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Abstract

Semantic parsing aims at mapping natural language text into meaning repre-

sentations, which have the potential to facilitate semantic analysis, and more

importantly, to transform how humans interact with machines. While seman-

tic parsing receives a long-standing interest from the community, developing

robust semantic parsing algorithms remains a challenging problem. In this

thesis, we consider several challenges in semantic parsing: 1) representing the

semantics of multiple natural languages in a single semantic analysis; 2) de-

veloping parsing systems for broad-coverage semantics; 3) designing unifying

parsing paradigms to support distinct meaning representation frameworks;

and 4) training systems with limited amounts of labeled data.

We approach semantic parsing as sequence-to-graph transduction prob-

lems, and introduce novel algorithms/components into transductive settings

that extend beyond what a typical neural machine translation system would

do on this problem. Our approach achieves the state-of-the-art performance

on a number of tasks, including cross-lingual open information extraction,

cross-lingual decompositional semantic parsing, and broad-coverage semantic

parsing for Abstract Meaning Representation (AMR), Semantic Dependencies

(SDP) and Universal Conceptual Cognitive Annotation (UCCA).
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In the first half of this thesis, we are concerned with representing the

semantics of multiple natural language in a single semantic analysis. We intro-

duce two cross-lingual semantic processing tasks: cross-lingual information

extraction and cross-lingual decompositional semantic parsing. We propose

end-to-end sequence transduction models, and present an evaluation metric

that can be used to differentiate two meaning representations with similar

instances, analysis, or attributes. Experiments show that our approach signifi-

cantly outperforms strong baselines, and extension to low-resource scenarios

also gains promising improvement.

In the second half, we focus on developing parsing systems that support

broad-coverage meaning representation frameworks with rich graph-based se-

mantic formalism. We unify different broad-coverage semantic parsing tasks

under a transduction paradigm, and propose attention-based neural mod-

els that build a meaning representation via sequence-to-graph transduction.

Experiments conducted on three separate broad-coverage semantic parsing

tasks – AMR, SDP and UCCA – demonstrate that our attention-based neural

transducer improves the state of the art on both AMR and UCCA, and is

competitive with the state of the art on SDP.

Finally, we conclude the thesis, and outline ideas and suggestions for

future directions of transductive semantic parsing.

Primary Readers and Advisors: Benjamin Van Durme and Kevin Duh

Secondary Reader: Kyle Rawlins
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Chapter 1

Introduction

1.1 Motivation

As the primary medium for us to understand and talk about the world, lan-

guage is central to human cognition and communication. The sophistication

language offers us to express the world has sparked linguistics’ interest in

representing the meaning of human language. Meanwhile, computers do

not genuinely understand human language, which prevents machines from

conversing naturally with humans. This barrier separating humans from ma-

chines attracts considerable attention from the community of computational

linguistics, where systems have being built for mapping natural language text

into logical forms or meaning representations – semantic parsing. The past

decades have witnessed improvements of semantic parsing systems from a

set of hand-coding rules in the early days (Green Jr et al., 1961; Woods et al.,

1972; Winograd, 1972) to statistical learning methods based on hand-crafted

features (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005; Poon and

Domingos, 2009; Kwiatkowski et al., 2011; Liang et al., 2013; Berant et al.,
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2013; Artzi et al., 2015; inter alia) to today’s deep learning methods (Dong

and Lapata, 2016; Jia and Liang, 2016; Ling et al., 2016; Yin and Neubig, 2017;

Liang et al., 2017; Zhang et al., 2019a; inter alia).

The levels of accuracy achieved by these semantic parsing systems have

led to their use in semantic analysis (e.g. Toutanova et al., 2002; Bos et al.,

2004), and more importantly, natural language interfaces to machines (e.g.

Kwiatkowski et al., 2011; Dong and Lapata, 2016). However, the usefulness of

these systems is mostly limited to specific domains, such as ATIS (Bates et al.,

1990; Price, 1990), GEO and JOBS (Zettlemoyer and Collins, 2005), FREE917

(Cai and Yates, 2013), WEBQUESTIONS (Berant et al., 2013), IFTTT (Quirk

et al., 2015), etc. In contrast, natural language affords a much broader cov-

erage in terms of domains, genres, and even the language itself. This gap

of coverage brings renewed interest in designing meaning representations

for a wide range of natural languages. Over the past years, a number of

broad-coverage meaning representation frameworks have been proposed and

annotated, including Abstract Meaning Representation (AMR; Banarescu et

al., 2013), Universal Conceptual Cognitive Annotation (UCCA; Abend and

Rappoport, 2013), Semantic Dependency Parsing (SDP; Oepen et al., 2014;

Oepen et al., 2015), and Universal Decompositional Semantics (UDS; White

et al., 2016).1 These general-purpose meaning representations introduce new

challenges in developing semantic parsing systems:

Lexical Mismatch There is an increasing number of efforts on cross-lingual

1There are further calls to attend to existing efforts as well, e.g., Episodic Logic (Schubert,
2000; Hwang and Schubert, 1994; Schubert and Hwang, 2000; Schubert, 2014), or Discourse
Representation Theory (Kamp, 1981; Heim, 1988).
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semantic analysis, i.e., representing the semantics of multiple natural lan-

guages in a single semantic analysis (Yarowsky et al., 2001; Padó and Lapata,

2009; Evang and Bos, 2016; Abzianidze et al., 2017), which aims at enabling se-

mantic analysis on non-English languages. A challenging issue along with this

goal is the lexical mismatch between the source text and the target meaning

representations that are usually based on English. Under these cross-lingual

settings, the vocabulary sizes on both sides are much larger than those in

domain-specific semantic parsing, and they have little overlap with each other,

which poses a challenge in building robust cross-lingual semantic parsing

systems. A similar issue also arises in some monolingual settings, e.g. AMR

parsing (Banarescu et al., 2013), where the meaning representation appears to

“abstract” from the syntactic realizations, leaving no explicit correspondence

between elements of the meaning representation and the surface utterance.

Structural Complexity While parsing has long been dominated by tree-

structured representations, most broad-coverage semantic parsing targets

graph-structured representations. On one hand, graph-structured represen-

tations are more expressive and arguably more adequate for sentence-level

analysis beyond surface syntax and in particular for the representation of

semantic structure. For instance, reentrancy – the same semantic concept

can participate in multiple relations – requires multiple incoming edges to

a node in the semantic structure, which is beyond what a traditional tree

structure can represent. On the other hand, being structurally more complex

than trees, graph-structured representations exhibit higher degrees of non-

projectivity, reentrancies, and partial connectivity (Oepen et al., 2014; Damonte
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et al., 2017). This structural complexity calls for more general graph-oriented

parsing systems or extensions to traditional tree-oriented parsing systems.

Framework Balkanization Renewed interest in broad-coverage semantic

analysis has led to a surge of proposed new frameworks, e.g., AMR, UCCA,

SDP, and UDS. However, these new meaning representation frameworks

are balkanized, i.e., they have different formal and linguistic assumptions.

As a consequence, a variety of framework-specific parsing approaches has

been developed over the past years. For instance, the state-of-the-art SDP

parsers (Dozat and Manning, 2018; Peng et al., 2017a) are not directly trans-

ferable to AMR and UCCA because of the lack of explicit correspondence

between words in the sentence and nodes in the semantic graph. Reducing

framework-specific balkanization or developing a unifying parsing approach

have hardly been explored (with notable exceptions, e.g. Peng et al., 2017a;

Hershcovich et al., 2018; Stanovsky and Dagan, 2018; Oepen et al., 2019).

Limited Data While general-purpose meaning representations allow for

broader coverage and rich semantic information, annotating training data for

these representations is time consuming and requires expertise. The expen-

siveness of data annotation results in relatively limited amounts of labeled

data. For instance, the most recent official AMR corpus provides no more than

40,000 training instances. Such a small amount of training data becomes a

bottleneck in boosting the performance of semantic parsers. Recently several

solutions have been used to alleviate data sparsity, including linearization

(Peng et al., 2017b) and data augmentation (Konstas et al., 2017; Noord and

Bos, 2017b), but their use of neural network architectures is still limited.
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1.2 Thesis Outline

Following the challenges we just discussed, in Chapter 2 we first provide

summary background of meaning representation frameworks targeted in this

thesis and review related work on parsing for each; we then present PredPatt –

a pattern-based framework for predicate-argument extraction (Zhang et al.,

2017e). PredPatt automatically creates the skeleton of Universal Decomposi-

tional Semantics (UDS; White et al., 2016) from raw sentences.

After the background chapter, the rest of this thesis consists of two parts –

PART I CROSS-LINGUAL SEMANTIC PARSING and PART II BROAD-COVERAGE

SEMANTIC PARSING.

PART I focuses on semantic parsing in cross-lingual settings. We start with

representing predicate-argument structures of multiple natural languages in

a single shallow semantic analysis, and then move to a form of decomposi-

tional analysis, which is designed to allow systems to target varying levels of

structural complexity.

In Chapter 3, we present a series of solutions to cross-lingual open in-

formation extraction. We first introduce the problem cross-lingual open IE:

distilling facts from foreign language into shallow semantic representations

in another language. We then propose a joint solution based on a neural

sequence-to-sequence model. Next, we improve our approach via a novel

selective decoding mechanism, and a simple and effective training technique

Halo. Experimental results show that our approaches achieve consistent and

significant improvements over strong baselines in a variety of cross-lingual
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open IE scenarios. This chapter is based on our work in Zhang et al. (2017b);

Zhang et al. (2017c); Mei et al. (2018).

In Chapter 4, we introduce the task of cross-lingual decompositional se-

mantic parsing, which maps the content provided in the source language into

decompositional analysis based on the target language. We present: UDS

graph/linearized representations as the target semantic interface, a new evalu-

ation metric, and a Chinese-English decompositional semantic parsing dataset.

We propose an end-to-end learning approach with a coreference annotating

mechanism, surpassing strong baselines. We separately evaluate the coref-

erence mechanism and Semantic Proto-Role prediction, showing promising

results. This chapter is based on our work in Zhang et al. (2018).

PART II studies semantic parsing in monolingual settings, where we are

concerned with representing rich semantics of a wide range of monolingual

text, i.e., broad-coverage semantic parsing. We recast it as a sequence-to-graph

transduction problem, and propose a series of novel components into a typical

neural sequence transduction system.

In Chapter 5, we propose an attention-based model that treats AMR pars-

ing as sequence-to-graph transduction. Unlike most AMR parsers that rely

on pre-trained aligners, external semantic resources, or data augmentation,

our proposed parser is aligner-free, and it can be effectively trained with

limited amounts of labeled AMR data. Our experimental results outperform

all previously reported SMATCH F1 scores. We provide thorough analysis of

contributions made by each component in our model. This chapter is based

on our work in Zhang et al. (2019a).
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In Chapter 6, we unify different broad-coverage semantic parsing tasks

under a transduction paradigm, and propose an attention-based neural frame-

work that incrementally builds a meaning representation via a sequence of

semantic relations. Experiments conducted on three separate semantic parsing

tasks – AMR, SDP and UCCA – demonstrate that our framework improves

the state of the art on both AMR and UCCA, and is competitive with the state

of the art on SDP. This chapter is based on our work in Zhang et al. (2019b).

1.3 Contributions

The contributions of this thesis are summarized as below:

• We introduce PredPatt, a framework of extensible, interpretable, lan-

guage neutral predicate-argument extraction patterns. PredPatt bridges

the deep syntax of the Universal Dependency project to an initial shallow

semantic layer of Universal Decompositional Semantics.

• We pioneer the research direction of applying neural transduction ap-

proaches to cross-lingual semantic parsing. In particular, we propose

variants of neural sequence-to-sequence models as core components

of end-to-end solutions for cross-lingual semantic analysis that targets

varying levels of structural complexity.

• We unify broad-coverage semantic parsing tasks under a transduction

setting, and introduce a series of novel components into the transductive

setting that extend beyond what a typical neural machine translation

system would do on these tasks.
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Chapter 2

Background

2.1 Meaning Representations

The ultimate goal of meaning representations is to represent the complete

meaning of natural language text in a fully formal language that (1) has a

rich ontology of types, properties, and relations; and (2) supports automated

reasoning or execution. There is a long and rich history of meaning representa-

tions (Mooney, 2014), including several milestones as follow: Gottfried Leibniz

in 1685 developed a formal conceptual language, the characteristica universalis,

for use by an automated reasoner, the calculus ratiocinator. Whitehead and

Russell (1912) finalized the development of modern first-order predicate logic

that gave the logical form of human reasoning. Montague (1970) proposed the

marriage between lambda calculus and syntax, and developed the fundamen-

tal principle of semantic compositionality. Accompanying with the development

of meaning representations, we have seen (1) the rise and fall of manually

developed semantic interfaces for databases (Green Jr et al., 1961; Woods et al.,

1972; Winograd, 1972); (2) the renaissance of semantic parsing whose foci were
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automatic learning with statistical methods (Zelle and Mooney, 1996; Tang

and Mooney, 2001; Zettlemoyer and Collins, 2005), reducing the supervision

form from full meaning representations to weak supervision or unsupervised

learning (Clarke et al., 2010; Berant et al., 2013; Poon and Domingos, 2009),

and grounded learning that connected the use of language to specific domains

(MacMahon et al., 2006; Chen and Mooney, 2008; Artzi and Zettlemoyer,

2013); (3) the blossom of recent work on neural semantic parsing that requires

less hand-crafted feature engineering, but is much more data-hungry (Dong

and Lapata, 2016; Jia and Liang, 2016; Ling et al., 2016). In response to the

trend of semantic parsing, there is increasing interest in annotating more data

with meaning representations that are designed for a wide range of natural

language text, and have broader coverage in terms of semantic phenomena

(Banarescu et al., 2013; Oepen et al., 2014; Abend and Rappoport, 2013; White

et al., 2016; White et al., 2019). These meaning representation annotations are

expected to lead to new work in natural language understanding, resulting

in semantic parsers that are as ubiquitous as syntactic ones, and supporting

natural language generation by providing a logical semantic input. In section,

we provide summary background on the meaning representations we target,

and review the related work on parsing for each.

2.1.1 Abstract Meaning Representation

Abstract Meaning Representation (AMR; Banarescu et al., 2013) encodes

sentence-level semantics, such as predicate-argument information, reentran-

cies, named entities, negation and modality, into a rooted, directed, and
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usually acyclic graph with node and edge labels. AMR graphs abstract away

from syntactic realizations. For example, the sentences “he described her as a

genius”, “his description of her: genius”, and “she was a genius, according to

his description” are all assigned the same AMR. AMR makes extensive use

of PropBank framesets (Palmer et al., 2005). For example, AMR represents

a phrase like “bond investor” using the frame “invest-01”, even though no

verbs appear in the phrase. AMR is heavily biased towards English. It is not

an Interlingua. Figure 2.1 shows the AMR graph of “The boy wanted to go",

which is equivalent to the following logic format:1

∃w, b, g :instance(w, want-01) ∧ instance(g, go-01) ∧ instance(b, boy)

∧ arg0(w, b) ∧ arg1(w, g) ∧ arg0(g, b)

boy

want-01

go-01

instance

instance

instance

ARG0

ARG0

ARG1

Figure 2.1: The AMR graph of “The boy wanted to go".

Since its first general release in 2014, AMR has been a popular target of

data-driven semantic parsing, notably in two SemEval shared tasks (May, 2016;

May and Priyadarshi, 2017). Graph-based parsers build AMRs by identifying

1See Banarescu et al. (2013) for detail.
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concepts and scoring edges between them, either in a pipeline (Flanigan et

al., 2014), or jointly (Zhou et al., 2016; Lyu and Titov, 2018). This two-stage

parsing process limits the parser incrementality. Transition-based parsers

either transform dependency trees into AMRs (Wang et al., 2015; Wang et

al., 2016; Goodman et al., 2016), or employ transition systems specifically

tailored to AMR parsing (Damonte et al., 2017; Ballesteros and Al-Onaizan,

2017). Transition-based parsers rely on the pre-trained aligner to produce

the reference transitions. Grammar-based parsers leverage external semantic

resources to derive AMRs compositionally based on CCG rules (Artzi et al.,

2015), or SHRG rules (Peng et al., 2015). Another line of work uses neural

model translation models to convert sentences into linearized AMRs (Barzdins

and Gosko, 2016a; Peng et al., 2017b), but has to rely on data augmentation

to produce effective parsers (Noord and Bos, 2017b; Konstas et al., 2017).

Our approaches in this thesis differ from them in that they do not rely on

pre-trained aligners, and can be effectively trained without data augmentation.

2.1.2 Semantic Dependency Parsing

Semantic Dependency Parsing (SDP) was introduced in 2014 and 2015 Se-

mEval shared tasks (Oepen et al., 2014; Oepen et al., 2015). It is centered

around three semantic formalisms – DM (DELPH-IN MRS; Flickinger et al.,

2012; Oepen and Lønning, 2006), PAS (Predicate-Argument Structures; Miyao

and Tsujii, 2004), and PSD (Prague Semantic Dependencies; Hajič et al., 2012) –

representing predicate-argument relations between content words in a sen-

tence. Their annotations have been converted into bi-lexical dependencies,
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forming directed graphs whose nodes injectively correspond to surface lexical

units, and edges represent semantic relations between nodes. Figure 2.2 shows

an example DM graph. It can be characterized as a labeled, directed graph

G = (V, E, ℓV , ℓE) where V = {1, ..., n} is a set of nodes (which are in one-to-

one correspondence with the tokens of the sentence x = x1, ..., xn); E ⊆ V ×V

is a set of edges; and ℓV and ℓE are mappings that assign labels (from some

finite alphabet) to nodes and edges, respectively. See Oepen et al. (2014) for

detail.

A similar technique is almost impossible to apply to other crops .

BV

ARG1

top

ARG1

ARG1

ARG2

ARG3

ARG1

Figure 2.2: An example SDP:DM graph.

Most recent parsers for SDP are graph-based: Peng et al. (2017a); Peng

et al. (2018) use a max-margin classifier on top of a BiLSTM, with the factored

score for each graph over predicates, unlabeled arcs, and arc labels. Multi-task

learning approaches and disjoint data have been used to improve the parsing

performance. Dozat and Manning (2018) extend an LSTM-based syntactic

dependency parser to produce graph-structured dependencies, and carefully

tune it to the state of the art performance. Wang et al. (2018) extend the

transition system of Choi and McCallum (2013) to produce non-projective

trees, and use improved versions of stack-LSTMs (Dyer et al., 2015) to learn the

representation for key components. All of these are specialized for bi-lexical
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dependency parsing, whereas our solutions in this thesis are general enough to

produce both bi-lexical semantics graphs and other types of semantic graphs

that are less anchored to the surface utterance.

2.1.3 Universal Conceptual Cognitive Annotation

Universal Conceptual Cognitive Annotation (UCCA; Abend and Rappoport,

2013) targets a level of semantic granularity that abstracts away from syntactic

paraphrases in a typologically-motivated, cross-linguistic fashion. Sentence

representations in UCCA are directed acyclic graphs (DAG), where termi-

nal nodes correspond to surface lexical tokens, and non-terminal nodes to

semantic units that participate in super-ordinate relations. Edges are labeled,

indicating the role of a child in the relation the parent represents. Figure 2.3

shows an example UCCA DAG, representing the UCCA foundational layer.

The foundational layer views the text as a collection of Scenes. A Scene can

describe some movement or action, or a temporally persistent state. Table 2.1

shows the categories used by the example UCCA DAG in Figure 2.3. See

Abend and Rappoport (2013) for detail.

the film we saw yesterday

was wonderful
E C E

A A P D

A S

F C

Figure 2.3: An example UCCA graph.

The first UCCA parser is proposed by Hershcovich et al. (2017), where
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Abb. Category Short Definition

P Process The main relation of a Scene that evolves in time
(usually an action or movement).

S State The main relation of a Scene that does not evolve in
time

A Participant
A participant in a Scene in a broad sense (including
locations, abstract entities and Scenes serving as
arguments).

D Adverbial A secondary relation in a Scene (including temporal
relations).

C Center Necessary for the conceptualization of the parent unit
E Elaborator A non-Scene relation which applies to a single Center

F Function Does not introduce a relation or participant. Required
by the structural pattern it appears in.

Table 2.1: Categories used by the example UCCA graph.

they extend a transition system to produce DAGs. To leverage other semantic

resources, Hershcovich et al. (2018) is one of the few attempts to present

(lossy) conversion from AMR, SDP and Universal Dependencies (UD; Nivre

et al., 2016) to a unified UCCA-based DAG format. They explore multi-task

learning under the unified format. While multi-task learning improves UCCA

parsing results, it shows poor performance on AMR, SDP and UD parsing.

In contrast, different semantic parsing tasks in this thesis are formalized in a

unified transduction paradigm with no loss, and our approach achieves the

state-of-the-art or competitive performance on each task.

2.1.4 Universal Decompositional Semantics

Universal Decompositional Semantics (UDS; Reisinger et al., 2015; White et

al., 2016) addresses the brittleness of category-based systems in traditional
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Figure 2.4: An example Universal Decompositional Semantics graph.

semantic annotation frameworks by decomposing complex and often exclu-

sive categories into a set of semantic features (Dowty, 1989). Annotations of

these features take the form of many simple questions about words or phrases

(in context) that are easy to naïve native speakers to answer, thus allowing

annotations to be crowd-sourced while retaining high inter-annotator agree-

ment. Beside the ease of annotation, UDS is highly extensible – the natural of

decompositonal semantics retains the ability to capture feature configurations

that were not considered at design time. Reannotation after an overhaul of

the framework’s ontology is never necessary, since additional annotations

simply accrue to sharpen the framework’s ability to capture fine-grained se-

mantic phenomena. Now a broad coverage of linguistic phenomena have been

considered in the UDS dataset (White et al., 2019), including semantic roles

(Reisinger et al., 2015; White et al., 2016), entity types (White et al., 2016), event

factuality (White et al., 2016; Rudinger et al., 2018b), linguistic expressions

of generalizations about entities and events (Govindarajan et al., 2019), and
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temporal properties of and relations between events (Vashishtha et al., 2019).

UDS consists of three layers of annotations: (i) syntactic graphs built from

Universal Dependencies (UD); (ii) semantic graphs built from the predicate-

argument structures deterministically extracted by the PredPatt tool (White et

al., 2016; Zhang et al., 2017e) from UD; and (iii) semantic types for predicates,

arguments, and their relationships, derived from decompositional semantics.

Figure 2.4 shows an example UDS graph with all three layers of annotation.

Semantic types at the third layer of annotations have been modeled sepa-

rately: Rudinger et al. (2018b) employ linear-chain LSTMs and tree LSTMs to

predict event factuality; Rudinger et al. (2018a) introduce neural-Davisonian

framework to predict semantic proto-roles; Govindarajan et al. (2019) and

Vashishtha et al. (2019) leverage pre-trained encoders for linguistic expres-

sions of generalization and temporal relation prediction respectively. Recently

Stengel-Eskin et al. (2019) present a sequence-to-graph transductive model

for joint UDS parsing, which learns to extract both UDS graph structures and

attributes from natural language input. Comparing against a strong pipeline

system, the transductive parser performs comparably to the pipeline while

additionally learning to produce decompositional attribute scores.

2.2 PredPatt

In this section, we introduce PredPatt2, a pattern-based framework for predicate-

argument extraction. PredPatt defines a set of interpretable, extensible and

non-lexicalized patterns based on Universal Dependencies (UD, Marneffe

2PredPatt is publicly available at https://github.com/hltcoe/PredPatt
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et al., 2014), and extracts predicates and arguments through these manual

patterns. Figure 2.5 shows the predicates and arguments extracted by PredPatt

from the sentence: “Chris, the designer, wants to launch a new brand.”

(1) [Chris, the designer] wants [to launch a new brand]
(2) [Chris, the designer] to launch [a new brand]
(3) [Chris] be [the designer]

Figure 2.5: Predicates and arguments extracted by PredPatt.3

The underlying predicate-argument structure constructed by PredPatt is a

directed graph, where a special dependency ARG is built between a predicate

head token and its arguments’ head tokens, and the original UD relations

are retained within predicate phrases and argument phrases. For example,

Figure 2.6 shows the directed graph for the predicate-argument extraction (1)

and (2) in Figure 2.5: The predicates are colored blue in dotted cycles with

gray background. The arguments are colored purple in solid cycles. The

head tokens of predicates and arguments are underlined in bold. A special

dependency ARG is built between a predicate head token and its arguments

head tokens. The UD relations are kept within predicates and arguments. The

relations between predicate head tokens are also kept. The upper relations are

UD. The lower relations are ARG relations added by PredPatt.

Compared to other existing systems for predicate-argument extraction

(Banko et al., 2007; Fader et al., 2011; Angeli et al., 2015), the use of manual

language-agnostic patterns on UD makes PredPatt a well-founded component

3The predicates are colored blue, and the arguments are colored purple with brackets.
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Chris , the designer , wants to launch a new brand .

punct det

appos xcomp

mark amod

det

ARG ARG

ARG

ARG

Figure 2.6: Underlying predicate-argument structure constructed by PredPatt.

across languages. Additionally, the underlying structure constructed by Pred-

Patt has been shown to be a well-formed syntax-semantics interface for NLP

tasks: Zhang et al. (2017d) utilizes PredPatt to extract possibilistic propositions

in automatic common-sense inference generation. White et al. (2016) uses

PredPatt to help augmenting data with Universal Decompositional Semantics. In

this thesis, PredPatt used to generate training data for cross-lingual semantic

parsing.

However, at the time of this work, the evaluation of PredPatt had been

restricted to manually-checked extractions over a small set of sentences (White

et al., 2016), which lacked gold annotations to conduct an objective and repro-

ducible evaluation, and inhibited the updates of patterns in PredPatt.

In this section, we aim to conduct a large-scale and reproducible evaluation

of PredPatt by introducing a large set of gold annotations gathered from

PropBank (Palmer et al., 2005). We leverage these gold annotations to improve

PredPatt and compare it with other prominent systems. The evaluation results

demonstrate that we make a promising improvement on PredPatt, and it

significantly outperforms other comparing systems.
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2.2.1 Creating Gold Annotations

Open Information Extraction (Open IE) and Semantic Role Labeling (SRL)

(Carreras and Màrquez, 2005) are quite related: semantically labeled argu-

ments correspond to the arguments in Open IE extractions, and verbs often

match up with Open IE relations (Christensen et al., 2011). Lang and Lapata

(2010) has acknowledged that the SRL task can be viewed as a two stage pro-

cess of (1) recognizing predicates and arguments then (2) assigning semantics.

Therefore, predicate-argument extraction (i.e., Open IE) should primarily be

considered the same as the first of two stages of SRL, and expert annotated

SRL data would be an ideal resource for evaluating Open IE systems. This

makes PropBank (Palmer et al., 2005) a natural choice from which we can

create gold annotations for Open IE. Here, we choose to use expert annotations

from PropBank, as compared to the recent suggestion to employ non-expert

annotations as a means of benchmarking systems (Stanovsky and Dagan,

2016). Another advantage of choosing PropBank is that PropBank has gold

annotations for UD which lays the important groundwork for evaluating

UD-based patterns in PredPatt.

We create gold annotations for predicate-argument extraction by convert-

ing PropBank annotations on English Web Treebank (EWT) (LDC2012T13)

and the Penn Treebank II Wall Street Journal Corpus (WSJ) (Marcus et al.,

1994). These two corpora have all verbal predicates annotated, and are used to

evaluate PredPatt in different perspectives: EWT is the corpus where the gold

standard English UD Treebank is built over, which enables an evaluation and

analysis of PredPatt patterns; WSJ is used to evaluate PredPatt in a real-world
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scenario where we run SyntaxNet Parser4 (Andor et al., 2016) on the corpus

to generate automated UD parses as input of PredPatt.

Table 2.2 shows the statistics of the auto-converted gold annotations for

predicate-argument extraction on EWT and WSJ. We convert the PropBank

annotations for all verbal predicates in these two corpora, and ignore roles

of directional (DIR), manner (MNR), modals (MOD), negation (NEG) and

adverbials (ADV), as they aren’t extracted as distinct argument but instead are

folded into the complex predicate by PredPatt and other systems for predicate-

argument extraction (Banko et al., 2007; Fader et al., 2011; Angeli et al., 2015).

