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Abstract

An Archimedean lattice is an infinite graph constructed from a vertex-

transitive tiling of the plane by regular polygons. A set of vertices S is said

to dominate a graph G = (V,E) if every vertex in V is either in the set S or

is adjacent to a vertex in set S. A dominating set is a perfect dominating

set if every vertex not in the dominating set is dominated exactly once. The

domination ratio is the minimum proportion of vertices in a dominating set.

The perfect domination ratio is the minimum proportion of vertices in a perfect

dominating set. Dominating sets are provided to establish upper bounds for

the domination ratios of all the Archimedean lattices. A dominating set is an

efficient dominating set if every vertex is dominated exactly once. We show

that seven of the eleven Archimedean lattices are efficiently dominated, which

easily determine their domination ratios and perfect domination ratios. We

prove that the other four Archimedean lattices cannot be efficiently dominated.

For the four Archimedean lattices that cannot be efficiently dominated, we

have determined their exact perfect domination ratios. Integer programming
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ABSTRACT

bounds for domination ratios are provided. A perfect domination proportion is

the proportion of vertices in a perfect dominating set that is not necessarily

minimal. We study nonisomorphic perfect dominating sets and possible perfect

domination proportions of Archimedean lattices.

Primary Reader and Advisor: John C. Wierman
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Chapter 1

Introduction

In a simple graph G = (VG, EG), a vertex x dominates a vertex y if either

x is adjacent to y or x = y. A subset D ⊆ VG is a dominating set if every

vertex in VG is dominated by at least one vertex in D. More formally, and to

introduce useful notation and terminology, define the closed neighborhood of

a vertex v ∈ VG by N [v] = {u ∈ VG : u = v or u is adjacent to v}. Vertices in

N [v] − {v} are neighbors of v. A vertex v is said to dominate itself and all of

its neighbors. A dominating set is a set D ⊆ VG such that every vertex in

VG −D is dominated by a vertex in D. A perfect dominating set is a set D ⊆ VG

such that every vertex in VG−D is dominated by exactly one vertex in D. For a

finite graphG, the domination number γ(G) is the minimum number of vertices

in a dominating set in G. There is an extensive literature on domination in

finite graphs, in which many variants of domination are defined and studied,

1



CHAPTER 1. INTRODUCTION

for which the classical comprehensive reference is the two-volume series by

Haynes, Hedetniemi, and Slater [1].

In this thesis, we consider domination on a class of infinite planar graphs

called Archimedean lattices. A regular tiling is a tiling of the plane by regu-

lar polygons. Considering the vertices and edges of a regular tiling to be the

vertices and edges of an infinite graph, an Archimedean lattice is a regular

tiling which is vertex-transitive. Due to the restriction that the sum of the

angles in polygons surrounding a vertex is 2π, there are only finitely many pos-

sibilities for regular polygons to surround a vertex, and only eleven of these

can be continued indefinitely to form a vertex-transitive lattice. All eleven of

the Archimedean lattices are illustrated in the figures in this thesis. There

is a naming convention for the Archimedean lattices, in which the numbers

of edges of the polygons incident to a vertex are listed in the order they ap-

pear around the vertex, with exponents indicating the number of successive

polygons of a given size. The most commonly recognized Archimedean lattices

are the square (44) lattice, the triangular (36) lattice, and the hexagonal (63)

lattice. For a complete discussion, see the beautiful monograph by Grünbaum

and Shephard [2, pp. 58–64].

Since the dominating set of an Archimedean lattice must be infinite, we

will consider the domination ratio of an infinite graph, which is essentially the

smallest proportion of vertices that constitute a dominating set. We will also

2



CHAPTER 1. INTRODUCTION

consider the perfect domination ratio of an infinite graph, which is essentially

the smallest proportion of vertices that constitute a perfect dominating set.

The goal of this thesis is to exactly determine the domination ratio and the

perfect domination ratio for as many Archimedean lattices as possible, and to

find accurate bounds for those remaining.

A concept that is useful in our proofs is efficient domination. Let |S| denote

the cardinality of set S. A setD ⊆ VG is an efficient dominating set if |N [v]∩D| =

1 for all v ∈ VG. Thus, an efficient dominating set must dominate every vertex

in the graph exactly once.

Each Archimedean lattice is a vertex-transitive graph, and thus is a k-

regular graph, with k = 3, 4, 5, or 6. If it is efficiently dominated, its domi-

nation ratio and perfect domination ratio both equal 1
k+1

. Chapter 3 shows that

seven of the Archimedean lattices are efficiently dominated, determining their

domination ratios and perfect domination ratios.

However, for a given graph, an efficient dominating set may not exist, as is

proved for four of the Archimedean lattices. For those lattices, 1
k+1

is a trivial

lower bound, while the proportion of dominating vertices in any dominating

set or perfect dominating set provides an upper bound for domination ratio

and perfect domination ratio respectively. We exhibit examples to establish the

best upper bounds that we have found. We prove that the perfect domination

ratios for four of these graphs, the (3, 6, 3, 6), (3, 4, 6, 4), (32, 4, 3, 4), and (4, 6, 12)

3



CHAPTER 1. INTRODUCTION

lattices, are equal to 1
3
, 1
4
, 1
4

and 5
18

respectively. Our results are summarized in

Table 1.1.

Archimedean Lattice Efficient Domination γp

(3, 122) Yes 1
4

(4, 6, 12) No 5
18

(4, 82) Yes 1
4

(63) Yes 1
4

(3, 4, 6, 4) No 1
4

(3, 6, 3, 6) No 1
3

(44) Yes 1
5

(34, 6) Yes 1
6

(32, 4, 3, 4) No 1
4

(33, 42) Yes 1
6

(36) Yes 1
7

Table 1.1: Results for the eleven Archimedean lat-
tices. The column labeled “Efficient Domination” indicates
whether or not there exists an efficient dominating set for
the lattice. The column labeled γp provides the exact value
of the perfect domination ratio for all of the lattices.

The remainder of the thesis is organized as follows:

In Chapter 2, periodic graphs are defined, then the domination ratio and

the perfect domination ratio are defined for a periodic graph. Definitions, ter-

minology, and lemmas that apply to all Archimedean lattices are provided.

The existence of efficient domination is determined for seven of the

Archimedean lattices in Chapter 3. A proof for each of the seven of the

Archimedean lattices is given in the form of a figure illustrating an efficient

dominating set.

Our results on the (3, 6, 3, 6) or kagome lattice are discussed in Chapter 4.

4



CHAPTER 1. INTRODUCTION

The kagome lattice is proved to not have an efficient dominating set. Bounds

for the domination ratio of the kagome lattice are determined. The proof of the

exact value of the perfect domination ratio of kagome lattice is provided. Noni-

somorphic perfect dominating sets and possible perfect domination proportions

are investigated.

Our results on the (3, 4, 6, 4) lattice, the (32, 4, 3, 4) lattice, and the (4, 6, 12)

lattice are provided in Chapter 5, Chapter 6, and Chapter 7 respectively, orga-

nized in a form similar to Chapter 4.

In Chapter 8, integer programming bounds for the domination ratio and

perfect domination ratio of Archimedean lattices are discussed.

Chapter 9 breifly mentions some ongoing research and open questions.

5



Chapter 2

Preliminaries

2.1 Applications of Efficient and Per-

fect Domination

The existence of efficient dominating sets is studied in coding theory, since

it is a variant of the classical problem of the existence and non-existence of

perfect codes as a set in a vector space. A perfect e-error-correcting code of

block length n over V is a subset S ⊆ V n such that for every v ∈ V n there exists

a unique u ∈ S with d(u, v) ≤ e. A perfect 1-code in a graph is an efficient

dominating set.

Perfect domination in a graph is a model for facility location problems. Con-

sider a city represented by a graph G where vertices represent different lo-

6



CHAPTER 2. PRELIMINARIES

cations or areas in the city. Every location is a potential site for a facility.

Every pair of vertices representing adjacent locations are joined by an edge.

Consider a company that wants to minimize the number of facilities such that

each location is served by a facility in it or by a unique facility adjacent to it.

The company's goal is to find a minimum perfect dominating set of G. A real

world facility location problem may be of large scale and require a graph the-

ory model with thousands of vertices. Studying perfect domination on infinite

periodic graphs may provide insight into large scale facility location problems.

2.2 Periodicity

A periodic graph G is a locally-finite connected simple graph with a

countably-infinite vertex set, which can be embedded in Rd for some d < ∞

such that G is invariant under translation by each unit vector in a coordinate

axis direction in Rd and each compact set of Rd intersects only finitely many

edges and vertices of G. Note that it is actually the embedding which is peri-

odic. For convenience, we will identify a graph with its periodic embedding,

although the properties of a dominating set only depend on the adjacency

structure of the graph. Each of the eleven Archimedean lattices is a periodic

graph in R2. Figures showing periodic embeddings of the Archimedean lattices

are provided in [3] and throughout the thesis.

7



CHAPTER 2. PRELIMINARIES

2.3 Existence of the Domination Ratio

2.3.1 Definition of the Domination Ratio

For a periodic graph G, denote the subgraph of G induced by the vertices in

the rectangle [m1,m2)× [n1, n2) ⊂ R2 by RG(m1,m2;n1, n2), where m1 < m2, n1 <

n2 and m1,m2, n1, n2 ∈ Z. Note that all induced subgraphs RG(m1,m2;n1, n2)

corresponding to translations of rectangles with the same edge lengths are iso-

morphic. Denote the minimum size of a dominating set forRG(0,m; 0, n), known

as its domination number, by γm,n(G), and the number of vertices inR(0,m; 0, n)

by Nm,n(G). Denote N1,1(G) = k. We define the domination ratio of G by

lim
m,n→∞

γm,n(G)

Nm,n(G)
= inf

r,s

1

rsk
γr,s(G).

A proof that the limit exists relies on subadditivity. LetG1 andG2 be vertex-

disjoint induced subgraphs of G. Since the union of dominating sets for G1 and

G2 is a dominating set for G, but there might be a smaller dominating set for

G,

γ(G1 ∪G2) ≤ γ(G1) + γ(G2),

while

N(G1 ∪G2) = N(G1) +N(G2).

8
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Together, these imply that, for example, doubling the length or width of the

rectangle cannot increase the domination ratio of the subgraph, and may de-

crease it. Our literature search did not find a proof of the existence of the

limit for deterministic multiparameter subadditive functions, but one may find

a proof for the more difficult stochastic case in [4], which is modified appropri-

ately in the following section.

To discuss bounds for the domination ratio, we need to consider dominat-

ing sets which are not minimum dominating sets. For a finite graph G that

has a dominating set D, let its domination proportion, γD(G), be the number

of vertices in D divided by total number of vertices in G. We extend the notion

of domination proportion to infinite periodic graphs. Given a dominating set,

suppose the vertex set of an infinite graph can be partitioned into finite subsets

such that the subgraph induced by each subset is connected and all these finite

induced subgraphs have the same domination proportion. The domination pro-

portion of the dominating set is defined as the common value of the domination

proportion of the finite induced subgraphs.

For the induced subgraphs, we require the same domination proportion and

connectedness to avoid ambiguity arising from one-to-one or many-to-one cor-

respondences between subgraphs, which can be used to obtain different domi-

nation proportions for all the subgraphs.

If the same domination proportion is not required for the induced sub-

9



CHAPTER 2. PRELIMINARIES

graphs, we will have the following issue: For simplicity, assume the domina-

tion proportion of induced subgraphs are either γ1 or γ2, where γ1 6= γ2. We can

pair every induced subgraph having domination proportion γ1 with two induced

subgraphs having domination proportion γ2 to obtain γ1+2γ2
3

as the domination

proportion of the infinite periodic graph. Similarly, we can pair every induced

subgraph having domination proportion γ1 with three induced subgraphs hav-

ing domination proportion γ2 to obtain γ1+3γ2
4

as the domination proportion of

the infinite periodic graph. Therefore, the domination proportion of an infi-

nite periodic graph is not well defined if the same domination proportion is not

required for the induced subgraphs.

If connectedness is not required for the induced subgraphs, we will have the

following issue: For simplicity, assume every induced subgraph is the disjoint

union of two connected components. The two connected components may have

different domination proportions, γ1 and γ2 respectively. The same reasoning as

in the previous paragraph can be applied to show that the domination propor-

tion of an infinite periodic graph is not defined if connectedness is not required

for the induced subgraphs.

10
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2.3.2 A Proof that Domination Ratio Exists

Let k = N1,1(G). Fix positive integers r and s. Any integers m and n suffi-

ciently large may be expressed as

m = αr + β, where α =
⌊m
r

⌋
and 0 ≤ β < r

n = ρs+ σ, where ρ =
⌊n
s

⌋
and 0 ≤ σ < s

When we divide m by r, we obtain α as the quotient and β as the remainder.

When we divide n by s, we get ρ as the quotient and σ as the remainder. The

vertex set of the rectangular region RG(0,m; 0, n) is the disjoint union of vertex

sets of rectangular regions listed below [4]. Figure 2.1 illustrates the reasoning.

Rij = RG(((i− 1)r, (j − 1)s), (ir, js)), where 1 ≤ i ≤ α, 1 ≤ j ≤ ρ

Si = RG(((i− 1)r, ρs), (ir, ρs+ σ)), where 1 ≤ i ≤ α

Tj = RG((αr, (j − 1)s), (αr + β, js)), where 1 ≤ j ≤ ρ

U = RG((αr, ρs), (αr + β, ρs+ σ))

The rectangular regions are labeled in Figure 2.1. For simplicity, we do not

label all of Rij in Figure 2.1.

Using subadditivity and the fact that the domination number of a subgraph

11
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x

y

r

s

β

σ

T1

T2

T3

T4

R11

R12

R13

R14

R21 R31 R41 R51 R61 R71 R81

S1 S2 S3 S4 S5 S6 S7 S8 U

Figure 2.1: An illustration of the proof that the domination ratio exists.
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is no greater than the number of vertices in the subgraph, we deduce that

γm,n(G) ≤
α∑
i=1

ρ∑
j=1

γ(Rij) + (ασr + ρβs+ βσ)k.

Notice γ(Rij) is the same for all Rij from periodicity and the embedding of

the graph. Furthermore, γ(Rij) = γr,s(G).

γm,n(G) ≤ αργr,s(G) + (ασr + ρβs+ βσ)k.

