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Abstract 

 Neurodevelopmental disorders are a common class of brain disorders that affect 

up to 1 in 6 children in the industrialized world. They include a range of diseases, 

including Attention Deficit Hyperactivity Disorder, Autism Spectrum Disorders, and 

various forms Intellectual Disability. Many of these disorders display overlapping clinical 

phenotypes, including reductions in intellectual quotient, learning delays, difficulties in 

social behavior, stereotypical behaviors, and deficits in verbalization and communication. 

Frequently, other comorbidities may be present, such as epilepsy or craniofacial defects.  

 Many of these disorders are strictly genetic in their etiology, as determined by a 

consistent pattern of Mendelian inheritance in affected families. Other, more complex 

neurodevelopmental disorders, such as schizophrenia, major depression, bipolar disorder, 

and autism, show strong evidence that genetics is a substantial cause, along with a role 

for environmental factors. 

 The focus of this dissertation will be on elucidating genetic and molecular 

mechanisms involved in the etiology of two neurodevelopmental disorders, X-Linked 

Intellectual Disability and Autism Spectrum Disorders. Throughout this dissertation, a 

series of important observations and concepts will be discussed regarding the challenges 

faced when studying neurodevelopmental disorders of genetic etiology. These challenges 

are based in the intersecting complexities of how genetic variation influences neural 

mechanisms and how neural mechanisms influence intellectual function and behavior. 

In order to address these challenges, I have developed computational tools to 

improve our ability to identify potential disease-causing variants and genes. One of these 
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tools is an effective method to identify causal genes in XLID, through improvements in 

the quality of sequenced variant calls, and through effective methods of variant filtering 

using a combination of datasets. 

 Lastly, I have employed a series of targeted genomics and functional studies to 

determine how genetic variation can modify neural function and behavior. This series of 

studies will discuss the role of glutamate signaling defects in autism etiology, with a 

focus on Glutamate Receptor Interacting Proteins (GRIP1/2) as autism susceptibility 

genes. 

 As a whole, these studies should provide a framework demonstrating how old and 

new genomics techniques can be used effectively to find disease-causing variants and 

genes in neurodevelopmental disorders of increasing complexity. Importantly, this work 

should reinforce our appreciation of the complexity of neural and genetic systems, and 

that any computational inference should be diligently investigated by functional work to 

identify a molecular mechanism for disease. 

 

Advisor: Tao Wang 

Reader:  Sarah Wheelan
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Chapter 1: Introduction 

 The study of neurodevelopmental disorders is a uniquely challenging and 

engaging field. Neurodevelopmental disorders sit at the crossroads of two of the most 

complex biological disciplines, genetics and neuroscience; we invariably require an 

understanding and appreciation of both fields to make progress. In 1866, Gregor Mendel 

published his findings on plant hybridization, setting the foundation for modern genetics 

and the role of genetic variation in living organisms [1]. In 1888, Santiago Ramón y Cajal 

published his seminal work providing the first decisive evidence for the Neuron Doctrine 

of brain anatomy and function [2]. Though we have come far in the last 150 years, the 

most easily appreciated observation is how much farther we have to go. 

 

1.1 Mendelian Inheritance and X-Linked Intellectual Disability 

 The first observation of a heritable disease is attributed to Archibald Garrod in 

1902, when he identified Alkaptonuria as an inborn error of metabolism following a 

pattern of inheritance consistent with the Laws of Mendel [3]. Since then, thousands of 

cases of genetic disorders following Mendelian inheritance patterns have been identified, 

including over 6,000 unique Mendelian phenotypes recorded in the database Online 

Mendelian Inheritance in Man (OMIM) [4]. Within these records is a subclass of 

Mendelian traits and diseases that follow an X-linked pattern of inheritance. This pattern 

of inheritance, stemming from a causal variant located on the X chromosome, is strictly 

characterized by the mating of an unaffected father and a carrier mother producing sons, 

half of whom are affected, and daughters, half of whom are carriers. It is classically 
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characterized by the observation of a trait that “skips a generation,” whereby an affected 

father produces a carrier daughter, who in turn produces an affected son. However, this 

pedigree is rarely seen for serious X-linked disorders, due to the negative selection placed 

on the grandfather. For X-linked disorders, the causative mutation generally can only 

persist in the family by propagation from carrier mother to carrier daughter. In these 

instances, carrier females are either unaffected or too minimally affected to place a 

negative pressure on reproduction and propagation of the underlying mutation. Examples 

of pedigrees for an X-linked recessive trait are described in Figure 1-1. 

 Given that males possess only one copy of the X chromosome, X-linked 

conditions that would normally only be possible through homozygous recessive 

inheritance must be expressed in this hemizygous state. As such, males are far more 

frequently affected by X-linked disorders than females. More importantly, this 

hemizygous state makes it easier for X-linked recessive conditions to present at a rate far 

higher than for autosomal recessive conditions. In fact, X-linkage accounts for 16% of 

male Intellectual Disability cases, even though the X chromosome accounts for only 

2.5% of the male genome [5]. This increase is likely due both to the ease by which X-

linked recessive conditions can present in a hemizygous state and to the fact the X-linked 

conditions are more easily recognizable and investigated than autosomal recessive 

conditions. 

 Intellectual Disability is diagnosed in an individual meeting at least three criteria: 

an Intellectual Quotient (IQ) below 70, a substantial deficit in two or more adaptive 

behaviors, such as self-care, communication, or interpersonal skills, and an onset before 
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age 18 [6]. The first observation for Intellectual Disability with X-linkage (XLID) was 

made in the late 1960s [7]. Since then, thousands of cases have been described, but the 

molecular basis remains largely unknown. Broad genomic approaches have identified 

some 100 X-linked genes that may account for half of XLID cases, but the total number 

of responsible genes may be hundreds more [5]. In spite of the fact that half of XLID 

cases do not have a definitive molecular diagnosis, X-linked Intellectual Disability 

remains one of the better studied and characterized neurodevelopmental disorders. 

 

1.2 A Spectrum of Complexity 

 At its most basic, a Mendelian disorder can trace its genetic source to a single 

mutation in a single gene, hence referred to as a single-gene disorder. In 1989, 

researchers discovered the first gene, CFTR, to be associated with a Mendelian disease, 

Cystic Fibrosis, including pinpointing the most frequently occurring defect [8]. Since 

then, an estimated 70% of Mendelian traits recorded in OMIM now have a known 

molecular basis [4]. This journey has been a challenging one, given the size of the diploid 

human genome (~6E9 bp) and the number of genes (~22,000). Many mapping strategies 

have been developed and employed to find the underlying genetic defects for single-gene 

traits, but none has been more successful than next-generation sequencing of human 

exomes. The first successful use of exome sequencing was demonstrated as proof-of-

concept in 2009 using four patients diagnosed with Freeman-Sheldon Syndrome [9]. 

Sequencing generated hundreds of thousands of variants for analysis; through a 

combination of computational filters and by looking for genes with a burden of predicted 
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damaging mutations, the researchers identified MYH3 as the likely causal gene for these 

four patients. Since then, some 2,000 additional exome sequencing studies have been 

performed, providing a molecular basis for countless Mendelian disorders. With these 

advances, a broad new set of tools and frameworks have been introduced to handle the 

large amounts of data produced by next-generation sequencing [10]. 

 In spite of these successes, many challenges remain in finding the underlying 

genetic causes for all Mendelian disorders. Foremost among these challenges are 

Mendelian disorders with high locus heterogeneity. Whereas some Mendelian diseases 

can be strictly associated to a single gene (e.g.: Freeman-Sheldon Syndrome and MYH3, 

Cystic Fibrosis and CFTR), other diseases, such as Intellectual Disability, may result 

from mutation of one of many different genes, referred to as locus heterogeneity. 

However, only one gene will ever be responsible in a single individual. Though the 

observed pattern of inheritance for the disease in the family is still Mendelian, we can no 

longer view all affected families in aggregate as being affected by a single-gene disorder. 

Rather, we must now view these individuals as suffering from a disorder that can be 

caused by one of many different genes, and is clinically indistinguishable among the 

different genetic defects. X-linked Intellectual Disability, which may be caused by up to 

200 X-linked genes, is an excellent example of such a Mendelian disorder with high 

locus heterogeneity [5]. 

 However, the complexity of neurodevelopmental disorders is not restricted to the 

individual effect of a single gene or mutation. As we tackle common, complex diseases, 

we must then contend with challenges presented by variable expressivity, mutations of 
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variable effect size, including modifier mutations, and environmental factors. Autism 

Spectrum Disorders epitomize such complexity. 

 

1.3 Autism Spectrum Disorder: A Multifactorial Disorder 

 Autism is a common neurodevelopmental disorder with a prevalence of at least 

one in 100 children. It typically presents by age three. Required clinical presentation 

includes deficits in reciprocal social interactions, repetitive or stereotypical behaviors, 

and restrictions in verbal communication. Many comorbidities may also present, 

including microcephaly and macrocephaly, epilepsy, and intellectual delay/disability. 

Males have a five-fold increased risk of developing disease over females, indicative of a 

possible, but poorly understood protective genetic background present in females [11]. 

 There is a great deal of evidence indicating that genetics is important in autism 

risk. Analyses of various twin concordance studies estimate the heritability of autism risk 

between 36% (broad autism diagnosis) to 95% (strict autism diagnosis) [12,13]. Another 

study, based on a large Swedish epidemiological cohort, estimated heritability at 50%, 

with the majority of risk contributed by common variants [14]. For comparison, 

heritability for other psychiatric or neurodevelopmental disorders are also relatively high. 

Heritability has been estimated between 70-85% for schizophrenia [15,16], 40% for 

major depression [17], and as high as 70% for bipolar disorder [18,19]. These results 

likely reflect a complex and overlapping contribution of many different genetic pathways 

to individual behavioral phenotypes. Additional support for autism as a genetic disease 

comes from the observation that there are a number of hereditary syndromes, such as 
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Fragile X and Rett Syndrome, including multiple microdeletion and microduplication 

syndromes, which display autism traits [20,21]. 

 That numerous genetic diseases display autistic phenotypes also adds support for 

the spectrum of phenotypic and genotypic complexity in autism. Take for example 

Fragile X Syndrome, caused by mutation of the FMR1 gene on the X chromosome. 

Fragile X is the most frequent cause of intellectual disability, resulting from a 

trinucleotide repeat expansion near an FMR1-controlling CpG island that becomes 

hypermethylated in Fragile X patients [22]. While it is X-linked, Fragile X displays a 

dominant pattern of inheritance with reduced penetrance and affects both sexes. Fragile X 

patients also have a characteristic facies [23]. As such, Fragile X’s presentation and 

Mendelian pattern of inheritance differs slightly from that of other XLID cases, where 

males are affected more frequently due to their hemizygous state and the causative 

mutations are recessively inherited. A separate inheritance pattern, more specific 

presentation, and specific molecular testing allows physicians to clinically separate 

Fragile X cases from remaining XLID cases. However, FMR1 can be mutated without 

involving the trinucleotide repeat and produce a Fragile X-like XLID, making FMR1 

mutation a cause for both Fragile X intellectual disability and clinically inseparable XLID 

[23]. FMR1 testing is therefore a necessary inclusion for genetic screens for any 

occurrence of XLID. At the same time, FMR1 is an important regulator of neuronally-

expressed genes, including SHANK3, PTEN, TSC2, and mGluR5, which have previously 

been implicated in autism [24]. TSC2 is associated with tuberous sclerosis, for which a 

significant proportion of cases meet diagnostic criteria for autism [25]. As such, FMR1 
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mutations, depending on mutation effect and genetic background, can produce a 

pleiotropy of phenotype, from classic Fragile X Syndrome to XLID, and may even have a 

role in autism. 

 A similar scenario presents with Rett Syndrome, one of the most frequent 

intellectual disability syndromes in females. Caused by mutations in X-linked MECP2, a 

DNA methyl-binding protein, deleterious mutations are so serious that males are 

generally not viable and females display a severe intellectual disability as well as some 

autistic traits [26]. However, MECP2 mutations cannot be excluded for male forms of 

XLID, as less deleterious mutations can cause XLID in males, and leave female carriers 

more or less asymptomatic. In fact, MECP2 is frequently mutated in XLID cases, at a rate 

comparable to trinucleotide expansion of FMR1 [27]. At the same time, MECP2 

mutations have been reported in autism cases and aberrant MECP2 expression has been 

observed in the frontal cortex of autism brain samples [28]. These lines of evidence 

indicate that different mutations of MECP2 can variably express autistic or intellectual 

disability traits. 

 Individuals with MECP2 mutations also share phenotypic overlap with patients 

diagnosed with Angelman Syndrome, an imprinting disorder associated with deletion of 

the 15q11-13 region, resulting in loss of function of the UBE3A gene [29]. Such an 

observation is plausible given the discovery of a convergence in biological pathways 

between MECP2 and UBE3A [30]. Angelman Syndrome itself also shares extensive 

phenotypic similarities with autism. Microdeletion and microduplication of the 15q11-13 

region are statistically significantly enriched in patients diagnosed with autism without 
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specific diagnosis of Angelman. Additional microdeletion and microduplication 

syndromes, including the 16p11, 7q11, 17q12, and 22q11 regions, are also associated 

with autism. However, these syndromes lend more credence to the extensive pleiotropy 

of genetic defects expected in autism. 22q11 is best known as the region deleted in 

DiGeorge Syndrome, Shprintzen Syndrome, and Velocardiofacial Syndrome. 7q11 is 

associated with Williams Syndrome [31]. And while deletion of 16p11 is strongly 

associated with autism or developmental delay, duplication of the region is also strongly 

associated with autism, developmental delay, schizophrenia, and bipolar disorder [32]. 

 Autism represents the extreme spectrum of complexity, both in variable 

expression of phenotype resulting from individual defects, and from a broad locus 

heterogeneity. Given that so many individual disorders present with autistic phenotypes, 

it is an acceptable assumption and generally agreed conclusion, that true autism is not a 

single disease, but a spectrum of individual disorders resulting from the complex 

interaction of many mutations of variable effect in each individual person. Hence, autistic 

behavior in any given individual is best diagnosed as an Autism Spectrum Disorder. 

 

1.4 Common vs. Rare Variant Hypotheses 

 Though autism has a high prevalence, the frequency and effect size of the 

underlying mutations remains unclear. During the early stages of the genomics era, it was 

widely hypothesized that common diseases would be the result of common mutations that 

exist at an appreciable frequency in the general population [33]. This has certainly been 

true for some diseases, such as Crohn’s Disease and early-onset Alzheimer’s Disease 
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[34,35]. The underlying hypothesis for these studies assumes that a common disease is 

the result of many common variants, each of small effect, acting in concert to produce 

disease in a given individual. A number of genomic approaches, including Genome-Wide 

Association Studies (GWAS) and Linkage Studies, have been implemented to identify 

common causative variants for autism. Common variation has been estimated to account 

for up to half of autism risk [36,14]. 

 An alternative hypothesis, the common disease-rare variant hypothesis, states that 

common disease is the result of many rare variants, each of large effect, acting in concert 

to produce disease in a given individual [37]. These rare variants may even be private to 

individual families. Several studies have successfully associated de novo Copy Number 

Variations (CNVs) and de novo Single Nucleotide Polymorphisms (SNPs) to autism risk 

[38-40]. However, these rare events account for risk in a very small percentage of cases. 

It has yet to be determined if rare, transmitting variants play a more substantial role. 

 Identifying common or rare variants is an important challenge that will likely 

require employing progressively larger sample sizes to achieve sufficient statistical 

power. However, due to the higher costs of using larger sample sizes, it is equally 

important to devise novel methods that may identify some important etiologic variants 

with smaller cohorts. Such “low-hanging fruit” may guide more targeted approaches for 

finding the remaining variation responsible for all heritable autism risk. 
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1.5 High-throughput Genomic Approaches to Identify Mutations 

 Earliest forms of genome-scale analysis of variation involved mapping of easily 

genotyped marker variants that were determined to be in linkage with a phenotype of 

interest in a pedigree. Presumably, these linkage markers would be proximal to the 

pathologic mutation and gene of interest [41]. Increased densities of markers would 

permit higher resolution mapping of genetic variation to phenotype. As increased marker 

densities became available through SNP arrays, it became possible to perform large-scale 

Genome Wide Association Studies (GWAS) for common, complex disorders caused by 

common variation. Through GWAS, one could test the Common Variant-Common 

Disease hypothesis using the principle of indirect association of marker genotypes in 

linkage with causal mutations to a phenotype of interest in a test group versus a control 

group [42]. These efforts have been highly successful for certain diseases, where the 

causative common variants have fairly large effect sizes that increase disease risk relative 

to the general population by at least 1.2-fold [43]. However, GWAS have had limited 

success in identifying major causes of autism [36]. In some instances, certain genes and 

gene networks have been implicated as increasing risk in a minority of cases, but these 

have not yet been fully replicated [44-46]. Presuming that a sufficient fraction of risk is 

due to common variation of very small effect, these limited results could be explained by 

insufficient power within each study to detect association [14].  

 Where linkage and GWAS approaches have produced limited results, advances in 

next-generation high-throughput sequencing may make the difference. Indeed, recent 

large-scale efforts in exome sequencing of autism cohorts has produced a large list of 
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potential autism susceptibility genes, by statistical analysis of gene networks or by 

identifying a significant burden of de novo mutations in genes [47,48,40]. 

 Advances in high-throughput sequencing have produced exponential increases in 

sequencing capacity with a concomitant decrease in cost per base pair sequenced [49]. 

During the course of the sequencing projects that have been conducted in the context of 

this dissertation, sequencing capacity has increased 100-fold, but maintained roughly the 

same cost per experiment (Figure 1-2). These advances have allowed researchers to 

expand the number of samples in a given study, thereby improving statistical power. 

 Additional advances have been made in sequencing chemistries, substantially 

reducing the error rate generated from raw sequencing data, which can result in false 

positive results. Examples of how some of these errors present in the Illumina sequencing 

platform, how they are corrected, and how they have changed over chemistries, are 

discussed in a later chapter. Methods to identify and control sequencing errors are 

important, not only because they enable us to reduce the false positive rate, thereby 

minimizing the number of spurious variants that must be followed, but because they 

enable us to reduce the number of aligned sequenced short reads required to call a 

variant. Where before it was necessary to sequence a single genomic position at least 50 

times to generate a confident variant call, if that site can be sequenced with only 25x 

coverage, the remaining 25 reads can be devoted to sequencing more regions or more 

samples. 

 The ability to sequence specific genomic regions is also important, as, in spite of 

the exponential advances in sequencing capacity, it is still expensive to sequence an 
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entire human genome. With the best of current technology, it still costs several thousand 

dollars to sequence a single human genome, takes up an eighth of the machine’s capacity, 

and requires over a week-and-a-half to generate the raw data [50]. Performing this 

process for a thousand samples will be very expensive and time consuming. Additionally, 

it will generate a tremendous amount of data, only a portion of which is useful for 

studying disease etiology. 

 To overcome this challenge, many studies, including the ones discussed in this 

dissertation, make use of targeted sequencing, the most common form of which is exome 

sequencing. Initially, these targeting protocols involved using PCR amplification of target 

regions defined by specific, custom oligonucleotide pairs. Each PCR product for each 

sample would need to be amplified in a separate reaction, limiting scalability for large 

cohorts or genomic regions [51]. To improve scalability and cost, PCR pooling strategies 

and hybridization procedures were developed. Pooling strategies will be discussed further 

in a later chapter. 

 For hybridization protocols, a sample’s DNA is hybridized to custom 

oligonucleotides fixed on a microarray slide. The sample DNA is then be washed off, 

leaving the oligonucleotide templates on the glass slide. The DNA in the wash is then 

used in sequencing library preparation [52]. 

 Another targeting protocol, liquid hybridization, uses free-floating RNA templates 

in solution (generated on an RNA microarray) to select sample regions. The RNA 

templates are themselves bound to a capture-epitope, such as biotin. In this manner, a 

genomic region of interest will bind strongly to its complementary biotin-conjugated 
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RNA oligonucleotide template, producing an RNA-DNA duplex with stronger binding 

between strands than observed between RNA-RNA and DNA-DNA duplexes. The RNA-

DNA duplex can then bind a streptavidin bead via the biotin-conjugate. The streptavidin 

bead, which is magnetic, can be extracted using a strong Neodymium magnet. This 

procedure, used in the Agilent SureSelect and Illumina TruSeq target enrichment 

platforms, is easily scalable to hundreds of samples in parallel [53-55]. 

 Using targeted sequencing, studies have been able to focus on smaller, more 

functional (or more easily understood) portions of the genome, such as coding regions. 

Coding regions account for less than 2% of the human genome. By restricting studies to 

such small regions, it possible then to expand the number of samples analyzed 50-fold, at 

roughly the same cost of sequencing. The disadvantage to such an approach of course is 

that this restricted focus risks missing truly etiologic variants in the regions that are not 

analyzed. This can only be overcome when the speed and cost of whole-genome 

sequencing becomes comparable to that of targeted sequencing. 

 

1.6 Computational Approaches to Identify Mutations 

 Variant detection from high-throughput sequencing is built on algorithms that 

align short reads to a reference genome and identify areas of genetic variation in relation 

to that reference. Numerous software platforms for alignment and variant calling have 

rapidly evolved [56]. This includes faster, more accurate alignment algorithms, such as 

Bowtie2, BWA and SOAP, and improvements in quality control functions, such as base 

recalibration, indel realignment, and duplicate removal, through software such as the 
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GATK and Picard [57]. Variant callers have improved the reliability and quality of 

variant calls with better algorithms and by training themselves across multiple samples 

[58]. 

 These technical improvements, however, do not solve the problem of identifying 

just the handful of variants relevant to disease in an individual from the thousands of 

variants produced by sequencing. Where possible, it is useful to filter out variants that are 

not relevant to the disease being studied. Such filtering methods include using publicly 

available databases and family-based data to remove variants that are likely non-

pathological. Other methods, particularly useful in prioritizing variants, include 

predicting variant function, through analyses of conservation of amino acid changes, 

identifying splicing changes, and predicting non-genic effects of variants on regulatory 

elements, miRNA binding sites, splicing enhancer sites, etc. [59-61]. These methods will 

be discussed in greater depth in the next chapter. 

 For much larger studies of complex disorders, a number of genome-wide 

statistical approaches can be implemented to identify mutation burdens in specific genes, 

gene sets, or interaction pathways [62,63]. For family-based studies, additional statistical 

approaches are available including genotype-phenotype correlations and linkage analysis. 

In all sequencing studies, it is now possible to conduct genome-wide rare variant 

association tests, with consideration of pedigrees if family-based data is included in the 

study design [64]. 
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1.7 Functional Studies of Mutations 

 Once potential pathologic variants have been enriched and prioritized, they must 

be studied functionally to determine a molecular mechanism of disease and to identify 

potential therapeutic targets. The type of functional study performed is contingent on the 

nature of the mutation identified. Variants in non-coding regions will generally require 

initial expression profile assays to determine changes in gene transcript levels in specific 

cellular and tissue types. Coding changes will generally require initial assays identifying 

changes in protein structure or function. The options for experimentation are vast, 

modifiable, and as a general subject, too broad for discussion in this dissertation. 

Relevant functional studies for variants identified in this dissertation will be discussed 

with specifics in forthcoming chapters. These studies include protein-level in vitro 

assays, such as Yeast-Two-Hybrid, cellular-level assays, such as neuronal morphology 

and synaptic receptor recycling assays, and organismal-level assays, such as histological 

and behavioral tests of model organisms. 

 Two model organisms are of particular note for this dissertation. Zebrafish (Danio 

rerio) has emerged as an excellent model organism for studying developmental biology. 

Zebrafish possess a number of innate characteristics that make them a highly versatile 

tool, including embryonic transparency, allowing for in vivo imaging of living tissue 

during early development, and rapid generation scales with up to 100 embryos in three 

months from a single mating. Additionally, microinjection techniques have made it 

possible to quickly generate transgenic, knockdown, and exogenous plasmid expression 
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lines to study the function of individual genes, and more importantly, individual 

mutations [65]. 

 The mouse (Mus musculus) has been one of the most robust model organisms for 

studying human disease, due to its strong similarity to humans in genomics (90% 

similarity between mouse and human genomes), development, and anatomical features 

[66]. Though the ease of use and cost-effectiveness of using mice is not on par with 

zebrafish, their closer biological similarity to humans allows for a more accurate 

translation of observation made between our species and theirs. To this end, an expansive 

array of experimental protocols are available for studying neurodevelopmental disease in 

mice, from in vivo electrophysiology, optogenetics, constitutive and conditional 

transgenic lines, and a wide range of behavioral protocols to test changes in memory, 

motor function, and psychiatric endophenotypes [67]. These organisms will be discussed 

in greater detail in the forthcoming chapters in the context of studying the function of 

specific genes in X-Linked Intellectual Disability and autism. 

 

1.8 Establishing a Molecular Mechanism of Disease 

 In order to establish a gene as relevant for a particular disease, it is necessary to 

follow a strictly logical path. The gene or gene pathway must be determined to be 

mutated in disease cases. The nature of these mutations, though not immediately apparent 

upon their discovery, must act differently than the nature of mutations identified in the 

same gene or gene pathway for unaffected controls. The disease-associated mutations 

must perturb a particular biological pathway in the appropriate tissues and organs. This 
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altered pathway then influences physiology and behavior in a pattern consistent with 

disease phenotype. Genetic evidence leads to functional evidence, which leads to clinical 

evidence, thereby establishing a molecular mechanism of disease. 

 In the following chapters, using this model, I will detail the technical and 

functional work in discovering variants and determining their role in X-Linked 

Intellectual Disability and in autism. Chapter Two, adapted from the publication 

“Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-

Linked Intellectual Disability Genes,” by Niranjan et al., describes an effective 

computational method for analyzing next-generation sequencing data to identify potential 

pathologic variants in a Mendelian disorder with high locus heterogeneity [68]. 

Additional data will provide functional support for some of the genes implicated. 

 Chapter Three, adapted from the publication “Effective Detection of Rare 

Variants in Pooled DNA Samples Using Cross-pool Tailcurve Analysis,” by Niranjan et 

al., will delve deeper into the computational techniques for analyzing raw next-generation 

sequencing data, and how such techniques can be adapted to screen for mutations in 

larger sample cohorts [51]. Chapter Four discusses functional work performed in 

analyzing mutations identified in Chapter Three, and the role that these mutations may 

play in modulating glutamate signaling in autism through the synaptic scaffolding genes, 

Glutamate Receptors Interacting Proteins (GRIP1/2).  
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1.9 Figures: Chapter 1 

 

Figure 1-1. Sample pedigrees of X-linked recessive traits 

 

A five-generation pedigree is described. Females (circles) carrying the mutant allele are 

shown with a central dot. Affected males are shown with filled-in squares or red crosses. 

Panel A describes an X-linked recessive trait that is non-lethal. Hemizygous males 

inheriting the mutant allele from a carrier mother display the phenotype. Panel B 

describes an X-linked recessive trait that is lethal or reduces reproductive fitness. 

Affected males (red crossed squares) do not pass the trait on to later generations, but 

carrier females do.  
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Figure 1-2. Exponential increase in sequencing capacity over time 

 

An exponential (log-scale base-10) increase in sequencing capacity using the Illumina 

platform is described. Each point represents the average number of base pairs (paired-end 

sequencing) obtained in a single lane of an Illumina sequencing machine (GA, GAII, 

HiSeq 2000) in individual sequencing experiments. From early 2009 to mid- and late 

2013, a five year period, sequencing capacity increased 100-fold from ~1E9 bp per lane 

to almost 1E11 bp per lane. Though the rate of increase has tapered off more recently, 

this expansion in capacity has allowed for dynamic changes in methods of study design.  
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Chapter 2: Affected Kindred Analysis of Human 

X Chromosome Exomes to Identify Novel X-

Linked Intellectual Disability Genes 

 

 X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous 

disorders caused by mutations in genes on the X chromosome. Deleterious mutations in 

~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of 

known and suspected XLID families. The remaining XLID genes are expected to be rare 

and even private to individual families. To systematically identify these XLID genes, we 

sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a 

single affected male from 30 families and two affected males from 26 families) using an 

Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for 

disease-causing mutations, we first utilized variant filters based on dbSNP, the male-

restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. 

