
ENABLING MACHINE-AIDED

CRYPTOGRAPHIC DESIGN

by

Joseph Ayo Akinyele

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

November, 2013

c⃝ Joseph Ayo Akinyele 2013

All rights reserved

Abstract

The design of cryptographic primitives such as digital signatures and public-key en-

cryption is very often a manual process conducted by expert cryptographers. This persists

despite the fact that many new generic or semi-generic methods have been proposed to con-

struct new primitives by transforming existing ones in interesting ways. However, manually

applying transformations to existing primitives can be error-prone, ad-hoc and tedious. A

natural question is whether automating the process of applying cryptographic transforma-

tions would yield competitive or better results?

In this thesis, we explore a compiler-based approach for automatically performing cer-

tain cryptographic designs. Similar approaches have been applied to various types of cryp-

tographic protocol design with compelling results [1–10]. We extend this same approach

and show that it also can be effective towards automatically applying cryptographic trans-

formations.

We first present our extensible architecture that automates a class of cryptographic

transformations on primitives. We then propose several techniques that address the afore-

mentioned question including the Charm [11] cryptographic framework, which enables

ii

ABSTRACT

rapid prototyping of cryptographic primitives from abstract descriptions. We build on this

work and show the extent to which transformations can be performed automatically given

these descriptions. To illustrate this automation, we present a series of cryptographic tools

that demonstrate the effectiveness of our automated approach. Our contributions are listed

as follows:

• AutoBatch: Batch verification is a transformation that improves signature verification

time by efficiently processing many signatures at once. Historically, this manual

process has been prone to error and tedious for practitioners. We describe the design

of an automated tool that finds efficient batch verification algorithms from abstract

descriptions of signature schemes.

• AutoGroup: Cryptographers often prefer to describe their pairing-based construc-

tions using symmetric group notation for simplicity, while they prefer asymmetric

groups for implementation due to the efficiency gains. The symmetric-to-asymmetric

translation is usually performed through manual analysis of a scheme and finding an

efficient translation that suits applications can be quite challenging. We present an

automated tool that uses SMT solvers to find efficient asymmetric translations from

abstract descriptions of cryptographic schemes.

• AutoStrong: Strongly unforgeable signatures are desired in practice for a variety

of cryptographic protocols. Several transformations exist in the literature that show

how to obtain strongly unforgeable signatures from existentially unforgeable ones.

iii

ABSTRACT

We focus on a particular highly-efficient transformation due to Boneh, Shen and Wa-

ters [12] that is applicable if the signature satisfies a notion of partitioning. Checking

for this property can be challenging and has been less explored in the literature.

We present an automated tool that also utilizes SMT solvers to determine when this

property is applicable for constructing efficient strongly unforgeable signatures from

abstract descriptions.

We anticipate that these proof-of-concept tools embody the notion that certain crypto-

graphic transformations can be safely and effectively outsourced to machines.

Primary Reader: Aviel D. Rubin

Secondary Readers: Jonathan Katz, Matthew D. Green and Susan Hohenberger

iv

Acknowledgments

I am thankful to many great people for their support in completing this thesis. I would

like to start by thanking my advisors who have made my Ph.D. experience at Johns Hopkins

so intellectually rewarding. First, I would like to thank Avi Rubin for bringing me to

Hopkins and for providing me timely, invaluable advice and encouragement. I would also

like to thank Matthew Green for his guidance and support. I learned a great deal from him

and will always be thankful to him for introducing me to cryptography and his willingness

to share his knowledge. Moreover, I would like to thank Susan Hohenberger for engaging

and challenging me in the area of automated cryptographic design. I very much appreciate

her enthusiasm and her vast knowledge has helped me tremendously in my research. I

thank Jonathan Katz for serving on my thesis committee and reviewing my thesis on such

short notice.

There are many others that have made my time as a Ph.D student enjoyable. In particu-

lar, I thank my research partner, Matthew Pagano for his willingness to share his expertise

from the moment I arrived at Hopkins. We have spent countless hours working together and

I have learned a lot from him. I also thank Ryan Gardner for always willing to answer my

v

ACKNOWLEDGMENTS

questions and sharing his experiences with me; Sam Small for his continuous encourage-

ment during the tough times as a student; Steve Checkoway; Zachary Peterson; Michael

Rushanan; Christina Garman; Ian Miers; Paul Martin and Gary Truslow. I am sincerely

grateful that I had an opportunity to work with such great people.

I would also like to extend thanks to the administrative staff in the CS department for

consistently putting up with my requests. Also, I am grateful to the National Science Foun-

dation (under grant CNS-1154035), the Office of Naval Research (under contract N00014-

11-1-0470) and SHARPS for kindly funding my research. Lastly, I am very grateful to my

family for believing in me even when I doubted myself. I am thankful for their prayers and

unwavering support.

I especially thank my wonderful wife, Mojola, for her encouragement during the dis-

couraging times of my Ph.D pursuit. She provided perspective when I lacked it and support

when I needed it. I will always be grateful for the happiness she has given me.

Finally, I express my sincere gratitude to everyone that has helped me along my journey.

I am forever grateful. Thanks!

vi

Dedication

This thesis is dedicated to my daughter, Tori and my wife, Mojola for their love and

endless support.

vii

Contents

Abstract ii

Acknowledgments v

List of Tables xiv

List of Figures xv

1 Introduction 1

1.1 Our Approach . 3

1.2 Summary of Our Contributions . 4

1.3 Outline of This Work . 6

2 Cryptographic Preliminaries 8

2.1 Notation . 8

2.2 Bilinear Groups . 9

2.3 Standard Definitions for Digital Signatures 10

viii

CONTENTS

2.4 Standard Definitions for Public Key Encryption 13

3 Extensible Architecture for Automation 15

3.1 Overview . 15

3.2 Background . 16

3.3 Overview of Transformation Tasks . 17

3.4 Our Architecture . 19

3.5 Our Implementation . 21

3.5.1 Scheme Description Language . 21

3.5.2 SDL Parser . 25

3.5.3 Cryptographic Transformations 27

3.5.3.1 Batching Digital Signatures 27

3.5.3.2 Optimizing Cryptographic Schemes 31

3.5.3.3 Constructing Strongly Unforgeable Signatures 35

3.5.4 Code Generator . 39

3.6 Literature Review . 40

4 Charm: A framework for Rapidly Prototyping Cryptosystems 45

4.1 Overview . 46

4.2 Introduction . 46

4.3 Background . 51

4.4 Approach . 52

ix

CONTENTS

4.5 Implementation . 59

4.5.1 Schemes . 62

4.5.2 Protocol Engine . 64

4.5.3 ZKP Compiler . 66

4.5.4 Meta-information and Adapters 68

4.5.5 Type checking and conversion . 71

4.5.6 Using Charm in C applications . 72

4.6 Performance . 73

4.6.1 Comparison with C Implementations 74

4.7 Related Work . 76

4.8 Charm-Crypto Toolkit . 80

4.9 Challenges and Open Problems . 80

5 Machine-Generated Algorithms, Proofs and Software for the Batch Verifica-

tion of Digital Signature Schemes 83

5.1 Overview . 84

5.2 Introduction . 85

5.2.1 Our Contributions . 86

5.2.2 Overview of Our Approach . 88

5.2.3 Related Work . 90

5.3 Batch Verification for Signatures . 93

5.3.1 On Schemes with a Correctness Error 95

x

CONTENTS

5.3.2 Algebraic Setting . 96

5.3.3 Batch Verification in Bilinear Groups 97

5.3.4 Small Exponents Test Applied to Bilinear Groups 98

5.4 The AutoBatch Toolchain . 99

5.4.1 Batching and Optimization . 102

5.4.2 Technique Search Approach . 107

5.4.3 Security and Machine-Aided Analysis 111

5.4.4 Code Generation . 115

5.5 Implementation & Performance . 116

5.5.1 Experimental Setup . 118

5.5.2 Test Cases and Summary of the Results 119

5.5.3 Microbenchmarks . 122

5.5.4 Batch Verification in Practice . 124

5.5.4.1 Basic DoS Attacks . 125

5.6 AutoBatch Toolkit . 127

5.7 Challenges and Open Problems . 127

6 Using SMT solvers to Automate Design Tasks for Encryption and Signature

Schemes 129

6.1 Overview . 130

6.2 Introduction . 131

6.2.1 Our Contributions . 132

xi

CONTENTS

6.2.2 Related Work . 135

6.3 Tools Used . 136

6.4 AutoGroup . 137

6.4.1 Background on Pairing Groups . 137

6.4.2 How AutoGroup Works . 139

6.4.3 Security Analysis of AutoGroup 146

6.4.4 Experimental Evaluation of AutoGroup 147

6.5 AutoStrong . 148

6.5.1 Background on Digital Signatures 149

6.5.2 How AutoStrong Works . 156

6.5.3 Security Analysis of AutoStrong 163

6.5.4 Experimental Evaluation of AutoStrong 164

6.6 Challenges and Open Problems . 165

7 Summary 166

A Additional Material 167

A.1 Scheme Examples In Charm . 168

A.2 Semantics of SDL . 173

A.3 Machine-Generated Batch Verification . 182

A.4 Proof for Batch Verification of HW Signatures 184

A.4.1 Definitions . 184

xii

CONTENTS

A.4.2 Proof . 185

A.5 Proof for Batch Verification of CL04 Signatures 186

A.5.1 Definitions . 187

A.5.2 Proof . 187

A.6 Proof for Batch Verification of VRF . 189

A.6.1 Definitions . 189

A.6.2 Proof . 191

A.7 Candidate Batch Verification for WATERS09 Signatures 194

A.7.1 Definitions . 194

A.7.2 How Candidate Construction was Derived 195

Bibliography 199

Vita 226

xiii

List of Tables

4.1 A partial listing of the cryptographic schemes we implemented. “Code
Lines” indicates the number of lines of Python code used to implement
the scheme (excluding comments and whitespace), and does not include
the framework itself. ROM indicates that a scheme is secure in the Ran-
dom Oracle Model. CRS indicates that a scheme is secure in the Common
Reference String Model. A “-” indicates a generic transform (adapter). ∗

indicates a choice made for efficiency reasons. See the rest of the listing in
Appendix A.1. 63

A.1 Another listing of the cryptographic schemes we implemented. “Code
Lines” indicates the number of lines of Python code used to implement
the scheme (excluding comments and whitespace), and does not include
the framework itself. ROM indicates that a scheme is secure in the Ran-
dom Oracle Model. CRS indicates that a scheme is secure in the Common
Reference String Model. A “-” indicates a generic transform (adapter). ∗

indicates a choice made for efficiency reasons. 168

xiv

List of Figures

3.1 At a high-level, the SDL parser takes as input a SDL file description of a
cryptographic scheme along with some metadata. The parser converts this
input file into an intermediate representation (IR). From this IR, the parser
performs type checking utilizing external tools such as an SMT solver. A
user-selected cryptographic transformation is applied to the IR, which may
also employ external tools to assist with the transformation. The trans-
formation produces a modified SDL file and optionally, a human-readable
proof that the transformation preserves the security of the input scheme.
The code generator produces a working implementation of the modified
SDL in Python and/or C++ using a cryptographic library (e.g., Charm) . . 19

3.2 A high-level presentation of the AutoBatch tool, which automates finding
efficient batch verification algorithms. 30

3.3 A high-level presentation of the AutoGroup tool, which optimizes crypto-
graphic schemes specified in the symmetric setting. 33

3.4 A high-level presentation of the AutoStrong tool, which automates the con-
struction of strongly unforgeable signatures. 37

4.1 Overview of the Charm architecture. 52
4.2 Listing of scheme types defined in Charm. Subtypes are indicated with

dotted lines. 54
4.3 Example of an adapter chain converting the Boneh-Boyen selective-ID se-

cure IBE [66] into a signature scheme using Naor’s technique [95]. The
scheme carries meta-information including the complexity assumptions and
computational model used in its security proof. 55

4.4 Adapter chain converting the Boneh-Boyen selective-ID secure IBE [66]
into a CCA-secure public-key hybrid encryption scheme via the CHK trans-
form [14]. {sig} stands for the complexity assumptions added by the sig-
nature scheme. 56

xv

LIST OF FIGURES

4.5 Encryption and Decryption in the Cramer-Shoup scheme [106]. The top
box shows the description of the algorithm in the published paper while the
bottom box reflects the Charm code. Charm is designed to enable cryp-
tographers to implement their schemes using mathematical notation that
mirrors the paper description. 60

4.6 A partial listing of the generated protocol produced by our Zero-Knowledge
compiler for the honest-verifier proof ZKPoK{(x) : h = gx}. 68

4.7 For EC-DSA, we select the NIST P-192 elliptic curve and for CP-ABE [29],
we measure 50 attributes for keygen and 50 leaves in the policy tree for en-
crypt and decrypt. 76

5.1 The flow of AutoBatch. The input is a signature scheme comprised of key
generation, signing and verification algorithms, represented in the domain-
specific SDL language. The scheme is processed by a Batcher, which ap-
plies the techniques and optimizations from Section 5.4 to produce a new
SDL file containing a batch verification algorithm. Optionally, the Batcher
outputs a proof of correctness (as a PDF typeset using LaTeX) that ex-
plains, line by line, each technique applied and its security justification.
Finally, the Code Generator produces executable C++ or Python code im-
plementing both the resulting batch verifier, and the original (unbatched)
verification algorithm. An optional component, the Parsing Engine, allows
for the automatic derivation of SDL inputs based on existing scheme im-
plementations. 90

5.2 The Boneh-Lynn-Shacham (BLS) signature scheme [120] at various stages
in the AutoBatch toolchain. At the left, an initial Charm-Python imple-
mentation of the scheme. In the center, an SDL representation of the same
scheme, programmatically extracted by the Parsing Engine. At right, a
fragment of the resulting batch verifier generated after applying the Batcher
and Code Generator. 100

5.3 The Boneh-Lynn-Shacham (BLS) signature scheme [120] with same signer
and η signatures in a batch. We show the abstract syntax tree (AST) of
the unoptimized batch equation after Batcher has applied technique 1 by
combining all instances of the verification equations (denoted by

node)

and applying the small exponents test (denoted by δz node). 104
5.4 The Boneh-Lynn-Shacham (BLS) signature scheme [120] with same signer

and η signatures in a batch. Upon applying technique 1 from Figure 5.3 to
obtain the initial secure batch verifier, the goal is to optimize the equation.
We first show the AST of the equation after Batcher has applied technique 2
(move exponents inside the pairing). Then, we show the result of applying
technique 3 (move products inside the pairing) to arrive at an optimized
batch equation. 105

xvi

LIST OF FIGURES

5.5 The state transition table represents the transition function we developed
for pruning our breath-first search (PBFS) algorithm. The function accepts
as input the current state which represents the technique that was applied to
the batch equation. The PBFS always starts in state 2 (where it tries to apply
Technique 2). Then from there, the search attempts to follow any suggested
states and applies the corresponding techniques. If the technique does not
apply, the path is terminated. Otherwise, we check whether that path is
already a subset of the paths we have covered so far. We continue with the
search until all open paths are terminated. In an effort to ensure that all
paths terminate, the state function restricts the transition from Technique 9
to 6 to occur once on a given path (indicated by ∗). Although we do not
prove that our algorithm is guaranteed to terminate, we conjecture that it
does in practice. In fact, it terminated promptly for all of our test cases.
Once all paths are terminated, we attempt to apply Technique 10 to each
path in a post-processing phase. 111

5.6 Cryptographic overhead and verification time for all of the pairing-based
signatures in an alternative implementation of AutoBatch. RELIC is faster
on 12 of 14 schemes, but MIRACL is better on CL and Waters09. We spec-
ulate that this is because modular exponentiation in G1 and G2 is slightly
slower in RELIC compared to MIRACL. Since RELIC is an actively de-
veloped library, we believe this issue can be addressed in future versions.
In the case of HW (with different signers), individual verification outper-
forms batch verification in both libraries because batch time is dominated
by group membership tests. 117

5.7 Digital Signature Schemes used as test cases in AutoBatch. We show a
comparison between naive batch verifiers designed by hand or discovered
in the literature and ones found by AutoBatch. Scheme names followed
by an “ss” were only batched for the same signers; otherwise, different
signers were allowed. For types, S stands for regular signature, I stands
for identity-based, M stands for a batch that contains a mix of two different
types of signatures, R stands for ring, G stands for group and V stands for
verifiable random function. For models, RO stands for random oracle and
P stands for plain. Let ℓ be either the size of the ring or the number of
bits in the VRF input. Let z be a security parameter that can be set to 5
in practice. To approximate verification performance, we count the total
number of pairings needed to process η valid signatures. Unless otherwise
noted, the inputs are from different signers. The final column indicates
the order of the techniques from Section 5.4 that AutoBatch applied to
obtain the resulting batch verifier. The rows in bold are the schemes where
AutoBatch discovered new or improved algorithms. 120

xvii

LIST OF FIGURES

5.8 Signature scheme microbenchmarks for Waters09 [57], HW [135] and CL [18]
public-key signatures (same signer), the VRF [19] (with block size of 8),
combined verification of ChCh+Hess IBS [136, 137], and Boyen ring sig-
nature (3 signer ring) [70]. Per-signature times were computed by dividing
total batch verification time by the number of signatures verified. All tri-
als were conducted with 10 iterations and were instantiated using a 160-bit
MNT elliptic curve. Variation in running time between trials of the same
signature size were minimal for each scheme. Note that in one HW case,
all signatures are formulated by the same signer (as for certificate genera-
tion). All other schemes are without such restrictions. Individual verifica-
tion times are included for comparison. 123

5.9 Time in milliseconds required by the Batcher and Code Generator to pro-
cess a variety of signature schemes (averaged over 100 test runs). Batcher
time includes search time for the technique ordering, generating the proof
and estimating crossover point between individual and batch verification.
The Partial-Codegen time represents the generation of the batch verifier
code from a partial SDL description and Charm implementation of the
scheme in Python. The Full-Codegen time represents the generation of
code from a full SDL description only. The running times are a product
of the complexity of each scheme as well as the number of unique paths
uncovered by our search algorithm. In all cases, the standard deviation in
the results were within ±3% of the average. 125

5.10 Simulated service denial attacks against a batch verifier (BLS signatures,
single signer). The “Invalid Signatures as Fraction of Total” line (right
scale) shows the fraction of invalid signatures in the stream. Batcher through-
put is measured in signatures per second (left scale). The “Batch-Only
Verifier” line depicts a standard batch verifier. The solid line is a batch ver-
ifier that automatically switches to individual verification when batching
becomes suboptimal. 126

6.1 A high-level presentation of the new automated tools, AutoGroup and Au-
toStrong. They take as input a Scheme Description Language (SDL) repre-
sentation of a cryptographic scheme and output an SDL representation of
a transformation of the scheme, which can possibly be further transformed
by another tool. These tools are compatible with the existing AutoBatch
tool and Code Generator (shaded). An SDL input to the Code Generator
produces a software implementation of the scheme in either C++ or Python. 132

6.2 A high-level presentation of the AutoGroup tool, which uses external tools
Z3 and SDL Parser. 137

xviii

LIST OF FIGURES

6.3 AutoGroup on encryption schemes under various optimization options. We
show running times and sizes for several schemes generated in C++ and
compare symmetric to automatically generated asymmetric implementa-
tions at the same security levels (roughly equivalent with 3072 bit RSA).
For IBE schemes, we measured with the identity string length at 100 bytes.
For BGW, n denotes the number of users in the system. 145

6.4 A high-level presentation of the AutoStrong tool, which uses external tools
Z3, Mathematica and SDL Parser. 148

6.5 We show the result of AutoGroup and AutoStrong on signature schemes.
For CL, BB, and Waters (with length of identities, ℓ = 128), we first ap-
ply AutoStrong to determine that the signature scheme is partitioned, then
apply the BSW transform to obtain a strongly unforgeable signature in
the symmetric setting. We then feed this as input to AutoGroup to re-
alize an asymmetric variant under a given optimization. We also tested
AutoStrong on the DSE signature and ACDK structure-preserving signa-
ture, even though these are not known to be existentially unforgeable. A
partition was found for ACDK, but not DSE. 155

6.6 Running time required by the AutoGroup and AutoStrong routines to pro-
cess the schemes discussed in this work (averaged over 10 test runs). The
running time for AutoGroup includes the execution time of the Z3 SMT
solver. The running time for AutoStrong also includes Z3 and Mathematica
and the application of the BSW transformation. In all cases, the standard
deviation in the results were within ±3% of the average. For AutoGroup,
running times are correlated with the number of unique solutions found and
the minimization of the weighted function using Z3. AutoStrong running
times are highly correlated with the complexity of the verification equations. 161

A.1 A working example of how the API is utilized in a C application to embed a
hybrid encryption adapter (see Figure A.2b) for any CP-ABE scheme such
as the BSW07 [29] scheme. We provide several high-level functions that
simplify using Charm schemes. In particular, the CallMethod() encapsu-
lates several types of arguments to Python such as: %O for Charm objects,
%s for ASCII strings, %A to convert into a Python list, and %b to a binary
object. 169

A.2 Adapters in Charm. (a). The entire IBE to signature adapter scheme [28].
(b) A hybrid encryptor for ABE schemes in Charm. 170

A.3 Keygen in the Cramer-Shoup scheme [106]. We exclude group parameter
generation. 171

A.4 CL signatures [73] are a useful building block for anonymous credential
systems. We provide a full scheme description and Charm code, but ex-
clude group parameter generation. 172

xix

LIST OF FIGURES

A.5 These are the final batch verification equations output by AutoBatch. Due
to space, we do not include the full schemes or further describe the elements
of the signature or our shorthand for them, such as setting h = H(M) in
BLS. However, a reader could retrace our steps by applying the techniques
in Section 5.4 to the original verification equation in the order specified
in Figure 5.7. ‘Combined signatures’ refers to the combined batching of
multiple signature verification equations that share algebraic structure. . . . 183

xx

Chapter 1

Introduction

Since public-key cryptography was introduced in the 1970s, the cryptographic research

community has made impressive progress in developing new cryptographic primitives and

protocols. Our understanding of basic technologies such as public key encryption and

digital signatures has advanced considerably. These advances have given us entirely new

paradigms for securing data and techniques for searching and computing on encrypted

data. However, many of these advances exist mostly in research papers and have often

gone unimplemented due to the lack of adequate tools support to implement them. This

is a loss for users and we believe that addressing this problem should be a priority for the

cryptographic community.

To change this trend, we set out to investigate new tools for developing and deploy-

ing cryptographic schemes. One of these tool is a framework called Charm [11] which

facilitates rapid prototyping of cryptosystems by providing an extensible and modular ar-

1

CHAPTER 1. INTRODUCTION

chitecture while promoting the reuse of components. The hope is that Charm will bridge

the gap between theory and practice to lower the barriers for practitioners to implement

schemes. As such, Charm emphasizes implementing cryptography using abstract, math-

ematical notation similar to how cryptosystems are natively described in research papers.

It effectively places focus on the cryptographic algorithms rather than on low-level imple-

mentation details.

While Charm has been used to implement over forty primitives in the literature, many

more variants are possible by applying cryptographic transformations. Cryptographers

have made a number of useful observations with respect to designing cryptographic schemes

by transforming existing constructions in novel ways. These general transformations either

obtain entirely new primitives, strengthen security or improve efficiency. For example,

constructing batch verification algorithms is a general transformation in which the aim is

to improve the efficiency of signature verification. In practice, transformed cryptographic

schemes are useful and form core building blocks in a variety of larger cryptographic pro-

tocols [13–16].

Unfortunately, applying cryptographic transformations by hand to document all possi-

ble variations of a given primitive has been quite challenging and ad-hoc in nature. The

existing manual approach has largely been tedious, error-prone, and in some cases, has

lead to many insecure constructions. Generally speaking, history has taught us that these

transformations must be applied to existing schemes in a careful, deliberate manner in or-

der to preserve the security of the original scheme. To that end, an automated approach

2

CHAPTER 1. INTRODUCTION

for applying cryptographic transformations to digital signatures and encryption schemes

has the potential to yield better results than what is currently done today. While an au-

tomated approach is ideal, a unified framework to accomplish such automation targeting

cryptographic transformations has been largely unexplored in the research literature.

In this thesis, we explore an automated approach to show that we can expand on exist-

ing schemes in many ways – increase their efficiency, optimize their algebraic setting and

even strengthen their security. These variations, numbering in the thousands for some con-

structions, can be generated on demand or stored in Charm for practical use. We believe

that future cryptographic libraries will include not only one implementation of a certain

algorithm, but also automations for deriving optimal variants. This thesis presents the first

such comprehensive library of its kind.

1.1 Our Approach

In this work, we will investigate the answers to four important questions with respect to

cryptographic transformations: Which tasks are naturally amenable to automation? What

type of paradigm, tools and specification language are necessary for automating crypto-

graphic transformations? To what extent can cryptographic design tasks be performed in

an automated fashion and what are the limitations? How do we prove or verify that the

machine-designed schemes are correct and secure?

We believe that a domain-specific language and compiler-based architecture possess

3

CHAPTER 1. INTRODUCTION

the necessary ingredients for enabling machine-aided cryptographic transformations. We

show how such an architecture can aid in automating three general transformations in the

literature. As evidence, we present a series of cryptographic compiler tools that realize the

implementation of these transformations. More specifically, our tools utilize three main

ideas to effectively automate these transformations: 1) a high-level description language to

represent and implement cryptographic schemes, 2) an encoding of a cryptographic trans-

formation as a series of simple transformations guided by a concrete set of rules, and 3)

a compiler that programmatically applies the encoded rules to abstract specifications and

derives executable code from the given specifications.

1.2 Summary of Our Contributions

We present the design of an extensible framework for automating cryptographic trans-

formations and evaluate the framework on three interesting case studies. Our implemen-

tation of this framework is embodied in four tools that we describe herein and forms the

technical contribution of this thesis.

1. Charm. We first introduce Charm [11], a cryptographic library for designing, im-

plementing and evaluating cryptographic primitives and protocols. Our library pro-

vides several reusable and modular components that facilitate the rapid prototyp-

ing of advanced cryptographic constructions. Using Charm, we implemented over

forty cryptographic schemes in the research literature, including new ones that to our

4

CHAPTER 1. INTRODUCTION

knowledge have never been built in practice. Charm serves as a building block in our

architecture for experimentally measuring the effectiveness of the transformations on

cryptographic primitives.

2. AutoBatch. We present AutoBatch [17], a tool for automatically finding efficient

batch verification algorithms from high-level descriptions of digital signature schemes.

The tool searches for a batching algorithm by repeatedly applying a combination of

novel and existing batching techniques. To our knowledge, this is the first attempt to

automatically identify when certain batching techniques are applicable and to apply

them in a secure manner. AutoBatch is an instance of our general architecture de-

scribed herein and to our knowledge, our tool produced the first batching algorithm

for the Camenisch-Lysyanskaya [18] and Hohenberger-Waters [19] signatures in an

automated fashion.

3. AutoGroup. We present AutoGroup [20], a tool for automatically optimizing the

efficiency and bandwidth of pairing-based signature and encryption schemes from

high-level descriptions. Traditionally, cryptographers prefer simple, symmetric-based

group notation for describing pairing-based schemes, whereas for implementation,

they prefer asymmetric-based groups which is more efficient. In practice, converting

schemes represented in the former to the latter is non-trivial and can be quite chal-

lenging. AutoGroup implements this conversion using our general architecture and

leverages SMT solvers to automatically perform the transformation. To our knowl-

5

CHAPTER 1. INTRODUCTION

edge, this is the first attempt to automatically identify optimal translations for a given

cryptographic scheme.

4. AutoStrong. Finally, we present AutoStrong [20], a tool for automatically converting

an existentially unforgeable signature into one that is strongly unforgeable. Strongly

unforgeable signatures are desired in practice for larger cryptographic protocols such

as signcryption and chosen-ciphertext secure encryption, just to name a few. Several

transformations exist in the literature for achieving strong unforgeability with differ-

ent requirements for when each transformation is applicable. AutoStrong was also

implemented using our architecture and to our knowledge, this is the first attempt to

leverage tools such as SMT solvers to determine when certain highly-efficient trans-

formations [12] can be safely applied to a given signature scheme.

1.3 Outline of This Work

Let us now give a layout of the remaining sections of this thesis:

Chapter 2 describe the cryptographic schemes and security definitions we employ in this

thesis.

Chapter 3 details our extensible architecture for automating certain cryptographic trans-

formations described herein.

Chapter 4 describes the Charm cryptographic library and its building blocks for facili-

6

CHAPTER 1. INTRODUCTION

tating rapid prototyping of advanced cryptosystems. Charm provides the necessary

components to implement and measure the performance of cryptographic schemes.

Chapter 5 describes the first case study on constructing batch verification algorithms. In

this chapter, we present AutoBatch which automates the process of designing batch

verification algorithms.

Chapter 6 describes the second case study on symmetric-to-asymmetric translations and a

third case study on constructing strongly unforgeable signatures. In this chapter, we

describe the implementation of the automated tool called AutoGroup for the second

study and AutoStrong for the third study.

Chapter 7 concludes by enumerating the main points of this thesis.

In the appendix, we provide additional material including cryptographic scheme descrip-

tions that serve as test cases for our automated transformations, machine-generated proofs

and details on our high-level description language that we utilize in this work.

Previous Publications. A majority of this work has previously appeared in the proceed-

ings of other venues. Notably, Chapter 4 was originally published in the Journal of Crypto-

graphic Engineering (JCEN) 2013 [11]. An extended abstract of Chapter 5 was originally

published in the proceedings of the Association for Computing Machinery (ACM) Confer-

ence on Computer and Communications Security, (CCS) 2012 [17]. Similarly, Chapter 6

is based on work that appeared in the proceedings of ACM CCS 2013 [20].

7

Chapter 2

Cryptographic Preliminaries

Before we present the design of our extensible architecture, we must first describe sev-

eral concepts that are integral to our approach. We focus our discussion on bilinear (or

pairing) groups, digital signatures and public-key encryption schemes. We provide secu-

rity definitions and various types of signatures that we will employ in later chapters. Fi-

nally, we describe encryption schemes that we optionally consider for some cryptographic

transformations.

2.1 Notation

We begin by describing the notation we use throughout this thesis:

• Running Time. By a p.p.t algorithm or adversary we are typically referring to a

probabilistic, polynomial-time Turing machine.

8

CHAPTER 2. PRELIMINARIES

• Security parameter. The cryptographic schemes that we discuss make use of a

security parameter 1λ where λ is an integer. For example, this parameter is used to

initialize schemes typically during key generation and defines the level of security

for the scheme. A large security parameter λ determines the difficulty for a p.p.t

adversary to break the scheme.

• Negligible Function. A negligible function ε(·) is defined such that for all polyno-

mial functions p(·) and a sufficiently large security parameter ℓ, it holds that ε(ℓ) <

1/p(ℓ).

2.2 Bilinear Groups

Let BMsetup be an algorithm that, on input the security parameter 1ℓ, outputs the pa-

rameters for a bilinear group (q, g, h,G1,G2,GT , e). A bilinear map (or pairing) is an effi-

ciently computable mapping e : G1 × G2 → GT , where G1,G2 and GT are multiplicative

cyclic groups of prime order q ∈ Θ(2ℓ). A pairing has two important properties: bilin-

earity and non-degenerate maps. The bilinear property is that for all generators g ∈ G1,

h ∈ G2, and a, b ← Zq, it holds that e(ga, hb) = e(g, h)ab; Non-degenerate maps ensure

that e(g, h) , 1. The above bilinear map is called asymmetric and our implementations use

this highly efficient setting. We also consider symmetric maps where there is an efficient

isomorphism ψ : G1 → G2 (and vice versa) such that a symmetric pairing ê is defined as

ê : G1×ψ(G1)→ GT . We abstractly treat symmetric groups equally (G1 = G2) for simplic-

9

CHAPTER 2. PRELIMINARIES

ity and compare performance between symmetric and asymmetric pairings in Chapter 6.

2.3 Standard Definitions for Digital Signatures

Definition 2.3.1 (A Digital Signature). A digital signature scheme is a tuple of p.p.t algo-

rithms (Gen,Sign,Verify):

1. Gen(1λ) → (pk, sk): the key generation algorithm takes as input the security param-

eter 1λ and outputs a pair of keys (pk, sk).

2. Sign(sk,m)→ σ: the signing algorithm takes as input a secret key sk and a message

m from the message space and outputs a signature σ.

3. Verify(pk,m, σ) → {0, 1}: the verification algorithm takes as input a public key pk, a

message m and a purported signature σ, and outputs a bit indicating the validity of

the signature. The output 1 denotes a valid signature while 0 denotes an invalid one.

A scheme is typically said to be correct (or perfectly correct) if for all Gen(1ℓ) → (pk, sk)

and for all m in the message space,

Verify(pk,m,Sign(sk,m)) = 1

That is, a scheme is correct if all honestly generated signatures pass the verification test.

Our focus will be on correct schemes, however, we discuss in Section 5.3.1 the implications

for batch verification if some correctness error is allowed.

10

CHAPTER 2. PRELIMINARIES

We present two security definitions for signature schemes that we refer to in this work:

Definition 2.3.2 (Existentially Unforgeable). A scheme is defined to be existentially un-

forgeable under an adaptive chosen-message attack if for all p.p.t adversaries A the success

probability of A is negligible in the following game [21]: Let Gen(1ℓ)→ (pk, sk). Suppose

the pair (m, σ) is output by A who has access to the input pk and makes queries to a signing

oracle Osk(·), obtaining signatures on as many messages as it wants. Let M denote the set

of messages m queried to Osk(·) by A. Then the probability that m was not queried to Osk(·)

(i.e., m < M) and yet Verify(pk,m, σ) = 1 must be negligible in ℓ.

Definition 2.3.3 (Strongly Unforgeable). A scheme is defined to be strongly unforgeable

under an adaptive chosen-message attack if for all p.p.t adversaries A the success proba-

bility of A is negligible in the following game [13]: Let Gen(1ℓ) → (pk, sk). Suppose the

pair (m, σ) is output by A who has access to the input pk and makes queries to a signing

oracle Osk(·), obtaining signatures on as many messages as it wants. Let Q = {(mi, σi)} be

the set of pairs where mi denotes the i-th message query by A to Osk(·) and the σi denotes

the resulting signature. Then the probability that the pair (m, σ) was not among the pairs

queried to Osk(·) (i.e., (m, σ) < Q) and yet Verify(pk,m, σ) = 1 must be negligible in ℓ.

We apply cryptographic transformations to regular signatures as described in Definition 2.3.1

and also some variants which we now describe below:

• Identity-Based Signatures (IBS) [22]: IBS was originally conceived by Adi Shamir

in 1984. It consists of a key generation algorithm that is executed by a master author-

11

CHAPTER 2. PRELIMINARIES

ity who publishes the public key and uses the master secret key to generate signing

keys for users according to their public identity string. To verify a signature on a

given message, one only needs the public key of the master authority and the public

identity string of the purported signer.

• Privacy Signatures: Group signatures were first introduced by Chaum and Van

Heyst [23] in 1991 with two important properties: traceability and anonymity. For

anonymity, a signature is associated with a group of users, where verification shows

that at least one member of the group signed the message, but it is difficult to tell who

signed the message. For traceability, it allows a designated group manager with his

secret key to extract the identity of the member that signed a given message. Ring

signatures [24] are similar to group signatures in that they provide anonymity but not

traceability.

• Verifiable Random Functions (VRF) [25]: A VRF is a pseudo-random function,

where the computing party publishes a public key and then can offer a short non-

interactive proof that the function was correctly evaluated for a given input. This

proof can be viewed as a signature by the computing party on the input to the pseudo-

random function.

• Structure-preserving Signatures (SPS) [26]: SPS is a signature in which the public

key, messages and signatures are all elements of pairing groups. The verification

consists of checking conjunctions of pairing-product equations against the public

12

CHAPTER 2. PRELIMINARIES

key, and messages/signature [26]. This structure-preserving property of the messages

enable these signatures to be combined with the Groth-Sahai non-interactive zero-

knowledge (NIZK) proof system [27].

2.4 Standard Definitions for Public Key Encryp-

tion

Definition 2.4.1 (Public-Key Encryption). A public-key encryption scheme is a tuple of

p.p.t algorithms (Gen,Encrypt,Decrypt):

1. Gen(1λ) → (pk, sk): the key generation algorithm takes as input the security param-

eter 1λ and outputs a pair of keys (pk, sk).

2. Encrypt(pk,m) → C: the randomized encryption algorithm takes as input a public

key pk and a message m from the message space and outputs a ciphertext C.

3. Decrypt(sk,C) → m: the deterministic (or possibly randomized) decryption algo-

rithm takes as input a secret key sk and a ciphertext C, and outputs a message m or ⊥

if a decryption error occurred.

A scheme is typically said to be correct (or perfectly correct) if for all Gen(1ℓ) → (pk, sk)

and for all m in the message space,

Decrypt(sk,Encrypt(pk,m)) = m

13

CHAPTER 2. PRELIMINARIES

That is, a scheme is correct if all honestly generated ciphertexts pass this test.

We optionally consider some variants of public-key encryption schemes:

• Identity-Based Encryption (IBE) [22, 28]: IBE was first conceived by Adi Shamir

in 1984 to address the shortcomings of public-key distribution. Boneh and Franklin [28]

realized the first practical and efficient construction using pairing groups in 2001.

IBE is a form of public-key encryption where the public key is an identity (e.g.,

email address in the form of a string). Users obtain a decryption key for their public

identity from a master authority and can decrypt messages that are encrypted to their

identity.

• Attribute-Based Encryption (ABE) [29–31]: ABE was first proposed by Sahai and

Waters [32] in 2004. ABE is a generalization of IBE where the public identity is a

set of attributes. Users can only decrypt if the attributes associated with their private

key matches certain attributes specified in the ciphertext.

• Broadcast Encryption (BE) [33]: BE was first introduced by Fiat and Naor in 1994.

It enables encrypting a message to only a subset of qualified users. Only qualified

users listening to the broadcast channel can decrypt using their private key. Revoked

users are not able to decrypt and even if these users collude, they cannot obtain any

information about the contents of the broadcast. [33]

14

Chapter 3

Extensible Architecture for Automation

3.1 Overview

In this chapter, we present an extensible architecture that can automate the design of

certain cryptographic transformations. Our approach demonstrates how to safely and ef-

fectively outsource a class of general transformations to machines. We describe a novel

high-level description language geared for abstractly representing cryptographic primitives.

Furthermore, we show how cryptographic compilers can be designed around this language

to automate transformations successfully. In particular, we describe three case studies of

general transformations in the literature that we automate in this work. We present them in

an increasing order of complexity.

15

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

3.2 Background

Before we describe our architecture, we must first provide some background on the

building blocks we employ in our automation. Our architecture utilizes external tools such

as the Z3 Satisfiability Modulo Theories (SMT) solver to assist in automating some aspects

of cryptographic design. Z3 [34, 35] is a freely-available, state-of-the-art and highly effi-

cient SMT solver developed by Microsoft Research. SMT is a generalization of boolean

satisfiability (SAT) solving, which determines whether assignments exist for boolean vari-

ables in a given logical formula that evaluates the formula to true. SMT solvers builds on

SAT to support many rich first-order theories such as equality reasoning, arithmetic, and ar-

rays. In practice, SMT solvers have been used to solve a number of constraint-satisfaction

problems and are receiving increased attention in applications such as software verification,

program analysis, and testing. Z3 in particular has been used as a core building block in

API design tools such as Spec#/Boogie [36,37] and in verifying C compilers such as VCC.

Additionally, we utilize the development platform provided by Wolfram Research’s

Mathematica [38] (version 9), which allows us to simplify equations for several of our

analytical techniques. We leverage Mathematica in our automation to validate that given

cryptographic algorithms have certain mathematical properties.

16

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

3.3 Overview of Transformation Tasks

We now describe the three cryptographic transformations currently done by hand that

we believe can be securely automated. The following is an overview of each transforma-

tion:

1. Construct batch verification schemes. A batch verification scheme is a probabilis-

tic algorithm that accepts a set of signatures if and only if each signature would have

been accepted by its verification algorithm individually. The idea is that valuable

verification time will be saved by processing many messages and signatures together

than separately. Given these advantages, batch verification techniques are utilized in

practice for many applications. In addition, batching algorithms employ techniques

that reduce the probability of accepting invalid signatures within a batch. The goal is

to automate the design of secure and efficient batch verification schemes for pairing-

based signatures.

2. Optimize the efficiency and bandwidth of cryptographic schemes. Pairing-based

encryption and signature schemes are usually written using a simple symmetric group

notation (G1 = G2), but practitioners often prefer implementation in an asymmetric

group (G1 , G2) due to its efficiency gains. For example, in asymmetric groups,

group operations in G1 are significantly more efficient than operations in G2. Con-

verting from symmetric to asymmetric settings requires altering the cryptographic

scheme such that group elements are given either G1 or G2 assignments, but not both.

17

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

The goal is to automate the conversion from symmetric to asymmetric schemes and

find optimal solutions based on users’ efficiency preferences.

3. Convert an existentially unforgeable signature into a strongly unforgeable sig-

nature. Many signatures are defined under the standard existential unforgeability

definition which guarantees that an adversary cannot produce a signature on a new

message. Whereas, the strong unforgeability definition provides a more powerful

guarantee that an adversary cannot produce a new signature even on a previously

signed message. Several transformations exist in the literature for transforming an

existentially unforgeable signature into one that is strongly unforgeable. Some trans-

formations (e.g., Boneh, Shen, and Waters [12]) produce more efficient strongly un-

forgeable signatures than others (e.g., Bellare-Shoup [39]). The goal is to automati-

cally determine when such efficient transformations are applicable then apply them.

18

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

3.4 Our Architecture

Cryptographic API
(e.g., Charm)

Cryptographic
Transformations

External Tools
SMT Solvers,

etc

SDL Parser

SDL Input
Scheme

S'

Code Generator

S

Python C++

Proof

 SDL Output
Scheme

IR

Figure 3.1: At a high-level, the SDL parser takes as input a SDL file description of a
cryptographic scheme along with some metadata. The parser converts this input file into an
intermediate representation (IR). From this IR, the parser performs type checking utilizing
external tools such as an SMT solver. A user-selected cryptographic transformation is
applied to the IR, which may also employ external tools to assist with the transformation.
The transformation produces a modified SDL file and optionally, a human-readable proof
that the transformation preserves the security of the input scheme. The code generator
produces a working implementation of the modified SDL in Python and/or C++ using a
cryptographic library (e.g., Charm)

We present in Figure 3.1 our approach for automatically applying the aforementioned

cryptographic transformations. Our architecture comprises four major components listed

as follows:

1. Scheme Description Language (SDL): SDL is a domain-specific language for ab-

stractly representing pairing-based cryptographic schemes; the purpose of SDL is to

capture the essence of a cryptographic algorithm using mathematical notation. Our

language relieves practitioners of specifying low-level details and instead focuses on

19

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

the high-level aspects of the cryptographic algorithm. SDL is the language around

which our architecture is built and provides the necessary foundation for effectively

implementing cryptographic transformations.

2. SDL Parser: parses encryption or signature schemes written in SDL, and translates

the SDL file into an intermediate representation (IR) as a series of abstract syntax

tree (AST) structures. From this IR, the parser performs type checking and inference

using external tools. In addition, during SDL processing, the parser records relation-

ships between variables in SDL, which includes dependencies between variables and

how each variable is computed.

3. Cryptographic Transformations: represents a series of algorithms and rules that

perform transformations on SDL IRs to achieve a design objective. Each encoded

algorithm may employ external tools such as SMT solvers to assist in implementing

known transformations in the research literature. For transparency, a human-readable

proof of security may be optionally provided to show that a given transformation

preserves the security of the input scheme. Alternatively, verification tools such as

EasyCrypt [40] or CryptoVerif [41] may be utilized to provide machine-checkable

evidence that the security of the transformed scheme preserves the security of the

input scheme. However, achieving such evidence in an automated fashion is currently

an open problem and beyond the scope of our current architecture.

