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Abstract

Proteins often evolve new functions by acquiring a small number of mutations in an

ancestral sequence not containing the phenotype. Modeling the functional effect of a

mutation is, however, a nontrivial task, due to strong functional interdependencies.

Here, I used the recent evolution of the bacterial enzyme TEM β–lactamase under

antibiotic selection as a model for genetic adaptation. I compiled a database of

TEM β–lactamase sequences evolved under antibiotic resistance selective pressure

and identified functional interactions between individual mutations/mutated residues.

I built network models of coevolving residues (possible functional interactions), in

which nodes are mutations and edges represent coevolution between two mutations. I

reconstructed both the alignment and phylogeny-based mutation coevolution networks

and assessed the utility of network-theoretical tools to derive information regarding

role of individual mutations in the observed resistance.

Coevolution network analysis reveals key properties of mutations in evolution

of antibiotic resistance, many of which were confirmed through extensive fitness

measurements in the lab and by previous experimental studies of TEM β–lactamase
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ABSTRACT

function. One finding is that mutations form densely connected clusters in the network

corresponding to selection to different main classes of antibiotics or to different adaptive

strategies within the same antibiotic class. Mutations that are central in the network

tend to be either adaptive or compensate for effects of many other mutations.

By extending node centrality metrics to paths of mutations (connected nodes in

the network) I was able to study properties of adaptive evolutionary trajectories in

TEM. I found that central paths are enriched in non-negative functional interactions.

Specifically, paths corresponding to triple mutants were experimentally shown to

increase fitness from all or most of their constitutive single and double mutants. It was

also shown that relative rankings of central paths and their constituent shorter paths

can be used to predict the direction of fitness change in an evolutionary trajectory.

In this way, this predictor of the effect of an evolutionary trajectory can be useful in

anticipating evolution of antibiotic resistance.

In summary, my analysis of the combined functional effects of mutations in

producing new biological activities should help anticipate evolution driven by a variety

of clinically-relevant selections such as drug resistance, virulence, and immunity.
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Chapter 1

Introduction

One of the fundamental principles in cell biology is that the amino acid sequence

of proteins specifies their three-dimensional structure and biochemical function [1].

Improved understanding of the genetic basis of protein evolution should help predict

the functional impact of mutations, which has critical clinical and biotechnological

implications [2–4]. Proteins evolve to acquire new functions in a process known as

adaptation. The genetic

1.1 Modeling the functional impact of sin-

gle mutations

Until recently, most bioinformatic approaches for functional effects prediction have

focused on single amino acid residue substitutions in a protein. Such approaches
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CHAPTER 1. INTRODUCTION

have been applied to discovery of mutations that affect protein function in large-scale

mutagenesis projects focused on a wide range of organisms [5, 6]. Bioinformatics

methods have also been applied to the related problems of predicting a protein’s

function and predicting the location of functionally important protein regions (such

as binding sites), based on sequence, evolutionary history, and/or structure [7–9].

Many bioinformatics methods for predicting mutation effects consider evolutionary

history and/or biophysical properties of only single residue positions [6,10]. Conserved

positions in proteins are used to indicate sites that are key to maintaining structure and

function [11]. On the other hand, variable sites occurring in otherwise conserved protein

superfamilies are used to identify functional specialization [12]. The evolutionary

history reconstructed from an alignment can provide additional information on the

level of selection experienced by distinct protein sites. Applying the neutral theory

of amino acid substitution, rates of molecular divergence are studied to estimate the

level of positive or negative selection at a given site [13].

Phylogenetic trees are built on the assumption that similarities in morphological

or molecular characteristics between any two organisms can be explained through a

common ancestor. The principles of conserved and variable sites can be extended to

the analysis of an inferred phylogenetic tree [14].
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CHAPTER 1. INTRODUCTION

1.2 Modeling coevolution and functional

dependencies between mutations

The assumption that different sites in a protein evolve independently cannot

explain drastic changes in the functional effects of mutations that depend on what

other mutations are present. In an extreme example, mutations that are deleterious

and pathogenic in the human protein are present as the wild type protein residues in

ortholog sequences of non-human species [15]. This suggests that other residues in the

protein compensate for the deleterious effects of these mutations, and these functional

interactions result in coevolution between these sites [16].

It is now well accepted that methods to predict the combined impact of multiple

mutations will have great utility for protein engineers who seek to design proteins with

new or improved functions [17, 18]. For example, such methods can contribute to the

design of therapeutic regimens for diseases driven by bacteria or viruses, in which rapid

evolution on short timescales generates drug resistance [19]. Introducing functional

interactions as model parameters, greatly increases the complexity of models. For

example in a regression model, the number of parameters needed to model pairwise

(and beyond) interactions will lead to a number of parameters that far exceeds the

number of experimental observations [19]. This problem is referred to as the curse of

dimensionality [20].

Several statistical methods exist to identify direct pairwise functional interactions
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CHAPTER 1. INTRODUCTION

between mutations. These methods include evolutionary trace (ET), statistical-

coupling analysis (SCA), direct coupling analysis (DCA), and residue coevolution

networks [7–9,21–23]. ET [7] uses a phylogenetic tree to group protein sequences and

rank the functional importance of amino-acid residues by correlating their evolution

with divergence in the tree. Residues traced in this way are mapped onto a protein

structure, and sites of clustering can be used to infer functionally important sites.

SCA [8] relies on partitioning and perturbation of large and diverse multiple sequence

alignments of homologous proteins to study higher-order interaction patterns. Direct-

Coupling Analysis (DCA) [21, 23] combines covariance analysis with global inference

analysis, adopted from use in statistical physics to distinguishes between directly and

indirectly correlated residues, which in turn have been observed to accurately predict

residue-residue contacts.

More similar to the study presented here are two previous studies of protein residue

coevolution networks, based on large, diverse protein families. Both studies found

that node connectivity and centrality had utility in predicting functionally important

residues [9], and that protein specificity determining sites that do not cluster on the

three-dimensional structure can still be found to coevolve due to complex functional

constraints [22]. To my knowledge, none of these methods predict the impact of

specific mutation trajectories in the coevolution network arising from higher-order

interactions. However methods that predict such mutation trajectories and thus better

describe selective pressures leading to increased function are needed in the evolutionary
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CHAPTER 1. INTRODUCTION

biology community [24–26].

1.3 A mutation network model of protein

evolution

Coevolution network approaches start with information on covariation from multiple

sequence/phylogeny analysis, and position such pairwise interactions in the context of

a network. Previously, most coevolution networks focused on large protein families

and found essential structural constraints that maintain the function/structure of

these families [9,22,27]. In reality, coevolving residues may not be co-localized in a

protein structure and may represent complex evolutionary interactions or compensatory

effects due to mutation pleiotropy [28,29]. In contrast, the network coevolution models

presented here are based on a collection of sequences closely related to a protein of

interest, evolving under a defined selective pressure (Chapter 2). In this collection

of evolutionarily-related sequences, sequences differ from each other by one or more

point missense mutations. The network represents mutated positions (Chapters 3 and

4 and [28]) or specific mutations as nodes (Chapters 5 and 6). A link connecting two

nodes corresponds to the strength of evolutionary interactions between two positions.

In my work, such evolutionary interactions can be identified either at the level of

aligned adaptive sequences (Chapters 3 and 4) or from co-occurrence in the same

phylogenetic clade (Chapters 5 and 6).
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A mutated position/mutation coevolution network has the following properties:

• A set of interacting mutations, of any order, is represented as a cluster or

community in the network.

• An evolutionary trajectory is represented as a path through the network.

• Link weights represent the number of times two mutations occurred independently

in the evolution of the protein family.

• Link direction can indicate preferred temporal ordering of a series of mutations

during an evolutionary trajectory.

• Fewer parameters are required than in a regression that includes mutation

interaction terms (pairwise interactions and beyond). The worst-case number

of parameters for n mutations in the network is the maximum number of links

between them, which is of order O(n2).

In this work I am able to identify communities of residue positions associated with

different functional specificities (Section 3.4); expand pairwise interactions to adaptive

evolutionary trajectories and predict fitness increasing combinations of mutations not

previously encountered in natural evolution (Section 4.4.1); predict whether fitness

increases or decreases in a specific evolutionary trajectory. While I use the bacterial

TEM β-lactamase (Chapter 2) as a model system throughout this work, my network

analysis could potentially be generalized to other proteins evolving under defined

selective pressures.
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Chapter 2

Model system: TEM β-lactamase

evolution of antibiotic resistance

One of the most critical public health issues today is the evolution of microbial

pathogens able to resist antimicrobial treatments [30–32]. Among the diverse antibiotic

resistace strategies, some of the most common mechanisms include efflux pumps, which

reduce the concentration of antibiotics inside the cell, and enzymes that modify, or

otherwise metabolize antibiotics [33]. Some of the most prevalent antibiotic resistance

enzymes are the β–lactamases [34]. These enzymes break down β–lactam antibiotics,

such as penicillin and derivatives (e.g. ampicillin), cephalosporins (including (CTX)),

monobactams, carbapenems and β–lactamase inhibitors [35]. β–lactam antibiotics

act by interfering with bacterial cell wall synthesis by irreversibly binding to transpep-

tidases, enzymes that are involved in the cross-linking of the peptidoglycan layer of
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bacterial cell walls. A wide variety of β–lactamases can be found in both gram-positive

bacteria (where they are typically secreted) and gram-negative bacteria (where they

are employed in the periplasmic space).

2.1 Evolution of antibiotic resistance in

TEM β-lactamases

The TEM-1 β–lactamase was first isolated in the 1960s and named after the

patient (Temoneira) providing the first sample [36]. Following the introduction of

third generation cephalosporins in the 1980s, multiple variants with few differences

in their amino acid sequence were isolated. Thus, as with other bacterial resistance

evolution, resistance has arisen within few years of its first clinical use. The rapid

emergence of antibiotic resistance is due to the selection for specialized traits that

were already present in the environmental populations of bacteria [30]. Many of the

most common resistance genes found in hospitals today are encoded on small plasmids

that can be exchanged among different bacterial strains and species. This is one

mechanism of horizontal transfer [37].

TEM-1 β-lactamase was one of the first antibiotic resistance enzymes for which

it was demonstrated that amino acid substitutions could result in alteration of the

resistance phenotype [38]. The clinical isolation of mutant TEM alleles as a result

of the introduction of novel antibiotics at the beginning of the 1980s has provided
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an extensive database of amino acid substitutions in the genes coding for TEM-

1 mutants, which alter the genes’ ability to provide antibiotic resistance [39, 40].

More than 200 derivatives of TEM-1 with aberrant amino acid sequences have been

described today and catalogued in a public database [41]. This database includes both

mutant sequences and the types of β–lactam antibiotics to which they are resistant.

With this knowledge, TEM-1 has been used as a model system for the study of

enzyme structure-function relationships, enzyme engineering, the in vitro evolution

of antibiotic resistance and various fundamental evolutionary questions including

the effects of fluctuating selective pressure, accessibility of evolutionary pathways,

robustness, epistasis, and evolvability [38,39,42–54].

2.2 Properties of TEM as a model system

for protein evolution

An important property of TEM β-lactamases as a model system for protein

evolution is that there is a direct correspondence between the evolution of a new

activity (such as extended-spectrum resistance) and bacterial survival [3]. Thus,

computational predictions of the impact of multiple mutations can be systematically

tested by introducing mutations of interest into the TEM gene and characterizing

the bacteria carrying this mutated gene. Their survival, when exposed to extended

spectrum antibiotics can be measured and used as a proxy for the protein’s catalytic
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activity. An established method for determining antibiotic resistance is the minimum

inhibitory concentration (MIC), defined as the lowest concentration of an antimicrobial

that will inhibit the visible growth of a microorganism after overnight incubation. MIC

is generally regarded as the most fundamental in vitro measurement of the activity of

an antimicrobial agent against an organism [55].

TEM β-lactamases have been evolved in the lab through alternating rounds of

mutagenesis and selection for antibiotic resistance, primarily selection for increased

MIC. Numerous such experiments have shown that in vitro evolution of TEM β-

lactamase accurately mimics natural evolution [39,44,45,53,56–66]. Directed evolution

experiments can also be used to predict the results of natural evolutionary processes,

and to access new sets of mutations (sequence space) not previously observed in

natural evolution of resistance [54]. These new (combinations of) mutations can also

interact functionally, which provides additional sets of functional interactions to be

studied.

Pervasive functional interactions, specifically sign epistasis [52] and pleiotropy,

were identified in TEM when studying the accessibility of evolutionary trajectories

from TEM-1 to the mutant containing mutations A42G, E104K, M182T, and G238S

[49], as well as a promoter region mutation [44]. From this set of five mutations

increasing fitness, only a 18 of all 120 possible trajectories (ordered combinations)

were accessible. Most evolutionary paths would not be selected due to decreases it

fitness at different stages of the trajectory. Overall numerous studies have used TEM
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β-lactamase as model system to show the importance epistasis in shaping protein

evolution of new functions or characterize properties of mutations exhibiting epistatic

interactions [51,52,67–71]. As such, TEM β-lactamase provides a rich system in which

to study complex functional impacts of mutations during a protein’s evolution of new

functions.

11



Chapter 3

Alignment-based network of

co-evolving positions in TEM

3.1 Introduction

In order to study how new biochemical activities arise during evolution, I compiled

and aligned a database of clinically or experimentally derived TEM-1 β-lactamase

mutant sequences.

My first assumption was that a majority of mutants present in the database would

have undergone a degree of positive selective pressure; for sequences isolated in the

clinic, the selection occurs via the β-lactam antibiotics that are administered to

patients. In fact, the rapid evolution of β-lactamases in recent years has been linked to

the widespread use of antibiotics [72, 73]. The experimentally derived sequences come

12
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from directed evolution experiments, in which a mutation round is followed by selection

of the mutants for a given level of resistance. A concordance between clinical and

experimental TEM β-lactamase evolution has been well established [74]. Codon-based

maximum likelihood phylogenetic analysis (in PAML, [75]) of the naturally occurring

sequences further supports this assumption by showing enrichment of non-synonymous

vs. synonymous mutations (ω > 1) in most residue positions Table 3.1.

The second assumption was that frequent co-occurrence of a pair of mutated

residue positions within the same sequences indicates a functional relationship between

these positions. I constructed an undirected, weighted network representation of

co-occurring residue pairs to map the potential functional interactions underlying

the evolution of β-lactamase under antibiotic selective pressure. In this network

model (shown in Figures 3.1 and 3.2), mutated residue positions are represented as

nodes. Links connect pairs of nodes corresponding to residue pairs observed to be

co-mutated in at least one TEM mutant sequence. In this representation, node size is

proportional to weighted degree centrality, which shows how well a node is connected

to its neighbors and how many neighbors it has (section 4.3).
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Figure 3.1: The TEM coevolution network and its communities: The network was
constructed based on frequencies of co-occurring mutated residue positions in 363
mutant TEM β-lactamase sequences. Node size is proportional to how well connected
a node is to its neighbors and how many neighbors it has (weighted degree centrality).
Link thickness is proportional to the number of sequences in our database in which both
positions are mutated, normalized by the number of sequences in which only one or the
other position is mutated 3.2.4. Node (residue) numbers are shown in Ambler notation.
The Clauset community-finding algorithm [76] identified three major communities,
corresponding to three Bush-Jacobi β-lactamase phenotype classes: broad-spectrum
antibiotic resistance or 2b (gray), extended-spectrum antibiotic resistance or 2be (blue)
and inhibitor resistance or 2br (orange). Mutated positions with phenotypic effects
documented in [74]: extended-spectrum resistance 51, 173, 237, 240, 39, 164, 104,
238, 153, 265, 92, 224; inhibitor resistance 165, 69, 275, 276, 244, 201; inhibitor and
extended-spectrum resistance: 182 and 268.

14



CHAPTER 3. ALIGNMENT-BASED NETWORK OF CO-EVOLVING
POSITIONS IN TEM

3.2 Network construction

3.2.1 TEM mutant sequences alignment

The TEM mutant sequence database consists of sequences that have evolved

under antibiotic selective pressure. This database includes clinical (n = 144 [77]) and

laboratory evolved (n = 217 [39,44,45,53,56–66]) sequences.

Using TEM-1 as the reference sequence [77]) and the Ambler [78] amino acid residue

numbering scheme for the class A β-lactamase superfamily to TEM, I constructed

a multiple sequence alignment of naturally occurring and laboratory-evolved TEM

mutants.

In order to examine the correspondence between network clustering patterns

(section 3.4) and any common functional roles of mutations, I first annotated TEM

sequences (but not individual mutations) by known phenotype class from the literature

or the Lahey Clinic β-lactamase online database [41]. The phenotype class of naturally

occurring TEMs is determined experimentally [55]. I was able to associate 380 out

of 405 TEM naturally occurring or TEM laboratory-evolved mutant sequences in

the database with a single major β-lactamase phenotype class (113 broad-spectrum,

“2b”, sequences, 201 extended-spectrum, “2be”, sequences, and 49 inhibitor-resistant,

“2br”, sequences). There were also 17 sequences with a combined extended-spectrum

antibiotics and inhibitor resistant phenotype class, “2ber”, that were not used in the

network. This was because it was not known whether the selection was for extended
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spectrum, while starting with inhibitor resistance, or vice versa, i.e. selection for

inhibitor resistance starting from extended spectrum resistance. I assumed that the

resistance selection criterion used in the directed evolution experiments [39, 44, 45,

53,56–66] determined the phenotype class of the TEM sequences coming from such

experiments.

