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Abstract

In biomedical practices, multiple biomarkers are often combined using a clas-

sification rule of the form of some tree structure to make diagnostic decisions.

The classification structure and cutoff point at each node of a tree are com-

monly chosen ad-hoc based on experience of decision makers. There is a lack

of analytical approaches that lead to optimal prediction performance, and that

guide the choice of optimal cutoff points of a pre-specified classification tree.

In this dissertation, we propose to search for and estimate the optimal decision

rule through an approach of rank correlation maximization. The proposed

method is flexible and computationally feasible using data with reasonably

large sample sizes when there are many biomarkers available for classification

or prediction. Using this method, for a pre-specified tree-structured classifica-

tion rule, we are able to guide the choice of optimal cutoff at tree nodes, as

well as to estimate optimal prediction performance of multiple biomarkers

combined.

In this dissertation, we also propose a semi-marginal and semi-parametric

regression model for gap times between successive recurrent events in the

presence of time-dependent covariates. Recurrent event data is commonly

encountered in longitudinal follow-up studies, when each subject experiences
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multiple events under observation until loss to follow-up, dropout or end of

study occurs. There exists a rich literature of models and methods that focus on

time-to-event data in a recurrent event setting, but for applications where time-

between-events (also referred to as gap times) is of scientific interest or where

there is a strong cyclical pattern, limited techniques were developed, especially

for regression with time-dependent covariates. We propose a semi-marginal

regression model of a proportional hazard form on gap times such that no

event history is included in the conditional statistics of regression except for

the time relapse from baseline to last event occurrence. The proposed method

is flexible in being semi-parametric, robust to various correlation structures

of gap times within subject, and also allows time-dependent covariates to be

included in the conditional statistics of regression.
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Chapter 1

Literature Review: Tree-Based
Classification Methods, and
Related

1.1 Tree Structure and Tree-Based Classifiers

A general tree structure is a graphical representation of the hierachical nature

of some structure using nodes and branches, widely used in various fields

including computer science and decision making. In a finite tree, each parent

node connects to child nodes through branches. The node with no parent

node is commonly referred to as the root node, while nodes with no child

node connected are referred to as leaf nodes. One special structure commonly

used for decision making, or put into statistical context, for classification

and regression, is a binary tree in which each node has at most two child

nodes, and each leaf node has an estimated outcome value attached, either

binary for classification or continuous for regression. See Figure 1.1 for an

example of a classification tree that classifies a subject to group 1 when both

X1 and X2 are larger than some cutoff values, and to group 0 if otherwise. In
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X1 < x1

0

T

X2 < x2

F

0

T

1

F

Figure 1.1: Example of a classification tree using two variables X1 and X2 for a binary
outcome taking value 0 or 1. Leaf nodes are represented by circle, and non-leaf nodes
by box with splitting condition at the node in the box. “T" on a branch indicates
that condition is satisfied in the child node that follows, “F" on a branch indicates
otherwise. For this particular tree, a subject is classified to have outcome 1 if both X1
and X2 are larger than some cutoff values, x1 and x2 respectively, and outcome 0 if
otherwise.

general, tree structures used in statistical analysis are understood as a kind

of data structure, where the root node represents the entire sample, and each

branching indicates data bifurcating according to a binary outcome of whether

some splitting covariate is larger than a certain cutoff value, into child nodes.

Covariates used for classification are also referred to as markers.

Tree-based methods gained their popularity in statistical literature since

the introduction of classification and regression tree (CART, Breiman et al.,

1984). The classic CART procedure grows the tree using an algorithm greedy

in the sense that it chooses splitting covariates and corresponding cutoff values

by minimizing some loss function at each step, and therefore not necessarily

minimizing the overall loss. The algorithm first overgrows the tree until there
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are only a few observations in each leaf node, and then prunes back by merging

neighboring child nodes while minimizing increase in loss at each step. In face

of the new challenges brought by big data era, traditional tree-based methods

have been coupled with ensemble techniques in machine learning, giving

rise to a great variety of powerful prediction methods including boosted

trees (Friedman, 2002, Friedman, Hastie, and Tibshirani, 2001), random forest

(Breiman, 1996) and rotation forest (Rodriguez, Kuncheva, and Alonso, 2006).

The general idea of these ensembled tree methods is to infuse randomness

in growing a number of trees by either using random samples or choosing

splitting markers and cutoff values randomly, and then averaging. The reason

for the popularity of these methods among the statistics community is that

tree-based predictors are essentially non-parametric, and are thus flexible and

robust to model misspecifications, an advantange especially when the training

sample is large.

Not limited to the statistics community, tree-based methods are also well

accepted by biomedical researchers and are commonly used in medical prac-

tices. Many diagnoses are made if a few tests come out positive; for example,

diagnosis of HIV infection is made when both ELISA and Western blot tests

detect HIV antibodies. This kind of decision making is similar to human

thinking and thus interpretable. Meanwhile, using tree-based methods for

decision making can save resources as not necessarily all tests need to be

performed. In the example of HIV infection diagnosis, Western blot test is not

needed if ELISA test comes out negative.

Despite the wide and successful applications of tree-based methods in
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statistics and biomedical practices, little progress has been made in under-

standing the theoretical properties of these methods. There is some work on

consistency of random forests (Scornet, Biau, and Vert, 2015, Biau, Devroye,

and Lugosi, 2008), but no statistical inferential results have thus far been

presented. At the core of these challenges is the lack of understanding for a

single tree.

1.2 Evaluating Prediction Performance of Tree-Based
Classifiers

Methods to evaluate prediction performance of tree-based classifiers for binary

outcomes have been developed from two distinct perspectives, depending

on how trees are used. From one perspective, predetermined binary outcome

labels are assigned to leaf nodes while cutoff values used for data splitting

vary according to further requirements on desired sensitivity or specificity.

Although rarely talked about, the simplest tree structure that uses one marker

often falls under this category – it is given a priori that a subject would be

classified as 1 (or 0) if his or her marker value is larger than some constant,

while the cutoff value is calculated later according to further conditions. From

the other perspective, binary tree classification is considered to be the building

block of some regression model, and each subject is assigned an estimated risk

that is commonly taken to be the empirical risk of outcome among subjects in

the same node (or nodes for bootstrapped and boosted tree methods). The for-

mer approach considers a fixed classification structure by assigning outcome

to leaf nodes, and has as many degrees of freedom as the number of cutoff
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values, while the latter approach uses trees to build regression models for risk,

determining cutoff values in the process of model fitting (tree growing), and

ends up having only one degree of freedom – the estimated risks. Current

machine learning methods often take the second perspective.

Essential to evaluation from either perspective are receiver operating char-

acteristics (ROC) curve and its area under curve (AUC), a set of evaluation

tools widely used for a single marker (Hanley and McNeil, 1982). Denote by

X the marker variable under consideration, and by Y a binary outcome that

is correlated with X such that a larger X indicates a higher risk for outcome

Y = 1. ROC curve is then created by plotting true positive rate (TPR) against

false positive rate (FPR), where

TPR(x) = IP(X > x|Y = 1), FPR(x) = IP(X > x|Y = 0).

More rigorously, we can define inverse functions of TPR and FPR as

TPR−1(t) = inf
{

x : TPR(x) < t
}

, FPR−1(t) = inf
{

x : FPR(x) < t
}

,

and then define ROC curve as the plot of function

ROC(t) = TPR{FPR−1(t)}.

The ROC curve is an intuitive illustration of marker’s discriminative power

– the more ROC is curved towards the upper left corner, the higher predic-

tion power a marker has, which is quantified by area under the ROC curve.
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Formally, we define

AUC =
∫ 1

0
ROC(t) dt =

∫ 1

0
TPR(x) d IP

X|Y=0
(x).

Interestingly, AUC has an interpretation as the concordance probability. De-

note two independent and identical copies of (X, Y) by (X1, Y1) and (X2, Y2),

and then note that AUC = IP(X1 < X2|Y1 < Y2) + 0.5 IP(X1 = X2|Y1 < Y2). It

llustrates the ranked-based feature of ROC and AUC, as compared to linearity

association captured by Pearson’s correlation coefficient.

Evaluation for tree classifiers based on the second perspective is relatively

straightforward. After obtaining a risk estimate for each subject, these esti-

mates are treated as observed marker values allowing ROC and AUC methods

to be directly applied. However, in doing so the interpretability of using trees

is mostly lost, and therefore this approach is less favored by biomedical re-

searchers. On the contrary, the first approach that focuses on tree structure

and allows cutoff values to vary is commonly taken in clinical trials and cohort

studies to identify useful markers to collect in future stages or studies, but

evaluation of prediction performance brings additional challenges as a price

of the flexibility and interpretability of using a tree structure. The major differ-

ence between a single-marker tree for which ROC and AUC are developed

and a multiple-marker tree is that in the latter case TPR and FPR are no longer

one-to-one functions, and ROC and AUC are not well-defined without further

adjustments. An algorithmic method was proposed by Baker, 2000 to find

optimal cutoff values for a fixed tree, but the approach discretized markers,

which is often inapplicable in practice. Wang and Li, 2012 and Wang and
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Li, 2013 extended definitions for ROC and AUC by considering an averaged

prediction measure for a tree that uses multiple markers. For two markers

(X1, X2) such that a large value in both implies positive classification Y = 1,

the ROC function is defined to be

ROC(t) = E
[
TP(X1, X2)|FP(X1, X2), Y = 0

]
,

where

TP(x1, x2) = IP(X1 > x1, X2 > x2|Y = 1),

FP(x1, x2) = P(X1 > x1, X2 > x2|Y = 0).

To account for the distribution of Q0 = FP(X1, X2) conditional on Y = 0, a

weighted ROC function is defined as

WROC(t) = ROC(t) · h0(t),

where h0(t) is the derivative of probability measure of Q0. The area under

WROC(t) is shown to be equivalent to the concordance probability of correctly

ordering markers under the bivariate scenario, a nice property consistent with

the univariate ROC results. These definitions naturally extends to the case

of more markers. However, these considerations do not address the more

pertinent question of how well a fixed tree can predict outcome when its

cutoff values achieve optimality, or how to identify these cutoff values. A

solution to these questions is of great practical value as it could be used to

guide decision making in biomedical researches that use tree-based classifiers.

It is also of theoretical interest, since optimal fixed tree is fundamental to
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all tree-based methods but its features are not yet well understood from a

statistical inferential perspective.

1.3 Optimal Combination of Multiple Markers

As indicated by the Neyman-Pearson Lemma, the uniformly most powerful

test for classifying binary outcome Y using marker or marker vector M is

based on the risk score IP(Y = 1|X). This result has long been known in

the literature of signal detection, but has not been brought to attention to

the statistical literature until the paper of McIntosh and Pepe, 2002. Various

risk score models were studied to find optimal linear combination of markers

by McIntosh and Pepe, 2002 and Pepe and Thompson, 2000 among others.

Focusing directly on the evaluation measure instead, Pepe, Cai, and Longton,

2006 investigated the linear coefficient that optimized the area under ROC

curve. This approach is closely related to the general linear model studied

by Han, 1987 that assumes IP(Y = 1|X) = g(XTβ), for some monotone

transformation g(·). A maximum rank correlation estimator was proposed,

which is exactly what would be obtained by the direct optimization of AUC.

However, a composite marker formed by linear combination lacks flexibil-

ity and may not be relevant to the context when markers are combined from

different domains. In contrast, a non-linear combination using tree-based

methods could be more flexible and interpretable.
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Chapter 2

Literature Review: Survival
Analysis for Recurrent Events

2.1 Recurrent Event Data

Recurrent event data is commonly encountered in longitudinal follow-up

studies, when each subject experiences multiple events under observation

until loss to follow-up, dropout or end of study occurs. These multiple events

could be considered to be of different types, such as the events of HIV in-

fections, AIDS diagnosis and death, or of the same type such as repeated

hospitalization of cardiovascular disease patients.

For events of different types, researchers often consider the number of

possible event occurrences for a subject to be fixed, although some of the later

events could be censored or never occur during lifetime. In this case, statistical

methods are focused on multivariate or multistage perspective of the data,

and are developed to model either the times between successive events, which

is sometimes termed gap times, or time from baseline to events. In contrast,

for events of the same type, the number of individual event occurrences is
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naturally considered a random variable, which could be informative of some

underlying individual characteristics. For instance, for a study following a

group of cardiovascular disease patients for repeated hospitalization over a

fixed period of time, one would expect patients with more severe conditions

to experience more frequent hospitalizations, and the number of occurrences

could vary over a wide range across individuals.

Common to all categories of recurrent event data is the heterogeneity

among and correlation within subjects that need to be taken into account

in modeling. However when gap times are studied, additional difficulties

arise as dependent censoring is induced on all gap times except the first one.

Bypassing this difficulty, many methods focus on a point process perspective

with time index defined as the time from baseline to events (Lancaster and

Intrator, 1998; Cook and Lawless, 2007), although sometimes the scientific

interest is actually on gap times. For the remaining sections in this chapter,

we review statistical methods developed for recurrent event data of the same

type such that the number of observed events for each subject is a random

variable.