20

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

4. Code Generator: converts original and/or modified SDL of a cryptographic scheme

into Python and/or C++ source code. We opted to provide support for statically-

typed languages like C++ for environments in which Python (a dynamically-typed

interpreted language) is impractical (e.g., embedded devices). As such, the typing

information collected by the SDL parser is used here to generate C++ code. Finally,

the code generator utilizes a high-level backend cryptographic API to realize work-

ing implementations of the SDL descriptions for various public-key encryption and

signature types.

3.5 Our Implementation

In this section, we provide details on our approach for implementing each of these

components.

3.5.1 Scheme Description Language

Although SDL is a restricted subset of a programming language, it is expressive enough

to abstractly describe a variety of cryptographic algorithms. We emphasize that our current

focus is on pairing-based digital signatures and public-key encryption schemes. To imple-

ment such primitives, SDL includes several basic programming language concepts often

used by cryptographic constructs such as functions, conditionals, loops and products. We

demonstrate the general syntax and semantics of SDL through scheme examples (see Ap-

21

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

pendix A.2). Finally, SDL is a typed language and our toolchain provides extensive type

checking and inferencing to simplify the language for users.

An SDL description of a cryptographic scheme consists of several elements to be con-

sidered well-formed. First, it must define a few global variables such as the name of the

scheme and the pairing setting (e.g., symmetric vs. asymmetric). Because the SDL is

parsed in order, the user must declare a type section as the first block in the SDL. Sec-

ondly, the remaining blocks consists of the mathematical description of the cryptographic

algorithms.

We will now describe the contents of SDL including types, operators, data structures

and other basic constructs:

Variable Assignment. Our language supports the basic notion of an assignment statement

using the := operator. This is used to set the value of a variable.

Types and Operators. SDL provides five abstract types for describing elements within

pairing-based schemes. These basic types consist of Str, Int, ZR, G1, G2, and GT. A Str

type typically refers to a bitstring of arbitrary size, {0, 1}∗, and an Int type is an integer in Z.

A ZR type represents an integer in Zr where r is the prime order of the group. Finally, G1,

G2 and GT refer to the pairing groups G1, G2 and GT , respectively. Operators +, –, *,/,ˆ are

group operations and in particular, ˆ denotes exponentiation.

Data Structures. SDL supports data structures that are commonly used in schemes

such as one-dimensional, two-dimensional arrays and tuples. One-dimensional arrays are

declared as list{type} where type is one of the basic types. For instance, a list{G1} type

22

:=

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

annotation denotes an array ofG1 elements. Two-dimensional arrays are declared similarly.

SDL also provides support for tuple data structures. These are useful for describing public

keys or ciphertexts which may contain many different element types. Tuples are represented

as list{x, y} where x and y are variables with any one of the supported types (including array

types).

Built-in Functions. We provide several built-in functions in SDL to simplify and abstract

away certain implementation details. For instance, the random() function represents the

selection of generators in G1,G2 or GT and selection of exponents in Zr. Moreover, we

provide a general purpose cryptographic hash function, H(), that is often used in schemes.1

Because SDL is a restricted language, we can support additional abstract functions that are

commonly used in a variety of cryptographic constructions, thereby placing more focus on

the algorithm.

User-defined Functions. To support representation of cryptographic algorithms, SDL

allows for user-defined functions. The syntax is simple and very straightforward:

BEGIN :: func:keygen
input := None
g := random(G2)
x := random(ZR)
pk := g^x
sk := x
output := list{pk, sk, g}
END :: func:keygen

We show the key generation algorithm for the Boneh, Lynn, and Shacham (BLS) [42]

1H() takes two arguments: first is the input variables and the second is the target group for the output
group element.

23

random()
H()
H()

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

signature scheme. Intuitively, the BEGIN::func:keygen denotes the beginning of a func-

tion block while the END::func:keygen denotes the conclusion of the function. Further-

more, the input and output keywords capture the inputs/outputs of the function.

Conditionals and Loops. SDL provides support for conditional statements which is often

implicitly required in scheme descriptions. As an example, we show the BLS verification

algorithm:

BEGIN :: func:verify
input := list{pk, M, sig, g}
h := H(M, G1)
BEGIN :: if
if {e(h, pk) == e(sig, g)}

output := True
else

output := False
END :: if
END :: func:verify

Furthermore, we provide similar support for loops including products and summations. We

show a for loop as an example:

j := 0
BEGIN :: for
for{i := 0, N}
j := j + i
END :: for

Additionally, products are typically represented as prod{i:=0,N} on (x*y) while sum-

mation is represented as sum{i:=1,L} of x.

In summary, we took a minimalistic approach with the design of SDL. It provides a

minimal set of features that are necessary to describe cryptographic algorithms, but it is

expressive enough to represent very complex schemes. Extending the language is rather

24

BEGIN :: func:keygen
END :: func:keygen
input
output

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

trivial in the sense that additional built-in functions can be added to support new tools

utilized by cryptographic schemes.

3.5.2 SDL Parser

The role of the parser is to process SDL descriptions and transform them into interme-

diate representations to enable our automation. More specifically, the parser extracts an

abstract syntax tree (AST) from the SDL representation of a cryptographic scheme. Dur-

ing extraction of the AST, we record various metadata about the SDL’s contents such as

variable types, dependencies and how certain variables are computed (e.g., via generators

and exponents). For example, in order to record typing information, the parser relies on

an SMT solver (e.g., Z3) to assist with type checking and inferring types. In general, the

recorded metadata is not only used to support our automated cryptographic transformations

but also for code generation.

To ensure correctness, the parser validates that the variables in the SDL are used cor-

rectly with respect to their specified or inferred types. Using SMT solvers, we validate that

SDL statements are indeed correctly formed in terms of a set of rules that describe our type

system. For instance, a simple rule expressed in the SMT solver for group operations (e.g.,

multiplication) is that the variables must have the same type. To encode such rules, we rely

on features such as uninterpreted functions, abstract data types and quantifiers to model the

SDL type system. Moreover, we utilize the theory of arrays in the SMT solver to model the

use of data structures within SDL. Our approach here will enable extending SDL to new

25

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

cryptographic settings without onerous effort.

Our main technique for inferring types is to convert SDL statements into logical for-

mulas, then evaluates them against a model of the SDL type system. Our parser translates

the SDL into an equivalent formulation in Z3 replacing variable names with known types.

For usability, the parser notifies the user when variable types cannot be inferred and in such

situations, the user is required to provide type annotations. To illustrate our type system,

consider the following SDL statement: a := b * (c ^ d). If b, c ∈ G1, and d ∈ Zr, then

the generated Z3 input is: a = mul(G1, exp(G1, ZR)). Once we feed this formula into

the Z3 model of our type system to resolve the types, the output is a = G1. Therefore, if an

assignment statement is well-formed and variables have the correct types, then the solver

will also produce a correct type for that assignment. Otherwise, a type violation (nil)

is reported. Indeed, our approach to validating the types is fairly straightforward and has

been tested on several encryption and signature schemes from the literature that we have

encoded in SDL.

As indicated earlier, the parser records how certain variables are computed in terms of

their base generators and exponents. For example, this information can provide a complete

picture on how secret-keys or signatures are constructed. This feature is particularly useful

as a building block in some of the cryptographic transformations we discuss in this work

and is considered a limited form of term rewriting. Moreover, the parser records the vari-

ables that a given variable influences and depends on. The influence metadata is considered

a forward analysis while the dependency metadata is a backward analysis on each defined

26

nil

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

variable. For instance, consider two simplistic statements a = b + c and e = a + d, the

outcome of variable a is dependent on b and c. Therefore, the parser would record the b

and c in the dependency list of a. Similarly, the influence list for b would include a and e.

These relationships are helpful in situations where a program slice is required of a variable

of interest in either direction (influence vs. dependent). In fact, one of the automated trans-

formations we discuss rely on this particular feature to achieve the design objective (e.g.,

AutoGroup).

3.5.3 Cryptographic Transformations

In this section, we describe the existing design challenges with respect to three case

studies of general transformations in the literature. Then, we discuss our approach to

automating these transformation using external tools such as SMT solvers to assist with

portions of the design. We summarize our approach for each case study by comparing

the existing manual process to our automated transformation. We provide a security anal-

ysis and discuss our automated implementations of the transformations in more detail in

Chapters 5 and 6.

3.5.3.1 Batching Digital Signatures

Pairing-based signature schemes are attractive due to their small size and privacy-

friendly nature for several applications (e.g., vehicle-to-vehicle communication, embedded

sensor networks). However, the verification of these signatures are expensive due to the

27

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

cost of computing pairings. Fortunately, these schemes are conducive to batch verification,

where valuable time is saved by processing many messages and signatures together in a

batch. Given these advantages, batch verification algorithms are desired for many signa-

ture schemes in practice.

Batch verification was first introduced by Fiat [43] for a variant of RSA signatures [44]

in 1989. Since then, many research efforts have explored the security and efficiency as-

pects of batch verification with mixed results. In particular, several batching algorithms

have been proposed for well-known signature schemes (e.g., RSA, DSA [45] and etc), but

many of them have been shown to be insecure [46–50]. Although the process of deriv-

ing batch verification algorithms is relatively straightforward, mistakes are common and

generic methods for batching securely have often been misapplied.

Despite these issues, a few positive results have demonstrated that batch verification can

be done in a secure and consistent manner. In 1998, Bellare, Garay and Rabin introduced

generic methods for securely batching modular exponentiations using randomness. One

proposed technique is called the small exponents test and is described in more detail in

Section 5.3.4. More recently, Ferrera, Green, Hohenberger and Pedersen [51] in 2009

adapt techniques introduced by Bellare et al. [52] to securely and efficiently batch pairings.

However, leveraging these techniques manually can be tedious given the complexity of

pairing-based verification procedures (e.g., Waters09 [53]). Using our architecture, we

believe it is possible to systematically transform an individual verification scheme into a

secure and efficient batch verification scheme.

28

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

We first recall the high-level process for securely deriving batch verification algorithms

then describe the automation of this transformation using our architecture.

Manual Process. Batch verification is one of the more natural general transformations

in the research literature. At a high-level, the process begins with a secure and correct

verification equation of a signature scheme and proceeds with applying two general steps

to derive a batch verification algorithm.

Step 1: Combine Instances and Randomize Verification. This consists of combining η

instances of the verification equations where η denotes the size of a batch. This single

computation symbolizes the verification of all signatures at once. As indicated by Bellare

et al. [52], randomizing the verification to reduce the probability of accepting an invalid

signature in the batch is crucial for securely batching signatures. After combining the

instances of the equation and randomizing the verification using the small exponents, this

forms an initial batch verification equation for the signature scheme.

Step 2: Optimize Batch Equation and Generate Complete Algorithm. The next step is

to optimize the batch verification equation by applying the techniques described in the

work of Ferrera et al. [51] in any order. To derive a complete batch algorithm, it remains

to perform group membership tests on elements of the signature and to apply a suitable

method for detecting invalid signatures in a batch. A straightforward approach is the divide

and conquer method introduced by Law and Matt [54] where a batch is divided into two

halves, then recursively perform batch verification on each half and repeat until all invalid

signatures have been identified.

29

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

SDL
Parser

Output: SDL
of Scheme S'

AutoBatch

Batcher
 1. Combine Eq. & Instances
2. Apply Small Exponents Test
3. Optimize Batch Eq.
4. Select Efficient Batch Verifier

5. Generate Batch Algorithm
 - add membership test
 - add invalid signature method
 - add other useful logic

ProofInput: SDL of
Scheme S

Figure 3.2: A high-level presentation of the AutoBatch tool, which automates finding effi-
cient batch verification algorithms.

Automated Process. We begin with an SDL description of a signature scheme and extract

the verification equations to form an abstract syntax tree (AST) of the equations. Each

step described above is implemented as a series of simple transformations on the AST

representation. A high-level of the automated tool is shown in Figure 3.2 and we describe

the automated steps below.

Step 1: Combine Instances and Randomize Verification. We implement a transformation

on the AST that introduces small random exponents and products to the AST representa-

tion. This denotes verification over η instances of the signatures and forms a secure batch

verification algorithm. Furthermore, this phase of the automation also handles cases where

there are multiple verification equations in one signature scheme. In this case, our logic

would consolidate these equations also using the small exponents before combining the η

instances. We discuss these cases and other variations in more detail in Chapter 5.

Step 2: Optimize Batch Equation and Generate Complete Algorithm. Optimizing the batch

equation is the most technically challenging portion of this step. Practitioners are able to

intuitively discern when the optimization rules are applicable for simple schemes, but this

30

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

becomes tedious as the complexity of the signature scheme increases. Determining the

order in which optimization techniques should be applied in an automated sense is non-

trivial. We select the best batch verifier automatically through a pruned breadth-first search

algorithm. The pruning is achieved by a heuristic function which enables us to uncover the

best order to derive an optimized batch equation. We provide more details on our automated

search and heuristic function in Chapter 5.

Upon identifying the optimized batch equation, it remains to generate the rest of the

batch algorithm by adding explicit logic for performing group membership tests on ele-

ments of the signature and public key. Additionally, we cache certain computations in the

batch equation in preparation for detecting invalid signatures using the divide and conquer

method. Finally, we output a modified SDL that contains the complete batch verification

algorithm.

3.5.3.2 Optimizing Cryptographic Schemes

Often, pairing-based cryptographic schemes are presented in the literature using symmetric-

group notation. In symmetric groups, G1 = G2 or there exists an efficient isomorphism

from G1 to G2 and vice versa. While symmetric notation simplifies the description of new

cryptographic schemes, the corresponding groups are rarely the most efficient setting for

implementation [55]. Asymmetric groups represent the state of the art in terms of efficiency

where G1 , G2 and no efficient isomorphism exists between the two groups.

Translating from symmetric to asymmetric groups is a non-trivial exercise and is cur-

31

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

rently done through manual analysis of a cryptographic scheme. As an example, the work

of Ramanna, Chatterjee, and Sarkar [56] translates the Waters [57] dual system encryption

scheme from symmetric to several asymmetric schemes. These conversions are made dif-

ficult by restrictions to certain types of asymmetric groups (e.g., hashing operation only

supported in G1). For some schemes, there are hundreds of possible asymmetric transla-

tions and identifying the optimal translation for a given application is quite challenging in

practice. We believe that this translation can be efficiently automated with the aid of an

SMT solver.

We first recall the process for converting a scheme from the symmetric to asymmetric

setting. We then describe our automation of this translation using Z3 and how we identify

the optimal translation for a given set of application-specific requirements.

Manual Process. A conversion of a signature or encryption scheme in the symmetric

setting to an asymmetric one is typically broken down into three general steps:

Step 1: Identify Asymmetric Assumptions. The first objective of a practitioner is to identify

the asymmetric assumptions to base the scheme. For common hardness assumptions such

as Computational Diffie-Hellman (CDH) or Bilinear Diffie-Hellman (BDH), there exists

analogous asymmetric assumptions: co-CDH and co-BDH. However, such analogies may

not exist for arbitrary symmetric assumptions. For cases where a scheme is based on a

symmetric assumption without an asymmetric counterpart, one could attempt to find a

related or perhaps stronger asymmetric assumption to reconstruct the scheme. This route

requires re-imagining the scheme under the new asymmetric assumption which can be non-

32

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

trivial.

Step 2: Select New Generators and Determine Group Assignments. Once the target asym-

metric assumptions have been identified, proceed with selecting the new generators for the

scheme for both groups G1 and G2. Then, determine the group assignments for elements

of the secret-key and ciphertext based on the user’s optimization objectives. Similarly, for

signatures, one would determine group assignments for public-key and signature elements.

An optimization objective could be a user who desires an asymmetric solution in which

the signature has a short representation. After group assignments have been determined,

the next step is to compute each element using the appropriate generators of the assigned

group.

Step 3: Verify Correctness and Prove Security. The last step is to verify that the inputs to

the pairing are either assigned to G1 or G2. If this verification is successful, the practitioner

can now proceed with proving that the new variant is secure with respect to the appropriate

asymmetric assumptions.

Input: SDL of
Scheme S

SDL
Parser

Extract
Generators

Output: SDL of
Scheme S'

Program Slice
for each pairing input

Encode Pairings
as Formula

Input: User
Optimization
Constraints

AutoGroup

Run Z3
1. find all solutions

2. reduce iteratively by constraint priorities
Efficiency Pass
optimize solution

Figure 3.3: A high-level presentation of the AutoGroup tool, which optimizes crypto-
graphic schemes specified in the symmetric setting.

Automated Process. We recall that asymmetric pairings have a single restriction on their

inputs: G1 , G2. Consequently, one technical challenge is how to automatically find suit-

33

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

able solutions to the group assignment problem. Once possible group assignments have

been determined, a separate challenge is finding the optimal translation for given user re-

quirements. We make the observation that one can view the group assignment problem as

an instance of boolean satisfiability. As such, an SMT solver can be employed to assist in

identifying the optimal translation. Figure 3.3 shows a high-level view of our implementa-

tion.

Step 1: Identify Asymmetric Assumptions. In general, our automated translation does not

attempt to reconstruct a scheme using stronger complexity assumptions. Rather, we assume

that there exists an equivalent asymmetric assumption to base the variant scheme. In the

event that the input scheme requires both an efficient isomorphism and hashing to G2,

then it might not be realizable in the asymmetric setting. We discuss the issues further in

Chapter 6.

Step 2: Select New Generators and Determine Group Assignments. Using the information

recorded by the parser, we determine which algorithm is responsible for parameter gener-

ation in SDL and extract the generators used by the scheme. The idea is to recreate these

generators in the asymmetric setting for both G1 and G2. The group assignment decisions

made by the SMT solver will dictate which generators to use, so we might not use all of

them.

We first encode constraints over asymmetric pairings in terms of inequality operations

separated by conjunctions (e.g., A , B ∧ C , D, etc). We then feed this logical formula

(and general constraints over the target asymmetric group) into the solver to obtain possible

34

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

solutions. These solutions are the set of all possible variable mappings of assignments that

satisfy user constraints. To select the optimal one, we utilize the solver to minimize an

objective function over the solutions.

The purpose of the objective function is to identify a minimal solution that corresponds

to the constraint priorities. Once a minimal solution is obtained, we convert this solution

into an asymmetric solution for the input scheme. In order to do this, we also extract all the

pairing inputs in the scheme and compute a program slice on each input variable. Each slice

helps in navigating which variables are affected as we rewrite the scheme in the asymmetric

setting. We discuss more details and features of our translation in Chapter 6.

Step 3: Verify Correctness and Prove Security. Using the solver, we are able to correctly

identify candidate solutions that satisfy the constraints on the asymmetric scheme. We

output the optimal translation in SDL and it remains for the practitioner to manually prove

the security of the variant against the appropriate asymmetric assumptions.

3.5.3.3 Constructing Strongly Unforgeable Signatures

As indicated before, many signature schemes in the literature are presented under the

existential unforgeability definition wherein an adversary cannot produce a signature on

a new message. This is a traditional definition introduced by Goldwasser, Micali and

Rivest [21] for signatures and provides a minimum level of security in the face of an adap-

tive chosen message attack. However, strong unforgeability guarantees more − that the

adversary cannot produce a new signature even on a previously signed message. In prac-

35

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

tice, strongly-unforgeable signatures are crucial for a variety of applications and often used

as a building block in signcryption [13], chosen-ciphertext secure encryption [14, 58], and

group signatures [15, 59].

There are several general transformations in the literature for obtaining strongly un-

forgeable signatures from existentially unforgeable signatures. We focus specifically on

the highly-efficient transformation due to Boneh, Shen and Waters (BSW) [12] that only

applies if a signature satisfies a notion of partitioning (defined below). If the signature is

not partitioned, then a less-efficient transformation due to Bellare-Shoup (BS) [39] can be

applied. Given that both transformations achieve strong-unforgeability, the main challenge

is deciding when the highly-efficient transformation is applicable. That is, automatically

identifying when a signature satisfies the definition of the partitioning property. We believe

that this partitioning check is amenable to our automated techniques using tools like SMT

solvers as a core building block.

We first recall the process for determining whether a signature is partitioned according

to the BSW transformation then we describe the automation of detecting this property.

Manual Process. In the BSW [12] transform, a partitioned signature is defined as having

the following two properties:

Property 1. Break down the signing algorithm into two deterministic functions, F1 and F2

so that a signature on a message, m, using secret, sk, is computed as follows:

1. Set σ1 ← F1(m, r, sk) and σ2 ← F2(r, sk), where r is randomly selected in R.

36

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

2. Output the signature σ← (σ1, σ2)

Property 2. Given m and σ2 there is at most one σ1 so that (σ1, σ2) verifies as a valid

signature on m under the public-key, pk.

The main idea is that if half of the signature, σ2, does not depend on the message,

m, and property 2 holds, then the signature is considered partitioned and the BSW trans-

formation can be applied. Otherwise, apply the general BS transform which converts any

unforgeable signature to a strongly unforgeable one. We discuss the details of the BSW

and BS transformations in Chapter 6.

SDL
Parser

Output
SDL

AutoStrong

Property 2
Holds?

Apply BSW Transform
more efficient

Apply BS Transform
general

yes

no

Partition Checker
A: Identify Property 1
B: Identify Verification Eq.

C: Decompose to Model Pairing
D: Produce Equations.
E: Evaluate Equations

Z3 Input
SDL Mathematica

Figure 3.4: A high-level presentation of the AutoStrong tool, which automates the con-
struction of strongly unforgeable signatures.

Automated Process. We begin with an SDL description of the signature and assume it is

existentially unforgeable, then proceed with checking both properties. We extract an AST

representation of the Sign and Verify algorithms as a whole. During extraction, we analyze

the Sign algorithm to determine how the signature is computed and proceed to check for

each property as follows:

Property 1. We divide the signature by categorizing components of the signature into either

37

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

σ1 or σ2. The differentiating factor between the two is that σ1 variables depend on the

message and σ2 ones do not. Specifically, we obtain the program slice of each element of

the signature and determine if m is used in any part of that element’s computation. If so,

then we add to the list of σ1 variables and otherwise, add to the list of σ2 variables.

Property 2. We observe that property 2 can be restated as such: does there exist a σ′1 such

that σ1 , σ
′
1 and signature pairs, (σ1, σ2) and (σ′1, σ2) both verify under m and pk. If such

a pair exists, then property 2 does not hold and the signature may not be partitionable. To

prove such a property in an automated fashion, our partition checker needs to somehow

mathematically evaluate the verification equation on the inputs to determine if a contradic-

tion can be found. Specifically, our checker attempts to prove that this logical statement

does not hold: σ1 , σ
′
1 ∧ Verify(pk,m, (σ1, σ2)) = 1 ∧ Verify(pk,m, (σ′1, σ2)) = 1.

Since we restrict ourselves to pairing-based verification procedures, our main challenge

is figuring out how to model the behavior of pairings to establish the validity of property

2 for a given signature scheme. One crucial observation is that the bilinearity property of

pairings can be modeled in the exponent using Z3. In particular, we utilize Z3 to reduce

the pairing-based verification equation into a simple integer equation. Once an integer

equation is obtained, Z3 is less suited to mathematically evaluate such equations and in-

stead, we leverage the Mathematica equation reasoning techniques. If zero or one solution

exists to the system of integer equations, only then is the signature scheme considered par-

titioned. Otherwise, the signature may not be partitionable. We provide further details on

our implementation in Chapter 6.

38

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

3.5.4 Code Generator

The purpose of the code generator is to translate abstract SDL descriptions into concrete

cryptographic implementations. It is our experience that several cryptographic schemes in

the literature have never been built. Absent such implementations, it can be difficult to mea-

sure the effectiveness of certain transformations on abstract descriptions of cryptographic

primitives. Our architecture requires a backend cryptographic framework that provides a

sufficient level of abstraction for implementing primitives. Such a framework enables us to

concretely evaluate SDL descriptions and can inform how implementations of transformed

primitives will impact potential applications.

Our code generator produces concrete cryptographic implementations using the Charm

framework [11]. As mentioned before, Charm is a framework we developed to address

the lack of implementations for cryptographic schemes and provides the necessary build-

ing blocks to realize a variety of cryptographic primitives and protocols. Charm was de-

signed to use mathematical notation familiar to cryptographers and closely resembles our

SDL as well. Charm supports both dynamically interpreted languages such as Python and

statically-typed languages such as C++ with the same programming API for consistency.

Charm is suitable for our purposes and facilitates automatically generating concrete

implementations of abstract SDL descriptions. We provide more details on the design and

implementation of Charm in Chapter 4. Our code generator produces working implemen-

tations in both Python and C++; it utilizes the typing information recorded by the SDL

parser to support C++. We remark that our code generator can be trivially extended to

39

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

support additional languages.

3.6 Literature Review

There are several research efforts towards automating the design of various aspects

of cryptography. In these efforts, a cryptographic compiler-like approach has been ap-

plied in the design of various security protocols, secure multi-party computation, and zero-

knowledge proofs. We discuss in detail each area and how it relates to our efforts to au-

tomate the design of cryptographic transformations for digital signatures and public-key

encryption schemes.

Security Protocols. Several researchers have tackled the automation of security protocol

design using a compiler-like technique. Here we refer to security protocols that deal with

authentication, key exchange and etc. Lowe [60] investigated how to automate the analysis

of security protocols. More specifically, they propose a tool, called Casper, to simplify

the process of deriving process algebra Communicating Sequential Processes (CSP) from

abstract descriptions of security protocols (e.g., key exchange, authentication, etc). This re-

quires domain expertise and the tool automatically converts abstract protocol descriptions

into CSP code. In addition, the tool leverages a model checker to analyze the protocol

against a security specification and finds concrete attacks against protocols. Song, Perrig

and Phan [1] proposed a toolkit for generating secure implementations of security proto-

cols. The automatic generation, verification and implementation (AVGI) toolkit takes as

40

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

input a protocol specification, application requirements and then attempts to find an opti-

mal protocol design for the given application. Finally, the tool translates the design into a

Java implementation. Pozza, Sisto, and Durante [2] proposed a Spi2Java tool that gener-

ates Java implementations from a formal spi calculus and detects protocol flaws as well.

Lucks, Schmoigl, and Tatli [3] delve into the design issues with respect to cryptographic

compilers for security protocols. They introduce an experimental language for an ideal ab-

stract specification for representing protocols and generating source code. Kiyomoto, Ota

and Tanaka [61] also proposed a compiler that takes as input a high-level specification of a

security protocol in eXtensible Markup Language (XML) and a security definition file and

automatically generates C modules of that specification. The use case is for dynamically

generating protocol implementations for web services to maintain protocol agility.

Zero-Knowledge Proofs. Zero-Knowledge (ZK) proofs are an essential component of

privacy-preserving cryptography and have inspired many research efforts to automate var-

ious aspects of their design and implementation. Camenisch, Rohe, and Sadeghi [4] pro-

posed a design and implementation of a compiler called Sokrates for designing efficient

zero-knowledge proofs of knowledge on one-way homomorphisms. Backes, Maffei, and

Unruh [5] explore abstractions of non-interactive zero-knowledge (NIZK) proofs using ap-

plied pi-calculus. They leverage and devise an equational theory for abstractly character-

izing semantics of NIZK proofs. The authors’ approach transforms the abstractions into

formalisms that can be verified using ProVerif and apply the theory to mechanize the veri-

fication of a direct anonymous protocol that utilizes these proofs.

41

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

Bangerter, Briner, Henecka, Krenn, Sadeghi, and Schneider [6] introduce a specifi-

cation language for describing zero-knowledge proof of knowledge (ZK-PoK) protocol

specifications. Moreover, they propose a compiler that translates the Σ-protocol speci-

fications into Java implementations. Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and

Schneider [7] extends the work of Bangerter et al. and proposes a certifying compiler that

transforms abstract descriptions of ZK-PoK goals into provably sound interactive proto-

col implementations in C. Additionally, their compiler is comprehensive in that it supports

a number of proof composition techniques in the literature (e.g., AND, OR, and others)

and produces a formal proof that the protocol generated fulfills its specification (i.e., proof

goal). The proof is formally verified using the Isabelle/HOL formal theorem prover. Meik-

lejohn, Erway, Küpçü, Hinkle, and Lysyanskaya [8] introduce a similar ZK-PoK compiler

for applications such as e-cash and provides precomputation optimizations which is not

supported in Almeida et al. [7]. However, the ZKPDL compiler is not as comprehensive as

the CACE compiler [7].

Almeida, Barbosa, Bangerter, Barthe, Krenn, and Zanella Béguelin [62] present an

optimizing and certifying compiler called ZKCrypt for ZK-PoK protocols. In particu-

lar, ZKCrypt integrates verified and verifying compilers to produce formal proofs in Cer-

tiCrypt. ZKCrypt is fully automated and provides strong assurances that the implemen-

tation is secure with respect to the specified abstract proof goal. The authors demon-

strate their compiler on anonymous credential protocols. Fournet, Kohlweiss, Danezis, and

Luo [63] introduce a query language (called ZQL) for expressing computations on private

42

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

data. They design a compiler that transforms ZQL queries into interactive ZK-PoK over the

private data and automatically generates F# or C++ of the protocol interactions between

client/server. Furthermore, the authors evaluate queries using the compiler for applications

that require such privacy guarantees such as smart-meter billing.

Secure two-party computation. A secure two-party computation comprises mutually dis-

trusting parties that want to jointly compute an arbitrary function on private inputs without

revealing any information other than the results of the computation on the shared secrets.

MacKenzie, Oprea, and Reiter [64] design a compiler that automatically generates efficient,

provably secure two-party protocols. The compiler takes as input a high-level description

of a cryptographic function such as computing signatures or decrypting ciphertexts and

produces as output, the source code implementing each side of the two-party protocol.

This work focuses on a specific class of two-party computations that use arithmetic opera-

tions over groups and fields and that are efficient enough for practical applications. Malkhi,

Nisan, Pinkas, and Sella [9] proposed a generic two-party computation engine called Fair-

play. Fairplay takes a high-level description language (SFDL) of a secure computation

and compiles it into a boolean circuit. The tool also produces modules that securely eval-

uate the circuits that represent the desired computation. Fairplay has been extended to

multi-party computations in recent work by Ben-David, Nisan, and Pinkas [65]. Henecka,

Kögl, Sadeghi, Schneider, and Wehrenberg [10] propose TASTY, a tool for automatically

generating, optimizing, implementing and benchmarking two-party protocols based on ho-

momorphic encryption and garbled circuits. Unlike previous works, TASTY automatically

43

CHAPTER 3. EXTENSIBLE ARCHITECTURE FOR AUTOMATION

transforms a high-level description of a computation on encrypted data and generates the

interactive protocol and corresponding implementation.

Cryptographic Primitives. Our approach also introduces a high-level description lan-

guage and presents the design and implementation of a compiler for automating the con-

struction of cryptographic schemes. The use of SMT solvers in our architecture and ob-

servations of how they can be useful in automating cryptographic transformations is both

novel and unique. Our results indicate that this compiler-like approach to designing cryp-

tographic primitives can outperform manual approaches in an efficient and secure manner

while producing competitive results.

44

Chapter 4

Charm: A framework for Rapidly

Prototyping Cryptosystems

In the previous chapter, we described our extensible architecture for automating certain

cryptographic transformations. As indicated before, the code generator component of the

architecture requires a suitable, high-level cryptographic framework to evaluate the effec-

tiveness of the cryptographic schemes that are transformed. The goal of the framework is

to provide a usable, extensible, and modular architecture to facilitate rapid prototyping of

a variety of cryptographic primitives and protocols from abstract descriptions. The frame-

work described in this chapter serves as the backbone of our architecture and is crucial for

validating the results of our cryptographic transformations.

45

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

4.1 Overview

In this chapter, we describe Charm, an extensible framework for rapidly prototyping

cryptographic systems. Charm provides a number of features that explicitly support the de-

velopment of new protocols, including: support for modular composition of cryptographic

building blocks, infrastructure for developing interactive protocols, and an extensive li-

brary of re-usable code. Our framework also provides a series of specialized tools that

enable different cryptosystems to interoperate.

We implemented over forty cryptographic schemes using Charm, including some new

ones that to our knowledge have never been built in practice. This chapter describes our

modular architecture, which includes a built-in benchmarking module to compare the per-

formance of Charm primitives to existing C implementations. We show that in many cases

our techniques result in an order of magnitude decrease in code size, while inducing an

acceptable performance impact.

Lastly, the Charm framework is freely available to the research community and to date,

we have developed a large, active user base.

4.2 Introduction

Recent developments in cryptography have the potential to greatly impact real world

systems. Advances in lattices and pairings have driven new paradigms for securely pro-

cessing and protecting sensitive information such as identity-based encryption [28, 66–69]

46

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

and attribute-based encryption [29–32], and privacy-preserving schemes such as ring sig-

natures [70, 71], group signatures [59, 72] and anonymous credentials [16, 73]. Without

these kind of advances, a number of results in top security conferences would not be possi-

ble [74–76].

Unfortunately, many potentially useful and novel schemes exist only in research papers

and have not actually been implemented. A few of these schemes find their way into

isolated C libraries that are maintained purely by their creator, executed only as proof of

concept and are operated solely in their own limited domain. While elliptic curves and

lattices enabled some of these advances, they also substantially increased the complexity:

writing software for cryptosystems no longer involves only number theory and modular

arithmetic. This is doubly problematic because the size of typical C implementations makes

bugs likely and audits hard. The barrier to usage, consequently, remains very high.

There have been a handful of elegant implementations of a small number of new prim-

itives [77–79] as well as some tools for protocol development [80–85]. These systems

serve their special purposes well, but are not interoperable, and so developers wishing to

build a system using multiple primitives must write non-cohesive glue code to piece their

implementations together.

In practice, libraries such as Sage [86], the Stanford Pairing-Based Crypto (PBC) [78]

and MIRACL [87] fulfill an important role of providing implementations of advanced

mathematics for algebra, number theory, and elliptic curves just to name a few. While

these libraries provide a solid foundation for developing advanced cryptography, they were

47

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

not designed with usability or interoperability in mind in terms of composing, structuring,

and reusing cryptographic primitives. Although this may seem like an engineering detail,

serious theoretical issues can arise from the improper combination of cryptographic prim-

itives. Therefore, great care must be taken to accommodate the theoretical foundations

of underlying primitives when designing a system that provides robust, composable, and

modular cryptography.

Our Contribution. We present Charm1 [88], a new, extensible and unified framework for

rapidly prototyping experimental cryptographic schemes and leveraging them in system

applications. Charm is built around the concepts of extensibility, composability, and mod-

ularity. The framework is implemented in Python, a well-supported high-level language,

designed to reduce development time and code complexity while promoting component re-

use. Computationally-intensive mathematical operations are implemented as native mod-

ules, enabling performant schemes and protocols while preserving the advantages of high-

level languages for scheme implementations. Although Charm is written in a dynamically

typed interpreted language, the concepts and abstractions developed in this chapter can be

realized in a variety of programming languages.

The design goals of Charm are:

Enabling Efficient, Extensible Numeric Computation. New primitives are invented and

existing implementations of primitives are optimized on a regular basis. For example,

the PBC library [78], one of the original libraries providing pairings, has been sup-

1Project webpage: http://charm-crypto.com.

48

http://charm-crypto.com.

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

planted in terms of performance by alternative libraries such as MIRACL [87] and

RELIC [89]. Similarly, lattice-based cryptographic operations are an increasingly

desirable feature in scheme development. In practice, the math libraries supporting

any given cryptographic operation are subject to change. The challenge is how to

enable these changes without disrupting the higher-level scheme.

Supporting Succinct Cryptographic Protocols. Although cryptographic protocols only

capture the mathematical formulas on paper, in practice network protocols must em-

bed the necessary logic required for message serialization, data transmission, state

transitions, error handling, and the execution of subprotocols. Protocols involving

zero-knowledge proof statements are particularly problematic: concrete implemen-

tations require explicit information not usually present in an algorithmic sketch. The

challenge is to provide an interface for wire protocols roughly equivalent to the way

the protocols are specified in research papers.

Supporting Scheme Composition. Composing cryptographic algorithms allows for the

rapid creation of new schemes, protocols and facilitates code reuse. Not only does

this make implementers more efficient, it improves the security of the system by

ensuring there is one canonical version of a given scheme or technique. However,

composability creates its own set of hurdles: schemes may use different plaintext

and ciphertext spaces, security assumptions and security models. The challenge is

abstracting away these differences while preserving the schemes’ underlying security

49

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

and functionality.

Providing Measurement Capability. Benchmarking and profiling are particularly im-

portant, both from a theoretical perspective and an implementation standpoint for

complex schemes (e.g., homomorphic encryption). Simple benchmarking allows

quick prototyping and comparison of novel variations of naïve implementations of

schemes. Profiling enables in-depth optimization of full-fledged schemes with fine-

grained performance data. The difficulty is providing both seamless benchmarking

and in-depth profiling while maintaining component modularity.

Allowing Application Embedding. Rapid prototyping and ease of use require that the

framework be written in a user-friendly, high-level language. If developers outside of

the cryptographic community are to build applications with advanced cryptographic

constructs, the choice of language is critical. The dilemma is how to provide a level

of abstraction (or embedding API) to outside systems without unduly limiting the

expressiveness of the framework.

Allowing Cryptographic Algorithm Agility. As noted by Acar et al [90], cryptographic

algorithms have a limited shelf life. For example, once exhaustive search rendered

DES keys insecure, DES was replaced by AES. Similarly, MD5 and SHA1 were

discovered to contain vulnerabilities [91, 92]. A system must be designed such that

algorithms can be replaced when necessary [93]. Cipher algorithm replacement must

be done without compromising security, without breaking functionality, and if possi-

50

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

ble, without requiring keys to change.

4.3 Background

We note that practical implementations of advanced forms of encryption such as identity-

based encryption (IBE) [28, 66] and attribute-based encryption (ABE) [29–31] typically

involve the use of pairings. Recall that a pairing is an efficient mapping e : G1 × G2 → GT

over three multiplicative cyclic groupsG1,G2 andGT of prime order p. Moreover, a pairing

has two properties: bilinearity and non-degenerate maps. Bilinearity is that given genera-

tors g ∈ G1, h ∈ G2 and a, b ∈ Zp it holds that e(ga, hb) = e(g, h)ab. Non-degenerate maps

ensures that e(g, h) , 1. Lastly, cryptographic primitives that utilize lattices are an excit-

ing area of research that hold promise for post-quantum cryptography. We briefly mention

lattices in this chapter, but defer to Regev’s work [94] for an in-depth introduction.

We also discuss techniques for performing transformations over cryptographic primi-

tives to achieve desired security properties. For example, Naor [95] proposed a technique

for converting an IBE scheme into a public-key signature scheme. Canetti et al [14] pro-

posed a technique for transforming any IBE scheme into one that is secure against adaptive

chosen-ciphertext attacks. In general, we refer to these types of cryptographic transforma-

tions as adapters in this chapter.

Finally, we refer to Zero-knowledge Proofs of Knowledge(ZK-PoK) [96], which allow

one party to prove knowledge of a secret to another party without revealing the secret.

51

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

4.4 Approach

Charm realizes the aforementioned goals at the architectural level through various com-

ponents and levels of modularization as depicted in Figure 4.1.

Toolbox

Adapters

Schemes

Groups
(Integer, Pairing, Elliptic Curve)

C Math Libraries (OpenSSL, GMP, PBC, RELIC, MIRACL, etc.)

Protocol Engine/Compiler

Benchmark Module

PairingMath IntegerMath ECMath Cryptobase PROTOCOLS Infrastructure to support the
development of interactive protocols via a
dedicated protocol engine. A proof compiler
provides support for protocols that use ZK
proofs.

Python/C Base Modules

TOOLBOX Extensible library of common
routines, including secret sharing, X.509
certificate handling, parameter generation,
policy parsing, and hash functions.

ADAPTERS Thin wrappers that alter the
input/output or security properties of a
scheme. This promotes code re-use by
removing incompatibilities between
implementations.

SCHEMES A library of implemented
cryptosystems, accessed via standard
scheme APIs.

Protocols

Figure 4.1: Overview of the Charm architecture.

We now describe the building blocks of the Charm framework. The lower-level com-

ponents, at the bottom of Figure 4.1, are optimized for efficiency, while the ones at the top

focus on ease of use and interoperability. One of the primary drivers of our approach is our

objective to simplify the code written by cryptographers who utilize the framework. Our

modular component architecture reflects this.

Scheme Annotation and Adapters. In practice, implementations of different cryptosystems

may be incompatible even if their APIs are the same. For example, two systems might have

different input and output requirements. Consider that many public key encryption schemes

require plaintexts to be pre-encoded as elements of a cyclic group G, or as strings of some

fixed size. These requirements frequently depend on how the scheme is configured, e.g.,

depending on parameters used. Different developers are unlikely to make all of the same

52

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

choices in their implementations, so even if they build their code with a standard API

template, their systems are unlikely to interoperate cleanly.

More subtle incompatibilities may arise when schemes of a given class provide differing

security guarantees: for example, public-key encryption schemes can provide either IND-

CPA [97] or IND-CCA2 [98] security. These properties become more relevant whenever

the scheme is used as a building block for a more complex protocol.

Meta-Information. To address these issues, Charm must provide some mechanism to iden-

tify the pertinent information inherent in each scheme, including (but not limited to) in-

put/output space, security definition, complexity assumptions, computational model, and

performance characteristics. We defer the discussion of whether this should be done auto-

matically or by the programmer to Section 5.5.

Capability Matching. Once this meta-information is collected, Charm uses it to facilitate

compatibility among schemes. First, it provides tools to programmatically interrogate a

scheme to determine whether the scheme satisfies certain criteria. This makes it easy to

substitute schemes into a protocol at runtime, since the protocol can simply specify its re-

quirements (e.g., EU-CMA [21] signature scheme) and Charm will ensure that they are met.

To make this workable, Charm includes a dictionary of security definitions and complex-

ity assumptions, as well as the implications between them. Thus, a protocol that requires

only an EU-CMA signature scheme will be satisfied if instantiated with an SU-CMA [13]

signature, but not vice versa. However, the implication can be bypassed in some cases,

for example, if EU-CMA is required and SU-CMA is not suitable for a given composition

53

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

where re-randomizable signatures are required.

Structured Interfaces. To facilitate scheme composition and reuse, Charm provides a set

of APIs for common cryptographic primitives such as digital signatures, bit commitment,

encryption, and related functions. Schemes with identical APIs are identified and are inter-

changeable in our framework. For example, DSA [45] can be used instead of RSA-PSS [99]

within a larger protocol with a simple, almost trivial change to the code.

Scheme interfaces are implemented using standard object-oriented programming tech-

niques. The current Charm interface hierarchy appears in Figure 4.2. This list is sufficient

for the schemes we have currently implemented (see Figure 5.7), but we expect it to expand

with the addition of new cryptosystems.

Scheme

PKEnc

PKSig IBEnc
IBSig

Protocol

Commitment Hash

ABEnc

ChHash
Sigma Protocol

Figure 4.2: Listing of scheme types defined in Charm. Subtypes are indicated with dotted
lines.

Adapters. Since we now have enough information to safely and securely compose schemes,

Charm includes adapters for this purpose and for handling mismatches between schemes.

Adapters are code wrappers implemented as thin classes. For example, they permit devel-

opers to bridge the gap between primitives with disparate message/output spaces or security

54

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

requirements. In our experience so far, the most common use of adapters is to convert an

input type so that a scheme can be used for a specific application. For example, we use

adapters to encode messages or in the case of hybrid encryption, to expand the message

space of a public key encryption scheme.

Adapters can perform even more sophisticated functions, such as modifying a scheme’s

security properties. In Figure 4.3 we illustrate an adapter using a hash function to perform

a conversion from a selectively-secure IBE scheme into one that is adaptively secure (note

here that the hash function is modeled as a random oracle).

