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Abstract 

 

    Transcripts, or interchangeably referred to as isoforms, have been well known to be 

involved in many important biological pathways and disease mechanisms such as cancer 

and mental disorders. Understanding the roles of isoforms calls for precise quantification 

of isoform expression abundances from RNA-Seq reads. Yet state-of-the-art isoform 

quantification methods yield weak estimation accuracy, especially for datasets that 

undergo a wide range of isoform expression levels. Here we present a novel isoform 

quantification algorithm called Jlinks, designed to estimate isoform abundances using 

splice junctions. The key distinguishing feature of Jlinks is that it treats each isoform as a 

“link” of splice junctions and converts the abundance estimation problem into obtaining 

an optimal solution for a linear system. We demonstrate that Jlinks outperforms existing 

isoform quantification methods in both speed and accuracy. 
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1. Introduction 

 

    In eukaryotic species, genes with multiple exons are known to undergo alternative 

splicing events that encode multiple spliced isoforms, also termed as transcripts, which 

encode distinct but related protein products [1]. Studies have shown that in humans, more 

than 90% of multi-exon genes are subject to alternative splicing [2] and 50% of disease-

causing mutations affect splicing events [3,4]. Therefore, it is crucial to obtain precise 

estimates of isoform expression abundances as part of conducting differential expression 

analyses across samples and conditions. 

    Several technologies have been used to quantify isoform expression levels such as 

cloning cDNAs or expressed sequence tag (EST) libraries, followed by capillary 

sequencing [5-7]. Due to the high cost and limited resolution, these approaches could not 

provide a thorough characterization of the true complexity of alternative splicing and 

transcription [8]. Nowadays the massively parallel sequencing technologies from 

Illumina, Applied Biosystems and Roche 454 Life Sciences have revolutionized the study 

of transcriptomes [9]. High-throughput RNA sequencing (RNA-Seq) makes it possible to 

generate comprehensive pictures of transcriptomes, allowing isoform abundance 

estimations at unprecedented levels of resolution, accuracy and low cost. 

    Current RNA-Seq technologies generate RNA-Seq reads with lengths ranging from 25 

nt to 300 nt. Limited read lengths result in a significant amount of multireads, i.e., reads 

that map ambiguously to multiple isoforms or paralogs whose sequences are similar to 

each other. The key challenge in isoform abundance estimation is to accurately assign 

those multireads to isoforms. 
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    Generally, isoform abundance estimation methods apply the Expectation-

Maximization algorithm to maximize a likelihood function by adjusting isoform 

abundance parameters. Successful and popular methods of this class include IsoEM [10] 

and RSEM [11], where RNA-Seq reads are first assigned to isoforms, these assignments 

are then used to estimate isoform abundances, and these steps are iterated many times 

until final convergence. However, the first EM-based approaches were time consuming 

and did not scale well with the size of input datasets. To overcome this obstacle, eXpress 

[12] optimizes the EM procedure through a streaming algorithm, resulting in a linear run 

time and constant memory usage while still maintaining comparable quantification 

accuracy. Another method Sailfish [13] further accelerates the EM procedure through a 

lightweight algorithm, which uses counts of k-mers instead of alignments of reads to 

avoid mapping step, and uses k-mer equivalence classes to substantially reduce 

parametric complexity. Even for these improved approaches, processing large datasets 

remains to be a computational burden and fundamentally limits their scalability. 

Therefore, an isoform quantification method with better accuracy and faster run time, 

easily scalable for large datasets, is urgently needed in the field of transcriptome study. 

    In this paper we present Jlinks, a novel isoform quantification method that takes 

advantage of splice junction information to estimate isoform expression abundances. 

Through experiments on simulated RNA-Seq datasets under various sequencing depths 

and simulation patterns, we demonstrate that Jlinks consistently outperforms other 

isoform quantification methods in all scenarios, showing a significantly better global 

accuracy. 
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2. Background 

 

2.1 RNA-Seq 

    The transcriptome is the complete set of transcripts in a cell for a specific physiological 

condition. Transcriptome study is essential for uncovering the functional elements of the 

genome and revealing their roles in development stages and disease pathways. Various 

approaches have been developed to characterize and quantify transcriptomes, including 

Sanger sequencing-based method [14] and hybridization-based microarray method [15].  

    The development of ultra high-throughout sequencing of RNA (RNA-Seq) allows 

transcriptome studies at a finer resolution and greater scale. Compared with the earlier 

approaches, RNA-Seq method excels in the following aspects: First, RNA-Seq provides 

digital quantitation rather than signals for gene expression profiling by mapping millions 

of short reads from transcriptome of interest to the reference genome. In addition, RNA-

Seq has high sensitivity even for genes with little expression, providing a wide range of 

expression levels. Finally, without cloning step, RNA-Seq requires less amount of RNA 

sample compared to the other technologies. With these advantages, RNA-Seq has 

become the dominant method for transcriptome analyses in recent studies. 

 

2.2 Alternative splicing 

    During the transcription process, most eukaryotic genes will be spliced into multiple 

isoforms sharing common parts of their sequences. By alternative splicing, different 

mature mRNAs are produced from a single precursor mRNA, resulting in multiple 
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protein products encoded by a single gene. This phenomenon happens to over 90% of 

multi-exon human genes, greatly increases the complexity of transcriptome studies.  

    There are various types of alternative splicing, among which five basic models are 

generally recognized: exon skipping, mutually exclusive exons, alternative donor site, 

alternative acceptor site and intron retention. Figure 2.1 shows the mechanism of these 

five classical types. Alternative splicing is believed to be involved in the regulations of 

various physiological functions. It has been known that cancer cells have higher levels of 

intron retention and lower levels of exon skipping, compared with normal cells [16]. A 

recent study of RNA-Seq and proteomics revealed striking differential expression of 

splice isoforms of key proteins in important cancer pathways [17]. 

 

2.3 Isoform abundance estimation 

    A typical process of transcriptome analysis consists of three steps: read alignment, 

isoform quantification and differential expression analysis. First, RNA-Seq reads are 

mapped to a reference transcriptome by unspliced aligners such as Bowtie [18] and BWA 

[19], or a reference genome by spliced aligners such as TopHat [20], MapSplice [21] and 

STAR [22]. Second, isoforms are either assembled from these alignments or provided by 

a known set, and their expression abundances are estimated. Lastly, the estimated isoform 

abundances are used to analyze differential expressions among samples, uncovering the 

roles of isoforms in biological pathways. Table 2.1 provides a list of currently available 

tools for each step. 