However, these databases present limitations as automatic filters for enrichment of XLID 

genes. We therefore developed and optimized a strategy that uses a cohort of affected 

male kindred pairs and an additional small cohort of affected unrelated males to enrich 

for potentially pathological variants and to remove neutral variants. This strategy, which 

we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial 

enrichment for potentially pathological variants in known XLID genes compared to 

variant filters from public reference databases, and it has identified novel XLID candidate 

genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich 
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for disease-causing genes in rare, Mendelian disorders, and that public reference 

databases can be used effectively, but cautiously, as automatic filters for X-linked 

disorders [68]. 

 

2.1 Introduction 

 X-linked Intellectual Disability (XLID) is a group of genetically highly 

heterogeneous disorders with mutations in genes on the X chromosome [69-71]. With the 

characterization of relatively common XLID genes, it is expected that the majority of the 

remaining mutations in unknown XLID genes are very rare and even private to individual 

patients and families [72]. Identification of these XLID genes is essential to provide 

accurate molecular diagnosis for individual XLID families and to better understand the 

molecular basis of intellectual function and disability in humans [70,71]. The extreme 

rarity and vast genetic heterogeneity of the individual XLID disorders pose a significant 

challenge, because ~10% of more than 1,000 annotated X-linked genes have already been 

implicated to cause half of all XLID disorders [69]. If these 10% of genes reflect the 

“low-hanging fruit,” then the remaining half of XLID cases without a known genetic 

cause will likely involve even more rare mutations affecting a broader range of genes, 

making them more difficult to isolate. 

The rapid developments in high-throughput sequencing platforms that are coupled 

with effective targeted capture have made it possible to determine nearly all coding 

variants that present in an individual human genome [73,74]. Exome-based sequencing 

has become a powerful approach to elucidate the genetic basis of Mendelian disorders of 
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unknown etiology and provide gene diagnoses of specific disorders with high genetic and 

phenotypic heterogeneity [75-78]. This strategy has had some success in identifying a 

handful of additional causes for autosomal intellectual disability [79,80]. The most 

significant challenge in using this strategy is in differentiating disease-causing 

(pathological) mutations from the large quantity of non-causal (neutral) variants. One 

may expect in any large scale exome sequencing study for approximately 20,000-24,000 

variants to be found in an individual exome, with ~10%, coming from the X chromosome 

[9,75]. 

Common strategies for identifying causal mutations in rare Mendelian disorders 

include sequencing proband patients with the same phenotype from multiple families 

[81,82], filtering out neutral variants using large databases such as dbSNP and the 1000 

Genomes project [83-85], predicting functional relevance of variants using bioinformatics 

software such as SIFT [60] and PolyPhen-2 [61], conducting segregation analysis in 

proband families, and correlating known or predicted function of the candidate genes 

with the disease phenotype. 

The success of these approaches relies on a number of factors: (1) the recruitment 

of multiple families with the same phenotype of interest, which can prove challenging for 

very rare Mendelian disorders with high locus heterogeneity and a wide spectrum of 

phenotypic expressivity; (2) the reliability of public variant databases, which are 

presumably generated from individuals lacking the disease under study, and would 

therefore only contain a pool of neutral variants for a given phenotype; (3) the reliability 

of bioinformatics tools in predicting variant significance; (4) a burden of pathological 
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mutations in the functional portions of genes that are targeted for sequencing, like coding 

exons and splice sites, with less dependence on mutations occurring in poorly covered 

regions like regulatory elements; and (5) the extent of knowledge available on a 

candidate gene in mechanistically linking its biological functions to the phenotype.  

To identify rare and causal mutations in heterogeneous X-linked Mendelian 

disorders, it is essential to utilize filters to remove the majority of neutral variants and 

sequencing errors in order to focus on potential pathological variants. Public databases 

such as dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP), the 1000 Genomes dataset 

(http://www.1000genomes.org), and the Exome Variant Server (EVS, 

http://evs.gs.washington.edu/EVS) have been used extensively as discrete variant filters 

for many studies [83-86]. The expected rarity of individual causal mutations in novel 

XLID makes it reasonable to eliminate common polymorphisms above a given frequency 

using data from these databases. Furthermore, it is generally assumed that public 

databases such as 1000 Genomes consist of individuals devoid of the phenotype of 

interest, and thereby serve as a public “normal control” set. The free and easy assess to 

these large “control” datasets makes them the top choices for many small scale genetic 

studies [83-86].  

Our study aims to identify causal mutations in novel XLID genes using X 

chromosome exome sequencing. We systematically evaluated variant data from dbSNP, 

the 1000 Genomes, and EVS as discrete filters to determine how effectively each could 

reduce the number of neutral variants from our sequenced cohort. In doing so, we 

recognized that these databases present with limitations in their current forms as 
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automatic filters to enrich for causal XLID genes. We therefore developed and optimized 

a strategy using affected male kindred pairs and affected unrelated males to enrich for 

potentially pathological variants and to remove neutral variants. Our study shows that this 

Affected Kindred/Cross-Cohort strategy achieves a substantial reduction in variants 

compared to the public database-dependent discrete filters alone. Importantly, our study 

shows that this strategy could achieve a significant enrichment for known and candidate 

XLID genes. 

 

2.2 Results 

 

2.2.1 Study Sample from X Chromosome Exome Sequencing 

 Genomic DNA samples from males with XLID (n = 82) were sequenced. Of the 

82 samples, 30 are single male probands from unrelated XLID families; the remaining 52 

samples constitute 26 affected pairs including full brothers, maternal male cousins, and 

maternal uncle and nephew pairs (Table 2-1). The relationships of the affected pairs were 

validated by a calculation of the relatedness between samples in the entire study cohort 

(Figure 2-1). Approximately 79.9% of the target regions are covered at ≥4x read depth 

across all samples with an average read depth of 49x. Variant calling on whole-genome 

aligned reads generated an average of 1,774 ± 239 variants per sample on or near target 

regions, and 14.7% of these variants are non-synonymous or are present at conserved 

splice junctions. Several discrete filters were then applied individually or cumulatively to 

enrich for potential causal variants. The total variant compositions prior to and after each 
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filtering step are shown in Table 2-2. 

 

2.2.2 Assessment of Relatedness between Samples and Population Stratification 

 The relationships between affected pairs were validated by estimating relatedness 

across samples in the entire study cohort (Figure 2-1). Additionally, relatedness of 

samples was assessed by ascertainment of regions of IBD (shared segments of genotypes 

inherited Identical By Descent) between all samples, using a combination of an 

automated 5 MB sliding window detector across IBD genotypes and by manual curation 

(Figure 2-2). By this process, no IBD sharing was detectable between samples known to 

be unrelated. For a more refined analysis of genetic sharing, we plotted the correlation of 

known linked SNPs to genotype sharing (Figure 2-3). SNPs that are known to be in 

linkage were found to never cross into boundaries defined as regions of IBD from Figure 

2-2. This suggests that recombination sites consistent with known linkage intervals define 

the boundaries for shared segments between related samples in our cohort. However, only 

higher resolution, full chromosome genotyping (not exome sequencing) can prove this 

conclusively. Based on these analyses, an estimation of relatedness across all sample 

genotypes, detection of regions of IBD across all samples, and definition of these IBD 

regions around known linked SNPs, the expected relatedness between samples is likely 

accurate. 

 Additionally, we looked for population stratification, in the event that large 

background population deviation may influence downstream analysis, particularly when 

using some public database-dependent filters. All samples in our cohort are expected to 
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be of European descent. We compared the degree of deviation of individual samples from 

the cohort genotype mean, as well as the load of SNPs at high frequency in the European 

American population, as obtained from EVS (Figure 2-4). As expected, the majority of 

samples clustered together with genotypes of primarily European ancestry. However, five 

samples showed slight deviations from the main cluster. When SNP loads were compared 

to EVS data from the African American population, the sample cluster deviation was 

reproduced, indicating that these five samples have a small, but detectable contribution of 

African ancestry. We do not believe this marginal stratification will affect downstream 

analysis, due in part to the limited degree of deviation, the large presence of both African 

and European ancestry populations in public databases, and our desire to find rare 

mutations, which are less likely to be affected by genetic background. 

 

2.2.3 Variant Filtering Using Strand and Proximity Metrics 

 We have previously observed that many false positive variant calls can be 

efficiently and specifically removed by applying two pre-filters determined by the 

proportion of base call from opposing strands and by inter-variant proximity [51]. Firstly, 

during read alignment, sequenced reads may be aligned to either the positive (Crick) or 

negative (Watson) strand. Variant base calls are therefore made in relation to either the 

positive or negative strand. An excess of variant base calls from one strand over another 

often characterizes false positive variants. The strand-based pre-filter eliminates variant 

calls that are not represented by at least one variant base call on each strand. Secondly, 

false positive variant calls often aggregate in close proximity. Generally, we should not 
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observe more than two variants in a 1,000 bp stretch of DNA in a single individual [87]; 

even less should be observed for more evolutionarily conserved regions, like exons [88]. 

The proximity-based pre-filter very conservatively removes variant calls if they are 

present within 10 bp of each other. The consequence of these pre-filters is a substantial 

reduction in the frequency of erroneous variants that would otherwise confound 

downstream analysis (Figure 2-5). Both of these pre-filters are applied universally, prior 

to any other filter method, described below (Table 2-2, Row 1). 

 

2.2.4 Variant Filtering Using dbSNP (Build 137) 

 To enrich potential disease-causing variants for further genetic and functional 

studies, we tested multiple filtering methods. Numerous published studies have made use 

of variants in dbSNP to filter out variants of non-clinical significance [81,82,89]. Build 

137 of dbSNP includes variants of known pathological significance; we therefore 

selectively removed dbSNP variants that are present in the CLINVAR database 

(http://www.ncbi.nlm.nih.gov/clinvar; CLINSIG = 4 [probable-pathogenic] or 5 

[pathogenic]). Prior removal of these variants of known pathological significance from 

dbSNP is important, as there may be overlap between these pathological variants and 

disease-causing variants in our study cohort. Retention of these pathological variants in 

dbSNP would result in their removal from our cohort, creating a false negative. 

 This abridged dbSNP dataset is still large and will likely successfully filter out 

many non-pathological variants. However, we expect using this method will be flawed to 

the extent that most pathological variants in dbSNP are not known nor annotated, and are 
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therefore retained in this abridged dbSNP. Such unannotated pathological variants may 

overlap with important variants of interest in our study; such variants would be 

unintentionally filtered out, resulting in a higher false negative rate. To assess the fraction 

of remaining unannotated variants that may be potentially pathological, we identified the 

predicted truncating mutations (nonsense and frame-shift) that occur transcriptionally 

upstream of known deleterious mutations. Of the 27,242 coding variants present in our 

abridged dbSNP, 100 (or 0.37%) fit the above description. This is a highly conservative 

estimation, as it does not account for additional downstream nonsense and frame-shift 

mutations. Importantly, it does not account for missense and splicing changes that likely 

constitute a much larger fraction of remaining deleterious variants in known disease 

genes. 

 Given the rarity of XLID, potential XLID variants that are present but not 

annotated as pathological in dbSNP should have a very low minor allele frequency 

(MAF). Variants below a specified MAF could be removed from our abridged dbSNP 

filter, thereby ensuring we are not filtering out potentially pathological variants in our 

cohort. A frequent cutoff for rare variants is an MAF of 1%. However, we determined a 

more accurate MAF cutoff could be derived for male-restricted X chromosome variants 

of interest, because the majority of MAFs for dbSNP are derived from the 1000 Genomes 

Project. There are 525 male X chromosomes and 1,134 (2 x 567) female X chromosomes 

in 1000 Genomes (1,659 X chromosomes total). An appropriate MAF cutoff would 

minimize the probability that an unannotated pathological variant exists only in 

unaffected female carriers and never exists in unaffected males in 1000 Genomes. We 
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calculated that if a variant is present in ≥12 of the 1,659 copies of the X chromosome 

(MAF ≤ 0.73%) in 1000 Genomes, the probability that all 12+ variant copies are present 

in only female carriers is ≤1% (Table 2-3). We therefore chose to remove from our 

abridged dbSNP dataset all variants with a 1000 Genomes MAF ≤ 0.73%, to mitigate the 

unintended loss of unannotated pathological variants from our study cohort during 

filtration. 

 This new, “Non-Clinical” dbSNP Filter, redacted of known pathological variants 

and variants of low MAF, when used on our XLID cohort, results in a substantial 93.6% 

reduction in the number of variants for further analysis (Table 2-2, Row 5). 

 

2.2.5 Variant Filtering Using 1000 Genomes 

 Individuals in the 1000 Genomes came from ethnically diverse populations and 

are not expected to have severe intellectual disability. The master variant output for the 

1000 Genomes project (Integrated Phase 1, version 3: 20101123) includes calls made 

from both males and females. Females could potentially possess an XLID mutation in the 

heterozygous state (carrier status) without clinical phenotype, while males are not 

expected to carry disease-causing mutations for XLID in the hemizygous state. We 

reason that variant data from males in the 1000 Genomes can be used as a filter to reduce 

the number of neutral variants in the X-exome sequenced from males in our XLID study. 

We thus generated a male-only variant dataset (n=525) by removing all X chromosome 

variant calls made only in the female portion of the 1000 Genomes.  

Publicly accessible variant data output from the 1000 Genomes consist of low 
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coverage and exome variant calling including SNPs and indels at the current stage. This 

data was generated from multiple parallel pipelines at different sequencing and data 

analysis centers, and then merged into one VCF file [90]. For initial assessment of this 

dataset as a variant filter in our project, we analyzed the composition of variant genotypes 

for all the chromosomes from the 1000 Genomes project. Two unexpected discrepancies 

were noted in our analysis, which preclude the immediate use of the 1000 Genomes 

dataset as a filter.  

Firstly, we observed the presence of ambiguous genotypes among male variant 

calls. An individual can have a genotype (sum of variant alleles at variant position) of 0 

(no variant), 1 (heterozygous), or 2 (homozygous) as compared to the established 

reference. Because the X chromosome is in hemizygous state in males, we anticipate that 

genotypes for the male X chromosome should only be assigned as 0 or 1. However, we 

observed many ambiguous genotypes, including 2, 3, and 4, as well as non-integer 

genotypes ranging from 0.05 to 3.95 in a substantial fraction of variant calls (Table 2-4). 

Ambiguous genotypes account for ~9% of non-zero genotypes and have integer and non-

integer values ranging from 0.05 to 4. A non-integer value for the number of alleles of a 

variant should not occur, with the exception of somatic mutations. The restricted presence 

of these ambiguous non-integer values to only male X chromosome variants, and the 

complete lack of such values among autosomal or female X chromosome variants, 

suggests that they are erroneous. 

Secondly, we assessed the concordance between 1000 Genomes variant calls and 

SNP genotyping (Omni Platform), to approximate the accuracy of the variant output. 
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Concordance for the X chromosome was calculated to be 68.6 ± 4.7%, which is much 

lower than expected [90]. To clarify this discrepancy, we generated variant calls directly 

from aligned sequence data of 162 random males in the 1000 Genomes using the Unified 

Genotyper and compared it to the Omni genotype data. Correlation between these 162 

samples and their respective Omni genotypes was calculated at 98.8 ± 0.4%, which is 

comparable to what has been previously reported [90]. Given these apparent 

discrepancies, we have chosen not to use the current publicly accessible build of the 1000 

Genomes as an automatic variant filter in our XLID project. Instead, we use the internally 

generated genotypes from the 162 male samples. This [1000G] Male-162 Internal Exome 

Filter is the least efficient discrete filter in our analysis, reducing the average variant 

count per sample by only 25.2% (Table 2-2, Row 3). 

 

2.2.6 Variant Filtering using the Exome Variant Server Dataset 

 The Exome Variant Server (EVS) dataset was generated through the NHLBI 

Exome Sequencing Project, by sequencing more than 5,000 exomes for samples collected 

as “healthy” controls or samples diagnosed with a heart, lung, or blood disorder. Samples 

with an XLID should be rare, if present at all. Approximately half of EVS samples are 

male. For the X chromosome, male genotypes for the non-pseudoautosomal regions can 

be distinguished from female genotypes, because male genotypes are explicitly annotated 

as hemizygous or wildtype. This EVS (Male Only) Filter, much like the [1000G] Male-

162 Internal Exome Filter, is based on the assumption that none of the variants in these 

“control” populations will contribute to XLID, and can therefore be subtracted from the 
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variant list in our XLID cohort. 

This filter performs much better than using the [1000G] Male-162 Internal Exome 

Filter (40.3% reduction in variants), but does not outperform the dbSNP filter (Table 2-2, 

Row 4). For our analysis, this database is presumably the most reliable of the three tested, 

as it is consistent in its genotyping and the population in question should not have any 

overlapping disease traits with our analysis. However, we anticipate that the use of the 

EVS cohort, which is still a disease population (heart, lung, and blood disorders), will 

complicate other X-linked studies examining similar disease traits. 

 

2.2.7 Variant Filtering by Relatedness 

 The rarity of XLID and the distinct inheritance (no male-to-male transmission) 

predict that that the remaining XLID mutations are likely very rare and even private to 

individual families and are therefore unlikely to be shared with unrelated families (with 

rare exceptions) [72]. Based on this prediction, we have developed and implemented a 

filter based on relatedness, which we call the Affected Kindred/Cross-Cohort Filter. 

 One component of this filter, referred to as the Shared Segment Filter, retains all 

variants present within regions observed as shared (Identical by Descent) between 

affected related samples in the cohort (Figure 2-5). This is a relatively simple step that 

results in a quick reduction in variants, while simultaneously providing confirmation of 

sample relatedness. When this step is applied alone, it results in a 29% reduction in 

potentially neutral variants (Table 2-2, Row 2). 

The major component to the Affected Kindred/Cross-Cohort Filter involves a 
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more sensitive implementation based on relatedness than the Shared Segment Filter. In 

this step, variants shared between two affected individuals from the same family are 

retained, while variants shared between two unrelated individuals in the small study 

cohort are removed. We constructed this filter to accommodate for variants that are 

discordant between affected kindred pairs where one variant is absent due to insufficient 

coverage, by simply retaining the variant with sufficient coverage. A schematic 

describing all steps from alignment to filtering using the Affected Kindred/Cross-Cohort 

filter is provided (Figure 2-6). 

Though the Affected Kindred/Cross-Cohort Filter is more sensitive than the 

Shared Segment Filter alone, it will not necessarily remove all the same passenger 

variants as the Shared Segment Filter. For example, shared common variants in the 

unshared chromosomal region of two affected kindred pairs will be retained by the 

Affected Kindred/Cross-Cohort Filter, because this filter is not aware if shared variants 

that are identical by state are also identical by descent. This step of the Affected 

Kindred/Cross-Cohort Filter results in the largest reduction (96.5%) in potentially neutral 

variants of all the individual filters (Table 2-2, Row 6). 

Though the Affected Kindred/Cross-Cohort Filter relies solely on in-house data, it 

differs from other in-house filtering platforms that have been used previously. 

Importantly, this filter does not rely on using a separate negative control cohort of 

unaffected, unrelated individuals. Rather it relies on variant comparisons conducted 

within the same affected cohort, which is more akin to using an internal control. This has 

a number of unique advantages. Firstly, any reoccurring systematic errors that occur 
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during library preparation or sequencing will self-neutralize. Secondly, more sequencing 

capacity can be devoted away from unaffected samples to affected samples, improving 

the power to detect disease-causing mutations. If at least some of this additional capacity 

is devoted to sequencing affected related sample pairs, that should further improves 

detection power. The main advantage of such a filter without additional controls is having 

greater detection power, which is one of the primary challenges when studying a disease 

with substantial locus heterogeneity. 

 

2.2.8 Comparison of Filters 

 Each filtering strategy above has its advantages and limitations. The advantage of 

dbSNP as a filter is that it is the largest annotated collection of variants available, and 

therefore removes the most variants from our cohort out of all the public database-

derived filters (93.6% reduction; Table 2-2, Row 5). However, appropriate use of the 

database requires that it be modified to exclude as many known or possible pathological 

variants, or such variants risk being filtered out of the variant list of the study cohort. In 

this study, we removed known or probably pathological variants based on prior clinical 

annotation or MAF. Even so, this “Non-Clinical” dbSNP may still contain potentially 

functional variants relevant to our study cohort, and therefore this filter should be used 

cautiously. 

Variants from males in the 1000 Genomes should serve as a valuable filter to 

remove neutral variants in our study. However, the publicly accessible dataset for males 

in the 1000 Genomes (n = 525) appears to contain ambiguous genotypes unique to 
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variants from X-linked genes, and is therefore not suitable as an automatic filter to enrich 

for causal variants for rare X-linked disorders. To better assess whether this dataset can 

be used as a filter in our study, we generated variant calls directly from aligned sequence 

data for 162 males in the 1000 Genomes using the Unified Genotyper. The resulting 

variant dataset shows an excellent correlation with SNP genotype data (Omni Platform) 

made publicly available through the 1000 Genomes Project. Filtering using this smaller 

variant dataset succeeded in removing 25.2% of potentially neutral variants (Table 2-2, 

Row 3). We expect that a similar dataset for all sequenced males in the 1000 Genomes 

project (n = 525) will likely achieve a greater reduction of neutral variants. Consistent 

with this expectation, filtering using the much larger EVS dataset (Table 2-2, Row 4) 

results in a 40.3% reduction in potentially neutral variants. We do not expect a full 1000 

Genomes filter (males only) to outperform the “Non-Clinical” dbSNP filter, which 

consists of variants from both 1000 Genomes and alternate sources. 

The Affected Kindred/Cross-Cohort Filter achieved the most substantial reduction 

in the average number of potentially neutral variants, demonstrating the robustness of this 

method (96.5% reduction; Table 2-2, Row 6). A large portion of the variants in dbSNP 

that have a MAF > 0.73% are re-discovered and removed given the sample size of our 

study, thus explaining why our filter outperforms the “Non-Clinical” dbSNP filter. 

Additionally, we have previously observed that false positive variant calls occur in 

parallel in multiple samples due to systematic errors in preparation or sequencing of the 

same library [51]. As an added advantage, our strategy removes these variants by 

comparing samples prepared in the same library, a process of self-neutralizing these 
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reoccurring systematic errors. 

Compared to the discrete filters based on public variant databases, our Affected 

Kindred/Cross-Cohort Filter shows superior performance at the removal of non-

pathological variants in this XLID study. Importantly, this performance is achieved using 

a cohort size (n < 100) much smaller than those used in the 1000 Genomes, EVS, or 

aggregated into dbSNP. Given this performance, we predict that the sequencing of a large 

cohort of unrelated “normal” controls is not necessary. An additional advantage is that 

the Affected Kindred/Cross-Cohort Filter works independently from public reference 

databases and will therefore not be affected by any of the limitations noted previously for 

the database-dependent filters. 

However, there is the disadvantage that, because this filter relies on the rare and 

private nature of XLID mutations, a potential causal mutation may be lost in the event 

that two affected but unrelated individuals possess that same mutation. This may be a 

result of incorrect ascertainment of relatedness, or because a disease-causing mutation by 

chance arose independently in two unrelated families. These events can be minimized by 

the confirmation of relatedness between samples and by rescuing recurrent causal 

mutations using dbSNP database (see below). 

 

2.2.9 Combination of Filters 

 Given these noted advantages and limitations, we tested one more filter that 

combines features from all of them. Firstly, the Shared Segment Filter and the Affected 

Kindred/Cross-Cohort Filter are applied sequentially. Secondly, we forcibly retain/re-
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introduce any variants lost in the Affected Kindred/Cross-Cohort Filter that are annotated 

as pathological in dbSNP and have a MAF < 1%. This retention would prevent the loss of 

known, rare disease-causing mutations that are shared between unrelated samples in the 

study cohort. Lastly, the three discrete public database-dependent filters (“Non-Clinical” 

dbSNP, [1000G] Male-162 Internal Exome, and Exome Variant Server) are used. 

Application of the database-dependent filters does not remove a significant number of 

neutral variants (already achieved in the first step), but it is nonetheless a simple series of 

filters to apply. A schematic of this combined filter is provided (Figure 2-7). 

The combination of these filters together results in 98.5% reduction in potentially 

neutral variants (Table 2-2, Row 7). Importantly, the number of variants for many 

samples is reduced to single-digit levels, thereby making downstream predictive and 

functional analyses much easier. Additionally, the re-introduction of pathological variants 

annotated in dbSNP succeeds in retaining a nonsense mutation, R37X, in ATRX. This 

mutation is a known cause for XLID, has been annotated as such in dbSNP, and occurs 

independently in our cohort in two unrelated individuals and one sibling pair. Because 

R37X in ATRX is shared between unrelated samples in our cohort, it was initially lost 

after application of the Affected Kindred/Cross-Cohort Filter. While such an event is rare 

due to broad allelic heterogeneity, retention of such a variant is preferable; these samples 

would otherwise be unnecessarily subjected to additional mutation discovery screens. 

 

2.2.10 Variant Validation by Sanger Sequencing 

 From the final variant list of the combined filter, we selected 19 potentially 
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deleterious (17 coding and 2 splicing) variants and performed Sanger sequencing in 28 

samples from the proband families. All 19 variants were positively confirmed in the 

respective 28 samples. 

 

2.2.11 Enrichment of Potential Causal Mutations 

 Our current enrichment system targets 975 genes on the X chromosome, of which 

103 (10.6%) are known to cause XLID when mutated [69,91]. In order to determine if 

our combined filtering system could enrich for XLID genes, we prioritized genes by 

mutation burden. The presence of at least one splicing or non-synonymous coding change 

in a sample would elevate the priority of a gene. Additional weight was given to nonsense 

and frame-shift mutations. No weight was given to intronic or synonymous mutations. 

The resulting list consists of 89 X-linked genes (Table 2-5), of which 24 (27%) 

are previously associated with XLID. Though kindred pairs are responsible for only 

33.6% of variants that were used to derive this list, they provided for a much greater 

enrichment (3.35-fold) of XLID genes compared to sporadic cases (1.39-fold). The 

expected fraction of XLID genes in the list should be 10.6%, not 27%. This 2.55-fold 

enrichment (kindred pairs and sporadic cases combined) for XLID genes over expected is 

statistically significant (p < 1E-5; hypergeometric test), demonstrating that our filtering 

system can be used quickly and effectively to re-identify known XLID genes. Given this 

enrichment, we hypothesize that the remaining portion of the list is also enriched for 

novel XLID genes. This approach has proven instrumental in identification of novel 

XLID genes, including one gene that was prioritized at the top of our list, ZC4H2; this 
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gene was recently implicated in Arthrogryposis Multiplex Congenita and Intellectual 

Disability [92]. A sample list of enriched genes and filtered variants is provided (Table 2-

6). 

 

2.3 Discussion 

We developed a strategy for rapid filtering of high-throughput sequencing data to 

identify disease-causing mutations in a rare X-linked Mendelian disorder with extensive 

locus and allelic heterogeneity. In sequencing affected samples with known relatedness in 

a small cohort of fewer than 100 samples, our Affected Kindred/Cross-Cohort Filter 

removes likely non-pathological variants to a level greater than that achieved using the 

largest publicly available variant dataset (dbSNP) as a filter. Variant sets from public 

databases or large control cohorts, though easily applied, are not required for effective 

filtration. This feature is important due to the intrinsic limitations of some of the public 

datasets. However, these public databases can be used if modified appropriately to 

compensate for the intrinsic limitations, as described above. 

Using a combination of filters, we found a statistically significant enrichment for 

known XLID genes, strongly indicating that our method can be used to enrich for known 

disease-causing genes. Multiple novel candidate genes were also identified in this study, 

many of which are likely etiologic based on known biological function (Table 2-5 and 

Table 2-6). 