Selective-ID IBE
(DBDH, SM)

Fully-secure IBE
(DBDH, ROM)

Boneh-Boyen
IBE

ID-hash
Adapter

Hash function

IBE-to-Sig
Adapter

EU-CMA Signature
 (DBDH, ROM)

Figure 4.3: Example of an adapter chain converting the Boneh-Boyen selective-ID secure
IBE [66] into a signature scheme using Naor’s technique [95]. The scheme carries meta-
information including the complexity assumptions and computational model used in its
security proof.

Adapters can also combine schemes to produce entirely different cryptosystems. This

means that there are implicit schemes in Charm that do not physically appear in the scheme

library, demonstrating Charm’s success at the goal of composability. Figure 4.4 provides

another example of such a conversion.

Extensible Numeric Computation. The mathematics underlying modern cryptography has

changed considerably, driven by advances in lattices and pairings, and is sure to continue

in this trend. It is fundamentally important that any system that wishes to maintain rel-

55

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

Selective-ID IBE
(DBDH, SM)

CCA-secure PKE
(DBDH+{sig}, SM)

Boneh-Boyen
IBE

IBE-to-PKE
Adapter

SU-CMA
OT Signature

Hybrid Enc
Adapter

CCA-secure PKE, large messages
 (DBDH+{sig}+sPRP, SM)

Block Cipher (sPRP)

Figure 4.4: Adapter chain converting the Boneh-Boyen selective-ID secure IBE [66] into
a CCA-secure public-key hybrid encryption scheme via the CHK transform [14]. {sig}
stands for the complexity assumptions added by the signature scheme.

evancy be able to incorporate these advances. By necessity, these libraries are imple-

mented in C and require a certain specialty and expertise to implement correctly (e.g.,

elliptic curves). Charm provides domain separation by incorporating four base modules

that implement the core cryptographic routines. This shelters developers from having to

deal with very domain-specific concepts like elliptic curves. For performance reasons these

base modules are written in C/C++ and include integermath, ecmath (elliptic curve sub-

groups), and pairingmath.2 The cryptobase module provides efficient implementations

of basic cryptographic primitives such as hash functions and block ciphers. These mod-

ules include code from standard C libraries including libgmp, OpenSSL, libpbc, and Py-

Crypto [77, 78, 100, 101]. To maximize code readability, the module interfaces employ

language features such as operator overloading. Finally, Charm provides high-level Python

interfaces for constructs such as algebraic groups and fields.

The base modules implement only those lower-level routines where implementation in

C is crucial for performance. Charm also provides an extensive toolbox of useful Python

2A dedicated module to support lattice-based cryptography is in preparation for a future release.

56

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

routines including secret sharing, encryption padding, group parameter generation, mes-

sage encoding, and ciphertext parsing. We are continuously adding routines to the toolbox,

and future releases will include contributions from external developers.

Protocol Engine. Interactive protocols often seem simple on paper but in reality require

a variety of different considerations. Zero-knowledge proofs are especially tricky as they

often utilize information that is not specified in the documentation. General protocol imple-

mentations must include network communications, data serialization, error handling, and

state machine transition. Charm simplifies development by providing all of these features

as part of a reusable protocol engine. An implementation in our framework consists of a

list of parties, a description of states and transitions, and the core logic for each state. Seri-

alization, transmission and error handling are handled at the lower levels and are available

freely to the developer.

Our protocol engine provides native support for the execution of sub-protocols and

supports recursion. We have found subprotocols to be particularly useful in constructions

that use interactive proofs of knowledge.

Given a protocol implementation, an application executes it by selecting a party type

and optional initial state, and by providing a collection of socket connections to the remote

parties. Sockets in Python are an abstract interface and can be extended to support various

communication mechanisms.

ZKP Compiler. Zero-knowledge proofs of knowledge allow a Prover to demonstrate knowl-

edge of a secret without revealing it to a Verifier. Such proofs are common in privacy-

57

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

preserving protocols such as the idemix anonymous credential system and Direct Anony-

mous Attestation [102, 103]. These proofs may be interactive or non-interactive (via the

Fiat-Shamir heuristic, or using new bilinear-map based techniques [27, 104]). Regardless

of the underlying mechanism, it has become common in the literature to describe such

proofs using the notation of Camenisch and Stadler [105]. For instance,

ZKPoK{(x, y) : h = gx ∧ j = gy}

denotes a proof of knowledge of two integers x, y that satisfy both h = gx and j = gy. All

values not enclosed in parentheses are assumed to be known to the verifier.

Converting these statements into working protocols is challenging, even for expert de-

velopers. To assist implementation, Charm borrows from the techniques of ZKPDL and

CACE [80, 81], providing native support for honest verifier Schnorr-type proofs via an

automated protocol compiler.

Benchmarking System. Performance is often critical when designing and implementing

real-world cryptosystems. Therefore developers are frequently interested in the efficiency

of their schemes, both from a timing and computational perspective. They also might

wonder how changes they make can affect these important aspects and how their schemes

compare to others. In order to help developers measure the performance of a prototype im-

plementation, Charm incorporates a native benchmark module to collect information on a

scheme’s performance. This module collects and aggregates statistics on a set of operations

defined by the user. All of the operations in the core modules are instrumented separately,

allowing for detailed profiling including total operation counts, average operation time for

58

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

various critical operations, and network bandwidth (for interactive protocols). Users can

define their own measurements within a given implementation (e.g., a scheme or subrou-

tine). When these measurements involve timing, the benchmarking module automatically

performs and collects timing information. Many of our experiments in Section 4.6 were

performed using the benchmarking system. The benchmarking system is easy to switch on

or off and has minimal impact on the system when it is not in use. An example of using the

benchmarking system is provided in Section 5.5.

4.5 Implementation

In this section, we describe our implementation and provide further details on compo-

nents of our architecture. In Section 4.5.1 below, we reference an example comparing a

protocol description from the literature to one implemented in our system. The code frag-

ment shown in Figure 4.5 is a good overall example of using Charm and is worth studying

at this point to understand our approach.

Language Features. Python provides many useful features that simplify development for

programmers using Charm. Benefits include support for object-oriented programming,

dynamic typing, overloading of mathematical operators, automatic memory allocation and

garbage collection.

The language also provides useful built-in data structures such as tuples and dictionar-

ies (essentially, key-value stores) useful for common tasks such as storing ciphertexts and

59

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

 def encrypt(self, pk, M):
 r = group.random(ZR)
 u1 = (pk['g1'] ** r)
 u2 = (pk['g2'] ** r)
 e = group.encode(M) * (pk['h'] ** r)
 alpha = group.hash((u1, u2, e))
 v = (pk['c'] ** r) * (pk['d'] ** (r*alpha))

 return { 'u1' : u1, 'u2' : u2, 'e' : e, 'v' : v }

def decrypt(self, pk, sk, c):
 alpha = group.hash((c['u1'], c['u2'], c['e']))
 v_pr = (c['u1'] ** (sk['x1']+(sk['y1']*alpha)))*
 (c['u2'] ** (sk['x2']+(sk['y2']*alpha)))
 if (c['v'] != v_pr):
 return False
 return group.decode(c['e'] / (c['u1'] ** sk['z']))

CS98 Encryption CS98 Decryption

Encryption. Given a message m 2 G, the encryption algorithm
runs as follows. First it chooses r 2 Zq at random. Then it computes

1u = g r, u = g r, e = hrm,↵ = H(u , u , e), v = crdr↵
1 2 2 1 2

1 2The ciphertext is (u , u , e, v)

Decryption. Given a ciphertext (u , u , e, v), the decryption algorithm
runs as follows. It first computes ↵ = H(u , u , e), and tests if

2

2

21

1

u x +y ↵u x +y ↵ = v1
1 1 2 2

If this condition does not hold, the decryption algorithm outputs ``reject";
otherwise, it outputs m = e/u z

1

Figure 4.5: Encryption and Decryption in the Cramer-Shoup scheme [106]. The top box
shows the description of the algorithm in the published paper while the bottom box reflects
the Charm code. Charm is designed to enable cryptographers to implement their schemes
using mathematical notation that mirrors the paper description.

public keys. These values can be automatically serialized and deserialized, eliminating

the need for custom parsing code. To read legacy files with a specific binary format we

use the python struct module, which performs packing and unpacking of binary data.

Our decision to use Python is supported by the fact that much of the effort in a typical C

implementation relates to laboriously defining and serializing data structures.

Python also supports dynamic generation of code. This feature is particularly useful in

constructing a Zero-Knowledge proof compiler (see Section 4.5.3). The features discussed

here are not unique to Python and can be found in other high-level languages.3 However

Python has a large and devoted user base and provides a good balance between usability,

stability, and performance.4

Low-level Python/C Modules. As discussed in Section 4.4, for performance reasons, our

3Nor are we the first to import cryptographic operations into Python. See for example [86, 107].
4It is also well supported. Our experiments show that there have been significant performance improve-

ments between Python 2.x and 3.x. Charm supports both versions for backwards compatibility with legacy
applications.

60

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

implementation of Charm supports a variety of C math libraries including GMP [100],

OpenSSL [77], RELIC [89], MIRACL [87] and the PBC library [78]. We provide Python/C

extensions for these libraries.

Our base modules expose arithmetic operations using standard mathematical operators

such as ∗, + and ∗∗ (exponentiation).5 Besides group operations, our base modules also

perform essential functions such as element serialization and encoding.

In addition to the base modules, we provide a cryptobase module that includes fast

routines for bitstring manipulation, evaluation of block ciphers, MACs, and hash functions.

Supported ciphers include AES, DES, and 3DES. Moreover, this module implements sev-

eral standard modes of operation such as CBC and CTR (drawn from PyCrypto [101] and

libTomCrypt [108]) that facilitate encryption of arbitrary amounts of data.

Benchmark Module. As described in Section 4.4, we provide a benchmark module for

measuring computation time and counting operations, such as exponentiations and mul-

tiplications, in a given snippet of code at runtime. Our benchmark module provides a

consistent interface that developers can use to perform these measurements. Each base

module inherits the benchmark interface and is incorporated into a cryptographic scheme

as follows:

assert InitBenchmark(), "failed to initialize benchmark"
select benchmark options
StartBenchmark(["RealTime", "Exp", "Mul", "Add", "Sub"])
... code ...
EndBenchmark()

5For consistency, group operations are always specified in multiplicative notation, thus ∗ is used for EC
point addition and ∗∗ for point multiplication. This makes it easy to switch between group settings.

61

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

obtain results
msmtDict = GetGeneralBenchmarks()
print(msmtDict["Exp"])

As stated earlier, benchmarking can be easily removed or disabled after measurements are

complete and introduces negligible overhead.

Algebraic Groups and Fields. While our base modules provide low-level numerical func-

tions, there are still differences in how each module handles serializing elements, encod-

ing messages, and generating group parameters. For instance, for the ecmath module we

employ subgroups of elliptic curves over a finite field, whereas the integermath module

implements integer groups, rings, and fields. To reconcile these differences, we provide a

thin Python interface to encapsulate differences in group/field parameter generation, serial-

ization, message encoding, and hashing. This interface allows us to standardize calls to the

underlying base modules from a developer’s perspective.

With this approach, cryptographers are able to adjust the algebraic setting (standard

EC, integer or pairing groups) on the fly without having to re-implement the scheme. For

instance, our implementations of DSA [45], ElGamal [109] and Cramer-Shoup [106] can

be instantiated in any group with an appropriate structure.

4.5.1 Schemes

To demonstrate the potential of our framework, we implemented a number of standard

and experimental cryptosystems. We provide a collection of implemented schemes that

62

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

Scheme Type Setting Comp. Model Lines
Encryption

RSA-OAEP [110] Public-Key Integer ROM 22
CS98 [106] Public-Key EC/Integer Standard 40
ElGamal [111] Public-Key EC/Integer Standard 34
Paillier99 [112] Public-Key Integer Standard 31
BF01 [28] Identity-Based Pairing ROM 51
BB04 [66] Identity-Based Pairing Standard 45
Waters05 [67] Identity-Based Pairing Standard 49
CKRS09 [68] Identity-Based Pairing Standard 55
LSW08 [69] Identity-Based Pairing ROM* 69
SW05 [32] Fuzzy Identity-Based Pairing Standard 68
BSW07 [29] Attribute-Based Pairing ROM∗ 62
Waters08 [30] Attribute-Based Pairing ROM∗ 61
LW10 [31] MA Attribute-Based Pairing ROM∗ 67
FE12 [113] DFA-based Functional Pairing Standard 71
HVE08 [114] Hidden Vector Pairing Standard 104

Digital Signatures
Schnorr [115] Regular Integer ROM 33
RSA-PSS [99] Regular Integer ROM 32
EC-DSA/DSA [45] Regular EC/Integer n/a 32
HW09 [116] Regular Integer Standard 113
CHP [117] Regular Pairing Standard 30
CL03 [16] Regular Integer Standard 58
CL04 [73] Regular Pairing ROM 25
HW [116] Regular Pairing Standard 48
Hess [118] Identity-Based Pairing ROM 31
CHCH [119] Identity-Based Pairing ROM 31
Waters05 [67] Identity-Based Pairing Standard 43
Boyen [70] Ring-based Pairing CRS 65
CYH [71] Ring-based Pairing ROM 58
BLS03 [120] Regular/Short Signature Pairing ROM 23
BBS04 [59] Group-based Pairing ROM 60

Table 4.1: A partial listing of the cryptographic schemes we implemented. “Code Lines”
indicates the number of lines of Python code used to implement the scheme (excluding
comments and whitespace), and does not include the framework itself. ROM indicates that
a scheme is secure in the Random Oracle Model. CRS indicates that a scheme is secure
in the Common Reference String Model. A “-” indicates a generic transform (adapter). ∗

indicates a choice made for efficiency reasons. See the rest of the listing in Appendix A.1.

63

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

includes a variety of encryption schemes, signatures, commitments, and interactive proto-

cols.6 Most of the implementations consist of fewer than 100 lines of code (see Table 4.1

for a listing).

We provide several examples to illustrate code in Charm. Figure 4.5 shows the encryp-

tion and decryption algorithms for the Cramer-Shoup [106] scheme, and the corresponding

Charm code. We provide the remaining algorithms, along with some additional examples,

in Appendix A.1. We note that our framework was designed to minimize the differences

between published algorithms and code (as shown in Figure 4.5), in the hope of lowering

the barriers to implementation.

4.5.2 Protocol Engine

Every protocol implementation in Charm is a subclass of the Protocol base class.

This interface provides all of the core protocol functionality, including functions to support

protocol implementations, a database for maintaining state, serialization, network I/O, and

a state machine for driving the protocol progression.

Creating a new interactive protocol is straightforward. The implementation must pro-

vide a description of the parties, protocol states and transitions (including error transitions

for caught exceptions), as well as the core functionality for each state. State functions ac-

cept and return Python dictionaries containing the passed parameters. Socket I/O and data

serialization is handled transparently before and after each state function runs. Developers

6For more scheme implementations, see http://jhuisi.github.com/charm/schemes.html.

64

http://jhuisi.github.com/charm/schemes.html

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

have the option to implement their own serialization functionality for protocols with a cus-

tom message format. Public parameters may either be passed into the protocol or defined in

the init function. Finally, we provide templates for some common protocol types (such as

Σ-protocols). Figure 4.6 contains an example of a machine-generated Protocol subclass.

Executing protocols and subprotocols. Executing a protocol consists of two calls to the

Protocol interface. First, the application calls Setup() to configure the protocol with an

identifier of one of the parties in the protocol, optional initial state, public parameters, a

list of remote parties, and a collection of open sockets. It then calls Execute() to initiate

communication.

We also provide support for the execution of subprotocols. Launching a subprotocol is

simpler than an initial execution, since the protocol engine already has information on the

remote parties. The caller simply identifies for the server the role played by each of the

parties in the subprotocol (e.g., the Server party may be remapped to be the Prover for the

subprotocol), and instructs the protocol engine to run the subprotocol via the Execute()

method.

Our engine currently supports only synchronous operation. Asynchronous protocol

runs must be handled by the application itself using Python’s threading capabilities. Call-

back functions may be supplied by passing function references as part of the public pa-

rameters. We plan to provide more complete support for asynchronous execution in future

releases.

65

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

4.5.3 ZKP Compiler

Many advanced cryptographic protocols (e.g., [59, 121, 122]) employ zero-knowledge

or witness-indistinguishable proofs as part of their protocol structure. The notation of Ca-

menisch and Stadler [105] has become the de facto standard in the cryptography literature.

This notation, while elegant, stands in for a complex interactive or non-interactive subpro-

tocol that must be derived before the base protocol can be implemented.

To handle such complex protocols, Charm includes an automated compiler for com-

mon ZK proof statements. Such compilers have been implemented in the past by Meik-

lejohn et al. (ZKPDL) [80] and Bangerter et al. (CACE) [123]. Our compiler interprets

Camenisch-Stadler style proof descriptions at runtime and derives an executable honest-

verifier protocol. At present our compiler handles a limited set of discrete-log statements,

and is not currently as rich as ZKPDL or CACE. However, it offers some advantages over

those systems.

First, as Python is an interpreted language, we do not require a custom interpreter for

the compiled proofs, as ZKPDL does. Instead, we exploit Python’s ability to dynamically

generate and execute code at runtime. We employ this feature to convert Camenisch-Stadler

proof statements into Charm code, which we feed directly to the interpreter and protocol en-

gine.7 Second, since our compiler has access to the public and secret8 variables at compile

time, Charm can use introspection to determine the variable types, settings and parameter

7In practice, we first compile to bytecode, then execute. This reduces overhead for proofs that will be
conducted multiple times.

8Clearly the verifier does not have access to the secret variables. We address this later in this section.

66

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

sizes. This information forms the bulk of what is provided in a ZKPDL or CACE Protocol

Specification Language (PSL) program. Thus, from a developer’s perspective, executing a

ZK proof is nearly as simple as writing a Camenisch-Stadler statement.

Our compiler, implemented in Python itself, outputs Python code. The interface to

the compiler closely resembles a Camenisch-Stadler proof statement. The caller provides

two Python dictionaries containing the public and secret parameters, as well as a string

describing the proof goal. In some cases, such as when configuring the Verifier portion

of an interactive proof, the secret values are not available. We currently deal with this by

providing “dummy” variables of the appropriate type. Our runtime compiler can examine

the variables and automatically generate appropriate code on the fly. The compiler produces

one of two possible outputs: a routine for computing a non-interactive protocol via the Fiat-

Shamir heuristic, or a subclass of Protocol describing the Prover and Verifier interactions,

in the case of interactive protocols.

In the interactive case, we provide support routines to generate the class definition,

compile the generated code into Python bytecode, initialize communication with sockets

provided by the caller, and execute the proof of knowledge. The code below illustrates a

typical interactive proof execution from the Prover:

prover
public = {’h’:g ** x, ’g’:g, ’j’:g ** y}
secret = {’x’:x, ’y’:y}
result = executeIntZKProof(public, secret,

"(h = g^x) and (j = g^y)", party_info)

Figure 4.6 shows a generated Protocol subclass for the proof goal h = gx.

67

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

The runtime technique is useful for developers who require compact, readable code.

However, we note that since our protocol produces Python code, it can also be used to

compile static protocol code which may be added to a project.

At present our compiler is intended as a proof of concept because it lacks support for

many types of statements (e.g. Boolean-OR) and proof settings. Our compiler is less so-

phisticated than CACE and ZKPDL. For example, in addition to supporting more complex

conjunctions and statement types, CACE includes formal verification of proofs. We believe

that our approach is complementary to these projects, and we hope to establish collabora-

tions to extend Charm’s capabilities in future versions.

class ZKProof(Protocol):
 def __init__(self, groupObj, common_input=None):
 Protocol.__init__(self)
 # ... init of party, states and transitions ...
 # ... setup group object ...
 # ... init of base class db ...

 def prover_state1(self):
 pk = Protocol.get(self, ['h','j','g'], dict)
 (x,) = Protocol.get(self, ['x'])
 k0 = self.group.random(ZR)
 val_k0 = pk['g'] ** k0
 Protocol.store(self, ('k0',k0),('x',x))
 Protocol.setState(self, 3)
 return {'val_k0':val_k0, 'pk':pk }

 def verifier_state2(self, input):
 c = self.group.random(ZR)
 Protocol.store(self, ('c',c),
 ('pk',input['pk']),
 ('val_k0', input['val_k0']))
 Protocol.setState(self, 4)
 return {'c':c} ...

 ...
 def prover_state3(self, input):
 c = input['c']
 val = Protocol.get(self, ['x','k0',], dict)
 z0 = val['x'] * c + val['k0']
 Protocol.setState(self, 5)
 return {'z0':z0,}

 def verifier_state4(self, input):
 z0 = input['z0'];
 val = Protocol.get(self, ['pk','val_k0','c'], dict)
 if (val['pk']['g'] ** z0) ==
 ((val['pk']['h'] ** val['c']) * val['val_k0']):
 result = 'OK'
 else:
 result = 'FAIL'
 Protocol.setState(self, 6)
 Protocol.setErrorCode(self, result)
 return result

Figure 4.6: A partial listing of the generated protocol produced by our Zero-Knowledge
compiler for the honest-verifier proof ZKPoK{(x) : h = gx}.

4.5.4 Meta-information and Adapters

Charm provides the ability to label schemes so that they carry meta-information about

their input/output space and security definitions. Wherever possible this information is

68

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

derived automatically, e.g., from the scheme type or function definitions. Optionally, de-

velopers can provide other details such as the complexity assumption and computational

models used in the scheme’s security proof via a standard annotation interface. This infor-

mation allows developers to compare and check compatibility between schemes.

All schemes descend from the Scheme class, which provides tools to record and eval-

uate meta-information. Developers use the setProperty() method to specify important

properties. For example, the init function of an Identity-Based Encryption scheme might

include a call of this form:

Set the scheme’s security definition,
ID space, and message space.
setProperty(self, secdef=IND_ID_CPA,

id=str, messageSpace=str)

Schemes with more restrictive parameters, e.g., group elements and/or strings of lim-

ited length, can specify these requirements as well.9 Once each scheme is labeled with

the appropriate metadata, we can programmatically extract this information at run-time to

verify a given set of criteria.

Adapter example. To illustrate how this functionality works in practice, we consider the

process of constructing adapters between different schemes. In Section 4.4 we proposed

an adapter chain to convert the Boneh-Boyen IND-sID-CPA-secure signature scheme [66]

into an EU-CMA signature (see Figure 4.3). This transformation requires two adapters: one

to convert the selectively-secure IBE scheme into an adaptively-secure IBE scheme (in the

9In some cases, evaluation of a scheme depends on the scheme’s public key.

69

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

random oracle model), and another to transform the resulting IBE into a signature using

the technique of Naor [95].

The Hash Identity adapter has an explicit and implicit function. Explicitly, it applies

a hash function to the Boneh-Boyen IBE, which accepts identities in the group Zr,10 thus

altering the identity-space to {0, 1}∗. Implicitly, it converts the security definition of the re-

sulting IBE scheme from IND-sID-CPA to the stronger IND-ID-CPA definition and updates

the meta-information to note that the security analysis is in the random oracle model.11

The adapter itself is implemented as a subclass of IBEnc (see Figure A.2a in Appendix

A). It accepts the Boneh-Boyen IBE (also an IBEnc class) as input to its constructor. At

construction time, the adapter must verify the properties of the given scheme using the

checkProperty() call. It then advertises its own identity space and security information.

This code is contained within the adapter’s init routine and appears as follows:

...
if IBEnc.checkProperty(self, scheme,

[(‘scheme’,‘IBEnc’),(‘secDef’,IND_sID_CPA),
(‘id’,ZR)]):

self.ibe = scheme
IBEnc.updateProperty(self, scheme,

secDef=IND_ID_CPA, id=str,
secModel=ROM)

...

The IBE-to-Sig adapter converts any adaptively-secure IBE scheme into an EU-CMA

signature.12 This adapter is implemented as a subclass of PKSig. It accepts an object
10The value r is typically a large prime.
11On a call to encrypt or keygen the adapter simply hashes an arbitrary string into an element of Zr, then

passes the result to the underlying IBE scheme. This technique and its security implications are described
in [66].

12Naor [95] observed that adaptively-secure IBE can be converted into a signature scheme by using the

70

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

derived from IBEnc and verifies that it advertises at least IND-ID-CPA security (IND-sID-

CPA is not sufficient, hence our use of the previous adapter) and possesses an appropriate

message space. With this check satisfied, this adapter inherits the security model of the

underlying IBE, adopts the IBE’s identity space as the message space for the signature, and

advertises the EU-CMA security definition.

In future versions of the library, we hope to significantly extend the usefulness of this

meta-data, and to include detailed information on performance (gathered through automatic

testing). We also intend to provide tools for automatically constructing useful adapter

chains based on specific requirements.

4.5.5 Type checking and conversion

Python programs are dynamically typed. In general, we believe that this is a benefit

for a rapid prototyping system: dynamic typing makes it possible to assemble and mod-

ify complex data structures (e.g., ciphertexts) “on the fly” without the need for detailed

structure definitions.

Of course, the lack of static typing has disadvantages. For example, type errors may

not be detected until runtime. Furthermore, it can limit the utility of adapters that depend

on having a priori knowledge about a scheme’s input or output characteristics.

To address these issues, Charm provides optional support for static typing using the

Python annotation interface. When it is provided, Charm uses this type information to val-

IBE key extraction algorithm for signing.

71

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

idate the inputs provided to a cryptographic algorithm and, in cases where the inputs are

of the wrong type, to automatically convert them. For the latter purpose, Charm provides

a standard library designed to encode values to and from a variety of standard types, in-

cluding bit strings and various types of group elements. An example of the Charm typing

syntax is provided below:

pk_t = {’g1’:G, ’g2’:G, ’c’:G, ’d’:G, ’h’:G}
c_t = {’u1’:G, ’u2’:G, ’e’:G, ’v’:G}

@Input(pk_t, str)
@Output(c_t)
def encrypt(self, pk, M):

...

We believe that support for explicit typing also provides a foundation for adding formal

verification techniques to Charm, though we leave such verification to future work.

4.5.6 Using Charm in C applications

To enable the use of Charm schemes in existing C applications, we provide an embed

API for integrating Charm schemes without burdening developers. Our approach achieves

two important goals. First, the embed API is easy-to-use, intuitive, and straightforward for

developers to use a scheme based on its scheme type API (e.g., keygen, encrypt/decrypt).

Second, the API allows C applications to interchange primitives of the same type with

minimal modifications.

To embed a scheme, the application first calls the InitializeCharm() function to setup

the Charm environment. Once Charm is setup, the application creates a group object for

72

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

instantiating a scheme. This is accomplished by calling the group initialization function for

a given setting such as InitPairingGroup(), InitIntegerGroup(), etc. Next, the application

calls InitScheme() and includes the scheme file name, class name, and the group object

handle returned from the previous call. To call any function within the scheme, the appli-

cation uses the CallMethod() and supplies the arguments for the target function. Finally,

we provide serialization methods (objectToBytes() and bytesToObject()) for converting

Charm objects to/from base-64 encoded binary strings. We believe our simple embed API

enables Charm to be seamlessly integrated into a variety of applications that require ad-

vanced cryptographic constructs. For a detailed example, see Figure A.1 in Appendix A.

4.6 Performance

Charm is primarily intended for rapid prototyping, with an emphasis on compactness of

source code and similarity between standard protocol notation and code. These properties

all favor the developer and are qualities designed to facilitate more semantically correct,

robust, and secure code. However, we recognize that achieving these properties is likely to

come at a tradeoff in performance.

As such, in this section we report representative performance metrics collected through

the use of Charm’s built-in benchmarking system. These metrics are quantitatively com-

pared against detailed timing experiments of two existing C cryptographic system imple-

mentations. We observe that the performance cost of using Charm is variable, and it is

73

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

directly dependent on the nature of the scheme implementation.

4.6.1 Comparison with C Implementations

We conducted detailed timing experiments on two of the cryptosystems we imple-

mented: EC-DSA [45] and a CP-ABE scheme due to Bethencourt, Sahai, and Waters [29].

We chose these two because of their available C implementations, thus realistic choices

against which to compare. Our experiments comprise two different points on a spectrum:

our EC-DSA experiment considers Charm’s performance in an algorithm with very fast op-

eration times, and our CP-ABE experiment considered a scheme with a high computational

burden (to stress this, we instantiated the scheme with a 50-element policy).

Experimental setup. We used the benchmark module to collect timings for our Charm

implementation of the EC-DSA Sign and Verify algorithms. This provided us with total

operation time for both algorithms. We then collected total operation times for OpenSSL’s

implementation of the same algorithms using the built-in speed command.

For CP-ABE we used benchmark again to collect measurements for our ABE key gen-

eration, encryption and decryption implementations (omitting the setup routine). For key

generation, we extracted a key containing 50 attributes (1, . . . , 50). We next encrypted a

random message (in the group GT) under a policy consisting solely of AND gates: (1 and

2 and . . . and 50). Finally, we decrypted the message using the extracted key. For each ex-

periment, we measured total time and repeated these experiments using John Bethencourt’s

library (available from [124]) to obtain the C time.

74

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

We conducted our experiments on a Macbook Pro with a 2.4Ghz Intel i5 with 8GB of

RAM running Mac OS 10.7 and Python v3.2.3. All of our experiments were performed on

a single core of the processor. For all experiments (Charm and C), we used either OpenSSL

v1.0.1c library or libpbc 0.5.12 to perform the underlying mathematical operations. Our

EC-DSA experiments used the standard NIST P-192 elliptic curve. For CP-ABE, we used

a 512-bit supersingular curve (with embedding degree k = 2) from libpbc. All of our timing

results are the average of 10 experimental runs.

Experimental results. The results of our experiments are presented in Figure 4.7. Un-

surprisingly, our Charm implementation of EC-DSA suffered a substantial performance

penalty when compared to the OpenSSL version. This is unavoidable given the relatively

low overall time required for EC-DSA operations—even small interpretation inefficiencies

add up to a large percentage of the total cost. Our results with CP-ABE (and 50 attributes)

are encouraging. For the CP-ABE algorithms, Charm is competitive with the C implemen-

tation. As a result, we believe Charm can be a primary tool for cryptographers wishing to

approximate the performance of their schemes or protocols in practice [125]. For additional

performance measurements, see our technical report [88].

75

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

sign verify

M
ill

is
e

c
o

n
d

s

Algorithm

Openssl library vs. Charm

EC-DSA (C)
EC-DSA (Python)

(a) Comparison to OpenSSL

 0

 200

 400

 600

 800

 1000

 1200

keygen encrypt decrypt

M
ill

is
e

c
o

n
d

s

Algorithms

Bethencourt library vs. Charm (50 attributes in policy)

cpabe toolkit (C)
CP-ABE (Python)

(b) Comparison to Beth-cpabe toolkit

Figure 4.7: For EC-DSA, we select the NIST P-192 elliptic curve and for CP-ABE [29], we
measure 50 attributes for keygen and 50 leaves in the policy tree for encrypt and decrypt.

4.7 Related Work

Our work builds upon previous efforts to provide software libraries for developers who

use cryptography. We describe four different types of libraries below.

76

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

Cryptographic (primitive) libraries. The first widely available general purpose library

for commonly used cryptographic functions was Jack Lacey’s CryptoLib [126]. Follow-

ing CryptoLib, many other packages were developed, including Peter Guttman’s similarly

named CryptLib13, RSA’s Bsafe Crypto-C14, and more recently JAVA libraries such as

Cryptix15, BouncyCastle16. While these libraries have been useful for application devel-

opers, they were designed for specific and mostly isolated purposes. Moreover, they only

implement commonly used and standardized cryptographic functions.

There have not been as many implementations of cryptosystems such as IBE, ABE,

and related advanced primitives. Of note is the implementation by Bethencourt, Sahai and

Waters [29], which provides an API for ciphertext policy ABE. This package is part of

the Advanced Crypto Software collection (ACSC) [124], which in addition to this ABE

library, includes separate packages for other advanced application-based primitives such

as forward-secure signatures and broadcast encryption. Our Charm architecture provides a

comprehensive and unified framework that is both usable and developer friendly for rapid

prototyping of advanced primitives.

Math libraries. The GNU Multiple Precision Arithmetic Library (GMP) [100] is a free,

high-precision mathematics library, specifically optimized for speed of cryptographic algo-

rithms. The Stanford Pairing-Based Cryptography (PBC) library [78] is free, written in C,

and built on top of GMP to provide abstractions for developing pairing algorithms. PBC

13http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
14http://www.rsa.com/rsalabs/node.asp?id=2301
15http://www.cryptix.org/
16http://www.bouncycastle.org/

77

http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
http://www.rsa.com/rsalabs/node.asp?id=2301
http://www.cryptix.org/
http://www.bouncycastle.org/

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

was built for expressiveness, but not designed for usability or performance. RELIC [89],

also an open source library which relies on GMP, was built for speed and portability with

support for big number arithmetic, traditional elliptic curves and pairings. While RELIC

is highly configurable and supports a variety of cryptographic optimizations, it was not

primarily built for usability.

The Multiprecision Integer and Rational Arithmetic Library (MIRACL) [87] is written

in C/C++ and provides APIs for big number arithmetic, elliptic curve cryptography, block

ciphers and hash functions. Similar to RELIC, MIRACL is a highly optimized library that is

compatible with a variety of architectures and is quite expressive in terms of functionality.

However, MIRACL places a secondary focus on usability. Using the library effectively

requires knowledge of its inner workings. Our Charm framework shields developers from

dealing with these libraries directly via layers of abstractions. Instead, cryptographers can

utilize our abstractions to implement their schemes or protocols using standard notation

and evaluate them against any of the math libraries supported in Charm.

Cryptographic compilers and frameworks. Ben Laurie’s Stupid programming language [84]

compiles into C and Haskell and is intended for constructs like ciphers and hash functions.

Cryptol [85] compiles to a VHDL circuit for use with an FPGA. More recently, Dan Bern-

stein’s NaCl (or “salt") [127] software library in C/C++ provides an easy-to-use interface

(e.g., encryption, decryption, signatures, etc.) to build higher-level cryptographic tools.

Protocol and Secure Function Evaluation compilers. The authors of the Zero Knowl-

edge Proof Descriptive Language (ZKPDL) [80] offer a language and an interpreter for

78

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

implementing privacy-preserving protocols. Their example application is electronic cash,

but their descriptive language is more general. A similar approach is provided by Fair-

Play [82], which provides a language-based system for secure multi-party computations.

The authors of FairPlay provide a Secure Function Definition Language (SFDL), which

can be used by programmers to specify code for multi-party computations. Charm takes

a similar approach but with a focus on providing a simple language in the Camenisch and

Stadler [105] notation for specifying high-level proof statements. From this proof state-

ment, our compiler automatically generates the interactive protocol details.

A software package called Tool for Automating Secure Two-Party Computations (TASTY) [83]

allows protocol designers to specify a high-level description of a computation that is to be

performed on encrypted data. TASTY then generates protocols based on the specification,

and compares the efficiency of different protocols. Similarly, the Computer Aided Cryptog-

raphy Engineering (CACE) project has also developed a system that specifies a language

for zero knowledge proofs [123,128]. In this system, a compiler translates zero-knowledge

protocol specifications into Java code or LATEX statements. The CACE ZK compiler has

many features, optimizations, and performance benefits. Our framework is certainly com-

patible with the CACE design and we intend on leveraging CACE as a building block in

Charm.

79

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

4.8 Charm-Crypto Toolkit

The Charm framework is freely available at http://charm-crypto.com/Download.

html with extensive documentation17 for how to use it. To make Charm easy-to-use, we

provide automated installers for various platforms such as Windows, Mac OS X and Linux.

Additionally, to support embedded environments, we have ported the framework to mobile

platforms such as Android. Our end goal is to enable Charm on as many platforms as

possible.

4.9 Challenges and Open Problems

To provide extensibility and modularity in Charm, we require some building blocks to

meet such challenges. For example, at the lowest level, we provide abstract C/C++ inter-

faces around the C math libraries to make them interchangeable at build time. This allows

cryptographers to evaluate their scheme implementations against different libraries by only

changing the Charm install configuration. With the pairingmath module, for instance, we

can evaluate the performance of schemes against the PBC, MIRACL, and RELIC libraries

without changing the scheme itself. It is relatively easy to extend our framework with new

math libraries that adhere to our C/C++ abstract interface. Moreover, we are able to ex-

tend our platform to diverse environments with relatively low effort and without affecting

the higher level components in Charm. Thus, all of these features enable Charm to pro-

17http://charm-crypto.com/Documentation.html

80

http://charm-crypto.com/Download.html
http://charm-crypto.com/Download.html
http://charm-crypto.com/Documentation.html

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

vide a test bed for rapidly prototyping and evaluating advanced cryptosystems against any

appropriate underlying C library.

While the Charm architecture addresses a number of issues to facilitate rapid imple-

mentations of modern cryptography, it did not come without technical challenges. Our

first challenge was determining the interface that should be exposed in Python for building

schemes and protocols in a way that is standard and comprehensive. The second challenge

was conforming the math libraries to this interface. This was not a significant issue for

well established math libraries such as GMP, OpenSSL, PBC, and MIRACL. However, for

more recent research libraries such as RELIC, this presented challenges due to missing

functionality (e.g., serialization) and the alpha software quality of the pairings interface.

But given the optimizations available in RELIC for pairings, it has the potential to become

the standard for pairing-based cryptography in the near future.

An open area is to develop automated compilers for performing various operations on

cryptographic schemes. One such example is the translation of schemes between various

settings, e.g., composite-order to prime-order bilinear groups. Both David Freeman [129]

and Alison Lewko [130] have recently proposed tools for this type of translation; however,

all of these tools currently require human intervention. We believe that Charm provides an

excellent platform for implementing techniques that automatically translate such schemes

(represented in a domain-specific language) to working implementations.

On the engineering side, there are a number of issues related to improving Charm for

applications that require extremely high performance. For example, the current Python

81

CHAPTER 4. CHARM: A FRAMEWORK FOR RAPIDLY PROTOTYPING
CRYPTOSYSTEMS

threading model is not ideal for applications that would benefit from substantial parallel

processing (e.g., lattice-based fully-homomorphic encryption schemes [131]). One of our

major open problems is to find ways to take full advantage of multi-core systems. Finally,

we understand that there may be instances where development requirements cannot support

a high-level interpreted language such as Python. To address this we plan to examine the

possibility of compiling Charm code directly to languages such as Haskell and C, using

tools such as Shedskin [132].

82

Chapter 5

Machine-Generated Algorithms, Proofs

and Software for the Batch Verification

of Digital Signature Schemes

In the previous chapter, we introduced the Charm framework and how it fits into our

architecture for automation. In this chapter, we will describe a tool that finds efficient batch

verification algorithms in an automated fashion. We will explore how our approach can

produce competitive results to previous manual approaches in a secure manner. Addition-

ally, we will analyze the security of our batching techniques and show how it preserves the

security of its inputs.

83

CHAPTER 5. AUTOBATCH

5.1 Overview

As devices everywhere increasingly communicate with each other, many security appli-

cations will require low-bandwidth signatures that can be processed quickly. Pairing-based

signatures can be very short, but are often costly to verify. Fortunately, they also tend to

have efficient batch verification algorithms. Finding these batching algorithms by hand,

however, can be tedious and error prone.

We address this by presenting AutoBatch, an automated tool for generating batch verifi-

cation code in either Python or C++ from a high level representation of a signature scheme.

AutoBatch outputs both software and, for transparency, a LaTeX file describing the batch-

ing algorithm and arguing that it preserves the unforgeability of the original scheme.

We tested AutoBatch on over a dozen pairing-based schemes to demonstrate that a com-

puter could find competitive batching solutions in a reasonable amount of time. Indeed, it

proved highly competitive. In particular, it found an algorithm that is significantly faster

than a batching algorithm from Eurocrypt 2010. Another novel contribution is that it han-

dles cross-scheme batching, where it searches for a common algebraic structure between

two distinct schemes and attempts to batch them together.

In this work, we expand upon an extended abstract on AutoBatch appearing in ACM

CCS 2012 in a number of ways. We add a new loop-unrolling technique and show that

it helps cut the batch verification cost of one scheme by roughly half. We describe our

pruning and search algorithms in greater detail, including pseudocode and diagrams. All

experiments were also re-run using the RELIC pairing library. We compare those results to

84

CHAPTER 5. AUTOBATCH

our earlier results using the MIRACL library, and discuss why RELIC outperforms MIR-

ACL in all but two cases. Automated proofs of several new batching algorithms are also

included.

AutoBatch is a useful tool for cryptographic designers and implementors, and to our

knowledge, it is the first attempt to outsource to machines the design, proof writing and

implementation of signature batch verification schemes.

5.2 Introduction

We anticipate a future where computers are everywhere as an integrated part of our

surroundings, continuously exchanging messages, e.g., sensor networks, smartphones, ve-

hicular communications. For these systems to work properly, messages must carry some

form of authentication, and yet the system requirements on this authentication are partic-

ularly demanding. Applications such as vehicular communications [133, 134], where cars

communicate with each other and the highway infrastructure to report on road conditions,

traffic congestion, etc., require both that signatures be short (due to the limited spectrum

available) and that many messages from different sources can be processed quickly.

Pairing-based signatures are attractive due to their small size, but they often carry a

costly verification procedure. Fortunately, these schemes also lend themselves well to batch

verification, where valuable time is saved by processing many messages at once. E.g.,

Boneh, Lynn and Shacham [120] presented a 160-bit signature together with a batching

85

CHAPTER 5. AUTOBATCH

algorithm over signatures by the same signer, where verification time could be reduced

from 47.6ms to 2.28ms per signature in a batch of 200 [51] — a 95% saving!

To prepare for a future of ubiquitous messaging, we would like batching algorithms

for as many pairing-based schemes as possible. Designing batch verification algorithms

by hand, however, is challenging. First, it can be tedious. It requires knowledge of many

batching rules and exploration of a potentially huge space of algebraic manipulations in the

hunt for a good candidate algorithm. Second, it can be error prone. In Section 4.7, we dis-

cuss both the success and failure of the past fifteen years in batching digital signatures. The

clear lesson is that mistakes are common and that even when generic methods for batching

have been suggested, they have often been misapplied (e.g., a critical step is forgotten.)

This chapter demonstrates that it is feasible for humans to turn over some of the design,

proof writing and implementation work in batch verification to machines.

5.2.1 Our Contributions

We present AutoBatch, an automated tool that transforms a high-level description of a

signature scheme1 into an optimized batch verification program in either Python or C++.

AutoBatch takes as input a Scheme Description Language (SDL) representation of a sig-

nature scheme (see Section 3.5.1 for details on SDL) and searches for a batching algorithm

by repeatedly applying a combination of novel and existing batching techniques. Because

some loops or other infinite paths could occur, AutoBatch prunes its search using a set
1Optionally, one can start with an existing implementation, from which AutoBatch will extract a repre-

sentation.

86

CHAPTER 5. AUTOBATCH

of carefully designed heuristics. Our tool produces a modified SDL and executable code,

which includes logic for altering the behavior of the batching algorithm based on its input

size or past input.

To our knowledge, this is the first attempt to automatically identify when certain batch-

ing techniques are applicable and to apply them in a secure manner. Importantly, the way in

which we combine these techniques and optimizations preserves the unforgeability of the

original scheme. Specifically, with all but a negligible probability, the batch verifier will

accept a batch S of signatures if and only if every s ∈ S would have been accepted by the

individual verification algorithm. AutoBatch also produces a machine-generated LaTeX

file that specifies each technique applied and the argument for why security holds.