For EWT, we select 13,583 sentences that have the version 2.0 of the gold UD

annotations.5 The resulting annotations on these two corpora contain over

94K extractions.

Corpus #sentence #predicate #unique_verb #avg_arg_per_pred
EWT 13,583 21,479 4,336 2.0
WSJ 36,432 73,076 7,880 2.1

Table 2.2: Statistics of the gold annotations on EWT and WSJ.

2.2.2 Improving PredPatt

PredPatt is a pattern-based system, comprising an extensible set of clean, inter-

pretable linguistic patterns over UD parses. By analyzing PredPatt extractions

in comparison with gold annotations (Sec. 2.2.1), we are able to refine and

improve PredPatt’s pattern set. From the auto-converted gold annotations,

we create a held-out set by randomly sampling 10% sentences from EWT. We

4SyntaxNet Parser is trained on the UD Treebank which has no overlap with WSJ.
5English UD Treebank is available at: http://universaldependencies.org
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then update the existing PredPatt patterns and introduce new patterns by

analyzing PredPatt annotations on the held-out set.

PredPatt extracts predicates and arguments in four stages (White et al.,

2016): (1) predicate and argument root identification, (2) argument resolution,

(3) predicate and argument phrase extraction, and (4) optional post-processing.

We analyze PredPatt extraction in each of these stages on the held-out set, and

make 19 improvements to PredPatt patterns. Due to lack of space, we only

highlight one improvement for each stage below.

Fixed-MWE-pred: The UD version 2.0 introduces a new dependency relation

fixed for identifying fixed function-word “multiword expressions” (MWEs).

To accommodate this new feature, we add patterns to identify the MWE

predicate and its argument. As shown in Figure 2.7, the predicate root in this

case is the dependent of fixed that is tagged as a verb (i.e., “opposed”); the

root of its argument is the token which indirectly governs the predicate root

via the case and fixed relation (i.e., “one”).

Please use this new file as opposed to the one I sent earlier

fixed

fixed

case

det

acl:relcl

nsubj advmod

ARG

Figure 2.7: Example for add argument for fixed MWE predicates.

Cut-complex-pred: The existing patterns take clausal complements (ccomp

and xcomp) as predicatives of complex predicates in the argument resolution

stage, where the arguments of the clausal complement will be merged into

the argument set of their head predicate. For example, in the sentence “Chris,
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the designer, wants to launch a new brand”, PredPatt merges the argument “a

new brand” of the predicate “to launch” into the argument set of the complex

predicate “wants to launch”. As a result, only the complex predicate, “[Chris,

the designer] wants to launch [a new brand]”, will be extracted. It ignores the

possibility of the clausal complement itself being a predicate. Here, we add a

cutting option; when turned on, it will cut the complex predicate into simple

predicates as shown in Figure 2.5.

Prep-separation: By default, PredPatt considers prepositions to belong to

the predicate, while PropBank places preopositions within the span of their

corresponding argument. Either behavior may be preferable under different

circumstances, so we make preposition placement a new configurable option

of PredPatt.

Borrow-subj-for-conj-of-xcomp: PredPatt contains a post-processing option

for distributing a single nsubj argument over multiple predicates joined by a

conj relation. PredPatt also contains a pattern assigning subject arguments

to predicates introduced by open clausal complement (xcomp) relations, ac-

cording to the theory of obligatory control (Farkas, 1988). We introduce a

new post-processing option that combines these two patterns, allowing an

argument in subject position to be distributed over multiple xcomp predicates

that are joined by a conj relation, as illustrated in Figure 2.8.

2.2.3 Evaluation

We evaluate the original PredPatt (PredPatt v1) and the improved PredPatt

(PredPatt v2) on the English Web Treebank (EWT) and the Wall Street Journal
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They start firing mortars and shooting their AK-47’s in the air

xcomp conj nmod:poss
case

det

ARG ARG
ARG

Figure 2.8: Example for borrowing subject from the conjunction of open clausal
complement.

corpus (WSJ), and compare their performance with four prominent Open IE

systems: OpenIE 4,6 OLLIE (Mausam et al., 2012), ClausIE (Del Corro and

Gemulla, 2013), and Stanford Open IE (Angeli et al., 2015).

Precision-Recall Curve We compare PredPatt with four prominent Open IE

systems which are also built for predicate-argument extraction. To allow some

flexibility, we compute the precision and recall of different systems by run-

ning the scripts7 used in (Stanovsky and Dagan, 2016), where an automated

extraction is matched with a gold extraction based on their token-level over-

lap. Figure 2.9 and Figure 2.10 show the Precision-Recall Curves for different

systems on EWT and WSJ.8 When tested on EWT which has gold UD parses

(Figure 2.9), PredPatt v1 and v2 outperforms the other systems by a signif-

icant margin in both precision and recall. When tested on WSJ where only

automated UD parses are available (Figure 2.10), ClausIE achieves a recall

that is slightly better than PredPatt v1, but PredPatt v2 still shows the best

performance across all systems.

6OpenIE 4 is available at: https://github.com/allenai/openie-standalone.
7https://github.com/gabrielStanovsky/oie-benchmark.
8Studies of PredPatt confidence prediction have been done before, but the evaluated

system does not output them. In this evaluation, we assign 1.0 confidence score to all PredPatt
extractions.
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for different systems on WSJ w/ au-
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Extraction Head Agreement The rich underlying structure in PredPatt (see

Figure 2.6) contains head information for predicates and arguments, which

enables a precision-recall metric based on the agreement of head information.

Similar to He et al. (2015), we first match an automated predicate with a gold

predicate if they both agree on their head.9 With two matched predicates, we

then match an automated argument with a gold argument if the automated

argument head is within the gold argument span.

We evaluate the precision and recall by a loose macro measure: For the i-th

extractions that have two matched predicates, let the argument set of the gold

predicate be Ai, and the argument set of the automated predicate be Âi. The

number of matched arguments is represented by |Ai ∩ Âi|. Then the precision

is computed by Precision = 1
N ∑N

i=1 |Ai ∩ Âi|/|Âi| , and the recall is computed

by Recall = 1
N ∑N

i=1 |Ai ∩ Âi|/|Ai|. Table 2.3 shows the evaluation results of

PredPatt v1 and v2 on EWT and WSJ. PredPatt v2 modestly increases the

9In the experiment settings, the head of a gold predicate is the verb token in the predicate.
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precision by 2.3 on EWT and 0.9 on WSJ, and increases the recall by 1.6 on

EWT and 0.2 on WSJ.

EWT WSJ
PredPatt v1 PredPatt v2 PredPatt v1 PredPatt v2

Precision 77.5 79.8 (+2.3) 62.1 63.0 (+0.9)
Recall 88.0 89.6 (+1.6) 84.9 85.1 (+0.2)

Table 2.3: Precision and Recall based on the agreement of head information.

Statistics of Argument Span Relations Besides the precision-recall oriented

metrics, we impose another metric to further measure the argument span

relations. For the i-th extractions that have an automated predicate and a gold

predicate matched with each other, let an argument in the gold argument set

be α ∈ Ai, and an argument in the automated argument set β ∈ Âi. We cate-

gorize the automated extractions into four sets according to their arguments

relation to the gold arguments.

Ssame = {(Ai, Âi) | ∀α ∈ Ai.∃β ∈ Âi.span(α) = span(β)}
Ssuperset = {(Ai, Âi) | ∀α ∈ Ai.∃β ∈ Âi.span(α) ⊆ span(β)} \ Ssame

Ssubset = {(Ai, Âi) | ∀α ∈ Ai.∃β ∈ Âi.span(α) ⊇ span(β)} \ Ssame

Soverlap = {(Ai, Âi) | ∀α ∈ Ai.∃β ∈ Âi.span(α) ∩ span(β) ̸= ∅}\
(Ssame ∪ Ssuperset ∪ Ssubset)

Table 2.4 shows the proportion of PredPatt extractions in different sets.

As we expected, compared to WSJ, more extractions on EWT fall into Ssame,

which shows that PredPatt works better on gold UD parses. In contrast to

PredPatt v1, PredPatt v2 on EWT increases extractions in Ssame by 12.97%,

which contributes to the most increase of Ssubset; on WSJ, PredPatt v2 decreases

extractions in Ssubset by 13.89%, which leads the major increases of Ssame and

Ssuperset. There are still over 10% extractions not belonging to any of these four
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sets. Case analysis shows that the inconsistent extractions are mainly caused

by incorrect borrowing of arguments for compound predicates or predicates

under obligatory control, missing arguments for passive/active verbs that

act as adjectival modifiers, etc. These cases are not easily reachable via UD

analysis, but leave room for further improvement on PredPatt.

EWT WSJ
PredPatt v1 PredPatt v2 PredPatt v1 PredPatt v2

Same 63.77 76.74 (+12.97) 41.56 52.03 (+10.47)
Superset 2.74 4.15 (+1.41) 8.64 14.10 (+5.46)
Subset 18.31 5.82 (-12.49) 28.63 14.74 (-13.89)
Overlap 0.78 0.39 (-0.39) 2.16 1.06 (-1.10)
Other 14.40 12.90 (-1.50) 19.01 18.07 (-0.94)

Table 2.4: Proportion of PredPatt extractions in different sets.

2.3 Summary

In this chapter, we summarize the meaning representation frameworks tar-

geted in this thesis, and review related work for parsing each of these frame-

works. Then we introduce PredPatt, a pattern-based predicate-argument ex-

traction framework. We create a large-scale benchmark for predicate-argument

extraction by converting manual annotations from PropBank. Based on the

benchmark, we improve PredPatt patterns, and compare PredPatt with four

prominent Open IE systems. The comparison shows that PredPatt signifi-

cantly outperforms the other systems. PredPatt is used to provide shallow

semantics from raw sentences in Chapter 3 and 4.
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Part I

Cross-lingual Semantic Parsing
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Chapter 3

MT/IE: Cross-lingual Open
Information Extraction

3.1 Introduction

Suppose an English-speaking user is faced with the daunting task of distilling

facts from a collection of Chinese documents. One solution is to first trans-

late the Chinese documents into English using a Machine Translation (MT)

service, then extract the facts using an English-based Information Extraction

(IE) engine. Unfortunately, imperfect translations negatively impact the IE

engine, which may have been trained to expect natural English input (Sudo

et al., 2004). Another approach is to first run a Chinese-based IE engine and

then translate the results, but this relies on IE resources in the source language.

Such problems with pipeline systems compound when the IE engine relies on

parsers or other analytics as features.

We propose to solve the cross-lingual IE task with a joint approach. Further,

we focus on Open IE, which allows for an open set of semantic relations be-

tween a predicate and its arguments. Open IE in the monolingual setting has
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克里斯想造一艘船。

(a)

Chris Chriswants build

ARG ARG

ARG ARG

a boat

ARG

(b)

Figure 3.1: Example of input (a) and output (b) of cross-lingual Open IE.

shown to be useful in a wide range of tasks, such as question answering (Fader

et al., 2014), ontology learning (Suchanek, 2014), and summarization (Chris-

tensen et al., 2013). A variety of work has achieved compelling results at

monolingual Open IE (Banko et al., 2007; Fader et al., 2011; Angeli et al., 2015).

But we are not aware of efforts that focus on both the cross-lingual and open

aspects of cross-lingual Open IE, despite significant work in related areas, such

as cross-lingual IE on a closed, pre-defined set of events/entities (Sudo et al.,

2004; Parton et al., 2009; Ji, 2009; Snover et al., 2011; Ji et al., 2016), or boot-

strapping of monolingual Open IE systems in multiple languages (Faruqui

and Kumar, 2015; Kozhevnikov and Titov, 2013; Plas et al., 2014).

Inspired by the recent success of neural models in machine translation

(Kalchbrenner and Blunsom, 2013; Cho et al., 2014; Bahdanau et al., 2014),

syntactic parsing (Vinyals et al., 2015a; Choe and Charniak, 2016), and se-

mantic parsing (Dong and Lapata, 2016), we propose variants of sequence-to-

sequence models that enable end-to-end cross-lingual Open IE. Essentially,

we recast the problem as structured translation: the model encodes natural-

language sentences and decodes predicate-argument forms (Figure 3.1). We

show that the joint approach outperforms the pipeline on various metrics, and
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that neural models are critical for the joint approach because of their capability

in generating complex open IE patterns.

3.2 Cross-lingual Open IE Framework

Open IE involves the extraction of relations whose schema need not be speci-

fied in advance; typically the relation name is represented by the text linking

the arguments, which can be identified by manually-written patterns and/or

parse trees. We define our extractions based on PredPatt1 (White et al., 2016),

a lightweight tool for identifying predicate-argument structures with a set of

Universal Dependencies (UD) based patterns.

PredPatt represents predicates and arguments in a tree structure where

a special dependency ARG is built between a predicate head token and its

arguments’ head tokens, and original UD dependencies within predicate

phrases and argument phrases are kept. For example, Figure 3.1b shows a tree

structure identified by PredPatt from the sentence: “Chris wants to build a boat."

Our framework assumes the availability of a bitext, e.g. a corpus of Chinese

sentences and their English translations. We run PredPatt on the target side

(e.g. English) to obtain (Chinese sentence, English PredPatt) pairs. This is

used to train a cross-lingual Open IE system that maps directly from Chinese

sentence to English PredPatt representations. Besides the UD parser required

for running PredPatt on the target side, our framework requires no additional

resources.

Compared to existing Open IE (Banko et al., 2007; Fader et al., 2011; Angeli

1https://github.com/hltcoe/PredPatt
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et al., 2015), the use of manual patterns on Universal Dependencies means that

the rules are interpretable, extensible and language-agnostic, which makes

PredPatt a linguistically well-founded component for cross-lingual Open IE.

Note that our joint models are agnostic to the IE representation, and can be

adapted to other Open IE frameworks.

Next, we propose two methods based on neural sequence-to-sequence

variants to tackle cross-lingual Open IE.

3.3 Proposed Method I: Joint Seq2Seq

Our goal is to learn a model which directly maps a sentence input A in the

source language into predicate-argument structures output B in the target lan-

guage. Formally, we regard the input as a sequence A = x1, · · · , x|A|, and use

a linearized representation of the predicate-argument structure as the output

sequence B = y1, · · · , y|B|. While tree-based decoders are conceivable (Zhang

et al., 2016), linearization of structured outputs to sequences simplifies decod-

ing and has been shown effective in, e.g. Vinyals et al. (2015a), especially when

a model with strong memory capabilities (e.g. LSTM’s) are employed. Our

model maps A into B using a conditional probability which is decomposed as:

P(B | A) =
|B|
∏
t=1

P(yt | y1, · · · , yt−1, A) (3.1)
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3.3.1 Linearized PredPatt Representations

We begin by defining a linear form for our PredPatt predicate-argument

structures. To convert a tree structure such as Figure 3.1b to a linear sequence,

we first take an in-order traversal of every node (token). We then label each

token with the type it belongs to: p for a predicate token, a for an argument

token, ph for a predicate head token, and ah for an argument head token. We

insert parentheses to either the beginning or the end of an argument, and we

insert brackets to either the beginning or the end of a predicate. Figure 3.2

shows the linearized PredPatt for the sentence: “Chris wants to build a boat.".

[(Chris:ah) wants:ph [(Chris:ah) build:ph (a:a boat:ah)]]

Figure 3.2: Linearized PredPatt Output

To recover the predicate-argument tree structure, we simply build it recur-

sively from the outermost brackets. At each layer of the tree, parentheses help

recover argument nodes. The labels ah and ph help identify the head token of

a predicate and an argument, respectively. We define that an auto-generated

linearized PredPatt is malformed if it has unmatched brackets or parentheses,

or a predicate (or an argument) has zero or more than one head token.

3.3.2 Seq2Seq Model

Our sequence-to-sequence (Seq2Seq) model consists of an encoder which

encodes a sentence input A into a vector representation, and a decoder which

learns to decode a sequence of linearized PredPatt output B conditioned on

encoded vector.

32



We adopt a model similar to that which is used in neural machine trans-

lation (Bahdanau et al., 2014). The encoder uses an L-layer bidirectional

RNN (Schuster and Paliwal, 1997) which consists of a forward RNN read-

ing inputs from x1 to x|A| and a backward RNN reading inputs in reverse

from x|A| to x1. Let
−→
hl

i ∈ Rn denote the forward hidden state at time step i

and layer l; it is computed by states at the previous time-step and at a lower

layer:
−→
hl

i =
−→
f (
−−→
hl

i−1,
−−→
hl−1

i ) where
−→
f is a nonlinear LSTM unit (Hochreiter and

Schmidhuber, 1997). The lowest layer
−→
h0

i is the word embedding of the token

xi. The backward hidden state
←−
hl

i is computed similarly using another LSTM,

and the representation of each token xi is the concatenation of the top-layers:

ht = [
−→
hL

i

⊺
,
←−
hL

i

⊺
]
⊺

.

The decoder is an L-layer RNN which predicts the next token yi, given all

the previous words y<i = y1, · · · , yi−1 and the context vector ci that captures

the attention to the encoder side (Bahdanau et al., 2014; Luong et al., 2015),

computed as a weighted sum of hidden representations: ci = ∑l
j=1 aijhj. The

weight aij is computed by

aij =
exp (eij)

∑l
k=1 exp (eik)

eij = v⊺a tanh(
L

∑
l=1

W l
asl

i−1 + Uahj)

(3.2)

where va ∈ Rn, W l
a ∈ Rn×n and Ua ∈ Rn×2n are weight matrices.
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The conditional probability of the next token yi is defined as:

P(yi | y<i, A) = g(yi, sL
i , ci)

= softmax(UosL
i + Coci)[yi]

where Uo ∈ R|VB|×n and Co ∈ R|VB|×2n are weight matrices.[j] indexes jth

element of a vector. sL
i is the top-layer hidden state at time step i, computed

recursively by sl
i = f (sl

i−1, sl−1
i , ci) where s0

i = W B[yi−1] is the word vector of

the previous token yi−1, with W B ∈ R|VB|×n being a parameter matrix.

Training: The objective function is to minimize the negative log likelihood of

the target linearized PredPatt given the sentence input:

minimize− ∑
(A,B)∈D

|A|
∑

i
log P(yi | y<i, A) (3.3)

where D is the batch of training pairs, and P(yi | y<i, A) is computed by

Eq.(3.3).

Inference: We use greedy search to decode tokens one by one:

ŷi = argmax
yi∈VB

P(yi|ŷ<i, A) (3.4)

3.4 Proposed Method II: Selective Decoding

We now show a different formulation of the cross-lingual Open IE task in

Figure 3.3. In the above section, we formalize the task as a sequence-to-

sequence learning problem by converting the target facts in the tree structure

(Figure 3.3c) into a linear form called linearized PredPatt (Figure 3.3d), and
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Figure 3.3: Example of cross-lingual open IE: Chinese input text (a), English transla-
tion (b), English predicate-argument information (c), linearized PredPatt output (d)
and output with separated predicate and argument labels (e).

employs a standard encoder-decoder model to address the problem (from Fig-

ure 3.3a to Figure 3.3d). In the linearized PredPatt (Figure 3.3d), special labels

are appended to tokens as type indications. Brackets and parentheses have

to be inserted to delimit predicate and argument spans. Such a workaround

could expand the vocabulary space and increase the burdens on the decoder,

which is not ideal for sparse data scenarios and limits the overall performance.

To alleviate this issue, in the second method we reformulate cross-lingual

open IE as a sequence generation and labeling problem (from Figure 3.3a to

Figure 3.3e) by separating the predicate and argument labels from the target
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linearized PredPatt, and removing unnecessary parentheses. We propose a

novel encoder-decoder model which employs a selective decoding mechanism

to explicitly model the sequence labeling as well as the sequence generation

process. Compared to the first proposed method, this new method substan-

tially reduces the vocabulary space, eases the burden on the decoder, and

leads to a significant gain of performance. The natural of the selective de-

coding mechanism enables a joint training strategy that optimizes sequence

generation and labeling simultaneously. In addition, we introduce an adapted

beam search algorithm to further improve the prediction quality.

3.4.1 Problem Formulation

Formally we want to directly map a sentence input X in the source language

into a sentence Y in the target language, and simultaneously label each token

in Y with type information T. For cross-lingual open IE, the types are predicate

and argument. It is important to label types because they are used to annotate

predicates and arguments in the generated tokens. We regard the input as a

sequence X = x1, · · · , x|X|, and the output as two sequences (Y, T): (1) the

sentence in target language Y = y1, · · · , y|Y|, and (2) the type information

T = t1, · · · , t|Y|, where ti ∈ T is the label for the token yi, and |X| and |Y|
are the length of the sequence X and Y respectively. Our model maps X into

(Y, T) using a conditional probability which is decomposed as:
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P(Y, T | X) = ∏|Y|
i=1 P(yi, ti | y<i, t<i, X)

=
|Y|
∏
i=1

P(yi | y<i, t≤i, X)P(ti | y<i, t<i, X) (3.5)

where y<i = y1 · · · yi−1 and t≤i = t1 · · · ti.

Equation (3.5) can be interpreted as at each decoding time step, the model

first decides which type (label) of tokens to generate, and then generates a

token for that type.

3.4.2 Selective Decoding Model

To learn the factored conditional probabilities as shown in Equation (3.5), we

propose a novel encoder-decoder model with the selective decoding mecha-

nism: on the encoder side, an input sentence X is encoded into vector repre-

sentations; on the decoder side, the selective decoding mechanism employs

multiple decoders each of which learns the conditional probability of decod-

ing a specific type of token (i.e., P(yi | y<i, t≤i, X)), and a selector learning to

decide which type of decoder to use (i.e., P(ti | y<i, t<i, X)) at each decoding

time step.

Figure 3.4 illustrates the selective decoding process for the example shown

in Figure 3.3e. s0 is the initial decoder hidden state initialized by the last

hidden state of the encoder. Special tokens ⟨bos⟩ and ⟨eos⟩ are added to the

beginning and the end of the sequence to indicate the start and the finish

of decoding. The connections at each decoding time step are dynamically

37



Soldiers

started

Soldiers

firing

mortars

<eos>

s0
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Predicate
Decoder

Argument
Decoder

PA A P PA

Selector

Figure 3.4: Selective decoding process.
(Brackets and attention layers are omitted.)

changing according to the decision of the selector. Specifically, at the decoding

time step i, firstly the selector on the top decides to use which type of decoder

Dti ∈ {DP, DA}2, and then the decoder Dti decodes the token yi which is

naturally given the label ti.

In addition to distinguish between labels, the multiple decoders used by

the selective decoding mechanism has two prominent advantages over the sin-

gle standard RNN decoder: (1) Multiple decoders learn different conditional

probability distributions for predicate and argument generation respectively.

For instance, given the same input token "wanted", the predicate decoder

would like to next generate tokens such as "to" and "by" which starts a prepo-

sitional phrase, whereas the argument decoder would be in favor of tokens

such as "a" and "him" which starts a direct object. (2) Multiple decoders reduce

the decoder vocabulary size, which eases the burden of sequence generation.

Moreover, we propose an efficient architecture that supports batch training of

2DP stands for the predicate decoder, and DA for the argument decoder.
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the model. The details of the architecture are described in the Decoder with

Selective Decoding section.

Encoder The encoder employs a bi-directional RNN (Schuster and Paliwal,

1997) to encode the input sequence X = x1, · · · , x|X| into a sequence of hidden

states h = h1, · · · , h|X|. Each hidden state hi in h is a concatenation of a

left-to-right hidden state
−→
hi ∈ Rn and a right-to-left hidden state

←−
hi ∈ Rn,

hi =

⎡
⎢⎢⎣

←−
h i

−→
h i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

←−
f (xi,

←−
h i+1)

−→
f (xi,

−→
h i−1)

⎤
⎥⎥⎦ ,

where
←−
f and

−→
f are two L-layer stacked LSTMs units (Hochreiter and

Schmidhuber, 1997).

Decoder with Selective Decoding Unlike the single standard RNN decoder,

which recurrently uses the same decoder to generate tokens, our model dy-

namically selects different decoders at each decoding time step to generate

tokens (Figure 3.4). However, since the decoding path may be different for

each input sequence X, directly running the selective decoding process suffers

from a key technical issue: it does not support batched computation, making

them slow and unwieldy for large-scale NLP tasks (Bowman et al., 2016).

To address this issue, we introduce a general decoding architecture that

is applicable to all selective decoding processes. The detailed connection in

the architecture is shown in Figure 3.5. At each decoding time step, the model

feeds the input token and the previous hidden state to all types of decoders,

and use a mask vector created by the selector to select the decoder output to

generate tokens and update the hidden state.
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Figure 3.5: Detailed connection at a decoding step.
(Attention layers are ommited.)

Formally, let si ∈ Rn denote the hidden state at decoding time step i. The

last left-to-right hidden state
−→
h |X| from the encoder is used to initialize the

first hidden state s0 in the decoder.

At the decoding time step i, given the sequence of encoder hidden states h

and the previous decoder hidden state si−1, the selector computes the condi-

tional probability of ti (i.e., the type of decoder to use) as:

P(ti | y<i, t<i, X) = g(ti, si−1, h) = softmax(Uosi−1 + Coci−1 + bo)[ti], (3.6)

where Uo ∈ R|T |×n, Co ∈ R|T |×n and bo ∈ R|T | are weight matrices and bias.3

[ti] indexes the element of a vector that corresponds to the type ti.

The context vector ci−1 captures the attention to the encoder side (Bah-

danau et al., 2014; Luong et al., 2015), computed as a weighted sum of encoder

3|T | is the number of token types. In the example shown in Figure 3.5, T = {P, A}, and
|T | = 2.
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hidden states: ci−1 = ∑|X|j a(i−1)jhj. The weight a(i−1)j is computed by:

a(i−1)j =
exp (score(si−1, hj))

∑|X|j′=1 exp (score(si−1, hj′))
, (3.7)

where score(si−1, hj) = s⊺i−1Wahj, and Wa ∈ Rn×2n is a transform matrix.

According to the selector output P(ti | y<i, t<i, X), a mask vector mi is

created, which is used to mask out the decoders’ hidden states,

mi[ti] =

⎧
⎪⎪⎨
⎪⎪⎩

1, if ti = argmax
t′i∈T

P(t′i | y<i, t<i, X)

0, otherwise

Then the hidden state si for the decoding time step i is computed by:

si = ∑
ti∈T

mi[ti] fti(yi−1, si−1, ci)

where ci is the context vector capturing the attention, computed in the same

way as Equation (3.7). fti is L-layer stacked LSTMs for the type ti. In Figure 3.5,

there is an L-layer stacked LSTMs for generating predicate tokens fP, and

another L-layer stacked LSTMs for generating argument tokens fA. They have

untied parameters.

The conditional probability of the token yi with the type ti is defined as:

P(yi | y<i, t≤i, X) = g′(yi−1, si−1, h, mi) = softmax(U′osi + C′oci + b′o)[yi],
(3.8)

where U′o ∈ R|V|×n, C′o ∈ R|V|×n and bo ∈ R|V| are weight matrices and bias.4

Training In the training procedure, our optimization objective is to minimize

4|V| is the vocabulary size of the target language.
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the negative log-likelihood of the sequence Y and its type information T given

the input sequence X over the training data, defined as:

minimize− ∑
(X,Y,T)∈D

log P(Y, T | X)

According to Equation (3.5), the log-likelihood log P(Y, T | X) can be decom-

posed as:

|Y|
∑
i=1

[log P(yi | y<i, t≤i, X) + log P(ti | y<i, t<i, X)],

where P(yi | y<i, t≤i, X) models the sequence generation process, and P(ti |
y<i, t<i, X) models the sequence labeling process. They are computed by

Equations (3.8) and (3.6) respectively. The decomposition of the log-likelihood

into these two parts enables a joint optimization for the sequence generation

and labeling process simultaneously.