    There are two major tasks in isoform quantification from RNA-Seq data: isoform 

assembly and abundance estimation. The first task aims at assembling the complete set of 
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isoforms from RNA-Seq reads while the second task aims at quantifying the expression 

levels for a given set of isoforms. Assembling reads into full isoforms is challenging due 

to the limited information from single-end or paired-end short reads and the complicated 

isoform structures. Abundance estimation for a known set of isoforms is also challenging 

for that reads might be ambiguously mapped to multiple isoforms of a gene as well as 

multiple genes within a gene family. This ambiguity makes it difficult to estimate the 

expression abundances of isoforms, especially those with few unique regions.  

    Many methods have been developed to tackle the isoform assembly problem (e.g., 

Trinity [23], Oases [24], Trans-ABySS [25]), or the abundance estimation problem (e.g., 

RSEM, eXpress, Sailfish) or both (e.g., IsoInfer [26], Scripture [27], Cufflinks [28]). In 

this paper we focus on the abundance estimation problem and propose a novel method 

Jlinks to estimate isoform expression abundances using spliced junctions. 
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 Figure 2.1: Five basic models of alternative splicing. Purple blocks represent 

constitutive exons, and orange blocks represent alternatively spliced exons. 
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Table 2.1: Selected list of transcriptome analysis tools in each step. Shaded part is the 

task we are focused on in this paper. 

Step Category Tool Usage 

Read Alignment 

Unspliced 

aligners 

Bowtie, BWA 

Align RNA-Seq reads to a 

reference transcriptome 

Spliced 

aligners 

TopHat, 

MapSplice, 

STAR 

Align RNA-Seq reads to a 

reference genome and identify 

splice junctions 

Isoform 

Quantification 

Isoform 

assembly 

Trinity, Oases, 

Trans-ABySS 

Assembly a set of isoforms from 

read alignments 

Abundance 

estimation 

RSEM, 

eXpress, 

Sailfish 

Estimate expression abundances 

for a given set of isoforms 

Both 

IsoInfer, 

Scripture, 

Cufflinks 

Simultaneously assembly 

isoforms and estimate their 

expression abundances 

Differential 

Expression 

Analysis 

Cuffdiff [29], DESeq [30], 

edgeR [31] 

Identify differentially expressed 

isoforms across samples 
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2.4 Previous methods 

    The key challenge for isoform abundance estimation is to accurately assign multireads 

to isoforms. The early solution for this challenge was simply discarding any reads that 

mapped ambiguously, leaving only the “unique” reads to do the abundance estimation. A 

“rescue” method was then conducted to fractionally allocate multireads according to the 

estimated expression abundances [32]. However, this method did not make full use of the 

information from RNA-Seq reads and generated high variances and significant biases in 

the quantification.  

    Having realized that the “rescue” method is equivalent to a single iteration of the 

Expectation-Maximization algorithm, researchers extended this method to a full version 

of EM algorithm: At Expectation step, reads are probabilistically assigned to isoforms 

based on the current abundance estimates; at Maximization step, current estimates are 

updated to maximize the likelihood function given the current read assignments. These 

steps are iterated until reaching the threshold of convergence. With a concave likelihood 

function, the parameters will eventually converge to the maximum likelihood estimates. 

Most current methods for isoform abundance estimation are derived from this EM 

algorithm, with various forms of likelihood functions. 

 

2.4.1 RSEM method 

    RSEM, as its name “RNA-Seq by Expectation Maximization” suggests, applies the 

EM algorithm to handle reads that map ambiguously. It computes the maximum 

likelihood values of the parameters 𝜃, where 𝜃𝑖 represents the probability that a fragment 
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is derived from isoform 𝑖. Then the isoform fractions 𝜏 is computed from 𝜃 and effective 

lengths 𝑙 ̅: 

𝜏𝑖 =
𝜃𝑖 𝑙�̅�⁄

∑ 𝜃𝑗 𝑙�̅�⁄𝑗

 

The effective length 𝑙�̅� of isoform 𝑖 is given by 

∑ 𝜆𝐹(𝑥)(𝑙𝑖 − 𝑥 + 1)
𝑥≤𝑙𝑖

 

where 𝜆𝐹 is the fragment length distribution. 

    RSEM computes a maximum likelihood estimate for 𝜃 using the EM algorithm. The 

iterations are terminated when all 𝜃𝑖  with value ≥ 10−7 have a relative change of less 

than 10−3 . The outputs of RSEM consist of the isoform fractions 𝜏 , as well as the 

expected number of fragments originating from each isoform, given the ML parameters. 

 

2.4.2 eXpress method 

    eXpress uses a probabilistic graphical model for fragment assignment. Applying Bayes 

rule, the joint probability of obtaining a fragment 𝑓 of length 𝑙 sequenced from position 𝑝 

on target 𝑡 is given by 

𝑃(𝐿 = 𝑙, 𝑇 = 𝑡, 𝑃 = 𝑝, 𝐹 = 𝑓) 

= 𝑃(𝐿 = 𝑙)𝑃(𝑇 = 𝑡|𝐿 = 𝑙)𝑃(𝑃 = 𝑝|𝑇 = 𝑡, 𝐿 = 𝑙)𝑃(𝐹 = 𝑓|𝑃 = 𝑝, 𝑇 = 𝑡, 𝐿 = 𝑙) 

Use parameters to represent the conditional probabilities: 

𝜆𝑙 = 𝑃(𝐿 = 𝑙)        𝜏𝑡|𝑙 = 𝑃(𝑇 = 𝑡|𝐿 = 𝑙) 

𝜋𝑝|𝑡,𝑙 = 𝑃(𝑃 = 𝑝|𝑇 = 𝑡, 𝐿 = 𝑙)      𝜙𝑓|𝑝,𝑡,𝑙 = 𝑃(𝐹 = 𝑓|𝑃 = 𝑝, 𝑇 = 𝑡, 𝐿 = 𝑙) 