2.2 Statistical Methods for Time-to-Events Data

Denote by N(t) the recurrent event point process that counts the number of

events experienced at or prior to time t since time origin, where t ∈ (0, τ] for

some constant τ. The intensity function of continuous point process N(t) fully
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determines its probability structure, and is defined as

λN
{

t|H(t)
}
= lim

∆→0+

IP
{

N(t + ∆)− N(t) > 0|H(t)
}

∆
,

where H(t) represents the process history up till time t. Focusing on the

intensity function, conditional regression methods are proposed by Andersen

and Gill, 1982 that extended Cox’s proportional hazard model (Cox, 1975)

under independent censoring assumptions. Let X(t) denote possibly time-

dependent covariate history prior to time t, and let Z(t) = ϕ
{
H(t), X(t)

}
denote some transformation of

{
H(t), X(t)

}
. The model then assumes for

t ∈ (0, τ] that

λN
{

t|H(t), X(t)
}
= λ0(t)eZ(t)Tβ,

for some baseline function λ0(t) > 0 and linear coefficient β. For estima-

tion of β, partial likelihood methods were extended from univariate survival

to recurrent event data, while baseline function can be estimated using the

Nelson-Aalen estimator (Aalen, 1978). Asymptotic properties of these estima-

tors were established using martingale theories.

Anderson and Gill’s conditional regression model can be considered as

a prediction model due to the inclusion of event history in the conditional

statistics, but is less appropriate for identifying population-level effects. Mean-

while, validity of the model assumptions depend highly on the transformation

function ϕ. If , for instance, Z(t) is taken to be time-independent, the model

then requires recurrent event process to be memoryless, which is a very strong

assumption especially in the context of biomedical studies related to any kind
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of progression. Alternatively, we can study the rate function defined as

λN(t) = lim
∆→0+

IP
{

N(t + ∆)− N(t) > 0
}

∆
,

where the event history is not included as part of the conditional statistics.

Focusing on the rate function, a marginal regression model was proposed by

Lin et al., 2000 under independent censoring assumption:

λN
{

t|X(t)
}
= λ0(t)eX(t)Tβ.

Parameters β and λN(t) were estimated using partial likelihood methods and

Nelson-Aalen estimator similar to those used by Andersen and Gill, 1982.

Large sample properties were established using modern empirical process

theories.

The marginal regression model is suitable for estimating treatment effects

and identifying population risk factors, but the results are contingent upon

validity of the independent censoring assumption which is often violated in

the presence of death or informative drop-out. To deal with this issue, Wang,

Qin, and Chiang, 2001 proposed a latent variable model assuming

λN(t|W, X) = W · λ0(t)eXTβ,

which allows informative censoring of the recurrent event process through

some possibly unobserved random variable W. Their approach then avoided

estimating the latent variable and the non-parametric component λ0(t) using

conditional likelihood techniques. Related to this work, Huang and Wang,

2004 proposed a joint model for recurrent events and failure time by using a
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shared latent variable.

In addition to the failure event observed at the end of a recurrent event

process, the statistical literature studying time-to-events data is rich in dealing

with many other practical issues encountered in biomedical research. To study

longitudinal measures collected at the recurrence of events, Wu and Carroll,

1988, Tsiatis, Degruttola, and Wulfsohn, 1995, Hogan and Laird, 1997 and Xu

and Zeger, 2001, among others, considered the longitudinal measures to be a

marker process, and proposed joint models for the marker and recurrent event

processes. Multivariate recurrent event process was studied by Sun, Zhu, and

Sun, 2009 and Ning et al., 2015 among others, and a dependency measure

between two processes was proposed by the latter. Overall, statistical methods

for recurrent time-to-events data are well established in various contexts, but

these methods are only applicable when the scientific interest is placed on

occurrence rate of events over time. When the outcome variable of interest

is the gap time between successive events, or when there is a strong cyclical

pattern of recurrence, it is more appropriate to study time-between-events

models instead.

2.3 Statistical Methods for Time-Between-Events
Data

For a recurrent event process N(t), let Tj be the jth gap time between jth and

(j + 1)th events for j = 1, 2, . . . , and denote by X(t) some associated covari-

ate history prior to time t. Parametric transitional probability models and

parametric frailty models can be studied using maximum likelihood methods,
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but these models lack flexibility and are less favored in practice compared

to non-parametric or semi-parametric approaches. Prentice, Williams, and

Peterson, 1981 also proposed a conditional proportional hazard model for

time-between-events data assuming

λN
{

t|N(t−) = j − 1,H(t), X(t)
}
= λ0j(t − tj−1)eX(t)Tβ j ,

where λ0j(t) and β j are possibly gap-specific baseline function and linear coef-

ficient. As a variation of the time-to-events model proposed in the same paper,

this model was also estimated using partial likelihood methods, and asymp-

totic properties were established using martingale theories. As a conditional

model, it is more appropriate to be used for prediction than for identifying

any population effects.

Time-between-events data can also be considered as clustered survival data.

Taking this perspective, Pena, Strawderman, and Hollander, 2001 proposed a

multiplicative frailty model extending the Cox’s proportional hazards model.

They assumed that

E
{

dN(t)|X(t), W
}
= W · λ0(t)eX(t)Tβ,

where W is some subject-specific frailty following some pre-specified para-

metric distribution, λ0(·) is the baseline hazard function, and β is the linear

coefficient. A common choice of frailty distribution is the gamma distribution

for computational convenience. This model deals with induced informative

censoring by jointly modeling gap times T1, T2, . . . through a parametric latent

variable, but bases analyses on unverifiable assumptions, and is less robust to
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various subject-level correlation structures.

In comparison, marginal models are more robust, and are useful when

researchers are interested in population-level effects of covariates, but lim-

ited techniques have been developed. Extending the accelerated failure time

model, Huang, 2002 proposed a marginal model estimated by an estimating

equation exploiting the additive property of gap times on the log-transformed

scale under the model assumption. Strawderman, 2005 also proposed an accel-

erated failure time model on gap times, and the methods were developed un-

der the strong assumption that gap times are independent conditional on some

baseline covariates. Following risk-set methods, Wang and Chen, 2000 pro-

posed a class of non-parametric estimators for the marginal survival function

of exchangeable recurrent gap times, and the method was extended by Huang

and Chen, 2003 to the regression model λ{t|X(0)} = λ0(t) exp
{

X(0)Tβ
}

,

where X(0) is some baseline covariate. This model is a natural extension of

the classic proportional hazard model, and solves the problem of induced

dependent censoring by leaving out the last gap time except when only one

gap time is observed for a subject. Similar methods were developed assuming

different model forms by Sun, Park, and Sun, 2006, Darlington and Dixon,

2013 and Ding and Sun, 2017. However these models only allow the use of

baseline covariates and assume exchageability between gap times, and are

therefore inapplicable when there exist temporal trends or when longitudinal

covariates are collected and are of scientific interest. Models and methods

dealing with these issues are yet to be developed.
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Chapter 3

Optimal Decision Rule for
Combining Multiple Biomarkers
into Tree-based Classifier and its
Evaluation

3.1 Introduction

Biomarkers, or biological markers, refer to measurements of a specific feature

as depiction of a biological state, used for diagnosis concerning biological

or pathogenic processes, or of pharmacologic responses to a treatment in-

tervention. Biomarkers used for disease diagnosis are also referred to as

prognostic markers. Tools that investigate the performance of a single prog-

nostic biomarker, such as receiver operating characteristic curve (ROC) and

area under curve (AUC), have been well studied. In real applications, multiple

markers are commonly collected, but it remains a question how to optimally

combine multiple markers for predicting disease outcome. ROC for single
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marker is well-defined, because both TP(·) and FP−1(·) are well-defined func-

tions, a nice property that is not naturally inherited when we have multiple

markers. A common practice that deals with this problem is to combine multi-

ple markers linearly, so that multiple markers are reduced to one “combined"

marker. Methods to optimally combine markers in a linear fashion have been

studied under various model assumptions for predicting binary disease out-

comes. For examples, the Neyman-Pearson lemma can be connected to the

optimality of risk score and the result was brought to the attention of statistical

literature by McIntosh and Pepe, 2002; Pepe and Thompson, 2000 and Pepe,

Cai, and Longton, 2006 studied linear discriminant analysis, logistic regres-

sion, and direct optimization of area under receiver operating characteristic

curve.

However, a composite marker formed by linear combination lacks flex-

ibility and may not be relevant when markers are combined from different

domains. In contrast, a non-linear combination using tree-based methods

could be more flexible and interpretable, which, specially, is already being

commonly used in biomedical applications. For example, when several tests

are performed on a patient, one possible practice is to diagnose him or her

as diseased if all the test results are positive. Besides, tree-based structures

handle correlation between markers with a more nonparametric and flexible

manner than linear structures.

While evaluating the performance of a single biomarker using ROC or

AUC is straightforward, doing so for a general tree involves additional dif-

ficulty, because the true positive and false positive rate functions are not
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well-defined. To study upper boundary of this band, Baker, 2000 considered

discretized positivity region to evaluate marker performance based on a utility

function. For continuous markers, to estimate the upper boundary curve of

the ROC band based on two markers, Jin and Lu, 2009 proposed a bivariate

kernel estimator to estimate the upper boundary curve of the ROC band but

indicated the unstable performance of their estimator. In general, when multi-

ple markers are used with a tree-based classifier, the quantile function of false

positive rate is not one-to-one and the area under the upper boundary curve

does not possess the interpretation as AUC in the single marker case. Wang

and Li, 2012; Wang and Li, 2013 proposed a population-averaged ROC curve

together with a weighted AUC as tools to evaluate the performance of multi-

ple markers using tree classifiers. Of note, Wang and Li’s work focused on the

population-averaged performance of ROC and AUC, which is substantially

different from the aim of this work, which is to search for and estimate the

optimal prediction performance of a fixed classification tree structure.

3.2 Fixed Tree Classifier and its Representation

We consider some fixed tree structure denoted by T that uses multiple markers

and allows cutoff values to vary at nodes for classification of some binary

outcome Y = 0 or 1, and we refer to it as a tree classifier, or simply as a tree

when there is no confusion. Denote by X = (X1, . . . , XK)
T ∈ SX the markers

used as splitting covariates, by x̃ = (x̃1, . . . , x̃K)
T ∈ SX a generic realization

of corresponding markers, and by c = (c1, . . . , cK)
T ∈ Sc the corresponding

varying cutoff values. Tree classifiers of this type are commonly used in
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biomedical researches due to their flexibility and interpretability, but there is a

lack of methods for finding optimal cutoff values at each node and evaluating

a tree’s prediction performance. Part of the difficulties in developing these

methods lie in the lack of algebraic representations of trees that can be used in

an extendable statistical framework.

To overcome this, we first observe that, despite various graph structures, a

tree’s classifying behavior is solely determined by the marker space attributed

to Y = 1 (the positive group) when cutoff values are given. Formally, define

positivity region R(c; X, T) to be the set of x̃ classified positive (Y = 1) by

tree T given cutoff values c of marker X. Two trees, T1 using markers X1 and

T2 using X2, with different graph representation are considered identical in

terms of classification if for every c1 there exists c2 such that R(c1; X1, T1) =

R(c2; X2, T2) and vice versa. Therefore it is sufficient to study the positivity

region of a tree. The second observation is that if we consider the collection

of bifurcated marker spaces created at each node, the final positivity region

can be obtained by performing intersection and union operations over a

sub-collection of these sets. Intuitively, any tree classification rule can be

represented as individual classification rule of the form “Xk > ck" or “Xk < ck"

linked by “and" and “or" logical operators.

To find a standard representation, we first consider leaf nodes assigned

Y = 1 and index these nodes by j = 1, . . . , J. Denote by Rj(c; X, T) the marker

region attributed to Y = 1 by the jth leaf node, and we have R(c; X, T) =

∪J
j=1Rj(c; X, T). Then consider the nodes “traveled" from root node to the jth

leaf node, and suppose markers Xk for k ∈ κj are used for data splitting at
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M1 > m1

M2 > m2

F

M2 > m3
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0
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1

T

Figure 3.1: Example of a tree classifier that uses three markers M1, M2 and M3, but
has four splitting nodes thus four cutoff values to optimize.

these traveled nodes. We can assume without loss of generality that at each

node we obtain the marker space satifying Xk > ck, as we can always reverse

the sign of a marker. This implies that Rj(c; X, T) = ∩k∈κj

{
x̃ ∈ SX : x̃k > ck

}
,

which yields what we call the standard representation of positivity region in

the following form:

R(c; X, T) = ∪J
j=1

[
∩k∈κj

{
x̃ ∈ SX : x̃k > ck

}]
.

For further simplification, we assume that κj’s are disjoint and ∪J
j=1κj ={

1, . . . , K
}

, because if there exists any repeatedly used marker, we can add

one or more additional copies of it to the initial marker vector X under consid-

eration along with appropriate modification to SX and Sc. For simplicity, we

sometimes write set
{

x̃ ∈ SX : x̃k > ck
}

as
{

Xk > ck
}

.
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Now we illustrate the derivation of a fixed tree’s standard representa-

tion using the tree classifier as shown in Figure 3.1. Suppose supports of

(M1, M2, M3) and (m1, m2, m3) are both Euclidean space R3. Three leaf nodes

are classified as group 1, which we index by 1, 2, 3 going from left to right.

