniform distribution, I developed a measure
named mean absolute log2 fold change (MLFC) (see subsection 4.2.1). MLFC
values near zero represent the smallest discrepancies and the closest agree-
ment between observed and theoretical P values.

One method (20/20+) had an MLFC that was fivefold lower than the seven
others (Figure 4.2B). I also compared observed and theoretical P values with
quantile-quantile plots, which provide a detailed view of P value behavior (Fig-
ure 4.4A). 20/20+ P values had by far the best agreement with theoretical ex-

pectation across the entire range of supported values. In the critical range
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typically used to assess statistical significance (P < 0.05), OncodriveClust, On-
codriveFM, OncodriveFML, ActiveDriver, and MuSiC substantially underes-
timated P values, whereas MutsigCV substantially overestimated them (Fig-
ure 4.4B). For methods that combine multiple P values for each gene, failure to
model correlation between P values may be responsible for this underestima-
tion. The null P value distributions at the other end of the distribution (0.2-1.0)
should also be uniform and in this case independent of the actual number of
true driver genes. This is because regardless of whether all cancer driver genes
are known and eliminated from the P value distribution, only a small propor-

tion of all genes contain potential driver mutations.

4.2.1 MLFC and mathematical justification

The MLFC is a metric of discrepancy between an observed P value distribu-

tion reported by a method and a theoretical uniform null distribution. I define

MLFC as follows,

MLFC = 1/n§n:

i=1

(4.1)

where P(i) = i'th smallest P value, n is the total number of genes after ex-
cluding likely driver genes, and i/n is the corresponding expected P value from

a uniform distribution. Values of MLFC near zero indicate smaller discrep-
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Figure 4.4: (Caption next page.)
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Figure 4.4: (Figure: previous page) Quantile-quantile plots comparing ob-
served and theoretical P values for the tested methods. (A) Full P value range
from 0 to 1. (B) Blowup of P values from 0 to 0.1. Observed P values for the
methods (blue) are compared with those expected from a uniform distribution
(red). Genes predicted as drivers by at least three methods were removed along

with genes in the CGC. TUSON OG and TSG P values are shown separately.

ancies, and therefore better statistical modeling of the passenger gene null
distribution.

The absolute value was included in the MLFC to prevent p-value distri-
butions which show evidence of over-dispersion from effectively canceling out
over-estimation of p-values with under-estimation at other ranges of the p-
value distribution (see OncodriveFM, Figure 4.4A). To get a better understand-
ing of the effect of over-dispersion on reducing MLFC values without the abso-
lute value term, I analyzed a simple case involving two normal distributions.
Say the significance of a statistic is measured against the standard normal
distribution centered at zero (standard deviation=1, mean=0), while in actual-
ity the data is generated from a normal distribution with the same mean but
greater variance (standard deviation >1, mean=0). If the number of gener-
ated samples is 18,500, roughly matching the total number of genes, than the
MLFC metric without an absolute value systematically underestimates the di-
vergence of the p-value distribution compared to the MLFC with the absolute
value Figure 4.5. There is no difference between the MLFC values when there

is no over-dispersion, and it grows as the standard deviation gets larger.
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Figure 4.5: Underestimation of MLFC when absolute value is not taken into
consideration. P-values were calculated from a standard normal distribution
but data was generated from normal distributions with greater standard devi-
ation.

54



CHAPTER 4. CANCER DRIVER GENE BENCHMARK

There is a close connection between the MLFC and the Benjamini-Hochberg
(BH) method [109] to control the false discovery rate, which is used by all meth-
ods evaluated in the benchmark. The BH procedure rejects hypotheses by se-

lecting the largest index g such that,

P(?’) <q (4.2)
i/n

where ¢* is the desired false discovery rate control, and then rejecting all hy-
potheses H (i) from index i = 1,..,g. The critical part of the MLFC equation is
the ratio of observed p-value to expected, which is intentionally the same statis-
tic used in the Benjamini-Hochberg method. There are alternative approaches
for testing whether a probability distribution differ from theoretical expecta-
tions, such as the Kolmogorov-Smirnov (KS) test [114]. The KS test evaluates
the significance of the maximum absolute differences between cumulative dis-
tribution functions. However, given the large number of hypothesis tests, even
small absolute differences in the cumulative distribution at small p-values may
result in many false positives. Moreover, I reasoned that in contrast to MLFC,
the KS statistic does not directly relate to the BH procedure and dispropor-
tionately focuses on discrepancies at large p-values, which are of less practical

interest.
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4.3 Number of Predicted Driver Genes

The number of predicted driver genes (¢ < 0.1) ranged from 158 (MutsigCV)
to 2,600 (OncodriveFM) (Figure 4.2C). There were two obvious groups of meth-
ods with respect to predicted driver genes: MutSigCV, 20/20+, and TUSON

predicted 158-243 genes, whereas the remaining had over 400 driver genes.

4.4 Driver Gene Prediction Consistency

Statistical methods suffer from both systematic and random prediction er-
rors. When no gold standard is available, it is difficult to estimate systematic
error, but possible to estimate random error by measuring the variability of
predictions. I tested the eight methods on 10 repetitions of a random two-way
split of the all samples in our dataset, while maintaining the proportion of
samples in each cancer type. An ideal method would produce the same list of
driver genes, ranked by P value, for each half of the split. For a fair compar-
ison, I considered that methods predicting many drivers would be less likely
to have consistent rankings than those predicting only a few. Thus, I devel-
oped a measure named TopDrop consistency (TDC) (see subsection 4.4.1) that
examines the overlap between genes ranked at a defined depth (e.g., the top
100 genes) for each half of the random split. Examining TDC at a depth of

100 genes showed MuSiC, 20/20+, and TUSON to be the three with the high-
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est consistency (Figure 4.2D). Most methods decreased in consistency when the
gene depth was varied between 20 and 300, but the ordering of the TDC scores

among the eight methods remained relatively stable.

4.4.1 TopDrop consistency and limitations

Consistency assesses stability in gene ranking. Each method was applied
to 10 repeated random splits, consisting of two disjoint halves of the full data.
For pancancer assessment, the proportion of samples from each cancer type
was maintained in each half Disjoint halves were scored separately by each
method, and genes were ranked from low to high P values. For a fair compari-
son between methods, I considered a specific depth of top-ranked genes, rather
than a fixed q value threshold. This is because consistency becomes harder to
achieve as the number of top-ranked genes gets large. For example, a method
that predicts 100 significant genes at ¢ < 0.1 has an advantage in consistency
over a method that predicts 1,000 significant genes at that threshold. I define
TopDropconsistency = |I4|/d, where d is the designated depth of interest for the
ranked gene list and I; is the TopDrop intersection, I; = AY9 N B1:29) defined
as the intersection between predictions from the two random halves “A” and
“B” such that the top d genes in “A” do not fall past twice the designated depth
(2d) in “B.”

I expect that all methods will lose statistical power and have greater ran-
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dom sampling error when they are predicting on a dataset that has been split
in half. Therefore, I chose to allow genes to fall twice as far down the list in
the “B” half of the split, to better distinguish random effects and methods with
intrinsically low consistency. One notable exception is the method MuSiC. I
suspect that because MuSiC prioritizes genes largely based on the total num-
ber of mutations within a gene, that it is generally stable when split in half.

A substantial limitation is TopDrop only evaluates consistency with inde-
pendent identically distributed samples from the same data set. A better al-
ternative would be to evaluate cross-study consistency [115], as there may be
multiple reasons why findings in one study would not generalize to another.
However, from a practical perspective, I can only use data currently available
to evaluate performance as this represents a substantial fraction of the data as

it existed at the time.

4.5 Overall Performance

In Table 4.1, I summarize the performance of each method according to the
criteria described above on the pancancer mutation data. The overall protocol
is shown as a flowchart in Figure 4.6. I assume that a preferable method would
predict a higher fraction of driver genes that overlap with the CGC, that over-

lap with at least one other method, that have the least deviation from expected
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null P values, and that have the highest consistency. Each method is accord-

ingly ranked by these four criteria and the average rank is shown. The top

ranked methods in order are 20/20+, TUSON, OncodriveFML, and MutsigCV.

4.6 Conclusion

A major goal of the huge public investment in large-scale cancer sequencing
has been to find driver genes. Robust computational prediction of drivers from
small numbers of somatic variants is critical to this mission, and it is essen-
tial that the best methods for this purpose be identified. Although many such
methods have been proposed (see review [31]), it has been difficult to evaluate
them because there is no gold standard to use as a benchmark. Here, I devel-
oped an evaluation framework for driver gene prediction methods that does not
require a gold standard. The framework includes a large set of small somatic
mutations from a wide range of cancer types and five evaluation metrics. It can
be used to systematically evaluate new prediction methods and compare them
to existing methods. The results would be more informative to users of these
methods than current ad hoc approaches.

To apply the framework to a new method (Figure 4.6), a ranked list of pre-
dicted driver genes can be generated from the pancancer mutation dataset (see

Appendix B), including a P value and a Benjamini-Hochberg corrected q value
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Figure 4.6: Flowchart of evaluation protocol. Overview of how a driver gene
prediction method of interest can be evaluated. The input to the method is the
pancan somatic mutation set provided in this work [85]. The initial output from
the method to be evaluated is a list of predicted driver genes with associated P
values and q values. A list of significant driver genes is produced by selecting a
q value threshold. To compute fraction overlap of genes predicted as significant
with Cancer Gene Census (CGC) and with the eight methods evaluated here,
a freeze of CGC and predictions from the eight methods are provided. These
gene lists are also used to subtract out putative driver genes and yield a list of
filtered P values. Method consistency is estimated by 10 iterations of splitting
the pancan somatic mutation set, outputting gene P values and scores for both
halves, and applying the TopDrop metric. Jupyter notebooks for computing
MLFC and qq plots from the filtered P value list, and the average TDC score
are available at github.
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for each gene. The choice of a threshold ¢ < 0.1 to define driver genes worked
well in our evaluations but can be adjusted if so desired. The same threshold
should be used for fair comparison of different methods. If a driver predic-
tion tool does not produce P values, a raw score threshold that represents the
desired false-discovery rate could be selected.

The MLFC also has substantial implications for the accuracy of driver gene
prediction methods. The relatively high MLFC of several methods brings into
question the validity of the assumptions or analytic methods used in their con-
struction. I believe that the most likely problem is with the assumptions rather
than the analytic methods, which all appear to be well thought-out. In addi-
tion, the most likely problem with the assumptions is that there is unexplained
variability in the background mutation rates (see chapter 2). This variability
may be tumor type specific or even patient or tumor specific. If P values are
underestimated in the range of low p-values, too many genes will be called as
drivers. In fact, the methods that underestimate P values predict the largest

number of drivers and have the highest fraction of uniquely predicted drivers.
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Chapter 5

HotMAPS: Exome-scale discovery
of mutation hotspots in 3D

protein structure

5.1 Introduction

Missense mutations are perhaps the most difficult mutation type to inter-
pret in human cancers. Truncating (loss-of-function) mutations and structural
rearrangements generate major changes in the protein product of a gene, but a
single missense mutation yields only a small change in protein chemistry. The
impact of a missense mutation on protein function, cellular behavior, cancer

etiology, and progression may be negligible or profound, for reasons that are
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not yet well understood.

The recurrent observation across multiple cancer samples of missense mu-
tations at the same amino acid residue position is well known to be a character-
istic feature of both oncogenes (OG) and tumor suppressor genes (TSG; [116]).
The idea that somatic mutations also frequently occur in positions proximal
in protein sequence to the most highly recurrent positions has suggested that
positional clustering of somatic missense mutations might be used to identify
drivers [117]. These clusters, known as “hotspots,” are regions where somatic
missense mutations occur closer together in protein sequence than would be
expected by chance. Hotspot regions can be rationalized as areas in a protein
under positive selection in the cancer environment; missense mutations occur-
ring in these regions are selected for because they alter protein function in a
manner advantageous to the cancer cell. Numerous methods have been devel-
oped to identify hotspots based on the linear protein sequence [38,42,49-51,55].

However, only using the linear sequence of a protein may fail to capture
hotspots that appear in the 3-dimensional (3D) structure of a protein [58]. Pro-
tein structure has long been known to relate to the function of a protein [56,57],
and clustering of mutations within a structure may indicate mutations that are
cancer drivers. A few algorithms leveraging this protein structure-function re-
lationship have shown early signs of promise. An algorithm that leverages 3D

protein structure information, but still performs clustering in 1D through a
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dimensionality reduction step, has shown utility in detecting oncogenes [54].
A recent study of an aggregated collection of TCGA cancer mutations from 21
tumor types presented an algorithm to identify cancer genes based on 3D clus-
tering of somatic missense mutations, yielding ten such genes [58].

Here, I present HotMAPS (Hotspot Missense mutation Areas in Protein
Structure), a new, sensitive algorithm for high-throughput analysis of cancer
3D hotspot regions of missense mutation. HotMAPS finds clusters of amino
acid residues with significantly increased local mutation density in 3D protein
space, compared to an empirical null distribution. The statistical model is de-
signed to handle higher-order protein complexes and can capture regions that
span protein-protein interfaces. I apply HotMAPS to missense mutations from
23 tumor types sequenced by TCGA. By careful use of both experimentally
derived protein biologic assemblies in the Protein Data Bank (PDB) and theo-
retical protein structure models, I substantially increase the number of amino
acids that can be mapped into 3D protein space and the number of detectable

hotspot regions compared to a prior approach [58].

5.2 HotMAPS algorithm

Standard clustering algorithms are not well suited for detecting rare clus-

tering patterns in a large number of problems. I considered many standard
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clustering algorithms for clustering mutations in protein structure [118-121],
but each has substantial weaknesses. Methods like K-means and spectral clus-
tering require the number of clusters to be specified as a parameter, but the
number of clusters is not necessarily the same for every protein structure. In
practice, the “elbow-method” is used to manually select the number of clus-
ters by examining where there is a noticeable flattening in performance as the
number of clusters is increased [122]. However, when applying clustering to
~65,000 protein structures, manual procedures are infeasible. Even if the clus-
tering algorithm does not require the number of clusters as a parameter, such
as the algorithms affinity propagation [119] or DBSCAN [118], they generally
assume the minimum number of clusters is one. Since driver mutations are
rare relative to all mutations, most protein structures should have no clusters
due to the clustering of driver mutations.

There are also application specific concerns for clustering mutations in pro-
tein structure. A clustering algorithm would preferably adjust for the topology
of a protein structure as this affects where mutations could possibly be located.
Additionally, since protein structure may contain multiple identical protein
subunits, a clustering algorithm needs to compensate for the non-independence
of mutations. Lastly, the algorithm should ideally adjust statistically for poten-
tial false discovery of clusters due to the large number of clustering problems

(~65,000 protein structures).
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Figure 5.1: HotMAPS was run on 65,372 protein structures and models. For
each structure or model, mutations were mapped from TCGA genomic coordi-
nates to 3D protein space and for each mutated residue, its observed local mu-
tation density was calculated. P-values were estimated based on simulations.
If p-values for the same residue differed across multiple structures/models,
the minimum was used and adjusted for multiple hypotheses testing with the
Benjamini-Hochberg algorithm. Hotspot regions were identified as connected
components in a graph of significantly mutated residues.

The HotMAPS algorithm was developed to address all of these noted limi-

tations and is described below (Figure 5.1).