γm,n(G)

Nm,n(G)
≤ αργr,s(G)

Nm,n(G)
+

(ασr + ρβs+ βσ)k

Nm,n(G)
.

Since Nm,n(G) = mnk, we have

γm,n(G)

Nm,n(G)
≤ αργr,s(G)

mnk
+
ασr + ρβs+ βσ

mn
.

lim inf
m,n→∞

γm,n(G)

Nm,n(G)
≤ lim inf

m,n→∞

αργr,s(G)

mnk
+ lim inf

m,n→∞

ασr + ρβs+ βσ

mn
.

Because α ≤ m and σ, r are fixed, as m,n→∞, we have ασr
mn

= α
m
× σr

n
→ 0.

Because ρ ≤ n and β, s are fixed, as m,n→∞, we have ρβs
mn

= ρ
n
× βs

m
→ 0.

Because β, σ are fixed, as m,n→∞, we have βσ
mn
→ 0.

Adding up all three terms, as m,n→∞, we have ασr+ρβs+βσ
mn

→ 0. Therefore

we have

lim inf
m,n→∞

γm,n(G)

Nm,n(G)
≤ lim inf

m,n→∞

αρ

mnk
γr,s(G).

13
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Since αr ≤ m and ρs ≤ n, we have αrρs ≤ mn, so

αρ

mnk
γr,s(G) ≤ 1

rsk
γr,s(G).

lim inf
m,n→∞

αρ

mnk
γr,s(G) ≤ lim inf

m,n→∞

1

rsk
γr,s(G).

Because 1
rsk
γr,s(G) does not depend on m,n, we have

lim inf
m,n→∞

αρ

mnk
γr,s(G) ≤ 1

rsk
γr,s(G).

Because the inequality above holds for any r, s, we have

lim inf
m,n→∞

αρ

mnk
γr,s(G) ≤ inf

r,s

1

rsk
γr,s(G).

lim inf
m,n→∞

γm,n(G)

Nm,n(G)
≤ lim inf

m,n→∞

αρ

mnk
γr,s(G) ≤ inf

r,s

1

rsk
γr,s(G).

Since γm,n(G)

Nm,n(G)
= 1

rsk
γr,s(G) when r = m, s = n, we have

γm,n(G)

Nm,n(G)
≥ inf

r,s

1

rsk
γr,s(G),

and therefore

lim inf
m,n→∞

γm,n(G)

Nm,n(G)
≥ inf

r,s

1

rsk
γr,s(G).

14
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Thus, we conclude the limit exists and

lim
m,n→∞

γm,n(G)

Nm,n(G)
= inf

r,s

1

rsk
γr,s(G).

2.3.3 Why This Definition ?

At first glance, one might think our proof that domination ratio exists has

a counterexample, an infinite row of the kagome lattice shown in Figure 2.2.

Even though efficient domination of the kagome lattice is not possible, the in-

fimum definition would yield a ratio of 1
5

(the domination ratio of the kagome

lattice if perfect domination were possible). The infinite row of the kagome lat-

tice is not a valid counterexample, because the definition of domination ratio is

restricted to infimum over subgraphs induced by vertices in rectangles, where

a rectangle must be a period of the embedding and it is not in the example.

Recall from Section 2.3.1 that an Archimidean lattice can be embedded in a

plane such that all induced subgraphs corresponding to translations of rectan-

gles with the same edge lengths are isomorphic. The infinite row of the kagome

lattice is not a subgraph induced by vertices in a rectangular region.

15
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Figure 2.2: An induced row of the kagome lattice can have a domination ratio
of 1

5
even though efficient domination of the kagome lattice is not possible.

2.3.4 Generalized Results

Corollary 2.3.1: If a bounded function f(m,n) is subadditive, where m,n are

length and width of a rectangular region in an infinite periodic graph, then

f(m,n) has a limit as m,n→∞, and the limit equals infr,s
1
rsk
f(r, s).

Proof: Let f(m,n) be a bounded subadditive function, where m,n are length

and width of a rectangular region in an infinite periodic graph. The proof of the

existence of the domination ratio in Section 2.3.2 can be applied to show that

f(m,n) has a limit as m,n → ∞. One may replace γm,n in the proof in Section

2.3.2 by f(m,n) and obtain infr,s
1
rsk
f(r, s) as the limit. �

Corollary 2.3.2: If a bounded function f(m,n) is superadditive, where m,n are

length and width of a rectangular region in an infinite periodic graph, then

f(m,n) has a limit as m,n→∞, and the limit equals supr,s
1
rsk
f(r, s).

16
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Proof: Let f(m,n) be a bounded superadditive function, where m,n are length

and width of a rectangular region in an infinite periodic graph. Notice that

−f(m,n) is subadditive. By Corollary 2.3.1, −f(m,n) has a limit as m,n → ∞,

and the limit equals infr,s
1
rsk

{
− f(r, s)

}
. Thus, f(m,n) has a limit as m,n→∞,

and the limit equals supr,s
1
rsk
f(r, s). �

2.3.5 Different Periodic Embeddings Yield the

Same Domination Ratio

Let A and B be two periodic embeddings of an infinite graph G. Let γ(GA)

and γ(GB) denote the domination ratio of G yielded by A and B respectively.

The two periodic embeddings A and B provide two sets of (x, y) axes that may

have different scales and angles between the x-axis and the y-axis. We can

embed the infinite periodic graph in the plane such that the x-axis and the

y-axis corresponding to periodic embedding A are orthogonal. Let coordinate-

A and coordinate-B denote the coordinate system that correspond to the set

of (x, y) axes provided by periodic embeddings A and B respectively. Recall

that RG(m1,m2;n1, n2) denotes the subgraph of G induced by the vertices in the

rectangle [m1,m2) × [n1, n2) ⊂ R2. For simplicity, we denote RG(m1,m2;n1, n2)

in coordinate-A and in coordinate-B by RA(m1,m2;n1, n2) and RB(m1,m2;n1, n2)

respectively.

17
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A rectangular region RB(0,m; 0, n) is a parallelogram in coordinate-A. Fig-

ure 2.3 illustrates the reasoning. Fix positive integers r, s. The origin in

coordinate-B is in a r × s rectangle whose vertices have integer coordinates

in coordinate-A. Let RA(αr, βs;αr + r, βs + s) denote the rectangular region

that contains the origin in coordinate-B, where α, β ∈ Z. Similarly, let points

(m, 0), (m,n), (0, n) in coordinate-B be in rectangular regions:

RA(αr + γr, βs+ δs;αr + γr + r, βs+ δs+ s)

RA(αr + γr + θr, βs+ δs+ λs;αr + γr + θr + r, βs+ δs+ λs+ s)

RA(αr + θr, βs+ λs;αr + θr + r, βs+ λs+ s)

respectively, where α, β, γ, δ, θ, λ ∈ Z.

Notice a union of rectangles with length r and width s in coordinate-A has

RB(0,m; 0, n) as a subgraph. Let k denote the minimum number of rectangles

with length r and width s in coordinate-A whose union has RB(0,m; 0, n) as a

subgraph. Recall that γm,n(G) denotes the domination number of RG(0,m; 0, n),

and Nm,n(G) denotes the number of vertices in RG(0,m; 0, n). For simplicity,

we denote γm,n(G) and Nm,n(G) in coordinate-A by γm,n(A) and Nm,n(A) respec-

tively. Similarly, we denote γm,n(G) and Nm,n(G) in coordinate-B by γm,n(B) and

Nm,n(B) respectively.

18
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Since a union of k rectangles with length r and width s in coordinate-A has

RB(0,m; 0, n) as a subgraph,

0 ≤ kNr,s(A)−Nm,n(B).

Notice every rectangle in the union contains some vertices in RB(0,m; 0, n),

otherwise a union of less than k rectangles with length r and width s in

coordinate-A has RB(0,m; 0, n) as a subgraph, contradicting that k is the

minimum number of r× s rectangles required. Since 2(γ + θ+ δ+ λ) rectangles

with length r and width s can cover all vertices on the internal boundary of

RB(0,m; 0, n) , at most 2(γ + θ+ δ + λ) rectangles in the union contains vertices

not in RB(0,m; 0, n).

kNr,s(A)−Nm,n(B) ≤ 2(γ + θ + δ + λ)Nr,s(A).

0 ≤ kNr,s(A)−Nm,n(B) ≤ 2(γ + θ + δ + λ)Nr,s(A).

Nm,n(B) ≤ kNr,s(A) ≤ Nm,n(B) + 2(γ + θ + δ + λ)Nr,s(A).

1 ≤ kNr,s(A)

Nm,n(B)
≤ 1 +

2(γ + θ + δ + λ)Nr,s(A)

Nm,n(B)
.

where Nm,n(B) = Θ(mn) and γ + θ + δ + λ = Θ(m + n). Since 2Nr,s(A) is a fixed
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positive integer, as m,n→∞, we have

2(γ + θ + δ + λ)Nr,s(A)

Nm,n(B)
→ 0.

Therefore, as m,n→∞,

kNr,s(A)

Nm,n(B)
→ 1.

Using subadditivity and the fact that domination number of a graph is no

smaller than the domination number of its subgraph, we deduce that

kγr,s(A) ≥ γm,n(B).

kNr,s(A)

Nm,n(B)
× kγr,s(A)

kNr,s(A)
≥ γm,n(B)

Nm,n(B)
.

As m,n→∞, kNr,s(A)

Nm,n(B)
→ 1. Therefore we have

lim
m,n→∞

kγr,s(A)

kNr,s(A)
≥ lim

m,n→∞

γm,n(B)

Nm,n(B)
.

where the existence of the limit is proved in section 2.3.2.

lim
m,n→∞

γr,s(A)

Nr,s(A)
≥ lim

m,n→∞

γm,n(B)

Nm,n(B)
.
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Since limm,n→∞
γm,n(B)

Nm,n(B)
= γ(GB) and γr,s(A)

Nr,s(A)
is independent of m,n, we have

γr,s(A)

Nr,s(A)
≥ γ(GB).

inf
r,s

γr,s(A)

Nr,s(A)
≥ γ(GB).

Since infr,s
γr,s(A)

Nr,s(A)
= γ(GA), we have

γ(GA) ≥ γ(GB).

Similarly, we can embed the infinite periodic graph on a plane such that the x-

axis and the y-axis corresponding to the subgraph B are orthogonal. The same

reasoning can be applied to show that γ(GA) ≤ γ(GB). Thus, γ(GA) = γ(GB).

2.4 Existence of the Perfect Domina-

tion Ratio

Definition (Internal boundary): Given a graph G with a subgraph H, the

internal boundary of H is the set of vertices in H which are adjacent to some

vertex outside H.

Definition (Dominated for free): Given a graph G = (V,E), a vertex v ∈ V
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γrθrαr

δs

λs

βs
x

y

r

s

Figure 2.3: A rectangle RB(0,m; 0, n) is a parallelogram in coordinate-A.
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is dominated for free means that we accept F as a dominating set for G if F is

a dominating set for G \ v.

For a periodic graphG, letRG(m1,m2;n1, n2), wherem1 ≤ m2, n1 ≤ n2, denote

the subgraph of G induced by the vertices in the rectangle [m1,m2)× [n1, n2) ⊂

R2. Note that all induced subgraphs RG(m1,m2;n1, n2) with corresponding to

rectangles with the same edge lengths are isomorphic. Denote the minimum

size of a perfect dominating set for RG(0,m; 0, n), known as its perfect domina-

tion number, by γp;m,n(G), and the number of vertices in R(0,m; 0, n) by Nm,n(G).

We define the perfect domination ratio of G by

lim
m,n→∞

{
γp;m,n(G)

Nm,n(G)

}
,

To prove the limit exists, we consider a variant of the perfect domination ratio.

Assume vertices in the internal boundary of graphs are dominated for free,

and boundary vertices can still dominate other vertices if they are in a perfect

dominating set. Denote the minimum size of a perfect dominating set under the

condition above by γBp;m,n(G). We define the variant of the perfect domination

ratio by

lim
m,n→∞

{
γBp;m,n(G)

Nm,n(G)

}
,

A proof that the limit exists relies on superadditivity. Let G1 and G2 denote

vertex-disjoint induced subgraphs of G. Let S denote the minimum perfect
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dominating set of G1 ∪G2 with internal boundary dominated for free. Let S1 =

S ∩ V (G1) and S2 = S ∩ V (G2). Since S1 is a perfect dominating set of G1, we

have |S1| ≥ γBp (G1). Similarly, |S2| ≥ γBp (G2). Therefore,

γBp (G1 ∪G2) ≥ γBp (G1) + γBp (G2),

while

N(G1 ∪G2) = N(G1) +N(G2).

Together, these imply that, for example, doubling the length or width of the

rectangle cannot decrease the variant of the perfect domination ratio of the

subgraph, and may increase it. By Corollary 2.3.2, γBp;m,n(G) has a limit as

m,n→∞, and the limit equals supr,s
1
rsk
γBp;r,s(G).

As the length and width of the rectangle approach infinity, one may apply

the same reasoning as in Section 2.3.2 to show the proportion of vertices on the

internal boundary approaches zero. Therefore, the perfect domination ratio

approaches a limit as m,n→∞, and the limit is

lim
m,n→∞

{
γp;m,n(G)

Nm,n(G)

}
= lim

m,n→∞

{
γBp;m,n(G)

Nm,n(G)

}
= sup

r,s

1

rsk
γBp;r,s(G).

The perfect domination ratio is the same regardless of the choice of the

periodic embedding. One can modify the proof in Section 2.3.4 to obtain de-
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sired result. In particular, let k denote the maximum number of disjoint r × s

rectangles whose vertices have integer coordinates in coordinate-A that are

subgraphs of RB(0,m; 0, n). In addition, the proof replies on superadditivity

instead of subadditivity, which we used in the domination ratio case.

2.5 Definitions and Preliminaries

We now provide some definitions, terminology, and lemmas that apply to

perfect domination on all the Archimedean lattices.

If a graph G has vertex set V (G) and edge set E(G), for simplicity we will

write v ∈ G rather than v ∈ V (G) and write e ∈ G rather than e ∈ E(G).