Marker spaces attributed to 1 by three leaf nodes are

{
M1 < m1

}
∩
{

M2 > m2
}

,

{
M1 > M1

}
∩
{

M2 < m3
}
∩
{

M3 > m4
}

and

{
M1 > m1

}
∩
{

M2 > m3
}

respectively. After changing signs and adding additonal copies of marker

when the marker is used repeatedly, we obtain

R1(c; X, T) =
{

X1 > c1
}
∩
{

X2 > c2
}

,

R2(c; X, T) =
{

X3 > c3
}
∩
{

X4 > c4
}
∩
{

X5 > c5
}

,

R3(c; X, T) =
{

X6 > c6
}
∩
{

X7 > c7
}

,

where X = (X1, . . . , X7)
T = (−M1, M2, M1,−M2, M3, M1, M2)

T and c =

(c1, . . . , c7)
T = (−m1, m2, m1,−m3, m4, m1, m3). Correspondingly, we have

SX =
{

x ∈ R7 : x1 = −x3 = −x6, x2 = −x4 = x7
}

and Sc =
{

c ∈ R7 :

c1 = −c3 = −c6, c4 = −c7
}

. With these specification we obtain the standard

representation for tree in Figure 3.1 as

R(c; X, T) = ∪3
j=1

[
∩k∈κj {x̃ ∈ SX : x̃k > ck

}]
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for c ∈ Sc, where κ1 =
{

1, 2
}

, κ2 =
{

3, 4, 5
}

, and κ3 =
{

6, 7
}

.

3.3 Receiver Operating Characteristic Band and Op-
timal Receiver Operating Characteristic Curve

Having identified a standard representation of a tree classifier, we are now

ready to generalize the definitions of true positive rate and false positive

rate in the single marker scenario. We consider continuous marker vector

X ∈ SX ⊂ RK for the simplicity of discussions, but all results can be extended

to include discrete ordinal markers with some minor technical modifications.

For positivity region R(c; X, T) we define

TPR(c) = IP
{

X ∈ R(c; X, T)|Y = 1
}

,

FPR(c) = IP
{

X ∈ R(c; X, T)|Y = 0
}

.

We also generalize the inverse of TPR and FPR to set-valued functions

TPR−1(t) =
{

c ∈ Sc : TPR(c) = t
}

,

FPR−1(t) =
{

c ∈ Sc : FPR(c) = t
}

,

for t ∈ [0, 1], which further implies the generalization of ROC curve to what

we call the ROC band (ROCB) as the graph of set-valued function

ROCB(t) = TPR
{

FPR−1(t)
}
=

{
TPR(c) : FPR(c) = t

}
.

It was referred to as a “band" since with the generalization using set-valued

functions, for each false positive rate there exists multiple true positive rates,
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Figure 3.2: ROC band generated for marker X ∈ R2 in prediction of binary outcome
Y = 0, 1, where X follows bivariate standard normal conditional on Y = 0, and
bivariate normal with mean vector (1, 1)T, marginal variances 0.5 and correlation 0
conditional on Y = 1. A subject is classified to have outcome Y = 1 if both marker
values exceed some threshold.

and overall the ROCB function spans a band over [0, 1].

What an ROC band captures is the range of prediction performance for a

fixed tree classifier – given a cutoff value, the TPR and FPR pair then falls on

the ROC band. If practitioners randomly choose the cutoff values, the average

prediction performance in the population can be depicted by measures like

those proposed in Wang and Li, 2013. However, it is of more practical interest

to study the upper boundary of the ROC band, which captures the “best"

performance possible using given tree classifier.

See Figure 3.2 for the ROC band generated by simulation for marker X ∈

R2 combined using the “and" operator, where X follows bivariate standard
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normal contional on Y = 0, and bivariate normal distribution with mean

vector (1, 1)T, marginal variances 0.5 and correlation 0 conditional on Y = 1.

This setup is intended to mimic possible distributions of two independently

informative biomarkers for some disease – in the non-disease population

biomarkers are lower on average, but there is great heterogeneity, while

in the diseased population biomarkers are higher on average but have less

heterogeneity. A subject is considered diseased if most marker values exceed

some threhold. When FPR is at 0.2, the corresponding TPR ranges from

approximately 0.55 to 0.8. If a practitioner wants to have a FPR no greater

than 0.2 but then chooses cutoff values without being further informed, he

or she could end up with a TPR anywhere between 0.55 and 0.8, risking to

lose a lot of efficiency and resources. It is therefore desirable to find, or to

approximate “optimality" – the cutoff values that give us the highest TPR for

some given FPR.

Due to the optimality implication of the ROC band upper boundary, we

refer to it as the optimality ROC curve, which is formally defined as the graph

of function

OROC(t) = sup ROCB(t) = sup
{

TP(c) : FP(c) = t
}

for t ∈ [0, 1]. Intuitively, the area under optimality ROC curve (AUOROC) can

then be used to evaluate the overall optimal prediction performance of a tree

with varying TPR and FPR, and we define it to be

AUOROC =
∫ 1

0
OROC(t) dt. (3.1)
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The ROC band and the optimality ROC curve have some interesting prop-

erties that can be linked to the ROC curve. It is easy to establish the equivalent

definition

OROC(t) = sup
{

TP(c) : FP(c) ≤ t
}

, (3.2)

and to show that OROC(t) is monotonically increasing in t. Similar to ROC

curve, we have

ROCB(0) = 0, ROCB(1) = 1, OROC(0) = 0, and OROC(1) = 1,

and that both the ROC band and the optimality ROC curve degenerates to the

ROC curve in the single marker scenario. It can also be shown that OROC(t)

is continuous and monotonically increasing in t.

3.4 Empirical Estimation of Optimal Receiver Op-
erating Characteristic Curve

Suppose we observe data consisting of (xi, yi) for i = 1, . . . , n that are n i.i.d.

copies of (X, Y). For positivity region R(c; X, T) of given tree classifier T, we

can estimate TPR and FPR empirically as

T̂PR(c) =
∑n

i=1 1I
{

xi ∈ R(c; X, T), yi = 1
}

∑n
i=1 1I(yi = 1)

,

F̂PR(c) =
∑n

i=1 1I
{

xi ∈ R(c; X, T), yi = 0
}

∑n
i=1 1I(yi = 0)

.
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These two estimators can then be plugged into (3.2) and (3.1) to obtain empiri-

cal estimator of OROC and AUOROC as

ÔROC(t) = sup
{

T̂PR(c) : F̂PR(c) ≤ t
}

,

ˆAUOROC =
∫ 1

0
ÔROC(t) dt.

We prove the following result for estimators ÔROC(t) and ˆAUOROC in

Section 3.9.

Theorem 1. ÔROC(t) is uniformly strongly consistent for OROC(t), that is,

sup
t

⏐⏐ÔROC(t)− OROC(t)
⏐⏐ → 0

almost surely. As a result, ˆAUOROC is strongly consistent for AUOROC.

However, not only is statistical inference difficult to obtain, the estimators

also have non-negligible positive biases, issues both arising from the use of

supremum in the definition of OROC(t). An intuitive explanation comes from

the asymptotic behavior of ÔROC(t) when cutoff values, and thus t, have

discrete support. Suppose cj’s for j = 1, . . . , J are some cutoff values such that

T̂PR{c(j)} for j = 1, . . . , J are all possible true positive rates when F̂PR{c(j)}

is equal to some constant, and TPR{c(j)} forms an increasing sequence. Each

T̂PR{c(j)} is asymptotically normal, and the Jensen’s inequality then implies

that the expectation of ÔROC(t) is greater than that of T̂PR{c(J)}, which

converges to TPR{c(J)}. For these biases to be small, an unrealistically large

sample size is needed. But even if one could collect a sample of sufficient size,

one faces computational difficulties because computational complexity of the
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estimators grows at the rate of nK. This is a rate exponential in K, implying

the infeasibility in applying the empirical estimators to even only slightly

complicated tree classifiers like the example in Figure 3.1 with K = 7.

3.5 Semi-Parametric and Rank-Based Estimation

Taking an optimization perspective, the problem we are interested in is to find

those c ∈ Sc such that

TPR(c) = OROC(t), and FPR(c) = t (3.3)

for any given t ∈ [0, 1], and to estimate OROC(t) with identified optimal

cutoff values. Equation (3.3) implies

TPR(c)− OROC
{

FPR(c)
}
= 0,

which inspires us to define function

m(c) = TPR(c)− OROC
{

FPR(c)
}

,

a continuous mapping from Sc to R whose solution graph forms some hyper-

surface S ⊂ Sc. Our goal then translates into identifying those c ∈ S such

that FPR(c) = t and evaluating function value TPR(c). We refer to S as the

optimality hypersurface due to its connection to the optimality ROC curve.

This optimality hypersurface could have highly complicated structure

and it is unrealistic and often impossible to derive closed forms for various

distributions and tree classifiers. Even for the simple example as shown

in Figure 3.2, we are not able to obtain closed form formula for OROC(t)
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and thus not for m(c). Instead of deriving closed form of m(c) under some

distributional assumption on (X, Y), we consider a class H of curves that

are likely to lie in the optimality hypersurface. We would want this class to

be large enough so that it likely contains a curve from S and that when it

does not, it contains a curve that is close enough to S under some distance

measure; we would also want this class to be structural enough to give us

some theoretical properties and insights.

With these goals, we propose to assume that there exists in the optimal-

ity hypersurface a curve from the class of curves H with the parametric

representation (in the context of calculus terminology rather than statistics

terminology)

hk(ck; θ) = c0, for k = 1, . . . , K, (3.4)

for continuous and monotonically increasing functions hk(·; θ) : R → R

indexed by p-dimensional parameter θ ∈ Θ ⊂ Rp. For identifiability and

without loss of generality we can take h1(·; θ) to be the identity mapping.

For choices of H, we can take hk(·; θ) to be continuous and monotonically

increasing piece-wise linear functions with knots at percentiles, polynomial

function, or smooth spline functions, all commonly used to approximate

general continuous functions. In practice, we can even introduce some tuning

parameters so that the parametrization is adapted to specific data structure.

For instance, we can use as tuning parameters the number of knots for piece-

wise linear functions, degree of polynomial for polynomials, and smoothness

penalty parameter for smooth splines. Parametrizations can be highly flexible
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and tailored to context with appropriate specification. Assume that θ0 indexes

a curve belonging to the optimality hypersurface S .

We obtain some interesting insights under this assumption. For c ∈ Sc

satisfying (3.4) and FPR(c) = t, some algebra gives us

TPR(c) = IP
{

X ∈ R(c; X, T)|Y = 1
}

= IP
(
∪J

j=1

[
∩ k ∈ κj

{
Xk > ck}

]⏐⏐Y = 1
)

= IP
(
∪j=1

[
∩k∈κj

{
hk(Xk; θ0) > c1

}]⏐⏐Y = 1
)
.

Writing ∨ for taking maximum over a set, and ∧ for minimum over a set, we

further derive from the last display that

TPR(c) = IP
[
∨J

j=1

{
∧k∈κj hk(Xk; θ0)

}
> c1

⏐⏐Y = 1
]
.

Therefore when H indeed contains a curve indexed by θ0 that belongs to

the optimality hypersurface S , the optimality ROC curve corresponding to

positivity region R(c; X, T) is exactly the ROC curve of random variable

H(X; θ0) = ∨J
j=1

{
∧k∈κj hk(Xk; θ0)

}
.

Derivations above can also be used to show that θ indexes a class of random

variables H(X; θ) whose ROC curves fall on the ROC band. The definition of

OROC(t) further implies that θ0 maximizes AUC of H(X; θ), which is equiv-

alent to the concordance probability of correctly ranking two observations
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(Hanley and McNeil, 1982). That is,

θ0 ∈ argmax
θ∈Θ

S(θ),

where

S(θ) = IP
{

H(X; θ) > H(X′; θ)|Y = 1, Y′ = 0
}

,

(X′, Y′) being an independent and identical copy of (X, Y).

These properties inspire us to consider estimator

θ̂ ∈ argmax
θ∈Θ

Sn(θ),

where

Sn(θ) =

(
n
2

)−1 n−1

∑
i=1

n

∑
i<i′=2

[
1I
{

H(xi; θ) > H(xi′ ; θ), yi > yi′
}
+

1I
{

H(xi; θ) < H(xi′ ; θ), yi < yi′
}]

=
1

n0n1

n0

∑
i=1

n0+n1

∑
i′=n0+1

1I
{

H(xi; θ) < H(xi′ ; θ)
}
× 2n0n1

n(n − 1)
,

which is proportional to the empirical counterpart of concordance probability

S(θ) based on observed data (xi, yi), i = 1, . . . , n, where yi = 0 for i = 1, . . . , n0

and yi = 1 for i = n0 + 1, . . . , n0 + n1 = n. Asymptotic properties of θ̂ are

discussed in Section 3.6.

When H does contain a curve from the optimality surface, we identify

the best classification rule with the given tree structure. Further, if the tree

structure under investigation actually yields the globally optimal rule when

cutoff values are chosen appropriately, H(X; θ0) is then the overall optimal
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decision rule for classification, and we have

IP(Y = 1|X) = g
{

H(X; θ0)
}

for some monotonically increasing function g, or equivalently

Y = 1I
{

H(X; θ0) + Ui
}

,

where Ui’s are some i.i.d. errors. This model is a variation of the general linear

model proposed by Han, 1987.

When H does not contain any curve that comes from the optimality surface

S , we have a misspecified model but θ0 still indexes a random variable of the

form H(X; θ) that has an AUC closest to AUOROC. With appropriate model

tuning, we expect the difference to be small and that the random variable

H(X; θ̂) has an ROC curve that is close to the optimality ROC curve.