5.2.1 Mutation density

HotMAPS depends on calculating a mutation density for each amino acid

residue. Let K be the set of all protein structures. Each protein structure or
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model was an element k& € K. For each k, the center of geometry in Euclidean
space (i.e., centroid) was calculated for each residue (r), considering all back-

bone and side-chain atoms,

1
k—_
=1 D a (5.1)

where C* is the center of geometry for residue r in k, and a is a 3D position
vector for each atom in residue r. The neighbors of residue r were identified

using a 10 angstrom radius cutoff from the center of geometry,

NE = {1’ : dist(C¥,C) < 10,7’ € R*} (5.2)

where RF is the set of residues for k, N* is the set of neighbor residues
for residue r, and dist is the Euclidean distance function. The density D of
mutations at residue r was calculated as the sum of mutations in the residue’s

neighborhood,

D=y M (5.3)
neNk
Dt ={DF:MF>0,r e R*} (5.4)

where MF is the number of missense mutations for the n’th residue neigh-

bor, D¥ is the density of mutations for a specific residue and k, and D%, _ is the
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set of observed mutation densities for all mutated residues in a given k.

5.2.2 Statistical model

Next, [ simulated the expected null hypothesis if mutations on the protein
structure were under no selective pressure to occur in any particular region.
The null distribution is reasonably modeled by a discrete uniform distribution.
Mutations occurring under the null were simulated by sampling with replace-

ment a number of residues equal to the total observed mutations,

ME,, ~ Uniform(R¥, Size =y ~ MF) (5.5)

where Mk

om 18 the simulated missense counts for all residues in k. The
procedure was modified slightly for protein complexes, which contain multiple
protein chains that originate from a single gene product (e.g., a homodimer). I
accounted for this non-independence by running identical simulations simul-
taneously on multiple duplicated protein chains. Duplicate chains were iden-
tified based on either having same PDB chain letter and/or the same chain
description. The mutation density for simulated mutations was calculated in
the same manner as the observed mutations. The procedure was repeated for

10,000 iterations on each structure.

Based on the empirical null distribution established from simulations, I cal-
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culated the one-tailed p-value for each residue’s mutation density being equal

or larger,
:d > D¥ k
Prk: #{d d— D-r’ie Dstm} (56)
#{d < Dsim
where D¥,  is the set of all simulated mutation densities and P* is the p-

value for residue r in k. Since there may be many structures and/or models
that cover the same corresponding portion of the genome, multiple p-values
were collapsed by taking the minimum p-value among residues that mapped to
the same genomic codon. These unique genomic-level p-values were then cor-
rected for multiple hypotheses by the Benjamini-Hochberg method [109] and
deemed significant at a g-value of 0.01. I selected the very conservative q=0.01
empirically, to minimize the number of false discoveries in our study. Identify-
ing the corresponding significant residues at the structure (or model) level was
backtracked by using the supremum of significant p-values at the codon level

as a cutoff,

P* =sup{PF,: q. < 0.01,Ve} (5.7)
R{:igm‘f = {T : P:c S P*?V’.’"} (58)

where P, and g. are the genomic p-value and q-value, respectively, for codon

¢, P* is the p-value cutoff adjusted for multiple hypotheses, R* is the set of

signif
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significant residues for k.

5.2.3 Constructing hotspot regions

3D mutation hotspot regions were identified as groupings of significant
residues, according to the principle of maximum parsimony. Specifically, I
found the minimum number of non-contiguous hotspot regions that explained
all significant residues. I first constructed a neighbor graph amongst signifi-
cant residue positions, where edges were created if two residues could be con-
sidered as neighbors, defined as within 10 angstroms (1nm), which is the order
of magnitude for the length of an amino acid residue side chain. 3D muta-
tion hotspot regions for each k were then found as the connected components
of the neighbor graph using breadth-first search. Our results were not very
sensitive to small perturbations of this parameter (8A, 9A, 11A, 12A). The
10Amaximum distance identified 85% of the hotspot residues identified at the

four other threshold values.
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5.3 Mapping mutations to protein struc-

ture

5.3.1 Mutational data set

Mutation annotation format (MAF) file data for 23 tumor types from The
Cancer Genome Atlas (TCGA) was downloaded by the Xena data store (https:

//genome-cancer.soe.ucsc.edu/proj/site/xena/hub/) using their APIL

5.3.2 Protein structure

PDB structures were obtained from the Worldwide Protein Data Bank (PDB)
(10/17/2015). Only structures solved by x-ray crystallography and containing
at least one human protein chain were used. To avoid computation on crystal-
packing artifacts that are common in PDB multi-domain protein structures and
proteins in complex with other proteins or DNA/RNA structures, I used PDB bi-
ological assemblies that model how proteins exist in vivo (ftp: //ftp.wwpdb.
org/pub/pdb/data/biounit). Additionally, single-domain, theoretical pro-
tein structure models constructed based on homology to non-human proteins
were included to increase coverage over a greater proportion of genes. Theo-
retical models were obtained from the ModPipe human 2013 dataset (ftp://

salilab.org/databases/modbase/projects/genomes/H_sapiens/2013/),
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built with Modeller 9.11 [123]. In addition to criteria required by ModPipe
(ModPipe Protein Quality Score > 1.1), theoretical models were further filtered
to increase the quality of structures used in our assessment, requiring that: 1)
models had a minimum length of 75 residues. 2) The sequence of the target
human protein and the sequence of the non-human homolog used for homol-
ogy modeling were >10% identical. 3) The “loop” content of the protein model
was <30%. 4) Compactness score C (see Equation 5.9) was <1A/residue. The
compactness score was based on the protein radius of gyration (R,), and was
employed to reject overly extended or unfolded structures. All thresholds were
selected by visual inspection of structures meeting each of the four criteria.

Theoretical protein structure compactness score filter:

AR,
C = N (5.9
(7 — )2
where R, = 2 n%(n Te) (5.10)
i Ml

where N is total number of residues. m; is the mass of the i'th atom, 7; is

the center of the i'th atom, and 7, is the protein center of geometry.
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5.3.3 Mapping algorithm

Mapping of genome coordinates was done using a modified version of the
TransMap algorithm (Figure 5.2), previously described in [124]. In a minority
of cases mutations did not have a one-to-one mapping within a protein struc-
ture (0.6% of mutations analyzed in this study were impacted). Any hotspot
region residue positions with ambiguous mappings were dropped from the final
analysis. Protein sequences in the UniProt database (SwissProt curated only)
[125] were aligned to all transcripts in RefSeq, CCDS and Ensembl databases
with tBLASTn [126]. Transcripts were then aligned to human genome as-
sembly GRCh37 (hgl19) with BLAT [127]. BLAT was also used to align the
UniProt protein sequences with PDB SEQRES amino acid residue sequences
(Figure 5.2). For theoretical models, ModPipe provided a RefSeq or Ensembl
transcript identifier and translation of each transcript into protein sequence,
eliminating the need for the tBLASTn step to align protein sequence to tran-

script.
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Figure 5.2: The mapping is done with three pairwise alignment steps, using
tBLASTn and BLAT. Projection of protein sequence coordinates to mRNA tran-
script coordinates (1) and finally genomic coordinates (2) is done “top down”.
The process enables handling of split codons, such as the “AGC” shown. Pro-
tein sequence coordinates are subsequently projected into the PDB coordinate
system of protein structure (3).

5.4 3D mutation hotspot regions are im-

portant in cancer

5.4.1 3D hotspot regions are enriched in well-

known cancer genes

Among the set of genes with available protein structure or models (n =
15,697), the genes harboring a 3D hotspot region are enriched for OGs and
TSGs (P = 6.1E30 for OGs and P = 2.4E13 for TSGs; one-tailed Fisher exact
test). They are also enriched for genes in the CGC list (P = 1.4E30; one-tailed

Fisher exact test). The subset of these genes harboring only a 3D hotspot re-
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gion not detectable in 1D is also significantly enriched (P = 4.3E09 for OGs, P
= 7.9E12 for TSGs, P = 8.0E11 for CGC genes; one-tailed Fisher exact test).
An additional 23 genes that are proposed OGs, TSGs, and/or drug targets or
hereditary cancer genes contained at least one 3D hotspot region. This enrich-
ment of known and candidate driver genes supports my claim that many of the
regions are biologically relevant and not simply artifacts. While regions were
detected in only approximately 18% of established cancer genes, I expect that
many of these genes harbor drivers other than missense mutations, some are
drivers in tumor types not represented in our study and many lack structural

coverage.

5.4.2 Mutations in 3D hotspot regions are differ-
ent from other somatic mutations in can-

cers

I examined whether the amino acid residue positions and the missense
mutations in the 3D hotspot regions had distinctive features suggestive of a
special biologic importance, when compared with the remaining mutations in
our study. Four candidate distinguishing features were tested: (i) vertebrate
evolutionary conservation; (ii) occurrence at a protein-protein interface, which

increases the potential for a missense mutation to disrupt protein-protein in-
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teractions; (iii) in silico cancer driver scores generated with the CHASM al-
gorithm [39]; and (iv) in silico pathogenicity scores generated with the VEST
algorithm [106], which are predictors of increased missense mutation impact
(Figure 5.3). In comparison with mutated residues not in 3D hotspot regions,
vertebrate evolutionary conservation was higher and protein-protein interface
occurrence was higher in the 3D hotspot regions (conservation P = 2.9E29,
Mann-Whitney U test; protein interface P = 5.2K13, one-tailed Fisher exact
test). In silico driver scores and pathogenicity scores were higher for missense
mutations in 3D hotspot regions (driver score P = 3.0E47, pathogenicity score
P = 3.0E16; Mann-Whitney U-test) than for the remaining mutations (Fig-

ure 5.3).

5.4.3 3D hotspot regions are different in onco-

genes and tumor suppressor genes

The catalog contains 37 regions stratified by tumor type in bonafide tumor
suppressor genes and 77 in bonafide oncogenes (114 regions in 30 genes), us-
ing as a benchmark the classifications of Vogelstein and colleagues (landscapes
benchmark; [14]). I used these data to explore possible differences between tu-
mor suppressor gene and oncogene regions at amino acid resolution. I found

that in tumor suppressor genes, 3D hotspot regions were larger than in onco-
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Figure 5.3: Three distinguishing features of HotMAPS regions. A, HotMAPS-
mutated residues are more conserved in vertebrate evolution than mutated
residues not in hotspot regions, as shown by lower multiple alignment entropy
(P = 1.2E29; Mann-Whitney U test). Multiple alignment entropy is calculated
as the Shannon entropy of protein-translated 46-way vertebrate genome align-
ments from UCSC Genome Browser, which is lowest for the most conserved
residues. B and C, HotMAPS missense mutations have higher in silico cancer
driver scores from the CHASM algorithm (P = 5.3E47; Mann-Whitney U test)
than those mutations not in hotspot regions (B) and higher in silico pathogenic-
ity scores from the VEST algorithm (P = 7.0E162; Mann-Whitney U test; C).
Finally, HotMAPS-mutated residues occur more frequently at protein-protein
interfaces (P = 1.3K11; one-tailed Fisher exact test).
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genes (region size P = 9.6E06; Mann-Whitney U test). They were also more
mutationally diverse (mutational diversity P = 2.1E07; Mann-Whitney U test).
In addition, oncogene 3D hotspot regions were more conserved in vertebrate
evolution and more solvent accessible in protein structure, meaning that they
tend to occur at the protein surface (evolution P = 4.7E07, solvent accessible P
= 1.5E06; Mann-Whitney U test). Hotspot regions in tumor suppressor genes
harbored increased net change in hydrophobicity (P = 3.3E07; Mann-Whitney
U test) and net change in volume (P = 2.2E07; Mann-Whitney U test), sug-
gesting that their impact on protein function could be due to decreased sta-
bility. The in silico missense mutation cancer driver scores were higher for
oncogene regions (P = 0.003; Mann-Whitney U test). I also tested differences
between in silico pathogenicity scores and occurrence at protein-protein inter-
faces between OG and T'SG regions, but these were not significant (pathogenic-
ity scores P = 0.37, protein interface P = 0.34; Mann-Whitney U test).

The fact that these differences between oncogene and tumor suppressor
gene regions were statistically significant suggested that they might have pre-
dictive value. Principal components analysis (PCA) of the six significant fea-
tures indicated some separation (Figure 5.4A). Next, I trained a Naive Bayes
machine learning classifier to discriminate between oncogene and tumor sup-
pressor gene hotspot regions, using region size, mutational diversity, verte-

brate conservation, residue solvent accessibility, mutation net hydrophobicity
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change, and residue volume change as features. A rigorous gene-level holdout
protocol was used to avoid overfitting. A Naive Bayes score closer to 1.0 indi-
cates that the hotspot region is likely in an OG while a score closer to 0.0 in-
dicates that it is in a TSG. Area under receiver operating characteristic (ROC)
curve or AUC, a standard measure of classifier performance, was 0.84 out of
1.0, a result that supports my claim that 3D hotspot regions in oncogenes and
tumor suppressor genes have distinctive characteristics (Figure 5.4B). AUC of
a classifier with random performance is 0.5. Performance did not improve when
the other features were included in the classifier. The ROC performance and
PCA plot support my claim that characteristic differences between oncogenes

and tumor suppressor genes hotspots can be quantified.

5.4.4 What is gained by 3D hotspot region detec-

tion versus 1D?

The larger size and mutational diversity of hotspot regions in tumor sup-
pressor genes (TSGs) versus oncogenes (OGs) suggest that they could be more
difficult to detect and perhaps they have been underreported by 1D approaches.
OG hotspot regions consisting of recurrent missense mutations at one or two
residues can be seen by eye with lollipop plots and are straightforward to detect

computationally based on 1D primary sequence. I hypothesized that detection
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Figure 5.4: A, PCA plot shows a clustering pattern in hotspot regions iden-
tified in oncogenes (OG=red) and tumor suppressor genes (TSG=blue). Each
point is a region represented by six numeric features, projected into two dimen-
sions. The features are region size, mutational diversity, vertebrate evolution-
ary conservation, residue relative solvent accessibility, mutation net change in
hydrophobicity, and mutation net change in residue volume. B, OG and TSG
HotMAPS regions can be discriminated with machine learning, based on six
features. A Gaussian Naive Bayes classifier trained with the landscapes bench-
mark provides a reasonable separation between the two classes with AUC =
0.84 out of 1.0. Performance of a random classifier is AUC = 0.5. ROC, receiver
operating characteristic; AUC, area under the ROC curve.
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of many T'SG hotspot regions might require a 3D algorithm. To maximize the
interpretability of this analysis, regions that occurred in multiple tumor types
were merged so that each region was represented only once in each gene.

For a well-controlled comparison of 3D and 1D hotspot region detection, I
applied a 1D version of our method to the protein chain sequences of the same
set of PDB protein bioassemblies and theoretical protein structure models to
detect nonuniform clustering patterns on primary protein sequence. Seventy-
two percent of hotspot regions identified in 3D were identifiable in 1D.

Next, I compared the number of hotspot regions identified in OGs and TSGs.
I considered regions identified in 3D only, in both 3D and 1D, and in 1D only.
Using the bona fide OGs and TSGs (Table 5.1), there were significantly more
OG regions that TSG regions identified by the 1D algorithm (P = 0.03; one-
sided Fisher exact test). The 1D-only version of the algorithm detected 5 OG
and 2 TSG regions; 1D further detected an additional 25 OG and 7 TSG regions
that were also identified by the 3D algorithm. The 3D algorithm identified an
additional 4 OG and 6 TSG regions. To increase our power, I repeated this
test again using the bona fide OGs and TSGs plus additional regions in five
candidate OGs and TSGs reported in the literature (OGs were FSIP2, MTOR,
RANBP2, CHEK2, and MAPK1; TSGs were RASA1, SMARCA2, KEAP1, CULL1,
TGFBR2; all are listed and cited in Table 5.2), yielding increased statistical sig-

nificance (P = 0.009, one-sided Fisher exact test). The results suggest that 1D
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detection methods may be better suited to detecting regions in OGs rather than
TSGs.