In the remainder of this thesis, we will abbreviate perfect dominating set

as “PDS.” As for any graph, given a PDS D in a graph G, the subgraph of

G induced by vertices in D is a disjoint union of connected components. Our

proofs use certain features of the structure of the boundary of the components,

described in the remainder of this section.

Definition (Dn): Given a PDS D, let Dn denote a connected component of size

n in the subgraph induced by vertices in D.

Note: For a fixed positive integer n, there may exist components Dn which are

not isomorphic. An example of nonisomorphic Dn is shown in Figure 5.4. A

D6 in the figure on the left is not isomorphic to a D6 in the figure on the right.
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Fortunately, in our graphs, this does not happen when n is small.

Definition (Graph distance): For two vertices v and u in a graph G, let

dG(v, u) denote the number of edges in the shortest path between v and u. For a

vertex v and a subgraph S of G, define dG(v, S) = minu∈S{dG(v, u)}. For brevity,

when the graph G is clear from the context, we omit the subscript G.

Definition (External boundary): Given a subgraph S in a graph G, define

the external boundary as the set of vertices v such that dG(v, S) = 1.

Definition (Double external boundary): Given a subgraph S in a graph G,

define the double external boundary as the set of vertices v such that dG(v, S) =

1 or 2.

Lemma 2.4.1: Given a component Dn in a PDS D, no vertex in the double

external boundary of Dn is in D.

Proof: Let v be in the double external boundary of Dn.

If d(v,Dn) = 1, then v is adjacent to a vertex in Dn and thus is in the com-

ponent Dn, contradicting d(v,Dn) = 1. Therefore, no vertex in the external

boundary is in D.

If d(v,Dn) = 2, there exists a path of length two with vertices v, w, and x,

where w /∈ Dn and x ∈ D. If v ∈ D, then vertex w is dominated by both v and x.

Thus, w ∈ D and thus also in Dn. This implies that v ∈ Dn also, contradicting

that v is in the double external boundary of Dn. �
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Lemma 2.4.2: Given a PDS D, if v /∈ D, u is a neighbor of v, and every other

neighbor of v is not in D, then u ∈ D.

Proof: To deduce a contradiction, suppose u /∈ D. Then v is not dominated by

any vertex in D, contradicting the assumption that D is a dominating set. �

Definition (pulls in): Let v pulls in u indicate that for a PDS D and a vertex

v /∈ D, u is a neighbor of v and every other neighbor of v is not in D, requiring

that u ∈ D by Lemma 3.2.

By the definition of PDS, a vertex that is not in the PDS must be dominated

exactly once. Thus, given a PDS D, if a vertex v has two neighbors u and w in

D, then v ∈ D.

Definition (double force in): Let u and w double force in v indicate that for

a PDS D, if a vertex v has two neighbors u and w in D, then v ∈ D.

Lemma 2.4.3: Given a PDS D, if a vertex v /∈ D has a neighbor u ∈ D, then no

other neighbor of v is in D

Proof: Suppose v has another neighbor w ∈ D. Then v is dominated by both u

and w, contradicting the assumption that D is a PDS. �

Definition (forces out): Let v and u force out w indicate that if vertex v /∈ D

has a neighbor u ∈ D, then another neighbor w of v is not in D.

Note: In each of chapters 4, 5, 6, and 7, we consider a specific Archimedean
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lattice. In each chapter, the notations such as PDS, γp, and Dn refer to only

that specific lattice.

2.6 How Our Proof Uses the Definition

of the Perfect Domination Ratio

In the remainder of this thesis, we determine the exact value of the perfect

domination ratio for all of the Archimedean lattices. For each Archimedean

lattice that is efficiently dominated, the perfect domination ratio is 1
k+1

if it is

a k-regular lattice. Details on efficiently dominated lattices are discussed in

Chapter 3. For an Archimedean lattice G that is not efficient dominated, we

exhibit a PDS D and prove that γp(G) = γp(D) as follows.

To deduce a contradiction, suppose γp(G) < γp(D). Then there exists a PDS

D′ such that γp(D′) = γp(G) < γp(D). We demonstrate that D′ must contain a

certain component Dn (typically a D1). This Dn forces certain structure around

it, which requires more vertices in D. Therefore, this Dn forces the perfect

domination proportion of a large subgraph around it to be above γp(D). Since

the perfect domination ratio is defined as

lim
m,n→∞

{
γp;m,n(G)

Nm,n(G)

}
,
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as m,n → ∞, the large subgraph around this Dn will be included in R0,m;0,n,

contradicting that γp(D′) < γp(D). Therefore, we conclude that γp(G) = γp(D).
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Chapter 3

Existence of Efficient

Domination

It is well-known that for finite graphs, efficient domination is optimal dom-

ination, and all efficient dominating sets have the same cardinality [1]. Since

the definition of domination ratio for infinite periodic graphs is in terms of dom-

ination numbers for finite graphs, all efficient dominating sets are optimal and

have the same domination ratio.

Existence of an efficient perfect dominating set was previously proved for

the three most common Archimedean lattices – the square (44) lattice [5,6], the

triangular (36) lattice [7], and the hexagonal (63) lattice [8]. For completeness,

we illustrate the efficient dominating sets in these three lattices in Figures 3.1

– 3.3. In Figures 3.4 – 3.7, we illustrate efficient dominating sets for the (3, 122),
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(4, 82), (34, 6), and (33, 42) lattices, respectively. Each of the figures shows a sub-

graph of the lattice that is sufficiently large to demonstrate a periodic pattern

that can be extended to efficiently dominate the infinite lattice. In each of the

figures, a star with bold edges is centered at each vertex in the dominating set,

with the edges with arrows pointing to vertices that are dominated by the cen-

tral vertex. Notice that every non-central vertex is the endpoint of exactly one

arrow, so every vertex is dominated exactly once.

Since they are vertex-transitive, each of the Archimedean lattices is a reg-

ular graph. Each is k-regular for some k = 3, 4, 5 or 6. For each of the seven

Archimedean lattices which can be efficiently dominated, the domination ra-

tio is 1/(k + 1) if it is a k-regular lattice, since each vertex in the dominat-

ing set dominates itself and precisely k neighbors, and no vertex is dominated

more than once. Notice an efficient dominating set is a perfect dominating set,

since every vertex is dominated exactly once. Therefore, for each of the seven

Archimedean lattices which can be efficiently dominated, the perfect domina-

tion ratio is 1/(k+ 1) if it is a k-regular lattice, since each vertex in the efficient

dominating set dominates itself and precisely k neighbors, and no vertex is

dominated more than once.
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Figure 3.1: An efficient dominating set in the square lattice.

Figure 3.2: An efficient dominating set in the triangu-
lar lattice.
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Figure 3.3: An efficient dominating set in the hexago-
nal lattice.

Figure 3.4: An efficient dominating set in the (3, 122)
lattice.
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Figure 3.5: An efficient dominating set in the (4, 82)
lattice.

Figure 3.6: An efficient dominating set in the (34, 6)
lattice.

34



CHAPTER 3. EXISTENCE OF EFFICIENT DOMINATION

Figure 3.7: An efficient dominating set in the (33, 42)
lattice. Note that, for convenience, the lattice is drawn
in a periodic rectangular structure, rather than using
regular polygons.
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The (3, 6, 3, 6) or Kagome Lattice

4.1 Nonexistence of Efficient Domina-

tion

Lemma 4.1.1: There does not exist an efficient dominating set in the (3, 6, 3, 6)

lattice.

Proof: The proof is by contradiction. Assume that there exists an efficient

dominating set D. Since D 6= ∅, there exists a vertex v1 ∈ D. Figure 4.1

illustrates the reasoning. By vertex-transitivity, any vertex may be chosen to

represent v1.

Vertex v2 is adjacent to a vertex in N [v1], so v2 /∈ D or the adjacent vertex

would be dominated by both v1 and v2. Therefore, v2 must be dominated by one
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of its neighbors. The only neighbors v for which N [v] ∩ N [v1] = ∅ are v3 and v4.

So if D is to be an efficient dominating set, either v3 ∈ D or v4 ∈ D, but not

both.

Consider the case v3 ∈ D. Vertex v5 is adjacent to a vertex in N [v1], so

v5 /∈ D. However, every neighbor v of v5 satisfies either N [v] ∩ N [v1] 6= ∅ or

N [v] ∩ N [v3] 6= ∅, so there does not exist any vertex v ∈ D such that v ∈ N [v5].

Since there is no v ∈ D which dominates v5, D is not a dominating set, and thus

not an efficient dominating set, contradicting our original assumption.

Consider the case v4 ∈ D. Vertex v6 is adjacent to a vertex inN [v1], so v6 /∈ D.

The only neighbors v for which N [v]∩N [v1] = ∅ are v8 and v9. So if D is to be an

efficient dominating set, either v8 ∈ D or v9 ∈ D, but not both.

If v8 ∈ D, then v10 is adjacent to a vertex in N [v8], so v10 /∈ D. However,

every neighbor v of v10 satisfies either N [v] ∩ N [v1] 6= ∅ or N [v] ∩ N [v8] 6= ∅, so

there does not exist any vertex v ∈ D such that v ∈ N [v10]. Thus, v10 cannot be

dominated.

If v9 ∈ D, then v7 is adjacent to a vertex in N [v9], so v7 /∈ D. However, every

neighbor v of v7 satisfies either N [v]∩N [v4] 6= ∅ or N [v]∩N [v9] 6= ∅, so there does

not exist any vertex v ∈ D such that v ∈ N [v7]. Thus, v7 cannot be dominated.

Thus, every case leads to the contradication that D cannot be a dominating

set. �
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v1

v2

v6

v5

v4 v3

v7
v8

v9

v10

Figure 4.1: An illustration of the proof of non-
existence of an efficient dominating set in the (3, 6, 3, 6)
lattice.

4.2 Bounds for the Domination Ratio

Lemma 4.2.1: γr(3, 6, 3, 6) ≤ 2
9
.

Proof: Figure 4.2 illustrates a periodic dominating set in the (3, 6, 3, 6)

lattice. There is an infinite connected component of edges in the closed

neighborhoods of dominating vertices. For convenience in counting, delete the

edges with rightward-pointing arrows in the infinite component. The set of

dominating vertices and dominated vertices are unchanged by the deletions.

Now pair in a one-to-one correspondence adjacent connected components

of five vertices and four vertices (as in the figure), and use the pattern to

dominate the entire graph with isomorphic, disjoint, connected subgraphs.
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Considering a representative subgraph which consists of one component of

each type, the dominating proportion of the dominating set illustrated is 2
9
.

�

Figure 4.2: An induced subgraph of the kagome lat-
tice.

4.3 Perfect Domination Ratio

Definition (a row of D1s): A row of D1s is a sequence (possibly doubly-

infinite) of at least two consecutive D1s such that every two consecutive D1s in

the sequence are distance three apart in a 6-cycle.

Lemma 4.3.1: γp(3, 6, 3, 6) ≤ 1
3

Proof: A periodic PDS D with γp(D) =1
3

is shown in Figure 4.3, establishing 1
3

as an upper bound. �
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Figure 4.3: A PDS D of the (3, 6, 3, 6) lattice with γp(D) =1
3
.

Lemma 4.3.2: A D1 must appear in an infinite row of D1s.

Proof: Suppose v1 ∈ D is a D1. Figure 4.4 (left) illustrates the following rea-

soning. By vertex-transitivity, any vertex may be chosen to represent v1. Notice

that v2 and v5 are not in D since they are in the double external boundary of v1.

Thus, v2 pulls in either v3 or v4, and v5 pulls in either v4 or v6.

Suppose v3 ∈ D. Then v2 /∈ D and v3 ∈ D forces out v4. Thus, v5 pulls in v6,

and consequently v4 is dominated by both v3 and v6, contradicting that D is a

perfect dominating set. Therefore v3 /∈ D. The same reasoning can be applied

to show v6 /∈ D.

Next, v2 pulls in v4. Notice that v4 is a D1, and the same reasoning regarding

v1 can be applied to v4 to show v9 is a D1. Thus, one can show by induction that

any vertex v on the line (extending infinitely in both directions) going through
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v1 and v4 must be a D1. �

v1
v2

v3

v5

v6
v4

v9v10

v7
v8

v11

v1

v2
v3v4

v5

Figure 4.4: The figure on the left illustrates the proof of Lemma 4.3.2. The
figure on the right illustrates the proof of Lemma 4.3.3.

Lemma 4.3.3: Two rows of D1s must be parallel.

Proof: To deduce a contradiction, suppose there exist two rows of D1s that are

not parallel. By Lemma 4.3.2, the two rows of D1s must extend infinitely and

therefore must intersect. There are only three possible directions for a row of

D1s, so these two rows of D1s must form an angle of π
3
. Figure 4.4 (right) illus-

trates the reasoning. Notice that v1 and v2 are in a row of D1s, and v3 and v4 are

in another row of D1s. Thus, v2 and v4 are in the same Dn. Then, v2 is in a D2 or

largerDn, contradicting that v2 is aD1. �

Lemma 4.3.4: A D2 cannot exist.

Proof: To deduce a contradiction, suppose there exists a PDS D that contains
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a D2. Let u and v be vertices in this D2. Since any edge in the Kagome lattice

is in a 3-cycle, u and v are in a 3-cycle {u, v, w}. Then w /∈ D is dominated by

both u and v, contradicting that D is a PDS. �

Lemma 4.3.5: If a PDS D of an induced subgraph of the kagome lattice does

not contain a D1, then the perfect domination proportion of D is at least 1
3
.

Proof: Suppose there exists a PDS D that does not contain a D1. By Lemma

4.3.4, any vertex v ∈ D must be in a D3 or larger Dn. Observe that a vertex v in

a D3 or larger Dn has at least two neighbors in D. Thus, v dominates at most

two vertices not in D, which implies that the perfect domination proportion of

D is greater than or equal to 1
3
.

The same reasoning can be applied to any induced subgraph to show that

if D is a PDS that does not contain a D1, then any vertex v ∈ D dominates at

most two vertices not in D. Thus, the domination proportion of the induced

subgraph is at least 1
3
. �

Lemma 4.3.6: A PDS D with perfect domination proportion strictly less than 1
3

must include infinitely many rows of D1s.

Proof: Suppose there exists a PDS D that includes only finitely many rows

of D1s. Let W denote the set of vertices that are neither D1s nor dominated

by D1s. Consider the subgraph H induced by W , which by Lemma 4.3.5 has

a perfect domination proportion at least 1
3
. Since the effect of finitely many
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rows of D1s is negligible, the perfect domination proportion of D is at least 1
3
.

