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Abstract

Diffusion tensor imaging (DTI) has become a popular tool for noninvasively inves-

tigating fiber tract structures. Fiber tracking and tract segmentation are two major

tasks in DTI studies. However, fiber crossing is a well known issue in DTI because

DTI cannot model crossing fiber orientations (FOs). Therefore, fiber tracking and

tract segmentation methods that are able to address crossing fibers are needed. In

this thesis, three contributions are made to the development of such fiber tracking and

tract segmentation algorithms. First, a fiber tracking method guided by volumetric

tract segmentation is presented. Tract segmentation contains anatomical information

which can reduce the errors caused by crossing fibers and noise. The FO estimation

problem is formulated in a Bayesian framework and the resulting objective function

is solved with calculus of variations. The proposed method is able to reduce false pos-

itive fibers and generate fibers that correspond to known anatomy. It is also applied

to a brain connectome study to show its potential scientific application. Second, we

present an algorithm for resolving crossing fibers in situations where limited diffusion

gradient directions are achievable. In particular, the algorithm is focused on interdig-
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itated tongue muscles. It incorporates prior knowledge on likely FOs to account for

the insufficient information due to limited diffusion gradient directions. Using max-

imum a posteriori estimation, FOs can be estimated by solving a weighted `1-norm

regularized least squares minimization. The method is shown to reduce the effect of

noise and resolve crossing fibers with limited DTI. The distributions of the computed

FOs in both the controls and the patients were also compared, suggesting a potential

clinical use for this methodology. Third, a white matter tract segmentation method

is proposed. The method focuses on the cerebellar peduncles, which are major white

matter tracts in the cerebellum. The method uses volumetric segmentation concepts

based on extracted DTI features. The crossing and noncrossing portions of the pe-

duncles are modeled as separate objects. They are initially classified using a random

forest classifier together with the DTI features, and then refined by a multi-object

geometric deformable model. The method is shown to achieve better segmentation

results than two atlas-based methods. In the study on spinocerebellar ataxia type 6

(SCA6), the proposed method is shown to reveal anatomical changes in the patients,

which demonstrates the benefit of the method for scientific purposes.

Primary Reader: Jerry L. Prince

Secondary Reader: Trac D. Tran

Third Reader: John Goutsias
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Chapter 1

Introduction

Diffusion tensor imaging (DTI) has become a popular tool for noninvasively in-

vestigating the fiber structures of white matter tracts and muscles by imaging the

diffusion anisotropy in fibers [1, 2]. It provides contrast that is not available in con-

ventional structural magnetic resonance imaging (MRI) such as T1-weighted and

T2-weighted MRI, and is thus a unique imaging modality for scientific studies.

DTI models diffusion by a symmetric 3 × 3 diffusion tensor at each voxel. By

acquiring a set of diffusion weighted images (DWIs) with noncollinear diffusion gra-

dient directions, the diffusion tensor can be calculated. The diffusion tensor has six

degrees of freedom. Thus, at least six noncollinear gradient directions are required

for tensor estimation.

Using the diffusion information encoded in DTI, fibers can be reconstructed as

3D streamlines (see Figure 1.1(a)). This process is called fiber tracking or tractogra-

1
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(a) 3D streamlines representing fibers (b) Segmented fiber tracts

Figure 1.1: Fiber tracking and tract segmentation: (a) 3D streamlines representing
fibers and (b) segmented fiber tracts.

phy [3, 4]. These fiber streamlines provide a representation of fibers and reveal their

anatomical structure. Fiber tracking can be applied to study human brain connec-

tome [5–7] or diseases [8–10], and it is an important tool for analyzing DTI. Therefore,

one of the major tasks in DTI is the development of fiber tracking algorithms that

reconstruct fibers with high quality. A common strategy of fiber tracking is to start

a streamline from a seeding voxel and propagate the streamline using the fiber ori-

entations (FOs) calculated with diffusion information [3,4]. For example, a basic FO

estimate is to use the primary eigenvector (PEV) of the diffusion tensor. With some

termination criteria, the end of the streamline is also determined.

Another popular research topic in DTI is the segmentation of fiber tracts that

correspond to anatomy (see Figure 1.1(b)). Segmented tracts can be used to study

specific diseases, where anatomical changes associated with these diseases can be eval-

uated [11–13]. The tract segmentation can be achieved by clustering the reconstructed

2



CHAPTER 1. INTRODUCTION

fibers, which is usually based on the similarities between fibers [14]. An alternative

approach to segmenting fiber tracts is volumetric tract segmentation, where voxels

are labeled using diffusion features [15–19]. Volumetric tract segmentation does not

require a fiber tracking step, which avoids the variability caused by the choice of

fiber tracking methods. In volumetric tract segmentation, very similar to conven-

tional image segmentation problems using structural MRI, homogeneous regions can

be identified using the image features [16, 20]. Classical segmentation frameworks,

such as Markov random field (MRF) [21] and level-set methods [22], have been used

for the purpose of tract segmentation.

In DTI, a major issue is the error caused by crossing fibers, because the DTI

model cannot represent crossing FOs [23]. Therefore, this issue must be considered

in fiber tracking and fiber tract segmentation. For example, in both fiber tracking

and tract segmentation, the FOs cannot be extracted from the diffusion tensor [23].

In addition, for tract segmentation crossing regions have unique properties compared

to noncrossing regions [15, 18]. Therefore, fiber tracking and tract segmentation al-

gorithms that are able to cope with crossing fibers are needed and proposed. For

example, in fiber tracking, previous works have used the aid of anatomical informa-

tion to reduce tracking errors [24, 25]; fiber tracking methods based on multi-tensor

models have also been developed to resolve crossing fibers [26,27]. To solve the prob-

lem of segmenting crossing tracts, researchers have attempted to explicitly model

the crossing regions and combine the noncrossing and crossing regions as the final

3
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result [15].

However, there remain challenges in fiber tracking and tract segmentation. 1) Al-

though anatomical information has been incorporated to reduce false fiber stream-

lines, the incorporation of anatomical knowledge has been mostly based on initial

fiber tracking, which can bias the result and is not truly “anatomical” in the sense

that the information is not from an anatomical atlas [24]. 2) Although methods that

model crossing FOs, such as multi-tensor models, have been proposed, they require a

sufficient number of diffusion gradient directions (around 30) [27]. But in situations

where such a number is not achievable, successful resolution of crossing fibers is very

challenging. For example, the in vivo tongue DTI acquisition takes only 2–3 minutes

(around 12 gradient directions) due to involuntary swallowing, and there is insuffi-

cient information for multi-tensor models to resolve crossing tongue muscle fibers [28].

3) In tract segmentation, although crossing regions can be modeled and segmented

as separate objects, the localization of some crossing regions can be difficult due to

their small sizes. This can lead to poor initialization, which affects the segmentation

quality [18].

This dissertation focuses on the design of fiber tracking and tract segmentation

algorithms that address the challenges introduced above. The contributions in this

thesis are summarized as follows:

• A fiber tracking method guided by volumetric tract segmentation: We

propose a Bayesian method for estimating FOs from DTI data, where anatomi-

4



CHAPTER 1. INTRODUCTION

cal tract information is incorporated to avoid tracking errors caused by crossing

fibers and image noise. A first step segments and labels the white matter tracts

volumetrically, including explicit representations of the crossing regions. A sec-

ond step estimates the FOs using the diffusion information and the anatomical

knowledge from segmented white matter tracts. A single FO is estimated in the

noncrossing regions while two FOs are estimated in the crossing regions. A third

step carries out streamlining tractography that uses information from both the

segmented tracts and the estimated FOs. Experiments performed on a digital

crossing phantom, a physical phantom, and brain DTI of 18 healthy subjects

show that the proposed method is able to use the anatomical information to

produce FOs with better accuracy and to reduce anatomically incorrect fiber

streamlines. Results on tract connectivity to cortical areas also demonstrate

the potential application of the proposed method to scientific studies.

• Distinguishing interdigitated tongue muscles with limited DTI: We ad-

dress the challenge of distinguishing interdigitated tongue muscles from limited

DTI by using a multi-tensor model with a fixed tensor basis and incorporating

prior directional knowledge. The prior directional knowledge provides informa-

tion on likely FOs at each voxel, and is computed with anatomical knowledge of

tongue muscles. The FOs are estimated within a maximum a posteriori (MAP)

framework, and the resulting objective function is solved using a noise-aware

weighted `1-norm minimization algorithm. Experiments were performed on a

5
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digital crossing phantom and in vivo tongue diffusion data including three con-

trol subjects and three patients with glossectomies. On the digital phantom,

effects of parameters, noise, and prior direction accuracy were studied, and pa-

rameter settings for real data were determined. The results on the in vivo data

demonstrate that the proposed method is able to resolve interdigitated tongue

muscles with limited gradient directions. The distributions of the computed

FOs in both the controls and the patients were also compared, suggesting a

potential clinical use for this imaging and image analysis methodology.

• Volumetric segmentation of the cerebellar peduncles: An automatic

method for segmenting white matter tracts is proposed. In particular, we focus

on the structure of the cerebellar peduncles, which are major white matter tracts

in the cerebellum, and of which the crossing regions are small. The method uses

volumetric segmentation concepts based on extracted DTI features. The cross-

ing and noncrossing portions of the peduncles are modeled as separate objects,

and are initially classified using a random forest classifier (RFC) together with

the DTI features. To obtain geometrically correct results, a multi-object geo-

metric deformable model (MGDM) is used to refine the random forest classifi-

cation result. The method was evaluated using a leave-one-out cross-validation

on five control subjects and four patients with spinocerebellar ataxia type 6

(SCA6). It was then used to evaluate group differences in the peduncles in a

population of 32 controls and 11 SCA6 patients, where anatomical changes with

6
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respect to SCA6 were observed.

Parts of the thesis have been published previously. The fiber tracking method

guided by volumetric tract segmentation was partly described in [29]. The algorithm

of distinguishing interdigitated tongue muscles was presented in a preliminary form

in [28]. A preliminary version of the cerebellar peduncle segmentation algorithm was

described in [18].

The remainder of the thesis is organized as follows. Chapter 2 introduces back-

ground knowledge on DTI, fiber tracking, and tract segmentation, and gives examples

of fiber tracts. Chapter 3 provides the FO estimation and fiber tracking algorithm

with the guidance of volumetric tract segmentation. In Chapter 4, the method of dis-

tinguishing interdigitated tongue muscles with limited DTI is presented. Chapter 5

describes the proposed method for segmenting the cerebellar peduncles with the RFC

and MGDM using the DTI features. Chapter 6 summarizes the thesis and discusses

the future research directions.
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Chapter 2

Background

In this chapter, an overview of diffusion tensor imaging (DTI) is provided and

anatomical knowledge of selected fiber tracts is introduced. First, basic DTI principles

are reviewed. Then, fiber tracking and tract segmentation based on DTI are described.

Finally, the anatomical knowledge of tracts is introduced by the examples of the

cerebellar peduncles and tongue muscles.

2.1 DTI Overview

DTI provides a noninvasive tool for the reconstruction of fiber tracts by capturing

the anisotropy of water diffusion in tissue [1, 2]. Water diffusion is modeled by a

diffusion tensor at each voxel. The diffusion tensor is a 3×3 symmetric positive

8



CHAPTER 2. BACKGROUND

definite matrix:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 , (2.1)

which has six independent components. It can be estimated from diffusion weighted

images (DWIs) acquired with at least six noncollinear gradient directions. Assuming

water diffusion follows a Gaussian distribution, the relationship between the diffusion

weighted signal and the diffusion tensor can be modeled as [30]

Sk = S0e
−bgTkDgk + nk. (2.2)

Here, Sk is the diffusion signal in the k-th gradient direction, S0 is the baseline signal

without diffusion weighting, b is a constant called b-value, which is determined by

the imaging sequence, gk = (gk,1, gk,2, gk,3)
T is the k-th gradient direction, and nk is

a noise term. In practice, usually around 30 gradient directions are used to increase

the signal-to-noise ratio (SNR) [31].

To calculate the diffusion tensor, one can divide S0 and then take the logarithm

on both sides of Eq. (2.2), which leads to a linear regression model

y = Bd+ ε, (2.3)
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where

B =



−bg21,1 −bg21,2 −bg21,3 −2bg1,1g1,2 −2bg1,1g1,3 −2bg1,2g1,3

−bg22,1 −bg22,2 −bg22,3 −2bg2,1g2,2 −2bg2,1g2,3 −2bg2,2g2,3

...
...

...
...

...
...

−bg2K,1 −bg2K,2 −bg2K,3 −2bgK,1gK,2 −2bgK,1gK,3 −2bgK,2gK,3


, (2.4)

y =

(
ln
(
S1

S0

)
ln
(
S2

S0

)
. . . ln

(
SK
S0

))T
, (2.5)

d =

(
Dxx Dyy Dzz Dxy Dxz Dyz

)T
. (2.6)

Here ε represents noise and K is the total number of gradient directions. Using a

linear least squares fitting, an estimate of the tensor can be obtained as

d̂ = (BTB)−1BTy. (2.7)

Some variations have also been proposed for improving the tensor estimation, such

as weighted linear least squares fitting and nonlinear least squares fitting [32,33].

From the diffusion tensor, rotation-invariant scalar quantities can be calculated to

describe the diffusion properties. For example, mean diffusivity (MD) and fractional

anisotropy (FA) can computed from the eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ 0) of the

10



CHAPTER 2. BACKGROUND

Figure 2.1: An example of MD and FA maps.

tensor [34]:

MD = λ̄ =
λ1 + λ2 + λ3

3
(2.8)

FA =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2√

λ21 + λ22 + λ23
. (2.9)

An example of MD and FA maps is shown in Figure 2.1. MD measures the amount

of water diffusion [35]. FA measures the degree of anisotropy and has been used to

reflect fiber tract integrity [36].

Directional information can also be obtained from the tensor. For example, in

fiber tracts where only one dominant fiber orientation (FO) is available, the primary

eigenvector (PEV) provides an estimate of the FO [3]. The FO can be visualized using

a color map, where the intensity is coded by FA and the x, y, and z components of the

PEV are assigned to the red, green, and blue channels, respectively [37]. An example
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Figure 2.2: An example of the standard DTI color map display.

of the color map is shown in Figure 2.2.

DTI has been widely used for scientific studies. It has been used to study struc-

tures such as the white matter tracts [3], the cardiac muscles [38], the skeletal mus-

cles [39], and the tongue muscles [40]. It has been applied to the studies on var-

ious types of diseases such as multiple sclerosis [8, 41], Parkinson’s disease [9, 42],

autism [43], Huntington’s disease [10,44], Alzheimer’s disease [45,46], mild traumatic

brain injury [47], schizophrenia [48–50], and cerebellar ataxia [51]. It has also been

performed to investigate the human brain connectome, which gives a structural de-

scription of the human brain network [5, 7, 52]. In these studies, fiber tracking and

fiber tract segmentation are two common techniques that aid the analysis of DTI.

2.2 Fiber Tracking

Fiber tracking is used in many DTI studies. It is the process of reconstructing 3D

curves that represent fiber tracts. An example of fiber tracking in the brain overlaid
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Figure 2.3: An example of fiber tracking in the brain overlaid on the FA map using
DTI. The fibers are color-coded with the standard DTI scheme (red: left-right; green:
front-back; and blue: up-down).

on the FA map is shown in Figure 2.3, where each segment of the fiber is color-coded

with the standard DTI scheme (red: left-right; green: front-back; and blue: up-down).

Many of the fiber tracking methods on DTI use a streamlining technique based

on FOs computed from DTI measurements. Figure 2.4 gives a graphical illustration

of a simple streamlining strategy. Seed points can be placed in the centers of the

voxels. Starting from seed points, the fibers are propagated according to the FOs,

until a new FO can be used. Criteria for starting and terminating fibers are also

needed. For example, FA can provide such information. Since FA is high in fiber

13
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Figure 2.4: An example of streamlining fiber tracking strategy.

tracts and drops in regions with isotropic diffusion, a threshold of FA can be used

so that fibers are initiated in voxels with high FA values and terminated when they

arrive at voxels with low FA values [3]. Another commonly used termination criterion

is the turning angle between successive FOs: because fibers are assumed to propagate

smoothly, when the turning angle is larger than a threshold, the fiber streamline is

terminated [3].

The estimation of FOs from DTI is the key element in fiber tracking and it is

explored by a number of researchers [3, 4, 26, 27, 53–59]. Different approaches to FO

estimation been been developed. The FOs can be solely computed with the local

tensor independently at each voxel using its PEV [3, 54]. The estimation of FOs can

also incorporate neighborhood information, where the current FO estimation can be

guided by the state of its neighbors [4, 53].
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A major drawback of the tensor model is that it cannot represent crossing fibers [23].

Therefore, efforts have been to address this issue. One solution is the development

of more advanced diffusion imaging techniques, which acquire more comprehensive

diffusion information, such as high angular resolution diffusion imaging (HARDI) [60]

and diffusion spectrum imaging (DSI) [61]. One practical issue with these modalities

is that they usually require a great number of gradient directions, which can be more

than 100, and take a long acquisition time. This makes these modalities less practical

in clinical practice.