We use the Adam optimizer (Kingma and Ba, 2014) and mini-batch gra-

dient to solve this optimization problem. To prevent overfitting, we apply

dropout operators (Srivastava et al., 2014) to non-recurrent connections be-

tween LSTM layers.

Inference In the inference procedure, we predict the sequence Y and its type

information T for an input sequence X according to:

(Ŷ, T̂) = argmax
(Y′,T′)∈V |Y′ |×T |Y′ |

P(Y′, T′ | X)

V |Y′| × T |Y′| is the set of all possible (Y′, T′) pairs. And (Ŷ, T̂) can be directly

converted to the form of linearized PredPatt which is used for evaluation.
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However, it is impractical to iterate over all these (Y′, T′) pairs during

inference. Instead, we use beam search to generate tokens and labels. The

beam is used to increase the search space for the sequence Y in the target

language. At each decoding time step, we first greedily select the type of

decoder, and then generate candidate tokens from the selected decoder to

update the beam. When the special token ⟨eos⟩ is generated, we remove the

candidate sequence from the beam.

3.5 Halo: Learning Semantics-Aware Representa-
tions

mortars:afiring:pstarted:p ?:p
?:a

output layer

decoder unit

hidden space

Figure 3.6: Visualization of Halo method.

In terms of training, beside maximum likelihood estimation (MLE), we

propose Halo – a semantics-aware representation learning method for cross-

lingual Open IE. As each member in the target vocabulary is essentially either

predicate or argument, a random perturbation on the hidden state should still

be able to yield a token with the same semantic structure tag. This inductive

bias motivates an extra term in training objective, as shown in Figure 3.6,

which enforces the surroundings of any learned hidden state to generate

tokens with the same semantic structure tag (either predicate or argument) as
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the centroid. We call this technique Halo, because the process of each hidden

state taking up its surroundings is analogous to how the halo is formed

around the sun. The method is believed to help the model generalize better, by

learning more semantics-aware and noise-insensitive hidden states without

introducing extra parameters.

Proposed Learning method Our method adopts a property of this task—the

vocabulary V is partitioned into P , set of predicates that end with “:p”, and

A, set of arguments that end with “:a”. As a neural model would summarize

everything known up to step t into hidden state ht, would a perturbation h′t

around ht still generate the same token yt? This bias seems too strong, but

we can still reasonably assume that h′t would generate a token with the same

semantic structure tag (i.e. a predicate or argument). That is, the prediction

made by h′t should end with “:p” if yt is a predicate, and with “:a” otherwise.

This inductive bias provides us with another level of supervision. Suppose

that at step t, a neighboring h′t is randomly sampled around ht, and is then

used to generate a distribution p′t. Then we can get a distribution q′t over

C = {predicate, argument}, by summing all the probabilities of predicates

and those of arguments:

q′t,predicate = ∑
v∈P

p′t,v (3.9a)

q′t,argument = ∑
v∈A

p′t,v (3.9b)

This aggregation is shown in Figure 3.7. Then the extra objective is ℓ′ =

∑T
t=1 log q′t,ct

, where ct = predicate if the target token yt ∈ P (i.e. ending with

“:p”) and ct = argument otherwise.
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P
v2P pt,v
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v2A pt,v
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qt

| {z } | {z }

V

C

Figure 3.7: Visualization of how q (distribution over C) is obtained by aggregating p
(distribution over V).

Therefore, we get the joint objective to maximize by adding ℓ and ℓ′:

ℓ+ ℓ′ =
T

∑
t=1

log pt,yt +
T

∑
t=1

log q′t,ct
(3.10)

which enables the model to learn more semantics-aware and noise-insensitive

hidden states by enforcing the hidden states within a region to share the same

semantic structure tag.5

Sampling Neighbors Sampling a neighbor around ht is essentially equivalent

to adding noise to it. Note that in a LSTM decoder that previous work used,

ht ∈ (−1, 1)D because ht = ot ⊙ tanh(ct) where ot ∈ (0, 1)D and tanh(ct) ∈
(−1, 1)D. Therefore, extra work is needed to ensure h′t ∈ (−1, 1)D. For this

purpose, we follow the recipe6:

• Sample h′′t ∈ (−1, 1)D by independently sampling each entry from an

uniform distribution over (−1, 1);

• Sample a scalar λt ∈ (0, 1) from a Beta distribution B(α, β) where α and

5One can also sample multiple, rather than one, neighbors for one hidden state and then
average their log q′t,ct

. In our experimental study, we only try one for computational cost and
found it effective enough.

6Alternatives do exist. For example, one can transform ht from (−1, 1)D to (−∞, ∞)D, add
random (e.g. Gaussian) noise in the latter space and then transform back to (−1, 1)D. These
tricks are valid as long as they find neighbors within the same space (−1, 1)D as ht is.
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β are hyperparameters to be tuned;

• Compute h′t = ht + λt(h′′t − ht) such that h′t ∈ (−1, 1)D lies on the line

segment between ht and h′′t .

Note that the sampled hidden state h′t is only used to compute q′t, but not

to update the LSTM hidden state, i.e., ht+1 is independent of h′t.

Roles of Hyperparameters The Halo technique adds an inductive bias into

the model, and its magnitude is controlled by λt:

• λt ∈ (0, 1) to ensure h′t ∈ (−1, 1)D;

• λt → 0 makes h′t → ht, thus providing no extra supervision on the

model;

• λt → 1 makes h′t uniformly sampled in entire (−1, 1)D, and causes

underfitting just like a L-2 regularization coefficient goes to infinity.

We sample a valid λt from a Beta distribution with α > 0 and β > 0, and

their magnitude can be tuned on the development set:

• When α→ 0 and β is finite, or α is finite and β→ ∞, we have λt → 0;

• When α→ ∞ and β is finite, or α is finite and β→ 0, we have λt → 1;

• Larger α and β yield larger variance of λt, and setting λt to be a constant

is a special case that α→ ∞, β→ ∞ and α/β is fixed.

Besides α and β, the way of partitioning V also serves as a knob for tuning

the bias strength. Although on this task, the predicate and argument tags

naturally partition the vocabulary, we are still able to explore other possibil-

ities. For example, an extreme is to partition V into |V| different singletons,
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meaning that C = V—a perturbation around ht should still predict the same

token. But this extreme case does not work well in our experiments, verifying

the importance of the semantic structure tags on this task.

3.6 Related Work

The models we propose in this paper are adapted from the RNN encoder-

decoder architectures which have been successfully applied to a wide range of

NLP tasks such as machine translation (Kalchbrenner and Blunsom, 2013; Cho

et al., 2014; Bahdanau et al., 2014), image description generation (Karpathy

and Fei-Fei, 2015; Vinyals et al., 2015b), syntactic parsing (Vinyals et al., 2015a),

question answering (Hermann et al., 2015), summarization (Rush et al., 2015),

and semantic parsing (Dong and Lapata, 2016).

The selective decoding mechanism can be viewed as having different

types of decoders stacking together and adding a hard gate to the RNN unit,

through which the bit of information will be either totally kept or dropped. It

may seem redundant since the RNN gated unit already has the sophisticated

gating mechanism such as the GRU unit (Cho et al., 2014) and the LSTM

unit (Hochreiter and Schmidhuber, 1997). However, we think that the selective

decoding mechanism is a complement to the gated unit: rather than having

a soft pointwise control, the selective decoding mechanism adopts a hard

vectorwise control to explicitly select a certain type of information which

corresponds to the predicate or the argument by keeping one and dropping

the others, whereas the GRU/LSTM gated unit itself learns to memorize

long short-term dependencies. Similar mechanisms have been used in neural
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machine translating (Tu et al., 2016) and image caption generation (Xu et al.,

2015) to explicitly control the influence from source or target contexts. The

experiments in § 3.7 also confirms our point: our model using the selective

decoding mechanism significantly improves the performance, compared to

the standard encoder-decoder model.

Regarding to open IE systems for generating training data, PredPatt has

shown promising performance on large-scale open IE benchmarks (Zhang et

al., 2017e). Compared to other open IE systems (Banko et al., 2007; Fader et al.,

2011; Angeli et al., 2015), PredPatt uses manual language-agnostic patterns on

UD, which makes it a well-founded component across languages. Addition-

ally, the underlying structure constructed by PredPatt has been shown to be a

well-formed syntax-semantics interface (Zhang et al., 2017d).

Our proposed learning method Halo can be understood as a data augmen-

tation technique (Chapelle et al., 2001; Van der Maaten et al., 2013; Srivastava

et al., 2014; Szegedy et al., 2016; Gal and Ghahramani, 2016). Such tricks

have been used in training neural networks to achieve better generalization,

in applications like image classification (Simard et al., 2000; Simonyan and

Zisserman, 2015; Arpit et al., 2017; Zhang et al., 2017a) and speech recogni-

tion (Graves et al., 2013; Amodei et al., 2016). Halo differs from these methods

because 1) it makes use of the task-specific information—vocabulary is par-

titioned by semantic structure tags; and 2) it makes use of the human belief

that the hidden representations of tokens with the same semantic structure

tag should stay close to each other.
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3.7 Experiments

We describe the data for evaluation, hyperparameters, comparing approaches

and evaluation results.7

3.7.1 Hyperparameters

Our proposed models are trained using the Adam optimiser (Kingma and

Ba, 2014), with mini-batch size 64 and step size 200. Both encoder and de-

coder have 2 layers and hidden state size 512, but different LSTM parameters

sampled from U (-0.05,0.05). Vocabulary size is 40K for both sides. Dropout

(rate=0.5) is applied to non-recurrent connections (Srivastava et al., 2014).

Gradients are clipped when their norm is bigger than 5 (Pascanu et al., 2013).

We use sampled softmax to speed up training (Jean et al., 2015). The number

of epochs is 20. Early stopping is used to avoid overfitting. The beam size is

5. Before feeding into the encoder, we reverse the input sentences (Sutskever

et al., 2014).

In experiments of Halo, instead of using the full vocabularies, we set a

minimum count threshold for each dataset, to replace the rare words by a

special out-of-vocabulary symbol. These thresholds were tuned on dev sets.

The Beta distribution is very flexible. In general, its variance is a decreasing

function of α + β, and when α + β is fixed, the mean is an increasing function

of α. In our experiments, we fixed α + β = 20 and only lightly tuned α on dev

sets. Optimal values of α stay close to 1.

7The code is available at https://github.com/sheng-z/cross-lingual-open-ie.
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3.7.2 Chinese-English Open IE
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Figure 3.8: Data Statistics: (a) Number of data pairs with respect to the lengths of
English linearized PredPatt; (b) Boxplot of numbers of English predicate with respect
to the lengths of English linearized PredPatt.

Data We choose Chinese as the source language and English as the target

language. To prepare the data for evaluation, we first collect about 2M

Chinese-English parallel sentences8. We then tokenize Chinese sentences

using Stanford Word Segmenter (Chang et al., 2008), and generate English

linearized PredPatt by running SyntaxNet Parser (Andor et al., 2016) and

PredPatt (White et al., 2016) on English sentences. After removing long se-

quences (length>50), we result in 990K pairs of Chinese sentences and English

linearized PredPatt, which are then randomly divided for training (950K),

validation (10K) and test (40K). Figure 3.8 shows the statistics of the data.

Note that in general, the linearized PredPatt sequences are not short, and can

contain multiple predicates.

Comparisons We compare the following methods: (1) Pipeline-S consists of

a Moses system (Koehn et al., 2007) that translates Chinese sentence to English
8The data comes from the GALE project (Cohen, 2007); the largest bitexts are LDC2007E103

and LDC2006G05
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sentence, followed by SyntaxNet Parser (Andor et al., 2016) for Universal

Dependency parsing on English, and PredPatt (White et al., 2016) for predicate-

argument identification; (2) Pipeline-N is the same as Pipeline-S except that

the Moses system is replaced by OpenNMT (Klein et al., 2017), a neural

machine translation system. (3) Joint Moses trains a phrase-based machine

translation system Moses directly on on the Chinese-English Open IE dataset;

(4) Joint Seq2Seq trains a standard encoder-decoder model on the same

dataset; (5) Halo trains a standard encoder-decoder model using Halo; and (6)

Selective Decoding employs the proposed selective decoding mechanism in

the encoder-decoder architecture.

Evaluation Metrics We regard the generation of linearized PredPatt or lin-

earized predicates9 as a translation problem, and use BLEU score (Papineni

et al., 2002) for evaluation. We also evaluate predicates and arguments in the

same vein as event detection evaluation using the token-level F1 score (Liu

et al., 2015). Token-level F1 gives partial credits to partial matches.

Evaluation using BLEU Table 3.1 shows the cased BLEU scores of linearized

PredPatt and linearized predicates on the test set. Except Joint Moses, all

other joint approaches based on neural Seq2Seq variants surpass pipeline

approaches. Joint Seq2Seq outperforms the best pipeline (Pipeline-N) by 0.91

BLEU for linearized PredPatt and 2.96 BLEU for linearized predicates. Halo

and Selective Decoding further improve the performance by a significant

margin. The best performance is from Selective Decoding: 23.88 BLEU for

9In linearized predicates, arguments are replaced by placeholders. For example, the
linearized PredPatt in Figure 3.3d becomes “[ ?arg wants:ph Sth:= [ ?arg build:ph ?arg ] ]” after
replacement.
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linearized PredPatt and 25.42 BLEU for linearized predicates.

Approach Linearized
PredPatt

Linearized
Predicate

Pipeline-S 17.19 17.24
Pipeline-N 18.03 18.59
Joint Moses 18.34 16.43
Joint Seq2Seq 18.94 21.55
Halo 23.18 -
Selective Decoding 23.88 25.42

Table 3.1: Evaluation results (BLEU) of linearized PredPatt and linearized predicates
on the test set.

Selective Decoding explicitly models sequence generation and sequence

labeling, which enables a standalone evaluation of the sequence generation

process (i.e., the final output without predicate and argument labels). To

make a baseline comparison, we train an OpenNMT system (Klein et al., 2017)

directly on the same data ignoring the labels.

OpenNMT Selective Decoding

24.92 25.16

Table 3.2: Evaluation results (BLEU) of sequence generation on the test set.

Table 3.2 shows the BLEU score of sequence generation on the test set.

Selective Decoding achieves higher BLEU than OpenNMT. It demonstrates that

the selective decoding mechanism learning with extra labels helps improve

the quality of sequence generation. We also notice that the BLEU score (25.16

in Table 3.1) of the final linearized PredPatt from Selective Decoding is even

higher than OpenNMT (24.92 in Table 3.2). Hence, we can draw a conclusion
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that simply placing a labeler atop the OpenNMT system to tackle the cross-

lingual open IE problem will not narrow the gap in BLEU between itself and

our Selective Decoding approach.

Approach Predicate Argument

Pipeline-S 24.24 33.54
Pipeline-N 24.41 33.51
Joint Moses 25.11 38.90
Joint Seq2Seq 25.79 34.44
Halo 30.85 41.23
Selective Decoding 31.71 40.81

Table 3.3: Evaluation results (F1) of predicates and arguments on the test set.

Evaluation using F1 We compute the token-level F1 score (Liu et al., 2015) of

predicates and arguments. As shown in Table 3.3, Halo and Selective Decoding

substantially improves the F1 score of both predicates and arguments over the

baselines. They both outperform the baselines by over 5% F1 for predicates

and 6% F1 for arguments.

Pipeline-S Pipeline-N Joint Moses Joint Seq2Seq Sel. Decoding

5,965 6,014 33,178 557 53

Table 3.4: Number of unrecoverable outputs.

Recoverability We compute the number of the linearized PredPatt outputs

from which the tree structure representation can not be recovered, including

the empty outputs and the outputs which have unmatched brackets, or have

zero or multiple heads for an argument or a predicate. Table 3.4 shows the

results: Around 15% of pipeline outputs are empty. Joint Moses generates

no empty output, but a large amount (84%) of its outputs is malformed. In
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contrast, Joint Seq2Seq generates very few malformed ones (1%). Selective

Decoding further reduces the number of unrecoverable outputs by one order

of magnitude (0.1%).

Analysis We analyze the difference between Selective Decoding and the pre-

vious best approach Joint Seq2Seq through a plot of BLEU scores for the

linearized PredPatt on the test set with respect to the lengths of the reference.

As shown in Figure 3.9, when the reference length is greater than 20, the

linearized PredPatt generated by Selective Decoding gets notably better BLEU

scores, especially for the reference length around 30. However, when the

reference length is shorter than 11, the performance of Selective Decoding

drops below the Joint Seq2Seq approach.
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Figure 3.9: BLEU scores of the linearized PredPatt on the test set w.r.t. the lengths of
the references.

To explain this performance drop, we randomly sample an example from

the test set, where the reference length is shorter than 11, and the BLEU score

of the linearized PredPatt generated by Joint Seq2Seq is higher than Selective
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Decoding. The example is shown in Table 3.5.

Input sentence and its English translation:

我哪怕有千分之一的希望呢 ,我死活都要给他做最
后的
(Even if there was only a one thousandth of a hope , er , live or
die I would give him my all.)

Reference10:

(1) (I) would give (him) (my all)

Selective Decoding:

(1) Even if (we) have (a _UNK per cent hope)

(2) uh , (I) would have SOMETHING11

(3) SOMETHING := (I) give (him) (the final thing)

Joint Seq2Seq:

(1) (I) wish (everyone) (last hope)

Table 3.5: Example outputs with the reference length shorter than 11.

In this example (Table 3.5), the Chinese input sentence has a grammatical

error: the object modified by “最后的” is missing. Additionally, the reference

linearized PredPatt output in this example is incomplete: the fact related to

the concessive clause is missing. Although here Joint Seq2Seq gets the better

BLEU score against the incomplete reference, Selective Decoding is able to

better generlize over the train data: the facts it generates are much closer to

the original input sentence, and even better than the reference.

Another example where the reference length is greater than 20 is shown in

10The predicate tokens are colored blue, and the argument tokens are colored purple. Head
tokens are underlined in bold. Token labels and brackets are omitted.

11“SOMETHING” is a special argument used to indicate that the argument is a proposition.
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Input sentence and its English translation:
结果 ,民主党失去了列举布什 “罪状 "的良机 ,
(As a result, the Democratic party lost a good opportunity to list
the ‘ charges ’ against Bush.

Reference:

(1) As (a result) , (the Democratic party) lost (a good opportunity)

(2) (a good opportunity) list (the ‘ charges ’ against Bush)

Selective Decoding:

(1) As (a result) , (the Democratic Party) lost (the good opportunity)

(2) (the good opportunity) cite (Bush)

Joint Seq2Seq:

(1) (The result) is SOMETHING

(2) SOMETHING := (the Democratic Party) lost (his opportunity)

(3) (his opportunity) give (him) (good opportunity)

Table 3.6: Example outputs with the reference length longer than 20.

Table 3.6. In this example, Selective Decoding generates the same number of

facts as the reference, and the meaning of the facts is closer to the reference

than Joint Seq2Seq: though not perfect, Selective Decoding captures “列举布

什 ‘ 罪状 ’” (“list the ‘charges’ against Bush”) by generating “cite (Bush)",

whereas Joint Seq2Seq fails to generate any thing related.

3.7.3 Low-resource Scenarios

One of the goals of cross-lingual open IE is to extract facts from languages for

which few NLP resources and tools are available, and represent the facts in the

language for which plenties of resources and tools can be used. Therefore, we
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extend the experiments to cross-lingual open IE from 5 languages to English

in a low-resource setting.

Task #Train #Valid #Test

uzb-eng 31,581 1,373 1,373

tur-eng 20,774 903 903

amh-eng 12,140 527 527

som-eng 10,702 465 465

yor-eng 5,787 251 251

Table 3.7: Number of data used for cross-lingual open IE in low-resource scenarios.

Datasets To prepare the experiment datasets, we first collect bitexts from

DARPA LORELEI language packs (Strassel and Tracey, 2016). The source

languages of the bitexts are Uzbek, Turkish, Amharic, Somali, and Yoruba.12

We then run a process similar to Chinese-English cross-lingual Open IE to

generate pairs of source-language sentences and English linearized PredPatt:

first, we employ SyntaxNet Parser (Andor et al., 2016) to generate Universal

Dependency parses for the English sentences, and then run PredPatt (White

et al., 2016) to generate English linearized PredPatt from the Universal De-

pendency parses. We remove empty sequences and very long sequences

(length>50) in the pairs, and randomly split them into training, validation

and test sets in the ratio of 23:1:1. The detailed number of pairs for each

experiment is shown in Table 3.7.

Evaluation Results Table 3.8 shows the evaluation results using BLEU. Both

12These bitexts are from LDC2016E29 (uzb-eng); LDC2014E115 (tur-eng); LDC2016E86
and LDC2016E87 (amh-eng); LDC2016E90 and LDC2016E91 (som-eng); LDC2016E104 and
LDC2016E105 (yor-eng).
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Halo and Selective Decoding outperforms the Joint Seq2Seq approach, demon-

strating that they are better at overcoming data sparsity. Halo experiment

results are not reported on two low resource datasets Amharic and Yoruba,

because α = 0 in Halo was found optimal on the dev sets. In such cases,

this regularization was not helpful so no comparison need be made on the

held-out test sets.

Task Joint Seq2Seq Halo Selective Decoding

uzb-eng 8.66 12.95 10.76

tur-eng 7.18 10.21 7.47

amh-eng 7.18 - 8.37

som-eng 10.61 14.62 13.06

yor-eng 11.31 - 12.19

Table 3.8: Evaluation results in low-resource cross-lingual open IE scenarios: BLEU of
linearized PredPatt.

3.8 Conclusions

We focus on the problem of cross-lingual open IE, and propose joint solu-

tions based on neural sequence-to-sequence models. Our joint approaches

outperforms the traditional pipeline solutions by a large margin. We present

a simple and effective training technique Halo, enabling the learned hidden

states to be more aware of semantics and robust to random noise. Regarding to

future work, we are interested in cross-lingual semantic parsing whose target

representations contains rich information about predicates and arguments,

and can be used to facilitate semantic analysis in a cross-lingual setting.

58



Chapter 4

Cross-lingual Decompositional
Semantic Parsing

4.1 Introduction

We are concerned here with representing the semantics of multiple natural

languages in a single semantic analysis. Renewed interest in semantic analysis

has led to a surge of proposed new frameworks, e.g., GMB (Basile et al.,

2012), AMR (Banarescu et al., 2013), UCCA (Abend and Rappoport, 2013), and

UDS (White et al., 2016), as well as further calls to attend to existing efforts,

e.g., Episodic Logic (Schubert and Hwang, 2000; Schubert, 2000; Hwang and

Schubert, 1994; Schubert, 2014), or Discourse Representation Theory (Kamp,

1981; Heim, 1988).

Many of these efforts are limited to the analysis of English, but with a

number of exceptions, e.g., recent efforts by Bos et al. (2017), ongoing efforts

in Minimal Recursion Semantics (MRS, Copestake et al., 1995), multilingual

FrameNet annotation and parsing (Fung and Chen, 2004; Padó and Lapata,
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2005), among others. For many languages, semantic analysis cannot be per-

formed directly, owing to a lack of training data. While there is active work in

the community focused on rapid construction of resources for low resource

languages (Strassel and Tracey, 2016), it remains an expensive and perhaps

infeasible solution to assume in-language annotated resources for developing

semantic parsing technologies. In contrast, bitext is easier to get: it occurs

often without researcher involvement,1 and even when not available, it may

be easier to find bilingual speakers that can translate a text, than it is to find

experts that will create in-language semantic annotations. In addition, we are

simply further along in being able to automatically understand English than

we are other languages, resulting from the bias in investment in English-rooted

resources.

Therefore, we propose the task of cross-lingual decompositional semantic

parsing, which aims at transducing a sentence in the source language (e.g.,

Chinese sentence in Figure 4.1b) into a decompositional semantic analysis

derived based on English, via bitext. The efforts of decompositional seman-

tics (White et al., 2016) focus on approaches to annotating meaning based on

fine-grained scalar judgments which reflect the ambiguity of language, and

the underspecification of meaning in context. Our contributions include:

(1) A form of decompositional semantic analysis allowing systems to target

varying levels of structural complexity.

(2) An evaluation metric to measure the similarity between system and

reference semantic analysis.