Thus, any PDSD with a perfect domination proportion strictly less than 1
3

must

include infinitely many rows of D1s. �

Lemma 4.3.7: If a Dn U contains a D9 W , then the perfect domination propor-

tion of U is greater than or equal to that of W .

Proof: It is easily verified that all D9s are isomorphic to the D9 formed by v26,

v27, v28, v29, v30, v31, v32, v33, and v34 shown in Figure 4.5.

Let W denote a D9. Observe that W contains 9 vertices and dominates

21 vertices. Thus, the perfect domination proportion of W equals 3
7
. Since U

contains W , we can add vertices to W to obtain U . Each time a vertex v is

added to W , v must have a neighbor u ∈ W . There are two possible cases.

Case 1: Suppose that v has exactly one neighbor in W . Since any edge is in

a 3-cycle, u and v are in a 3-cycle {u, v, w}, where w /∈ W . Thus, u and v double

force in w, so v actually has two neighbors in W , which is a contradiction.

Case 2: Thus, v has at least 2 neighbors in W . Then v has at most 2 neigh-

bors not in W , so v dominates at most two neighbors not in D that have not

been previously dominated.

Thus, if n ≥ 9, the perfect domination proportion of U is at least

n

2(n− 9) + 21
=

n

2n+ 3
≥ 3

7
. �
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Lemma 4.3.8: γp(3, 6, 3, 6) ≥ 1
3
.

Proof: The proof is by contradiction. Let V be the vertex set of the kagome lat-

tice. Assume there exists a PDS D with perfect domination proportion strictly

less than 1
3
. By Lemma 4.3.6, D must contain infinitely many rows of D1s. By

Lemma 4.3.3, the rows of D1s in D must be parallel. Let W be a row of D1s.

Figure 4.5 illustrates the reasoning.

Let v1 be a D1 in W . Notice that v2 /∈ D since it is in the double external

boundary of v1. Thus, v2 pulls in either v3 or v4. The two cases are equivalent

by symmetry. Without loss of generality, let v3 ∈ D and v4 /∈ D. Notice that v3

is not a D1, since otherwise by Lemma 4.3.2, v3 and v5 form a row of D1s that

intersects W . This contradicts Lemma 4.3.3. By Lemma 4.3.4, v3 is in a D3 or

larger Dn. Thus, v6 and v7 are in D.

Notice that v8 /∈ D since it is in the double external boundary of v1. Thus

v8 /∈ D and v6 ∈ D force out v9. Then v9 /∈ D and v6 ∈ D force out v10 and

v11. A similar argument on v2 can be applied to v12 to show that v12 /∈ D and

v13, v14, and v15 are in D. Then v10 pulls in either v16 or v17. The two cases are

equivalent by symmetry. Without loss of generality, let v16 ∈ D, and v17 /∈ D.

Then v7 and v16 double force in v18. Thus, v7 and v18 double force in v19, and v16

and v18 double force in v20.

Next, v4 /∈ D and v3 ∈ D force out v21 and v22. Then v23 /∈ D, since other-

wise v19 and v23 double force in v24 and consequently v23 and v24 double force in
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v21, contradicting our previous argument that v21 /∈ D. Thus, v21 pulls in v24.

Finally, v24 and v19 in D double force in v25.

The same reasoning can be applied to show that v26, v27, v28, v29, v30, v31, v32,

v33, and v34 are in D.

Next, we calculate a lower bound for the perfect domination proportion of

such a PDS D, given the reasoning above. Refer to Figure 3, in which we define

the following subgraphs. Let W denote the line of D1s containing v1, and let

H1 denote W ∪ N(W ). Let H2 denote the set of alternating D3s and Dns with

n ≥ 9, together with the vertices they dominate, just above W ∪ N(W ). Let

H3 denote the isomorphic subgraph obtained by reflecting H2 through the line

corresponding to W . Within H1 ∪ H2 ∪ H3 we can form connected subgraphs

consisting of four D1s, one D3 on each side, and one D9 (or larger) on each side,

and the vertices that they dominate.

Number of Components Dn Vertices in D Vertices Dominated
4 D1 1 5
2 D3 3 9
2 D9 9 21

Table 4.1: Data for calculation of the perfect domination proportion.

Denoting the vertex sets of H1, H2, H3 by VH1 , VH2 , VH3 respectively we have

|D ∩ V (H1 ∪H2 ∪H3)|
|V (H1 ∪H2 ∪H3)|

=
4× 1 + 2× 3 + 2× 9

4× 5 + 2× 9 + 2× 21
=

7

20
>

1

3
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In this calculation, we assume that v3, v6, v7, v16, v18, v19, v20, v24, and v25 are

a D9. Otherwise, they are in an even larger Dn, so by Lemma 4.3.7 the perfect

domination proportion is even higher. The same reasoning can be applied to

every row of D1s.

Let G denote the union of all rows of D1s and their corresponding H1, H2, H3.

We have shown above that the perfect domination proportion of G is strictly

larger than 1
3
. Since V \VG does not contain any D1, by Lemma 4.3.5, the perfect

domination proportion of the rest of the lattice is greater than or equal to 1
3
.

Combining these, we conclude that the perfect domination proportion of the

lattice is at least 1
3
, contradicting our original assumption. �

Wv1

v2
v3v4

v5

v6

v7

v8
v9

v10
v11
v12

v13 v14

v15

v16 v17v18v19

v20

v21
v22

v23 v24

v25

v26 v27

v28

v29 v30

v31
v32

v33
v34

H1

H2

Figure 4.5: An illustration of the proof of Lemma 4.3.8.

Theorem 4.3.9: γp(3, 6, 3, 6) = 1
3

Proof: The result is immediate from Lemma 4.3.1 and Lemma 4.3.8.
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4.4 Possible Perfect Domination Pro-

portions

Fact: The kagome lattice has infinitely many non-isomorphic PDSs that achieve

distinct perfect domination proportions.

Proof: A periodic PDS D with γp(D) =1
3

is shown in Figure 4.3.

A periodic PDS D consisting of only D9s is shown in Figure 4.6. Because

each D9 has 9 vertices and dominates 21 vertices (including vertices in D9),

perfect domination proportion = 9
21

= 3
7
.

Figure 4.6: A PDS D with perfect domination proportion 3
7
.

A periodic PDS D consisting of only D18s is shown in Figure 4.7. Since each

D18 has 18 vertices and dominates 36 vertices (including the vertices in D18),
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the perfect domination proportion is 1
2
.

Similarly, there exists a periodic PDS D consisting of only Dns, where Dn is

a triangular arrangement of 3-cycles. For example, we can add a row of three

3-cycles on the top of a D9 and obtain a D18. We can add a row of four 3-cycles

on the top of a D18 and obtain a D30. By repeatedly adding a row of 3-cycles, we

can obtain a Dn(k) that has (1 + 2 + 3 + ...+ k) 3-cycles.

Therefore, for any positive integer k, there exists a periodic PDS D consist-

ing of only Dn(k)s, where n(k) = 3(1 + 2 + 3 + ...+ k) = 3
2
(k2 + k). As k approaches

infinity, γp(D) approaches 1, because the proportion of vertices on the external

boundary of Dn approaches 0. �

Figure 4.7: A PDS D with perfect domination proportion 1
2
.
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Chapter 5

The (3, 4, 6, 4) Lattice

5.1 Nonexistence of Efficient Domina-

tion

Lemma 5.1.1: There does not exist an efficient dominating set in the (3, 4, 6, 4)

lattice.

Proof: The proof is by contradiction. Assume that there exists an efficient

dominating set D. Since D 6= ∅, there exists a vertex v1 ∈ D. Figure 5.1

illustrates the reasoning. By vertex-transitivity, any vertex may be chosen to

represent v1.

Vertex v2 is adjacent to a vertex in N [v1], so v2 /∈ D or the adjacent vertex

would be dominated by both v1 and v2. Therefore, v2 must be dominated by one
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of its neighbors. The only neighbor v for which N [v] ∩N [v1] = ∅ is v3, so v3 ∈ D

if D is to be an efficient dominating set.

Similarly, v4 /∈ D and must be dominated by v5 ∈ D.

Continuing, N [v6] ∩ N [v5] 6= ∅ and N [v6] ∩ N [v3] 6= ∅, so v6 /∈ D. However,

every neighbor v of v6 satisfies either N [v] ∩ N [v5] 6= ∅ or N [v] ∩ N [v3] 6= ∅, so

there does not exist any vertex v ∈ D such that v ∈ N [v6]. Since there is no

v ∈ D which dominates v6, D is not a dominating set, and thus not an efficient

dominating set, contradicting our original assumption. �

v2

v3

v5
v4

v6

v1

Figure 5.1: An illustration of the proof of non-
existence of an efficient dominating set in the (3, 4, 6, 4)
lattice.
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5.2 Bounds for the Domination Ratio

Lemma 5.2.1: γr(3, 4, 6, 4) ≤ 2
9
.

Proof: Figure 5.4 illustrates a dominating set D in the (3, 4, 6, 4) lattice. The

set D is periodic, so its dominating proportion may be computed based on

the domination number of a single representative subgraph. Notice that the

edges in the closed neighborhoods of vertices v ∈ D form two types of con-

nected components. One type consists of a single v ∈ D with dominated ver-

tices. The other consists of three vertices in D together with ten dominated

vertices. Pair such adjacent components with a one-to-one correspondence

(as in the figure), and use the pattern to dominate the entire graph with iso-

morphic, disjoint, connected subgraphs. Letting the representative subgraph

be the union of one component of each type, we have a dominating set of

size four for a graph with 18 vertices, and thus a dominating proportion of

2
9
. �

5.3 Perfect Domination Ratio

Definition (row of D1s): A row of D1s is a sequence (possibly doubly-infinite)

of at least two consecutive D1s such that every two consecutive D1s in the se-

quence are distance three apart in a 6-cycle and lie on a line which bisects
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Figure 5.2: An induced subgraph of the (3, 4, 6, 4) lat-
tice.
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hexagonal faces of the lattice.

Note: In Figure 5.4, the vertices v1, v2, and v3 are in a row of D1s.

Lemma 5.3.1: γp(3, 4, 6, 4) ≤ 1
4

Proof: A periodic PDS D with perfect domination proportion 1
4

is shown in

Figure 5.3, establishing 1
4

as a upper bound. �

Figure 5.3: A PDS D on the (3, 4, 6, 4) lattice with γp(D) =1
4
.

Lemma 5.3.2: If a D1 is not in a row of D1s, the perfect domination proportion

of its closed neighborhood is at least 1
4
.

Proof: Suppose there exists a PDS D in which v1 is a D1 and is not in a row of

D1s. We consider three cases.

Case 1: v2 and v3 are not in D.
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Figure 5.4 illustrates the reasoning. Notice that v7, v11, v13, v21,v23, and v32

are not in D since they are in the double external boundary of v1. Consequently,

v2 pulls in either v4 or v5, but not both. The two cases are equivalent by symme-

try. Without loss of generality, let v4 ∈ D, but v5 /∈ D. Then v5 /∈ D and v4 ∈ D

force out v6, so v7 pulls in v8. As a result, v9 /∈ D and v8 ∈ D force out v10.

Notice that v11 pulls in v12 and that v13 pulls in v14. Then, together, v12 and

v14 double force in v15.

Next v10 /∈ D and v12 ∈ D force out v16. Consequently, a sequence of vertices,

v17, v18, v19, and v20 are forced out.

Continuing similar reasoning, v21 pulls in v22, and v23 pulls in v24. Thus,

v22 and v24 double force in v25. Notice that v3 pulls in v26, and then v24 and v26

double force in v27. The sequence of vertices v28, v29, v30, and v31 are then double

forced in.

We now calculate the perfect domination proportion of a resulting subgraph.

Let V1 denote the set of vertices dominated by v1. Let V2 denote vertices domi-

nated by v12, v15, and v14, and let V3 denote the set of vertices dominated by v22,

v24, v25, v26, v27, v28, v29, v30, and v31.

In this calculation, we assume that v22, v24, v25, v26, v27, v28, v29, v30, and v31

form a D9. If not, then they are part of a larger Dn and using similar reasoning

as Lemma 4.7, the perfect domination proportion is even higher. For the same
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reason, assume that there is a D1 on the opposite side of v22. Let V4 denote the

set of vertices dominated by this D1.

Then

|D ∩ V (V1 ∪ V2 ∪ V3 ∪ V4)|
|V (V1 ∪ V2 ∪ V3 ∪ V4)|

=
1 + 3 + 9 + 1

5 + 11 + 19 + 5
=

7

20
>

1

4
�
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Figure 5.4: An illustration of the proof of Lemma 5.3.2.

Case 2: v2 ∈ D

Figure 5.5 illustrates the reasoning. Since v1 is not in a row of D1s by as-

sumption, v2 is not a D1 and is in a D2 or larger Dn. Note that v4, v6, v7, v8, and

v9 are not in D since they are either in external boundary or in double external

boundary of v1. Then v4 /∈ D and v2 ∈ D force out v5. Consequently, v9 pulls in

v10, and v7 pulls in v11. Thus, v10 and v11 double force in v12.

55



CHAPTER 5. THE (3, 4, 6, 4) LATTICE

The same reasoning can be applied to show v13, v14, v15 in D. Therefor, v1

would not reduce the perfect domination proportion to be below 1
4
, as can easily

be verified by calculation as in Case 1.

v1

v2

v3

v4v5

v6

v7
v8

v9
v10

v11v12

v13

v14 v15

Figure 5.5: An illustration of the proof of Lemma 5.3.2.

Case 3: v2 /∈ D, and v3 ∈ D

Figure 5.6 illustrates the reasoning. Since v1 is not in a row of D1s by as-

sumption, v3 is not a D1 and is in a D2 or larger Dn. Notice v4, v5, v6, v7, v8, and

v9 are not in D since they are either in external boundary or in double external

boundary of v1. Then v2 pulls in either v10 or v11, but not both. The two cases

are equivalent by symmetry. Without loss of generality, let v10 ∈ D, but v11 /∈ D.