Previous works have also explored resolving crossing fibers with DTI acquisitions

by using two-tensor or multi-tensor models [26, 27, 55, 56, 58, 59]. In these works, the

diffusion weighted signals are modeled as a mixture of attenuated signals from two

or more tensors:

Sk = S0

N∑
i=1

fie
−bgTkDigk + nk. (2.10)

Here N is the number of tensors used in the model and fi is the mixture fraction

for Di. Each tensor can represent an FO given by its PEV. As in the tensor model,

the FOs can be determined using the local tensors only [27, 58] or by incorporating

neighborhood information [56,58,59].
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(a) Clustered Fiber Tracts (b) Volumetric Tract Segmentation

Figure 2.5: An example of (a) clustered fiber tracts and (b) volumetric tract segmen-
tation overlaid on the FA map: frontal/posterior/superior corpus callosum.

2.3 Fiber Tract Segmentation

It is often useful to analyze tract-specific statistics for scientific studies. Therefore,

the ability to segment specific tracts is necessary. Manual delineations of the fiber

tracts, which are usually based on refining regions of interest (ROIs), have been used

for a number of studies [62–66]. However, manual delineations can be subjective and

time-consuming. Therefore, various automatic tract segmentation algorithms have

been designed for objective and more efficient data analysis. Many of them cluster

the fiber tracking results to acquire bundled fiber tracts [6, 14, 67–74]. An example

of clustered fiber tracts is shown in Figure 2.5(a). These methods assign each fiber a

label according to the properties of individual fibers and/or the relationship between

fibers. For example, in [14], pairwise distances between fibers are calculated and used

in a spectral clustering algorithm for fiber clustering.
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An alternative approach to fiber tract segmentation is volumetric tract segmenta-

tion, which does not require the process of fiber tracking [15,16,75]. Compared with

segmentation by fiber clustering, volumetric tract segmentation avoids the need of in-

termediate fiber tracking steps, and thus is not affected by the variability introduced

by the choice of the fiber tracking method. In this thesis, we will focus on volumet-

ric tract segmentation. An example of volumetric tract segmentation is displayed in

Figure 2.5(b). Based on the assumption that image features, such as diffusion prop-

erties, exhibit homogeneity in voxels belonging to the same fiber tract, volumetric

segmentation directly labels the voxels using their associated features. Segmentation

frameworks, such as Markov random field (MRF) and level-set methods, have been

used for this purpose, where speed functions or energy functions are determined based

on the DTI properties [15, 16,20,76].

As in fiber tracking, crossing tracts can also cause problems in tract segmentation.

In crossing regions, the PEV is no longer a valid estimate of an FO, and diffusion

features are in general different than those in the noncrossing regions of the cor-

responding tracts. Therefore, directly segmenting the complete tract as one single

object is difficult. A solution to the issue is given in the DOTS algorithm [15], where

the crossing and noncrossing regions are modeled as separate objects. After seg-

mentation, the noncrossing and crossing regions are combined to form the complete

tract.
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2.4 Examples of Fiber Tracts

For the development of fiber tracking and tract segmentation algorithms, it is

always helpful to use a priori anatomical knowledge about fiber tracts. Different

types of tracts can have different properties, which influence the designs of the meth-

ods. Common fiber tracts studied in DTI include white matter tracts and muscle

fiber tracts. White matter tracts consist of bundles of axons which convey messages

between gray matter areas. Muscles produce motion and force, and muscle fiber

tracts can be classified into different types such as skeletal muscle, cardiac muscle,

and smooth muscle. Two types of fiber tracts with which this thesis is concerned are

introduced: the cerebellar peduncles and the tongue muscles.

2.4.1 Cerebellar Peduncles

The cerebellar peduncles are major white matter tracts that communicate infor-

mation between the cerebellum and other brain regions, including the cerebral cortex

and the spinal cord [77]. They play an important role in motor and non-motor con-

trol [78] and are known to be affected by various neurological diseases, including

spinocerebellar ataxia [51, 79], schizophrenia [80], and multiple system atrophy [81].

Among the scientific studies on the cerebellar peduncles, a large number of them have

been performed using DTI data [82–88].

The cerebellar peduncles comprise the superior cerebellar peduncles (SCPs), the
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Figure 2.6: A manually drawn schematic of the cerebellar peduncles. Blue: left SCP;
green: right SCP; red: MCP; orange: left ICP; yellow: right ICP. Shown together
with the cerebellum (gray) and the brainstem (purple).

middle cerebellar peduncle (MCP), and the inferior cerebellar peduncles (ICPs). An

illustration of the structures of the peduncles is shown in Figure 2.6, together with the

cerebellum and the brainstem. The SCPs are the major efferent pathways that convey

the output information from the cerebellum to the midbrain. The SCPs originate

primarily from the dentate nuclei and then continue upward toward the brainstem,

where the left and right SCPs cross each other in a region known as the decussation

of the SCP (dSCP). The fibers then head toward the red nuclei on the opposite side,

where some fibers terminate but most continue through to the thalamus [89]. The

MCP is the largest afferent system of the cerebellum and acts as the afferent pathway

from the pons to the cerebellum. It wraps around the pons and ends in the cerebellar

cortex [89, 90]. The ICPs contain both afferent and efferent signals and connect the

medulla to the cerebellum [90].
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(a) Sagittal View

(b) Coronal View

Figure 2.7: The tongue muscles in the (a) sagittal view and (b) coronal view. Note
that muscles shown together are not overlapping.

2.4.2 Tongue Muscles

The tongue is a critical organ for a variety of functions including swallowing,

respiration, and speech. The tongue muscles play an important role in changing

the shape and position of the tongue. They have been studied using DTI [91–94].

The tongue muscles contains intrinsic and extrinsic muscles, which differ in their

origins [95]. For the intrinsic muscles, both of their origins and terminations are

within the tongue, while extrinsic muscles start from external organs and are inserted

into the tongue [96]. For example, the inferior longitudinal (IL) muscles, the superior

longitudinal (SL) muscles, the transverse (T) muscles, and the vertical (V) muscles

are intrinsic muscles, and the genioglossus (GG) and geniohyoid (GH) muscles are

extrinsic muscles [97, 98]. An example of volumetric representation of part of the

tongue muscles is shown in Figure 2.7.
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Table 2.1: A summary of interdigitated tongue muscles. Note: “n” and “x” stand for
noncrossing and crossing, respectively.

GG GH IL SL T V

GG n n x x n

GH n n n n n

IL n n n n n

SL x n n n x

T x n n n x

V n n n x x

It should be noted that tongue muscles can interdigitate. For example, T inter-

digitates with GG near the mid-sagittal planes and with V on lateral parts of the

tongue. GG and V intersect with SL near the top and back surface of the tongue. A

summary of the interdigitation of the muscles in Figure 2.7 is listed in Table 2.1.

2.5 Summary

This chapter introduced the background knowledge on DTI, fiber tracking, and

tract segmentation. In particular, crossing fibers are a major issue in DTI which

must be addressed. The anatomical knowledge of the cerebellar peduncles and tongue

muscles were also introduced. In the chapters to follow, the proposed fiber tracking

and tract segmentation methods that can resolve crossing fibers will be presented.

Results of these methods will be demonstrated on (but not limited to) the fiber

tracts discussed in this chapter.
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Fiber Tracking Guided by

Volumetric Tract Segmentation

3.1 Motivation

In the streamlining fiber tracking process, errors can be caused by crossing fibers

and image noise [24]. Anatomical knowledge of tracts has been explored to overcome

such errors and aid fiber tracking. Cheng et al. [24] obtain anatomical information

from an initial fiber tracking, where the center line of a fiber bundle is calculated.

Then the final fiber tracking is guided by the center line. Aranda et al. [99] use

a “flocking” model to incorporate the interactions between neighbor fiber stream-

lines. By examining the collective behavior of the pathways belonging to the same

group, the fiber orientation (FO) is modified accordingly. However, as the anatom-
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ical information also comes from tractography, no real prior anatomical knowledge

is incorporated in [24] and [99]. Kleinnijenhuis et al. [25] use an additional image

modality, high field gradient echo magnetic resonance imaging, to provide anatomical

information. In these images, contrast can be observed between fiber bundles due

to susceptibility differences. Structure tensors are computed in the images and used

to inform the FOs for fiber tracking. Yet, the method is limited to the diffusion

tensor imaging (DTI) data sets where high field gradient echo images have also been

acquired. Furthermore, all of these methods are based on local cues about possible

FOs; they do not use knowledge of the positions of tracts and their likely regions of

overlap.

Another source of anatomical information, which has not received much attention,

is volumetric tract segmentation. It contains tract information such as shape and lo-

cation, and can be used to inform fiber tracking. Volumetric tract segmentation labels

each voxel with a tract class and does not necessarily require the process of fiber track-

ing [15–17, 19]. For example, Bazin et al. [15] proposed the DOTS algorithm, which

is an atlas-based Markov random field algorithm designed to label the voxels on DTI.

The DOTS tract atlas provides diffusion and spatial prior anatomical information,

which is used together with the connectivity between neighbor voxels to segment the

fiber tracts. In addition, the method is able to identify crossing tracts by explicitly

modeling the crossing regions as separate labels. A complete tract can be obtained by

combining the noncrossing and crossing portions after segmentation. Awate et al. [16]
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proposed a fuzzy-segmentation method that models the tensors in Riemannian spaces

and solves the segmentation problem with a Markov random field. In [19], volumetric

distributions of the fiber tract pathways are obtained within a Bayesian framework

using a Markov chain Monte Carlo (MCMC) algorithm, where volumetric tract seg-

mentation can be obtained. In [17], a level set framework is used to label the fiber

tracts volumetrically on high angular resolution diffusion imaging (HARDI), where

speeds are determined by the principal diffusion directions and spherical harmonic

coefficients.

In this work, we explore the incorporation of anatomical knowledge into FO esti-

mation by using guidance from volumetric segmentation of fiber tracts. We use the

DOTS algorithm [15] to provide the volumetric segmentation because 1) it is based

on DTI data, 2) it provides anatomical tract information, and 3) it is able to identify

crossing tracts. We use the maximum a posteriori (MAP) estimation technique to es-

timate the FOs. The anatomical information from the volumetric tract segmentation

is modeled in the prior distribution together with the spatial smoothness of the FOs.

The diffusion information is encoded in the likelihood term. Calculus of variations is

applied to the resulting objective function to yield Euler-Lagrange equations, which

are solved iteratively to estimate the FOs. Using the estimated FOs, a streamlining

fiber tracking strategy is also presented.
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3.2 Theory and Algorithm

In this section, we first describe the DOTS algorithm for volumetric tract segmen-

tation. Then we describe our MAP framework and algorithm for FO estimation using

the results of tract segmentation. Finally, we describe a streamlining fiber tracking

strategy using the estimated FOs and tract segmentation.

3.2.1 DOTS Algorithm

DOTS is an atlas-based volumetric tract segmentation algorithm using a Markov

random field (MRF) framework [15]. It is available at http://www.nitrc.org/

projects/dots/. The atlas of the white matter tracts is built according to [90].

The energy function specifying the MRF is given by

E(l) =
∑
x

(
V1(x, l(x)) +

∑
y∈Nx

V2(x, y, l(x), l(y))

)
. (3.1)

Here, V1 is a unary energy term at x with the label of l(x), and V2 is a pairwise energy

term that models the interaction between the voxel at x labeled as l(x) and the voxels

in its neighborhood Nx at location y with the label of l(y). The unary term combines

the diffusion information in the data with the atlas to model the likelihood of label

l(x) at location x. The pairwise term uses the connection information from DTI to

encode the interaction between neighbor voxels. Each voxel is assigned a label after

the energy function is optimized. Details about the specification of V1 and V2 and
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Figure 3.1: A graphical illustration showing the DOTS strategy for segmenting cross-
ing tracts.

the optimization of E(l) are found in [15].

Note that the DOTS algorithm is able to resolve crossing tracts by explicitly

modeling the crossing region of each pair of crossing tracts as a separate label. The

schematic in Figure 3.1 provides a graphical illustration of the DOTS strategy for

processing crossing tracts. After the MRF assigns a label to each voxel, the non-

crossing and crossing regions of a tract are combined to create a representation of the

complete tract. For example, in Figure 3.1 Tract A consists of Label 1 and Label 3

while Tract B consists of Label 2 and Label 3.

3.2.2 MAP Estimation of FOs

Consider a region in the brain that is segmented as tract L = Ln ∪ Lc by DOTS,

where Ln and Lc are the noncrossing and crossing regions, respectively. We seek

to estimate the FOs (unit vectors) in the whole tract with guidance from both the
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volumetric tract segmentation and diffusion information. For this purpose, three

core assumptions are made: 1) fibers propagate smoothly inside a tract; 2) fibers

propagate along the tract surface, i.e., orthogonal to surface normals, except at tract

ends; and 3) in noncrossing tract regions, the FOs generally agree with the primary

eigenvectors (PEVs) of the diffusion tensors. As described next, we use an MAP

estimation strategy that incorporates these three assumptions.

Given the diffusion tensors and the tract segmentation, the PEVs v of the ten-

sors and the surface normals g of the whole tract L can be calculated. Note that

to account for possible inaccuracy and roughness of tract segmentation, we first ap-

ply a morphological restoration and then a Gaussian smoothing to the whole tract

segmentation L. Thus, the tract surface normal is calculated as

g =
∇Gσ(Φ•(Φ◦(L)))

|∇Gσ(Φ•(Φ◦(L)))|
, (3.2)

where Φ◦(·) and Φ•(·) are morphological opening and closing, respectively, and Gσ(·)

is Gaussian smoothing. In this work, the radius of the structural element is 1 mm,

and the standard deviation of the Gaussian kernel is 0.35 mm. The estimate of the

FO f can then be formulated as

f̂ = arg max
|f |=1

P (f |v; g), (3.3)

where the constraint of |f | = 1 ensures that the FOs are estimated as unit vectors.
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We can expand P (f |v; g) as follows

P (f |v; g) =
P (f ; g)P (v|f)∫
P (f ; g)P (v|f)df

=
1

Z
P (f ; g)P (v|f) ∝ P (f ; g)P (v|f), (3.4)

where Z =
∫
P (f ; g)P (v|f)df is a constant. Here, P (f ; g) is the prior distribution

of the FO, where g is a parameter, and P (v|f) is the likelihood term. We specify

each of these terms in the following sections.

3.2.2.1 Prior Distribution

The prior distribution contains information about smoothness and tract segmen-

tation. It can be modeled as

P (f ; g) = P1(f)P2(f ; g), (3.5)

where P1(f) ensures smoothness and P2(f ; g) enforces a tract constraint. First, P1(f)

is modeled using the gradients of f to preserve smoothness:

P1(f) ∝ e
−α

∑
x∈L
|∇f(x)|2

, (3.6)

where α is a constant to be specified by the user. Given this term, when the FOs are

smoother, the sum of squared gradient magnitudes are smaller, and this corresponds

to a higher value of the prior density. Second, to encourage the fibers to propagate
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in a direction orthogonal to the tract surface normals, P2(f ; g) is modeled using the

inner product between f and g:

P2(f ; g) ∝ e
−

∑
x∈L

µ(x)|g(x)·f(x)|2
. (3.7)

Thus, higher prior probability is given when the FO is closer to being orthogonal to

the tract surface normal. The function µ(x) is used to discriminate between the sides

of tracts and the ends of tracts. Since tract ends are usually in noncrossing regions

and the PEVs at tract ends are close to being parallel to the tract surface normals,

µ(x) is specified as:

µ(x) =


0, if |g(x) · v(x)| > t and x ∈ Ln

µ0, otherwise

, (3.8)

where t is a threshold (t = 0.5 in this work) and µ0 controls the influence of tract

segmentation when the surface normal constraint is used. Note that g(x) and v(x)

are unit vectors. In practice, this criterion gives a good identification of the tract

ends. Therefore, the complete joint prior density is modeled as:

P (f ; g) ∝ e
−

∑
x∈L

(α|∇f(x)|2+µ(x)|g(x)·f(x)|2)
, (3.9)
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where α and µ(x) together decide the relative weightings of the constraints of smooth-

ness and tract segmentation.

3.2.2.2 Likelihood

Suppose the likelihood P (v|f) is independent between voxels. Then we have

P (v|f) =
∏
x∈L

p(v(x)|f(x)), (3.10)

where p(v(x)|f(x)) is the local likelihood term at each voxel x. The local likelihood

term is modeled differently in different regions. In crossing regions, we model the FO

and the PEV as independent variables because the PEV is no longer a valid estimate

of the FO. Thus, the likelihood term is a uniform distribution in each direction. In

noncrossing regions, the PEV provides an estimate of the FO, and the likelihood

term is modeled as a Gaussian distribution. Therefore, the local likelihood term in

the complete tract is modeled as:

p(v(x)|f(x)) =


constant, x ∈ Lc

1
Zl
e−λ0|v(x)−f(x)|

2
, x ∈ Ln

, (3.11)

where Zl is a normalization constant and λ0 is a constant that controls the influence

of data fidelity in noncrossing regions.
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3.2.2.3 Objective Function and Optimization

Now that the prior density and likelihood terms have been specified, and using

the assumption of voxel independence, we can write the FO estimate as

f̂ = arg max
|f(x)|=1

P (f ; g)
∏
x∈L

p(v(x)|f(x))

= arg max
|f(x)|=1

{∏
x∈Ln

e−(α|∇f(x)|
2+µ(x)|g(x)·f(x)|2)e−λ0|v(x)−f(x)|

2

}
×{∏

x∈Lc

e−(α|∇f(x)|
2+µ(x)|g(x)·f(x)|2)

}
. (3.12)

By taking the logarithm and combining noncrossing and crossing regions, we have

f̂ = arg min
|f(x)|=1

∑
x∈L

(α|∇f(x)|2 + µ(x)|g(x) · f(x)|2 +

λ(x)|v(x)− f(x)|2), (3.13)

where

λ(x) =


λ0, x ∈ Ln

0, x ∈ Lc

. (3.14)

To solve the minimization problem, we write the objective function in Eq. (3.13)
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in continuous form and relax the constraint of |f(x)| = 1:

E(f) =

∫
α|∇f(x)|2 + µ(x)|g(x) · f(x)|2 + λ(x)|v(x)− f(x)|2dx. (3.15)

For convenience, hereafter we drop the location x in the equations. Suppose f =

(fx, fy, fz), v = (vx, vy, vz), and g = (gx, gy, gz); then the Euler-Lagrange equations

for Eq. (3.15) can be obtained using calculus of variations [100]:

α∇2fx = µgx(fxgx + fygy + fzgz) + λ(fx − vx),

α∇2fy = µgy(fxgx + fygy + fzgz) + λ(fy − vy),

α∇2fz = µgz(fxgx + fygy + fzgz) + λ(fz − vz).