3.6 Asymptotic Properties and Statistical Inference

We study and present asymptotic properties of θ̂ in this section. Write Z =

(XT, Y)T and the support of Z as SZ. For a generic vector z = (xT, y)T ∈ SZ

and θ ∈ Θ, we define

τ(z; θ) = E
[
H(x; θ) > H(X; θ), y > Y

]
+ E

[
H(x; θ) < H(X; θ), y < Y

]
.
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For some function f (θ), denote

∇m f (θ) =
∂m f (θ)

∂θm ,

⏐⏐∇m f (θ)
⏐⏐ = ∑

⏐⏐⏐∂m f (θ)
∂θm

⏐⏐⏐,
for m = 1, 2. Weak convergence of θ̂ is then established in the following

Theorem.

Theorem 2. Under regularity conditions given in Section 3.9, we have

n1/2(θ̂ − θ0) → N(0, V−1∆V)

in distribution, where

2V = EZ
{
∇2τ(Z); θ0

}
,

∆ = EZ
{
∇1τ(Z; θ0) · ∇1τ(Z; θ0)

T}.

Consistent estimators of V and ∆ can be constructed by numerical deriva-

tives as discussed in Sherman, 1993. Specifically, let
{

ϵn
}∞

n=1 denote a se-

quence of real numbers going to zero as n → ∞, and denote by uj ∈ Rp a

vector that has one as its jth component and zeros elsewhere. Define

τn(z; θ) =
n

∑
i=1

{
g(z, zi; θ) + g(zi, z; θ)

}
,

where

g(z1, z2; θ) = 1I
{

H(x1; θ) > H(x2; θ), y1 > y2
}

,

and z1 = (xT
1 , y1)

T, z2 = (xT
2 , y2)

T ∈ SZ. We can then estimate ∆ by ∆̂ =
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(
δ̂jl
)

p×p, where for j, l = 1, . . . , p,

δ̂jl =
n

∑
i=1

q̂j(zi; θ̂) · q̂l(zi; θ̂),

q̂j(z; θ) = ϵ−1
n ·

[
τn(z; θ + ϵnuj)− τn(z; θ)

]
.

We can similarly estimate V by V̂ =
(
v̂jl

)
p×p, where for j, l = 1, . . . , p,

2v̂ij =
n

∑
i=1

r̂jl(zi; θ̂),

r̂jl(z; θ) =ϵ−2
n ·

[
τn
{

z; θ + ϵn(uj + ul)
}
− τn(z; θ + ϵnuj)

− τn(z; θ + ϵnul) + τn(z; θ)
]
.

Again by arguments in Sherman, 1993, ∆̂ is consistent when n1/2ϵn → ∞

and V̂ is consistent when n1/4ϵn → ∞, implying the reasonable choices of ϵn.

However, it can be tricky to choose a proper bandwidth ϵn in practice, because

the empirical objective function could be not sufficiently small, especially

when sample size is small. Choosing too small or too large a bandwidth

would result in numerical instability or estimation bias. An alternative is to

use bootstrap techiniques (Efron and Tibshirani, 1994) to approximate the

asymptotic distribution of θ̂ for statistical inferences.

After obtaining an estimate θ̂ of θ0 using the training sample
{
(xi, yi) : i =

1, . . . , n
}

, we can estimate AUOROC using an independent testing sample
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{
(xi, yi) : i = n + 1, . . . , n + n′} as

ˆAUOROC =
n+n′−1

∑
i=n+1

n+n′

∑
i<i′=2

[
1I
{

H(xi; θ̂) > H(xi; θ̂), yi > yi′
}
+

1I
{

H(xi; θ̂) < H(xi; θ̂), yi < yi′
}]

×

{ n+n′

∑
i=n+1

1I(yi = 0)×
n+n′

∑
i=n+1

1I(yi = 1)
}−1.

To construct confidence intervals for estimated prediction performance of

obtained classification rule, we use bootstrap techniques again. Generate

testing samples indexed by b = 1, . . . , B and obtain ˆAUOROCb. (1 − α)%

confidence intervals can then be constructed using (α/2)% and (1 − α/2)%

percentiles of
{ ˆAUOROCb

}B
b=1. Finally, we can derive optimal cutoff values

as

c =
{

c1, h−1
2 (c1; θ̂), . . . , h−1

K (c1; θ̂)
}T,

and c1 is further determined by requirements on false positive rate, true

positive rate, or some other measure of loss.

3.7 Simulation Studies

3.7.1 Simulation with Correctly Specified Model

We conduct simulation studies to evaluate finite sample performance of pro-

posed estimator when the model is correctly specified. Specifically we generate
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i.i.d. (Xi, Yi) for i = 1, . . . , n following the relationship

Yi = 1I
{

H(Xi; θ0) + Ui > 0
}

,

where Xi is a three-dimensional marker vector following normal distribu-

tion with mean (0, 0, 0)T, marginal variances 10 and covariances 10ρ. We take

H(X; θ0) = min(θ01X1 + θ02, θ03X2 + θ04, X3), where θ0 = (θ01, θ02, θ03, θ04)
T =

(1,−1, 2, 0.5)T, and Ui ∼ N(2, δ2). Under this data generating scheme, the

optimality hypersurface contains a curve that has parameter representation

(c3 + 1, c3/2 − 1/4, c3),

for c3 ∈ R. Also, probability of Yi = 1 is monotone in H(Xi; θ0), implying that

the ROC curve of random variable H(Xi; θ0) corresponds to the optimality

ROC curve of tree classifier with positivity region

R(c; X, T) = ∩3
k=1

{
Xk > ck

}
,

where c = (c1, c2, c3)
T ∈ R3. Various scenarios are considered varying δ2 =

1, 3, ρ = 0.2, 0.5, 0.8 and n = 50, 100, 200. We report empirical bias, empirical

standard error, empirical mean of standard error estimates, and empirical

95% confidence interval coverage probability of estimator θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4)
T,

calculated over 1,000 replications. All variances were calculated through

bootstrap over 10,000 samples.

Simulation results are summarized in Tables 3.1, 3.2 and 3.3. We can see

that the estimators are slightly biased; the bootstrapped standard error esti-

mates is close to empirical standard error, and the difference becomes smaller
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Table 3.1: Simulation summary statistics for θ̂ when ρ = 0.2

δ2 = 1 δ2 = 3

θ̂1 θ̂2 θ̂3 θ̂4 θ̂1 θ̂2 θ̂3 θ̂4

n = 50

Bias 0.061 0.024 0.041 -0.067 0.065 -0.003 0.084 -0.089
ESE 0.405 0.498 0.435 0.578 0.643 0.728 0.628 0.784
MSE 0.380 0.448 0.411 0.486 0.534 0.637 0.587 0.671
CP 0.926 0.903 0.915 0.905 0.910 0.905 0.910 0.908

n = 100

Bias 0.075 0.022 0.033 -0.081 0.079 0.006 0.073 -0.119
ESE 0.373 0.443 0.399 0.485 0.554 0.694 0.593 0.749
MSE 0.450 0.505 0.447 0.586 0.539 0.693 0.607 0.766
CP 0.944 0.945 0.940 0.916 0.935 0.938 0.938 0.928

n = 200

Bias 0.032 0.022 0.017 -0.020 0.053 -0.048 0.084 -0.045
ESE 0.289 0.377 0.310 0.396 0.368 0.639 0.468 0.579
MSE 0.407 0.459 0.394 0.525 0.482 0.664 0.549 0.718
CP 0.966 0.942 0.963 0.951 0.968 0.931 0.957 0.943

Note: Bias is the empirical bias; ESE is the empirical standard error; MSE is the
empirical mean of standard error estimates; CP is the empirical coverage probability
of 95% confidence intervals.

as sample size increases; the 95% confidence interval coverage probability

converges to 0.95, and is generally close enough to 0.95 when sample size is

as large as 200. We would expect the performance of estimators to further

improve with even larger sample sizes.

3.7.2 Simulation with Misspecified Model

We conduct another set of simulation studies to evaluate the finite sample bias

of estimated AUOROC using proposed methods when the model is misspeci-

fied. Specifically we generate bivariate marker Mi = (Mi1, Mi2)
T associated

with binary outcome Di, i.i.d. for i = 1, . . . , n, where Mi’s follow bivariate
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Table 3.2: Simulation summary statistics for θ̂ when ρ = 0.5

δ2 = 1 δ2 = 3

θ̂1 θ̂2 θ̂3 θ̂4 θ̂1 θ̂2 θ̂3 θ̂4

n = 50

Bias 0.094 0.010 0.016 -0.068 0.060 -0.023 0.051 -0.034
ESE 0.495 0.527 0.487 0.555 0.622 0.699 0.640 0.737
MSE 0.372 0.433 0.406 0.465 0.517 0.618 0.579 0.649
CP 0.899 0.896 0.903 0.901 0.898 0.901 0.913 0.906

n = 100

Bias 0.096 0.008 0.034 -0.087 0.074 -0.078 0.141 -0.098
ESE 0.409 0.491 0.445 0.491 0.626 0.886 0.703 0.763
MSE 0.485 0.526 0.478 0.612 0.565 0.721 0.641 0.774
CP 0.940 0.922 0.930 0.939 0.947 0.918 0.936 0.925

n = 200

Bias 0.059 0.014 0.031 -0.058 0.089 -0.054 0.121 -0.119
ESE 0.326 0.393 0.331 0.416 0.541 0.731 0.574 0.746
MSE 0.461 0.480 0.434 0.573 0.529 0.701 0.601 0.750
CP 0.962 0.953 0.959 0.951 0.949 0.931 0.955 0.939

Note: Bias is the empirical bias; ESE is the empirical standard error; MSE is the
empirical mean of standard error estimates; CP is the empirical coverage probability
of 95% confidence intervals.

normal distribution with mean 0, variance 1 and covariance ρ in the subgroup

of Di = 0, and follow bivaraite normal distribution with mean µ, variance 0.5

and covariance 0.5ρ when Di = 1. The prevalence of Di = 1 is 0.5. We consider

two tree classifiers to combine the markers – the “and" tree that classifies a sub-

ject as positive if both marker values exceed some thresholds, and the “or" tree

that classifies a subject as positive if either marker value exceeds some thresh-

old. Since there is no closed form solution for the true AUOROC under these

scenarios, we calculate the empirical AUOROC, denoted by ˆAUOROC
emp

,

using method as described in Section 3.4 in a simulated large dataset with
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Table 3.3: Simulation summary statistics for θ̂ when ρ = 0.8

δ2 = 1 δ2 = 3

θ̂1 θ̂2 θ̂3 θ̂4 θ̂1 θ̂2 θ̂3 θ̂4

n = 50

Bias 0.075 -0.019 0.029 -0.039 0.051 -0.040 0.038 0.005
ESE 0.491 0.505 0.510 0.652 0.559 0.688 0.634 0.740
MSE 0.348 0.401 0.388 0.416 0.497 0.574 0.562 0.604
CP 0.900 0.905 0.893 0.893 0.868 0.874 0.883 0.890

n = 100

Bias 0.109 -0.035 0.067 -0.089 0.016 -0.018 0.097 -0.056
ESE 0.512 0.529 0.501 0.625 0.617 0.834 0.706 0.833
MSE 0.521 0.551 0.529 0.636 0.581 0.716 0.664 0.770
CP 0.927 0.927 0.931 0.916 0.914 0.913 0.924 0.933

n = 200

Bias 0.098 -0.052 0.079 -0.073 0.090 -0.116 0.224 -0.169
ESE 0.396 0.609 0.537 0.489 0.737 1.039 0.887 1.041
MSE 0.641 0.608 0.585 0.763 0.608 0.795 0.709 0.819
CP 0.969 0.956 0.962 0.953 0.935 0.930 0.940 0.937

Note: Bias is the empirical bias; ESE is the empirical standard error; MSE is the
empirical mean of standard error estimates; CP is the empirical coverage probability
of 95% confidence intervals.

sample size 5,000. Due to the consistency of the empirical AUOROC esti-

mator, simulated AUOROC is numerically close enough to the true value,

but computational difficulties in calculating ˆAUOROC
emp

as discussed in

Section 3.4 limited our simulation studies to only two markers. We then use

proposed rank-based methods to search for the optimal splitting criteria using

piece-wise linear function as hk’s. Knots of piece-wise linear functions are

chosen to be evenly distributed over the range of marker, and the numbers

of knots are selected from 0 to 5 according to 5-fold cross validations. We

choose the class of piece-wise linear functions for illustration because it is

one of the most generic and simple approximations for continuous functions.
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Table 3.4: Summary statistics for simulation when model is misspecified

µ = 0.5 µ = 1

ρ = 0 ρ = 0.3 ρ = 0.7 ρ = 0 ρ = 0.3 ρ = 0.7

“and" tree

ˆAUOROC
emp

0.744 0.723 0.691 0.876 0.855 0.824

n = 50 0.667 0.635 0.605 0.816 0.779 0.741
n = 100 0.664 0.635 0.611 0.821 0.780 0.737
n = 200 0.660 0.625 0.596 0.824 0.781 0.747

“or" tree

ˆAUOROC
emp

0.663 0.652 0.650 0.803 0.789 0.787

n = 50 0.645 0.641 0.631 0.792 0.787 0.776
n = 100 0.648 0.647 0.643 0.793 0.790 0.782
n = 200 0.649 0.649 0.650 0.794 0.790 0.788

The prediction performance of the estimated rule is then evaluated using an

independently generated large testing set of sample size 5,000. Again, this

sample size is large enough so that we approximately obtain the true predic-

tion power of the estimated rule. We consider different scenarios varying

µ = 0.5, 1, ρ = 0, 0.3, 0.7 and training sample size n = 50, 100, 200, and report

the empirical average of approximated AUOROC estimated using methods

in Section 3.5 over 1,000 replication. Since it is more appropriate to consider

the expectation of a logistic-transformed AUOROC that ranges over the entire

real line, we calculate the empirical average as

expit
{ 1

1000

1000

∑
k=1

logit( ˆAUOROCk)
}

,

where ˆAUOROCk is the approximated AUOROC for the kth simulation repli-

cation, expit(x) = ex/(1 + ex) and logit(x) = log
{

x/(1 − x)
}

.