The joint probability becomes 

𝑃(𝐿 = 𝑙, 𝑇 = 𝑡, 𝑃 = 𝑝, 𝐹 = 𝑓) = 𝜆𝑙𝜏𝑡|𝑙𝜋𝑝|𝑡,𝑙𝜙𝑓|𝑝,𝑡,𝑙 
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The likelihood function for a set of sequenced fragments ℱ  originating from a set of 

target sequences 𝒯 is given by 

𝐿(𝜆, 𝜏, 𝜋, 𝜙|ℱ) = ∏ ∑ ∑ ∑ 𝜆𝑙𝜏𝑡|𝑙𝜋𝑝|𝑡,𝑙𝜙𝑓|𝑝,𝑡,𝑙

𝑙(𝑡)−𝑙+1

𝑝=1𝑡𝜖𝒯

𝑀𝐿

𝑙=1𝑓∈ℱ
 

Let 𝜏𝑡  denotes the relative abundance of target 𝑡 , which satisfies 𝜏𝑡 = ∑ 𝜏𝑡|𝑙𝑙 , the 

likelihood function can be rewritten as 

𝐿(𝜆, 𝜏, 𝜋, 𝜙|ℱ) ∝ ∏ ∑ ∑ ∑ 𝜆𝑙𝜏𝑡

𝜔𝑝|𝑡,𝑙

𝑙(𝑡)
𝜙𝑓|𝑝,𝑡,𝑙

𝑙(𝑡)−𝑙+1

𝑝=1𝑡𝜖𝒯

𝑀𝐿

𝑙=1𝑓∈ℱ
 

where 𝑀𝐿 is the maximum length of fragment 𝑓 and 𝑙(𝑡) is the effective length of target 

sequence 𝑡. 

    The model described here is similar to the RSEM model, which obtains the maximum 

value of the likelihood function by iterating and adjusting parameters 𝜏𝑡. But eXpress 

optimizes RSEM’s algorithm through an alternative optimization procedure: streaming 

EM algorithm. It approximates the batch EM without accessing the alignment of each 

fragment more than once, resulting in a significant reduction of time and memory.  

 

2.4.3 Sailfish method 

    Another method Sailfish implements an alignment-free, accelerated EM algorithm for 

isoform abundance estimation. Unlike a typical alignment process, it creates a unique k-

mer index 𝐼𝑘(𝑇) for the given isoform set 𝑇, and catalogs the k-mer counts for each read 

in the RNA-Seq read set ℛ. The isoform abundances are estimated using those k-mer 

counts instead of alignments of reads. 

    For each k-mer 𝑠𝑖 ∈ 𝑘𝑚𝑒𝑟𝑠(𝑇)⋂𝑘𝑚𝑒𝑟𝑠(ℛ) , let 𝐶ℛ(𝑠𝑖)  denotes the number of 

occurrences of 𝑠𝑖  in ℛ . Define a k-mer equivalence class [𝑠𝑖]  as the set of k-mers 
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occurring in the same set of isoforms with the same frequency, then the total amount of 

k-mers originating from equivalence class [𝑠𝑖] is 

𝐿(𝑠𝑖) = ∑ 𝐶ℛ(𝑠𝑗)

𝑠𝑗∈[𝑠𝑖]

 

    Sailfish then applies the EM algorithm to estimate the relative abundances of isoforms. 

In the E-step, the fraction of k-mer equivalence class [𝑠𝑗]’s total count allocated to 

isoform 𝑡𝑖 is computed as 

𝛼(𝑗, 𝑖) =
𝜇𝑖

′𝐿(𝑠𝑗)

∑ 𝜇𝑡
′

𝑡⊇[𝑠𝑗]

 

where 𝜇𝑖
′ is the current estimate of relative abundance of isoform 𝑡𝑖. In the M-step, the 

relative abundance of isoform 𝑡𝑖 is updated as 

𝜇𝑖
′ =

𝜇𝑖

∑ 𝜇𝑗𝑡𝑗∈𝑇
 

where 𝜇𝑖 is 

𝜇𝑖 =
∑ 𝛼(𝑗, 𝑖)[𝑠𝑗]⊆𝑡𝑖

𝑙𝑖 − 𝑘 + 1
 

    By using k-mers to avoid the mapping step, and collapsing millions of k-mers into 

equivalence classes, the Sailfish algorithm reduces parametric complexity substantially, 

making the convergence of the EM algorithm much faster than other EM-based 

quantification methods. 
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3. Jlinks method 

 

    Since isoforms are generated from alternative splicing, each isoform can be regarded 

as a unique combination of splice junctions within this gene. Therefore we can infer 

isoform abundances from their junction coverage by solving a linear system. Based on 

this idea we developed a novel algorithm Jlinks to estimate isoform expression 

abundances using splice junctions.  

 

3.1 Algorithm 

    Unlike the EM-based methods RSEM and eXpress, whose first step is to map RNA-

Seq reads onto a known set of isoforms using unspliced aligners such as Bowtie, Jlinks 

requires spliced aligners such as TopHat, MapSplice and STAR. It takes advantage of the 

alignment files along with the junction files generated from those aligners, estimates the 

relative abundances of isoforms for each gene, and outputs the estimated fragment counts 

as well as FPKM (Fragments Per Kilobase of transcript per Million fragments mapped) 

values of each isoform. Figure 3.1 shows a brief workflow of Jlinks program. 

    Jlinks estimates the isoform abundances for each gene in a case-by-case manner. For a 

given gene, Jlinks first measures the amount of fragments originating from this gene by 

counting how many fragments fall into its genomic region. If this gene overlaps other 

genes, Jlinks merges all the overlapping genes into a single supergene and treats isoforms 

of each overlapping gene as isoforms of this supergene. Having obtained the fragment 

count 𝐹𝑔𝑒𝑛𝑒 , Jlinks performs isoform abundance estimation for this gene or supergene 

using splice junctions. 
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Figure 3.1: Jlinks algorithm workflow 
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    Jlinks treats each isoform as a “link” of splice junctions. For a given gene, suppose it 

has 𝑀 isoforms 𝑇1, 𝑇2, … , 𝑇𝑀 and 𝑁 splice junctions within its genomic locus:  𝐽1, 𝐽2, … , 𝐽𝑁. 