1For example, owing to a government decree.
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hwere reportedhi
<latexit sha1_base64="4e6mlumABMYyGjxuTO67GfGu0dw=">AAACE3icbVA9SwNBFNyLXzF+RS1tFoMgCOEigtoFbSwjGBPIhbC3eUmW7O0du+/UcORH2PhXbCxUbG3s/DduLldo4sDCMDOPt2/8SAqDrvvt5BYWl5ZX8quFtfWNza3i9s6tCWPNoc5DGeqmzwxIoaCOAiU0Iw0s8CU0/OHlxG/cgTYiVDc4iqAdsL4SPcEZWqlTPPIkU30JHsIDJveggWqIQo3QHXem4mDs6TTTKZbcspuCzpNKRkokQ61T/PK6IY8DUMglM6ZVcSNsJ0yj4BLGBS82EDE+ZH1oWapYAKadpEeN6YFVurQXavsU0lT9PZGwwJhR4NtkwHBgZr2J+J/XirF31k6EimIExaeLerGkGNJJQ7QrNHCUI0sY18L+lfIB04yj7bFgS6jMnjxP6sfl87J7fVKqXmRt5Mke2SeHpEJOSZVckRqpE04eyTN5JW/Ok/PivDsf02jOyWZ2yR84nz+Yg6AB</latexit><latexit sha1_base64="4e6mlumABMYyGjxuTO67GfGu0dw=">AAACE3icbVA9SwNBFNyLXzF+RS1tFoMgCOEigtoFbSwjGBPIhbC3eUmW7O0du+/UcORH2PhXbCxUbG3s/DduLldo4sDCMDOPt2/8SAqDrvvt5BYWl5ZX8quFtfWNza3i9s6tCWPNoc5DGeqmzwxIoaCOAiU0Iw0s8CU0/OHlxG/cgTYiVDc4iqAdsL4SPcEZWqlTPPIkU30JHsIDJveggWqIQo3QHXem4mDs6TTTKZbcspuCzpNKRkokQ61T/PK6IY8DUMglM6ZVcSNsJ0yj4BLGBS82EDE+ZH1oWapYAKadpEeN6YFVurQXavsU0lT9PZGwwJhR4NtkwHBgZr2J+J/XirF31k6EimIExaeLerGkGNJJQ7QrNHCUI0sY18L+lfIB04yj7bFgS6jMnjxP6sfl87J7fVKqXmRt5Mke2SeHpEJOSZVckRqpE04eyTN5JW/Ok/PivDsf02jOyWZ2yR84nz+Yg6AB</latexit><latexit sha1_base64="4e6mlumABMYyGjxuTO67GfGu0dw=">AAACE3icbVA9SwNBFNyLXzF+RS1tFoMgCOEigtoFbSwjGBPIhbC3eUmW7O0du+/UcORH2PhXbCxUbG3s/DduLldo4sDCMDOPt2/8SAqDrvvt5BYWl5ZX8quFtfWNza3i9s6tCWPNoc5DGeqmzwxIoaCOAiU0Iw0s8CU0/OHlxG/cgTYiVDc4iqAdsL4SPcEZWqlTPPIkU30JHsIDJveggWqIQo3QHXem4mDs6TTTKZbcspuCzpNKRkokQ61T/PK6IY8DUMglM6ZVcSNsJ0yj4BLGBS82EDE+ZH1oWapYAKadpEeN6YFVurQXavsU0lT9PZGwwJhR4NtkwHBgZr2J+J/XirF31k6EimIExaeLerGkGNJJQ7QrNHCUI0sY18L+lfIB04yj7bFgS6jMnjxP6sfl87J7fVKqXmRt5Mke2SeHpEJOSZVckRqpE04eyTN5JW/Ok/PivDsf02jOyWZ2yR84nz+Yg6AB</latexit>

hin Biloxihi
<latexit sha1_base64="ltFJrqfk4dwGrNRkzXAoEQJtt4Q=">AAACD3icbVA9TwJBFNzzE/ELtbTZSIxW5DAmakewscTEExKOkL3lARv29i677wyE8BNs/Cs2Fmpsbe38Ny7HFQpOsslk5r28nQliKQy67reztLyyurae28hvbm3v7Bb29u9NlGgOHo9kpBsBMyCFAg8FSmjEGlgYSKgHg+upX38AbUSk7nAUQytkPSW6gjO0Urtw4kumehJ8hCGOhaJVIaOhmLRnQn/i69RvF4puyU1BF0k5I0WSodYufPmdiCchKOSSGdMsuzG2xkyj4BImeT8xEDM+YD1oWqpYCKY1TgNN6LFVOrQbafsU0lT9vTFmoTGjMLCTIcO+mfem4n9eM8HuZcvGjBMExWeHuomkGNFpO7QjNHCUI0sY18L+lfI+04yj7TBvSyjPR14k3lnpquTenhcr1ayNHDkkR+SUlMkFqZAbUiMe4eSRPJNX8uY8OS/Ou/MxG11ysp0D8gfO5w/u6p3/</latexit><latexit sha1_base64="ltFJrqfk4dwGrNRkzXAoEQJtt4Q=">AAACD3icbVA9TwJBFNzzE/ELtbTZSIxW5DAmakewscTEExKOkL3lARv29i677wyE8BNs/Cs2Fmpsbe38Ny7HFQpOsslk5r28nQliKQy67reztLyyurae28hvbm3v7Bb29u9NlGgOHo9kpBsBMyCFAg8FSmjEGlgYSKgHg+upX38AbUSk7nAUQytkPSW6gjO0Urtw4kumehJ8hCGOhaJVIaOhmLRnQn/i69RvF4puyU1BF0k5I0WSodYufPmdiCchKOSSGdMsuzG2xkyj4BImeT8xEDM+YD1oWqpYCKY1TgNN6LFVOrQbafsU0lT9vTFmoTGjMLCTIcO+mfem4n9eM8HuZcvGjBMExWeHuomkGNFpO7QjNHCUI0sY18L+lfI+04yj7TBvSyjPR14k3lnpquTenhcr1ayNHDkkR+SUlMkFqZAbUiMe4eSRPJNX8uY8OS/Ou/MxG11ysp0D8gfO5w/u6p3/</latexit><latexit sha1_base64="ltFJrqfk4dwGrNRkzXAoEQJtt4Q=">AAACD3icbVA9TwJBFNzzE/ELtbTZSIxW5DAmakewscTEExKOkL3lARv29i677wyE8BNs/Cs2Fmpsbe38Ny7HFQpOsslk5r28nQliKQy67reztLyyurae28hvbm3v7Bb29u9NlGgOHo9kpBsBMyCFAg8FSmjEGlgYSKgHg+upX38AbUSk7nAUQytkPSW6gjO0Urtw4kumehJ8hCGOhaJVIaOhmLRnQn/i69RvF4puyU1BF0k5I0WSodYufPmdiCchKOSSGdMsuzG2xkyj4BImeT8xEDM+YD1oWqpYCKY1TgNN6LFVOrQbafsU0lT9vTFmoTGjMLCTIcO+mfem4n9eM8HuZcvGjBMExWeHuomkGNFpO7QjNHCUI0sY18L+lfI+04yj7TBvSyjPR14k3lnpquTenhcr1ayNHDkkR+SUlMkFqZAbUiMe4eSRPJNX8uY8OS/Ou/MxG11ysp0D8gfO5w/u6p3/</latexit>

h30 peoplehi
<latexit sha1_base64="WVuMu67TSBqNvmnaqaY1QFKVHzQ=">AAACD3icbVA9TwJBEN3DL8Qv1NJmIzFakUNN1I5oY4mJCAl3IXvLABv29i67c0Zy4SfY+FdsLNTY2tr5b1zgCgVfMsnLezO7My+IpTDout9ObmFxaXklv1pYW9/Y3Cpu79yZKNEc6jySkW4GzIAUCuooUEIz1sDCQEIjGFyN/cY9aCMidYvDGPyQ9ZToCs7QSu3ioSeZ6knwEB4wPXFpDFEsYdSeCv2Rpyd+u1hyy+4EdJ5UMlIiGWrt4pfXiXgSgkIumTGtihujnzKNgtv3C15iIGZ8wHrQslSxEIyfTg4a0QOrdGg30rYU0on6eyJloTHDMLCdIcO+mfXG4n9eK8HuuZ8KFScIik8/6iaSYkTH6dCO0MBRDi1hXAu7K+V9phlHm2HBhlCZPXme1I/LF2X35rRUvczSyJM9sk+OSIWckSq5JjVSJ5w8kmfySt6cJ+fFeXc+pq05J5vZJX/gfP4AZKWdqQ==</latexit><latexit sha1_base64="WVuMu67TSBqNvmnaqaY1QFKVHzQ=">AAACD3icbVA9TwJBEN3DL8Qv1NJmIzFakUNN1I5oY4mJCAl3IXvLABv29i67c0Zy4SfY+FdsLNTY2tr5b1zgCgVfMsnLezO7My+IpTDout9ObmFxaXklv1pYW9/Y3Cpu79yZKNEc6jySkW4GzIAUCuooUEIz1sDCQEIjGFyN/cY9aCMidYvDGPyQ9ZToCs7QSu3ioSeZ6knwEB4wPXFpDFEsYdSeCv2Rpyd+u1hyy+4EdJ5UMlIiGWrt4pfXiXgSgkIumTGtihujnzKNgtv3C15iIGZ8wHrQslSxEIyfTg4a0QOrdGg30rYU0on6eyJloTHDMLCdIcO+mfXG4n9eK8HuuZ8KFScIik8/6iaSYkTH6dCO0MBRDi1hXAu7K+V9phlHm2HBhlCZPXme1I/LF2X35rRUvczSyJM9sk+OSIWckSq5JjVSJ5w8kmfySt6cJ+fFeXc+pq05J5vZJX/gfP4AZKWdqQ==</latexit><latexit sha1_base64="WVuMu67TSBqNvmnaqaY1QFKVHzQ=">AAACD3icbVA9TwJBEN3DL8Qv1NJmIzFakUNN1I5oY4mJCAl3IXvLABv29i67c0Zy4SfY+FdsLNTY2tr5b1zgCgVfMsnLezO7My+IpTDout9ObmFxaXklv1pYW9/Y3Cpu79yZKNEc6jySkW4GzIAUCuooUEIz1sDCQEIjGFyN/cY9aCMidYvDGPyQ9ZToCs7QSu3ioSeZ6knwEB4wPXFpDFEsYdSeCv2Rpyd+u1hyy+4EdJ5UMlIiGWrt4pfXiXgSgkIumTGtihujnzKNgtv3C15iIGZ8wHrQslSxEIyfTg4a0QOrdGg30rYU0on6eyJloTHDMLCdIcO+mfXG4n9eK8HuuZ8KFScIik8/6iaSYkTH6dCO0MBRDi1hXAu7K+V9phlHm2HBhlCZPXme1I/LF2X35rRUvczSyJM9sk+OSIWckSq5JjVSJ5w8kmfySt6cJ+fFeXc+pq05J5vZJX/gfP4AZKWdqQ==</latexit>

hwas hithi
<latexit sha1_base64="j/CoKzN5XWgoYyrXxTP/rzpaFBE=">AAACDXicbVA9TwJBEN3DL8Qv1NJmIyGxIocxUTuijSUmIiQcIXvLABv29i67cyq53C+w8a/YWKixtbfz37jAFQq+ZJK3781kZ54fSWHQdb+d3NLyyupafr2wsbm1vVPc3bs1Yaw5NHgoQ93ymQEpFDRQoIRWpIEFvoSmP7qc+M070EaE6gbHEXQCNlCiLzhDK3WLZU8yNZDgITxgcs8MHQpMu7PnMPX01O0WS27FnYIukmpGSiRDvVv88nohjwNQyCUzpl11I+wkTKPgEtKCFxuIGB+xAbQtVSwA00mm56S0bJUe7YfalkI6VX9PJCwwZhz4tjNgODTz3kT8z2vH2D/rJEJFMYLis4/6saQY0kk2tCc0cJRjSxjXwu5K+ZBpxtEmWLAhVOdPXiSN48p5xb0+KdUusjTy5IAckiNSJaekRq5InTQIJ4/kmbySN+fJeXHenY9Za87JZvbJHzifP4JZnT0=</latexit><latexit sha1_base64="j/CoKzN5XWgoYyrXxTP/rzpaFBE=">AAACDXicbVA9TwJBEN3DL8Qv1NJmIyGxIocxUTuijSUmIiQcIXvLABv29i67cyq53C+w8a/YWKixtbfz37jAFQq+ZJK3781kZ54fSWHQdb+d3NLyyupafr2wsbm1vVPc3bs1Yaw5NHgoQ93ymQEpFDRQoIRWpIEFvoSmP7qc+M070EaE6gbHEXQCNlCiLzhDK3WLZU8yNZDgITxgcs8MHQpMu7PnMPX01O0WS27FnYIukmpGSiRDvVv88nohjwNQyCUzpl11I+wkTKPgEtKCFxuIGB+xAbQtVSwA00mm56S0bJUe7YfalkI6VX9PJCwwZhz4tjNgODTz3kT8z2vH2D/rJEJFMYLis4/6saQY0kk2tCc0cJRjSxjXwu5K+ZBpxtEmWLAhVOdPXiSN48p5xb0+KdUusjTy5IAckiNSJaekRq5InTQIJ4/kmbySN+fJeXHenY9Za87JZvbJHzifP4JZnT0=</latexit><latexit sha1_base64="j/CoKzN5XWgoYyrXxTP/rzpaFBE=">AAACDXicbVA9TwJBEN3DL8Qv1NJmIyGxIocxUTuijSUmIiQcIXvLABv29i67cyq53C+w8a/YWKixtbfz37jAFQq+ZJK3781kZ54fSWHQdb+d3NLyyupafr2wsbm1vVPc3bs1Yaw5NHgoQ93ymQEpFDRQoIRWpIEFvoSmP7qc+M070EaE6gbHEXQCNlCiLzhDK3WLZU8yNZDgITxgcs8MHQpMu7PnMPX01O0WS27FnYIukmpGSiRDvVv88nohjwNQyCUzpl11I+wkTKPgEtKCFxuIGB+xAbQtVSwA00mm56S0bJUe7YfalkI6VX9PJCwwZhz4tjNgODTz3kT8z2vH2D/rJEJFMYLis4/6saQY0kk2tCc0cJRjSxjXwu5K+ZBpxtEmWLAhVOdPXiSN48p5xb0+KdUusjTy5IAckiNSJaekRq5InTQIJ4/kmbySN+fJeXHenY9Za87JZvbJHzifP4JZnT0=</latexit>

hdeadhi
<latexit sha1_base64="cJ9C5+6STPgpCbJnhQMfvBs0LC8=">AAACCnicbZBNS8NAEIY3ftb6VfXoJbQInkoqgnorevFYwdhCU8pmM2mXbjZhdyKWkLsX/4oXDype/QXe/Ddu0x60dWDh4X1nmJ3XTwTX6Djf1tLyyuraemmjvLm1vbNb2du/03GqGLgsFrHq+FSD4BJc5CigkyigkS+g7Y+uJn77HpTmsbzFcQK9iA4kDzmjaKR+peoJKgcCPIQHzAKgQd6f8jD3VGH1KzWn7hRlL0JjBjUyq1a/8uUFMUsjkMgE1brbcBLsZVQhZwLyspdqSCgb0QF0DUoage5lxS25fWSUwA5jZZ5Eu1B/T2Q00noc+aYzojjU895E/M/rphie9zIukxRBsumiMBU2xvYkGDvgChiKsQHKFDd/tdmQKsrQxFc2ITTmT14E96R+UXduTmvNy1kaJXJIquSYNMgZaZJr0iIuYeSRPJNX8mY9WS/Wu/UxbV2yZjMH5E9Znz8yw5v9</latexit><latexit sha1_base64="cJ9C5+6STPgpCbJnhQMfvBs0LC8=">AAACCnicbZBNS8NAEIY3ftb6VfXoJbQInkoqgnorevFYwdhCU8pmM2mXbjZhdyKWkLsX/4oXDype/QXe/Ddu0x60dWDh4X1nmJ3XTwTX6Djf1tLyyuraemmjvLm1vbNb2du/03GqGLgsFrHq+FSD4BJc5CigkyigkS+g7Y+uJn77HpTmsbzFcQK9iA4kDzmjaKR+peoJKgcCPIQHzAKgQd6f8jD3VGH1KzWn7hRlL0JjBjUyq1a/8uUFMUsjkMgE1brbcBLsZVQhZwLyspdqSCgb0QF0DUoage5lxS25fWSUwA5jZZ5Eu1B/T2Q00noc+aYzojjU895E/M/rphie9zIukxRBsumiMBU2xvYkGDvgChiKsQHKFDd/tdmQKsrQxFc2ITTmT14E96R+UXduTmvNy1kaJXJIquSYNMgZaZJr0iIuYeSRPJNX8mY9WS/Wu/UxbV2yZjMH5E9Znz8yw5v9</latexit><latexit sha1_base64="cJ9C5+6STPgpCbJnhQMfvBs0LC8=">AAACCnicbZBNS8NAEIY3ftb6VfXoJbQInkoqgnorevFYwdhCU8pmM2mXbjZhdyKWkLsX/4oXDype/QXe/Ddu0x60dWDh4X1nmJ3XTwTX6Djf1tLyyuraemmjvLm1vbNb2du/03GqGLgsFrHq+FSD4BJc5CigkyigkS+g7Y+uJn77HpTmsbzFcQK9iA4kDzmjaKR+peoJKgcCPIQHzAKgQd6f8jD3VGH1KzWn7hRlL0JjBjUyq1a/8uUFMUsjkMgE1brbcBLsZVQhZwLyspdqSCgb0QF0DUoage5lxS25fWSUwA5jZZ5Eu1B/T2Q00noc+aYzojjU895E/M/rphie9zIukxRBsumiMBU2xvYkGDvgChiKsQHKFDd/tdmQKsrQxFc2ITTmT14E96R+UXduTmvNy1kaJXJIquSYNMgZaZJr0iIuYeSRPJNX8mY9WS/Wu/UxbV2yZjMH5E9Znz8yw5v9</latexit>

hby a storm surgehi
<latexit sha1_base64="WdnttyK+XUb52jvcPidwADLQ8Y8=">AAACFnicbVA9SwNBFNyLXzF+RS1tFoNgFS4iqF3QxjKCZwK5EPY2L8mSvb1j9514HPkXNv4VGwsVW7Hz37hJrtDEgYVhZh5v3wSxFAZd99spLC2vrK4V10sbm1vbO+XdvTsTJZqDxyMZ6VbADEihwEOBElqxBhYGEprB6GriN+9BGxGpW0xj6IRsoERfcIZW6parvmRqIMFHeMAsSCmjBiMdUpPoAYy7M3049vU01i1X3Ko7BV0ktZxUSI5Gt/zl9yKehKCQS2ZMu+bG2MmYRsEljEt+YiBmfMQG0LZUsRBMJ5veNaZHVunRfqTtU0in6u+JjIXGpGFgkyHDoZn3JuJ/XjvB/nknEypOEBSfLeonkmJEJyXRntDAUaaWMK6F/SvlQ6YZR1tlyZZQmz95kXgn1Yuqe3NaqV/mbRTJATkkx6RGzkidXJMG8Qgnj+SZvJI358l5cd6dj1m04OQz++QPnM8fUhOg3g==</latexit><latexit sha1_base64="WdnttyK+XUb52jvcPidwADLQ8Y8=">AAACFnicbVA9SwNBFNyLXzF+RS1tFoNgFS4iqF3QxjKCZwK5EPY2L8mSvb1j9514HPkXNv4VGwsVW7Hz37hJrtDEgYVhZh5v3wSxFAZd99spLC2vrK4V10sbm1vbO+XdvTsTJZqDxyMZ6VbADEihwEOBElqxBhYGEprB6GriN+9BGxGpW0xj6IRsoERfcIZW6parvmRqIMFHeMAsSCmjBiMdUpPoAYy7M3049vU01i1X3Ko7BV0ktZxUSI5Gt/zl9yKehKCQS2ZMu+bG2MmYRsEljEt+YiBmfMQG0LZUsRBMJ5veNaZHVunRfqTtU0in6u+JjIXGpGFgkyHDoZn3JuJ/XjvB/nknEypOEBSfLeonkmJEJyXRntDAUaaWMK6F/SvlQ6YZR1tlyZZQmz95kXgn1Yuqe3NaqV/mbRTJATkkx6RGzkidXJMG8Qgnj+SZvJI358l5cd6dj1m04OQz++QPnM8fUhOg3g==</latexit><latexit sha1_base64="WdnttyK+XUb52jvcPidwADLQ8Y8=">AAACFnicbVA9SwNBFNyLXzF+RS1tFoNgFS4iqF3QxjKCZwK5EPY2L8mSvb1j9514HPkXNv4VGwsVW7Hz37hJrtDEgYVhZh5v3wSxFAZd99spLC2vrK4V10sbm1vbO+XdvTsTJZqDxyMZ6VbADEihwEOBElqxBhYGEprB6GriN+9BGxGpW0xj6IRsoERfcIZW6parvmRqIMFHeMAsSCmjBiMdUpPoAYy7M3049vU01i1X3Ko7BV0ktZxUSI5Gt/zl9yKehKCQS2ZMu+bG2MmYRsEljEt+YiBmfMQG0LZUsRBMJ5veNaZHVunRfqTtU0in6u+JjIXGpGFgkyHDoZn3JuJ/XjvB/nknEypOEBSfLeonkmJEJyXRntDAUaaWMK6F/SvlQ6YZR1tlyZZQmz95kXgn1Yuqe3NaqV/mbRTJATkkx6RGzkidXJMG8Qgnj+SZvJI358l5cd6dj1m04OQz++QPnM8fUhOg3g==</latexit>

hin one blockhof flatsi
<latexit sha1_base64="zWG6MOcbaHgs7hiCLcn4IdSX2qg=">AAACIXicbVDLSgMxFM34rPVVdekmWARXZSqCdld047KCtYVOKZn0ThuaSYbkjljKfIsbf8WNC5XuxJ8xfSy09ULI4Zx7SM4JEyks+v6Xt7K6tr6xmdvKb+/s7u0XDg4frE4NhzrXUptmyCxIoaCOAiU0EwMsDiU0wsHNRG88grFCq3scJtCOWU+JSHCGjuoUKoFkqichQHjCkVBUK6Ch1HyQdWZcP5vdOqKRZGizwEwdnULRL/nTocugPAdFMp9apzAOupqnMSjkklnbKvsJtkfMoOASsnyQWkgYH7AetBxULAbbHk0jZvTUMV0aaeOOQjplfztGLLZ2GIduM2bYt4vahPxPa6UYXbVd8CRFUHz2UJRKippO+qJdYYCjHDrAuBHur5T3mWEcXat5V0J5MfIyqJ+XKiX/7qJYvZ63kSPH5ISckTK5JFVyS2qkTjh5Jq/knXx4L96b9+mNZ6sr3txzRP6M9/0DwhGl4Q==</latexit><latexit sha1_base64="zWG6MOcbaHgs7hiCLcn4IdSX2qg=">AAACIXicbVDLSgMxFM34rPVVdekmWARXZSqCdld047KCtYVOKZn0ThuaSYbkjljKfIsbf8WNC5XuxJ8xfSy09ULI4Zx7SM4JEyks+v6Xt7K6tr6xmdvKb+/s7u0XDg4frE4NhzrXUptmyCxIoaCOAiU0EwMsDiU0wsHNRG88grFCq3scJtCOWU+JSHCGjuoUKoFkqichQHjCkVBUK6Ch1HyQdWZcP5vdOqKRZGizwEwdnULRL/nTocugPAdFMp9apzAOupqnMSjkklnbKvsJtkfMoOASsnyQWkgYH7AetBxULAbbHk0jZvTUMV0aaeOOQjplfztGLLZ2GIduM2bYt4vahPxPa6UYXbVd8CRFUHz2UJRKippO+qJdYYCjHDrAuBHur5T3mWEcXat5V0J5MfIyqJ+XKiX/7qJYvZ63kSPH5ISckTK5JFVyS2qkTjh5Jq/knXx4L96b9+mNZ6sr3txzRP6M9/0DwhGl4Q==</latexit><latexit sha1_base64="zWG6MOcbaHgs7hiCLcn4IdSX2qg=">AAACIXicbVDLSgMxFM34rPVVdekmWARXZSqCdld047KCtYVOKZn0ThuaSYbkjljKfIsbf8WNC5XuxJ8xfSy09ULI4Zx7SM4JEyks+v6Xt7K6tr6xmdvKb+/s7u0XDg4frE4NhzrXUptmyCxIoaCOAiU0EwMsDiU0wsHNRG88grFCq3scJtCOWU+JSHCGjuoUKoFkqichQHjCkVBUK6Ch1HyQdWZcP5vdOqKRZGizwEwdnULRL/nTocugPAdFMp9apzAOupqnMSjkklnbKvsJtkfMoOASsnyQWkgYH7AetBxULAbbHk0jZvTUMV0aaeOOQjplfztGLLZ2GIduM2bYt4vahPxPa6UYXbVd8CRFUHz2UJRKippO+qJdYYCjHDrAuBHur5T3mWEcXat5V0J5MfIyqJ+XKiX/7qJYvZ63kSPH5ISckTK5JFVyS2qkTjh5Jq/knXx4L96b9+mNZ6sr3txzRP6M9/0DwhGl4Q==</latexit>
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(a) UDS graph representation.

“30 people were reported dead in one block of flats which was hit by a storm surge.”
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(b) Chinese sentence with Leipzig gloss.

Figure 4.1: Input and output of cross-lingual decompositional semantic parsing.

(3) An encoder-decoder model for cross-lingual decompositional semantic

parsing. With a coreference annotating mechanism, the model solves intra-

sentential coreference explicitly.

(4) The first evaluation dataset for cross-lingual decompositional semantic

parsing.2

Experiments demonstrate our model achieves 38.78% F1, outperforming

strong baselines.

2http://decomp.io
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4.2 Semantic Analysis

The goal of cross-lingual decompositional semantic parsing is to provide

a semantic analysis which can be used for various types of deep and shal-

low processing on the target language side. Many forms of semantic anal-

ysis are potentially suitable for this goal, e.g., AMR (Banarescu et al., 2013),

UCCA (Abend and Rappoport, 2013), and Universal Decompositional Se-

mantics (White et al., 2016). Here we choose Universal Decompositional

Semantics (UDS), but note that our approach is applicable to other potential

graph semantic formalisms.

The reasons for choosing UDS are three-fold: (1) Compatibility: UDS

relates to Robust Minimal Recursion Semantics (RMRS, Copestake, 2007),

aiming for a maximal degree of semantic compatibility. With UDS, shallow

analysis, such as predicate-argument extraction in Chapter 3, can be regarded

as producing a semantics which is underspecified and reusable with respect to

deeper analysis, such as lexical semantics and inference (White et al., 2016). (2)

Robustness and Speed: There exists a robust framework, PredPatt (White et

al., 2016), for automatically creating UDS from raw sentences and their Univer-

sal Dependencies. In § 2.2, we have shown that PredPatt is fast and accurate

enough to process large volumes of text. (3) Cross-lingual validity: Pred-

Patt is based purely on non-lexical and linguistically well-founded patterns

from Universal Dependencies, which is designed to be cross-linguistically

consistent.

There are three forms to represent UDS: flat, graph, or linearized represen-

tations. They are created for different purposes, and are inter-convertible.
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4.2.1 Graph Representation

The graph representation as shown in Figure 4.1a is developed to improve

ease of readability, parser evaluation, and integration with lexical semantics.

The structure of the graph representation is a tuple G = ⟨V, E⟩: a set of

variables V (e.g., p1 and x), and a set of edges E. There are 3 types of edges: (1)

Argument edges describe argument relations between variable pairs. Deeper

analysis such as Semantic Proto-Role (SPR) properties (Reisinger et al., 2015)

can be attached to argument edges. SPR analysis can be considered as a

scalar regression problem (White et al., 2016), where each predicate-argument

pair is annotated with scalar values for different SPR properties. (2) Instance

edges describe instances of variables in the target language. The subscript “h”

indicates the syntactic head of an instance. (3) Attribute edges are unary, which

describe various attributes of variables, such as event factuality (Saurí and

Pustejovsky, 2009) and word senses (Miller, 1995). The graph representation

can be viewed as an underspecified version of Dependency Minimal Recursion

Semantics (DMRS) (Copestake, 2009) due to the underspecification of scope.

Different from DMRS, the graph representation is linked cleanly to Universal

Dependency syntax via PredPatt.

4.2.2 Linearized Representation

The linearized representation aims to facilitate learning of semantic parsers.

Recently parsers based on RNN that make use of linearized representation

have achieved state-of-the-art performance in constituency parsing (Choe

and Charniak, 2016), logical form prediction (Dong and Lapata, 2016; Jia
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and Liang, 2016), and AMR parsing (Barzdins and Gosko, 2016b; Peng et al.,

2017b). There was also work on predicting linearized semantic representations

before RNN based approaches (Wong and Mooney, 2006).

 ��in Biloxih) (30 peopleh) were reportedh (      deadh (in one blockh of flats) ) ] [      was hith (by a storm surgeh) ]

COREF COREF

Figure 4.2: UDS linearized representation. Deeper analysis such as SPR and factuality
is not shown.

Figure 4.2 shows an example of UDS linearized representation. Intra-

sentential coreference occurs when an instance refers to an antecedent, where

we replace the instance with a special symbol “•” and add a COREF link be-

tween “•” and its antecedent. The linearized representation can be viewed

as a sequence of tokens with a list of COREF links. Brackets, parentheses, and

the special symbol “•” are all considered as tokens in this representation. The

COREF links are drawn as a visual convenience, and the actual linearized rep-

resentation achieves this via co-indexing, and is thus fully linear. We describe

the procedure of converting graph representation to linearized representation

as follows: Starting at the root node of the dependency tree (i.e., “reportedh”

in Figure 4.1), we take an in-order traversal of its spanning tree. As the tree

is expanded, brackets are inserted to denote the beginning or end of a predi-

cate span, and parentheses are inserted to denote the beginning or end of an

argument span.
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4.2.3 Flat Representation

The non-recursive or “flat” representation can be viewed as a Parson-style (Par-

sons, 1990) and underspecified version of neo-Davidsonianized RMRS (Copes-

take, 2007). As shown in Figure 4.3, the flat representation is a tuple F =

⟨P, A⟩ where P is a bag of predicates that are all maximally unary, and A is a

bag of arguments represented by separate binary relations.