44



Simulation results are summarized in Table 3.4, showing that the bias of

estimated AUOROC is reasonably small in all cases investigated, especially

for the “or" tree structure. For the “and" tree structure, we expect the biases

to be further improved by using another function class H that better fits the

data.

3.8 Data Analysis: Biomarker Prediction Performance
for 5-Year Progression using BIOCARD Study
Data

The BIOCARD (BIOCARD: Biomarkers of Cognitive Decline Among Normal

Individuals) study is an active longitudinal study that follows a cohort of

349 initially cognitively normal individuals for progression of mild cognitive

impairment (MCI) and dementia related to Alzheimer’s Disease, and collects

annual cognitive and biannual MRI and CSF scans and blood specimens since

study initiation in 1995 at National Institute of Health until 2005 and after

reinitiation at Johns Hopkins in 2009. The overarching goal of the study is to

identify predictors of cognitive decline among normal individuals.

Using BIOCARD study data, we illustrate proposed methods by evaluating

predictive performance of several tree classifiers combining markers collected

at baseline for the binary outcome of whether an individual progressed to MCI

within 5 years. Markers from four domains are considered: baseline age and

ApoE-4 status from the demographic domain, Digital Symbol Substitution Test

and Wechsler Adult Scale from the cognitive test domain, right hippocampus

volume and right entorhinal cortex thickness from the MRI domain, Abeta
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and P-Tau from the CSF domain. These markers are selected because they are

indicated in previous analyses to be predictive of progression from normal to

MCI or dementia (Moghekar et al., 2013, Albert et al., 2014, Soldan et al., 2015)

or are marginally associated with our binary outcome of interest. Analysis

results of this type can potentially be used in clinical trials studying treatment

of Alzheimer’s Disease to recruit subjects that are at higher risk of MCI in the

near future, and thus improving efficacy of statistical analysis and reducing

cost of study by targeting people at greater risk of progression.

We investigate three sets of tree structures combining available markers.

Due to the constraints on model complexity imposed by the small sample

size and especially the small number of cognitive impairment cases, we study

tree classifiers combining no more than three markers or markers coming

from no more than two regions. For the first set of tree classifiers, we follow

the general philosophy of diagnosing cognitive impairment in practice that

uses the “or" operation to combine markers within the same domain, and

the “and" operation to combine domains. For the second set, we consider

the alternative logic that combines markers using “and" within domain and

combines domains using “or". For the third set of tree classifiers, we consider

combinations of top correlated markers with the outcome, under both the

general philosophy and the alternative in treating domains. See Tables 3.5, 3.6

and 3.7 for a detailed description of tree structures studied.

Out of 224 subjects with available marker information, we include in the

analyses 218 subjects that are observed to have either progressed within 5

years from baseline, which is referred to as positive, or remained cognitively
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Table 3.5: Descriptions of tree classifiers in the first set

Tree classifier name Description of positivity criteria

Demo Subject passes some cutoff age or is an ApoE-4
carrier.

Cog Subject’s Digital Symbol Substitution Test or
Wechsler Adult Scale are below some thresholds.

MRI Subject’s right hippocampus volume or right
entorhinal cortex thickess are below some thresholds.

CSF Subject’s Abeta falls below some threshold or P-Tau
passes some threshold.

Demo and Cog Subject is classified as positive by both the Demo and
the Cog tree.

Demo and MRI Subject is classified as positive by both the Demo and
the MRI tree.

Demo and CSF Subject is classified as positive by both the Demo and
the CSF tree.

Cog and MRI Subject is classified as positive by both the Cog and
the MRI tree.

Cog and CSF Subject is classified as positive by both the Cog and
the CSF tree.

MRI and CSF Subject is classified as positive by both the MRI and
the CSF tree.
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Table 3.6: Descriptions of tree classifiers in the second set

Tree classifier name Description of positivity criteria

Demo* Subject passes some cutoff age and is an ApoE-4
carrier.

Cog* Subject’s Digital Symbol Substitution Test and
Wechsler Adult Scale are both below some
thresholds.

MRI* Subject’s right hippocampus volume and right
entorhinal cortex thickess are both below some
thresholds.

CSF* Subject’s Abeta falls below some threshold and
P-Tau passes some threshold.

Demo* or Cog* Subject is classified as positive by the Demo* or the
Cog* tree.

Demo* or MRI* Subject is classified as positive by the Demo* or the
MRI* tree.

Demo* or CSF* Subject is classified as positive by the Demo* or the
CSF* tree.

Cog* or MRI* Subject is classified as positive by the Cog* or the
MRI* tree.

Cog* or CSF* Subject is classified as positive by the Cog* or the
CSF* tree.

MRI* or CSF* Subject is classified as positive by the MRI* or the
CSF* tree.
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Table 3.7: Descriptions of tree classifiers in the third set

Tree classifier name Description of positivity criteria

Top1 Subject’s Digital Symbol Substitution Test is below
some threshold.

Top2 Subject’s Digital Symbol Substitution Test is below
some threshold, and subject’s P-Tau passes some
threshold.

Top3 Subject’s Digital Symbol Substitution Test is below
some threshold, and subject’s P-Tau passes some
threshold or Abeta falls below some threshold.

Top2* Subject’s Digital Symbol Substitution Test is below
some threshold, or subject’s P-Tau passes some
threshold.

Top3* Subject’s Digital Symbol Substitution Test is below
some threshold, or subject’s P-Tau passes some
threshold and Abeta falls below some threshold.

normal beyond 5 years, which is referred to as negative (the reduced risk set,

Kaplan and Meier, 1958). The dataset is equally split into a training set on

which the optimal rule is estimated, and a testing set on which the prediction

performance of estimated rule is evaluated. For estimating the optimal rule,

function hk’s are taken to be piece-wise linear functions with knots evenly

spread over the range of corresponding covariate, and the numbers of knots

are selected from 0 to 2 by five-fold cross validations. We choose to use piece-

wise linear functions because it is the one of the most generic approximation

of continuous functions and has proven to yield good approximations of

AUOROC under many scenarios in our simulation study in Section 3.7.2.

We choose covariate with the strongest marginal Kendall’s tau correlation
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with outcome as the “reference" that corresponds to index k = 1. The logic

behind this choice is that there always exists some parameter value θ̃ such

that markers other than the reference marker are effectively not contributing

to classification, which means that tree structures including more markers

always perform better than the reference marker in the population. After

obtaining the estimates θ̂ and thus the optimal rule for given tree classifier, we

evaluate ˆAUOROC, that is the estimated AUC of H(X; θ̂) in association with

outcome, as the measure of prediction performance. 95% confidence intervals

of ˆAUOROC given estimated optimal rules are obtained by bootstrapping on

the testing set over 10,000 samples. We also report sensitivities and specificities

maximizing Youden’s Index (Youden, 1950) as an illustration of one posssible

way to utilize the analysis results in practice – having chosen a cutoff value, the

complete classification rule that yields correponding sensitivity and specificity

can be constructed. See Table 3.8 for a summary of these analysis results. ROC

curves of the composite marker variables H(X; θ̂) are given in Figures 3.3,

3.4, and 3.5. P-values comparing the predictive powers of tree classifiers are

plotted in the form a heatmap in Figure 3.6, where a darker color indicates a

smaller p-value. We can see that CSF and cognitive are the most predictive

domains using the “or" combination within domain, and they often improves

prediction on top of another domain. The MRI domain on the other side, is the

least predictive using either the “and" or “or" combination within domain, and

often adds more noise than predictive power on top of another domain. Of

note, analysis results indicate serious overfitting issues when more than two

markers are used, mostly due to the small number of cases in the BIOCARD

dataset (10 in training sample, and 8 in testing sample). While allowing more
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Table 3.8: Summary statistics of BIOCARD analysis tree evaluation results

Tree classifier ˆAUOROC 95% CI Sensitivity Specificity
Demo 0.710 (0.514, 0.902) 0.625 0.810
Cog 0.759 (0.527, 0.942) 0.875 0.640
MRI 0.646 (0.417, 0.844) 0.750 0.660
CSF 0.813 (0.569, 0.968) 0.875 0.750

Demo and Cog 0.731 (0.523, 0.894) 0.875 0.620
Demo and MRI 0.654 (0.481, 0.814) 0.875 0.380
Demo and CSF 0.652 (0.392, 0.880) 0.625 0.810
Cog and MRI 0.747 (0.526, 0.924) 0.875 0.590
Cog and CSF 0.788 (0.577, 0.949) 0.875 0.740
MRI and CSF 0.653 (0.417, 0.844) 0.375 0.930

Demo* 0.625 (0.507, 0.904) 0.500 0.940
Cog* 0.749 (0.522, 0.924) 0.875 0.640
MRI* 0.645 (0.400, 0.862) 0.625 0.730
CSF* 0.746 (0.581, 0.899) 0.875 0.540

Demo* or Cog* 0.873 (0.753, 0.970) 0.750 0.870
Demo* or MRI* 0.736 (0.504, 0.914) 0.625 0.860
Demo* or CSF* 0.719 (0.661, 0.908) 0.625 0.910
Cog* or MRI* 0.691 (0.554, 0.816) 0.875 0.500
Cog* or CSF* 0.801 (0.626, 0.944) 0.750 0.840
MRI* or CSF* 0.741 (0.571, 0.894) 0.750 0.630

Top1 0.759 (0.538, 0.925) 0.875 0.640
Top2 0.749 (0.531, 0.915) 0.875 0.740
Top3 0.787 (0.570, 0.948) 0.875 0.740
Top2* 0.751 (0.521, 0.938) 0.875 0.620
Top3* 0.734 (0.524, 0.906) 0.875 0.600

flexibility, our proposed rank-based method does require sufficient sample

size to be effective.
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Figure 3.3: ROC curves of composite marker variable corresponding to tree classifiers
in the first set.
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Figure 3.4: ROC curves of composite marker variable corresponding to tree classifiers
in the second set.
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Figure 3.5: ROC curves of composite marker variable corresponding to tree classifiers
in the third set.
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55



3.9 Proofs of Asymptotic Results

3.9.1 Proof of Theorem 1

Denote by F0 the distribution function of (X, Y). Let A(F) be the correspond-

ing OROC(·) of a general distribution function F, where A is some functional.

Also let T(F) = supt∈[0,1]

⏐⏐A(F)(t)− A(F0)(t)
⏐⏐. By continuity, we have that

if a sequence of distribution functions
{

Fn
}∞

n=1 converges uniformly to F0,

then A(Fn) converges to A(F0) point-wise. Now we further show that the

convergence is uniform. By monotonicity of OROC(·), for any δ > 0, there

exsits a sequence 0 = t0 < t1 < · · · < tL = 1 such that

⏐⏐A(F0)(ql)− A(F0)(ql−1)
⏐⏐ < δ,

for l = 1, . . . , L. This implies that for any t ∈ [tl−1, tl] we have

⏐⏐A(Fn)(t)− A(F0)(t)
⏐⏐

≤max
{⏐⏐A(Fn)(ql)− A(F0)(t)

⏐⏐, ⏐⏐A(Fn)(tl−1)− A(F0)(t)
⏐⏐}

≤max
{⏐⏐A(Fn)(ql)− A(F0)(ql)

⏐⏐, |A(Fn)(ql−1)− A(F0)(ql−1)|
}
+ δ.

Therefore we have

sup
t∈[0,1]

⏐⏐A(Fn)(t)− A(F0)(t)
⏐⏐ ≤ max

l=0,...,L

⏐⏐A(Fn)(ql)− A(F0)(ql)
⏐⏐+ δ.

Let n → ∞ in the last display, we show that

lim
n→∞

sup
t∈[0,1]

⏐⏐A(Fn)(t)− A(F0)(t)
⏐⏐ ≤ δ.
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Further let δ → 0, and we prove the uniform convergence of T(Fn) → T(F0).

Finally because empirical estimators of F0 converges uniformly and almost

surely (Van Der Vaart and Wellner, 1996), we prove results of Theorem 1.

3.9.2 Proof of Theorem 2

To establish asymptotic properties of proposed estimator θ̂, we impose the

following regularity assumptions.

Assumption 1. Vector θ0 is an interior point of compact set Θ ∈ Rp that

indexes a series of continuous and monotonically increasing functions hk(·; θ0)

for k = 1, . . . , K.

Assumption 2. We assume that SX, the support of X, is an open set in a

possibly lower rank subspace of RK.

Assumption 3. Let N denote a neighborhood of θ0. We then make the follow-

ing assumptions:

(i) For each z ∈ SZ, all second order partial derivatives of τ(z; θ) exist on

N ;

(ii) There exists an integrable function M(z) such that for all z ∈ SZ and

θ ∈ N , we have

∇2τ(z; θ)−∇2(τ; θ0)
 ≤ M(z) · ∥θ − θ0∥;

(iii) EZ
[
∥∇1τ(Z; θ0)∥2

1
]

and EZ
⏐⏐∇2

⏐⏐τ(Z; θ0)
⏐⏐ are finitely upper bounded;

(iv) Matrix EZ
[
∇2τ(Z; θ0)

]
is negative definite.
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Assumption 4. hk(·; θ) comes from a finite dimensional vector space of func-

tions for k = 1, . . . , K.