A further problem with sequence-based 1D hotspot region detection is that
larger regions detectable in 3D may be only partially characterized and/or split
into multiple pieces. Figure 5.5 shows an example of a TSG hotspot region in
FBXW?7 found in 3D by HotMAPS that has been split into two pieces by the 1D
algorithm. In 1D protein sequence, residue 465 is not close enough to residues
502 and 505 to be identified in one hotspot region. On the 3D protein structure
of FBXW7 (PDB code 20VQ), the three residues are spatially close and a single

hotspot region is detected.

5.5 3D hotspot regions may increase in-

terpretability of driver mechanisms

Three-dimensional consideration of hotspot regions in protein structure can
potentially provide researchers with a rich source of hypothesis generation
about driver mechanisms. While gene- or domain-level mutation enrichment
analysis can point to potential protein functions, interactions, biologic pro-
cesses, and pathways important for cancer etiology and progression, more de-
tailed information may be available once a specific set of mutated amino acid
residues has been identified as significant.
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Gene :nni:i?j‘ Cancer Gene Census ([CGC)  TCGA Tumor Type(s)

FGFR3 0G Dom BLCA

SF3B1 0G Dom BRCA, BLCA

FGFR2 0G Dom BRCA, UCEC

KRAS 0G Dom CESC, UGS, PAAD, STAD, BLCA, UCEC, LUAD, BRCA
ESCA, CESC, UCS, LUSC, GBM, STAD, LGG*, BLCA, UCEC, PRAD,

PIK3CA 0G Dom LUAD, KIRC, BRCA, HNSC

NFE2L2 0G Dom ESCA, HNSC, BLCA, UCEC, LUSC

IDH1 0G Dom GBM, LGG, SKCM

IDH2 0G Dom LGG

PTPN11 0G Dom LGG

MAP2K1 0G Dom LUAD*, SKCM

GNAS 0G Dom PAAD

BRAF 0G Dom THCA, GBM, LUAD, SKCM, PRAD*

HRAS 0G Dom THCA, PCPG, BLCA, HNSC, LUSC*

NRAS 0G Dom THCA, SKCM

PPP2R1A 0G Dom? UGS, UCEC

SPOP 0G Rec PRAD

ERBB2 0G ESCA*, BRCA, BLCA

EGFR 0G GBM, LGG, LUAD

RET 0G PCPG

PIK3R1 T5G Rec BRCA*, GBM, UCEC*, LGG*

FBXW7 T5G Rec CESC*, UCS, LUSC*, STAD, BLCA, UCEC, HNSC
ESCA, UCS, PAAD, LUSC, GBM, STAD, LGG, BLCA, UCEC, PRAD,

TP53 T5G Rec LUAD, OV, BRCA, HNSC

Cic T5G Rec LGG

SMARCA4 T5G Rec LGG*

BCOR T5G Rec UCEC

PTEN T5G BRCA, GBM*, UCEC

CDKN2A T5G ESCA*

VHL T5G KIRC*

NOTCH1 T5G LGG*

SMAD4 T5G STAD*

RHOA Dom BLCA*, HNSC, STAD

RAC1 Dom HNSC, SKCM

ERBB3 Dom STAD

Table 5.1: Cancer genes with 3D HotMAPS regions identified in TCGA tumor
types and in landscapes benchmark or cancer gene census
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TCGA Tumor
Gene Type(s) Gene Details
Involved in FGFR signaling. Knockdown promotes the ion of matrix degrading invad, dia, ion structures linked to invasive
AP2B1 ESCA migration in cancer cells (Pignatelli 2012).
Component of many protein complexes involved in proteasome-dependent protein degration via ubiguitination and neddylation. CAND1 binding
to the complexes inactivates ubiquitin ligase activity and may block adaptor and NEDDE conjugation sites. (Bosu 2008). May play a role in PLK4-
CAND1  BLCA* mediated centriole overduplication and Disrupted in prostate cancer (Korzeniewski 2012).
ESCA, LGG, BLCA,
HNSC, PRAD, Checkpoint kinase i in DNA di p ij ing. Significantly mutated gene and candidate OG in papillary thyreid carcinoma [PTC)
CHEK2 LUAD, PCPG, KIRC cohort of 296 patients (TCGA 2014 #85). Breast cancer susceptibility gene (inherited germline variants) (Vogelstein 2013)
Candidate TSG. SCF complex E3 ubiguitin ligase scaffold protein. Suppressor of centricle multiplication through regulation of PLK4 level
cuL1 BLCA (Korzeniewski 2009)
DNA-repair (Nucleotide excision repair) protein. Significantly d in ci in-T V5. non-T ders in cohort of 50 patients with
muscle-invasive urothelial carcinoma (MIUC). ERCC2 mutation status may inform dsplatin-containing regimen usage in MIUC (Van Allen 2014).
Recurrently mutated in cohort of 17 patients with urothelial bladder cancer (UBC) (Balbas-Martinez 2013). i
ERCC2 BLCA, LGG* susceptibility gene (inherited line variants) ( in 2013)
FsIP2 ESCA* Candidate OG. Recurrently amplified in testicular germ cell tumors (TGCTs)(Litchfield 2015).
GNA13 BLCA Significantly mutated in cohort of 55 patients with diffuse large B-cell ymphoma (DLBCL) (Lohr 2012)
GTF2I UCEC Highly recurrent missense mutation in Thymic epithelial tumors and assodated with increased patient survival (Petrini 2014).
Histone de-aceytlation enzyme. Drug target. Overexpression shown to promote growth of colon cancer cells via p21 repression. Regulator of
HDAC4  ESCA colon cell profliferation. (Wilson 2008). May regulate cancer cell resp 1o hypoxia via its r HIFla acetylation and stability (Geng 2011)
BLCA, HNSC, LGG, Immune system. Encodes MHC-Class 1A protein, which presents antigens for T cell recognition. Somatic mutations previously suggested to
HLA-A PRAD contribute to tumor immune escape (Shukla 2015).
Candidate TSG. Inhibits NRF2 (aka NFE2L2). In cohort of 76 non-small cell lung cancer (NSCLC) patients, KEAP1 found mutated in 2 patients with
advanced adenocarcinoma and smoking history. KEAP1 mutation was mutually exclusive of EGFR, Kas, ERBB2 and NFE2L2 mutation in the cohort
and KEAP1 mutation status proposed as marker for personalized therapy selection. (Sasaki 2013) Proposed TSG in lung squamous cell carcinomas
KEAP1 LUAD® (Hast 2014) Proposed as therapeutic target for thyroid-transcription-factor-1 (TTF1)-negative lung adenocarcinoma (LUAD) (Cardnell 2015).
Transcription factor that promotes breast cancer cell proliferation, survival, migration and tumour growth. Upregulates TNFAIP2, which interacts
with the two small GTPases Racl and Cdc42, thereby increasing their activities to change actin cytoskeleton and cell morphology (Jia 2015).
Proposed as playing dual role as both TSG when acetylated and OG when de-acetylated in prostate cancer (Atala 2015). Recurrently mutated in
KLF5 BLCA* mucinous ovarian carcinoma (Ryland 2015)
Kinase involved in cell proliferation, differentiation, transcription ion, and de p ; key signaling comp of the toll-like receptor
pathway. Candidate OG in pancreatic cancer (Furukawa 2008), laryngeal squamous cell carcinoma cell lines (Kostrzewska-Poczekaj 2010).
MAPK1  CESC®, HNSC Significantly mutated in cohort of 91 chronic lymphocytic leukemia CLL patients (Wang 2011).
Protein homolog of TSG NF2 (Merlin) (Golovnina 2005). Member of the Ezrin-Radixin-Moesin (ERM) protein family. Links membrane and
y on i in contact-d dent regulation of EGFR (Chiasson-MacKenzie 2015). Regulates the meotility of oral cancer cells via MT1-
MMP and E-cadherin/pl20-catenin adhesion complex. Cytoplasmic expression of MSN correlates with nodal metastasis and poor prognosis of
MSN ESCA* oral sqguamous cell carcinomas (05CCs), may be potential candidate for targeted gene therapy for OSCCs (Li 2015).
Candidate OG. Serine/threonine protein kinase regulates cell growth, proliferatin and survival. Frequently activated in human cancer and a major
herapeutic target. Randomly selected in HEAT repeats and kinase d in induced ion in NIH3T3 cells and rapid tumor
MTOR KIRC growth in nude mice (Mueugan 2013)
Somatic missense mutation reported in prostate cancer cohort of 141 patients (Manson-Bahr 2015). In gene family with numerous tandem
NBPF10 BLCA* repeats and pseudogenes, possible read alij and ion calling errors.
GBM, LGG, BLCA,
HNSC, PRAD, Involved in DNA damage repair (with PARP1). Cells deficient in these proteins are sensitive to lethal effects of ionizing radiation and alkylating
PARG LUAD, PCPG, KIRC* agents (17). Potential Drug target for BRCA2-deficient cancers (Fathers 2012).
Candidate OG (Gylfe 2013). A large multimodular and pleiotropic protein with SUMO E3 ligase function. (Zhu 2015) Interacts with mTOR (to
regulate cell growth and proli ion via cellular ic processes) (Kazyken 2014). Hot spot mutation previously found in MSI colorectal cancer
RANBP2 ESCA (CRC). Hot spot suggested as useful for personalized tumor profling and therapy in CRC. (Gylfe 2013)
RASAL HNSC* Identified as TSG in another cell cancer, © cell skin cancer (cSCC) (Pickering 2014)
BLCA*, UCEC,
RGPD3 PAAD Component of ubiqutin E3 ligase complex. Named for similarity to RANBP2.
SIRPB1 HNSC, PRAD lg-like cell-surface receptor. Megatively regulates RTK processes. Related to FGFR signaling.

SMARCAZ BLCA*

TGFER2

HNSC

Actin-dependent regulator of chromatin. Its ATPase domain named as Drug target in SWI/SNF mutant cancers (e.g., lung, synovial sarcoma,
ia, and rhabdoid tumors) (Vi di 2015). Proposed TSG, and synthetic lethal target in SMARCA4 (aka BRG1) -deficient

cancers.(Hoffman 2014)

TSG in HNSC (Rothenberg,2012) MSI CRC (Biswas 2008), epithelial transformation and invasive squamous cell carcinoma in the mouse

for h (Yang 2014).

Table 5.2:

Genes with HotMAPS regions identified in TCGA tumor types
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HotMAPS 3D
region in the
TSG FBXW7

—

Figure 5.5: Comparison of hotspot detection in the TSG FBXW7 in 1D and 3D.
A, a simplified 1D version of HotMAPS found two regions in FBXW7. The 3D
version of HotMAPS found a single larger region, encompassing both regions.
Diagram shows protein sequence of FBXW7, which contains a single F-box
functional domain. Region-1, residue 465 (left lollipop); Region-2, residues 502
and 505 (right lollipops). B, HotMAPS identifies a single 3D hotspot region in
FBXW?7. Structure of SCFFbw7 ubiquitin ligase complex (PDB 20VQ), con-
taining FBXW7 (green), SKP1 (blue), and CCNE1 fragment (degron peptide;
black). Residue coloring: 1D Region-1, gold; 1D Region-2, purple. Residues
missed by 1D detection but included in HotMAPS 3D, gray. Although the 1D
regions are far in the primary protein sequence, residues 505 and 465 spatially
contact at the interface with CCNE1. Protein structure figures were generated
by JSMol in MuPIT (http://mupit.icm. jhu.edu/).

86


http://mupit.icm.jhu.edu/

CHAPTER 5. HOTMAPS

For many of the 3D hotspot regions found by HotMAPS, the literature con-
tains evidence that they are in direct contact with or proximal to amino acid
residues of known functional importance. Figure 5.6 shows six cancer-associated
proteins in which the hotspot region is either overlapping or proximal to im-

portant functional sites.

5.5.1 RACI1 hotspot in squamous head and neck

cancer

RAC1 is a Rho GTPase important in signaling systems that regulate the
organization of actin cytoskeleton and cell motility. The hotspot overlaps the
GTP/GDP-binding site and could impact regulation of normal RAC1 cycling
between GTP- and GDP-bound states (Figure 5.6A). It contains a previously
identified recurrent mutation in melanoma (P29S), which dysregulates RAC1

by a fast cycling mechanism [128].

5.5.2 SPOP hotspot in prostate cancer (PRAD)

SPOP is the substrate recognition component of a cullin3-based E3 ubiquitin-
protein ligase complex, which targets multiple substrates for proteasomal degra-
dation. The hotspot overlaps with a binding groove harboring five residue posi-

tions (pink) where mutagenesis has strongly reduced affinity for the substrate
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AN

Figure 5.6: HotMAPS hotspot regions overlap and are proximal to impor-
tant functional sites. A, HNSCC hotspot region (red) in RAC1 (green) and
GTP/GDP-binding residues (dark gray; PDB 2FJU). B, PRAD hotspot region
(red) in SPOP-substrate complex (PDB 3HGH) with SPOP (blue) and H2AFY
substrate (green). Left, five residues (pink) that when mutated show strongly
reduced affinity for substrate. C, BLCA hotspot region (red) in ERCC2 (gray)
shown on theoretical model of ERCC2 helicase ATP-binding domain. The
hotspot is proximal to the DEAH box (blue), a highly conserved motif contain-
ing residues that interact with Mg2+ and are critical for ATP-binding and he-
licase activity. D, UCEC hotspot region (red) in PTEN (PDB 1D5R) with active
site phosphocysteine residue (blue), residues when mutated annotated to re-
duce phosphatase activity (pink). E, STAD hotspot region (red) in RHOA with
a GTP analog bound (sticks; PDB 1CXZ). GTP-binding residues and effector re-
gion, dark blue. F, KIRC hotspot region (red) in VHL-TCEB1-TCEB2 complex,
bound to HIF1A peptide (PDB 4AJY). Proximity to the interaction site of VHL
(green) and HIF1A (blue) suggests possible decreased ubiquitination of HIF1A,
resulting in increased protein expression of HIF1A. TCEB1 and TCEB2, gray.
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(annotated in the UniProtKB) (Figure 5.6B).

5.5.3 ERCC2 hotspot in bladder cancer

ERCC2 is an ATP-dependent helicase that is part of the protein complex
TFIIH involved in RNA polymerase II transcription and nucleotide excision
repair (NER). I identified a hotspot region, proximal to the DEAH box, a highly
conserved motif containing residues that interact with Mg2+ and are critical
for ATP binding and helicase activity (Figure 5.6C). This proximity suggests
that the hotspot mutations could disrupt ATPase activity and yield defective

NER [129].

5.5.4 PTEN hotspot

PTEN is a phosphatase for both proteins and phosphoinositides, and it re-
moves a phosphate from PIP3, critical for signaling to AKT. The hotspot re-
gion identified in endometrial cancer (UCEC) spans two functionally important
loops in the protein (P and WPD loops) at the boundary of the active site pocket
(Figure 5.6D). Residues in these loops are critical for catalysis (blue dot) and
are important for the P-loop’s conformation. Mutagenesis of residues in the
WPD loop reduces phosphatase activity and increases colony formation in cell

culture [130]. Pink dots show residues that impact phosphatase activity.
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5.5.5 RHOA hotspots

RHOA is a small GTPase oncogene, and like RAC1 is a member of the
Ras superfamily [131]. I identified hotspot regions in bladder cancer (BLCA),
head and neck squamous cell cancer (HNSCC), and stomach adenocarcinoma
(STAD). The hotspot regions overlap with the RHOA effector region, a highly
conserved motif that is involved in Ras superfamily signaling with downstream
effector proteins (Figure 5.6E). The regions are immediately proximal to a mag-

nesium ion, which has been implicated in regulating the kinetics of Rho family

GTPases [132].