Predicates:

Argument Relations:

hwere reportedhi(p1), hdeadhi(p2),
<latexit sha1_base64="zOqg8GlDn3xJ6dn7Nb0qlcwlUk0="></latexit><latexit sha1_base64="DHvBBE9vXA87aEvaS0oKke/9X1o="></latexit><latexit sha1_base64="DHvBBE9vXA87aEvaS0oKke/9X1o="></latexit>

hin Biloxihi(x), h30 peoplehi(y),
<latexit sha1_base64="F7wElE/5019z6LxjiJ2LTyr0MSw="></latexit><latexit sha1_base64="p/OuTdKnHwVXH8sFAV/lvIa9xPM="></latexit><latexit sha1_base64="p/OuTdKnHwVXH8sFAV/lvIa9xPM="></latexit>

hin one blockh of flatsi(z), hby a storm surgehi(w)
<latexit sha1_base64="e7AQ5NO0vodEY0kwWmllFVBXZEg="></latexit><latexit sha1_base64="O7rEYJaam08x6xyNr1vP+836na4="></latexit><latexit sha1_base64="O7rEYJaam08x6xyNr1vP+836na4="></latexit>

hwas hithi(p3),
<latexit sha1_base64="e6E4y5u0GMwpNKC58XC82YGCxPw=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQUcKdCmoXtLFUMEbIhWNvM0kW9/aO3Tk1HPkRNv4VGwsVWxs7/42bj0KNDwbevjfDzrwwkcKg6345uanpmdm5/HxhYXFpeaW4unZl4lRzqPFYxvo6ZAakUFBDgRKuEw0sCiXUw5vTgV+/BW1ErC6xl0AzYh0l2oIztFJQ3PElUx0JPsI9ZnfM0K7AfjB6dvu+HrrlJNjf3g2KJbfiDkEniTcmJTLGeVD89FsxTyNQyCUzpuG5CTYzplFwCf2CnxpIGL9hHWhYqlgEppkNj+rTLau0aDvWthTSofpzImORMb0otJ0Rw6756w3E/7xGiu2jZiZUkiIoPvqonUqKMR0kRFtCA0fZs4RxLeyulHeZZhxtjgUbgvf35ElS26scV9yLg1L1ZJxGnmyQTVImHjkkVXJGzkmNcPJAnsgLeXUenWfnzXkfteac8cw6+QXn4xsFbp74</latexit><latexit sha1_base64="e6E4y5u0GMwpNKC58XC82YGCxPw=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQUcKdCmoXtLFUMEbIhWNvM0kW9/aO3Tk1HPkRNv4VGwsVWxs7/42bj0KNDwbevjfDzrwwkcKg6345uanpmdm5/HxhYXFpeaW4unZl4lRzqPFYxvo6ZAakUFBDgRKuEw0sCiXUw5vTgV+/BW1ErC6xl0AzYh0l2oIztFJQ3PElUx0JPsI9ZnfM0K7AfjB6dvu+HrrlJNjf3g2KJbfiDkEniTcmJTLGeVD89FsxTyNQyCUzpuG5CTYzplFwCf2CnxpIGL9hHWhYqlgEppkNj+rTLau0aDvWthTSofpzImORMb0otJ0Rw6756w3E/7xGiu2jZiZUkiIoPvqonUqKMR0kRFtCA0fZs4RxLeyulHeZZhxtjgUbgvf35ElS26scV9yLg1L1ZJxGnmyQTVImHjkkVXJGzkmNcPJAnsgLeXUenWfnzXkfteac8cw6+QXn4xsFbp74</latexit><latexit sha1_base64="e6E4y5u0GMwpNKC58XC82YGCxPw=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQUcKdCmoXtLFUMEbIhWNvM0kW9/aO3Tk1HPkRNv4VGwsVWxs7/42bj0KNDwbevjfDzrwwkcKg6345uanpmdm5/HxhYXFpeaW4unZl4lRzqPFYxvo6ZAakUFBDgRKuEw0sCiXUw5vTgV+/BW1ErC6xl0AzYh0l2oIztFJQ3PElUx0JPsI9ZnfM0K7AfjB6dvu+HrrlJNjf3g2KJbfiDkEniTcmJTLGeVD89FsxTyNQyCUzpuG5CTYzplFwCf2CnxpIGL9hHWhYqlgEppkNj+rTLau0aDvWthTSofpzImORMb0otJ0Rw6756w3E/7xGiu2jZiZUkiIoPvqonUqKMR0kRFtCA0fZs4RxLeyulHeZZhxtjgUbgvf35ElS26scV9yLg1L1ZJxGnmyQTVImHjkkVXJGzkmNcPJAnsgLeXUenWfnzXkfteac8cw6+QXn4xsFbp74</latexit>

ARG(p1, x), ARG(p1, y), ARG(p1, p2),
<latexit sha1_base64="3NOtdW12l7VTNQPYRUsTi8/hWiY=">AAACJXicbZA9SwNBEIbn4leMX6eWNotBiBjCnY1aCFELLVWMBpJw7G02yZK9D3bnxHDkvwg2/hUbiyiClX/FTWKhMS8svDwzw+y8fiyFRsf5tDIzs3PzC9nF3NLyyuqavb5xq6NEMV5hkYxU1aeaSxHyCgqUvBorTgNf8ju/ezas391zpUUU3mAv5o2AtkPREoyiQZ59XEf+gOnJ9Xm/EHtukTzsFskk601hsbe/W/TsvFNyRiL/jftj8uXt+t4jAFx69qDejFgS8BCZpFrXXCfGRkoVCiZ5P1dPNI8p69I2rxkb0oDrRjo6s092DGmSVqTMC5GM6O+JlAZa9wLfdAYUO3qyNoTTarUEW4eNVIRxgjxk40WtRBKMyDAz0hSKM5Q9YyhTwvyVsA5VlKFJNmdCcCdP/m8q+6WjknPl5sunMFYWtmAbCuDCAZThAi6hAgye4AUG8GY9W6/Wu/Uxbs1YPzOb8EfW1zeVHKPM</latexit><latexit sha1_base64="5LqNx4OsjYcwPwfJ4/r7yPWS5yE=">AAACJXicbZDLTgIxFIY7XhFvqEs3DcQEIiEzbNSFCepCl2hESIBMOqVAQ+eS9oxhMuEtfAM3voobF2hMWPkqlstCgT9p8uc75+T0/E4guALTHBkrq2vrG5uJreT2zu7efurg8En5oaSsQn3hy5pDFBPcYxXgIFgtkIy4jmBVp3czrlefmVTc9x4hCljTJR2PtzkloJGdumwA60N89XA7yAa2lcf9XB7Ps2gJC+xiLm+nMmbBnAgvGmtmMqV04/RlVIrKdmrYaPk0dJkHVBCl6pYZQDMmEjgVbJBshIoFhPZIh9W19YjLVDOenDnAJ5q0cNuX+nmAJ/TvRExcpSLX0Z0uga6ar43hslo9hPZ5M+ZeEALz6HRROxQYfDzODLe4ZBREpA2hkuu/YtolklDQySZ1CNb8yYumUixcFMx7K1O6RlMl0DFKoyyy0BkqoTtURhVE0St6R0P0abwZH8aX8T1tXTFmM0fon4yfX50ApVI=</latexit><latexit sha1_base64="5LqNx4OsjYcwPwfJ4/r7yPWS5yE=">AAACJXicbZDLTgIxFIY7XhFvqEs3DcQEIiEzbNSFCepCl2hESIBMOqVAQ+eS9oxhMuEtfAM3voobF2hMWPkqlstCgT9p8uc75+T0/E4guALTHBkrq2vrG5uJreT2zu7efurg8En5oaSsQn3hy5pDFBPcYxXgIFgtkIy4jmBVp3czrlefmVTc9x4hCljTJR2PtzkloJGdumwA60N89XA7yAa2lcf9XB7Ps2gJC+xiLm+nMmbBnAgvGmtmMqV04/RlVIrKdmrYaPk0dJkHVBCl6pYZQDMmEjgVbJBshIoFhPZIh9W19YjLVDOenDnAJ5q0cNuX+nmAJ/TvRExcpSLX0Z0uga6ar43hslo9hPZ5M+ZeEALz6HRROxQYfDzODLe4ZBREpA2hkuu/YtolklDQySZ1CNb8yYumUixcFMx7K1O6RlMl0DFKoyyy0BkqoTtURhVE0St6R0P0abwZH8aX8T1tXTFmM0fon4yfX50ApVI=</latexit>

ARG(p2, y), ARG(p2, z),
<latexit sha1_base64="+1K48jZax4lS40Bb+nkhpcpsE6o=">AAACEHicbZC7TkJBEIbneEW8oZY2G4gJRkLOoVE71EJLNCIkQMieZYENey7ZnWPEE17BxhfwIWws1Nha2vk2LpdCwT/Z5M83M5md3w2l0Gjb39bc/MLi0nJiJbm6tr6xmdravtFBpBgvs0AGqupSzaXweRkFSl4NFaeeK3nF7Z0N65VbrrQI/Gvsh7zh0Y4v2oJRNKiZytaR32F8cnU+yIbNQo7093Nkmt0b1kxl7Lw9Epk1zsRkiun6wRMAlJqpr3orYJHHfWSSal1z7BAbMVUomOSDZD3SPKSsRzu8ZqxPPa4b8eiiAdkzpEXagTLPRzKivydi6mnd91zT6VHs6unaEP5Xq0XYPmrEwg8j5D4bL2pHkmBAhvGQllCcoewbQ5kS5q+EdamiDE2ISROCM33yrCkX8sd5+9LJFE9hrATsQhqy4MAhFOECSlAGBg/wDK/wZj1aL9a79TFunbMmMzvwR9bnDwMpnEE=</latexit><latexit sha1_base64="cUKjx9v5TbrRtwKxPp6Sxjf/mJI=">AAACEHicbZC7TgJBFIZn8YZ4Qy1tJhATjITs0qgdaqElGhESdkNmhwEmzF4yc9a4bngFG30UGws1tpZ2vI3DpVDwTyb5851zcub8bii4AtMcGqmFxaXllfRqZm19Y3Mru71zq4JIUlajgQhkwyWKCe6zGnAQrBFKRjxXsLrbPx/V63dMKh74NxCHzPFI1+cdTglo1MoWbGD3kJxeXwwKYatcxPFBEc+yB81a2bxZMsfC88aamnwlZx8+DytxtZX9ttsBjTzmAxVEqaZlhuAkRAKngg0ydqRYSGifdFlTW594TDnJ+KIB3tekjTuB1M8HPKa/JxLiKRV7ru70CPTUbG0E/6s1I+gcOwn3wwiYTyeLOpHAEOBRPLjNJaMgYm0IlVz/FdMekYSCDjGjQ7BmT543tXLppGReWfnKGZoojfZQDhWQhY5QBV2iKqohih7RC3pD78aT8Wp8GJ+T1pQxndlFf2R8/QALDZ3H</latexit><latexit sha1_base64="cUKjx9v5TbrRtwKxPp6Sxjf/mJI=">AAACEHicbZC7TgJBFIZn8YZ4Qy1tJhATjITs0qgdaqElGhESdkNmhwEmzF4yc9a4bngFG30UGws1tpZ2vI3DpVDwTyb5851zcub8bii4AtMcGqmFxaXllfRqZm19Y3Mru71zq4JIUlajgQhkwyWKCe6zGnAQrBFKRjxXsLrbPx/V63dMKh74NxCHzPFI1+cdTglo1MoWbGD3kJxeXwwKYatcxPFBEc+yB81a2bxZMsfC88aamnwlZx8+DytxtZX9ttsBjTzmAxVEqaZlhuAkRAKngg0ydqRYSGifdFlTW594TDnJ+KIB3tekjTuB1M8HPKa/JxLiKRV7ru70CPTUbG0E/6s1I+gcOwn3wwiYTyeLOpHAEOBRPLjNJaMgYm0IlVz/FdMekYSCDjGjQ7BmT543tXLppGReWfnKGZoojfZQDhWQhY5QBV2iKqohih7RC3pD78aT8Wp8GJ+T1pQxndlFf2R8/QALDZ3H</latexit>

ARG(p3, z), ARG(p3, w),
<latexit sha1_base64="vPZZogtb2rzi7oWt8PTnBMIsk98=">AAACD3icbVA9TwJBEJ3Db/xCLW02EKNGQu60UDvUQks0oibchewtC2zc+8junIoXfoKNv8D/YGOhxtbWzn/jAhaKvmSSl/dmMjPPj6XQaNufVmZkdGx8YnIqOz0zOzefW1g801GiGK+ySEbqwqeaSxHyKgqU/CJWnAa+5Of+5UHPP7/iSosoPMVOzL2AtkLRFIyikeq5VRf5DaZ7J4fdtbi+VSS360UyrF2vF+u5gl2y+yB/ifNNCuW8u/EAAJV67sNtRCwJeIhMUq1rjh2jl1KFgknezbqJ5jFll7TFa4aGNODaS/sPdcmKURqkGSlTIZK++nMipYHWncA3nQHFth72euJ/Xi3B5o6XijBOkIdssKiZSIIR6aVDGkJxhrJjCGVKmFsJa1NFGZoMsyYEZ/jlv6S6Wdot2cdOobwPA0zCMuRhDRzYhjIcQQWqwOAOHuEZXqx768l6td4GrRnre2YJfsF6/wKhDZwX</latexit><latexit sha1_base64="DGJjgYj7lAywtIedj2JJnrzteCA=">AAACD3icbVC7TgJBFJ31ifhCLW0mECNEQna1ULtVCy3RiJAAIbPDABNmH5m5q64bPsHG+Cc2Fmpsbe34G4dHoeBJbnJyzr259x4nEFyBafaNmdm5+YXFxFJyeWV1bT21sXmj/FBSVqK+8GXFIYoJ7rEScBCsEkhGXEewstM9G/jlWyYV971riAJWd0nb4y1OCWipkdqtAbuH+OTqvJcNGgd5/JDL40ntLpdvpDJmwRwCTxNrTDJ2urb33LejYiP1XWv6NHSZB1QQpaqWGUA9JhI4FayXrIWKBYR2SZtVNfWIy1Q9Hj7UwztaaeKWL3V5gIfq74mYuEpFrqM7XQIdNekNxP+8agito3rMvSAE5tHRolYoMPh4kA5ucskoiEgTQiXXt2LaIZJQ0BkmdQjW5MvTpLRfOC6Yl1bGPkUjJNA2SqMsstAhstEFKqISougRvaA39G48Ga/Gh/E5ap0xxjNb6A+Mrx+o8Z2d</latexit><latexit sha1_base64="DGJjgYj7lAywtIedj2JJnrzteCA=">AAACD3icbVC7TgJBFJ31ifhCLW0mECNEQna1ULtVCy3RiJAAIbPDABNmH5m5q64bPsHG+Cc2Fmpsbe34G4dHoeBJbnJyzr259x4nEFyBafaNmdm5+YXFxFJyeWV1bT21sXmj/FBSVqK+8GXFIYoJ7rEScBCsEkhGXEewstM9G/jlWyYV971riAJWd0nb4y1OCWipkdqtAbuH+OTqvJcNGgd5/JDL40ntLpdvpDJmwRwCTxNrTDJ2urb33LejYiP1XWv6NHSZB1QQpaqWGUA9JhI4FayXrIWKBYR2SZtVNfWIy1Q9Hj7UwztaaeKWL3V5gIfq74mYuEpFrqM7XQIdNekNxP+8agito3rMvSAE5tHRolYoMPh4kA5ucskoiEgTQiXXt2LaIZJQ0BkmdQjW5MvTpLRfOC6Yl1bGPkUjJNA2SqMsstAhstEFKqISougRvaA39G48Ga/Gh/E5ap0xxjNb6A+Mrx+o8Z2d</latexit>

Figure 4.3: UDS “flat” representation. Deeper analysis such as SPR and factuality is
not shown.

Predicate: Predicates in PredPatt representation are referred as complex predi-

cates: they are open-class predicates represented in the target language. Scope

and lexical information in the predicates are left unresolved, yet can be recov-

ered incrementally in deep semantic parsing. From the perspective of RMRS,

complex predicates are conjunctions of underspecified elementary predications

(Copestake et al., 2005) where handles are ignored, but syntax properties from

Universal Dependencies are retained. For instance, in Figure 4.3, the subscript

“h” in the predicate “⟨were reportedh⟩” indicates that “reported” is a syntactic

head in the predicate.
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Argument Relation: The Parson-style flat representation makes arguments

first-class predications ARG(·, ·). Using this style allows incremental addition

of arguments, which is useful in shallow semantics where the arity of open-

class predicate and the argument indexation are underspecified. They can be

recovered when lexicon is available in deep analysis (Dowty, 1989; Copestake,

2007).

4.3 Related Work

Our work synthesizes two strands of research, semantic analysis and cross-

lingual learning.

The semantic analysis targeted in this work is akin to that of Hobbs (2003),

but our eventual goal is to transduce texts from arbitrary human languages

into a “...broad, language-like, inference-enabling [semantic representation] in the

spirit of Montague...” (Schubert, 2015). Unlike efforts such as by Schubert and

colleagues that directly target such an analysis, we are pursuing a strategy that

incrementally increases the complexity of the target analysis in accordance

with our ability to fashion models capable of producing it.3 Embracing un-

derspecification in the name of tractability is exemplified by MRS (Copestake

et al., 2005; Copestake, 2009), the so-called slacker semantics, and we draw

inspiration from that work. Analyses such as AMR (Banarescu et al., 2013)

also make use of underspecification, but usually this is only implicit: certain

3E.g., in Figure 4.1a we recognize “by a storm surge” as an initial structural unit, with
multiple potential analysis, which may be further refined based on the capabilities of a given
cross-lingual semantic parser.
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aspects of meaning are simply not annotated. Unlike AMR, but akin to de-

cisions made in PropBank (Palmer et al., 2005) (which forms the majority of

the AMR ontological backbone), we target an analysis with a close correspon-

dence to natural language syntax. Unlike interlingua (Mitamura et al., 1991;

Dorr and Habash, 2002) that maps the source language into an intermediate

analysis, and then maps it into the target language, we are not concerned

with generating text from the semantic analysis. Substantial prior work on

semantic analyses exists, including HPSG-based analyses (Copestake et al.,

2005), CCG-based analyses (Steedman, 2000; Baldridge and Kruijff, 2002; Bos

et al., 2004), and Universal Dependencies based analyses (White et al., 2016;

Reddy et al., 2017). See (Schubert, 2015; Abend and Rappoport, 2017) for

further discussion.

Cross-lingual learning has previously been applied to various NLP tasks.

Yarowsky et al. (2001); Padó and Lapata (2009); Evang and Bos (2016); Faruqui

and Kumar (2015) focused on projecting existing annotations on source-

language text to the target language. Zeman and Resnik (2008); Ganchev

et al. (2009); McDonald et al. (2011); Naseem et al. (2012); Wang and Man-

ning (2014) enabled model transfer by sharing features or model parameters

for different languages. Sudo et al. (2004); Zhang et al. (2017b); Zhang et al.

(2017c); Mei et al. (2018) worked on cross-lingual information extraction and

demonstrated the advantages of end-to-end learning. In this work, we explore

end-to-end cross-lingual learning.

67



4.4 Evaluation Metric S

UDS can be represented in three forms. Evaluating such forms is crucial to

the development of parsing algorithms. However, there is no method di-

rectly available for evaluation. Related methods come from semantic parsing,

whose results are mainly evaluated in three ways: (1) task correctness (Tang

and Mooney, 2001), which evaluates on a specific NLP task that uses the

parsing results; (2) whole-parse correctness (Zettlemoyer and Collins, 2005),

which counts the number of parsing results that are completely correct; and

(3) Smatch (Cai and Knight, 2013), which computes the number of exactly

matched edges between two semantic structures.

Nevertheless, our task needs an evaluation metric that can be used re-

gardless of specific tasks or domains, and is able to differentiate two UDS

graph representations with similar instances, SPR analysis, or attributes. We

design an evaluation metric S that computes the similarity between two graph

representations.

As described in § 4.2.1, the graph representation is a tuple G = (V, E).

For two graphs G1 = (V1, E1) and G2 = (V2, E2), we define the score S as the

maximum soft edge matching score between G1 and G2:

S(G1,G2) = max
m∈M

[︁
∑

(e(i)1 ,e(j)
2 )∈P

fT(e(i)1 , e(j)
2 )

]︁

where m is a mapping from variables in V1 to variables in V2. Given a mapping

m, P is a set of edge pairs: for each pair (e(i)1 , e(j)
2 ), variables(s) in e(i)1 are

mapped to variables(s) in e(j)
2 via m. fT computes the matching score for a pair

68



of edges belonging to type T ∈ {ARG, INST, ATTR}. The matching score is

normalized to [0, 1].

The precision and recall are computed by S(G1,G2)/|E1| and S(G1,G2)/|E2|
respectively.

In this work, fARG = fATTR = e−MAE, where MAE computes the mean

absolute error between two set of scores s1 and s2: ∑n
i |s

(i)
1 − s(i)2 |/n. fINST =

BLEU (Papineni et al., 2002) which compute the BLEU score of an instance

pair. Future work could consider, e.g., a modified BLEU that considers Leven-

shtein distance between tokens for a more robust partial-scoring in the face of

transliteration errors.

Finding an optimal variable mapping m that yields the highest S is NP-

complete. We instead adopt a strategy used in Smatch (Cai and Knight, 2013)

that does a hill-climbing search with smart initialization plus 4 random restarts,

and has been shown to give the best trade-off between accuracy and speed.

Smatch for evaluating semantic structures can be considered as a special case

of S, where fT = δ, the Kronecker delta.

4.5 Model

We formulate the task of cross-lingual decompositional semantic parsing

as a joint problem of sequence-to-sequence learning, coreference resolution

and decompositional semantic analysis. The input is a sentence X in the

source language, e.g., the Chinese sentence in Figure 4.1b. The output is a

UDS linearized representation (Y, C, D) based on the target language: Y is

a sequence of tokens; C is a set of COREF links; and D is a set of scores for
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decompositional analysis, such as SPR and factuality.

The goal is to learn a conditional probability distribution P(Y, C, D|X)

whose most likely configuration, given the input sentence, outputs the true

UDS linearized representation with decompositional analysis. While the

standard encoder-decoder framework shows the state-of-the-art performance

in sequence-to-sequence learning (Choe and Charniak, 2016; Jia and Liang,

2016; Barzdins and Gosko, 2016b), it cannot directly solve intra-sentential

conference and decompositional semantic analyses in our task. To achieve

this goal, we propose an encoder-decoder architecture incorporated with a

coreference annotating mechanism4 and decompositional analysis. As illustrated

in Figure 4.4, Encoder transforms the input sequence into hidden states; De-

coder reads the hidden states, and then at each time step generates a token

and creates its COREF link; Decompositional Analysis, based on the decoder

output, performs SPR analysis for predicate-argument pairs, and factuality

analysis for predicates.

4.5.1 Encoder

The encoder employs a bidirectional recurrent neural network (Schuster and

Paliwal, 1997) with LSTM units (Hochreiter and Schmidhuber, 1997). It

encodes the input X = x1, . . . , xN
5 into a sequence of hidden states h =

h1, . . . , hN. Each hidden state hi is a concatenation of a left-to-right hidden

state
−→
hi and a right-to-left hidden state

←−
hi ,

4Similar coreference mechanism has been proposed by Ji et al. (2017).
5For simplicity, we use X (and Y) to represent both tokens as well as their word embed-

dings.
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Figure 4.4: Illustration of the model architecture.

4.5.2 Decoder

Given the encoder hidden states, the decoder predicts the linearized repre-

sentation (as shown in Figure 4.2) according to the conditional probability

P(Y, C | X) which is decomposed as a product of the decoding probabilities

at each time step t:

P(Y, C | X) =
M

∏
t=1

P(yt, ct | y<t, c<t, X) (4.1)
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where yt is the decoded token at time step t, and ct is the source of the COREF

link for yt, i.e., the antecedent of yt. The set of possible antecedents of yt is

A(t) = {ϵ, y1, . . . , yt−1}: a dummy antecedent ϵ and all preceding tokens. ϵ

represents a scenario, where the token is not a special symbol “•”, and it refers

to none of the preceding tokens. y<t and c<t are the preceding tokens and

their antecedents. We omit y<t and c<t from the notation when the context is

unambiguous.

The decoding probability at each time step t is decomposed as

P(yt, ct) = P(yt)P(ct|yt) (4.2)

where P(yt) is the token generation probability, and P(ct|yt) is the an-

tecedent probability.

Token Generation: The probability distribution of the generated token yt is

defined as

P(yt) = softmax(FFNNg(st, at)) (4.3)

where FFNNg is a two-layer feed-forward neural network over the decoder

hidden state st and the attention-weighted vector at. st is computed by

st = RNN(yt−1, st−1), (4.4)

where RNN is a recurrent neural network using LSTM. at is computed by the
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attention mechanism (Bahdanau et al., 2014; Luong et al., 2015),

at =
N

∑
i

αt,ihi, (4.5)

αt,i =
exp (s⊤t (Wahi + ba)))

∑N
j=1 exp (s⊤t (Wahj + ba))

, (4.6)

where Wa is a transform matrix and ba is a bias.

Coref Link: The probability of yt referring to the preceding token yk, i.e.,

ct = yk, is defined as

P(ct = yk|yt) =
exp (SCORE(yt, yk))

∑y′k∈A(t) exp (SCORE(yt, yk′))
, (4.7)

SCORE(yt, yk) is a pairwise score for a COREF link from yk to yt, defined as:

SCORE(yt, yk) = sc(yt) + sp(yk) + sa(yt, yk) (4.8)

There are three factors in this pairwise score, which is akin to Lee et al. (2017):

(1) sc(yt), whether yt should refer to a preceding instance; (2) sp(yk), whether

yk shoud be a candidate source of such a coreference; and (3) sa(yt, yk), whether

yk is an antecedent of yt.

Figure 4.5 shows the details of the scoring architecture. At the core of

the three factors are vector representations γ(yt) for each token yt, which is

described in detail in the following section. Given the currently considered

token yt and a preceding token yk, the scoring functions above are computed
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Figure 4.5: Scoring architecture in the copy mechanism between a preceding token yk
and the currently considered token yt.

via standard feed-foward neural networks:

sc(yt) =wc · FFNNc(γ(yt)) (4.9)

sp(yk) =wp · FFNNp(γ(yk)) (4.10)

sa(yt, yk) =wa · FFNNa
(︁
[γ(yt), γ(yk

)︁
,

γ(yt) ◦ γ(yk)]) (4.11)

where · denotes dot product, ◦ denotes element-wise multiplication, and FFNN

denotes a two-layer feed-foward neural network over the input. The input of

FFNNa is a concatenation of vector representations γ(yt) and γ(yk), and their

explicit element-wise similarity γ(yt) ◦ γ(yk).

Token representations: To accurately predict COREF link scores as well as

decompositional analysis (which is described in the following section), we

consider three types of information in each token representation γ(yt): (1) the
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token itself yt, (2) on the decoder side, the preceding context y<t, and (3) on

the encoder side, the input sequence X = x1, . . . , xN.

The lexical information of the token itself yt is represented by its word

embedding et. The preceding context y<t is encoded by the decoder RNN in

Equation (4.4). We use the decoder hidden state st to represent the preceding

context information. The encoder-side context is represented by an attention-

weighted weight at defined in Equation (4.6). All the above information is

concatenated to produce the final token representation γ(yt):

γ(yt) = [et, st, at] (4.12)

4.5.3 Decompositional Analyses

The decompositional analyses D contains scores for Semantic Proto-Role (SPR)

properties DSPR, and scores for event factuality DFACT.

SPR: Given a predicate-argument pair (yi, yj), we denote the score for SPR

property p as D
(yi,yj)

SPRp
. As shown in Figure 4.4, we concatenate the token

representations of predicate and argument head tokens γ(yi) and γ(yj) as

the input to a SPR module. We employ the state-of-the-art SPR module

in Rudinger et al. (2018a), defined as:

D̂
(yi,yj)

SPRp
= WSPRpReLU(Wshared[γ(yi), γ(yj)]) (4.13)

where Wshared is the weight matrix shared across all properties. WSPRp is the

weight matrix for SPR property p. Then, the log-likelihood of the score of SPR

property p is defined as the negative L2 loss, i.e., −|D̂(yi,yj)

SPRp
− D

(yi,yj)

SPRp
|2.
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Factuality: We consider predicting event factuality as a scalar regression prob-

lem (White et al., 2016), and denote the factuality score of predicate yk as D(yk)
FACT.

As shown in Figure 4.4, we take the token representation of predicate head

token γ(yk) as the input to the state-of-the-art factuality module (Rudinger

et al., 2018b):

D̂(yk)
FACT = V2ReLU (V1γ(yk) + b1) + b2, (4.14)

where V1 and V2 are weight matrices, and b1 and b2 are biases. The log-

likelihood of factuality score is defined as negative of the Huber loss (Huber,

1964) with δ = 1.

We assume conditional independence among decompositional analysis:

P(D|X, Y, C) = ∏
(yi,yj)

∏
p
(D

(yi,yj)

SPRp
|X, Y, C)

∏
yk

P(D(yk)
FACT|X, Y, C) (4.15)

4.5.4 Learning

Given the input sentence X, the output sequence of tokens Y, and the COREF

links C, and the decompositional analysis D, the objective is to minimize the

below negative log-likelihood:

L =− log P(Y, C, D|X)

=−
M

∑
t=1

[µ1 log P(yt) + µ2 log P(ct|yt)]−

µ3 log P(D|X, Y, C)
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To increase the convergence rate, we pretrain the model by setting the

weights µ1 = 1 and µ2 = µ3 = 0 to only optimize the token generation

accuracy. After the model converges, we set µ2 = µ3 = 1 and lower µ1 = 0.1.