3.2.2 Identifying residues under selection in the

TEM mutant sequence database

After constructing the mutant TEM sequence alignment, I analyzed the extent of

positive selection in the naturally occurring TEM sequences. I compared the degree

of positive selection at a residue position to the corresponding node’s connectivity in

the network. For this, I performed a PAML (codeml) analysis [75] for the naturally

occurring TEM β-lactamase sequences. I used PHYLIP [79] to build a phylogenetic

tree (gamma distribution, four classes, α parameter: 0.348). I used a log-likelihood

test to compare the fit of codeml models 2 (three-classes of unselected/selected codon

positions) and 1 (two-classes of unselected/selected codon positions) to the data, and

found that model 2 was a better fit (χ2 test, p-value� 0.01). Using model 2s three site

classes, I found that out of 35 mutated amino acid residue positions in the network of

naturally occurring TEM sequences, 11 were identified as strongly positively selected

(ω ≥ 8.4) and 22 were positively selected (relaxed to ω ≥ 0.8) Table 3.1.
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The top-ranking residues under positive selection tend to be well connected in the

network, as per their high degree centralities. This means that they are frequently

mutated together with other residues in the network, supporting the general belief

that adaptive mutations are accompanied by many other mutations due to pleiotropy

Residue WT Degree of positive Network node
number residue selection ω (PAML) degree rank

104 E 10.5 1
164 R 10.5 2
240 E 10.5 3
182 M 10.5 4
238 G 10.5 5
69 M 10.5 6
237 A 10.5 7
275 R 10.5 10
244 R 10.5 20
153 H 10.4 12
165 W 9.9 9
223 S 4.3 15
224 A 4 25
55 K 3.1 21
187 A 3 15
230 F 3 15
268 S 2.1 14
221 L 2.1 27
49 L 2.1 31
276 N 1.7 8
51 L 1.6 11
280 A 1.6 29
226 P 1.4 18
196 G 1.3 23
175 N 1.1 31
179 D 1 34
289 H 1 22
215 K 1 35
248 A 1 18
92 G 0.9 33
163 D 0.8 24
127 I 0.8 13
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Table 3.1 . . . continued
Residue WT Degree of positive Network node
number residue selection ω (PAML) degree rank

173 I 0.8 30
42 A 0.4 26
262 V 0.4 27

Table 3.1: Positive selection analysis for every codon in naturally occurring TEM
sequences, in PAML 4 (codeml) [75]. Residue position number according to the Ambler
system [78] (column 1); wild-type amino acid residue in TEM-1 (column 2); ω value
(ratio of non-synonymous to synonymous nucleotide substitutions at a codon position)
(column 3). Rows were sorted by decreasing ω value. Residues with ω ≥ 8.4 were
classified by PAML as exhibiting strong positive selection, residues with 8.4 ≥ ω ≥ 0.8
were in the “relaxed” positive selection class, and residues with ω < 0.8 were under
no selection. The weighted node degree centrality 4.3 was computed in a network
constructed with only sequences from clinical isolates (column 4).

3.2.3 Counting of co-selection events in TEM se-

quences

If two TEM residue positions appear altered in one or more naturally occurring

TEM mutant sequences, these mutant sequences are considered distinct co-selection

events. This approach does not account for any evolutionary relationships in TEM

sequences (addressed in Chapters 5 and 6).

The directed evolution experiments included in my sequence database tend to

consist of multiple rounds of selection in defined concentrations of β-lactams. In

this way, only resistant TEM mutants that are selected in one selection round are

used in the next round. In each subsequent round, TEM mutant sequences acquire

additional random mutations and only sequences conferring the required level of
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β-lactam resistance are then selected in the following round, etc.

As a conservative way to only include pairs of mutations that arose independently,

I did not count the occurrence of a pair of mutations again when it continued to

appear through the subsequent selection rounds of a laboratory evolution experiment.

In addition, if a pair of mutations was already present in the library of sequences that

was used to start the directed evolution experiment, that pair was counted only once,

and only if it was present in the first selection round.

In the clinical samples database [77], the Q39K mutation arises independently

only once, in the TEM-2 β-lactamase, as demonstrated by earlier studies of the

TEM phylogeny [39]. Therefore, naturally occurring TEM mutants have either

descended from TEM-1 directly, or through TEM-2. For the construction of the

coevolution network, I was interested in how many times a mutation appeared and

was selected for independently, therefore, I removed residue 39 from the alignments of

naturally occurring TEMs, but any mutations in this residue found in in vitro evolution

experiments were included in the model. This is an example of spurious correlation

arising from the evolutionary history of TEM mutant sequences. In Chapters 5 and 6

this evolutionary history (phylogeny) was taken into account and Q39K did not have

to be removed.
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3.2.4 Network weights

To indicate the potential strength of the interaction, links within the network are

weighted in proportion to the number of residue pair co-occurrence events. Specifically,

two nodes (two mutated amino acid residue positions) are linked if mutations at

both residues exist in at least one TEM sequence in the alignment. To estimate the

number of times that mutations at two residue positions have coevolved, I counted

independently selected mutation pairs (section 3.2.3). The weight w of each link

is proportional to the number of sequences in which both positions are mutated,

normalized by the number of sequences in which only one or the other position is

mutated, which is a Jaccard-like index [80]:

w(Mi,Mj) =
c(Mi,Mj)−(1−ε)

c(Mi)+c(Mj)−c(Mi,Mj)
(3.1)

where c(Mi) and c(Mj) are the number of times a the ith and jth column (residue

position), respectively, are mutated in the alignment. c(Mi,Mj) is the number of

times both columns are mutated together, and w(Mi,Mj) is the network weight of

the link between nodes i and j (or residue positions i and j).

A correction term was included to ensure that mutated pairs, which occur in a

single sequence together and never by themselves, are not overweighted. Without

this term, these pairs would always have (the maximum) link weight of one. ε is the

inverse of the number of aligned sequences used to construct the network (a heuristic
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choice that works well in practice).

3.3 Global network properties

The weighted degree distribution of the network, i.e. the aggregate weight of the

links incident on each individual node, reveals overall few highly connected nodes,

with a majority of nodes exhibiting low connectivity (Figure 3.2).

Figure 3.2: The weighted degree distribution of the TEM alignment-based coevo-
lution network: The distribution of nodes by aggregate weight of links per node
(weighted degree centrality, 4.3) is shown. Many nodes (residue positions) with high
weighted degree are functionally important (Table 4.1). The distribution reveals that
the network contains very few highly connected nodes, with a majority of the nodes
exhibiting low connectivity. This topology is similar to that of scale-free networks [81],
and is reminiscent of the connectivity distribution of other biological processes such
as signaling or cellular differentiation.
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3.4 Network communities and selective pres-

sures

To identify highly connected subnetworks (communities) of mutated residue posi-

tions, I used the Community-Structure-Partition algorithm [76], implemented in the

Graph Utilities Package in Mathematica 7.0 [82]. Communities with five or fewer nodes

were merged onto one of the larger communities. The choice of a larger community

onto which to merge the smaller community was determined by calculating the overall

network modularity function [76] after a suggested merge. The merge that resulted in

the highest network modularity was the one that was chosen.

The TEM coevolution network also has a modular structure, with a modularity

score Q = 0.522, where 0 ≤ Q ≤ 1.0; This modularity occurs in a hierarchical way,

with larger communities and the communities within them (Figures 3.1 and 4.1).

The Clauset community-finding algorithm [76] identified three major network commu-

nities (Figure 3.1). I found a clear correspondence between each of these communities

and each of the β-lactamase phenotype classes defined by Bush and Jacobi [83]:

(1) broad-spectrum antibiotic (2) extended-spectrum antibiotic (3) inhibitor resistance.

These communities help identify the different sets of mutations that are selected for

different resistance functions. While some mutations, like M182T, which is thermody-

namically stabilizing, can be found in sequences with different resistance phenotypes,

they are preferentially found in one single community. Functional interactions and
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the resulting coevolution between mutations could be the reason for this preferential

assignment [84,85].

On a narrower level, within the two adaptive community networks (the extended-

spectrum and inhibitor-resistant community networks), I found subcommunities, i.e.

subnetworks of densely connected nodes. These subcommunities likely represent paral-

lel strategies of adaptation within a community’s phenotype class, namely trajectories

leading to different local maxima within the fitness landscape (3.4 and 3.4).

Community associated with broad-spectrum resistance in TEM

The broad-spectrum antibiotic community includes mutations previously reported

as nearly neutral or as preserving the parental TEM-1 phenotype, since catalytic

efficiency for broad-spectrum β-lactams has evolved to perfection in TEM-1 [86]. The

extended-spectrum community contains mutations at eight positions that are known

to extend the substrate spectrum of the enzyme: 39, 51, 104, 164, 173, 237, 238,

240 [39,49,59,62,65,68,74,87–93], as well as four stabilizing mutations: 153, 182, 224,

268 [49,53,74,91,94,95].

Community associated with extended spectrum resistance in TEM

This extended spectrum community contains two large subcommunities, which are

discussed in detail in 4.2. Central to each subcommunity is one position involved in

substrate recognition, 164 and 238 respectively. R164H/S/C mutations are thought to
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lead to the collapse of the Ω-loop, creating greater active site accessibility (Figure 3.3);

G238S on the other hand, appears to increase affinity for the substrate and/or cause

repositioning of the Ω-loop (Figure 3.3). These two mutations were shown to represent

alternative evolutionary solutions, leading to parallel, divergent mutation trajectories

with different fitness optima and are known to exhibit negative epistasis [68].

Community associated with inhibitor resistance in TEM

The inhibitor resistant network comprises two communities corresponding to two

distinct mechanisms disrupting inhibitor binding at the active site [81]. One involves

positions 69 and 276, which are strongly connected in one community, and the other

one involves 244, which is in a separate community Figure 3.1. Likewise, the inhibitor

community contains five positions known to confer inhibitor resistance: 69, 165,

244, 275, 276 [56, 74, 96–101] and three enhancer stabilizing mutations: 147, 201,

275 [48,53,74,95,99,102,103].

Communities associated with new resistance function in TEM

The observed segregation of residue positions according to the selection driving

their evolution is remarkable given that no phenotype class information was used to

construct the network. This effect is consistent with previously described antagonistic

pleiotropy between different resistance phenotypes [104]. Within the two adaptive

communities (extended spectrum and inhibitor resistance) community annotation
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largely matched phenotypic data: five mutant positions were correctly classified as

inhibitor resistance mutations and 12 positions were accurately classified as extended-

spectrum mutations (Figure 3.1, legend).

TEM mutations at the interface between adaptive communities

Interestingly, mutations that are known or suspected to contribute to both inhibitor

and extended spectrum antibiotic resistance (182, 268, 201) are at the interface

between the two communities. Positions 100 and 147 are similarly located at this

interface. These are positions with likely compensatory, thermodynamically stabilizing

mutations [53,66,95,102] that have also been found in extended-spectrum evolution

experiments [39] [65] [68]. They may also belong to the dual resistance phenotype

category, as experimental data on inhibitor resistance evolution is scarce. The only

clearly misclassified mutant positions are 175 (involved in extended-spectrum resistance

[105] but classified as inhibitor resistance) and 130 (an inhibitor resistance mutation

classified as broad-spectrum). In the case of the catalytic site residue 130, the

misclassification was due to the fact that the S130G mutation confers resistance

to inhibitors on its own and therefore rarely co-occurs with other mutations. Its

assignment to the broad-spectrum community is based on a single co-occurrence event

in the database.
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Mapping adaptive communities of residues to the TEM tertiary structure

In summary, I find that selective pressures leave recognizable footprints on the

TEM network’s connectivity. Furthermore, the amino acid positions within network

modules are not necessarily physically close in the protein’s tertiary structure, as

interactions are defined genetically (functionally) rather than physically. To illustrate

this point, Figure 3.3 maps nodes (mutant positions) belonging to the three major

communities in the TEM coevolution network onto the tertiary structure of the TEM

enzyme (PDB ID: 1ero). It is apparent that neither community is physically localized

to a defined area of the protein.

3.5 Conclusions

Here, I used co-occurrence in the sequence alignment of TEM sequences of three

main resistance phenotypes (broad, extended-spectrum, and inhibitor-resisance), as

an indicator of potential functional interaction. Pairwise interactions were visualized

using a network representation where each node is a mutant position, and each link

represents occurrence of two mutated positions in the same sequence. The resulting

undirected, weighted network has a few highly connected nodes and a majority of

nodes exhibiting low connectivity (Figure 3.2). This connectivity property [107] is

reminiscent of the link distribution in networks representations of other biological

processes, such as cell signaling or differentiation, where it helps in buffering noise
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caused by random variation within the system. In the case of proteins, it may

contribute to robustness to mutation.

Communities in this network correspond to the three distinct phenotypic categories.

The observed segregation of residue positions according to the selection driving their

evolution is remarkable given that no phenotype class information was used to construct

the network. This effect is consistent with previously described antagonistic pleiotropy

between different resistance phenotypes [104]. Within the two communities with

non-ancestral phenotype (extended-spectrum and inhibitor resistance) I found that

community annotation largely matched phenotypic data, while the amino acid positions

within network modules are not necessarily physically close in the protein’s tertiary

structure.
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Figure 3.3: Locations of amino acid residues in the TEM coevolution net-
work mapped onto the TEM tertiary structure (PDB 1ero). Residues in
the TEM coevolution network (Figure 3.1) are colored by community membership:
gray (broad-spectrum resistance), blue (extended-spectrum resistance) and orange
(inhibitor resistance). The communities do not map to distinct regions of the tertiary
structure. Image created with UCSF Chimera [106].
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Chapter 4

Alignment-based network of

extended spectrum resistance

evolution

4.1 Introduction and overview.

In Chapters 3 and 4, I constructed and analyzed the structure of a network

of positions found to be mutated in all TEM β-lactamases evolved under multiple

(natural or laboratory) selective pressures. The network communities segregate residue

positions into groups related by the function which was selected, i.e. extended spectrum

or inhibitor resistance. In this chapter, I focus on a network model of mutant positions

evolved under a single selective pressure. Extended-spectrum antibiotic resistance is
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the best-represented resistance phenotype class in my TEM mutant sequence database,

both in clinically isolated and laboratory evolved sequences.

Adaptive trajectories and information flow through the network.

Since the evolution of TEM to acquire extended spectrum antibiotic resistance

is an adaptive process, mutations that become fixed are the result of a positive

selection. Therefore, adaptive evolutionary trajectories can be conceptualized as a

successful combination of functional milestones. In this scenario, the evolution of

new biochemical activities involves transfer of information within the network, where

each node is a potential functional milestone. I reasoned that efficient information

transfer would improve the chances of generating mutant combinations with high

fitness. Thus, within the context of a network based on sequences selected only for a

given in phenotype, every edge in the network should represent a favorable evolutionary

interaction. Furthermore, if I assume that every mutant position represents a potential

functional milestone, adaptation involves information transfer across the network [9].

Network communities and alternative adaptive trajectories.

I constructed a coevolution network based on the sequence alignment of extended

spectrum TEM sequences only, similarly to Section 3.2 and analyzed the community

structure as in Section 3.4. In this case of a single selective pressure, I found that

distinct communities of mutated positions tend to represent alternative strategies of
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adaptation [68].

Adaptive trajectories and central network paths

In order to find significant adaptive trajectories, I applied graph-theoretical metrics

to find the most central network paths. Specifically, I focused on shortest path

betweenness centrality (Section 4.3), which I used to measure the importance of a

path for information transfer across the network. It is assumed here that central paths

in the network are of likely special significance for adaptation.

I started with the most experimentally tractable evolutionary trajectories (ones

involving three mutations) and identified the central network paths. The particular

significance of the corresponding evolutionary trajectories identified by my analysis

is demonstrated because they frequently increase CTX resistance over constituent

double mutation pairs. Even though most of these trajectories had been previously

described, the ability to identify them implies that this analysis has predictive value,

as it had no information about the original sequence context of the co-occurring pairs

of mutations.
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Figure 4.1: The extended-spectrum TEM network and its two communities: The
network was constructed in the same way as Figure 3.1, but here I only used sequences
associated with extended-spectrum antibiotic resistance. I identified two large com-
munities, the first containing the active-site residue 238 (light-blue), and the second
containing the active-site residue 164 (dark-blue). Node size is proportional to how
well connected a node is to its neighbors and how many neighbors it has (weighted
degree centrality 4.3). Link thickness indicates how frequently two residues (nodes)
are mutated in the same sequence, normalized by the number of sequences in which
only one or the other position is mutated as in Section 3.2.4. Image created with
CytoScape [108].
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4.2 Properties of the extended-spectrum

network

I constructed an undirected, weighted coevolution network (as in Section 3.2),

this time using only TEM mutant sequences conferring extended-spectrum resistance:

A total of 201 naturally occurring and laboratory-evolved sequences were in the

extended-spectrum database.

Extended spectrum network modularity.

The extended-spectrum resistance network contains two large communities (Fig-

ure 4.1). Central to each community is one position involved in substrate recognition,

164 and 238 respectively. R164H/S/C mutations are thought to lead to the collapse

of the Ω-loop, creating greater active site accessibility (Figure 4.2A); G238S on the

other hand, appears to increase affinity for the substrate and/or cause repositioning

of the Ω-loop (Figure 4.2B).