5.5.6 VHL hotspot (KIRC)

VHL is a component of an E3 ubiquitin protein ligase complex, and it ubig-
uitinates the OG transcription factor HIF 1A, targeting it for proteasomal degra-
dation [133]. One impact of VHL loss of function with failure to ubiquitinate
HIF1A is increased protein expression of HIF1A. The hotspot region is prox-
imal to its interaction site with HIF1A and could potentially have an impact
on this interaction (Figure 5.6F). The TCGA kidney cancer (KIRC) samples
were stratified on the basis of their missense mutation status: VHL hotspot,
non-hotspot, or no missense (WT). HIF1A protein expression was not signifi-

cantly different between VHL non-hotspot and VHL WT groups (P = 0.5; Mann-
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Whitney U test), but was significantly higher between VHL hotspot and VHL
WT groups (P = 0.03; Mann-Whitney U test). This result is consistent with
a special role for VHL hotspot missense mutations in regulating HIF1A pro-
tein expression. However, increased HIF 1A expression in these KIRC samples
is likely impacted by additional genetic and other factors. I might see a sub-
stantially lower P value if VHL hotspot mutations were the only cause of the
observed increase. Also, there are many VHL missense mutations outside of
the hotspot region, and it is likely that several of these also have a functional

impact. In particular, several of them are at the interface of VHL and the

TCEB1 and TCEB2 in the complex and could impact VHL/TCEB binding.

5.6 Conclusions

I systematically identified 3D missense hotspot regions using TCGA so-
matic mutation data from 6,594 samples in 23 tumor types. HotMAPS iden-
tified 107 unique regions and 216 cancer type-specific regions. This catalog
enables assessment of how the specific missense mutations in a hotspot con-
tribute to cancer-associated molecular mechanisms. Unlike many machine
learning algorithms, the visualization of HotMAPS region with protein struc-
ture allows model interpretability by biologists with domain knowledge of a

particular protein.
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At the time of publication, several other algorithms were published which
also supported the notion that mutational clustering in protein structure was
advantageous [41,45,46]. In a comparison from [41], HotMAPS had perfor-
mance equivalent to other top methods on discriminating likely driver mis-
sense mutations from an in vivo experiment. The HotMAPS algorithm does
have similarities with the DBSCAN algorithm [118], which is also based on
using density estimates for clustering. However, DBSCAN does not have a
statistically principled criterion for controlling false discoveries.

Although recurrent missense mutations have long been known to occur in
both oncogenes and tumor suppressor genes [116], they have been observed
more frequently in oncogenes. Here I showed that there are systematic dif-
ferences in hotspot regions found in oncogenes and tumor suppressor genes.
Oncogene regions are smaller, less mutationally diverse, more evolutionarily
conserved, and more solvent accessible than tumor suppressor gene regions.
Tumor suppressor gene regions are more likely to harbor mutations that may
impact protein stability through changes in hydrophobicity or volume. Poten-
tial explanations for these differences are that there are more ways to lose the
function of a protein than to gain function [134]. Loss-of-function tumor sup-
pressor mutations can occur at many residue positions and involve many types
of amino acid residue substitutions, while oncogene mutations will occur at a

few functionally important positions and involve fewer substitution types.
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Chapter 6

CHASMplus: enhanced context
reveals the scope of somatic
missense drivers in human

cancers

6.1 Introduction

In previous chapters, I have shown large-scale sequencing studies of pa-
tient cohorts have enabled identification of many genes or regions that when
mutated can act as cancer drivers. However, not every mutation in a driver

gene or region is necessarily a driver of cancer; thus, requiring methods to
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discriminate whether an individual mutation is a driver or passenger.

The most common approach has been to apply machine learning to predict
the cancer driver status of individual missense mutations by leveraging fea-
tures characterizing a mutation, e.g., inter-species evolutionary conservation,
features of the local protein environment, molecular function annotations, and
biophysical characterizations of the amino acid substitution. Cancer-focused
machine learning methods have previously tried to enhance performance by
training cancer type specific models [39,63] or boosting data with synthetic pas-
senger missense mutations [39]. Unfortunately, a recent systematic study com-
paring 15 such methods concluded that none of them were sufficiently reliable
for experimental or clinical follow-through [135,136]. I and others have hypoth-
esized that determining the impact of missense mutations requires proper con-
text [67], which has not been sufficiently leveraged in a comprehensive manner
in the current generation of methods. Context includes both prior knowledge
about the functional importance of genes or gene subregions in which a mu-
tation occurs, and mutational patterns that are now evident from cancer se-
quencing studies of many thousands of patients.

In this chapter, I present a new driver missense mutation prediction method,
CHASMplus, that uses machine learning to integrate missense mutation con-
text at multiple scales. The new CHASMplus consistently outperforms com-

parable methods, including the original CHASM, on eight different benchmark
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sets —including in vitro experiments, in vivo experiments and literature bench-
marks. Encouraged by these results, I applied CHASMplus to 8,657 The Can-
cer Genome Atlas (TCGA) samples from 32 cancer types to systematically iden-

tify driver missense mutations.

6.2 CHASMplus algorithm

6.2.1 Overview

CHASMplus uses the Random Forest algorithm to discriminate somatic
missense mutations (referred to hereafter as missense mutations) that are
drivers of human cancers from passenger missense mutations. A Random For-
est is an ensemble of many randomized decision trees (see chapter 3) [102,103].
Each tree is trained on a random selection of training set examples and can-
didate features, via a recursive splitting process [104](Figure 6.1A). CHASM-
plus is trained using somatic mutation calls from The Cancer Genome Atlas
(TCGA) covering 8,657 samples in 32 cancer types. Because there is no gold
standard set of driver and passenger missense mutations, I developed a semi-
supervised approach to assign class labels to missense mutations, taking ad-
vantage of Random Forest robustness to noisy class labels. Briefly, class labels

are assigned so as to enrich the positive class for driver missense mutations
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Figure 6.1: Overview of CHASMplus algorithm. a) CHASMplus predicts
driver somatic missense mutations by using a random forest algorithm, con-
sisting of an ensemble of decision trees. Each decision tree is constructed by
selecting a random set of examples and features and recursively splitting ex-
amples by the best split criterion. b) Diagram of training and testing proce-
dure by CHASMplus. c¢) Features with a net-positive feature importance by
CHASMplus according to a permutation adjusted z-score. Boxed text indicates
broad feature categories that were important. d) Diagram of how CHASMplus
identifies statistically significant driver somatic missense mutations in each of
the 32 cancer types individually and in aggregate (pan-cancer).

(Figure 6.1B). CHASMplus training is done with a rigorous gene holdout cross-
validation protocol to avoid overfitting, by ensuring all mutations within a gene
are within the same fold [132, 137]. Therefore, missense mutations are never
scored by a Random Forest trained on any missense mutation harbored by
the same gene. Finally, predicted scores from CHASMplus are weighted by
the 20/20+ driver gene score, producing gene-weighted (gwCHASMplus) scores

(Figure 6.1B).
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6.2.2 Semi-supervised training labels

Using the TCGA mutation dataset, I established training labels with a
semi-supervised approach, designed to minimize bias (Figure 6.2A). The posi-
tive class (likely-driver missense mutations) was selected by the following cri-
teria: 1) missense mutations had to occur in a curated set of 125 pan-cancer
driver genes [14]; 2) for each of the 32 TCGA cancer types, missense muta-
tions found in that cancer type had to occur in a significantly mutated gene
for that cancer type according to MutSigCV v1.4 [69]. I ran MutSigCV using
recommended settings and a full sequencing coverage file (http://archive.
broadinstitute.org/cancer/cga/mutsig). Importantly, MutSigCV v1.4
only assess the total number of mutations in a gene, and not any character-
istics of those mutations; thus, I avoid making strong assumptions about the
properties of a particular driver mutation; 3) missense mutations had to occur
in samples with relatively low mutation rate (less than 500 mutations, half the
minimum hypermutator threshold). This filter was intended to limit the num-
ber of passenger mutations mislabeled as drivers. The negative class (likely-
passenger missense mutations) consisted of the remaining missense mutations
in the TCGA mutation set. For training purposes, I only used unique mutations
to avoid double counting a mutation seen more than once. If, however, the same
mutation consequence observed in different cancer types had contradictory la-

bels, I regarded the mutation as a driver because mutation recurrence is often
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cited as supportive evidence for a cancer driver role. This established a set of
2,051 likely-driver missense mutations and 623,996 likely-passenger missense
mutations, for which I found sufficient annotation to compute our selected fea-

tures.

6.2.3 Features

CHASMplus scores benefit from representation of missense mutation con-
text at multiple scales. The Random Forest was trained on 95 features, and the
34 features with a net positive feature importance are shown in Figure 6.1C.
Important features assess five broad categories: multi-resolution missense mu-
tation hotspots (HotMAPS 1D algorithm [43]), evolutionary conservation/human
germline variation, molecular function annotations (e.g., protein-protein in-
terface annotations from [138]), sequence biased regions, and gene-level co-
variates (e.g., replication timing). Missense mutation context is further repre-
sented by the 20/20+ driver score of the gene harboring the missense mutation
and the specific cancer type in which it was observed. While gene-level features
have been previously applied to missense mutation driver prediction [62], to my
knowledge, this is the first time that gene-level and missense mutation-level

driver scores have been coupled in a cancer type-specific manner.
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Figure 6.2: Training set labeling procedure and calibration of statistical
model. a) Diagram demonstrating how the cancer type specificity of Cancer
Genome Landscape (CGL) genes were determined. b) Somatic missense mu-
tations were labeled either as “likely-passenger” or “likely-driver” based on
a semi-supervised approach using two steps: overlap with previously known
genes from CGL in a cancer type specific manner and samples with low mu-
tation burden. c¢) QQ plot of observed p-values for a method (blue line) com-
pared to theoretically expected under the null hypothesis (red line). All mu-
tations in genes found in the Cancer Gene Census were removed to elimi-
nate possible driver mutations in this comparison. CHASMplus represents
unweighted CHASMplus scores, gwCHASMplus represents gene weighted
CHASMplus scores, and Hotspot is a previous codon-level mutation hotspot
detection method.
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6.2.4 Statistical significance

CHASMplus can also evaluate the statistical significance of cancer type-
sepcific predictions for each of 32 cancer types from The Cancer Genome Atlas
(TCGA), and pan-cancer predictions for all TCGA cancer types in aggregate
(Figure 6.1D). Because Random Forests do not intrinsically include hypothesis
testing techniques, I used simulated mutations to assess the statistical signif-
icance of scores. P-values were estimated from a simulated null distribution,
controlling for sequence composition, and corrected for multiple testing with
the Benjamini-Hochberg method (see section 2.3). The resulting P-value dis-
tributions suggest our statistical model is well calibrated (Figure 6.2B). Well-
calibrated P-values enable quantitative estimates of false discovery rate and
thus inform a user about how to select a suitable score threshold for predicted

driver missense mutations.
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6.3 CHASMplus dramatically improves
identification of missense mutation

drivers

I next sought to compare the performance of CHASMplus on seven mutation-
level benchmarks with respect to 12 comparable methods: VEST [106], CADD
[139], FATHMM cancer [64], SIFT [121], MutationAssessor [140], REVEL [60],
MCAP [61], ParsSNP [62], CHASM [39], Polyphen2 [141], transFIC [142] and
CanDrA [63]. Scores were obtained by means made available by each of the
methods.

My benchmarks fall under three broad categories: in vitro experiments,
high throughput in vivo screens, and curation from published literature. Each
of these categories has weaknesses, but, in aggregate, they span multiple scales
of evaluation and amount of supportive evidence (Figure 6.3A). For example,
several benchmarks are limited to one or a few well-established driver genes,
while others are exome-wide, but lack experimental support. A range of bench-
marks is critical because missense mutations with the most established exper-
imental support for a driver role tend to be in a few well-understood cancer
driver genes. However, limiting benchmarking to these genes makes it difficult

to assess the generalizability of a method’s performance to missense mutations
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Figure 6.3: Cancer driver prediction benchmark. a) Conceptual diagram of
how 8 benchmarks compare in terms of the scale of evaluation and amount
of supportive evidence. b) A heatmap showing performance measured by the
area under the Receiver Operating Characteristic Curve (auROC) on the 7
mutation-level benchmarks (shown in text). The color scale from red to blue
indicates methods ranked from high to low performance. Benchmarks are cat-
egorized by in vitro (green), in vivo (yellow), and literature-based benchmarks
(turquoise). The bar graph shows the mean auROC across the benchmarks. c)
Heatmap showing performance (F1 score) on a cancer type specific benchmark.

The overall performance on four cancer types (BLCA, BRCA, GBM, and LUAD)

is measured by the average F'1 score (right column).

in other genes. All benchmark evaluations used the area under the Receiver
Operating Characteristic Curve (auROC) as a metric (Figure 6.3B). Overall,
CHASMplus had a mean auROC of 0.09 higher than the next best method.
This common metric is used in machine learning to describe how well predic-
tions separate two classes without a priori selecting a score threshold, which
for many methods is not well defined [143]. In our assessment, the two classes
represent likely driver and passenger missense mutations. In general, auROC
values range from 0.5 (random prediction performance) to 1.0 (perfect).

I used three benchmarks based on in vitro experiments. The first was a

set of missense mutations assessed by an assay of cell viability in two growth-
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factor dependent cell lines, Ba/F3 and MCF10A (pro-B and breast epithelium
cell lines), covering 747 mutations in 48 genes [144]. CHASMplus had signif-
icantly higher performance than the next best performing method (ParsSNP)
(p<0.05, delong test). In the second benchmark, an in vitro assay of EGFR
resistance to erlotinib from missense mutations observed in lung adenocarci-
noma [145], CHASMplus (auROC=0.92) outperformed all other methods, with
the next best method (CanDrA) having an auROC of 0.87. CHASMplus au-
ROC was significantly better than that of 7 of the methods tested (p<.05, de-
long test). For the remaining 5 methods, the improvement was not signifi-
cant, possibly due to lack of power given the small number of mutations (n=75)
tested in the assay. In the third benchmark, an assay of reduced transactiva-
tion (<50% WT, median of 8 targets) in TP53 from the IARC database (n=2,314
mutations) [146], CHASMplus significantly outperformed the next best method
(REVEL) (p=0.02, delong test).

To investigate whether CHASMplus would also perform well when com-
pared to results of in vivo experiments, I considered two benchmarks based on
pooled in vivo screens in mice that assessed mutation driver status by fitness
in a competition assay. The first was performed from mutations observed in
lung cancers (44 missense mutations) [145] and the second from mutations ob-
served in 27 cancer types (71 missense mutations) [147]. CHASMplus had the

highest auROC of the 13 tested methods on both benchmarks, with an increase
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in auROC by 0.09 and 0.1, respectively, compared to the next best methods
(ParsSNP in the first benchmark and FATHMM in the second). The increase
was significant in the second larger, benchmark (p=0.03, delong test, n=72),
but not in the first, which may be the result of the smaller sample size. In the
first benchmark, CHASMplus was significantly better than 9 out of 12 tested
methods (p<0.05, delong test, n=44).