Note v12 /∈ D, otherwise v12 and v10 double force in v13, and therefore v12 and v13

double force in v4, contradicting that v4 /∈ D. Consequently, v6 pulls in v14, and

v8 pulls in v15. As a result, v14 and v15 double force in v16.
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Therefore, v1 would not reduce the perfect domination proportion to be be-

low 1
4
, as can easily be verified by calculation as in Case 1.

v1

v2

v3

v4 v5

v6 v7

v8
v9

v10 v11

v12

v13

v14

v15v16

Figure 5.6: An illustration of the proof of Lemma 5.3.2.

Thus, in every case, the perfect domination proportion of the closed neigh-

borhood of v1 is at least 1
4
.

Lemma 5.3.3: If there is a row of exactly two D1s which are not on the same

hexagonal face, then the perfect domination proportion of the union of their

closed neighborhoods is at least 1
4
.

Proof: Figure 5.7 illustrates the reasoning. Suppose there exists a PDS D

such that v1 and v2 in D are two D1s distance 3 apart, but not in the same

hexagon. We assume v3 and v4 are not in D. Otherwise v1 and v2 would not
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reduce the perfect domination proportion to be below 1
4
, as can easily be verified

by reasoning as in Lemma 5.3.2, Case 2.

Note that v5, v7, v9, v11, v17, v18, v24, and v26 are not in D since they are either

in double external boundary of v1 or in double external boundary of v2. Then v5

pulls in v6, v7 pulls in v8, v9 pulls in v10, and v11 pulls in v12.

In additon, v4 pulls in either v13 or v14 but not both. The two cases are

equivalent by symmetry. Without loss of generality let v14 ∈ D, and v13 /∈ D.

Consequently v15 /∈ D, since otherwise v14 and v15 double force in v16, and then

v15 and v16 double force in v17, contradicting that v17 /∈ D. Therefore, v17 pulls in

v16, and v18 pulls in v19. This implies that the sequence of vertices v20, v21, and

v22 are double forced in.

v1

v2

v3

v4

v5
v6

v7v8

v9
v10

v11 v12

v13 v14

v15

v16

v17

v18
v19

v20

v21

v22

v23

v24v25

v26
v27

v28

v29

v30

v31v32
v33

v34

Figure 5.7: An illustration of the proof of Lemma 5.3.3.
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Next we see that v23 /∈ D, since otherwise v23 and v14 double force in v13,

contradicting that v13 /∈ D. Consequently v24 pulls in v25, so v26 /∈ D and v25 ∈ D

force out v27. Then the sequence of vertices v28, v20, and v30 are forced out.

Notice that v3 pulls in v31 so v32 /∈ D. Otherwise the same reasoning that

shows v19 ∈ D can be applied to show v30 ∈ D, contradicting the previous

determination. Then the same reasoning that shows that v16 and v25 are in D

can be applied to show that v33 and v34 are in D.

Next we calculate the perfect domination proportion of a resulting sub-

graph. Let V1 denote the set of vertices dominated by v1 and v2. Let V2 denote

the set of vertices dominated by v10, v12, v19, v20, v21, and v22. We assume that

v10, v12, v19, v20, v21 and v22 are a D6. Otherwise, they are in a larger Dn, and

reasoning similar to that in Lemma 4.7 shows that the perfect domination pro-

portion is even higher. For the same reason, assume there are two other D1s

on the opposite side of v10, v12, v19, v20, v21 and v22. Let V3 denote the set of ver-

tices dominated by these two D1s. Finally, we see that the perfect domination

proportion of the V1 ∪ V2 ∪ V3 satisfies

|D ∩ V (V1 ∪ V2 ∪ V3)|
|V (V1 ∪ V2 ∪ V3)|

=
2 + 6 + 2

10 + 14 + 10
=

5

17
>

1

4
�

Lemma 5.3.4: If there exists an infinite row of D1s, there exist two infinite rows

of D6s or larger Dns along the sides of the row of D1s.
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Figure 5.8: An illustration of the proof of Lemma 5.3.4.

Proof: Figure 5.8 illustrates the reasoning. Let v1, v2, v3, and v4 be in an

infinite row of D1s.

Notice that v5 and v6 are not in D since they are in the double external

boundary of v2, and that v7 /∈ D since it is in the double external boundary of

v1. Consequently, v6 pulls in v8, and v5 pulls in v9. Then v8 and v9 double force

in v10.

Similarly v11 and v12 are not in D since they are in the double external

boundary of v3, so v11 pulls in v13. Consequently, v10 and v13 double force in v14,

and v13 and v14 double force in v15.

The same reasoning can be applied inductively to other vertices in the row

of D1s to show that the row of D1s is bordered by two infinite rows of D6s or

larger Dns. �
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Lemma 5.3.5: If a row of D1s contains two D1s distance 3 apart in a hexagonal

face, it must be either in a row of at least 4 D1s, or end at a Dn, n ≥ 2.

Proof: Figure 5.9 illustrates the reasoning. To deduce a contradiction, suppose

there exists a PDS D such that v1 and v2 in D are two D1s distance 3 apart in a

hexagonal face and v3 /∈ D.

Notice that v4 /∈ D since v4 is in the double external boundary of v2. Thus,

v4 pulls in v5. Similarly, v6 /∈ D, since v6 is in the double external boundary of

v1, so v8 pulls in v9.

Next, v10 pulls in v11, since v3 /∈ D by assumption. Thus, v5 and v11 double

force v12 ∈ D. Consequently, the sequence of vertices v13, v14, v15, v16, and v17

are double forced in.

By symmetry, we have the same structure on the opposite side of the row of

D1s, so v18 ∈ D. However, v3 is then dominated by both v17 and v18, contradicting

that D is a PDS.

Therefore, if v1 and v2 are in D, then v3 ∈ D. Again, by symmetry, the same

reasoning can be applied to show if v1 and v2 are in D, then v19 ∈ D. Notice that

v19 is either a D1 or in a Dn with n ≥ 2.

Note that if the row of D1s ends with a Dn, n ≥ 2, it would not reduce the

perfect domination proportion to be below 1
4
. We can verify this by reasoning as

in Lemma 5.3.2: In particular, it is still true that v5, v9, and v13 are in D when

v3 is in a D2 or larger Dn. �
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Figure 5.9: An illustration of the proof of Lemma 5.3.5.

Lemma 5.3.6: A row of at least 3 consecutive D1s must either be doubly-infinite

or end at a Dn, n ≥ 2.

Proof: Figure 5.10 illustrates the reasoning. To deduce a contradiction, sup-

pose there exsits a PDS D such that v1, v2, and v3 in D are a row of D1s and

v4 /∈ D.

Notice that v5 and v6 are not in D since they are in the double external

boundary of v2. Similarly, v7 /∈ D since v7 is in the double external boundary of

v1. Thus, v6 pulls in v8, and v5 pulls in v9. Together, v8 and v9 double force in v10.

Next, v11 and v12 are not in D since they are in the double external boundary

of v3. Then v11 pulls in v13, in turn v10 and v13 double force in v14, and continuing,

v13 and v14 double force in v15. Since v12 /∈ D and v15 ∈ D, they force out v16.
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Therefore, v17 forces in v18.

The same reasoning can be applied to the opposite side of the row of D1s to

show that v19 ∈ D.

Thus v4 pulls in either v20 or v21. The two cases are equivalent by symmetry.

Without loss of generality, let v20 ∈ D. Then v19 and v20 double force in v21.

Continuing, v20 and v21 double force in v4, contradicting our assumption that

v4 /∈ D.

Therefore, if v1, v2, and v3 are in D, then v4 ∈ D. Notice that v4 is either a D1

or in aDn, n ≥ 2. If the row ofD1s ends with a largerDn, it would not reduce the

perfect domination proportion to be below 1
4
, as can easily be verified by reason-

ing as in Lemma 5.3.2. (In particular, it is still true that v8, v9, v10, v13, v14, and

v15 are in D when v4 is in a D2 or larger Dn.) Otherwise, the row of D1s does not

end with a Dn, n ≥ 2, so by Lemma 5.3.5 the row of D1s must extend infinitely

in both directions. �

Theorem 5.3.7: γp(3, 4, 6, 4) = 1
4
.

Proof: Suppose there exists a PDS D with perfect domination proportion

strictly less than 1
4
. We know that D must contain D1s. The only possibili-

ties are that a D1 can occur as a D1 that is not in a row of D1s (discussed in

Lemma 5.3.2), or is in a row of only two D1s (discussed in Lemma 5.3.3), or is

in a row of more than two D1s (discussed in Lemma 5.3.5 and Lemma 5.3.6),
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v1

v2

v3

v4

v5

v6

v7

v8

v9v10

v11

v12

v13v14

v15

v16
v17

v18 v19
v20 v21

Figure 5.10: An illustration of the proof of Lemma 5.3.6.

or is in an infinite row of D1s (discussed in Lemma 5.3.4). For each possibility,

we have shown that a D1 cannot reduce the perfect domination proportion to

be strictly less than 1
4
. Therefore, γp(3, 4, 6, 4) ≥ 1

4
. However, by Lemma 5.3.1,

we have γp(3, 4, 6, 4) ≤ 1
4
. �

5.4 Non-isomorphic Perfect Dominat-

ing Sets

Fact: There exist two non-isomorphic PDSs for the (3,4,6,4) lattice with equal

perfect domination proportions.

Proof: Figure 5.4 shows two non-isomorphic PDSs with perfect domination
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proportion 1
3
. �

Figure 5.11: Two non-isomorphic PDSs with γp(D) = 1
3
.
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Chapter 6

The (32, 4, 3, 4) Lattice

6.1 Nonexistence of Efficient Domina-

tion

Lemma 6.1.1: There does not exist an efficient dominating set in the (32, 4, 3, 4)

lattice.

Proof: The proof is by contradiction. Assume that there exists an efficient

dominating set D. Since D 6= ∅, there exists a vertex v1 ∈ D. Figure 6.1

illustrates the reasoning. By vertex-transitivity, any vertex may be chosen to

represent v1.

Vertex v2 is adjacent to a vertex in N [v1], so v2 /∈ D or the adjacent vertex

would be dominated by both v1 and v2. Therefore, v2 must be dominated by one
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of its neighbors. The only neighbor v for which N [v] ∩N [v1] = ∅ is v3, so v3 ∈ D

if D is to be an efficient dominating set.

Continuing, N [v4] ∩ N [v3] 6= ∅, so v4 /∈ D. However, every neighbor v of v4

satisfies either N [v] ∩ N [v1] 6= ∅ or N [v] ∩ N [v3] 6= ∅, so there does not exist any

vertex v ∈ D such that v ∈ N [v4]. Since there is no v ∈ D which dominates v4, D

is not a dominating set, and thus not an efficient dominating set, contradicting

our original assumption. �

v1

v2

v3

v4

Figure 6.1: An illustration of the proof of non-
existence of an efficient dominating set in the (32, 4, 3, 4)
lattice.

6.2 Bounds for the Domination Ratio

Lemma 6.2.1: γr(32, 4, 3, 4) ≤ 1
5
.

67



CHAPTER 6. THE (32, 4, 3, 4) LATTICE

Proof: The (32, 4, 3, 4) lattice contains a square lattice, obtained by deleting

the diagonal edges. (See Figure 6.1.) A dominating set for the square lattice is

also a dominating set for the (32, 4, 3, 4) lattice. Thus, since the square lattice is

efficiently dominated, γr(32, 4, 3, 4) ≤ γr(4
4) = 1

5
. �

6.3 Perfect Domination Ratio

We first provide a PDS that establishes an upper bound, then prove this PDS

is actually the minimal PDS, to conclude that γp(32, 4, 3, 4) = 1
4
.

Lemma 6.3.1: γp(32, 4, 3, 4) ≤ 1
4

Proof: Figure 6.2 shows a periodic PDS D on the (32, 4, 3, 4) lattice. To calcu-

late the domination ratio of this PDS, note that there are pairs of D1s which are

distance three apart. In the figure, there are D4s above and below each such

pair of D1s. These four components of D and their external boundaries induce

a subgraph with 40 vertices which are dominated by 10 vertices, giving a dom-

ination proportion of 1
4
. The lattice may be decomposed into disjoint isomorphic

connected subgraphs, so γp(D) =1
4
. Thus, 1

4
is an upper bound for γp(32, 4, 3, 4).�

Lemma 6.3.2: A PDS of the (32, 4, 3, 4) lattice cannot contain a D2.

Proof: To deduce a contradiction, suppose there exists a PDS D that contains

a D2. Let x and y denote the vertices in this D2. Since every edge is in a 3-
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Figure 6.2: A PDS D on the (32, 4, 3, 4) lattice with γp(D) =1
4
.

cycle, there exists vertex z /∈ D that is a common neighbor of x and y. Then z

is dominated by both x and y, contradicting the assumption that D is a perfect

dominating set. �

Lemma 6.3.3: A PDS of the (32, 4, 3, 4) lattice cannot contain a D3.

Proof: To deduce a contradiction, suppose there exists a PDS D that contains

a D3. Let x, y and z denote vertices in this D3. There are 2 possible types of

D3s: a 3-path and a 3-cycle.

If the subgraph induced by {x, y, z} is a 3-cycle, then the adjacent 3-cycle

must be in D, and therefore {x, y, z} must be in a D4 or a larger Dn.

If the subgraph induced by {x, y, z} is a 3-path, then the subgraph induced

by {x, y, z} includes an edge of a 3-cycle, and the 3-cycle must be in D. Thus,
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{x, y, z} must be in a D4 or a larger Dn.

In either case, we reach the contradiction that {x, y, z} is not a D3. �

Lemma 6.3.4: If a PDS D contains a D1, the PDS must be a union of D1s and

D4s. Such a PDS is unique up to isomorphism.

Proof: Figure 6.3 illustrates the reasoning, which is rather long and intricate.

Suppose there exists a PDS D that contains a D1. Let v1 denote this D1. The

vertices in the double external boundary of v1 are shown in Figure 6.3 as open

circles. Therefore, v2 pulls in v3.