Mutations R164S and G238S were shown to represent alternative evolutionary

solutions, leading to parallel, divergent mutation trajectories with different fitness

optima [68]. Specifically, divergent evolution appeared as a contingency effect of

trajectories involving the mutually antagonistic G238S or R164S mutations. The first

mutation in an adaptive trajectory thus significantly impacted the composition of

subsequent evolutionary trajectories. In the extended spectrum resistance network
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analysis, this divergent evolution is represented by the two communities defined by

residues 164 and 238. Most nodes have strong connections (high-weight links) to

one of these communities and much weaker connections (very low-weight or absent

links) to the other community. For example, position 237 is strongly linked to 164,

but is weakly connected to nodes from the 238 community. This non-uniform node

connectivity agrees with a laboratory evolution study [68], which reported that E104K

is preferentially selected in G238S trajectories, while E240K is more frequently found

in R164S trajectories. Therefore, the network can be used to make inferences on

evolutionary contingency effects, at least for the two main fitness peaks present

in extended-spectrum evolution. The observation that other residue positions are

frequently linked with both 164 and 238 in the network, even if I typically find a

preference for one or the other, indicates that the evolutionary divergence associated

with the two fitness peaks is only partial.
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Figure 4.2: (A) Mutations at residue 164. An arginine to serine (or arginine to
histidine) substitution at position 164 (blue spheres) has been hypothesized to collapse
the critical Ω-loop (green) in the active site, thus opening the active site to β-lactams
with larger side chains [50,74,109] (PDB ID 1zg6 [110]). The ligand (shown in stick
representation) is an N-Formimidoyl-Thienamycine pseudo-substrate from PDB ID
1jvj [111]. (B) Mutations at residue 238. A glycine to serine (or glycine to alanine)
substitution at position 238 has been hypothesized to expand the active site by either
repositioning the B3 β-strand (positions 235-240) [112] (yellow) or by tilting the
Ω-loop (green) (positions 161-179) [113] that connects the two sub-domains of the
protein. Mutations at both positions are associated with increased resistance to third
generation cephalosporins [112,114].
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Mapping adaptive communities of residues to the TEM tertiary structure

In the previous section, I found that as selective pressures leave recognizable

footprints on the general TEM network’s connectivity, leading to communities of

nodes with common functional effects. However, here too the amino acid positions

within network modules are not necessarily physically close in the protein’s tertiary

structure, as interactions are defined genetically (functionally) rather than physically.

Figure 4.3 maps nodes (mutant positions) belonging to the two major communities in

the TEM extended spectrum network onto the tertiary structure of the TEM enzyme

(PDB ID: 1ero). Again, neither community appears to be physically localized to a

defined area of the protein.
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Figure 4.3: Locations of amino acid residues in the TEM extended spec-
trum network communities on the TEM tertiary structure (PDB 1ero).
Residues in the TEM extended spectrum adaptation network (Figure 3.1) are colored
by community membership: light blue (community containing the active-site residue
238) and dark blue (community containing the active site residue 164). The commu-
nities do not map to distinct regions of the tertiary structure. Image created with
UCSF Chimera [106].

4.3 Network node centralities analysis

I reasoned that by analyzing the connectivity of the TEM β-lactamase coevolution

network, I could extract functional information about amino acid residue positions
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in this enzyme. I focused the analysis on the extended-spectrum community, which

is the adaptive community network based on the largest number of available mutant

sequences.

I used three standard graph-theoretical node centrality metrics to identify important

residue positions in the undirected, weighted network: (weighted) degree centrality,

closeness centrality, and betweenness centrality.

Weighted degree centrality

The degree of a node is a local measure of this nodes importance in a network.

Specifically, in a network (graph) G(V,E), the importance of the node (vertex) v is only

defined by its immediate set adjacent nodes or neighbors N(v) (Equation 4.1) [115].

For a network with a node/vertex set V , degree centrality is the degree normalized by

the total number of remaining nodes |V | − 1:

CD(v) = deg(v)
|V |−1 =

∑
u∈N(v) wuv

|V |−1 (4.1)

where wuv corresponds to the weight of association between residue positions u and v,

as defined in Equation 3.1.

Shortest path network centralities

The next two centralities, the weighted closeness 4.3 and the weighted betweenness

centralities are based on shortest paths, a.k.a. geodesics in the network. A network
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path in G(V,E) is a sequence of vertices P = (v1, v2, ..., vn), vi ∈ V , such that vi is

adjacent to vi+1 for 1 ≤ i ≤ n. Letting ei,i+1 ∈ E be the edge incident on both vi

and vi+1, and given a real-valued weight function f : E → R, the length of the path

Puv between vertices u = v1 and v = vn is
∑n−1

i=1 f(ei,i+1). The shortest path P ∗vw

minimizes this length, and the distance between u and v, dG(v, w) is the length of this

shortest path:

l(Puv) =

n−1∑
i=1

f(ei,i+1) (4.2)

P ∗uv = argminPuv
l(Puv) (4.3)

dG(v, w) = l(P ∗vw) (4.4)

Because in my network, weights represent strength of association rather than

distance, the weight function is defined as

f(euv ∈ E) = 1
wuv

(4.5)

where euv is the network edge between nodes u and v and wuv is the corresponding

weight of association between residue positions u and v, as defined in Equation 3.1.

The use of network paths to assess the functional importance of corresponding

residue positions follows the assumption that adaptation involves information transfer

across the network (Section 4.1). By applying shortest paths algorithms, I furthermore
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assume that adaptive trajectories are optimal or parsimonious and that evolution

proceeds sequentially using the minimum number of mutations that lead to increased

fitness. In Section 5.6.2, I consider algorithms in which evolution is not assumed to

proceed by an optimal overall trajectory. Instead, trajectories are optimized at each

individual step, and so are the corresponding paths in the network, which are not

necessarily the shortest ones.

Weighted closeness centrality

Closeness centrality is a global measure of a node’s importance in a network is

defined as:

CC(v) = 1∑
w∈V \v dG(v,w)

(4.6)

where dG(v, w) (Equation 4.4) is the shortest path distance between nodes v and w in

the graph G. The summation in the denominator is over all nodes w in the set V of

all nodes in the network (excepting v) that are reachable from v.

Weighted betweenness centrality

Betweenness centrality, an alternate global measure of a node’s importance in a

network is defined as:

CB(v) =
∑

s6=v 6=t∈V
σst(v)
σst

(4.7)

where σst(v) is the total number of distinct shortest paths connecting all pairs of

network nodes (s, t) that pass through node v, and σst is the number of all distinct
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shortest paths connecting node s to node t in the network. The inequality requirements

ensure that only paths that pass through the node of interest v, but do not start or

end at it, are counted. In order to find all the shortest paths in the network between

a given pair of nodes, I developed a simple bidirectional search algorithm. The length

of the shortest path was calculated using the weighted distance definition as in the

denominator as in Equation 4.6.

I interpret node betweenness centrality as a measure of information flow through

a given node from the entire community network [22]. Again, this assumes that

information (related to selection for a certain function) flows along optimal trajectories

(combinations of mutations) during the adaptive process. In Chapter 6, I also apply a

betweenness centrality based on random walks rather than shortest paths to address

a model of adaptation in which new functions are not not required to evolve in the

most parsimonious way.

Node centralities and functional effects of mutated positions

Mutated residues that are highly ranked by the network centrality metrics have

known functional impact previously described in the literature. While many of the

mutations known to contribute to extended-spectrum resistance are highly frequent,

the network also ranks highly the less frequent mutations with known contributions

(Table 4.1).
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4.4 Central network paths and predicted

evolutionary trajectories

Each link in the TEM coevolution network represents a potential step within an

adaptive evolutionary trajectory. Once individual coevolution links between pairs of

mutated residues are put into the context of network, the definition can be expanded

to adaptive trajectories of any length. Although, by construction, all two-node paths

have been seen in natural or laboratory evolution, by defining longer paths within the

network, I should be able to derive evolutionary trajectories consisting of more than

two mutations.

In single-node shortest-path betweenness centrality, a node’s importance to the

overall connectivity of the network is measured by the number of shortest paths that

pass through it. In the generalization from a single node to a path of connected nodes,

I define the betweenness of a path Puv between two nodes u and v as the number of

shortest paths that pass through Puv but do not start or end at u or v.

CB(Puv) =
∑

{s,t,u,v}∈V
{s,t}∩{u,v}=∅

σst(Puv)/σst (4.8)
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4.4.1 Central network paths to identify adaptive

evolutionary trajectories

I chose to analyze two-edge (three-node) shortest paths, each of which represents

an evolutionary trajectory that produces a triple mutant sequence, because they are

the most tractable to enumerate and explore. I identified evolutionary trajectories

of special significance for adaptive evolution based on shortest path betweenness-

centrality a metric that can be interpreted to measure the efficiency of information

transfer through the network.

I investigated the significance of betweenness centrality as an indicator of potential

adaptive evolution. Below I show that: (1) the triple mutant trajectories listed in

Table 4.2 as of potential special significance for adaptation are enriched for triple

mutants that have been previously reported; (2) the reported triple mutant combi-

nations consistently increase extended-spectrum resistance over constituent double

mutants, confirming they resulted from a functional selection; (3) using reported

triplet mutants as a proxy for increased resistance, I can estimate the success rate

of the coevolution network path betweenness centrality metric (Equation 4.8). This

success rate is considerably higher than what would be anticipated based on the

simple assumption that the most successful triplet combinations consist of the most

frequent single mutations in the database. Together, these three lines of evidence

strongly support the predictive value of the extrapolation to triple mutant evolutionary

44



CHAPTER 4. ALIGNMENT-BASED NETWORK OF EXTENDED SPECTRUM
RESISTANCE EVOLUTION

trajectories.

Nonzero betweenness centrality triplets frequently identify triple mutants

associated with extended-spectrum resistance.

A subset of all possible three-node paths in the network (48 out of 214) had a

shortest path betweenness centrality greater than zero. These triple mutant trajectories

are listed in Table 4.2, ranked in descending order of betweenness centrality. Shown

is also the number of times (count) that each residue position in the trajectory was

seen mutated in the 201 extended-spectrum resistant TEM sequences in the database.

Note that many nonzero betweenness trajectories consist of at least one infrequent

mutation and therefore would not have been predicted as critical based on frequency

alone. Note also that these 48 triplets consist of combinations of only 16 residue

positions out of a total of 55 residue positions in the network. These positions could be

of special significance for the evolution of extended-spectrum β-lactamase resistance.

In addition to listing nonzero shortest path betweenness centrality trajectories,

Table 4.2 also shows which of these trajectories were previously reported in clinical

or experimental studies. Trajectories are listed in descending order of betweenness

centrality value. I noted that this list is rich in triple mutant combinations that

have been previously described in clinical or experimental reports, with 23 previously

described out of the 48 predicted paths. In addition, I found a strong association

between the chance of having been previously reported and the corresponding shortest
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path betweenness centrality value: while all of 10 top-ranked triplet paths are already

known; only 1 of the 6 paths with the lowest positive betweenness centrality (value of

1) is known.

Evolutionary
Trajectory

Betweenness
centrality

Database count* Previously reported

238 104 164 96 48,48,38 TEM-008, TEM-134, [68]
173 164 104 92 48,48,5 [39]
182 104 164 66 27,48,48 TEM-043,TEM-063, [68]
240 164 104 62 31,48,48 TEM-046
268 240 164 41 2,31,48 TEM-136, [68]
120 238 104 39 3,38,48 [65] , [68]
39 240 164 32 1,31,48 [68]
237 164 104 28 9,48,48 TEM-130, [68]
104 238 153 23 48,38,9 TEM-021, [68]
240 164 173 22 31,48,5 TEM-132, [68]
104 164 40 18 48,48,1
238 104 51 16 38,48,2
215 104 164 15 48,38,20 TEML-136
104 238 265 15 2,48,48 [39,57,68]
39 240 238 12 1,31,38
182 104 51 11 27,48,2
173 164 51 9 5,48,2
215 104 238 8 2,48,38
182 238 120 7 27,38,3 [65]
240 164 51 6 31,48,2
224 164 173 6 3,48,5 [59]
173 164 237 6 5,48,9 [39,68]
224 164 240 5 3,48,31
173 164 40 4 27,38,20
182 104 215 4 27,48,2
182 238 153 4 5,48,1 [68]
240 238 153 4 31,38,9
182 238 265 4 27,38,9 [68]
51 164 40 3 20,38,31
40 164 240 3 2,31,9
224 164 251 3 3,48,2
51 164 237 3 1,48,31
268 240 237 3 2,48,1 TEM-136, [68]
265 238 240 3 2,48,9 [68]
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Table 4.2: Prediction of critical triple mutant evolutionary trajectories . . .

Evolutionary
Trajectory

Betweenness
centrality

Database count* Previously reported

39 240 237 2 3,38,9 [68]
39 240 268 2 2,38,3
120 238 153 2 31,38,3 [65]
240 238 120 2 3,48,9
120 238 265 2 1,31,2
268 238 120 2 2,38,9
268 238 153 2 3,38,20
224 164 237 2 1,31,9 [68]
224 164 40 1 2,38,20
237 164 40 1 9,48,1
51 104 215 1 48,48,3
104 164 224 1 20,38,9 [68]
265 238 153 1 3,48,1
268 238 265 1 2,48,2

Table 4.2: Prediction of critical triple mutant evolutionary trajectories
in the extended-spectrum antibiotic resistance community. Triple mutant
trajectories are shown as an ordered list of three residue positions, where an ordered
pair represents a link in the network. The shortest path betweenness centrality is listed
for each triple mutant trajectory, in descending order. I interpret the betweenness
centrality of a trajectory as a representation of information flow through this path for
the entire extended spectrum resistance network. The count shows the number of times
that each residue position in the trajectory was seen mutated in the 201 extended-
spectrum resistant TEM sequences in the database. Note that many trajectories
consist of at least one infrequent mutation and therefore would not have been predicted
as critical based on frequency alone. Some of the triple mutants have been seen either
alone or in combination with other mutations in clinical isolates, in laboratory-evolved
isolates that were included in the database, or in laboratory-evolved isolates that were
not in the network database.

Reported extended-spectrum resistant mutants increase extended-spectrum

resistance.

I interpreted the occurrence of a given path (evolutionary trajectory) in clinical

isolates or published laboratory evolution experiments as an indication of likely fitness
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advantage, i.e. of likely increased resistance to extended-spectrum β-lactam antibiotics.

This interpretation was experimentally confirmed, using CTX as a representative

extended-spectrum β-lactam antibiotic as done previously in similar studies [51,53,68].

Site-directed mutagenesis of TEM β-lactamase was used to obtain TEM β-lactamase

mutants. Resistance to CTX was determined using a gradient plate assay [120].

48 out of a possible 214 three-node shortest paths in the extended spectrum

community network had nonzero betweenness centrality, so the experiments were

focused on the corresponding 48 triple mutants. Because all triplets represent a

mutational trajectory and are therefore ordered, I compared the activity of each triplet

to each possible trajectory (i.e. initial pair of mutations) that led to it.

48



CHAPTER 4. ALIGNMENT-BASED NETWORK OF EXTENDED SPECTRUM
RESISTANCE EVOLUTION

Figure 4.4: Cefotaxime plate growth assays for selected clones. Cultures of cells
expressing the β–lactamase mutants listed at the top of the gradients were stamped
on LB plates containing a CTX gradient. The direction of the gradient is from
top (minimal concentration) to bottom (maximal concentration). The maximal
concentration of the gradient is listed at the bottom. Note that in part B more than
one concentration is shown to cover the wide range of resistance phenotypes of the
panel of mutants being tested. (A) Two mutant triplets predicted to be of special
significance by my analysis but that were not present in the sequence database used
to build the network but were subsequently reported in [68], and a third triplet also
predicted by my analysis but that showed only a marginal increase. Only the doublet
with the highest level of resistance is shown. (B) Triplets with the strongest negative
functional interactions. The mutation responsible for the negative effect is highlighted
in bold.
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15 triple mutants that span a range of shortest path betweenness centrality values

were tested by measuring growth (in centimeters) along an LB agar plate containing a

CTX gradient. Of these 15 triple mutant trajectories, 9 had already been described,

and 6 were new. The results (Table 4.3) show that observed mutants consistently

increased resistance over both ordered, constitutive pairs: 8 out of the 9 previously

reported triple mutants. By contrast, none of the non-observed mutant sequences

I tested improved on both constitutive double mutants. These results confirm the

intuitive notion that combinations of mutants that increase fitness are more likely to

have been selected during evolution of TEM β-lactamase under extended-spectrum

antibiotic selection and therefore reported.
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Betweenness centrality vs. random choice of frequently occurring muta-

tions

The experimental results show that observed triple mutants consistently increase

CTX resistance. Thus, I reasoned that to be reported as having extended-spectrum

resistance is a viable proxy for having increased fitness. By this logic, the predictive

success rate of my method is 23 out of 48. To demonstrate that this success rate is

not due to chance, I ran a simulation in which I randomly selected 48 triple mutants

only from TEM residue positions previously reported in association with extended-

spectrum antibiotic resistance. I sampled these positions according to their mutation

frequency in the database. The 10,000 random sets of 48 triple mutants selected in

this way followed a normal distribution, as expected by the central limit theorem.