AutoBatch was tested on several pairing-based schemes. It produced the first batch-

ing algorithms, to our knowledge, for the Camenisch-Lysyanskaya [18] and Hohenberger-

Waters [135] signatures.2 It also discovered a significantly faster algorithm for batching the

proofs of the verifiable random functions (VRF) [19]. Moreover, AutoBatch is able to han-

dle batches with more than one type of signature. Indeed, we found that the Hess [136] and

Cha-Cheon [137] identity-based signatures can be processed twice as fast when batched

together compared to sorting by type and batching within the type. The capability to do

cross-scheme batching is a novel contribution of this chapter, and we feel could be of great

value for applications, such as mail servers, which may encounter many signature types at

once.
2It also produced a candidate batching scheme for the Waters dual-system [57] signatures, although this

signature scheme does not have perfect correctness and therefore our automated proof techniques do not
immediately apply to it. See Section 5.3.1 for more.

87

CHAPTER 5. AUTOBATCH

AutoBatch is a tool with many applications for both existing and future signature

schemes. It helps enable the secure, but rapid processing of authenticated messages, which

we believe will be of increasing importance in a wide-variety of future security applica-

tions.

5.2.2 Overview of Our Approach

We present a detailed explanation of AutoBatch in §5.4. In this section and in Figure 5.1

we provide a brief overview of the techniques. At a high level, AutoBatch is designed to

analyze a scheme, extract the signature verification equation, and derive working code for

a batch verifier. This involves three distinct components:

• (Optional) A Code Parser, which retrieves the verification equation and variable types

from some existing scheme implementation. Our parser assumes that the scheme

has been implemented in Python following a specific structure (see our technical

report [138] for more details). Given such an implementation, the Parser obtains the

signature verification equation and encodes it into SDL.

• A Batcher, which takes as input an SDL file describing a signature verification equa-

tion. In addition to the signature verification equation, Batcher requires details in

SDL such as types, variable names of public parameters and signatures, and esti-

mated batch size. It first consolidates the set of individual verification equations

into a single equation, then derives a batch verification equation. The Batcher then

88

CHAPTER 5. AUTOBATCH

searches through a series of rules, which may be applied repeatedly, to optimize the

equation and thus derive a new equation of a batch verifier. The output of the Batcher

is a second SDL file, which includes the individual and batch verifiers, along with

an analysis of the batcher’s estimated running time. For transparency, the Batcher

optionally outputs a LaTeX file that can be compiled into a human-readable docu-

ment describing the batching algorithm and that it maintains the unforgeability of the

original scheme.

• A Code Generator, which takes the output of the Batcher and generates working

source code to implement the batch verifier. The batch verifier implementation in-

cludes group membership checks, a recursive divide-and-conquer process to handle

batches that contain invalid signatures, and additional logic to identify cases where

individual verification is likely to outperform batching. The user can choose ei-

ther Python or C++ as the output language; either building on the MIRACL [87]

or RELIC [139] library.

There are two usage scenarios for AutoBatch. The most common may be that a user

begins with a hand-coded SDL file and feeds this directly into the Batcher. Since SDL

files are human-readable ASCII-based files containing a mathematical representation of the

scheme, some developers may prefer to implement new schemes directly in this language,

which is agnostic to the programming language of the final implementation.

As a second scenario, if the user has a working implementation of the scheme in

Charm [11], then she can save time. This program can be given to the Code Parser, which

89

CHAPTER 5. AUTOBATCH

Parsing
Engine

Signature
Scheme in

Python

SDL file for
Signature
Scheme

Batcher

SDL file for
Batch Verifier

Code
Generator

Individual Loop
Python/C++ Code

Batching
Python/C++ Code

Proof of
Correctness

Figure 5.1: The flow of AutoBatch. The input is a signature scheme comprised of key
generation, signing and verification algorithms, represented in the domain-specific SDL
language. The scheme is processed by a Batcher, which applies the techniques and op-
timizations from Section 5.4 to produce a new SDL file containing a batch verification
algorithm. Optionally, the Batcher outputs a proof of correctness (as a PDF typeset using
LaTeX) that explains, line by line, each technique applied and its security justification. Fi-
nally, the Code Generator produces executable C++ or Python code implementing both the
resulting batch verifier, and the original (unbatched) verification algorithm. An optional
component, the Parsing Engine, allows for the automatic derivation of SDL inputs based
on existing scheme implementations.

will extract the necessary information from the code to generate a SDL file. There is already

a library of pairing-based signatures publicly available in Charm/Python, so we provide this

as a second interface option to our tool.

5.2.3 Related Work

Computer-aided security is a goal of high importance. Recently, the best paper award at

CRYPTO 2011 was given to Barthe, Grégoire, Heraud and Zanella Béguelin [140] for their

invention of EasyCrypt, an automated tool for generating security proof of cryptographic

systems from proof sketches. The reader is referred there for a summary of efforts to

automate the verification of cryptographic security proofs.

90

CHAPTER 5. AUTOBATCH

In 1989, batch cryptography was introduced by Fiat [43] for a variant of RSA. In 1994,

an interactive batch verifier for DSA presented in an early version of [141] was broken by

Lim and Lee [142]. In 1995 Laih and Yen proposed a new method for batch verification

of DSA and RSA signatures [143], but the RSA batch verifier was broken five years later

by Boyd and Pavlovski [46]. In 1998, two batch verification techniques were presented

for DSA and RSA [144, 145] but both were later broken [46–48]. The same year, Bellare,

Garay and Rabin took the first systematic look at batch verification [52] and presented

three generic methods for batching modular exponentiations, one of which is called the

small exponents test. Unfortunately, in 2000, Boyd and Pavlovski [46] published attacks

against various batching schemes which were using the small exponents test incorrectly.

In 2003-2004, several batch verification schemes based on bilinear maps (a.k.a., pairings)

were proposed [137,146–148] but all were later broken by Cao, Lin and Xue [49]. In 2006,

a method was given for identifying invalid signatures in RSA-type batches [149], but it was

also flawed [50].

It is natural to ask what the source of the errors were in these papers. In several cases,

the mathematics of the scheme were simply unsound and the proof of correctness was either

missing or lacking in rigor. However, there were two other common problems. One was

that the paper claimed in English to be doing batch verification, but the security definition

provided in the paper was insufficient to establish this guarantee. Most commonly this

matched the strictly weaker screening guarantee; see [150] for more. A second problem

was more insidious: the security definition and proof were “correct”, but the scheme was

91

CHAPTER 5. AUTOBATCH

still subject to a practical attack because the authors started the proof by explicitly assuming

that elements of the signature were members of certain algebraic groups and this was not

a reasonable assumption to make in practice. Boyd and Pavlovski [46] provide numerous

examples of this case.

AutoBatch addresses these common pitfalls. It uses one security definition (in Sec-

tion 5.3) and provides a proof of correctness for every algorithm it outputs relative to this

definition (in Section 5.4.3), where no assumptions about the algebraic structure of the

input are made and therefore any necessary tests are explicitly performed by the algorithm.

In addition to the works on batch verification mentioned above, we mention a few more.

Shacham and Boneh presented a modified version of Fiat’s batch verifier for RSA to im-

prove the efficiency of SSL handshakes on a busy server [151]. Boneh, Lynn and Shacham

provided a single-signer batch verifier for BLS signatures [120]. Camenisch, Hohenberger

and Pedersen [150] gave multiple-signer batch verifiers for Waters identity-based signa-

tures [67] and a novel construction. Ferrara, Green, Hohenberger, and Pedersen outlined

techniques for batching pairing-based signatures and showed how to batch group and ring

signatures [51]. Blazy, Fuchsbauer, Izabachéne, Jambert, Sibert and Vergnaud [152] ap-

plied batch verification techniques to the Groth-Sahai zero-knowledge proof system as well

as group signatures and anonymous credential systems relying on them, obtaining signifi-

cant savings.

Law and Matt describe methods for identifying invalid signatures in a batch [54, 153,

154].

92

CHAPTER 5. AUTOBATCH

Lastly, there have been several research efforts toward automatically generating cryp-

tographic protocols and executable code. This compiler-like approach has been applied to

cryptographic applications such as security protocols [1–3, 60, 61], optimizations to soft-

ware implementations involving elliptic-curve cryptography [155] and bilinear-map func-

tions [156], secure two-party computation [9, 10, 64], and zero-knowledge proofs [4–8, 62,

63].

5.3 Batch Verification for Signatures

Our security focus here is not directly on unforgeability [21]. Rather we are interested

in designing batch verification algorithms that accept a set of signatures if and only if each

signature would have been accepted by its verification algorithm individually.3 If an input

scheme is unforgeable, then our batching algorithm will preserve this property in the output

scheme. If an insecure scheme is provided as input, then all bets are off on the output.

Specifically, we consider the case where we want to quickly verify a set of signatures

on possibly different messages by possibly different signers. The input is {(t1,m1, σ1), . . . ,

(tn,mn, σn)}, where ti specifies the verification key against which σi is purported to be a

signature on message mi. It is important to understand that here one or more signers may

be maliciously colluding against the batch verifier.

We recall the definition of batch verification from Bellare, Garay and Rabin [52] as

extended in [150] to deal with multiple signers. We note that this definition is well specified
3We assume perfectly correct schemes here.

93

CHAPTER 5. AUTOBATCH

for perfectly correct schemes, but not for schemes that allow some correctness error. We

discuss this further shortly.

Definition 5.3.1 (Batch Verification of Signatures). Let ℓ be the security parameter. Sup-

pose (Gen,Sign, Verify) is a signature scheme with perfect correctness, k, n ∈ poly(ℓ),

and (pk1, sk1), . . . , (pkk, skk) are generated independently according to Gen(1ℓ). Let PK =

{pk1, . . . , pkk}. We call a probabilistic algorithm Batch a batch verification algorithm when

the following conditions hold:

• If pkti ∈ PK and Verify(pkti ,mi, σi) = 1 for all i ∈ [1, n], then

Batch((pkt1 ,m1, σ1), . . . , (pktn ,mn, σn)) = 1.

• If pkti ∈ PK for all i ∈ [1, n] and Verify(pkt j
,m j, σ j) = 0 for some j ∈ [1, n], then

Batch((pkt1 ,m1, σ1), . . . , (pktn ,mn, σn)) = 0 except with probability negligible in ℓ,

taken over the randomness of Batch.

The above definition can be generalized beyond signatures to apply to any keyed scheme

with a perfectly-correct verification algorithm. This includes zero-knowledge proofs, veri-

fiable random functions, and variants of regular signatures, such as identity-based, attribute-

based, ring, group, aggregate, etc. The above definition requires that signing keys be gen-

erated honestly. In practice, users could register their keys and prove some necessary prop-

erties of the keys at registration time [157].

94

CHAPTER 5. AUTOBATCH

5.3.1 On Schemes with a Correctness Error

The standard definition for signature batch verification (as presented in Definition 5.3.1)4

assumes that the basic signature scheme has perfect correctness. That is, the first part of the

definition inherently assumes that all valid signatures will pass the individual verification

test. This is the case for the majority of signature schemes as well as all signature schemes

that we are aware of being actively used in practice.

However, one could imagine a signature scheme with a negligible or small constant cor-

rectness error. One example of a scheme with a negligible correctness error is the Waters09

scheme as derived from the Waters Dual-System IBE [57] using the technique described

by Naor [28]. In this scheme, a signature on message m corresponds to the IBE private key

on identity m. The verification test operates by choosing a random message m′, encrypting

it for identity m, running the decrypt algorithm using the signature as the private key, and

testing to see that decryption successfully recovers m′. Since the Dual-System IBE [57]

has a negligible correctness error in the decryption algorithm, this signature scheme also

has a negligible correctness error in verification. This leaves the question: what is the right

batching definition for such a scheme?

For a scheme that allows an arbitrary amount of correctness error, the first requirement

of Definition 5.3.1 no longer makes sense. Rather in this setting it seems to us that one could

no longer base the batching security on the base signature security, but rather would have to

create a new game-based definition that simulated the batching scenario and directly prove

4We added the restriction to perfect correctness in Definition 5.3.1. It was assumed in prior works but not
always made explicit.

95

CHAPTER 5. AUTOBATCH

that the algorithm matches the definition. Direct proofs of this sort are currently beyond

our ability to automate.

One might instead narrow the focus to schemes that allow at most a negligible cor-

rectness error. In this case, we suggest relaxing both of the batching requirements by a

negligible probability taken over the randomness of the individual and batch verification

algorithms. We leave as an open problem a formal treatment of batching for schemes in

this class.

We tested AutoBatch on one scheme with a correctness error, Waters09 [57], because its

complication made it a challenging test case. We report on the candidate batching algorithm

we found in Section 5.5, although we note there and in Appendix A.7 that our automated

proofs were only written to handle schemes with perfect correctness. This is a correction

over the conference version of this work which did not make this distinction.

5.3.2 Algebraic Setting

Testing Membership in Bilinear Groups. When batching, it is critical to test that the

elements of each signature are members of the appropriate algebraic group. Boyd and

Pavlovski [46] demonstrated efficient attacks on batching algorithms for DSA signature

verification which omitted a subgroup membership test.

In this chapter, we must test membership in bilinear groups. We require that elements of

purported signatures are members of G1 and not, say, members of E(Fp) \G1. Determining

96

CHAPTER 5. AUTOBATCH

whether some data represents a point on a curve is easy. The question is whether it is

in the correct subgroup. If the order of G1 is a prime q, one option is to verify that an

element y is in G1 by checking that yq mod q = 1 [150]. Although this costs an extra

modular exponentiation per group element, this will largely be dwarfed by the savings

from reducing the total pairings, as experimentally verified first by Ferrara et al. [51] and

confirmed by our tests.

5.3.3 Batch Verification in Bilinear Groups

Let us recall [51] the formal definition of a bilinear-based (or pairing-based) batch

verifier. A pairing-based verification equation is represented by a generic pairing-based

claim X corresponding to a boolean relation of the following form:
k

i=1 e(fi, hi)ci
?
= A, for

k ∈ poly(τ) and fi ∈ G1, hi ∈ G2 and ci ∈ Z
∗
q, for each i = 1, . . . , k. A pairing-based verifier

Verify for a generic pairing-based claim is a probabilistic poly(τ)-time algorithm which on

input the representation ⟨A, f1, . . . , fk, h1, . . . , hk, c1, . . . , ck⟩ of a claim X, outputs accept if

X holds and reject otherwise. We define a batch verifier for pairing-based claims.

Definition 5.3.2 (Bilinear-based Batch Verifier).

Let BMsetup(1τ) → (q, g1, g2,Ga,Gb,GT , e). For each j ∈ [1, η], where η ∈ poly(τ), let

X(j) be a generic pairing-based claim and let Verify be a pairing-based verifier. We define

a pairing-based batch verifier for Verify as a probabilistic poly(τ)-time algorithm which

outputs:

97

CHAPTER 5. AUTOBATCH

• accept if X(j) holds for all j ∈ [1, η];

• reject if X(j) does not hold for any j ∈ [1, η] except with negligible probability.

5.3.4 Small Exponents Test Applied to Bilinear Groups

Bellare, Garay and Rabin [52] proposed methods for verifying multiple equations of

the form yi = gxi for i = 1 to n, where g is a generator for a group of prime order. One

might be tempted to just multiply these equations together and check if
n

i=1 yi = g
n

i=1 xi .

However, it would be easy to produce two pairs (x1, y1) and (x2, y2) such that the product

of them verifies correctly, but each individual verification does not, e.g. by submitting the

pairs (x1 − α, y1) and (x2 + α, y2) for any α. Instead, Bellare et al. proposed the following

method for batching the verification of these equations, which we will shortly apply to

bilinear groups.

The Small Exponents Test of Bellare, Garay and Rabin: Choose exponents δi of (a

small number of) ℓb bits and compute
n

i=1 yδi
i = g

n
i=1 xiδi . Then the probability of accepting

a bad pair is 2−ℓb . The size of ℓb is a tradeoff between efficiency and security. (By default

in AutoBatch, we set ℓb = 80 bits and select random exponents from the range [1, 2λ − 1].

Even though 0 is allowed for the test, we forbid it in our implementation.)

Subsequently, Ferrara, Green, Hohenberger and Pedersen [51] proved that the Small Ex-

ponents Test could be securely applied to bilinear groups as well. We recall the following

theorem from their work which encapsulates the test as well.

98

CHAPTER 5. AUTOBATCH

Theorem 5.3.3 (Small Exponents Test Applied to Bilinear Groups [51]). Let BMsetup(1τ)→

(q, g1, g2, G1,G2,GT , e) where q is prime. For each j ∈ [1, η], where η ∈ poly(τ), let X(j)

corresponds to a generic claim as in Definition 5.3.2. For simplicity, assume that X(j) is of

the form A ?
= Y (j) where A is fixed for all j and all the input values to the claim X(j) are in the

correct groups. For any random vector ∆ = (δ1, . . . , δη) of ℓb bit elements from Zq, an al-

gorithm Batch which tests the following equation
η

j=1 Aδ j
?
=
η

j=1 Y (j)δ j is a pairing-based

batch verifier that accepts an invalid batch with probability at most 2−ℓb .

In later sections, we will frequently make use of the small exponents tests and rely on

the security guarantees of Theorem 5.3.3 as proven by Ferrara et al. [51].

5.4 The AutoBatch Toolchain

In this section we summarize the techniques used by AutoBatch to programmatically

generate batch verifiers from standard signature schemes. A high level abstraction is pro-

vided in Figure 5.1. The main stages are as follows.

1. Derive the scheme’s SDL representation. The AutoBatch toolchain begins with an

SDL representation of a signature scheme. While SDL is not a full programming language,

it provides sufficient flexibility to represent most pairing-based signature schemes. We

provide a description of the SDL required by AutoBatch and provide several examples in

Appendix A.2. For developers who already have an existing Charm/Python implementa-

tion, we also provide a Parsing Engine that can optionally derive an SDL representation

99

CHAPTER 5. AUTOBATCH

class BLS:
 def __init__(self):
 global group
 group = Pairing(MNT160)

 def keygen(self):
 g = group.random(G2)
 x = group.random(ZR)
 pk = g ** x
 sk = x
 return (pk, sk, g)

 def sign(self, sk, M):
 h = group.hash(M, G1)
 sig = h ** sk
 return sig

 def verify(self, pk, g, sig, M):
 h = group.hash(M, G1)
 if pair(h, pk) == pair(sig, g):
 return True
 return False

SDL

…
1 Choose deltas for small exponents test
 for z in range(0, N):
 delta[z] = SmallExp(secparam)
2 Initialize dot products
 dotA = 1; dotACache = {}
 dotB = 1; dotBCache = {}
3 Precompute dot products that can be
cached between runs of divide / conquer
 for z in range(0, N):
 # 4 group membership tests
 # … variables calculated over sigs…
5 Compute dotA & dotB using cache
6 Batch Verification check
if pair(dotA, pk) == pair(dotB, g):
 return True
else:
7 divide and conquer
 dividenconquer(delta, 0, N, incIndices,
 dotACache, dotBCache, pk, g)
...

Python
...
1 Choose deltas for small exponents test
 for (int z = 0; z < N; z++)
 delta[z] = SmallExp(secparam);
2 Initialize dot products
3 Group membership tests
4 Precompute cacheable dot products
 for (int z = 0; z < N; z++) {
 h = group.hashListToG1(Mlist[z]);
 dotACache[z] = group.exp(h, delta[z]);
 dotBCache[z] = group.exp(sig[z], delta[z]);
 }
5 Compute dotA & dotB using cache
6 Batch Verification check
if (group.pair(dotA , pk) ==
 group.pair(dotB, g)) { … }
else {
7 divide and conquer
 dividenconquer(delta, 0, N, incIndices,
 dotACache, dotBCache, pk, g);
}

ORname := bls
N := 100
secparam := 80

BEGIN :: types
 M := str; h := G1; sig := G1
 g := G2; pk := G2
END :: types
...
BEGIN :: func:sign
 input := list{sk, M}
 sig := h ^ sk
 output := sig
END :: func:sign
...
constant := g; public := pk
signature := sig; message := h
...
BEGIN :: precompute
 h := H(M, G1)
END :: precompute

verify := {e(h, pk) == e(sig, g)}

Charm/Python Batch Verifier
C++

Figure 5.2: The Boneh-Lynn-Shacham (BLS) signature scheme [120] at various stages
in the AutoBatch toolchain. At the left, an initial Charm-Python implementation of the
scheme. In the center, an SDL representation of the same scheme, programmatically ex-
tracted by the Parsing Engine. At right, a fragment of the resulting batch verifier generated
after applying the Batcher and Code Generator.

directly from this Python code.5

2. Apply techniques and optimize the batch verification equation. We first apply a set of

techniques designed to convert the SDL signature verification equation into a batch verifier.

These techniques optimize the verification equation by combining pairing equations and

re-arranging the components to minimize the number of expensive operations. To prevent

known attacks, we apply the small exponents test of Bellare, Garay and Rabin [52], and

optimize the resulting equation to ensure that all signature elements are in the group with

the smallest representation (typically, G1). Additionally, the Batcher embeds a recursive

divide-and-conquer strategy to handle cases where batch verification fails due to invalid

5We developed this capability for two reasons. First, there is already a library of pairing-based signatures
available in Charm/Python (in fact, the number of Charm implementations is greater than all other settings
combined). Secondly, we believe that there is value in providing multiple interfaces to our tools, particularly
interfaces that work with real implementations.

100

CHAPTER 5. AUTOBATCH

signatures. This binary search strategy is borrowed from Law and Matt [54] and could

be extended to support other methods that outperform this approach. Finally, the output of

this phase is a modified SDL file, and (optionally) a human-readable proof that the resulting

equation is a secure batch verifier.

3. Evaluate the capabilities of the batch verifier. Given the optimized batching equation

produced in the previous step, we estimate the performance of the verifier under various

conditions. This is done by counting the operations in the verifier, and deriving an estimate

of the runtime based on the expected cost of each mathematical operation (e.g., pairing,

exponentiation, multiplication). The cost of each operation is determined via a set of diag-

nostic tests conducted when the library is initialized.6

4. Generate code for the resulting batch verifier. Finally, we translate the resulting SDL

file into a working batch verifier. This verifier can be implemented in either Python or C++

using the Charm framework. It implements the SDL-specified batch verification equation

as well as the individual verification equation. Based on the calculations of the previous

step, the generated code embeds logic to automatically determine which verifier is most

appropriate for a given dataset (individual or batch). Two fragments of generated code

(Python and C++) are shown in Figure 5.2.

We will now describe each of the above steps in detail.

6Obviously these experiments are very specific to the machine and curve parameters on which they are
run. Our implementation re-runs these experiments whenever the library is initialized with a given set of
parameters.

101

CHAPTER 5. AUTOBATCH

5.4.1 Batching and Optimization

Given an SDL file containing the verification equation and variable types, the Batcher

first securely consolidates the individual verification equations into a single equation using

the small exponents test. Then, Batcher applies a series of optimizations to the batch ver-

ification equation in order to derive an efficient batch verifier. Many of these techniques

were first explored in previous works [51, 150]. However, the intended audience of those

works is humans performing manual batching of signatures. Hence, they are in many cases

somewhat less ‘general’ than the techniques we describe here.7 Furthermore, unlike previ-

ous works we are able to programmatically identify when these techniques are applicable,

and apply them to the verification equation in a consistent way.

The Batcher assumes that the input will be a collection of η signatures, possibly on

different messages and public keys (or identities). To construct a batch verifier, the Batcher

first parses and performs type checking on the SDL input file to extract an abstract syntax

tree (AST) representing the verification equation. During the type checking, it informs

users if there are type mismatches or if the typing information is incomplete in SDL. Next,

the Batcher traverses the AST of the verification equation, applying various techniques at

various nodes in the tree.

We now list those techniques and provide details on how some of these techniques are

implemented on the AST. For consistency, the techniques are presented as implemented in

AutoBatch and the technique numbers do not indicate any particular order.

7For example: techniques 2 and 3 of [150] each combine a series of logical operations that are more
widely applicable and easily managed by splitting them into finer-grained sub-techniques.

102

CHAPTER 5. AUTOBATCH

Technique 0: Consolidate the verification equation. Many pairing-based signature schemes

actually require the verifier to check more than one pairing equation. During the first phase

of the batching process, the batcher applies the small exponents test from [52] to combine

these equations into a single verification equation.8 A variation of this is Technique 10

which is applicable for schemes that utilize for loops in the verification equation (e.g.,

VRF [19]). If the bounds over the loop are known it might be useful to unroll the loop to

allow application of other techniques.

Replace for i = 1 to t : e(g, hi)
?
= e(c, di)

with e(g, h1)δ1 · ... · e(g, ht)−δt ?
= e(c, d1)δ1 · ... · e(c, dt)−δt

Technique 1: Combine equations. Assume we are given η signature instances that can

be verified using the consolidated equation from the previous step. We now combine all

instances into one equation by applying the Combination Step of [51], which employs as

a subroutine the small exponents test. This results in a single verification equation. The

correctness of the resulting equation requires that all elements be in the correct subgroup,

i.e., that group membership has already been checked. AutoBatch ensures that this check

will be explicitly conducted in the final batch verifier program. See Figure 5.3 for an

example.

Technique 2: Move exponents inside the pairing. When a term of the form e(gi, hi)δi ap-

pears, move the exponent δi into e(). Since elements of G1 and G2 are usually smaller than
8For example, consider two verification conditions e(a, b) = e(c, d) and e(a, c) = e(g, h).

These can be verified simultaneously by selecting random δ1, δ2 and evaluating the single equation
e(a, b)δ1 e(c, d)−δ1 e(a, c)δ2 e(g, h)−δ2 = 1.

103

CHAPTER 5. AUTOBATCH

e() e()

e()

on

^

e()

on

^

Verification Equation Initial Batch Equation after Technique 1

⌘ ⌘
h pk sig g

?
=

?
=

e(h, pk)
?
= e(sig, g)

hz pk

�z

sigz g

�z

z z
zz

Q Q

z =1 z =1

Q⌘
z= e(h , pk)�

?
=

Q⌘
z= e(sig , g)�1 1

Figure 5.3: The Boneh-Lynn-Shacham (BLS) signature scheme [120] with same signer
and η signatures in a batch. We show the abstract syntax tree (AST) of the unoptimized
batch equation after Batcher has applied technique 1 by combining all instances of the
verification equations (denoted by

node) and applying the small exponents test (denoted

by δz node).

elements of GT , this gives a noticeable speedup when computing the exponentiation.

Replace e(gi, hi)δi with e(gδi
i , hi)

Wherever possible, we move the exponent into the group with the lowest exponentiation

cost. We identify this group based on a series of operation microbenchmarks that run

automatically at code initialization.9

Technique 3: Move products inside the pairing. When a term of the form
η

i=1 e(ai, g) with

a constant first or second argument appears, move the product inside to reduce the number

of pairings from η to 1.

Replace
η

i=1

e(ai, g) with e(
η

i=1

ai, g)

9For many common elliptic curves, this is the G1 base group. However, in some curves the groups G1 and
G2 have similar operation costs; this may give us some flexibility in modifying the equation.

104

CHAPTER 5. AUTOBATCH

Batch Equation after Technique 2 Batch Equation after Technique 3

e()

on

e()

on

^^

e()

on

^

e()

on

^

1 1
Q⌘

z= e(h�z
z , pk)

?
=

Q⌘
z= e(sig�z

z , g) e(
Q⌘

z= h�z
z , pk)

?
= e(

Q⌘
z= sig�z

z , g)11

?
=

?
=

QQ

QQ

z = z =

z =z = ⌘⌘

⌘⌘1 1

1 1

pk

pk g

�z sigzhz
�zsigz �z

g

hz �z

Figure 5.4: The Boneh-Lynn-Shacham (BLS) signature scheme [120] with same signer
and η signatures in a batch. Upon applying technique 1 from Figure 5.3 to obtain the initial
secure batch verifier, the goal is to optimize the equation. We first show the AST of the
equation after Batcher has applied technique 2 (move exponents inside the pairing). Then,
we show the result of applying technique 3 (move products inside the pairing) to arrive at
an optimized batch equation.

A special case of this technique is Technique 6 where η = 2. In this case, when two

terms share a common first or second argument, they can also be combined. For example:

Replace e(a, g) · e(b, g) with e(a · b, g)

For a concrete example, we show how techniques 2 and 3 are programmatically applied

to the BLS scheme [120] in Figure 5.4.

Technique 4: Optimize the Waters Hash. A variety of identity-based signature schemes

employ a hash function by Waters [67], which can be generalized [158, 159]. Verifying

signatures generated by these schemes requires hashing identity strings of the form V =

v1v2 . . . vz where each vi is a short string. The hash function is evaluated as u′
z

i=1 uvi
i

where u′ and u1u2 . . . uz are public generators in G1 or G2.

When batching η equations containing the Waters hash, one often encounters terms

105

CHAPTER 5. AUTOBATCH

of the form
η

j=1 e(g j,
z

i=1 uvi j

i). This can be rewritten to make the number of pairings

independent of the number of equations one wants to batch. This is most useful when

η > z.

Replace
η

j=1

e(g j,

z
i=1

uvi j

i) with
z

i=1

e(
η

j=1

g j
vi j , ui)

Technique 5: Distribute products. When a product is applied to two or more terms, dis-

tribute the product to each term to allow application of other techniques such as techniques

3 or 4. For example:

Replace
η

i=1

(e(ai, gi) · e(bi, hi)) with
η

i=1

e(ai, gi) ·
η

i=1

e(bi, hi)

Technique 7: Move known exponents outside pairing and precompute pairings. In some

cases it may be necessary to move exponents outside of a pairing. For example, whenη
i=1 e(gai , hbi) appears, move the exponents outside of pairing. When multiple such ex-

ponents appear, we can pre-compute the sum of ai · bi for all η and exponentiate once in

GT .

Replace
η

i=1

e(gai , hbi) with e(g, h)

i(ai·bi)

Technique 8: Precompute constant pairings. When pairings have a constant first and sec-

ond argument, we can simply remove these from the equation and pre-compute them once

at the beginning of verification (equivalent to making them a public parameter).

Technique 9: Split pairings. In some rare cases it can be useful to apply Technique 3 in

reverse: splitting a single pairing into two or more pairings. This temporarily increases

the number of pairings in the verification equation, but may be necessary in order to apply

106

CHAPTER 5. AUTOBATCH

subsequent techniques. For example, this optimization is necessary so that we can apply

the Waters hash optimization (Technique 4) to the ring signature of Boyen [70].

Discussion: Several of the above techniques are quite simple, in that they perform opti-

mizations that would seem “obvious" to an experienced cryptographer. However, many

optimizations (e.g., Technique 8) could have been applied in published algorithm descrip-

tions [18, 19, 59], and yet were not. Moreover, it is a computer and not a human that is

performing the search for us, so an important contribution of this work is providing a de-

tailed list of which optimizations we tell the computer to try out and in which order, and

verifying that such an approach can find competitive solutions in a reasonable amount of

time. This is nontrivial: we discovered that many orderings lead to “dead ends”, where the

optimal solution is not discovered. We now describe our approach to finding the order of

techniques.

5.4.2 Technique Search Approach

The challenge in automating the batching process is to identify the order in which

techniques should be applied to a given verifier. This is surprisingly difficult, as there are

many possible orderings, many of which require several (possibly repeated) invocations of

specific techniques. Moreover, some techniques might actually worsen the performance

of the verifier in the hope of applying other techniques to obtain a better solution. An

automated search algorithm must balance all of these issues and must also identify the

orderings in an efficient manner.

107

CHAPTER 5. AUTOBATCH

The naive approach to this problem is simply to try all possible combinations up to

a certain limit, then identify the best resulting verifier based on an estimate of total run-

ning time. This limit can be vastly different as the complexity of the scheme increases.

While this approach is feasible for simple schemes, it is quite inefficient for schemes that

require the application of several techniques. Moreover, there is the separate difficulty of

determining when the algorithm should halt, as the application of one technique will some-

times produce a new equation that is amenable to further optimization, and this process can

continue for several operations.

Search Algorithm: Our approach is a “pruned” breadth-first search (PBFS) which utilizes

a finite state transition function to constrain the transitions between techniques. This tran-

sition function determines which techniques can be applied to the current state and was

constructed with our experience of how the optimization techniques work together logi-

cally. For instance, if technique 5 applied to the current state (i.e., distribute products to

pairings), then techniques 2-4 most likely will apply given that these techniques move ex-

ponents or products inside pairings. From the current state, only the subset of techniques

in which the conditions for the transformation are met are pursued further in the search.

Our search algorithm is broken down into three stages. The first stage of the search

is to try technique 0 if there are multiple verification equations. After consolidating the

verification equations, we try technique 6 since there may have been pairings with common

elements from separate equations. Our intuition for attempting technique 6 in this stage is

to combine as many pairings as possible before embarking on the search. The side effect is

108

CHAPTER 5. AUTOBATCH

that it reduces the number of paths explored by the PBFS, thereby making the search more

efficient. Moreover, it is useful to attempt technique 8 at this stage and precompute pairings

that utilize generators. We then apply technique 1 to combine η instances of the equations

to form an initial batch verifier. However, if the scheme specifies a single verification

equation, then only technique 1 is applied in the first stage.

The second stage of the search employs the PBFS (starting with technique 2) and ter-

minates when none of the techniques can be applied to the current state of a batch verifier.

Each path from the set of ordering paths uncovered during the PBFS is evaluated in terms

of total running time. The algorithm selects the path from the candidate paths that provides

the highest cost savings. From the selected path, the final (or post-processing) stage of the

search attempts to apply technique 10 (unroll loops) if the equation utilizes for loops. We

delay testing for technique 10 until the post-processing stage to limit the search space for

an efficient batch verifier. If technique 10 is applied, then we always attempt technique 6

given that there may now be pairings that can be further combined.

To prevent infinite loops during our PBFS, the state function disallows the application

of certain techniques that might potentially undo optimizations. For example, Technique 9

performs a reverse split on pairings to allow further optimizations; this might affect tech-

nique 6, which combines pairings that have common elements. Certain combinations of

techniques 9 and 6 lead to an infinite cycle that combines and splits the same pairings.

Thus, the state function only allows a transition from Technique 9 to 6 to occur once on

a given path. We provide the pseudocode of our search in Algorithm 1 and a table of our

109

CHAPTER 5. AUTOBATCH

finite state transition function in Figure 5.5.

Our approach is effective and enables efficiently deriving batch verification algorithms.

While our approach does not guarantee the optimal batch equation, in practice we redis-

cover all existing lower bounds on batch verification performance, and in some cases we

improve on results developed by humans.

Algorithm 1 Pruned Breadth-First Search: the search algorithm takes as input the equa-
tion, sequences of techniques (called path) and a start technique for the search. The path
argument records the techniques being explored in the search execution. The algorithm
returns a set of paths dictated by transitionFunc which is illustrated in Figure 5.5 and an
estimate of the batch verifier runtime that is associated with each path. The user selects
whichever path that yields the lowest runtime.

1: procedure PBFSearch(eq, path, allPaths, technique)
2: applied, new_eq← applyTechnique(technique, eq)
3: if applied = True then → Technique condition is satisfied
4: path← path + [technique] → Append technique to path
5: checkRes← checkForEdge(9, 6, path)
6: tech_list ← transitionFunc(technique, checkRes)
7: for all x ∈ tech_list do
8: newAllPaths← PBFSearch(new_eq, path, allPaths, x)
9: allPaths← allPaths ∪ newAllPaths

10: end for
11: else → Reached dead end with this path
12: if path < allPaths then
13: allPaths← allPaths ∪ path → Add path to set of all paths
14: time← estimateRuntime(eq, N, T)
15: recordTime(time, path) → record in a global database
16: end if
17: end if
18: return allPaths
19: end procedure

110

CHAPTER 5. AUTOBATCH

Current State Next States
2 3-9
3 2, 4, 5-7
4 2-3, 5-6
5 2-4
6 2-3, 5-6, 9
7 2, 5-6
8 2-3, 7
9 2, 4-6∗, 7

Figure 5.5: The state transition table represents the transition function we developed for
pruning our breath-first search (PBFS) algorithm. The function accepts as input the current
state which represents the technique that was applied to the batch equation. The PBFS
always starts in state 2 (where it tries to apply Technique 2). Then from there, the search
attempts to follow any suggested states and applies the corresponding techniques. If the
technique does not apply, the path is terminated. Otherwise, we check whether that path is
already a subset of the paths we have covered so far. We continue with the search until all
open paths are terminated. In an effort to ensure that all paths terminate, the state function
restricts the transition from Technique 9 to 6 to occur once on a given path (indicated by ∗).
Although we do not prove that our algorithm is guaranteed to terminate, we conjecture that
it does in practice. In fact, it terminated promptly for all of our test cases. Once all paths
are terminated, we attempt to apply Technique 10 to each path in a post-processing phase.

5.4.3 Security and Machine-Aided Analysis

Efficiency Analysis. Efficiency of the batch verifiers are computed in two separate ways.

During the PBFS algorithm, Batcher uses the batch size specified by the user to compute

an estimate of the runtime for all batch verifiers. The resulting estimates enable selection

of an efficient batch verifier from many candidate verifiers. As indicated in Algorithm 1,

the estimates are calculated using a database of average operation times measured at library

initialization. Once the Batcher has selected the most efficient batch equation, it performs

another analysis to determine a “crossover point”, i.e., the batch size where batch verifica-

111

CHAPTER 5. AUTOBATCH

tion becomes more efficient than individual verification. This analysis is done by counting

the number of operations required as a function of the batch size. These operations also

include group operations, pairings, hashes, as well as random element generation. It then

combines this operation count with the database of average operation times to compute the

crossover point.

Security Analysis. We have two points to make regarding the security of AutoBatch. First,

we argue that the algorithm used by AutoBatch to produce a batch verification equation

unconditionally satisfies Definition 5.3.1. That is, the batch verification equation will hold

if and only if each of the individual signatures would have passed the individual verification

test (up to a negligible error probability).10

Theorem 5.4.1 (Security of AutoBatch). Let an AutoBatch algorithm be generalized as

any algorithm that transforms an individual pairing-based signature verification test with

perfect correctness into a pairing-based batch verification equation as follows:

1. Check the group membership of all input elements, and if no errors, apply Techniques

0 and 1 to the individual verification equation(s) using security parameter λ to obtain

a single equation X.

2. Apply any of Techniques 2-9 to X to obtain equation X′ and set X := X′.

3. Repeat previous step until none of the techniques apply and then return X.

10The security of the underlying signature scheme depends on a computational assumption, but the batcher
unconditionally maintains whatever security is offered by the scheme.

112

CHAPTER 5. AUTOBATCH

Then all AutoBatch algorithms unconditionally satisfy Definition 5.3.1, where the prob-

ability of accepting an invalid batch is at most 2−λ.

Proof. We analyze this proof in two parts. First, after Step 1 (the application of Techniques

0 and 1), there will be one batch equation X and it will satisfy the security requirements of

Definition 5.3.1 with error probability 2−λ. These two techniques combine a set of equations

into a single equation using the Small Exponents Test with security parameter λ. Ferrara

et al. [51, Theorem 3.2] prove that this equation will verify if and only if all individual

equations verify, except with probability at most 2−λ. By default in AutoBatch, we set

λ = 80.

Next, given a single arbitrary, pairing-based equation X, we apply one of Techniques

2-9. For each Technique 2-9, we argue that the output equation X′ holds if and only if the

input equation X holds; that is, the equations are identical up to algebraic manipulations.

If this is true, the final batch equation output by AutoBatch satisfies Definition 5.3.1 with

the same error probability as the equation output after Techniques 0 and 1 were applied,

completing the theorem.

It remains to argue that for each Technique 2-9, it is indeed the case that the input and

output equations are identical, up to algebraic manipulations. Techniques 2, 3, 4, 6, 7 and

9 follow relatively straightforwardly from the bilinearity of the groups. As an example,

consider Technique 6 which claims that e(a, g) · e(b, g) = e(a · b, g), for all a, b ∈ G1 and

g ∈ G2 where a , 1 ∧ b , 1. Let b = ak for some k ∈ Zp. Then we have e(a, g) · e(ak, g)

as the LHS, which is e(a, g) · e(a, g)k by the bilinearity, which is e(a, g)k+1 by multiplication

113

CHAPTER 5. AUTOBATCH

in GT . The RHS is similarly e(a · ak, g) = e(ak+1, g) = e(a, g)k+1. Technique 5 requires only

associativity in GT . Technique 8 pre-computes and caches values instead of re-computing

them on the fly. �

To offer transparency on how AutoBatch derived any given batch verifier, Batcher pro-

duces both an SDL file and, optionally, a human-readable proof that the resulting batch

verifier is as secure as verifying the signatures individually. This proof is a LaTeX file that

includes the individual and batch verification equations, with an enumeration of the various

steps used to convert the former into the latter. Thus, while Theorem 5.4.1 already argues

that this proof is valid, this provides a means for independently verifying the security of

any given batching equation. Interestingly, the first proof for the batch verification of the

HW signatures [135] was produced automatically by AutoBatch.

Full proofs for the Hohenberger-Waters (HW) scheme [135], the Camenisch-Lysyanskaya

(CL) scheme [18], and the Verifiable Random Functions (VRF) scheme [19] are given in

Appendices A.4, A.5, and A.6, respectively. In Appendix A.7, we detail the results of

AutoBatch on the Waters09 scheme (derived from the Waters Dual-System IBE of [57]);

because this scheme has a negligible correctness error our automated proof techniques do

not directly apply, although we conjecture that the resulting scheme is secure up to an addi-

tional negligible error rate. In particular, there will be a negligible chance that the batcher

will output reject on a set of valid signatures.

The security analysis provided in this section applies to the mathematics only. Au-

toBatch goes on to convert this mathematical batching equation into code, which could

114

CHAPTER 5. AUTOBATCH

potentially introduce software errors. However, our hope is that the deliberate process by

which AutoBatch generates code would actually help reduce software errors by systemati-

cally including steps, such as the group membership test, which could easily be accidentally

omitted by a human implementor.

5.4.4 Code Generation

The output of the Batcher is a batch verification equation encoded in SDL. This file

defines all of the datatypes for the signature, message and public key (or identity and public

parameters in the case of an identity-based signature). The Code Generator converts this

SDL representation into useable Python or C++ source code that can operate on real batch

inputs. The SDL representation consists of the individual and batch verification equations

including logic for the following components:

1. Group membership tests. For each element in the signature (and optionally the

public key, if the user requests)11 the membership to the group is tested using an

exponentiation. Section 5.3.2 discusses the importance and details of this test.

2. Pre-computation. Several values often will be re-used within a verification equation.

When this happens, the batch verifier can pre-compute certain results once, rather

than needlessly compute them several times.

11In many applications we can assume that the public keys are trusted, thus we can omit group membership
testing on these values.

115

CHAPTER 5. AUTOBATCH

3. Verification method. For relatively small batch sizes, it may be more efficient to

bypass the batch verifier and simply verify the signatures using the individual verifi-

cation function. For this reason, our Code Generator generates this function as well

(the output of the Batcher contains both functions), and adds logic to programmati-

cally choose between batch and individual verification when the batch size is below

a crossover point automatically determined in the Analysis phase.

4. Invalid signature detection. To handle the presence of invalid signatures in a batch,

our batch verifier code includes a recursive divide-and-conquer strategy to recover

from a batching failure (see e.g,. [51] for a discussion of this). On failure, this verifier

divides the signature collection into two halves and recurses by repeating verification

on each half until all of the invalid signatures have been identified.

The Code Generator consists of two “back-end” modules, which produce Charm/Python

and Charm/C++ representations of the batch verifiers. It would be relatively easy to extend

this module to add support for additional languages and settings.