4.6 Experiments

We now describe the evaluation data, baselines, and experimental results.

4.6.1 Hyperparameters

Encoder: Word embeddings are randomly initialized 300d vectors sampled

from U (−0.1, 0.1). The encoder RNN uses 2-layer bidirectional LSTMs with

hidden state size of 500 and dropout rate at 0.3. Hidden states are zero

initialized. All other parameters are sampled from U (−0.1, 0.1).

Decoder: Word embeddings are initialized by open-source GloVe vectors (Pen-

nington et al., 2014) trained on Common Crawl 840B with 300 dimensions. The

decoder RNN uses 2-layer LSTMs with hidden state size of 500 and dropout

rate at 0.3. Hidden states are initialized by the last left-to-right hidden states

of encoder. All other parameters are sampled from U (−0.1, 0.1).

Token Generation: The feed-forward neural network is defined as

FFNNg(st, ct) = tanh(Wg

[︃
st
ct

]︃
+ bg) (4.16)

All transform matrices and bias used in generation are all sampled from

U (−0.1, 0.1).

Coref Link: All feed-forward neural networks in the coreference annotating
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mechanism are defined as

FFNN(x) = W3ReLU(W2ReLU(W1x + b1) + b2) + b3

where the sizes of W1, W2 and W3 are 1000 × 500, 500 × 500 and 500 × 1

respectively. Dropout at rate of 0.3 is applied to the output of each layer. All

transform matrices and bias used in the copying mechanism are all sampled

from U (−0.1, 0.1).

SPR module: The SPR model is a two-layer perceptron:

D̂
(yi,yj)

SPRp
= WSPRpReLU(Wshared[γ(yi), γ(yj)]) (4.17)

where size of Wshared is 2648× 2648 and sizes of all WSPRp are 2648× 1. All

transform matrices used in the SPR model are all sampled from U (−0.1, 0.1).

Factuality module: The Factuality model is a two-layer perceptron:

D̂(yk)
FACT = V2ReLU (V1γ(yk) + b1) + b2, (4.18)

where size of V1 and V2 are 1324× 1324 and 1324× 1. All transform matrices

used in the factuality model are all sampled from U (−0.1, 0.1).

4.6.2 Data

We choose Chinese as the source language and English as the target lan-

guage. For test, we select 270 sentences from the Universal Dependencies

(UD) English Treebank (Silveira et al., 2014) test set, which have human-

annotated SPR (White et al., 2016) and factuality (Rudinger et al., 2018b)

analyses. We then create linearized representations for these sentences using
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PredPatt based on their gold UD syntax. Meanwhile, the Chinese translations

of these sentences are created by crowdworkers on Amazon Mechanical Turk.

For training, we use the dataset introduced in Chapter 3 for Chinese-English

open information extraction, which contains tokenzied Chinese sentences and

parallel English sentences with linearzied PredPatt representations. We add

SPR and factuality annotations on the English side using the state-of-the-art

models (Rudinger et al., 2018a; Rudinger et al., 2018b) trained on SPR v2.x

and It-happened v2.0 respectively.6 We hold out 20K training sentences for

validation and in-domain test. Table 4.1 reports the dataset statistics.

No. sents Source

Train 1,879,172 GALE
Validation 10,000 GALE
In-domain Test 10,000 GALE
Test 270 UD Treebank

Table 4.1: Statistics of the evaluation data.

4.6.3 Variants

We evaluate our model described in § 4.5 and three variants: (a) We replace

the coreference annotating mechanism by randomly choosing an antecedent

from all preceding instances. (b) We preprocess the data by replacing the

special symbol “•” with the syntactic head of its antecedent. During training

and testing, we replace the coreference annotating mechanism with a heuristic

that solves coreference by randomly choosing an antecedent among preceding

6Both datasets are available at http://decomp.net
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instances which have the same syntactic head. (c) We remove the decoder-

side information in the token representation γ(yt) defined in Equation (4.12)

and only keep the encoder-side information at. We also include a Pipeline

approach where Chinese sentences are first translated into English by a neural

machine translation system (Klein et al., 2017) and are then annotated by a

UD parser (Andor et al., 2016). The UDS linearized representation of Pipeline

are created by PredPatt based the automatic UD parses.

S metric BLEUINST MAESPR MAEFACT
Precision Recall F1

Pipeline 35.08 30.10 32.39 15.03 N/A N/A
Variant (a) 39.31 32.93 35.84 16.74 0.75 1.11
Variant (b) 42.76 33.20 37.38 17.71 0.74 1.14
Variant (c) 41.74 33.28 37.03 18.01 0.80 1.14
Our model 45.33 33.88 38.78 19.61 0.71 1.06

Table 4.2: Evaluation of results on the test set.

S metric BLEUINST MAESPR MAEFACT
Precsion Recall F1

Pipeline 35.42 23.53 28.27 14.80 N/A N/A
Variant (a) 37.46 25.91 30.63 15.67 0.45 0.77
Variant (b) 41.27 26.41 32.21 16.89 0.44 0.79
Variant (c) 40.27 26.40 31.89 16.60 0.43 0.74
Our model 44.17 27.04 33.55 17.90 0.43 0.78

Table 4.3: Evaluation of results on the in-domain test set.

80



4.6.4 Results

Table 4.2 and Table 4.3 report the experimental results on the test set and the

in-domain test set. S metric (defined in § 4.4) measures the similarity between

predicted and reference graph representations. Based on the optimal variable

mapping provided by the S metric, we are able to evaluate our model and

the variants in different aspects: BLEUINST measures the BLEU score of all

matched instance edges; MAESPR measures the mean absolute error of SPR

property scores of all matched argument edges; and MAEFACT measures the

mean absolute error of factuality scores of all matched attribute edges.

Overall, our proposed model outperforms the variants in every aspect.

Variants (a) and (b) use simple heuristics to solve coreference, and achieve

reasonable results: they both employ sequence-to-sequence models to predict

graph representations, which can be considered a replica of state-of-the-art

approaches for structured prediction (Choe and Charniak, 2016; Barzdins and

Gosko, 2016b; Peng et al., 2017b). Compared to our model which employs

the coreference annotating mechanism, these two variants suffer notable loss

in the precision of S metric. As a result, their performance drops on the

other metrics. Variant (c) only uses the encoder-side information for token

representation, resulting in significant loss in MAESPR and MAEFACT. In the

pipeline approach, each component is trained independently. During test,

residual errors from each component are propagated through the pipeline. As

expected, it shows a significant performance drop.

Coreference occurs 589 times in the test set. To evaluate the coreference

accuracy of our model, we force the decoder to generate the reference target
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Precision Recall F1

Variant (a) 10.38 31.23 15.58
Variant (b) 88.42 50.59 64.36
Variant (c) 84.12 35.99 50.41
Our model 96.63 97.62 97.12

Table 4.4: Coreference evaluation (MUC) based on forced decoding.

sequence, and only predict coreference via the copy mechanism, or its variants.

In Table 4.4, we report the precision, recall, and F1 for the standard MUC using

the official coreference scorer of the CoNLL-2011/2012 shared tasks (Pradhan

et al., 2014). Since coreference in our setup occurs at the sentence level, our

model achieves high performance. Variant (a) randomly choosing antecedents

performs poorly, whereas variant (b), which solves coreference only based on

syntactic heads, achieves a relatively high score. Variant (c) demonstrates that

only using encoder-side information in the coreference annotating mechanism

leads a significant performance drop.

Since our model and the state-of-the-art monolingual SPR model (Rudinger

et al., 2018b) use the same test set, we are able to compare the performance

of our model against the monolingual model by forcing the decoder and the

coreference mechanism to create the reference graph representation and only

predicting the SPR property scores. Table 4.5 shows the Pearson coefficient of

each SPR property. While our model only has the access to the sentence in the

source language during the encoding stage,7 the performance is comparable

to the state-of-the-art monolingual model.

7The state-of-the-art monolingual SPR model directly encodes the sentence in the target
language.
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Our Model Monolingual SOTA
awareness 0.852 0.879
change location 0.491 0.492
change possession 0.448 0.488
changed 0.307 0.352
change state 0.362 0.373
existed after 0.426 0.478
existed before 0.602 0.618
existed during 0.336 0.358
instigation 0.597 0.59
partitive 0.317 0.359
sentient 0.849 0.88
volition 0.818 0.837
was for benefit 0.566 0.578
was used 0.268 0.203

Table 4.5: Pearson coefficient of each SPR property.

4.7 Conclusions

We introduce the task of cross-lingual decompositional semantic parsing,

which maps content provided in a source language into decompositional

analysis based on a target language. We present: UDS graph/linearized repre-

sentations as the target semantic interface, the S metric for evaluation, and the

Chinese-English decompositional semantic parsing dataset. We propose an

end-to-end learning approach with a coreference annotating mechanism which

outperforms three strong baselines. We separately evaluate the coreference

mechanism and SPR prediction, showing promising results. The represen-

tations for cross-lingual decompositional semantics, the evaluation metric,

and the evaluation dataset provided in this work will be beneficial to the

increasing interests in semantic analysis and cross-lingual applications.
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Part II

Broad-Coverage Semantic Parsing
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Chapter 5

AMR Parsing as
Sequence-to-Graph Transduction

5.1 Introduction

Abstract Meaning Representation (AMR, Banarescu et al., 2013) parsing is the

task of transducing natural language text into AMR, a graph-based formalism

used for capturing sentence-level semantics. Challenges in AMR parsing

include: (1) its property of reentrancy – the same concept can participate in

multiple relations – which leads to graphs in contrast to trees (Wang et al.,

2015); (2) the lack of gold alignments between nodes (concepts) in the graph

and words in the text which limits attempts to rely on explicit alignments to

generate training data (Flanigan et al., 2014; Wang et al., 2015; Damonte et al.,

2017; Foland and Martin, 2017; Peng et al., 2017b; Groschwitz et al., 2018; Guo

and Lu, 2018); and (3) relatively limited amounts of labeled data (Konstas

et al., 2017).

Recent attempts to overcome these challenges include: modeling align-

ments as latent variables (Lyu and Titov, 2018); leveraging external semantic
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Figure 5.1: Two views of reentrancy in AMR for an example sentence “The victim
could help himself.” (a) A standard AMR graph. (b) An AMR tree with node indices
as an extra layer of annotation, where the corresponding graph can be recovered by
merging nodes of the same index and unioning their incoming edges.

resources (Artzi et al., 2015; Bjerva et al., 2016); data augmentation (Konstas

et al., 2017; Noord and Bos, 2017b); and employing attention-based sequence-

to-sequence models (Barzdins and Gosko, 2016a; Konstas et al., 2017; Noord

and Bos, 2017b).

In this paper, we introduce a different way to handle reentrancy, and

propose an attention-based model that treats AMR parsing as sequence-to-

graph transduction. The proposed model, supported by an extended pointer-

generator network, is aligner-free and can be effectively trained with limited

amount of labeled AMR data. Experiments on two publicly available AMR

benchmarks demonstrate that our parser clearly outperforms the previous

best parsers on both benchmarks. It achieves the best reported SMATCH scores:

76.3% F1 on LDC2017T10 and 70.2% F1 on LDC2014T12. We also provide

extensive ablative and qualitative studies, quantifying the contributions from

each component. Our model implementation is available at https://github.

com/sheng-z/stog.
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5.2 Another View of Reentrancy

AMR is a rooted, directed, and usually acyclic graph where nodes represent

concepts, and labeled directed edges represent the relationships between them

(see Figure 5.1 for an AMR example). The reason for AMR being a graph

instead of a tree is that it allows reentrant semantic relations. For instance, in

Figure 5.1(a) “victim” is both ARG0 and ARG1 of “help-01”. While efforts have

gone into developing graph-based algorithms for AMR parsing (Chiang et al.,

2013; Flanigan et al., 2014), it is more challenging to parse a sentence into an

AMR graph rather than a tree as there are efficient off-the-shelf tree-based

algorithms, e.g., Chu and Liu (1965); Edmonds (1968). To leverage these tree-

based algorithms as well as other structured prediction paradigms (McDonald

et al., 2005), we introduce another view of reentrancy.

AMR reentrancy is employed when a node participates in multiple seman-

tic relations. We convert an AMR graph into a tree by duplicating nodes that

have reentrant relations; that is, whenever a node has a reentrant relation,

we make a copy of that node and use the copy to participate in the relation,

thereby resulting in a tree. Next, in order to preserve the reentrancy infor-

mation, we add an extra layer of annotation by assigning an index to each

node. Duplicated nodes are assigned the same index as the original node.

Figure 5.1(b) shows a resultant AMR tree: subscripts of nodes are indices; two

“victim” nodes have the same index as they refer to the same concept. The

original AMR graph can be recovered by merging identically indexed nodes

and unioning edges from/to these nodes. Similar ideas were used by Artzi

et al. (2015) who introduced Skolem IDs to represent anaphoric references in
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the transformation from CCG to AMR, and Noord and Bos (2017a) who kept

co-indexed AMR variables, and converted them to numbers.

5.3 Task Formalization

If we consider the AMR tree with indexed nodes as the prediction target,

then our approach to parsing is formalized as a two-stage process: node

prediction and edge prediction.1 An example of the parsing process is shown

in Figure 5.2.

The victim could help himself.

possible help victim victim

possible help victim victim

ARG1
ARG1

ARG0

Node Prediction

Edge Prediction

2 3 31

2 3 31

Figure 5.2: A two-stage process of AMR parsing. We remove senses (i.e., -01, -02, etc.)
as they will be assigned in the post-processing step.

Node Prediction Given a input sentence w = ⟨w1, ..., wn⟩, each wi a word in

the sentence, our approach sequentially decodes a list of nodes u = ⟨u1, ..., um⟩
1The two-stage process is similar to “concept identification” and “relation identification” in

Flanigan et al. (2014); Zhou et al. (2016); Lyu and Titov (2018); inter alia.
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and deterministically assigns their indices d = ⟨d1, ..., dm⟩.

P(u) =
m

∏
i=1

P(ui | u<i, d<i, w)

Note that we allow the same node to occur multiple times in the list; multiple

occurrences of a node will be assigned the same index. We choose to predict

nodes sequentially rather than simultaneously, because (1) we believe the cur-

rent node generation is informative to the future node generation; (2) variants

of efficient sequence-to-sequence models (Bahdanau et al., 2014; Vinyals et al.,

2015a) can be employed to model this process. At the training time, we obtain

the reference list of nodes and their indices using a pre-order traversal over

the reference AMR tree. We also evaluate other traversal strategies, and will

discuss their difference in § 5.7.2.

Edge Prediction Given a input sentence w, a node list u, and indices d, we

look for the highest scoring parse tree y in the space Y(u) of valid trees over u

with the constraint of d. A parse tree y is a set of directed head-modifier edges

y = {(ui, uj) | 1 ≤ i, j ≤ m}. In order to make the search tractable, we follow

the arc-factored graph-based approach (McDonald et al., 2005; Kiperwasser

and Goldberg, 2016), decomposing the score of a tree to the sum of the score

of its head-modifier edges:

parse(u) = argmax
y∈Y(u)

∑
(ui,uj)∈y

score(ui, uj)

Based on the scores of the edges, the highest scoring parse tree (i.e., max-

imum spanning arborescence) can be efficiently found using the Chu-Liu-

Edmonnds algorithm. We further incorporate indices as constraints in the
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Figure 5.3: Extended pointer-generator network for node prediction. For each de-
coding time step, three probabilities psrc, ptgt and pgen are calculated. The source and
target attention distributions as well as the vocabulary distribution are weighted by
these probabilities respectively, and then summed to obtain the final distribution,
from which we make our prediction. Best viewed in color.

algorithm, which is described in § 5.4.4. After obtaining the parse tree, we

merge identically indexed nodes to recover the standard AMR graph.

5.4 Model

Our model has two main modules: (1) an extended pointer-generator network

for node prediction; and (2) a deep biaffine classifier for edge prediction. The

two modules correspond to the two-stage process for AMR parsing, and they

are jointly learned during training.
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5.4.1 Extended Pointer-Generator Network

Inspired by the self-copy mechanism in Zhang et al. (2018), we extend the

pointer-generator network (See et al., 2017) for node prediction. The pointer-

generator network was proposed for text summarization, which can copy

words from the source text via pointing, while retaining the ability to produce

novel words through the generator. The major difference of our extension

is that it can copy nodes, not only from the source text, but also from the

previously generated nodes on the target side. This target-side pointing is

well-suited to our task as nodes we will predict can be copies of other nodes.

While there are other pointer/copy networks (Gulcehre et al., 2016; Merity

et al., 2016; Gu et al., 2016; Miao and Blunsom, 2016; Nallapati et al., 2016), we

found the pointer-generator network very effective at reducing data sparsity

in AMR parsing, which will be shown in § 5.7.2.

As depicted in Figure 5.3, the extended pointer-generator network consists

of four major components: an encoder embedding layer, an encoder, a decoder

embedding layer, and a decoder.

Encoder Embedding Layer This layer converts words in input sentences into

vector representations. Each vector is the concatenation of embeddings of

GloVe (Pennington et al., 2014), BERT (Devlin et al., 2018), POS (part-of-speech)

tags and anonymization indicators, and features learned by a character-level

convolutional neural network (CharCNN, Kim et al., 2016).

Anonymization indicators are binary, telling the encoder whether the word

is an anonymized word. In preprocessing, text spans of named entities in

input sentences will be replaced by anonymized tokens (e.g. person, country)
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to reduce sparsity (see § 5.6 for details).

Except BERT, all other embeddings are fetched from their corresponding

learned embedding look-up tables. BERT takes subword units as input, which

means that one word may correspond to multiple hidden states of BERT. In

order to accurately use these hidden states to represent each word, we apply

an average pooling function to the outputs of BERT. Figure 5.4 illustrates the

process of generating word-level embeddings from BERT.

victim could help himselfThe

Wordpiece Tokenizer

The vict ##im could help him ##self

BERT

Average
Pooling

Average
Pooling

BERT Embeddings

.

.

Figure 5.4: Word-level embeddings from BERT.

Encoder The encoder is a multi-layer bidirectional RNN (Schuster and Paliwal,

1997):

hl
i = [
−→
f l(hl−1

i , hl
i−1);

←−
f l(hl−1

i , hl
i+1)],

where
−→
f l and

←−
f l are two LSTM cells (Hochreiter and Schmidhuber, 1997);

hl
i is the l-th layer encoder hidden state at the time step i; h0

i is the encoder

embedding layer output for word wi.

Decoder Embedding Layer Similar to the encoder embedding layer, this layer

outputs vector representations for AMR nodes. The difference is that each
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vector is the concatenation of embeddings of GloVe, POS tags and indices,

and feature vectors from CharCNN.

POS tags of nodes are inferred at runtime: if a node is a copy from the

input sentence, the POS tag of the corresponding word is used; if a node is

a copy from the preceding nodes, the POS tag of its antecedent is used; if a

node is a new node emitted from the vocabulary, an UNK tag is used.

We do not include BERT embeddings in this layer because AMR nodes,

especially their order, are significantly different from natural language text

(on which BERT was pre-trained). We tried to use “fixed” BERT in this layer,

which did not lead to improvement.2

Decoder At each step t, the decoder (an l-layer unidirectional LSTM) receives

hidden state sl−1
t from the last layer and hidden state sl

t−1 from the previous

time step, and generates hidden state sl
t:

sl
t = f l(sl−1

t , sl
t−1),

where s0
t is the concatenation (i.e., the input-feeding approach, Luong et al.,

2015) of two vectors: the decoder embedding layer output for the previous

node ut−1 (while training, ut−1 is the previous node of the reference node list;

at test time it is the previous node emitted by the decoder), and the attentional

vector ˜︁st−1 from the previous step (explained later in this section). sl
0 is the

concatenation of last encoder hidden states from
−→
f l and

←−
f l respectively.

2Limited by the GPU memory, we do not fine-tune BERT on this task and leave it for future
work.
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Source attention distribution at
src is calculated by additive attention (Bah-

danau et al., 2014):

et
src = v⊤srctanh(W srchl

1:n + Usrcsl
t + bsrc),

at
src = softmax(et

src),

and it is then used to produce a weighted sum of encoder hidden states, i.e.,

the context vector ct.

Attentional vector ˜︁st combines both source and target side information, and

it is calculated by an MLP (shown in Figure 5.3):

˜︁st = tanh(W c[ct; sl
t] + bc)

The attentional vector ˜︁st has 3 usages:

(1) it is fed through a linear layer and softmax to produce the vocabulary

distribution:

Pvocab = softmax(Wvocab˜︁st + bvocab)

(2) it is used to calculate the target attention distribution at
tgt:

et
tgt = v⊤tgttanh(W tgt˜︁s1:t−1 + Utgt˜︁st + btgt),

at
tgt = softmax(et

tgt),

(3) it is used to calculate source-side copy probability psrc, target-side copy proba-

bility ptgt, and generation probability pgen via a switch layer:

[psrc, ptgt, pgen] = softmax(W switch˜︁st + bswitch)
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Note that psrc + ptgt + pgen = 1. They act as a soft switch to choose between

copying an existing node from the preceding nodes by sampling from the target

attention distribution at
tgt, or emitting a new node in two ways: (1) generating a

new node from the fixed vocabulary by sampling from Pvocab, or (2) copying a

word (as a new node) from the input sentence by sampling from the source

attention distribution at
src.

The final probability distribution P(node)(ut) for node ut is defined as follows.

If ut is a copy of existing nodes, then:

P(node)(ut) = ptgt

t−1

∑
i:ui=ut

at
tgt[i],

otherwise:

P(node)(ut) = pgenPvocab(ut) + psrc

n

∑
i:wi=ut

at
src[i],

where at[i] indexes the i-th element of at. Note that a new node may have

the same surface form as the existing node. We track their difference using

indices. The index dt for node ut is assigned deterministically as below:

dt =

⎧
⎪⎨
⎪⎩

t, if ut is a new node;

dj, if ut is a copy of its antecedent uj.

5.4.2 Deep Biaffine Classifier

For the second stage (i.e., edge prediction), we employ a deep biaffine classifier,

which was originally proposed for graph-based dependency parsing (Dozat

and Manning, 2016), and recently has been applied to semantic parsing (Peng
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et al., 2017a; Dozat and Manning, 2018).

As depicted in Figure 5.5, the major difference of our usage is that instead

of re-encoding AMR nodes, we directly use decoder hidden states from the

extended pointer-generator network as the input to deep biaffine classifier.

We find two advantages of using decoder hidden states as input: (1) through

the input-feeding approach, decoder hidden states contain contextualized in-

formation from both the input sentence and the predicted nodes; (2) because

decoder hidden states are used for both node prediction and edge prediction,

we can jointly train the two modules in our model.

Given decoder hidden states ⟨s1, ..., sm⟩ and a learnt vector representation

s′0 of a dummy root, we follow Dozat and Manning (2016), factorizing edge

prediction into two components: one that predicts whether or not a directed

edge (uk, ut) exists between two nodes uk and ut, and another that predicts

the best label for each potential edge.
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Edge and label scores are calculated as below:

s(edge-head)
t = MLP(edge-head)(st)

s(edge-dep)
t = MLP(edge-dep)(st)

s(label-head)
t = MLP(label-head)(st)

s(label-dep)
t = MLP(label-dep)(st)

score(edge)
k,t = Biaffine(s(edge-head)

k , s(edge-dep)
t )

score(label)
k,t = Bilinear(s(label-head)

k , s(label-dep)
t )

where MLP, Biaffine and Bilinear are defined as below:

MLP(x) = ELU(Wx + b)

Biaffine(x1, x2) = x⊤1 Ux2 + W [x1; x2] + b

Bilinear(x1, x2) = x⊤1 Ux2 + b

Given a node ut, the probability of uk being the edge head of ut is defined

as:

P(head)
t (uk) =

exp(score(edge)
k,t )

∑m
j=1 exp(score(edge)

j,t )

The edge label probability for edge (uk, ut) is defined as:

P(label)
k,t (l) =

exp(score(label)
k,t [l])

∑l′ exp(score(label)
k,t [l′])
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Figure 5.5: Deep biaffine classifier for edge prediction. Edge label prediction is not
depicted in the figure.

5.4.3 Training

The training objective is to jointly minimize the loss of reference nodes and

edges, which can be decomposed to the sum of the negative log likelihood at

each time step t for (1) the reference node ut, (2) the reference edge head uk of

node ut, and (3) the reference edge label l between uk and ut:

minimize−
m

∑
t=1

[log P(node)(ut) + log P(head)
t (uk)

+ log P(label)
k,t (l) + λcovlosst]
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covlosst is a coverage loss to penalize repetitive nodes:

covlosst = ∑
i

min(at
src[i], covt[i]),

where covt is the sum of source attention distributions over all previous

decoding time steps: covt = ∑t−1
t′=0 at′

src. See See et al. (2017) for full details.

Algorithm 1: Chu-Liu-Edmonds algo. w/ Adaptation
Input :Nodes u = ⟨u1, ..., um⟩,

Indices d = ⟨d1, ...dm⟩,
Edge scores S = {score(edge)

i,j | 0 ≤ i, j ≤ m}
Output :A maximum spanning tree.
// Include the dummy root u0.
V ← {u0} ∪ u;
d0 ← 0;

// Exclude invalid edges.
// di is the node index for node ui.
E← {(ui, uj) | 0 ≤ i, j ≤ m; di ̸= dj};
// Chu-Liu-Edmonds algorithm
return MST(V, E, S, u0);

5.4.4 Prediction

For node prediction, based on the final probability distribution P(node)(ut) at

each decoding time step, we implement both greedy search and beam search

to sequentially decode a node list u and indices d.

For edge prediction, given the predicted node list u, their indices d, and the

edge scores S = {score(edge)
i,j | 0 ≤ i, j ≤ m}, we apply the Chu-Liu-Edmonds

algorithm with a simple adaptation to find the maximum spanning tree (MST).

As described in Algorithm 1, before calling the Chu-Liu-Edmonds algorithm,

we first include a dummy root u0 to ensure every node have a head, and then
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exclude edges whose source and destination nodes have the same indices,

because these nodes will be merged into a single node to recover the standard

AMR graph where self-loops are invalid.

5.5 Related Work

AMR parsing approaches can be categorized into alignment-based, transition-

based, grammar-based, and attention-based approaches.

Alignment-based approaches were first explored by JAMR (Flanigan et al.,

2014), a pipeline of concept and relation identification with a graph-based

algorithm. Zhou et al. (2016) improved this by jointly learning concept and

relation identification with an incremental model. Both approaches rely on

features based on alignments. Lyu and Titov (2018) treated alignments as

latent variables in a joint probabilistic model, leading to a substantial reported

improvement. Our approach requires no explicit alignments, but implicitly

learns a source-side copy mechanism using attention.

Transition-based approach began with Wang et al. (2015); Wang et al. (2016),

who incrementally transform dependency parses into AMRs using transiton-

based models, which was followed by a line of research, such as Puzikov

et al. (2016); Brandt et al. (2016); Goodman et al. (2016); Damonte et al. (2017);

Ballesteros and Al-Onaizan (2017); Groschwitz et al. (2018). A pre-trained

aligner, e.g. Pourdamghani et al. (2014); Liu et al. (2018), is needed for most

parsers to generate training data (e.g., oracles for a transition-based parser).

Our approach makes no significant use of external semantic resources,3 and is

3We only use POS tags in the core parsing task. In post-processing, we use an entity linker
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aligner-free.

Grammar-based approaches are represented by Artzi et al. (2015); Peng

et al. (2015) who leveraged external semantic resources, and employed CCG-

based or SHRG-based grammar induction approaches converting logical

forms into AMRs. Pust et al. (2015) recast AMR parsing as a machine transla-

tion problem, while also drawing features from external semantic resources.