This simulation produced an average success rate of 12.8± 3.08 observed triplets out

of 48. Since the success rate of 23 out of 48 is well outside the range of standard error,

this analysis was able to extrapolate triple mutant trajectories from pairs of coevolving

mutations more accurately than simply combining mutations of high frequencies and

thus can be inferred to have predictive value.
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4.4.2 Central network paths and pairwise functional

interactions between mutated residues

Next, I investigated whether links connecting co-occurring pairs in this network

represent synergistic functional interactions. The individual vs. combined effects of

the mutations in the mutant triplets from Table 4.3 were tested, and the results are

listed in Table 4.4: A difference between adding the individual fitness effects of two

mutations (M1+M2) and the combined fitness effect of the double mutant (M1 M2)

indicates of either synergistic (positive difference) or antagonistic (negative difference)

interactions.

Of the mutation pairs in Table 4.4, six have been previously reported as having

synergistic functional interactions. In agreement with previous reports, the experimen-

tal tests here show significant positive interactions in five known synergistic interaction

cases, with the exception of E104K M182T. The experimental test shows no synergy,

but the mutations’ individual effects combine in an additive way. I also found two new

examples of synergistic interactions involving I173V (E104K I173V and II73V E240K),

Five examples of antagonistic interactions, not previously reported, were exper-

imentally identified. The high count of negative interactions in the tested pairs is

surprising given that each connected pair of nodes represents pairs of mutations that

co-occur in at least one sequence. I assume that the reported sequences containing

these mutations with negative functional effects must have additional mutations pro-
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ducing an overall increase in resistance. Therefore, these mutations were selected for

based on the specific sequence context in which they occurred. Similarly, I found a

number of significant antagonistic interactions in the triple mutants tested (8 out of

27; Section 4.4.3). Thus, even in a network model representation, intrinsically biased

in favor of synergistic interactions, I frequently find antagonistic interactions among

linked mutation pairs. This observation highlights the pervasiveness of antagonistic

pairwise interactions in TEM extended-spectrum resistance evolution. The reason

these residues are identified as functionally associated could be because they tend to

only occur with other mutations in the background. Therefore, while their combined

effect is negative when tested against the wild type (TEM-1) context, they may

exhibit synergy in the context of additional mutations. Network paths or communities

containing such residue pairs could provide insights into the context relevant to these

interactions. In summary, links within the network are rather more indicative of

potential functional dependencies than specifically of interactions that are positive in

the context of the wild type. Examining the non-wild-type sequence context in which

such negative interactions occur would point to important complex compensatory

mechanisms. Additional analysis of the network communities in which negatively

interacting pairs of residues occur, could provide further insights into such complex

compensatory effects.
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M1 M1 M2 M2 M1 M2 M1 M2- Significant
growth growth growth (M1+M2) functional

[cm] [cm] [cm] [cm] interaction*

Q39R 2.09 G238S 9.61 7.76 -2.35
Q39R 2.09 E240K 1.58 2.16 0.08
L40W 2.08 R164H 3.43 2.13 -1.79 antagonistic
L51P 1.93 E104K 2.20 1.65 -0.89 antagonistic
L51P 1.93 R164H 3.43 1.90 -1.87 antagonistic
E104K 2.2 H153R 2.17 2.73 -0.05
E104K 2.2 R164H 3.43 8.42 4.38 synergistic**
E104K 2.2 I173V 2.10 10.84 8.13 synergistic
E104K 2.2 M182T 2.15 2.82 0.06 **
E104K 2.2 K215E 1.90 2.39 -0.12
E104K 2.2 A224V 1.86 1.90 -0.57
E104K 2.2 G238S 9.61 16.83 6.61 synergistic**
R120S 1.94 G238S 9.61 7.22 -2.74 antagonistic
H153R 2.17 G238S 9.61 11.50 1.31
R164H 3.43 I173V 2.10 6.95 3.01 synergistic**
R164H 3.43 A224V 1.86 3.90 0.20
R164H 3.43 E240K 1.58 9.48 6.06 synergistic**
I173V 2.1 E240K 1.58 3.62 1.53 synergistic
M182T 2.15 G238S 9.61 16.17 6.00 synergistic**
K215E 1.9 G238S 9.61 6.34 -3.58 antagonistic
G238S 9.61 E240K 1.58 12.04 2.44
G238S 9.61 T265M N/A 10.84 N/A

Table 4.4: Experimentally determined functional interactions between sin-
gle mutations in the extended-spectrum antibiotic resistance community
network. Mutated residues (columns 1 and 3) and their individual CTX resistance
levels (columns 2 and 4) are compared to resistance levels when they occur together
in the same sequence (column 5). The level of CTX resistance (an indicator of
extended-spectrum antibiotic resistance) is shown in centimeters of linear growth on a
0.04 µg/ml CTX gradient. The difference between the combined effect (column 5) and
the sum of the individual effects (column 2 + column 4), which represents synergistic
or antagonistic functional functional interactions, is shown in column 6. In column 7
a significantly synergistic or antagonistic interactions are reported when the difference
in column 6 the margin of standard error for a given number of replicates (Table B.1)
** Six interactions were previously reported as synergistic.
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4.4.3 Central network paths and functional inter-

actions in triple mutants

The level of resistance of pairs of mutations present in nonzero betweenness

centrality trajectories to their constituent mutations is shown in Table 4.5. When I

compared the effect of single mutations on mutation pairs in triple mutant trajectories,

I found 8 significantly antagonistic functional interactions versus 19 synergistic ones.

Overall, the analysis revealed a surprising number of antagonistic interactions: 22 out

of 60 tested interactions had a negative trend, which was statistically significant in

13 cases. Thus, while links in the network represent potential functional interactions,

these links are not necessarily indicative of synergistic functional interactions. In fact,

their interactions are frequently antagonistic. Because all the pairs tested co-occurred

in at least one TEM sequence, I inferred that the interaction was synergistic in the

context of original sequence, i.e. in the presence of additional mutations, similarly

to the effect observed with pairwise interactions (Section 4.4.2). Here too, analysis

of the network communities in which negatively interacting pairs of residues occur,

could provide further insights into the underlying complex compensatory mechanisms.

Table 4.5: Epistasis within mutant triplets

M1 M1 M2 M2 M1 M2 M1 M2– Significant
growth growth growth (M1+M2) functional

[cm] [cm] [cm] [cm] effect

Q39R 2.09 E240K R164H 9.48 9.10 -0.88
Q39R 2.09 E240K G238S 12.04 9.59 -2.95 negative
L40W 2.08 E104K R164H 8.42 5.06 -3.85 negative
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Table 4.5: Epistasis within mutant triplets (cont.)
M1 M1 M2 M2 M1 M2 M1 M2– Significant

growth growth growth (M1+M2) functional
[cm] [cm] [cm] [cm] effect

L51P 1.93 M182T E104K 2.82 2.54 -0.62
L51P 1.93 I173V R164H 6.95 1.79 -5.5 negative
L51P 1.93 G238S E104K 16.83 1.88 -15.29 negative
E104K 2.20 R164H L40W 2.13 5.06 2.32 positive
E104K 2.20 R164H A224V 3.90 9.31 4.80 positive
E104K 2.20 K215E G238S 6.34 11.26 4.31 positive
E104K 2.20 I173V R164H 6.95 16.49 8.93 positive
E104K 2.20 G238S T265M 10.84 19.40 7.95 positive
E104K 2.20 G238S H153R 11.50 17.65 5.54 positive
R120S 1.94 G238S H153R 11.50 14.36 2.51
R120S 1.94 E240K G238S 12.04 12.92 0.53
H153R 2.17 R120S G238S 7.22 14.36 6.56 positive
H153R 2.17 E104K R164H 8.42 11.5 2.50 positive
H153R 2.17 E104K I173V 10.84 2.65 -8.77 negative
H153R 2.17 M182T G238S 16.17 17.95 1.20
H153R 2.17 E104K G238S 16.83 17.65 0.24
R164H 3.43 Q39R E240K 2.16 9.10 5.10 positive
R164H 3.43 E104K H153R 2.73 11.5 6.93 positive
R164H 3.43 M182T E104K 2.82 16.86 12.20 positive
R164H 3.43 E104K I173V 10.84 16.49 3.81 positive
R164H 3.43 H153R G238S 11.5 6.00 -7.34 negative
I173V 2.10 R164H L51P 1.90 1.79 -0.62
I173V 2.10 E104K H153R 2.73 2.65 -0.59
I173V 2.10 E104K R164H 8.42 16.49 7.56 positive
I173V 2.10 E240K R164H 9.48 17.48 7.49 positive
M182T 2.15 E104K L51P 1.65 2.54 0.33
M182T 2.15 E104K R164H 8.42 16.86 7.88 positive
M182T 2.15 G238S H153R 11.50 17.95 5.89 positive
K215R 1.90 E104K G238S 16.83 11.26 -5.88 negative
A224V 1.86 E104K R164H 8.42 9.31 0.62
G238S 9.61 E104K L51P 1.65 1.88 -7.79 negative
G238S 9.61 Q39R E240K 2.16 9.59 -0.59
G238S 9.61 K215R E104K 2.39 11.26 0.85
E240K 1.58 Q39R R164H 3.70 9.10 5.41 positive
E240K 1.58 R164H I173V 6.95 17.48 10.54 positive
E240K 1.58 R120S G238S 7.22 12.92 5.71 positive
T265M N/A E104K G238S 16.83 19.40 N/A
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Table 4.5: Epistasis within mutant triplets (cont.)
M1 M1 M2 M2 M1 M2 M1 M2– Significant

growth growth growth (M1+M2) functional
[cm] [cm] [cm] [cm] effect

Table 4.5: Experimentally determined functional interactions between sin-
gle mutations in the extended-spectrum antibiotic resistance community
network. Mutated residues (columns 1) and residue pairs (column 3) and their
corresponding CTX resistance levels (columns 2 and 4, respectively) are compared to
resistance levels when they occur together in the same sequence (column 5). The level
of CTX resistance (an indicator of extended-spectrum antibiotic resistance) is shown
in centimeters of linear growth on a 0.04 µg/ml CTX gradient. The difference between
the combined effect (column 5) and the sum of the individual effects (column 2 +
column 4), which represents non-additive functional interaction, is shown in column
6. In column 7 a significantly synergistic or antagonistic interaction are reported
when the difference in column 6 the margin of standard error for a given number of
replicates (Table B.1)

Central network paths and role of sequence context

The observed disconnect between co-occurrence and the CTX resistance phenotype

of pairs of mutations included in the network suggests that the adaptive value of a

given mutation or mutation pair is highly dependent on sequence context. Thus, an

accurate assessment of the contribution of a given mutation to adaptation involves

testing the effect of the mutation in the presence of different additional mutations, i.e.

in a range of sequence contexts. Table 4.6 shows the impact of 14 of 16 mutations

identified as of likely significance for extended-spectrum β-lactamase resistance based

on shortest path betweenness centrality. Both the average effect (column 5) and

the range of effects (in centimeters of continuous growth; column 6), obtained in a

variety of sequence contexts, are shown. The number of sequence contexts tested (7
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on average) is listed in column 4. The sequences tested and their measurements are

listed in Table B.1. The main observations are as follows.

• The experimental results show a relationship between average phenotypic effect

and representation in my database, with frequent mutations (n > 4) having a

clear average positive effect (≥ 1 cm).

• The average effect of infrequent mutations (n < 5), is negative (−1.3 ± 1.6 cm),

questioning the relevance of these mutations for extended spectrum resistance.

The large negative effects that some of these mutations, L51P (−14.95 cm),

K215E (−5.57 cm); R120S (−2.39 cm) have in specific contexts suggests

that they are functionally important but that their effects are highly context-

dependent. The two strongest antagonistic effects I detected for infrequent

mutations, those of L51P and K215E, are shown in Figure 4.4(B).

• In agreement with the non-additive functional interactions analysis presented

in Tables 4.4 and 4.5, most mutant positions exhibit a wide range of functional

interactions, including synergistic, antagonistic, and neutral effects. The effect

of the R164H mutation on CTX resistance for example ranges from −5.5 cm to

+14.04cm, that of H153R, from −8.19 cm to 7.14 cm. This is a clear example of

the role of sequence context in determining the potential functional impact of a

mutation.

• R164H and L51P, two mutations with a known effect on resistance phenotype, had
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large negative impacts in some sequence contexts: 5.5 and 14.95cm, respectively.

These observations imply that a strong antagonistic effects may be as indicative of

functional interactions as are synergistic effects. Therefore, the large antagonistic

effects K215E (5.57cm) and L40W (3.4cm) suggest an important role for these

residue positions that is only revealed in specific sequence contexts, although

this remains to be experimentally confirmed.

• The network analysis identifies three positions whose phenotypic impact on

extended spectrum resistance had not been previously identified: 265 (average

1.9 cm, up to 2.6), 153 (average 1.0 cm, up to 7.1), and 120 (average 0.4 cm, up

to 2.9). The effect of 153 is strikingly sequence-context dependent, with values

ranging from 8.19 to +7.14cm, which may explain why the role of this mutation

has been hard to experimentally demonstrate.
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Mutant Database Mutation Number of Average Interval
position count tested tested sequence effect (min, max)

contexts [cm] [cm]

164 48 R164H 13 4.18 (- 5.50, 14.04)
104 48 E104K 15 4.04 (- 0.28, 9.54)
238 38 G238S 11 8.03 ( 0.23, 14.63)
240 31 E240K 8 3.96 ( 0.07, 10.53)
182 27 M182T 6 3.92 ( 0.62, 8.44)
265 20 T265M 2 1.90 ( 1.23, 2.57)
153 9 H153R 8 0.95 (- 8.19, 7.14)
173 5 I173V 8 3.82 (- 0.11, 8.64)
224 3 A224V 4 0.33 (- 0.30, 0.89)
120 3 R120S 4 0.43 (- 2.39, 2.86)
215 2 K215E 4 -2.89 (- 5.57, 0.19)
51 2 L51P 6 -3.69 (-14.95, 0.34)

268 2 N/A N/A NA NA
40 1 L40W 3 -1.39 (- 3.36, 0.49)
39 1 Q39R 6 -0.56 (- 2.45, 0.58)

Table 4.6: Context dependence of extended spectrum mutations. Critical
triple mutant trajectories (Table 4.2) contain only 16 unique individual residue
positions (column 1). The number of sequences in experimental and clinical isolates
that have this residue position mutated is shown in column 2. For each residue
position, I tested the most frequent amino acid substitution in these sequences, with
two exceptions: *K215E has equal frequency to K215R and K215Q in the extended-
spectrum phenotype sequence database; **L40W and L40V have equal frequencies
(column 3). Cefotaxime resistance of each mutation (centimeters of linear growth
on a 0.04 µg/ml CTX gradient) was tested in a variety of sequence contexts. Each
context consists of the relevant mutation plus different additional mutations, all of
which are found in the critical triple mutant evolutionary trajectories. The number of
sequence contexts tested is shown in column 4 and the different mutant combinations
comprising each sequence context are shown in Table B.1. Averaging the effect of each
mutation across all its sequence contexts yields a measure of its global contribution to
extended-spectrum antibiotic resistance (column 5). In general, the effects are highly
dependent on sequence context, as shown by the wide range of outcomes (column 6).
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Representation of residues with known functional significance in central

network paths.

The 48 triple mutant paths I identified as of special significance (Table 4.2) consist

of different combinations of only 16 residue positions (listed in Table 4.6, column

1). These include 10 positions with a demonstrated effect on extended-spectrum β–

lactamase resistance, out of 12 known to date [74]. The two false negatives (positions

missing from analysis) are 175 and 179, mutations in each of which arises independently

only once in my extended-spectrum sequence database. 175 is one of a number of

positions in the Ω–loop (involved in active-site formation) that are known to play

a role in extended-spectrum resistance [74, 105]. 179 was previously reported in a

clinical isolate [61,121] and in several experimental isolates [46] but appears to have a

narrower substrate specificity than other mutations present in the extended-spectrum

network community [74]. My analysis suggests that the remaining 6 mutant positions

present in the nonzero betweenness triple mutant paths (40, 120, 153, 215, 224, and

265) should be considered as potentially important for adaptation.

4.5 Conclusions

Prevalence of antagonistic interactions in network

Given that the network is largely constructed with mutations that have experienced

some degree of positive selection, and that mutant positions are linked when they
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co-occur in the same sequence, I expected a predominance of positive interactions. To

my surprise, I found that a large number of functional interactions within double and

triple mutants were antagonistic. Because all the pairs of mutations tested co-occurred

in at least one TEM sequence, I inferred that the interaction was positive in the

original sequence, i.e. in the presence of additional mutations. From this, I conclude

that examining the non-wild-type sequence context in which otherwise negatively

interacting residues are allowed to occur together, would reveal the principles behind

important complex compensatory mechanisms. Analysis of the network communities

around negatively interacting pairs of residues could provide insights into potential

compensatory contexts.

Significance of central network paths

By connecting individual nodes (representing mutated residue positions), paths

through the extended spectrum network define potential evolutionary trajectories.