We show that v4 /∈ D by contradiction: If v4 ∈ D, then v3 and v4 double force

v5 ∈ D, and consequently v4 and v5 double force v6 ∈ D. This contradicts the

fact that v6 /∈ D because it is in double external boundary of v1.

v1

v2 v3

v4

v5v6 v7

v8

v9 v10 v11

v12

v13

v14v15

v16 v17 v18

v19v20

v21v22

v23

v24

v25

v26

v27 v28v29

v30

v31 v32 v33

v34v35

v36 v37

v38 v39

v40 v41

v42 v43

v44v45

v46

v47

v48

v49

v50 v51 v52

v53v54 v55

v56

v57

v58

v59

v60

v61

v62

v63

v64

v65

Figure 6.3: An illustration of the proof of Lemma 6.3.4.
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Since it is not in D, v6 pulls in v5. Then v3 and v5 double force v7 ∈ D,

and consequently v3 and v7 double force v8 ∈ D. Since v9 /∈ D and v3 ∈ D, the

vertex v10 cannot double-dominate v9, so v10 is forced out. Similarly, v10 /∈ D and

v8 ∈ D forces out v11, and by repeating this reasoning v12, v13, v14, and v15 are

forced out. Thus, v3, v5, v7, and v8 form a D4. Furthermore, the double external

boundary of this D4 contains v16, v17, and v18, so they are not in D.

By a rotation by 180o around v1, the same reasoning applies to show that

v19, v20, v21, and v22 are a D4, and, being in its double external boundary, v23, v24,

and v25 are not in D.

Next, v26 pulls in v27, and we show that v28 /∈ D by contradiction: Otherwise

v27 and v28 would double force v29 ∈ D, and consequently v28 and v29 would

double force v17 ∈ D, contradicting our previous conclusion that v17 /∈ D since it

is in the double external boundary of a D4.

Thus, v17 pulls in v29. Vertices v27 and v29 then force in v31 which helps double

force v32 ∈ D. Since v24 /∈ D, it forces out v30. Similarly, in sequence, the vertices

v35, v34, and v33 are forced out. We conclude that v27, v29, v31, and v32 are a D4.

Next we consider vertices in the lower left part of the figure, where the

reasoning proceeds somewhat differently. The double external boundary of the

D4 formed by v19, v20, v21 and v22 contains v37 and v38, and therefore v37 and v38

are not in D. Therefore, v39 pulls in v40.

Reason by contradiction that v42 /∈ D: Otherwise v42 and v40 double force
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v41 ∈ D, contradicting the fact that v41 /∈ D because it is in double external

boundary of v1.

With no alternative, v43 pulls in v44. By contradiction v45 /∈ D: Otherwise v40

and v45 double force v46 ∈ D, and consequently v45 and v46 double force v42 ∈ D,

contradicting our previous conclusion that v42 /∈ D.

Since v42 /∈ D, it pulls in either v46 or v47. The two cases are equivalent by

symmetry. Without loss of generality, let v47 ∈ D and v46 /∈ D. Then v40 ∈ D and

v46 /∈ D force out v48, and we conclude that v40 is a D1. On the other hand, v47

and v44 double force in two neighbors to form a possible D4, and reasoning as

in the previous cases forces out the boundary to confirm that it must be a D4.

(Note that if we had chosen v46 ∈ D and v47 /∈ D, the resulting PDS would be

isomorphic, but rotated by 90o.)

In the remainder of the proof, we show that the reasoning above can be

extended to the entire (32, 4, 3, 4) lattice. First, the entire argument so far can

be repeated starting from on v40 instead of v1, to show that there are four D4s

around v40, as shown in the figure.

Next, notice that the double external boundary of the D4 formed by

v19, v20, v21, and v22 contains v49 and v50, and therefore v49, v50 /∈ D. Conse-

quently, v25 pulls in v51. Similarly, the double external boundary of the D4

formed by v27, v29, v31, and v32 contains v52, and therefore v52 /∈ D. Thus, v51 ∈ D

and v52 /∈ D force out v53, and then v51 ∈ D and v53 /∈ D force out v54. We
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conclude that v51 is a D1.

The same reasoning as starting from v1 can be applied to v51 to show that

v55 is a D1. Similarly, both v62 and v65 can be shown to be D1s. Thus, such an

arrangement of D1s and D4s must extend periodically in all directions, so the

PDS D is a union of only D1s and D4s. �

Theorem 6.3.5: γp(3,4, 3, 4) = 1
4

Proof: Lemma 6.3.4 shows that any PDS that contains a D1 must be a

union of D1s and D4s, and there is a unique such PDS. Since D2s and D3s do

not exist by Lemma 6.3.2 and Lemma 6.3.3, any PDS that consists of only

D4s and larger Dns are less efficient than a union of D1s and D4s. Thus,

the PDS given in Lemma 6.3.1 is the minimal PDS, and γp(3
2, 4, 3, 4) = 1

4
.

�

6.4 Possible Perfect Domination Pro-

portions

We provide a proof that (32, 4, 3, 4) lattice has only two possible perfect dom-

ination proportions, 1 and 1
4
.

Definition (1-square): A 1-square is a D4 that contains two 3-cycles sharing

an edge.
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Note: A 1-square is shown in Figure 6.4 as v1, v2, v3, v4.

Definition ((2k+1)-square): A (2k+1)-square is a (2k + 1) × (2k + 1) square

whose four corners are 1-squares. k is a positive integer and k ≥ 1.

Note: A 3-square is shown in Figure 6.4 as v1, v2, v3, ..., v16.

Lemma 6.4.1: Any Dn with n > 4 must contain a 1-square.

Proof: Let W be a Dn with n > 4. Notice that W must contain an edge. Since

any edge is in a 3-cycle, the third vertex in the 3-cycle is forced in. Thus, W

contains a 3-cycle. Since every 3-cycle is in a 1-square, the fourth vertex in the

2-square is forced in. Thus, W contains a 1-square. �

Lemma 6.4.2: If W is a Dn with n > 4, then W must contain a 3-square.

Proof: By Lemma 6.4.1, W must contain a 1-square. Figure 6.4 represents

such reasoning. Let v1, v2, v3, v4 denote the 1-square. Since n > 4, W must

contain a vertex that is adjacent to one of v1, v2, v3, v4.

Consider the case v5 ∈ W . Notice v5 and v1 double force in v6. Similarly,

a sequence of vertices, v7, v8, ..., v14 are double forced in. Therefore, v8 and v9

double force in v15. Similarly, v13 and v14 double force in v16.

The same reasoning can be applied to show no matter which vertex adjacent

to one of v1, v2, v3, v4 is in W , all of v5, v6, ..., v16 are in W . Vertices v1, v2, ..., v16
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together form a 3-square in W . �

v1 v2

v3
v4

v5

v6
v7 v8

v9

v10

v11
v12v13

v14

v15

v16

Figure 6.4: An illustration of the proof of Lemma 6.4.2.

Lemma 6.4.3: If W is a Dn that contains a (2k+1)-square, where k ≥ 1 is a

positive integer, then W must contain a (2k+3)-square.

Proof: Figure 6.5 represents the reasoning. Let U denote a (2k+1)-square

contained in W . Since k > 1 and corners of U are 1-squares, vertices u1 and

u2 are in a 3-cycle. Let v1 be the third vertex in the 3-cycle. Notice u1 and u2

double force in v1. Similarly, a sequence of vertices, v2, v3, ..., v8k+2 are double

forced in. Therefore, v2k−1 and v2k double force in v8k+3. Similarly, v6k and v6k+1

double force in v8k+4. Vertices v1, v2, ..., v8k+4 together form a (2k+3)-square in

W . �

Lemma 6.4.4: If a PDS D contains W , a Dn with n > 4, then D is the entire

vertex set.

Proof: Let W be a Dn with n > 4. The proof is by induction on the size of W .
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u1
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v1
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v2k−3

v2k−2

v2k−1

v8k+3

u3

v2kv2k+1v2k+2v4k−3v4k−2v4k−1
v4k

v4k+1

v4k+2

v4k+3

v6k−2

v6k−1

v6k

v8k+4

v6k+1 v6k+2 v6k+3 v8k−2 v8k−1 v8k v8k+1

v8k+2

Figure 6.5: An illustration of the proof of Lemma 6.4.3.

Base case: Since W is a Dn with n > 4, by Lemma 6.4.1, W must contain a

3-square.

Induction step: Assume W contains a (2k+1)-square. By Lemma 6.4.3, W

must contain a (2k+3)-square.

Therefore, W must extend infinitely in both directions. Thus, D is the entire

vertex set. �

Lemma 6.4.5: A PDS that contains only D4 cannot exist.

Proof: Figure 6.6 represents the reasoning. To deduce a contradiction, assume

there exists a PDS D that contains only D4. Let v1, v2, v3, v4 denote a D4 in D.
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Notice v5, v6, v7 are not in D since they are in the double external boundary of

the D4 formed by v1, v2, v3, v4. To dominate v6, one of v8, v9, v10 must be in D.

If v8 ∈ D, then we must have v9 ∈ D for v8 to be in a D4, since v5, v6 /∈ D. But

v8, v9 double force in v6, contradicting that v6 /∈ D. Thus, v8 /∈ D.

A similar argument can be applied to show that v10 /∈ D.

Thus, we must have v9 ∈ D to dominate v6. For v9 to be in a D4, we must

have v11, v12, v13 ∈ D, since v8, v10 /∈ D.

Notice v5 /∈ D is not dominated. But every neighbor of v5 is either in the

external boundary or in the double external boundary of the two D4s formed by

v1, v2, v3, v4 and v9, v11, v12, v13. Thus, no neighbor of v5 is in D. So v5 cannot be

dominated, contradicting that D is a PDS. �

v1

v2
v3

v4

v5

v6

v7

v8 v9

v10

v11 v12

v13

Figure 6.6: An illustration of the proof of Lemma 6.4.5.

Theorem 6.4.6: (32, 4, 3, 4) lattice has only two possible perfect domination pro-

portions, 1 and 1
4
.
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Proof: The perfect domination proportion of 1 is achieved by taking the entire

vertex set as a perfect dominating set. The perfect domination proportion of 1
4

is achieved by a minimal perfect dominating set. By Lemma 6.4.4, any PDS

containing a Dn with n > 4 is the entire vertex set. Since D2 and D3 do not

exist, any PDS that is not the entire vertex set can only contain D1 and D4.

But a PDS that contains only D4 cannot exist. Therefore, any PDS that is not

the entire vertex set must contain D1. By Lemma 6.3.4, a PDS that contains a

D1 must be a union of D1 and D4, and such a PDS is unique up to isomprhism.

Therefore, there exist only two nonisomorphic PDS (the minimal PDS and the

entire vertex set). �
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The (4, 6, 12) Lattice

7.1 Nonexistence of Efficient Domina-

tion

Lemma 7.1.1: There does not exist an efficient dominating set in the (4, 6, 12)

lattice.

Proof: The proof is by contradiction. Assume that there exists an efficient

dominating set D. Since D 6= ∅, there exists a vertex v1 ∈ D. Figure 7.1

illustrates the reasoning. By vertex-transitivity, any vertex may be chosen to

represent v1.

Vertex v2 is adjacent to a vertex in N [v1], so v2 /∈ D or the adjacent vertex

would be dominated by both v1 and v2. Therefore, v2 must be dominated by one
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of its neighbors. The only neighbor v for which N [v] ∩N [v1] = ∅ is v3, so v3 ∈ D

if D is to be an efficient dominating set.

Similarly, vertex v4 is adjacent to a vertex in N [v3], so v4 /∈ D or the adjacent

vertex would be dominated by both v4 and v3. Therefore, v4 must be dominated

by one of its neighbors. The only neighbor v for which N [v] ∩ N [v1] = ∅ and

N [v] ∩N [v3] = ∅ is v5, so v5 ∈ D if D is to be an efficient dominating set.

Continuing, N [v6] ∩ N [v1] 6= ∅ and N [v6] ∩ N [v4] 6= ∅, so v6 /∈ D. However,

every neighbor v of v6 satisfies N [v] ∩ N [v4] 6= ∅, so there does not exist any

vertex v ∈ D such that v ∈ N [v6]. Since there is no v ∈ D which dominates v6, D

is not a dominating set, and thus not an efficient dominating set, contradicting

our original assumption. �

v1 v2
v3

v4

v5

v6

Figure 7.1: The left figure is a subgraph of the (4, 6, 12)
lattice. The right figure is an illustration of the proof
of non-existence of an efficient dominating set in the
(4, 6, 12) lattice.
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7.2 Domination Ratio

For domination number problems, the generic integer programming method

requires an integral variable for every vertex of the graph. The vertex set of an

infinite periodic graph is infinite. Therefore, the generic integer program will

have infinitely many variables and contraints.

To solve the minimum dominating set problem on the (4, 6, 12) lattice, we

introduce a linear programming relaxation on an infinite periodic graph. The

relaxation is a minimization problem on a particular polytope (A polyhedron

is the solution set of a finite system of linear inequalities. A polytope is a

polyhedron that contains no infinite half-line. An inequality wTx ≤ t is valid

for a polyhedron P if P ⊆
{
x : wTx ≤ t

}
. ). Furthermore, the relaxation has

finitely many constraints and the number of constraints does not depend on

the number of vertices. Therefore, the relaxation can be solved in polynomial

time by any linear programming solver. Formulating the relaxation requires

choosing a subgraph of the infinite periodic graph and examining the properties

of the subgraph.

One can use the relaxation to compute compute a lower bound for the dom-

ination ratio of an infinite periodic graph. One can also use the relaxation to

compute a lower bound for the domination number of a finite subgraph of an

infinite periodic graph.
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Using the relaxation, we computed a lower bound for the domination ratio

of the (4, 6, 12) lattice. The lower bound equals an upper bound we obtained

from a dominating set. Therefore, we obtain the exact value of the domination

ratio of the (4, 6, 12) lattice.

Lemma 7.2.1: γ(4, 6, 12) ≤ γp(4, 6, 12) ≤ 5
18

.

Proof: A periodic PDS D with γp(D) = 5
18

is shown in Figure 7.2, establishing 5
18

as a upper bound. The vertex set of the (4, 6, 12) lattice can be partitioned into

subsets of size 36 such that the subgraph induced by vertices in every subset

is isomorphic to G′ as shown in Figure 7.2.

To calculate the domination proportion, notice that every subgraph isomor-

phic to G′ has 10 vertices in D. Thus,

γp(D) =
10

36
=

5

18

Since any PDS is a dominating set, we have γ(4, 6, 12) ≤ γp(4, 6, 12) ≤ 5
18

.