(3.16)

Using the numerical strategy in [101], the following iterations can be applied to esti-

mate f (see Appendix 3.A for a derivation). At the k-th iteration,

fk+1
x = fkx −

µgx(gxfkx + gyfky + gzfkz )

α + λ+ µ(g2x + g2y + g2z)
+

λ[(α + λ)(vx − fkx ) + µ(g2y + g2z)(vx − fkx )− µgxgy(vy − fky )− µgxgz(vz − fkz )]

(α + λ)(α + λ+ µ(g2x + g2y + g2z))
,

fk+1
y = fky −

µgy(gxfkx + gyfky + gzfkz )

α + λ+ µ(g2x + g2y + g2z)
+

λ[(α + λ)(vy − fky )− µgxgy(vx − fkx ) + µ(g2x + g2z)(vy − fky )− µgygz(vz − fkz )]

(α + λ)(α + λ+ µ(g2x + g2y + g2z))
,

fk+1
z = fkz −

µgz(gxfkx + gyfky + gzfkz )

α + λ+ µ(g2x + g2y + g2z)
+

λ[(α + λ)(vz − fkz )− µgxgz(vx − fkx )− µgygz(vy − fky ) + µ(g2x + g2y)(vz − fkz )]

(α + λ)(α + λ+ µ(g2x + g2y + g2z))
,

(3.17)
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where fkx , fky , and fkz are the local averages of fkx , fky , and fkz , respectively.

Eq. (3.17) gives an iterative algorithm for the estimation of the FOs throughout a

given tract L. The initial values for f are provided by the PEVs in the noncrossing

regions and zero vectors in the crossing regions. After each iteration k, we project

nonzero fk+1 onto the unit sphere by normalization: fk+1 := fk+1

|fk+1| . The iterative

update terminates when the average difference between normalized fk+1 and fk is

below a threshold or the maximal number of iterations is reached. Assuming the

update terminates at the K-th iteration, we have the normalized vectors fK+1 as the

final estimated FOs.

3.2.3 Fiber Tracking Using the Estimated FOs

Given estimated FOs in each tract, streamlining fiber tracking can be performed.

Here we use a strategy that is similar to the FACT algorithm [3]. Each FO is used to

propagate the fiber streamlines in the current voxel until they reach the next voxel.

For a streamline seeded in a tract, the FOs of the corresponding tract are used for

propagation inside the tract, and outside the tract the PEVs are used.

A start fractional anisotropy (FA) threshold is used to initialize fiber tracking:

only voxels with FA larger than the start threshold can be used as seeding voxels. A

stop FA threshold is used to terminate fiber tracking: in noncrossing regions, when

a streamline reaches a voxel with FA below the stop FA threshold, fiber tracking

is terminated; in crossing regions, the stop FA threshold is not used. A turning
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angle threshold is also employed for terminating the fiber tracking: when the angle

between the FOs in the current step and the previous step is larger than the turning

angle threshold, fiber tracking is terminated. In this work, both the start and stop

FA thresholds are 0.2 and the angle threshold is 40◦, which are typical values in

deterministic streamlining fiber tracking algorithms [102,103].

3.3 Experiments

The proposed method was first performed on a 3D digital crossing phantom, then

on the Fiber Cup phantom [104,105], and finally on brain DTI data from 18 healthy

subjects. In all three experiments, the proposed method was compared with two FO

estimation methods on DTI: the BEDPOSTX algorithm [26] as implemented in the

FSL software [106] (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and the CFARI

algorithm [27] as implemented in the JIST software [107] (http://www.nitrc.org/

plugins/mwiki/index.php/jist:CFARI). BEDPOSTX uses a two-tensor model to

resolve crossing fibers [26] and CFARI uses a multi-tensor model with a fixed tensor

basis to estimate crossing FOs [27].

3.3.1 Digital Crossing Phantom

A 3D digital crossing phantom simulating two tracts crossing at 90◦ was generated

for a proof-of-concept experiment (see Figure 3.2). One b0 image (the image without
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(a) BEDPOSTX (b) CFARI (c) Proposed

Figure 3.2: An example of estimated FOs in the crossing phantom test overlaid on
the FA map.

diffusion weighting) and 30 diffusion gradient directions with b-values of 700 s/mm2

were used. The b0 image has intensity S0 = 1. Rician noise (σ = 0.05) was added to

the diffusion weighted images (DWIs). We used the labels of the two tracts as the

segmentation. An example of the FOs estimated by the proposed method (α = 3,

λ0 = 1, and µ0 = 50) is shown in Figure 3.2(c), where it can be seen that the

crossing FOs are correctly estimated. The proposed method was also compared with

BEDPOSTX and CFARI in Figures 3.2(a) and 3.2(b), respectively. In both non-

crossing and crossing regions, BEDPOSTX and CFARI produce more noisy results.

In addition, in noncrossing regions, BEDPOSTX sometimes creates unreal crossing

patterns.

To quantitatively evaluate the results, we use the following error measure at each
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Table 3.1: The mean errors of the estimated FOs in Figure 3.2 (with standard devi-
ations in parentheses)

BEDPOSTX CFARI Proposed
Crossing Region 5.749◦ (5.523◦) 5.210◦ (3.292◦) 0.126◦ (0.067◦)

Noncrossing Region 2.609◦ (3.406◦) 1.001◦ (1.927◦) 0.979◦ (0.567◦)

voxel:

eFO = max

(
1

N1

N1∑
i=1

min
j

arccos(vi · uj),
1

N2

N2∑
j=1

min
i

arccos(vi · uj)

)
· 180◦

π
. (3.18)

Here, N1 is the number of estimated FOs vi, and N2 is the number of ground truth

FOs uj. N2 can be 1 or 2, depending on whether crossing fibers exists at the location.

The first term in the max function measures how far away the estimated directions

are from the ground truth, and the second term in the max function measures how

accurate the true directions are estimated. Both terms are expected to be small

when a good estimate is achieved; therefore, a max operation is used as the error

measure. Table 3.1 lists the means and standard deviations of FO estimation errors

in Figure 3.2 for noncrossing and crossing regions separately. The proposed method

estimates the FOs more accurately than BEDPOSTX and CFARI.

Next, we studied the effects of the parameters in the proposed method. Since

there are only two degrees of freedom in choosing the parameters, we fixed λ0 = 1,

and tested different combinations of α and µ0. The errors are shown in Figure 3.3. It

can be seen that with the true tract labels, the error is reduced when the information

of the tract segmentation is used, which is represented by the cases where µ0 6= 0.

We can also observe that the errors are reduced with increasing α.
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(a) Crossing Regions (b) Noncrossing Regions

Figure 3.3: The errors of estimated FOs using the proposed method with different
parameter settings in (a) crossing regions and (b) noncrossing regions.

3.3.2 Fiber Cup Phantom

The proposed method was also run on the Fiber Cup phantom [104,105] and com-

pared with BEDPOSTX and CFARI. For this experiment, we selected the acquisition

with 3 mm isotropic resolution and the b-value of 650 s/mm2, which most resembles

standard DTI protocols. The acquisition has two repeated scans, and each of them

has one b0 image and 64 gradient directions.

The 3D tract segmentation required for the proposed method was manually de-

lineated on the phantom. We defined five tracts, which can be seen overlaid on a b0

axial image in Figure 3.4. Then, the proposed FO estimation was carried out with

α = 3, λ0 = 1, and µ0 = 50. We highlight two crossing regions and compare the

proposed FO estimation results with BEDPOSTX and CFARI in Figure 3.4. It can

be seen that the proposed method is able to resolve crossing FOs with the manually

defined tracts, while the other two methods often fail to recover the crossing FOs.
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Figure 3.4: The Fiber Cup phantom (b0 image), manually delineated 3D tract seg-
mentation, and estimated FOs in the two highlighted crossing regions.

3.3.3 Brain DTI

The method was applied to a brain DTI data set comprising 18 healthy subjects.

The DWIs were acquired on a 3T MR scanner (Intera, Philips Medical Systems,

Netherlands) using a multi-slice, single-shot EPI sequence. The sequence consists of

30 diffusion gradient directions, each with b = 700 s/mm2, and one b0 image. The

native in-plane resolution is 2.2 mm × 2.2 mm (matrix size: 96 × 96), and the native

slice thickness is 2.2 mm. The scanner resampled the slices and generated the output

resolution of 0.828 mm × 0.828 mm × 2.2 mm (matrix size: 256 × 256). We then

isotropically resampled the DWIs, yielding an isotropic voxel resolution of 0.828 mm,

and the diffusion tensors were calculated with CATNAP [108].

DOTS was applied to the acquired diffusion data set. In this experiment, we

demonstrate the results for the tracts of the anterior/posterior/superior thalamic
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radiation (ATR/PTR/STR), the frontal/posterior/superior corpus callosum (CCF/

CCP/CCS), the corticopontine tract (CPT), and the optic radiation (OPR). Except

for the CCF, the CCP, and the CCS, which cross the midline of the brain, we selected

the left side of these tracts for demonstration. An example of the DOTS segmentation

of these tracts is shown in Figure 3.5. Here we are showing the complete tracts, where

noncrossing and crossing regions are already combined.

Using the tract segmentation from DOTS, we estimated the FOs within each

tract and then carried out tractography using these results. The seeding voxels were

decided as follows. For each tract, we first calculated the signed distance map from

the corresponding binary tract segmentation mask. Then, among the voxels inside the

tract, we selected the ones that are more than d voxels away from the tract boundary.

This step is to account for possible tract overestimation in the segmentation algorithm.

Finally, among these voxels, only those in the noncrossing regions were used as seeding

voxels.

3.3.3.1 Demonstration on a Representative Subject

We compared our fiber tracking results with three methods on a representative

subject. First, FACT [3] was used as a baseline tractography method. The method is

based on the single tensor model and cannot resolve crossing fibers. Second, we used

the BEDPOSTX algorithm [26] to estimate FOs followed by the XST algorithm [109]

to perform fiber tracking. Third, we applied the CFARI algorithm and INFACT
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Figure 3.5: An example of DOTS segmentation of the tracts demonstrated in this
work.

tracking, which are both described in [27]. The second and third methods are designed

to resolve crossing fibers. Based on the fiber tracking results, the connectivity of fiber

tracts to cortical labels was also calculated and compared. Here the connectivity is

represented by the counts of reconstructed streamlines hitting the labels. Note that

as suggested in [110] we use the term “counts of streamlines” instead of fiber counts,

because tractography does not produce estimates of actual nerve fibers. The cortical

labels were obtained using the method in [111] as implemented in the FreeSurfer

software [112] (https://surfer.nmr.mgh.harvard.edu/). The fiber tracking results

and the connectivity results are shown in Figures 3.6 to 3.13. The tracked streamlines

are overlaid on the FA map.

As can be seen in Figure 3.6, in contrast to the other three methods, the proposed

method does not create the false ATR streamlines that cross the hemisphere. Also, the

proposed method reduces the false PTR and STR streamlines. The reduction of false

40



CHAPTER 3. FIBER TRACKING GUIDED BY SEGMENTATION

(a) Left ATR

(b) Left PTR

(c) Left STR

Figure 3.6: Fiber tracking results overlaid on the FA map: (a) ATR, (b) PTR, and
(c) STR.

fiber streamlines can also be observed from the connectivity results in Figure 3.7.

The proposed method does not produce the connections between the hemispheres,

and produces a more concentrated connectivity pattern, which reflects that fewer

false streamlines are tracked.

Figures 3.8(a) and 3.8(b) show that for the CCF and the CCP the proposed

method does not generate the false streamlines that enter the cingulum tract which

propagate in the anterior-posterior direction. This is also demonstrated in the con-

nectivity maps in Figure 3.9 (the first and second rows). For the CCS, the proposed
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Figure 3.7: Connectivity to cortical labels: ATR, PTR, and STR. The orientations
are identified in the first column.

method prevents the streamlines from entering the corticopontine tract that prop-

agates in the inferior-superior direction, as shown in Figure 3.8(c). Figure 3.9 (the

third row) shows the difference in CCS connectivity between the methods.

In Figure 3.10, the proposed method does not produce the false CPT streamlines

that enter the cerebellum or propagate to the anterior or posterior regions of the

brain as in the other methods. As shown in Figure 3.11, the CPT produced by the

proposed method shows a strong connection to the precentral cortical label while in

the other methods the CPT are connected to both precentral and postcentral cortical

regions.
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(a) CCF

(b) CCP

(c) CCS

Figure 3.8: Fiber tracking results overlaid on the FA map: (a) CCF, (b) CCP, and
(c) CCS.

In Figure 3.12, which shows the OPR, the proposed method does not generate

the false streamlines entering the CCP pathway and crossing the mid-sagittal plane.

The connectivity map in Figure 3.13 also demonstrates that the false streamlines are

reduced with the proposed method.
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Figure 3.9: Connectivity to cortical labels: CCF, CCP, and CCS. The orientations
are identified in the first column.

3.3.3.2 Connectivity Patterns in 18 Normal Subjects

Next, we studied the connectivity patterns of these tracts using the results of the

proposed method on all 18 healthy subjects. To compare the counts of reconstructed

streamlines across different subjects, we define a normalized connectivity for cortical

label i:

Ci =
Ni∑
j

Nj

, (3.19)

where Ni is the number of streamlines hitting label i.
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Figure 3.10: Fiber tracking results overlaid on the FA map: left CPT.

Figure 3.11: Connectivity to cortical labels: left CPT. The orientation is identified
in the first column.

The matrices showing the connectivity of each tract to the cortical areas are shown

in Figures 3.14, where the means, the standard deviations, and the medians of the

normalized connectivity are plotted. Here “lh” and “rh” represent left and right hemi-

spheres, respectively. It can be seen that no false connection across the hemisphere is

created for the ATR, the PTR, and the STR. The ATR shows consistent connection

to the lateral orbitofrontal area and the rostral middle frontal area. The PTR shows

consistent connection to the inferior parietal area and the superior parietal area. The

STR shows consistent connection to the postcentral area and the precentral area. The

CCF is consistently connected to both left and right rostral anterior cingulate areas,

rostral middle frontal areas, and superior frontal areas; the CCP is consistently con-
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Figure 3.12: Fiber tracking results overlaid on the FA map: left OPR.

Figure 3.13: Connectivity to cortical labels: left OPR. The orientation is identified
in the first column.

nected to both left and right isthmus cingulate areas, precuneus areas, and superior

parietal areas; and the CCS is consistently connected to both left and right superior

frontal areas. For the CPT and the OPR, no false connection across the hemisphere

is created. The CPT is consistently connected to the precentral area, and the OPR

is consistently connected to the fusiform and the lateral occipital area. It can also

been observed that relatively higher standard deviations are associated with higher

means and medians of the normalized connectivity.
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(a) Means of the normalized connectivity

(b) Standard deviations of the normalized connectivity

(c) Medians of the normalized connectivity

Figure 3.14: Normalized connectivity of each tract to the cortical areas: (a) mean,
(b) standard deviation, and (c) median. “lh” and “rh” represent left and right hemi-
spheres, respectively.

3.4 Discussion

The proposed method estimates the FOs within named white matter tracts using

guidance from volumetric tract segmentation. There are limitations to the method.

For example, its performance will be affected by the accuracy of the segmentation
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algorithm. The weighting parameter µ0 controls the influence of the segmentation. In

our phantom test, because the ground truth is used, higher values of µ0 lead to more

accurate FO estimation. However, in practice, the segmentation method may result in

various types of inaccuracy, which is difficult to simulate in the phantom test. Thus,

the choice of µ0 should be made with respect to the segmentation algorithm in a real

application. A smaller value of µ0 should be used with less accurate segmentation.

The worst case scenario would be zero weighting (µ0 = 0) where the solution becomes

a diffusion process of smoothing.

The choice of the smoothing parameter α can be dependent on the shape of the

tract. In the phantom test, because the ground truth FOs are identical throughout

the tract, higher α leads to a better estimate. However, if the tract is curved, α values

that are too large will generate FOs not agreeing with the tract shape.