PLXNA3, or Plexin A3, with Semaphorin, is involved in chemotactic signaling, a 

pathway involved in normal targeting of axonal projections in the central nervous system 
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[93]. The Plexin-Semaphorin pathway has been previously implicated in an intellectual 

disability syndrome [94]. 

GRIPAP1, or GRIP-associated protein 1 (also known as GRASP1), is a neuronally 

expressed gene, with a role in glutamatergic AMPA receptor signaling, by regulating 

receptor trafficking and distribution through the Ras pathway [95]. De novo deleterious 

mutations in genes for glutamatergic signaling have been previously implicated in 

Intellectual Disability [96]. Additionally, glutamatergic receptors are dysregulated with 

loss of FMR1 function, which is also a known cause of XLID [97,98]. GRIPAP1 is 

located at Xp11, a region subject to duplication that has been previously associated with 

autism with severe intellectual disability [99,100]. 

EphrinB1 is ligand for Eph-related receptor tyrosine kinases and is involved in 

regulation of neuronal axon guidance [101]. Mutation of EphrinB1 is a primary cause of 

Craniofrontonasal Syndrome, which can include symptoms of learning disability [102]. 

An EphrinB1 deficient mouse model of Craniofrontonasal Syndrome shows cortical 

abnormalities and learning deficits [103]. 

OGT, or O-linked N-acetylglucosamine Transferase, is essential for post-

translation modification of serine and threonine residues. Additionally, OGT forms a 

complex with TET proteins in the nucleus to regulate chromatin [104]. This complex 

includes HCFC1, a target of OGT, which is another gene implicated in XLID [105]. 

Our results demonstrate a robust reduction in variants and a significant 

enrichment for known and putative disease causing genes. In complementation with other 

mutation prioritization options like functional variant prediction analysis, the Affected 
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Kindred/Cross-Cohort Filter can identify causal mutations in rare, heterogeneous X-

linked disorders such as XLID. 

 

2.4 Materials and Methods 

 

2.4.1 Study Sample 

 Genomic DNA samples from males with XLID (n = 82) were sequenced. Of the 

82 samples, 30 are sporadic cases and are unrelated to other individuals in the study 

cohort. The remaining 52 samples constitute 26 kindred pairs, with relationships 

described in Table 2-1. X-linkage was determined by at least one of four criteria: 1) the 

responsible locus was mapped by linkage analysis or a similar method to the X 

chromosome; 2) affected males in two or more generations in their pedigree show a 

pattern of inheritance consistent with X-linkage; 3) two or more affected males in the 

same generation in their pedigree are consistent with X-linked inheritance, with evidence 

for a skewed (90:10) pattern of X-inactivation in females; 4) the presentation of disease is 

consistent with the clinical diagnosis of a known, well-defined XLID syndrome for which 

the causative gene is unknown. All the samples were previously tested as negative for 

Fragile X Syndrome, cytogenetic abnormalities, and known inborn errors of metabolism. 

An informed consent was obtained from all families enrolled in this study at the 

Greenwood Genetic Center, SC, and/or the Johns Hopkins University. The Institutional 

Review Board from the respective institutions approved this study. 
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2.4.2 Library Preparation and Sequencing 

 Sequencing libraries were prepared using the TruSeqTM DNA Sample Preparation 

kit following a standard protocol from the manufacturer (Illumina). Twelve or 24 

individually indexed libraries were pooled at equal molar ratio and enriched for the X-

exome using a SureSelect Human X Chromosome Exome Kit (Agilent). Each pooled 

library was quantified by qPCR using a KAPA library quantification kit (KAPA 

Biosystems) and sequenced in one lane of HiSeq2000 using 75bp pair-end sequence 

module. 

 

2.4.3 Sequence Data Analysis 

 Bowtie2 was used to align fastq reads using the [--very-sensitive-local] parameter 

and other Bowtie2 parameters were kept at default [106]. PCR duplicates were removed 

using Picard (http://picard.sourceforge.net). Indel realignment and base recalibration was 

conducted using GATK [107]. Unified Genotyper (GATK) was used for variant calling 

with the ploidy parameter setting at “1” (haploid) due to the hemizygous nature of the 

male X chromosome [58]. The pseudoautosomal regions of the X chromosome were not 

included in our study. Additional pre-filtering parameters were instituted based on strand-

specific coverage and variant proximity to reduce the false positive rate in variant calling 

[51]. By comparing variant calls from the Unified Genotyper to nucleotide pileups from 

the aligned reads, this filter only retains variants with at least one alternate base call from 

each strand and only retains variants that are not present within ten nucleotides of another 

variant. This filter is applied in addition to the default FisherStrand covariate analysis 
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conducted during base recalibration by GATK. Variants were annotated for affected 

genes and coding changes using the ANNOVAR package [108]. 

 

2.4.4 Estimation of the Relatedness between Samples 

 The relatedness between samples was determined based on the fraction of total 

variant calls that are identical between each sample in the entire cohort [Identity ≈ (2 x 

number of variants identical between both samples)/(sum of variants of both samples)]. 

The closely related samples such as affected brothers and maternal cousins from the 

sample families generally shared the greatest identity, which confirms their expected 

relatedness (Figure 2-1). Relatedness was also validated visually using the Shared 

Segment filter step of the Affect Kindred/Cross-Cohort Filter (Figure 2-2). 

 

2.4.5 Identification of Shared Segment that are Identical By Descent 

 Identification of regions of sharing between related samples was conducted using 

an automated 5 MB sliding window across all possible section of IBD. The regions 

defined by the sliding window were then manually refined. To determine if shared IBD 

segments align along known linkage intervals, SNPs that are in linkage were assessed for 

crossover along the boundaries of the shared segments. Retrieval of linked SNPs was 

conducted using PLINK v1.07 [plink --bfile hapmap3_r2_b36_fwd.consensus.qc.poly --

blocks --noweb --chr X --from-bp 1 --to-bp 155270560 --missing-phenotype 1] on 

HapMap Phase 3 data (MAP and PED files) [62,109]. 
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2.4.6 Determination of Population Stratification 

 Population stratification was determined by comparing samples to a cohort mean, 

and by comparing sample allele frequencies to population-specific allele frequencies 

derived from EVS data. For the cohort mean analysis, an average allele frequency for the 

cohort was obtained for each variant. A residual sum of squares was subsequently 

calculated for each sample compared to the cohort mean. The number of standard 

deviations from the residual is plotted on the Y-axis of Figure 2-4a. Comparison of 

sample allele frequencies to EVS was performed for both EVS European American (EA) 

and EVS African American (AA) population frequencies. For any given sample, an EA 

and an AA metric was obtained by averaging the population specific allele frequencies 

for all sample variants present in the EVS dataset. This EA metric for each sample is 

plotted on the X-axis of Figure 2-4. The AA metric for each sample is plotted on the Y-

axis of Figure 2-4b. 

 

2.4.7 Hypergeometric test for Known XLID Gene Enrichment 

 The full X chromosome gene set targeted by exome sequencing includes 975 

coding genes, of which 103 are attributed to XLID in literature. Our combined filtering 

pipeline resulted in a large reduction in likely non-causal variants. When these variants 

are scored by function (nonsense, splicing, missense), we obtained a list of 89 prioritized 

genes, of which 24 are attributed to XLID in literature. A hypergeometric test was used to 

determined the probability of obtaining at least 24 (k) known XLID genes with 89 (n) 

random draws from a population of 975 (N) genes, of which only 103 (K) are known 



 

  45 

XLID genes. The p-value for an over-representation of known XLID genes is the 

probability of randomly drawing k or more XLID genes with a total of n genes drawn 

from the total population of K in N, without replacement. (R code: [sum(dhyper(k:n,K,N-

K,n))] or [1-phyper(k-1,K,N-K,n)]). This p-value was calculated to be less than 4E-6. As a 

negative control, we calculated the mutation frequency for each X chromosome gene, 

using our 162 male 1000G negative control cohort. It is necessary to take into 

consideration the mutation rate for each gene, as some XLID genes, such as DMD and 

MECP2 have higher mutation rates, which will increase the likelihood of enrichment. 

The probability of randomly selecting an XLID gene from the total X chromosome gene 

set, weighted for genic mutation rate, was calculated to be 0.103408. 

 

2.4.8 Validation of Variants by Sanger Sequencing 

 Sanger sequencing for variant validation was conducted using the BigDye 

Terminator v3.1 Cycle Sequencing Kit on an ABI3100 automatic DNA analyzer (Applied 

Biosystems) following manufacturer’s instructions. Analysis was done on standard 

sequence alignment software (CodonCode and MacVector) followed by manual 

investigations of the chromatograms. 

 

2.4.9 “Non-Clinical” dbSNP, Male 1000 Genomes, and Male EVS as Variant Filters 

 A “Non-Clinical” dbSNP dataset was generated by the removal of variants that 

are present in the clinvar databases (CLINSIG = 4 [probable-pathogenic] or 5 

[pathogenic]) from dbSNP (build 137), followed by the removal of variants with MAF < 
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0.73%. For the 1000 Genomes project, variant data (SNPs and indels) from male samples 

only (n = 525) were extracted from the master variant output of the 1000 Genomes 

project (Integrated Phase 1, version 3: 20101123). SNP genotyping data (Omni Platform) 

was used to correlate variants calls from males in the 1000 Genomes. An additional 

variant call list, using default Unified Genotyper parameters, was conducted on 162 

males samples from the 1000 Genomes alignment files. This alternate variant list was 

generously provided by the Chakravarti Lab (Johns Hopkins University). For the Exome 

Variant Server dataset, variants present in the male portion of the non-pseudoautosomal 

regions of the X chromosome were extracted based on variant annotations of hemizygous 

genotype. 
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2.5 Figures: Chapter 2 

 

Figure 2-1. Relatedness between study samples 
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Figure 2-1. Relatedness between study samples 
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The estimated relatedness of samples is calculated by comparing the percentage of shared 

variants between two samples. The vertical axis shows the percentage of shared variants 

between two samples. The horizontal axis shows individual samples (n = 82) in this study 

cohort. Sporadic cases are samples that are not related to any other sample (left) while 

kindred pairs are two related affected males (right) (Table 1). The color-coded 

alphanumeric labels designate individual samples along the X-axis. There are 30 sporadic 

cases [1–9, 0, a-t; black labels] and 52 kinships (26 pairs) [u-z, A-Z, symbols; colored 

labels]. Box and whisker plots indicate overall identity between a proband and all other 

samples in the cohort. Identity ≈ (2 x # of variants identical between both samples) / (sum 

of variants of both samples). Sporadic cases generally share low identity with other 

samples. Paired kindred generally show the highest identity with each other. Paired 

kindred are juxtaposed with each other with the same color on the X-axis to simplify 

visualization of relationships. Outlier labels located above the hollow plots indicate the 

identifier for the sample that shares the highest identity, which is consistent with the 

known family relationship.  
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Figure 2-2. Shared IBD segments for selected representative sample pairs 
 

 
 

Plot titles indicate sample identifiers (Sample Pair 1—Sample Pair 2). X-axis denotes 

position along the X chromosome. Far left is position 1 and far right is position 

154,899,846, relative to the hg19 reference sequence. Black vertical bars indicate 

positions along the X chromosome at which a variant was called in one sample, but was 

not called in its paired sample (genotypic discordance between related samples). Orange 

blocks reflect regions lacking an abundance of discordant genotypes. These regions are 

shared Identical by Descent (inheritance) between the samples and contain the 

pathological variants of interest. All variants, both genotypically concordant (not shown) 

and discordant, that are located within the orange blocks are retained by the Shared 

Segment Filter. All possible pairwise relationships were assessed for segment sharing by 

an automated 5 MB sliding window and manual curation. Only samples with substantial 

sharing are plotted.  
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Figure 2-3. Correlation between shared segments of IBD and known linkage 

intervals; one sample presented 

 
 

Plot titles indicate sample identifiers (Sample Pair 1—Sample Pair 2). X-axis denotes 

position along the X chromosome. Far left is position 1 and far right is position 

154,899,846 relative to the hg19 reference sequence. Orange blocks reflect regions 

determined to be in IBD. These regions are shared by inheritance between the samples 

and contain the pathological variant of interest. Black dots are HapMap SNPs and are 

distributed across the Y-axis based on genotypic sharing between the sample pairs. SNP 

positions retaining the reference allele between both samples (Concordant Ref) are 

located at the bottom in the pink region. SNP positions retaining the alternate allele 

between both samples (Concordant Alt) are located at the middle in the green region. 

SNP positions that are genotypically discordant between the sample pairs (Discordant) 
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are located at the top in the blue region. Individual black dots reflect one SNP position. 

Vertical black lines connecting dots reflect SNPs that are known to be linked as 

determined using PLINK on HapMap Phase 3 data. Vertical lines rarely cross the orange 

IBD shared segments, suggesting that these segments are likely descending along known 

linkage intervals. However, only higher resolution, full chromosome genotyping (not 

exome sequence) can prove this conclusively.  
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Figure 2-4. Assessment of cohort population stratification 
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Population stratification was determined by comparing samples to a cohort mean, and by 

comparing sample allele frequencies to population-specific allele frequencies derived 

from EVS data. For the cohort mean analysis, an average allele frequency for the cohort 

was obtained for each variant. A residual sum of squares was subsequently calculated for 

each sample compared to the cohort mean. The number of standard deviations from the 

residual is plotted on the Y-axis of Panel A. Comparison of sample allele frequencies to 

EVS was performed for both EVS European American (EA) and EVS African American 

(AA) population frequencies. For any given sample, an EA and an AA metric was 

obtained by averaging the population specific allele frequencies for all sample variants 

present in the EVS dataset. This EA metric for each sample is plotted on the X-axis. The 

AA metric for each sample is plotted on the Y-axis of Panel B. The majority of samples 

cluster together with genotypes of primarily European ancestry. However, five samples 

show slight deviations from the main cluster. When SNP loads were compared to EVS 

data from the African American population, the sample cluster deviation was reproduced, 

indicating that these five samples have a small, but detectable contribution of African 

ancestry.  
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Figure 2-5. Shared segment filter and error reduction by strand/proximity pre-filter 

 

The Shared Segment Filter (component of the Affected Kindred/Cross-Cohort Filter) 

retains chromosomal segments shared as Identical by Descent between two related 

samples in the XLID cohort. In this example, Panels A and B each reflect the same 

kindred pair, two brothers. The X-axis is position along the X chromosome exome. The 

Y-axis indicates the allelic status of a given variant for both siblings. Each point in the 

graph is a variant site for at least one sample. R|R allelic status indicates that the given 

point (genomic site) matches the reference sequence (hg19) in both samples (both 

samples are wildtype). A|A allelic status indicates the given point (variant site) is 

alternate to hg19 in both samples (both samples are hemizygous mutant). A|R allelic 

status indicates the given point matches reference in one sample and is alternate in the 

kindred sample (the samples are genotypically discordant). The orange blocks delineate 

chromosomal segments devoid of A|R points. All sequence in that segment is Identical by 

Descent between the two samples. The Shared Segment Filter retains variants (A|A) 

Figure 2-5. Shared segment filter and error reduction by strand/proximity pre-filter 

The Shared Segment Filter (component of the Affected Kindred/Cross-Cohort Filter) 

retains chromosomal segments shared as Identical by Descent between two related 

samples in the XLID cohort. In this example, Panels A and B each reflect the same 

kindred pair, two brothers. The X-axis is position along the X chromosome exome. The 

Y-axis indicates the allelic status of a given variant for both siblings. Each point in the 

graph is a variant site for at least one sample. R|R allelic status indicates that the given 

point (genomic site) matches the reference sequence (hg19) in both samples (both 

samples are wildtype). A|A allelic status indicates the given point (variant site) is 

alternate to hg19 in both samples (both samples are hemizygous mutant). A|R allelic 

status indicates the given point matches reference in one sample and is alternate in the 

kindred sample (the samples are genotypically discordant). The orange blocks delineate 

chromosomal segments devoid of A|R points. All sequence in that segment is Identical by 
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within the orange block. Panel A shows variant allele status in the Shared Segment Filter 

prior to the application of the strand- and proximity-based pre-filters. With the exception 

of the rare de novo mutation, there should be no discordant (A|R) variants within the 

orange block. Such variants are likely erroneous. Panel B shows the Shared Segment 

Filter after application of the strand- and proximity-based pre-filters. The A|R variants 

previously present in the orange block are eliminated, reflecting a reduction in erroneous 

variant calls as a result of these pre-filters.  
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Figure 2-6. Schematics of variant calling and affected kindred/cross-cohort analysis 

 

Panel A: Illumina FASTQ sequenced read files are aligned to the human reference 

genome (hg19) using bowtie2, followed by removal of PCR duplicates, read group 

adjustment, indel realignment, and base recalibration. Variant calling is conducted using 

the Unified Genotyper. Variant calling is conducted in parallel on all alignments. Panel 

B: The Affected Kindred/Cross-Cohort Filter makes use of known relatedness. Unshared 

variants between related samples are removed. Shared variants between unrelated 

samples are removed. Shared variants between related samples are retained. The Affected 

Kindred/Cross-Cohort Filter accommodates for the possibility that the absence of a 

variant in a related sample may also be due to insufficient coverage or variant quality in 

the related sample. All retained variants are subsequently run through the Shared 

Segment Filter.  
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Figure 2-7. Schematic of variant reduction using a combined filter 

 

The Combined Filter sequentially applies all the filters described in this study. Vertical 

colored bars reflect relative changes in the content of the variant pool after each filter 

step. Horizontal colored bars reflect rejected variants upon each filter step. The Strand 

and Proximity Pre-Filters are applied universally. Then the Affected Kindred/Cross-

Cohort Filter (with Shared Segment Filter) is applied. The rejected variant pool in this 

step primarily eliminates neutral variants. Nonetheless, this rejected pool of variants is 

assessed for co-occurrence with rare dbSNP variants with known pathological function. 

Rejected variants that positively co-occur in the Rare Clinical Variants dataset are re-

introduced (thin red arrow). Database-dependent filters are sequentially applied. Red bars 

reflect potential XLID variants that may be of functional interest. Green bars reflect 

variants that are likely sequencing errors. Blue bars reflect variants that are likely neutral 

in XLID etiology.  
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colored bars reflect relative changes in the content of the variant pool after each filter 

step. Horizontal colored bars reflect rejected variants upon each filter step. The Strand 

and Proximity Pre-Filters are applied universally. Then the Affected Kindred/Cross-

Cohort Filter (with Shared Segment Filter) is applied. The rejected variant pool in this 

step primarily eliminates neutral variants. Nonetheless, this rejected pool of variants is 

assessed for co-occurrence with rare dbSNP variants with known pathological function. 

Rejected variants that positively co-occur in the Rare Clinical Variants dataset are re-

introduced (thin red arrow). Database-dependent filters are sequentially applied. Red bars 

reflect potential XLID variants that may be of functional interest. Green bars reflect 

variants that are likely sequencing errors. Blue bars reflect variants that are likely neutral 

in XLID etiology. 
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2.6 Tables: Chapter 2 

 

Table 2-1. XLID cohort for X Chromosome exome sequencing 

  Relationship of Samples   Number (Pairs) 

Affected Sporadic Cases  30 

Affected Pairs  52 (26) 

 Brothers  44 (22) 

 Maternal Half-Brothers  4 (2) 

 Maternal Male First Cousins 2 (1) 

  Uncle-Nephew   2 (1) 

 

All samples are diagnosed with an X-linked Intellectual Disorder. Criteria for X-linkage 

are described in Materials and Methods.  
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Table 2-2. Enrichment of potential pathological variants in X-Exome of XLID 

cohort with different variant filters 

Application of Variant Filters Non-Synonymous or 

Splicing Variants Other Variants Total Variants % Original 

Strand and Proximity Pre-filters Only 1 221.8 ± 30.8 724.5 ± 137.0 946.3 ± 167.8 100.0% 

+ Shared Segment Filter 2 160.1 ± 65.0 511.3 ± 222.1 671.4 ± 287.1 71.0% 

+ [1000G] Male-162 Internal Exome Filter 3 62.5 ± 19.9 645.6 ± 129.2 708.1 ± 149.1 74.8% 

+ Exome Variant Server (Male Only) Filter 4 18.8 ± 4.6 545.9 ± 108.8 564.7 ± 113.4 59.7% 

+ "Non-clinical" dbSNP Filter 5 11.9 ± 5.4 48.8 ± 18.5 60.7 ± 23.9 6.4% 

+ Affected Kindred/Cross-Cohort Filter 6 7.5 ± 2.4 25.4 ± 2.2 32.9 ± 4.6 3.5% 

All Filters 7 2.1 ± 1.7 12.1 ± 10.0 14.2 ± 11.7 1.5% 

 

Average number of variants remaining per sample after sequential or aggregate filtering 

steps. 

1 Strand and Proximity Pre-Filters are applied universally on top of all other filters. The 

percent of variants remaining after a filter is relative to the variant output after application 

of the Strand and Proximity Pre-Filters and is provided in column 5. 

2 Shared Segment Filter: for demonstration purposes, results of this filter are provided 

separately from the rest of the Affected Kindred/Cross-Cohort Filter. 

3 [1000G] Male-162 Internal Exome Filter: removes variants from the XLID cohort 

shared in common with 162 males from the 1000 Genomes. 

4 Exome Variant Server (Male Only) Filter: removes variants from the XLID cohort 

shared in common with variants of the male fraction of EVS. 

5 “Non-Clinical” dbSNP is redacted of known, probable, or potentially pathological 

variants in dbSNP Build 137. 
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6 Affected Kindred/Cross-Cohort Filter: results exclude the Shared Segment Filter 

component (see Row 2). 

7 All filters, including re-introduction of known rare pathological variants (from dbSNP) 

that are inappropriately eliminated by the Affected Kindred/Cross-Cohort Filter.  
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Table 2-3. Calculation of rare variant minor allele frequency (MAF) cutoff 

 

* At 12 copies of a mutant allele in the 1000 Genomes dataset, the probability of seeing 

all 12 alleles in only female carriers is only 1%. At >12 copies of a mutant allele, the 

probability is less than 1%. 12 mutant allele copies is ~ 0.73% minor allele frequency. 

We can safely assume that potential pathological variants with a MAF < 0.73% could 

exist purely in a female carrier state. Therefore, such variants should be removed from 

dbSNP before implementation of a dbSNP-based filter.  
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Table 2-4. Ambiguous variant calls in the public 1000 Genomes variant dataset 

Sex Chromosome 
Genotype Heterozygous Homozygous Ambiguous 

Variant Call 1 2 Others 

Males X Chromosome  39.49% 51.55% 8.96% 

Females X Chromosome  90.54% 9.46% 0% 

Males Autosomes  92.34% 7.66% 0% 

Females Autosomes   92.34% 7.66% 0% 

 

Variant call = 1: Percent of variant alleles present as one copy in a sample (heterozygous 

state). Variant call = 2: Percent of variant alleles present as two copies in a sample 

(homozygous state). Variant call = Others: Percent of variant alleles present in copies 

other than 1 or 2, including non-integer counts. All values are evaluated exclusively from 

coding sequence variants for the respective chromosomes and sexes. Only the male X 

chromosome dataset possesses ambiguous genotypes. All variants were obtained from the 

1000 Genomes variant dataset, pre-separated by chromosome [Integrated Phase 1, 

version 3: 20101123].  
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Table 2-5. List of 89 potential XLID genes 
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The list presents the 89 genes that were found to be mutated in our XLID cohort after 

application of the Combined Filter. Genes were prioritized by presence of a missense, 

nonsense, or splicing mutation. Weight was given for nonsense and splicing mutations. 

Weight was given for mutations present in both siblings. An asterisk (*) after the Gene 

ID indicates that the gene has been previously associated with XLID. The current list of 

XLID genes as of this publication stands at 103. Our target-enrichment system targets 

975 chromosome X genes. Of the 89 genes in the list, 24 have been previously associated 

to XLID. This reflects a statistically significant 2.55-fold enrichment for known or 

previously associated XLID genes (p < 1E-5, hypergeometric test). 

*103 known XLID genes: ABCD1, ACSL4, AFF2, AGTR2, AP1S2, ARHGEF6, 

ARHGEF9, ARX, ATP6AP2, ATP7A, ATRX, BCOR, BRWD3, CASK, CCDC22, CDKL5, 

CLIC2, CUL4B, DCX, DKC1, DLG3, DMD, FANCB, FGD1, FLNA, FMR1, FTSJ1, 

GDI1, GK, GPC3, GRIA3, HCCS, HCFC1, HDAC8, HPRT, HSD17B10, HUWE1, IDS, 

IGBP1, IKBKG, IL1RAPL1, IQSEC2, KDM5C, KIAA2022, KLF8, SHROOM4, L1CAM, 

LAMP2, MAGT1, MAOA, MBTPS2, MECP2, MED12, MID1, MTM1, NAA10, NDP, 

NDUFA1, NHS, NLGN3, NLGN4, NSDHL, NXF5, OCRL, OFD1, OPHN1, OTC, PAK3, 

PCDH19, PDHA1, PGK1, PHF6, PHF8, PLP1, PORCN, PQBP1, PRPS1, PTCHD1, 

RAB39B, RBM10, RPL10, RPS6KA3, SIZN1, SLC16A2, SLC6A8, SLC9A6, SMC1A, 

SMS, SOX3, SRPX2, SYN1, SYP, TIMM8A, TSPAN7, UBE2A, UPF3B, ZDHHC9, 

ZDHHC15, ZNF41, ZNF674, ZNF711, ZNF81  
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Table 2-6. Identification of known and potentially novel genes for XLID using X 

Chromosome exome sequencing and affected kindred/cross-cohort analysis 
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Chapter 3: Effective Detection of Rare Variants in 

Pooled DNA Samples Using Cross-pool Tailcurve 

Analysis 

 

 Sequencing targeted DNA regions in large samples is necessary to discover the 

full spectrum of rare variants. We report an effective Illumina sequencing strategy 

utilizing pooled samples with novel quality (Srfim) and filtering (SERVIC4E) algorithms. 

We sequenced 24 exons in two cohorts of 480 samples each, identifying 47 coding 

variants, including 30 present once per cohort. Validation by Sanger sequencing revealed 

an excellent combination of sensitivity and specificity for variant detection in pooled 

samples of both cohorts as compared to publicly available algorithms [51]. 

 

3.1 Introduction 

 Next-generation sequencing and computational genomic tools permit rapid, deep 

sequencing for hundreds to thousands of samples [110-112]. Recently, rare variants of 

large effect have been recognized as conferring substantial risks for common diseases and 

complex traits in humans [113]. There is considerable interest in sequencing limited 

genomic regions such as sets of candidate genes and target regions identified by linkage 

and/or association studies. Sequencing large sample cohorts is essential to discover the 

full spectrum of genetic variants and provide sufficient power to detect differences in the 

allele frequencies between cases and controls. However, several technical and analytical 

challenges must be resolved to efficiently apply next-generation sequencing to large 
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samples in individual laboratories. First, it remains expensive to sequence a large number 

of samples despite a substantial cost reduction in available technologies. Second, for 

target regions of tens to hundreds of kilobases or less for a single DNA sample, the 

smallest functional unit of a next-generation sequencer (for example, a single lane of an 

Illumina Genomic Analyzer II (GAII) or HiSeq 2000 flow cell) generates a wasteful 

excess of coverage. Third, methods for individually indexing hundreds to thousands of 

samples are challenging to develop and limited in efficacy [114,115]. Fourth, generating 

sequence templates for target DNA regions in large numbers of samples is laborious and 

costly. Fifth, while pooling samples can reduce both labor and costs, it reduces sensitivity 

for the identification of rare variants using currently available next-generation sequencing 

strategies and bioinformatics tools [110,112]. 

