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Abstract

Principal component analysis (PCA) is one of the most important dimension reduction

technique. It is widely used in many applications including economics, finance and medical

research. In this research, several novel generalizations of PCA are proposed to adapt

the technique to more complicated scenarios. In the first project, we propose a principal

surface model for manifold-like datasets in 3D space. In the second part, a new concept of

graphical intra-class correlation coefficient (GICC) is defined and a Markov Chain Monte

Carlo Expectation-Maximization (mcmcEM) algorithm is used for likelihood optimization.

In the third part, we propose multilevel binary principal component analysis (MBPCA)

models for finding the principal components of multilevel binary dataset. A variational

expectation maximization algorithm is used for likelihood optimization.
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CHAPTER 1. INTRODUCTION

1.1 Statistical challenges in biomedical research

With the increasing involvement of cutting edge technology in biomedical research,

innovative statistical methodologies are needed like never before. Advanced 3D scanners

allow us for acquiring more precise brain images; wearable devices enable the analysis of

people’s daily activity. These lead to data in much higher dimension as well as much more

complex structures. As a result, there is an increasing demand for new statistical method-

ology to analyze this new kind of data. We hope our research can help in detecting diseases

in early stage, reducing mortality rates and improving the overall quality of people’s life.

1.1.1 Brain imaging analysis

Several brain related diseases such as multiple sclerosis (MS), autism and attention

deficit hyperactivity disorder (ADHD) have been researched for decades. The prevalence

for many of them remains in a relatively high level worldwide and large efforts have been

put into discovering the causes and biological consequences. In the case of MS, the total

number of death caused by the disease in 2013 went up to 20,000 from 12,000 in 1990

(Naghavi et al., 2015). In the year of 2015, more than 2.5 million people are suffering from

MS worldwide (Pietrangelo and Higuera, 2015). However, the underlying cause of MS

remains unclear and there is no known cure so far. For such diseases, early detection can

definitely help increase the survival rate, as well as the life quality of patients. New brain

imaging techniques enables one to obtaining higher resolution images which may lead to

2



CHAPTER 1. INTRODUCTION

an earlier detection of such diseases. It motivates us to develop modern statistical tools for

analyzing those high resolution image data and relates such data with diseases such as MS.

1.1.2 Data reproducibility

Another big challenge in biomedical research concerns data reproducibility. Low qual-

ity data usually result in misleading conclusions. For example, noise, artifacts and pro-

cessing errors in brain scans or poor analysis methodologies can lead to poorly measured

or incorrect brain connectivity graphs. Therefore, measuring the reproducibility of data is

one of the most important tasks for biostatisticians. The intra-class correlation coefficient

was propose for such purpose (Fisher et al., 1970). However, larger sized data and new for-

mats require innovative statistical models for evaluating measurement reproducibility. This

motivates us to develop a new method for measuring the reproducibility of binary graphs.

1.1.3 Daily activity

One of the most challenging tasks in biomedical research is collecting data. Researchers

could only dream about collecting one’s physical activity data on a daily base until the ap-

pearance of the wearable device that tracks peoples movements. Now, the explosion of

wearable devices, such as wristbands, smart phones and watches makes the collection of

daily activity data commonplace. As the dimension, as well as the number of subjects, dra-

matically increase, advanced statistical methods are needed for analysis purpose. It is very

3



CHAPTER 1. INTRODUCTION

interesting to understand the relationship between daily activity patterns and demographics

features such as gender, age and body mass index (BMI). and it is also super interesting

if the results could be used to improve people’s health condition by changing one’s activ-

ity patterns. The goal of such research is using the results to improve health and increase

healthy activity.

1.2 Dimension reduction in high dimensional data

All of the above biomedical challenges require innovative statistical solutions that deal

with high dimensional data. Therefore, my research focuses on the task of data dimension

reduction techniques for these challenging scenarios.