Attention-based parsing with Seq2Seq-style models have been considered

(Barzdins and Gosko, 2016a; Peng et al., 2017b), but are limited by the relatively

small amount of labeled AMR data. Konstas et al. (2017) overcame this by

making use of millions of unlabeled data through self-training, while Noord

and Bos (2017b) showed significant gains via a character-level Seq2Seq model

and a large amount of silver-standard AMR training data. In contrast, our

approach supported by extended pointer generator can be effectively trained

on the limited amount of labeled AMR data, with no data augmentation.

5.6 AMR Pre- and Post-processing

Firstly, we to run Standford CoreNLP like Lyu and Titov (2018), lemmatizing

input sentences and adding POS tags to each token. Secondly, we remove

senses, wiki links and polarity attributes in AMR. Thirdly, we anonymize

sub-graphs of named entities and *-entity in a way similar to Konstas et al.

(2017). Figure 5.6 shows an example before and after preprocessing. Sub-

graphs of named entities are headed by one of AMR’s fine-grained entity

types (e.g., highway, country_region in Figure 5.6) that contain a :name role.

as a common move for wikification like Noord and Bos (2017b).
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Sentence: 
 Route 288 , the circumferential highway running around the south - western quadrant of the Richmond 
New Urban Region , opened in late 2004 .

Anonymized Sentence:
HIGHWAY_0 , the circumferential highway running around the south - western quadrant of the 
COUNTRY_REGION_0 , opened in late DATE_0 .

Before preprocessing

(o / open-01
      :ARG1 (h / highway
            :wiki "Virginia_State_Route_288"
            :name (r / name
                  :op1 "Route"
                  :op2 288)
            :ARG1-of (r3 / run-04
                  :direction (a / around
                        :op1 (q / quadrant
                              :part-of (c / country-region
                                    :wiki -
                                    :name (r2 / name
                                          :op1 "Richmond"
                                          :op2 "New"
                                          :op3 "Urban"
                                          :op4 "Region"))
                              :mod (s / southwest))))
            :mod (c2 / circumference))
      :time (l / late
            :op1 (d / date-entity
                  :year 2004)))

After preprocessing

(o / open
      :ARG1 (h / HIGHWAY_0
            :ARG1-of (r3 / run
                  :direction (a / around
                        :op1 (q / quadrant
                              :part-of (c / COUNTRY_REGION_0)
                              :mod (s / southwest))))
            :mod (c2 / circumference))
      :time (l / late
            :op1 (d / DATE_0)))

Figure 5.6: An example AMR and the corresponding sentence before and after prepro-
cessing. Senses are removed. The first named entity is replaced by “HIGHWAY_0”;
the second named entity is replaced by “COUNTRY_REGION_0”; the first date entity
replaced by “DATE_0”.

Sub-graphs of other entities are headed by their corresponding entity type

name (e.g., date-entity in Figure 5.6). We replace these sub-graphs with a

token of a special pattern “TYPE_i” (e.g. HIGHWAY_0, DATE_0 in Figure 5.6),

where “TYPE" indicates the AMR entity type of the corresponding sub-graph,

and “i” indicates that it is the i-th occurrence of that type. On the training set,

we use simple rules to find mappings between anonymized sub-graphs and

spans of text, and then replace mapped text with the anonymized token we

inserted into the AMR graph. Additionally, we build a mapping of Standford

CoreNLP NER tags to AMR’s fine-grained types based on the training set,

which will be used in prediction. At test time, we normalize sentences to match
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our anonymized training data. For any entity span identified by Stanford

CoreNLP, we replace it with a AMR entity type based on the mapping built

during training. If no entry is found in the mapping, we replace entity spans

with the coarse-grained NER tags from Stanford CoreNLP, which are also

entity types in AMR.

In post-processing, we deterministically generate AMR sub-graphs for

anonymizations using the corresponding text span. We assign the most fre-

quent sense for nodes (-01, if unseen) like Lyu and Titov (2018). We add

wiki links to named entities using the DBpedia Spotlight API (Daiber et al.,

2013) following Bjerva et al. (2016); Noord and Bos (2017b) with the confi-

dence threshod at 0.5. We add polarity attributes based on Algorithm 2 where

the four functions isNegation, modifiedWord, mappedNode, and addPolarity

consists of simple rules observed from the training set. We use the PENMAN-

Codec4 to encode and decode both intermediate and final AMRs.

Algorithm 2: Adding polarity attributes to AMR.
Input :Sent. w = ⟨w1, ..., wn⟩, Predicted AMR A
Output :AMR with polarity attributes.
for wi ∈ w do

if isNegation(wi) then
wj ← modifiedWord(wi, w);
uk ← mappedNode(wj, A);
A← addPolarity(uk, A);

end
end
return A;

4https://github.com/goodmami/penman/
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5.7 Experiments

GloVe.840B.300d embeddings
dim 300

BERT embeddings
source BERT-Large-cased
dim 1024

POS tag embeddings
dim 100

Anonymization indicator embeddings
dim 50

Index embeddings
dim 50

CharCNN
num_filters 100
ngram_filter_sizes [3]

Encoder
hidden_size 512
num_layers 2

Decoder
hidden_size 1024
num_layers 2

Deep biaffine classifier
edge_hidden_size 256
label_hidden_size 128

Optimizer
type ADAM
learning_rate 0.001
max_grad_norm 5.0

Coverage loss weight λ 1.0

Beam size 5

Vocabulary
encoder_vocab_size (AMR 2.0) 18000
decoder_vocab_size (AMR 2.0) 12200
encoder_vocab_size (AMR 1.0) 9200
decoder_vocab_size (AMR 1.0) 7300

Batch size 64

Table 5.1: Hyper-parameter settings
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5.7.1 Setup

We conduct experiments on two AMR general releases (available to all LDC

subscribers): AMR 2.0 (LDC2017T10) and AMR 1.0 (LDC2014T12). Our model

is trained using ADAM (Kingma and Ba, 2014) for up to 120 epochs, with

early stopping based on the development set. Full model training takes about

19 hours on AMR 2.0 and 7 hours on AMR 1.0, using two GeForce GTX TITAN

X GPUs. At training, we have to fix BERT parameters due to the limited GPU

memory. We leave fine-tuning BERT for future work.

Table 5.1 lists the hyper-parameters used in our full model. Both encoder

and decoder embedding layers have GloVe and POS tag embeddings as well as

CharCNN, but their parameters are not tied. We apply dropout (dropout_rate

= 0.33) to the outputs of each module.

5.7.2 Results

Main Results We compare our approach against the previous best approaches

and several recent competitors. Table 5.2 summarizes their SMATCH scores (Cai

and Knight, 2013) on the test sets of two AMR general releases. On AMR

2.0, we outperform the latest push from Naseem et al. (2019) by 0.8% F1, and

significantly improves Lyu and Titov (2018)’s results by 1.9% F1. Compared

to the previous best attention-based approach (Noord and Bos, 2017b), our

approach shows a substantial gain of 5.3% F1, with no usage of any silver-

standard training data. On AMR 1.0 where the traininng instances are only

around 10k, we improve the best reported results by 1.9% F1.

Fine-grained Results In Table 5.3, we assess the quality of each subtask using
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Corpus Parser F1(%)

AMR
2.0

Buys and Blunsom (2017) 61.9
Noord and Bos (2017b) 71.0∗

Groschwitz et al. (2018) 71.0±0.5
Lyu and Titov (2018) 74.4±0.2
Naseem et al. (2019) 75.5

Ours 76.3±0.1

AMR
1.0

Flanigan et al. (2016) 66.0
Pust et al. (2015) 67.1
Wang and Xue (2017) 68.1
Guo and Lu (2018) 68.3±0.4

Ours 70.2±0.1

Table 5.2: SMATCH scores on the test sets of AMR 2.0 and 1.0. Standard deviation
is computed over 3 runs with different random seeds. ∗ indicates the previous best
score from attention-based models.

Metric vN’18 L’18 N’19 Ours

SMATCH 71.0 74.4 75.5 76.3±0.1

Unlabeled 74 77 80 79.0±0.1
No WSD 72 76 76 76.8±0.1
Reentrancies 52 52 56 60.0±0.1
Concepts 82 86 86 84.8±0.1
Named Ent. 79 86 83 77.9±0.2
Wikification 65 76 80 85.8±0.3
Negation 62 58 67 75.2±0.2
SRL 66 70 72 69.7±0.2

Table 5.3: Fine-grained F1 scores on the AMR 2.0 test set. vN’17 is Noord and Bos
(2017b); L’18 is Lyu and Titov (2018); N’19 is Naseem et al. (2019).

the AMR-evaluation tools (Damonte et al., 2017). We see a notable increase

on reentrancies, which we attribute to target-side copy (based on our ablation

studies in the next section). Significant increases are also shown on wikification

and negation, indicating the benefits of using DBpedia Spotlight API and
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negation detection rules in post-processing. On all other subtasks except

named entities, our approach achieves competitive results to the previous

best approaches (Lyu and Titov, 2018; Naseem et al., 2019), and outperforms

the previous best attention-based approach (Noord and Bos, 2017b). The

difference of scores on named entities is mainly caused by anonymization

methods used in preprocessing, which suggests a potential improvement by

adapting the anonymization method presented in Lyu and Titov (2018) to our

approach.

Ablation AMR
1.0

AMR
2.0

Full model 70.2 76.3

no source-side copy 62.7 70.9
no target-side copy 66.2 71.6
no coverage loss 68.5 74.5
no BERT embeddings 68.8 74.6
no index embeddings 68.5 75.5
no anonym. indicator embed. 68.9 75.6
no beam search 69.2 75.3
no POS tag embeddings 69.2 75.7
no CharCNN features 70.0 75.8

only edge prediction 88.4 90.9

Table 5.4: Ablation studies on components of our model. (Scores are sorted by the
delta from the full model.)

Ablation Study We consider the contributions of several model components

in Table 5.4. The largest performance drop is from removing source-side

copy,5 showing its efficiency at reducing sparsity from open-class vocabulary

entries. Removing target-side copy also leads to a large drop. Specifically,

5All other hyper-parameter settings remain the same.
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the subtask score of reentrancies drops down to 38.4% when target-side copy

is disabled. Coverage loss is useful with regard to discouraging unneces-

sary repetitive nodes. In addition, our model benefits from input features

such as language representations from BERT, index embeddings, POS tags,

anonymization indicators, and character-level features from CharCNN. Note

that without BERT embeddings, our model still outperforms the previous

best approaches (Lyu and Titov, 2018; Guo and Lu, 2018) that are not using

BERT. Beam search, commonly used in machine translation, is also helpful

in our model. We provide side-by-side examples in § 5.8 to further illustrate

the contribution from each component, which are largely intuitive, with the

exception of BERT embeddings. There the exact contribution of the compo-

nent (qualitative, before/after ablation) stands out less: future work might

consider a probing analysis with manually constructed examples, in the spirit

of Linzen et al. (2016); Conneau et al. (2018); Tenney et al. (2019).

In the last row, we only evaluate model performance at the edge prediction

stage by forcing our model to decode the reference nodes at the node predic-

tion stage. The results mean if our model could make perfect prediction at

the node prediction stage, the final SMATCH score will be substantially high,

which identifies node prediction as the key to future improvement of our

model.

There are three sources for node prediction: vocabulary generation, source-

side copy, or target-side copy. Let all reference nodes from source z be N(z)
ref ,
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and all system predicted nodes from z be N(z)
sys. we compute frequency, preci-

sion and recall of nodes from source z as below:

frequency(z) = |N(z)
ref |

/︂
∑z |N

(z)
ref |

precision(z) = |N(z)
ref ∩ N(z)

sys|
/︂
|N(z)

sys|

recall(z) = |N(z)
ref ∩ N(z)

sys|
/︂
|N(z)

ref |

vocab_gen src_copy tgt_copy
0
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Figure 5.7: Frequency, precision and recall of nodes from different sources, based on
the AMR 2.0 test set.

Figure 5.7 shows the frequency of nodes from difference sources, and their

corresponding precision and recall based on our model prediction. Among all

reference nodes, 43.8% are from vocabulary generation, 47.6% from source-

side copy, and only 8.6% from target-side copy. On one hand, the highest

frequency of source-side copy helps address sparsity and results in the highest

precision and recall. On the other hand, we see space for improvement,

especially on the relatively low recall of target-side copy, which is probably
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due to its low frequency.

Node Linearization As decribed in § 5.3, we create the reference node list

by a pre-order traversal over the gold AMR tree. As for the children of each

node, we sort them in alphanumerical order. This linearization strategy has

two advantages: (1) pre-order traversal guarantees that a head node (predicate)

always comes in front of its children (arguments); (2) alphanumerical sort

orders according to role ID (i.e., ARG0>ARG1>...>ARGn), following intuition from

research in Thematic Hierarchies (Fillmore, 1968; Levin and Hovav, 2005).

Node Linearization AMR
1.0

AMR
2.0

Pre-order + Alphanum 70.2 76.3
Pre-order + Alignment 61.9 68.3
Pure Alignment 64.3 71.3

Table 5.5: SMATCH scores of full models trained and tested based on different node
linearization strategies.

In Table 5.5, we report SMATCH scores of full models trained and tested

on data generated via our linearization strategy (Pre-order + Alphanum), as

compared to two obvious alternates: the first alternate still runs a pre-order

traversal, but it sorts the children of each node based on the their alignments

to input words; the second one linearizes nodes purely based alignments.

Alignments are created using the tool by Pourdamghani et al. (2014). Clearly,

our linearization strategy leads to much better results than the two alternates.

We also tried other traversal strategies such as combining in-order traversal

with alphanumerical sorting or alignment-based sorting, but did not get scores
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even comparable to the two alternates.6

Average Pooling vs. Max Pooling In Figure 5.4, we apply average pooling to

the outputs (last-layer hidden states) of BERT in order to generate word-level

embeddings for the input sentence. Table 5.6 shows scores of models using

different pooling functions. Average pooling performs slightly better than

max pooling.

AMR 1.0 AMR 2.0

Average Pooling 70.2±0.1 76.3±0.1
Max Pooling 70.0±0.1 76.2±0.1

Table 5.6: SMATCH scores based different pooling functions. Standard deviation is
over 3 runs on the test data.

5.8 Side-by-Side Examples

We provide examples from the test set, with side-by-side comparisons between

the full model prediction and the model prediction after ablation.

Sentence: 
Smoke and clouds chase the flying waves
Lemmas:
["smoke", "and", "cloud", "chase", "the", "fly", "wave"]

Full Model

(vv1 / chase-01
      :ARG0 (vv2 / and
            :op1 (vv3 / smoke)
            :op2 (vv4 / cloud-01))
      :ARG1 (vv5 / wave
            :purpose (vv6 / fly-01)))

No Source-side Copy

(vv1 / and
      :op1 (vv2 / stretch-01
            :ARG1 (vv3 / and
                  :op1 (vv4 / leech)))
      :op2 (vv6 / bug)
      :op3 (vv7 / fly-01)
      :op3 (vv8 / center))

Figure 5.8: Full model prediction vs. no source-side copy prediction. Tokens in blue
are copied from the source side. Without source-side copy, the prediction becomes
totally different and inaccurate in this example.

6Noord and Bos (2017b) also investigated linearization order, and found that alignment-
based ordering yielded the best results under their setup where AMR parsing is treated as a
sequence-to-sequence learning problem.
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Sentence: 
Now we already have no cohesion! China needs to start a war!

Full Model

(vv1 / multi-sentence
      :snt1 (vv2 / have-03
            :ARG0 (vv3 / we)
            :ARG1 (vv4 / cohere-01)
            :polarity -
            :time (vv5 / already))
      :snt2 (vv6 / need-01
            :ARG0 (vv7 / country
                  :name (vv8 / name
                        :op1 "China")
                  :wiki "China")
            :ARG1 (vv9 / start-01
                  :ARG0 vv7
                  :ARG1 (vv11 / war))
            :time (vv12 / now)))

No Target-side Copy

(vv1 / multi-sentence
      :snt1 (vv2 / have-03
            :ARG0 (vv3 / we)
            :ARG1 (vv4 / cohere-01)
            :polarity -
            :time (vv5 / already))
      :snt2 (vv6 / need-01
            :ARG0 (vv7 / country
                  :name (vv8 / name
                        :op1 "China")
                  :wiki "China")
            :ARG1 (vv9 / start-01
                  :ARG0 (vv10 / country)
                  :ARG1 (vv11 / war))))

Figure 5.9: Full model prediction vs. no target-side copy prediction. Nodes in blue
denote the same concept (i.e., the country “China”). The full model correctly copies
the first node (“vv7 / country”) as ARG0 of “start-01”. Without target-side copy, the
model has to generate a new node with a different index, i.e., “vv10 / country”.

Sentence: 
The solemn and magnificent posture represents a sacred expectation for peace.

Full Model

(vv1 / represent-01
      :ARG0 (vv2 / posture-01
            :mod (vv3 / magnificent)
            :mod (vv4 / solemn))
      :ARG1 (vv5 / expect-01
            :ARG1 (vv6 / peace)
            :mod (vv7 / sacred)))

No Coverage Loss

(vv1 / represent-01
      :ARG0 (vv2 / posture-01
            :mod (vv3 / magnificent)
            :mod (vv4 / magnificent))
      :ARG1 (vv5 / expect-01
            :ARG1 (vv6 / peace)
            :mod (vv7 / sacred)))

Figure 5.10: Full model prediction vs. no coverage loss prediction. The full model
correctly predicts the second modifier “solemn”. Without coverage loss, the model
generates a repetitive modifier “magnificent”.

Sentence: 
Do it gradually if it's not something you're particularly comfortable with.

Full Model

(vv1 / have-condition-91
      :ARG1 (vv2 / do-02
            :ARG0 (vv3 / you)
            :ARG1 (vv4 / it)
            :manner (vv5 / gradual))
      :ARG2 (vv6 / comfortable-02
            :ARG0 vv4
            :mod (vv8 / particular)
            :polarity -))

No BERT Embeddings

(vv1 / have-concession-91
      :ARG1 (vv2 / do-02
            :ARG0 (vv3 / it)
            :ARG1 (vv4 / something
                  :ARG0-of (vv5 / comfortable-02
                        :ARG0 vv3
                        :mod (vv7 / particular)
                        :polarity -))))

Figure 5.11: Full model prediction vs. no BERT embeddings prediction.
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5.9 Conclusions

We propose an attention-based model for AMR parsing where we introduce

a series of novel components into a transductive setting that extend beyond

what a typical NMT system would do on this task. Our model achieves the

best performance on two AMR corpora. For future work, we would like to

extend our model to other semantic parsing tasks (Oepen et al., 2014; Abend

and Rappoport, 2013).
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Chapter 6

Broad-Coverage Semantic Parsing
as Transduction

6.1 Introduction

Broad-coverage semantic parsing aims at mapping any natural language text,

regardless of its domain, genre, or even the language itself, into a general-

purpose meaning representation. As a long-standing topic of interest in com-

putational linguistics, broad-coverage semantic parsing has targeted a num-

ber of meaning representation frameworks, including CCG (Steedman, 1996;

Steedman, 2000), DRS (Kamp and Reyle, 1993; Bos, 2008), AMR (Banarescu

et al., 2013), UCCA (Abend and Rappoport, 2013), SDP (Oepen et al., 2014;

Oepen et al., 2015), and UDS (White et al., 2016).1 Each of these frameworks

has their specific formal and linguistic assumptions. Such framework-specific

“balkanization” results in a variety of framework-specific parsing approaches,

and the state-of-the-art semantic parser for one framework is not always

1Abbreviations respectively denote: Combinatory Categorical Grammar, Discourse Repre-
sentation Theory, Abstract Meaning Representation, Universal Conceptual Cognitive Annota-
tion, Semantic Dependency Parsing, and Universal Decompositional Semantics.
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applicable to another. For instance, the state-of-the-art approaches to SDP

parsing (Dozat and Manning, 2018; Peng et al., 2017a) are not directly transfer-

able to AMR and UCCA because of the lack of explicit alignments between

tokens in the sentence and nodes in the semantic graph.

While transition-based approaches are adaptable to different semantic

parsing tasks (Wang et al., 2018; Hershcovich et al., 2018; Damonte et al., 2017),

when it comes to representations such as AMR whose nodes are unanchored

to tokens in the sentence, a pre-trained aligner has to be used to produce

the reference transition sequences (Wang et al., 2015; Damonte et al., 2017;

Peng et al., 2017b). In contrast, there are attempts to develop attention-based

approaches in a graph-based parsing paradigm (Dozat and Manning, 2018;

Zhang et al., 2019a), but they lack parsing incrementality, which is advocated

in terms of computational efficiency and cognitive modeling (Nivre, 2004;

Huang and Sagae, 2010).

In this work, we approach different broad-coverage semantic parsing tasks

under a unified framework of transduction. We propose an attention-based

neural transducer that extends the two-stage semantic parser proposed in

Chapter 5 to directly transduce input text into a meaning representation in one

stage. This transducer has properties of both transition-based approaches and

graph-based approaches: on the one hand, it builds a meaning representation

incrementally via a sequence of semantic relations, similar to a transition-

based parser; on the other hand, it leverages multiple attention mechanisms

used in recent graph-based parsers, thereby removing the need for pre-trained

aligners.
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Requiring only minor task-specific adaptations, we apply this framework

to three separate broad-coverage semantic parsing tasks: AMR, SDP, and

UCCA. Experimental results show that our neural transducer outperforms

the state-of-the-art parsers on AMR (77.0% F1 on LDC2017T10 and 71.3%

F1 on LDC2014T12) and UCCA (76.6% F1 on the English-Wiki dataset v1.2),

and is competitive with the state of the art on SDP (92.2% F1 on the English

DELPH-IN MRS dataset).

6.2 Unified Transduction Problem
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Figure 6.1: Meaning representation in the task-specific format – (a) AMR, (b) DM, and
(c) UCCA – for an example sentence “Pierre Vinken expressed his concern”. Meaning
representation (d), (e) and (f) are in the unified arborescence format, which are
converted from (a), (b) and (c) respectively.

116



6.2.1 Unified Arborescence Format

We first introduce a unified target format for different broad-coverage semantic

parsing tasks. Meaning representation in the unified format is an arborescence

(aka, a directed rooted tree), which is converted from its corresponding task-

specific semantic graph via the following reversible steps:

AMR Reentrancy is what can make an AMR graph not an arborescence (it

introduces cycles). Following Chapter 5, we convert an AMR graph into

an arborescence by duplicating nodes that have reentrant relations; that is,

whenever a node has a reentrant relation, we make a copy of that node and

use the copy to participate in the relation, thereby resulting in an arborescence.

Next, in order to preserve the reentrancy information, we assign a node index

to each node. Duplicated nodes are assigned the same index as the original

node. Figure 6.1(d) shows an AMR arborescence converted from Figure 6.1(a):

two “person” nodes have the same node index 2. The original AMR graph can

be recovered by merging identically indexed nodes.

DM We first break the DM graph into a set of weakly connected subgraphs. For

each subgraph, if it has the top node, we treat top as root; otherwise, we treat

the node with the max outdegree as root. We then run depth-first traversal

over each subgraph from its root to yield an arborescence, and repeat the

following three steps until no more edges can be added to the arborescence:

(1) we run breadth-first traversal over the arborescence from the root until

we find a node that has an incoming edge not belonging to the arborescence;

(2) we reverse the edge and add a -of suffix to the edge label; (3) we run

depth-first search from that node to include more edges to the arborescence.
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During the whole process, we add node indices and duplicate reentrant nodes

in the same way as AMR conversion. Finally, we connect arborescences by

adding a null edge from top to other arborescence roots. Figure 6.1(e) shows a

DM arborescence converted from Figure 6.1(b). The original DM graph can be

recovered by removing null edges, merging identically indexed nodes, and

reversing edges with -of suffix.

UCCA To date, official UCCA evaluation only considers UCCA’s foundational

layer, which is already an arborescence. We convert it to the unified arbores-

cence format by first collapsing subgraphs of pre-terminal nodes: we replace

each pre-terminal node with its first terminal node; if the pre-terminal node

has other terminals, we add a special phrase edge from the first terminal node

to other terminal nodes. The collapsing step largely reduces the number of

terminal nodes in UCCA. We then add labels to the remaining non-terminal

nodes. Each node label is simply the same as its incoming edge label. We find

that adding node labels improves performance of our neural transducer (See

§ 6.5.2 for the experimental results). Lastly, we add node indices in the same

way as AMR conversion. Figure 6.1(f) shows a DM arborescence converted

from Figure 6.1(c). The original UCCA DAG can be recovered by expanding

pre-terminal subgraphs, and removing non-terminal node labels.

6.2.2 Problem Formalization

For any broad-coverage semantic parsing task, we denote the input text by X,

and the output meaning representation in the unified arborescence format by

Y, where X is a sequence of tokens ⟨x1, x2, ..., xn⟩ and Y can be decomposed
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as a sequence of semantic relations ⟨y1, y2, ..., ym⟩. A relation y is a tuple

⟨u, du, r, v, dv⟩, consisting of a source node label u, a source node index du, a

relation type r, a target node label v, and a target node index dv.

Let Y be the output space. The unified transduction problem is to seek the

most-likely sequence of semantic relations Ŷ given X:

Ŷ = argmax
Y∈Y

P(Y | X)

= argmax
Y∈Y

m

∏
i

P(yi | y<i, X)

6.3 Transducer

To tackle the unified transduction problem, we introduce an attention-based

neural transducer that extends the sequence-to-graph (STOG) transducer in

Chapter 5. STOG addresses semantic parsing in a two-stage process: it first

employs an extended variant of pointer-generator network (See et al., 2017)

to convert the input text into a list of nodes, and then uses a deep biaffine

graph-based parser (Dozat and Manning, 2016) with a maximum spanning

tree (MST) algorithm to create edges. In contrast, our attention-based neural

transducer directly transduces the input text into a meaning representation in

one stage via a sequence of semantic relations. A high-level model architecture

of our transducer is depicted in Figure 6.2: an encoder first encodes the input

text into hidden states; and then conditioned on the hidden states, at each

decoding time step, a decoder takes the previous semantic relation as input,

and outputs a new semantic relation, which includes a target node, a relation
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type, and a source node.

express-01
(1)

top
(0)

person
(2)

Pierre
(3)

Vinken
(4)

concern-01
(5)

person
(2)

top
(0)

ARG0 op1 op2 ARG1 ARG1

express-01
(1)

person
(2)

Pierre
(3)

Vinken
(4)

concern-01
(5)

person
(2)

<end>
(6)

Pierre Vinken expressed his concern

Encoder

Source Node Module 

Relation Type Module 

Target Node Module 

top
(0)

express-01
(1)

ARG0

person
(2)

op1

person
(2)

op1

express-01
(1)

ARG1

concern-01
(5)

ARG1

Decoder 

Decoder 
Input 

Semantic
Relations 

Decoder Output 
Semantic Relations 

Input Text 

Embedding
Module 

Figure 6.2: The encoder-decoder architecture of our attention-based neural transducer.
An encoder encodes the input text into hidden states. A decoder is composed by
three modules: a target node module, a relation type module, and a source node
module. At each decoding time step, the decoder takes the previous semantic relation
as input, and outputs a new semantic relation in a factorized way: firstly, the target
node module produces a new target node; secondly, the source node module points to
a preceding node as a new source node; finally, the relation type module predicts the
relation type between source and target nodes.

There is a significant difference between STOG and our model: STOG first

predicts nodes, and then edges. These two stages are done separately (except

that a shared encoder is used). At the node prediction stage, their model has no

knowledge of edges, and therefore node prediction is performed purely based

previous nodes. At the edge prediction stage, their model predicts the head

of each node in parallel. Head prediction of one node has no constrains or

impact on another. As a result, MST algorithms have to be used to search for a

valid prediction. In comparison, our model does not have two separate stages

for node and edge prediction. At each decoding step, our model predicts not

only a node, but also the incoming edge to the node, which includes a source

and a relation type. See Figure 6.2 for an example. The predicted node and
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incoming edge together with previous predictions form a partial semantic

graph, which is used as input of the next decoding step for the next node

and incoming edge prediction. Our model therefore makes predictions based

on the partial semantic graph, which helps prune the output space for both

nodes and edges. Since at each decoding step, we assume the incoming edge

is always from a preceding node (see § 6.3.3 for the details), the predicted

semantic graph is guaranteed to be a valid arborescence, and a MST algorithm

is no longer needed.