 We have optimized a flexible and efficient strategy that combines a PCR-based 

amplicon ligation method for template enrichment, sample pooling, and library indexing 

in conjunction with novel quality and filtering algorithms for identification of rare 

variants in large sample cohorts. For validation of this strategy, we present data from 

sequencing 12 indexed libraries of 40 samples each (total of 480 samples) using a single 

lane of a GAII Illumina Sequencer. We utilized an alternative base-calling algorithm, 

Srfim [116], and an automated filtering program, SERVIC4E (Sensitive Rare Variant 

Identification by Cross-pool Cluster, Continuity, and tailCurve Evaluation), designed for 

sensitive and reliable detection of rare variants in pooled samples. We validated this 

strategy using Illumina sequencing data from an additional independent cohort of 480 

samples. Compared to publicly available software, this strategy achieved an excellent 
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combination of sensitivity and specificity for rare variant detection in pooled samples 

through a substantial reduction of false positive and false negative variant calls that often 

confound next-generation sequencing. We anticipate that our pooling strategy and 

filtering algorithms can be easily adapted to other popular platforms of template 

enrichment, such as microarray capture and liquid hybridization [117,118]. 

 

3.2 Results 

 

3.2.1 An optimized sample-pooling strategy 

 We utilized a PCR-based amplicon-ligation method because PCR remains the 

most reliable method of template enrichment for selected regions in a complex genome. 

This approach ensures low cost and maximal flexibility in study design compared to 

other techniques [118-120]. Additionally, PCR of pooled samples alleviates known 

technical issues associated with PCR multiplexing [121]. We sequenced 24 exon-

containing regions (250 to 300 bp) of a gene on chromosome 3, GRIP2 (encoding 

Glutamate Receptor Interacting Protein 2; [GenBank: AB051506]) in 480 unrelated 

individuals (Figure 3-1). The total targeted region is 6.7 kb per sample. We pooled 40 

DNA samples at equal concentration into 12 pools, which was done conveniently by 

combining samples from the same columns of five 96-well plates. We separately 

amplified each of the 24 regions for each pool, then normalized and combined resulting 

PCR products at equal molar ratio. The 12 pools of amplicons were individually blunt-

end ligated and randomly fragmented for construction of sequencing libraries, each with 
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a unique Illumina barcode [122]. These 12 indexed libraries were combined at equal 

molar concentrations and sequenced on one lane of a GAII (Illumina) using a 47-bp 

single-end module. We aimed for 30-fold coverage for each allele. Examples of amplicon 

ligation, distribution of fragmented products, and 12 indexed libraries are shown in 

Figure 3-2. 

 

3.2.2 Data analysis and variant calling 

 Sequence reads were mapped by Bowtie using strict alignment parameters (-v 3: 

entire read must align with three or fewer mismatches) [123]. We chose strict alignment 

to focus on high quality reads. Variants were called using SAMtools (deprecated 

algorithms [pileup -A -N 80]; see Materials and methods) [124]. A total of 11.1 million 

reads that passed Illumina filtering and had identifiable barcodes were aligned to the 

human genome (hg19), generating approximately 520 megabases of data. The 

distribution of reads for each indexed library ranged from 641 k to 978 k and 80% of 

reads had a reported read score (Phred) greater than 25 (Figure 3-3a, b). The aggregate 

nucleotide content of all reads in the four channels across sequencing cycles was constant 

(Figure 3-3c), indicating a lack of global biases in the data. There was little variability in 

total coverage per amplicon pool, and sufficient coverage was achieved to make variant 

calling possible from all amplicon pools (Figure 3-4). Our data indicated that 98% of 

exonic positions had an expected minimum coverage of 15× per allele (approximately 

1,200× minimum coverage per position) and 94% had an expected minimum coverage of 

30× (approximately 2,400× minimum coverage per position). Overall average expected 
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allelic coverage was 68×. No exonic positions had zero coverage. To filter potential false 

positive variants from SAMtools, we included only high-quality variant calls by retaining 

variants with consensus quality (cq) and SNP quality (sq) scores in 95% of the score 

distributions (cq ≥ 196, sq ≥ 213; Figure 3-5a). This initially generated 388 variant calls 

across the 12 pools. A fraction of these variant calls (n = 39) were limited to single pools, 

indicating potential rare variants. 

 

3.2.3 Tailcurve analysis 

 Initial validations by Sanger sequencing indicated that approximately 25% or 

more of these variant calls were false positives. Sequencing errors contribute to false 

positive calls and are particularly problematic for pooled samples where rare variant 

frequencies approach the error rate. To determine the effect of cycle-dependent errors on 

variant calls [116], we analyzed the proportions of each nucleotide called at each of the 

47 sequencing cycles in each variant. We refer to this analysis as a tailcurve analysis due 

to the characteristic profile of these proportion curves in many false-positive variant calls 

(Figure 3-6; Figure 3-7). This analysis indicated that many false positive calls arise from 

cycle-dependent errors during later sequencing cycles (Figure 3-6d). The default base-

calling algorithm (BUSTARD) and the quality values it generates make existing variant 

detection software prone to false positive calls because of these technical biases. 

Examples of tailcurves reflecting base composition by cycle at specific genetic loci for 

wild type, common SNP, rare variant, and false positive calls are shown in Figure 3-6. 
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3.2.4 Quality assessment and base calling using Srfim 

 To overcome this problem, we utilized Srfim, a quality assessment and base-

calling algorithm based on a statistical model of fluorescence intensity measurements that 

captures the technical effects leading to base-calling biases [116]. Srfim explicitly models 

cycle-dependent effects to create read-specific estimates that yield a probability of 

nucleotide identity for each position along the read. The algorithm identifies nucleotides 

with highest probability as the final base call, and uses these probabilities to define highly 

discriminatory quality metrics. Srfim increased the total number of mapped reads by 1% 

(to 11.2 million), reflecting improved base-calling and quality metrics, and reduced the 

number of variant calls by 20% (308 variants across 12 pools; 33 variant calls present in 

only a single pool). 

 

3.2.5 Cross-pool filtering using SERVIC4E 

 Further validation by Sanger sequencing indicated the persistence of a few false 

positive calls from this dataset. Analysis of these variant calls allowed us to define 

statistics that capture regularities in the base calls and quality values at false positive 

positions compared to true variant positions. We developed SERVIC4E, an automated 

filtering algorithm designed for high sensitivity and reliable detection of rare variants 

using these statistics. 

 Our filtering methods are based on four statistics derived from the coverage and 

qualities of variant calls at each position and pool: (1) continuity, defined as the number 

of cycles in which the variant nucleotide is called (ranges from 1 to 47); (2) weighted 
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allele frequency, defined as the ratio of the sum of Phred quality scores of the variant 

base call to the sum of Phred quality scores of all base calls; (3) average quality, defined 

as the average quality of all base calls for a variant; and (4) tailcurve ratio, a metric that 

captures strand-specific tailcurve profiles that are characteristic of falsely called variants. 

SERVIC4E employs filters based on these four statistics to remove potential false-

positive variant calls. Additionally, SERVIC4E searches for patterns of close-proximity 

variant calls, a hallmark of errors that have been observed across different sequenced 

libraries and sequencing chemistries (Figure 3-8), and uses these patterns to further filter 

out remaining false positive variants. In the next few paragraphs we provide rationales for 

our filtering statistics, and then define the various filters employed. 

 The motivation for using continuity and weighted allele frequency is based on the 

observation that a true variant is generally called evenly across all cycles, leading to a 

continuous representation of the variant nucleotide along the 47 cycles, and is captured 

by a high continuity score. However, continuity is coverage-dependent and should only 

be reliable when the variant nucleotide has sufficient sequencing quality. For this reason, 

continuity is assessed in the context of the variant's weighted allele frequency. Examples 

of continuity versus weighted allele frequency curves for common and rare variants are 

shown in Figure 3-9. Using these two statistics, SERVIC4E can use those pools lacking 

the variant allele (negative pools) as a baseline to isolate those pools that possess the 

variant allele (positive pools). 

 SERVIC4E uses a clustering analysis of continuity and weighted allele frequency 

to filter variant calls between pools. We use k-medioid clustering and decide the number 
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of clusters using average silhouette width [125]. For common variants, negative pools 

tend to cluster and are filtered out while all other pools are retained as positives (Figure 

3-9a, b). Rare variant pools, due to their lower allele frequency, will have a narrower 

range in continuity and weighted allele frequency. Negative pools will appear to cluster 

less, while positive pools cluster more. SERVIC4E will retain as positive only the cluster 

with highest continuity and weighted allele frequency (Figure 3-9c, d). 

 The second filter used by SERVIC4E is based on the average quality of the variant 

base calls at each position. One can expect that the average quality score is not static, and 

can differ substantially between different sequencing libraries and even different base-

calling algorithms. As such, the average quality cutoff is best determined by the 

aggregate data for an individual project (Figure 3-10). Based on the distribution of 

average qualities analyzed, SERVIC4E again uses cluster analysis to separate and retain 

the highest quality variants from the rest of the data. Alternatively, if the automated 

clustering method is deemed unsatisfactory for a particular set of data, a more refined 

average quality cutoff score can be manually provided to SERVIC4E, which will override 

the default clustering method. For our datasets, we used automated clustering to retain 

variants with high average quality. 

 The third filtering step used by SERVIC4E captures persistent cycle-dependent 

errors in variant tailcurves that are not eliminated by Srfim. Cycle-specific nucleotide 

proportions (tailcurves) from calls in the first half of sequencing cycles are compared to 

the proportions from calls in the second half of sequencing cycles. The ratio of nucleotide 

proportions between both halves of cycles is calculated separately for plus and minus 
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strands, thereby providing the tailcurve ratio added sensitivity to strand biases. By 

default, variant calls are filtered out if the tailcurve ratio differs more than ten-fold; we do 

not anticipate that this default will need adjustment with future sequencing applications, 

as it is already fairly generous, chiefly eliminating variant pools with clearly erroneous 

tailcurve ratios. This default was used for all our datasets. 

 The combination of filtering by average quality and tailcurve structure eliminates 

a large number of false variant calls. Figure 3-11 demonstrates the effect of these filtering 

steps applied sequentially on two sets of base call data. 

 In addition to these filtering steps, SERVIC4E employs limited error modeling. 

The pattern of errors observed in many libraries may be dependent on the sequence 

context of the reads, the preparation of the library being sequenced, the sequencing 

chemistry used, or a combination of these three factors. We have observed that certain 

erroneous variant calls tend to aggregate in proximity. These clusters of errors can 

sometimes occur in the same positions across multiple pools. These observations 

appeared in two independent datasets in our studies. Importantly, many of the false 

positive calls that escaped our tailcurve and quality filtering fell within these clusters of 

errors. To overcome this problem, SERVIC4E conducts error filtering by analyzing 

mismatch rates in proximity to a variant position of interest and then determining the 

pattern of error across multiple pools. This pattern is defined as the most frequently 

occurring combination of pools with high mismatch rates at multiple positions within the 

isolated regions. The similarity between a variant call of interest and the local pattern or 

error across pools can then be used to eliminate that variant call (Figure 3-8). The 
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consequences of these sequential filtering steps on variant output are outlined in Table 3-

1 for both cohorts tested in this study. 

 Finally, SERVIC4E provides a trim parameter that masks a defined length of 

sequence from the extremes of target regions from variant calling. This allows for 

SERVIC4E to ignore spurious variant calling that may occur in primer regions as a result 

of the concatenation of amplicons. By default, this parameter is set to 0; for our datasets, 

we used a trim value of 25, which is the approximate length of our primers. 

 

3.2.6 Reliable detection of rare variants in pooled samples 

 Using SERVIC4E, we identified 68 unique variants (total of 333 among 12 pools), 

of which 34 were exonic variants in our first dataset of 480 samples (Table 3-2). For 

validation, we performed Sanger sequencing for all exonic variants in individual samples 

in at least one pool. A total of 4,050 medium/high-quality Sanger traces were generated, 

targeting approximately 3,380 individual amplicons. Total coverage in the entire study by 

Sanger sequencing was approximately 930 kb (approximately 7.3% of total coverage 

obtained by high-throughput sequencing). Sanger sequencing confirmed 31 of the 34 

variants. Fifteen rare exonic variants were identified as heterozygous in a single sample 

in the entire cohort. 

 

3.2.7 A comparison with available variant calling algorithms 

 We compared our variant calling method to publicly available algorithms, 

including SAMtools, SNPSeeker, CRISP, and Syzygy [110,112,124,126]. Because some 
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variants are present and validated in multiple pools and each pool is considered as an 

independent discovery step, we determined the detection sensitivity and specificity on a 

variant pool basis. Results are shown in Table 3-3. 

 To call variants with SAMtools [124], we used the deprecated Maq algorithms 

(SAMtools pileup -A -N 80), as the regular SAMtools algorithms failed to identify all but 

the most common variants. As a filtering cutoff we retained only the top 95th percentile 

of variants by consensus quality and SNP quality score (cq ≥ 196 and sq ≥ 213 for 

standard Illumina base calls, Figure 3-5a; cq ≥ 161 and sq ≥ 184 for Srfim base calls, 

Figure 3-5b). 

 SNPSeeker [110] uses large deviation theory to identify rare variants. It reduces 

the effect of sequencing errors by generating an error model based on internal negative 

controls. We used exons 6 and 7 as the negative controls in our analysis (total length = 

523 bp) as both unfiltered SAMtools analysis and subsequent Sanger validation indicated 

a complete absence of variants in both exons across all 12 pools. Only Illumina base calls 

were used in this comparison because of a compatibility issue with the current version of 

Srfim. The authors of SNPSeeker recently developed a newer variant caller called 

SPLINTER [127], which requires both negative and positive control DNA to be added to 

the sequencing library. SPLINTER was not tested due to the lack of a positive control in 

our libraries. 

 CRISP [126] conducts variant calling using multiple criteria, including the 

distribution of reads and pool sizes. Most importantly, it analyzes variants across multiple 
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pools, a strategy also employed by SERVIC4E. CRISP was run on both Illumina base 

calls and Srfim base calls using default parameters. 

 Syzygy [112] uses likelihood computation to determine the probability of a non-

reference allele at each position for a given number of alleles in each pool, in this case 80 

alleles. Additionally, Syzygy conducts error modeling by analyzing strand consistency 

(correlation of mismatches between the plus and minus strands), error rates for 

dinucleotide and trinucleotide sequences, coverage consistency, and cycle positions for 

mismatches in the read [128]. Syzygy was run on both Illumina and Srfim base calls, 

using the number of alleles in each pool (80) and known dbSNP positions as primary 

input parameters. 

 SERVIC4E was run using a trim value of 25 and a total allele number of 80. All 

other parameters were run at default. The focus of our library preparation and analysis 

strategy is to identify rare variants in large sample cohorts, which necessitates variant 

calling software with very high sensitivity. At the same time, specificity must remain 

high, primarily to ease the burden during validation of potential variants. In addition to 

calculating sensitivity and specificity, we calculated the Matthews correlation coefficient 

(MCC; see Materials and methods) for each method (Table 3-3) in order to provide a 

more balanced comparison between the nine methods. 

 For validation of our dataset, we focused primarily on changes in the exonic 

regions of our amplicons. Any intronic changes that were collaterally sequenced 

successfully were also included in our final analysis (Table 3-3). Sixty-one exonic 

positions were called as having a variant allele in at least one pool by one or more of the 
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nine combinations of algorithms tested. We generated Sanger validation data in at least 

one pool for 49 of the 61 positions identified. Genotypes for validated samples are 

indicated in Table 3-4. 

 SNPSeeker (with Illumina base calls) performed with the highest specificity 

(97.3%), but with the worst sensitivity (62.2%), identifying less than half of the 15 valid 

rare exonic variants (Table 3-3). This is likely due to an inability of this algorithm to 

discriminate variants with very low allele frequencies in a pool; 84% of SNPSeeker's true 

positive calls have an allele frequency ≥ 1/40, while only 13% of the false negative calls 

have a frequency ≥ 1/40 (Table 3-2 and Table 3-5). SNPSeeker's MCC score was low 

(61.8%), due in large part to its very low false positive rate. 

 SAMtools alone with Illumina base calls achieved a 92.2% sensitivity, identifying 

all 15 rare exonic variants; however, these results were adulterated with the highest 

number of false positives, resulting in the worst specificity (56.2%) and MCC score 

(52.8%) among the nine methods (Table 3-3). Incorporation of Srfim base calls cut the 

number of false positives by 60% (from 32 to 13) without a sizable reduction in the 

number of true positive calls (from 83 to 80). Fourteen of the fifteen valid rare exonic 

variants were successfully identified, which while not perfect, is an acceptably high 

sensitivity (Table 3-3). Srfim made noticeable improvements to individual base quality 

assessment as reflected in a substantial reduction in low quality variant calls (Figure 3-5) 

by reducing the contribution of low quality base calls to the average quality distribution 

(Figure 3-10b) and by reducing the tailcurve effect that leads to many false positives 

(Figure 3-11). Most low quality variant calls that were eliminated when transitioning to 
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Srfim were not valid; nonetheless, three low quality valid variant calls were similarly 

affected by Srfim, and their loss resulted in a slight reduction in the true positive rate. 

 CRISP using Illumina base calls achieved a sensitivity slightly lower than 

SAMtools (87.8% versus 92.2%). Additionally, CRISP identified only 13 of the 15 valid 

rare exonic variants. Though this is lower than SAMtools, it is a large improvement over 

SNPSeeker; for the purposes set forth in our protocol, the > 75% sensitivity for extremely 

rare variants achieved by CRISP (using either base-calling method) is acceptable (Table 

3-3). 

 Syzygy achieved the second highest sensitivity (94.4%) using Illumina base calls, 

but specificity remained low (67.1%). Fourteen of the fifteen rare exonic variants were 

successfully identified. CRISP and Syzygy achieved relatively average MCC values 

(50.5% and 65.0%, respectively), reflecting better performance than SAMtools with 

Illumina base calls. 

 SERVIC4E using Illumina base calls achieved the highest sensitivity (97.8%) and 

identified all 15 valid rare exonic variants. Both sensitivity and specificity were improved 

over SAMtools, CRISP, and Syzygy (Table 3-3), reflected in the highest MCC score of 

all the tested methods (84.2%). Taken together, the combination of SERVIC4E with 

either base-calling algorithm provides the highest combination of sensitivity and 

specificity in the dataset from pooled samples. 

 As previously mentioned, Srfim greatly improved variant calling in SAMtools, as 

is reflected in the 19% increase in SAMtools' MCC value (from 52.8% to 71.4%). 

CRISP, Syzygy, and SERVIC4E benefited little from using Srfim base calls: the MCC 
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value for CRISP improved by only 6% (from 50.5% to 56.5%), Syzygy diminished by 

4.6% (from 65.0% to 60.4%), and SERVIC4E diminished by 6.5% (from 84.2% to 

77.7%). Importantly, use of Srfim base calls with Syzygy diminished its capacity to 

detect rare variants by a third. These three programs are innately designed to distinguish 

low frequency variants from errors using many different approaches. As such, it can be 

inferred from our results that any initial adjustments to raw base calls and quality scores 

by the current version of Srfim will do little to improve that innate capacity. In contrast, 

SAMtools, which is not specifically built for rare variant detection and would therefore 

have more difficulty distinguishing such variants from errors, benefits greatly from the 

corrective pre-processing provided by Srfim. 

 In addition to performance metrics like sensitivity and specificity, we analyzed 

annotated SNP rates, transition-transversion rates, and synonymous-non-synonymous 

rates of the nine algorithms on a variant-pool basis (Table 3-6). 

 The variant pools with the greatest discrepancies between the various detection 

methods tended to have an estimated allele frequency within the pool that is less than the 

minimum that should be expected (1/80; Table 3-2, Table 3-5, and Table 3-7). Such 

deviations are inevitable, even with normalization steps, given the number of samples 

being pooled. This underscores the importance of having careful, extensive normalization 

of samples to minimize these deviations as much as possible, and the importance of using 

variant detection methods that are not heavily reliant on allele frequency as a filtering 

parameter or are otherwise confounded by extremely low allele frequencies. 
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3.2.8 Validation using data from an independent cohort of samples 

 To further assess the strength of our method and analysis software, we sequenced 

the same 24 GRIP2 exons in a second cohort of 480 unrelated individuals. The same 

protocol for the first cohort was followed, with minor differences. Firstly, we pooled 20 

DNA samples at equal concentration into 24 pools. The first 12 pools were sequenced in 

one lane of a GAII and the last 12 pools were sequenced in a separate lane (Figure 3-12). 

Additionally, the libraries were sequenced using the 100-bp paired-end module, and 

sequencing was conducted using a newer version of Illumina's sequencing chemistry. 

These 24 libraries occupied approximately 5% of the total sequencing capacity of the two 

lanes. The remaining capacity was occupied by unrelated libraries that lacked reads 

originating from the GRIP2 locus. 

 To map reads from this dataset, we initially used Bowtie's strict alignment 

parameters (-v 3), as we had done with our first dataset, but this resulted in a substantial 

loss of coverage in the perimeters of target regions. This is likely due to reads that cross 

the junctions between our randomly concatenated amplicons; such reads, which have 

sequence from two distant amplicons, appear to have extensive mismatching that would 

result in their removal. This effect became pronounced when using long read lengths (100 

bp), but was not noticeable when using the shorter reads in our first dataset (Figure 3-13). 

This effect should not be an issue when using hybridization enrichment, where ligation of 

fragments is not needed. 

 In order to improve our coverage, we used Bowtie's default parameter, which 

aligns the first 28 bases of each read, allowing no more than two mismatches. To focus 



 

  82 

on GRIP2 alignments, we provided a fasta reference of 60 kb covering the GRIP2 locus. 

A total of 6.4 million reads (5.6% of all reads) aligned to our reference template of the 

GRIP2 locus. The depth of coverage for each amplicon pool is shown in Figure 3-14. For 

exonic positions, the average allelic coverage was 60.8×, and the minimum coverage was 

10×; 99.9% of exonic positions were covered at least 15× per allele, and 98.5% were 

covered at least 30× per allele. 

 We did not apply Srfim base calls to our variant calling as Srfim has not yet been 

fully adapted to the newer sequencing chemistry used with this cohort. For variant 

calling, we tested Syzygy and SERVIC4E, the two most sensitive software identified in 

our first dataset when using only the standard Illumina base calls (Table 3-3). Syzygy 

was provided with a template-adjusted dbSNP file and a total allele number of 40 as input 

parameters. All other parameters were run at default. Syzygy made a total of 474 variant 

calls across 24 pools (74 unique variant calls). Of the 74 unique calls made, 36 were 

exonic changes. SERVIC4E was run using a trim value of 25 and a total allele number of 

40. All other parameters were run at default. SERVIC4E made a total of 378 variant calls 

across 24 pools (68 unique variant calls). Of the 68 unique calls made, 33 were exonic 

changes. Between Syzygy and SERVIC4E, a total of 42 unique exonic sequence variant 

calls were made (Table 3-8 and Table 3-9). 

 For validation of these results, we again targeted variants within exons for Sanger 

sequencing. Sanger data were successfully obtained from individual samples in at least 

one pool for 41 of the 42 exonic variants. Genotypes for validated samples are indicated 

in Table 3-10. Results are summarized in Table 3-11 and include any intronic variant 



 

  83 

pools that were collaterally Sanger sequenced successfully. Of the 41 exonic variants 

checked, 29 were valid. Sixteen were identified as occurring only once in the entire 

cohort of 480 individuals. Syzygy achieved a high sensitivity of 85.5% but a fairly low 

specificity of 59.4%. Of the 16 valid rare exonic variants, 13 (81.25%) were identified. 

The MCC score was low (45.9%), primarily as a result of the low specificity (Table 3-

11). SERVIC4E achieved a higher sensitivity of 96.4% and a higher specificity of 93.8%. 

All 16 valid rare exonic variants were identified and a high MCC score (89.9%) was 

obtained. The combined analysis of the first and second cohorts identified 47 valid 

coding variants, of which 30 were present only once in each cohort. 

 

3.3 Discussion 

 We have developed a strategy for targeted deep sequencing in large sample 

cohorts to reliably detect rare sequence variants. This strategy is highly flexible in study 

design and well suited to focused resequencing of candidate genes and genomic regions 

from tens to hundreds of kilobases. It is cost-effective due to substantial cost reductions 

provided by sample pooling prior to target enrichment and by the efficient utilization of 

next-generation sequencing capacity using indexed libraries. Though we utilized a PCR 

method for target enrichment in this study, other popular enrichment methods, such as 

microarray capture and liquid hybridization [117-119], can be easily adapted for this 

strategy. 

 Careful normalization is needed during sample pooling, PCR amplification, and 

library indexing, as variations at these steps will influence detection sensitivity and 
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specificity. While genotyping positive pools will be needed for validation of individual 

variants, only a limited number of pools require sequence confirmation as this strategy is 

intended for discovery of rare variants. 

 SERVIC4E is highly sensitive to the identification or rare variants with minimal 

contamination by false positives. It consistently outperformed several publicly available 

analysis algorithms, generating an excellent combination of sensitivity and specificity 

across base-calling methods, sample pool sizes, and Illumina sequencing chemistries in 

this study. As sequencing chemistry continues to improve, we anticipate that our 

combined sample pooling, library indexing, and variant calling strategy should be even 

more robust in identifying rare variants with allele frequencies of 0.1 to 5%, which are 

within the range of the majority of rare deleterious variants in human diseases. 

 

3.4 Materials and Methods 

 

3.4.1 Sample pooling and PCR amplification 

 De-identified genomic DNA samples from unrelated patients with intellectual 

disability and autism, and normal controls were obtained from Autism Genetics Research 

Exchange (AGRE), Greenwood Genomic Center, SC, and other DNA repositories [129]. 

An informed consent was obtained from each enrolled family at the respective 

institutions. The Institutional Review Board at the Johns Hopkins Medical Institutions 

approved this study. 
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 DNA concentration from each cohort of 480 samples in 5 × 96-well plates was 

measured using a Quant-iT™ PicoGreen® dsDNA Kit (Invitrogen, Carlsbad, CA, USA) 

in a Gemini XS Microplate Spectrofluorometer. These samples were normalized and 

mixed at equal molar ratio into 12 pools of 40 samples each (first cohort) or 24 pools of 

20 samples each (second cohort). For convenience, first cohort samples from the same 

column of each 5 × 96-well plate were pooled into a single well (Figure 3-1). The same 

principle was applied to the second cohort, with the first two and a half plates combined 

into the first 12 pools, and the last two and a half plates combined into the last 12 pools 

(Figure 3-12). PCR primers for individual amplicons were designed using the Primer3 

program. PCR reaction conditions were optimized to result in a single band of the 

expected size. Phusion Hot Start High-Fidelity DNA Polymerase (Finnzymes, Thermo 

Fisher Scientific, Waltham, MA, USA) and limited amplification cycles (n = 25) were 

used to minimize random errors introduced during PCR amplification. PCR reactions 

were carried out in a 20- μl system containing 50 ng of DNA, 200 μM of dNTP, 1× 

reaction buffer, 0.2 μM of primers, and 0.5 units of Phusion Hot Start High-Fidelity 

Polymerase in a thermocycler with an initial denaturation at 98°C for 30 seconds 

followed by 25 cycles of 98°C for 10 seconds, 58 to 66°C for 10 seconds, and 72°C for 

30 seconds. The annealing temperature was optimized for individual primer pairs. 

Successful PCR amplification for individual samples was then verified by agarose gel 

electrophoresis. The concentration for individual PCR products was measured using the 

Quant-iT™ PicoGreen® dsDNA Kit (Invitrogen) on Gemini XS Microplate 

Spectrofluorometer, and converted to molarity. PCR amplicons intended for the same 
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indexed library were combined at equal molar ratio, purified using QIAGEN (Hilden, 

Germany) QIAquick PCR Purification Kit, and concentrated using Microcon YM-30 

columns (Millipore, Billerica, MA, USA). 