The FO estimation is also affected by the tract model that is used by the seg-

mentation algorithm. For example, in the Fiber Cup phantom, the tracts could be

defined differently. If the tract with three branches (the blue one in Figure 3.4) were

defined as three separate tracts, the estimated FOs could become slightly different

accordingly. In the brain DTI data, we do not estimate the FOs in the lateral parts

of the corpus callosum, which propagate the streamlines to the lateral part of the

brain, because the lateral corpus callosum is not included in the DOTS atlas (which

is based on the tract atlas in [90]). Similarly, if another tract segmentation algorithm

were to be used, the resulting FO estimates would follow the new tract definition.

48



CHAPTER 3. FIBER TRACKING GUIDED BY SEGMENTATION

In addition, if the method were to be applied on patients, the FO estimation results

could be influenced by the presence of disease, because the segmentation performance

could be affected.

We have used the streamline count as a measure of connectivity to demonstrate the

performance of the proposed method. This also gives a potential scientific application

of studying connectivity of tracts. It should be noted that, for scientific studies, the

streamline count is not necessarily an accurate quantitative measure of strength of

connectivity [110], which could also be a reason for the relatively large variations in

normalized connectivity in Figure 3.14. Instead, the connectivity patterns provide a

qualitative evaluation of connectivity [110].

3.5 Summary and Conclusion

We have proposed a Bayesian approach to FO estimation guided by volumetric

tract segmentation. The prior information encodes spatial smoothness of the FOs

and the constraint of volumetric tract segmentation, and the likelihood term ensures

data fidelity. By maximizing the posterior probability density of FOs, an objective

function is achieved. Using calculus of variations, the FO is estimated by iteratively

solving the Euler-Lagrange equations. Then, a streamlining fiber tracking strategy

using the estimated FOs is presented.

Experiments performed on a digital crossing phantom, the Fiber Cup phantom,
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and brain DTI data demonstrate that the proposed method can reduce the effect of

noise, resolve crossing fibers, and reduce anatomically incorrect streamlines. The ex-

periments on tract connectivity to cortical regions also show the potential application

of the proposed method to scientific studies.

3.A Derivation for the Iterative FO Up-

date

Using the approximation in [101], we have

∇2fx = fx − fx,

∇2fy = fy − fy,

∇2fz = fz − fz,

(3.20)

where fx, fy, and fz are the local averages of fx, fy, and fz, respectively. Using

Eq. (3.20), Eq. (3.16) can be written as

α(fx − fx) = µgx(fxgx + fygy + fzgz) + λ(fx − vx),

α(fy − fy) = µgy(fxgx + fygy + fzgz) + λ(fy − vy),

α(fz − fz) = µgz(fxgx + fygy + fzgz) + λ(fz − vz).

(3.21)
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Solving Eq. (3.21), we have:

fx = fx −
µgx(gxfx + gyfy + gzfz)

α + λ+ µ(g2x + g2y + g2z)
+

λ[(α + λ)(vx − fx) + µ(g2y + g2z)(vx − fx)− µgxgy(vy − fy)− µgxgz(vz − fz)]
(α + λ)(α + λ+ µ(g2x + g2y + g2z))

,

fy = fy −
µgy(gxfx + gyfy + gzfz)

α + λ+ µ(g2x + g2y + g2z)
+

λ[(α + λ)(vy − fy)− µgxgy(vx − fx) + µ(g2x + g2z)(vy − fy)− µgygz(vz − fz)]
(α + λ)(α + λ+ µ(g2x + g2y + g2z))

,

fz = fz −
µgz(gxfx + gyfy + gzfz)

α + λ+ µ(g2x + g2y + g2z)
+

λ[(α + λ)(vz − fz)− µgxgz(vx − fx)− µgygz(vy − fy) + µ(g2x + g2y)(vz − fz)]
(α + λ)(α + λ+ µ(g2x + g2y + g2z))

.

(3.22)

Then the problem is solved by iteratively updating f , which leads to Eq. (3.17).
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Distinguishing Interdigitated

Tongue Muscles with Limited DTI

4.1 Motivation

Several studies have used diffusion tensor imaging (DTI) to study tongue mus-

cles [40,92–94,113,114]. For example, in [93], based on diffusion tensors, fiber tracking

was used to reconstruct key muscle fibers and visualize the tongue anatomy. In [94],

muscle fibers were studied together with strain rate to demonstrate the relationship

between fiber organization and tissue deformation during swallowing. Using DTI,

studies on the influence of interventions on the tongue muscles have also been per-

formed. In [92] and [114], preliminary studies were carried out to track the deformed

muscle fibers in patients with oral appliances. In [113], tongue muscle fibers were
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(a) (b) (c)

Figure 4.1: An example of fiber tracking seeded in the transverse muscle, which in
this axial view should be seen as left to right (red) streamlines. Each segment of
the fibers is color-coded by the standard DTI color scheme. (a) DTI model. (b)
Multi-tensor model. (c) Proposed method with prior information.

tracked for a patient after the glossectomy and compared with a control subject.

These studies [92–94, 113, 114] all used DTI-based fiber tracking [3, 115]. How-

ever, many of the tongue muscles interdigitate, and it is well known that DTI cannot

represent crossing fiber orientations (FOs) [116]. Thus, using the tensor model is

insufficient for reconstructing interdigitated tongue muscles. For example, the trans-

verse muscle interdigitates with the genioglossus, and DTI fails to reconstruct the

transverse muscle. Figure 4.1(a) gives a typical example of fibers tracked with DTI

when seeded in the transverse muscle; it can be seen that the majority of the trans-

verse muscle fibers, which should be reconstructed as left to right (red) streamlines,

are missing. Therefore, a fiber tracking method that is able to resolve crossing fibers

is crucial for correct representation of the tongue muscles.
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To address the problem of tracking crossing fibers, different imaging modali-

ties that seek to obtain more comprehensive directional information, including high

angular resolution diffusion imaging (HARDI) [60] and diffusion spectrum imaging

(DSI) [61], have been proposed. Since these modalities typically acquire around or

even more than 100 gradient directions and demand long scan times (which limits

their application in clinical research), a number of attempts to accelerate the imaging

process have been made [117–119]. However, because of the involuntary swallowing,

which limits the available time to around 2–3 minutes for in vivo acquisition in the

tongue, especially in cases where pathology is present, only a dozen (or so) gradient

directions are achievable in practice. Thus, there is insufficient time for the acquisition

of HARDI and DSI, despite the efforts to accelerate image acquisition. In addition,

a great number of existing DTI data sets have been acquired and need better analy-

sis. Therefore, although both HARDI and DSI data could be used for the methods

described in this work, we limit the presentation of results to the conventional DTI

acquisitions that are presently achievable.

There are also methods designed to better exploit the information in DTI to

resolve crossing fibers. For example, Behrens et al. [26] and Peled et al. [55] use two-

tensor models to recover crossing directions. In [26], a Bayesian estimation is used

to fit the parameters of the model, which is achieved by Markov chain Monte Carlo

sampling. The method in [55] places a number of constraints on the tensors in the

two-tensor model to reduce the number of free parameters, and resolves two crossing
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FOs using a nonlinear least squares method. Several prior research studies [27,56,58]

use multi-tensor models with a fixed tensor basis to resolve crossing fibers. In [58],

diffusion signals are modeled as a discrete mixture of Gaussian random variables and

are deconvolved using a set of diffusion basis functions which represent FOs. In [27],

a sparse reconstruction technique is used, where a dictionary is constructed with a

fixed tensor basis. The FOs are estimated by solving the `1-norm regularized least

squares problem. Zhou et al. [56] add an isotropic component in the multi-tensor

model and solves the problem with `1-norm and TV-norm regularization.

Using the number of gradient directions that is common in clinical research (around

30), the two-tensor or multi-tensor models are able to resolve crossing fibers. How-

ever, due to the limited number of gradient directions in in vivo tongue diffusion

data acquisition, there is insufficient information for successful resolution of crossing

fibers using these methods. Figure 4.1(b) gives an example of fibers tracked using

the multi-tensor model in [27], when the fibers were seeded in the transverse muscle.

Although part of the transverse muscle is reconstructed, it is clear that the major

body is missing. Thus, distinguishing interdigitated tongue muscles, which constitute

a large percentage of the tongue volume, is very challenging.

In this work, we present a multi-tensor method for distinguishing interdigitated

tongue muscles that incorporates prior directional knowledge within a Bayesian frame-

work. The proposed method is named Fiber Interdigitation Estimation by Bayesian

Reconstruction (FIEBR). In FIEBR, the prior directional knowledge provides infor-
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mation on likely FOs at each voxel, and can be computed with anatomical knowledge

of tongue muscles.

An example of the FIEBR result is shown in Figure 4.1(c). In contrast to the DTI

model and the multi-tensor results in Figures 4.1(a) and 4.1(b), FIEBR successfully

reconstructs the transverse muscle. In FIEBR, we use a fixed tensor basis to model

the diffusion weighted signals in each voxel, and then we determine the contribution

of each basis tensor using maximum a posteriori (MAP) estimation. The prior distri-

bution contains both the prior directional information and sparsity constraints, and

data fidelity is modeled in the likelihood term. The resulting objective function can be

solved as a noise-aware version of a weighted `1-norm minimization [120]. Using the

estimated FOs from FIEBR, we also propose a streamlining fiber tracking strategy

to reconstruct tongue muscles.

4.2 Theory and Algorithm

In this section, we first introduce a multi-tensor model with a fixed tensor ba-

sis. Then, the MAP estimation of the FOs incorporating prior directional knowledge

is presented, and an approach to obtaining prior knowledge of tongue muscle FOs

is provided. A streamlining fiber tracking strategy using the estimated FOs is also

described. Finally, the constants used in the proposed FIEBR and streamlining algo-

rithms are summarized.
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4.2.1 Multi-tensor Model with a Fixed Tensor Ba-

sis

We define a fixed tensor basis comprising N prolate tensors Di whose primary

eigenvectors (PEVs) are oriented over the sphere. Each Di represents an FO given

by its PEV. In this work, N = 253, the second and third eigenvalues of each basis

tensor are equal to 0.5 × 10−3 mm2/s, and the primary eigenvalue is equal to 2 ×

10−3 mm2/s. At each voxel, the diffusion weighted signals can be modeled as a

mixture of the attenuated signals from these tensors. Using the Stejskal-Tanner tensor

formulation [30], we have [27]

Sk = S0

N∑
i=1

fie
−bgTkDigk + nk, (4.1)

where b is the b-value, gk is the k-th gradient direction (k ∈ {1, 2, ..., K} where K

is the number of gradient directions), Sk is the diffusion signal in the k-th direction,

S0 is the baseline signal without diffusion weighting, fi is the (unknown) nonnegative

mixture fraction for Di, and nk is a noise term. Note that in this signal model, as

in [58], [121], and [27], we do not explicitly require
∑N

i=1 fi = 1, but the fi’s can be

interpreted as mixture fractions when they are normalized to sum to one [27]. By

defining yk = Sk/S0 and ηk = nk/S0, Eq. (4.1) can be written as:

y = Gf + η, (4.2)
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where y = (y1, y2, ..., yK)T , G is a K × N matrix comprising the attenuation terms

Gki = e−bg
T
kDigk , f = (f1, f2, ..., fN)T , and η = (η1, η2, ..., ηK)T .

4.2.2 Mixture Fraction Estimation with Prior Knowl-

edge

We use MAP estimation to estimate the mixture fractions f . Accordingly, we seek

to maximize the posterior probability of f given the observations y. The posterior

probability is given by

p(f |y) =
p(f)p(y|f)∫
p(f)p(y|f)df

. (4.3)

Therefore, since the denominator in Eq. (4.3) is constant with respect to f , the desired

solution is

f̂ = arg max
f

p(f)p(y|f) (4.4)

Since at each voxel the number of FOs is expected to be small, we promote sparse-

ness in f by using the Laplace prior density: p(f) ∝ e−λ||f ||1 , where λ is a positive

constant. However, sparsity alone is not sufficient prior information when the ob-

servations do not include a large number of gradient directions (as in DTI of the in

vivo tongue). Therefore, we further supplement the prior knowledge with directional

information. Suppose prior information about likely FOs were known at each voxel.
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For each voxel, let the prior directions be represented by the collection of vectors

{w1,w2, ...,wP}, where P is the number of prior FOs. A similarity vector a can

be constructed between the directions represented by the basis tensors and the prior

directions:

a = (max
m
|v1 ·wm|,max

m
|v2 ·wm|, ...,max

m
|vN ·wm|)T , (4.5)

where vi is the PEV of the basis tensor Di. Each entry ai in a represents the similarity

between the basis direction vi and its closest prior direction. Note that wm and vi are

unit vectors and thus ai ∈ [0, 1]. We modify the prior density by incorporating the

similarity vector as follows: p(f) ∝ e−λ||f ||1eγa·f , where γ is a nonnegative constant.

In this way, basis tensors closer to the prior directions are made to be more likely a

priori (except when γ = 0 and no prior information is incorporated).

Since f ≥ 0, we have

λ||f ||1 − γa · f = λ1 · f − γa · f

= λ(1− γ

λ
a) · f

= λ(1− αa) · f

= λ||Cf ||1, (4.6)
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where

α =
γ

λ
(4.7)

and C is a diagonal matrix with Cii = (1− αai) (note that α ≥ 0). Therefore, p(f)

has a truncated Laplace density given by

p(f) =
1

Zp(α, λ)
e−λ||Cf ||1 , f ≥ 0, (4.8)

where Zp(α, λ) is a normalization constant. We require α < 1 to ensure that Cii > 0.

Thus, 0 ≤ α < 1.

Suppose the noise η in Eq. (4.2) follows a Rician distribution. A Rician distribu-

tion can be approximated by a Gaussian distribution when the signal-to-noise ratio

(SNR) is above 3:1 [122], which holds for most observed data in the proposed appli-

cation. The conditional density for the observed data is then modeled as a Gaussian

density: p(y|f) ∝ e−||Gf−y||22/σ2
η , where ση is the noise level.

Using Eq. (4.3), we can then write the posterior density as

p(f |y) =
1

Z(α, λ, ση,G)
e−(||Gf−y||22/σ2

η+λ||Cf ||1), (4.9)

where Z(α, λ, ση,G) is a normalization constant. The MAP estimate of f is found
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by maximizing either p(f |y) or ln p(f |y), which implies that

f̂ = arg min
f≥0

1

σ2
η

||Gf − y||22 + λ||Cf ||1. (4.10)

By using β = λσ2
η, the minimization in Eq. (4.10) is equivalent to

f̂ = arg min
f≥0

||Gf − y||22 + β||Cf ||1, (4.11)

which is a noise-aware version of a weighted `1-norm minimization [120]. We note

that this formulation is equivalent to the CFARI objective function developed in [27]

when α = 0 (i.e., C = I). Thus, our approach, developed with an alternative Bayesian

perspective, is a generalization of the CFARI algorithm.

To solve Eq. (4.11), we use a new variable g = Cf . Since C is diagonal and

Cii > 0, C is invertible and therefore f = C−1g. Letting G̃ = GC−1, we have

ĝ = arg min
g≥0

||G̃g − y||22 + β||g||1. (4.12)

We find ĝ using the optimization method in [123] and the mixture fractions f can be

estimated as:

f̂ = C−1ĝ. (4.13)
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Finally, the mixture fractions are normalized so that they sum to one:

f̃i =
f̂i
N∑
j=1

f̂j

. (4.14)

Directions associated with nonzero mixture fractions are interpreted as FOs, and the

value of f̃i indicates the contribution of the corresponding direction in the diffusion

signal.

4.2.3 Prior Directions for the Tongue Muscles

To obtain prior directions, we built a template by manually identifying regions

of interest (ROIs) for the genioglossus (GG) muscles, the geniohyoid (GH) muscles,

the inferior longitudinal (IL) muscles, the superior longitudinal (SL) muscles, the

transverse (T) muscles, and the vertical (V) muscles according to [96] on a high

resolution structural image (0.8 mm isotropic) of a subject. The b0 image (the image

without diffusion weighting) was also acquired for this template subject in the same

position as the high resolution structural image. A mask of the tongue area was

delineated on the b0 image. The muscle ROIs were subsampled to have the same

resolution as the b0 image. For each test subject, a manual mask of the tongue was

drawn on the b0 image. We used SyN deformable registration [124] between the b0

images masked by the tongue regions to deform the template to the target space,

where cross correlation was used as the similarity metric.
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Using deformed ROIs of the tracts, the prior directions can be obtained as follows.

GG is known to be fan-shaped; therefore, we use fan-shaped prior directions for GG,

as illustrated in Figure 4.2(a). Specifically, the origin of GG in the mid-sagittal slice

can be identified on the test subject during the delineation of the whole tongue.

Suppose the x-axis represents the left-right (L-R) direction, the y-axis represents the

anterior-posterior (A-P) direction, and the z-axis represents the inferior-superior (I-

S) direction. Then at a voxel xGG = (xGG, yGG, zGG) belonging to GG, fanning GG

prior directions can be obtained with respect to the GG origin (xo, yo, zo) as wGG =

(0, yGG − yo, zGG − zo). Similarly, since V is known to fan out like GG, for a voxel

xV = (xV, yV, zV) in V, its prior FO is set as wV = (0, yV− yo, zV− zo). The GH and

IL have A-P FOs, therefore in GH and IL voxels we use wGH = wIL = (0, 1, 0) as the

prior directions. The fibers in T propagate transversely, therefore the prior direction

wT of a T voxel is wT = (1, 0, 0). Finally, SL has arc-shaped fibers close to the top

and back surface of the tongue, as illustrated in Figure 4.2(a). The approximate circle

center for the arc in the mid-sagittal slice is manually identified on the test subject as

xc = (xc, yc, zc). For a voxel xSL = (xSL, ySL, zSL) belonging to SL, its prior direction

can be calculated as wSL = (0,−(zSL − zc), ySL − yc), which is tangential to the arc.