Path centrality metrics allowed me to extend the trajectories beyond the pairs of

co-occurring nodes used to build the network. I focused on combinations of three

mutations, which are the most experimentally tractable ones. The basic hypothesis was

that genetic adaptation necessitates a specific combination of functional milestones,

where each amino acid mutation represents a potential milestone. According to

this hypothesis, combinations of mutations that facilitate information flow through

the network should contribute prominently to genetic adaptation. I used shortest
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path betweenness centrality (a metric that can be interpreted as measuring a path’s

importance for information flow within the network) to identify trajectories of potential

special significance for extended-spectrum β–lactamase resistance (Table 4.2). The

following points support the special significance of triple mutant trajectories with

nonzero betweenness centrality:

• They occur frequently in natural or experimental extended-spectrum β–lactamase

evolution experiments (Table 4.2, column 4).

• The higher the betweenness centrality, the more likely they are to have been

previously seen (Table 4.2).

• Presence of these mutations in reported (previously seen) sequences is associated

with increased CTX resistance, an indicator of extended-spectrum activity

(Table 4.5).

Limitations of the central network paths method

My method for identification of paths of special significance for adaptation assumes

that each mutant position has a discrete effect on adaptation and that this effect is

sufficiently unique that adaptation requires a composite solution. Therefore, global

suppressors (such as mutations at position 182) or mutations with a large impact on

their own (S130G, associated with inhibitor resistance, and G238S conferring extend-

edspectrum resistance) will not not be adequately accounted for by the information

flow metric.
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Furthermore, the high fitness extended-spectrum triple mutant 104 238 182 in the

list of nonzero betweenness centrality triplets (Table 4.2) is not present in the network.

Amino acid substitutions at 104 238 182 were the most frequent combination obtained

from TEM-1 libraries subjected to CTX selection [68]. The presence of a global

suppressor (182) and of a mutation with a large impact on its own (G238S) likely

explains why this triple mutant combination is not among the nonzero betweenness

paths in Table 4.2. However, parallel, divergent evolutionary trajectories identified by

this study are enriched for triple mutant trajectories with high betweenness centrality

(detailed in Table S6 and Text S1 Results). Overall, triple mutant trajectories with

nonzero betweenness centrality are frequently contained within mutational trajectories

parallel to E104K M182T G238S. Thus, my method is able to identify paths of special

significance for genetic adaptation, although with decreased sensitivity to mutations

with a large impact on their own and to global suppressors.

The coevolution network model presented here is based on co-occurrence frequencies

of pairs of mutated residues and does not consider the context of other mutations in

which these pairs co-occur. If a given pair of mutations always co-occurs in the context

of a third mutation, for example, it is possible that their combined functional effect

is only positive in this context. Expanding the Jaccard index metric (Section 3.2.4)

to incorporate higher-order (beyond pairwise) interactions could be important for

ensuring that only positive interactions between mutations are present in the network

representation.
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Chapter 5

A phylogeny-based network of

extended spectrum TEM evolution

5.1 Introduction

The alignment-based network model from Chapters 3 and 4 may present a desirable

alternative to phylogeny when the timespan of the evolution of new resistance is short

and there are no complex evolutionary relationships between sequences, i.e. most

sequences evolve independently from a common ancestor. However rapid evolution

under strong selection for function can give rise to complex evolutionary relationships

between sequences. Some of the extant sequences can actually be ancestral to other

currently extant sequences, yet both the ancestral and the extant sequence could be

present in different populations. For example the E104K G238S (TEM-15) mutant is
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ancestral to E104K M182T G238S (TEM-52), but both have been found to exist in a

clinical setting. When counting the occurrence of mutations in these two sequences,

they should not be regarded as having independently evolved directly from TEM-1.

In cases like this one, phylogeny can be incorporated into the network analysis to (1)

better estimate how many times pairs of mutated residues arise independently and

(2) potentially reveal the ordering of mutation events. The construction of a directed

network of temporally ordered mutations could help improve prediction of adaptive

trajectories including the preferred order in which mutations are selected.

Molecular phylogenetics use the extensive information encoded in molecular se-

quences. Given a set of sequences from different species a likely evolutionary tree is

inferred based on the common ancestor assumption. The topology of a phylogenetic

tree is the specific branching pattern of that tree. The branch lengths are related

to the amount of evolutionary divergence [122]. A rooted phylogeny will also have a

“root” which is the ancestor of all sequences considered in the tree, and the location of

the root can be determined in various ways [123]. The path from the root node to any

other node on the tree is unique and represents an evolutionary trajectory. Several

methods for reconstructing phylogenetic trees molecular evolution including clustering

by distance, parsimony, maximum likelohood, or Bayesian methods [122,124].

This chapter describes all steps in the construction of the phylogeny-based network,

whose performance is assessed in Chapter 6. The phylogeny is based on a codon

alignment of all TEM mutant sequences for which both the coding DNA sequence and
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corresponding protein sequences could be gathered (Section 5.2). Bayesian phylogenetic

inference (Section 5.3) was then used to reconstruct the TEM β–lactamase evolutionary

history.

5.2 Sequence database and alignment

I compiled 227 TEM and the closely related SHV sequences (and one PSE sequence

to be used as an outgroup) from existing databases of naturally occurring β–lactamases

[77]. SHV and PSE sequences are both in the same protein super-family as TEM, and

are the most closely related sequences.

I started with 220 sequences from the Lahey clinic Class A β–lactamase database

[77], containing resistant β–lactamases from pathogenic strains isolated in the clinic. I

downloaded TEM/SHV nucleotide coding sequences from NCBI GenBank [125] using

identifiers provided in [77].

Additionally, I queried human microbiome databases, containing β–lactamases

that do not necessarily come from pathogenic strains. Because of the lack of defined

selection, I expected these sequences to have intermediate levels of antibiotic resistance.

I searched the Joint Genome Institute Integrated Microbial Genomes (JGI IMG)

database [126,127] for all human microbiome genomes with available peptide sequences

and obtained over 7 million peptide sequences. I also searched the Human Microbiome

Project Reference Genome Database (HMRGD) [128] for all metagenomic samples
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from all human tissues and obtained over 5 million peptide sequences. I queried a

set of representative sequences from each major phylogenetic clade of the class A

β–lactamases [129] to which TEM and SHV belong against these two peptide sequence

databases.

BLAST+ [130] was used for the database search: Every query in the Class A

β–lactamase group phylogeny [83,129] was uniquely paired with the BLAST hits with

which this query had the lowest E-value [130]. In this way, I ensured that orthologs,

and no close paralogs were included. Specifically, if a given sequence was a hit both

for TEM and SHV, but the E-value with the SHV sequence was much lower than the

one for TEM, the sequence was considered a closer ortholog for SHV, rather than

TEM and was not added to the list of TEM hits.

Finally, from the JGI-IMG + HMPRG database hits, I removed the sequences

already present in the database of class A β–lactamase sequences reported in clinical

samples [77]. The majority of β–lactamase sequences from these human microbiome

databases overlapped with the known clinically relevant ones, possibly because there

was no strong antibiotic resistance selection on the enzyme in the harmless strains in

the microbiome. Furthermore, when β-lactamases are present in the non-pathogenic

strains of the human microbiome, it can be assumed that they were acquired through

lateral transfer [131]. As a result, the microbiome databases contributed with only

two TEM and five SHV additional sequences.

The nucleotide sequences from the Lahey database were retrieved from Genbank
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[125] by their identification numbers and were translated to protein sequences using

the bacterial codon usage tables [132]. For the seven additional and non-redundant

sequences from the IMG and HMP databases, I found the nucleotide and corresponding

peptide sequences. Protein sequences were aligned by following the Ambler numbering

scheme, which assigns amino acid positions based on optimized alignments of the class

A β–lactamase superfamily [78]. The alignment of nucleotide sequences corresponding

to the peptide alignment, was obtained by inserting a triple gap in the codon position

corresponding to a given amino acid position.

5.3 Phylogeny reconstruction

Building a phylogeny using Bayesian MCMC

Phylogenetic inference uses similarities and differences among biological entities

(species, genes, genomes) to reconstruct their evolutionary history. This inferred

history is summarized in the form of a phylogenetic tree, typically a binary tree,

for which nodes represent genetic sequences and links correspond to differentiation

events. The underlying assumption behind the phylogenetic tree model is that the

extant species have descended from a common ancestor. Methods for constructing

phylogenetic trees can be grouped into distance-based, parsimony, and maximum

likelohood classes.

Here, I use a Bayesian phylogeny inference method belonging to the maximum
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likelohood phylogeny inference class. Classical maximum likelohood methods use a

given model of evolution and search for the tree that maximizes the probability of

observing the data (sequence alignment) given that tree. Bayesian methods on the

other hand search for the tree that maximizes the (posterior) probability of this tree

given the data and model of evolution. In MrBayes [123], the posterior probability

of the ith phylogenetic tree (τi) conditional on the sequence alignment (X) can be

calculated by Bayes theorem:

f(τi|X) = f(X|τi)f(τi)∑B(s)
j=1 f(X|τj)f(τj)

(5.1)

where the summation is over all possible trees for s species, and the tree prior

is uniform f(τi) = B(s)−1. The tree likelihood function, f(X|τi), is a multiple

integral of tree parameters like branch lengths and molecular substitution rates. The

summation and integrals cannot be calculated analytically and in MrBayes, so they

are approximated using Metropolis-Coupled Markov Chain Monte Carlo (MC)3 [133].

Beyond an initial burn-in time, the proportion of time a tree topology is visited during

the Markov Chain is a valid approximation of its posterior probability [123]. For

improved sampling of the space of possible trees, incrementally heated Markov chains

can be run in parallel with a cold chain and are coupled via the Metropolis criterion.

In MrBayes, the user can specify the number of chains and the frequency with which

pairwise swaps of the current states are attempted between chains in order to optimize

sampling. A swap of two tree states is accepted based on the Metropolis criterion,
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and it allows escaping local minima in the posterior [134].

Choice of MrBayes model and constraints

Like other Markov Chain Monte Carlo methods, successful use of MrBayes requires

careful choice of evolutionary model and constraints [135]. In order to allow increased

variation in the evolutionary parameters in different parts of the input alignment

(either sets of sequences or sets of positions along the sequences), MrBayes allows

the input alignment to be partitioned. I determined the optimal partitioning scheme

to be used as an input to the multiple sequence alignment and evolutionary model

through PartitionFinder [135]. PartitionFinder is an algorithm that does automated

model selection by sampling from different partition schemes and evolutionary models.

For the TEM sequence alignment, the best partition of the nucleotide alignment

was partitioning by codon position (1st, 2nd, or 3rd). The best evolutionary model

was a subset of the generalized time reversible model of nucleotide substitution with

gamma-distributed rates and a proportion of invariant sites (GTR+G+I). The number

of gamma categories was increased from 4 to 6, in order to improve the smoothness

of the gamma approximation and allow for the large variation of substitution rates

across sites.
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MrBayes runs

I ran the parallel (MPI) implementation of MrBayes, with 6 independent Metropolis-

coupled MCMC runs. Each run had 8 Metropolis-Coupled chains (1 cold and 7 heated),

which was to ensure that the cold chain does not become stuck in local minima of the

posterior [136]. I ran for 30 million generations and discarded generations up to the

10 millionth one, to ensure that I was well beyond the burn–in period and into the

equilibrated phase. Therefore, each of the 6 independent runs was thinned to every

25,000th generation, to remove most autocorrelations between phylogeny parameters.

MrBayes convergence monitoring

In theory, a Markov chain will eventually converge to a unique stationary distri-

bution, in the limit of infinite number of steps [137]. However, there is no way to

guarantee convergence has occurred in a finite number of steps. There are several ways

to visually or statistically assess whether the Markov chain appears to have converged.

The built-in convergence diagnostic for MrBayes is the split (tree branch bipartition)

frequency standard deviation between the trees in different chains. The standard

deviation of the number of bipartitions in the trees is expected to decrease throughout

a run, and < 0.01 is a commonly accepted cutoff for stopping the runs. TRACER [138]

and AWTY [139] are additional diagnostic tools for phylogeny MCMC sampling:

Figure 5.1 shows the overall tree likelihood function from on of the 6 independent

runs in MrBayes, and along all 30 million generations. The overall tree likelihood
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includes both the tree topology and all the evolutionary parameters being optimized,

including substitution rates and stationary nucleotide frequencies. I made sure that

the distribution of the tree likelihood values is not multimodal, but the values fluctuate

around a single average, corresponding to a single peak in the likelihood function.

Figure 5.1: TRACER [138] output for tree likelihood function over 30 million
generations of Mr Bayes’ MCMC simulations.

MrBayes consensus tree

Figure 5.2 shows the consensus tree from the MCMC runs, based on mutually

compatible clades that exist in at least 50 % of the trees. A set of clades (phylogenetic

subtrees) sampled in the MrBayes run is considered mutually compatible if each leaf

node (evolved TEM, SHV, or PSE sequence from the alignment) was assigned to
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exactly one tree clade. The two major clades are for TEM and the closely related

SHV β–lactamases. The outgroup is PSE-4, which is a third subgroup of the Class A

(active site serine) β–lactamases. PSE-4 is closest in sequence to the TEM and SHV

subgroups.

On this consensus tree, the TEM and SHV clades are each very shallow or comb–

like, showing polytomies. This is because the consensus tree averages individual trees

from the MCMC run, and therefore may not represent a realistic evolutionary tree [140].

Additionally, in the case of TEM β–lactamase, there were diverse topologies in the

MrBayes run that were considered equally optimal in modeling the given sequence

alignment, due to the low sequence divergence in the TEM family. Note that the

TEM clade is deeper in individual trees from the MrBayes tree ensemble, than in

the consensus (summary) tree. Therefore, rather than using the consensus tree for

network construction the optimized trees from the post-burn-in tree ensemble were

used in the analysis below. The statistics performed on these optimized trees from

the MrBayes ensemble required knowing an optimized tree topology rather than a

summary or consensus tree.
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Figure 5.2: Consensus (summary) TEM subtree from the TEM, SHV, and
PSE phylogeny. The consensus tree from the MrBayes run contains clades with at
least 50 % support, i.e. which were present in at least 50% of the trees in the post
burn in MrBayes ensemble.
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5.4 Reconstructing ancestral states on the

phylogeny

Ancestral reconstruction, a.k.a. character mapping, is an evolutionary biology

method of identifying the phenotypic and genetic states of extinct ancestral organisms

or genes [141,142]. This occurs via extrapolation back in time to the common ancestor

of pairs of sequences. When using maximum likelohood methods, the tree topology,

branch lengths, and a substitution model can be used to infer the likelihood of a given

phenotypic trait or the molecular sequence of an ancestral node.

Ancestral sequence state reconstruction

For all phylogeny-based network reconstructions, I needed to find pairs of mutations

that arise in the same phylogenetic clade. Additionally information on the preferential

order of mutations in time (earlier vs. later mutation in the same clade) was needed.

Therefore, I reconstructed the sequences internal(“extinct”) nodes on the TEM β–

lactamase phylogeny. The PyCogent Python package [143] was used: a maximum

likelohood method was applied to find the likely nucleotide character distribution

at every internal node and for each position in the gene. The same evolutionary

model as in MrBayes was used: a generalized time-reversible substitution model

with gamma-distributed rates. The resulting nucleotide internal node sequences were

translated to amino acid sequences in the BioPython package [144]. I repeated this

77



CHAPTER 5. A PHYLOGENY-BASED NETWORK OF EXTENDED
SPECTRUM TEM EVOLUTION

ancestral reconstruction for every tree in the equilibrated phase ensemble from the

MrBayes runs.

Ancestral phenotypic trait reconstruction

In addition to reconstructing the ancestral sequences at internal nodes, I needed

to estimate how the resistance phenotype changes along branches of the tree. Since I

was interested in mutation pairs contributing to adaptation, i.e. the acquisition of a

given resistance phenotype, I only focused on pairs of mutations that acquired the

new phenotype or maintained it. Using the known resistance phenotypes of TEM

sequences in the alignment: broad-spectrum resistant, extended-spectrum resistant,

inhibitor-resistant, and the combined extended-spectrum and inhibitor-resistant, I

reconstructed the internal node phenotype at each node in each tree in the ensemble.

The ACE function in the APE R package [145] was used for this reconstruction. ACE

can estimate the phenotype of both continuous and discrete phenotype properties,

or traits in the evolution of a gene/organism. For example, for TEM β–lactamase

a continuous trait would be the amount of antibiotic resistance (MIC), and discrete

phenotypic trait would be the main type of antibiotic resistance. Since the information

on the amount of antibiotic resistance comes from different experimental assessments, it

was not a consistent enough phenotypic trait to model. However, the type of resistance

trait is available for most naturally occurring TEM mutant sequences. For discrete

characters, ACE uses a maximum likelohood model [146]. There are three types of
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transition rate matrices between the discrete states could be specified: an all-rates

equal, a symmetric, and an all rates different transition matrix. I chose the all-rates

different model, there are different levels of selection for extended-spectrum resistance

vs. inhibitor resistance, for example. Additionally, the rates are not symmetric, since

equal rates of transitioning to and away from a given phenotype are unlikely given a

strong selection for that phenotype. As a result, ACE gives the likelihoods of each

phenotypic trait on each internal node, and I picked the resistance phenotype with

the maximum likelihood.