Each isoform 𝑇𝑚 can be represented as a unique set of those junctions: 

𝑇𝑚 = (𝐽𝑚1
, 𝐽𝑚2

, … , 𝐽𝑚𝑁𝑚
)      𝑚 = 1, … , 𝑀 

The fragment coverage for each isoform is simplified as a uniform distribution along the 

isoform sequence. Under this assumption, denoting the fragment coverage of splice 

junctions as 𝐶 = (𝑐1, … , 𝑐𝑁)𝑇, we want to infer the fragment coverage of isoforms: 𝑋 =

(𝑥1, … , 𝑥𝑀)𝑇 . The coverage of junction 𝐽𝑛  is the sum of the coverage of all isoforms 

having this junction: 

𝑐𝑛 = ∑ 𝑥𝑘

𝑘∈𝑆𝑛

    𝑛 = 1, … , 𝑁 

where 𝑆𝑛 is the subset of isoforms having splice junction 𝐽𝑛. The above equation set can 

be rewritten into a matrix form as described below. 

    Define an isoform-junction representation matrix 𝐴 = {𝑎𝑖𝑗}   𝑖 = 1, … , 𝑁; 𝑗 = 1, … , 𝑀, 

where 𝑎𝑖𝑗 = 1 if isoform 𝑇𝑗 contains junction 𝐽𝑖; 𝑎𝑖𝑗 = 0 otherwise. Then we have 

𝐴𝑋 = 𝐶 

This linear system can be categorized into four conditions according to the properties of 

matrix 𝐴: 

Condition 1. If 𝑟𝑎𝑛𝑘(𝐴) = 𝑚 = 𝑛, the problem has a unique solution 

𝑋 = 𝐴−1𝐶 

Condition 2. If 𝑟𝑎𝑛𝑘(𝐴) = 𝑚 < 𝑛, the problem has a unique least-squares solution 

𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐶 
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Condition 3. If 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 < 𝑚 , the problem has a unique minimum-norm least-

squares solution 

𝑋 = 𝐴𝑇(𝐴𝐴𝑇)−1𝐶 

In other cases where 𝐴 is a non-square singular matrix with neither inverse nor pseudo-

inverse, we can still obtain a unique minimum-norm least-squares solution by applying 

the following theorem in Linear Algebra: 

 

Rank Factorization Theorem: Any 𝑛 × 𝑚 matrix 𝐴 of rank 𝑟 can be decomposed as 𝐴 =

𝐹𝐺, where 𝐹 is a 𝑛 × 𝑟 full column rank matrix, 𝐺 is a 𝑟 × 𝑚 full row rank matrix. 

 

Thus we have: 

Condition 4. If 𝑟𝑎𝑛𝑘(𝐴) < 𝑚𝑖𝑛(𝑛, 𝑚), the problem has a unique minimum-norm least-

squares solution 

𝑋 = 𝐺𝑇(𝐺𝐺𝑇)−1(𝐹𝑇𝐹)−1𝐹𝑇𝐶 

where 𝐴 = 𝐹𝐺 is a rank factorization of matrix 𝐴. 

    The mathematical proofs of Condition 1~4 and the Rank Factorization Theorem are 

provided in the Appendix. Therefore, for any 𝑛 and 𝑚, we can always obtain an optimal 

solution for the fragment coverage of isoforms: 

𝑋∗ = (𝑥1
∗, … , 𝑥𝑀

∗ ) 

    In addition to fragment coverage, isoform length is another factor influencing isoform 

expression abundance because longer sequences generate more fragments than shorter 

ones given the same coverage. Define the effective length of an isoform as 
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𝑙�̅� = ∑ 𝑃(𝑖)(𝑙𝑚 − 𝑖 + 1)

𝑙𝑚

𝑖=1

     𝑚 = 1, … , 𝑀 

where 𝑙𝑚  is the length of isoform 𝑇𝑚 , and 𝑃  is the fragment length distribution. The 

fragment count for each isoform is given by 

𝐹𝑚 =
𝑥𝑚

∗ 𝑙�̅�

∑ 𝑥𝑚
∗ 𝑙�̅�

𝑀
𝑚=1

𝐹𝑔𝑒𝑛𝑒      𝑚 = 1, … , 𝑀 

    Jlinks estimates the isoform abundances for each alternatively spliced gene. As for 

genes with single isoform and not overlapped by others, Jlinks skips the above estimation 

procedure and outputs the fragment count 𝐹𝑔𝑒𝑛𝑒  directly. This greatly reduces the 

computation time without any loss of quantification accuracy. 

 

3.2 Implementation 

3.2.1 Input files 

    Jlinks has three input files: a GTF format annotation file for known isoforms, a BED 

format junction file generated from any spliced aligner, and the BAM format alignment 

file from that aligner. The annotation files can be easily downloaded from databases such 

as Ensembl, Genbank and the UCSC Genome Browser Database. Jlinks can also use 

annotation files generated by de novo isoform assemblers as long as they are in GTF 

format. Since SAM and BAM files are convertible, spliced aligners which provide SAM 

format alignment files are also compatible. Moreover, if a spliced aligner does not 

provide junction files (which is rarely the case in spliced aligners), junction information 

can be extracted from the alignment SAM file to generate a BED format junction file 

following these steps: 
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samtools view -HS accepted_hits.sam > header.sam 

samtools view -hS accepted_hits.sam | awk ‘($6 ~ /N/)’ > spliced_hits.sam 

cat header.sam spliced_hits.sam > spliced_hits_with_header.sam 

samtools view -bS spliced_hits_with_header.sam > file.bam 

bamToBed -bed12 -i file.bam > file.bed12 

bed12ToBed6 -i file.bed12 > file.bed6 

subtractBed -a file.bed12 -b file.bed6 -s | cut -f 1 -6 > pre.junctions.bed 

 

    The resulting file pre.junctions.bed is a BED format file containing the splice junction 

information for each spliced read. The preprocessing script junction_pileup.py can then 

pile up the junctions: python  junction_pileup.py  pre.junctions.bed  junctions.bed 

    The output file junctions.bed is ready for use by Jlinks. 

 

3.2.2 Jlinks modes 

    Jlinks can run in two modes. 