An example of the prior directions on a test subject is shown in Figure 4.2(b). The

directions are color-coded by the standard DTI scheme. Note that in the coronal

view, the A-P directions (GH and IL) are not visible, and in the sagittal view, the

L-R directions (T) are not visible.
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(a) Schematic of GG and SL (b) Prior FOs on a test subject

Figure 4.2: (a) A schematic of GG and SL FOs (sagittal view). (b) An example of
prior directions on a test subject in the mid-coronal view and mid-sagittal view. The
directions are color-coded by the standard DTI scheme. Note that in the coronal view,
A-P directions (GH and IL) are not visible, and in the sagittal view, L-R directions
(T) are not visible.

It is possible that the prescribed knowledge is incorrect due to an anatomical

abnormality or error in its specification. Some variation is to be expected and can be

compensated by selecting the weight assigned to the prior knowledge appropriately

(see experiments below). However, when the prior knowledge varies grossly from the

data, it is best to recognize this and adaptively downweight or remove this particular

prior knowledge. For example, when there is one FO (P = 1), the priors should not

deviate much from that FO; when there are two FOs (P = 2), the prior directions

should be close to the plane defined by the two FOs, or in other words they are close

to orthogonal to the normal of the plane.

One way of removing incorrect priors is to use the diffusion tensor information,

which is calculated from the diffusion weighted images (DWIs). Suppose the first and
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third eigenvectors of the diffusion tensor are vd1 and vd3, respectively; vd1 provides

an estimate of the FO when there is no crossing fiber, and vd3 provides an estimate

of the normal of the plane defined by the FOs when there are two crossing fibers.

Accordingly, we discard prior FOs when

arccos |w1 · vd1| > ξ1, if P = 1 (4.15)

or

min
m={1,2}

arccos |wm · vd3| < ξ2, if P = 2, (4.16)

where ξ1 and ξ2 are thresholds.

4.2.4 Fiber Tracking

Given the FIEBR estimated FOs, fiber tracking can be carried out using a stream-

lining technique similar to [27]. Starting from a seed voxel, the FOs with f̃i > tmf are

used to initiate fibers, where tmf is a threshold, because directions with small f̃i’s are

interpreted as components of isotropic diffusion. For each initiated fiber, at each step,

one of the FOs in the current voxel is selected as the propagation direction until the

fiber reaches the next voxel. In selecting FOs, only those with f̃i > tmf are considered.

As in [27], the FO that maximizes the importance weighting f̃i|vi · vlast|4 is selected.
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Table 4.1: A summary of the constants used in the proposed method.
Constants Default Values

Mixture Fraction

Estimation

α N/A
β N/A
ξ1 π/4
ξ2 π/4

Fiber Tracking

tmf 0.1
tFA 0.2
θt 40◦

Here vlast is the unit propagation direction in the previous tracking step. Starting and

terminating criteria based on fractional anisotropy (FA) are used. Only voxels with

FA larger than a threshold tFA are used to initiate fibers, and when fibers reach FA val-

ues lower than tFA, they are terminated. Finally, a turning angle threshold θt is used:

when the angle between the current and previous propagation directions is larger than

θt, the fibers are terminated. In this work, tmf = 0.1, tFA = 0.2, and θt = 40◦, which

are common settings in other DTI fiber tracking algorithms [27,102,103].

4.2.5 Summary of Constants

A table summarizing the constants used in the proposed method is shown in

Table 4.1. α, β, ξ1, and ξ2 are used in the mixture fraction estimation, and tmf , tFA,

and θt are used in the fiber tracking process. Note that for α and β, different values

are used based on the levels of noise in each voxel. Their values are determined in

Section 4.3.1.3 and are not listed in Table 4.1.
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4.3 Experiments

FIEBR was first applied on a digital crossing phantom. Different settings of α

and β (see Eqs. (4.7) and (4.11)) were tested with different levels of noise. In addi-

tion, we studied the influence of the accuracy of prior knowledge. Parameters learned

from these computational phantom studies were used on the next set of experiments

involving in vivo tongue diffusion data, where three control subjects and three pa-

tients with glossectomies were included. FOs were estimated and muscle fibers were

tracked on all six subjects. These results are visualized for qualitative comparison

and histograms of FOs are numerically evaluated for quantitative comparison.

4.3.1 Digital Crossing Phantom

A 3D crossing phantom with two tracts crossing at 90◦ was generated to verify

the operation of the FIEBR algorithm. Figure 4.3 shows an axial view of this com-

putational phantom. Twelve diffusion gradient direction acquisitions were simulated

and both FIEBR and CFARI [27] were applied to these data.

4.3.1.1 Noise-free Case

First we applied FIEBR on this noise-free phantom for a proof-of-concept experi-

ment. The horizontal and vertical directions—i.e., the correct directions—were used

as the prior directions for the horizontal and vertical tracts, respectively. A result
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with α = 0.5 and β = 0.05 is shown and compared with CFARI results (β = 0.05)

in Figures 4.3(a) and 4.3(b). Here the standard DTI color scheme is used. Since

directions with small f̃i’s are interpreted as components of isotropic diffusion, we

only show directions with f̃i > tmf . In the crossing regions, CFARI fails to produce

the correct crossing directions (Figure 4.3(a)), while FIEBR correctly generates the

crossing pattern (Figure 4.3(b)).

Next, we studied the performance of FIEBR with inaccurate prior directions. To

introduce errors in the prior directions, we rotated the true directions by θ = 10◦ and

used the rotated directions as the prior directions. Two cases of rotations were tested:

in and out of the axial plane. Specifically, in the first case the horizontal and vertical

directions were both rotated clockwise in the axial plane; and in the second case

the horizontal directions were rotated around the vertical line out of the axial plane

and the vertical directions were rotated around the horizontal line out of the axial

plane. The results of the two cases are shown in Figures 4.3(c) and 4.3(d). In both

cases, even with inaccurate prior directions, FIEBR correctly estimates noncrossing

and crossing FOs.

4.3.1.2 Influence of Noise, Algorithm Parameters, and Prior

Direction Inaccuracies

To make the simulation more realistic, we added Rician noise in the phantom

test. We selected three sample voxels in the phantom: one in the noncrossing hor-
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(a) (b) (c) (d)

Figure 4.3: Axial view of the FA of the crossing phantom. Estimated FOs from (a)
CFARI and (b)-(d) FIEBR when (b) the prior directions are correct, (c) the prior
directions are rotated by 10◦ in the plane, and (d) the prior directions are rotated by
10◦ out of the plane.

izontal tract, one in the noncrossing vertical tract, and one in the crossing region.

Different levels ση of Rician noise η in Eq. (4.2) were added to the sample vox-

els, and we tested with different values of α, β, and prior direction inaccuracy θ.

The inaccurate prior directions were obtained with in-plane and out-of-plane rota-

tion by θ. The sets of the testing parameters were: ση ∈ Ση = {0, 0.04, 0.08, 0.12},

α ∈ A = {0.1, 0.2, . . . , 0.9, 0.99}, β ∈ B = {0.05, 0.2, 0.4, . . . , 2.0}, and θ ∈ Θ =

{0◦, 10◦, 20◦, 30◦}. For each combination of ση, α, β, and θ, 100 simulations were

performed for each sample voxel.

To quantitatively evaluate the results, we define two error measures for angles:

e1 =
1

N1

N∑
i=1
f̃i>t

min
j

arccos(vi · uj) ·
180◦

π
, (4.17)

e2 =
1

N2

N2∑
j=1

min
i:f̃i>t

arccos(vi · uj) ·
180◦

π
. (4.18)

Here N1 is the number of directions with normalized mixture fractions f̃i larger than
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a threshold t (in this case t = 0.1), vi is the basis direction, uj is the ground truth of

FO, and N2 is the number of ground truth directions. N2 can be 1 or 2, depending

on whether crossing fibers exist at the location. e1 measures how close the estimated

directions are to the ground truth, and e2 measures how well each true direction

is estimated. Note that using only e1 or e2 is insufficient because the estimated

directions can agree with one of the true crossing directions and ignore the other, or

each true direction can be properly estimated but there are other estimated directions

representing incorrect directions.

Examples of the mean errors of the estimated FOs are plotted in Figures 4.4 and

4.5 for σ = 0.04, θ ∈ {0◦, 10◦}, α ∈ A, and β ∈ B. For the inaccurate prior directions

rotated by θ, the results of the in-plane and out-of-plane cases are averaged. The

results for the two noncrossing voxels are averaged as the noncrossing cases. Note

that the cases with α = 0 are equivalent to CFARI results.

Figure 4.4 shows examples when noise of ση = 0.04 is added to noncrossing vox-

els. Using the correct prior directions (θ = 0◦) reduces the effect of noise (see Fig-

ures 4.4(a) and 4.4(c)). When errors are introduced in the prior directions, the effect

of noise can still be reduced with the proper selection of α and β (see α = 0.4 and

β = 1.2 in Figures 4.4(b) and 4.4(d)). Figure 4.5 gives examples of the crossing cases.

It can be seen that the effect of noise can be reduced with true or inaccurate prior

directions. Note that for θ = 10◦, the errors can be smaller than 10◦, which indicates

the result is better than simply using the prior directions as the estimate.
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(a) e1: ση = 0.04, θ = 0◦ (b) e1: ση = 0.04, θ = 10◦

(c) e2: ση = 0.04, θ = 0◦ (d) e2: ση = 0.04, θ = 10◦

Figure 4.4: Mean e1 and e2 errors in the noncrossing cases with ση = 0.04 and different
θ, α, and β.

4.3.1.3 Determination of Algorithm Parameters Based on

Noise Levels

We used all the combinations of ση, α, β, and θ to determine the best parameter

settings for real data. For each combination of ση, α, and β, we averaged the errors

with different θ for the noncrossing and crossing cases separately. Then for each ση,

the α and β which minimize the average error using all the θ were selected for the

noncrossing and crossing cases. Using the plots in Figures 4.4 and 4.5 and other
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(a) e1: ση = 0.04, θ = 0◦ (b) e1: ση = 0.04, θ = 10◦

(c) e2: ση = 0.04, θ = 0◦ (d) e2: ση = 0.04, θ = 10◦

Figure 4.5: Mean e1 and e2 errors in the crossing cases with ση = 0.04 and different
θ, α, and β.

similar plots not shown, the selection is summarized in Table 4.2. This table is later

used to determine α and β in the real data application.

Based on Table 4.2, different α and β values are used for different levels of noise.

To estimate the noise level ση, which is calculated by the image noise term in Eq. (4.1)

and the b0 image intensity, we first estimate the image noise level σ by placing an

ROI in the background. Here we assume the background noise follows a Rayleigh
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Table 4.2: A summary of the selected α and β with different ση.
Noncrossing Case Crossing Case

ση 0 0.04 0.08 0.12 0 0.04 0.08 0.12
α 0.5 0.4 0.5 0.5 0.5 0.7 0.8 0.6
β 0.2 0.6 1.0 1.6 0.2 0.6 1.0 1.6

distribution, and σ2 can be estimated as [125]

σ̂2 ≈ 1

2Nb

Nb∑
i=1

I2i , (4.19)

where Ii’s are the intensities of the background voxels in the bounding box, and Nb

is the number of these voxels. Then, σ is estimated as

σ̂ ≈
√
σ̂2. (4.20)

Thus, at each voxel x, ση(x) can be estimated as

σ̂η(x) ≈ σ̂

S0(x)
, (4.21)

where S0(x) is the baseline signal without diffusion weighting at x. Using the esti-

mated σ̂η(x) and Table 4.2, we decide α(x) and β(x) for each voxel x as follows. In
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noncrossing regions:

(α(x), β(x)) =



(0.5, 0.2), if 0 ≤ σ̂η(x) < 0.02

(0.4, 0.6), if 0.02 ≤ σ̂η(x) < 0.06

(0.5, 1.0), if 0.06 ≤ σ̂η(x) < 0.10

(0.5, 1.6), if σ̂η(x) ≥ 0.10

(4.22)

In crossing regions:

(α(x), β(x)) =



(0.5, 0.2), if 0 ≤ σ̂η(x) < 0.02

(0.7, 0.6), if 0.02 ≤ σ̂η(x) < 0.06

(0.8, 1.0), if 0.06 ≤ σ̂η(x) < 0.10

(0.6, 1.6), if σ̂η(x) ≥ 0.10

(4.23)

In this way, the selected parameter pairs minimize the average errors at their corre-

sponding noise levels.

4.3.2 In Vivo Tongue Diffusion Data

We applied our method to in vivo tongue diffusion data, where three control

subjects and three patients with glossectomies were included. DWIs were acquired on

a 3T MR scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany).
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Each scan has 12 gradient directions and one b0 image. The b-value is 500 s/mm2.

The field of view (FOV) is 240 mm × 240 mm × 84 mm. TR/TE=5000/68 ms. The

resolution is 3 mm isotropic. The acquisition of each subject took about two minutes

and 30 seconds, which must be this short because it is difficult for subjects to resist

for a longer time period the involuntary urge to swallow.

4.3.2.1 Application to Control Subjects

We first applied FIEBR on the control subjects using the parameter settings in

Eqs. (4.22) and (4.23), which are computed independently for each voxel. An example

of the estimated FOs on a representative control subject is shown and compared with

the PEV of the diffusion tensor and the CFARI algorithm [27] in Figure 4.6. In

the mid-sagittal view, we highlight the regions of GG crossing with SL, and in the

mid-coronal view, a region of GG/V and T crossing is highlighted. The PEV alone

obviously cannot represent crossing FOs and the CFARI algorithm fails to resolve

crossing fibers, while FIEBR is able to recover the crossing directions.

In Figure 4.7, we plot the distribution of FOs in the whole tongue of this control

subject for all three algorithms. The distributions are plotted on the upper part of

the unit sphere and viewed from top. A sketch of the tongue orientation relative

to these hemispheres is shown in Figure 4.7(a). The surface of the hemisphere is

divided into bins by discretizing the azimuth angle and the elevation angle. In each

bin, the density is calculated by dividing the number of the FOs that fall in the bin
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(a) Mid-sagittal View

(b) Mid-coronal View

Figure 4.6: Estimated FOs from FIEBR compared with the PEV and the CFARI
algorithm: (a) mid-sagittal view and (b) mid-coronal view. Note the highlighted
regions for comparison.

by the bin area. In the FIEBR result, there are many L-R FOs, which are indicated

by the bins near (−1, 0) and (1, 0) (highlighted as region A in Figure 4.7(d)). The

L-R directions represent the T FOs. There are also many FOs in the A-P direction,

which are indicated by the bin near (0,−1) (highlighted as region B in Figure 4.7(d)).

These directions represent the IL, GH, and part of GG fibers. The three bins on the
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(a) A sketch of the tongue orientation (b) PEV

(c) CFARI (d) FIEBR

Figure 4.7: FO distributions of a representative control subject plotted on the upper
unit sphere (viewed from top). (a) A sketch of the tongue orientation relative to these
hemispheres and (b)-(d) FO distributions. Regions are highlighted in the FIEBR
result for evaluation.

negative part of the line x = 0 show the fanning pattern of GG FOs (highlighted as

region C in Figure 4.7(d)). In the results from the PEVs and CFARI, far fewer L-R

directions are observed.

Next, fiber tracking was performed for further validation of the FO estimation.

Using fiber tracking, we can evaluate the coherence of the FOs qualitatively. We

placed seeds in GG and T separately. The results on the representative control

subject are shown in Figures 4.8 and 4.9, where FIEBR is compared with both the
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Figure 4.8: Fiber tracking results seeded in GG. Note the highlighted region for
comparison.

FACT algorithm [3] and the fiber tracking method proposed in [27] that uses CFARI

results. The visualization of fibers was created in TrackVis [126], where the fibers are

color-coded by the orientation of each segment.

In Figure 4.8, it can be seen that, many of the GG fibers produced by FACT and

CFARI terminate due to the crossing of GG with T and SL, while FIEBR tracks GG

through these crossing regions (see the highlighted region). It is also evident that

FIEBR produces smoother and more fan-shaped GG fibers than FACT and CFARI.

Note that because of the seeds placed in crossing regions, in the FIEBR result we

can also observe that some T and SL fibers are tracked. In Figure 4.9, FACT fails to

produce T fibers, and CFARI only produces T fibers at the anterior portion of the

tongue, while FIEBR reconstructs transverse T fibers throughout the tongue.

78



CHAPTER 4. DISTINGUISHING INTERDIGITATED TONGUE MUSCLES
WITH LIMITED DTI

Figure 4.9: Fiber tracking results seeded in T. Note the highlighted region for
comparison.