 

3.4.2 Amplicon ligation and fragmentation 

 The pooled amplicons were ligated using a Quick Blunting and Quick Ligation 

Kit (NEB, Ipswich, MA, USA) following the manufacturer's instructions. For blunting, a 

25- μl reaction system was set up as follows: 1× blunting buffer, 2 to 5 μg of pooled PCR 

amplicons, 2.5 μl of 1 mM dNTP mix, and 1 μl of enzyme mix including T4 DNA 

polymerase (NEB #M0203) with 3' → 5' exonuclease activity and 5' → 3' polymerase 

activity and T4 polynucleotide kinase (NEB #M0201) for phosphorylation of the 5' ends 

of blunt-ended DNA. The reaction was incubated at 25°C for 30 minutes and then the 

enzymes were inactivated at 70°C for 10 minutes. The blunting reaction products were 

purified using a MinElute PCR purification column (QIAGEN) and then concentrated 

using a Microcon YM-30 column (Millipore) to 5 μl volume in distilled water. For 

ligation, 5 μl of 2× Quick-ligation buffer was mixed with 5 μl of purified DNA. Quick T4 

DNA ligase (1 μl; NEB) was added to the reaction mixture, which was incubated at 25°C 

for 5 minutes and then chilled on ice. The reaction product (0.5 μl) was checked for 

successful ligation using 1.5% agarose gel electrophoresis. The ligation products were 

then purified using a MinElute PCR purification column (QIAGEN). Random 

fragmentation of the ligated amplicons was achieved using either one of the two methods: 

(1) nebulization in 750 μl of nebulization buffer at 45 psi for 4 minutes on ice following a 
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standard protocol (Agilent); or (2) using a NEBNext dsDNA Fragmentase Kit following 

the manufacturer's instructions (NEB). One-twentieth of the product was analyzed for 

successful fragmentation to a desired range using 2% agarose gel electrophoresis. 

 

3.4.3 Library construction and Illumina sequencing 

 The Multiplexing Sample Preparation Oligonucleotide Kit (Illumina PE-400-

1001) was used to generate 1 × 12 (first cohort) and 2 × 12 (second cohort) individually 

indexed libraries following the manufacturer's instructions. The indexed libraries were 

quantified individually and pooled at equal molar quantity. The concentration of the final 

pooled library was determined using a Bioanalyzer (Agilent). All 12 pooled libraries 

from the first cohort were run in one lane of a flow cell on an Illumina Genomic Analyzer 

II (GAII). The first 12 pooled libraries from the second cohort were run in one lane of a 

GAII, while the last 12 pooled libraries were run in another lane in the same flow cell. 

Illumina sequencing was done at the UCLA DNA Sequence Core and Genetic Resource 

Core Facility at the Johns Hopkins University. 

 

3.4.4 Sequence data analysis 

 Raw intensity files and fastq-formatted reads were provided for both cohort 

datasets. Output had been calibrated with control lane PhiX DNA to calculate matrix and 

phasing for base calling. A custom script was used on first cohort sequence data to 

identify the 12 Illumina barcodes from the minimum edit distance to the barcode and 

assign a read to that pool if the distance index was unique (demultiplexing). Second 
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cohort sequence data were provided to us already demultiplexed. Read mapping was 

done independently on each pool using BOWTIE (options: -v 3 for first cohort, default 

for second cohort). As reference templates, hg19 was used for the first cohort and a 60-kb 

fragment of the GRIP2 regions was used for the second cohort (GRIP2 region- 

chr3:14527000-14587000). 

 Variant calling using SAMtools was done independently on each pool using 

SAMtools' deprecated algorithms (options: pileup -vc -A -N 80). Variants identified were 

first filtered by eliminating non-GRIP2 variants, and then filtered by consensus quality 

and SNP quality scores (cq ≥ 196 and sq ≥ 213 for Illumina base calls; cq ≥ 161 and sq ≥ 

184 for Srfim base calls). Deprecated (Maq) algorithms were used, as the current 

SAMtools variant-calling algorithms failed to call all but the most common SNPs. 

Quality cutoff is based on the 95th percentile of scores in the quality distributions 

observed amongst all reported SAMtools variants in the GRIP2 alignment region, after 

excluding variants with the maximal quality score of 235). Reads were base-called using 

Srfim using default filtering and quality parameters. 

 SERVIC4E was given the location of sorted alignment (BAM) files. Though 

alignment files are maintained separately for each pool, the locations of each file are 

given all together. A trim value was set at 25. This trims 25 bases away from the ends of 

aligned amplicons, so that variant calling is focused away from primer regions. Use of 

shorter primers during library preparation allows for a smaller trim value. Hybridization 

enrichment will always result in a trim value of zero, regardless of what trim value is 

actually set. The total number of alleles in each pool was also provided as input (80 
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alleles for the first cohort; 40 alleles for the second cohort). SERVIC4E (release 1) does 

not call insertions or deletions. 

 SNPSeeker was run on first cohort data using author recommended parameters. 

Reads (Illumina base calls) were converted to SCARF format. Srfim base calls could not 

be used due to an unknown formatting issue after SCARF conversion. Alignment was 

conducted against GRIP2 template sequences. Exons 6 and 7 reference sequences were 

merged so that their alignments could be used as a negative control to develop an error 

model. All 47 cycles were used in the alignment, allowing for up to three mismatches. 

Alignments were tagged and concatenated, and an error model generated using all 47 

cycles, allowing for up to three mismatches, and using no pseudocounts. The original 

independent alignment files (pre-concatenation) were used for variant detection. As per 

recommendation by the authors, the first third of cycles was used for variant detection 

(15 cycles). A P-value cutoff of 0.05 was used. Lower cutoffs generated worse results 

when checked against our validation database. 

 CRISP was run using default parameters. A CRISP-specific pileup file was 

generated using the author-provided sam_to_pileup.py script and not generated using the 

pileup function in SAMtools. A separate pileup was generated for each pool for both 

alignments from Illumina base calls and alignment from Srfim base calls. A BED file was 

provided to focus pileup at GRIP2 loci. CRISP analysis for variant detection was 

conducted using all 47 cycles and a minimum base quality of 10 (default). All other 

parameters were also kept at default. 
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 Syzygy [112,128] was run on both cohorts using 80 and 40 as the total number of 

alleles, respectively. A dbSNP file was provided for known chromosome 3 variants. A 

TGF file was provided to focus variant calling at GRIP2 target regions. Hg19 was used as 

the reference sequence for the first cohort, while the same abridged GRIP2 sequence that 

was used by SERVIC4E was also used by Syzygy for the second cohort. All other 

parameters were run at default. 

 Reads used for analysis, both Illumina and Srfim base calls, are available through 

the public data repository at the NCBI (accession number SRP007694). Srfim is available 

as an R package, while SERVIC4E is available as a set of R scripts. Both are available for 

download online [130]. 

 

3.4.5 Validation by Sanger sequencing 

 Sanger sequencing of positive pools for variant validation was conducted using 

the BigDye Terminator v3.1 Cycle Sequencing Kit on an ABI3100 automatic DNA 

analyzer (Applied Biosystems, Foster City, CA, USA) following the manufacturer's 

instructions. 

 Sanger sequencing was done on each sample within a pool separately (40 traces 

per pool with the first cohort, 20 traces per pool for the second cohort). Only traces with 

low quality or ambiguous calls were sequenced bidirectionally. In the event that a 

positive sample was verified at least once in the pool, further sequencing of that pool was 

halted. Sequencing primers were the same primers used in target enrichment to build the 

libraries for next-generation sequencing. 
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 Standard sequence alignment software (CodonCode, MacVector) followed by 

manual investigations of the chromatograms was used to identify any variants that might 

have been missed by all nine combinations of programs. 

 

3.4.6 Calculation of Matthews Correlation Coefficient 

 The MCC is intended as a measure of true positives (TPs), true negatives (TNs), 

false positives (FPs), and false negatives (FNs), without being influenced by potential 

extreme sizes by one or more of the groups. An MCC = 1 indicates perfect correlation 

between predicted results (variants identified by next-generation sequencing and various 

combinations of base-calling and variant-calling algorithms) and the observed results 

(validation by Sanger sequencing). An MCC = 0 indicates that the algorithm is no better 

than random. An MCC = -1 indicates an inverse correlation. MCC = (TP × TN-FP × 

FN)/SQRT [(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)]. Sensitivity (true positive 

rate, recall): TP/(TP + FN). Specificity (true negative rate): TN/(FP + TN). Positive 

predictive value (precision): TP/(TP + FP). Negative predictive value: TN/(TN + FN). 

Accuracy: (TP + TN)/(TP + TN + FP + FN). False positive rate (fall-out): 1-True 

negative rate. False discovery rate: FP/(FP + TP). 

 

3.4.7 Abbreviations 

 bp: base pair; cq: consensus quality score generated by SAMtools pileup; GAII: 

Genome Analyzer II (Illumina Sequencing Machine); GRIP2: glutamate-receptor 

interacting protein 2; MCC: Matthews correlation coefficient; PCR: polymerase chain 
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reaction; SERVIC4E: Sensitive Rare Variant Identification by Cross-pool Cluster: 

Continuity: and tailCurve Evaluation; SNP: single nucleotide polymorphism; sq: SNP 

quality score generated by SAMtools pileup. 
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3.5 Figures: Chapter 3 

 

Figure 3-1. Schematic diagram of the sequencing strategy 

 

Sample pools of 40 samples × 12 pools were generated from a cohort of 480 individuals 

for PCR amplification of individual exons. After blunt-ended ligation and random 

fragmentation, PCR amplicons from individual sample pools were used to generate 

indexed sequence libraries. The 12 indexed libraries were combined in equal molar 

amounts and sequenced in one lane of a flow cell using an Illumina GAII.  
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Figure 3-2. Amplicon ligation, fragmentation, and indexed Illumina libraries 

 

(a) Amplicon ligation and fragmentation: L-1, low molecular weight marker; lane 1, PCR 

amplicons before ligation; lane 2, PCR amplicons after ligation; lane 3, random 

fragmentation using Fragmentase (NEB). #The bracket indicates fragments of desired 

length. (b) Indexed Illumina libraries: L-2, 1-kb ladder; lanes 1 to 12, size distribution of 

12 indexed Illumina libraries.  
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Figure 3-3. Quality assessment of the Illumina sequence data 

 

(a) Number of reads with barcodes that passed Illumina filtering and aligned to the 

reference templates using Bowtie from individually indexed libraries (n = 12). Range, 

641 k to 978 k reads; mean ± standard deviation, 809 k ± 107 k. (b) Percentage of total 

(unaligned) reads that fall into a mean Phred quality interval. Note > 80% of the reads 

have mean Phred quality scores ≥25. (c) Nucleotide content as a function of sequencing 

cycles (n = 47). Note that the nucleotide proportions closely match the expected 

proportions as determined from the templates.  

Figure 3-3. Quality assessment of the Illumina sequence data 

(a) Number of reads with barcodes that passed Illumina filtering and aligned to the 

reference templates using Bowtie from individually indexed libraries (n = 12). Range, 

641 k to 978 k reads; mean ± standard deviation, 809 k ± 107 k. (b) Percentage of total 

(unaligned) reads that fall into a mean Phred quality interval. Note > 80% of the reads 

have mean Phred quality scores ≥25. (c) Nucleotide content as a function of sequencing 

cycles (n = 47). Note that the nucleotide proportions closely match the expected 

proportions as determined from the templates. 
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Figure 3-4. Depth of coverage of a selected representative amplicon-pool derived 

from first cohort sequencing data 

 

Blue line depicts absolute coverage for plus-strand aligned reads. Green line depicts 

coverage of minus-strand aligned reads. Light red line indicates presumptive mismatch 

rate determined from plus-strand aligned reads. Light orange line indicates presumptive 

mismatch rate determined from minus-strand aligned reads. Ratio of mismatch rate 

between plus and minus strands is later incorporated into the tailcurve factor used in 

filtering by SERVIC4E. Depth of coverage for all amplicon-pools is available for 

download as Additional File 1 from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s1.pdf]  

Figure 3-4. Depth of coverage of a selected representative amplicon-pool derived 

from first cohort sequencing data 

Blue line depicts absolute coverage for plus-strand aligned reads. Green line depicts 

coverage of minus-strand aligned reads. Light red line indicates presumptive mismatch 

rate determined from plus-strand aligned reads. Light orange line indicates presumptive 

mismatch rate determined from minus-strand aligned reads. Ratio of mismatch rate 

between plus and minus strands is later incorporated into the tailcurve factor used in 

filtering by SERVIC4E. Depth of coverage for all amplicon-pools is available for 

download as Additional File 1 from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s1.pdf] 
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Figure 3-5. Distribution of quality scores from SAMtools pileup 

 

Filtering was conducted at the 95th percentile of the consensus and SNP quality 

distributions reported by SAMtools; only the distribution of SNP quality values is 

depicted here. The blue bar is the 95th percentile score cutoff, discounting variants with 

max score. (a) SNP quality scores derived from Illumina base calls. (b) SNP quality 

scores derived from Srfim base calls.  
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Figure 3-6. Representative base reads and tailcurves for common and rare variants 

and error calls 

 
 

(a) Position with no variant. (b) Position with a common variant. (c) Position with a rare 

variant. (d) Position with a false positive call.  
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Figure 3-7. Description of tailcurve (nucleotide proportion at individual cycles along 

the sequence read) 

 

With perfect random fragmentation, a given position and its associated base calls 

(consensus and variant) should be represented at multiple sequencing cycles. With high 

coverage, a particular base call will be present for that position at all or most cycles. 

Example: for a sequencing module of 25 cycles with several hundred (24 shown) 

overlapping reads covering the highlighted position, all the cycles are represented by 'G', 

with variant reads producing the 'T' at a handful of cycles (potential variant).  
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Figure 3-8. Local pool patterns for error analysis 

 

X-axes denote position in a local sequence. Position 16 is the variant site being analyzed, 

positions 1 to 15 are immediately upstream and positions 17 to 31 are downstream. Y-

axes denote the weighted allele frequency of the most prominent non-reference allele at 

each position (mismatch rate). Individual pools are denoted by a unique line pattern, 

color, and number/letter. Light shading indicates the pool pattern that is most 

recognizable by SERVIC4E for each position. (a) Local weighted allele frequencies for 

each pool at position 14,551,524 ± 15 in chromosome 3 from the first cohort. The 

evaluated pattern of pools at the variant position involves pools 5, 6, 7, and 8, while the 

evaluated pattern at proximal positions involves pool 4. The dissimilarity between 

patterns results in retention of chr3:14551524 as a variant site. (b) Local weighted allele 

frequencies for each pool at position 14,552,916 ± 15 in chromosome 3 from the second 

cohort. The evaluated pattern of pools at the variant position involves pools 7, 13 (c), 20 
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(j), 22 (l), and 24 (n), and the evaluated pattern at proximal positions involves the same 

pools. The similarity between patterns results in elimination of chr3:14552916 as a 

variant site.  
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Figure 3-9. Continuity vs. weighted allele frequency curves for selected variants 

 

(a) Very common variant present in all 12 pools. (b) Modestly common variant present in 

the majority of pools. (c) Infrequent variant present in a minority of pools. (d) Rare 

variant present in only one pool. Gold circles indicate variant pools retained by cluster 

analysis, while a gold 'x' indicates a variant pool that has been eliminated.  
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Figure 3-10. Average quality vs. weighted allele frequency for variant pools after 

filtering by clustering 

 

The X-axis is average Phred sequencing quality score and the Y-axis is weighted allele 

frequency (ratio of the sum of Phred quality scores for the variant allele at a position to 

the sum of all Phred quality scores at that position) in log10 scale. Characteristic 

distribution shapes make it possible to cluster and retain only high quality variants 

(orange points). (a) Illumina base calls. (b) Srfim base calls.  
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Figure 3-11. Diagrammatic output of first three filtering steps using SERVIC4E on 

first cohort data 
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The top panel set uses Illumina base calls. The bottom panel set uses Srfim base calls. 

Individual filtering steps progress while moving down each panel. Colored dots 

incorporate validation data for visualization purposes; blue dots are valid variant pools 

and red dots are invalid variant pools. Within each panel, the graphs on the left are 

Average quality versus Weighted allele frequency distributions. X-axis is average Phred 

quality for each variant-pool. Y-axis is log10 of weighted allele frequency. Histograms 

on the right depict the frequency of evaluated tailcurve ratios across bins of length = 2.  
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Figure 3-12. Pooling strategy for second cohort samples 

 

Example: Normalized DNA samples from column 12 of plates 1 and 2 as well as samples 

from plate 3, column 12, rows A, B, C, and D are pooled together to form pool 12. 

Normalized DNA samples from column 1 of plates 4 and 5 as well as samples from plate 

3, column 1, rows E, F, G, and H are pooled together to form pool 13.  
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Figure 3-13. Effect of strict alignment on coverage from concatenated amplicons 

 

Panel 1 indicates targets for amplification (primers denoted by black half-arrows). Color-

coding for each unique target region is retained in all panels. Panel 2 depicts ligation 

(concatenation) of amplicons. Only two amplicons are depicted; in practice many 

amplicons ligate together in a row. Darker shaded regions are from primer sequence. 

Panel 3 depicts random fragmentation to generate 150- to 200-bp segments for 

sequencing. Panel 4 depicts subsequent strict alignment of short (left) and long (right) 

reads to genomic reference sequence.  
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Figure 3-14. Depth of coverage of a selected representative amplicon-pool derived 

from second cohort sequencing data 

 

Blue line depicts absolute coverage for plus-strand aligned reads. Green line depicts 

coverage of minus-strand aligned reads. Light red line indicates presumptive mismatch 

rate determined from plus-strand aligned reads. Light orange line indicates presumptive 

mismatch rate determined from minus-strand aligned reads. Ratio of mismatch rate 

between plus and minus strands is later incorporated into the tailcurve factor used in 

filtering by SERVIC4E. Depth of coverage for all amplicon-pools is available for 

download as Additional File 11 from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s11.pdf]  

Figure 3-14. Depth of coverage of a selected representative amplicon-pool derived 

from second cohort sequencing data 

Blue line depicts absolute coverage for plus-strand aligned reads. Green line depicts 

coverage of minus-strand aligned reads. Light red line indicates presumptive mismatch 

rate determined from plus-strand aligned reads. Light orange line indicates presumptive 

mismatch rate determined from minus-strand aligned reads. Ratio of mismatch rate 

between plus and minus strands is later incorporated into the tailcurve factor used in 

filtering by SERVIC4E. Depth of coverage for all amplicon-pools is available for 

download as Additional File 11 from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s11.pdf] 
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3.6 Tables: Chapter 3 

 

Table 3-1. Effect of sequential filtering by SERVIC4E on variant output 

 

Reported values indicate the total number of variant positions (across all pools) that 

remain after each filtering step. Dataset 1: sequencing output of GRIP2 exons in a first 

cohort of 480 samples. Dataset 2: sequencing output of GRIP2 exons in a second 

independent cohort of 480 samples.  
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Reported values indicate the total number of variant positions (across all pools) that 

remain after each filtering step. Dataset 1: sequencing output of GRIP2 exons in a first 

cohort of 480 samples. Dataset 2: sequencing output of GRIP2 exons in a second 

independent cohort of 480 samples. 
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Table 3-2. Partial list of variant calls from first cohort analyses 

 

All positions are given in reference to chromosome 3 of hg19. For each program, a '+' 

value indicates that a variant call was made by that program for that variant position and 

pool. Column 'P' indicates the position is in exonic sequence (not intronic). Column 

'Valid' indicates validation results for each variant-pool tested; '+' indicates a valid call 

and '-'indicates an invalid call. Column 'Dist' indicates the position of the variant call in 

each amplicon. The full list of variant calls from analyses of the first cohort is available 

for download as Additional File 4 from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s4.xls]  
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Table 3-3. Validation analysis of variant calling from first cohort samples 

 

Descriptions of calculations used in statistical data analysis are provided in Materials and 

methods. FDR, false discovery rate; FPR, false positive rate; MCC, Matthews correlation 

coefficient; NPV, negative predictive value; PPV, positive predictive value. SNPSeeker: 

variant called uses the first 15 cycles (author recommended). P-value cutoff of 0.05 gave 

the best results. SAMTools* pileup -A -N 80: filtered for variants with consensus quality 

score ≥ 194 and SNP quality scores ≥ 213. CRISP: all 47 cycles used in alignment. 

Minimum base quality set to a default of 10. Syzygy: default parameters used. 

SAMTools# pileup -A -N 80: filtered for variants with consensus quality score ≥ 161 and 

SNP quality scores ≥ 184. SERVIC4E: default parameters used.  
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Table 3-4. Partial list of genotyping results from individual first cohort samples 

 

For all samples validated by Sanger sequencing, homozygous wild types are indicated by 

'-', heterozygotes are indicated by '+', and homozygous mutants are indicated by ‘++'. The 

full table of genotyping results of the first cohort is available for download as Additional 

File 5 from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s5.xls]  
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Table 3-5. Partial list of variant call output of SERVIC4E on the first cohort using 

Illumina sequencing output 

 

CHR: reference sequence chromosome. POS: position in reference sequence 

chromosome. POOL: pool in which the variant is called. REF: reference nucleotide. 

VAR: variant nucleotide (IUPAC merge). AVE_QUAL: average quality of variant 

nucleotide (average of base quality scores). VAR_COV: coverage of variant nucleotide. 

TOT_COV: total coverage of position. TAIL: tailcurve factor. The full list of variant call 

output of SERVIC4E on the first cohort is available for download as Additional File 6 

from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s6.txt]  
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Table 3-6. Comparison of annotated SNPs, transition-transversion ratios, and 

synonymous-non-synonymous ratios 

 

Calculated metrics for annotation rates, transition-transversion rates, and synonymous-

non-synonymous rates are for first cohort data only.  
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Table 3-7. Partial list of variant call output of SERVIC4E on the first cohort using 

Srfim base calls 

 

CHR: reference sequence chromosome. POS: position in reference sequence 

chromosome. POOL: pool in which the variant is called. REF: reference nucleotide. 

VAR: variant nucleotide (IUPAC merge). AVE_QUAL: average quality of variant 

nucleotide (average of base quality scores). VAR_COV: coverage of variant nucleotide. 

TOT_COV: total coverage of position. TAIL: tailcurve factor. The full list of variant call 

output of SERVIC4E on the first cohort is available for download as Additional File 8 

from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s8.txt]  
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Table 3-8. Partial list of variant calls from second cohort analyses 

 

All positions are given in reference to chromosome 3 of hg19. For each program, a '+' 

value indicates that a variant call was made by that program for that variant position and 

pool. Column 'P' indicates the position is in exonic sequence (not intronic). Column 

'Valid' indicates validation results for each variant-pool tested; '+' indicates a valid call 

and '-'indicates an invalid call. Column 'Dist' indicates the position of the variant call in 

each amplicon. The full list of variant calls from analyses of the second cohort is 

available for download as Additional File 12 from the publication [51] or from the 

following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s12.xls]  
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Table 3-9. Partial list of variant call output of SERVIC4E on the second cohort using 

Illumina base calls 

 

CHR: reference sequence chromosome. POS: position in reference sequence 

chromosome. POOL: pool in which the variant is called. REF: reference nucleotide. 

VAR: variant nucleotide (IUPAC merge). AVE_QUAL: average quality of variant 

nucleotide (average of base quality scores). VAR_COV: coverage of variant nucleotide. 

TOT_COV: total coverage of position. TAIL: tailcurve factor. The full list of variant call 

output of SERVIC4E on the second cohort is available for download as Additional File 13 

from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s13.txt]  
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Table 3-10. Partial list of genotyping results for individual second cohort samples 

 

For all samples validated by Sanger sequencing, homozygous wild types are indicated by 

‘-’, heterozygotes are indicated by ‘+’, and homozygous mutants are indicated by ‘++’. 

The full table of genotyping results of the second cohort is available for download as 

Additional File 14 from the publication [51] or from the following URL. 

[http://genomebiology.com/content/supplementary/gb-2011-12-9-r93-s14.xls]  
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Table 3-11. Validation analysis of variant calling from second cohort samples 

 

Descriptions of calculations used in statistical data analysis are provided in Materials and 

methods. FDR, false discovery rate; FPR, false positive rate; MCC, Matthews correlation 

coefficient; NPV, negative predictive value; PPV, positive predictive value For both 

algorithms, an allele count of 40 was used. Syzygy: default parameters used. SERVIC4E: 

trim value of 25 used. Default used for all other parameters.  
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Chapter 4: Glutamate Signaling Defects and the 

Role of GRIP1/2 in Autism 

 

 Autism spectrum disorders are clinically and genetically heterogeneous, and 

likely involve hundreds of risk genes. Though the underlying causes remain unknown, 

there are many indications that glutamate signaling is involved. Glutamate signaling is 

the primary excitatory neurotransmission system in the brain, and is involved in a wide 

range of neural pathways. Glutamate signaling involves hundreds of key components in 

the pre-synaptic and post-synaptic areas of the neuron; two of these key components are 

the Glutamate Receptor Interacting Proteins 1 and 2, also known as GRIP1 and GRIP2. 

In the previous chapter, an effective method for the detection of rare variants in a large 

cohort using next-generation sequencing was discussed, with the gene GRIP2 as the 

primary focus. Within that study, two cohorts, each of 480 samples, were sequenced. The 

first cohort is composed of 480 males diagnosed with autism spectrum disorder, and the 

second cohort is an ethnically matched control. A number of rare GRIP2 variants were 

identified as a result of that study. The following chapter will provide functional evidence 

on how rare variants in GRIP2, and more broadly on glutamate signaling, can influence 

autism phenotype. 
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4.1 Introduction 

 Autism is a common neurodevelopmental disorder with a prevalence of at least 

one in 100 children, and possibly even higher [131]. It is characterized by deficits in 

social interaction, verbal communication, and repetitive or stereotypical behaviors. These 

core traits are part of a broad set of phenotypes that present variably in any given 

individual with autism. Such broad clinical traits also include neuropsychological 

symptoms, such as deficits in executive function like memory or planning, 

neuroanatomical abnormalities, such as reduced activation of the prefrontal cortex during 

certain tasks, immunological abnormalities, such as increases in pro-inflammatory 

factors, or morphological abnormalities, such as macrocephaly and microcephaly [132]. 

The broad presentation and variability of expressivity underlies a complex genetic 

etiology, likely involving hundreds to thousands of genes, with multiple genes altered in 

each individual. 

 Multiple lines of evidence from GWAS, linkage, cytogenetic, molecular, and 

sequencing studies indicate that many genes in the glutamate signaling pathway are likely 

involved in autism etiology [133, 134]. Indeed, there is substantial overlap between genes 

implicated by GWAS and linkage studies and known genes for glutamate receptors, 

glutamate transporters, and glutamate receptor interacting proteins (Figure 4-1). As such, 

it has been hypothesized that an imbalance in glutamatergic signaling, the primary form 

of excitatory neurotransmission in the brain, in concert with possible dysregulation of 

GABAergic signaling, the primary form of inhibitory neurotransmission, can produce 

neural abnormalities that generate autism phenotype [134]. 
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4.1.1 Evidence of an imbalance in glutamatergic and GABAergic signaling in autism 

 Key to this hypothesis has been the recognition that the proper construction and 

maintenance of neural synapses requires a balancing act between excitatory and 

inhibitory neurotransmission [135]. This balance allows for the appropriate strengthening 

and retention, or weakening and pruning, of synaptic connections. This ability to 

selectively control synaptic strength governs the most important functional feature of the 

brain: synaptic plasticity. Synaptic plasticity provides the brain with the ability to encode 

new information, in turn producing our capacity for behavior, communication, and 

intelligence. As such, an imbalance in excitatory and inhibitory signaling, through 

aberrant modulation of specific neural circuits, could influence human behavior, 

communication, and intelligence in a manner consistent with autism [136]. 

 Supportive evidence for this model of autism includes molecular observations 

from model organisms and from humans. Mice that have been pharmacologically 

rendered into a hypoglutamatergic state show cognitive impairment consistent with both 

autism and schizophrenia [137]. Additionally, abnormal levels of key genes in the 

glutamate signaling pathway, including AMPA-type glutamate receptor 1 and glutamate 

transporters, have been reported from post-mortem autism brain samples [138]. In 

addition to glutamate receptor 1, glutamate receptor 6 and 8 have also been implicated by 

multiple linkage and association studies [139-141]. 