5.5 Implementation& Performance

Subsequent to our initial publication of the conference version of this work, we iden-

tified a software bug in the group membership function of Charm v0.42 that affected our

results. The results in this chapter include the corrections to the affected group member-

ship test which reduces the efficiency gains of batch verification in all our test cases. In

116

CHAPTER 5. AUTOBATCH

Approx. Signature Size MIRACL w/ BN256 RELIC w/ BN256
MNT160 BN256 Individual Batched∗ Individual Batched∗

Signatures
BLS [42] (same signer) 160 bits 256 bits 26.6 ms 2.2 ms 11.9 ms 1.5 ms
CHP [150] (same time period) 160 bits 256 bits 46.1 ms 7.2 ms 24.0 ms 7.8 ms
HW [135] (same signer) 320 bits 512 bits 40.5 ms 4.7 ms 22.4 ms 3.0 ms
HW [135] (diff signer) 320 bits 512 bits 40.5 ms 61.1 ms 22.4 ms 29.2 ms
Waters09 [57, §6.1] (same signer) 6240 bits 6912 bits 153.2 ms 33.1 ms 93.7 ms 44.2 ms
CL [18] (same signer) 480 bits 768 bits 72.0 ms 15.9 ms 34.6 ms 18.0 ms
ID-Based Signatures
Hess [136] 1120 bits 3328 bits 32.7 ms 22.0 ms 17.1 ms 8.4 ms
ChCh [137] 320 bits 512 bits 27.5 ms 4.6 ms 12.6 ms 2.4 ms
Waters05 [67] 480 bits 768 bits 45.3 ms 11.8 ms 21.5 ms 11.0 ms
Group, Ring and ID-based Ring Signatures
BBS [59] Group signature 2400 bits 5376 bits 99.9 ms 31.2 ms 63.9 ms 18.7 ms
Boyen [70] Ring signature, 3-member ring 960 bits 1536 bits 64.2 ms 15.0 ms 41.5 ms 9.8 ms
CYH [160] Ring signature, 10-member ring 1760 bits 2816 bits 34.2 ms 22.3 ms 20.7 ms 16.2 ms
VRFs
HW VRF [Hohenberger-Waters 2010] (same signer, ℓ = 8) 2240 bits 5120 bits 251.4 ms 36.1 ms 112.5 ms 18.3 ms
Combinations
ChCh + Hess 1440 bits 3840 bits 55.6 ms 26.2 ms 25.7 ms 10.4 ms
∗Verification time per signature when batching 100 signatures.

Figure 5.6: Cryptographic overhead and verification time for all of the pairing-based signa-
tures in an alternative implementation of AutoBatch. RELIC is faster on 12 of 14 schemes,
but MIRACL is better on CL and Waters09. We speculate that this is because modular
exponentiation in G1 and G2 is slightly slower in RELIC compared to MIRACL. Since
RELIC is an actively developed library, we believe this issue can be addressed in future
versions. In the case of HW (with different signers), individual verification outperforms
batch verification in both libraries because batch time is dominated by group membership
tests.

particular, there are noticeable reductions in performance for CL [18], Waters09 [57] and

HW (with different signers) [135]. Although an optional feature, our membership tests in-

clude public keys to reflect the worst case performance of batch verification without invalid

signatures in the batch. See Figure 5.8 for the new graphs.

117

CHAPTER 5. AUTOBATCH

5.5.1 Experimental Setup

To evaluate the performance of our techniques we implemented them as part of the

Charm prototyping framework [11]. Charm is a Python-based cryptographic prototyping

framework, and provides native support for bilinear-map based cryptography and other use-

ful primitives, e.g., hashing and serialization. We used a version of Charm that implements

all bilinear group operations using the C-based MIRACL library [87].12 The necessary

MIRACL calls are accessed from within our Python code via the C module interface.

To determine the performance of our system in isolation, we first conducted a number

of experiments on various components of our code. First, we used the code parsing com-

ponent to convert several Python signature implementations into our intermediate “SDL”

representation. Next, we applied our batcher to the SDL result in order to obtain an op-

timized equation for a batch verifier. We then applied our code generator to convert this

representation into a functioning batch verifier program, which we applied to various test

data sets.

Hardware configuration. For consistent results we ran all of our experiments on a single

hardware platform: a 2 x 2.66 GHz 6-Core Intel Xeon Macintosh Pro running MacOS

version 10.7.3 with 12GB of RAM. We ran all of our tests within a single thread, and thus

used resources from only a single core of the Intel processor. We instantiated all of our

cryptographic implementations using a 160-bit MNT elliptic curve and 256-bit Barreto-

Naehrig (BN) curve provided with MIRACL shown in Figures 5.6 and 5.8.
12The version of Charm we used (0.42) can be found in the Charm github repository at www.

charm-crypto.com. It uses MIRACL 5.5.4 for bilinear group operations.

118

www.charm-crypto.com
www.charm-crypto.com

CHAPTER 5. AUTOBATCH

A note on the library. We chose MIRACL because it is mature and well supported. How-

ever, some research libraries like RELIC [139] provide alternative pairing implementations

that may outperform MIRACL in specific settings. We note that our results will apply

to any implementation where there is a substantial difference between group operation and

pairing times. In our experiments with RELIC using a provided BN256 curve, we observed

a 6-to-1 differential between pairings and operations in G1. Our main results do hold in this

setting, and in fact improve the overall performance in that we can process a higher number

of signatures with batch verification. We provide the details of this alternative version of

AutoBatch and a complete comparison against the BN256 curve MIRACL implementation

in Figure 5.6.

5.5.2 Test Cases and Summary of the Results

We ran our experiments using two sets of test cases. The first set was comprised of a

variety of existing schemes, including regular, identity-based, ring, group signatures and

verifiable random functions. To make AutoBatch as robust as possible, we also tested it

on a second set of fabricated pairing-product equations that we designed by hand to trigger

many different orderings on the techniques. We summarize AutoBatch’s performance on

existing schemes in Figure 5.7.

In eight out of fourteen cases, the batching algorithm output by AutoBatch matched the

prior best known result. In the remaining six cases, AutoBatch provided a faster algorithm.

We now describe these cases in more detail.

119

CHAPTER 5. AUTOBATCH

Scheme Type Model Ind-Verify By Hand By AutoBatch
Batch-Verify Reference Batch-Verify Techniques

1. Boyen-Lynn-Shacham (BLS) (ss) S RO 2η 2 [42] 2 1,2,3
2. Camenisch et al. (CHP) (same period) S RO 3η 3 [150] 3 1,2,3,5,3
3. Camenisch-Lysyanskaya (CL) (ss) S P 5η 5η none 3 0,1,2,6,6,3,5,3
4. Hohenberger-Waters (HW) (ss) S P 2η 2η none 4 1,2,3,9,7,5,3
5. Hohenberger-Waters (HW) S P 2η 2η none 4 1,2,3,9,5,3
6. Waters09 (ss) S P 9η 9η none 13 1,2,9,5,3,7,6
7. Hess I RO 2η 2 [51] 2 1,2,3
8. Cha-Cheon (ChCh) I RO 2η 2 [54] 2 1,2,3
9. Waters05 I P 3η z + 3 [150] z + 3 1,2,3,9,7,5,3,4,6
10. ChCh and Hess together M RO 2η 4 [51, 54] 2 0,1,2,3,5,3,6
11. Chow-Yiu-Hui (CYH) IR RO 2η 2 [51] 2 1,2,3,2
12. Boyen (same ring) R P ℓη + ℓ 3ℓ + 1 [51] 3ℓ + 1 1,2,9,4,6,9,5,3
13. Boneh-Boyen-Shacham (BBS) G RO 5η 2 [51] 2 1,2,6,6,5,3
14. VRF equations 1,3,4 & 2 (ss) V P 3η + 2ℓ 3ℓ + 1 [19] ℓ + 3 0,6,1,2,3,1,2,3,5,3,6,10,6

Figure 5.7: Digital Signature Schemes used as test cases in AutoBatch. We show a com-
parison between naive batch verifiers designed by hand or discovered in the literature and
ones found by AutoBatch. Scheme names followed by an “ss” were only batched for the
same signers; otherwise, different signers were allowed. For types, S stands for regular
signature, I stands for identity-based, M stands for a batch that contains a mix of two dif-
ferent types of signatures, R stands for ring, G stands for group and V stands for verifiable
random function. For models, RO stands for random oracle and P stands for plain. Let ℓ
be either the size of the ring or the number of bits in the VRF input. Let z be a security pa-
rameter that can be set to 5 in practice. To approximate verification performance, we count
the total number of pairings needed to process η valid signatures. Unless otherwise noted,
the inputs are from different signers. The final column indicates the order of the techniques
from Section 5.4 that AutoBatch applied to obtain the resulting batch verifier. The rows in
bold are the schemes where AutoBatch discovered new or improved algorithms.

We briefly recall the verification equations in VRF [19]. The public key is represented

by Û,U, g1, g2, h, the signature is represented by y, π = π0π1, . . . , πℓ, and the message is

x = x1, . . . , xℓ, where ℓ denotes the number of bits in the VRF input. The equations are as

follows:

1. e(π1, g2) ?
= e(g(1−x1)

1 · U x1
1 , Û)

2. for t = 2 to ℓ it holds: e(πt, g2) ?
= e(π(1−xt)

t−1 , g2) · e(πxt
t−1,Ut)

3. e(π0, g2) ?
= e(πl,U0)

120

CHAPTER 5. AUTOBATCH

4. e(π0, h) ?
= y

AutoBatch first realized a batching algorithm for the VRF [19] that takes only two-thirds

the time of the one provided in [19] (or 2ℓ+2 total pairings). Then, after we double-checked

this result by hand, we realized that the verification of equation 2 could be further optimized

to only ℓ− 1 pairings by unrolling the loop and combining the individual verification equa-

tions checked at each iteration. Moreover, a portion of the unrolled loop with the g2 term

could be combined with the corresponding term in the combined equations 1,3,4 for a total

pairing count of only ℓ + 3 pairings to batch an arbitrary number of VRF proofs for ℓ-bit

inputs. We implemented this loop unrolling technique, incorporated it into AutoBatch and

automatically applied it to VRF to obtain ℓ + 3 pairings. The VRF batching algorithm and

proof appear in Appendix A.6.

In test case 10 shown in Figure 5.7 (ChCh [137] and Hess [136] together), we sim-

ulated a scenario where a batch contains a mix of two different types of signatures. In

this case, the batch consisted of both ChCh [137] signatures and Hess [136] signatures in

a randomized order. Instead of sorting the signatures into two groups and batching them

individually, AutoBatch automatically looked for the common algebraic structure between

the two distinct schemes and applied the batching techniques described in Section 5.4.1.

As a generalized example, if two signature schemes both use the same generator g, where

the first signature scheme uses e(A, g) in its verification equation and the second signature

scheme uses e(B, g) in its verification equation, then AutoBatch will apply Technique 6 to

obtain e(A · B, g) in the combined verification equation (as well as apply the small expo-

121

CHAPTER 5. AUTOBATCH

nents test). In the case of the ChCh [137] and Hess [136] batch, this cuts the total number

of pairings in half. To the best of our knowledge, this is the first documented result for

cross-scheme signature batch verification.

For the Hohenberger-Waters signatures [135], we assume that each public key includes

the precomputed values as suggested in [135, Section 4.2]. For the case of different signers,

we assume that the base group elements g, u, v, d,w, z, h are chosen by a trusted third party

and shared by all users. The Waters09 scheme is derived from the Waters Dual-System

IBE of [57] using the technique described by Naor [28]. Because the decryption algorithm

of this IBE scheme has a negligibly small correctness error, the resulting signature scheme

also has a negligible correctness error. That is, there is a small chance that a valid signature

will be rejected by the verification test. Although this means that our automated proof tech-

niques do not immediately apply, we still wanted to run the program on this complicated

test case to see how efficient of a candidate batching scheme it could produce. The details

of these batching algorithms appear in Appendices A.4 and A.7 respectively. Finally, the

details of the batching of CL signatures by the same signer appear in Appendix A.5.

5.5.3 Microbenchmarks

To evaluate the efficiency of AutoBatch, we implemented several pairing-based signa-

ture schemes in Charm. We ran AutoBatch to extract an SDL-based intermediate repre-

sentation of the scheme’s verification equation, an optimized batch verifier for the scheme,

Python and C++ code for implementing the batch verifier. We measured the processing

122

CHAPTER 5. AUTOBATCH

 0

 20

 40

 60

 80

 100

 120

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

WATERS09 (batched)
WATERS09 (individual)

 0

 5

 10

 15

 20

 25

 20 40 60 80 100

m
s

pe
r s

ig
na

tu
re

Number of signatures

HW-Single (batched)
HW (individual)

HW-Multiple (batched)

 0

 10

 20

 30

 40

 50

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

CL (batched)
CL (individual)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

VRF (batched)
VRF (individual)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

CHCHHESS (batched)
CHCHHESS (individual)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

BOYEN (batched, ring=3)
BOYEN (individual, ring=3)

Figure 5.8: Signature scheme microbenchmarks for Waters09 [57], HW [135] and CL [18]
public-key signatures (same signer), the VRF [19] (with block size of 8), combined ver-
ification of ChCh+Hess IBS [136, 137], and Boyen ring signature (3 signer ring) [70].
Per-signature times were computed by dividing total batch verification time by the number
of signatures verified. All trials were conducted with 10 iterations and were instantiated
using a 160-bit MNT elliptic curve. Variation in running time between trials of the same
signature size were minimal for each scheme. Note that in one HW case, all signatures are
formulated by the same signer (as for certificate generation). All other schemes are without
such restrictions. Individual verification times are included for comparison.

time for each of the above steps. Our timings, averaged over 100 runs, are presented in

Figure 5.9.

To obtain our microbenchmarks, we ran AutoBatch on several exemplary pairing-based

schemes as listed in Figure 5.7. We then experimented with these schemes at different batch

sizes, in order to evaluate their raw performance. The results are presented in Figure 5.8.

Each graph shows the average per-signature verification time for a batch of η signatures,

for η ranging from 1 to 100. We conducted these tests by first generating a collection of

η keypairs and random messages,13 then computing a valid signature over each message.

13We used 100-byte random strings for each message. In the case of the stateful HW signature, we batched

123

CHAPTER 5. AUTOBATCH

We fed each collection to the batch verifier. ID-based signatures were handled in a similar

manner, although we substitute random identities in place of keys. For the Boyen ring

signature, we generated a group of three signing keys to construct our ring. In each case,

we averaged our results over 100 experimental runs and computed verification time per

signature by dividing the total batching time by the number of signatures batched.

5.5.4 Batch Verification in Practice

Prior works considered the implication of invalid signatures in a batch, e.g., [51,54,153,

154, 161]. Mainly, these works estimated raw signature verification times under various

conditions. To evaluate how signature batching might work in real life, we constructed a

simulation to determine the resilience of our techniques to various denial of service attacks

launched by an adversary.

Basic Model. For this experiment, we simulated a server that verifies incoming signed

messages read from a network connection. This might be a reasonable model for a busy

server-side TLS endpoint using client authentication or for a vehicle-to-vehicle communi-

cations base station.

Our server is designed to process as many signatures as possible, and is limited only

by its computational resources.14 Signatures are drawn off of the “wire” and grouped into

batches, with each batch size representing the expected number of signatures that can be

only signatures with the same counter value.
14This models a server that delays, drops or redirects the signatures that it cannot handle (e.g., via load

balancing).

124

CHAPTER 5. AUTOBATCH

Process BLS CHP CL HW-diff Waters09 Waters05 ChCh/Hess CYH Boyen BBS VRF
Batcher 103.1 90.1 295.2 126.1 578.9 1859.2 160.1 101.2 545.1 443.5 419.5
Partial-Codegen 124.3 171.7 152.2 242.3 361.6 291.2 162.0 242.8 321.2 315.1 251.2
Full-Codegen 491.7 757.8 785.9 1481.6 3405.8 1507.1 798.6 876.3 1233.5 1998.3 2748.3

Figure 5.9: Time in milliseconds required by the Batcher and Code Generator to process a
variety of signature schemes (averaged over 100 test runs). Batcher time includes search
time for the technique ordering, generating the proof and estimating crossover point be-
tween individual and batch verification. The Partial-Codegen time represents the genera-
tion of the batch verifier code from a partial SDL description and Charm implementation
of the scheme in Python. The Full-Codegen time represents the generation of code from
a full SDL description only. The running times are a product of the complexity of each
scheme as well as the number of unique paths uncovered by our search algorithm. In all
cases, the standard deviation in the results were within ±3% of the average.

verified in one second. Initially this number is simply a guess, which is adjusted upwards

or downwards based on the time required to verify each batch.15 This approach can lead

to some transient errors (batches that require significantly more or less than one second to

evaluate) when the initial guess is wrong, or when conditions change. In normal usage,

however, this approach converges on an appropriate batch size within 1-2 seconds.

5.5.4.1 Basic DoS Attacks

A major concern when using a batch verifier is the possibility of service denial or degra-

dation, resulting from the presence of some invalid signatures in the batch. As described

in §5.4, each of our batch verifiers incorporates a recursive divide-and-conquer strategy

for identifying these invalid signatures, which is borrowed from Law and Matt [54]. This

recursion comes at a price; the presence of even a small number of invalid signatures can

seriously degrade the performance of a batch verifier.

15The adjustment is handled in a relatively naive way: the server simply computes the next batch size by
extrapolating based on its time to compute the previous batch.

125

CHAPTER 5. AUTOBATCH

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10000 20000 30000 40000 50000 60000 70000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

S
ig

n
a
tu

re
s
 /
 s

e
c

In
v
a
lid

 S
ig

n
a
tu

re
s
 a

s
 F

ra
c
ti
o
n
 o

f
T

o
ta

l

Elapsed Time (ms)

AutoBatch Performance During DoS Attack

Batch + Individual Verifier
Batch-Only Verifier

Invalid Signatures as Fraction of Total

Figure 5.10: Simulated service denial attacks against a batch verifier (BLS signatures,
single signer). The “Invalid Signatures as Fraction of Total” line (right scale) shows the
fraction of invalid signatures in the stream. Batcher throughput is measured in signatures
per second (left scale). The “Batch-Only Verifier” line depicts a standard batch verifier.
The solid line is a batch verifier that automatically switches to individual verification when
batching becomes suboptimal.

To measure this, we simulated an adversary who injects invalid signatures into the input

stream. Under the assumption that these signatures are well-mixed with the remaining

valid signatures,16 we measured the verifier’s throughput. Our adversary injects no invalid

signatures for the first several seconds of the experiment, then gradually ramps up its output

until the number of invalid signatures received by the verifier approaches 50%.

A switch to individual verification. Our experiments indicate that batch verification per-

formance exceeds that of individual verification even in the presence of a relatively large

fraction of invalid signatures. However, at a certain point the batch verifier inevitably begins

to underperform individual verification.17 To address this, we implemented a “countermea-

sure” in our batch verifier to automatically switch to individual verification whenever it

16In practice, this is not a strong assumption, as a server can simply randomize the order of the signatures
it receives.

17The reason for this is easy to explain: since our batch verifier handles invalid signatures via a divide-and-
conquer approach (cutting the signature batch into halves, and recursing on each half), at a certain point the
number of “extra” operations exceeds those required for individual verification.

126

CHAPTER 5. AUTOBATCH

detects the presence of a significant fraction of invalid signatures.

Analysis of results. We tested the batch verifier on the single-signer BLS scheme with

and without the individual-verification countermeasure. See Figure 5.10. Throughput is

quite sensitive to even small numbers of invalid signatures in the input stream. Yet, when

comparing batch verification to individual verification throughput, even under a significant

attack batch verification dramatically outperforms individual verification (up to approx-

imately 15% ratio of invalid signatures). Similarly, the switch to individual verification

is a useful countermeasure for attacks that exceed approximately 20% invalid signatures.

While these threshold switches do not thwart DoS attacks, they do provide some mitigation

of the potential damage.

5.6 AutoBatch Toolkit

The AutoBatch source code and test cases described in this chapter are publicly avail-

able in the github repository at https://github.com/JHUISI/auto-tools.

5.7 Challenges and Open Problems

The batch verification of pairing-based signatures is a great fit for applications where

short signatures are a design requirement and yet high verification throughput is required,

such as car-to-car communications [133, 134]. This work demonstrates for the first time

127

https://github.com/JHUISI/auto-tools

CHAPTER 5. AUTOBATCH

that the design of these batching algorithms can be efficiently and securely automated.

The next step is to tackle the automated design of more complex functionalities, where

it may be infeasible to replicate a theorem like Theorem 5.4.1 arguing that automated de-

sign process unconditionally preserves security. In this case, one might instead focus on

having the design tool also output a proof sketch that could be fed into and verified by Easy-

Crypt [140] or a similar proof checking tool. Indeed, what are the natural settings where

the creativity of the design process can be feasibly replaced by an extensive computerized

search (perhaps with smart pruning)? Can the “proof sketches” needed for verification

by EasyCrypt be generated automatically for these designs? These are exciting questions

which could fundamentally change cryptography.

On the implementation of AutoBatch, future work could be more resilient to DoS and

related attacks by implementing alternative techniques for recognizing invalid signatures

in a batch, e.g., [54, 153, 154, 161]. We are continuously on the lookout for more efficient

means of computing in bilinear groups. Future versions of AutoBatch will support MIR-

ACL’s API for computing “multipairings” (efficient products of multiple bilinear pairings).

It would be interesting to understand how this and future inclusions may impact perfor-

mance.

128

Chapter 6

Using SMT solvers to Automate Design

Tasks for Encryption and Signature

Schemes

In the previous chapter, we presented an implementation of a tool that automated batch

verification design. In this chapter, we will explore the automation of two additional types

of general transformations that are common in the literature. One transformation deals with

the optimizing the efficiency and bandwidth of signatures and we show that our techniques

extend to encryption schemes as well. The second transformation addresses strengthening

the security of signature schemes. In both cases, we demonstrate that our architecture is

effective in implementing such transformations and we discuss the security limitations in

applying transformations to certain cryptographic schemes.

129

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

6.1 Overview

Cryptographic design tasks are primarily performed by hand today. Shifting more of

this burden to computers could make the design process faster, more accurate and less

expensive. In this work, we investigate tools for programmatically altering existing cryp-

tographic constructions to reflect particular design goals. Our techniques enhance both

security and efficiency with the assistance of advanced tools including Satisfiability Mod-

ulo Theories (SMT) solvers.

Specifically, we propose two complementary tools, AutoGroup and AutoStrong. Au-

toGroup converts a pairing-based encryption or signature scheme written in (simple) sym-

metric group notation into a specific instantiation in the more efficient, asymmetric setting.

Some existing symmetric schemes have hundreds of possible asymmetric translations, and

this tool allows the user to optimize the construction according to a variety of metrics, such

as ciphertext size, key size or computation time. The AutoStrong tool focuses on the secu-

rity of digital signature schemes by automatically converting an existentially unforgeable

signature scheme into a strongly unforgeable one. The main technical challenge here is to

automate the “partitioned” check, which allows a highly-efficient transformation.

These tools integrate with and complement the AutoBatch tool (ACM CCS 2012), but

also push forward on the complexity of the automation tasks by harnessing the power of

SMT solvers. Our experiments demonstrate that the two design tasks studied can be per-

formed automatically in a matter of seconds.

130

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

6.2 Introduction

Cryptographic design is challenging, time consuming and mostly performed by hand. A

natural question to ask is: to what extent can computers ease this burden? Which common

design tasks can computers execute faster, more accurately or less expensively?

In particular, this work investigates tools for programmatically altering existing crypto-

graphic constructions in order to enhance efficiency or security design goals. For instance,

digital signatures, which are critical for authenticating data in a variety of settings, ranging

from sensor networks to software updates, come in many possible variations based on effi-

ciency, functionality or security. Unfortunately, it is often infeasible or tedious for humans

to document each possible optimal variation for each application. It would be enormously

valuable if there could be a small number of simple ways to present a scheme – as sim-

ple as possible to avoid human-error in the design and/or verification process – and then

computers could securely provide any variation that may be required by practitioners.

A simple, motivating example (which we explore in this work) is the design of pairing-

based signature schemes, which are often presented in a simple “symmetric” group setting

that aids in exposition, but does not map to the specific pairing-based groups that maximize

efficiency. Addressing this disconnect is ripe for an automated tool.

131

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

Start: SDL of
Scheme S

SDL of
Scheme S'

Apply more
transformations?

AutoGroup
(sym-to-asym groups)

AutoStrong
(increase security)

AutoBatch
(batch verification)

C++ or Python

Code Generator

yes

no

Figure 6.1: A high-level presentation of the new automated tools, AutoGroup and Au-
toStrong. They take as input a Scheme Description Language (SDL) representation of a
cryptographic scheme and output an SDL representation of a transformation of the scheme,
which can possibly be further transformed by another tool. These tools are compatible with
the existing AutoBatch tool and Code Generator (shaded). An SDL input to the Code Gen-
erator produces a software implementation of the scheme in either C++ or Python.

6.2.1 Our Contributions

In this work, we explore two novel types of design problems for pairing-based crypto-

graphic schemes. The first tool (AutoGroup) deals with efficiency, while the second (Au-

toStrong) deals with security. We illustrate how they interact in Figure 6.1. The tools take

a Scheme Description Language (SDL) representation of a scheme (and optionally some

user optimization constraints) and output an SDL representation of the altered scheme.

This SDL output can be run through another tool or a Code Generator to produce C++ or

Python software. We provide more details on our SDL in Section 3.5.1.

A contribution of this work is that we integrated our tools with the publicly-available

source code for AutoBatch [17, 162], a tool that automatically identifies a batch verifica-

tion algorithm for a given signature scheme, therein weaving together a larger automation

system. For instance, a practitioner could take any symmetric-pairing signature scheme

from the literature, use AutoGroup to reduce its bandwidth in the asymmetric setting, use

AutoBatch to reduce its verification time, and then automatically obtain a C++ implemen-

132

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

tation of the optimized construction. Our work appears unique in that we apply advanced

tools, such as SMT solvers and Mathematica, to perform complex design tasks related to

pairing-based schemes.

Automated Task 1: Optimize Efficiency of an Encryption or Signature Scheme via

User Constraints. Pairings are often studied because they can realize new functionalities,

e.g., [28, 66], or offer low-bandwidth solutions, e.g., [66, 120]. Pairing (a.k.a., bilinear)

groups consist of three groups G1,G2,GT with an efficient bilinear map e : G1 ×G2 → GT .

Many protocols are presented in a symmetric setting where G1 = G2 (or equivalently, there

exists an efficient isomorphism from G1 to G2 or vice versa).

While symmetric groups simplify the description of new cryptographic schemes, the

corresponding groups are rarely the most efficient setting for implementation [163]. The

state of the art is to use asymmetric groups where G1 , G2 and no efficient isomorphism

exists between the two. See for instance the work of Ramanna, Chatterjee and Sarkar [56]

(PKC 2012) which translates the dual system encryption scheme of Waters [53] from the

symmetric to a handful of asymmetric settings.

Such conversions currently require manual analysis (of all steps) – made difficult by

the fact that certain operations such as group hash functions only operate in a single group.

Moreover, in some cases, there are hundreds of possible symmetric to asymmetric transla-

tions, making it tedious to identify the optimal translation for a particular application.

We propose a tool called AutoGroup that automatically provides a “basic” translation

133

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

from symmetric to asymmetric groups.1 It employs an SMT solver to identify valid group

assignments for all group elements and also accepts user constraints to optimize the effi-

ciency of the scheme according to a variety of metrics, including signature/ciphertext size,

signing/encryption time, and public parameter size. The tool is able to enumerate the full

set of possible solutions (which may run to the hundreds), and can rapidly identify the most

efficient solution.

Automated Task 2: Strengthen the Security of a Digital Signature Scheme. Most sig-

nature schemes are presented under the classic, existential unforgeability definition [21],

wherein an adversary cannot produce a signature on a “new” message. However, strong

unforgeability guarantees more – that the adversary cannot produce a “new” signature even

on a previously signed message. Strongly-unforgeable signatures are often used as a build-

ing block in signcryption [13], chosen-ciphertext secure encryption [14,58] and group sig-

natures [15, 59].

There are a number of general transformations from classic to strong security [39,164–

168], but also a highly-efficient transformation due to Boneh, Shen and Waters [12] that

only applies to “partitioned” schemes. We propose a tool called AutoStrong that automati-

cally decides whether a scheme is “partitioned” and then applies BSW if it is and a general

transformation otherwise. The partitioned test is non-trivial, and our tool harnesses the

power of both an SMT solver and Mathematica to make this determination. We are careful

1By "basic", we mean that it translates the scheme as written into the asymmetric setting, with minor opti-
mizations performed, but does not attempt a re-imagining of the construction based on a stronger asymmetric
complexity assumption. While the latter is sometimes possible, e.g., [56], it may not be required in some
applications and the novel security analysis required places it beyond the current ability of our automation
tools. See Section 6.4.3 for more.

134

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

to err only on false negatives (which impact efficiency), but not false positives (which could

compromise security.) Earlier works [39,168] claimed that there were “very few” examples

of partitioned schemes; however, our tool proved this was not the case by identifying valid

partitions for most schemes we tested.

6.2.2 Related Work

Many exciting works have studied how to automate various cryptographic tasks. Au-

tomation has been introduced into the design process for various security protocols [1–3,

61], optimizations to software implementations involving elliptic-curves [155] and bilinear-

map functions [156], the batch verification of digital signature schemes [17], secure two-

party computation [9, 10, 64], and zero-knowledge proofs [4–8].

Our current work is most closely related to the AutoBatch tool of Akinyele et al. [17]

and we designed our tools so that they can integrate with the publicly-available source

code of AutoBatch [162] to form a larger, more comprehensive solution. This work is dif-

ferent from AutoBatch in that it attacks new, more complicated design tasks and integrates

external SMT solvers and Mathematica to find its solutions.

Prior work on automating the writing and verification of cryptographic proofs, such as

the EasyCrypt work of Barthe et al. [140], are complimentary to but distinct from our effort.

Their goal was automating the construction and verification of (game-based) cryptographic

proofs. Our goal is automating the construction of cryptographic schemes. A system that

combines both to automate the design of a scheme and then automate its security analysis

135

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

would be optimal.

6.3 Tools Used

Our automations make use of three external tools. First, Z3 [34,35] is a freely-available,

state-of-the-art and highly efficient Satisfiability Modulo Theories (SMT) solver produced

by Microsoft Research. SMT is a generalization of boolean satisfiability (SAT) solving,

which determines whether assignments exist for boolean variables in a given logical for-

mula that evaluates the formula to true. SMT solvers builds on SAT to support many rich

first-order theories such as equality reasoning, arithmetic, and arrays. In practice, SMT

solvers have been used to solve a number of constraint-satisfaction problems and are re-

ceiving increased attention in applications such as software verification, program analysis,

and testing. Z3 in particular has been used as a core building block in API design tools

such as Spec#/Boogie [36, 37] and in verifying C compilers such as VCC.

We leverage Z3 v4.3.1 to perform reasoning over statements involving arithmetic, quan-

tifiers, and uninterpreted functions. We use Z3’s theories for equality reasoning combined

with the decision procedures for linear arithmetic expressions and elimination of universal

quantifiers (e.g., ∀x) over linear arithmetic. Z3 includes support for uninterpreted (or free)

functions which allow any interpretation consistent with the constraints over free functions

and variables.

Second, we utilize the development platform provided by Wolfram Research’s Mathe-

136

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

matica [38] (version 9), which allows us to simplify equations for several of our analytical

techniques. We leverage Mathematica in our automation to validate that given crypto-

graphic algorithms have certain mathematical properties. Finally, we utilize some of the

publicly-available source code of the AutoBatch tool [162], including its Scheme Descrip-

tion Language (SDL) parser and its Code Generator, which translates an SDL representa-

tion to C++ or Python.

Input: SDL of
Scheme S

SDL
Parser

Extract
Generators

Output: SDL of
Scheme S'

Program Slice
for each pairing input

Encode Pairings
as Formula

Input: User
Optimization
Constraints

AutoGroup

Run Z3
1. find all solutions

2. reduce iteratively by constraint priorities
Efficiency Pass
optimize solution

Figure 6.2: A high-level presentation of the AutoGroup tool, which uses external tools Z3
and SDL Parser.

6.4 AutoGroup

In this section, we present and evaluate a tool, called AutoGroup, for automatically

altering a cryptographic scheme’s algebraic setting to optimize for efficiency.

6.4.1 Background on Pairing Groups

Let G1,G2,GT be algebraic groups of prime order p.2 We recall that e : G1 ×G2 → GT

is a pairing (a.k.a., bilinear map) if it is: efficiently-computable, (bilinear) for all g ∈ G1,
2Pairing groups may also have composite order, but we will be focusing on the more efficient prime order

setting here.

137

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

h ∈ G2 and a, b ← Zp, e(ga, hb) = e(g, h)ab; and (non-degenerate) if g generates G1 and h

generates G2, then e(g, h) , 1. This is called the asymmetric setting. A specialized case is

the symmetric setting, where G1 = G2.3

In practice, all efficient candidate constructions for pairing groups are constructed such

that G1 and G2 are groups of points on some elliptic curve E, and GT is a subgroup of a

multiplicative group over a related finite field. The group of points on E defined over Fp is

written as E(Fp). Usually G1 is a subgroup of E(Fp), G2 is a subgroup of E(Fpk) where k

is the embedding degree, and GT is a subgroup of F∗pk . In the symmetric case G1 = G2 is

usually a subgroup of E(Fp).

The challenge in selecting pairing groups is to identify parameters such that the size of

GT provides acceptable security against the MOV attack [169] by Menezes, Vanstone and

Okamoto. Hence the size of pk must be comparable to that of an RSA modulus to provide

the same level of security – hence elements of Fpk must be of size approximately 3,072 bits

to provide security at the 128-bit symmetric equivalent level. The group order q must also

be large enough to resist the Pollard-ρ attack on discrete logarithms, which means in this

example q ≥ 256.

Two common candidates for implementing pairing-based constructions are supersin-

gular curves [170, 171] in which the embedding degree k is ≤ 6 and typically smaller (an

example is |p| = 1536 for the 128-bit security level at k = 2), or ordinary curves such as

MNT or Barreto-Naehrig (BN) [172]. In BN curves in particular, the embedding degree

3An alternative instantiation of the symmetric setting has G1 , G2 but admits an efficiently-computable
isomorphism between the groups.

138

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

k = 12, thus |p| = |q| can be as small as 256 bits at the 128-bit security level, with a

corresponding speedup in field operations.

A challenge is that the recommended BN subgroups do not possess an efficiently-

computable isomorphism from G1 to G2 or vice versa, which necessitates re-design of

some symmetric cryptographic protocols. A related issue is that BN curves permit effi-

cient hashing only into the group G1. This places restrictions on the set of valid group

assignments we can use.

6.4.2 How AutoGroup Works

AutoGroup is a new tool for automatically translating a pairing-based encryption or

signature scheme from the symmetric-pairing setting to the asymmetric-pairing setting. At

a high-level, AutoGroup takes as input a representation of a cryptographic protocol (e.g.,

signature or encryption scheme) written in a Domain-Specific Language called Scheme

Description Language (SDL), along with a description of the optimizations desired by the

user. These optimizations may describe a variety of factors, e.g., requests to minimize

computational cost, key size, or ciphertext / signature size. The tool outputs a new SDL

representation of the scheme, one that comprises the optimal assignment of groups for the

given constraints. The assignment of groups is non-trivial, as many schemes are addition-

ally constrained by features of common asymmetric bilinear groups settings, most notably,

restrictions on which groups admit efficient hashing. At a high level, AutoGroup works

by reducing this constrained group assignment problem to a boolean satisfiability prob-

139

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

lem, applying an SMT solver, and processing the results. We next describe the steps of

AutoGroup, as illustrated in Figure 6.2.

1. Extract Generator Representation. The first stage of the AutoGroup process involves

parsing SDL to identify all base generators of G that are used in the scheme. For each

generator g ∈ G, AutoGroup creates a pair of generators g1 ∈ G1 and g2 ∈ G2. This causes

an increase in the parameter size of the scheme, something that we must address in later

steps.

We assume the Parser knows the basic structure of the scheme, and can identify the

algorithm responsible for parameter generation. This allows us to parse the algorithm to

observe which generators that are created. When AutoGroup detects the first generator, it

marks this as the “base” generator of G and splits g into a pair g1 ∈ G1 and g2 ∈ G2. Every

subsequent group element sampled by the scheme is defined in terms of the base generators.

For example, if the setup algorithm next calls for “choosing a random generator h in G”,

then AutoGroup will select a random t′ ∈ Zp and compute new elements h1 = gt′
1 and

h2 = gt′
2 .

2. Traceback Inputs to the Pairing Function. Recall that the pairing function e(A, B)

takes two inputs. We extract all the pairings required in the scheme; these might come

from the setup algorithm, encryption/signing, or decryption/verification. Prior to tracing

the pairing inputs, we split pairings of the form e(g, A · B) as e(g, A) · e(g, B) to prepare for

encoding pairings as logical formulas in the SMT solver. In the final step of AutoGroup we

recombine the pairings to preserve efficiency. We reuse techniques introduced in [17, 51]

140

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

to split and combine pairings in AutoGroup.

After splitting applicable pairings, we obtain a program slice for each variable input to

determine which (symmetric) generators were involved in computing it. This also helps us

later track which variables are affected when an assignment for a given variable is made

in G1 or G2. Consider the example A = X · Y . Clearly, the group assignment of A affects

variables X and Y , and capturing the slice for each pairing input variable is crucial for

AutoGroup to perform correct re-assignment for the subset of affected variables.

3. Convert Pairings to Logical Formulas. Asymmetric pairings require that one input to

the function be in G1, and the other be in G2. Conversion from a symmetric to an asymmet-

ric pairing can be reduced to a constraint satisfiability problem; we model the asymmetric

pairing as an inequality operator over binary variables. This is analogous because an in-

equality constraint enforces that the binary variables either have a 0 or 1 value, but not both

for the equation to be satisfiable. Therefore, we express symmetric pairings as a logical

formula of inequality operators over binary variables separated by conjunctive connectors

(e.g., A , B ∧ C , D). We then employ an SMT solver to find a satisfiable solution and

apply the solver’s solution to produce an equivalent scheme in the asymmetric setting.

4. Convert Pairing Limitations into Constraints. When translating from the symmetric

to the asymmetric pairing setting, we encounter several limitations that must be incorpo-

rated into our model. Chief among these are limitations on hashing: in some asymmetric

groups, hashing to G2 is not possible. In other groups, there is no such isomorphism, but it

is possible to hash into G1. Depending on the groups that the user selects, we must identify

141

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

an asymmetric solution that respects these constraints. Fortunately these constraints can

easily be expressed in our formulae, by simply assigning the output of hash functions to a

specific group, e.g., G1.

5. Execute SMT Solver. We run the logical formula plus constraints through an SMT

solver to identify a satisfying assignment of variables. The solver checks for a satisfiable

solution and produces a model of 0 (or G1) and 1 (or G2) values for the pairing input

variables that satisfies the specified constraints. We can go one step further and enumerate

all the unique solutions (or models) found by the solver for a given formula and constraints.

After obtaining all the possible models, we utilize the solver to evaluate each model and

determine the solutions that satisfies the user’s application-specific requirements.

6. Satisfy Application-specific Requirements. To facilitate optimizations in the asym-

metric setting that suit user applications, we allow users to specify additional constraints on

the chosen solution. There are two possible ways of tuning AutoGroup: one set of options

focus on reducing the size of certain scheme outputs. For public key encryption, the user

can choose to minimize the representation of the secret keys, ciphertext or both. Similarly,

for signatures schemes, the user can optimize for minimal-sized public keys, signatures

or both. The second set of options focus on reducing algorithm execution times. This is

possible due to the fact that for many candidate asymmetric groups, group operations in G1

are dramatically more efficient than those that take place in G2. Users may also combine

various operations, in order to find an optimal solution based on a combination of size and

operation time.

142

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

We find application-specific solutions by minimizing an objective function over all the

possible models obtained from the solver. Our objective function is straightforward and

calculated as follows:

F(A,C,w1,w2) =
n

i=1

((1 − ai) · w1 + ai · w2) · ci

where A = ai, . . . , an and represents the pairing input variables, w1 and w2 denote

weights over groups G1 and G2, respectively, C = ci, . . . , cn and each ci corresponds to

the cost for each ai. Each input variable ai can have a value of 0 = G1 or 1 = G2. We

now describe how the above options are converted into parameters of F and discuss how

the SMT solver is used to obtain a minimal solution.

For each parameter that we intend to optimize, we define a weight function that eval-

uates each candidate solution according to some metric. For each assigned variable, the

weight function calculates the total “cost” of the construction as a function of some cost

value for the specific variable, as well as an overall cost for an assignment of G1 and G2. In

the case of ciphertext size we assign the cost value to 1 for each group element that appears

in the ciphertext, and 0 for all others. For encryption time, we assign a cost that corre-

sponds to the number of group operations applied to this variable during the encryption

operation. The overall cost value then determines the cost of placing a value in one of the

two groups – for size-related calculations, this roughly corresponds to the length of a group

element’s representation, and for operation time it corresponds to the cost of a single group

operation. By assigning these costs correctly, we are able to create a series of different

weight functions that represent all of the different values that we would like to minimize

143

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

(e.g., ciphertext size, parameter size, time).

If the user chooses to optimize for multiple criteria simultaneously, we must find a

model that balances between all of these at the same time. This is not always possible. For

example, some schemes admit solutions that favor a minimized secret key size or ciphertext

size, but not both. In this case, we allow the user to determine which constraint to relax and

thereby select the next best solution that satisfies their requirements.

7. Evaluate and Process the Solution. Once the application-specific solution is obtained

from the solver, the next step is to apply the solution to produce an asymmetric scheme.

As indicated earlier, we interpret the solution for each variable as 0 = G1 and 1 = G2.

To apply the solution, we first pre-process each algorithm in SDL to determine how the

pairing inputs are affected by each assignment. Consider a simplistic example: e(A, B)

where A = ga and B = hb. Let us assume that the satisfying solution is that A ∈ G1 and

B ∈ G2. Therefore, we would rewrite these two variables as A = ga
1 and B = hb

2 where

g1 ∈ G1 and h2 ∈ G2. The program slice recorded for each pairing input in step (2) provides

the necessary information to correctly rewrite the scheme in the asymmetric setting.

In addition to rewriting the scheme, AutoGroup performs several final optimizations.

First, it removes any unused parameter values in the public and secret keys. For signature

schemes, we try to optimize further by reducing the public parameters used per algorithm.

In particular, we trace which variables in the public key are actually used during signing and

verification. For elements that appear only in the signing (resp. decryption) algorithms, we

split the public key into two: one is kept just for computing signatures (resp. decryption),

144

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

Encryption Time Approx. Size Num.
Keygen• Encrypt• Decrypt• Secret Key Ciphertext Solutions

ID-Based Enc.
BB04 [173, §4] Symmetric (SS1536) 59.9 ms 64.8 ms 125.4 ms 3072 bits 6144 bits

Asymmetric (BN256) [Min. CT] 4.8 ms 7.8 ms 27.6 ms 2048 bits 3584 bits 4
Gentry06 [174, §3.1] Symmetric (SS1536) 39.9 ms 176.2 ms 67.8 ms 3072 bits 7680 bits

Asymmetric (BN256) [Min. SK] 1.4 ms 41.0 ms 19.1 ms 512 bits 7168 bits 4
WATERS09 [53, §3.1] Symmetric (SS1536) 294.6 ms 286.8 ms 612.8 ms 13824 bits 18432 bits

Asymmetric (BN256) [Min. SK/CT/Exp] 12.6 ms 19.2 ms 128.0 ms 5376 bits 8704 bits 256
Broadcast Encryption
BGW05 [33, §3.1] Symmetric (SS1536) (n = 100) 1992.2 ms 119.6 ms 136.9 ms 19200 bytes 6144 bits

Asymmetric (BN256) [Min. SK] 70.4 ms 25.7 ms 28.5 ms 3200 bytes 5120 bits 4
•Average time measured over 100 test runs and the standard deviation in all test runs were within ±1% of the average.