5.5 Building a phylogeny-based network

of co-evolving positions

The phylogeny-based network of coevolving positions was constructed based on

sampling each tree topology in the MrBayes equilibrated phase tree ensemble. A

statistical test was performed for each pair of mutations in each of the trees in order

to determine if the pair appeared functionally associated in the tree. The number

of trees in which a pair of mutations passed the test of functional association was

ultimately used to weight the mutation pair in the network.

Below, I describe the techniques used to walk through the each tree and find pairs

of mutations with potential functional associations, the statistical test performed to

determine association on the tree, and the method to aggregate the test results from
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each tree in the ensemble.

Tree walking algorithm

Walks were performed along the phylogenetic tree, starting from the most recent

common ancestral (MRCA) sequence of all TEM β-lactamases and ending at each

leaf node in the tree. Only pairs of mutations occurring along a path from MRCA to

leaf sequences that satisfied the constraints below were considered.

• The two mutations are no more than a distance threshold (chosen based on the

tree depth) apart, assuming they both lie on a path from root to leaf nodes.

This is equivalent to there being few (silent and non-silent) mutations occurring

between them, along that common path. If there are many mutations between

the two mutations, it becomes less clear whether the acquisition of the new

function should be attributed to those mutations. Therefore, The mutations

that are very far apart are not likely to have a strong functional association.

• Both mutations lead to a mutant that has the new resistance phenotype of

interest. In other words, if the first mutation is associated with acquisition

of extended-spectrum resistance but the second mutation is associated with

inhibitor resistance, these two mutations arose under different selective pressures

and therefore could not be associated when selecting for extended spectrum

resistance only. To infer the resistance trait conferred by a mutation, I looked at

the phylogeny nodes before and after the mutation (endpoints of the phylogenetic
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edge along which the mutation occurred). The resistance phenotype traits of each

of these nodes were reconstructed as in Section 5.4 with the ACE program [146].

If the node (TEM sequence) before the mutation was associated with the ancestral

TEM-1 broad spectrum resistance trait, but the node after the mutation was

associated with extended spectrum resistance trait, then I predicted that this

mutation leads to extended spectrum resistance.

Tree distance filters for mutation pairs

Pairs of mutations that were spaced far away from each other in the tree were

not included in the Fisher’s exact test analysis for a given tree. My assumption was

that mutations separated by many intermediate phylogeny branches (and hence other

intermediate mutations) are not likely to functionally associated. This is because,

if there are many mutations have been selected at different steps between the two

mutations, it becomes less clear whether the acquisition of the new function should

be attributed to the two mutations. A distance cutoff was therefore applied to any

mutation pairs included in the contingency Tables for the Fisher’s exact test. The

cutoff was chosen based on the minimum tree depths (distances from the most recent

common ancestor) observed in the MrBayes equilibrated phase tree ensemble. The

distance cutoff of 0.5 was found to be less than the minimum tree depth in the

ensemble, yet large enough that it would not significantly constrain the analysis and

limit the number of mutation pairs identified.
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5.5.1 Individual tree statistics for functionally as-

sociated pairs of mutations

I applied a statistic to each tree in the phylogeny ensemble, in order to find pairs

of mutations with stronger functional associations than expected at random. For

this, I applied Fisher’s exact test to contingency tables representing co-occurrence

or individual occurrence counts of mutations along the trees. Initially, I describe

a method that is only based on functional associations, regardless of the temporal

ordering of mutations. Then, I expand this method to consider the two possible

orders of occurrence of mutations in a mutation pair. The first method results in

an undirected network of functional associations, whereas the second method adds

directionality (to be interpreted as temporal ordering) to the links.

Fisher’s Exact Test for an undirected pair of mutations

I made the assumption that if two mutations tend to arise along the same path in

the phylogenetic tree more frequently than would be expected from their individual

frequencies, it is likely that their combination results in increased protein fitness. In

other words, I expect that pairs of mutations that co-occur with significant frequencies

to have been selected for together for increased function. Recalling that the nodes

of these trees are populated by protein sequences and the edges by mutations that

represent transitions between sequences, I compute, for each tree, the total size of the
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clades in the tree (in number of tree edges) containing (1) both mutations; (2) one of

the mutations exclusively; (3) the other mutation exclusively; (4) neither mutation.

(Table 5.1). The counts are used to construct a contingency Table and Fisher’s

Exact Test is applied to assess whether the observed counts can be best explained by

increased protein fitness, i.e. with a significant right-tail p-value from the test.

phylo edge pairs containing: mutation 2 not mutation 2 total

mutation 1 n12 n12 n1

not mutation 1 n12 n12 n1

total n2 n2 N

Table 5.1: Contingency Table for co-occurring pairs of mutations. In a given
tree, T, for two mutations, 1 and 2, n12 is the number of phylogenetic tree edges in tree
clades containing both mutation 1 and mutation 2. n12 is the number of phylogenetic
tree edges in clades containing mutation 1 but not mutation 2, etc. n1 is the total
number of phylogenetic tree edges in clades containing both mutation 1 and mutation
2.

Fisher’s Exact Test for a directed pair of mutations

Unlike in the undirected mutation pair test, here I considered only directed pairs

occurring in the same phylogenetic branches, i.e. mutation 1 then mutation 2. I

performed Fishers exact test on each ordered pair, such that for two mutations 1

and 2, the test is performed twice: once on the ordered pairs with mutation 1 then

mutation 2 (Table 5.2), and once with the reverse order of mutations. Note that the

contingency Tables would be different depending on the order of mutations appear.
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phylo edge pairs containing: mutation 2 second not mutation 2 second total

mutation 1 first n12 n12 n1

not mutation 1 first n12 n12 n1

total n2 n2 N

Table 5.2: Contingency Table for directed pairs of mutations. Here, I work
with directed paths on tree T, starting at the root and ending in a leaf. The co-
occurrence analysis is similar to Table 5.1 except each direction, in this case, m1 then
m2 is shown.

5.5.2 Network weights aggregated from individual

tree statistics

The right-tailed p-value from Fisher’s exact test for a given mutation pair was

calculated for each tree in the equilibrated ensemble. Pairs passing a significance

threshold (p-value < 0.01) for many of the equilibrated tree topologies were expected

to have a higher functional association than pairs passing the threshold in fewer

topologies. The weight of a link between a pair of mutations in the network was simply

the number of trees in the equilibrated ensemble passing the significance threshold for

that pair (Eq. 5.2).

w(Mi,Mj) =
∑
{T}

I(pFET ≤ 0.01) (5.2)
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In this case, pFET is the Fisher’s Exact Test p-value, I is an indicator function with

I = 1 when pF ≤ 0.01 and I = 0 otherwise.

5.6 Phylogeny-based network analysis

5.6.1 Network communities

Network communities for the undirected network and for the undirected rendition

of the directed network were identified using the multilevel community algorithm [147]

in the python implementation of the iGraph package [148]. The algorithm used

here is different from the one in Section 3.4, but the same principle of finding the

optimal network partition into densely connected sub-networks (communities) apply

here. The multilevel community algorithm [147] goes through multiple rounds of

network modularity optimization until convergence to the optimal network modularity.

Network communities, when applied to the TEM β–lactamase coevolution networks,

help identify positions that tend to be selected together in the evolution of a given

function.

Figure B.1 shows the undirected version of the phylogeny-based network, with

communities obtained using the multilevel community finding algorithm. As in

Section 4.1, I find that the major adaptive mutations in residues G238 and R164 are

split into different communities, representing different adaptive strategies and selective

pressures in the context of mutations in these two residues [68].
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5.6.2 Path betweenness centralities and evolution-

ary trajectories

In Chapter 4, I expanded the concept of shortest path betweenness of a single

node to that of a path. I used central paths in the network to find fitness increasing

evolutionary trajectories. However, adaptive trajectories do not necessarily only follow

the paths leading to the quickest increase in fitness. Rather, at every step, a mutation

is selected based on its effect on the latest sequence of accumulated mutations. I apply

random walk centralities to better accommodate these local mutation dependencies,

rather than global path optimization. I adapted the random walk algorithm from the

single node case to the multiple node path case similarly to Section 4.4.

A path betweenness centrality based on random walks

I started with the k-path centrality algorithm which performs multiple (Markov

chain) random walks on a network (of length up to k) [149]. Multiple short walks allow

us to approximate an infinite length random walk in the case of an ergodic system.

In order to approximate the betweenness centrality that would be obtained from a

long walk, a minimum number of iterations (steps in the Markov chain random walk)

is required. The number of required iterations is determined by network node size,

k, and error tuning parameter [149]. This algorithm was developed for single node

centralities, but I was able to expand it to a path of arbitrary length by counting how
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many times a path was encountered in the random walks. This is the same definition

as for path betweenness based on shortest paths as in Section 4.4, except here I count

paths of all lengths. Therefore, the betweenness of a path Puv between two nodes u

and v is the number of random paths that pass through Puv but do not start or end

at u or v (Equation 5.3).

CB(Puv) =
∑

{s,t,u,v}∈V
{s,t}∩{u,v}=∅

σst(Puv)

σst
(5.3)

5.6.3 Frequency-based and alignment network pre-

dictors for comparison to the phylogeny-based

predictors

My goal is to compare the performance of the phylogeny-based network to (1) a

”näıve” method, in which functional interactions between mutations are not modeled,

and (2) the TEM alignment-based methods presented in Chapters 3 and 4.

The ”näıve” model assumes that each mutation impacts fitness on its own, and

always by the same amount, regardless of other mutations present. This is a mutation

frequency based metric which assumes that the more frequently sequences containing

a mutation are selected, the greater this mutation’s contribution is to TEM resistance.

The frequency was defined as the fraction of sequences in the alignment containing

that mutation. Furthermore, the independent selection assumption allows me to assign
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a fitness prediction for multiple mutations based on a sequence profile model [23], in

which the individual amino acid frequencies are multiplied (Equation 5.4).

F (m1,m2, ..,mL) =
L∏
i=1

fi(mi) (5.4)

Comparing central paths of different lengths

In order to examine the effect of expanding a given evolutionary trajectory by

adding mutations, I needed to compare central paths of the network of different

length. In other words, I needed a predictor to compare the fitness (resistance) of the

M1 M2 double mutant to the original M1 mutant. For example, I was interested in

predicting whether adding mutation M2 to an existing M1 would lead to increased

fitness. Centralities among networks are however not comparable because when the

length of a path is increased,by appending a node, the number of possible paths

containing the longer path is further constrained to pass through that node. Therefore,

path centralities were normalized (Equation 5.5).

Cnorm
B (Puv) =

( n
k(Puv)

)
(n−k(Puv)

2 )
CB(Puv) (5.5)

The combinatorial term on top accounts for the ways of choosing a path of length

k(Puv), where here the length is the unweighted length, specifically the number of

nodes in the path, from the n nodes in the network. The bottom term is the maximum

number of node pairs that remain in the network when the k nodes in the path are
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removed. This would correspond to the maximum number of pairs of nodes with a

path between them, in a fully connected network.

Comparing frequency-based predictors for different number of mutations

In the independent mutation, frequency-based model, individual mutation frequen-

cies were multiplied to obtain an predictor of the fitness of each set of mutations

(evolutionary trajectory). Therefore, here an evolutionary trajectory that gets ex-

tended by an additional node, will have a reduced score, because we will be multiplying

by a number < 1 (frequency). Because the mutation frequency distribution is not

normally distributed, but is skewed toward 0, I chose to use percentile ranks, rather

than z-scores for comparing evolutionary trajectories of different lengths. If the per-

centile rank of the longer trajectory was lower than a constituent shorter trajectory,

the fitness was predicted to decrease upon addition of mutations.
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Chapter 6

Assessment of phylogeny-based

network predictors

6.1 Introduction

In this chapter, I use the results from experimental tests of antibiotic resistance

to examine functional interactions within predicted evolutionary trajectories. The

analysis differs from Section 4.4, where I confirm that the most central paths tend to

be enriched positive functional interactions. Here, I instead compare central paths of

different lengths, specifically paths in which the shorter path is contained within the

longer path. Comparing the centrality of mutation paths and paths contained in them,

allows me to make predictions about whether fitness increases or decreases as mutations

are added along evolutionary trajectories. The accuracy of the predicted fitness effect
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can then be assessed, by testing the resistance level of the TEM mutants resulting

from the predicted mutation trajectories. The experimental assessment described in

this chapter is-based on dose response curves for (CTX) resistance (Section 6.2). It

involves comparisons of single to double, single to triple, and double to triple TEM

mutants. The phylogeny-based network central path predictor is compared to the

näıve predictor assuming independent mutation effects and to the alignment network

central path predictor (Chapter 5).

6.2 Analysis of dose response curves

Dose response curves were obtained by growing bacterial cells co-expressing the

TEM β-lactamase mutant and GFP (in the same plasmid) in different concentrations

of CTX [µg/ml]. The assumption is that GFP expression is directly proportional to

plasmid-based β–lactamase expression. There were multiple replicates for a given

TEM construct at a each CTX concentration, and the GFP fluorescence relative to no

drug is plotted. The reasons for using relative fluorescence rather than optical density

to measure growth were twofold. First, there was increased accuracy at very low and

high bacterial growth, allowing for measurements of resistance over a larger dynamic

range. Second, the normalization allows fluorescence due to baseline expression of

the β-lactamase to be decoupled from the one due to the TEM mutant efficiency in

breaking up the antibiotic. Specifically, bacterial survival under CTX selection is
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largely dependent on two properties: the innate ability of the mutated β–lactamase

to break down the new drug, and the baseline level at which the β–lactamase is being

expressed in the cells. Co-expression with GFP and normalization by fluorescence in

no drug (baseline expression) conditions makes it possible to isolate the first property,

i.e. the innate enzymatic efficiency of TEM β–lactamase.

While dose response curves are ideally sigmoidal, often the concentration range

that was measured, did not exhibit the full transition from complete to inhibited

growth in every curve. Therefore, I could not identify a single CTX concentration, such

as the minimum concentration at which growth is inhibited, and I could not compare

constructs by this concentration. Rather, I chose the area-under-the-curve (AUC)

measure, for each dose response curve. This measure incorporates measurements at all

concentrations with non-zero relative fluorescence. I used the trapezoidal rule on a non-

uniform grid (coinciding with the concentrations measured, on the x-axis) for obtaining

the AUC. When there were multiple relative fluorescence measurements (y-values) for

a given concentration, I took the arithmetic mean of the relative fluorescence at each

concentration point,

AUC =
1

2

N−1∑
k=1

(ck+1 − ck)
(
fk+1 + fk

)
. (6.1)

To assess the variability in the AUC used for comparison, I added up the contrbu-

tions of the standard error to the AUC, also using the trapezoidal rule, but this time

on the standard error in the fluorescence measurements,
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SEAUC =
1

2

N−1∑
k=1

(ck+1 − ck)
(
SEfk+1

+ SEfk

)
. (6.2)

The standard error corresponds to the yellow areas above or below the solid red

line (connecting the relative fluorescence means at each concentration) in Fig. 6.1.

Figure 6.1: Toy example of a dose response curve. The grey circles represent
the relative fluorescence measurements at each CTX concentration. The solid red
line connects the arithmetic means of these measurements, and bounds the red area,
which is the AUC,-based on the relative fluorescence means. The yellow area above
(or below) the solid red line represents the standard error of the AUC calculated based
on the means.
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6.2.1 Pairs of mutants with significant difference

in AUC

When a construct A had an AUC greater than a construct B, this difference in

AUCs was considered significant when the following condition was satisfied:

AUCA > AUCB iff AUCA − AUCB > 3 ∗ (SEAUCA
+ SEAUCB

) (6.3)

For pairs of mutants with significant differences in AUC, the following pairwise

comparison function was defined (Equation 6.4):

ΘExp(A,B) =



1, if AUCA >> AUCB;

-1, if AUCA << AUCB;

0, otherwise.

(6.4)

Rather than giving the amount of fitness change, this function qualitatively assesses

whether construct Ahas greater or reduced resistance from construct B. All pairs

of constructs for which the difference in AUCs was considered significant (ΘExp 6= 0)

were ranked, and the ranking was used to assess the performance of the predictors

derived in 6.

The number of triple mutants tested was 35, resulting in 35 × 6 = 210 possible

pairwise comparisons between each triple mutant and constitutive double or single
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mutants. Of these, the experiments were able to distinguish (beyond the margin of

experimental error, Θ 6= 0) 73 between triple vs. constitutive double, and between 38

triple vs. constitutive single mutants. The number of double mutants tested was 68,

resulting in 68 × 2 = 136 possible comparisons between a double mutant and each

constitutive single mutant. Of these 136 pairwise comparisons, 75 were found to be

outside the margin of error from the experiments. Therefore, the 346 total possible

comparisons between a mutant and its constituents for which the experiments were able

to find 186 pairwise comparisons between a mutant containing two or three mutations

and its possible constituents. For most of these comparisons (160/186), addition of one

or two mutations was shown experimentally to increase the resistance of the resulting

complex mutant. For a small number of pairwise comparisons (26/186), adding one

or two mutations decreased fitness. This points to a negative functional interaction

between the set of mutations being added and the set of mutations currently present

in the mutant.