 Analyses of autism post-mortem brain samples has revealed abnormal levels of 

Glutamic Acid Decarboxylases 63 and 67 in both parietal and cerebellar cortices, 
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particularly in inhibitory cerebellar Purkinje cells and interneurons [142-144]. Glutamic 

acid decarboxylases are required for the generation of GABA, the primary 

neurotransmitter in inhibitory neurotransmission. GABA receptors, including the GABA 

receptor subunits GABRB1 and GABRA4, have also been associated with autism by 

allelic association analysis [145]. Furthermore, significantly altered levels of GABRA1, 

GABRA3, and GABRB3 have been observed in multiple areas of autism post-mortem 

brains [146]. These studies in aggregate provide support that modification of this 

neurotransmitter pathway can play a role in autism through an excitatory/inhibitory 

imbalance. 

 In addition to the neurotransmitter receptors, transporters, and enzymes involved 

in neurotransmitter synthesis, key regulators and interaction partners of the glutamatergic 

and GABAergic systems have also been implicated. SHANK3, a scaffolding protein in the 

post-synaptic dendrite, is an important regulator of glutamatergic activity, through its 

binding and organization of multiple glutamate signaling partners, including the 

neuroligin genes, and it is a necessary component in the maturation of dendritic spines. 

Mutations in SHANK3 have been strongly associated with autism, particularly to 

impairment in social communication [147]. The neuroligin genes are synaptic cell-

adhesion molecules that are important in establishing synaptogenesis via their pre-

synaptic ligands, the ß-neurexins. Rare, private mutations identified in the X-linked 

neuroligins, NLGN3 and NLGN4, have been associated with autism, as have mutations in 

NLGN1 and NLGN2 [148,149]. Importantly, a mutation identified in NLGN1 in an autism 
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patient has been shown functionally to inhibit normal activity of excitatory synapses 

[149]. 

 Taken together, these multiple lines of evidence provide strong support that 

components of the excitatory glutamatergic and inhibitory GABAergic signaling 

pathways should be an important focus in studying autism etiology. 

 

4.1.2 Glutamate Receptor Interacting Proteins as candidate autism genes 

 Several converging lines of evidence recommend the Glutamate Receptor 

Interacting Proteins (GRIP) as candidate genes in autism etiology. GRIP1, located at 

12q14-23 has positive association through multiple genetic markers with autism, 

including positive linkage to D12S338 at 12q23.3, positive association to D12S395 at 

12q24.23, positive association with SNPs around AVPR1a at 12q14-15, and positive 

genome-wide linkage to rs1445442 at 12q14.13 [150-153]. GRIP2, located at 3p25.1, is 

similarly supported by genetic evidence, including positive linkage to D3S3680 at 

3p25.2, positive association to SNPs in ATP2B2 at 3p25, positive association to D3S3594 

at 3p25.2, and positive association to SNPs near OXTR at 3p25.3 [154,155,151,156]. 

 GRIP1 was originally determined to bind to AMPA receptor subunits and to co-

localize with AMPA receptors at excitatory synapses [157]. AMPA receptors are a 

subtype of glutamate receptors that can be selectively activated by the agonist AMPA (α-

amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid). This subtype of glutamate 

receptors is referred to as ionotropic, due to its ability to immediately channel the influx 
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of calcium ions into the cell. AMPA receptors are heterotetramers. The most frequently 

studied subunits in the context of GRIP are GluA2 and GluA3. 

 NMDA-type glutamate receptors are also ionotropic receptors, but differentiated 

from AMPA-type receptors by their ability to be activated by the agonist NMDA. 

Metabotropic glutamate receptors conversely do not act as ion channels, but rather 

activate downstream effectors upon their own activation by extracellular glutamate or 

agonist. 

 GRIP1 is widely expressed in multiple brain regions, particularly in the cerebral 

cortex and hippocampus, and is enriched in post-synaptic densities [158,159]. Similar 

observations have been made with GRIP2, including binding to AMPA receptor subunits, 

particularly GluA2/3, but not NMDA-type receptors. While GRIP1 has a generally much 

broader tissue expression pattern, GRIP2 is nonetheless also widely expressed across the 

CNS [160]. Both GRIPs are also found in inhibitory GABAergic nerve terminals, and 

show extensive sub-cellular colocalization, though GRIP2 has been observed more 

strongly in pyramidal neurons, while GRIP1 is strongest in nonpyramidal neurons 

[158,161]. Interestingly, proximal dendritic spines can be enriched for one GRIP type 

over the other [162]. 

 Though the exact mechanisms are still to be determined, it is clear that the 

specific functions of GRIP1 and GRIP2 in AMPA receptor trafficking, clustering, 

internalization, and recycling are important in establishing synaptic plasticity. Post-

synaptic dendritic activation by glutamate neurotransmitter can induce calcium influx, by 

ionotropic NMDA- and AMPA-type glutamate receptors, or by metabotropic glutamate 
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receptors that can activate PLC (phospholipase C), releasing intracellular stores of 

calcium [163]. Intracellular calcium can in turn activate the glutamate scaffolding protein 

PICK1 via the signal transduction enzyme PKC (protein kinase C). PKC will 

phosphorylate serine-880 on AMPA receptor subunits (GluA2/3). This phosphorylation 

prevents binding between GluA2 and GRIP, but improves accessibility of GluA2 to 

PICK1, resulting in GluA2 (and overall AMPA receptor) internalization, with a general 

reduction in membrane levels of AMPA receptor [164, 165]. Internalized GluA2 can then 

be stabilized internally or recycled back to the surface membrane by GRIP [166,167]. 

 In addition to binding GluA2/3 AMPA receptor subunits, GRIP1 and GRIP2 can 

bind to liprin-alpha-1, and to ephrinB1 and ephrinB2, the ligands of Eph receptors. 

Interaction between GRIP and liprin-alpha-1 is necessary for proper targeting of AMPA 

receptors to the surface membrane, using the microtubule-associated protein GIT1 to 

mediate such trafficking [168,169]. Interaction between GRIP and liprin-alpha-1 has 

been shown as necessary for the proper induction of long-term depression (LTD) in 

hippocampal neurons, which is an important component in regulating synaptic strength 

and plasticity [170]. Additionally, GRIP has been shown to mediate trafficking of 

ephrinB1/2 to the surface membrane [171]. Reverse signaling of ephrinB ligand by 

stimulation with its extracellular Eph receptor can induce microdomain clustering of 

ephrinB, in turn forming subsurface clusters of GRIP1/2. This process is mediated by the 

phosphorylation of a serine on ephrinB that increases binding strength between ephrinB 

and GRIP1/2 [172,173]. This strong binding between surface ephrinB and subsurface 

GRIP1/2 stabilizes AMPA receptor clusters at the membrane, supported by the 
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observation that ephrinB knockout results in constitutive internalization of AMPA 

receptors [173]. 

 This complex system of multiple interaction partners is necessary within the 

excitatory glutamatergic pathway to induce LTD, which is a well-established neural 

model by which new information is encoded through modulation of the strength of 

synaptic connections. This pathway allows the neuron to change the levels of glutamate 

receptors on the synaptic surface through internalization and recycling activities, induced 

as a response to initial glutamate receptor activation by pre-synaptic neurons. GRIP1/2 

double knockout cerebellar Purkinje cells exhibit a loss in LTD capability [174]. This is 

likely a result of the inability of GRIP1/2 double knockout neurons to properly recycle 

AMPA receptors back to the synaptic membrane in response to activation by glutamate 

receptor agonists [167]. These observations underlie the importance of GRIP1 and GRIP2 

in the glutamate signaling pathway and in synaptic plasticity. 

 

4.1.3 Structure of GRIP1 and GRIP2 

 Topologically, the GRIPs are composed of seven repeating PDZ domains, which 

allow for binding to a broad set of interaction partners (Figure 4-2). The first three PDZ 

domains are known to interact with components of the exocyst complex [167]. PDZ4 and 

PDZ5 bind to AMPA receptor subunits as well as to other GRIP proteins [129]. PDZ6 

binds to liprin-alpha-1, ephrinB1, and ephrinB2 [168,172]. The region between PDZ6 

and PDZ7 can bind to KIF5, a kinesin that may mediate some of GRIPs trafficking 
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capabilities. Lastly, PDZ7 can bind to GRASP1, which also appears to have an important 

role in proper targeting of AMPA receptors to the synaptic membrane [168]. 

 The GRIP1 and GRIP2 proteins can be functionally and structurally separated 

into three separate domains, reflective both of the unique functions of each domain and 

the consistency of amino acid conservation (Figure 4-3, Panel A). The regions of 

PDZ123 can be viewed as one conservation domain, PDZ456 as another, PDZ7 as a 

domain on its own, and the linker region between PDZ6 and PDZ7 as a region 

undergoing frequent evolutionary changes and poorly conserved. These regions will be 

important during discussion of mutation burden analysis further in the chapter. 

 

4.1.4 Autism-associated GRIP1 gain-of-function variants increase AMPA receptor 

recycling 

 In Mejias et al., a statistically significant burden of functional rare variants was 

identified in GRIP1 from a large cohort of autism males [129]. Five GRIP1 autism-

associated variants clustered in the PDZ456 region, known to bind AMPA receptor 

subunits. Three of these variants were determined to increase binding to GluA2 and 

GluA3 by Yeast-Two-Hybrid and co-immunoprecipitation assays, indicating a gain-of 

function effect. 

 To determine the consequence of these gain-of-function rare variants in neurons, a 

recycling assay was performed in mouse hippocampal neurons expressing a pH-sensitive 

fluorescent GluA2 and GRIP1 with or without an autism-associated variant. An increased 

rate of recycling of AMPA receptor subunits was observed for all three variants upon 
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NMDA receptor stimulation. No change was observed for the internalization of AMPA 

receptors. This observation is in direct contrast to the decrease in recycling rate observed 

in Grip1/2 deficient hippocampal neurons, further indicating that these variants present a 

gain-of-function effect. In addition to faster recycling, higher overall surface expression 

of GluA2 was observed for at least two of the variants [129]. 

 Given that neurons derived from Grip1/2 double knockout mice show the 

opposite effect, these double knockout mice were subjected to a range of tests, to 

determine if Grip has a role in modulating behavior. These mice were found to have an 

increase in sociability to unfamiliar mice, a trait that is in contrast to what would be 

expected in autism. Given the Grip1/2 double knockout more closely resembles a loss-of-

function effect, it would suggest that the GRIP1 gain-of-function mutations may have the 

opposite effect on mouse social behavior, though this has yet to be determined. 

 

4.1.5 GRIP2 as an autism-susceptibility gene 

 In this chapter, I will discuss work performed in identifying rare mutations in 

GRIP2 in a cohort of autism males. This is the same cohort of autism samples and 

ethnically matched controls that was used in Mejias et al. to identify GRIP1 autism-

associated variants [129]. The methodology to identify rare variants in these two cohorts 

using next-generation sequencing was discussed in the previous chapter [51]. 

 Throughout this chapter, I will provide genetic evidence that GRIP2 variants, 

particularly in the PDZ456 region, are significantly associated with autism. Clinical 

evidence will be presented that shows a correlation between GRIP2 variants and deficits 
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in social behavior and communication in affected individuals. Functional evidence will 

also be provided, showing that GRIP2 variants produce biologically detectable changes. 

In conjunction with behavioral analyses performed in Grip2 knockout mice, which 

display deficits in social behavior, GRIP2 will be discussed as a putative gene for autism 

susceptibility. 

 

4.2 Results 

 

4.2.1 Sequencing of an autism cohort and ethnically matched control 

 We sequenced the exons of the gene GRIP2 from 480 individuals diagnosed with 

a strict autism spectrum disorder. DNA for these samples was obtained from the Autism 

Genetic Research Exchange (AGRE) and the South Carolina Autism Project (SCAP). 

Additionally, sequencing was performed on 480 ethnically matched controls with 

apparent normal cognitive functions and behaviors, as determined by the Greenwood 

Genetics Center, South Carolina (Table 4-1). 

 GRIP2 possesses 23 exons. The coding portions of these exons (excluding 

untranslated regions) were enriched using a sample pooling and PCR amplification 

strategy. The methodologies for sample pooling, enrichment, library preparation, 

sequencing, and data analysis for variant calling are described in detail in the previous 

chapter [51]. 

 Sequencing identified a total of 78 unique variants. 43 of these are non-coding 

variants, of which one is a splicing variant and was confirmed by Sanger sequencing. The 
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remaining 35 variants are coding variants, of which Sanger sequencing confirmed 34. 

Nine of these variants are extremely rare, existing in only one sample from all 960 

samples sequenced between the two cohorts. Of the 35 coding variants, 16 are 

synonymous and were all confirmed. 18 are missense, with 17 confirmed by Sanger 

sequencing. One is nonsense and was also confirmed. 20 of the 78 variants are relatively 

common and exist in the general population at a frequency greater than 1%, as 

determined from dbSNP. 

 

4.2.2 GRIP2 PDZ456 is significantly burdened with autism-associated variants 

 A total of 28 non-unique non-synonymous coding variants were identified (Figure 

4-3, Panel B). To determine if GRIP2 possesses a statistically significant burden of 

mutation in autism cases, we performed a two-tailed Fisher’s exact test across the entire 

gene. However, no significant difference was observed between cases and controls. We 

then performed the Fisher’s test across each of the three functionally conserved regions 

of GRIP2 described previously. The conserved region containing PDZ123 and the 

conserved region containing PDZ7 with the PDZ6-7 linker also does not show a 

significant burden of mutation (p = 0.306, p = 0.773). However, the conserved region 

containing PDZ456 shows a significant burden of mutation for autism cases vs. controls 

(Figure 4-3, Panel C; p < 0.03). This result mirrors what was obtained when analyzing 

GRIP1 variants using the same cohort sets in Mejias et al., where a statistically 

significant burden of mutation was observed in GRIP1 PDZ456 only [129]. 



 

  133 

 This result may have major implications for future gene-disease association 

studies. Given that burden is highest within a specific functionally conserved domain for 

both genes, and not across the entire gene, one can make the case that analysis of 

mutation burden or variant association should not just be done at the level of an entire 

gene. This is in direct contrast to current methods of association or rare variant analysis, 

which often groups variants by gene level annotation [59]. Instead, it may be more 

appropriate to perform such analyses at the level of a functional domain or region of 

conservation. This makes sense from a molecular level, as individual genes are composed 

of multiple functional units working both independently and in tandem. A particular 

region of a gene may be more relevant to a particular disease, and that certainly holds 

true for genes expressed in the synapse, where different domains in the same gene can 

function in separate but parallel biological pathways. By assessing for mutation burden 

across the entire gene, the mutation load may become diluted by variants with unrelated 

function, and fail to achieve statistical significance, thereby masking true significance 

within a more defined region of that gene. 

 

4.2.3 GRIP2 autism-associated variants correlate with more severe disease 

 To quickly assess if the variants identified in our study are truly relevant to 

disease in our autism cohort, we performed a genotype-phenotype correlation (Table 4-

2). All samples in our cohort with a GRIP1 or GRIP2 mutation identified by sequencing 

were assessed for family members, and those family members were genotyped for the 

mutation. This is an important step, as genotyping family members allows us to 
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determine if any of the mutations are de novo or fail to properly segregate with disease. 

One mutation, the nonsense change W1013X, was the only de novo occurrence 

identified. Non-paternity and non-maternity were excluded in this case. 

 To determine a genotype-phenotype correlation, it is useful to assess any changes 

in phenotype that segregate between genotypically discordant individuals in the same 

family. This can be quite difficult for autism families. Diagnosis of autism is more 

nuanced than the simple binary presence of disease. Instead, multiple endophenotypes are 

analyzed and quantitatively scored. Family members not diagnosed with autism receive 

such detailed scoring very rarely. As such, it is difficult to phenotypically compare 

affected individuals to their unaffected family members. In order to perform a genotype-

phenotype correlation we instead restricted our analysis to siblings who have both been 

diagnosed with autism (and therefore quantitatively assessed), but are genotypically 

discordant for the mutation in the proband identified during sequencing. 

 Restricting our analysis to such cases provided five autism families out of the 480 

sequenced. Genotype-phenotype correlation and pedigrees for these families are provided 

in Table 4-2. Four of these five sibling sets have a proband that is positive for a missense 

mutation identified in PDZ456 (Table 4-2, Rows 1-4). Additionally, two sibling sets 

fitting the genotypic discordance criteria for GRIP1 variants are also shown (Table 4-2, 

Rows 6-7). 

 An important pattern emerges in the analysis of these five families. For all 

samples, quantitative scores of reciprocal social interaction (SOCT_CS), 

verbal/nonverbal communication (COMVT_CS/COMNVT_CS), and repetitive behavior 
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(BEHT_CS) are provided. Higher scores indicate a more severe disease phenotype. A 

nonverbal score is always more severe than a verbal score. In each sibling set, the sibling 

with a GRIP1/2 mutation always has a more severe quantitative score for reciprocal 

social interaction and verbal/nonverbal communication than the sibling that does not have 

that mutation (Table 4-2, red arrows). 

 Family 111 has a son and daughter, both affected with autism. The affected son is 

heterozygous for the A575T change, while his affected sister is wildtype. His social score 

is nine points more severe and his verbal score is six points more severe than his sister 

(Table 4-2, Row 1). In family 772, the affected son is heterozygous for the N610S 

change, while his affected sister is wildtype. His social score is 11 points more severe 

than his sister, and he has a nonverbal score, which is more severe than his sister’s verbal 

score (Table 4-2, Row 2). In family 388, one affected son is heterozygous for the G749D 

change, while his affected brother is wildtype. His social score is six points more severe 

than his wildtype brother, and he has a nonverbal score, which is more severe than his 

brother’s verbal score (Table 4-2, Row 3). 

 In family 656, one affected son and one affected daughter are both heterozygous 

for the E773K change. Another affected son and affected daughter are both wildtype. The 

heterozygous son has a social score 12 points more severe and a verbal score four points 

more severe than his wildtype brother, and he has a social score nine points more severe 

and a verbal score five points more severe than his wildtype sister. The heterozygous 

daughter has a social score seven points more severe and a verbal score four points more 
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severe than her wildtype sister, and she has a social score ten points more severe and a 

verbal score three points more severe than her wildtype brother (Table 4-2, Row 4). 

 This pattern repeats itself for the A130T change in GRIP2, and the M794R and 

A625T changes in GRIP1 (Table 4-2, Rows 5-7). Importantly, with the exception of the 

A130T change, all of these missense changes occur within the PDZ456 regions of 

GRIP1/2. Taken cumulatively, the increased severity of autism phenotype, particularly 

for reciprocal social interaction, between genotypically discordant autistic siblings is 

statistically significantly different (Figure 4-4; p < E-3). These results, while not 

conclusive evidence that GRIP2 is an autism susceptibility gene, nonetheless provide 

support that GRIP2 autism-associated variants, and in particular PDZ456 variants, are 

worthwhile candidates for functional study. Given the statistically significantly increased 

likelihood of more severe disease with GRIP1/2 mutations, one possible explanation for 

the role of GRIP1/2 in autism is that they may act as modifier genes, increasing risk 

severity on a permissive genetic background, but are not necessarily driving disease on 

their own. 

 

4.2.4 GRIP2 PDZ456 autism-associated variants modify binding strength to GRIP2 

interaction partners 

 Ten missense changes were identified in the PDZ456 region of GRIP2 for both 

autism cases and unaffected controls. Autism-specific missense changes include R517Q, 

N610S, V664M, G749D, E773K, and R843C (GRIP2 autism-associated variants). 

Missense changes found only in unaffected controls include P543Q and R711C (GRIP2 
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control variants). Changes found both in cases and controls include T540M and A575T 

(GRIP2 common variants). The changes specific to PDZ4 are R517Q, T540M, P543Q, 

A575T, and N610S. The changes specific to PDZ5 are V664M and R711C. Importantly, 

the V664M change rests just adjacent to the ELGI binding site in PDZ5 for GluA2/3. The 

changes specific to PDZ6 are G749D, E773K, and R843C (Figure 4-3, Panel B). The 

location of each missense change is important, as it may influence which binding partner 

affinities are most affected by a particular variant. PDZ4 and PDZ5 are particularly 

important in binding GluA2/3 and other GRIP1/2 proteins. PDZ6 is important in binding 

liprin-alpha-1 and ephrinB1/2 (Figure 4-3). 

 To determine if these mutations could modify GRIP2 binding ability to its 

interaction partners, a high-throughput Yeast-Two-Hybrid (Y2H) assay was performed. 

The Y2H is a gene-based colorimetric assay that allows for quantitative measuring of 

binding between two interacting proteins. Binding strength influences the ratio of bound 

protein (dimers) to free protein in the cell. Stronger binding yields a higher population of 

bait-prey dimers, while weaker binding yields a higher population of unbound bait and 

prey. Through the Y2H, we determined that each of the ten mutations affects binding 

strength to multiple GRIP2 interaction partners. Only statistically significantly different 

changes in binding strength (p < 0.05) are considered. 

 For interaction between GRIP2 and GluA2, binding strength is most attenuated 

with the V664M missense mutation, which lies just adjacent to the ELGI peptide 

sequence in PDZ5 that is bound by the c-terminal domain of GluA2/3. This effect 

diminishes with distance from the binding site, as observed by the increased binding 
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strengths of R711C and G749D. Most of the missense changes do not change binding 

strength by more than 20%. Only the autism-associated variant V664M and the control 

variant R711C attenuate binding substantially (>20%), while the two common variants, 

T540M and A575T, strengthen binding substantially (Figure 4-5). 

 Similar observations were made between GRIP2 variants and GluA3. Few of the 

variants change binding strength more than 20%, with the exceptions of the autism-

associated variants V664M and E773K, which significantly attenuate binding. Both 

common variants T540M and A575T again increase binding. At a less stringent effect 

size of 10% or greater (instead of 20%), three and five autism-associated variants out of 

six attenuate binding to GluA2 and GluA3 respectively. This is opposed to the control 

variants, for which only one of two (R711C) attenuates binding to GluA2/3. Based on 

these results, there is a general attenuation of binding strength between GRIP2 and 

GluA2/3 in the presence of several autism-associated variants, which is best described as 

a loss-of-function effect (Figure 4-5).  

 PDZ6 of GRIP2 binds to ephrinB1/2. It is the variants closest to or within PDZ6 

that show the greatest changes in binding strength between GRIP2 and the ephrinBs. 

Missense changes R517Q through N610S, and R711C, show little effect on binding to 

ephrinB1. Though control variants P543Q and R711C produce little change on binding to 

ephrinB1, they do produce a substantial change with ephrinB2, with P543Q decreasing 

and R711C increasing binding (Figure 4-6). The presence of only two control variants is 

not sufficient to infer biological importance. 
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 On the other hand, autism-associated variants V664M, E773K, and R843C (VER) 

increase binding, while G749D (G) attenuates binding to ephrinB1. Conversely for 

ephrinB2, V664M, E773K, and R843C (VER) attenuate binding, while G749D (G) 

increases binding. It is an interesting pattern that where an autism-associated variant 

increases binding with one ephrinB, it decreases binding with the other (Figure 4-6). This 

reciprocal phenomenon may underpin the unique differences in function of ephrinB1 

versus ephrinB2 in neuronal development and synaptic function. 

 PDZ6 also binds to liprin-alpha-1. Just as is observed with ephrinB1/2, variants 

closest to or within PDZ6 show the greatest change in binding strength between GRIP2 

and liprin-alpha-1. Uniquely, all the variants, independent of cohort origin, display 

increased binding to liprin-alpha-1, with the exception of the control variant P543Q, 

which decreases binding. Of particular note are the autism-associated variants G749D 

and E773K, which increase binding 4x and 3x of wildtype levels respectively. The 

control variant R711C also produces a large increase in binding strength at ~2.5x (Figure 

4-7). As noted earlier, interaction between GRIP2 and liprin-alpha-1 is necessary for 

proper targeting of AMPA receptors to synaptic membranes and induction of long-term 

depression (LTD). Small increases in binding between GRIP2 and liprin-alpha-1 may not 

have substantial effects on AMPA receptor function, but it is possible that the more 

substantial mutations could negatively affect LTD and synaptic plasticity. 

 Four of six autism-associated variants, R517Q, G749D, E773K, and R843C, show 

significantly increased binding strength between GRIP2 and GRIP1, while only one, 

N610S, shows attenuation, and the last, V664M, shows no difference. The control and 
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common variants, P543Q and A575T, show significant attenuation of binding to GRIP1 

(Figure 4-8). There is evidence, based on Grip1/2 double knockout studies in mice, that 

suggests both GRIPs act in a cooperative manner [167,174]. However, behavioral 

analysis of Grip1/2 double knockout versus Grip2 single knockout mice indicates that 

Grip1 and Grip2 can have opposite effects on behavior, and that they may have opposing 

function [129]. The true nature of both GRIPs and how they act together is likely more 

complex. 

 The changes in binding strength between GRIP2-GRIP2 homodimers are more 

complex. Four autism-associated variants demonstrate increased binding strength, while 

two attenuate binding. The two control variants attenuate binding, while one common 

variant, T540M, increases binding (Figure 4-8). Given the lack of a clear pattern, it is 

difficult to deduce how GRIP2-GRIP2 binding is important in the synapse, or how these 

specific mutations may influence GRIP2 activity in general. Further functional work must 

be done, particularly in the context of the full scaffolding protein complex. Simple 

analysis of one-on-one interaction between GRIP2 homodimers and other interaction 

partners may produce misleading results, as variant effect my change in the context of 

which proteins are included in the complex during analysis. 

 Though there are not enough common or control variants to identify any unique 

patterns, when limiting the scope to just the autism-associated GRIP2 variants, certain 

unique patterns do emerge, which may be relevant to biological function. These patterns 

provide a roadmap for future functional studies. As outlined in Figure 4-9, there is a 

general loss-of-function pattern observed through reduced binding between GRIP2 and 
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GluA2 and GluA3, in the presence of autism-associated variants (Figure 4-9, Row 1). 

Four variants nears PDZ6 induce reciprocal changes in binding strength to ephrinB1 and 

ephrinB2 (Figure 4-9, Row 2). All six autism-associated variants produce a gain-of-

function pattern by inducing increased binding between GRIP2 and liprin-alpha-1, with 

the greatest changes observed in variants around PDZ6, the known binding domain to 

liprin-alpha-1 (Figure 4-9,Row 3). There is a pattern of increased binding for autism-

associated variants between GRIP2 and GRIP1. However, the effects of these variants on 

GRIP2 to GRIP2 interaction are more difficult to decipher (Figure 4-9, Row 4). 

 The results of this Yeast-Two-Hybrid assay are informative, but do not 

immediately reveal a molecular mechanism of disease. Where possible, I have provided 

hypotheses (see Discussion) of how some of the autism-associated variants may influence 

activity between GRIP2 and its binding partners, and how it may be relevant to synaptic 

function. Nonetheless, the most effective way to determine how these variants are 

functioning in disease is to directly, functionally test them in neurons. 

 One thing that can be noted about the observations made from this assay is that all 

these variants have a functional effect, and they all produce a different pattern of changes 

when analyzed across all the different interaction partners of GRIP2. This diversity of 

functional effect could indicate that multiple different pathways may need to be affected 

in a single individual in order to produce sufficient neurological change. If this is indeed 

the case, it will have important implications for therapeutic design. 
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4.2.5 GRIP2 knockout mice demonstrate deficits in social behavior 

 The previous experiments have established a statistically significantly increased 

burden of autism-associated variants to the PDZ456 region of GRIP2, that the variants 

correlate phenotypically with more severe behavioral and communication deficits, and 

that these variants produce a detectable biological effect by modulating binding capacity 

between GRIP2 and its various interaction partners. 

 While these multiple lines of evidence suggest that GRIP2 is worthy of further 

study as an autism susceptibility gene, they so far have not given decisive evidence that 

GRIP2 is relevant in general to behavior consistent with autism phenotype. In order to 

determine if GRIP2 is relevant in behavior, a series of tests using Grip2 knockout mice 

was performed. 

 Grip2 conventional knockout mice were obtained from the lab of Rick Huganir. 

In all tests, ten male Grip2 knockout mice were tested against ten male age-matched 

C57BL/6 control mice. In the social behavior tests, all reference mice are male age-

matched C57BL/6 background. 