Under Assumption 3, θ0 uniquely maximizes S(θ) locally in a neighbor-

hood. Following arguments in Han, 1987 or by uniform strong convergence

of U-statistics, there exists a sequence of solutions θ̂ that that converge almost

surely to θ0. Next, we prove asymptotic normality.

Consider a class of functions G =
{

g(·, ·; θ) : θ ∈ Θ
}

, where

g(z1, z2; θ) = 1I
{

H(x1; θ) > H(x2; θ), y1 > y2
}

for z1, z2 ∈ SZ. Given consistency, it is sufficient to show that the set of

subgraphs of functions belonging to G forms a VC class of sets. For each

θ ∈ Θ we have that

subgraph
{

g(·, ·; θ)
}

=
{
(z1, z2, t) ∈ SZ ⊗ SZ ⊗R : 0 < t < g(z1, z2; θ)

}
=
{

y1 − y2 > 0
}
∩
{

t ≥ 1
}c ∩

{
t > 0

}
∩

∪J
j1=1 ∩

J
j2=1 ∩k1∈κj1

∩k2∈κj2

{
hk1(x1,k1 ; θ) > hk2(x2,k2 ; θ) > 0

}
.

By Assumption 4 and Lemmas 2.4 and 2.5 in Pakes and Pollard, 1989,
{

subgraph(g); g ∈

G
}

forms a VC class of sets, thus proving Theorem 2.
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Chapter 4

Semi-Marginal and
Semi-Parametric Analysis for
Recurrent Gap Time with
Time-Dependent Covariates

4.1 Introduction

In this chapter, we study gap times between successive recurrent events of the

same type, a data structure that is often of scientific interest in applications

such as hospitalizations, HIV opportunistic infections, and menstrual cycle

studies. To facilitate our discussion, we introduce the following notations. Let

i be the index of a subject, and j be the index of an event. For subject i, let

Tij be the gap time from event j − 1 to event j, j = 1, 2, . . . , and without loss

of generality, let Ti0 = 0 represent the time origin. Using the notation of gap

times, we may assume the recurrent event process starts from Ti0 = 0, and a

study subject experiences recurrent events of interest at times Ti0, Ti0 + Ti1, . . . ,

since time origin, and remains under observation until occurrence of censoring
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at time Ci. We consider the regression of gap time Tij, and let Xij ∈ Rp be

covariates corresponding to Tij. We allow Xij to be either baseline, or time-

dependent, and are thus able to include time trends into covariate information.

In real data applications, it is often true that there exist heterogeneity

among subjects and correlation among gap times within subject. Not only

does this correlation structure need to be taken into account when modeling,

it also induces informative censoring on gap times except the first one. To

see this, let Ni(t) = ∑∞
j=1 1I(Tij ≤ t), t > 0, be the point process associated

with recurrent events for subject i. Consider the simple case when Xij is

time-invariant, that is, Xij = Xi for all j, and when censoring Ci is conditional

independent of process Ni(·), given Xi. Each gap time Tij is then censored by

Cij = min
{

Ci − ∑
j−1
k=0 Tik, 0

}
, which is in general correlated with Tij for j ̸= 0

even after conditioning on Xi. To deal with induced informative censoring,

a frailty model was proposed by Pena, Strawderman, and Hollander, 2001

to account for correlations within subject, the idea of which can be traced

back to Aalen and Husebye, 1991. Focusing on time to event instead, Prentice,

Williams, and Peterson, 1981 proposed full conditional model for the recurrent

event process. Compared with frailty models that base analyses on unveri-

fiable assumptions and full conditional models, marginal models are more

robust to subject-level correlation structure, and are useful when researchers

are interested in population-level effect of covariates. Due to these advantages,

a semi-marginal model is adopted in this work, in the sense that the model

is marginal and leaves the correlation between gap times within the same

subject completely unspecified, except for the conditioning on the location
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of last recurrent event. To be more specific, let Lij = ∑
j−1
k=0 Tik for j = 1, 2, . . . ,

represent the elapse from time origin to the (j − 1)th event, a variable that

captures the “location" of a subject in the progression of the recurrent event

process. After the inclusion of Lij as part of the covariates in the gap time

regression model, independent censoring is obtained given covariates. Com-

pared with other marginal regression models such as that proposed in Huang

and Chen, 2003, our method do not require the assumption on exchangeability

of gap times within subject, and is therefore more suitable for modeling time

trend and the effect of time-varying covariates.

4.2 Semi-Marginal Regression Model

Denote by D0
ij = (Tij, Lij, Xij) the variables measured at jth gap time for sub-

ject i, and let D0
i = (D0

i1, D0
i2, . . . ) be the multivariate recurrent event process

for subject i. Suppose (D0
i , Ci)’s follow some i.i.d. distribution for i = 1, . . . , n.

For simplicity of writing, we denote Zij =
{

XT
ij , ϕi(Lij)

}T to be a set of covari-

ates including last event location information, where ϕi(·) is a pre-specified

transformation function allowed to be subject-specific and vector-valued. It

is assumed that Tij is correlated with Lij on the transformed scale. Denoting

λij(t; Xij, Lij) to be the hazard of Tij given (Xij, Lij), we propose the following

semi-marginal model:

(M1) λij(t; Xij, Lij) = λ0(t)e
ZT

ij θ0 ,
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where θ0 is regression coefficient, and λ0(·) is a non-negative baseline haz-

ard function shared by gap times within the same subject. Included in the

regression covariates are covariates that can be baseline or specific to each

recurrent event, and specially, Lij, a variable that indicates the location of an

occurrence in the recurrent event process of a subject. Model (M1) is semi-

marginal in the sense that model assumptions are made not conditional on

full history, or given underlying frailty that captures subject heterogeneity,

but only conditional on the location of the last observed event. The location

variable is incorporated to resolve the induced dependency between Cij and

Tij, and allows the model to capture time trend.

Since the proposed model is semi-marginal, the existence of a sensible full

model which guarantees the validity of the semi-parametric model deserves

further examination. The existence of a full model for marginal proportional

hazard model to hold turns out to be a non-trivial point, as the common

practice of using multiplicative random effect on hazard may not work. That

is, if we adopt the widely used frailty model

λ(t; Xij, Lij, Wi) = Wiλ0(t)e
ZT

ij θ0 , (4.1)

then there is no non-degenerate Wi that yields desired model (M1). To see this,

first observe that (M1) can be expressed as a semi-transformation model

g(Tij) = −ZT
ij θ0 + Eij, (4.2)

where g(t) = log Λ0(t) = log
∫ t

0 λ0(u) du is the log transformed cumulative
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baseline hazard function, and Eij has extreme density f (x) = ex−ex
, condi-

tional on Zij. We require that Eij’s be independent across different i’s, but

possibly correlated within the same i. For (4.1) to yield (M1), it is then required

that Eij − log Wi have extreme density f (x). This condition is satisfied only

when Wi is degenerated to 1, that is, Wi = 1, which does not allow correlation

between gap times within the same subject.

To generate data from a non-degenerate full model, the error terms need to

be generated sequentially. Specifically, we start from generating independent

error terms Ei1 and covariate Zi1 = {XT
i1, ϕi(0)}T for i = 1, . . . , n, and get

Ti1 = g−1(−ZT
i1θ0 + Ei1). Given generated data (Zi1, Ei1, Ti1), . . . , (Zij, Eij, Tij),

we obtain Li,j+1 = Lij + Tij, and generate independent Xi,j+1, and then Ei,j+1

such that it is independent of Li,j+1 and Xi,j+1, but, for instance, correlated

with Eij. This is in a sense an autocorrelation 1 structure of error terms and

can be replaced by other structures.

4.3 Estimation Based on Weighted Pairwise Com-
parison

We first describe the observed data under consideration. Write ∆ij = 1I(Tij ≤

Cij) to be the censoring indicator of gap time Tij, and denote by Yij the mini-

mum of gap time Tij and censoring time Cij. Define Ji = max
{

j : ∑
j−1
k=1 Tij <

Ci
}

, such that Ti,Ji−1 is the last uncensored gap time for subject i. We note that

for j > Ji all gap times are censored by 0 yielding Yij = Cij = 0, and Zij are

actually unobserved and can be denoted to have value zero without loss of

generality. Denote the observed data for subject i at jth occurrence of recurrent

66



event by Dij = (Yij, Lij, Xij, ∆ij), and the collection of events for subject i by

Di = (Di1, Di2, . . . ). In this paper we consider continuous Tij and assume the

existence of upper limit τ > 0 such that IP(Cij ≥ τ) > 0 for j = 1, . . . , Ji. We

consider the conditional indepdent right censoring mechanism under which

Ci is indepdendent of Tij conditional on Xij.

We formulate the problem from a point process perspective, and consider

the observed gap time process Nij(t) = 1I(Yij ≤ t)∆ij. Also denote by Rij(t) =

1I(Yij ≥ t) the at-risk process. Define σ-filed for the jth event of subject i at

time t as

Fij,t = σ
{

1I(Yij ≤ u, ∆ij = 1), 1I(Yij ≤ t, ∆ij = 0), Xij, Lij : 0 ≤ u ≤ t
}

.

Based on model and censoring assumptions, we have for t > 0,

E
{

dNij(t)
⏐⏐Cij > 0,Fij,t−

}
= Rij(t)e

ZT
ij θ0 dΛ0(t).

Denote Mij(t) = Nij(t)− Rij(t)Λ0(t)e
ZT

ij θ0 , and observe that E
{

dMij(t)|j ≤

Ji,Fij,t−
}
= 0 and that Mij(t) ≡ 0 for j > Ji. Now consider pairwise compari-

son function

h(Dij, Di′ j′ ; θ) =Q(Zij, Zi′ j′)
∫ τ

0
Rij(t)Zij dNij(t) + Ri′ j′(t)Zi′ j′ dNi′ j′(t)−

Rij(t)Zije
ZT

ij θ
+ Ri′ j′(t)Zi′ j′e

ZT
i′ j′ θ

Rij(t)e
ZT

ij θ
+ Ri′ j′(t)e

ZT
i′ j′ θ

{
dNij(t) + dNi′ j′(t)

}
,

for some bounded function Q. With some algebra we obtain that for i, i′ =
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1, . . . , n and j, j′ = 1, . . . , J

h(Dij, Di′ j′ ; θ0) =Q(Zij, Zi′ j′)
∫ τ

0
Rij(t)Zij dMij(t) + Ri′ j′(t)Zi′ j′ dMi′ j′(t)−

Rij(t)Zije
ZT

ij θ0 + Ri′ j′(t)Zi′ j′e
ZT

i′ j′ θ0

Rij(t)e
ZT

ij θ0 + Ri′ j′(t)e
ZT

i′ j′ θ0

{
dMij(t) + dMi′ j′(t)

}
,

which yields that

E
{

h(Dij, Di′ j′ ; θ0)
}
= 0.

Under some mild regularity conditions, E[|h(Dij, Di′ j′ ; θ0)|] is finitely upper

bounded. Then Fubini’s lemma further implies that

E
[ ∞

∑
j=1

∞

∑
j′=1

h(Dij, Di′ j′ ; θ0)
]
=

∞

∑
j=1

∞

∑
j′=1

E
[
h(Dij, Di′ j′ ; θ0)

]
= 0

whose empirical counterpart is an unbiased estimating equation

Un(θ) =
1

n(n − 1)

n

∑
i=1

∑
i′ ̸=i

Ji

∑
j=1

Ji′

∑
j′=1

h(Dij, Di′ j′ ; θ) = 0.

We obtain its solution as estimator θ̂.

For estimating cumulative baseline hazard Λ0(t) we adopt the Nelson-

Aalen estimator modified as follows for t ∈ [0, maxi,j Cij]:

Λ̂0(t) =
∫ t

0

∑n
i=1 ∑Ji

j=1 dN1ij(u)

∑n
i=1 ∑Ji

j=1 Rij(u)e
ZT

ij θ̂
,

which was inspired by the equality

E
[ ∞

∑
j=1

{
dNij(t)− Rij(t)e

ZT
ij θ0 dΛ0(t)

}]
= E

[ Ji

∑
j=1

{
dNij(t)− Rij(t)e

ZT
ij θ0 dΛ0(t)

}]
= 0
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for t > 0, as implied by Fubini’s lemma when E
[
|dNij(t)−Rij(t)e

ZT
ij θ0 dΛ0(t)|

]
is finitely upper bounded under some mild conditions.

4.4 Asymptotic Properties

In this section, we discuss asymptotic properties of proposed estimator (θ̂, Λ̂0).

Strong consistency of θ̂ is shown in Appendix by utilizing monotonicity and

strong consistency (to zero) of Un(θ). Define for i = 1, . . . , n,

φ(Di; θ) =2 · E
[ Ji

∑
j=1

Ji′

∑
j′=1

h(Dij, Di′ j′ ; θ)
⏐⏐Di

]
where i, i′ are distinct indices. By Taylor’s expansion and central limit theorem

for U-statistics, we show in Section 4.7 that n1/2Un(θ) is asymptotically normal

and can be written as

n1/2Un(θ) = n−1/2
n

∑
i=1

φ(Di; θ) + oP(1),

under some regularity conditions. Further, define matrices

Γ = E
[∂ φ(Di; θ0)

∂ θ

]
,

Σ = E
[
φ(Di; θ0) φ(Di; θ0)

T],
and it can then be shown that Γ is negative definite and therefore invertible.