A traditional common methodology for dimension reduction is principal component

analysis (PCA). It serves as a powerful tool for reducing data dimension by approximating

the data using several the top linear reorganizations that explain the greatest amount of

variation. This method has been heavily used in biomedical research. However, as data

become higher in dimension and more complex in structure, increasingly there are cases

where PCA does not apply directly. For instance, original PCA does not apply to dataset

with clear nonlinear structure. Another example is that the data might be in a categorical or

binary format. In both cases, generalizations or extensions of PCA is necessary to achieve

dimension reduction.

This research aims to make necessary generalizations and extensions for PCA as well

4



CHAPTER 1. INTRODUCTION

as applications for new types of data, as outlined in the next section.

1.3 Organizational overview

In this research, three novel statistical methodologies are developed to deal with dimen-

sion reductions for complex data.

First, we are concerned with data generated from a diffusion tensor imaging (DTI) ex-

periment. The goal is to parameterize manifold-like white matter tracts, such as the corpus

callosum, using principal surfaces. The problem is approached by finding a geometrically

motivated surface-based representation of the corpus callosum and visualized fractional

anisotropy (FA) values projected onto the surface; the method applies to any other diffu-

sion summary as well as to other white matter tracts. An algorithm is proposed that 1)

constructs the principal surface of a corpus callosum; 2) flattens the surface into a para-

metric 2D map; 3) projects associated FA values on the map. The algorithm is applied

to a longitudinal study containing 466 diffusion tensor images of 176 multiple sclerosis

(MS) patients observed at multiple visits. For each subject and visit the study contains a

registered DTI scan of the corpus callosum at roughly 20,000 voxels. Extensive simula-

tion studies demonstrate fast convergence and robust performance of the algorithm under a

variety of challenging scenarios.

Second, the image intra-class correlation coefficient (I2C2) is generalized and the graph-

ical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept

5



CHAPTER 1. INTRODUCTION

for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain

Monte Carlo EM (mcmcEM) algorithm is used for estimating the GICC. Simulation re-

sults with varied settings are demonstrated and our method is applied to the KIRBY21

test-retest dataset. This proposed method, though is not a directly generalization of PCA,

serves as a prerequisite of our third method, multilevel binary principal component analysis

(MBPCA)

In the third method, we extend PCA to multilevel bineary data. Similar to the second

method of GICC, our framework is build on a mixed effect model. We use the framework

of probabilistic PCA and the models are fitted by a variational EM algorithm. The perfor-

mance of the proposed method is studied in a few challenging simulation scenarios. We

also apply the method to a functional magnetic resonance imaging (fMRI) data and explore

a reproducibility of the results through the graphical intra-class correlation coefficient.

6
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CHAPTER 2. PARAMETRIZATION OF WHITE MATTER MANIFOLD-LIKE
STRUCTURES USING PRINCIPAL SURFACES

Abstract

In this manuscript, we are concerned with data generated from a diffusion tensor imaging

(DTI) experiment. The goal is to parameterize manifold-like white matter tracts, such as

the corpus callosum, using principal surfaces. The problem is approached by finding a

geometrically motivated surface-based representation of the corpus callosum and visual-

ized fractional anisotropy (FA) values projected onto the surface; the method applies to any

other diffusion summary as well as to other white matter tracts. An algorithm is proposed

that 1) constructs the principal surface of a corpus callosum; 2) flattens the surface into a

parametric 2D map; 3) projects associated FA values on the map. The algorithm is applied

to a longitudinal study containing 466 diffusion tensor images of 176 multiple sclerosis

(MS) patients observed at multiple visits. For each subject and visit the study contains a

registered DTI scan of the corpus callosum at roughly 20,000 voxels. Extensive simula-

tion studies demonstrate fast convergence and robust performance of the algorithm under a

variety of challenging scenarios.