Experimental testing of mutations across large number of genes or the
whole exome is currently not feasible. Therefore, evaluation of CHASMplus
at larger scales relied on two benchmarks based on literature and database
curation. The first benchmark in this category labeled recurrent missense mu-
tations within genes in the Cancer Gene Census [112] as drivers. I found that
the gene weighted CHASMplus scores (auROC=0.934) were substantially bet-
ter at this whole exome-wide prioritization task compared to the unweighted
CHASMplus scores (auROC=0.893) (p<2.2e-16, delong test). CHASMplus scores
were also significantly better than the next best method (ParsSNP) (p=0.001,
delong test). The second benchmark was derived from a large driver gene
panel (MSK-IMPACT, 414 genes) and 10,130 sequenced cancer patients [148].
Missense mutations were labeled as drivers if they were annotated as such in
OncoKB [149], a knowledge-base that aggregates known literature. CHASM-
plus significantly outperformed all other methods, the nearest being ParsSNP

(p=7e-14, delong test).
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6.4 CHASMplus improves identification

of cancer type specific driver genes

I evaluated the performance of CHASMplus on identifying cancer-type spe-
cific driver genes, using a previously published benchmark and assessment of
15 computational methods designed for this purpose [30]. The 15 methods
are: Hotspot [42], NMC [150], OncodriveCLUST [55], MutSig-CL [69], iSiM-
PRe [151], iPAC [54], GraphPAC [52], SpacePAC [53], CLUMPS [58], e-Driver
[152], e-Driver3D [48], ActiveDriver [72], LowMACA [47], OncodriveFM [40],
and MutSigCV [33]. Genes were labeled by their designations in the Cancer
Gene Census as a cancer driver gene for a specific cancer type. Out of the 4
cancer type cohorts assessed (BLCA, BRCA, GBM, and LUAD), CHASMplus
had the highest average F1 score, a balance between precision and recall that
was used as a performance metric by [30] (Figure 6.3C). I additionally note
that of the methods tested, CHASMplus was the only one not primarily de-
signed to predict driver genes that had high recall (average recall=.45) while

maintaining precision (average precision=.23).

105



CHAPTER 6. CHASMPLUS

6.5 CHASMplus identified both common

and rare cancer drivers

Certain cancer driver mutations primarily occur in a specific cancer type,
while others appear in many cancer types. The power to detect driver muta-
tions, which occur at low frequency in many cancer types, is increased when
many cancer types are aggregated, known as a pan-cancer analysis. Con-
versely, driver mutations, which are specific to a particular cancer type, are
best identified when cancer types are analyzed individually [80]. Using CHASM-
plus, I identified 3,527 unique missense mutations as statistically significant
drivers by pan-cancer analysis at an estimated false discovery rate of 1%.
When applied to each cancer type individually, the number found significant
varied substantially from 8 in thymoma to 572 in bladder urothelial carci-
noma with a median of 78 (Figure 6.4A). The median overlap with literature-
based oncogenicity annotation from OncoKB was 53%, suggesting 47% of the
driver missense mutations identified by CHASMplus either have not been pre-
viously characterized or not sufficiently characterized for inclusion in OncoKB.
While OncoKB missense mutation annotations are not cancer-type specific,
the genes with highest frequencies of cancer-type specific driver missense mu-
tations identified by CHASMplus have well-known roles in cancer [21] (Fig-

ure 6.4B).

106



CHAPTER 6. CHASMPLUS

TRE3
FRICA
wRAZ [l
D81
BRAF
eI EEENE
CTNNEY iz
WFEZLZ [ [aq
FexewT [ |59
EGFR ENE
HAAZ [l m 3| ojos| B 25

Eesbe

HHI

EF300 | [22]

ARDD1A 7.8

NRAS 0. 23] o |5]

SPOP

NF1 1.001.3] [ | B EREE ERZ
COKNIA 28 |=5]
SMAD4 21 u.1] 74| |4]

ERBB2 (21f 0725
NOTCH1 ENE Er|
FPPZR1A

FGFR3 EX

VHL LE |

GTF21

o [+ IX|
PERoREIYRonI02E0002032 SESE <= <3 ado = <3on3
LB e R §33f285a80088834f3383 8RR 82R43

53g°2

HA

&
H
HEHE
H

I

HH
G[E[ETE

A

Mutated residue frequency Extracellular Kinase
Comre £ siemesse @ ceeon

Figure 6.4: Discovery of driver missense mutations. a) Bar graphs showing
the number of unique driver somatic missense mutations (top) and the pro-
portion previously known in OncoKB, a literature curated database (bottom).
b) Heatmap of the top 25 genes containing the most frequent driver somatic
missense mutations in TCGA across the cancer type specific analyses. Shown
are the percentage of samples that are mutated. c) Proportion of overall fre-
quency of driver somatic missense mutations found in rare (<1% of samples
or singleton mutations), intermediate (1-5%), and common (>5%) driver so-
matic missense mutations. Correspondingly shown as light to dark blue. d)
Structure of the Phosphatase 2A holoenzyme (PDB 2IAE). e) Structures of the
ERBB2 extracellular domain (left, PDB 2A91) and kinase domain (right, PDB
3PPO0).
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The long tail hypothesis, proposed from examining overall mutation fre-
quency of driver genes [74,75], suggests there are many rare drivers. However,
the overall mutation frequency of a gene does not account for the confounding
presence of passenger mutations within a driver gene. From our mutation-level
analysis, I observed that the relative prevalence of rare (<1% of samples), in-
termediate (1-5%), and common (>5%) driver missense mutations varied sub-
stantially among cancer types (Figure 6.4C). For example, uveal melanoma
was dominated by common driver missense mutations (88%), while head and
neck squamous cell carcinoma (HNSC) was dominated by rare driver missense
mutations (63%). Interestingly, from the pan-cancer analysis, the overall pro-
portion of driver missense mutations considered rare was only slightly smaller
than for common drivers (35.4% and 35.5%, respectively), but 4-fold greater
than found by a previous method (8%, P;2.2e-16, Fishers exact test) [9].

Rare driver missense mutations exist not only in rare driver genes, but
also may be spatially proximal in protein structure to common driver missense
mutations. For example, the protein phosphatase PPP2R1A, which has been
implicated as a tumor suppressor gene in many tumor types [59], contained
common driver missense mutations in our pan-cancer analysis at residue po-
sitions 179 and 183, which is located at the protein interface composing the
phosphatase 2A complex (Figure 6.4D). It also had a much broader set of rare

drivers throughout the protein interface, such as R105Q and R459C. Similarly,
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CHASMplus identified common driver missense mutations (S310A/F/Y) in the
extracellular domain of the well-known oncogene ERBB2, but also finds rare
driver missense mutations in both the extracellular and kinase domain (e.g.,
L313V and R678Q) (Figure 6.4E). This is supportive of previous experimen-
tal work implicating rare cancer driver mutations in common cancer driver

genes [19].

6.6 Mutation hotspot detection has lim-

ited power

A codon or small region of protein sequence or structure where recurrent
mutations are observed is known as a hotspot. Similar to statistical methods
for driver gene detection, hotspot detection identifies an excess number of mu-
tations compared to expectation. using a large number of cancer samples. I
asked whether, given current cohort sizes, codon-based hotspot detection had
sufficient statistical power to identify rare driver mutations. I assessed the
number of samples required to detect driver mutations across a range of fre-
quencies (proportion of samples in which a mutation occurs) and somatic back-
ground mutation rates. In Figure 6.5A, each of the 32 TCGA cancer types is
placed according to its sample size and background mutation rate, relative to
six curves which represent the required sample size to detect driver mutations
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of a certain frequency, with 90% power, using hotspot detection. For example,
the TCGA Cervical Squamous Cell Carcinoma and Endocervical Adenocarci-
noma (CESC) cohort has 274 samples and a background mutation rate of 3.5
mutations/Mb. This sample size is sufficient to detect driver mutations that
occur in 2% of the samples with 90% power.

At current TCGA sample sizes, I found codon-based hotspot detection ap-
proaches were not well powered to identify driver mutations that occurred at
less than 1% frequency in most cancer types. Exceptions were thyroid car-
cinoma (THCA), low grade glioma (LGG) and breast cancer (BRCA), which
are seen to lie above (or close to) the curve representing 1% frequency (Fig-
ure 6.5A). Notably, these cohorts had large numbers of samples and low-to-
medium background mutation rates. I also found that when cancer types were
aggregated in pan-cancer analysis, power to detect codon-based hotspots im-
proved substantially, but only when the recurrent mutations were shared in
more than one cancer type. For these mutations, pan-cancer analysis using
10,000 TCGA samples should enable detection of driver mutations at frequency
as low as 0.1%.

In our pan-cancer analysis, CHASMplus had greater sensitivity to detect
putatively oncogenic missense mutations than a recently published codon-based
hotspot detection method (Figure 6.5B). I compared the missense mutations

in the TCGA pan-cancer cohort that were called statistically significant by
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CHASMplus and those called by a hotspot method described by [9] (¢ < 0.01

for both methods). For each method, I computed the overlap with well-curated
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Figure 6.5: (Caption next page.)

111



CHAPTER 6. CHASMPLUS

Figure 6.5: (Figure: previous page) Saturation and characteristics of driver
somatic missense mutations. a) Statistical power to detect significantly ele-
vated non-silent mutations for individual codons as a function of sample size
and mutation rate. Circles represent each cancer type from the TCGA, and is
placed according to sample size and median mutation rate. Curves are colored
by the effect size of the driver mutations (fraction of non-silent mutated cancer
samples above the background mutation rate). b) Bar graph comparing sen-
sitivity to detect labeled oncogenic driver missense mutations from OncoKB
between CHASMplus and a hotspot detection approach. c) Plot displaying nor-
malized driver diversity and driver prevalence (fraction of samples mutated)
for driver somatic missense mutations in 32 cancer types. K-means clustering
identified 5 clusters with centroids shown as numerically designated circles. d)
Prevalence of driver somatic missense mutations as a function of sample size.
Lines represent LOWESS fit to different rarities of driver somatic missense
mutations.

oncogenic mutations in the OncoKB database. CHASMplus sensitivity to de-
tect the OncoKB-labeled mutations was 0.83. The sensitivity of the hotspot
method (0.46) was significantly lower (p<2.2e-16, McNemar’s test, n=896). To
minimize gene bias, I also repeated the analysis after excluding all 389 TP53
mutations, yielding sensitivity of 0.76 for CHASMplus and 0.49 for hotspot
detection, a difference which is still statistically significant (pj2.2e-16, McNe-
mar’s test, n=507). Moreover, these results are also reflected in the number of
significant predictions of the two methods. The codon-based hotspot method
only identified 360 unique codons as significant in our TCGA data set, while
CHASMplus found significant missense mutations in 2,588 codons. I believe
that the increased sensitivity is the result of CHASMplus using a broad range
of important features, including multi-resolution hotspot detection and weight-
ing by driver gene scores (Figure 6.5C). Importantly, my increased sensitivity
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did not come at the cost of low specificity, as evidenced by our p-value calibra-
tion and extensive ROC analysis across seven benchmarked datasets, which

measures a balance of sensitivity and specificity.

6.7 Characterizing cancer types and the

trajectory of discovery

The diversity and prevalence of driver missense mutations varied consider-
ably across TCGA cancer types (Figure 6.5C). I defined diversity with respect
to the distribution of driver missense mutations across codons and prevalence
with respect to the frequency of the mutations in tumor samples. High diver-
sity indicated mutations were broadly distributed across codons, while high
prevalence indicated driver missense mutations that occurred in a large num-
ber of tumor samples. Using K-means clustering, I found that cancer types
grouped into high diversity and low prevalence (12 cancer types), high diver-
sity and high prevalence (15 cancer types), and low diversity and high preva-
lence (5 cancer types). These differences were not associated with intra-tumor
heterogeneity or normal contamination, as assessed by mean variant allele
fraction (VAF) of a cancer type (p>0.05, correlation test). The differences also
could not be associated only with TCGA sample size for a particular cancer
type. For example, while both pancreatic ductal adenocarcinoma (PAAD) and
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sarcoma (SARC) had similar sample sizes (n=155, n=204 respectively), PAAD
had high prevalence and low diversity, while SARC had low prevalence and
high diversity. After adjusting for sample size, I observed that the average
mutation burden for a cancer type positively correlated with the prevalence of
rare (but not common) driver missense mutations (R=0.63, P=4.7e-5, likelihood
ratio test).

Are there substantially more cancer driver missense mutations yet to be
discovered? If discovery was measured by the number of unique driver mis-
sense mutations identified, subsampling analysis showed all cancer types had
a linear increase (R? > 0.5) with no evidence of saturation at current sample
sizes (Figure 6.6). However, I did observe substantial variability in trajecto-
ries if discovery was measured by driver prevalence (average number of driver
missense mutations per cancer sample) (Figure 6.5D), a metric which goes di-
rectly to utility of driver discovery in clinical practice (Discussion). For sar-
coma (SARC), adrenocortical carcinoma (ACC), and prostate adenocarcinoma
(PRAD), driver prevalence remained minimal as sample size increased. While,
in contrast, thymoma (THYM), uveal melanoma (UVM), and pancreatic ductal
adenocarcinoma (PAAD) contained common driver missense mutations that
could be detected by using only a few samples from the cohort, e.g., GTF2I
L424H in THYM. Due to a lack of rare or intermediate driver missense mu-

tations, I observed THYM and UVM saturated discovery as sample size in-
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creased. Although PAAD did show a growing set of intermediate/rare driver
missense mutations, the overall driver prevalence exhibited a diminishing rate
of discovery. In contrast, breast (BRCA), head and neck squamous (HNSC), and
colon cancers (COAD) harbored a full spectrum of driver missense mutations,

with rare drivers increasing substantially as a function of sample size.

6.8 Discussion

CHASMplus was designed to better represent the context in which missense
mutations occur, by coupling prior information about a mutation’s likely func-
tional importance and mutational patterns evident from large cancer sequenc-
ing studies. I compared CHASMplus with 27 other computational methods,
including the original CHASM, on eight benchmarks covering in vivo experi-
ments, in vitro experiments, and literature curation, CHASMplus had the best
performance at predicting drivers at each scale of evaluation - a whole exome, a
targeted gene panel, and within a single gene. Individually, none of the bench-
marks was ideal. For example, mutations in the in vitro or in vivo benchmarks,
were selected by complicated study inclusion criteria and limited by resource
constraints. However, I believe that application of multiple independent bench-
marks spanning a wide array of genes is the current best practice.

The long tail hypothesis [74, 75] posits that there are many rare driver mu-

115



CHAPTER 6. CHASMPLUS

14 ACC 40 SARC 120 PRAD
@ R"2=0.69; P=9e-14 R*2=0.94; P=4.8e-30 R*2=0.94; P=2.9e-31
- 351 100 -}
g8 30 |
g2 80 |
a, % 25
[]
s § 20 60
] i *
L€ 15 40 |
Eo 10
p=
ZT 5 20
= |
= ( ]
0 1 1 1 1 0
10 THYM 25 UVM 100
@ R"2=0.58; P=1.1e-1Q R*2=0.84; P=2.6e-20 R*2=0.95; P=1.3e-28
=0
55 20 80
= =2
&E 15 4 60 4
b2
@
;_5 10 4 40
o E
Eg
23 5 20
=
3
0 1 1 1 1 0 1 1 1 1
350 BRCA 500 HNSC 200 COAD
@ 300 R"2=0.99; P=2.2e-45 R*2=0.99; P=8.2e-46 R*2=0.98; P=1.4e-40
a O .
c = 400
83 250 - 4 150
EE e
S 9 200 300 +
28 - 100 |
5 % 150 4 200
Ee]
Eg 7 100 %0
=4 : ]
g 50
3
0 1 1 1 1 0 1 1 1 1 0
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
fraction of samples fraction of samples fraction of samples

Figure 6.6: Subsampling analysis of unique driver somatic missense muta-
tions by CHASMplus. The number of driver somatic missense mutations iden-
tified as significant by CHASMplus (¢ < 0.01) as a function of sample size.
CHASMplus was ran on random subsets of various sizes (fraction of samples)

of the full data.
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tations in human cancers. To assess this hypothesis, I leveraged the improve-
ments made in CHASMplus to systematically predict driver missense muta-
tions in 8,657 samples from the TCGA. Although individually rare, I found
that rare driver missense mutations played a prominent role in aggregate, con-
sistent with the long tail hypothesis. This result supports the critical role of
assessing the prevalence of driver mutations — failure to capture and iden-
tify rare driver mutations, which occur in aggregate at reasonable prevalences,
may result in crucial missed opportunities. Because high-throughput func-
tional validation studies of missense mutations are not yet widespread, com-
putational methods, like CHASMplus, are needed to prioritize mutations for
low- and medium-throughput studies. A key advantage of CHASMplus is that
I can precompute a score for every possible missense mutation, forming an in
silico saturation mutagenesis across all genes to capture rare driver mutations
yet seen mutated.