Note: The vertex set of the (4,6,12) lattice can be partitioned into disjoint sub-

sets such that the subgraph induced by vertices in every subset is isomorphic

to H, as shown in Figure 7.3.

Note: The internal boundary of H is illustrated by
{
v7, v8, v9, v10, v11, v12

}
.

Throughout Section 7.2, we do not consider ends of half-edges to be vertices.
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G′

G′

G′

Figure 7.2: A PDS D of (4,6,12) lattice with γp(D) = 5
18

83



CHAPTER 7. THE (4, 6, 12) LATTICE

v1

v2
v3

v4
v5

v6

v7

v8

v9

v10

v11

v12

Figure 7.3: Left: A subgraph of the (4, 6, 12) lattice; right: H
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Definition (Hn): An Hn is a pair (G,D), where G is a graph isomorphic to H,

and D is a dominating set of G assuming boundary vertices of G are dominated

for free.

Note: The definition of dominated for free is povided in Section 2.4.

Definition (isomorphic Hn): Let H(1) = (G(1), D(1)) and H(2) = (G(2), D(2)) be

two Hns. We create a loop edge in G(1) for every vertex in D(1) and a loop edge

in G(2) for every vertex in D(2). If the resulting G(1) and G(2) are isomorphic,

then H(1) and H(2) are isomorphic.

Definition (Hn): For a given n, Hn is the set of all non-isomorphic Hn.

Figure 7.4 illustrates the following definitions. Let (G,D) be a Hn, where G is

an induced subgraph of the (4, 6, 12) lattice. We have the following definitions:

Definition (VG): Let VG denote the set of vertices in G.

Definition (CG): Graph G contains a unique 6-cycle, illustrated by{
v1, v2, v3, v4, v5, v6

}
. We denote the set of vertices in the unique 6-cycle in

G by CG.

Definition (BG): Graph G has six vertices on its internal boundary, illustrated

by
{
v7, v8, v9, v10, v11, v12

}
. We denote the set of vertices on the internal boundary

of G by BG.

Definition (lend(G,D)): Let lend(G,D) denote the number of vertices in
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(4, 6, 12) \G dominated by a vertex in D.

Definition (borrow(G,D)): Let borrow(G,D) denote the number of vertices in

G not dominated by a vertex in D.

Note: If a vertex v ∈ VG is not dominated by vertices in D, then we must have

v ∈ BG for D to be a dominating set of G assuming boundary vertices of G are

dominated for free.

v1

v2
v3

v4
v5

v6

v7

v8

v9

v10

v11

v12

Figure 7.4: An illustration of definitions.

Definition (netlend(Hn)): For a fixed n,

netlend(Hn) = max
(G,D)∈Hn

(
lend(G,D)− borrow(G,D)

)
.

Lemma 7.2.2: If (G,D) is a Hn, then lend(G,D) = |D ∩ BG|.

Proof: No vertex in CG could dominate any vertex in (4, 6, 12)\G. Every vertex

in BG could dominate one vertex in (4, 6, 12) \G. Thus, lend(G,D) = |D ∩ BG|.
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Lemma 7.2.3: If (G,D) is a Hn, then borrow(G,D) ≥ 6− |D∩CG| − 2× |D∩BG|.

Proof: Every vertex in CG could dominate one vertex in BG. Every vertex

in BG could dominate two vertices in BG. Since some vertices in BG may be

dominated twice, at most |D ∩ CG|+ 2× |D ∩ BG| vertices in BG are dominated

by vertices in VG∩D. Thus, at least 6−|D∩CG|−2×|D∩BG| vertices in BG are

not dominated by vertices in VG. Thus, borrow(G,D) ≥ 6−|D∩CG|−2×|D∩BG|.

Fact 7.2.4: If (G,D) is a Hn, then |D ∩ BG| = n− |D ∩ CG|.

Proof: Since (G,D) is a Hn, |D ∩ BG| + |D ∩ CG| = |D| = n. Thus, |D ∩ BG| =

n− |D ∩ CG|.

Lemma 7.2.5: If (G,D) is a Hn, then |D ∩ CG| ≥ d6−n2 e.

Proof: Every vertex in CG could dominate three vertices in CG. Every vertex

in BG could dominate one vertex in CG. To dominate all six vertices in CG, we

must have

3× |D ∩ CG|+ |D ∩ BG| ≥ 6.

By Fact 7.2.4, |D ∩ BG| = n− |D ∩ CG|. Thus,

3× |D ∩ CG|+ (n− |D ∩ CG|) ≥ 6,

87



CHAPTER 7. THE (4, 6, 12) LATTICE

so

|D ∩ CG| ≥
6− n

2
.

Since |D ∩ CG| is an integer, we have

|D ∩ CG| ≥ d
6− n

2
e.

Lemma 7.2.6: netlend(H2) = -4.

Proof: Assume (G,D) is a H2. By Lemma 7.2.5, |D ∩ CG| ≥ d6−22 e = 2. Since

(G,D) is a H2, by Fact 7.2.4, |D ∩ BG| = 2 − |D ∩ CG| = 0. By Lemma 7.2.2,

lend(G,D) = |D ∩ BG| = 0. By Lemma 7.2.3,

borrow(G,D) ≥ 6− |D ∩ CG| − 2× |D ∩BG| = 6− 2− 0 = 4.

Thus,

netlend(H2) = max
(G,D)∈H2

(
lend(G,D)− borrow(G,D)

)
≤ 0− 4 = −4.

Figure 7.5 demonstrates a pair (G′, D′) that is a H2 such that borrow(G′, D′) −

lend(G′, D′) = −4. Thus, netlend(H2) = −4.

Lemma 7.2.7: netlend(H3) = −1.
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Figure 7.5: An illustration of the proof of Lemma 7.2.6.

Proof: Assume (G,D) is a H3. By Lemma 7.2.5, |D ∩ CG| ≥ d6−32 e = 2. We

consider a few cases, depending on the number of vertices of D in CG.

Case 1: |D ∩ CG| = 3. Since (G,D) is a H3, by Fact 7.2.4, |D ∩BG| = 3− |D ∩

CG| = 0. By Lemma 7.2.2, lend(G,D) = |D ∩ BG| = 0. By Lemma 7.2.3,

borrow(G,D) ≥ 6− |D ∩ CG| − 2× |D ∩ BG| ≥ 6− 3 = 3.

Thus,

lend(G,D)− borrow(G,D) ≤ 0− 3 = −3.

Case 2: |D ∩ CG| = 2. Since (G,D) is a H3, by Fact 7.2.4, |D ∩BG| = 3− |D ∩

CG| = 1. By Lemma 7.2.2, lend(G,D) = |D ∩ BG| = 1. By Lemma 7.2.3,

borrow(G,D) ≥ 6− |D ∩ CG| − 2× |D ∩ BG| ≥ 6− 2− 2 = 2.
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Thus,

lend(G,D)− borrow(G,D) ≤ 1− 2 = −1

.

In every case,

netlend(H3) = max
(G,D)∈H3

(
lend(G,D)− borrow(G,D)

)
≤ −1.

Figure 7.6 demonstrates a pair (G′, D′) that is a H3 such that borrow(G′, D′) −

lend(G′, D′) = −1. Thus, netlend(H3) = −1.

Figure 7.6: An illustration of the proof of Lemma 7.2.7.

Lemma 7.2.8: netlend(H4) = 2.

Proof: Assume (G,D) is a H4. By Lemma 7.2.5, |D ∩ CG| ≥ d6−42 e = 1. We

consider a few cases, depending on the number of vertices of D in CG.
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Case 1: |D ∩ CG| = 1. Since (G,D) is a H4, by Fact 7.2.4, |D ∩BG| = 4− |D ∩

CG| = 3. Figure 7.7 represents the reasoning. Since |D ∩ CG| = 1 and choices of

vertex in |D ∩ CG| are equivalent by symmetry, let v1 ∈ |D ∩ CG|. To dominate

v3, v4, v5, we must have v9, v10, v11 ∈ D. Since v7 is not dominated by a vertex in

VG ∩D, borrow(G,D) = 1. By Lemma 7.2.2, lend(G,D) = |D ∩BG| = 3. Thus,

lend(G,D)− borrow(G,D) ≤ 3− 1 = 2.

v1

v2
v3

v4
v5

v6

v7

v8

v9

v10

v11

v12

Figure 7.7: An illustration of the proof of Lemma 7.2.8.

Case 2: |D ∩ CG| = 2. Since (G,D) is a H4, by Fact 7.2.4, |D ∩BG| = 4− |D ∩

CG| = 2. By Lemma 7.2.2, lend(G,D) = |D ∩ BG| = 2. By Lemma 7.2.3,

borrow(G,D) ≥ 6− |D ∩ CG| − 2× |D ∩BG| ≥ 6− 2− 4 = 0.

Thus,

lend(G,D)− borrow(G,D) ≤ 2− 0 = 2.
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Case 3: |D ∩ CG| = 3. Since (G,D) is a H4, by Fact 7.2.4, |D ∩BG| = 4− |D ∩

CG| = 1. By Lemma 7.2.2, lend(G,D) = |D ∩ BG| = 1. By Lemma 7.2.3,

borrow(G,D) ≥ 6− |D ∩ CG| − 2× |D ∩BG| ≥ 6− 3− 2 = 1.

Thus,

lend(G,D)− borrow(G,D) ≤ 1− 1 = 0.

Case 4: |D ∩ CG| = 4. Since (G,D) is a H4, by Fact 7.2.4, |D ∩BG| = 4− |D ∩

CG| = 0. By Lemma 7.2.2, lend(G,D) = |D ∩ BG| = 0. By Lemma 7.2.3,

borrow(G,D) ≥ 6− |D ∩ CG| − 2× |D ∩BG| ≥ 6− 4− 0 = 2.

Thus,

lend(G,D)− borrow(G,D) ≤ 0− 2 = −2.

In every case,

netlend(H4) = max
(G,D)∈H4

(
lend(G,D)− borrow(G,D)

)
≤ 2.
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Figure 7.7 demonstrates a pair (G′, D′) that is a H4 such that borrow(G′) −

lend(G′) = 2. Thus, netlend(H4) = 2.

Lemma 7.2.9: netlend(H5) = 4.

Proof: Assume (G,D) is a H5. By Lemma 7.2.5, |D ∩ CG| ≥ d6−52 e = 1. Since

(G,D) is a H5, by Fact 7.2.4, |D ∩ BG| = 5 − |D ∩ CG| ≤ 4. By Lemma 7.2.2,

lend(G,D) = |D ∩ BG| ≤ 4. Notice borrow(G,D) ≥ 0. Thus,

netlend(H5) = max
(G,D)∈H5

(
lend(G,D)− borrow(G,D)

)
≤ 4− 0 = 4.

Figure 7.8 demonstrates a pair (G′, D′) that is a H5 such that borrow(G′, D′) −

lend(G′, D′) = 4. Thus, netlend(H5) = 4.

Figure 7.8: An illustration of the proof of Lemma 7.2.9.

Lemma 7.2.10: For n ≥ 6, netlend(Hn) = 6.

Proof: Assume (G,D) is a Hn, where n ≥ 6. Notice lend(G,D) ≤ 6 and
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borrow(G,D) ≥ 0. Thus,

netlend(Hn) = max
(G,D)∈Hn

(
lend(G,D)− borrow(G,D)

)
≤ 6.

Since n ≥ 6, we can choose all vertices inBG to be inD such thatD is a dominat-

ing set of G. In this case, lend(G,D) = 6 and borrow(G,D) = 0. Consequently,

lend(G,D)− borrow(G,D) = 6. Thus, netlend(Hn) = 6.

Definition (pn(G), pn): Let D be a dominating set of the (4, 6, 12) lattice. Let G

be a subgraph of the (4, 6, 12) lattice whose vertex set can be partitioned into

disjoint subsets S1, S2, ..., Sm such that for every subset Si, the pair (Gi, D ∩ Si)

is a Hn, where Gi is the subgraph induced by vertices in Si. For n = 2, 3, 4, ..., 12,

let pn(G) denote the proportion of Hn in the vertex disjoint subgraphs of G.

Note: We can embed the (4, 6, 12) lattice in the plane such that the subgraph

induced by vertices in every unit square with integer coordinates is isomorphic

to H as shown in Figure 7.3. In Lemma 7.2.11 and Theorem 7.2.12, we consider

such embedding.

Lemma 7.2.11: Let Rl,m denote a rectangular region RG(0, l; 0,m), where l,m >

0. We have ∑
k=2,...,12

pk × netlend(Hk) ≥ −εl,m,

where εl,m → 0+ as l,m→∞.
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Proof: Let D be any dominating set of the (4, 6, 12) lattice. The vertex set of

Rl,m can be partitioned into disjoint subsets S1, S2, ..., Slm such that for every

subset Si, the pair (Gi, D ∩ Si) is an Hn, where Gi is the subgraph induced by

vertices in Si. For any i = 1, ..., lm, let Di = D ∩ Si. Let D(l,m) =
∑

i=1,...,lmDi.

Let Nk(Rl,m) denote the number of Hk in (G1, D1), (G2, D2), ..., (Glm, Dlm). Let

a, b, c, d denote the number of vertices in the upper, lower, left and right internal

boundary of Rl,m respectively.

Notice that

pk(Rl,m) =
Nk(Rl,m)

lm
.

Therefore,

∑
k=2,...,12

pk(Rl,m)× netlend(Hk) =
∑

k=2,...,12

Nk(Rl,m)

lm
netlend(Hk).

Since netlend(Hk) = max(G,D)∈Hk

(
lend(G,D) − borrow(G,D)

)
, for i = 1, ...,m, if

(Gi, Di) is a Hk, then netlend(Hk) ≥ lend(Gi, Di)− borrow(Gi, Di). Therefore,

∑
k=2,...,12

Nk(Rl,m)

lm
netlend(Hk) ≥

∑
i=1,...,lm

lend(Gi, Di)− borrow(Gi, Di)

lm
,

which can be rewritten as

∑
k=2,...,12

pk(Rl,m)× netlend(Hk) ≥
∑

i=1,...,lm

lend(Gi, Di)− borrow(Gi, Di)

lm
.
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For D to be a dominating set of the (4, 6, 12) lattice, every vertex v ∈ BGi
not

dominated by a vertex in Di must be dominated by a vertex in D \ Di. In

addition, a vertex v ∈ BGi
may be dominated both by a vertex in Di and by a

vertex in D \Di. Therefore,

∑
i=1,...,lm

(
lend(Gi, Di)− borrow(Gi, Di)

)
≥ lend(Rl,m, D

(l,m))− borrow(Rl,m, D
(l,m)).