Keywords: corpus callosum, principal curves and surfaces, thin plate splines
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CHAPTER 2. PARAMETRIZATION OF WHITE MATTER MANIFOLD-LIKE
STRUCTURES USING PRINCIPAL SURFACES

2.1 Introduction

This research is motivated by the need to establish a parametric description of the cor-

pus callosum structure, a major white matter fiber tract. The corpus callosum is a centrally

located white matter structure connecting the left and right hemispheres of the brain. It is

the largest white matter fiber bundle in the brain, facilitating inter-hemispheric communi-

cation. Corpus callosum neurons run left to right spanning the mid-sagital plane.

The three panels in Figure 2.1 display that the corpus callosum appears as a two di-

mensional manifold in its principal structure. It is curved towards the inferior part of the

brain on both the anterior and posterior sides. Though the corpus callosum lies in a three

dimensional space, its key structure is intuitively that of a “carpet” that lies in a two di-

mensional manifold. Therefore, dimension reduction techniques may provide strong data

compression along with novel visualization and parametrization approaches that could be

easy to use in practice.

9



CHAPTER 2. PARAMETRIZATION OF WHITE MATTER MANIFOLD-LIKE
STRUCTURES USING PRINCIPAL SURFACES

Figure 2.1: 3D renderings and 2D projections of the corpus callosum of one subject. Three panels represent
sagittal, frontal and horizontal 2D Slices respectively. Red and blue colors indicate higher and lower FA
values on 2D slices, respectively.

In this manuscript, a method for obtaining smooth principal surfaces of the data with

a consistent parametrization is proposed. The word “consistent” implies that one would

achieve a similar parametrization with the same range for assembled data structures. For

example, one could obtain a comparable parametrization for corpus callosum of different

subjects. To achieve this, the first step is to estimate the center surface of the corpus callo-

sum. The second is to obtain the projection of each data point; these projections can then

be used to map the diffusion properties of the corpus callosum onto a 2D manifold. The

procedure, similar to Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006), or other

medial model based methods (Yushkevich et al., 2008; Zhang et al., 2010), constructs a

10
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consistent mapping of DTI images of the corpus callosum which has the potential to per-

form pixel-wise analysis, but unlike these methods, may not require non-linear registration.

At the same time, our approach also has the potential to perform pixel-wise analysis of FA

value, local thickness and curvature.

Before we discuss the details of our method, other potential methods are outlined. Prin-

cipal component analysis (PCA) is one of the most useful tools for dimension reduction.

PCA finds directions (vectors) that explain the largest variability of the data, while con-

straining directions to be orthogonal.

Though PCA is a widely used method for dimension reduction, it is not suitable for

nonlinear situation – as shown in the left panel in Figure 2, the true curve that generates the

data is part of a circle while the first principal component is a line. Direct applications of

splines, wavelets and related regression methods cannot be done, as they require the mean

function to be one-to-one. This is clearly violated in the corpus callosum example and many

other white matter structures/tracts. Palus and Dvorak (1992) and Palus and Dvorak (1992)

illustrated the pitfalls and precautions when applying linear PCA in non-linear settings. In

our case, since the corpus callosum clearly is a nonlinear structure, PCA is not a viable

candidate for dimension reduction.

Many non-linear methods have been proposed for fitting non-linear data structures. As

an example, Gnanadesikan (1997) proposed a non-linear extension of PCA. The core idea

is to include product combinations of the variables in the data matrix. Another useful tool

– the self-organizing map (SOM) – was proposed in Kohonen (1990) and Kohonen (1982).

11
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SOMs are unsupervised learning procedures which are used to discover structure in the

data. Other nonlinear method methods such as non-linear principal component analysis

(NLPCA) (Kramer, 1992, 1991) and principal geodesic analysis (PGA) (Fletcher et al.,

2004; Fletcher, 2004) can also fit non-linear data structures.