To my knowledge, mine is the first study to show that the prevalence and di-
versity of driver missense mutations is highly variable across the cancer types
represented in the TCGA. I observed that mutation burden for a cancer type
positively correlated with prevalence of rare (but not common) driver missense
mutations, even after correcting for sample size, suggesting that accumulating
a greater number of mutations in a cancer may increase the competitiveness

of rare drivers. More research into the origins of rare driver mutations is war-
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ranted, because differences in the rarity of driver missense mutations could
arise from a variety of factors, including the driver mutation’s strength, de-
pendence on genetic or environmental factors, competition from other types of

tumor-derived alterations, or role in cancer subtypes.
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Chapter 7

Comprehensive discovery of
driver genes and mutations in

cancer

Over the past decade, The Cancer Genome Atlas (TCGA) has coordinated
a monumental enterprise of data generation and genomic investigation across
33 cancer types, and numerous notable findings have emerged from this project
(https://cancergenome.nih.gov/publications). The individual TCGA
projects also motivated the development of many bioinformatic algorithms ori-
ented toward discovery, characterization, and prioritization of cellular pro-
cesses driving cancer based on pathways [153], genes [31], or individual vari-

ations [154]. However, despite this remarkable progress, algorithms do not
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entirely agree on certain candidate cancer driver genes and mutations, neces-
sitating continued expert curation to filter likely false positive findings. More-
over, previous PanCancer analyses [70] have been limited to fewer cancer types
and have largely avoided nominating rare driver mutations. This chapter is
work done as a co-leading analyst in the Driver’s group within the TCGA Pan-

canAtlas (hereafter referred to as driver’s group).

7.1 Material and methods

7.1.1 Mutation calling quality control

A publicly available MAF file (https://synapse.org/MC3) was recently
compiled by the MC3 Working Group and is annotated with filter flags to high-
light potential artifacts or discrepancies. This dataset represents the most uni-
form attempt to systematically provide mutation calls for TCGA tumors. The
MC3 effort provided consensus calls from 7 software packages [155]. Flagged
artifacts include: non-exonic regions, whole-genome amplified (WGA) samples,
exclusion lists, blood/tumor derived pairs, strand-bias, contamination estima-
tions, oxo-guanine artifacts, low normal read depth, polymorphisms common in
EXAC [156], mutations present in a panel of normal samples, non-preferred tu-

mor normal pairs, and mutations outside the regions of interest for any caller.
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If a mutation was not assigned any flag and was called by 2 or more variant
calling software packages, it received a 'PASS’ identifier. I restricted our anal-
ysis to PASS calls with the exception of samples from OV and LAML, which
were some of the earliest sequenced by TCGA. Preparations for these samples
utilized whole genome amplified (WGA) DNA, an important factor in that the
WGA process can induce artefactual mutations. Of the 412 OV and 141 LAML
samples present in our data 347 (84%) and 141 (100%), respectively, had vari-
ants derived from WGA DNA. In order to maintain sample sizes and uniformity
in mutation calling, I did not filter mutations containing only 'wga’ filter tags
from these two cancer types. I recognize multiple limitations of this mutation
call set including the lack of structural variants and copy number alterations,
as well as variability in sequencing depth and tumor purity. The above limita-
tions may lead to variability in mutation detection; however, the MC3 dataset
reflects the state-of-the-art in consensus mutation detection.

I also excluded highly mutated samples. These hypermutators were de-
fined as samples with a mutation count exceeding Tukey’s outlier condition,
i.e. greater than 1.5 times the interquartile range above the third quartile in
their respective cancer types (3Q + 1.5*IQR). Designation as a hypermutator
also required the number of mutations in a sample to exceed 1000, a heuris-

tic that limited the number of discarded samples in low mutation rate cancer

types. LUAD, SKCM, and UCEC had hypermutator thresholds greater than
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1000 mutations (1047, 2122, and 2545 respectively). I also excluded samples
that were flagged by the analysis-working group based on pathology, but al-
lowed “RNA degradation” samples to remain, as this factor is not particularly
relevant for most driver prediction tools based on mutations. The final driver-
discovery dataset consisted of 9,079 samples having a total of 791,637 mis-
sense mutations, 323,884 silent mutations, 96,196 3'UTR mutations, 57,900
nonsense mutations, 42,251 intronic mutations, 42,251 Frame shift deletions,
34,266 5° UTR, 21,804 splice site mutations, 19,856 RNA mutations, 11,305
frame shift insertions, 7,622 3’ flanking mutations, 6,419 5’ flanking mutations,
6,144 in-frame deletions, 1,362 translation start site mutations, 964 nonstop

mutations, and 632 in-frame insertions.

7.1.2 Driver gene discovery approach

Using multiple tools can overcome numerous technical issues that confound
individual statistical analyses to find driver genes, such as heterogeneous mu-
tation rate across the genome [33], inflated significance for long genes [157],
and false positive calls in cancers with high mutation rates [85]. In the first
phase, 8 different tools comprising algorithms based on mutation frequency
(MuSiC2 [73] and MutSig2CV [69]), features (20/20+ [85], CompositeDriver(in
preparation) and OncodriveFML [99]), clustering (OncodriveCLUST [55]), and

externally defined regions (e-Driver [152] and ActiveDriver [71]) were used
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(Figure 7.1A). Each tool reported gene or mutation level scores and/or p-values

along with a brief description of recommended cutoff thresholds or filters.
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Figure 7.1: (Caption next page.)
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Figure 7.1: (Figure previous page) Consensus Gene scores and SMG filtering.
(A) Left, outlier detection was performed on a per analysis and method basis.
Outliers were marked (red) based on the quasi-majority of three criteria: (1)
low concordance with known cancer genes from Vogelstein et al (lower than
median); (2) high divergence of p-value distribution from theoretical expecta-
tion (higher than median); and (3) abnormally high number of significant genes
(>1.5x the interquartile range above the third quartile). The first two criteria
were assessed based on the other tools within a single analysis, while the third
criterion was assessed based on the same tool’s results over all the individual
cancer types (excluding the PanCancer analysis). Right, example calculation
of the gene consensus score for ARID1A in the cancer type LIHC. A result from
an outlier is down weighted, receiving a weight of 0.5 instead of 1.0. The gene
consensus score is the sum of weights for tools finding that gene as significant.
(B) Overlap of consensus gene list with prior TCGA marker papers. (C) Likely
false positives were detected with a high Linear Discriminant Analysis (LDA)
score threshold representing 90% sensitivity for keeping associations found in
Cancer Gene Census genes. LDA was trained to distinguish common false pos-
itives in exome sequencing from previous TCGA PanCancer marker papers.
The LDA threshold was only applied to the potential source of false positive
genes. (D) Fraction of marker paper genes highlighted in the main text that
were also found in our consensus gene list. (E) Fraction of our consensus gene
list found in previous TCGA marker papers. (F) Fraction of associations found
in the Cancer Gene Census (CGC) that were either found only in the consensus
gene list or TCGA marker paper.

7.1.2.1 Consensus methodology

I identified a preliminary total of 2,101 potential drivers by taking the union
of genes predicted by the eight driver-gene discovery tools. As illustrated in
Figure 7.1A, the increased number of false positive genes is likely due to any
individual tool’s capability to maintain sound statistical properties that han-
dle a complex set of factors such as tumor heterogeneity, increased mutation
rates, and variable sample sizes. I refined this list by calculating, for each gene

predicted in each cancer type, a consensus score that compensated for outlier
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results and correlation among tools (Figure 7.1). The consensus score was de-
fined as a weighted sum of the number of tools that predicted the gene to be a
driver in each cancer type (see subsubsection 7.1.2.2). I required a minimum
of two tools to agree, where both could not be outliers (score>1.5). Although
it is difficult to distinguish the overall performance improvement on a small
number of held out CGC genes (Figure 7.2A), the weighting strategy did have
higher specificity (p=4.3e-8, McNemar test), which is preferable given concerns
of false positives. Regardless, the consensus score performance on identifying
CGC genes (Figure 7.2A) support previous reports that merging the results
from different algorithms improve cancer driver discovery [70].

To maximize the coverage of our analysis and ensure the accuracy of our
final list, previous findings were reviewed in 31 individual cancer types and
PanCancer-12 from TCGA. For cancer types not yet having a TCGA publi-
cation, the relevant analysis working groups were consulted (LIHC, TGCT,
UVM, SARC, PAAD, and THYM). I included in our final consensus list all
those genes that were previously described as drivers by experts in the cancer-
specific analysis of TCGA datasets and were also identified by at least one of
the eight algorithms, even if they did not meet our consensus score threshold
(>1.5)(Figure 7.3A). This resulted in an additional 54 gene-cancer pairs, such
as ATR, CHEK?2, IDH2, and ERCC2 in the PanCancer dataset and FOXA1 in

BLCA, HRAS in SKCM, and MET in LUAD (Figure 7.1B-F). The majority of
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Figure 7.2: (Caption next page.)
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Figure 7.2: (Figure previous page) Characteristics of consensus genes. (A) Pre-
dictive power of each individual driver gene detection method (in gray) and of
the weighted and weighted scores (in orange). The predictive power was mea-
sured as prAUC, using all the genes in the Cancer Gene Census and a set that
additionally excludes Cancer Genome Landscape genes used in outlier detec-
tion. Error bars, calculated by bootstrapping, indicate one standard deviation.
(B) The number of consensus genes in each cancer type positively correlated
with the average mutation burden. Shaded area indicates 95% bootstrapped
confidence interval. (C) Given the variability in powered effect size (fraction
of mutated samples above background with 90% power) in this study, there is
a negative but not significant correlation with the number of consensus genes
in each cancer type. COAD and READ were excluded because analysis was
performed separately, but the final consensus genes were merged. (D) Pear-
son correlation between the number driver genes identified and median purity
was calculated and plotted. (E) Pearson correlation between the number driver
genes identified and mean purity was calculated and plotted. Summary statis-
tics for p-value and r-squared value are reported in the top right corner of pan-
els D and E. (F) Percent of samples containing a non-silent mutation stratified
by cancer type. The red line indicates the median across cancer types (left) and
average number of non-silent mutations in consensus genes per sample (right).
(G) A pie chart showing the percent of consensus genes which are found in
the Cancer Gene Census with annotations for small somatic mutations (mis-
sense, splice site, indel, and nonsense) (H) Consensus genes showed a higher
probability for loss-of-function intolerance and missense mutation constraint of
germline mutations based on ExAC, and were expressed (RPKM>1) in a wider
number of tissues from GTeX (version 6). Given the high correlation of gene
expression in the 11 brain regions assessed from GTEx, we took the median of
multiple brain tissues, as done in Lek et al., 2016.

this effort resulted in linking cancer genes identified by our strategy to addi-
tional cancer types based on previous literature (32/54).

To limit false positives in the expanded list, linear discriminant analysis
was applied (Figure 7.1C). 45 genes were identified and removed from the con-
sensus as they are likely false positives. These included CACNAIE in Pan-

Cancer, COL11A1 in LUAD, DST in GBM, and TT'N in SKCM. The consensus
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Figure 7.3: (Figure previous page) Cancer driver gene discovery: (A) Cir-
cos [158] plot displays 299 cancer genes. Each sector indicates a unique can-
cer type (text in blue) with predicted drivers unique to that cancer type listed
(gene name in black). Only tissues with at least one unique driver gene are
shown. The top right sector shows all genes found significant in multiple can-
cer types. Next, a categorical score of gold, silver, or bronze is assigned to
each gene based on the highest consensus score. If a gene was not scored
and required rescue then the field is empty. The next ring illustrates the
mutation frequency of a gene in our dataset. For the top right wedge, the
PanCancer frequency is used, while cancer-type-specific frequencies are used
in the remaining sectors. Where frequencies exceed the y-axis limit of 10%,
the innermost label indicates the frequency. The final ring uses a 5-point
scale from orange to teal to represent each gene from likely tumor suppres-
sor to likely oncogene, respectively, by the 20/20+ algorithm. Finally, in the
top right slice we show hierarchical clustering of the gene consensus scores
for genes that were found in more than one cancer type (note: CRC refers
to the COADREAD cancer type). Additionally, significant gene clusters (per-
mutation test) identified Pan-Gastrointestinal (red), Pan-Squamous (purple),
and Pan-Gynecological tissues (green). The middle ring illustrates all genes
that were only found using PanCancer results, or were otherwise rescued. (B)
Heatmap showing clustering of different cancer types by pathway / biological
process affected by associated consensus driver genes. Cell of origin for pan-
gynecological, pan-gastrointestinal, and pan-squamous are colored as above.

list from the above systematic approach consisted of 258 unique genes. The
average number of non-silent mutations per sample in our consensus gene list
varied substantially by cancer type ranging from j1 in 12 cancer types (ACC,
CHOL, KICH, KIRP, LAML, MESO, PCPG, PRAD, SARC, TGCT, THCA, and
THYM) to 7.3 in UCEC. A median of 85% of tumors harbored non-silent muta-
tions in consensus genes across cancer types (Figure 7.2F).

Given the limitations of a systematic approach, 41 genes were manually res-
cued. In the rescue attempt, I started with a list of genes identified from previ-

ous TCGA marker papers but not found from our systematic approach. Genes
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were rescued with supportive evidence from the following sources: hypermuta-
tor phenotype related genes (since we excluded hypermutated samples in our
systematic discovery; 6 genes), established cancer genes from LAML because of
low quality variant calling originating from liquid tumor contamination of the
normal samples (6 genes), genes supported by omic network tools (DriverNet
and OncoIMPACT; 25 genes), and a gene supported by all three approaches
from the driver mutation discovery (1 gene). Addition of genes to the final list
was subjected to expert manual curation (3 genes).

The final consensus gene list consisted of 299 unique genes across 33 cancer
types and the PanCancer dataset (Figure 7.3A). The list captures most previ-
ously described driver genes for the majority of cancer types. I overlapped the
cancer driver genes obtained from the consensus approach without manual cu-
ration with those from 5 independent studies in 4 cancer types (BRCA, PRAD,
PAAD, and LIHC) of which one is whole-genome sequencing. The consensus ap-
proach always had a greater inter-study overlap, with an average increase of
26% over only using a single tool, either MuSiC2 or MutSig2CV [59, 159-163].
Among the 299 genes, 59 novel genes were not previously identified in 6 pre-
vious PanCancer publications [10, 14,59, 69, 70, 164, 165] or the cancer gene

census list (http://cancer.sanger.ac.uk/census/) [112].