 An Open Field Test was first performed. Several metrics are calculated, including 

the amount of time spent rearing, the amount of time spent in the periphery or in the 

central field, the amount of time in ambulation (crude movement), and time spent in still 

activity (fine movement, such as grooming). Grip2 knockout mice spent significantly less 

time in the central field for both gross ambulatory and fine movement (p < 0.01), 

although ambulation in the peripheral field was not changed relative to control mice. 

Total activity was also significantly reduced for knockout mice (Figure 4-10; p < 0.01). 
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The reduction in movement in the central field may indicate an anxiety-like phenotype. 

The reduction in total activity may reflect issues in anxiety, strength, and/or motor 

function. Additionally, total time spent rearing was significantly reduced (Figure 4-11; p 

< E-6). Rearing is an exploratory behavior, and a reduction in such behavior may again 

be indicative of an issue with anxiety, strength or motor function. 

 An Elevated Plus Maze was performed next, to further determine if these mice 

demonstrate an anxiety-like phenotype. The Elevated Plus Maze consists of an elevated 

platform composed of two open arms and two closed arms. Mice that spend more time in 

the closed arm likely have issues with fear and/or anxiety [175]. Grip2 knockout mice 

spent significantly less time in the open arms relative to control mice, further supporting 

a possible anxiety disorder (Figure 4-12; p < 0.03). 

 As these observations could also be explained by defects in physical strength or 

motor coordination, both the Grip Strength Test and the Rotarod Test were performed. 

With the Grip Strength Test, the test mouse is place on grate to which it can cling. The 

grate is attached to a force meter (force measured in grams). The mouse is pulled from 

the grate, and the maximal force at which the mouse can no longer continue gripping the 

grate is measured. No statistically significant difference was observed between Grip2 

knockout mice and controls, indicating that strength deficits are an unlikely cause for the 

reduced ambulation and general activity observed (Figure 4-13). 

 With the Rotarod Test, mice are placed on a progressively accelerating rotating 

rod. At a maximal rotation rate, the mice can no longer stay on the rod and fall off. The 

amount of time spent on the rod is recorded. The Rotarod Test measures both strength 
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and motor coordination. Because mice improve on the Rotarod over time, the test is 

performed in triplicate, three days in a row. This improvement is reflective of the 

development of motor memory. As such, an inability to improve over time can also 

suggest difficulties in memory. The performance of Grip2 knockout mice on the Rotarod 

Test is not statistically significantly different compared to control mice, indicating that 

Grip2 knockout mice do not have deficits in muscle strength, motor coordination, or 

motor memory (Figure 4-13). 

 Additionally, an Olfaction Test was performed, in which a test mouse was placed 

in a clean cage with extra bedding. After a period of acclimation, the mouse is 

temporarily removed, a small block of cheese is hidden under the bedding, and the test 

mouse is returned to the cage. The amount of time to discover the block of cheese is 

recorded. Mice that take more time to find the block may have issues with their sense of 

smell. This is an important concern, as the sense of smell is one of the primary 

mechanisms of interaction and communication between mice. For social behavior tests 

performed later, what may appear to be a social deficit may in fact be an olfactory deficit. 

As such, deficits in olfaction must be ruled out. 

 An initial analysis indicated that Grip2 knockout mice take a substantially, but not 

statistically significantly, longer time to discover the buried block of cheese, which would 

suggest an olfaction deficit (Figure 4-14). However, upon closer examination, it was 

discovered that Grip2 knockout mice spend a significant amount of time immobile after 

replacement to the cage, in spite of prior acclimation. As such, crude time for finding the 

hidden cheese was divided into delay time (duration between replacement of the mouse 
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and its first steps with hind feet), and search time (duration between initial movement of 

hind feet and discovery of the block of cheese). Based on this analysis, the delay time is 

statistically significantly higher (6-fold; p < 0.05) for Grip2 knockout mice compared to 

controls. This deficit in rapid exploratory behavior provides further support for a possible 

anxiety-like disorder. Search time is not significantly different between Grip2 knockout 

and control, with the sample sizes used. As such, a deficit in olfaction could not be 

observed (Figure-14). 

 The first behavioral test performed was the Male Dyad Social Interaction Test. 

Two mice are separated in an open field by a divider. One mouse is a test mouse (Grip2 

knockout or control) and the other is a reference mouse (always WT) that is unfamiliar to 

the test mouse. After a five minute acclimation, the divider is removed and the mice are 

free to interact for ten minutes. Social behaviors of sniffing and following are recorded, 

as well as time spent self-grooming. Grip2 knockout and control mice spent the same 

amount of time sniffing reference mice, but Grip2 knockout mice spent a statistically 

significantly shorter amount of time following reference mice (p < 0.05), indicating a 

possible deficit in social interest. Additionally, Grip2 knockout mice spent a statistically 

significantly longer time grooming, indicating a possible issue with anxiety or 

repetitive/compulsive behavior (Figure 4-15; p < 0.05). 

 Sociability Tests and Social Novelty Tests were performed next. For the 

Sociability Test, a test mouse (Grip2 knockout or control) is acclimated to an open field 

for five minutes. At opposite corners of the open field are two mesh cages through which 

mice can interact but not touch. After acclimation, an unfamiliar reference mouse (WT) is 
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placed under the first mesh cage. The time spent by the test mouse interacting with the 

reference mouse is recorded over a five minute window. The Social Novelty Test 

continues from the Sociability Test. After the five minute window completes, a second 

unfamiliar reference mouse is placed under the second mesh cage. Over a second five 

minute window, time spent by the test mouse interacting with the first (familiar mouse) 

or second (novel mouse) mesh cage is recorded. With the Sociability Test, normal mice 

should spend more time with the first mesh cage than the second. With the Social 

Novelty Test, normal mice should spend more time interacting with the second mesh 

cage than the first. 

 For the Sociability Test, no significant difference was observed between Grip2 

knockout mice and control mice. As expected, both groups of mice spent more time with 

the first mesh cage with its unfamiliar reference mouse than with the empty second mesh 

cage (Figure 4-16). For the Social Novelty Test, both Grip2 knockout and control mice 

spent roughly the same amount of time with the first mesh cage, with its now familiar 

mouse. As expected, control mice spent more time with the second mesh cage with its 

unfamiliar mouse than with the first. However, Grip2 knockout mice did not spend more 

time with the second cage, indicating a deficit in preference for social novelty (Figure 4-

16; p < 5E-3). 

 Based on these results, Grip2 knockout mice do not appear to have deficits in 

strength, motor function, or olfaction. However, they are generally less active, possibly 

due to an anxiety-like defect. Additionally, they present with a repetitive or compulsive 

behavior as inferred from excessive grooming. And lastly, Grip2 knockout mice display 
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deficits in social interaction and preference for social novelty. These results indicate that 

Grip2 has an important role in regulating behavior in mice and loss of normal Grip2 

function produces behavioral deficits reminiscent of autism phenotypes, including defects 

in social interaction and repetitive behaviors. These observations suggest that GRIP2 may 

similarly play an important role in human autism behavior, and that specific mutation of 

GRIP2 could contribute to autism etiology. 

 

4.3 Discussion 

 In order to establish that a particular gene is relevant for a genetic disorder, it is 

necessary to build a logical path. The gene must be burdened with an excess of 

functionally pathologic variants compared to controls, though pathogenicity may not be 

immediately apparent. Those mutations must perturb a particular biological pathway in 

appropriate tissues and developmental time points. This altered pathway must then be 

shown to influence physiology and behavior consistent with the disease phenotype. 

Genetic evidence leads to functional evidence, which leads to clinical evidence, thereby 

establishing a molecular mechanism of disease. Throughout this chapter, I have provided 

some genetic, functional, behavioral, and clinical evidence to establish GRIP2 as a 

putative autism susceptibility gene, likely through perturbation of the glutamate signaling 

pathway. 

 Firstly, adult Grip2 knockout mice display reduced social interactions and 

reduced preference for social novelty, as well as anxiety-like and repetitive behaviors, 

compared to normal age- and strain-matched controls, indicating GRIP2 is a relevant 
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gene for studying autism-like behaviors. Secondly, there is an increased load of non-

synonymous coding variants in GRIP2-PDZ456 between autistic cases and normal 

controls, as obtained through targeted next-generation sequencing. Thirdly, affected 

siblings carrying PDZ456 variants show a more severe deficit in reciprocal social 

interactions compared to affected siblings not carrying those mutations. Though this 

lends support to a possible role of GRIP2 in autistic behavior, it does not necessarily 

indicate that GRIP2 is driving disease; rather, it may simply be acting as a modifier under 

a risk background. 

 Lastly, autism-associated GRIP2-PDZ456 variants exhibit altered interaction with 

multiple binding partners, as determined by Yeast-Two-Hybrid (Y2H) analysis. These 

GRIP2-PDZ456 mutations have functional effects that may be relevant to disease. The 

mechanisms by which these mutations influence disease are not immediately apparent, 

but it is possible to hypothesize mechanisms for further functional study based on 

patterns of changes observed by Y2H. 

 GRIP2 autism-associated variants demonstrate a pattern of loss-of-function with 

binding to GluA2/3 (Figure 4-9, Row 1). Given that Grip2 knockout in mice (a loss-of-

function model) produces a social deficit, loss-of-function mutations influencing 

interaction between GRIP2 and GluA2/3 may duplicate this behavioral change. 

Additionally, it has already been shown that gain-of-function GRIP1 mutations increase 

binding to GluA2/3, accelerate AMPA receptor recycling rates, and increase AMPA 

receptor density at the synaptic surface, and GRIP1/2 double knockout in mice (a loss-of-

function model) generates improved social behaviors [129]. 
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 From this information, one possible mechanism for GRIP2 mutations in glutamate 

signaling is that GRIP2 functions counter to GRIP1. GRIP2 loss-of-function mutations to 

GluA2/3 could independently increase AMPA receptor recycling rates and synaptic 

surface density. Alternatively, if GRIP2 is in competition with GRIP1, these mutations 

may make GluA2/3 more accessible to GRIP1. This would mimic the activity of GRIP1 

gain-of-function variants, thereby producing increases in AMPA receptor recycling and 

surface density. These changes in the AMPA receptor pathway would interfere with the 

ability to modulate synaptic strength. This hypothesis depends on GRIP1 and GRIP2 

having some competitive relationship; however at this time, the only evidence regarding 

the relationship between GRIP1 and GRIP2 indicates a cooperative one, complicating 

this hypothesis [167,174]. It is possible for both GRIPs to function cooperatively and 

competitively under different conditions, suggested by documentation of their 

independent and intersecting expression patterns [158-162]. To fully answer this question 

requires further study of GRIP1/2. 

 Autism-associated variants produce a unique pattern of binding changes with 

ephrinB1/2. The mutations V664M, E773K, and R843C (VER) increase GRIP2 binding 

to ephrinB1, but decrease binding to ephrinB2. G749D (G) decreases GRIP2 binding to 

ephrinB1, but increases binding to ephrinB2 (Figure 4-9, Row 2). This reciprocal pattern 

may be a manifestation of the functional differences between the ephrinBs and their 

unique roles in neuronal and synaptic function across different brain regions. For 

example, ephrinB1 has been shown to be highly expressed in the developing neocortex, 

with a specific expression pattern distinct from ephrinB2 [176]. Conversely, specific 
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expression of ephrinB2, and not ephrinB1, is important in determining distinct 

mesolimbic and mesostriatal dopaminergic pathways in the developing midbrain [177]. 

Differential temporal and spatial expression of ephrinB1 to embryonic primary olfactory 

neurons and ephrinB2 to olfactory ensheathing cells during different stages of 

development of the olfactory bulb is important in establishing the proper structure and 

integration of primary and second-order neurons [178]. The unique expression patterns of 

the ephrinBs are necessary in establishing specific brain regions and the pathways that 

connect these regions. The reciprocal pattern of autism-associated GRIP2 variants on 

binding to ephrinB1/2 could play different roles in different regions, but cooperatively 

exacerbate proper neuronal activity when those different brains regions communicate. 

 A general increase in binding between GRIP2 autism-associated variants and 

liprin-alpha-1 was observed (Figure 4-9, Row 3). Liprin-alpha-1 has been shown as 

necessary for the proper targeting of AMPA receptors to the synapse through GRIP, and 

necessary for production of LTD. The gain-of-function mutations observed between 

GRIP2 and liprin-alpha-1 may likely influence proper targeting of AMPA receptors. For 

example, given that liprin-alpha-1 knockout results in loss of surface AMPA receptor 

density, these gain-of-function mutations may increase surface density, reminiscent of the 

higher AMPA receptor surface density observed with GRIP1 gain-of-function mutations 

in Mejias et al. [168,169,129]. Future experiments should focus on co-localizations of 

AMPA receptor subunits, GRIP2, GRIP1, and liprin-alpha-1. 

 There is a pattern of increased binding (gain-of-function) between GRIP2 autism-

associated variants and GRIP1, while the control or common variants have no effect or 
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loss-of-function effect. The relationship between GRIP1 and GRIP2 in the same cell is 

still an active area of study. As indicated previously, the loss-of-function variants 

between GRIP2 and GluA2/3 can mechanistically explain perturbation of glutamate 

signaling in a manner consistent with GRIP1 gain-of-function variants, if GRIP1 and 

GRIP2 are in competition with GluA2/3 binding. 

 However, there is evidence that GRIP1 and GRIP2 may have a cooperative or 

compensatory relationship based on observation made from Grip1 and/or Grip2 knockout 

in mouse Purkinje neurons. Simple knockout of Grip2 does not change receptor recycling 

rate, but double knockout of Grip1/2 does successfully slow receptor recycling [167]. No 

observation of receptor recycling in single Grip1 knockout neurons has been made yet. 

As such, Grip2 does not seem to be sufficient alone in influencing AMPA receptor 

recycling. Grip1 knockout appears to be necessary under Grip2 knockout to slow 

recycling, providing support for a compensatory, and not competitive relationship. 

However, this can only be established by determining if Grip1 knockout alone is 

sufficient to modulate receptor recycling rates. 

 At the same time, while Grip1 knockout has been shown to completely abolish 

LTD induction in Purkinje neurons, Grip2 knockout produces only a partial loss of LTD 

induction [174]. If there is compensation or cooperativity between the GRIPs, it is not 

fully compensatory or cooperative, and there is room for each GRIP to possess unique, 

and possibly divergent function. 

 One explanation for how the autism-associated variants may be functioning is that 

they are improving cooperativity between GRIP1 and GRIP2. The increased binding 
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between GRIP2 and GRIP1 in the presence of these variants could allow GRIP2 to 

unload itself of bound AMPA receptor, and pass on this AMPA receptor to the more 

tightly bound GRIP1. This could translate into improved interaction between GRIP1 and 

AMPA receptors, consistent with activity observed with the GRIP1 gain-of-function 

autism-associated variants previously studied in this same cohort set [129]. 

 If in fact GRIP2 and GRIP1 have a competitive relationship, one alternate 

explanation is that these GRIP2 autism-associated gain-of-function variants may increase 

competitive action between GRIP1 and GRIP2. Stronger binding may sterically preclude 

GRIP2 from binding AMPA receptors. In this way, a gain-of-function effect between 

GRIP2 and GRIP1 may generate a loss-of-function effect between GRIP2 and AMPA 

receptor subunits. This loss-of-function effect could mirror or exaggerate the reduced 

binding observed between some GRIP2 autism-associated variants and GluA2/3. This 

hypothetical model would be particularly exaggerated in the case of E773K, a PDZ6 

autism-associated variant. E773K generates a >60% reduction in binding to GluA3 and a 

20% increase in binding to GRIP1. Both these changes could substantially deplete 

AMPA receptors of bound GRIP2, making them more accessible for GRIP1 binding. 

Stronger GRIP1-GluA3 interaction would then accelerate AMPA receptor recycling rates 

and increase AMPA receptor synaptic density [129]. 

 Of course, our understanding of the relationship between the GRIPs is still 

developing. These two alternate explanations do not have to be mutually exclusive, and 

both may be occurring under different conditions. 
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 Though individually each mutation has broadly different effects with different 

GRIP2 interaction partners, it is possible to build a testable hypothesis regarding how 

some effects may be relevant to autism. There is an autism-like behavior in the Grip2 

knockout mice, which is a loss-of-function effect, and GRIP2 autism-associated variants 

produce a loss-of-function effect between GRIP2 and AMPA receptor subunits. Given 

these observations, I hypothesize the following: loss-of-function mutations in GRIP2 

reduce interaction between GRIP2 and AMPA receptors, resulting in abnormal rates of 

receptor recycling to the synaptic surface. This will aberrantly alter that synapse’s ability 

to produce long-term potentiation (LTP) or long-term depression (LTD). Without proper 

regulation of LTP or LTD, neurons cannot selectively strengthen or weaken specific 

synapses in response to glutamate signaling from pre-synaptic neurons. Without control 

over synaptic strength, the brain loses synaptic plasticity and with it, the ability to encode 

new information. Selective loss of plasticity in specific brain regions would then results 

in intellectual and behavioral features observed in Autism Spectrum Disorders. 

 Building evidence to support each of these steps in disease mechanism requires 

conducting a range of specific experiments that are currently ongoing. Firstly, neuronal 

assays are being performed with GRIP2 variants, particularly V664M, G749D, and 

E773K, looking for changes in neuronal morphology, sub-cellular distribution of GRIP2 

binding partners, and changes to synaptic responses to glutamate signaling, such as 

AMPA receptor recycling assays. Additionally, in order to determine what brain regions 

may be most important, histological studies and immunochemistry are being performed 

on fixed post-mortem brain from Grip2 knockout mice. In order to establish that these 
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specific mutations can influence behavior, a Grip2 knock-in mouse model for V664M 

has been generated, and behavioral analysis of this model is pending. 

 Lastly, based on the results of these experiments, it may be possible to identify 

useful points in the glutamate signaling pathway to target pharmacologically, in order to 

modify the behavioral patterns of these transgenic mice. We are currently testing 

glutamate pathway agonists on Grip1 and Grip2 knockout mice to determine changes in 

behavior. These experiments will provide valuable knowledge on appropriate approaches 

for targeted treatment of autism. 

 

4.4 Materials and Methods 

 

4.4.1 Yeast-Two-Hybrid 

 The Yeast-Two-Hybrid (Y2H) protocol uses an endogenously-expressing ß-

galactosidase yeast strain, such as Y190. This ß-galactosidase can only be expressed upon 

transcriptional activation by binding of an upstream activation sequence (UAS), 

immediately 5’ of the ß-galactosidase gene. The yeast cell is transformed with two 

plasmids, a bait plasmid and a prey plasmid. These two plasmids separately express two 

genes whose gene products interact with each other. The gene on the bait plasmid is in 

fusion with a GAL4 DNA-binding domain (DBD); the gene on the prey plasmid is in 

fusion with a GAL4 transcriptional-activation domain (TAD). The UAS is bound by the 

bait through the DBD, and the bait is bound by the prey, due to the physical interaction 
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between the two bait and prey genes. The prey, with its TAD, can then recruit and 

activate RNA Polymerase II to transcribe the downstream ß-galactosidase gene. 

 The amount of ß-galactosidase enzyme in the cell is directly proportional to the 

strength of binding between the bait and prey. The amount of ß-galactosidase can be 

assayed colorimetrically using enzymatically reactive dyes, such as CPRG (chlorophenol 

red-ß-D-galactopyranoside) or ONPG (o-nitrophenyl-ß-D-galactopyranoside) [179]. 

Using this system, mutations in the peptide sequence of the bait or prey can be 

quantitatively assayed for changes in binding strength between interaction partners by 

observing the change in color of the dye. 

 Two yeast vectors were generated for bait and prey proteins. For the bait, PDZ456 

of GRIP2 was inserted into the multiple cloning site of the pPC97 vector, thereby placing 

GRIP2-PDZ456 in fusion with a GAL4 DNA-binding domain sequence already present 

on the vector. This vector, containing the wildtype form of GRIP2-PDZ456 derived from 

rat (Rattus norvegicus) peptide sequence (highly similar to mouse GRIP2 sequence), was 

subjected to site-directed mutagenesis using the QuikChange system through Agilent 

Technologies. Site-directed mutagenesis produced individual GRIP2-PDZ456-pPC97 

clones containing one of the GRIP2 mutations identified by sequencing: R517Q, T540M, 

P543Q, A575T, N610S, V664M, R711C, G749D, E773K, and R843C. Additionally, a 

separate clone was generated using site-directed mutagenesis to produced a double 

mutant vector containing both R577A & K578A (KR.AA) changes. This KR.AA mutant 

of GRIP2-PDZ456 prevents binding of PDZ456 to both GluA2 and GluA3, thereby acting 

as a negative control [129]. Individual clones were selected and sequenced using the 
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Sanger method to validate the presence of mutation and to exclude clones with off-target 

mutations. 

 For the prey, the pPC86 vector was used, which contains the GAL4 

transcriptional activation domain (TAD). Cloned into the multiple cloning site in fusion 

with the TAD are the c-terminal 50 amino acids of GluA2 or GluA3, PDZ456 of GRIP1 

(all obtained from Mejias et al.), PDZ456 of GRIP2, the c-terminal domains of ephrinB1 

or ephrinB2, or full-length liprin-alpha-1 (all obtained from the Huganir Lab). A mutant 

form of pPC86-GluA3 was obtained containing a deletion of the last four amino acids of 

the c-terminal domain of GluA3 (WTCΔ4). This mutant cannot bind GRIP2-PDZ456, 

thereby acting as a negative control. Mutant forms of ephrinB1 and ephrinB2 c-terminal 

domains were obtained with deletion of the last three amino acids (WTCΔ3; NC). These 

mutants cannot bind GRIP2-PDZ456, thereby acting as negative controls. A mutant form 

was also obtained for liprin-alpha-1 containing mutation of the terminal seven amino 

acids (-TVRTYSC) known to bind PDZ456 [168]. This mutant also cannot bind GRIP2-

PDZ456, thereby acting as a negative control (all negative controls obtained from the 

Huganir Lab). For interaction between GRIP2-PDZ456-pPC97 (WT or mutants) with 

GRIP1/2-PDZ456-pPC86, empty vectors of pPC86 were used as negative controls. 

 Combinations of bait plasmids (GRIP2-PDZ456-pPC97, WT or mutant) and prey 

plasmids (WT GluA2, GluA3, ephrinB1, ephrinB2, liprin-alpha-1, GRIP1, GRIP2, or 

appropriate negative controls) were co-transformed into yeast cells of the Y190 strain, 

using a lithium acetate method [179]. Positive clones were selected from colonies grown 
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on selective plates (-Trp, -Leu) and grown in selective media (-Trp, -Leu), with six 

independent clones for each co-transformation. 

 ß-galactosidase assays were performed using a modified high-throughput 

protocol, described as follows: 

 

High-Throughput Yeast-Two-Hybrid Protocol 

Day 1:  

1. Grow-up 500 µL of yeast over-night. Start at 2-4 pm. Use SDA (-Trp, -Leu) 

media. Use autoclaved 2 mL deep 96-well plates with 4mm glass beads at the 

bottom. 

Day 2: 

1. Harvest culture in the morning. 

2. Transfer 100 µL of culture to 384-well OD (optical density) plate. 

3. Take OD (optical density/absorbance) at 600 nm 

a. Subtract blank from each reading 

b. If X is adjusted reading, then take y=500*0.3/X µL of over-night culture 

and add to a new 2mL deep 96-well plate 

c. Add an additional 500 - y (500 minus y) µL of SDA media to each well 

4. Grow new culture to log-phase for 3 hrs. Set aside additional growth wells to do 

time curve. Check OD every half hour until OD = 0.6-0.8. Save log OD. 

5. Add 50 µL of culture to a well of a 96-well plate. Do this in quadruplicate (200 

µL transferred total). 
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6. Centrifuge plates at max for 25 minutes at 4o. Plates can be stacked, but make 

sure they are completely balanced and that the bottoms of the plates are clean. 

7. Turn plates upside down on a paper towel, and briefly centrifuge the supernatant 

out (just a few seconds, do not let rpm exceed 500). Quickly pull the plates out 

are turn them right side up. 

8. Add 33.3 µL of Buffer 1 (see below) to each well; briefly centrifuge contents 

down, and vortex at 2000 rpm for 30 seconds. 

9. Centrifuge plates at max for 25 minutes at 4o. Plates can be stacked, but make 

sure they are completely balanced and that the bottoms of the plates are clean. 

10. Turn plates upside down on a paper towel, and briefly centrifuge the supernatant 

out (just a few seconds, do not let rpm exceed 500). Quickly pull the plates out 

are turn them right side up. 

11. Add 10 µL of Buffer 1 to each well. Vortex at 2000 rpm for 5 minutes. 

12. Freeze wells in liquid nitrogen and then thaw at 47o. Repeat an additional 2 

times. Wrap reactions in aluminum and store at -80o. Freeze/thaw cycles break 

the yeast cells. 

13. Prepare sterile Buffer 2 (see below) with CPRG (chlorophenol red-ß-D-

galactopyranoside) concentration of 6.244 mM (26.558 mg of CPRG per 7 mL 

of Buffer 1). 

14. Conduct time curve analysis checking reaction times by 30-second intervals. 

a. It is recommended that each time point be done in triplicate. 
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b. Start reaction by mixing 25 µL of Buffer 2 to each well of one of the 

freeze/thaw plates (one of the quadruplicate plates; the remaining three 

plates will be used for the actual Y2H) 

c. It is best to try and start all reactions at the same time, and then mix 

together using plate vortexer. 

d. Stop reaction using 35 µL of 6mM ZnCl2 when the darkest accelerating 

reaction well completes its linear phase of the ß-galactosidase reaction 

e. Record the time at which reaction was stopped. A fraction of this time 

will be used for the actual Y2H reactions, in order to ensure all reactions 

are stopped during the linear phase. 

15. Take OD of ß-gal reaction (time curve analysis of step 14) using 578 nm 

wavelength. 

a. Transfer reactions using manual multi-channel pipet to 384-well plate and 

remove air bubbles as quickly as possible. 

b. Take optical density (578 nm). 

c. Subtract blank values for ß-gal ODs and log-growth phase ODs. 

d. Divide adjusted ß-gal values by adjusted log-growth phase OD values 

(final value). 

e. Choose a time point where the adjusted ß-gal values are between 0.25-1.8 

and the final values are in the linear phase. 

16. Do the actual reactions. 
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a. Start reaction with 25 µL of Buffer 2. Try to start all reactions at the same 

time. Mix with plate vortexer. 

b. Stop reaction with 35 µL of 6mM of ZnCl2 after specified time. Try to 

stop all reactions at the same time. 

c. Transfer reactions to 384-well plate using manual multi-channel pipet. 

Remove air bubbles as quickly as possible. 

17. Take OD of ß-gal reaction using 578 nm wavelength. 

a. Subtract blank values for ß-gal ODs and log ODs. 

b. Divide adjusted ß-gal values by adjusted log OD values (final value). 

 

The protocol for making Buffers 1 and 2 are as follows: 

 

Buffer 1 to prepare a 100 mL solution. Dissolve the following components in 75 mL of 

deionized water. Adjust pH to 7.25-7.30, then bring the volume to 100 mL. Filter 

sterilize. Store at 4ºC for up to 3 months. 

 HEPES   2.38 grams 

 NaCl    0.9 grams 

 L-Aspartate (hemi-Mg salt) 0.065 grams 

 BSA    1.0 grams 

 Tween 20   50.0 µL 
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Buffer 2 to prepare a 7 mL solution. Dissolve 26.558 mg of CPRG in 7 mL of Buffer 1, 

giving a final concentration of CPRG as 6.25 mM. 

 

4.4.2 Generating a Grip2 Knockout Mouse 

 Grip2 knockout mice were obtained from the Huganir Lab. Grip2 knockout mice 

were generated by targeting a PGK-neo cassette using EcoRI and BspEI sites to exons of 

PDZ1 of Grip2 derived from a genomic phage library [180]. Linearized constructs were 

electroporated into murine embryonic stem cells and selected for resistance to G418. 

Homologous recombination was tested for by PCR and Southern Blot analysis. Chimeric 

mice were backcrossed to C57BL/6 strain for ten generations. Absence of Grip2 was 

confirmed by Western Blot (Figure 4-17). 