An important concept of non-linear data compression is principal surfaces (Hastie,

1984; Hastie and Stuetzle, 1989). Principal surfaces are manifolds that pass through the

middle of the data. Principal surfaces, by definition, satisfy a self consistency condition,

in that they are the conditional expectation (local average) of the data. Hastie (1984) and

Hastie (1984) shows that the principal surfaces are fit via nonparametric low-dimensional

manifolds that minimize the orthogonal distance from the data to themselves. The right

panel of Figure 2.2 shows the difference between the principal curves (surfaces) and re-

gression. It highlights that the principal curve minimizes the sum of orthogonal distances,

while a spline model fit tries to minimize the sum of distances parallel to the y axis. The

principal surface algorithm and its extensions Dong and McAvoy (1996); Einbeck et al.

(2010); Gerber et al. (2009); Goldsmith et al. (2011a); Jung et al. (2011); Leblanc and Tib-

shirani (1994); Ozertem and Erdogmus (2011), do not provide a consistent parametrization

in the 2D space (see Section 3). ISOMAP (Tenenbaum et al., 2000) and Maximum Vari-

ance Unfolding (MVU) (Weinberger and Saul, 2006) are methods for dimension reduction.

Compared to the Hastie’s algorithm (denoted as ”HS”) , ISOMAP and MVU provide more

consistent parametrization (see Section 3).

12
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Figure 2.2: Left panel is a illustration of different dimension reduction methods. The blue points are the
original data points, the dot-dashed green line is the first principal component, the dashed black curve is
the spline fitting and the solid red curve is one of the principal curves. Right panel shows the difference
between the principal curve and the regression method: top panel shows that the principal curve minimizes
the orthogonal distance, bottom panel shows that the spline regression minimize the distance in y axis. Both
panels in the middle use the same dataset.

In this manuscript, we develop a method that 1) achieves a principal surface of a target

data cloud in 3D space, 2) yields a consistent parametrization in the 2D space for similar

3D data clouds. The rest of the manuscript is laid out as follows: In section 2, the principal

surface concept will be introduced, and its corresponding algorithm will be shown. We

will show how the principal surface algorithm works on simulated data in section 3. The

algorithm then is applied to corpus callosum data and the FA maps are obtained in section

4. We will conclude the whole paper in section 5.
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2.2 Methods

2.2.1 Principal Surfaces

Let xi = (xi1, xi2, xi3)T , i = 1, . . . , I be the data points in three dimensional space,

R3 following an underlying distribution. ti = (ti1, ti2)T be corresponding parametrization

points in two dimensional space,R2. In addition, It is required (without loss of generality)

that the 2D coordinate space be the unit square [0, 1] × [0, 1] ⊂ R2. Let f be the smooth

principal surface function, f : ti 7→ f(ti), that maps fromR2 toR3. The principal surface

function satisfies the self-consistency condition:

E(X|λf (X) = t) = f(t) for all t, (2.1)

where λf (x) = supt

{
t : ‖x − f(t)‖ = infµ ‖x − f(µ)‖

}
is the projection function with

respect to f . The projection function maps a data point on to the closest principal surface

point having the largest parametrization. Intuitively, the self-consistency condition implies

that the principal surface is the local average of the original data cloud. Here local means

that data points have the same 2D parametrization. In developing an algorithm of achieving

the principal surface of a data cloud, we have found that there are two main distinctions

between different fitted principal surfaces: the degree of smoothness and the method of

parametrization. In most algorithms, these properties will be controlled by the specific

smoother being used in the algorithm and its tuning parameters. The details of the specific
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algorithm will be demonstrated in the next section.

2.2.2 Algorithm

In this paper, we put forward an algorithm that is partially based on (Hastie and Stuet-

zle, 1989) but heavily modified for applications where underling structures are smooth

manifolds. This algorithm allows one to find the surface coordinate for each data point

(ti, i = 1, . . . , I), which will be used later to create parametric summaries. However, the

original principal surface algorithm can only yield surfaces which are locally flattened.