130


http://cancer.sanger.ac.uk/census/

CHAPTER 7. COMPREHENSIVE DRIVER DISCOVERY

7.1.2.2 Weighting strategy

Tools predicting cancer genes were weighted according to their performance
in each cancer type, receiving half the weight if a result was deemed an outlier,
thereby obligating additional tool agreement. Specifically, I examined quality
metrics across tools and within the same tool, which allowed us to identify out-
lier results. I marked outliers based on the quasi-majority of three criteria:
low concordance with known cancer genes, high divergence of p-value distribu-
tion from theoretical expectation, and abnormally high number of significant
genes. The first criterion evaluated the fraction overlap of significant genes
with a previously manually curated set of driver genes from [14] compared
with the median across all tools. The second criterion examined whether the
divergence of observed p-values from those theoretically expected by the Mean
Log Fold Change (MLFC) [85] was greater than the median of all tools, which
may indicate a tool’s statistical assumptions may not be well satisfied. The
third criterion examined whether a tool’s prediction for particular cancer types
appeared as an outlier in terms of the number of significant genes compared
against all of the results for that tool (Tukey’s outlier criterion: number signifi-
cant > 3Q + 1.5¥IQR). I calculated a gene consensus score by summing the tools
that declared the gene as being significant, with a weight of 1 for non-outlier

results and 0.5 for outlier results.
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7.1.3 Driver mutation approach

To maximize the coverage of our analysis I used 12 tools that look for three
distinct hallmarks of “driverness”. The collection was comprised of 8 mutation-
level algorithms (SIFT [25], PolyPhen2 [26], MutationAssessor [140], trans-
FIC [40], fathmm [64], CHASM [39], CanDrA [63] and VEST [106]), and 4
structure-based (HotSpot3D [46], HotMAPS [43], 3DHotSpots.org [41] and e-
Driver3D [48]). In order to combine the predictions from the sequence-based
approaches I used principal component analysis to develop a Combined Tool
Adjusted Total (CTAT) scores for both, population-based and cancer-specific
scores. Principal component analysis has been previously shown successful in
a similar task of prioritizing germline mutations [166]. I also combined the
results from three-dimensional tools by adding the number of tools that pre-
dicted a specific position as belonging to a cancer-mutation cluster. Finally, to
limit the number of false positives, I focused our analysis on the genes of our
consensus driver list.

The CTAT score combines multiple individual tools that prioritize missense
mutations. To normalize each score, I calculated the z-score by subtracting
the mean score and then dividing by the standard deviation. I then performed
principal component analysis (PCA) using ScikitLearn v0.18.0 and used the
score along the first principal component as our CTAT score, representing the

scalar projection onto the first eigenvector. Only missense mutations that had
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no missing values for each of the combined tools were used in generating the
principal component analysis. I performed this procedure on two distinct cate-
gories of tools, “population-based” tools that distinguish damaging/pathogenic
germline missense variants from common polymorphisms (SIFT, PolyPhen2,
VEST, and MutationAssessor), and “cancer-focused” tools designed to distin-
guish somatic missense mutations that are drivers from passengers (CHASM,
CanDrA, fathmm, and transFIC). To score the remaining missense mutations
that did have a missing score, I imputed missing scores of the individual tool
with the mean for the method. Imputation was only performed for the cancer-
focused tools as the population-based tools had too many missing values.

To define the CTAT score thresholds, I used the maximum balanced ac-
curacy when predicting OncoKB mutations “oncogenic” or “likely oncogenic”.
This yielded a threshold of 1.2 for CTAT-population and 2.4 for CTAT-cancer.
For the structural algorithms, I report a mutation as likely driver if at least 2
algorithms identify it within a cluster. Finally, I evaluated the performance of
each CTAT score using mutations from OncoKB labeled as “likely oncogenic”

or “oncogenic” as true-positives.
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7.2 Results

7.2.1 Mutational data set

Mutation calls were produced by the Multi-Center Mutation Calling in Mul-
tiple Cancers (MC3) working group by harmonizing results of 7 algorithms
[155]. To reduce the false positive rate for driver gene discovery I implemented
three strategies addressing known issues affecting driver detection and data
quality (see Mutation calling quality control). The driver detection dataset
ultimately consisted of 9,079 samples having 1,457,702 total mutations, where
the number of mutations per sample was widely distributed across cancer types

and was consistent with previous publications [33,66,70].

7.2.2 The landscape of cancer driver genes

The final consensus list consists of 299 unique genes: 258 genes obtained
from a systematic approach and 41 additional genes recovered after manual
curation of previous TCGA marker papers with the majority (26 out of 41, 63%)
supported by additional -omic network tools (DriverNet and OncoIMPACT) not
used in original SMG detection. Note that, for the rest of the analyses pre-
sented here, I will focus on the 258 genes set, but I acknowledge the limitations

of a systematic approach by including the 41 genes rescued by manual curation
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in our final list to achieve comprehensiveness.

The list recovers most of the previously described driver genes for the major-
ity of cancer types. In fact, in 20 out the 31 cancer types included in our study
that had either been previously published or for which I had an internal list
of known cancer driver genes, the recovery rate is 80% or higher (Figure 7.1D
and Figure 7.1E). The most significant outliers are STAD and the previous
PanCancer study, for which I only recovered around 70% of the previously de-
scribed genes (Figure 7.1D). The consensus list also includes 59 novel genes
that had not been described previously and other known drivers not previously
associated with a given tissue. Predictions of known cancer driver genes in
new tissues include ATRX in ACC, KMT2C, CTNNB1 and PTEN in BLCA,
and ARIDIA and KRAS in BRCA. Entirely novel predictions include GNA13
in BLCA (a homologue of the known drivers GNAQ and GNA11), RRAS2 in
UCEC (with shared homology in KRAS and HRAS), and KIFI1A in HNSC (a
kinesin of the same family of the cancer driver KIF5B).

The number of detected cancer driver genes varies among cancer types, with
KICH having the fewest (2 genes) and UCEC having the most (55 genes). Fur-
thermore, the ratio of predicted tumor suppressor genes and oncogenes vary
widely by tissue (Figure 7.4). I observed a significant positive correlation (Pear-
son R=0.66, P value=4.1e-5) between the average mutation burden in a cancer

type and the number of identified consensus genes (Figure 7.2B). Study-based
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calculations for powered effect size in each cancer type did not entirely explain
this phenomenon (Pearson R=-0.31, P value=0.09) (Figure 7.2C). Regarding the
associations of driver genes with different cancer types, many genes (142 out of
258) are associated with a single cancer, whereas 87 genes have driver roles in
two or more cancer types, with an additional 29 genes uniquely identified using
all samples combined-PanCancer approaches. As expected, TP53 is the most
extreme case, as it is associated with 27 cancer types, followed by PIK3CA,
KRAS, PTEN and ARID1A, each of which is associated with 15 or more tissue
types (Figure 7.3A).

I clustered the different cancer types according to the consensus scores of
their associated genes. Remarkably, some cancer types grouped according to
their tissue of origin, such as LGG and GBM; while others according to their
cell of origin. The most significant of the cell origin clusters spans all the
squamous cancer types (BLCA, CESC, ESCA, HNSC and LUSC, (permutation
test, adjusted p < 0.01) and includes several transcription factors (ZNF750,
NFE2L2 or KLF5), chromatin and histone modifiers (KMT2D, EP300, or NSDI),
and various PI3K pathway genes (PIK3CA, PTEN or MAPK1). I found two ad-
ditional significant clusters (permutation test, adjusted p < 0.05) that group
gynecological (UCS, CESC, UCEC, OV, and BRCA) as well as gastrointestinal
cancers (COADREAD, PAAD, ESCA and STAD) (Figure 7.3A).

Finally, I classified the consensus driver genes according to the cancer-
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Category of driver genes (20/20+)

UVM (n=8)= 12% 13% 75%
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THCA (n=9)= 11% 209, I 67%
THYM (n=4)= 25% I 750
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LUAD (n=20)= 5% 65% I 30%
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PANCAN (n=165)= 3% 669 I I 310%
LUSC (n=22)= 682 I 32%
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Figure 7.4: Balance of oncogenes and tumor suppressor genes. Percentage of
consensus genes predicted as either oncogene (brown), tumor suppressor gene
(green), or unknown (gray) by the 20/20+ algorithm, an improved version of the
20/20 rule. The 20/20+ algorithm uses a supervised-learning approach (random
forests) and bases predictions on the mutational patterns observed within a
gene. “Likely” and “Possible” statuses were determined at a threshold of 0.05
for g-value (Benjamini-Hochberg method) and p-value, respectively. Consensus
genes were designated as “Unknown” if they did not meet these thresholds. N
represents the number of significant genes in each cancer type.
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related biological processes and pathways with which they were associated
(Figure 7.3B). For most genes, the categories (excluding “other” and “other sig-
naling”) clearly reflect known processes involved in carcinogenesis, as they are
“transcription factor” (39 genes), “RTK signaling” (16) and “RNA abundance”
(15), “protein homeostasis/ubiquitination” (15), “chromatin histone modifiers”
(15), “genome integrity” (14), “chromatin other” (14) and, remarkably, “immune
signaling” (10). The last group is of particular interest, given the connection
between driver genes and immune response. In terms of cancer types, most
have at least one cancer driver that belongs to either genome integrity (28 out
of 33 cancer types) or the MAPK or PI3K signaling pathways (24 and 22 can-
cer types, respectively). Interestingly, the squamous cancer types were again
grouped together when looking at which processes and pathways associated
with their driver genes, having higher proportions of genes involved in chro-
matin histone modification as well as receptor-tyrosine kinase and immune

signaling.

7.2.3 Discovery of driver mutations

Not all mutations in a cancer driver gene have the same impact on its func-
tion [167]. Their consequences frequently depend on which position within the
protein is affected and what amino acid change is induced [39]. Here, I sought

to explore this topic across the entire PanCancer dataset, classifying 751,876
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unique missense mutations by examining the 299 cancer driver genes that I
identified, according to their predicted oncogenic effect. I combined the out-
put of three different categories of tools into consensuses approaches: (I) tools
that distinguish between benign and pathogenic mutations using sequence-
based features (CTAT-population); (II) tools that distinguish between driver
and passenger mutations using sequence-based features (CTAT-cancer); and
(IIT) tools that discover statistically significant three-dimensional clusters of
missense mutations (Structure-based); these identified 10,098 (1.3% of the to-
tal missense mutations), 4,595 (0.6%), and 1,469 (0.2%) unique amino acid
substitutions, respectively (Figure 7.5A). The differences in the number of pre-
dicted driver mutations for each approach are likely due to the design and re-
quirements of the tools, i.e., dependence of structural clustering tools on avail-
able three-dimensional protein structures (either experimental or homology-
based) yields fewer predicted driver mutations. Nevertheless, structural tools
may provide additional molecular biological context for the identified muta-
tions, which can be particularly relevant for variants of unknown significance
(VUS) [168].

When benchmarked against OncoKB [149]-a manually curated dataset of
cancer mutations annotated according to likely oncogenic effect, cancer-focused
algorithms had higher predictive value than algorithms that distinguished be-

tween benign and pathogenic mutations. In addition, the CTAT-cancer score
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Figure 7.5: Driver mutation discovery approaches, overview, overlap, and
contrasts: (A) Venn diagram indicates total number of mutations overlapping
among three consensus approaches-CTAT-population, CTAT-cancer, and struc-
tural clustering. Adjacent bar chart indicates the top 20 genes sorted by 3-set
intersecting mutation counts. (B) Driver gene discovery identified gene-tissue
pairs (canonical genes) in tumor suppressors and oncogenes. However, some
gene-tissue pairs were not identified in driver discovery (non-canonical). Mu-
tation frequency from canonical and non-canonical cancer genes are displayed
and divided among 4 mutation classes: truncation/frameshift mutations (grey);
missense mutations uniquely identified by only one approach (yellow, see Panel
A); missense mutations identified by multiple approaches (red, see Panel A);
and missense passenger mutations not identified by any approach (off white).
(C) Mutation percentage out of all missense and truncating/frameshift muta-
tions within a gene is shown on the y-axis (log scale). Point size is log scaled
and represents amino acid position frequency. The top 23 genes ordered by
increasing mutational diversity (normalized entropy) and only the 9 most fre-
quently mutated amino acid positions for each gene are shown.
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outperformed all individual sequence-based approaches.

Overall, there are 9,919 predicted cancer driver mutations in our cohort
(3,437 unique mutations) identified by 2 or more approaches from CTAT-population,
CTAT-cancer, or structural clustering. These mutations affect 5,782 tumor
samples. I observed that these missense driver mutations represent a greater
fraction of the total mutations in oncogenes than in tumor suppressors (Fig-
ure 7.5B). In this latter group, most mutations seem to be truncating or frameshift,
a result in agreement with previous observations [169]. Nevertheless, there
are also tumor suppressor genes having high numbers of missense driver mu-
tations, such as EP300, CREBBP, CASP8, PIK3R1 and TP53 (Figure 7.5B).
An interesting example is CDH1, which is mostly affected by truncating or
frameshift mutations in BRCA (75 out of 85 mutations), but mostly targeted
by missense driver mutations in STAD (21 out of 25 mutations). This could
suggest different roles for CDH1 in these two cancer types.

I was also intrigued by missense driver mutations detected in cancer types
where the gene was not predicted to be a driver. This subset is particularly
important for genotype-driven clinical trials [170]. Overall, there are 1,719 of
tissue-unmatched likely driver mutations (19% of the total) in 1,431 patients
(16%) and there are 502 patients whose only predicted missense driver mu-
tations affect genes not yet known to play a role in that cancer type. For ex-

ample, I identified 28 patients with predicted EGFR driver mutations in can-

141



CHAPTER 7. COMPREHENSIVE DRIVER DISCOVERY

cer types where EGFR is not yet identified as a common driver gene, such as
HNSC, STAD, LUSC, UCEC, ESCA and LIHC. In some extreme cases, such
as ERBB4 or GNAS, these mutations actually represent the majority of pre-
dicted driver missense mutations in the gene (Figure 7.5B). Additionally, 2%
(10/457) of IDHI missense events that occur at the amino acid position R132
are found in tissues not typically known to carry such mutations i.e. BLCA
(n=2), BRCA (2), COADREAD (2), LUAD (2), PCPG (1), and THYM (1) (Fig-
ure 7.5C). Furthermore, I observed that RRAS2 Q72, a predicted oncogene in
UCEC (n=5 samples) with strong homology to KRAS Q61 and HRAS Q61, was
also mutated in cancer types in which it was not predicted to be an oncogene
- UCS (n=1), LUSC (1), LUAD (1), PRAD (1), HNSC (1), and TCGT (1). Any
analysis focusing only on common driver genes and mutations known in that
cancer type would very likely miss presumed driver mutations for those pa-
tients. These results emphasize the advantage of PanCancer panels of driver

mutations in order to maximize the coverage of driver-detection analyses.

7.2.4 Structure-guided discovery

Results were compared to an independent dataset of 1,049 experimentally
tested somatic mutations to validate our driver mutation predictions [144].
Briefly, SNVs were introduced to two cancer cell lines, Ba/F3 and MCF10A, and

were evaluated for their oncogenicity based on survival and growth. In total,
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160 mutations from 19 genes were validated in this dataset. The percentage
of functionally validated mutations increased from 60% predicted with CTAT-
population, to 61% for those found by CTAT-cancer, and 78% for Structure-
based analysis (Figure 7.6A). Among the 579 mutations predicted by all three
approaches, 39 of the 46 that were tested (85%) were also validated. Further,
the sensitivity and specificity of identifying driver mutations annotated by On-
coKB suggests performance is generalizable to a larger set of genes. These
results support the value of the prediction algorithms used in our study and
the advantage of combining multiple tools. Also, I would like to note that this
approach only addresses true positive findings and represents a floor estimate
for computational predictions.