1. Individual mode 

    This mode is designed for querying an individual gene without running Jlinks on the 

whole set of genes. In individual mode, Jlinks takes the name of the queried gene 

following the option -g, estimates the isoform abundances for this gene and displays the 

quantification results by standard output. If the queried gene is not in the annotation file, 

an error message will be printed to screen. Below is the command line: 

python  Jlinks.py  -g  GENE_NAME  [options]  annotationfile  junctionfile  alignmentfile 

2. Overall mode 
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    This mode is designed for a complete analysis of all genes contained in the annotation 

file. In overall mode, Jlinks writes the estimates of the whole gene set into the output file 

specified by the -o option. Below is the command line: 

python  Jlinks.py  -o  OUTPUT_FILE  [options] annotationfile  junctionfile  alignmentfile 

 

    Jlinks deals with both single-end and paired-end alignments by specifying the value of 

the -s option: “yes” for single-end data and “no” for paired-end data. The alignments can 

be both with or without multi-hits by setting the value of the -m option: “yes” for 

alignments with multi-hits and “no” for alignments without multi-hits. Jlinks is designed 

to take advantage of multicore processors, and running the program with multiple threads 

is highly recommended. The number of threads used for running can be specified by an 

integer following the -p option. 

 

3.2.3 Output file 

    When running in overall mode, Jlinks generates an output file containing the isoform 

abundance estimates for all genes contained in the annotation file. The output file is a 

single tab-delimited file consisting of five columns. The first column is the gene id of a 

given isoform, the second column is the transcript id and third column is the length of 

this isoform. The last two columns are the abundances estimated by Jlinks as represented 

by two measurements. The fourth column is an estimate of the number of fragments 

originating from each isoform, and these rounded counts can be used by downstream 

analysis tools such as DESeq and edgeR to conduct differential expression analyses. The 

fifth column contains the estimated isoform FPKM values. 
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4. Results 

 

4.1 Test data 

    Since there is no ground truth for real transcriptome data, simulating RNA-Seq data 

has become a standard way to evaluate RNA-Seq analysis methods. We generated test 

datasets from the human transcriptome using a home-designed RNA-Seq simulator 

MadeSeq (see RNA-Seq data simulation). 100bp paired-end RNA-Seq data sets were 

simulated ranging from 20 million to 100 million reads, with both uniform and 

exponential simulation patterns. For the simulation we used the human reference genome 

(hg19) downloaded from UCSC Genome Browser Database, and annotation file 

(genes.gtf) downloaded from the RefSeq website containing a total of 35,066 isoforms 

from 19,088 genes. The isoform length distribution and the number of isoforms per gene 

are shown in Figure 4.1 and 4.2. 

 

4.2 RNA-Seq data simulation 

    We used a home-designed java program MadeSeq to simulate RNA-Seq datasets with 

known ground truth. This program simulates paired-end RNA-Seq reads for an annotated 

transcriptome, and generates a SAM format answer file recording the origin of each read, 

i.e. which isoform it came from. In this way the true fragment count and FPKM value of 

each isoform are known, and this ground truth is then used to evaluate the accuracy of 

various isoform quantification methods.  

    MadeSeq has two simulation patterns: uniform and exponential. The uniform pattern 

samples reads uniformly and independently from isoforms in the transcriptome and 
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across all possible start sites. The exponential pattern samples the frequencies of isoforms 

from an exponential distribution.  

 

 

 

 

 

 

 

 

 Figure 4.1: Length distribution of isoforms in the RefSeq annotation file  
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4.3 Performance comparison for 100 million paired-end RNA-Seq simulation data 

4.3.1 Uniform simulation pattern 

    Jlinks requires alignments to genome, while other EM-based methods such as RSEM 

and eXpress require alignments to the transcriptome. To generate the alignments suitable 

for use by Jlinks, we used three popular spliced aligners: (1) TopHat v2.0.14 with the 

option -G to supply the annotation file, option --no-novel-juncs to only align reads to 

these annotated isoforms, --microexon-search to find alignment incidents to micro-exons 

and --max-multihits=1 to align without multi-hits. With these parameters, 99.4% of the 

 

 Figure 4.2: Distribution of the number of isoforms per genes in the RefSeq 

annotation file 
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read pairs mapped to the reference genome. (2) MapSplice v2.1.9 with --gene-gtf to 

supply the annotation file, --non-canonical to search for non-canonical in addition to 

canonical and semi-canonical junctions, and --filtering=1 to increase the sensitivity of 

splice junction detection. As a result, 99.93% of reads were successfully mapped. (3) 

STAR v2.4.1d with --sjdbGTFfile to supply annotation file and no other advanced options, 

resulting in a 99.6% alignment rate.  

    To generate the alignments used by eXpress and RSEM, we first extracted the isoform 

sequences from the annotation file and then used Bowtie2 to align reads to this set of 

target isoforms. We used Bowtie v2.2.5 with the option -a to report all mappings, -X 1000 

to allow fragments up to length 1000 and -v 3 to allow up to three mismatches in each 

read. With these parameters, 98.81% of the simulated read pairs mapped to the target 

isoforms. Table 4.1 summarizes the upstream alignment tools for isoform quantification 

methods except for the alignment-free method Sailfish. Each alignment tool results in a 

mapping rate over 98%, demonstrating that the impact of alignment algorithms on the 

quantification results is very little. This allows us to tease out the contribution of various 

alignment tools to overall isoform abundance estimation accuracy.  
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Table 4.1: Summary of upstream alignment tools  

Aligner Type 

Alignment 

Tool 

Version Options 

Alignment 

Rate 

Spliced aligner 

(align to genome) 

TopHat 2.0.14 

-G 

--no-novel-juncs 

--microexon-search 

--max-multihits=1 

99.4% 

MapSplice 2.1.9 

--gene-gtf 

--non-canonical 

--filtering=1 

99.93% 

STAR 2.4.1d --sjdbGTFfile 99.6% 

Unspliced aligner 

(align to 

transcriptome) 

Bowtie2 2.2.5 

-a 

-X 1000 

-v 3 

98.81% 

 

 

    We combined Jlinks with TopHat, MapSplice, STAR, and compared the quantification 

results of Jlinks with the results of RSEM and eXpress which use Bowtie2 as the 

upstream alignment tool, as well as the alignment-free quantification tool Sailfish. To 

evaluate the abundance estimation accuracy of each quantification tool, we compared the 

estimated isoform FPKM values with the true FPKM values. We used root mean square 

error as accuracy measurement, along with the Pearson correlation coefficient and 

Spearman correlation coefficient of the FPKM values across all isoforms. Table 4.2 
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summarizes the overall accuracy comparison of all these isoform quantification methods, 

Figure 4.3-4.5 display the individual comparisons of root mean square error, Pearson 

correlation coefficient and Spearman correlation coefficient. 