4.3.2.2 Application to Patients with Glossectomies

We then performed FIEBR on patients with partial glossectomies. An example

and comparison of fiber tracking results is shown in Figure 4.10. Here we show the

areas that are affected by the surgery near the mid-sagittal plane. Seeds were placed

in GG. Compared to FACT and CFARI, FIEBR tracks GG through the crossing

areas of GG and T (see the highlighted region). In the FIEBR result, it can be seen

that sparser GG fibers in the lesion were tracked than outside the lesion. Note that

because of seeding in the crossing regions of GG and T, some T fibers were also

produced in the FIEBR result, and the T fibers are also sparser in the lesion than

outside the lesion.
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Figure 4.10: Fiber tracking results seeded in GG on a patient with a partial glossec-
tomy. The results are shown near the lesion, which was delineated on the sagittal
slices near the mid-sagittal plane. Note the highlighted region for comparison.

4.3.2.3 Comparison between Controls and Patients with Glos-

sectomies

To investigate the influence of glossectomies on the muscles, we computed FO

histograms for all patients. The distributions of the FOs in the tongue are plotted

in Figure 4.11. Compared with the distribution in Figure 4.7, patients 1 and 3 show

a similar organization of FOs, while patient 2 has a very different fiber organization.

To quantitatively demonstrate this, we calculated the symmetric Kullback–Leibler

divergence for the direction distributions between the subjects and list the result in

Table 4.3. It can be seen that the divergence values between patient 2 and other

subjects are much larger than those between the other subject pairs.
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(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure 4.11: Distributions of FOs of the patients plotted on the upper unit sphere.
The hemisphere is viewed from top.

Table 4.3: The symmetric Kullback–Leibler divergence of the FO distributions be-
tween subjects.

Control 1 Control 2 Control 3 Patient 1 Patient 2 Patient 3
Control 1 0 0.1292 0.0956 0.1117 0.3886 0.1316
Control 2 0 0.1820 0.1356 0.4486 0.1028
Control 3 0 0.1266 0.3483 0.1104
Patient 1 0 0.1958 0.1279
Patient 2 0 0.3541
Patient 3 0

4.4 Discussion

In the crossing phantom test, we observed that the inclusion of prior directional

information enables the method to find the crossing patterns and reduce the effect

of noise, even with inaccurate prior directions. The choice of the parameters should

consider the factors such as noise levels and prior direction inaccuracy. Because

the noise level can be estimated from the image but it is difficult to determine how

accurate the prior information is, we tested different prior direction inaccuracies for

each noise level, and used the average performance to decide the parameter setting

for the real data application. These settings achieved results that are consistent with

the anatomical structures of the muscles. For example, we have tracked transverse T
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fibers and fanning GG fibers.

In the experiments on real tongue data, FIEBR tracks crossing fibers better than

FACT [3] with the single tensor model and CFARI [27] which usually requires around

30 gradient directions. The addition of prior knowledge can also have a smoothing

effect on fiber tracking. For the patients, the method is still able to distinguish

interdigitated muscles, such as GG and T. It also reflects the anomalies caused by

glossectomies, where the GG and T fibers terminate in the lesion.

The case study between the subjects shows that the control subjects share a

consistent pattern of FOs (indicated by the divergence values in Table 4.3). Less

organized FOs were observed in patient 2 while the other two patients have similar

FO distributions as the control subjects. This could indicate that patient 2 is more

affected by the glossectomy, where tongue muscles must be adapted to function after

the surgery. This case study provides a possible example of applying the proposed

method for clinical use.

4.5 Summary and Conclusion

In this chapter, we have proposed a Bayesian approach to distinguishing interdig-

itated tongue muscles with limited diffusion magnetic resonance imaging by incorpo-

rating prior directional knowledge. The diffusion weighted signals are modeled with

a fixed tensor basis. We use MAP estimation, where the prior directional informa-
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tion and the sparsity of the basis tensors are included in the prior distribution, and

data fidelity is ensured in the likelihood term. The FOs are estimated by solving the

resulting weighted `1-norm regularized least squares problem. Using the estimated

FOs, a fiber tracking method is also presented.

The method was first applied on a digital crossing phantom for quantitative eval-

uation, and the results show that the use of prior information can correctly resolve

crossing fibers and reduce the effect of noise. Based on the phantom results, parame-

ter settings were determined for real data. Then the experiments were performed on

in vivo tongue diffusion data and the results demonstrate that the proposed method is

able to resolve crossing tongue muscle fibers with limited gradient directions. A case

study on three control subjects and three patients with glossectomies shows that the

method can reveal the difference in FO distributions between subjects. In particular,

the Kullback–Leibler divergence values indicate that one of the patients is observed

to have quite different organizations of FOs than the other subjects. This case study

provides a potential tool to examine the influence of glossectomies on tongue muscles.
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Chapter 5

Automatic Volumetric

Segmentation of the Cerebellar

Peduncles

5.1 Motivation

Previous studies on cerebellar peduncle atrophy have used manual delineations of

the peduncles on magnetic resonance imaging (MRI) [51,79], which can be subjective

and time-consuming. Automatic segmentation of the cerebellar peduncles is therefore

a crucial step which will enable larger studies involving more objective, reproducible,

and efficient analytic methods.

Although fiber tract segmentation methods based on diffusion tensor imaging
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(DTI) have been developed, none of the existing methods adequately segment the de-

cussation of the superior cerebellar peduncles (dSCP). In [69] and [127], for example,

fiber clustering is used to label the superior cerebellar peduncles (SCPs). However,

the dSCP is entirely missing such that the SCPs pass beyond the red nuclei while

never crossing (see Figure 5.1(a)). The problem occurs in large part because fiber

tracking methods do not correctly track the separate tracts through the dSCP. Fiber

tracking methods that resolve crossing regions have been reported [26,27,55–59,109],

but none of them have yet demonstrated the ability to resolve the dSCP. Although

imaging methods that acquire more diffusion information—e.g., high angular resolu-

tion diffusion imaging (HARDI) [60] and diffusion spectrum imaging (DSI) [61]—can

potentially enable detailed evaluation of the crossing fibers in the dSCP, they take

a much longer imaging time than standard DTI, which makes them less practical

for clinical use. In addition, with the large number of existing and ongoing DTI

acquisitions, scientific studies on the cerebellar peduncles using DTI are still widely

performed [82–88]. Therefore, development of better cerebellar peduncle segmenta-

tion methods on DTI remains an important technical goal.

To avoid using fiber tracking in tract segmentation, methods that directly seg-

ment the tracts by labeling the voxels based on features derived from DTI have been

proposed. For example, the DOTS method reported in [15] explicitly models crossing

regions and attempts to find them by matching their features near where they are

expected to be found according to an atlas registered to the subject. Unfortunately,
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(a) (b)

Figure 5.1: The SCPs (blue and green) shown with the red nuclei (red) and the dentate
nuclei (yellow): (a) typical incorrect SCPs obtained from DTI and (b) segmentation
of the SCPs including the decussation in the proposed method. Note that our SCPs
do not extend through the dentate nuclei, which leads to a different appearance of
the dentate nuclei due to transparency.

because of the small size of the dSCP, DOTS is unable to register the feature atlas

close enough to find the dSCP in test subjects. An improvement to DOTS reported

in [18] incorporates the linear Westin index [128] as an additional feature, but this is

still insufficient to provide a robust initialization and segmentation of the dSCP.

In this work, we propose an automatic method to volumetrically segment the cere-

bellar peduncles including the dSCP. The method models the dSCP, the noncrossing

portions of the SCPs, the middle cerebellar peduncle (MCP), and the inferior cerebel-

lar peduncles (ICPs) as separate objects based on the observation that the diffusion

properties in these regions, including the primary eigenvectors (PEVs) of the tensors

and the Westin indices [128], exhibit certain homogeneous properties. These features,

together with spatial position information, are used to train a random forest classifier

(RFC) [129] from manual delineations. The RFC is then used on new subjects to

segment and label the peduncles. Because smoothness is not enforced in the RFC, a
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further segmentation step is carried out using the multi-object geometric deformable

model (MGDM) framework [130], which refines and smooths out the boundaries. An

example of the proposed segmentation, depicting the SCPs that decussate, is shown

in Figure 5.1(b). Note that in this work, we do not include the SCPs beyond the

decussation because they cannot be well identified on DTI [90].

To show that the algorithm is scientifically useful, we studied differences between

healthy controls and patients with a genetically defined cerebellar disease, spinocere-

bellar ataxia type 6 (SCA6). SCA6 is an autosomal dominant cerebellar ataxia and is

characterized by progressive problems with movement [79]. Patients with SCA6 can

experience discoordination, speech difficulties, and involuntary eye movements [131].

By studying the relationship between the cerebellar peduncles and SCA6, a better

understanding of the disease with respect to anatomical changes can be obtained.

Although previous studies have partially explored this relationship, they are applied

in an indirect way by either measuring the diameter of the midbrain at the SCP

level [79], or manually delineating regions of interest (ROIs) for analysis [51]. In this

work, we automatically segmented the cerebellar peduncles of controls and SCA6 pa-

tients. Then the volume, fractional anisotropy (FA), and mean diffusivity (MD) of

each peduncle were quantified and compared between the two groups.
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5.2 Theory and Algorithm

5.2.1 Random Forest Classification of the Cerebel-

lar Peduncles

An RFC is used to label each voxel, providing an initial estimation of the locations

of the cerebellar peduncles. The RFC, which is trained by manual delineations of

the peduncles, determines the classification using characteristic features including

diffusion properties and spatial location information.

5.2.1.1 RFC

An RFC is a supervised classifier that is composed of a number of decision trees.

Each tree is constructed based on the values of a random vector sampled from the

training feature vectors independently [129]. For each test sample, a membership

function mi indicating the likelihood of the sample belonging to class i can be calcu-

lated as mi = Ni/N , where Ni is the number of the trees predicting class i, and N is

the total number of the trees in the forest. The class that corresponds to the maxi-

mum membership is selected as the label. This process yields both an estimated label

and membership functions for all the labels which will be later used in the MGDM

segmentation. In this work, seven labels are used: left noncrossing SCP (lSCP), right

noncrossing SCP (rSCP), dSCP, MCP, left ICP (lICP), right ICP (rICP), and back-

88



CHAPTER 5. CEREBELLAR PEDUNCLE SEGMENTATION

ground (BG). Note that the noncrossing SCPs and the dSCP are different objects.

5.2.1.2 Features in the RFC

To apply the RFC, features must be extracted from the images and input into

the classifier. Here, based on the observation that the cerebellar peduncles can be

identified using the diffusion properties and spatial location, we use the PEV, the

Westin indices [128], and a registered template to provide features.

When there is one primary diffusion direction, the PEV provides a good approx-

imation of the direction [3]. Therefore, the PEV is a useful feature indicating the

existence of tracts where there is no overlap. However, the PEV has bidirectional

ambiguity; for example, (−1, 0, 0) and (1, 0, 0) represent the same PEV. Therefore,

we map the PEV u = (u1, u2, u3) into a 5D Knutsson space as follows [132]:

v = (v1, v2, v3, v4, v5)

=
1

||u||
(u21 − u22, 2u1u2, 2u1u3, 2u2u3,

1√
3

(2u23 − u21 − u22)). (5.1)

This mapping eliminates the directional ambiguity, and the resulting 5D Knutsson

vector v serves as a feature in the RFC. An example of the Knutsson vector focused

on the cerebellar peduncles in two axial slices is shown in Figure 5.2(a). The locations

of the cerebellar peduncles are indicated within these slices and also shown as labels

in Figure 5.2(b).
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(a) 5D Knutsson Vector v = (v1, v2, v3, v4, v5)

(b) Cerebellar Peduncles (c) Westin Indices C = (Cl, Cp, Cs)

Figure 5.2: Diffusion properties and cerebellar peduncles on two representative slices
(Row 1 and 2 in each subfigure): (a) the 5D Knutsson vector, (b) the cerebellar
peduncles for reference, and (c) the Westin indices. Within each subfigure, Row 1
shows an axial slice cutting through the brainstem where the SCPs decussate, and
Row 2 shows an axial slice cutting through the body of the MCP.

Although the PEV is a useful feature for the identification of tracts, it does not give

useful information on whether fibers cross in a region. Thus, additional information

for differentiation of noncrossing and crossing regions is required. The Westin indices

can be used for this purpose [128]. The linear index Cl, the planar index Cp, and

the spherical index Cs describe how linear, planar, and spherical, a tensor is shaped,

respectively. Let λ1 ≥ λ2 ≥ λ3 ≥ 0 be the eigenvalues of the diffusion tensor; the
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Westin indices are calculated as follows [128]:

Cl =
λ1 − λ2

λ1 + λ2 + λ3
, Cp =

2(λ2 − λ3)
λ1 + λ2 + λ3

, and Cs =
3λ3

λ1 + λ2 + λ3
. (5.2)

Note that 0 ≤ Cl, Cp, Cs ≤ 1 and Cl + Cp + Cs = 1. An example of the Westin

indices is provided in Figure 5.2(c). When there is one primary diffusion direction,

the tensor is linear-shaped and therefore high Cl values are expected. In the dSCP,

the tensor is planar because it has crossing fibers, and therefore Cp increases and Cl

drops. In isotropic areas, the tensor is spherical, and therefore Cs is large. Therefore,

the Westin indices C = (Cl, Cp, Cs) are included as features to differentiate the cases

of noncrossing tracts, crossing tracts, and isotropic areas.

An initial estimate of the spatial locations of all the cerebellar peduncles includ-

ing the dSCP can be provided by registering a template to the subject to be seg-

mented. We generated such a template by manual segmentation of a single subject.

After experimentation, we determined that SyN registration [124] using the linear

Westin index provides a reliable registration of the template to the target subject,

where the mean square difference is selected as the similarity measure. To incor-

porate the information provided by SyN registration into the RFC, signed distance

functions (SDFs), φlSCP, φrSCP, φdSCP, φMCP, φlICP, and φrICP are calculated from

these transformed lSCP, rSCP, dSCP, MCP, lICP, and rICP labels, respectively.

We refer to the SDFs as spatial information because these features provide infor-
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mation on the spatial locations of the cerebellar peduncles. These distance maps

φ = (φlSCP, φrSCP, φdSCP, φMCP, φlICP, φrICP) can indicate how far a voxel of the target

subject is from the registered labels. Since the tracts should be close to the registered

labels, lower values on a certain SDF could indicate higher possibility of the voxel

belonging to the tract.

For each voxel at (x, y, z), we also supplement the SDFs with relative positions to

the centers of the registered labels as additional spatial features:

xi = (xi, yi, zi) = (x− x̄i, y − ȳi, z − z̄i), i ∈ {lSCP, rSCP, dSCP,MCP, lICP, rICP},

(5.3)

where (x̄i, ȳi, z̄i) is the center of the registered labels. The relative positions

x = (xlSCP,xrSCP,xdSCP,xMCP,xlICP,xrICP) (5.4)

give more detailed relationships between voxels and transformed templates.

In summary, the final feature vector f to be used in the RFC is a 32-dimensional

vector composed of the Knutsson vector v, the Westin indices C, and the spatial

information from the SDFs φ, and the relative positions x, i.e.,

f = (v,C,φ,x). (5.5)
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5.2.1.3 Manual Delineations

To train the RFC, manual delineations of the cerebellar peduncles were made

using a PEV edge map [133] and the linear Westin index. The PEV edge map is

computed by first estimating the gradient matrix G of the 5D Knutsson vector with

a finite difference operator [133]:

G =



∂v1
∂x

∂v1
∂y

∂v1
∂z

∂v2
∂x

∂v2
∂y

∂v2
∂z

∂v3
∂x

∂v3
∂y

∂v3
∂z

∂v4
∂x

∂v4
∂y

∂v4
∂z

∂v5
∂x

∂v5
∂y

∂v5
∂z


. (5.6)

Then the Frobenius norm can be calculated to obtain the edge map [133]:

||G||F =

√√√√ 3∑
j=1

5∑
i=1

G2
ij. (5.7)

On the PEV edge map, the PEVs inside a tract are homogeneous and appear as dark

regions; at the tract boundaries, the PEVs are different from their neighbors and

appear as bright edges (see Figure 5.3). Therefore, the PEV edge map contributes to

the identification of the tracts for human raters. In addition, the noncrossing tracts

have higher Cl values and crossing tracts have lower Cl values, which makes the Cl

map a useful feature for tract delineation. In practice, these two maps are sufficient

93



CHAPTER 5. CEREBELLAR PEDUNCLE SEGMENTATION

for manual determination of the cerebellar peduncles. Figure 5.3 gives an example of

the manual delineation and its relationship with the PEV edge map and the Cl map.

Figure 5.3: Manual delineations of the cerebellar peduncles overlaid on the PEV
edge map (left) and the Cl map (right) on two representative slices (Row 1 and 2)
in correspondence with Figure 5.2. Row 1 shows an axial slice cutting through the
brainstem where the SCPs decussate, and Row 2 shows an axial slice cutting through
the body of the MCP.

5.2.2 MGDM Segmentation

The RFC provides an initial classification of the cerebellar peduncles, but we still

have two problems to contend with. First, the RFC applies to each voxel indepen-

dently, which potentially leaves objects disconnected or highly irregular. Second,

the RFC training may have unbalanced samples (where majority classes tend to be
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favored in RFC decisions), which will produce a bias in the sizes or positions of seg-

mented objects. We therefore use MGDM [130] as a second stage in order to provide

both spatial smoothness and additional fidelity to the data.