Figure 6.3: AutoGroup on encryption schemes under various optimization options. We
show running times and sizes for several schemes generated in C++ and compare sym-
metric to automatically generated asymmetric implementations at the same security levels
(roughly equivalent with 3072 bit RSA). For IBE schemes, we measured with the identity
string length at 100 bytes. For BGW, n denotes the number of users in the system.

and the other is given out for use in encryption/verification. Second, AutoGroup performs

an additional efficiency check and attempts to optimize pairing product equations to use

as few pairings as possible. This is due to the decoupling of pairings in earlier phases of

translating the scheme to the asymmetric setting or perhaps, just a loose design by the orig-

inal SDL designer. In either case, we apply pairing optimization techniques from previous

work [17,51] to provide this automatic efficiency check. Finally, AutoGroup outputs a new

SDL of the modified scheme.

We do not offer the efficiency check of AutoGroup as a standalone tool for symmetric

groups at present, because our experience inclines us to believe that most practitioners

concerned with efficiency will want to work in asymmetric groups. However, our results

herein also demonstrate that a simple tool of this sort is efficient and feasible.

145

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

6.4.3 Security Analysis of AutoGroup

Whether a scheme is translated by hand (as is done today [56]) or automatically (as in

this work), a completely separate question applying to both is: is the resulting asymmetric

scheme secure? The answer is not immediately clear. Unlike the signature transformation

that we automate in Section 6.5 that already has an established security proofs showing

that the transformations preserve security, the theoretical underpinnings of symmetric-to-

asymmetric translations are less explored. Here are some things we can say.

First, the original proof of security is under a symmetric pairing assumption, and thus

can no longer immediately apply since the construction and assumption are changing their

algebraic settings. This would seem to require the identification of a new complexity as-

sumption together with a new proof of security. In many examples, e.g., [120], the new

assumption and proof are only minor deviations from the original ones, e.g., where the

CDH assumption in G (given [g, ga, gb], compute gab) is converted in a straight-forward

manner to the co-CDH assumption in (G1,G2) (given [g1, g2, ga
2], compute ga

1). However,

there could be cases where a major change is required to the proof of security. For instance,

in some asymmetric groups it is not possible to hash into G2, but in these groups there ex-

ists an isomorphism from G2 to G1. In other groups there is no such isomorphism, but it is

possible to hash into G2. So if a scheme requires both for the security proof, that scheme

may not be realizable in the asymmetric setting (see [163] for more).

In best practices today, a human first devises the new construction (based on their de-

sired optimizations) and then the human works to identify the new assumption and proof.

146

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

Our current work automates the first step in this process, and hopefully gives the human

more time to spend on the second step. In this sense, our automation is arguably faster, and

no less secure than what is done by hand today.

However, a more satisfactory solution requires a deeper theoretical study of symmetric-

to-asymmetric pairing translations, which we feel is an important open problem, but which

falls outside the scope of the current work. What can one prove about the preservation of

security in symmetric-to-asymmetric translations? Is it necessary to dig into the proof of

security? Or could one prove security of the asymmetric scheme solely on the assumption

of security of the symmetric one? Will this work the same for encryption, signatures and

other protocols? Do the rules by which translations are done (by hand or AutoGroup) need

to change based on these findings? These questions remain open.

6.4.4 Experimental Evaluation of AutoGroup

To determine the effectiveness of our automation, we evaluate several encryption and

signature schemes on a variety of optimization combinations supported by our tool. We

summarize the results of our experiments on encryption schemes in Figure 6.3 and signa-

ture schemes in Figure 6.5.

System Configuration. All of our benchmarks were executed on a 2.66GHz 6-core Intel

Xeon Mac Pro with 10GB RAM running Mac OS X 10.8.3 using only a single core of

the Intel processor. Our implementation utilizes the MIRACL library (v5.5.4), Charm

v0.43 [11] in C++ due to the efficiency gains over Python code, and Z3 SMT solver

147

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

SDL
Parser

Output
SDL

AutoStrong

Property 2
Holds?

Apply BSW Transform
more efficient

Apply BS Transform
general

yes

no

Partition Checker
A: Identify Property 1
B: Identify Verification Eq.

C: Decompose to Model Pairing
D: Produce Equations.
E: Evaluate Equations

Z3 Input
SDL Mathematica

Figure 6.4: A high-level presentation of the AutoStrong tool, which uses external tools Z3,
Mathematica and SDL Parser.

(v4.3.1). We based our implementations on the MIRACL library to fully compare each

scheme’s performance using symmetric and asymmetric curves at equivalent security lev-

els.

Results. To demonstrate the soundness of AutoGroup on encryption and signature schemes,

we compare algorithm running times, key and ciphertext/signature sizes between symmet-

ric and asymmetric solutions. We tested AutoGroup on a variety of optimization com-

binations to extract different asymmetric solutions. In each test case, AutoGroup reports

all the unique solutions, obtains the best solution for given user-specified constraints, and

generates the executable code of the solution in a reasonable amount of time. AutoGroup

execution time on each test case is reported in Figure 6.6, but does not include time for

generating the C++ of the SDL output.

148

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

6.5 AutoStrong

In this section, we present and evaluate a tool, called AutoStrong, for automatically

generating a strongly-unforgeable signature from an unforgeable signature scheme.

6.5.1 Background on Digital Signatures

A digital signature scheme is comprised of three algorithms: key generation, signing

and verification. The classic (or “regular”) security definition for signatures, as formulated

by Goldwasser, Micali and Rivest [21], is called existential unforgeability with respect to

chosen message attacks, wherein any p.p.t. adversary, given a public key and the ability to

adaptively ask for a signature on any message of its choosing, should not be able to output

a signature/message pair that passes the verification equation and yet where the message is

“new” (was not queried for a signature), with non-negligible probability.

An, Dodis and Rabin [13] formulated strong unforgeability where the adversary should

not only be unable to generate a signature on a “new” message, but also be unable to gen-

erate a different signature for an already signed message. Strongly-unforgeable signatures

have many applications including building signcryption [13], chosen-ciphertext secure en-

cryption systems [14, 58] and group signatures [15, 59].

Partitioned Signatures In 2006, Boneh, Shen and Waters [12] connected these two secu-

rity notions, by providing a general transformation that converts any partitioned (defined

below) existentially unforgeable signature into a strongly unforgeable one.

149

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

Definition 6.5.1 (Partitioned Signature [12]). A signature scheme is partitioned if it satisfies

two properties for all key pairs (pk, sk):

– Property 1: The signing algorithm can be broken into two deterministic algorithms

F1 and F2 so that a signature on a message m using secret key sk is computed as

follows:

1. Select a random r from a suitable randomness space.

2. Set σ1 = F1(m, r, sk) and σ2 = F2(r, sk).

3. Output the signature (σ1, σ2).

– Property 2: Given m and σ2, there is at most one σ1 such that (σ1, σ2) verifies as a

valid signature on m under pk.

As one example of a partitioned scheme, Boneh et al. partition DSS [175] as follows,

where x is the secret key:

F1(m, r, x) = r−1(m + xF2(r, x)) mod q

F2(r, x) = (gr mod p) mod q

Our empirical evidence shows that many discrete-log and pairing-based signatures in

the literature are partitioned. Interestingly, some prominent prior works [39, 168] claimed

that there were “few” examples of partitioned schemes “beyond Waters [67]”, even though

our automation discovered several examples existing prior to the publication of these works.

We conjecture that it is not always easy for a human to detect a partition.

150

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

Chameleon Hashes The BSW transform uses a chameleon hash [176] function, which is

characterized by the nonstandard property of being collision-resistant for the signer but col-

lision tractable for the recipient. The chameleon hash is created by establishing public pa-

rameters and a secret trapdoor. The hash itself takes as input a message m and an auxiliary

value s. There is an efficient algorithm that on input the trapdoor, any pair (m1, s1) and any

additional message m2, finds a value s2 such that ChamHash(m1, s1) = ChamHash(m2, s2).

Boneh et al. [12] employ a specific hash function based on the hardness of finding

discrete logarithms.4 Since pairing groups also require the DL problem to be hard, this

chameleon hash does not add any new complexity assumptions. It works as follows in G,

where g generates G of order p. To setup, choose a random trapdoor t ∈ Zp
∗ and compute

h = gt. The public parameters include the description of G together with g and h. The

trapdoor t is kept secret. To hash on input (m, s) ∈ Zp
2, compute

ChamHash(m, s) = gmhs.

Later, given any pair m, s and any message m′, anyone with the trapdoor can compute a

consistent value s′ ∈ Zp as

s′ = (m − m′)/t + s

such that ChamHash(m, s) =ChamHash(m′, s′).

The BSW Transformation The transformation [12] is efficient and works as follows.

Let Πp = (Genp,Signp,Verifyp) be a partitioned signature, where the signing algorithm is

4Indeed, we observe that substituting an arbitrary chameleon hash could break the transformation. Sup-
pose H(m, s) ignores the last bit of s (it is easy to construct such a hash assuming chameleon hashes exist.)
Then the BSW transformation using this hash would result in a signature of the form (σ1, σ2, s), which is
clearly not strongly unforgeable, since the last bit can be flipped.

151

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

partitioned using functions F1 and F2. Suppose the randomness for Signp is picked from

some set R. Let || denote concatenation. BSW constructs a new scheme Π as:

Gen(1λ): Select a groupGwith generator g of prime order p (with λ bits). Select a random

t ∈ Zp and compute h = gt. Select a collision-resistant hash function Hcr : {0, 1}∗

→ Zp. Run Genp(1λ) to obtain a key pair (pkp, skp). Set the keys for the new system

as pk = (pkp,Hcr,G, g, h, p) and sk = (pk, skp, t).

Sign(sk,m): A signature on m is generated as follows:

1. Select a random s ∈ Zp and a random r ∈ R.

2. Set σ2 = F2(r, skp).

3. Compute v = Hcr(m||σ2).

4. Compute the chameleon hash m′ = gvhs.

5. Compute σ1 = F1(m′, r, skp) and output the signature σ = (σ1, σ2, s).

Verify(pk,m, σ): A signature σ = (σ1, σ2, s) on a message m is verified as follows:

1. Compute v = Hcr(m||σ2).

2. Compute the chameleon hash m′ = gvhs.

3. Output the result of Verifyp(pkp,m
′, (σ1, σ2)).

Theorem 6.5.2 (Security of BSW Transform [12]). The signature schemeΠ = (Gen,Sign,Verify)

is strongly existentially unforgeable assuming the underlying schemeΠp = (Genp,Signp,Verifyp)

152

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

is existentially unforgeable, Hcr is a collision-resistant hash function and the discrete log-

arithm assumption holds in G.

The Bellare-Shoup Transformation The BSW transformation [12], which only works

for partitioned signatures, sparked significant research interest into finding a general trans-

formation for any existentially unforgeable signature scheme. Various solutions were pre-

sented in [39, 164–168], as well as an observation in [39] that an inefficient transformation

was implicit in [177].

We follow the work of Bellare and Shoup [39, 168], which is less efficient than BSW

and, for our case, requires a stronger complexity assumption, but works on any signature.

Their approach uses two-tier signatures, which are “weaker” than regular signatures as hy-

brids of regular and one-time schemes. In a two-tier scheme, a signer has a primary key

pair and, each time it wants to sign, it generates a fresh secondary key pair and produces

a signature as a function of the both secret keys and the message. Both public keys are

required to verify the signature. Bellare and Shoup transform any regular signature scheme

by signing the signature from this scheme with a strongly unforgeable two-tier scheme.

They also show how to realize a strongly unforgeable two-tier signature scheme by ap-

plying the Fiat-Shamir [178] transformation to the Schnorr identification protocol [179],

which requires a one-more discrete logarithm-type assumption.

The BS transformation works as follows. Let Πr = (Genr, Signr,Verifyr) be a regu-

lar signature scheme and let Πt = (PGent,SGent,Signt,Verifyt) be a two-tiered strongly

unforgeable scheme. A new signature scheme Π is constructed as:

153

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

Gen(1λ): Run Genr(1λ) → (pkr, skr) and PGent(1λ) → (ppk, psk). Output the pair PK =

(pkr, ppk) and SK = (skr, psk).

Sign(SK,m): A signature on m is generated as follows:

1. Parse SK as (skr, psk).

2. Run SGent(1λ)→ (spk, ssk).

3. Sign the message and secondary key as σ1 ← Signr(skr, (spk||m)).

4. Sign the first signature as σ2 ← Signt(psk, ssk, σ1).

5. Output the signature σ = (σ1, σ2, spk).

Verify(PK,m, σ): A signature σ = (σ1, σ2, spk) on a message m is verified as follows:

1. Parse PK as (pkr, ppk).

2. If Verifyr(pkr, (spk||m), σ1) = 0, then return 0.

3. If Verifyt(ppk, spk, σ1, σ2), then return 0.

4. Otherwise, return 1.

Theorem 6.5.3 (Security of BS Transformation [168]). If the input scheme is existentially

unforgeable, then the output signature is strongly existentially unforgeable assuming the

strong unforgeability of the two-tier scheme.

The Transformation used in AutoStrong For our purposes, we employ the following

hybrid transformation combining BSW and Bellare-Shoup. On input a signature scheme,

we automate the following procedure:

154

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

1. Identify a natural partition satisfying property 1 and test if it has property 2. (We

allow false negatives, but not false positives. See Section 6.5.3.)

2. If a valid partition is found, apply the BSW transformation [12] (using SHA-256 and

the DL-based chameleon hash above).

3. If a valid partition is not found, apply the Bellare-Shoup transformation [39, 168]

(using the Schnorr Fiat-Shamir based two-tier scheme suggested in [168].)

4. Output the result.

The security of this transformation follows directly from the results of [12,168] as stated

in Theorems 6.5.2 and 6.5.3. The most challenging technical part is step one: determining

if a scheme is partitioned.

6.5.2 How AutoStrong Works

AutoStrong takes as input the SDL description of a digital signature scheme along with

some metadata.5 At a high-level, it runs the transformation described at the end of the

last section, where the most challenging step is testing whether a scheme is partitioned

according to Definition 6.5.1.

We now describe each step involved in testing that Properties 1 and 2 are satisfied and

how we utilize Z3 and Mathematica to prove such properties, as illustrated in Figure 6.4.

5The user must specify the variables that denote message, signature, key material in a configuration file.

155

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

Signature Time Approx. Size Num.
Security Sign• Verify• Public Key∗ Signature Solutions

CL04 [18, §3.1] Symmetric (SS1536) EU-CMA 169.8 ms 316.6 ms 3072 bits 4608 bits
Symmetric (SS1536) SU-CMA 192.0 ms 387.8 ms 4608 bits 6144 bits
Asymmetric (BN256) [Min. SIG] SU-CMA 3.4 ms 56.8 ms 2048 bits 1024 bits 2

BB Short [66, §3] Symmetric (SS1536) EU-CMA 21.5 ms 102.1 ms 7680 bits 3072 bits
Symmetric (SS1536) SU-CMA 62.8 ms 142.8 ms 9216 bits 4608 bits
Asymmetric (BN256) [Min. PK] SU-CMA 5.0 ms 18.3 ms 3840 bits 1536 bits 2

WATERS05 [67, §4] Symmetric (SS1536) EU-CMA 47.9 ms 195.2 ms 4608 bits† 3072 bits
Symmetric (SS1536) SU-CMA 88.7 ms 236.4 ms 6144 bits† 4608 bits
Asymmetric (BN256) [Min. SIG] SU-CMA 6.5 ms 62.9 ms 2560 bits† 768 bits 8

WATERS09 [180, §6.1] Symmetric (SS1536) WU-CMA 258.5 ms 896.8 ms 23040 bits 13824 bits
Asymmetric (BN256) [Min. PK/SIG] WU-CMA 13.6 ms 129.2 ms 12544 bits 5376 bits 256

ACDKNO12 [26, §5.3] Symmetric (SS1536) RMA 346.4 ms 1307 ms 23040 bits 12288 bits
Asymmetric (BN256) [Min. PK/SIG/Exp] RMA 23.3 ms 279.9 ms 3840 bits 8192 bits 1024

•Average time measured over 100 test runs and the standard deviation in all test runs were within ±1% of the average.
∗Refers to the approximate size of public parameters used in verification.
†Estimates do not include the public parameters for the Water’s hash.

Figure 6.5: We show the result of AutoGroup and AutoStrong on signature schemes. For
CL, BB, and Waters (with length of identities, ℓ = 128), we first apply AutoStrong to
determine that the signature scheme is partitioned, then apply the BSW transform to obtain
a strongly unforgeable signature in the symmetric setting. We then feed this as input to
AutoGroup to realize an asymmetric variant under a given optimization. We also tested
AutoStrong on the DSE signature and ACDK structure-preserving signature, even though
these are not known to be existentially unforgeable. A partition was found for ACDK, but
not DSE.

Identify Property 1. The first goal is to identify the variables in the signature that should

be mapped to σ1 or σ2 according to Definition 6.5.1. We assume that the input signature

scheme is existentially unforgeable.6 Given this assumption, our objective is to identify

the portions of the signature that are computed based on the message and designate that

component as σ1. All other variables in the signature that do not meet this criteria are

designated as σ2. We determine that we have designated the correct variables for property

1 if and only if the variable mapping satisfy property 2. We test only the most “natural”

division for property 1, which could result in a false negative, but this won’t impact the

security, so our system allows it.

6We remark that we tested the partition checker for AutoStrong on schemes that are not existentially
unforgeable to fully vet the checker (see Figure 6.5), but the resulting output in these cases may not be
strongly unforgeable.

156

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

To illustrate each step, we will show how our tool identifies the partition in the CL

signature scheme [18].

CL signatures [18]: Key generation consists of selecting a generator, g ∈ G, then randomly

sampling x ∈ Zq and y ∈ Zq. It sets sk = (x, y) and pk = (g, X = gx,Y = gy). To sign a

message m ∈ Zq, the signer samples a uniformly from G and computes the signature as:

σ = (a, b = ay, c = ax+m·x·y).

The verifier can check σ by ensuring that e(a,Y) = e(g, b) and e(X, a) · e(X, b)m = e(g, c).

Intuitively, our logic would identify that c is dependent on the message, therefore, iden-

tifying that σ1 = c and σ2 = (a, b) which satisfies the definition of property 1. The next

challenge is to determine whether property 2 holds given our identified mapping for σ1 and

σ2.

Prove Property 2. Proving that a scheme satisfies this property requires the ability to

abstractly evaluate the verification equations on the input variables. We require this ability

to automatically prove that there exists at most one σ1 which verifies under a fixed σ2, m

and pk for all possible inputs. To this end, the partition checker determines whether a σ′1

exists such that σ′1 , σ1 and is a valid signature over the fixed variables. Finding such a

σ′1 means the signature is not partitioned. The checker determines whether it can find a

solution or if it can determine that no such solution exists. If no solutions exist, then the

signature is indeed partitioned. Stated more precisely, does there exist a σ′1 , σ1 such that

the following condition holds:

157

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

Verify(pk,m, (σ1, σ2)) = 1 ∧ Verify(pk,m, (σ′1, σ2)) = 1

At a high-level, our goal is to evaluate the pairing-based verification algorithms in a

way that allows us to find a contradiction to the aforementioned condition. Recall that the

bilinearity property of pairings states that e(ga, gb) = e(g, g)ab holds for all a, b ∈ Zq where

g ∈ G. We observe that pairings can be modeled as an abstract function that performs

multiplication in the exponent. Because the rules of multiplication and addition hold in the

exponent, we can abstractly reduce pairings to basic integer arithmetic.

To accomplish this, we leverage Z3 to model the bilinearity of pairings so that it is

possible to automatically evaluate them. Our partition checker relies on Z3’s uninterpreted

functions and universal quantifiers to reduce pairing product equations to simpler equations

over the exponents. However, this reduction alone is not sufficient to completely evaluate

the verification equations as required for detecting a partitioned signature. To satisfy the

property 2 condition, we also need a way to evaluate these equations on all possible in-

puts. Z3 was less suited for this task and instead, we employ the Mathematica scripting

framework to evaluate such equations. Our solution consists of five steps:

Step 1: Decompose Verification Equations. To model pairings using an SMT solver, we

encode the verification equations into a form that the solver can interpret. The first phase

extracts the verification equations in SDL, then decomposes the equations in terms of the

generators and exponents used. We leverage recent term rewriting extensions introduced

in the SDL Parser by Akinyele et al. [17]. Their techniques allow us to keep track of how

variables are computed in terms of the generators and exponents. With knowledge of how

158

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

each variable is computed, we are able to fully decompose each equation in an automated

fashion.

Our technique for modeling pairings in Z3 requires that decomposition of verification

equations be guided by a few rules. First, generators must be rewritten in terms of some

base generator, g, if the scheme is specified in the symmetric setting.7 For example, the

random generator a ∈ G chosen in CL would be represented as ga′ for a′ ∈ Zq. Second,

hashing statements of the form v = H(m) where v ∈ G are rewritten as gv′ for some v′ ∈ Zq.8

Third, we do not decompose any variable designated as σ1 for the purposes of determining

whether a signature is partitioned. The intuition is that since σ′1 variables are adversarially

controlled we also treat σ1 as a black box. Finally, whenever we encounter signatures

that compute a product over a list of elements – as in the case of the Waters hash, for

example [67] – we require the user to provide an upper bound on the number of elements

in this list (if known) so that we can “unroll” the product calculation and further apply our

rules. When all the above reduction rules are automatically applied to the CL signature, we

obtain the following equations:

e(a,Y) = e(g, b) becomes e(ga′ , gy) = e(g, (ga′)y)

e(X, a) · e(X, b)m = e(g, c) becomes

e(gx, ga′) · e(gx, (ga′)y)m = e(g, gc′)

Note that c′ denotes the σ1 for CL and is a free variable. All other variables that comprise
7The same would apply for asymmetric pairings except that we would specify G1 generators in terms of

a base generator g1 and G2 in terms of g2.
8Note that this term re-writing is used only to determine whether a solution exists. The actual variables a′

and v′ would not (necessarily) be known in the real protocol.

159

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

m, pk, and σ2 are fixed.

Step 2: Encode Rules for Evaluating Pairings. Once we have decomposed the veri-

fication equation as shown above, the next step is to encode the equations in terms that

Z3 can understand. After the pairing equations are rewritten entirely using the base gen-

erator, we can model the behavior of pairings by simply focusing on the exponents. To

capture the bilinearity of pairings, we rely on two features in Z3: uninterpreted functions

and universal quantifiers. As mentioned earlier, uninterpreted functions enable one to ab-

stractly model a function’s behavior. Our model of a pairing is an uninterpreted function,

E, that takes two integer variables and has a few mathematical properties. First, we define

the multiplication rule as ∀s, t : E(s, t) = s · t. Second, we define the addition rule as

∀s, t, u : E(s + t, u) = s · u + t · u.9 Third, we adhere to the multiplicative notation in SDL

and convert pairing products defined in terms of multiplication to addition and division to

subtraction.

These rules are straightforward and sufficient for evaluating pairings. Moreover, by

defining exponents in terms of integers, Z3 can apply all the built-in simplification rules for

multiplication and addition. As a result, the solver uses these rules to reduce any pairing-

based verification equation into a simpler integer equation.

To automatically encode the equations, we first simplify the decomposed pairing equa-

tion as much as possible using previous techniques [17]. Then, we convert each pairing

to the modeled pairing function, E and remove the base generators. Upon simplifying and

9Similarly, E(s, t + u) = s · t + s · u

160

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

encoding the decomposed CL equations, we obtain the following:

e(ga′ , gy) = e(g, (ga′)y) becomes E(a′, y) = E(1, a′ · y)

e(gx, ga′) · e(gx, (ga′)y)m = e(g, gc′) becomes

E(x, a′) + E(x · m, a′ · y) = E(1, c′)

Step 3: Execute SMT Solver. After encoding the pairing functions in terms of E, the

next step is to employ the solver to evaluate it. We first specify our rules in the SMT

solver then evaluate these rules on each input equation. The result is a simplified integer

equation representation of the verification algorithm. For the above CL formulas, the solver

determines that the first equation is true for all possible inputs because a′ and y are fixed

variables. For the second equation, the solver produces: a′ · x + a′ · x · m · y = c′.

Step 4: Evaluate equations. At this point, we have obtained the integer equation version

of the verification equation; we can now concretely express the conditions for property 2.

That is,

c′ , c′′ ∧ a′ · x + a′ · x · m · y = c′ ∧ a′ · x + a′ · x · m · y = c′′

Process BB-IBE Gentry Waters09-Enc BGW CL BB Short Sig Waters05 Waters09-Sig ACDKNO
AutoGroup 0.33s 0.34s 4.30s 0.55s 0.34s 0.31s 0.54s 4.16s 17.65s
AutoStrong - - - - 0.28s 0.27s 0.37s 3.99s 1.23s

Figure 6.6: Running time required by the AutoGroup and AutoStrong routines to pro-
cess the schemes discussed in this work (averaged over 10 test runs). The running time
for AutoGroup includes the execution time of the Z3 SMT solver. The running time for
AutoStrong also includes Z3 and Mathematica and the application of the BSW transforma-
tion. In all cases, the standard deviation in the results were within ±3% of the average. For
AutoGroup, running times are correlated with the number of unique solutions found and
the minimization of the weighted function using Z3. AutoStrong running times are highly
correlated with the complexity of the verification equations.

161

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

We use Mathematica to prove that no such c′′ exists assuming the verification condition

is correct via the Mathematica Script API. In particular, we utilize the FindInstance func-

tion to mathematically find proof over non-zero real numbers then subsequently try finding

a solution over integers. If no such solution exists, the FindInstance will return such a

statement and the result is interpreted as an indicator that the signature is partitionable.

Otherwise, the signature may not be partitionable.

During this step, we make an explicit assumption that the verification condition is math-

ematically correct. Suppose that this was not the case. In this scenario, our technique would

also determine that it is not possible to find a σ′1 such that σ′1 , σ1 and verifies over fixed

variables. In reality, however, no σ1 and σ2 pair can produce a valid signature because the

verification equation does not hold for any input. To limit the possibility of such scenar-

ios, our partition checker offers a sanity check on the correctness of the input verification

equations.

By relaxing the rule for decomposing the variables that are designated as σ1 in Step 1,

we can evaluate the verification equation over all inputs using Mathematica. For the CL

signature, a full decomposition would produce the following equation in the exponent:

a′ · x + a′ · x · m · y = a′ · (x + x · m · y)

It is sufficient to leverage the S impli f y function within Mathematica to evaluate that this

holds for all possible inputs. Since Mathematica has built-in techniques for solving equa-

tions of this sort, it becomes trivial to show that the above equation is correct in all cases

(due to the law of distribution). We subsequently inform the user on the output of this sanity

162

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

check, which is useful for determining the correctness of SDL signature descriptions.

Step 5: Apply Transformation. Once the partition checker determines whether the sig-

nature is partitioned or not, we apply the efficient BSW transform if deemed partitioned or

the less-efficient BS transform if not as described in Section 6.5.1.

6.5.3 Security Analysis of AutoStrong

The theoretical security of the unforgeable-to-strongly-unforgeable transformations that

we use in AutoStrong were previously established in [12, 39, 168], as discussed in Sec-

tion 6.5.1.10 The security of the BSW transform only holds, however, if the input scheme

is partitioned. Our partition test allows false negatives, but not false positives. That is, our

algorithm may fail to identify a scheme as partitioned even though it is, which results in a

less efficient final scheme, but it will not falsely identify a scheme as partitioned when it

is not, which would result in a security failure. To see why this claim holds, consider that

the partition tester guesses a partition, Z3 interprets the verification equation as a system

of equations, and then Mathematica fixes the variables on one partition side and asks how

many solutions there are for the free variables on the other side. If 0 or 1 are found, then the

scheme meets the partitioned definition. If more than 1 is found, then it is not partitioned.

If there is no answer (program crash or times out), then we consider it not partitioned.

Thus, false negatives can occur, but not false positives (in theory). Proving that there are
10Perfect correctness is assumed in these transformations. All schemes tested have perfect correctness,

except the Waters DSE signatures [53]. With a negligible probability, the verification algorithm of this scheme
will reject an honestly-generated signature. After applying the BS transformation to the DSE scheme, this
negligible error probability is carried over in the verification of the strongly-secure scheme.

163

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

no software or hardware errors in AutoStrong, Z3, Mathematica or the underlying software

and hardware on which they run is outside the scope of this work. We did experimentally

verify AutoStrong’s outputs and no errors were found.

6.5.4 Experimental Evaluation of AutoStrong

In 2008 [168], Bellare and Shoup remarked that “unfortunately, there seem to be hardly

any [partitioned signature] schemes”. Interestingly, our experimental results show that

there are in fact many partitioned schemes, including a substantial number invented prior

to 2008. We evaluated AutoStrong by testing it on a collection of signatures, including

Camenisch-Lysyanskaya [18], short Boneh-Boyen [66], Waters 2005 [67], Waters Dual-

System (DSE) signature [53], and a structure-preserving scheme of Abe et al. [26].

Of the above signatures, all but one – the Waters DSE signature – were successfully

partitioned. We do not know whether the Waters DSE signature can be partitioned, al-

though we suspect that the “randomness freedom” in the dual-system structure may inher-

ently be at odds with the uniqueness property of the partitioned test. Although the Abe

et al. scheme is partitioned, applying either the BSW or BS transformations destroys its

structure-preserving property. An interesting open problem would be to refine the BSW or

BS transformations to preserve the structured property. Figure 6.6 shows the time that it

took our tool to identify the partitioning and output the revised signature equations. Fig-

ure 6.5 illustrates the performance and size of the resulting signatures, when evaluated on

two different types of curve (using AutoGroup to calculate the group assignments).

164

CHAPTER 6. AUTOGROUP AND AUTOSTRONG

6.6 Challenges and Open Problems

We explored two challenging new tasks in cryptographic automation. First, we pre-

sented a tool, AutoGroup, for automatically translating a symmetric pairing scheme into an

asymmetric pairing scheme. The tool allows the user to choose from a variety of different

optimization options. Second, we presented a tool, AutoStrong, for automatically altering a

digital signature scheme to achieve strong unforgeability [13]. The tool automatically tests

whether a scheme is “partitioned” according to a notion of Boneh et al. [12] and then ap-

plies a highly-efficient transformation if it is partitioned or a more general transformation

otherwise. To perform some of these complex tasks, we integrated Microsoft’s Z3 SMT

Solver and Mathematica into our tools. Our performance measurements indicated that

these standard cryptographic design tasks can be quickly, accurately and cost-effectively

performed in an automated fashion.

We look onward to exciting problems left open by this work. Which other design tasks

are naturally well suited for SMT solvers? Furthermore, can verification tools such as

EasyCrypt [40] or CryptoVerif [41] be integrated into our automations to provide mech-

anized verification of the transformations? What techniques are required to automate the

verification of such designs? Can they be generalized?

165

Chapter 7

Summary

We have presented the design and implementation of an extensible architecture to

demonstrate the automation of certain general transformations from the literature. We

showed how cryptographic primitives can be represented in our domain-specific language

to facilitate automation and how tools can be developed to carry out transformation tasks.

To illustrate this, we showed how this abstract language can be turned into working im-

plementations using Charm. With this in place, we presented three case studies of trans-

formations and how they can be safely, accurately and efficiently automated using SMT

solvers to aid in some crucial aspects of the design. Finally, we discussed limitations in

automating certain transformations and provided a security analysis for each of the tools

that implement the transformations.

166

Appendix A

167

APPENDIX A. ADDITIONAL MATERIAL

Additional Material

A.1 Scheme Examples In Charm

Scheme Type Setting Comp. Model Lines
Adapters

CHK04 [14], BCHK05 [181] IBE-to-PKE - - 23, 63
IBE-to-Signature [28] Signature - - 24
Hybrid ABE Hybrid ABE - - 27
Hybrid DABE Hybrid DABE - - 28
Hybrid KPABE Hybrid KPABE - - 26
Hybrid IBE [14] Hybrid IBE - - 27
IBE Identity Hash IBE - - 35
Hybrid PKE Hybrid PKE - - 30

Miscellaneous
GS07 [27] Commitment Pairing CRS 28
Pedersen [182] Commitment EC/Integer Standard 16
AdM05 [183] Cham Hash Integer ROM 24
RSA HW09 [116] Cham Hash Integer Standard 29
VRF [19] VRF Pairing Standard 47

Protocols
Schnorr91 [115] Zero-Knowledge proof EC/Integer Standard 53
CNS07 [122] Oblivious Transfer Pairing Standard 147

Table A.1: Another listing of the cryptographic schemes we implemented. “Code Lines”
indicates the number of lines of Python code used to implement the scheme (excluding
comments and whitespace), and does not include the framework itself. ROM indicates that
a scheme is secure in the Random Oracle Model. CRS indicates that a scheme is secure
in the Common Reference String Model. A “-” indicates a generic transform (adapter). ∗

indicates a choice made for efficiency reasons.

168

APPENDIX A. ADDITIONAL MATERIAL

Using BSW07 Scheme in C

variable declarations
Charm_t *group,*cpabe,*hyabe,*keyTupl,*recmsg;
Charm_t *pkDict,*mskDict,*skDict,*ctDict,*ctBlob;
char *msg,*policy,*attrlist;

setup Charm environment
InitializeCharm();
#initialize group with super singular curve
and 512-bits for base field
group = InitPairingGroup(module, "SS512");
initialize the scheme
cpabe = InitScheme("abenc_bsw07",
 "CPabe_BSW07",group);
call to initialize adapters
hybae = InitAdapter("abenc_adapt_hybrid",
 "HybridABEnc",cpabe,group);
no arguments to setup
keyTupl = CallMethod(hyabe, "setup", "");
#extract master public & private keys
pkDict = GetIndex(keyTupl, 0);
mskDict = GetIndex(keyTupl, 1);
call keygen
attrlist = "[SALES, IT]";
skDict = CallMethod(hyabe,"keygen","%O%O%A",
 pkDict,mskDict,attrlist);
call encrypt
msg = "this is a test message";
policy = "(CORPORATE and (SALES or IT))";
ctDict = CallMethod(hyabe,"encrypt",%O%b%s",
 pkDict,msg,policy);
serialize object into base-64 string
ctBlob = objectToBytes(ctDict, group);
call decrypt
recmsg = CallMethod(hyabe,"decrypt","%O%O%O",
 pkDict,skDict,ctDict);
. . . free Charm_t variables . . .
tear down the Charm environment
CleanupCharm();

Figure A.1: A working example of how the API is utilized in a C application to em-
bed a hybrid encryption adapter (see Figure A.2b) for any CP-ABE scheme such as the
BSW07 [29] scheme. We provide several high-level functions that simplify using Charm
schemes. In particular, the CallMethod() encapsulates several types of arguments to Python
such as: %O for Charm objects, %s for ASCII strings, %A to convert into a Python list,
and %b to a binary object.

169

APPENDIX A. ADDITIONAL MATERIAL

def __init__(self, scheme, groupObj):
 PKSig.__init__(self)
 global ibe, group
 condition = [('secDef',IND_ID_CPA),('scheme','IBenc'),
 ('messageSpace',GT)]
 if PKSig.checkProperty(self, scheme, condition):
 # inherit properties of scheme & update definitions
 PKSig.updateProperty(self, scheme, secDef=EU_CMA,
 id=str, secModel=ROM)
 ibe = scheme; group = groupObj

def keygen(self, secparam=None):
 (mpk, msk) = ibe.setup(secparam)
 return (mpk, msk)

def sign(self, sk, m):
 return ibe.extract(sk, str(m))

def verify(self, pk, m, sig):
 if hasattr(ibe, 'verify'):
 result = ibe.verify(pk, m sig)
 if result == False: return False
 new_m = group.random(GT)
 C = ibe.encrypt(pk, sig['IDstr'], new_m)
 if ibe.decrypt(sig, C) == new_m:
 return True
 else:
 return False

IBE-to-Sig Adapter

(a) IBE-to-Sig Adapter

class HybridABEnc(ABEnc):
 def __init__(self, scheme, groupObj):
 ABEnc.__init__(self)
 global abenc, group
 # ... verify scheme properties ...
 abenc = scheme
 group = groupObj

 def setup(self):
 return abenc.setup()

 def keygen(self, pk, mk, object):
 return abenc.keygen(pk, mk, object)

 def encrypt(self, pk, M, object):
 key = group.random(GT)
 c1 = abenc.encrypt(pk, key, object)
 # init a symmetric enc scheme from this key
 cipher = AuthCryptoAbstraction(sha1(key))
 c2 = cipher.encrypt(M)
 return { 'c1':c1, 'c2':c2 }

 def decrypt(self, pk, sk, ct):
 c1, c2 = ct['c1'], ct['c2']
 key = abenc.decrypt(pk, sk, c1)
 cipher = AuthCryptoAbstraction(sha1(key))
 return cipher.decrypt(c2)

Hybrid-Enc-ABE Adapter

(b) Hybrid Enc Adapter

Figure A.2: Adapters in Charm. (a). The entire IBE to signature adapter scheme [28]. (b)
A hybrid encryptor for ABE schemes in Charm.

170

APPENDIX A. ADDITIONAL MATERIAL

 def keygen(self, secparam):
 # code for checking group setting
 g1, g2 = group.random(G, 2)
 x1, x2, y1, y2, z = group.random(ZR, 5)
 c = (g1 ** x1) * (g2 ** x2)
 d = (g1 ** y1) * (g2 ** y2)
 h = (g1 ** z)
 pk = { 'g1':g1, 'g2':g2, 'c':c, 'd':d, 'h':h }
 sk = { 'x1':x1, 'x2':x2, 'y1':y1, 'y2':y2, 'z':z }
 return (pk, sk)

CS98 Keygen Description Charm Implementation

c = g x g x , d = g y g y , h = g z

are computed. Next, a hash function H is chosen from the family
of universal one-way hash functions. The public key
is (g , g , c, d, h, H), and the private key is (x , x , y , y , z)

Keygen. The key generation algorithm runs as follows.
Random elements g , g 2 G are chosen, and random elements
x , x , y , y , z 2 Zq are also chosen. Next, group elements

1

1 1 2

2

2

1 1 122 2 21 1

1 1 2221

Figure A.3: Keygen in the Cramer-Shoup scheme [106]. We exclude group parameter
generation.

171

APPENDIX A. ADDITIONAL MATERIAL

def keygen(self):
 g = group.random(G1)
 x, y = group.random(ZR, 2)
 sk = { 'x':x, 'y':y }
 pk = { 'X':g ** x, 'Y':g ** y, 'g':g }
 return (pk, sk)

def sign(self, sk, M):
 (x, y) = sk['x'], sk['y']
 a = group.random(G2)
 m = group.hash(M, ZR)
 sig = { 'a':a, 'b':a ** y, 'c':a ** (x + (m * x * y)) }
 return sig

def verify(self, pk, M, sig):
 (a, b, c) = sig['a'], sig['b'], sig['c']
 m = group.hash(M, ZR)
 if pair(a,pk['Y']) == pair(pk['g'],b) and
 (pair(pk['X'],a) * (pair(pk['X'],b) ** m)) == pair(pk['g'],c):
 return True
 return False

CL04 Scheme Description

Keygen. The key generation algorithm runs the Setup algorithm in order to generate (q, G, g, e)

It then chooses x Zq and y Zq and sets sk = (x, y), pk = (q, G, g, e,X = gx, Y = gy)
Sign. On input message m, secret key sk = (x, y), and public key pk = (q, G, g, e,X, Y),
choose a random a 2 G, and output the signature � = (a, ay, ax+mxy)

Verify. On input pk = (q, G, g, e,X, Y), message m, and purported signature � = (a, b, c),
check that the following holds:

e(a, Y) = e(g, b) and e(X, a) · e(X, b)m = e(g, c)

Figure A.4: CL signatures [73] are a useful building block for anonymous credential sys-
tems. We provide a full scheme description and Charm code, but exclude group parameter
generation.

172

APPENDIX A. ADDITIONAL MATERIAL

A.2 Semantics of SDL

We provide a brief overview of our domain specific language and examples of how

schemes are written in it. SDL can accommodate a full description of pairing schemes

in situations where an existing implementation of a signature scheme does not exist or a

developer prefers to code their scheme directly in SDL. This information is used to in-

form AutoBatch on details needed to generate the scheme implementation and the batch

algorithm. The SDL file consists of two parts.

The first part is a full representation of the signature scheme which consists of the

descriptions of each algorithm such as keygen, sign, veri f y and a types section. This

information is used to generate executable code for the scheme either in Python or C++.

The second part is a broken down version of the verification algorithm in a form for the

AutoBatch to derive the desired batch verification algorithm. To this end, there are several

keywords used to provide context for AutoBatch. Public, signature and message keywords

are used to identify the public key variables and the signature and message variables. Addi-

tionally, the public_count keyword is used to determine whether public keys belong to the

same or different signers. The signature_count and message_count keywords describe the

number of signatures and messages expected per batch. The constants keyword describe

variables in the scheme shared by signers such as the generators of a group. Precompute

section represents computation steps necessary before each verification check. The veri f y

keyword is used to describe the verification equation as a mathematical expression. Fi-

nally, we include a block for LATEX to assist the proof generator map variables in SDL to

173

APPENDIX A. ADDITIONAL MATERIAL

equivalent LATEX representation.