Since lend(Rl,m, D
(l,m)) ≥ 0 and borrow(Rl,m, D

(l,m)) ≤ a+ b+ c+ d, we have

lend(Rl,m, D
(l,m))− borrow(Rl,m, D

(l,m)) ≥ 0− (a+ b+ c+ d).

Consequently,

∑
i=1,...,lm

(
lend(Gi, Di)− borrow(Gi, Di)

)
≥ −(a+ b+ c+ d).

Since l,m > 0, we divide both sides by lm and obtain

∑
i=1,...,lm

lend(Gi, Di)− borrow(Gi, Di)

lm
≥ −a+ b+ c+ d

lm
,

so ∑
k=2,...,12

pk(Rl,m)× netlend(Hk) ≥ −
a+ b+ c+ d

lm
.
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Letting εl,m = a+b+c+d
lm

, we have

∑
k=2,...,12

pk(Rl,m)× netlend(Hk) ≥ −εl,m.

Since a+ b = O(l) and c+ d = O(m), as m,n→∞, we have

εl,m =
a+ b+ c+ d

lm
→ 0+.

Theorem 7.2.12: γ(4, 6, 12) = γp(4, 6, 12) = 5
18

.

Proof: We prove that both the domination ratio and the perfect domination

ratio of the (4, 6, 12) lattice are equal to 5
18

.

Consider a rectangular region Rl,m as above. We formulate the domination

ratio problem in Rl,m as a linear program. The set of all feasible solutions is

described by a polytope. Lemma 7.2.11 provides a valid inequality for the poly-

tope, which is a constraint for the LP. We describe the constraints, objective

function, linear program, dual program in parts 1,2,3, and 4 of the proof re-

spectively. The optimal solution to the linear program provides a lower bound

for the domination ratio of Rl,m, as described in part 3.

In part 5, we prove the optimal solution to the linear program is a continu-

ous function of εl,m, where εl,m → 0+ as l,m → ∞. Recall the domination ratio
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is defined as

lim
m,n→∞

γm,n(G)

Nm,n(G)
.

Since εl,m → 0+ as l,m → ∞, the optimal objective function value when

εl,m = 0 is a lower bound for the domination ratio of the (4, 6, 12) lattice.

In part 6, we demonstrate that optimal objective function value when εl,m =

0 is 5
18

. Thus, we have 5
18

as a lower bound for the domination ratio. Combined

with Lemma 7.2.1, we conclude that γ(4, 6, 12) = γp(4, 6, 12) = 5
18

.

1. Constraints

Let x = [p2, p3, p4, p5, pother]
T , where pother =

∑
k≥6 pk.

By Lemma 7.2.11, we have

∑
k=2,...,12

pk × netlend(Hk) ≥ −εl,m,

where εl,m → 0+ as l,m→∞.

By Lemma 7.2.10, for n ≥ 6, netlend(Hn) = 6. Therefore,

( ∑
n=2,3,4,5

pn × netlend(Hn)

)
+ pother × 6 ≥ −εl,m.

For n = 2, 3, 4, 5, netlend(Hn) is calculated in Lemma 7.2.6, Lemma 7.2.7,
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Lemma 7.2.8, and Lemma 7.2.9. Thus,

[−4,−1, 2, 4, 6]x ≥ [−4,−1, 2, 4, 6][p2, p3, p4, p5, pother]
T ≥ −εl,m.

where εl,m → 0+ as l,m→∞.

Notice that we also have constraints
∑

k pk = 1 and 0 ≤ pk ≤ 1 for any pk.

2. Objective function

Let c = 1
12

[2, 3, 4, 5, 6]T . Notice c is multiplied by 1
12

because Hn has 12 ver-

tices. For any dominating set D of Rl,m,

γ(D) =
∑

k=2,3,...,12

k

12
pk ≥

1

12
[2, 3, 4, 5, 6][p2, p3, p4, p5, pother]

T = cTx.

3. Linear program (LP)

The linear program below provides a lower bound for the domination ratio

of Rl,m.

min cTx subject to

[−4,−1, 2, 4, 6]x ≥ −εl,m

∑
i

xi = 1 and for any i, 0 ≤ xi ≤ 1

The linear program provides a lower bound for the domination ratio of Rl,m
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because a minimum dominating set D with associated vector x∗ satisfies the

constraints above and γ(D) ≥ cTx∗.

Writing the LP explicitly in matrix form:

min cTx =
1

12
[2, 3, 4, 5, 6]x subject to x ≥ ~0 and

Ax =



−4 −1 2 4 6

1 1 1 1 1

−1 −1 −1 −1 −1

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1



x ≥



0

1

−1

−1

−1

−1

−1

−1



= b

4. Dual program (DP)

The dual program is

max bTy = [0, 1,−1,−1,−1,−1,−1,−1]y subject to y ≥ ~0 and
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ATy =



−4 1 −1 −1 0 0 0 0

−1 1 −1 0 −1 0 0 0

2 1 −1 0 0 −1 0 0

4 1 −1 0 0 0 −1 0

6 1 −1 0 0 0 0 −1


y ≤ 1

12



2

3

4

5

6


= c

5. cTx∗ is a continuous funtion of εl,m

By Lemma 7.2.11,

∑
k=2,...,12

pk × netlend(Hk) ≥ −εl,m

where εl,m → 0+ as l,m→∞.

The inequality above is a constraint in the LP. We want to show that cTx∗

is a continuous funtion of εl,m, where εl,m → 0+ and x∗ is the primal optimal

solution.

Consider the dual objective function value bTy∗, where y∗ is the dual optimal

solution. Notice b1 = −εl,m and other entries of b are fixed real numbers. Thus,

bTy∗ is a function of εl,m. All entries in A and c are fixed real numbers.

Let P =
{
y : ATy ≤ c

}
be a polytope. Let v(1), .., v(n) denote extreme points

of the polytope P . Since the dual program is linear, the dual optimal objective
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function value is achieved at one of the extreme points. Therefore,

max bTy = max
i=1,...,n

bTv(i).

Since for any i, bTv(i) is a linear function of εl,m, maxi=1,...,n b
Tv(i) is a convex

function. Since convex functions are continuous, maxi=1,...,n b
Tv(i) is a continuous

function of εl,m. Thus, bTy∗ is a continuous function of εl,m. By the Strong

Duality Theorem, cTx∗ = bTy∗. Therefore, cTx∗ is a continuous function of εl,m.

6. Optimal solution

By part 5, the optimal objective function value of the LP is a continuous

funtion of εl,m. Recall the domination ratio is defined as

lim
m,n→∞

γm,n(G)

Nm,n(G)
.

Since εl,m → 0+ as l,m → ∞, the optimal objective function value when

εl,m = 0 is a lower bound for the domination ratio of the (4, 6, 12) lattice.

For the linear program, by letting εl,m = 0, we obtain x∗ = [1/3, 0, 2/3, 0, 0]T

as an optimal solution with optimal objective function value 5
18

.

For the dual program, by letting εl,m = 0, we obtain y∗ = [5/180, 5/18, 0, 0, 0, 0, 0, 0]T

as an optimal solution with optimal objective function value 5
18

.

To check that x∗ is the optimal solution, one can verify that x∗ is primal
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feasible and y∗ is dual feasible. One can also verify that the primal objective

function value at x∗ and dual objective function value at y∗ are both equal to

5
18

. By Strong Duality Theorem, x∗ and y∗ are optimal solutions of primal and

dual respectively.

Therefore, 5
18
≤ γ(4, 6, 12). By Lemma 7.2.2, γ(4, 6, 12) ≤ γp(4, 6, 12) ≤ 5

18
.

Combining the two inequalities, we get

5

18
≤ γ(4, 6, 12) ≤ γp(4, 6, 12) ≤ 5

18
.

Therefore, γ(4, 6, 12) = γp(4, 6, 12) = 5
18

.

7.3 Perfect Domination Ratio

In Theorem 7.2.12, we proved that γp(4, 6, 12) = 5
18

. A periodic PDS D with

γp(D) = 5
18

is shown in Figure 7.2.
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7.4 Possible Perfect Domination Pro-

portions

Fact: The (4, 6, 12) lattice has three non-isomorphic PDS that achieve the perfect

domination proportion of 1
3
.

Proof: Three non-isomorphic PDS are shown in Figure 7.10, Figure 7.11, and

Figure 7.12 respectively. Notice for each PDS, each dodecagon has 4 vertices in

D. Thus, γp(D) = 4
12

= 1
3
. �

Definition (A row of D1s): A row of D1s is a sequence (possibly doubly-

infinite) of at least two consecutive D1s such that every two consecutive D1s

in the sequence are distance three apart and lie in a line which bisects hexag-

onal faces of the lattice.

Note: A row of D1s is shown in Figure 7.9.

Lemma 7.4.1: The (4, 6, 12) lattice has infinitely many non-isomorphic PDS

that achieve distinct perfect domination proportions. Furthermore, the perfect

dominination proportion can be any rational number between 5
18

and 1.

Proof: A PDS D with γp(D) = 5
18

is shown in Figure 7.9. Let V denote the

entire vertex set of the lattice. Let W denote the set of vertices that consists

of v1, v2, v3, v4, and all such vertices in 4-cycles bordered by two parallel rows of
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D1s of minimum distance apart. Let H denote the subgraph induced by W .

Let D′ = W ∪D. Notice D′ is a also PDS. Out of three dodecagons, two has

three vertices in D′ and one has eight vertices in D′. Thus, γp(D′) = 3+3+8
12+12+12

=

7
18

.

Next, consider adding vertices in every other four cycle in H to D. Let

D′′ denote the resulting set of vertices. Notice D′′ is still a PDS because adding

vertices in H that are in the same 4-cycle to D does not affect the other vertices.

We calculate γp(D′′) = 1
2
∗ ( 5

18
+ 7

18
) = 1

3
.

Similarly, given any rational number between 5
18

and 7
18

, we can add a cor-

responding proportion of vertices in H to D and create a PDS D′′′ such that

γp(D
′′′) equals the given number.

The same reasoning can be applied to vertices in V \W to show that perfect

domination proportion can take any rational number between 5
18

and 1. Be-

cause adding vertices on one side of a row of D1s to D does not affect the other

side. �
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v1

v2

v3

v4

a row of D1s

a row of D1s

a row of D1s

a row of D1s

Figure 7.9: An illustration of the proof of Lemma 7.4.1.
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Figure 7.10: A PDS D of (4, 6, 12) lattice with γp(D) = 1
3
.
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Figure 7.11: A PDS D of (4, 6, 12) lattice with γp(D) = 1
3
.
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Figure 7.12: A PDS D of (4, 6, 12) lattice with γp(D) = 1
3
.
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Integer Programming

We use an integer program to compute an upper bound and a lower bound

for the domination ratio of the kagome lattice, which does not have an efficient

dominating set. First choose a finite subgraph G such that the entire vertex

set of the kagome lattice can be partitioned into subsets and the subgraph

induced by the subsets are connected and isomorphic to G. Let x be a binary

vector representing vertices in S, a subset of the vertex set of G. The closed

neighborhood matrix N of G is the sum of the adjacency matrix of G and the

identity matrix. [1]

An integer program to compute an upper bound for the domination ratio is

as follows:

min
1

n
(~1)Tx s.t. xε{0, 1}n and Nx ≥ ~1

Notice the constraint Nx ≥ ~1 ensures that S is a dominating set of G. Let x
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be any feasible solution. The objective function value 1
n
(~1)Tx provides an upper

bound for the domination ratio, because we can obtain a dominating set D of

the entire lattice by taking the minimal dominating set of every subgraph, and

the minimal dominating set of the entire lattice may be smaller than D. One

can find more details of the integer programming method in two-volume series

by Haynes, Hedetniemi, and Slater. [1]

For an integer program to compute a lower bound for the domination ra-

tio, we let b be a binary vector with zero entries corresponding to vertices on

the external boundary and other entries are ones. We replace the constraint

Nx ≥ ~1 in the integer program above with Nx ≥ ~b and keep the rest the same.

An integer program to compute a lower bound for the domination ratio is as

follows:

min
1

n
(~1)Tx s.t. xε{0, 1}n and Nx ≥ ~b

Notice the constraint Nx ≥ ~b ensures that S is a dominating set of G, as-

suming boundary vertices of G are dominated for free. Let the optimal solution

be x∗. The optimal objective function value 1
n
(~1)Tx∗ provides a lower bound for

the domination ratio, because the domination ratio of the entire lattice can only

decrease when we assume some vertices are dominated for free.

We wrote an integer program for the kagome lattice and obtained the non-

trivial lower bound 94
462

> 0.2034632. Note the trivial lower bound is 0.2 and the
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best upper bound we have is 2
9
< 0.2222223.
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Conclusion

We have shown that seven of the eleven Archimedean lattices are efficiently

dominated and the other four are not efficiently dominated. We have deter-

mined exact perfect domination ratios for all of the eleven Archimedean lat-

tices. Tight bounds for domination ratios are obtained using integer program-

ming.

For some ideas about future research on this problem, one might consider

solving for the exact domination ratio of the (3, 6, 3, 6), (3, 4, 6, 4), and (32, 4, 3, 4)

lattices. Domination ratios and perfect domination ratios of the other classes of

infinite lattices such as 2-uniform lattices, or three dimensional lattices, such

as the cube, face-centered cube, and body centered cube, may be investigated.

For the kagome lattice, we have shown the number of possible perfect dom-

ination proportion values is infinite. For the (32, 4, 3, 4) lattice, we have proved
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there are only two possible perfect domination proportions. It would be in-

teresting to consider nonisomorphic perfect dominating sets of and possible

perfect domination proportions for all Archimedean lattices. In particular,

for each lattice, to determine whether the number of possible perfect domi-

nation proportion values is finite or infinite. Furthermore, it would be interest-

ing to determine whether perfect domination proportions can be irrational for

Archimedean lattices and for infinite periodic graphs in general.

114



Bibliography

[1] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domi-

nation in Graphs. New York: Marcel Dekker Inc., 1998.
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