5.2.2.1 MGDM

MGDM is a framework for multiple object segmentation [130]. It efficiently evolves

objects using a decomposition of the signed distance functions of all objects, and

prevents overlaps and gaps between objects. The conventional speed functions that

are used in geometric deformable models [134, 135] can be applied in MGDM, and

MGDM also enables users to use different speed functions on the boundaries between

different object pairs. Let φi,j be the level set function for the boundary between

object i and j. Then its evolution can be written as:

∂φi,j
∂t

+ freg:i,j|∇φi,j|+ fadv:i,j · ∇φi,j = εκ|∇φi,j|, (5.8)

where freg:i,j represents a region speed, fadv:i,j stands for an advection speed, and κ

is a curvature speed. As with any deformable model, MGDM works best if initialized

close to the final configuration. Therefore, our RFC segmentation result forms the

initialization for MGDM. Using this framework, we can design the speed functions

for specific boundaries to refine the RFC segmentation.
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5.2.2.2 Speed Design of MGDM Smoothing

To preserve smoothness, a curvature speed on each boundary is used in MGDM.

Using the membership functions from the RFC output, region speeds are also speci-

fied. A region speed shrinks or expands the boundary according to the membership

functions and prevents the shrinkage caused by the curvature speed so that the bound-

aries will not deviate far from the RFC result. Region speeds can also correct bias

in the RFC. Since the number of background voxels exceeds those of the tracts and

the ratio can range from the scale of 10:1 to 1000:1, depending on which peduncle it

is, the RFC results can be biased. For example, a voxel belonging to the cerebellar

peduncles can have a relatively high membership value of the true label, yet it is

exceeded by an even higher background membership value. By choosing thresholds

of the membership in the region speeds, a compensation for the RFC bias can be

achieved.

Specifically, the region speed on each boundary is designed as follows:


freg:i,BG = α(mi − ti), i 6= BG

freg:i,j = α(mi −mj), i, j 6= BG

. (5.9)

Here α is a weighting constant, ti is a thresholding constant for tract i, and mi

represents the corresponding membership computed from the RFC. The constant ti

replaces the background membership for the RFC bias compensation, and is deter-
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mined empirically. In practice, this replacement achieves more accurate results and

prevents the background from being overestimated.

5.3 Experiments

The proposed segmentation algorithm was first validated using diffusion MRI

from nine subjects (five controls and four patients with SCA6). These nine subjects

compose the first data set. Then the diffusion MRI from 32 controls and 11 SCA6

patients that are different from the subjects in the first data set were used to study

group differences. These 43 subjects compose the second data set. Diffusion weighted

images (DWIs) were acquired using a multi-slice, single-shot EPI sequence on a 3T

MR scanner (Intera, Philips Medical Systems, Netherlands). The sequence in the first

and second data set consist of 32 and 30 gradient directions, respectively, and one b0

image. The b-value is 700 s/mm2. The original in-plane resolution of the two data sets

is 2.2 mm × 2.2 mm, with a matrix size of 96 × 96; and the original slice thickness

of the two data sets is 2.2 mm. The scanner resampled the slices and generated the

output resolution of 0.828 mm × 0.828 mm × 2.2 mm, where the in-plane matrix size

is 256 × 256. Then we isotropically resampled the DWIs, where the resolutions of the

first and the second data set are 1 mm and 0.828 mm isotropic, respectively. Finally,

diffusion tensors were computed using CATNAP [108] in the JIST software [107].
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5.3.1 Validation

A leave-one-out cross-validation was performed on the nine subjects in the first

data set. Manual delineations of the cerebellar peduncles including the dSCP were

made on these subjects. For each test subject, the other eight subjects were used in

the training phase. In the RFC, 100 trees were constructed and at each tree node five

features were sampled. Both control subjects and patients with SCA6 were included

in the training. To save computational time and memory in the training phase, only

voxels that are within a certain distance to any of the transformed labels on the

registered template were considered. The distance was empirically set to 10 mm to

include all the possible voxels of the cerebellar peduncles.

In training an RFC, a measure of the relative importance of each feature called

variable importance [129] can be computed. The variable importance measures the

mean decrease in classification accuracy after permuting the feature over all the

trees [129]. In this experiment, the patterns of the variable importance are similar

across the subjects. The means and standard deviations of the variable importance

of the elements in the feature vector are shown in Figure 5.4. The SDF of the MCP

and the linear Westin index have much higher importance than the other features.

After training, test data were segmented as proposed. An example of the 3D

rendering of the segmentation result is displayed in an oblique view in Figure 5.5(a),

where the noncrossing and crossing SCPs are combined to get the complete left and

right SCPs. Examples of the cross sections of the segmentation result overlaid on the
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Figure 5.4: Means and standard deviations of the variable importance in the cross-
validation test. The order of the variables is the same as in the feature vector f =
(v,C,φ,x).

FA map are also given on different slices and compared with the manual delineations

in Figures 5.5(b) and 5.5(c). The first axial slice shows a cut through the brainstem

where the SCPs decussate, and the second slice shows a cut through the cerebellum

where all the cerebellar peduncles are visible. It can be seen that the proposed

segmentation method is able to correctly localize the cerebellar peduncles.

To quantitatively evaluate the segmentation accuracy of the proposed method, the

Dice coefficients [136] and average surface distances (ASDs) between the segmentation

results and manual delineations were computed, and they are listed in Tables 5.1 and

5.2, respectively. The numbers are also listed for the RFC initialization to show

the improvement of MGDM over RFC alone. For convenience, in the tables, the

intermediate RFC result and the final segmentation after MGDM refinement are
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(a)

(b) (c)

Figure 5.5: A segmentation result. (a) A 3D rendering (oblique view) of the cerebel-
lar peduncles segmented by the proposed method in the cross-validation test, shown
together with the cerebellum (gray). Axial cross sections of (b) the manual delin-
eations and (c) the proposed segmentation contours overlaid on the FA map. Slice 1:
a cut through the brainstem where the SCPs decussate. Slice 2: a cut through the
cerebellum where all the cerebellar peduncles are visible. In all figures here, the left
and right noncrossing SCPs are combined respectively with the dSCP to obtain the
complete left and right SCPs. Blue: left complete SCP; green: right complete SCP;
red: MCP; orange: lICP; yellow: rICP.

called “RFC” and “RFC + MGDM”, respectively.

Since no existing method provides a comparison of the segmentation of cerebellar
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peduncles including the dSCP, and volumetric delineations of the cerebellar pedun-

cles of the subjects are available, we compared our result with two registration-based

methods. Each subject was segmented by the two registration-based methods using a

leave-one-out cross-validation as well. For the first comparison method, we used the

SyN registration algorithm [124] to map the training delineations to the test target,

using the Cl images and mean square difference as the similarity measure. The Cl

images were chosen over the FA maps because they provide better contrast for the

tracts. Then spatial STAPLE [137] was used as the voting scheme. Spatial STAPLE

achieves better label fusion than the STAPLE algorithm [138] by incorporating spa-

tially varying rater performance. For the second comparison method, we applied the

tensor-based registration method implemented in DTI-TK [139] to map the training

delineations to the test target using the diffusion tensor. Then spatial STAPLE [137]

was also used to provide the final segmentation. The two comparison methods are

referred to as “SyN + s-STAPLE” and “DTI-TK + s-STAPLE”, respectively. The

corresponding Dice coefficients and the ASDs are given in Tables 5.1 and 5.2.

The final segmentation of our method is compared with our intermediate RFC

result, the SyN + s-STAPLE result, and the DTI-TK + s-STAPLE result. To show

the statistical significance of the performance difference, the paired Student’s t-test

and Wilcoxon signed-rank test were performed with respect to the Dice coefficients

and ASDs, respectively. The p-values are shown in Tables 5.3 and 5.4.

To better understand the implications of these experimental results, we first study
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Table 5.1: The Dice coefficients between the segmentation results and manual delin-
eations. Mean Dice coefficients from the proposed method are set in bold font.

RFC RFC + MGDM
lSCP rSCP dSCP MCP lICP rICP lSCP rSCP dSCP MCP lICP rICP

S1 0.828 0.793 0.702 0.826 0.753 0.762 0.839 0.762 0.689 0.817 0.782 0.787
S2 0.776 0.766 0.753 0.860 0.670 0.660 0.824 0.816 0.815 0.850 0.675 0.676
S3 0.774 0.722 0.834 0.831 0.712 0.710 0.803 0.783 0.870 0.828 0.759 0.752
S4 0.739 0.797 0.719 0.874 0.655 0.616 0.815 0.809 0.758 0.870 0.695 0.648
S5 0.820 0.797 0.816 0.856 0.777 0.728 0.798 0.775 0.862 0.864 0.777 0.778
S6 0.813 0.778 0.286 0.838 0.678 0.689 0.786 0.770 0.711 0.843 0.704 0.729
S7 0.833 0.820 0.755 0.865 0.720 0.680 0.769 0.795 0.775 0.872 0.731 0.702
S8 0.807 0.785 0.826 0.829 0.640 0.668 0.785 0.767 0.785 0.851 0.681 0.705
S9 0.785 0.763 0.787 0.851 0.739 0.674 0.799 0.795 0.833 0.855 0.765 0.707

Mean 0.797 0.780 0.720 0.848 0.705 0.688 0.802 0.786 0.789 0.850 0.730 0.720
Std. 0.031 0.028 0.169 0.017 0.047 0.042 0.022 0.019 0.063 0.018 0.042 0.046

SyN + s-STAPLE DTI-TK + s-STAPLE
lSCP rSCP dSCP MCP lICP rICP lSCP rSCP dSCP MCP lICP rICP

S1 0.748 0.693 0.637 0.832 0.732 0.773 0.784 0.770 0.725 0.819 0.751 0.757
S2 0.793 0.797 0.704 0.852 0.625 0.657 0.803 0.799 0.746 0.839 0.672 0.683
S3 0.731 0.757 0.794 0.815 0.715 0.622 0.724 0.726 0.597 0.813 0.764 0.692
S4 0.804 0.771 0.764 0.865 0.729 0.662 0.796 0.780 0.585 0.852 0.753 0.694
S5 0.721 0.697 0.752 0.856 0.705 0.728 0.803 0.770 0.741 0.832 0.737 0.727
S6 0.689 0.750 0.528 0.853 0.662 0.723 0.686 0.725 0.563 0.853 0.648 0.682
S7 0.709 0.753 0.640 0.848 0.637 0.678 0.748 0.748 0.571 0.835 0.625 0.651
S8 0.753 0.697 0.618 0.814 0.675 0.672 0.765 0.754 0.630 0.790 0.634 0.586
S9 0.764 0.774 0.836 0.838 0.746 0.742 0.758 0.770 0.817 0.814 0.710 0.725

Mean 0.746 0.744 0.697 0.841 0.692 0.695 0.763 0.760 0.664 0.828 0.699 0.689
Std. 0.038 0.038 0.099 0.018 0.044 0.048 0.039 0.025 0.094 0.020 0.055 0.049

Table 5.2: The ASDs (mm) between the segmentation results and manual delin-
eations. The mean ASDs from the proposed method are set in bold font.

RFC RFC + MGDM
lSCP rSCP dSCP MCP lICP rICP lSCP rSCP dSCP MCP lICP rICP

S1 0.391 0.562 0.484 0.618 0.647 0.561 0.408 0.675 0.552 0.700 0.582 0.523
S2 0.621 0.627 0.385 0.542 0.895 0.816 0.501 0.510 0.298 0.599 0.902 0.796
S3 0.585 0.748 0.314 0.621 0.700 0.676 0.521 0.590 0.268 0.663 0.611 0.614
S4 0.591 0.452 0.423 0.504 0.826 0.893 0.424 0.449 0.358 0.551 0.797 0.873
S5 0.820 0.797 0.816 0.856 0.777 0.728 0.512 0.539 0.212 0.569 0.589 0.516
S6 0.416 0.486 0.945 0.801 0.776 0.723 0.492 0.552 0.395 0.789 0.735 0.635
S7 0.354 0.377 0.275 0.734 0.645 0.813 0.533 0.503 0.313 0.678 0.641 0.755
S8 0.430 0.456 0.234 0.846 0.876 0.785 0.518 0.543 0.291 0.759 0.819 0.710
S9 0.450 0.516 0.376 0.720 0.635 0.801 0.458 0.471 0.328 0.684 0.596 0.725

Mean 0.518 0.558 0.472 0.694 0.753 0.755 0.485 0.537 0.335 0.666 0.697 0.683
Std. 0.149 0.141 0.246 0.129 0.101 0.097 0.045 0.067 0.097 0.081 0.119 0.121

SyN + s-STAPLE DTI-TK + s-STAPLE
lSCP rSCP dSCP MCP lICP rICP lSCP rSCP dSCP MCP lICP rICP

S1 0.669 0.827 0.684 0.614 0.691 0.540 0.519 0.612 0.463 0.690 0.633 0.583
S2 0.547 0.534 0.562 0.611 1.089 0.984 0.527 0.517 0.388 0.730 0.854 0.739
S3 0.711 0.638 0.400 0.684 0.761 1.183 0.711 0.679 0.772 0.685 0.604 0.842
S4 0.558 0.540 0.411 0.541 0.618 0.810 0.786 0.515 0.571 0.590 0.577 0.704
S5 0.698 0.743 0.386 0.587 0.843 0.698 0.481 0.540 0.350 0.664 0.673 0.677
S6 0.782 0.607 0.831 0.624 0.737 0.657 0.793 0.686 0.787 0.662 0.795 0.706
S7 0.786 0.614 0.568 0.899 0.909 0.803 0.585 0.578 0.640 0.998 0.926 0.835
S8 0.595 0.764 0.630 1.042 0.764 0.770 0.531 0.564 0.567 1.168 0.870 1.003
S9 0.593 0.533 0.309 0.963 0.641 0.655 0.629 0.526 0.314 1.047 0.724 0.675

Mean 0.660 0.645 0.531 0.729 0.784 0.789 0.618 0.580 0.539 0.804 0.740 0.752
Std. 0.091 0.109 0.169 0.186 0.146 0.194 0.119 0.066 0.174 0.208 0.127 0.124
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the difference between RFC and RFC + MGDM results. It can be seen from Table 5.1

that the proposed method (RFC + MGDM) improves over the RFC results and has

mean Dice coefficients ranging from 0.720 to 0.850, a range which is generally thought

to be acceptable, especially for small white matter tracts [16, 140]. In Table 5.2, it

can be seen that the mean ASDs of the proposed intermediate RFC segmentation and

final RFC + MGDM segmentation are in the range of 0.472 mm to 0.755 mm and

0.335 mm to 0.697 mm, respectively. Compared to RFC results, the final segmentation

(RFC+MGDM) has higher mean Dice coefficients and lower mean ASDs for all the

structures, showing the improvement of using MGDM. The improvement of the lICP

and rICP segmentation is significant in terms of both Dice coefficients and ASDs in

both statistical tests (see Tables 5.3 and 5.4).

We now turn to the comparisons of our method (RFC + MGDM) with the two

multi-atlas registration-based methods. In Tables 5.1 and 5.2, for all the structures,

the mean Dice coefficients of the final results of the proposed method are higher

than the two competing methods, and the mean ASDs of the proposed method are

lower than the two competing methods. With respect to the Dice coefficients, in

both statistical tests (see Table 5.3), the proposed method performs better than SyN

+ s-STAPLE with significance for the lSCP, the rSCP, the dSCP, and the lICP;

the proposed method also shows significantly better performance than DTI-TK + s-

STAPLE for the lSCP, the rSCP, the dSCP, and the MCP. With respect to the ASDs,

in the paired Student’s test (see Table 5.4), the proposed method better segments the
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Table 5.3: The p-values of the paired Student’s t-test and the Wilcoxon signed-rank
test for comparing the Dice coefficients between RFC + MGDM results and the other
three results. Note that the mean Dice coefficients of RFC + MGDM are greater than
those in the other three results as shown in Table 5.1.

Paired Student’s t-test
lSCP rSCP dSCP MCP lICP rICP

RFC 0.7520 0.6341 0.1726 0.5317 0.0019∗ 1.4E-5∗∗∗

SyN + s-STAPLE 0.0005∗∗∗ 0.0007∗∗∗ 0.0037∗ 0.1521 0.0161∗ 0.1424
DTI-TK + s-STAPLE 0.0080∗ 0.0071∗ 0.0044∗ 0.0162∗ 0.0834 0.0882

Wilcoxon signed-rank test
lSCP rSCP dSCP MCP lICP rICP

RFC 0.8203 0.7344 0.0547 0.6523 0.0039∗ 0.0039∗

SyN + s-STAPLE 0.0039∗ 0.0039∗ 0.0195∗ 0.2031 0.0195∗ 0.1641
DTI-TK + s-STAPLE 0.0078∗ 0.0117∗ 0.0117∗ 0.0195∗ 0.1641 0.0742

Note: ∗p < 0.05, ∗∗∗p < 0.001

lSCP, the rSCP, and the dSCP than SyN + s-STAPLE with significance, and better

segments the lSCP and the dSCP than DTI-TK + s-STAPLE with significance; in

the Wilcoxon signed-rank test (see Table 5.4), the proposed method better segments

the lSCP, the rSCP, and the dSCP than SyN + s-STAPLE and DTI-TK + s-STAPLE

with significance.

5.3.2 Application to SCA6

The proposed method was next applied on the second data set which contains 32

controls and 11 patients. All the data in the first smaller data set were included in

the training phase and were not used in the testing phase.