Applying Taylor’s expansion to Un(θ̂) at θ0, and using the asymptotic nor-

mality of n1/2Un(θ0), we show that n1/2(θ̂ − θ0) is asymptotically normal

with mean zero and variance Γ−1 Σ Γ−T, and the variance can be consistently
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estimated by Γ̂−1 Σ̂ Γ̂−T, where

Γ̂ =
1
n

n

∑
i=1

∂ φ̂(Di; θ̂)

∂ θ
,

Σ̂ =
1
n

n

∑
i=1

φ̂(Di; θ̂) φ̂(Di; θ̂)T.

Here φ̂(Di; θ) = 2
n−1 ∑i′ ̸=i ∑Ji

j=1 ∑
Ji′
j′=1 h(Dij, Di′ j′ ; θ) is the empirical estimator

of φ(Di; θ).

To study the weak convergence of V(t) = n1/2{Λ̂0(t)− Λ0(t)
}

(t ∈ [0, τ]),

we show in Section 4.7 that the process V(t) is asymptotically equivalent to

n−1/2 ∑n
i=1 ψi(t), where

ψi(t) =
∫ t

0

∑Ji
j=1 dMij(t)

s0(u, θ0)
−

∫ t

0

s1(u, θ0)

s0(u, θ0)
dΛ0(u) · Γ−1φ(Di; θ0),

and

s0(t, θ) = E
[ Ji

∑
j=1

Rij(t)e
ZT

ij θ], s1(t, θ) = E
[ Ji

∑
j=1

Rij(t)Zije
ZT

ij θ].
By multivariate central limit theorem and a proof of tightness similar to Lin

et al., 2000, we establish in Section 4.7 that n1/2{Λ̂0(t)− Λ0(t)
}

for t ∈ [0, τ]

converges weakly to mean-zero Gaussian process with covariance function

W(s, t) = E
[
ψi(s)ψi(t)T]. We also show in Section 4.7 that W(s, t) can be

consistently estimated by Ŵ(s, t) = n−1 ∑n
i=1 ψ̂i(s) ψ̂i(t)T, where

ψ̂i(t) =
∫ t

0

∑Ji
j=1 dM̂ij(u)

Ŝ0(u, θ̂)
−

∫ t

0

Ŝ1(u, θ̂)

nŜ0(u, θ̂)2
dN̄(u) · Γ̂−1 φ̂(Di; θ̂),

70



and

Ŝ0(t, θ) =
1
n

n

∑
i=1

Ji

∑
j=1

Rij(t)e
ZT

ij θ,

Ŝ1(t, θ) =
1
n

n

∑
i=1

Ji

∑
j=1

Rij(t)Zije
ZT

ij θ,

N̄(t) =
n

∑
i=1

Ji

∑
j=1

Nij(t),

M̂ij(t) =Nij(t)− Rij(t)Λ̂0(t)e
ZT

ij θ̂.

Confidence intervals and confidence bands of estimators can then be con-

structed following routine proccedures. Specifically, let zα/2 be the upper

100α/2 percentile of standard normal distribution. Then for any linear trans-

formation of θ̂, ℓ θ̂, an approximate 1 − α confidence interval can be con-

structed as ℓ θ̂ ± n−1/2zα/2ℓ Γ̂−1 Σ̂ Γ̂−T ℓT. Based on asymptotic distribution

on the log transformed scale, an approximate 1 − α point-wise confidence

interval for Λ0(t) can be constructed as

Λ̂0(t) exp
{
± n−1/2zα/2Ŵ(t, t)1/2/Λ̂0(t)

}
,

and confidence bands over interval [t1, t2] (0 < t1 < t2 ≤ τ) can be con-

structed as discussed in Lin et al., 2000, by generating standard normal ran-

dom variables G1, . . . , Gn and using n−1/2 ∑n
i=1 ψ̂i(t)Gi as an approximation

for n−1/2 ∑n
i=1 ψi(t) .
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4.5 Simulation Studies

We conduct simulation studies to investigate the finite sample performance of

proposed estimators and to validate our theoretical results. We simulate gap

times Tij for subjects indexed by i = 1, . . . , n, such that Tij has semi-marginal

hazard function

λ(t; Xi, Lij) = λ0(t)eθ1Xi+θ2Lij ,

where λ0(t) = 0.3 · 1I(0 ≤ t ≤ 1) + 0.2 · 1I(t ≥ 1), and θ1 = θ2 = 1. Baseline

covariate Xi is generated from uniform distribution over [0, 5], and Lij =

∑
j−1
k=1 Lik + Tij where Li0 is generated from uniform distribution over [0, 1].

We also induce correlation between gap times for the same individual by

considering the alternative form of simulated model

g(Tij) = −θ1Xi − θ2Lij + Eij,

where g(t) = log Λ0(t), and Eij = log
[
− log{1 − Φ(ϵij)}

]
where ϵij follows

standard normal and Φ(·) is its distribution function. Error ϵij’s are generated

sequentially such that ϵij is independent of (Xi, Lij). Correlation between ϵij

and ϵij′ is set to be some constant s if |j − j′| = 1, and 0 if otherwise. We

generate independent censoring Ci from uniform distribution over [1, 1 + A]

for some constant A to control the number of recurrent events experienced by

subjects. Various scenarios are considered varying s = 0.3 or 0.5, A = 0.5 or

1, and n = 50, 100 or 200. We report empirical bias, empirical standard error,

empirical mean standard error estimates, and empirical coverage probabil-

ity 95% confidence intervals under each scenario over 1,000 replications of
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simulations in Table 4.1.

Simulations show that in all scenarios as sample size grows, bias converges

to zero, empirical mean of standard error gets closer to empirical standard

error, and coverge probability goes to 95%, which corroborates theoretical

results in Section 4.4. We also observe that convergence rate is faster when

correlation between errors is smaller, and biases in parameter and standard

error estimates are both generally smaller when subjects are observed to

experience more events on average. This makes sense as with small s and

larger A, one would expect to obtain more information from observed data.

In most cases when sample size is as large as 100, bias becomes ignorable and

mean standard error estimate well approximates the empirical standard error.

4.6 Data Analysis: CPCRA ddI/ddC Trial

We illustrate proposed methods and estimators by analyzing data from a

randomized clinical trial conducted by Terry Beirn Community Programs for

Clinical Research on AIDS, a federally funded national network of community-

based research groups. The study compared didanosine (ddI) and zalcitabine

(ddC) as treatments for HIV-infected patients who were intolerant or had

failed treatment with zidovudine. The outcome of interest is the gap time

between opportunistic events1 and we include in the analysis patients that

have experienced at least one opportunistic event after randomization.

1Opportunistic events considered are: candidiasis, CMV disease, cryptococcosis, cryp-
tosporidiosis, histoplasmosis, Herpes Simplex virus infection, hist of Herpes zoster, my-
cobacterium avium complex (MAC), other mycobacterial infection, pneumocystis pneumonia
(PCP), Progressive multifocal leukoencephalopathy (PML), tuberculosis, toxoplasmosis, lym-
phoma, Kaposi’s Sarcoma, AIDS dementia complex (ADC), and wasting syndrome.
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Table 4.1: Simulation summary statistics for θ̂1, θ̂2 and log Λ̂0(0.1)

s = 0.3 s = 0.5

θ̂1 θ̂2 log Λ̂0(0.1) θ̂1 θ̂2 log Λ̂0(0.1)

A = 0.5, J̄ = 4.4

n = 50

Bias 0.019 0.100 -0.130 0.019 0.161 -0.166
ESE 0.107 0.382 0.497 0.116 0.419 0.535
MSE 0.097 0.341 0.531 0.102 0.375 0.560
CP 0.922 0.893 0.964 0.902 0.878 0.957

n = 100

Bias 0.007 0.075 -0.073 0.003 0.146 -0.103
ESE 0.075 0.254 0.346 0.079 0.283 0.370
MSE 0.070 0.247 0.346 0.075 0.273 0.367
CP 0.932 0.928 0.951 0.934 0.885 0.945

n = 200

Bias 0.006 0.065 -0.040 -0.002 0.138 -0.075
ESE 0.051 0.175 0.227 0.056 0.195 0.246
MSE 0.051 0.176 0.234 0.054 0.194 0.251
CP 0.950 0.931 0.944 0.940 0.902 0.950

A = 1, J̄ = 5.8

n = 50

Bias 0.013 0.036 -0.069 0.015 0.065 -0.088
ESE 0.091 0.246 0.420 0.099 0.278 0.460
MSE 0.084 0.226 0.526 0.089 0.253 0.542
CP 0.916 0.925 0.978 0.902 0.913 0.976

n = 100

Bias 0.006 0.026 -0.035 0.004 0.057 -0.044
ESE 0.064 0.174 0.293 0.070 0.194 0.320
MSE 0.061 0.164 0.322 0.065 0.185 0.341
CP 0.931 0.928 0.968 0.921 0.922 0.964

n = 200

Bias -0.003 0.024 -0.011 -0.001 0.053 -0.023
ESE 0.044 0.117 0.195 0.047 0.134 0.214
MSE 0.044 0.117 0.210 0.047 0.132 0.226
CP 0.948 0.946 0.962 0.946 0.927 0.963

Note: Bias is the empirical bias; ESE is the empirical standard error; MSE is the
empirical mean of standard error estimates; CP is the empirical coverage probability
of 95% confidence intervals. J̄ is the empirical averaged number of events
experienced by one subject.
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Out of 467 subjects in this study, 363 are included in our analysis, among

which 172 received ddI treatment and 191 received ddC treatment. In addition

to the treatment variable, AIDS diagnosis indicator is available at baseline

– 276 subjects were diagnosed with AIDS and 87 subjects were only HIV

infected. Meanwhile, CD4 counts and Karnofsky performance scores (Mor

et al., 1984) were collected every two months starting from randomization.

Assuming linear change over every two-month interval, we calculate CD4

counts and karnofsky scores at events. We also obtain a quality-of-life score

at each event occurrence calculated based on Table II in Neaton et al., 1994 to

capture the severity of different types of opportunistic events. A lower value

in CD4 count and Karnofsky score indicates deterioration in health status,

while a higher quality-of-life score indicates higher severity of opportunistic

event experienced. Each subject contributed 1.5 gap times to the analysis on

average, and the number of gap times observed range from 1 to 5.

To model the gap time between events, we include in the regression model

as covariates the CD4 count, the Karnofsky score and the quality-of-life score

at last event occurrence. We also consider the effect of treatment, previous

diagnosis of AIDS, and their interaction. Used as the location variable Lij is

the time from randomization to last observed event occurrence. To take into

account the possible effect of randomization procedure on patients’ health

status, we introduce a “burn-in" period of three days, after which the patient

was expected to have recovered from any disturbance of the study and have

settled down to receive treatments. The effect of location variable is modeled

separately for within and after the “burn-in" period. Effects of all continuous
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Table 4.2: Analaysis results of CPCRA data under the main model

Variable Estimate 95% CI

Location within “burn-in" -0.12 (-0.33, 0.10)
Location after “burn-in" 2.85 (2.57, 3.12)*

CD4 count -0.09 (-0.29, 0.11)
Karnofsky score -0.04 (-0.27, 0.18)

Quality-of-life score 0.12 (-0.08, 0.32)
AIDS and ddI -0.58 (-1.21, 0.05) †

no AIDS and ddC -0.64 (-1.46, 0.18)
AIDS and ddC 1.17 (0.26, 2.08)*

Note: The reference level is set to be previous diagnosis of no AIDS and ddI
treatment. Statistical significance is marker by *, and marginal statistical significance
is marked by †.

variables are modeled on a properly log-transformed scale, and all continuous

covariates are standardized to have mean zero and standard deviation one

before model fitting for numerical stability. We assume that censoring is

independent of gap time given covariates. Although death is part of the

censoring, this assumption is made more valid by comprehensively including

covariates that capture dynamic health status of patients. We also fit another

model excluding CD4 count, Karnofsky score, and quality-of-life score as

covariates as a way of checking robustness of results and influence of possible

violation of indenpendent censoring assumption. We consider an estimate to

be statistically significant if it has a p-value no greater than 0.05, and consider

an estimate to be marginally significant if it has a p-value greater than 0.05

but no greater than 0.1.

Analysis results for linear coefficients under the main model are summa-

rized in Table 4.2. We observe that higher CD4 count and Karnofsky score at
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Table 4.3: Analaysis results of CPCRA data under the alternative model

Variable Estimate 95% CI

Location within “burn-in" -0.12 (-0.33, 0.09)
Location after “burn-in" 2.30 (2.02, 2.58)*

AIDS -0.51 (-1.15, 0.13)
ddC -0.57 (-1.39, 0.25)

AIDS and ddC 1.09 (0.18, 2.00)*

Note: The reference level is set to be previous diagnosis of no AIDS and ddI
treatment. Statistical significance is marker by *.

last event occurrence are associated with longer gap time until the next event,

and higher severity of opportunistic event experienced is associated with

shorter gap time. However these associations are not statistically significant.

There is a strong association, in both magnitude and statistial significance,

between time progression and gap time – the gap times between events be-

came shorter as time progressed after patients stabilized. This association has

proven to be robust to the inclusion and exclusion of other covariates, see

Table 4.3.