6.3.1 Encoder

At the encoding stage, we employ an encoder embedding module to convert

the input text into vector representations, and a BiLSTM is used to encode

vector representations into hidden states.

Encoder Embedding Module concatenates word-level embeddings. They

come from GloVe (Pennington et al., 2014) and BERT2 (Devlin et al., 2018), char-

level embeddings from CharCNN (Kim et al., 2016), and randomly initialized

embeddings for POS tags.

For AMR, it includes extra embeddings for anonymization indicators that

tell the encoder whether a token is an anonymized token from preprocessing.

For UCCA, it includes extra randomly initialized embeddings for NER

tags, syntactic dependency labels, punctuation indicators, and shapes that are

provided in the UCCA official dataset.

2We use average pooling in the same way as STOG to get word-level embeddings from
BERT.
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Multi-layer BiLSTM (Hochreiter and Schmidhuber, 1997) is defined as:

sl
t =

[︃ −→s l
t←−s l
t

]︃
=

[︄ −−−→
LSTM(sl−1

t , sl
t−1)←−−−

LSTM(sl−1
t , sl

t+1)

]︄
, (6.1)

where sl
t is the l-th layer hidden state at time step t; st

i is the embedding

module output for token xt.

6.3.2 Decoder

Decoder Embedding Module at decoding time step i converts elements

in the input semantic relation ⟨ui, du
i , ri, vi, dv

i ⟩ into vector representations

⟨ui, du
i , ri, vi, dv

i ⟩:3

ui and vi are concatenations of word-level embeddings from GloVe, char-

level embeddings from CharCNN, and randomly initialized embeddings for

POS tags. POS tags for source and target nodes are inferred at runtime: if

a node is copied from input text, the POS tag of the corresponding token is

used; if it is copied from a preceding node, the POS tag of the preceding node

is used; otherwise, an UNK tag is used.

du
i , dv

i and ri are randomly initialized embeddings for source node index,

target node index, and relation type.

Next, the decoder outputs a new semantic relation in a factorized way

depicted in Figure 6.2: First, a target node module takes vector representations

of the previous semantic relation, and predicts a target node label as well as

its index. Then, a source node module predicts a source node via pointing to a

3While training, the input semantic relation is from the reference sequence of relations; at
test time, it is the previous decoder output semantic relation.
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preceding node. Lastly, a relation type module takes the predicted source and

target nodes, and predicts the relation type between them.

Target Node Module converts vector representations of the input semantic

relation into a hidden state zi in the following way:

zi = FFN(relation)([hl
i ; ci; ri; ui; du

i ]) (6.2)

hl
i = LSTM(hl−1

i , hl
i−1) (6.3)

FFN(x) = Wx + b (6.4)

where an l-layer LSTM generates contextual representation hl
i for target node

vi (for initialization, h0
i = [vi; dv

i ], hl
0 = [←−s l

1;−→s l
n]). A feed-forward neural net-

work FFN(relation) generates the hidden state zi of the input semantic relation

by combining contextual representation hl
i for target node vi, encoder context

vector ci, and vector representations ri, ui, du
i for relation type ri, source node

label ui and source node index du
i .

Encoder context vector ci is a weighted-sum of encoder hidden states sl
1:n.

The weight is attention a(enc)
i from the decoder at decoding step i to encoder

hidden states:

a(enc)
i = softmax

(︁
MLP(enc)([hl

i ; sl
1:n])

)︁
(6.5)

MLP(x) = ELU(Wx + b) (6.6)

Given the hidden state zi for input semantic relation, we use an extended
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variant of pointer-generator network to compute the probability distribution

of next target node label vi+1:

P(vi+1) = pgenp(vocab)
i ⊕ penca(enc)

i ⊕ pdeca(dec)
i (6.7)

p(vocab)
i = softmax

(︁
FFN(vocab)(zi)

)︁
(6.8)

a(dec)
i = softmax

(︁
MLP(dec)([zi; z1:i−1])

)︁
(6.9)

[pgen, penc, pdec] = softmax
(︁

FFN(switch)(zi)
)︁

(6.10)

P(vi+1) is a hybrid of three parts: (1) emitting a new node label from a pre-

defined vocabulary via probability distribution p(vocab)
i ; (2) copying a token

from the encoder input text as node label via encoder-side attention a(enc)
i ;

and (3) copying a node label from preceding target nodes via decoder-side

attention a(dec)
i . Scalars pgen, penc and pdec act as a soft switch to control the

production of target node label from different sources.

The next target node index dv
i+1 is assigned based on the following rule:

dv
i+1 =

⎧
⎪⎨
⎪⎩

dv
j , if vi+1 copies its antecedent vj.

i + 1, otherwise.

Source Node Module produces the next source node label ui+1 via pointing

to a node label among preceding target node labels (the dotted arrows shown

in Figure 6.2). The probability distribution of next source node label ui+1 is

defined as

P(ui+1) = softmax
(︁

BIAFFINE(h(start)
i+1 , h(end)

1:i )
)︁

(6.11)
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where BIAFFINE is a biaffine function (Dozat and Manning, 2016). h(start)
i+1

is the vector representation for the start of the pointer. h(end)
1:i are vector

representations for possible ends of the pointer. They are computed by two

multi-layer perceptrons:

h(start)
i+1 = MLP(start)(hl

i+1) (6.12)

h(end)
1:i = MLP(end)(hl

1:i) (6.13)

Note that hl
i+1 is the LSTM hidden state for target node vi+1, generated by

Equation (6.3) in the target node module. We reuse LSTM hidden states from

the target node module such that we can train the decoder modules jointly.

Then, the next source node index du
i+1 is the same as the target node the

module points to.

Relation Type Module also reuses LSTM hidden states from the target node

module to compute the probability distribution of next relation type ri+1.

Assuming that the source node module points to target node label vj as

the next source node label, The next relation type probability distribution is

computed by:

P(ri+1) = softmax
(︁

BILINEAR(h(rel-src)
i+1 , h(rel-tgt)

i+1 )
)︁

(6.14)

h(rel-src)
i+1 = MLP(rel-src)(hl

j) (6.15)

h(rel-tgt)
i+1 = MLP(rel-tgt)(hl

i+1) (6.16)
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6.3.3 Training

To ensure that at each decoding step, the source node can be found in the

preceding nodes, we create the reference sequence of semantic relations by

running a pre-order traversal over the reference arborescence. The pre-order

traversal only determines the order between a node and its children. As for

the order of its children, we sort them in alphanumerical order in the case of

AMR, following Chapter 5. In the case of SDP, we sort the children based on

their order in the input text. In the case of UCCA, we sort the children based

on their UCCA node ID.

Given a training pair ⟨X, Y⟩, the optimization objective is to maximize

the decomposed conditional log likelihood ∑i log
(︁
P(yi | y<i, X)

)︁
, which is

approximated by:

∑
i

log
(︁
P(ui)

)︁
+ log

(︁
P(ri)

)︁
+ log

(︁
P(vi)

)︁
(6.17)

We also employ label smoothing (Szegedy et al., 2016) to prevent overfit-

ting, and include a coverage loss (See et al., 2017) to penalize repetitive nodes:

covlossi = ∑t min(a(enc)
i [t], covi[t]), where covi = ∑i−1

j=0 a(enc)
j .

6.3.4 Prediction

Our transducer at each decoding time step looks for the source node from the

preceding nodes, which ensures that the output of a greedy search is already

a valid arborescence Ŷ:

P(Ŷ | X) = ∏
i

max
ui

P(ui)max
ri

P(ri)max
vi

P(vi)
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Algorithm 3: Beam Search over Semantic Relations.
Input :The input text X.
Output :A sequence of relations Y = {y1, ...ym}.
// Initialization.
i, score← 0, 0;
Y, finished← {}, {};
beam← {{Y, score}};
// Encoding.
encode(X);

// Decoding.
for i← 1 to MaxLength do

new_beam← {};
{Y, score} = beam.pop();
for vi in topK(P(vi)) do

if vi = EOS then
finished.push({Y, score});

else
for ui ← v0 to vi−1 do

for ri in RelationTypeSet do
Y ← Y ∪ {⟨ui, ri, vi⟩};
score← score + log

(︁
P(ui)

)︁
+ log

(︁
P(ri)

)︁
+ log

(︁
P(vi)

)︁
;

new_beam.push({Y, score});
end

end
end

end
beam← new_beam.topK();

end

// Finishing.
while beam.not_empty() do
{Y, score} ← beam.pop();
finished.push({Y, score});

end
{Y, score} ← finished.topK(k=1);

return Y;

Therefore, a MST algorithm such as the Chu-Liu-Edmonds algorithm at

O(EV) used in Chapter 5 is no longer needed, and the decoding speed of
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our transducer is O(V). E denotes the number of edges. V the number of

nodes. Moreover, since our transducer builds the meaning representation via

a sequence of semantic relations, we implement a beam search over relation

in Algo. 3. Compared to the beam search used in Chapter 5 that only returns

top-k nodes, our beam search finds the top-k relation scores, which includes

source nodes, relation types and target nodes.

6.4 Data Pre- and Post-processing

AMR Pre- and post-processing steps are similar to those of Chapter 5: in

preprocessing, we anonymize subgraphs of entities, remove senses, and con-

vert resultant AMR graphs into the unified format; in post-processing, we

assign the most frequent sense for nodes, restore Wikipedia links using the

DBpedia Spotlight API (Daiber et al., 2013), add polarity attributes based on

rules observed from training data, and recover the original AMR format from

the unified format.

DM No pre- or post-processing is done to DM except converting them into

the unified format, and recovering them from predictions.

UCCA During training, multi-sentence input text and its corresponding DAG

are split into single-sentence training pairs based on rules observed from train-

ing data. At test time, we split multi-sentence input text, and join the predicted

graphs into one. We also convert the original format to the unified format in

preprocessing, and recover the original DAG format in post-processing.
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Hidden Size
Glove 300
BERT 1024
POS / NER / Dep / Shapes 100
Anonymization / Node index 50
CharCNN kernel size 3
CharCNN channel size 100
Encoder 2@512
Decoder 2@1024
Biaffine input size 256

Bilinear input size
AMR 128
DM 256
UCCA 128

Optimizer
Type ADAM
Learning rate 0.001
Maximum gradient norm 5.0
Coverage loss weight λ 1.0
Label smoothing ϵ 0.1
Beam size 5
Batch size 64

Dropout rate
AMR 0.33
DM 0.2
UCCA 0.33

Vocabulary

Encoder-side vocab size

AMR 1.0 9200
AMR 2.0 18000
DM 11000
UCCA 10000

Decoder-side vocab size

AMR 1.0 7300
AMR 2.0 12200
DM 11000
UCCA 10000

Table 6.1: Hyperparameter settings
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6.5 Experiments

6.5.1 Data and Setup

We evaluate our approach on three separate broad-coverage semantic parsing

tasks: (1) AMR 2.0 (LDC2017T10) and 1.0 (LDC2014T12); (2) the English DM

dataset from SemEval 2015 Task 18 (LDC2016T10); (3) the UCCA English

Wikipedia Corpus v1.2 (Abend and Rappoport, 2013; Hershcovich et al., 2019).

The train/dev/test split follows the official setup. Our model is trained on

two GeForce GTX TITAN X GPUs with early stop based on the dev set. We fix

BERT parameters due to the limited GPU memory. Hyperparameter setting

for each task is provided in Table 6.1.

6.5.2 Results

AMR Table 6.2 compares our neural transducer to the previous best results

(SMATCH F1, Cai and Knight, 2013) on AMR test sets. The transducer improves

the state of the art on AMR 2.0 by 0.7% F1. On AMR 1.0 where training data is

much smaller than AMR 2.0, it shows a larger improvement (1.1% F1) over

the state of the art.

In Table 6.2, we also conduct ablation study on beam search to investigate

contributions from the model architecture itself and the beam search algorithm.

The transducer model without beam search is already better than the previous

best parser that is equipped with beam search. When compared with the

previous best parser without beam search, our model still has around 1.0% F1

improvement.
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Data Parser F1(%)

AMR
2.0

Cai and Lam (2019) 73.2
Lyu and Titov (2018) 74.4±0.2
Lindemann et al. (2019) 75.3±0.1
Naseem et al. (2019) 75.5
STOG* 76.3±0.1

- w/o beam search 75.3±0.1

Ours 77.0±0.1
- w/o beam search 76.4±0.1

AMR
1.0

Flanigan et al. (2016) 66.0
Pust et al. (2015) 67.1
Wang and Xue (2017) 68.1
Guo and Lu (2018) 68.3±0.4
STOG* 70.2±0.1

- w/o beam search 69.2±0.1

Ours 71.3±0.1
- w/o beam search 70.4±0.1

Table 6.2: SMATCH F1 on AMR 2.0 and 1.0 test sets. Standard deviation is computed
over 3 runs. *STOG refers to the sequence-to-graph transduction approach we propose
in Chapter 5.

Metric L’18 N’19 STOG Ours

SMATCH 74 75 76 77

Unlabeled 77 80 79 80
No WSD 76 76 77 78
Reentrancies 52 56 60 61
Concepts 86 86 85 86
Named Ent. 86 83 78 79
Wikification 76 80 86 86
Negation 58 67 75 77
SRL 70 72 70 71

Table 6.3: Fine-grained F1 scores on the AMR 2.0 test set. L’18 is Lyu and Titov (2018);
N’19 is Naseem et al. (2019); STOG is the sequence-to-graph transduction approach
proposed in Chapter 5.
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Table 6.3 summarizes the parser performance on each subtask using Da-

monte et al. (2017) evaluation tool. Our transducer outperforms STOG on all

subtasks, but is still not close to Lyu and Titov (2018) on named entities due to

the different preprocessing methods for anonymization.

Parser ID OOD

Du et al. (2015) 89.1 81.8
Almeida and Martins (2015)(open) 89.4 83.8
Wang et al. (2018) 90.3 84.9
Peng et al. (2017a): BASIC 89.4 84.5
Peng et al. (2017a): FREDA3 90.4 85.3
Peng et al. (2018) 91.2 86.6
Dozat and Manning (2018) 93.7 88.9

Ours 92.2 87.1

Table 6.4: Labeled F1 (%) scores on the English DM in-domain (WSJ) and out-of-
domain (Brown corpus) test sets. (open) denotes results from the open track.

DM Table 6.4 compares our neural transducer to the state of the art (labeled

F1) on the English DM in-domain (ID) and out-of-domain (OOD) data. Ex-

cept Dozat and Manning (2018), our transducer outperforms all other base-

lines, including FREDA3 of Peng et al. (2017a) and Peng et al. (2018), which

leverage multi-task learning from different datasets. The best parser (Dozat

and Manning, 2018) is specifically designed for bi-lexical dependencies, and

is not directly applicable to other semantic parsing tasks such as AMR and

UCCA. In contrast, our transducer is more general, and is competitive to the

best SDP parser.

UCCA Table 6.5 compares our results to the previous best published results

(labeled F1 for all edges) on the English Wiki test set. The best performance is

from Jiang et al. (2019), where they convert UCCA graphs to constituency trees,
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Parser F1 (%)

Hershcovich et al. (2017) 71.1
Hershcovich et al. (2018): single 71.2
Hershcovich et al. (2018): MTL 74.3
Jiang et al. (2019) 80.5

Ours 76.6±0.1
- w/o non-terminal node labels 75.7±0.1

Table 6.5: Labeled F1 (%) scores for all edges including primary edges and remote
edges. Standard deviation is computed over 3 runs.

and train a framework for constituency parsing and remote edge recovery.

Hershcovich et al. (2018) explore multi-task learning (MTL) to improve UCCA

parsing, using AMR, DM and UD parsing as auxiliaries. While improvement is

achieved UCCA parsing, their MTL model shows poor results on the auxiliary

tasks: 64.7% unlabeled F1 on AMR, 27.2% unlabeled F1 on DM, and 4.9%

UAS on UD. In comparison, our transducer improves the state of the art on

AMR, and shows competitive results on DM. At the same time, it also shows

reasonable results on UCCA. When converting UCCA DAGs to the unified

format, we adopt a simple rule (§ 6.2.1) to add node labels to non-terminals.

Table 6.5 shows that these node labels do improve the parsing performance

from 75.7% to 76.6%.

6.5.3 Analysis

Validity Graph-based parsers like Dozat and Manning (2018); Zhang et al.

(2019a) make independent decisions on edge types. As a result, the same

outgoing edge type can appear multiple times to a node. For instance, a

node can have more than one ARG1 outgoing edge. Although F1 scores can
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be computed for graphs with such kind of nodes, these graphs are in fact

invalid mean representations. Our neural transducer incrementally builds

meaning representations: at each decoding step, it takes a semantic relation as

input, and has memory of preceding edge type information, which implicitly

places constraints on edge type prediction. We compute the number of invalid

graphs predicted by STOG and our neural transducer on the AMR 2.0 test set,

and find that our neural transducer reduces the number of invalid graphs by

8%.

Speed Besides the improvement on parsing accuracy, we also significantly

speed up parsing. Table 6.6 compares the parsing speed of our transducer and

STOG on the AMR 2.0 test set, under the same environment setup. Without

relying on MST algorithms to produce a valid arborescence, our transducer is

able to parse at 1.7x speed.

Speed (tokens/sec)

STOG 617
Ours 1076

Table 6.6: Parsing speed on the AMR 2.0 test set.

6.6 Conclusion

We cast three broad-coverage semantic parsing tasks into a unified transduc-

tion framework, and propose a neural transducer to tackle the problem. Given

the input text, the transducer incrementally builds a meaning representation

via a sequence of semantic relations. Experiments conducted on three tasks

show that our approach improves the state of the art in both AMR and UCCA,
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and is competitive to the best parser in SDP. Compared with transition-based

parsers (e.g. Damonte et al., 2017) and graph-based parsers (e.g. Dozat and

Manning, 2018), our transductive framework does not require a pre-trained

aligner, and it is capable of building a meaning representation that is less

anchored to the input text. This work can be viewed as a starting point for

cross-framework semantic parsing.
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Chapter 7

Conclusions

In this thesis, we present a series of transductive parsing architectures for

two semantic parsing problems: cross-lingual semantic parsing (Part I) and

broad-coverage semantic parsing (Part II).

In Chapter 1 and 2, we walk through the history of semantic parsing from

hand-coding rules to deep learning methods, and describe the renewed in-

terest in designing general-purpose meaning representations in response to

previous efforts on semantic parsing that are limited to specific domains. We

provide summary background of several recent general-purpose meaning rep-

resentation frameworks: Abstract Meaning Representation (AMR; Banarescu

et al., 2013), Universal Conceptual Cognitive Annotation (UCCA; Abend and

Rappoport, 2013), Semantic Dependency Parsing (SDP; Oepen et al., 2014;

Oepen et al., 2015), and Universal Decompositional Semantics (UDS; White et

al., 2016). We focus on several new challenges in developing semantic parsing

systems for the general-purpose meaning representations: lexical mismatch,

structural complexity, framework balkanization, and limited data. We then re-

view the related work on parsing for each meaning representation framework.
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Next, we introduce a pattern-based predicate-argument extraction tool – Pred-

Patt – which automatically provides shallow predicate-argument semantics

from raw sentences.

In Part I, we are concerned with representing semantics of multiple natural

languages in a single semantic analysis.

In Chapter 3, we focus on shallow semantics; that is, predicate-argument

structures, or open information extraction (Open IE). We introduce the task

of cross-lingual Open IE: distilling facts from foreign language into shallow

semantic representations in another language. To tackle this task, we first

propose a joint approach based on a neural sequence-to-sequence model. Then

we improve our joint approach via a novel selective decoding mechanism and

a simple and effective learning method Halo. In the experiments, we compare

our joint approaches with the traditional pipeline that first translates foreign

text and then runs monolingual Open IE tools. We show that our approaches

achieve consistent and significant improvements over the pipeline in a variety

of cross-lingual open IE scenarios.

In Chapter 4, we move to a form of universal decompositional semantic

(UDS) analysis, which is designed to allow systems to target varying levels of

structural complexity. We introduce the task of cross-lingual decompositional

semantic parsing. In this new task, we present three forms of UDS analysis,

graph, linearized and flat forms, which are created for different purposes and

inter-convertible; We design a new evaluation metric that is better at differen-

tiating two UDS graph representations; We propose an end-to-end learning

approach with a novel annotating mechanism that supports intra-sentential
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coreference; We create a Chinese-English decompositional semantic parsing

dataset. Our end-to-end approach outperforms strong baselines on the new

evaluation metric. We separately evaluate the coreference mechanism, Seman-

tic Proto-Role and event factuality prediction, showing promising results as

well.

In Part II, we develop efficient transductive architectures for broad-coverage

semantic parsing whose target representations have rich sentence-level se-

mantics.

In Chapter 5, we focus on Abstract Meaning Representation (AMR) parsing.

We first summarize three major challenges in AMR parsing: (1) the property

of reentrancy, (2) the lack of alignments between nodes and words, and (3) re-

lattively limited amounts of labeled data. We then propose an attention-based

model that treats AMR parsing as a two-stage sequence-to-graph transduction

problem. By leveraging attention mechanisms and pre-trained language mod-

els, the proposed parser is aligner-free, and it can be effectively trained with

limited amounts of AMR training data. Experiments on publicly available

AMR corpora show that our parser outperforms all existing AMR parsers by

a significant margin. We also do the ablation study and analysis, showing the

effectiveness of each novel component we introduce in the parser.

In Chapter 6, we extend our transductive parsing framework to cover other

broad-coverage semantic parsing tasks. We introduce a unified target format –

Unified Arborescence Format – for different general-purpose meaning repre-

sentations. Based on this unified format, we propose a refined a transduction

paradigm, which directly transduces natural language text into a meaning
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representation in a single stage. The core of this approach is an attention-based

neural model, which incrementally builds a meaning representation via a

sequence of semantic relations. We conduct experiments on three separate

broad-coverage semantic parsing tasks – AMR, SDP and UCCA. Experiment

results show that our parser improves the state of the art on both AMR and

UCCA, and is competitive with the state of the art on SDP. Analysis reveals

that our parser has higher validity and speed.

The efforts on transductive semantic parsing presented in the thesis pave

the way for the following future research directions:

Better Transductive Semantic Parsing Our transductive semantic parsing

model benefits from the pre-trained Transformer model like BERT (Devlin et

al., 2018). Specifically, in Chapter 5, BERT embeddings are concatenated with

other type of embeddings to form the vector representation for input words.

However, our transductive model and BERT have different granularities in

terms of input: our model takes words as input, but BERT takes subword

units as input. This means that one word input to our model may corresponds

to multiple embeddings of BERT. In order to accurately use BERT embeddings

to represent word-level input, our solution in Chapter 5 is to apply an average

pooling function to the output of BERT (as illustrated in Figure 7.1). While the

average pooling solution provides a workaround for the granularity difference

issue and improves experiment results in § 5.7, it has two obvious limits: (1) the

extra pooling layer introduces extra computation and parameters1 that slows

down both training and inference time; (2) no matter what pooling function

1In order to perform average pooling in batch, masks are used to keep track of the start
and end positions of each average pooling operation.
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is used, the information loss is inevitable and the resulting embeddings will

have less information than the orginial BERT subword embeddings.

victim could help himselfThe

Wordpiece Tokenizer

The vict ##im could help him ##self

BERT

Average
Pooling

Average
Pooling

BERT Embeddings

.

.

Figure 7.1: Word-level embeddings generated by average pooling over BERT.

A better solution to explore in the future is to change the input granularity

of our transductive model to subword units. To do so, two important issues

need to be resolved: (1) How to use word-level features in subword units? We

introduce features such as POS (part-of-speech) tags and anonymization tags

in the input, but they are all annotated at word level. In order to use them in

subword units, a simple solution to assign each unit the same tag as the word

it belongs to. (2) How to perform source- and target-side copy mechanisms

over subword units? These copy mechanisms has shown to be critical to node

generation, and they are all designed to work at word level. Breaking input

words into subword units may substantially reduce the number of nodes

that can be copied, and thus limits the use of source- and target-side copy

mechanisms. A solution to adapting copy mechanisms to subword units is to

introduce an end-of-word indicator for each subword. An end-of-word indi-

cator is binary, indicating whether the corresponding subword is the end of a
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word. When these copy mechanisms compute attention over subword units,

these end-of-word indicators can be used to mask out attention on subword

units that are not the end of a word. At the same time, we maintain a look-up

table from end-of-word subword units (as well as position information) to

their corresponding words. When a end-of-word subword gets the highest

attention weight, the copy mechanism simply copies the corresponding word

from the look-up table. This solution does not introduction extra computation

or parameters at the training time (assuming we still use maximum likelihood

estimation as in Chapter 5 and 6). The look-up table is only necessary at the

inference time.

Once our transductive parsing model is changed to take subword units

as input, the LSTM encoder and decoder can be replaced with Transformer

layers, which enables a tight integration with the pre-trained Transformer

model and saves a large amount of parameters.

Joint Learning Previous efforts on joint learning of syntactic and semantic

representations have shown that one learned task is helpful in improving

the other (Lluís and Màrquez, 2008; Lluís et al., 2013; Henderson et al., 2013;

Swayamdipta et al., 2016; Swayamdipta et al., 2018). In our transductive

parsing framework, the encoder-decoder architecture is suitable for jointly

learning both syntactic and semantic parsing. On one hand, graph-based

approaches that leverage scoring functions such as BIAFFINE over a single

encoder have shown the state-of-the-art performance on bi-lexical dependency

parsing (Dozat and Manning, 2016) and semantic parsing whose target repre-

sentations are directly anchored to the input text (Dozat and Manning, 2018;
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Figure 7.2: Jointly learning the transductive parsing framework.

Wang et al., 2019). On the other hand, we have shown in the thesis that varied

copy mechanisms used by the decoder are very effective at reducing data

sparsity and resolving reentrancies in semantic parsing whose target represen-

tations abstract away from input text. Therefore, it is feasible to jointly learn

syntactic and semantic parsing tasks under our proposed encoder-decoder

framework.

Figure 7.2 illustrates the high-level idea of the joint learning architecture:

on the source side, the encoder encodes input text and predicts bi-lexical

(semantic) dependency relations over input words, the learning objective of

which is denoted by Lbilex; on the target side, different decoders are employed

to perform structural predictions for different tasks. In Chapter 6, we show

how to compute the learning objectives for AMR parsing LAMR and UCCA

parsing LUCCA. Similarly, we introduce another decoder for constituency
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parsing Lconst, since constituency parses also have tree structures that can be

easily converted into the unified arborescence format introduced in Chapter 6.

Thus, the joint learning objective is denoted by:

L = Lbilex + Lconst + LAMR + LUCCA

At the same time, we appreciate the recent efforts (Oepen et al., 2019) on

packaging distinct meaning representation frameworks into a uniform graph

abstraction and serialization, which we can directly adopt to facilitate jointly

learning of multiple semantic parsing tasks in our transductive framework.

Another direction to explore in joint learning is to use graph convolutional

networks (GCNs; Defferrard et al., 2016; Kipf and Welling, 2016) on the source

side of our transductive parsing framework. In the joint learning architecture

illustrated in Figure 7.2, bi-lexical (semantic) dependency parsing tasks are

performed solely on top of the encoder. No copy mechanisms are needed

since dependency parses are directly anchored on the input words. Therefore,

our model in practise is able to finish the dependency parsing tasks before

decoding, which allows us to have more informative vector representations

for input words. On one hand, our encoder generates contextual vector

representations for input words based on their order in the input sentence. On

the other hand, we can leverage GCNs to compute vector representations for

input words based on their dependency graphs. Concatenation of these two

types of vector representations provides vector representations that have both

sentential and graphical context, and thus can be beneficial to the decoder-side

structural prediction tasks as well as the copy mechanisms.
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mecký, Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka Urešová, and
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