Tract volumes, average FAs, and average MDs of the segmented cerebellar pe-

duncles were calculated. The values were corrected using a general linear model to

remove the confounding effects of age and sex using the method in [141]. These cor-
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Table 5.4: The p-values of the paired Student’s t-test and the Wilcoxon signed-rank
test for comparing the ASDs between RFC + MGDM results and the other three
results. Note that the mean ASDs in RFC + MGDM results are lower than those in
the other three results as shown in Table 5.2.

Paired Student’s t-test
lSCP rSCP dSCP MCP lICP rICP

RFC 0.5339 0.6506 0.1458 0.4810 0.0190∗ 0.0057∗

SyN + s-STAPLE 0.0003∗∗∗ 0.0018∗ 0.0033∗ 0.2686 0.1160 0.1430
DTI-TK + s-STAPLE 0.0184∗ 0.0571 0.0130∗ 0.0560 0.3740 0.1970

Wilcoxon signed-rank test
lSCP rSCP dSCP MCP lICP rICP

RFC 0.8203 0.7344 0.2031 0.8203 0.0117∗ 0.0039∗

SyN + s-STAPLE 0.0039∗ 0.0039∗ 0.0078∗ 0.2500 0.1289 0.2031
DTI-TK + s-STAPLE 0.0195∗ 0.0391∗ 0.0195∗ 0.0547 0.2031 0.1641

Note: ∗p < 0.05, ∗∗∗p < 0.001

rected numbers were then analyzed with a Student’s t-test and a Wilcoxon rank-sum

test for comparison between the two groups. The corrected statistics are shown in

the box plots in Figure 5.6, where structures with significant differences observed in

both the Student’s t-test and the Wilcoxon rank-sum test are indicated. The p-values

in the two tests are listed in Table 5.5. Significant decreases in the volumes of the

dSCP, the lICP, and the rICP are observed in the SCA6 group in both statistical

tests. Although a significant FA increase in the lICP is observed in the SCA6 group

in the Wilcoxon rank-sum test, no significant FA changes in both statistical tests are

found for any tract. The MD is observed to be increasing with statistical significance

in the lSCP, the rSCP, the MCP, the lICP, and the rICP in the SCA6 group in both

statistical tests.
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(a) Volume (mm3)

(b) FA (c) MD (mm2/s)

Figure 5.6: Box plots of (a) tract volumes, (b) average FAs, and (c) average MDs of
the segmented cerebellar peduncles. The numbers are compared between the control
and the SCA6 group. Asterisks (*) indicate that statistically significant difference
(p < 0.05) is observed in both Student’s t-test and Wilcoxon rank-sum test.

5.4 Discussion

For the SCP, we have focused on the dSCP and the noncrossing portions below the

dSCP. The boundary of the SCP beyond the dSCP is quite ambiguous on the PEV

edge map and the Cl map which we use for delineation. The manual delineations
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Table 5.5: The p-values of the Student’s t-test and the Wilcoxon rank-sum test for
comparing the volumes, average FAs, and average MDs of the cerebellar peduncles
between the control and SCA6 group.

Volume
lSCP rSCP dSCP MCP lICP rICP

Student’s t-test 0.0857 0.2902 0.0321∗ 0.3737 0.0465∗ 0.0055∗

Wilcoxon rank-sum test 0.0977 0.1517 0.0269∗ 0.5683 0.0466∗ 0.0013∗

FA
lSCP rSCP dSCP MCP lICP rICP

Student’s t-test 0.2089 0.1335 0.2344 0.9134 0.1576 0.7310
Wilcoxon rank-sum test 0.3806 0.2596 0.4276 0.9889 0.0466∗ 0.4116

MD
lSCP rSCP dSCP MCP lICP rICP

Student’s t-test 0.0005∗∗∗ 0.0010∗ 0.1476 0.0262∗ 0.0028∗ 0.0002∗∗∗

Wilcoxon rank-sum test 0.0001∗∗∗ 0.0002∗∗∗ 0.2368 0.0332∗ 0.0014∗ 0.0002∗∗∗

Note: ∗p < 0.05, ∗∗∗p < 0.001

of this part of the SCPs involve a large amount of speculation, and therefore it is

not included in this work. Despite the exclusion, the segmentation of the dSCP and

the SCP below the dSCP is able to reveal anatomical differences between groups, as

shown in the results, and therefore we believe the proposed method is valuable for

scientific studies.

In training the RFC, the high variable importance of φMCP is probably because

the number of MCP voxels is much larger than those of the other peduncles. The

high variable importance of Cl is consistent with the fact that manual delineations

are based, in part, on the Cl map and also because Cl is high for noncrossing white

matter tracts, which is largely what is being segmented.

In the cross-validation study, the ICPs have worse mean Dice coefficients and

ASDs than the other structures. This could be because the ICPs extend out of the

107



CHAPTER 5. CEREBELLAR PEDUNCLE SEGMENTATION

cerebellum and can be influenced by the field of view (FOV) of the DWIs.

The measurement of the Dice coefficients and ASDs and the statistical tests in-

dicate that the proposed final results (RFC + MGDM) achieve more accurate seg-

mentation than the intermediate RFC. These results also show the superiority of the

proposed algorithm to the two multi-atlas registration-based methods. Note that

for the dSCP, the proposed method improves the mean Dice coefficient over SyN +

s-STAPLE and DTI-TK + s-STAPLE by 0.092 (13.2%) and 0.125 (18.8%), respec-

tively, and improves the mean ASD over SyN + s-STAPLE and DTI-TK + s-STAPLE

by 0.196 mm (36.9%) and 0.204 mm (37.8%), respectively. The improvement of the

dSCP segmentation is larger than those of the segmentation of the other noncrossing

structures. Moreover, this improvement is significant in both statistical tests.

In the second experiment that studies the group differences between controls and

SCA6 patients, the significant decreases in the volumes of the dSCP, the lSCP, and

the rICP in the SCA6 group reveal atrophy of the cerebellar peduncles. Note that the

volumes of the noncrossing SCPs do not demonstrate significant differences, which

emphasizes the importance of segmenting the crossing regions. In the comparison of

FA values, it is worth noting that the mean FAs in the ICPs of the SCA6 group tend

to be higher than those in the control group. This could be a result of the ICP volume

decrease, where the regions with lower FA near the tract boundaries are more affected

than the regions with higher FA close to the centerline of the tract. The ICPs with

lower FA atrophy more while the ICPs with higher FA are better preserved, causing
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the average FA in the ICPs to increase. Furthermore, the MD is observed to be

increasing significantly in the lSCP, the rSCP, the MCP, the lICP, and the rICP in

the SCA6 group. The MD increase can be possibly due to the degeneration of the

neural tracts, which could lead to reduction of cells that constrain water and therefore

higher diffusion. Thus the increasing MD in these tracts is also a possible sign of their

degeneration.

5.5 Summary and Conclusion

In this chapter, we have proposed an automatic method for segmenting the cere-

bellar peduncles including the decussation of the SCPs, which is nearly always missing

in previous studies. Like the noncrossing cerebellar peduncles, the dSCP is modeled

explicitly as a single class. An RFC is used to classify the voxels based on the PEVs,

the Westin indices, and spatial information. The RFC result is further refined by

MGDM segmentation to confer smoothness and compensate for possible bias due to

unbalanced samples.

A leave-one-out cross-validation was carried out for qualitative and quantitative

evaluation of the method. The Dice coefficients and average surface distances were

calculated. Results on nine subjects indicate that the method is able to resolve the

crossing of the SCPs and accurately segment the cerebellar peduncles. Furthermore,

the proposed method outperforms two registration-based methods.
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Experiments on a larger data set were performed to show that the method is useful

for scientific studies. Results indicate that the volumes of the dSCP, the lICP, and the

rICP decrease with statistical significance in the SCA6 group. The changes involving

the dSCP also emphasizes the importance of the ability to identify the decussation.

Furthermore, the mean MD values in noncrossing SCP regions, the MCP, and the

ICPs are significantly larger in the SCA6 group, which is also a possible indicator

of tract degeneration. These findings are consistent with the degeneration of the

cerebellar peduncles in SCA6 patients and show the benefit of applying the proposed

method for scientific studies.
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Chapter 6

Conclusions and Future Work

6.1 Summary

This thesis presented fiber tracking and tract segmentation methods that can

tackle the issue of crossing fibers based on diffusion tensor imaging (DTI). First,

a fiber tracking method guided by volumetric tract segmentation was developed,

which incorporates anatomical information to reduce errors caused by image noise

and crossing fibers. Second, an algorithm for distinguishing interdigitated tongue

muscles was designed, where prior directional knowledge is included to account for

the insufficient information due to limited diffusion gradient directions in in vivo

tongue diffusion imaging. Finally, a volumetric tract segmentation method focused

on the cerebellar peduncles was described. It is able to resolve crossing tracts and

accurately localize the small crossing regions. Moreover, the method was applied
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for a study of spinocerebellar ataxia type 6 (SCA6), where anatomical changes with

respect to the disease were investigated. In this chapter, a summary of the main

results in the thesis is provided and future work directions are discussed.

6.2 Fiber Tracking Guided by Volumetric

Segmentation

6.2.1 Main Results

1. The proposed method incorporates anatomical information from volumetric

tract segmentation to guide fiber tracking, which has not been previously ex-

plored.

2. In the digital crossing phantom test, the proposed method estimates fiber ori-

entations (FOs) more accurately than two popular multi-tensor models, BED-

POSTX and CFARI.

3. In the physical phantom test, the proposed method better produces crossing

FOs than BEDPOSTX and CFARI.

4. On a representative control subject, compared with the DTI model, BED-

POSTX, and CFARI, the proposed method reduces false fiber streamlines and

cortical connections due to crossing fibers and image noise.
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5. We performed a study on the brain connectome using 18 control subjects, where

connectivity of named tracts to cortical regions was investigated.

6.2.2 Future Work

There are ways to extend and further improve this methodology. For example, we

have applied the proposed method on the DTI model and it would be interesting to

combine the guidance of volumetric tract segmentation with multi-tensor models or

more advanced imaging techniques such as high angular resolution diffusion imaging

(HARDI) [60] and diffusion spectrum imaging (DSI) [61]. Raw FOs without guidance

of volumetric segmentation can be estimated using multi-tensor models [26,27,56] or

a spherical ridgelet model [57] on DTI, constrained spherical deconvolution [142] or

q-ball reconstruction [23] on HARDI, and local maximum method on DSI [143]. In

noncrossing regions, the FOs to be estimated should agree with tract segmentation

and the single raw FOs calculated from these more advanced techniques. In crossing

regions, it can be either using only the information from tract segmentation as pro-

posed in this paper or also considering one of the crossing raw FOs. In the first case,

the proposed method can be readily applied. In the latter case, the energy function

in Eq. (3.13) becomes

f̂ = arg min
|f(x)|=1

∑
x∈L

(α|∇f(x)|2 + µ(x)|g(x) · f(x)|2 +

λ0|S(v1(x),v2(x), . . . ,vn(x))− f(x)|2), (6.1)
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where S(·) is an orientation selection function, and vi(x)’s are the raw FOs estimated

without the guidance from tract segmentation. If the selection is determined before-

hand, for example, by applying a first run of the proposed FO estimation without

using crossing directions (as in the first case) and choosing the closest vi to the es-

timated FO, then the proposed optimization can still be applied. If the selection is

also iteratively updated, the extension may not be straightforward and the current

optimization needs to be modified to solve the minimization problem. Another issue

in the orientation selection is the possible discrepancy between the segmentation and

the raw FOs vi(x). For example, a region identified by the segmentation as a cross-

ing region can contain only one raw FO or a region labeled as noncrossing can have

multiple raw FOs. In these cases, the selection of vi(x) can be nontrivial.

The proposed method also potentially provides an algorithm for joint fiber track-

ing/labeling. As seen in the results, with a proper seeding mask inside a segmented

tract, the tracked streamlines can also be viewed as the streamlines with the corre-

sponding tract label. Currently, the seeding mask is chosen empirically and cannot

guarantee to track the complete set of streamlines belonging to the tract. A further

exploration into the seeding mask and false positive removal may solve the issue and

provide simultaneous fiber tracking and labeling.
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6.3 Resolution of Interdigitated Tongue

Muscles

6.3.1 Main Results

1. The proposed method, Fiber Interdigitation Estimation by Bayesian Recon-

struction (FIEBR), distinguishes interdigitated tongue muscles with limited

diffusion gradient directions, where conventional multi-tensor models perform

poorly.

2. By incorporating prior directional knowledge, FIEBR produces crossing muscle

fibers that agree with anatomy and reduces the effect of noise.

3. The FO distributions also suggest that FIEBR produces anatomically desirable

fiber organizations.

4. FIEBR was performed on patients with glossectomies, and it respects the anoma-

lies in patients.

5. A case study on three control subjects and three patients demonstrates the

differences in FO distributions between subjects, and suggests the potential

clinical use of FIEBR.
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6.3.2 Future Work

In this work, we assume the Rician noise model and approximate it with a Gaus-

sian distribution. However, the Rician noise model does not hold for GRAPPA re-

construction, where the noise follows a noncentral χ distribution [144]. Although the

Gaussian approximation of the noise is a reasonable choice in practice, it is possi-

ble to build more accurate models that take the noncentral χ noise distribution into

consideration.

Currently the segmentation of the muscles is obtained by registration of a tem-

plate. This could be replaced by a carefully designed volumetric segmentation al-

gorithm to improve the segmentation accuracy. In the brain, such algorithms have

been developed, such as DOTS [15] and TRACULA [19]. There is also an effort

that segments the ex vivo calf tongue muscles [95]. These methods could be adapted

and then applied on the human tongue muscles to provide better regions of interest

(ROIs) of muscles.

In the case study, the FOs were compared globally (in the whole tongue). It is

possible to make more detailed local analysis that involves specific ROIs, which can

provide information that may not be revealed in the global comparison. For example,

the FOs near the lesion can be examined to determine if muscle structures are well

preserved. Besides the FOs, fiber tracking could also be used for these studies. Fiber

properties such as length, curvature, and mean orientations could be used to indicate

the influence of the surgery on the muscles.
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6.4 Automatic Volumetric Segmentation

of the Cerebellar Peduncles

6.4.1 Main Results

1. The proposed method segments the cerebellar peduncles, which comprise the

superior cerebellar peduncles (SCPs), the middle cerebellar peduncle (MCP),

and the inferior cerebellar peduncles (ICPs), including the decussation of the

SCPs (dSCP), which is the crossing region of the SCPs.

2. The segmentation accuracy was evaluated using the Dice coefficient and av-

erage surface distances. The range of the Dice coefficients is from 0.720 to

0.850, and the range of the average surface distances is from 0.335 mm to

0.697 mm. The proposed method achieves better segmentation performance

than two registration-based methods. For the dSCP, the performance of the

proposed method is significantly better than the two comparing methods.

3. In a study on SCA6, anatomical differences were observed compared to the

healthy subjects. Compared with the control group, the volumes of the dSCP,

the left ICP, and the right ICP decrease significantly in the SCA6 group; the

mean diffusivities (MDs) in the left and right noncrossing SCPs, the MCP, and

the left and right ICPs increase significantly in the SCA6 group.
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6.4.2 Future Work

Currently, the features used in the random forest classifier (RFC) are based on

the quantities calculated from the single tensor model. It is also possible to use

the features from multi-tensor models which estimate multiple FOs in a voxel. For

example, if a two-tensor model is used, such as [26], the 5D Knutsson map can also

be calculated for the two FOs respectively. Similarly, the proposed method can also

be combined with HARDI and DSI, where multiple FOs can be estimated using

constrained spherical deconvolution [142] or q-ball reconstruction with the spherical

harmonic basis [145] on HARDI, and local maximum method [143] on DSI. One

practical issue may be the order of the multiple FOs. When the contributions of the

FOs are close, the order may be influenced by noise, which causes incorrect feature

correspondence. Besides the directional information, scalar quantities such as mixture

fractions [26,27] and generalized fractional anisotropy (FA) [23] can also be included

to aid classification.

The proposed method segments the structure of the cerebellar peduncles. It is

also possible to extend it as a general tract segmentation method. For a general

set of tracts, the noncrossing and crossing regions need to be identified manually

using the Cl and the Knutsson edge map on training subjects. Features can then be

calculated to train the RFC. The quality of the manual delineations and the required

number of training data will depend on the variability of the tracts of interest, and the

manual delineations could take a large amount of time when the tracts have complex
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structures.

We performed a preliminary study that shows the potential application of the

proposed method to the study of cerebellar ataxia. However, the measurement of FA

and MD is based on the single tensor and could have limitations. For example, the

FA in crossing regions may cause misleading interpretation because the values can

be influenced by tract integrity and/or crossing fibers. Also, the study currently uses

measurements calculated in the whole tract volume, but it can be extended with more

detailed analysis of the tracts. For example, Yushkevich et al. [146] use medial repre-

sentations of tracts and enable statistical analysis in a shape-based coordinate system,

where detailed information with respect to spatial location can also be analyzed.

6.5 Overall Perspective

DTI provides a unique tool for noninvasively investigating fiber structures. In

this thesis, we explored fiber tracking and tract segmentation methods that produce

better representation of fibers and demonstrated their potential scientific and clinical

use. These methods can also be applied for scientific studies that have not been

discussed in this thesis. We hope that the proposed work can contribute to further

advancements in the understanding of structures and diseases, and it can help further

development of tools for medical image analysis.
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