By testing for the differences between four groups defined by previous

diagnosis and treatment under the main model, we observe interesting ef-

fect of the interaction between the two binary variables. See Table 4.4 for a

summary of the testing results. In the HIV-infected group, ddC assigment is

associated with a longer gap time compared with ddI, but in the AIDS group,

ddC assignment is associated with a shorter gap time. Both associations are

marginally statistically significant.

We also estimate the cumulative baseline function under the main model,
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Table 4.4: Summary of hypothesis testing results comparing groups defined by
previous diagnosis and treatment received under main model.

HIV with ddI HIV with ddC AIDS with ddI AIDS with ddC

HIV with ddI / 0.58 (0.07)† 0.64 (0.13) 0.05 (0.88)
HIV with ddC -0.58 (0.07)† / 0.06 (0.87) -0.53 (0.01)*

AIDS with ddI -0.64 (0.13) -0.06 (0.87) / -0.59 (0.10)†

AIDS with ddC -0.05(0.88) 0.53 (0.01)* 0.59 (0.10)† /

Note: Test statistic is coefficient for the row group minus that for the column group.
P-values are in brackets. Statistical significance is marker by *, and marginal
statistical significance is marked by †.

which is plotted in Figure 4.1 along with point-wise 95% confidence intervals.

We can see that the hazard is almost constant over time, with a slight increase

around 60 days and a minor decrease near 120 days after randomization.

4.7 Proofs of Asymptotic Results

4.7.1 Regularity Assumptions

To study asymptotic properties of proposed weighted pairwise comparison

estimator, we impose the following regularity assumptions:

(1) We have θ0 ∈ Θ, where Θ is a compact subset of Euclidean space; and

λ0(t) is non-negative and upper bounded.

(2) Design Zij’s are bounded for all i and j.

(3) Weight function Q(z, z′) is a bounded positive function symmetric in z

and z′.
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Figure 4.1: Estimate of baseline cumulative hazard function for gap times between
opportunistic events using CPCRA data, along with point-wise 95% confidence
intervals, under main model.

(4) Matrix Σ is positive definite, and matrix E[∂h(Dij, Di′ j′ ; θ0)/∂θ] is nega-

tive definite.

Under these regularity conditions, we have the following main result.

Theorem 3. Under regularity conditions (1)-(4), θ̂ converges in probability to

θ0, and we further have n1/2(θ̂ − θ0)
D−→ N(0, Γ−1 Σ Γ−T).

Theorem 4. Under regularity conditions (1)-(4), n1/2{Λ̂0(t)− Λ0(t)
}

for t ∈

[0, τ] converges weakly to mean-zero Gaussian process with covariance func-

tion W(s, t) = E
[
ψi(s)ψi(t)T].

4.7.2 Consistency of θ̂

Define U(θ) = E[h(Dij, Di′ j′ ; θ)]. The consistency of θ̂ can be obtained by

showing that U(θ) = 0 has a unique solution at θ0, and that Un(θ) converges
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to U(θ) uniformly in θ. By arguments in Section 4.3, U(θ0) = 0. We now

show the uniqueness of solution θ0, and assume for now the negative semi-

definiteness of matrix Γ(θ) = ∂U(θ)/∂θ. Then by regularity assumption (5),

Γ(θ0) is negative definite, implying that θ0 is the unique solution of U(θ) = 0.

Now we show that matrix Γ(θ) is negative definite. Denote a⊗2 = a aT for

some vector a. We have

∂h(Dij, Di′ j′ ; θ)

∂θ
=Q(Zij, Zi′ j′)

∫ τ

0

{(Rij(t)Zije
ZT

ij θ
+ Ri′ j′(t)Zi′ j′e

ZT
i′ j′ θ

Rij(t)e
ZT

ij θ
+ Ri′ j′(t)e

ZT
i′ j′ θ

)⊗2

−
Rij(t)Z⊗2

ij eZT
ij θ

+ Ri′ j′(t)Z⊗2
i′ j′ e

ZT
i′ j′ θ

Rij(t)e
ZT

ij θ
+ Ri′ j′(t)e

ZT
i′ j′ θ

}
·
{

dNij(t) + dNi′ j′(t)
}

,

(4.3)

which is negative semi-definite. Therefore

Γ(θ) = E
[∂h(Dij, Di′ j′ ; θ)

∂θ

]
is negative semi-defnite. This completes the proof showing that U(θ) has a

unique solution at θ0. For future proofs, note that using an almost identical

argument replacing probability measure with empirical measure and true

coefficient value with estimator, we can show that matrix ∂Un(θ)/∂θ is also

negative semi-definite, thus implying that Un(θ) is monotone in θ.

Now combined with the boundedness of θ0 and Zij as imposed by regular-

ity assumptions (1) and (2), we obtain the result that

1
n(n − 1)

n

∑
i=1

∑
i′ ̸=i

J

∑
j=1

J

∑
j′=1

h(Dij, Di′ j′ ; θ) → U(θ),
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almost surely and point-wise in θ, as implied by the strong law of large num-

bers for U-statistics. By monotonicity of U(θ) and Un(θ) in θ and continuity

of U(θ), we show that Un(θ) converges almost surely to U(θ) uniformly in θ,

thus yielding θ̂ → θ0 almost surely. This completes the proof.

4.7.3 Asymptotic Normality of θ̂

By Taylor’s expansion and some algebra, we have

n1/2(θ̂ − θ0) = −∂Un(θ∗)

∂θ
· n1/2Un(θ0),

where θ∗ is on the line segment between θ̂ and θ0. Theorem 3 can then by

proved by showing that n1/2Un(θ0) converges in distribution to N(0, Σ), and

that ∂Un(θ∗)/∂θ converges in probability to Γ.

By central limit theorem for U-statistics, under boundedness assumptions

and implied by monotonicity and continuity of Un(θ) and φ(Di; θ) in θ, for

any θ ∈ Θ

n1/2Un(θ) = n−1/2
n

∑
i=1

φ(Di; θ) + oP(1). (4.4)

Specially, this implies that n1/2Un(θ0) converges in distribution to N(0, Γ),

and that

∂Un(θ∗)

∂θ
=

1
n

n

∑
i=1

∂φ(Di; θ∗)

∂θ
+ oP(1)

=
1
n

n

∑
i=1

∂φ(Di; θ0)

∂θ
+

1
n

n

∑
i=1

∂2φ(Di; θ∗∗)

∂θ2 · (θ∗ − θ0)
T + oP(1),

(4.5)

where θ∗∗ is on the line segment between θ∗ and θ0. By weak law of large
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numbers, n−1 ∑n
i=1 ∂φ(Di; θ0)/∂θ converges in probability to Γ. Since

n−1
n

∑
i=1

∂2φ(Di; θ∗∗)/∂θ2

is upper bounded uniformly, and θ∗ converges to θ0, the second term on

the rightmost side of last display converges to zero in probability. Therefore,

∂Un(θ∗)/∂θ converges to Γ in probability. This completes the proof of Theorem

3.

4.7.4 Consistency of Γ̂ and Σ̂

By arguments identical to those used for (4.5), the ∥Γ̂ − Γ∥ converges to zero

in probability. Similarly for Σ̂ we have

∥Σ̂ − Σ∥ ≤
 1

n

n

∑
i=1

φ(Di; θ̂) φ(Di; θ̂)− 1
n

n

∑
i=1

φ(Di; θ0) φ(Di; θ0)
+

 n

∑
i=1

φ(Di; θ0) φ(Di; θ0)− Σ


=
 1

n

n

∑
i=1

2 φ(Di; θ∗)
∂ φ(Di; θ∗)

∂ θ
· (θ̂ − θ0)

T
+

 n

∑
i=1

φ(Di; θ0) φ(Di; θ0)− Σ
,

where θ∗ is on the line segment between θ̂ and θ0. By uniform boundedness,

and combined with the result that θ̂ converges in probability to θ0, the first

term on the rightmost side of last display converges to zero. The third term

also converges to zero by weak law of large numbers for U-statistics. This

completes the proof showing that Σ̂ converges to Σ in probability.
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4.7.5 Weak Convergence of V(t) and Consistency of Ŵ(s, t)

We make the decomposition

V(t) =n1/2
{ ∫ t

0

dN̄(u)
nŜ0(u, θ0)

− Λ0(t)
}
+ n1/2

{ ∫ t

0

dN̄(u)
nŜ0(u, θ̂)

−
∫ t

0

dN̄(u)
nŜ0(u, θ0)

}

=n−1/2
n

∑
i=1

∫ t

0

d ∑Ji
j=1 Mij(u)

Ŝ0(u, θ0)
− n1/2

∫ t

0

dN̄(u)∑n
i=1 ∑Ji

j=1 Rij(u)Zije
ZT

ij θ∗{
∑n

i=1 ∑Ji
j=1 Rij(u)e

ZT
ij θ∗}2

· (θ̂ − θ0)

=V1 + V2,

where θ∗ is on the line segment between θ̂ and θ0.

By arguments similar to those in Appendix A.2 of Lin et al., 2000, V1 is

tight and equivalent to

n−1/2
n

∑
i=1

∫ t

0

d ∑Ji
j=1 Mij(u)

s0(u, θ0)
+ oP(1).

By Lemma 1 of Lin et al., 2000 and uniform strong law of large numbers for

i.i.d. sums and for U-statistics (Pollard, 1990; Nolan and Pollard, 1987), and

combined with the result of 4.7.3, V2 is tight and equals

−n1/2
n

∑
i=1

∫ t

0

s1(u, θ0)

s0(u, θ0)
dΛ0(u)Γ−1φ(Di; θ0) + oP(1).

This implies that V(t) is tight and equals n−1/2 ∑n
i=1 ψi(t) + oP(1), which

completes the proof of Theorem 4. By arguments similar to those in A.3 of Lin

et al., 2000 and 4.7.4, Ŵ(s, t) converges to W(s, t) in probability uniformly in s

and t.
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Chapter 5

Discussion

In this dissertation, we first consider a maximum rank correlation approach

to seek the optimal classification rule under a fixed tree structure for a binary

outcome. We establish a general representation for a classification tree struc-

ture, which allows the definition of ROC curves for a univariate marker to be

generalized to the ROC band and optimality ROC curve (OROC). The area

under OROC is also proposed to measure optimal predictive performance

for a tree structure. We then study a consistent estimator for the OROC, the

infeasibility of which then inspire us to propose the maximum rank correlation

approach through the parametrization of the so-called optimality hypersur-

face. Similation studies are carried out to evaluate finite sample performances

of proposed approach under both correctly specified and misspecified models.

Finally, we illustrate the use of the approach using the BIOCARD dataset.

The proposed methods are flexible and allows for the use of tuning param-

eters so that the estimation can be more tailored to specific data structures,

while guanranteeing computational feasibility. Large sample properties were

established under regularity conditions and validated through simulations.
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Simulation studies also show that the methods yield small biases in estimated

prediction performance under various scenarios even when the model is

misspecified. Given the wide use of fixed classification tree structures in

biomedical practices and research, the methods could provide physicians

and researchers with practical tools to obtain optimal decision rules for some

existing experience-based classification trees. Analysis results using these

methods could also be used in clinical trials to recruit individuals at higher

risk of disease, while saving resources and improving statistical efficacy of

analyses at a later stage.

For future work, the proposed methods can be extended to take into

account demographic variables by using functions hk(ck; θ0, W, β0) instead

of hk(ck; θ0). Here W is some additional demographic variables that do not

contribute directly to the classification, but define subgroups for which the

optimal cutoff values may vary. And β0 is some parameter for demographic

variables. It would also be interesting to develop variable selection techniques

for markers to be included in the tree structure, which could potentially

become an alternative of the greedy growing algorithm adopted by CART.

Another possible direction of future work is to extend the results for binary

outcomes to continous or even survival outcomes, as time-dependent ROC

approaches built upon Cox’s proportional hazard model have been developed

and adopted in biomedical research over recent years (Heagerty, Lumley,

and Pepe, 2000, Albert et al., 2018). Definitions of ROC band and OROC

could be extended to the time-dependent case similar to those proposed by

Heagerty, Lumley, and Pepe, 2000, and maximum rank correlation estimation
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for censored data can be obtained using approaches similar to those proposed

in Cheng, Wei, and Ying, 1995.

We also propose the use and estimation of a semi-parametric and semi-

marginal model for gap time data regression in this dissertation. We model the

hazard function of gap times between successive recurrent events conditional

on the last event occurrence time and some possibly time-varying covariates.

The model takes a proportional hazard form, and is semi-marginal in the

sense that no event occurrence history is included except for the last event

time. A pair-wise comparison approach is proposed for the estimation of the

model, and its large sample properties are established using U-process theo-

ries. Simulation studies illustrate the finite sample performance of proposed

estimators, and the methods are further illustrated through an analysis of the

CPCRA data.

The proposed model is highly flexible, and robsut to both model misspecifi-

cation and various correlation structure among gap times within the same sub-

ject. The model is also innovative in allowing the inclusion of time-dependent

covariates as part of the conditonal statistics, and is thus appropriate for

studying time trend of gap times in a disease progression context.

For possible future work, the authors are considering extending the model

to allow for non-parametric transformation of last event occurrence time

Lij. The inclusion of Lij as part of the conditional statistics is necessary for

resolving the induced dependent censoring, but in real applications, it is

difficult to find appropriate forms of transformation function ϕi(·), and the

effect of last event occurrence is often of less scientific interest. It would
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also be of interest to consider simultaneous modeling of a marker process

observed at the recurrence of event, a data structure commonly encountered

in longitudinal studies.
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