 

Table 4.2: Overall accuracy comparison of isoform quantification methods for 

uniform pattern simulation  

Upstream 

alignment tool 

Isoform 

quantification 

tool 

Root mean 

square error 

Pearson 

correlation 

coefficient 

Spearman 

correlation 

coefficient 

TopHat 

Jlinks 

8.1116 0.8146 0.8009 

MapSplice 8.2497 0.7980 0.7858 

STAR 9.1940 0.7797 0.8000 

Bowtie2 

eXpress 11.7743 0.7099 0.6743 

RSEM 12.9709 0.6778 0.6349 

Sailfish 15.8114 0.6146 0.5509 
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 Figure 4.3: Root mean square error comparison for uniform simulation pattern. Root 

mean square errors of estimated isoform FPKM values compared with true FPKM values 

for isoform quantification methods. Grey bars indicate pipelines using Jlinks as the 

quantification tool, white striped bars indicate pipelines using other quantification tools. 
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 Figure 4.4: Pearson correlation coefficient comparison for uniform simulation 

pattern. Pearson correlation coefficients between estimated FPKM values and true FPKM 

values for these isoform quantification methods. Grey bars indicate pipelines using Jlinks 

as the quantification tool, white striped bars indicate pipelines using other quantification 

tools. 
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 Figure 4.5: Spearman correlation coefficient comparison for uniform simulation 

pattern. Spearman correlation coefficients between estimated FPKM values and true 

FPKM values for these isoform quantification methods. Grey bars indicate pipelines using 

Jlinks as the quantification tool, white striped bars indicate pipelines using other 

quantification tools. 
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    To further examine the performances of these tools in quantifying genes with multiple 

isoforms, we looked deeper into the results by extracting genes with more than one 

isoform and dividing them into five categories according to the number of isoforms they 

have, namely two-isoform genes, three-isoform genes, four-isoform genes, five-isoform 

genes and six-plus-isoform genes. For each category, we compared the accuracy of these 

quantification tools on that set of genes. Figure 4.6, 4.7, 4.8 display detailed comparisons 

for the root mean square error, Pearson correlation coefficient and Spearman correlation 

coefficient of these isoform quantification methods on all categories. As the number of 

isoforms for each gene increases, the accuracy improvement of Jlinks over other methods 

also increases, indicating that Jlink is superior to other methods for quantifying genes 

with multiple isoforms. 
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Figure 4.6: Root mean square error comparison for uniform simulation pattern on 

various gene categories. Root mean square errors of estimated isoform FPKM values 

compared with true FPKM values of these isoform quantification methods on various gene 

categories. Blue solid lines indicate pipelines using Jlinks as the quantification tool, red 

dash lines indicate pipelines using other quantification tools. 
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Figure 4.7: Pearson correlation coefficient comparison for uniform simulation 

pattern on various gene categories. Pearson correlation coefficients between estimated 

FPKM values and true FPKM values of these isoform quantification methods on various 

gene categories. Blue solid lines indicate pipelines using Jlinks as the quantification tool, 

red dash lines indicate pipelines using other quantification tools. 



 31 

 

 

 

 
Figure 4.8: Spearman correlation coefficient comparison for uniform simulation 

pattern on various gene categories. Spearman correlation coefficients between estimated 

isoform FPKM values and true FPKM values of these isoform quantification methods on 

various gene categories. Blue solid lines indicate pipelines using Jlinks as the 

quantification tool, red dash lines indicate pipelines using other quantification tools. 
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4.3.2 Exponential simulation pattern 

    To test Jlinks performance in a more complex and realistic scenario, we simulated 100 

million paired-end reads with an exponential simulation pattern: that is, the frequencies 

of isoforms being sampled follow an exponential distribution (Figure 4.9). Table 4.3 

gives a summary of the performance of upstream alignment tools. Again, each alignment 

tool results in a mapping rate over 98%, demonstrating that the comparison of isoform 

quantification methods should not be greatly affected by the choices of alignment tools. 

Table 4.4 summarizes the overall accuracy comparison of the isoform quantification 

methods, and Figures 4.10, 4.11, 4.12 display the individual comparisons of root mean 

square error, Pearson correlation coefficient and Spearman correlation coefficient. We 

also examined the performances of these methods on various gene categories defined as 

in previous section, the comparison results are shown in Figures 4.13, 4.14, 4.15. The 

improvement in accuracy is even more evident when looking at genes with more 

isoforms, demonstrating Jlinks’s strong advantage in quantifying genes with multiple 

isoforms. 
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 Figure 4.9: Sampling frequency distribution in exponential simulation pattern.  The 

x-axis displays the frequency of isoforms being sampled during this simulation; the y-

axis displays the number of isoforms having that sampling frequency. 
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Table 4.3: Summary of upstream alignment tools for the exponential simulation 

pattern 

Aligner Type 

Alignment 

Tool 

Version Options 

Alignment 

Rate 

Spliced aligner 

(align to genome) 

TopHat 2.0.14 

-G 

--no-novel-juncs 

--microexon-search 

--max-multihits=1 

99.4% 

MapSplice 2.1.9 

--gene-gtf 

--non-canonical 

--filtering=1 

99.97% 

STAR 2.4.1d --sjdbGTFfile 99.1% 

Unspliced aligner 

(align to 

transcriptome) 

Bowtie2 2.2.5 

-a 

-X 1000 

-v 3 

98.61% 
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Table 4.4: Overall accuracy comparison of isoform quantification methods for the 

exponential simulation pattern.  

Upstream 

alignment tool 

Isoform 

quantification 

tool 

Root mean 

square error 

Pearson 

correlation 

coefficient 

Spearman 

correlation 

coefficient 

TopHat 

Jlinks 

14.1709 0.8689 0.7929 

MapSplice 14.5775 0.8598 0.7902 

STAR 15.4989 0.8045 0.7949 

Bowtie2 

eXpress 17.8476 0.8236 0.8035 

RSEM 19.3270 0.8008 0.7195 

Sailfish 23.0211 0.7435 0.7076 

 

 

 

 

 

 

 

 

 

 

 



 36 

 

 

 

 

 

 

 

 Figure 4.10: Root mean square error comparison for exponential simulation pattern. 