 

4.4.3 Behavioral Analysis of Grip2 Knockout Mice 

Open Field Test. An Open Field Test was performed to assess general motor activity, 

movement patterns, stereotypical movement, and exploratory activity (such as rearing). 

Time spent in periphery versus the central field is evaluated for anxiety. Four open field 

chambers were used simultaneously, with each chamber 16 x 16 inches wide. Evaluations 

were conducted over a 30-minute window, with mouse movement tracked using the SDI 

Photobeam Activation System (San Diego Instruments). Time was measured for overall 

activity, rearing movement, fine movement, crude movement, presence in central field, 

and presence in periphery. 
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Elevated Plus Maze. An Elevated Plus Maze was performed to test anxiety by 

comparing time spent in the open arms versus the closed arms of an elevated plus-shaped 

platform. Timed recording were made with a camcorder, using a five minute recording 

window for each mouse. The elevated plus maze platform (SDI) is made of stainless steel 

and consists of two closed arms of 19.5 inches in length x 4 inches in width x 15 inches 

in height, and two open arms of 19.5 inches in length x 4 inches in width. The four arms 

are connected by a 4 x 4 inch platform, onto which each mouse was placed at the 

beginning of each recording. 

Rotarod Test. A Rotarod Test was performed to test motor function, coordination, and 

overall strength. Tests were conducted using the Rotamex-V (Columbus Instruments). 

Mice were tested on the rotarod for no longer than 5 minutes per trial. Each mouse was 

tested in triplicate. The entire protocol was repeated for two additional days. Starting 

rotation speed was 5 RPM, and would accelerate by 1 RPM every 5 seconds. Amount of 

time spent on the rotarod before the mouse falls was recorded by photobeam. 

Social Interaction Test. The Social Interaction Test was performed to examine 

exploratory behavior to a novel, unfamiliar mouse, analyzing metrics such as time spent 

conducting aggressive behavior, social behavior, like sniffing, following, or allo-

grooming, or non-social behavior, such as self-grooming. A 16 x 16 inch square plastic 

chamber is divided diagonally by a high separator, partitioning the chamber into two 

triangular fields. A test mouse (Grip2 knockout or WT control) is placed in one field, and 

a reference mouse (always WT C57BL/6) is placed in the other field. The mice are 

allowed to habituate to the field for five minutes. They cannot interact with each other 
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through the separator. After five minutes, the separator is removed, opening up the whole 

square chamber for exploration and interaction between the mice. Their interaction is 

video recorded for 10 minutes. The video is manually analyzed for time spent sniffing, 

following, and self-grooming. Test mice did not display aggressive behavior (attacks, 

biting, or tail flicks) or allo-grooming behavior. 

Sociability and Social Novelty Test. The Sociability Test was performed to determine 

how sociable the test mice are to novel, unfamiliar mice. Two circular mesh cages are 

placed at opposite corners of a 16 x 16 inch plastic chamber. Both mesh cages are empty. 

A test mouse (Grip2 knockout or WT control) is placed in the chamber and allowed to 

explore and habituate for five minutes. After five minutes, video recording is started and 

a reference mouse (WT C57BL/6) is placed under the first mesh cage. The test mouse 

and the reference mouse have never met before, including the previously conducted 

Social Interaction Test. The test mouse and reference mouse are allowed to interact 

through the mesh cage (no physical contact) for five minutes. Social interaction is 

recorded manually by analyzing the video for amount of time spent by the test mouse 

sniffing either the first or second mesh cage (placing the nose in close juxtaposition to 

either mesh cage). Normal mice will spend more time with the first mesh cage with the 

unfamiliar reference mouse than with the second, empty mesh cage. 

 After five minutes, a second reference mouse is placed in the second mesh cage. 

This marks the Social Novelty Test, which analyzes a mouse’s preference for social 

novelty in the presence of a familiar social experience. The reference mouse in the first 

mesh cage is now a familiar mouse, and the reference mouse in the second mesh cage is 
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now the unfamiliar mouse, as it and the test mouse have never met before, including the 

previously conducted Social Interaction Test. The test mouse is allowed to interact with 

both reference mice for five minutes. The video is again manually analyzed for time 

spent by the test mouse interacting with either mesh cage. Normal mice will spend more 

time interacting with the second mesh cage with its unfamiliar mouse than with the first 

cage with its familiar mouse. 

Statistical Analysis of Behavioral Studies. Statistical analysis and derivation of 

significance values was performed under all behavioral tests using a two-tailed Student’s 

t-test, assuming unequal variance.  
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4.5 Figures: Chapter 4 

 

Figure 4-1. Chromosomal locations for Glutamate Receptors, Transporters, and 

Interacting Proteins overlapping with autism susceptibility loci that are identified in 

published chromosomal, linkage, and/or association studies 
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Figure 4-2. GRIP1/2 PDZ domains and their respective interaction partners 

 

GRIP1 and GRIP2 interact with many proteins involved in glutamatergic and 

GABAergic neurotransmission. Some key interaction partners are described above. 

PDZ123 binds members of the exocyst complex, such as Sec8. PDZ45 binds to GluA2/3 

and other GRIP1/2 proteins. PDZ6 binds to ephrinB1/2 and liprin-alpha-1. PDZ7 binds 

to GRASP1. The linker region between PDZ6 and PDZ7 binds to KIF5, a kinesin motor 

protein, and PICK1, which is important in AMPA receptor internalization and recycling. 

The diagram does not include all known interaction partners.  
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Figure 4-3. GRIP2 conservation and topology 

 

Panel A shows relative conservation of amino acids across GRIP2, using a 42-way multi-

species alignment. Each vertical line is an amino acid residue, with vertical height 

reflecting relative conservation (amino acid similarity using a BLOSUM62 matrix). 

Taller lines indicate higher conservation. Purple regions are PDZ domains. Blocks of 

conservation around multiple PDZ domains are reflective of their shared functionality. As 

such, PDZ123 can be considered one conserved region (A), and PDZ456 can be 

considered another conserved region (B). Panel B provides the positions of 

nonsynonymous coding changes identified through high-throughput sequencing of 

GRIP2. Variants identified in control cases are provided above the GRIP2 topology map 
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(in black), and variants identified in autism cases are provide below the map. Panel C 

tabulates the number of nonsynonymous coding variants (NSCV) in each conserved 

region. Calculation of statistical mutation burden is conducted using Fisher’s exact test. 

Only Conserved Region B (PDZ456) has a statistically significantly increased burden of 

mutation for autism cases.  
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Figure 4-4. GRIP1/2 PDZ456 variants correlate with more severe social deficits 

 

Autism cases and affected siblings who are genotypically discordant are quantified for 

cumulative social deficits by summation of the reciprocal social interaction scores (see 

Table 4-2). Autism cases with a GRIP1/2 coding mutation are significantly more likely to 

have a higher, and more severe social score than their affected sibling without a GRIP1/2 

mutation (p < E-3).  
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Figure 4-5. GRIP2 variants change binding strength to GluA2/3 in Y2H assay 

 

PDZ456 domains from WT and mutant GRIP2 are tested against GluA2/3. R577A-

K578A (KR.AA) is a GRIP2 double mutation acting as negative control against both 

GluA2 and GluA3. WTCΔ4 is a four residue terminal deletion of GluA3 acting as a 

second negative control. Relative β-galactosidase activities for individual mutants are 

normalized with WT and negative controls, and are presented as mean ± sem in triplicate 
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studies. WT and negative control levels are presented in grey. Autism-associated variants 

are in blue. Common variants are in green. Control variants are in red. Student’s T test 

was performed for comparison of two means between mutants and WT. *, p < 0.05; **, p 

< 0.01; ***, p < E-8; ****, p < E-20.  
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Figure 4-6. GRIP2 variants change binding strength to ephrinB1/2 in Y2H assay 

 

PDZ456 domains from WT and mutant GRIP2 are tested against ephrinB1/2. NC is the 

negative control, using co-transformation of the R577A-K578A (KR.AA) GRIP2 double 

mutant with a WTCΔ3 mutant for both ephrinB1 and ephrinB2. WTCΔ3 is a three 

residue terminal deletion of ephrinB1/2, preventing binding to GRIP2. Relative β-

galactosidase activities for individual mutants are normalized with WT and negative 
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controls, and are presented as mean ± sem in triplicate studies. WT and negative control 

levels are presented in grey. Autism-associated variants are in blue. Common variants are 

in green. Control variants are in red. Student’s T test was performed for comparison of 

two means between mutants and WT. *, p < 0.05; **, p < 0.01.  
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Figure 4-7. GRIP2 variants change binding strength to liprin-alpha-1 in Y2H assay 

 

PDZ456 domains from WT and mutant GRIP2 are tested against liprin-alpha-1. NC is 

the negative control, using co-transformation of the R577A-K578A (KR.AA) GRIP2 

double mutant, and a liprin-alpha-1 mutant containing a c-terminal heptapeptide 

mutation that precludes binding to GRIP2. Relative β-galactosidase activities for 

individual mutants are normalized with WT and negative controls, and are presented as 

mean ± sem in triplicate studies. WT and negative control levels are presented in grey. 

Autism-associated variants are in blue. Common variants are in green. Control variants 

are in red. Student’s T test was performed for comparison of two means between mutants 

and WT. *, p < 0.05; **, p < 0.01; ***, p < E-8; ****, p < E-20.  
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Figure 4-8. GRIP2 variants change binding strength to GRIP1/2 in Y2H assay 

 

PDZ456 domains from WT and mutant GRIP2 are tested against GRIP1 and GRIP2. NC 

is the negative control, using co-transformation of the R577A-K578A (KR.AA) GRIP2 

double mutant, and empty prey vector (pPC86). Relative β-galactosidase activities for 

individual mutants are normalized with WT and negative controls, and are presented as 

mean ± sem in triplicate studies. WT and negative control levels are presented in grey. 



 

  176 

Autism-associated variants are in blue. Common variants are in green. Control variants 

are in red. Student’s T test was performed for comparison of two means between mutants 

and WT. *, p < 0.05; **, p < 0.01; ***, p < E-8; ****, p < E-20.  
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Figure 4-9. GRIP2 autism-associated variants produce consistent patterns of 

changes with GRIP2 interaction partners 

 

At top is shown the PDZ domains and their respective interaction partners for PDZ456. 

The ELGI peptide sequence of PDZ5 is the known binding site of GluA2/3. The valine 

just prior to ELGI is the valine of the V664M missense mutation that results in almost 

complete attenuation of binding between GRIP2-PDZ456 and GluA2/3. Autism-

associated variants show a pattern of reduced binding to GluA2/3, reciprocal binding 

patterns for ephrinB1/2, increased binding pattern to liprin-alpha-1, and a generally 

increased binding to GRIP1. Importantly, all six mutations have some significant effect 

on at least three interaction partners.  
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Figure 4-10. Grip2 knockout mice display reduced activity in the Open Field Test 

 

Time in activity is recorded on the Y-axis. Blue bars indicate WT control mice, and red 

bars indicated Grip2 knockout mice. Average time in activity is presented as mean ± sem 

(n = 10 for both mouse cohorts). Grip2 knockout mice display reduced crude movement 

activity (ambulation) in the central field of the open field test compared to controls (left 

graph; p < 0.01). The same amount of ambulation time is spent in the periphery. Total 

activity is provided in the graph on the right, for which Grip2 knockout mice are 

significantly less active. A decrease in central field movement and total activity may 

indicate issues with anxiety, strength, or motor function.  
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Figure 4-11. Grip2 knockout mice spend less time rearing in the Open Field Test 

 

The amount of time spent rearing, an exploratory behavior, is significantly reduced (p < 

E-6) for Grip2 knockout mice (red bars) compared to WT controls (blue bars). Average 

time in activity is presented as mean ± sem (n = 10 for both mouse cohorts). A decrease 

in rearing may further support an issue in anxiety, strength, or motor function.  
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Figure 4-12. Grip2 knockout mice display anxiety traits in the Elevated Plus Maze 

 

The Elevated Plus Maze provides a measure of anxiety levels in mice, by comparing the 

amount of time spent in an open arm (exposed) instead of a closed arm (sheltered). 

Average time in the open arm is presented as mean ± sem (n = 10 for both mouse 

cohorts). Grip2 knockout mice (red bars) spend significantly less time in the open arm (p 

< 0.05) during a five minute test window, compared to WT control mice (blue bars). This 

decrease in time in the open arms may reflect an issue with anxiety for Grip2 knockout 

mice.  
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Figure 4-13. Grip2 knockout mice do not display deficits in strength or motor 

function 

 

On the left graph is presented the results of the Grip Strength Test. Average strength is 

presented as mean ± sem in grams (n = 10 for both mouse cohorts). Grip2 knockout mice 

(red bars) do not display a significant deficiency in strength compared to WT controls 

(blue bars), given the sample sizes used. On the right graph is presented the results of the 

Rotarod Test, performed over three consecutive days. Average time on the Rotarod 

before falling is presented as mean ± sem (n = 10 for both mouse cohorts). Grip2 

knockout mice do not demonstrate a significant difference in motor coordination, motor 

strength, or motor memory, compared to WT controls, given the sample sizes used. As 

expected, both cohorts of mice improve (longer time spent on Rotarod) over time.  
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Figure 4-14. Grip2 knockout mice do not display an olfaction deficit 

 

Recorded is the amount of time taken by Grip2 knockout mice (red bars) and WT 

controls (blue bars) to find a buried block of cheese, as a test of olfactory sense. Average 

time in activity is presented as mean ± sem (n = 10 for both mouse cohorts). Crude Time 

on the left is time taken from initial drop of the mouse into the cage to the moment when 

the block of cheese is found. Grip2 knockout mice spend a substantial (but not 

statistically significant) amount of Crude Time finding the block of cheese. Middle and 

right graphs show Crude Time broken into Delay Time and Search Time. Delay Time is 

the time taken from initial drop into the cage to the moment the mouse first moves its 

hind feet. Search Time is the time taken from movement of hind feet to the moment the 

block of cheese is found. Grip2 knockout mice have a significantly longer delay time (p < 

0.05) compared to WT controls, possible reflective of an anxiety issue. There is no 

significant difference in Search Time, given the cohort sizes used, likely indicating that 

there is no deficit in olfaction.  
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Figure 4-15. Grip2 knockout mice have impaired social and grooming behavior in 

the Social Interaction Test 

 

Presented in the amount of time spent by Grip2 knockout mice (red bars) and WT 

controls (blue bars) engaging in social behaviors in the Social Interaction Test. Average 

time in activity is presented as mean ± sem (n = 10 for both mouse cohorts). No 

significant difference is observed for time spent sniffing (left bars) a wildtype reference 

mouse. Grip2 knockout mice spent significantly less time following (middle bars) 

reference mice compared to WT controls (p < 0.05), indicating an anomaly in social 

behavior. Grip2 knockout mice spend significantly more time self-grooming (right bars) 

compared to WT controls (p < 0.05), indicating a possible concern with repetitive or 

compulsive behavior. None of the mice displayed aggressive behavior or allo-grooming.  
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Figure 4-16. Grip2 knockout mice display a reduced preference for social novelty in 

the Sociability and Social Novelty Tests 

 

Provided on the left graph are the results of the Sociability Test. Average time spent 

interacting with a particular mesh cage is presented as mean ± sem (n = 10 for both 

mouse cohorts). As expected, both Grip2 knockout and WT control mice spend more 

time interacting with the mesh cage with a novel mouse than with the mesh cage that is 

empty. There are no statistical differences between Grip2 knockout mice and WT 

controls. 

 Provided on the right graph are results of the Social Novelty Test. As expected, 

both Grip2 knockout and WT control mice spend little time interacting with the original 

mesh cage with its more familiar mouse than the cage with the more novel mouse. 

However, Grip2 knockout mice spend far less time interacting with the novel mouse in 

the second mesh cage, compared to WT controls (p < 0.01). As such, Grip2 knockout 

mice display a reduced preference for social novelty.  
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Figure 4-17. Western blot confirms loss of Grip2 protein in Grip2 knockout mouse 

 

Grip2 protein was undetectable in Grip2 knockout mouse brain using a Grip2-specific 

antibody to the Grip2 c-terminus. Protein was detectable in strain- and age-matched WT 

control brain.  
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4.6 Tables: Chapter 4 

 

Table 4-1. Race/ethnicity of cohorts of patients with autism and matched controls 
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Table 4-2. Genotype-Phenotype Correlations of GRIP1/2 variants between 

discordant autism siblings 

 

Provided are quantitative phenotypes for affected sib-pairs with discordant genotypes for 

GRIP variants in proband families. Cumulative scores are summations of standard ADI-R 

tests. Higher scores indicate more severe phenotype. A nonverbal score suggests a more 

severe communication deficit. WT is wildtype. HET is heterozygous. Red arrows show a 

consistent directional pattern of more severe disease in siblings with a GRIP variant. 

Family pedigrees are provided at the bottom. Filled symbols indicate children with 

autism. Open symbols are not diagnosed with autism. A grey square for pedigree #111 

indicates an eccentric, “loner” father with speech delay requiring therapy, but not 

diagnosed with autism.  
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Chapter 5: Concluding Remarks 

 

5.1 The Spectrum of Complexity, Revisited 

 The results obtained throughout the different studies in this dissertation provide 

additional support for the spectrum of complexity previously introduced. It is well known 

that different genes that have been implicated in single-gene disorders are also relevant to 

disease in more complex disorders, even if the inheritance patterns and clinical 

presentations differ substantially. This overlap of genetic etiology should not come as a 

surprise. Innumerable parallel and intersecting biological pathways are involved in 

normal brain function. As such, a collection of mutated genes can produce roughly 

similar neurological and psychiatric phenotypes (genetic heterogeneity), with different 

mutations and genetic backgrounds influencing the degree of phenotype severity 

(variable expressivity). Individually each gene can in turn influence multiple separate 

disease phenotypes (pleiotropy). 

 This pleiotropy is likely influenced by the contribution of a single gene to 

multiple parallel pathways. This is a result both of the structure of biological pathways, 

but is also a result of the structure of genes. As described by François Jacob, “Nature is a 

tinkerer, not an inventor” [181]. This is particularly true for genes, which are composed 

of multiple independent functional domains that can link parallel biological pathways 

together to form more sophisticated systems. The GRIP1/2 proteins are an excellent 

example of this. One set of domains, PDZ123, provides function in cellular trafficking 

across multiple cell types, from neurons to skin cells [180]. Another set of domains, 
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PDZ456, provides functionality to glutamatergic neurotransmission. A linker region 

provides trafficking mobility. PDZ7 provides functionality in GABAergic 

neurotransmission. This phenomenon is a result of the manner in which genes have 

evolved, through a process of tinkering with interchangeable and mutable parts to 

construct greater complexity. 

 As such, it is important to analyze disease variant association in the context of 

domains, and not simply at the level of an entire gene. As was demonstrated with the 

GRIP1/2 study, mutation burden and genotype-phenotype correlation provided no 

positive results when looking across the entire gene. However, focusing on one highly 

conserved domain set provided valuable and significant association, and laid groundwork 

for developing a focused hypothesis on how GRIP1/2 may function in disease. 

 Returning to the concept of multiple overlapping biological pathways influencing 

a spectrum of disease complexity, the studies in this dissertation provide additional 

support of how different genes in vastly different roles can impinge on the same 

pathways and produce different phenotypic outcomes. Insight into how this process 

works should be valuable in bridging therapeutics used in one disease, and transferring its 

utility to another disease. 

In the study of X-linked Intellectual Disability (XLID), ZC4H2, a zinc-finger 

transcription factor, was identified at the top of our prioritized list, with two missense 

changes and one splicing change. Both missense changes are predicted to be damaging by 

SIFT and PolyPhen-2. The pedigrees for the probands possessing the two missense 

changes are provide in Figure 5-1, and show a clear pattern of X-linked inheritance. Two 
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of the variants identified, the R190W missense change and the splicing change, were 

submitted to a collaborator (Hwang et al.) for analysis in zebrafish. Zc4h2 zebrafish 

knockouts were generated using TALEN technology. Developing zebrafish were 

observed to have a loss of GABAergic interneurons as determined by a loss of Gad1 

staining. When WT human or zebrafish zc4h2 mRNA was reintroduced into these 

knockout fish, it resulted in a complete recovery of the phenotype. However, when 

mutant zc4h2 mRNA containing either of the two mutations was introduced into these 

knockout fish, it only resulted in a partial recovery of the phenotype [data not shown]. 

These multiple points of evidence suggest that ZC4H2 is a strong candidate gene for 

XLID, with a mechanism of disease possibly involving the GABAergic 

neurotransmission pathway [Hwang et al., unpublished]. 

 As previously mentioned, GRIP1 and GRIP2 are important in GABA signaling 

and are robustly expressed in inhibitory GABAergic interneurons [158,161]. ZC4H2 and 

GRIP1/2 share little in common in gene structure or function. The former is a 

transcription factor expressed early in development, and the later are scaffolding proteins 

expressed from early development throughout adulthood. Yet both appear relevant to 

normal function of GABAergic neurons and both are important in different neurological 

diseases. Though there is little evidence that GRIP1/2 are relevant to intellectual 

disability, or that ZC4H2 is relevant to autism, this biological convergence acts as further 

support that, at least at the pathway level, there is important overlap between otherwise 

clinically distinguishable diseases. Building our understanding of signaling pathways, 
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such as glutamatergic and GABAergic neurotransmission, will be relevant not only to 

autism, but to many neurodevelopmental conditions. 

 

5.2 The Necessity of Functional Experimentation 

 The results from studying ZC4H2 XLID-associated mutations also underscores 

the importance of conducting functional studies on as many potential disease-causing 

variants as possible. While ZC4H2 was obtained as a potential XLID gene by statistical 

analysis, how it functions in disease can only be understood by placing the mutation into 

a biological system and recording its effect. Though this seems an obvious requirement in 

the study of disease, it is important to underscore this point, because it is easy to forget 

that functional experimentation of individual variants for all relevant disease genes is in 

fact a daunting task with little workaround. 

 This is made all the more important by the results of studying GRIP2 autism-

associated variants. Many of the variants identified in GRIP2 sequencing were excluded 

from further functional analysis due to insufficient statistical association or high allelic 

frequency in the population. Though association and variant frequency are appropriate 

metrics by which to prioritize variants, it would be careless to completely exclude such 

variants from further analysis. As was demonstrated in the analysis of GRIP2-PDZ456, 

common and control variants also can have functional effect. In fact, in certain instances 

the common and control variants produce biological effects counter to what was observed 

with autism-associated variants, suggesting a possible protective effect, which is 

important in our understanding of disease mechanism. That GRIP2 common or control 
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variants outside of PDZ456 may have important functional relevance to autism is a 

distinct possibility. As such, the general exclusion of such variants independent of 

disease, variant frequency, or cohort origin, from further analysis should only ever be 

temporary. 

 

5.3 Significance for Therapeutics 

 Functional work is performed to establish a molecular mechanism and identify 

targets for pharmacologic intervention. However, with so many variants performing 

different functions, can just one or a few drugs be sufficient to effectively treat disease? 

Alternatively, with hundreds to thousands of possible disease genes and divergent 

pathways in intellectual disability and autism, would we need hundreds to thousands of 

therapeutic options? 

 If we were to assume that GRIP2 is truly involved in autism etiology, GRIP2 

autism-associated variants then provide an excellent theoretical paradigm on the 

complexity of treating such disease variants, given their individually unique influences on 

different interaction partners. Because each variant does something different, it would be 

difficult to design individualized therapies for each variant. However, as there are 

consistent patterns of variant effect, such as general loss-of-function between GRIP2 and 

GluA2/3 and general gain-of-function between GRIP2 and liprin-alpha-1 and GRIP1, it 

may be possible to design drugs that individually target each of those interaction 

pathways, and then combine drugs as appropriate for each patient. 
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 However, the case of GRIP2 autism-associated variants and ephrinB1/2 may 

complicate this scenario. The reciprocal nature of these variants in their influence on 

binding to ephrinB1/2 demonstrates how potential risk variants produce a biological 

nuance that may be difficult to negate therapeutically. As described previously, the 

differences between ephrinB1 and ephrinB2 are substantial, in their interaction partners 

and ligands, their effects on forward and reverse signaling, and their functions in defining 

separate brain regions and communication projections [176-178]. Any treatment strategy 

directly targeting the ephrinBs must discriminate between the two. Any treatment 

strategy circumventing the ephrinBs must exert its influence with consideration of 

imbalances that may be present between different brain regions. 

 

5.4 Ethical Considerations 

 A number of ethical consideration must be addressed, both in regard to the nature 

of disease variants and the consequences of effective treatment. 

 For single-gene disorders like XLID, pathologic variants are likely pathologic 

under all conditions, with the exception of rare cases of heterozygous advantage 

[182,183]. For complex disorders, the pathogenicity of a variant is dependent on genetic 

background and environmental factors. It is convenient in lay terms to identify a variant, 

common or rare, that is important for a disease such as autism, and permanently and 

publicly tag that variant as a cause for disease. However, just as some Mendelian 

disorders are intertwined with cases of heterozygous advantage, it is just as possible that 

variants for complex disorders may have non-disease functions. Under non-risk genetic 
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or environmental backgrounds, it is possible that these “disease” variants may provide an 

advantage in intellectual or behavioral function. Alternatively, they may simply provide 

for more nuanced differences in intelligence, interest, and behavior that makes each 

individual person unique. Non-disease effects may in fact explain much of the difficulty 

in establishing disease association for common variants, and may even be partially 

influencing the gradual increase in autism incidence over time [131]. 

 This has strong ethical implications, particularly as next-generation sequencing 

becomes more accessible. For any given individual, a particular gene may be identified as 

mutated. If that gene has been linked to a genetic disease, and even more seriously, if the 

variant in that gene has been linked to disease, it is an easy mental shortcut for a scientist, 

clinician, or patient to act as though disease risk is elevated. If proper consideration of 

genetic background and environment takes place, disease risk may in fact be negligible. 

 Much of this dissertation has been devoted to understanding GRIP1/2 as autism 

susceptibility genes. It is just as plausible that GRIP1/2 variants, and even the autism-

associated variants, under different conditions can contribute to a wider pleiotropy of 

phenotype, from other neuropsychiatric disorders like schizophrenia or intellectual 

disability, to general personality differences. Under the right conditions, GRIP1/2 

variation could even make one susceptible to creative genius. 

 Any discussion of the contribution of genetic variation to complex disease must 

be delivered in such a way as to ensure that clinicians and patients are not taking 

unnecessary medical risks. Importantly, any discussion of the contribution of genetic 
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variation to psychiatric disease must be delivered in such a way as to not further 

stigmatize mental health. 

 A second ethical concern, if only a bit premature, is in regard to the consequences 

of successful treatment of genetic disorders, both Mendelian and complex. These 

disorders necessarily have a reproductive negative selection placed against them, thereby 

preventing the number of affected individuals from rising too high in following 

generations. Successful treatment of genetic disorders, should it become available, 

reduces the negative selection placed on deleterious/disease risk variants. These variants 

are much more likely to be passed on to the next generation. The next generation, with a 

higher burden of disease variants, will be more dependent upon treatment. From a 

commercial standpoint, this presents a moral hazard by which treatment of disease 

guarantees more patients to treat in the future. From a medical standpoint, this produces 

over the course of many generations a diminishing return on overall public health, which 

could have serious consequences for the population at large. As such, serious 

consideration should be given to identifying treatment routes that allow affected 

individuals to have full, healthy, reproductive lives, while somehow maintaining negative 

selection on true disease variants.  
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5.5 Figures: Chapter 5 

 

Figure 5-1. ZC4H2 mutations segregate with disease 

 

Provided are pedigrees for two families, each with a proband relative identified as having 

a ZC4H2 missense mutation. Full genotyping of the variant was subsequently conducted 

in all family members with available genomic DNA samples. In the first family (top), 

four affected males inherit the disease allele A from their female heterozygous carrier 

mothers. The same appears to apply to at least two affected males in the second family 

(bottom) for which genotyping was possible.  
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