6.2.2 Correspondence between paths in the net-

work and tested TEM mutants

A TEM mutant tested in the lab does not distinguish the order in which the

mutations appeared. However, in the networks the three mutations in the mutant

M1 M2 M3 could have appeared in six different ways for a directed network, i.e. all
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possible orderings of three mutations. For an undirected network, there were three

different ways in which this path could appear, depending on which of the three

mutations was in the middle. When there were multiple arrangements of a path in a

network, the centrality corresponding to the tested mutant was calculated by taking

the average centrality over these arrangements. Then, to compare the (averaged)

centralities of two different paths, a function similar to ΘExp was defined for each

predictor (Equation 6.5). If the centralities of two paths, A and B differed by any

amount, sign function of the difference ΘPred was nonzero.

ΘPred(A,B) =



1, if AUCA > AUCB;

-1, if AUCA < AUCB;

0, if AUCA = AUCB.

(6.5)

6.3 Assessment of predictors by experimen-

tal pairwise mutant comparisons

Using the AUC-based pairwise rankings, I assessed the accuracy and coverage

of each mutation effects predictor. The accuracy of a predictor was the fraction

of correctly predicted resistance changes in the comparisons between two mutant

constructs. The resistance change was correctly predicted if, for a pairwise comparison

between two mutants, its normalized network centrality and the measured fitness were
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both increasing (or both decreasing). For example, for mutants A and B, this would

mean ΘExp(A,B) = ΘPred(A,B).

The coverage was defined as the fraction of experimentally obtained pairwise

comparisons, which the computational predictors were also able to distinguish. For

example, if the experimental comparison of mutants A and B found ΘExp(A,B) 6= 0,

and ΘPred(A,B) 6= 0, for the predictor too.

Assessment of predictors by all experimental pairwise mutant rankings.

Table 6.1 shows the accuracy with which each model is able to correctly predict

functional increase or decrease for each of the 186 experimental comparisons. The

two best predictive methods were the ones based on coevolution, increased the overall

accuracy by about 10%, when compared to the method based on independent functional

effects, a.k.a. mutation frequency based method.

Both random walk and shortest path betweenness centralities were assessed, yet

shortest path betweenness tends to have very low coverage (Table B.2) and were not

included in this table. This low primarily results from the centrality of most paths

being 0, because most paths do not lie on any of the shortest paths between pairs

of nodes. For many pairs of paths, both had centrality 0 and ΘPred(A,B) = 0, so

predictions could not be made. The best performing centralities in terms of coverage

were the random walk centralities, because there were fewer pairs of paths for which

each path had a centrality 0.
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The undirected phylogeny-based network had (because of the lack of directionality)

a similar centrality for many different paths. As a result, differences in centralities

were 0 for many paths, so predictions could not be made in these cases. As a result,

the directed phylogeny-based network performed better (Table B.2).

Predictor type Accuracy Coverage

Frequency (independent) 0.64 0.99

Alignment-based network 0.74 0.65

Phylogeny-based (directed) network 0.72 0.76

Table 6.1: Performance of predictors based on all 186 pairwise comparisons in the
experiments for which the two constructs in the pair were found to have different
resistance (Θ 6= 0). Comparisons are between double or triple mutants and their
constitutive mutations or mutation pairs. Because each predictor can rank mutants
containing the same number of mutations, the normalization/percentile ranking
presented in 5.6.3 was used to compare constructs of different lengths. The frequency
predictor assumes mutation effects are independent, and the alignment-based network
was constructed similarly to 4 (see 5.6.3). The phylogeny predictor is based on the
directed versions of the coevolution network described in 5.5.1.

Assessment of predictors for pairwise comparisons involving negative func-

tional interactions.

In the pairwise comparisons resulting from dose response curve AUCs, I found

that, for some mutant constructs, resistance decreased when an original single or

double mutant acquired further mutations. The occurred even in cases when the

added mutations had high frequency among TEM extended spectrum sequences. For

example, starting with the TEM mutant E104K S268G, and adding mutation E240K,

led to decrease in resistance from the starting mutant. While E240K is the fourth most
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frequent mutation in extended spectrum TEMs, the experiments consistently show

that addition of E240K to a mutant containing mutation E104K leads to decreased

resistance. This confirms previous findings of E104K and E240K having a negative

functional interactions and generally occurring in different sequence contexts [28, 68].

The full table of negative interactions detected in the dose response assays can be

found in Table B.3. Known negative pairwise functional interaction pairs [68] were

confirmed in the experiments: E104K–E240K, G238S–R164H, and G238S–A237T.

Additionally, the negative interactions between A237T–E104K/E240K and N175I–

E104K/E240K frequently recur in Table B.3.

The accuracy on the set of 26 comparisons pointing to negative interactions

decreases for all methods. The coevolving pairs predictor based on the TEM sequence

alignment has the lowest accuracy. From all of the approaches, the frequency has

the highest rate of predicting functional effects to be negative: 72 of all 186 pairwise

resistance comparisons are predicted to be negative, 55 of 160 true increases in fitness

were predicted as negative by this metric.
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Predictor type Accuracy Coverage

Frequency (independent) 0.58 1.00

Alignment-based network 0.50 0.62

Phylogeny-based network 0.56 0.69

Table 6.2: Performance of predictors based on all 26 pairwise comparisons in the
experiments for which the longer mutant was found to have lower resistance than
the mutants contained in it (negative interactions). Comparisons are between double
or triple mutants and their constitutive mutations or mutation pairs. Because each
predictor can rank mutants containing the same number of mutations, the normal-
ization/percentile ranking presented in Section 5.6.3 was used to compare constructs
of different lengths. The frequency predictor assumes mutation effects are indepen-
dent, and the alignment-based network was constructed similarly to Chapter 4 (see
Section 5.6.3). The phylogeny predictor is based on the directed versions of the
coevolution network described in Section 5.5.1.

The negative interactions that are missed by the mutation coevolution methods

(both phylogeny and alignment based) contain mutations in residue A237T and

E104K/E240K. While A237T mutations frequently co-occur with E104K/E240K, this

typically happens in the context of mutations in residue R164.

As shown in Table 6.3, coevolution-based methods make fewer mistakes in pre-

dicting positive functional effects than the independent-effect, frequency approach.

In contrast to the coevolution methods, the frequency-based, independent functional

effect model, tends to overestimate the number of fitness decreasing combinations of

mutations 6.3. The number of positive interactions incorrectly predicted to be negative

is 24 and 32 (out of 160) for the alignment and coevolution network respectively, vs.

55 for the frequency based predictor. Frequency tends to mis-predict fitness increasing

effects as fitness-decreasing when rarely occurring mutations (in the alignment) are
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added to frequently observed mutations, along the evolutionary trajectories.

Predictor Negative: Negative: Positive: Positive:
type Experiment Experiment Experiment Experiment

and predictor not predictor and predictor not predictor

Frequency 15 11 103 55
Alignment 8 8 81 24
Phylogeny 10 8 92 32

Table 6.3: Breakdown of predictor performance by positive vs. negative interactions.
Comparisons are between double or triple mutants and their constitutive mutations
or mutation pairs. Because each predictor can rank mutants containing the same
number of mutations, the normalization/percentile ranking presented in 5.6.3 was
used to compare constructs of different lengths. The frequency predictor assumes
mutation effects are independent, and the alignment-based network was constructed
similarly to 4 (see 5.6.3). The phylogeny predictor is based on the directed versions of
the coevolution network described in 5.5.1.

The improvement in the coevolution-based phylogeny/alignment predictors is

likely due to the coevolution methods better modeling positive interactions between

mutations. This is because, by construction, coevolution networks become enriched in

positive interactions. In contrast to the coevolution methods, the näıve independent

functional effect model, tends to overestimate the number of fitness decreasing combi-

nations of mutations 6.3. However, as the dose-response comparisons show, some of

these rare mutations may have strong positive functional interactions with the more

frequent extended spectrum mutations. Examples of such rare mutations are I173V

and S268G (first and third row 6.4), which were experimentally shown to have positive

functional interactions with R164H and A237T respectively.
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Enrichment for fitness increasing triplets

Next, I examine the utility of network coevolution model in predicting new com-

binations of mutations that increase extended spectrum resistance. Table 6.4 shows

the top 12 highest random walk betweenness paths in the directed phylogeny-based

network, which correspond to triple mutants. This is specifically a subset of the

highest centrality triples that were tested in the dose response assays. The mean AUC

from all distinct experiments in which a triple mutant was tested is shown. Table 6.4

also contains the number of constitutive single mutants and double mutants over

which the triple mutant improves fitness.

Two of the 12 top triple mutants that were assessed in the dose response curves

have also been encountered in the natural evolution of resistance (TEM-43, and

TEM-132). Both of these mutants are also shown to increase resistance from each

of their constitutive double mutants, and have significantly high AUCs. New mu-

tants with similar characteristics are E104K R164H I173V, R164H A237T E240K,

and E104K R164H A184V, each of which represents fitness-increasing mutants not

previously observed in natural evolution of resistance in the clinic. Two of these three

fitness increasing triple mutants contained a relatively rare mutation (I173V in the

first mutant above, and A184V in the third), such that the frequency-based metric

did not give them a high score.
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6.4 Conclusions

Here, I address the question of whether the two coevolution-based methods have

utility in predicting the functional impact of multiple mutations on extended spectrum

resistance in TEM β-lactamase. I compare these predictors to a näıve model that

does not incorporate evolutionary/functional interactions between mutations. In this

independent-effect model, each mutation acts on its own, and there are no functional

dependencies on the context of other mutations.

The phylogeny-based network model assessed here aims to improve modeling of

coevolution by reconstructing and incorporating the evolutionary history (phylogenetic

tree) of the resistant TEM sequences. Using phylogenetic trees rather than alignments

typically improves detection of coevolution between protein sites [150,151]. This occurs

particularly when there are complex evolutionary relationships between sequences,

resulting in poor correspondence between the number of times two mutations coevolved

and their occurrence in the alignment, termed phylogenetic noise [151]. However,

phylogenetic noise tends to be lower when all sequences in the alignment independently

evolved from a single ancestor. This is possible in systems with high mutation rates

and strong selection, as in the case of the TEM β-lactamase model system.

I find that, for this model system, both of the coevolution-based models (whether

or not they incorporate the phylogenetic tree structure) improve prediction of the

functional impact of multiple mutations when compared to the independent functional

effects method. I reason that this improvement is due to the coevolution methods
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better modeling positive interactions between mutations. One possible explanation

is that, by modeling coevolution under positive selection, the coevolution networks

become enriched in positive interactions. As can be seen in Table 6.4, the high ranking

triple mutants by both coevolution metrics tend to improve resistance when the third

mutation is added to any possible subsets of double mutants. This is true even when

the overall resistance measured in the lab (dose response AUC) is not very high

(e.g. the A237T E240K S268G mutant). This suggests that these methods may be

useful for predicting the direction of functional change (increase/decrease) along an

evolutionary trajectory, rather than the absolute fitness.

In contrast to the coevolution methods, the näıve independent functional effect

model, tends to overestimate the number of fitness decreasing combinations of muta-

tions Table 6.3. This tends to happen when rare mutations (in the alignment) are

added to evolutionary trajectories currently containing frequently observed mutations.

When a very rare mutation is added to an evolutionary trajectory, the frequency-based

method tends to rank the resulting mutant lower. However, as the experimental

measurements show, some of these rare mutations may have strong positive functional

interactions with other mutations already present. Examples of such rare mutations

are I173V and S268G (first and third row, Table 6.4), which were experimentally

shown to have positive functional interactions with R164H and A237T respectively.

105



Chapter 7

Discussion

7.1 Utility of mutation coevolution net-

works in studying TEM β-lactamase

evolution

Protein evolutionary trajectories can be modeled as gradual walks starting from an

initial sequence and fitness and exploring new sequence-fitness combinations through

the gradual acquisition of mutations [39, 52, 68]. At every step, mutations leading

to fitter neighbor sequences are selected. The end result of these ’greedy’ walks are

locally or globally optimal protein sequences with higher fitness than their neighbors.

The effect of mutations at every step is, however, dependent on the context of

currently acquired mutations [152]. Therefore, models that incorporate the functional
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relationships between mutations can be useful in better understanding observed

evolutionary trajectories and predicting possible future evolutionary trajectories.

Here, I build networks of functional interactions in the evolution of specific function

in an enzyme. I apply and expand standard graph-theoretical metrics to model complex

interactions between mutations. Using the extensively studied TEM β–lactamase

enzyme as a model system, I was able to systematically approach important properties

of mutations in this model system, most salient being the following:

• Under multiple selective pressures (for different specialized phenotypic traits),

mutations form densely connected clusters or communities in the network corre-

sponding to such selective pressures (Sections 3.4 and 5.6.1). This principle could

be expanded to other evolving proteins to identify diverse selective pressures

and the types of adaptive mutations that tend to be selected.

• Central mutations in the network that have multiple connections to the mutation

clusters associated with different selective pressures reflect a more general func-

tional effect, not specific to the function being acquired. For exaple, mutations in

TEM β–lactamase that thermodynamically stabilize the protein could be found

in multiple communities and are associated with multiple selective pressures

(Section 3.4).

• When a network is built from sequences under selection for a specific function,

mutations seem to cluster based on different adaptive strategies that have been,
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in independent analyses, shown to be initiated by distinct adaptive mutations.

The mutations clustered with these adaptive mutations tend to be compensatory

(in the case of pleiotropy), or modulate the effects of the original mutation

(Section 3.4).

• In general, pairs of mutations with strong negative functional interactions

tend to appear in different mutation clusters. Frequently, negative functional

interactions occur between mutations representing alternative and incompatible

ways of improving the protein’s function (Section 4.2).

• Within a network of mutations under a specific selective pressure, central paths

are enriched in mutation combinations (complex mutants) with increased fitness

for the function being selected. This property is important for predicting adaptive

evolutionary trajectories (Sections 4.4 and 6.3).

• Within a network of mutations under a specific selective pressure, central paths

are also enriched in non-negative functional interactions. Triple mutant paths

were experimentally shown to increase fitness from all or most of their constitutive

single and double mutants (Sections 4.4 and 6.3).

• Mutations exhibiting negative functional interactions with strongly adaptive

mutations can be used as starting points for novel evolutionary paths that

explore new sequence space (Section 6.3).
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7.2 Method applicability to protein evolu-

tion in other systems

Based on properties of the bacterial enzyme studied here, the coevolution network

models and analysis could be applied to sequence databases for clinically relevant

proteins undergoing high mutation rates and under selective pressure, whether from

drug treatment or from the host immune response. Examples include surface proteins of

pathogens (particularly of RNA viruses such as HIV [153]) or targets for chemotherapy

in microbial pathogen or tumor cells. Notably, the methods described here are based on

sequence data alone, and detailed tertiary structure information for the target gene is

not necessary. For example, it was found that mutations in different proteins in the Zika

virus could have increased the virus’ geographic expansion over the past 50 years [154].

Most of the proteins in the virus have not yet been crystallized, yet many sequences

from multiple continents have been isolated. A sequence-based approach, such as the

one described here could help identify selective pressures, adaptive strategies, and

(combinations of) adaptive mutations that could have contributed to its increased

spread.
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7.3 Future development

My most recent coevolution network model (Chapters 5 and 6) uses an inferred

phylogeny to represent the correlations that arise from non-independent sequence

evolution from a common ancestor. By further introducing a distance threshold,

similar to [29], I was able to remove indirect interactions between mutations. A

more formal analysis of the phylogenetic tree could be applied that uses Bayesian

graphical models (BGMs) to, e.g., tease apart pairwise relationshionships that can

be best explained by the presence of a third mutation [155]. BGM methods tend to

be computationally expensive and tend to be applied to a consensus tree rather than

being able to leverage the tree ensemble. Other Bayesian methods have been applied

to a phylogeny ensemble and could lead to improvement in the identification of direct

pairwise functional interactions [156].

More generally, both coevolution networks are based on pairwise co-occurrence

counts (either in alignments, or in the phylogeny). By focusing on two mutations at a

time, the assumption is that the pairwise interactions identified are not affected in the

context of other mutations. As a result, I have observed mutation pairs with known

negative interactions either directly linked or in the same central path in the network,

even though the genetic context of original sequences always included additional

mutations. One way to distinguish such indirect functional interactions from direct

ones would be to combine covariation analysis with global inference analysis and

message passing algorithms as in References [21,23].
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Coevolution networks tend to be enriched in positive functional interactions, since

they are built on pairs that are frequently co-selected for a given function. However,

negative interactions are also important to identify, as mutations exhibiting multiple

negative interactions can ultimately lead to exploration of new sequence space. Fitter

protein sequences than the ones previously observed can be found as a result [54].

Pairs of mutations with negative interactions typically have lower coevolution weights

if they are found at all in the networks (Chapters 4 and 6). However, they are not

directly represented in my predictive methods. Reversing the principle behind network

weights, weighting pairs that co-occur less (rather than more) frequently than expected

by could lead to a network of mostly negative functional interactions.

Finally, my coevolution networks model can predict novel combinations of muta-

tions, but requires that these are already present in adaptive sequences. The reason

for this is that, since the model is based on observed interactions, mutations that

have not been previously observed cannot be included in the model. New mutations

observed in laboratory evolution under defined selective pressures, or from mutagenesis

experiments measuring the fitness of new mutants can be, however, incorporated into

the network. By including sequences (with at least two mutations) obtained in the lab,

the number and accuracy of predicted functional effects of evolutionary trajectories

can be improved.

111



Appendix A

Glossary of Terms

adaptive In biology, adaptive traits, are traits with a current functional role in the

life of an organism that is maintained and evolved by means of natural selection..