Root mean square errors of estimated isoform FPKM values compared with true FPKM 

values for these isoform quantification methods. Grey bars indicate pipelines using Jlinks 

as the quantification tool, white striped bars indicate pipelines using other quantification 

tools. 
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 Figure 4.11: Pearson correlation coefficient comparison for exponential simulation 

pattern. Pearson correlation coefficients between estimated isoform FPKM values and 

true FPKM values for these isoform quantification methods. Grey bars indicate pipelines 

using Jlinks as the quantification tool, white striped bars indicate pipelines using other 

quantification tools. 
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 Figure 4.12: Spearman correlation coefficient comparison for exponential simulation 

pattern. Spearman correlation coefficients between estimated isoform FPKM values and 

true FPKM values for these isoform quantification methods. Grey bars indicate pipelines 

using Jlinks as the quantification tool, white striped bars indicate pipelines using other 

quantification tools. 
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 Figure 4.13: Root mean square error comparison for exponential simulation pattern on 

various gene categories. Root mean square errors of estimated isoform FPKM values 

compared with true FPKM values for these isoform quantification methods on various gene 

categories. Blue solid lines indicate pipelines using Jlinks as the quantification tool, red dash 

lines indicate pipelines using other quantification tools. 
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 Figure 4.14: Pearson correlation coefficient comparison for exponential simulation 

pattern on various gene categories. Pearson correlation coefficients between estimated 

isoform FPKM values and true FPKM values for these isoform quantification methods on 

various gene categories. Blue solid lines indicate pipelines using Jlinks as the quantification 

tool, red dash lines indicate pipelines using other quantification tools. 



 41 

 

 

 

 
Figure 4.15: Spearman correlation coefficient comparison for exponential simulation 

pattern on various gene categories. Spearman correlation coefficients between estimated 

isoform FPKM values and true FPKM values for these isoform quantification methods on 

various gene categories. Blue solid lines indicate pipelines using Jlinks as the quantification 

tool, red dash lines indicate pipelines using other quantification tools. 
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4.3.3 Running time comparison 

    In addition to comparing the accuracies of quantification methods, we also measured 

their running times, as listed in Table 4.5. All quantification tools were run with 8 threads 

except for eXpress which does not have an option to set the number of threads. Sailfish is 

the fastest quantification tool with running time less than half an hour. eXpress and Jlinks 

have similar running times and RSEM is the most time-consuming tool in the comparison. 

It should be noted that the running times of eXpress and Jlinks are not completely 

comparable, as eXpress could not set the number of threads, whereas Jlinks could be 

faster if running with more threads. For instance, when running Jlinks with 16 threads on 

these two datasets, both running times were within an hour, less than those of eXpress. 

 

Table 4.5: Running time comparison of isoform quantification methods  

Upstream 

alignment tool 

Isoform 

quantification 

tool 

Quantification tool running time 

Number of 

threads Uniform Exponential 

TopHat 

Jlinks 

1h 48min 19s 1h 27min 36s 8 

MapSplice 1h 48min 32s 1h 29min 07s 8 

STAR 1h 46min 39s 1h 26min 29s 8 

Bowtie2 

eXpress 1h 42min 52s 1h 31min 22s N/A* 

RSEM 2h 34min 06s 3h 08min 18s 8 

Sailfish 0h 29min 54s 0h 16min 27s 8 

 

*eXpress does not have an option to set the number of threads. The peak CPU usage for running 

eXpress is 280% 
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4.4 Performance comparison for paired-end RNA-Seq simulation datasets under 

various sequencing depths 

    To better evaluate the performances of Jlinks and other quantification methods, we 

generated simulation datasets of four other sequencing depths (20 million, 40 million, 60 

million and 80 million paired-end reads) with both uniform and exponential simulation 

patterns. Figures 4.16-4.21 show the comparisons of these isoform quantification 

methods under various sequencing depths, in terms of root mean square error, Pearson 

correlation coefficient and Spearman correlation coefficient. eXpress provides the best 

Spearman correlation coefficient for datasets with the exponential simulation pattern, 

while in all the other cases Jlinks methods consistently outperform non-Jlinks methods in 

all the assessments. 
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 Figure 4.16: Root mean square error comparison for uniform simulation pattern 

under various sequencing depths. Root mean square errors of estimated isoform FPKM 

values compared with true FPKM values for these isoform quantification methods under 

various sequencing depths. All datasets were simulated with the uniform pattern. 
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Figure 4.17: Pearson correlation coefficient comparison for uniform simulation 

pattern under various sequencing depths. Pearson correlation coefficients between 

estimated isoform FPKM values and true FPKM values for these isoform quantification 

methods under various sequencing depths. All datasets were simulated with the uniform 

pattern. 
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Figure 4.18: Spearman correlation coefficient comparison for uniform simulation 

pattern under various sequencing depths. Spearman correlation coefficients between 

estimated isoform FPKM values and true FPKM values for these isoform quantification 

methods under various sequencing depths. All datasets were simulated with the uniform 

pattern. 



 47 

 

 

 

 

 

 

 Figure 4.19: Root mean square error comparison for exponential simulation pattern 

under various sequencing depths. Root mean square errors of estimated FPKM values 

compared with true FPKM values for these isoform quantification methods under various 

sequencing depths. All datasets were simulated with the exponential pattern. 
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 Figure 4.20: Pearson correlation coefficient comparison for exponential simulation 

pattern under various sequencing depths. Pearson correlation coefficients between 

estimated FPKM values and true FPKM values for these isoform quantification methods 

under various sequencing depths. All datasets were simulated with the exponential pattern. 
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 Figure 4.21: Spearman correlation coefficient comparison for exponential simulation 

pattern under various sequencing depths. Spearman correlation coefficients between 

estimated FPKM values and true FPKM values for these isoform quantification methods 

under various sequencing depths. All datasets were simulated with the exponential pattern. 
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5. Conclusion 

 

    In this paper we introduced a novel algorithm of isoform-level abundance estimation 

for a known set of isoforms. Our algorithm, referred to as Jlinks, treats each isoform as a 

unique “link” of splice junctions and converts the abundance estimation problem into 

obtaining an optimal solution for a linear system. Experiments on synthetic RNA-Seq 

datasets generated with both uniform and exponential simulation patterns under various 

sequencing depths demonstrate that Jlinks has superior performances relative to existing 

state-of-the-art isoform quantification methods. 
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Appendix 

 

 
Proofs of the theorems applied in Jlinks algorithm: 

 

For linear system 𝐴𝑋 = 𝐶, where 𝐴 is a 𝑛 × 𝑚 matrix, 𝑋 is an unknown vector with 

dimension 𝑚 × 1, 𝐶 is a known vector with dimension 𝑛 × 1: 

 

Condition 1. If 𝑟𝑎𝑛𝑘(𝐴) = 𝑚 = 𝑛, the problem has a unique solution 

𝑋 = 𝐴−1𝐶 

Proof. 