Our abstract language is capable of representing a variety of programming constructs

such as dot products, for loops, summation, and boolean operators. Thus, very complex

schemes can be described using our SDL and to reflect this we provide full SDL descrip-

tions below for BLS [42], CL04 [18], HW [135], and Waters09 [57]:

name := bls
expected batch size per time
N := 100
setting := asymmetric

types for variables used in verification.
all other variable types are inferred by SDL parser
BEGIN :: types
M := Str
END :: types

description of key generation, signing, and verification algorithms
BEGIN :: func:keygen
input := None
g := random(G2)
x := random(ZR)
pk := g^x
sk := x
output := list{pk, sk, g}
END :: func:keygen

BEGIN :: func:sign
input := list{sk, M}
sig := (H(M, G1)^sk)
output := sig
END :: func:sign

BEGIN :: func:verify
input := list{pk, M, sig, g}
h := H(M, G1)
BEGIN :: if
if {e(h,pk) == e(sig,g)}

174

APPENDIX A. ADDITIONAL MATERIAL

output := True
else

output := False
END :: if
END :: func:verify

Batcher SDL input
constant := g
public := pk
signature := sig
message := h

same signer
BEGIN :: count
message_count := N
public_count := one
signature_count := N
END :: count

variables computed before each signature verification
BEGIN :: precompute
h := H(M, G1)

END :: precompute

verification equation
verify := {e(h, pk) == e(sig, g)}

The CL04 full SDL description:

name := cl04
N := 100
setting := asymmetric

BEGIN :: types
M := Str
sig := list{G2}
END :: types

BEGIN :: func:setup
input := list{None}
g := random(G1)

175

APPENDIX A. ADDITIONAL MATERIAL

output := g
END :: func:setup

BEGIN :: func:keygen
input := list{g}
x := random(ZR)
y := random(ZR)
X := g^x
Y := g^y
sk := expand{x, y}
pk := expand{X, Y}
output := list{pk, sk}
END :: func:keygen

BEGIN :: func:sign
input := list{sk, M}
sk := expand{x, y}
a := random(G2)
m := H(M, ZR)
b := a^y
c := a^(x + (m * x * y))
sig := list{a, b, c}
output := sig
END :: func:sign

BEGIN :: func:verify
input := list{pk, g, M, sig}
pk := expand{X, Y}
sig := expand{a, b, c}
m := H(M, ZR)
BEGIN :: if
if {{ e(Y, a) == e(g, b) } and { (e(X, a) * (e(X, b)^m)) == e(g, c) }}
output := True

else
output := False

END :: if
END :: func:verify

Batcher input
BEGIN :: precompute
m := H(M, ZR)
END :: precompute

176

APPENDIX A. ADDITIONAL MATERIAL

constant := g
public := pk
signature := sig
message := m

same signer
BEGIN :: count
message_count := N
public_count := one
signature_count := N
END :: count

verify := {e(Y,a) == e(g,b)} and {(e(X,a) * (e(X,b)^m)) == e(g,c)}

The HW full SDL description:

name := hw
N := 100
setting := asymmetric

BEGIN :: types
m := Str
n := ZR
i := Int
END :: types

BEGIN :: func:setup
input := list{None}
g1 := random(G1)
g2 := random(G2)
output := list{g1, g2}
END :: func:setup

BEGIN :: func:keygen
input := list{g1, g2}
a := random(ZR)
A := g2^a
u := random(G1)
v := random(G1)
d := random(G1)

177

APPENDIX A. ADDITIONAL MATERIAL

U := e(u, A)
V := e(v, A)
D := e(d, A)
w := random(ZR)
z := random(ZR)
h := random(ZR)
w1 := g1 ^ w
w2 := g2 ^ w
z1 := g1 ^ z
z2 := g2 ^ z
h1 := g1 ^ h
h2 := g2 ^ h
i := 0
pk := list{U, V, D}
spk := list{g1, w1, z1, h1, u, v, d}
vpk := list{g2, w2, z2, h2}
sk := a
output := list{i, pk, sk}
END :: func:keygen

BEGIN :: func:sign
input := list{spk, sk, i, m}
spk := expand{g1, w1, z1, h1, u, v, d}
i := i + 1
M := H(m, ZR)
r := random(ZR)
t := random(ZR)
n := ceillog(2, i)
sig1:= (((u^M)*(v^r)*d)^sk)*((w1^n)*(z1^i)*h1)^t
sig2 := g1 ^ t
sig := list{sig1, sig2, r, i}
output := sig
END :: func:sign

BEGIN :: func:verify
input := list{pk, g2, w2, z2, h2, m, sig}
pk := expand{U, V, D}
sig := expand{sig1, sig2, r, i}
M := H(m, ZR)
n := ceillog(2, i)
BEGIN :: if
if {e(sig1,g2) == ((U^M) * (V^r) * D * e(sig2,((w2^n)*((z2^i)*h2))))}

178

APPENDIX A. ADDITIONAL MATERIAL

output := True
else
output := False

END :: if
END :: func:verify

Batcher input
constant := list{g2, w2, z2, h2}
public := pk
signature := sig
message := M

BEGIN :: precompute
M := H(m, ZR)
n := ceillog(2, i)
END :: precompute

different signer
BEGIN :: count
message_count := N
public_count := N
signature_count := N
END :: count

verify := {e(sig1,g2) == ((U^M)*(V^r)*D*e(sig2,((w2^n)*((z2^i)*h2))))}

The Waters09 full SDL description:

name := waters09
N := 100
setting := asymmetric

BEGIN :: types
m := Str
END :: types

BEGIN :: func:keygen
input := None
g1 := random(G1)
g2 := random(G2)
a1 := random(ZR)

179

APPENDIX A. ADDITIONAL MATERIAL

a2 := random(ZR)
b := random(ZR)
alpha := random(ZR)
wExp := random(ZR)
hExp := random(ZR)
vExp := random(ZR)
v1Exp := random(ZR)
v2Exp := random(ZR)
uExp := random(ZR)
vG2 := g2 ^ vExp
v1G2 := g2 ^ v1Exp
v2G2 := g2 ^ v2Exp
wG1 := g1 ^ wExp
hG1 := g1 ^ hExp
w := g2 ^ wExp
h := g2 ^ hExp
uG1 := g1 ^ uExp
u := g2 ^ uExp
tau1 := vG2 * (v1G2 ^ a1)
tau2 := vG2 * (v2G2 ^ a2)
g1b := g1 ^ b
g1a1 := g1 ^ a1
g1a2 := g1 ^ a2
g1ba1 := g1 ^ (b * a1)
g1ba2 := g1 ^ (b * a2)
tau1b := tau1 ^ b
tau2b := tau2 ^ b
A := (e(g1, g2)) ^ (alpha * a1 * b)
g2AlphaA1 := g2 ^ (alpha * a1)
g2b := g2 ^ b

pk := list{g1, g2, g1b, g1a1, g1a2, g1ba1, g1ba2, tau1, tau2,
tau1b, tau2b, uG1, u, wG1, hG1, w, h, A}
sk := list{g2AlphaA1, g2b, vG2, v1G2, v2G2, alpha}
output := list{pk, sk}
END :: func:keygen

BEGIN :: func:sign
input := list{pk, sk, m}
pk := expand{g1, g2, g1b, g1a1, g1a2, g1ba1, g1ba2, tau1, tau2,
tau1b, tau2b, uG1, u, wG1, hG1, w, h, A}
sk := expand{g2AlphaA1, g2b, vG2, v1G2, v2G2, alpha}

180

APPENDIX A. ADDITIONAL MATERIAL

r1 := random(ZR)
r2 := random(ZR)
z1 := random(ZR)
z2 := random(ZR)
tagk := random(ZR)
r := r1 + r2
M := H(m, ZR)
S1 := g2AlphaA1 * (vG2 ^ r)
S2 := (g2 ^ -alpha) * (v1G2 ^ r) * (g2 ^ z1)
S3 := g2b ^ -z1
S4 := (v2G2 ^ r) * (g2 ^ z2)
S5 := g2b ^ -z2
S6 := g1b ^ r2
S7 := g1 ^ r1
SK := (((u ^ M) * (w ^ tagk)) * h)^ r1
output := list{S1, S2, S3, S4, S5, S6, S7, SK, tagk}
END :: func:sign

BEGIN :: func:verify
input := list{pk, m, sig}
pk := expand{g1, g2, g1b, g1a1, g1a2, g1ba1, g1ba2, tau1, tau2,
tau1b, tau2b, uG1, u, wG1, hG1, w, h, A}
sig := expand{S1, S2, S3, S4, S5, S6, S7, SK, tagk}
s1 := random(ZR)
s2 := random(ZR)
t := random(ZR)
tagc := random(ZR)
s := s1 + s2
M := H(m, ZR)
theta := ((tagc - tagk)^-1)
BEGIN :: if
if { (e(g1b^s,S1) * (e(g1ba1^s1,S2) * (e(g1a1^s1,S3) *

(e(g1ba2^s2,S4) * e(g1a2^s2,S5))))) == (e(S6,(tau1^s1)*(tau2^s2)) *
(e(S7,((tau1b^s1)*((tau2b^s2)*w^-t))) *
(((e(S7,((u^(M*t))*(w^(tagc*t)))*h^t) * (e(g1^-t,SK)))^theta) *
(A^s2)))) }

output := True
else
output := False

END :: if
END :: func:verify

181

APPENDIX A. ADDITIONAL MATERIAL

Batcher input
BEGIN :: precompute
s1 := random(ZR)
s2 := random(ZR)
t := random(ZR)
tagc := random(ZR)
s := s1 + s2
M := H(m, ZR)
theta := ((tagc - tagk)^-1)
END :: precompute

constant := list{g1, g2}
public := pk
signature := sig
message := M

same signer
BEGIN :: count
message_count := N
public_count := one
signature_count := N
END :: count

verify := {(e(g1b^s,S1) * (e(g1ba1^s1,S2) * (e(g1a1^s1,S3) *
(e(g1ba2^s2,S4) * e(g1a2^s2,S5))))) == (e(S6,(tau1^s1)*(tau2^s2)) *
(e(S7,((tau1b^s1)*((tau2b^s2)*w^-t))) *
(((e(S7,((u^(M*t))*(w^(tagc*t)))*h^t) * (e(g1^-t,SK)))^theta) * (A^s2))))}

A.3 Machine-Generated Batch Verification
In Figure A.5, we provide the final batch verification equations output by AutoBatch

for each of the signature schemes tested.

182

APPENDIX A. ADDITIONAL MATERIAL

Scheme Batch Verification Equation output by AutoBatch
Signatures

BLS [42] (same signer) e(
η

z=1 hδz
z , pk) ?

= e(
η

z=1 sigδz
z , g)

CHP [150] (same time period) e(
η

z=1 sigδz
z , g) ?

= e(a,
η

z=1 pkδz
z) · e(h,

η
z=1 pkbz·δz

z)
HW [135] (same signer) e(

η
z=1 σ1

δz
z , g) ?

= U
η

z=1 Mz·δz · V
η

z=1 rz·δz · D
η

z=1 δz

·e(
η

z=1 σ2
lg(iz)·δz
z ,w) · e(

η
z=1 σ2

iz·δz
z , z) · e(

η
z=1 σ2

δz
z , h)

HW [135] (different signers) e(
η

z=1 σ
δz
z,1, g) ?

=
η

z=1 Uz
Mz·δz ·

η
z=1 Vz

rz·δz

·
η

z=1 Dz
δz · e(

η
z=1 σ

δz·⌈lg(i)⌉z
z,2 ,w) · e(

η
z=1 σ

δz·iz
z,2 , z) · e(

η
z=1 σ

δz
z,2, h)

Waters09 [57] (same signer) e(g1
b,
η

z=1 σ
sz·δz
z,1) · e(g1

b·a1 ,
η

z=1 σ
sz,1·δz
z,2)

·e(g1
a1 ,
η

z=1 σ
sz,1·δz
z,3) · e(g1

b·a2 ,
η

z=1 σ
sz,2·δz
z,4)

·e(g1
a2 ,
η

z=1 σ
sz,2·δz

z,5) ?
= e(
η

z=1 σ
δz·sz,1
z,6 , τ1)

·e(
η

z=1 σ
δz·sz,2
z,6 , τ2) · e(

η
z=1 σ

δz·sz,1
z,7 , τ1

b)
·e(
η

z=1 σ
δz·sz,2
z,7 , τ2

b) · e(
η

z=1 σ
(δz·−tz+θz·δz·tagz,c·tz)
z,7 ,w)

·e(
η

z=1 σ
θz·δz·Mz·tz
z,7 , u) · e(

η
z=1 σ

θz·δz·tz
z,7 , h)

·e(g1,
η

z=1 σ
−tz·θz·δz
z,K) · A

η
z=1 sz,2·δz

CL [18] (same signer) e(g,
η

z=1 bz
δz,1 · cz

δz,2) · e(Y,
η

z=1 az
−δz,1) ?
= e(X,

η
z=1 az

δz,2 · bz
mz·δz,2)

ID-based Signatures

Hess [136] e(
η

z=1 S 2
δz
z , g2) ?

= e(
η

z=1 pkaz·δz
z , Ppub) ·

η
z=1 S 1

δz
z

ChCh [137] e(
η

z=1 S 2
δz
z , g2) ?

= e(
η

z=1(S 1z · pkaz)δz , Ppub)
Waters05 [67] e(

η
z=1 S 1

δz
z , g2) · e(

η
z=1 S 2

δz
z , ˆu1′) ·

l
i=1 e(
η

z=1 S 2
δz·ki,z
z · S 3

δz·mi,z
z , ûi)

·e(
η

z=1 S 3
δz
z , ˆu2′)

?
= e(g1, g2)

η
z=1 δz

Group, Ring, and ID-based Ring Signatures
BBS [59] e(

η
z=1 T sz,x·δz

z,3 · h(−sz,γ1−sz,γ2)·δz · g−cz·δz
1 , g2)

·e(h
η

z=1(−sz,α−sz,β)·δz ·
η

z=1 T cz·δz
z,3 ,w) ?

=
η

z=1 Rδz
z,3

Boyen [70] (same ring)
l

y=1 e(
η

z=1 S y,z
δz , Ây) · e(

η
z=1 S y,z

my,z·δz , B̂y) · e(
η

z=1 S y,z
ty,z·δz , Ĉy)

?
=
η

z=1 Dδz

CYH [160] e(
η

z=1

l
y=1 uy,z · pkhy,z

y,z
δz
, P) ?
= e(
η

z=1 S δz
z , g)

VRFs
HW VRF [19] (same signer) e(

η
z=1 g(1−x1)·δz,2

1 · U x1·δz,2
1 , Û) · e(

η
z=1 π

−δz,2
z,1 · π

δz,3
z,2 · π

(1−xz,2)·−δz,3
z,1

·π
−δz,4
z,3 · π

(1−xz,3)·−δz,4·−1
z,2 · π

−δz,5
z,4 · π

(1−xz,4)·−δz,5·−1
z,3

·π
−δz,6
z,5 · π

(1−xz,5)·−δz,6·−1
z,4 · π

−δz,7
z,6 · π

(1−xz,6)·−δz,7·−1
z,5 · π

−δz,8
z,7 · π

(1−xz,7)·−δz,8·−1
z,6

·π
−δz,9
z,8 · π

(1−xz,8)·−δz,9·−1
z,7 , g2) ?

=

e(
η

z=1 π
δz,1
z,l ,U0) ·

η
z=1 yz

δz,1 · e(
η

z=1 π
−δz,1
z,0 , g2 · h)

·e(
η

z=1 π
xz,2·δz,3
z,1 ,U2) · e(

η
z=1 π

xz,3·δz,4·−1
z,2 ,U3) · e(

η
z=1 π

xz,4·δz,5·−1
z,3 ,U4)

·e(
η

z=1 π
xz,5·δz,6·−1
z,4 ,U5) · e(

η
z=1 π

xz,6·δz,7·−1
z,5 ,U6) · e(

η
z=1 π

xz,7·δz,8·−1
z,6 ,U7)

·e(
η

z=1 π
xz,8·δz,9·−1
z,7 ,U8) for block size of 8

Combinations
ChCh + Hess e(

η
z=1 pkz

ahz·δz,1 · S c−δz,2
z,1 · pkz

acz·−δz,2 , Ppub) ·
η

z=1 S hδz,1
z,1 ·

e(
η

z=1 S h−δz,1
z,2 · S cδz,2

z,2 , g2) ?
= 1

Figure A.5: These are the final batch verification equations output by AutoBatch. Due to
space, we do not include the full schemes or further describe the elements of the signature or
our shorthand for them, such as setting h = H(M) in BLS. However, a reader could retrace
our steps by applying the techniques in Section 5.4 to the original verification equation in
the order specified in Figure 5.7. ‘Combined signatures’ refers to the combined batching
of multiple signature verification equations that share algebraic structure.

183

APPENDIX A. ADDITIONAL MATERIAL

A.4 Proof for Batch Verification of HW Signa-

tures

The following proof was automatically generated by the Batcher while processing the

HW signature scheme [135]. This execution allows signatures on different signing keys.

A.4.1 Definitions

This document contains a proof that HW.BatchVerify is a valid batch verifier for the

signature scheme HW. Let U,V,D, g,w, z, h be values drawn from the key and/or parame-

ters, and M, σ1, σ2, r, i represent a message (or message hash) and signature. The individual

verification equation HW.Verify is:

e(σ1, g) ?
= UM · Vr · D · e(σ2,w⌈lg(i)⌉ · zi · h)

Let η be the number of signatures in a batch, and δ1, . . . δη ∈

1, 2λ − 1

be a set of random

exponents chosen by the verifier. The batch verification equation HW.BatchVerify is:

e(
η

z=1

σ
δz
z,1, g) ?

=

η
z=1

Uz
Mz·δz ·

η
z=1

Vz
rz·δz ·

η
z=1

Dz
δz ·e(

η
z=1

σ
δz·⌈lg(iz)⌉
z,2 ,w)·e(

η
z=1

σ
δz·iz
z,2 , z)·e(

η
z=1

σ
δz
z,2, h)

We will now formally define a batch verifier and demonstrate that HW.BatchVerify is a

secure batch verifier for the HW signature scheme.

Theorem A.4.1. HW.BatchVerify is a batch verifier for the HW signature scheme.

184

APPENDIX A. ADDITIONAL MATERIAL

A.4.2 Proof

Proof. Via a series of steps, we will show that if HW is a secure signature scheme, then

BatchVerify is a secure batch verifier. Recall our batch verification software will perform a

group membership test to ensure that each group element of the signature is a member of the

proper subgroup, so here will we assume this fact. We begin with the original verification

equation.

e(σ1, g) ?
= UM · Vr · D · e(σ2,w⌈lg(i)⌉ · zi · h) (A.1)

Step 1: Combine η signatures (tech 1):

η
z=1

e(σz,1, g) ?
=

η
z=1

Uz
Mz · Vz

rz · Dz · e(σz,2,w⌈lg(iz)⌉ · ziz · h) (A.2)

Step 2: Apply the small exponents test, using exponents δ1, . . . δη ∈

1, 2λ − 1

:

η
z=1

e(σz,1, g)δz ?
=

η
z=1

Uz
Mz·δz ·

η
z=1

Vz
rz·δz ·

η
z=1

Dz
δz ·

η
z=1

e(σz,2,w⌈lg(iz)⌉ · ziz · h)δz (A.3)

Step 3: Move exponent(s) inside the pairing (tech 2):

η
z=1

e(σδz
z,1, g) ?

=

η
z=1

Uz
Mz·δz ·

η
z=1

Vz
rz·δz ·

η
z=1

Dz
δz ·

η
z=1

e(σδz
z,2,w

⌈lg(iz)⌉ · ziz · h) (A.4)

Step 4: Move products inside pairings to reduce η pairings to 1 (tech 3):

e(
η

z=1

σ
δz
z,1, g) ?

=

η
z=1

Uz
Mz·δz ·

η
z=1

Vz
rz·δz ·

η
z=1

Dz
δz ·

η
z=1

e(σδz
z,2,w

⌈lg(iz)⌉) · e(σδz
z,2, z

iz) · e(σδz
z,2, h)

(A.5)

Step 5: Distribute products (tech 5):

185

APPENDIX A. ADDITIONAL MATERIAL

e(
η

z=1

σ
δz
z,1, g) ?

=

η
z=1

Uz
Mz·δz ·

η
z=1

Vz
rz·δz ·

η
z=1

Dz
δz ·

η
z=1

e(σδz
z,2,w

⌈lg(iz)⌉)·
η

z=1

e(σδz
z,2, z

iz)·
η

z=1

e(σδz
z,2, h)

(A.6)

Step 6: Move products inside pairings to reduce η pairings to 1 (tech 3):

e(
η

z=1

σ
δz
z,1, g) ?

=

η
z=1

Uz
Mz·δz ·

η
z=1

Vz
rz·δz ·

η
z=1

Dz
δz ·e(

η
z=1

σ
δz·⌈lg(iz)⌉
z,2 ,w)·e(

η
z=1

σ
δz·iz
z,2 , z)·e(

η
z=1

σ
δz
z,2, h)

(A.7)

Steps 1 and 2 form the Combination Step in [51], which was proven to result in a secure

batch verifier in [51, Theorem 3.2]. We observe that the remaining steps are merely reorga-

nizing terms within the same equation. Hence, the final verification equation (A.7) is also

batch verifier for HW. �

A.5 Proof for Batch Verification of CL04 Signa-

tures

The following proof was automatically generated by the Batcher while processing the

CL04 signature scheme [18]. This execution was restricted to signatures on a single sign-

ing key.

186

APPENDIX A. ADDITIONAL MATERIAL

A.5.1 Definitions

This document contains a proof that CL04.BatchVerify is a valid batch verifier for the

signature scheme CL04. Let g be values drawn from the key and/or parameters, and a, b, c

represent a message (or message hash) and signature. The individual verification equation

CL04.Verify is:

e(Y, a) ?
= e(g, b) and e(X, a) · e(X, b)m ?

= e(g, c)

Let η be the number of signatures in a batch, and δ1,i, . . . δη,i ∈

1, 2λ − 1

where i = 2 be a

set of random exponents chosen by the verifier. The batch verification equation for CL04

is:

CL04.BatchVerify:

e(g,
η

z=1

bz
δz,1 · cz

δz,2) · e(Y,
η

z=1

az
−δz,1) ?
= e(X,

η
z=1

az
δz,2 · bz

mz·δz,2)

We will now formally define a batch verifier and demonstrate that CL04.BatchVerify is a

secure batch verifier for the CL04 signature scheme.

Theorem A.5.1. CL04.BatchVerify is a batch verifier for the CL04 signature scheme.

A.5.2 Proof

Proof. Via a series of steps, we will show that if CL04 is a secure signature scheme, then

BatchVerify is a secure batch verifier. Recall our batch verification software will perform a

group membership test to ensure that each group element of the signature is a member of the

187

APPENDIX A. ADDITIONAL MATERIAL

proper subgroup, so here will we assume this fact. We begin with the original verification

equation.

e(Y, a) ?
= e(g, b) and e(X, a) · e(X, b)m ?

= e(g, c) (A.8)

Step 1: Consolidate the verification equations (technique 0), and apply the small exponents

test as follows: For each of the z = 1 to η signatures, choose random δz,1, δz,2 ∈ [1, 2λ − 1]

and compute the equation:

e(g, b)δ1 · e(Y, a)−δ1 ?
= e(X, a)δ2 · e(X, b)m·δ2 · e(g, c)−δ2 (A.9)

Step 2: Combine η signatures (technique 1), move exponent(s) inside pairing (technique

2):
η

z=1

e(g, bz
δz,1) · e(Y, az

−δz,1) ?
=

η
z=1

e(X, az
δz,2) · e(X, bz

mz·δz,2) · e(g, cz
−δz,2) (A.10)

Step 3: Merge pairings with common first or second argument (technique 6):

η
z=1

e(g, bz
δz,1 · cz

δz,2) · e(Y, az
−δz,1) ?
=

η
z=1

e(X, az
δz,2) · e(X, bz

mz·δz,2) (A.11)

Step 4: Merge pairings with common first or second argument (technique 6):

η
z=1

e(g, bz
δz,1 · cz

δz,2) · e(Y, az
−δz,1) ?
=

η
z=1

e(X, az
δz,2 · bz

mz·δz,2) (A.12)

Step 5: Move products inside pairings to reduce η pairings to 1 (technique 3):

η
z=1

e(g, bz
δz,1 · cz

δz,2) · e(Y, az
−δz,1) ?
= e(X,

η
z=1

az
δz,2 · bz

mz·δz,2) (A.13)

Step 6: Distribute products (technique 5):

188

APPENDIX A. ADDITIONAL MATERIAL

η
z=1

e(g, bz
δz,1 · cz

δz,2) ·
η

z=1

e(Y, az
−δz,1) ?
= e(X,

η
z=1

az
δz,2 · bz

mz·δz,2) (A.14)

Step 7: Move products inside pairings to reduce η pairings to 1 (technique 3):

e(g,
η

z=1

bz
δz,1 · cz

δz,2) · e(Y,
η

z=1

az
−δz,1) ?
= e(X,

η
z=1

az
δz,2 · bz

mz·δz,2) (A.15)

Steps 1 and 2 form the Combination Step in [51], which was proven to result in a secure

batch verifier in [51, Theorem 3.2]. We observe that the remaining steps are merely reor-

ganizing terms within the same equation. Hence, the final verification equation (A.15) is

also batch verifier for CL04. �

A.6 Proof for Batch Verification of VRF

The following proof was automatically generated by the Batcher while processing the

VRF signature scheme [19]. This execution was restricted to signatures on a single signing

key.

A.6.1 Definitions

This document contains a proof that VRF.BatchVerify is a valid batch verifier for the

signature scheme VRF. Let Û,U, g1, g2, h be values drawn from the key and/or parameters,

and x, π, y represent a message (or message hash) and signature. The ℓ parameter represents

the ℓ-bit input size of VRF and varies in practice. We have shown an example of ℓ = 8 to

189

APPENDIX A. ADDITIONAL MATERIAL

simplify the proof. The individual verification equation VRF.Verify is:

e(π1, g2) ?
= e(g(1−x1)

1 · U x1
1 , Û) and e(π0, g2) ?

= e(πl,U0) and e(π0, h) ?
= y and

for t = 2 to ℓ it holds: e(πt, g2) ?
= e(π(1−xt)

t−1 , g2) · e(πxt
t−1,Ut)

Let η be the number of signatures in a batch, and δ1,i, . . . δη,i ∈

1, 2λ − 1

be a set of

random exponents chosen by the verifier. Since the input size of ℓ = 8, then i = 9. The

batch verification equation for VRF is:

VRFBatchVerify:

e(
η

z=1

g(1−x1)·δz,2
1 · U x1·δz,2

1 , Û) · e(
η

z=1

π
−δz,2
z,1 · π

δz,3
z,2 · π

(1−xz,2)·−δz,3
z,1 · π

−δz,4
z,3 · π

(1−xz,3)·δz,4
z,2

· π
−δz,5
z,4 · π

(1−xz,4)·δz,5
z,3 · π

−δz,6
z,5 · π

(1−xz,5)·δz,6
z,4 · π

−δz,7
z,6 · π

(1−xz,6)·δz,7

z,5 · π
−δz,8
z,7 · π

(1−xz,7)·δz,8
z,6

·π
−δz,9
z,8 ·π

(1−xz,8)·δz,9
z,7 , g2) ?

= e(
η

z=1

π
δz,1
z,l ,U0) ·

η
z=1

yz
δz,1 · e(

η
z=1

π
−δz,1
z,0 , g2 ·h) · e(

η
z=1

π
xz,2·δz,3
z,1 ,U2)

· e(
η

z=1

π
xz,3·−δz,4
z,2 ,U3) · e(

η
z=1

π
xz,4·−δz,5
z,3 ,U4) · e(

η
z=1

π
xz,5·−δz,6
z,4 ,U5) · e(

η
z=1

π
xz,6·−δz,7

z,5 ,U6)

· e(
η

z=1

π
xz,7·−δz,8
z,6 ,U7) · e(

η
z=1

π
xz,8·−δz,9
z,7 ,U8)

We will now formally define a batch verifier and demonstrate that VRF.BatchVerify is a

secure batch verifier for the VRF signature scheme.

Theorem A.6.1. VRF BatchVerify is a batch verifier for the VRF signature scheme.

190

APPENDIX A. ADDITIONAL MATERIAL

A.6.2 Proof

Proof. Via a series of steps, we will show that if VRF is a secure signature scheme, then

BatchVerify is a secure batch verifier. Recall our batch verification software will perform a

group membership test to ensure that each group element of the signature is a member of the

proper subgroup, so here will we assume this fact. We begin with the original verification

equation.

e(π1, g2) ?
= e(g(1−x1)

1 · U x1
1 , Û) and e(π0, g2) ?

= e(πl,U0) and e(π0, h) ?
= y and

for t = 2 to ℓ it holds: e(πt, g2) ?
= e(π(1−xt)

t−1 , g2) · e(πxt
t−1,Ut)

EQ1 Step 1: Consolidate the verification equations (tech 0), merge pairings with common

first or second argument (tech 6), and apply the small exponents test as follows: For each

of the z = 1 to η signatures, choose random δz,1, δz,2 ∈ [1, 2λ − 1] and compute the equation:

e(g(1−x1)
1 · U x1

1 , Û)δ2 · e(π1, g2)−δ2 ?
= e(πl,U0)δ1 · yδ1 · e(π0, g2 · h)−δ1 (A.16)

EQ1 Step 2:Combine η signatures (tech 1), move exponents inside pairing (tech 2):

η
z=1

e(g(1−x1)·δz,2
1 · U x1·δz,2

1 , Û) ·
η

z=1

e(π−δz,2
z,1 , g2) ?

=

η
z=1

e(πδz,1
z,l ,U0) ·

η
z=1

yz
δz,1 ·

η
z=1

e(π−δz,1
z,0 , g2 · h)

(A.17)

EQ1 Step 3: Move products inside pairings to reduce η pairings to 1 (tech 3):

e(
η

z=1

g(1−x1)·δz,2
1 · U x1·δz,2

1 , Û) · e(
η

z=1

π
−δz,2
z,1 , g2) ?

= e(
η

z=1

π
δz,1
z,l ,U0) ·

η
z=1

yz
δz,1 · e(

η
z=1

π
−δz,1
z,0 , g2 · h)

(A.18)

191

APPENDIX A. ADDITIONAL MATERIAL

EQ2 Step 4: Combine η signatures (tech 1):

for t = 2 to ℓ it holds:
η

z=1

e(πz,t, g2) ?
=

η
z=1

e(π(1−xz,t)
z,t−1 , g2) · e(πxz,t

z,t−1,Ut) (A.19)

EQ2 Step 5: Apply the small exponents test, using exponents δ1, . . . δη ∈

1, 2λ

:

for t = 2 to ℓ it holds:
η

z=1

e(πz,t, g2)δz ?
=

η
z=1

(e(π(1−xz,t)
z,t−1 , g2) · e(πxz,t

z,t−1,Ut))δz (A.20)

EQ2 Step 6: Move exponent(s) inside the pairing (tech 2):

for t = 2 to ℓ it holds:
η

z=1

e(πδz
z,t, g2) ?

=

η
z=1

e(π(1−xz,t)·δz
z,t−1 , g2) · e(πxz,t ·δz

z,t−1 ,Ut) (A.21)

EQ2 Step 7: Move products inside pairings to reduce η pairings to 1 (tech 3):

for t = 2 to ℓ it holds: e(
η

z=1

π
δz
z,t, g2) ?

=

η
z=1

e(π(1−xz,t)·δz
z,t−1 , g2) · e(πxz,t ·δz

z,t−1 ,Ut) (A.22)

EQ2 Step 8: Distribute products (tech 5):

for t = 2 to ℓ it holds: e(
η

z=1

π
δz
z,t, g2) ?

=

η
z=1

e(π(1−xz,t)·δz
z,t−1 , g2) ·

η
z=1

e(πxz,t ·δz
z,t−1 ,Ut) (A.23)

EQ2 Step 9: Move products inside pairings to reduce η pairings to 1 (tech 3):

for t = 2 to ℓ it holds: e(
η

z=1

π
δz
z,t, g2) ?

= e(
η

z=1

π
(1−xz,t)·δz
z,t−1 , g2) · e(

η
z=1

π
xz,t ·δz
z,t−1 ,Ut) (A.24)

EQ2 Step 10: Merge pairings with common first or second argument (tech 6):

for t = 2 to ℓ it holds: e(
η

z=1

π
δz
z,t · π

(1−xz,t)·−δz
z,t−1 , g2) ?

= e(
η

z=1

π
xz,t ·δz
z,t−1 ,Ut) (A.25)

EQ2 Step 11: Unrolling for loop (tech 10) and choose random δz,3, δz,9 ∈ [1, 2λ − 1] for

192

APPENDIX A. ADDITIONAL MATERIAL

each unrolled equation:

e(
η

z=1

π
δz,3
z,2 · π

(1−xz,2)·−δz,3
z,1 · π

−δz,4
z,3 · π

(1−xz,3)·δz,4
z,2 · π

−δz,5
z,4 · π

(1−xz,4)·δz,5
z,3 · π

−δz,6
z,5 · π

(1−xz,5)·δz,6
z,4

· π
−δz,7
z,6 · π

(1−xz,6)·δz,7

z,5 · π
−δz,8
z,7 · π

(1−xz,7)·δz,8
z,6 · π

−δz,9
z,8 · π

(1−xz,8)·δz,9
z,7 , g2) ?

=

e(
η

z=1

π
xz,2·δz,3
z,1 ,U2) · e(

η
z=1

π
xz,3·−δz,4
z,2 ,U3) · e(

η
z=1

π
xz,4·−δz,5
z,3 ,U4) · e(

η
z=1

π
xz,5·−δz,6
z,4 ,U5)

· e(
η

z=1

π
xz,6·−δz,7

z,5 ,U6) · e(
η

z=1

π
xz,7·−δz,8
z,6 ,U7) · e(

η
z=1

π
xz,8·−δz,9
z,7 ,U8) (A.26)

Step 12: Combine equations 1 and 2, then pairings within final equation (tech 6):

e(
η

z=1

g(1−x1)·δz,2
1 · U x1·δz,2

1 , Û) · e(
η

z=1

π
−δz,2
z,1 · π

δz,3
z,2 · π

(1−xz,2)·−δz,3
z,1 · π

−δz,4
z,3 · π

(1−xz,3)·δz,4
z,2

· π
−δz,5
z,4 · π

(1−xz,4)·δz,5
z,3 · π

−δz,6
z,5 · π

(1−xz,5)·δz,6
z,4 · π

−δz,7
z,6 · π

(1−xz,6)·δz,7

z,5 · π
−δz,8
z,7 · π

(1−xz,7)·δz,8
z,6 · π

−δz,9
z,8

· π
(1−xz,8)·δz,9
z,7 , g2) ?

= e(
η

z=1

π
δz,1
z,l ,U0) ·

η
z=1

yz
δz,1 · e(

η
z=1

π
−δz,1
z,0 , g2 · h) · e(

η
z=1

π
xz,2·δz,3
z,1 ,U2)

· e(
η

z=1

π
xz,3·−δz,4
z,2 ,U3) · e(

η
z=1

π
xz,4·−δz,5
z,3 ,U4) · e(

η
z=1

π
xz,5·−δz,6
z,4 ,U5) · e(

η
z=1

π
xz,6·−δz,7

z,5 ,U6)

· e(
η

z=1

π
xz,7·−δz,8
z,6 ,U7) · e(

η
z=1

π
xz,8·−δz,9
z,7 ,U8) (A.27)

Steps 1 and 2 form the Combination Step in [51], which was proven to result in a secure

batch verifier in [51, Theorem 3.2]. We observe that the remaining steps are merely reor-

ganizing terms within the same equation except for the application of technique 10, which

applies the small exponents test again while unrolling the loop. Hence, the final verification

equation (A.27) is also batch verifier for VRF. �

193

APPENDIX A. ADDITIONAL MATERIAL

A.7 Candidate Batch Verification for WATERS09

Signatures

The following candidate batching algorithm was automatically generated by the Batcher

while processing the WATERS09 signature scheme [57,180]. This execution was restricted

to signatures on a single signing key.

A.7.1 Definitions

Let g1, g2 be values drawn from the key and/or parameters, and

M, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σK , tagk represent a message (or message hash) and signa-

ture. Select s1, s2, t, tagc variables at random in Zq and the variables θ, A are computed as

follows: θ = 1/(tagc − tagk), A = e(g, g)α·a1·b. The individual verification equation WA-

TERS09.Verify [§6.1]1 is:

e(g1
bs, σ1) · e(g1

b·a1 s1 , σ2) · e(g1
a1 s1 , σ3) · e(g1

b·a2 s2 , σ4) · e(g1
a2 s2 , σ5) ?

=

e(σ6, τ
s1
1 · τ

s2
2) · e(σ7, τ1

bs1 · τ2
bs2 · w−t) · (e(σ7, uM·t · wtagc·t · ht) · e(g−t

1 , σK))θ · As2

Let η be the number of signatures in a batch, and δ1, . . . δη ∈ {1, 2λ − 1} be a set of random

exponents chosen by the verifier. The batch verification equation WATERS09.BatchVerify

1For simplicity, Waters [180] presents this verification equation as a series of calculations. We have
merely combined these calculations, reorganized a few terms in the verification equation and turned division
operations into multiplication.

194

APPENDIX A. ADDITIONAL MATERIAL

is:

e(g1
b,

η
z=1

σ
sz·δz
z,1) · e(g1

b·a1 ,

η
z=1

σ
sz,1·δz
z,2) · e(g1

a1 ,

η
z=1

σ
sz,1·δz
z,3) · e(g1

b·a2 ,

η
z=1

σ
sz,2·δz
z,4)

· e(g1
a2 ,

η
z=1

σ
sz,2·δz

z,5) ?
= e(

η
z=1

σ
δz·sz,1
z,6 , τ1) · e(

η
z=1

σ
δz·sz,2
z,6 , τ2) · e(

η
z=1

σ
δz·sz,1
z,7 , τ1

b)

· e(
η

z=1

σ
δz·sz,2
z,7 , τ2

b) · e(
η

z=1

σ
(δz·−tz+θz·δz·tagz,c·tz)
z,7 ,w) · e(

η
z=1

σ
θz·δz·Mz·tz
z,7 , u)

· e(
η

z=1

σ
θz·δz·tz
z,7 , h) · e(g1,

η
z=1

σ
−tz·θz·δz
z,K) · A

η
z=0 sz,2·δz

We conjecture that this scheme satisfies a relaxation of Definition 5.3.1 to allow for two-

sided negligible error; that is, where there is also a chance that a set of valid signatures will

be rejected by the Batcher.

A.7.2 How Candidate Construction was Derived

Via a series of steps, we show how the above batching algorithm was derived. We begin

with the original verification equation.

e(g1
bs, σ1) · e(g1

b·a1 s1 , σ2) · e(g1
a1 s1 , σ3) · e(g1

b·a2 s2 , σ4) · e(g1
a2 s2 , σ5) ?

=

e(σ6, τ
s1
1 · τ

s2
2) · e(σ7, τ1

bs1 · τ2
bs2 · w−t) · (e(σ7, uM·t · wtagc·t · ht) · e(g−t

1 , σK))θ · As2 (A.28)

195

APPENDIX A. ADDITIONAL MATERIAL

Step 1: Combine η signatures (tech 1):

η
z=1

e(g1
bsz , σz,1) · e(g1

b·a1 sz,1 , σz,2) · e(g1
a1 sz,1 , σz,3) · e(g1

b·a2 sz,2 , σz,4)

· e(g1
a2 sz,2 , σz,5) ?

=

η
z=1

e(σz,6, τ
sz,1
1 · τ

sz,2
2) · e(σz,7, τ1

bsz,1 · τ2
bsz,2 · w−tz)

· (e(σz,7, uMz·tz · wtagz,c·tz · htz) · e(g−tz
1 , σz,K))θz · Asz,2 (A.29)

Step 2: Apply the small exponents test, using exponents δ1, . . . δη ∈

1, 2λ − 1

:

η
z=1

(e(g1
bsz , σz,1) · e(g1

b·a1 sz,1 , σz,2) · e(g1
a1 sz,1 , σz,3) · e(g1

b·a2 sz,2 , σz,4)

· e(g1
a2 sz,2 , σz,5))δz ?

=

η
z=1

(e(σz,6, τ
sz,1
1 · τ

sz,2
2) · e(σz,7, τ1

bsz,1 · τ2
bsz,2 · w−tz)

· (e(σz,7, uMz·tz · wtagz,c·tz · htz) · e(g−tz
1 , σz,K))θz · Asz,2)δz (A.30)

Step 3: Move exponent(s) inside the pairing (tech 2):

η
z=1

e(g1
bsz·δz , σz,1) · e(g1

b·a1 sz,1·δz , σz,2) · e(g1
a1 sz,1·δz , σz,3) · e(g1

b·a2 sz,2·δz , σz,4)

· e(g1
a2 sz,2·δz , σz,5) ?

=

η
z=1

e(σδz
z,6, τ

sz,1
1 · τ

sz,2
2) · e(σδz

z,7, τ1
bsz,1 · τ2

bsz,2 · w−tz)

· e(σθz·δz
z,7 , uMz·tz · wtagz,c·tz · htz) · e(g−tz·θz·δz

1 , σz,K) · Asz,2·δz (A.31)

Step 4: Split pairings (tech 9):

196

APPENDIX A. ADDITIONAL MATERIAL

η
z=1

e(g1
bsz·δz , σz,1) · e(g1

b·a1 sz,1·δz , σz,2) · e(g1
a1 sz,1·δz , σz,3) · e(g1

b·a2 sz,2·δz , σz,4)

· e(g1
a2 sz,2·δz , σz,5) ?

=

η
z=1

e(σδz
z,6, τ

sz,1
1) · e(σδz

z,6, τ
sz,2
2) · e(σδz

z,7, τ1
bsz,1) · e(σδz

z,7, τ2
bsz,2)

· e(σδz
z,7,w

−tz) · e(σθz·δz
z,7 , uMz·tz) · e(σθz·δz

z,7 ,wtagz,c·tz) · e(σθz·δz
z,7 , htz) · e(g−tz·θz·δz

1 , σz,K) · Asz,2·δz

(A.32)

Step 5: Distribute products (tech 5):

η
z=1

e(g1
bsz·δz , σz,1) ·

η
z=1

e(g1
b·a1 sz,1·δz , σz,2) ·

η
z=1

e(g1
a1 sz,1·δz , σz,3) ·

η
z=1

e(g1
b·a2 sz,2·δz , σz,4)

·

η
z=1

e(g1
a2 sz,2·δz , σz,5) ?

=

η
z=1

e(σδz
z,6, τ

sz,1
1) ·

η
z=1

e(σδz
z,6, τ

sz,2
2) ·

η
z=1

e(σδz
z,7, τ1

bsz,1)

·

η
z=1

e(σδz
z,7, τ2

bsz,2) ·
η

z=1

e(σδz
z,7,w

−tz) ·
η

z=1

e(σθz·δz
z,7 , uMz·tz) ·

η
z=1

e(σθz·δz
z,7 ,wtagz,c·tz)

·

η
z=1

e(σθz·δz
z,7 , htz) ·

η
z=1

e(g−tz·θz·δz
1 , σz,K) ·

η
z=1

Asz,2·δz (A.33)

Step 6: Move products inside pairings to reduce η pairings to 1 (tech 3) and move product

to summation on precomputed pairing (tech 7):

e(g1
b,

η
z=1

σ
sz·δz
z,1) · e(g1

b·a1 ,

η
z=1

σ
sz,1·δz
z,2) · e(g1

a1 ,

η
z=1

σ
sz,1·δz
z,3) · e(g1

b·a2 ,

η
z=1

σ
sz,2·δz
z,4)

· e(g1
a2 ,

η
z=1

σ
sz,2·δz

z,5) ?
= e(

η
z=1

σ
δz·sz,1
z,6 , τ1) · e(

η
z=1

σ
δz·sz,2
z,6 , τ2) · e(

η
z=1

σ
δz·sz,1
z,7 , τ1

b)

· e(
η

z=1

σ
δz·sz,2
z,7 , τ2

b) · e(
η

z=1

σ
δz·−tz
z,7 ,w) · e(

η
z=1

σ
θz·δz·Mz·tz
z,7 , u) · e(

η
z=1

σ
θz·δz·tagz,c·tz
z,7 ,w)

· e(
η

z=1

σ
θz·δz·tz
z,7 , h) · e(g1,

η
z=1

σ
−tz·θz·δz
z,K) · A

η
z=0 sz,2·δz (A.34)

Step 7: Merge pairings with common first or second argument (tech 6):

197

APPENDIX A. ADDITIONAL MATERIAL

e(g1
b,

η
z=1

σ
sz·δz
z,1) · e(g1

b·a1 ,

η
z=1

σ
sz,1·δz
z,2) · e(g1

a1 ,

η
z=1

σ
sz,1·δz
z,3) · e(g1

b·a2 ,

η
z=1

σ
sz,2·δz
z,4)

· e(g1
a2 ,

η
z=1

σ
sz,2·δz

z,5) ?
= e(

η
z=1

σ
δz·sz,1
z,6 , τ1) · e(

η
z=1

σ
δz·sz,2
z,6 , τ2) · e(

η
z=1

σ
δz·sz,1
z,7 , τ1

b)

· e(
η

z=1

σ
δz·sz,2
z,7 , τ2

b) · e(
η

z=1

σ
(δz·−tz+θz·δz·tagz,c·tz)
z,7 ,w) · e(

η
z=1

σ
θz·δz·Mz·tz
z,7 , u)

· e(
η

z=1

σ
θz·δz·tz
z,7 , h) · e(g1,

η
z=1

σ
−tz·θz·δz
z,K) · A

η
z=0 sz,2·δz (A.35)

198

Bibliography

[1] D. X. Song, A. Perrig, and D. Phan, “AGVI - automatic generation, verification,

and implementation of security protocols,” in Proceedings of the 13th International

Conference on Computer Aided Verification, ser. CAV ’01. Springer-Verlag, 2001,

pp. 241–245. [Online]. Available: http://dl.acm.org/citation.cfm?id=647770.734267

[2] D. Pozza, R. Sisto, and L. Durante, “Spi2Java: Automatic cryptographic protocol

java code generation from spi calculus,” in Proceedings of the 18th International

Conference on Advanced Information Networking and Applications - Volume 2,

ser. AINA ’04. IEEE Computer Society, 2004, pp. 400–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=977394.977464

[3] S. Lucks, N. Schmoigl, and E. I. Tatli, “Issues on designing a cryptographic com-

piler,” in WEWoRC, 2005, pp. 109–122.