5, 6, 17, 23, 24, 30, 31, 33, 38, 40–44, 58, 67, 85, 86, 107–109, 111

antagonistic Two or more mutations in a protein are antagonistic when these muta-

tions individually improve a protein’s fitness/function, but their combined effect

is less than expected by addition of the individual effects.. 33, 53–56, 58–60, 63

autocorrelation In a simulation, autocorrelation is the cross–correlation of a simu-

lated parameter with itself at different points in time, i.e. at different iterations.
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Informally, it is the similarity between observations of the same parameter as a

function of the time lag between them.. 73

betweenness A network node’s betweenness is the number or fraction of (typically,

shortest) paths from all vertices to all others that pass through that node.. ix,

xi, 31, 38, 40–48, 50, 51, 56, 58, 62, 64, 65, 86, 87, 97, 102, 103

centrality A network node’s centrality is a measure of that node’s importance in

the network. A local measure of centrality is the node’s connectivity with its

immediate neighbors, i.e. the node’s degree. Global network centrality properties

include node betweenness, closeness, or eigenvector centrality.. 38, 41

clade In a phylogenetic tree, a clade is a group of organisms that consists of a common

ancestor and all its direct ”lineal” descendants.. 5, 69, 74, 75

coevolution Within a protein, mutated residues exhibit coevolution, when they

reciprocally affects each other’s evolutionary characteristics, such as substitution

rates. One way to identify coevolving residues is to look for patterns of covariation

in the protein sequence.. 3, 5, 43

coevolution network Here: Refers to a network, in which mutated positions/ muta-

tions are the nodes. Links represent covariation between two postions/mutations..

ii, 4–6, 37, 43, 44, 65

community In networks, communities of nodes, a.k.a. network clusters, are groups
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of densely connected nodes, i.e. there are more and/or more highly-weighted

links within the group of nodes than to nodes within other groups.. 22, 27, 30,

33, 34, 36–38, 41, 47, 48, 55, 58, 62, 85

covariation Covariation in amino acid sequences is a phenomenon whereby some

pairs of residues appear to be altered more frequently than expected, typically

within multiple sequence alignments.. 5, 110

CTX cefotaxime. 7, 31, 48–52, 55, 58, 59, 61, 64, 65, 91–93

E-value The BLAST E-value score is defined as the number of hits one can ”expect”

to see by chance when searching a BLAST database of a particular size, and it

is a measure of the significance of the match.. 69

epistasis For mutations within the same gene/protein, the dependence in the effect

of a mutation on protein function on other mutations present.. 9–11, 24

equilibrated phase For a simulation, such as a Markov Chain Monte Carlo simula-

tion, the equilibrated phase, is the part of the simulation (the set of iterations)

for which parameters simulated are fluctuating around a constant average, such

that there are no drastic changes in this average.. 73, 78, 79, 81

ergodic A stochastic process, such as a Markov chain random walk is considered

ergodic when its statistical properties can be deduced from a single, sufficiently

long sample, or a collection of multiple, smaller random samples of the process..
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86

extant When referring to a gene sequence, it represents a gene in a currently existing

(not extinct) species.. 66, 70

extended-spectrum The extended-spectrum penicillins are a group of antibiotics

that have the widest antibacterial spectrum of all penicillins. Extended-spectrum

antibiotics affect additional types of bacteria beyond their precursor broad-

spectrum antibiotics.. viii, xii, 9, 14, 15, 22, 23, 25, 26, 32–34, 38, 41, 42, 44, 45,

47, 48, 50–52, 54, 55, 58, 61, 62, 64, 65, 78–80

extinct When referring to a gene sequence, it represents a gene in a species without

any currently living members. An extinct species may be ancestral to an extant

species.. 77

maximum likelohood In statistics, maximum-likelihood (ML) methods estimate

the parameters of a statistical model given the observed data. ML methods

assume that a good estimate of the unknown parameters, would be the value of

the parameters that maximizes the likelihood of the data, i.e. the probability of

observing that particular set of data, given the chosen probability distribution

model.. 67, 70, 71, 77, 78

MIC The minimum inhibitory concentration is the lowest concentration of an antimi-

crobial that will inhibit the visible growth of a microorganism after overnight

incubation.. 10, 78
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modularity The network modularity measures the strength of division of a network

into modules (also referred to as clusters or communities). Networks with high

modularity have dense connections between the nodes within modules but sparse

connections between nodes in different modules. Modularity is often used in

optimization methods for community structure detection in networks.. 22, 85

most recent common ancestor For an evolved set of entities, like genes or organ-

isms, the most recent common ancestor (MRCA) is the entity from which all

other entities in the group are descended.. 81

multimodal For a frequency curve or distribution, having several modes or maxima..

74

ortholog Gene diverged from another gene by speciation.. 3, 69

paralog Gene diverged from another gene by gene duplication rather than speciation.

69

phenotype In general, an observable trait. For a protein, phenotype refers to a

specific function performed by the protein. For example, extended-spectrum

β–lactamases have the phenotype of conferring extended-spectrum antibiotic

resistance in bacteria containing these enzymes.. 30, 78

pleiotropy The production by a genetic alteration of two or more apparently unre-

lated phenotypic effects.. 5, 10, 17, 24, 27, 108
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polytomies Polytomy is a term for an internal node of a phylogenetic tree cladogram

that has more than two immediate descendants (i.e, sister taxa). In contrast,

any node that has only two immediate descendants is said to be resolved in the

phylogeny.. 75

selective pressure The extent to which organisms possessing a given phenotypic

trait are either eliminated or favored by environmental demands. It represents the

intensity of natural selection experienced by an evolving population. Antibiotic

resistance is an example of a selective pressure. When an antibiotic is used,

bacteria that can resist that antibiotic have a greater chance of survival than

those that are ”susceptible.” Susceptible bacteria are killed or inhibited by an

antibiotic, resulting in a selective pressure for the survival of resistant strains of

bacteria.. viii, 4–6, 9, 12, 13, 15, 22, 26, 29, 30, 36, 80, 85, 107–109, 111

synergistic Two or more mutations in a protein are synergistic when their combined

effect on protein function is greater in magnitude than expected by addition of

their individual effects.. 53–56, 58–60

trait A (phenotypic) trait is a specific characteristic of an organism’s phenotype. A

phenotype is comprised of multiple observable / measurable traits.. 77–81
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Appendix B

Supplementary Figures and Tables

1 2 3 4 5 6 7 8 9 10
Opt. Min. Max Avge Stand. Stand. Stand. Norm.

Mutant n conc growth growth growth dev. err. err.% avge

Q39R 4 0.04 1.80 2.60 2.09 0.36 0.3 16.7 2.1
L40W 4 0.04 1.60 2.40 2.08 0.36 0.4 17.0 2.1
L51P 4 0.04 1.70 2.10 1.93 0.21 0.2 10.5 1.9
E104K 3 0.04 2.00 2.30 2.20 0.17 0.2 8.9 2.2
R120S 4 0.04 1.40 2.35 1.94 0.43 0.4 21.6 1.9
H153R 5 0.04 1.80 2.90 2.17 0.43 0.4 17.3 2.2
R164H 16 0.04 2.30 5.45 3.43 0.90 0.4 12.9 3.4
I173V 4 0.04 1.40 2.45 2.10 0.48 0.5 22.6 2.1
M182T 3 0.04 1.95 2.50 2.15 0.30 0.3 16.0 2.2
K215E 2 0.04 1.75 2.05 1.90 0.21 0.3 15.5 1.9
A224V 4 0.04 1.70 2.15 1.86 0.21 0.2 11.2 1.9
G238S 5 0.12 4.45 7.40 5.88 1.12 1.0 16.7 9.6
E240K 4 0.04 1.00 1.90 1.58 0.40 0.4 25.1 1.6
Q39R R164H 5 0.04 3.30 4.30 3.70 0.47 0.4 11.1 3.7
Q39R G238S 4 0.08 3.75 7.80 5.64 1.73 1.7 30.1 7.8
Q39R E240K 5 0.04 1.80 2.60 2.16 0.39 0.3 15.7 2.2
L40W R164H 4 0.04 1.90 2.80 2.13 0.45 0.4 20.8 2.1
L51P E104K 4 0.04 1.33 1.90 1.65 0.25 0.2 15.0 1.7
L51P R164H 4 0.04 1.70 2.00 1.90 0.14 0.1 7.3 1.9
E104K H153R 4 0.04 2.45 3.05 2.73 0.25 0.2 8.9 2.7
E104K R164H 20 0.12 0.60 8.70 4.69 2.44 1.1 22.8 8.4
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Table B.1: Prediction of critical triple mutant evolutionary trajectories . . .

1 2 3 4 5 6 7 8 9 10
Opt. Min. Max Avge Stand. Stand. Stand. Norm.

Mutant n conc growth growth growth dev. err. err.% avge

E104K I173V 2 0.30 2.70 4.00 3.35 0.92 1.3 38.0 10.8
E104K
M182T

7 0.04 1.45 4.40 2.82 1.09 0.8 28.6 2.8

E104K K215E 4 0.04 2.00 2.85 2.39 0.45 0.4 18.5 2.4
E104K A224V 2 0.04 1.80 2.00 1.90 0.14 0.2 10.3 1.9
E104K G238S 6 2.00 2.30 4.10 3.23 0.59 0.5 14.6 16.8
R120S G238S 3 0.12 2.75 4.50 3.48 0.91 1.0 29.5 7.2
H153R G238S 4 0.30 3.15 4.60 4.01 0.68 0.7 16.5 11.5
R164H I173V 4 0.12 2.40 3.65 3.21 0.58 0.6 17.6 6.9
R164H A224V 6 0.04 2.90 4.70 3.90 0.65 0.5 13.3 3.9
R164H E240K 8 0.12 2.60 8.00 5.74 1.78 1.2 21.5 9.5
I173V E240K 2 0.08 1.40 1.60 1.50 0.14 0.2 13.1 3.6
M182T G238S 6 0.30 7.50 9.50 8.68 0.73 0.6 6.7 16.2
K215E G238S 12 0.08 1.65 7.90 4.22 2.28 1.3 30.6 6.3
G238S E240K 6 0.30 2.80 7.60 4.55 1.73 1.4 30.5 12.0
G238S T265M 10 0.30 1.70 5.10 3.36 1.17 0.7 21.5 10.8
Q39R G238S
E240K

2 0.30 1.90 2.30 2.10 0.28 0.4 18.7 9.6

Q39R R164H
E240K

6 0.12 2.40 7.00 5.37 1.92 1.5 28.6 9.1

L40W E104K
R164H

4 0.08 1.30 4.50 2.94 1.33 1.3 44.5 5.1

L51I E104K
G238S

4 0.04 1.60 2.00 1.88 0.19 0.2 9.9 1.9

L51P R164H
I173V

4 0.04 1.65 2.00 1.79 0.15 0.1 8.2 1.8

L51I E104K
M182T

6 0.04 1.43 4.55 2.54 1.31 1.0 41.2 2.5

E104K H153R
I173V

3 0.04 2.10 3.20 2.65 0.55 0.6 23.5 2.7

L51I E104K
M182T

6 0.04 1.43 4.55 2.54 1.31 1.0 41.2 2.5

E104K H153R
I173V

3 0.04 2.10 3.20 2.65 0.55 0.6 23.5 2.7

E104K H153R
R164H

3 0.12 6.90 8.30 7.77 0.76 0.9 11.0 11.5

E104K H153R
G238S

5 2.00 2.95 6.20 4.06 1.31 1.1 28.2 17.7
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Table B.1: Prediction of critical triple mutant evolutionary trajectories . . .

1 2 3 4 5 6 7 8 9 10
Opt. Min. Max Avge Stand. Stand. Stand. Norm.

Mutant n conc growth growth growth dev. err. err.% avge

E104K R164H
A224V

5 0.12 2.70 8.00 5.58 2.42 2.1 38.1 9.3

E104K R164H
I173V

4 0.30 8.80 9.20 9.00 0.20 0.2 2.2 16.5

E104K R164H
M182T

6 0.60 5.20 7.90 6.94 0.99 0.8 11.4 16.9

E104K G238S
T265M

3 0.60 9.40 9.55 9.48 0.08 0.1 0.9 19.4

E104K K215E
G238S

4 0.30 3.10 4.80 3.78 0.73 0.7 18.9 11.3

R120S H153R
G238S

3 0.30 5.30 7.70 6.87 1.36 1.5 22.4 14.4

R120S G238S
E240K

2 0.60 2.90 3.10 3.00 0.14 0.2 6.5 12.9

H153R
M182T G238S

6 0.60 6.70 8.90 8.03 0.80 0.6 8.0 17.9

H153R R164H
G238S

3 0.12 1.60 3.40 2.27 0.99 1.1 49.3 6.0

I173V R164H
E240K

9 0.60 4.50 9.35 7.56 1.59 1.0 13.8 17.5

WT 30 0.04 0.04 2.80 1.59 0.79 0.3 17.7 1.6
∆ 15 0.04 1.10 2.90 1.76 0.48 0.2 13.7 1.8
E104K R164S
G267R

11 0.30 4.05 9.40 7.32 1.76 1.0 14.2 14.8

9 0.60 1.60 4.35 2.66 0.80 0.5 19.7 12.6

Table B.1: Cefotaxime gradient measurements. All mutants and controls
tested experimentally for cefotaxime resistance are listed in column 1. The total
number of growth measurements (n) for each clone is provided in column 2. The
concentration empirically found to produce adequate resolution (i.e. intermediate
level of growth in the gradient) is listed in column 3. Individual measurements (in
centimeters) of continuous growth at the optimized concentration were conducted and
the limit of continuous growth at the optimized cefotaxime concentration was obtained
(in centimeters). The minimum, maximum, and average of all the measurements for
a given clone are shown in columns 4–6, with the corresponding standard deviation,
standard error and % standard error in columns 7–9 respectively.
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Figure B.1: The TEM coevolution network and its communities: The network was
constructed based on frequencies of co-occurring mutated residue positions in the
trees from the MrBayes phylogeny ensemble representing TEM β–lactamase evolution
(Section 5.5). Node size is proportional to the k-path, random walk betweenness
centrality (Section 5.6.2). Link thickness is proportional to the functional association
weights from the phylogeny ensemble (Section 5.5). Node (residue) numbers are shown
in Ambler notation. The multilevel community-finding algorithm [147] identified three
major communities. As in the alignment-based network the frequent mutations in
residues G238 and R164 are located in different communities. (red vs. green or blue).
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Predictor Accuracy Coverage Accuracy Coverage

(negative) (negative)

Frequency 0.64 0.99 0.58 1.00

Alignment network RW 0.74 0.65 0.5 0.62

Alignment network SP 0.77 0.17 0.5 0.08

Phylogeny network (undirected) RW 0.62 0.33 0.33 0.23

Phylogeny network (undirected) SP 0.65 0.11 1.00 0.04

Phylogeny network (directed) RW 0.72 0.76 0.56 0.69

Phylogeny network (directed) SP 0.59 0.12 0.5 0.15

Table B.2: Experimental assessment of frequency, and coevolution network
predictors. Experimental assessment of independent (frequency model) predictor,
and the alignment and phylogeny-based coevolution networks. Both the undirected
and the directed version of the phylogeny network is shown. All network predictors
are based on the paths’ betweenness centralities. RW: random walk (adapted from
the k-path algorithm, [149]) betweenness centrality, SP: shortest path betweenness
centrality.
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Higher resistance Lower resistance Frequency Alignment Phylogeny

TEM mutant TEM mutant (Indep.) Undir. Net Dir. Net

A224V I173V A224V −
A237G A237G S268G −
A237T A237T E240K + + +

E104K E104K N175I − − −
E104K E104K N175I A184V −
E104K E104K N175I E240K − − −
E104K A184V E104K N175I A184V −
E104K M182T E104K M182T E240K + − −
E104K R164H E104K R164H E240K + + +

E104K S268G E104K E240K S268G +

E240K A237T E240K − + +

E240K S268G E104K E240K S268G + − −
G238S A237G G238S − − −
G238S A237T G238S − −
G238S G238S S268G − − −
G238S R164H G238S − − −
I173V A237T E104K I173V A237T +

I173V E240K E104K I173V E240K + − −
M182T A237T M182T A184V A237T − −
N175I E104K N175I + + +

N175I N175I E240K +

Q39K E104K Q39K E104K A237T − + +

Q39K E240K Q39K A237T E240K − + +

R164H E240K E104K R164H E240K + + +

S268G A237G S268G −
S268G G238S S268G + + +

Table B.3: Negative functional interactions identified in dose response curves. Column
1 shows the starting single/double mutant which was found to have a higher resistance compared
to the mutant shown in column 2. The mutant in column 2 has 1 or 2 additional mutations from
the one in column 1. These additional mutations are highlighted in boldface. The predicted change
in resistance (+ and − for positive and negative) are shown in columns 3 (independent mutation,
frequency-based model), 4 (alignment-based coevolution network), and 5 (directed phylogeny-based
coevolution network).
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“A237t as a modulating mutation in naturally occurring extended-spectrum

tem-type β-lactamases,” Antimicrobial agents and chemotherapy, vol. 42, no. 5,

pp. 1042–1044, 1998.

[90] S. B. Vakulenko, P. Taibi-Tronche, M. Tóth, I. Massova, S. A. Lerner, and
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