Structural-based mutations clustered on 66 proteins, including one cluster
on KLF5, a gene not previously identified in PanCancer studies and ranked
among the top 30 clusters by PanCancer mutation frequency (Figure 7.6B). 1
sought to examine in more detail the predictions of the three approaches in
various well-established cancer driver genes, such as PIK3SCA/PIK3R1, BRAF,
and KEAP1/NFE2L2 (Figure 7.6C-4H). The interface between PIK3CA and
PIK3R1 contains a cluster of mutations that were found by at least 2 of the
approaches and includes both mutations that were validated and those not
tested. D560G, N564D, and K567E are validated mutations that cluster closely

to non-tested mutations R577P/Q, S565R, and P568T in PIK3R1. Similarly,
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Figure 7.6: (Figure: previous page) Driver mutation discovery and val-
idation: (A) This schematic displays the steps taken to assess consensus
among mutation-level predictions using sequence-based and structural clus-
tering tools and comparing them to an orthogonal set of functionally validated
mutations. From left to right: the grey box represents the missense mutations
that were processed by 12 tools from 3 categories (population-based, cancer-
focused, and structural clustering tools) and combined into three consensus
approaches (CTAT-population, CTAT-cancer, and structural clustering). Fi-
nally, the total number and percentage of functionally validated/tested mu-
tations is shown. (B) The number of mutations (y-axis) found by structural
tools for each gene (x-axis) are shaded according to support by structural tools
(green). Those mutations without support are distinguished by two categories,
with (grey) and without (white) available protein structure. Heatmaps (D, F,
H) coupled with protein structure (C, E, G) are shown in panels for the pro-
teins PIK3CA/PIK3R1 (PDB ID: 40VU), BRAF (4MBJ), and KEAP1/NFE2L2
(3ZGC), respectively, and display whether a particular mutation was detected
by sequence-based (CTAT-population or CTAT-cancer) or structure-based ap-
proaches (at least two structural tools). Purple/teal colors distinguish pro-
teins (PIK3CA/PIK3R1 and KEAP1/NFE2L2 pairs) for mutations found by
structure-based approaches, while pink boxes indicate mutations found only
by sequence-based approach. Additionally, for each mutation, frequency (blue
gradient), OncoKB status (red gradient), testing status (tan), and validation
status (grey) are provided. All mutations found by structure-based approaches
in each of the 3 genes are shown with a few additional mutations that are only
found by sequence-based approaches. Key mutations are highlighted from the
heatmaps and labeled with white, grey, and tan labels referring to novel, vali-
dated, and tested (not validated) mutations, respectively.

PIK3CA contains validated mutations C378Y, V344G/M, N345T/I/K, P471L,
C420R, and E418K clustering with non-tested mutations S379T, N380S, and
E418K. These non-tested mutations are excellent candidates for further ex-
perimental validation due to their close proximity to known validated driver
mutations as well as support from sequence-based approaches (Figure 7.6C
and 7.6D). BRAF also contains clusters similar to this PIK3CA/PIK3R1 cluster,
with a mixture of validated and novel mutations (Figure 7.6E and Figure 7.6F).
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Additionally, there are many genes that contain mutations found by all
three approaches but that were not tested experimentally, including KEAP1I,
NFE2L2, RHOA, MTOR, MAP2K1, and VHL. Nevertheless, many of these
driver mutations have orthogonal evidence from OncoKB. For example, the
mutations G333D/S in KEAP1 have an OncoKB status of likely oncogenic and
oncogenic, respectively (Figure 7.6G and 7.6H). There are also NFE2L2 muta-
tions that cluster closely with the KEAP1 mutations along the protein-protein
interface (D77, E82, G81, E79) and were not experimentally validated but have
an OncoKB status of either likely-oncogenic or oncogenic. Other KEAP1 mu-
tations in the same cluster found by all three approaches are R483C, Y525C,
G524C, G571D, and R413H. However, none of these mutations were tested
in our dataset, nor have evidence from OncoKB. Given their proximity to the
validated KEAP1 sites and the bioinformatic evidence that I found, these mu-
tations are ideal candidates for follow-up validation experiments.

Overall, this analysis reinforces the notion that sequence-based approaches
and structure-based approaches ought to be used in conjunction and tend to be
complementary. For example, E365V, C604R, and C901F in PIK3CA, F646S
in PIK3R1, and H725Y and P731S in BRAF were found by sequence-based
approaches but not the structure-based approach and are experimentally val-
idated (Figures 7.6D and 7.6F). Conversely, R462T in BRAF was only found

through a structural approach and not sequence-based approaches and is an-
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notated as likely oncogenic in OncoKB (Figures 7.6F and 7.6H). Finally, I note
that, while looking at mutations detected by all 3 approaches provides high
confident driver mutations, there may still be important driver mutations that

were missed.

7.3 Discussion

As a lead analyst member, the driver’s group has done a PanCancer and
PanSoftware analysis on one of the largest available cancer genomics datasets
at the moment, allowing us to identify 299 cancer driver genes. The gene list
is limited in that the study focused on point mutations and small indels, but
did not consider drivers affected by copy-number variations [171], genomic fu-
sions [172], or methylation events [173]. Nevertheless, it represents the most
comprehensive effort thus far to identify cancer driver genes and will serve the
community as an important research asset well into the future.

Another important result is the dataset of 3,442 predicted driver mutations
from both sequence-based and three-dimensional structure-based approaches.
To emphasize a previous point, it is evident that not all mutations in driver
genes are actually drivers themselves, so identifying the true-driver mutation
subset will be a key challenge in the coming years. Also results were compared

using an external independent experimental dataset to successfully validate
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the predictions from three different approaches that predict cancer driver mu-
tations. These results suggest that cancer-specific sequence-based approaches
outperform those aimed at detecting pathogenic variants in general. Like-
wise, the structure-based approaches are more specific than sequence-based
approaches at predicting driver mutations, but at a slight cost of reduced sen-
sitivity. While functional validation confirmed true positive predictions, it gives
no information regarding false negatives. Thus, what is reported here repre-
sents a lower bound. The assay is unable to capture other factors relevant to
positive selection, such as tumor microenvironment, metastasis, or interactions
with treatment or the immune system. While caution must be taken when
extrapolating, these observations are consistent with other functional stud-
ies on individual proteins or a subset of the proteome that have shown that
mutations affecting the same three-dimensional functional regions are likely
to have similar phenotypes [174]. However, there were several instances in
which sequence-based approaches captured driver mutations that were missed
by structure-based approaches. Considering both approaches as complemen-
tary can improve prediction sensitivity.

The findings reported here and by the larger TCGA enterprise represent
early steps toward a new era in cancer research and ultimately in cancer treat-
ment. Studies will move beyond focusing on individual genes toward system-

atically integrating the myriad aspects of the cancer genome, including the
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interrelationships among its somatic and germline variations [175], the tumor
microenvironment and the immune system. Although this study represents
the largest cancer gene and mutation study to date, the driver’s group is mind-
ful that the corpus of cancer driver genes and mutations may still be incom-
plete. However, it is likely that the community is nearing the beginning of the
end of this phase of research, as larger cohorts continue to be examined with

longer-range and longer-read sequencing technologies.
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Chapter 8

Concluding remarks

The first confirmed human cancer driver gene, HRAS, was identified in
1982 [1,7]. The past decade has seen the list of likely cancer driver genes
grow rapidly. Although partly reflecting the growth in size of studies due to
advances in next generation sequencing, it also reflects improvements in com-
putational techniques. Computational methods are starting to become more
robust with realistic models of how somatic mutations accumulate in cancer.
Moreover, studies are now moving to understanding cancer drivers at increas-
ing resolution — moving from genes to individual mutations.

The first part of my dissertation (Chapter 2) focused on how to appropriately
statistically model the accumulation of somatic mutations in cancer. The typi-
cal choice of modeling the background mutation rate is problematic because it

is highly variable at multiple scales. However, a key insight is that covariates
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usually modulate mutation rate at the scale of megabases within the genome,
but nearly all genes span <1MB. By statistically conditioning on the total num-
ber of mutations within a gene while simulating mutations, nuisance factors
influencing mutation rate, which are not always measured or known, are sub-
stantially lessened. This approach allows substantial flexibility in comprehen-
sively modeling the many mutational patterns indicative of positive selection
in cancer.

Here, I introduced several new computational methods to analyze cancer
drivers at different levels — such as the gene (20/20+, Chapter 3), region (HotMAPS,
Chapter 5), and mutation (CHASMplus, Chapter 6). I used these methods to
interrogate fundamental questions regarding cancer driver mutations, such as
their cancer type specificity, commonness or rarity, the balance and character-
istics of oncogenes and tumor suppressor genes, and the likely future trajectory
of cancer driver discovery. 20/20+ identified that the balance of oncogenes and
tumor suppressor genes (T'SG) varies considerably by cancer type, some hav-
ing all TSGs while others having mostly oncogenes. Also, CHASMplus found
significantly more rare cancer driver mutations than previously understood,
which is supportive of the long-tail hypothesis. The high prevalence of rare
driver mutations suggests interpretation of a cancer genome will need to be
increasingly personalized, since a patients driver mutation may have not been

previously observed.
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Due to the lack of a gold-standard for cancer drivers, I also developed a
benchmark for cancer driver gene prediction (Chapter 4). This included five
components: number of significant genes, overlap with previous literature,
overlap with other methods, divergence of p-values from expectation, and con-
sistency. I found that some methods did not accurately model the heterogeneity
of accumulation of mutations by chance. As new computational methods are
developed, it will be critical to effectively benchmark them against existing
state-of-the-art.

I also used computational methods in an attempt to comprehensively dis-
cover driver genes and mutations in nearly 10,000 human cancers (Chapter
7). This was done as a consensus across institutions from The Cancer Genome
Atlas, and by extension a consensus of computational methods. This idea of
a consensus is not new, and has been used successfully in many other do-
mains [176, 177]. The analysis revealed 299 cancer driver genes across 33
cancer types. Many of the cancer driver genes were cancer type specific, but
others were found in multiple cancer types that had a common cell of origin.
Analysis also found 3,400 unique missense mutations as likely cancer drivers,
with high validation rates compared to an in vitro assay. The results from
CHASMplus, however, suggest that in some cancer types the rate of discovery
is starting to exhibit diminishing returns.

Although the landscape of cancer drivers in primary tumors are progres-
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sively getting more fully explored, there remains many aspects that are still
poorly understood. Sequencing untreated primary tumors gives an under-
standing of one time point in the natural evolutionary history of cancers. Un-
derstanding the full heterogeneity and dynamics of cancer will require se-
quencing both before (pre-cancerous lesions) and after (metastases). This will
provide more understanding of such questions as: do cancers need particular
gatekeeper drivers to initiate tumorigenesis?, and how much does the tempo-
ral ordering of driver mutations matter as opposed to overall driver mutation
burden? In addition, the role of drivers in the non-coding region of the genome
is only beginning to be characterized, but early studies indicate that >90% of
driver point mutations may actually reside in coding regions [178]. The dis-
crepancy of why other common diseases are estimated to have the majority of
heritability in non-coding regions [179, 180] remains to be understood.

A complete catalog of all cancer drivers, in it of it self, will not suffice. Can-
cer driver mutations will need to be related to their functional consequence,
interaction with the microenvironment, and to other driver mutations. Given
the prevalence of rare driver mutations, the scale of experiments designed to
functionally characterize or validate potential driver mutations will need to
match pace. On the basis of this, a mechanistic insight will be critical for a ra-
tional understanding of the effects of targeted drugs and optimization of drug

combinations. Lastly, driver mutations may not exert their effect in isolation,
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but rather epistatically interact with other driver mutations. For instance, co-
mutations of KRAS, ATM, STK11, and KEAPI in lung adenocarcinoma define
a cancer subtype with different biology and immune signatures [181].

In summary, cancer was first understood as a genetic disease by observing
large changes in chromosomes through a microscope [5]. Now, computational
methods, like those developed here, are serving as a mathematical microscope
into understanding driver mutations in cancer. The tools from statistics al-
low control of false discoveries, which prevents errant mistakes. While ma-
chine learning translates many biological features indicative of positive selec-
tion into concrete predictions of driver mutations. The convergence of this and
large-scale cancer sequencing has turned many aspects of cancer research into
a data science. As future research focuses on greater precision required for in-
terpreting individual mutations in a patient’s cancer, the trend of data science

in cancer research will likely continue.
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Appendix A

Glossary of Terms

cancer driver gene A gene that contains at least one cancer driver mutation.

cancer driver mutation A mutation that increases the net growth advan-
tage of a cancer cell* under the specific microenvironmental context en-
counter in vivo in humans. *=cancer driver mutations may occur prior to
a cell clone officially becoming cancer and has the theoretical possibility
that the mutation is no longer advantageous for the cancer cell at a later

time. However, a cancer driver mutation should be advantageous at least
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at certain parts towards the development or progression of cancer.

cancer drivers A genetic loci that contains driver mutations, without refer-

ence specifically to whether it is a gene, region, or a mutation.

decision tree A decision tree is a set of questions asked recursively (in a tree-
like manner) to predict either a categorical value (classification) or con-

tinuous value (regression).

driver mutation Shorthand for cancer driver mutation.

intra-tumor heterogeneity Heterogeneity among cells within a tumor. Here,

specifically referring to different usage of cancer driver mutations.

microenvironment The local environment surrounding and within the tu-

mor.

mutation hotspot A genomic or protein loci with highly localized mutations.

OG oncogene.

oncogene A cancer driver gene that is activated upon a driver mutation.

pan-cancer An analysis considering all or many types of cancer together.

random forest A supervised machine learning algorithm consisting of an en-

semble of randomized decision trees.
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somatic mutation starting from embryogenesis, mutations that occur in the

cells of the body (excluding germ cells), and therefore are not inherited.

TSG tumor suppressor gene.

tumor suppressor gene A cancer driver gene that is inactivated upon a driver

mutation.
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Appendix B

Pan-cancer mutation dataset

The pancancer dataset consists of 729,205 small somatic variants encom-
passing 7,916 distinct samples from 34 specific cancer types by merging data in
published whole-exome or whole-genome sequencing studies used by TUSON
(Dataset) [89] and Mutsig (Tumor portal) [69] and removing duplicate samples
in both studies. Any studies that did not report silent mutations were removed.
Data in refs. [89] and [69] originated from The Cancer Genome Atlas, Inter-
national Cancer Genome Consortium, the Catalogue of Somatic Mutations in
Cancer database [112], and dbGAP. We did not see evidence of batch effects
by data source in the number of variants per tumor type, single-nucleotide
mutation spectra, or specific mutation consequence types. We further applied
quality control to this data by filtering out hypermutated samples (;1,000 in-

tragenic small somatic variants) [14], and regions prone to mutation calling ar-
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www.elledgelab.med.harvard.edu/wp-content/uploads/2013/11/Mutation_Dataset.txt.zip
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APPENDIX B. PAN-CANCER MUTATION DATASET

tifacts [any sequencing read mappability warning cataloged in the University
of California, Santa Cruz (UCSC), Genome Browser]. The cleaned pancancer
dataset is here. The CRAVAT webserver (version 3.0) was used to automati-
cally retrieve the mappability warning codes. Gene names were standardized
to HUGO Gene Nomenclature Committee through converting previous sym-
bols and synonyms to the accepted gene name (downloaded January 29, 2015:

here).
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