[4] J. Camenisch, M. Rohe, and A. Sadeghi, “Sokrates - a compiler framework for zero-

knowledge protocols,” in Proceedings of the Western European Workshop on Re-

search in Cryptology, ser. WEWoRC 2005, 2005.

199

http://dl.acm.org/citation.cfm?id=647770.734267
http://dl.acm.org/citation.cfm?id=977394.977464

BIBLIOGRAPHY

[5] M. Backes, M. Maffei, and D. Unruh, “Zero-knowledge in the applied pi-

calculus and automated verification of the direct anonymous attestation protocol,”

in Proceedings of the 2008 IEEE Symposium on Security and Privacy, ser.

SP ’08. IEEE Computer Society, 2008, pp. 202–215. [Online]. Available:

http://dx.doi.org/10.1109/SP.2008.23

[6] E. Bangerter, T. Briner, W. Henecka, S. Krenn, A.-R. Sadeghi, and T. Schneider,

“Automatic generation of sigma-protocols,” in Proceedings of the 6th European

conference on Public key infrastructures, services and applications, ser.

EuroPKI’09. Springer-Verlag, 2010, pp. 67–82. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1927830.1927838

[7] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R. Sadeghi, and

T. Schneider, “A certifying compiler for zero-knowledge proofs of knowledge based

on Σ-protocols,” in Proceedings of the 15th European conference on Research

in computer security, ser. ESORICS’10. Springer-Verlag, 2010, pp. 151–167.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1888881.1888894

[8] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya,

“ZKPDL: a language-based system for efficient zero-knowledge proofs and

electronic cash,” in Proceedings of the 19th USENIX conference on Security,

ser. USENIX Security’10. USENIX Association, 2010, pp. 13–13. [Online].

Available: http://dl.acm.org/citation.cfm?id=1929820.1929838

200

http://dx.doi.org/10.1109/SP.2008.23
http://dl.acm.org/citation.cfm?id=1927830.1927838
http://dl.acm.org/citation.cfm?id=1927830.1927838
http://dl.acm.org/citation.cfm?id=1888881.1888894
http://dl.acm.org/citation.cfm?id=1929820.1929838

BIBLIOGRAPHY

[9] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay – a secure two-party

computation system,” in Proceedings of the 13th conference on USENIX Security

Symposium - Volume 13, ser. SSYM’04. USENIX Association, 2004, pp. 20–20.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1251375.1251395

[10] W. Henecka, S. K ögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “TASTY:

tool for automating secure two-party computations,” in Proceedings of the 17th ACM

conference on Computer and communications security, ser. CCS ’10. ACM, 2010,

pp. 451–462. [Online]. Available: http://doi.acm.org/10.1145/1866307.1866358

[11] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green,

and A. D. Rubin, “Charm: a framework for rapidly prototyping cryptosystems,”

Journal of Cryptographic Engineering, vol. 3, no. 2, pp. 111–128, 2013. [Online].

Available: http://dx.doi.org/10.1007/s13389-013-0057-3

[12] D. Boneh, E. Shen, and B. Waters, “Strongly unforgeable signatures based on com-

putational Diffie-Hellman,” in PKC, 2006, pp. 229–240.

[13] J. H. An, Y. Dodis, and T. Rabin, “On the security of joint signature and encryption,”

in Advances in Cryptology – EUROCRYPT ’02, ser. Lecture Notes in Computer

Science, L. R. Knudsen, Ed., vol. 2332. Springer, 2002, pp. 83–107.

[14] R. Canetti, S. Halevi, and J. Katz, “Chosen-ciphertext security from Identity Based

Encryption,” in EUROCRYPT, vol. 3027 of LNCS, 2004, pp. 207–222.

201

http://dl.acm.org/citation.cfm?id=1251375.1251395
http://doi.acm.org/10.1145/1866307.1866358
http://dx.doi.org/10.1007/s13389-013-0057-3

BIBLIOGRAPHY

[15] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A practical and provably secure

coalition-resistant group signature scheme,” in CRYPTO ’00, vol. 1880 of LNCS,

2000, pp. 255–270.

[16] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient protocols,”

in Proceedings of the 3rd international conference on Security in communication

networks, ser. SCN. Berlin, Heidelberg: Springer-Verlag, 2003, pp. 268–289.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1766811.1766838

[17] J. A. Akinyele, M. Green, S. Hohenberger, and M. W. Pagano, “Machine-generated

algorithms, proofs and software for the batch verification of digital signature

schemes,” in Proceedings of the 2012 ACM conference on Computer and

communications security, ser. CCS ’12. New York, NY, USA: ACM, 2012, pp.

474–487. [Online]. Available: http://doi.acm.org/10.1145/2382196.2382248

[18] J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous credentials

from bilinear maps,” in CRYPTO, vol. 3152 of LNCS. Springer, 2004, pp. 56–72.

[19] S. Hohenberger and B. Waters, “Constructing verifiable random functions with

large input spaces,” in Proceedings of the 29th Annual international conference

on Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’10.

Berlin, Heidelberg: Springer-Verlag, 2010, pp. 656–672. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-13190-5_33

[20] J. A. Akinyele, M. Green, and S. Hohenberger, “Using SMT solvers to

202

http://dl.acm.org/citation.cfm?id=1766811.1766838
http://doi.acm.org/10.1145/2382196.2382248
http://dx.doi.org/10.1007/978-3-642-13190-5_33

BIBLIOGRAPHY

automate design tasks for encryption and signature schemes,” in Proceedings

of the 2013 ACM conference on Computer and communications security, ser.

CCS ’13. Berlin, Germany: ACM, 2013, pp. 399–410. [Online]. Available:

http://dx.doi.org/10.1145/2508859.2516718

[21] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure

against adaptive chosen-message attacks,” SIAM J. Computing, vol. 17(2), 1988.

[22] A. Shamir, “Identity-based cryptosystems and signature schemes,” in CRYPTO,

1984, pp. 47–53.

[23] D. Chaum and E. van Heyst, “Group signatures,” in EUROCRYPT, 1991, pp. 257–

265.

[24] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in ASIACRYPT,

2001, pp. 552–565.

[25] S. Micali, M. O. Rabin, and S. P. Vadhan, “Verifiable random functions,” in FOCS,

1999, pp. 120–130.

[26] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo,

“Constant-size structure-preserving signatures: Generic constructions and simple

assumptions,” Cryptology ePrint Archive, Report 2012/285, 2012, http://eprint.iacr.

org/.

203

http://dx.doi.org/10.1145/2508859.2516718
http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY

[27] J. Groth and A. Sahai, “Efficient non-interactive proof systems for bilinear groups,”

in EUROCRYPT, vol. 4965 of LNCS. Springer, 2008, pp. 415–432.

[28] D. Boneh and M. K. Franklin, “Identity-based encryption from the Weil Pairing,” in

CRYPTO, vol. 2139 of LNCS, 2001, pp. 213–229.

[29] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy Attribute-Based Encryp-

tion,” in Proceedings of the 2007 IEEE Symposium on Security and Privacy. IEEE

Computer Society, 2007, pp. 321–334.

[30] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, efficient,

and provably secure realization,” Cryptology ePrint Archive, Report 2008/290, 2008,

http://eprint.iacr.org/.

[31] A. Lewko and B. Waters, “Decentralizing attribute-based encryption,” in EURO-

CRYPT, K. G. Patterson, Ed., vol. 6632 of LNCS. Springer, 2011, pp. 568–588,

http://eprint.iacr.org/.

[32] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in EUROCRYPT, 2005,

pp. 457–473.

[33] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast encryption with

short ciphertexts and private keys,” in CRYPTO’05, 2005, pp. 258–275.

[34] L. De Moura and N. Bjørner, “Z3: an efficient smt solver,” in Proceedings of the

Theory and practice of Software, ser. TACAS’08/ETAPS’08, 2008, pp. 337–340.

204

http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY

[35] L. Moura and G. O. Passmore, “The strategy challenge in SMT solving,” in Auto-

mated Reasoning and Mathematics, 2013, vol. 7788, pp. 15–44.

[36] M. Barnett, K. R. M. Leino, and W. Schulte, “The spec# programming system: An

overview.” Springer, 2004, pp. 49–69.

[37] R. DeLine, K. Rustan, and M. Leino, “Boogie pl: A typed procedural language for

checking object-oriented programs,” Technical Report MSR-TR-2005-70.

[38] Wolfram, “Mathematica, version 9,” http://www.wolfram.com/mathematica/.

[39] M. Bellare and S. Shoup, “Two-tier signatures, strongly unforgeable signatures, and

fiat-shamir without random oracles,” in PKC, 2007, pp. 201–216.

[40] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-Béguelin, “Computer-aided

security proofs for the working cryptographer,” in Advances in Cryptology –

CRYPTO 2011, ser. Lecture Notes in Computer Science, vol. 6841. Springer, 2011,

pp. 71–90. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-22792-9_5

[41] B. Blanchet, “CryptoVerif: A computationally sound mechanized prover for cryp-

tographic protocols,” in Dagstuhl seminar "Formal Protocol Verification Applied",

Oct. 2007.

[42] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” Jour-

nal of Cryptology, vol. 17(4), pp. 297–319, 2004.

205

http://www.wolfram.com/mathematica/
http://dx.doi.org/10.1007/978-3-642-22792-9_5

BIBLIOGRAPHY

[43] A. Fiat, “Batch RSA,” in Advances in Cryptology – CRYPTO ’89, vol. 435, 1989,

pp. 175–185.

[44] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb.

1978. [Online]. Available: http://doi.acm.org/10.1145/359340.359342

[45] NIST, “Digital Signature Standard (DSS),” Federal Information Processing Stan-

dards Publication 186, May 1994.

[46] C. Boyd and C. Pavlovski, “Attacking and repairing batch verification schemes,” in

Advances in Cryptology – ASIACRYPT ’00, vol. 1976, 2000, pp. 58–71.

[47] M.-S. Hwang, C.-C. Lee, and Y.-L. Tang, “Two simple batch verifying multiple

digital signatures,” in 3rd Information and Communications Security (ICICS), 2001,

pp. 233–237.

[48] M.-S. Hwang, I.-C. Lin, and K.-F. Hwang, “Cryptanalysis of the batch verifying

multiple RSA digital signatures,” Informatica, Lithuanian Academy of Sciences,

vol. 11, no. 1, pp. 15–19, 2000.

[49] T. Cao, D. Lin, and R. Xue, “Security analysis of some batch verifying signatures

from pairings,” International Journal of Network Security, vol. 3, no. 2, pp. 138–143,

2006.

206

http://doi.acm.org/10.1145/359340.359342

BIBLIOGRAPHY

[50] M. Stanek, “Attacking LCCC batch verification of RSA signatures,” 2006, cryptol-

ogy ePrint Archive: Report 2006/111.

[51] A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen, “Practical short sig-

nature batch verification,” in CT-RSA, vol. 5473 of LNCS, 2009, pp. 309–324.

[52] M. Bellare, J. A. Garay, and T. Rabin, “Fast batch verification for modular exponen-

tiation and digital signatures,” in EUROCRYPT ’98, vol. 1403 of LNCS. Springer,

1998, pp. 236–250.

[53] B. Waters, “Dual system encryption: Realizing fully secure ibe and hibe under sim-

ple assumptions,” in CRYPTO, 2009, pp. 619–636.

[54] L. Law and B. J. Matt, “Finding invalid signatures in pairing-based batches,” in

Cryptography and Coding, vol. 4887 of LNCS, 2007, pp. 34–53.

[55] S. Galbraith, K. Paterson, and N. Smart, “Pairings for cryptographers,” Cryptology

ePrint Archive, Report 2006/165, 2006, http://eprint.iacr.org/2006/165.

[56] S. C. Ramanna, S. Chatterjee, and P. Sarkar, “Variants of Waters’ dual system primi-

tives using asymmetric pairings - (extended abstract),” in Public Key Cryptography,

2012, pp. 298–315.

[57] B. Waters, “Dual System Encryption: Realizing Fully Secure IBE and HIBE under

Simple Assumptions,” in CRYPTO, 2009, pp. 619–636.

207

http://eprint.iacr.org/2006/165

BIBLIOGRAPHY

[58] D. Dolev, C. Dwork, and M. Naor, “Nonmalleable cryptography,” SIAM J. Comput.,

vol. 30, no. 2, pp. 391–437, 2000.

[59] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in CRYPTO, vol.

3152 of LNCS, 2004, pp. 45–55.

[60] G. Lowe, “Casper: a compiler for the analysis of security protocols,” J.

Comput. Secur., vol. 6, no. 1-2, pp. 53–84, Jan. 1998. [Online]. Available:

http://dl.acm.org/citation.cfm?id=353677.353680

[61] S. Kiyomoto, H. Ota, and T. Tanaka, “A security protocol compiler generating C

source codes,” in Proceedings of the 2008 International Conference on Information

Security and Assurance (isa 2008), ser. ISA ’08. IEEE Computer Society, 2008,

pp. 20–25. [Online]. Available: http://dx.doi.org/10.1109/ISA.2008.13

[62] J. Bacelar Almeida, M. Barbosa, E. Bangerter, G. Barthe, S. Krenn, and

S. Zanella Béguelin, “Full proof cryptography: verifiable compilation of efficient

zero-knowledge protocols,” in Proceedings of the 2012 ACM conference on

Computer and communications security, ser. CCS ’12. ACM, 2012, pp. 488–500.

[Online]. Available: http://doi.acm.org/10.1145/2382196.2382249

[63] C. Fournet, M. Kohlweiss, G. Danezis, and Z. Luo, “ZQL: A compiler for privacy-

preserving data processing,” in Proceedings of the 13th conference on USENIX

Security Symposium - Volume 13, ser. SSYM’04. USENIX Association, 2004, pp.

20–20. [Online]. Available: http://dl.acm.org/citation.cfm?id=1251375.1251395

208

http://dl.acm.org/citation.cfm?id=353677.353680
http://dx.doi.org/10.1109/ISA.2008.13
http://doi.acm.org/10.1145/2382196.2382249
http://dl.acm.org/citation.cfm?id=1251375.1251395

BIBLIOGRAPHY

[64] P. MacKenzie, A. Oprea, and M. K. Reiter, “Automatic generation of two-party

computations,” in Proceedings of the 10th ACM conference on Computer and

communications security, ser. CCS ’03. ACM, 2003, pp. 210–219. [Online].

Available: http://doi.acm.org/10.1145/948109.948139

[65] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for secure

multi-party computation,” in Proceedings of the 15th ACM conference on Computer

and communications security, ser. CCS ’08. New York, NY, USA: ACM, 2008,

pp. 257–266. [Online]. Available: http://doi.acm.org/10.1145/1455770.1455804

[66] D. Boneh and X. Boyen, “Efficient selective-ID secure Identity-Based Encryption

without random oracles.” in EUROCRYPT, vol. 3027 of LNCS, 2004, pp. 223–238.

[67] B. Waters, “Efficient Identity-Based Encryption without random oracles,” in EURO-

CRYPT, vol. 3494 of LNCS, 2005, pp. 114–127.

[68] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy, “Blind and anonymous

identity-based encryption and authorised private searches on public key encrypted

data,” in PKC, ser. Irvine. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 196–214.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-00468-1_12

[69] A. Lewko, A. Sahai, and B. Waters, “Revocation systems with very small private

keys,” in Proceedings of the IEEE Symposium on Security and Privacy, ser. SP.

Washington, DC, USA: IEEE Computer Society, 2010, pp. 273–285. [Online].

Available: http://dx.doi.org/10.1109/SP.2010.23

209

http://doi.acm.org/10.1145/948109.948139
http://doi.acm.org/10.1145/1455770.1455804
http://dx.doi.org/10.1007/978-3-642-00468-1_12
http://dx.doi.org/10.1109/SP.2010.23

BIBLIOGRAPHY

[70] X. Boyen, “Mesh signatures: How to leak a secret with unwitting and unwilling

participants,” in EUROCRYPT, volume 4515 of LNCS. Springer, 2007, pp. 210–

227.

[71] S. S. M. Chow, S. M. Yiu, and L. C. K. Hui, “Efficient identity based ring signature,”

in Applied Crypto And Network Security - ACNS, LNCS 3531. Springer, 2005, pp.

499–512.

[72] J. Camenisch and J. Groth, “Group signatures: Better efficiency and new

theoretical aspects,” in Security in Communication Networks, ser. Lecture

Notes in Computer Science, C. Blundo and S. Cimato, Eds., vol. 3352.

Springer Berlin Heidelberg, 2005, pp. 120–133. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-540-30598-9_9

[73] J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous credentials

from bilinear maps.” Springer-Verlag, 2004, pp. 56–72.

[74] S. Meiklejohn, K. Mowery, S. Checkoway, and H. Shacham, “The phantom

tollbooth: privacy-preserving electronic toll collection in the presence of driver

collusion,” in Proceedings of the 20th USENIX conference on Security, ser. SEC.

Berkeley, CA, USA: USENIX Association, 2011, pp. 32–32. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2028067.2028099

[75] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman, “Telex: Anticensorship

210

http://dx.doi.org/10.1007/978-3-540-30598-9_9
http://dx.doi.org/10.1007/978-3-540-30598-9_9
http://dl.acm.org/citation.cfm?id=2028067.2028099

BIBLIOGRAPHY

in the network infrastructure,” in Proceedings of the 20th USENIX Security Sympo-

sium, Aug. 2011.

[76] J. Bethencourt, D. Song, and B. Waters, “Analysis-resistant malware,” in NDSS,

2008.

[77] The OpenSSL Project, “OpenSSL: The open source toolkit for SSL/TLS,” April

2010, www.openssl.org.

[78] B. Lynn, “The Stanford Pairing Based Crypto Library,” Available from http://crypto.

stanford.edu/pbc.

[79] J. Bethencourt, “Libpaillier,” July 2006.

[80] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya, “ZKPDL:

a language-based system for efficient zero-knowledge proofs and electronic cash,”

in Proceedings of the 19th USENIX conference on Security, ser. USENIX Security.

Berkeley, CA, USA: USENIX Association, 2010, pp. 13–13. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1929820.1929838

[81] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R. Sadeghi, and T. Schneider,

“A certifying compiler for zero-knowledge proofs of knowledge based on Σ-

protocols,” in Proceedings of the 15th European conference on Research in computer

security, ser. ESORICS. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 151–167.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1888881.1888894

211

www.openssl.org
http://crypto.stanford.edu/pbc
http://crypto.stanford.edu/pbc
http://portal.acm.org/citation.cfm?id=1929820.1929838
http://portal.acm.org/citation.cfm?id=1888881.1888894

BIBLIOGRAPHY

[82] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - a secure two-party compu-

tation system,” in Proceedings of the 13th USENIX Security Symposium. Berkeley,

CA, USA: USENIX Association, 2004, pp. 287–302.

[83] W. Henecka, S. K ögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,

“Tasty: tool for automating secure two-party computations,” in Proceedings

of the 17th ACM conference on Computer and communications security, ser.

CCS. New York, NY, USA: ACM, 2010, pp. 451–462. [Online]. Available:

http://doi.acm.org/10.1145/1866307.1866358

[84] B. Laurie and B. Clifford, “The Stupid programming language,” Source code avail-

able at http://code.google.com/p/stupid-crypto/.

[85] J. R. Lewis and B. Martin, “CRYPTOL: High Assurance, Retargetable Crypto

Development and Validation,” Available from http://www.galois.com/files/Cryptol_

Whitepaper.pdf, October 2003.

[86] W. Stein et al., Sage Mathematics Software (Version 5.0.1), The Sage Development

Team, YYYY, http://www.sagemath.org.

[87] M. Scott, “MIRACL library,” indigo Software. http://indigo.ie/∼mscott/#download.

[88] J. A. Akinyele, M. Green, and A. Rubin, “Charm-crypto framework,” http://eprint.

iacr.org/2011/617.

212

http://doi.acm.org/10.1145/1866307.1866358
http://code.google.com/p/stupid-crypto/
http://www.galois.com/files/Cryptol_Whitepaper.pdf
http://www.galois.com/files/Cryptol_Whitepaper.pdf
http://eprint.iacr.org/2011/617
http://eprint.iacr.org/2011/617

BIBLIOGRAPHY

[89] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient Library for Cryptography,”

http://code.google.com/p/relic-toolkit/.

[90] T. Acar, M. Belenkiy, M. Bellare, and D. Cash, “Cryptographic agility and its rela-

tion to circular encryption,” in EUROCRYPT, 2010.

[91] X. Wang and H. Yu, “How to break md5 and other hash functions,” in In EURO-

CRYPT. Springer-Verlag, 2005.

[92] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,” in Proceedings

of Crypto. Springer, 2005, pp. 17–36.

[93] T. Acar, C. Fournet, and D. Shumow, “Design and veriïňĄcation of a crypto-agile

distributed key manager,” 2011. [Online]. Available: http://research.microsoft.com/

en-us/um/people/fournet/dkm/dkm-design-and-verification-draft.pdf

[94] O. Regev, “Lattice-based cryptography,” in Advances in Cryptology - CRYPTO

2006, ser. Lecture Notes in Computer Science, C. Dwork, Ed., vol. 4117.

Springer Berlin Heidelberg, 2006, pp. 131–141. [Online]. Available: http:

//dx.doi.org/10.1007/11818175_8

[95] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,” in SIAM Journal

on Computing, 2000, pp. 542–552.

[96] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but

their validity or all languages in np have zero-knowledge proof systems,”

213

http://code.google.com/p/relic-toolkit/
http://research.microsoft.com/en-us/um/people/fournet/dkm/dkm-design-and-verification-draft.pdf
http://research.microsoft.com/en-us/um/people/fournet/dkm/dkm-design-and-verification-draft.pdf
http://dx.doi.org/10.1007/11818175_8
http://dx.doi.org/10.1007/11818175_8

BIBLIOGRAPHY

J. ACM, vol. 38, no. 3, pp. 690–728, Jul. 1991. [Online]. Available:

http://doi.acm.org/10.1145/116825.116852

[97] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of computer and

system sciences, vol. 28, no. 2, pp. 270–299, 1984.

[98] M. Naor and M. Yung, “Public-key cryptosystems provably secure against chosen

ciphertext attacks,” in Proceedings of the twenty-second annual ACM symposium on

Theory of computing. ACM, 1990, pp. 427–437.

[99] M. Bellare and P. Rogaway, “The Exact Security of Digital Signatures - How to Sign

with RSA and Rabin,” in EUROCRYPT ’96, vol. 1070 of LNCS. Springer, 1996,

pp. 399–416.

[100] GNU, “The GNU Multiple Precision Arithmetic Library,” Available from http:

//www.gmplib.org.

[101] D. C. Litzenberger, “PyCrypto - The Python Cryptography Toolkit,” Available at

http://www.dlitz.net/software/pycrypto/.

[102] J. Camenisch and E. Van Herreweghen, “Design and implementation of the idemix

anonymous credential system,” in Proceedings of the 9th ACM conference on

Computer and communications security, ser. CCS. New York, NY, USA: ACM,

2002, pp. 21–30. [Online]. Available: http://doi.acm.org/10.1145/586110.586114

[103] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation,” in

214

http://doi.acm.org/10.1145/116825.116852
http://www.gmplib.org
http://www.gmplib.org
http://www.dlitz.net/software/pycrypto/
http://doi.acm.org/10.1145/586110.586114

BIBLIOGRAPHY

Proceedings of the 11th ACM conference on Computer and communications

security, ser. CCS. New York, NY, USA: ACM, 2004, pp. 132–145. [Online].

Available: http://doi.acm.org/10.1145/1030083.1030103

[104] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification

and signature problems,” in CRYPTO, vol. 263 of LNCS, 1986, pp. 186–194.

[105] J. Camenisch and M. Stadler, “Efficient group signature schemes for large groups,”

in CRYPTO, vol. 1296 of LNCS, 1997, pp. 410–424.

[106] R. Cramer and V. Shoup, “A practical public key cryptosystem provably secure

against adaptive chosen ciphertext attack,” in CRYPTO. London, UK: Springer,

1998, pp. 13–25.

[107] G. Condra, “pypbc,” Available from http://www.gitorious.org/pypbc.

[108] T. S. Denis, “LibTomCrypt Project,” Available at http://libtom.org.

[109] T. El Gamal, “A public key cryptosystem and a signature scheme based on discrete

logarithms,” in Proceedings of Crypto, 1984, pp. 10–18.

[110] M. Bellare and P. Rogaway, “Optimal asymmetric encryption padding — how to

encrypt with rsa,” in EUROCRYPT, 1994, pp. 92–111.

[111] G. Blakley, D. Chaum, and T. ElGamal, A Public Key Cryptosystem and a Signature

Scheme Based on Discrete Logarithms. Springer Berlin / Heidelberg, 1985, vol.

196, pp. 10–18. [Online]. Available: http://dx.doi.org/10.1007/3-540-39568-7_2

215

http://doi.acm.org/10.1145/1030083.1030103
http://www.gitorious.org/pypbc
http://libtom.org
http://dx.doi.org/10.1007/3-540-39568-7_2

BIBLIOGRAPHY

[112] J. Stern and P. Paillier, Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. Springer Berlin / Heidelberg, 1999, vol. 1592, pp. 223–238.

[Online]. Available: http://dx.doi.org/10.1007/3-540-48910-X_16

[113] B. Waters, “Functional encryption for regular languages,” in Advances in Cryptology

âĂŞ CRYPTO 2012, ser. Lecture Notes in Computer Science, R. Safavi-Naini and

R. Canetti, Eds., vol. 7417. Springer Berlin Heidelberg, 2012, pp. 218–235.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-32009-5_14

[114] V. Iovino and G. Persiano, “Hidden-vector encryption with groups of prime order,”

in Proceedings of the 2nd international conference on Pairing-Based Cryptography,

ser. Pairing ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 75–88. [Online].

Available: http://dx.doi.org/10.1007/978-3-540-85538-5_5

[115] G. Brassard and C. Schnorr, Efficient Identification and Signatures for Smart Cards.

Springer Berlin / Heidelberg, 1990, vol. 435, pp. 239–252. [Online]. Available:

http://dx.doi.org/10.1007/0-387-34805-0_22

[116] S. Hohenberger and B. Waters, “Realizing hash-and-sign signatures under standard

assumptions,” in Advances in Cryptology – EUROCRYPT, 2009.

[117] J. Camenisch, S. Hohenberger, and M. ÃŸstergaard Pedersen, “Batch verification

of short signatures,” in EUROCRYPT, volume 4515 of LNCS. Springer, 2007, pp.

246–263.

216

http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-32009-5_14
http://dx.doi.org/10.1007/978-3-540-85538-5_5
http://dx.doi.org/10.1007/0-387-34805-0_22

BIBLIOGRAPHY

[118] F. Hess, “Efficient identity based signature schemes based on pairings,” in SAC,

LNCS 2595. Springer-Verlag, 2002, pp. 310–324.

[119] J. C. Cha and J. H. Cheon, “An identity-based signature from gap diffie-hellman

groups,” in PKC. Springer-Verlag, LNCS 2139, 2003, pp. 18–30.

[120] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil Pairing,” in

ASIACRYPT, vol. 2248 of LNCS, 2001, pp. 514–532.

[121] J. Camenisch and A. Lysyanskaya, “An efficient system for non-transferable anony-

mous credentials with optional anonymity revocation,” in EUROCRYPT, vol. 2045

of LNCS. Springer, 2001, pp. 93–118.

[122] J. Camenisch, G. Neven, and abhi shelat, “Simulatable adaptive oblivious transfer,”

in EUROCRYPT, vol. 4515 of LNCS, 2007, pp. 573–590.

[123] E. Bangerter, J. Camenisch, S. Krenn, A.-R. Sadeghi, and T. Schneider, “Automatic

generation of sound zero-knowledge protocols,” Cryptology ePrint Archive, Report

2008/471, 2008, http://eprint.iacr.org/.

[124] “The Advanced Crypto Software Collection,” http://acsc.cs.utexas.edu/.

[125] Y. Rouselakis and B. Waters, “Practical constructions and new proof methods

for large universe attribute-based encryption,” in Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security, ser. CCS

217

http://eprint.iacr.org/
http://acsc.cs.utexas.edu/

BIBLIOGRAPHY

’13. New York, NY, USA: ACM, 2013, pp. 463–474. [Online]. Available:

http://doi.acm.org/10.1145/2508859.2516672

[126] J. B. Lacy, “CryptoLib: Cryptography in software,” USENIX Security Conference

IV, pp. 1–18, 1993.

[127] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new crypto-

graphic library,” in Progress in Cryptology – LATINCRYPT, ser. Lecture Notes in

Computer Science, A. Hevia and G. Neven, Eds., vol. to appear. Springer-Verlag

Berlin Heidelberg, 2012, document ID: 5f6fc69cc5a319aecba43760c56fab04, http:

//cryptojedi.org/papers/#coolnacl.

[128] E. Bangerter, S. Barzan, A. Sadeghi, T. Schneider, and J. Tsay, “Bringing zero-

knowledge proofs of knowledge to practice,” 17th International Workshop on Secu-

rity Protocols, 2009.

[129] D. Freeman, “Converting pairing-based cryptosystems from composite-order groups

to prime-order groups.” in EUROCRYPT, 29th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, 2010, pp. 44–61.

[130] A. B. Lewko, “Tools for simulating features of composite order bilinear groups in

the prime order setting,” IACR Cryptology ePrint Archive, vol. 2011, p. 490, 2011.

[131] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings

of the 41st annual ACM symposium on Theory of computing, ser. STOC.

218

http://doi.acm.org/10.1145/2508859.2516672
http://cryptojedi.org/papers/#coolnacl
http://cryptojedi.org/papers/#coolnacl

BIBLIOGRAPHY

New York, NY, USA: ACM, 2009, pp. 169–178. [Online]. Available: http:

//doi.acm.org/10.1145/1536414.1536440

[132] M. Dufour, “Shedskin,” Available from http://code.google.com/p/shedskin, July

2009.

[133] Car 2 Car, “Communication consortium,” http://car-to-car.org.

[134] SeVeCom, “Security on the road,” http://www.sevecom.org.

[135] S. Hohenberger and B. Waters, “Realizing hash-and-sign signatures under standard

assumptions,” in EUROCRYPT, 2009, pp. 333–350.

[136] F. Hess, “Efficient identity based signature schemes based on pairings,” in Selected

Areas in Cryptography, vol. 2595 of LNCS. Springer, 2002, pp. 310–324.

[137] J. C. Cha and J. H. Cheon, “An identity-based signature from gap Diffie-Hellman

groups,” in PKC ’03, vol. 2567 of LNCS. Springer, 2003, pp. 18–30.

[138] J. A. Akinyele, M. Green, S. Hohenberger, and M. W. Pagano, “Machine-generated

algorithms, proofs and software for the batch verification of digital signature

schemes,” Cryptology ePrint Archive, Report 2013/175, 2013, http://eprint.iacr.org/.

[139] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient Library for Cryptography,”

http://code.google.com/p/relic-toolkit/.

[140] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-aided security

proofs for the working cryptographer,” in CRYPTO, 2011, pp. 71–90.

219

http://doi.acm.org/10.1145/1536414.1536440
http://doi.acm.org/10.1145/1536414.1536440
http://code.google.com/p/shedskin
http://car-to-car.org
http://www.sevecom.org
http://eprint.iacr.org/
http://code.google.com/p/relic-toolkit/

BIBLIOGRAPHY

[141] D. Naccache, D. M’Raïhi, S. Vaudenay, and D. Raphaeli, “Can DSA be improved?

complexity trade-offs with the digital signature standard,” in Advances in Cryptology

– EUROCRYPT ’94, vol. 950, 1994, pp. 77–85.

[142] C. Lim and P. Lee, “Security of interactive DSA batch verification,” in Electronics

Letters, vol. 30(19), 1994, pp. 1592–1593.

[143] C.-S. Laih and S.-M. Yen, “Improved digital signature suitable for batch verifica-

tion,” IEEE Transactions on Computers, vol. 44, no. 7, pp. 957–959, 1995.

[144] L. Harn, “Batch verifying multiple DSA digital signatures,” Electronics Letters, vol.

34(9), pp. 870–871, 1998.

[145] ——, “Batch verifying multiple RSA digital signatures,” Electronics Letters, vol.

34(12), pp. 1219–1220, 1998.

[146] H. Yoon, J. H. Cheon, and Y. Kim, “Batch verifications with ID-based signatures,”

in ICISC, ser. Lecture Notes in Computer Science, 2004, pp. 233–248.

[147] F. Zhang and K. Kim, “Efficient ID-based blind signature and proxy signature from

bilinear pairings,” in 8th Information Security and Privacy, Australasian Conference

(ACISP), vol. 2727, 2003, pp. 312–323.

[148] F. Zhang, R. Safavi-Naini, and W. Susilo, “Efficient verifiably encrypted signature

and partially blind signature from bilinear pairings,” in Progress in Cryptology –

INDOCRYPT ’03, vol. 2904, 2003, pp. 191–204.

220

BIBLIOGRAPHY

[149] S. Lee, S. Cho, J. Choi, and Y. Cho, “Efficient identification of bad signatures in

RSA-type batch signature,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. E89-A, no. 1, pp. 74–80, 2006.

[150] J. Camenisch, S. Hohenberger, and M. Ø. Pedersen, “Batch verification of short

signatures,” in EUROCRYPT ’07, vol. 4515 of LNCS. Springer, 2007, pp. 246–

263, full version at http://eprint.iacr.org/2007/172.

[151] H. Shacham and D. Boneh, “Improving SSL handshake performance via batching,”

in Cryptographer’s Track at RSA Conference ’01, vol. 2020, 2001, pp. 28–43.

[152] O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, H. Sibert, and D. Vergnaud,

“Batch groth-sahai,” in ACNS ’10. Springer, 2010, pp. 218–235.

[153] B. J. Matt, “Identification of multiple invalid signatures in pairing-based batched

signatures,” in Public Key Cryptography, 2009, pp. 337–356.

[154] ——, “Identification of multiple invalid pairing-based signatures in constrained

batches,” in Pairing, 2010, pp. 78–95.

[155] M. Barbosa, A. Moss, and D. Page, “Compiler assisted elliptic curve cryptography,”

in Proceedings of the 2007 OTM confederated international conference on On the

move to meaningful internet systems: CoopIS, DOA, ODBASE, GADA, and IS -

Volume Part II, ser. OTM’07. Springer-Verlag, 2007, pp. 1785–1802. [Online].

Available: http://dl.acm.org/citation.cfm?id=1784707.1784769

221

http://eprint.iacr.org/2007/172.
http://dl.acm.org/citation.cfm?id=1784707.1784769

BIBLIOGRAPHY

[156] L. J. D. Perez and M. Scott, “Designing a code generator for pairing based

cryptographic functions,” in Proceedings of the 4th international conference on

Pairing-based cryptography, ser. Pairing’10. Springer-Verlag, 2010, pp. 207–224.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1948966.1948987

[157] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass, “Universally composable protocols

with relaxed set-up assumptions,” in FOCS. IEEE Computer Society, 2004, pp.

186–195.

[158] D. Naccache, “Secure and practical identity-based encryption,” 2005, cryptology

ePrint Archive: Report 2005/369.

[159] S. Chatterjee and P. Sarkar, “HIBE with short public parameters without random

oracle,” in ASIACRYPT ’06, vol. 4284 of LNCS, 2006, pp. 145–160.

[160] S. S. M. Chow, S.-M. Yiu, and L. C. Hui, “Efficient identity based ring signature,”

in ACNS, vol. 3531 of LNCS, 2005, pp. 499–512.

[161] G. M. Zaverucha and D. R. Stinson, “Group testing and batch verification,”

in Proceedings of the 4th international conference on Information theoretic

security, ser. ICITS’09. Springer-Verlag, 2010, pp. 140–157. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1880513.1880531

[162] J. A. Akinyele, M. Green, S. Hohenberger, and M. W. Pagano, “AutoBatch Toolkit,”

https://github.com/jhuisi/auto-tools.

222

http://dl.acm.org/citation.cfm?id=1948966.1948987
http://dl.acm.org/citation.cfm?id=1880513.1880531
https://github.com/jhuisi/auto-tools

BIBLIOGRAPHY

[163] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptographers,”

2006, cryptology ePrint Archive: Report 2006/165.

[164] I. Teranishi, T. Oyama, and W. Ogata, “General conversion for obtaining strongly

existentially unforgeable signatures,” in INDOCRYPT, 2006, pp. 191–205.

[165] Q. Huang, D. S. Wong, and Y. Zhao, “Generic transformation to strongly unforge-

able signatures,” in ACNS, 2007, pp. 1–17.

[166] R. Steinfeld, J. Pieprzyk, and H. Wang, “How to strengthen any weakly unforgeable

signature into a strongly unforgeable signature,” in CT-RSA, 2007, pp. 357–371.

[167] I. Teranishi, T. Oyama, and W. Ogata, “General conversion for obtaining strongly

existentially unforgeable signatures,” IEICE Transactions, vol. 91-A, no. 1, pp. 94–

106, 2008.

[168] M. Bellare and S. Shoup, “Two-tier signatures from the fiat-shamir transform, with

applications to strongly unforgeable and one-time signatures,” IET Information Se-

curity, vol. 2, no. 2, pp. 47–63, 2008.

[169] A. Menezes, S. Vanstone, and T. Okamoto, “Reducing elliptic curve logarithms to

logarithms in a finite field,” in STOC, 1991, pp. 80–89.

[170] S. D. Galbraith, “Supersingular curves in cryptography,” in ASIACRYPT, 2001, pp.

495–513.

223

BIBLIOGRAPHY

[171] D. Page, N. Smart, and F. Vercauteren, “A comparison of MNT curves and super-

singular curves,” Applicable Algebra in Eng,Com and Comp, vol. 17, no. 5, pp.

379–392, 2006.

[172] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime order,”

in SAC, vol. 3897, 2006, pp. 319–331, http://cryptojedi.org/papers/#pfcpo.

[173] D. Boneh and X. Boyen, “Efficient selective-id secure identity-based encryption

without random oracles,” in Advances in Cryptology - EUROCRYPT 2004,

ser. Lecture Notes in Computer Science, C. Cachin and J. Camenisch, Eds.

Springer Berlin Heidelberg, 2004, vol. 3027, pp. 223–238. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-24676-3_14

[174] C. Gentry, “Practical identity-based encryption without random oracles,” in EURO-

CRYPT, vol. 4004 of LNCS, 2006, pp. 445–464.

[175] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptog-

raphy. CRC Press, 1996.

[176] H. Krawczyk and T. Rabin, “Chameleon signatures,” in NDSS, 2000.

[177] O. Goldreich, The Foundations of Cryptography - Volume 2, Basic Applications.

Cambridge University Press, 2004.

[178] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification

and signature problems,” in CRYPTO, 1986, pp. 186–194.

224

http://cryptojedi.org/papers/#pfcpo
http://dx.doi.org/10.1007/978-3-540-24676-3_14

BIBLIOGRAPHY

[179] C.-P. Schnorr, “Efficient signature generation by smart cards,” J. Cryptology, vol. 4,

no. 3, pp. 161–174, 1991.

[180] B. Waters, “Dual system encryption: Realizing fully secure ibe and hibe under

simple assumptions,” Cryptology ePrint Archive, Report 2009/385, 2009, http:

//eprint.iacr.org/.

[181] D. Boneh and J. Katz, “Improved efficiency for cca-secure cryptosystems built using

identity based encryption,” in CT-RSA, vol. 3376 of LNCS. Springer, 2005.

[182] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret

sharing,” in CRYPTO, vol. 576 of LNCS, 1992, pp. 129–140.

[183] G. Ateniese and B. de Medeiros, “On the key exposure problem in chameleon

hashes,” in SCN, vol. 3352 of LNCS. Springer, 2004, pp. 165–179.

225

http://eprint.iacr.org/
http://eprint.iacr.org/

Vita

Joseph Ayo Akinyele graduated from Bowie State Univer-

sity summa cum laude with a Bachelor of Science in Com-

puter Science in 2006. As an undergraduate, he received a

Model Institutions for Excellence (MIE) fellowship to con-

duct research in computer security. As a result, Joseph se-

cured internships and worked with researchers at Fermi Na-

tional Accelerator Laboratory (Fermilab) and Johns Hopkins

University Applied Physics Laboratory (JHU-APL).

Upon graduating from Bowie, he pursued a Master of Science in Software Engineering

at Carnegie Mellon University. He graduated in 2007 with magna cum laude distinction

and was supported by a Graduate Degree for Minorities in Engineering and Science (GEM)

fellowship. Joseph then worked at JHU-APL as a software engineer from 2007 to 2010.

In 2009, Joseph began the Ph.D. program in Computer Science as a member of the In-

formation Security Institute (ISI). His primary research includes developing cryptographic

frameworks to assist in the design of cryptography such as the open source Charm cryp-

226

VITA

tographic library. Furthermore, his research builds on this work to automate the design

of certain aspects of cryptography including batch verification of digital signatures, con-

struction of strongly unforgeable signatures, and optimizing the efficiency and bandwidth

of cryptographic schemes.

227

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Our Approach
	Summary of Our Contributions
	Outline of This Work

	Cryptographic Preliminaries
	Notation
	Bilinear Groups
	Standard Definitions for Digital Signatures
	Standard Definitions for Public Key Encryption

	Extensible Architecture for Automation
	Overview
	Background
	Overview of Transformation Tasks
	Our Architecture
	Our Implementation
	Scheme Description Language
	SDL Parser
	Cryptographic Transformations
	Batching Digital Signatures
	Optimizing Cryptographic Schemes
	Constructing Strongly Unforgeable Signatures

	Code Generator

	Literature Review

	Charm: A framework for Rapidly Prototyping Cryptosystems
	Overview
	Introduction
	Background
	Approach
	Implementation
	Schemes
	Protocol Engine
	ZKP Compiler
	Meta-information and Adapters
	Type checking and conversion
	Using Charm in C applications

	Performance
	Comparison with C Implementations

	Related Work
	Charm-Crypto Toolkit
	Challenges and Open Problems

	Machine-Generated Algorithms, Proofs and Software for the Batch Verification of Digital Signature Schemes
	Overview
	Introduction
	Our Contributions
	Overview of Our Approach
	Related Work

	Batch Verification for Signatures
	On Schemes with a Correctness Error
	Algebraic Setting
	Batch Verification in Bilinear Groups
	Small Exponents Test Applied to Bilinear Groups

	The AutoBatch Toolchain
	Batching and Optimization
	Technique Search Approach
	Security and Machine-Aided Analysis
	Code Generation

	Implementation & Performance
	Experimental Setup
	Test Cases and Summary of the Results
	Microbenchmarks
	Batch Verification in Practice
	Basic DoS Attacks

	AutoBatch Toolkit
	Challenges and Open Problems

	Using SMT solvers to Automate Design Tasks for Encryption and Signature Schemes
	Overview
	Introduction
	Our Contributions
	Related Work

	Tools Used
	AutoGroup
	Background on Pairing Groups
	How AutoGroup Works
	Security Analysis of AutoGroup
	Experimental Evaluation of AutoGroup

	AutoStrong
	Background on Digital Signatures
	How AutoStrong Works
	Security Analysis of AutoStrong
	Experimental Evaluation of AutoStrong

	Challenges and Open Problems

	Summary
	Additional Material
	Scheme Examples In Charm
	Semantics of SDL
	Machine-Generated Batch Verification
	Proof for Batch Verification of HW Signatures
	Definitions
	Proof

	Proof for Batch Verification of CL04 Signatures
	Definitions
	Proof

	Proof for Batch Verification of VRF
	Definitions
	Proof

	Candidate Batch Verification for WATERS09 Signatures
	Definitions
	How Candidate Construction was Derived

	Bibliography
	Vita