When 𝑟𝑎𝑛𝑘(𝐴) = 𝑚 = 𝑛, 𝐴 is a full rank square matrix, thus has inverse matrix 𝐴−1 

satisfying 𝐴−1𝐴 = 𝐼. 𝐴𝑋 = 𝐶 ⟹ 𝐴−1𝐴𝑋 = 𝐴−1𝐶 ⟹ 𝑋 = 𝐴−1𝐶 

 

Condition 2. If 𝑟𝑎𝑛𝑘(𝐴) = 𝑚 < 𝑛, the problem has a unique least-squares solution 

𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐶 

Proof.  

In this case there are more constraints than unknowns, the system is over-determined and 

has no exact solution. We can obtain a least-squares solution that minimizes the error. We 

want to find 𝑋 that minimizes 

‖𝐶 − 𝐴𝑋‖2 

or 

(𝐶 − 𝐴𝑋)𝑇(𝐶 − 𝐴𝑋) 

or 
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𝐶𝑇𝐶 − 𝐶𝑇𝐴𝑋 − 𝑋𝑇𝐴𝑇𝐶 + 𝑋𝑇𝐴𝑇𝐴𝑋 

Differentiating w.r.t. 𝑋 and setting the result equal to zero yields 

−(𝐶𝑇𝐴)𝑇 − (𝐴𝑇𝐶) + 2𝐴𝑇𝐴𝑋 = 0 

so 

𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐶 

where (𝐴𝑇𝐴)−1𝐴𝑇 is called left pseudo-inverse of 𝐴. 

 

Condition 3. If 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 < 𝑚, the problem has a unique minimum-norm least-

squares solution 

𝑋 = 𝐴𝑇(𝐴𝐴𝑇)−1𝐶 

Proof.  

In this case there are fewer constraints than unknowns, the system is under-determined 

and has infinite amount of solutions. We can pick one with the minimum norm. That is, 

we will minimize ‖𝑋‖2 subject to the constraint 𝐴𝑋 = 𝐶 using Lagrange multiplier 

method, which becomes 

‖𝑋‖2 + 𝜆𝑇(𝐶 − 𝐴𝑋) 

Differentiating w.r.t. 𝑋 and setting the result equal to zero yields 

2𝑋 − 𝐴𝑇𝜆 = 0 

so 

2𝐴𝑋 − 𝐴𝐴𝑇𝜆 = 0 

and using 𝐶 = 𝐴𝑋 gives us 

2𝐶 = 𝐴𝐴𝑇𝜆 

so 
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𝜆 = 2(𝐴𝐴𝑇)−1𝐶 

and hence 

𝑋 = 𝐴𝑇(𝐴𝐴𝑇)−1𝐶 

where 𝐴𝑇(𝐴𝐴𝑇)−1 is called right pseudo-inverse of 𝐴. 

 

Rank Factorization Theorem: Any 𝑛 × 𝑚 matrix 𝐴 of rank 𝑟 can be decomposed as 𝐴 =

𝐹𝐺, where 𝐹 is a 𝑛 × 𝑟 full column rank matrix, 𝐺 is a 𝑟 × 𝑚 full row rank matrix. 

Proof.  

Since 𝑟𝑎𝑛𝑘(𝐴) = 𝑟, 𝐴 has 𝑟 linearly independent column vectors 𝑎𝑖1
, 𝑎𝑖2

, … , 𝑎𝑖𝑟
. Denote 

𝐹 = (𝑎𝑖1
, 𝑎𝑖2

, … , 𝑎𝑖𝑟
), so 𝐹 is a 𝑛 × 𝑟 full column rank matrix. 

Each column of 𝐴 is a linear combination of column vectors of 𝐹. That is, there exists a 

𝑟 × 𝑚 matrix 𝐺 satisfying 𝐴 = 𝐹𝐺. 

Now we have 

𝑟 = 𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝐹𝐺) ≤ 𝑟𝑎𝑛𝑘(𝐺) ≤ 𝑟 

so 

𝑟𝑎𝑛𝑘(𝐺) = 𝑟 

So 𝐺 is a 𝑟 × 𝑚 full row rank matrix. 

 

Condition 4. If 𝑟𝑎𝑛𝑘(𝐴) < 𝑚𝑖𝑛(𝑛, 𝑚), the problem has a unique minimum-norm least-

squares solution 

𝑋 = 𝐺𝑇(𝐺𝐺𝑇)−1(𝐹𝑇𝐹)−1𝐹𝑇𝐶 

where 𝐴 = 𝐹𝐺 is a rank factorization of matrix 𝐴. 

Proof. 
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Suppose 𝑟𝑎𝑛𝑘(𝐴) = 𝑟, according to Rank Factorization Theorem, 𝐹 is a 𝑛 × 𝑟 full 

column rank matrix and 𝐺 is a 𝑟 × 𝑚 full row rank matrix. The problem becomes 

𝐹𝐺𝑋 = 𝑟 

where 𝑟𝑎𝑛𝑘(𝐹) = 𝑟 < 𝑛. Applying the solution in Condition 2, we have 

𝐺𝑋 = (𝐹𝑇𝐹)−1𝐹𝑇𝐶 

where 𝑟𝑎𝑛𝑘(𝐺) = 𝑟 < 𝑚. Applying the solution in Condition 3, we have 

𝑋 = 𝐺𝑇(𝐺𝐺𝑇)−1(𝐹𝑇𝐹)−1𝐹𝑇𝐶 
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