Therefore, instead of local planar smoothers, thin-plate splines (TPS) are employed for fit-

ting the surface. (Thin-plate splines were proposed by Duchon (1977) and are now widely

used for bivariate smoothing.) The TPS penalize the least squares error by a high-order

derivative term in order to achieve a desired degree of smoothness. Wood (2003) and

Wood (2003) improved the computational efficiency when fitting TPS by using an optimal

approximating basis that we employ.

Initializing. Let X = [x1, . . . ,xI ]
T be the I × 3 matrix that contains the centered

coordinates. There are a few ways to initialize our algorithm:

PCA. Let X = UΣVT be the singular value decomposition of X. Then UΣ̃ are the

first two principal scores of the data matrix, where Σ̃ is a submatrix of Σ containing the

first two columns. Both scores are standardized to be in [0, 1]. and then used as an initial

2D parametrization.
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ISOMAP. Construct a 3D to 2D ISOMAP on X and use its results as the initial 2D

parametrization. ISOMAP usually provides a more natural initializing parametrization, but

requires more computational time.

Smooth Local Averages. Bivariate thin plate splines (TPS) (Wood, 2003) are applied

to the original data points using the projection coordinates obtained from the previous step.

In this step, the model

xid = fd1(ti1) + fd2(ti2) + fd3(ti1, ti2) + εid, d = 1, 2, 3, (2.2)

is fit and bivariate TPS smoothing is obtained. Here

f(ti) =


f̂11(ti1) + f̂12(ti2) + f̂13(ti1, ti2)

f̂21(ti1) + f̂22(ti2) + f̂23(ti1, ti2)

f̂31(ti1) + f̂32(ti2) + f̂33(ti1, ti2)

 (2.3)

is the current principal surface mapping from the 2D parametrization space to 3D coordi-

nate space. The TPS are fit using mgcv package in R (R Development Core Team, 2008).

Projection. Each data point was then projected onto the current principal surface and

a new 2D parametrization was thus obtained. A grid search method was used to find the

projection and constrained within the domain [0, 1]× [0, 1]. Therefore, there will typically

be some data points being projected onto the boundary, which raises some issues when

further analyzing the 2D parametrization, see Section 5 for more discussion.
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After the projection step, the procedure is iterated. The algorithm is illustrated in pseu-

docode below:

Input: Data in 3D coordinate, XI×3

Output: Principal surface function, fR2→R3 , and the 2D parametrization of all data

points, TI×2

Initialization: De-mean X for each column;

set the initial 2D parametrization as T(0);

Set err= 1, i= 1;

while (i <max.iter and err>thres) do

(1). Fit X = f(T) + ε;

(2). t
(new)
i ←− argmint ‖xi − f(t)‖2;

(3). err ←− ‖Told −T(new)‖2
2, i←− i+ 1;

end
Algorithm 1: Principal surface algorithm

To summarize, the algorithm iterates between two main stages: a smoothing step (Steps

1) and a projection step (Step 2). The TPS fitting step provides local averages with desired

smoothness as well as a principal surface to be projected onto. Step 3 gives us a criterion

for convergence.

The only parameter that needs to be chosen is the number of basis functions during TPS

fitting step. This controls the complexity of the surface.
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Generally, a principal surface is not unique. By varying the number of basis functions

in the TPS fitting, one can achieve different principal surfaces with different curvature (see

Section 2.3.3 for more discussion).

2.3 Simulations

2.3.1 Simulation Settings

To investigate the performance of our algorithm, four simulations studies were con-

ducted. The number of data points was set to I = 1500 in all simulation settings and

500, 1000, 1500 points in each scenarios were sub-sampled to assess the accuracy of the

algorithm. We apply the proposed principal surface fitting alogirithm with both PCA and

ISOMAP initializations. In addition, since ISOMAP and MVU naturally produce a 2D

parametrization, we apply both of them1 to each simulation case for comparison. HS’s orig-

inal principal surface algorithm was also applied. The data were centered around (0, 0, 0)

beforehand.

Scenario 1 The data points in the first simulation scenario are uniformly distributed

around a cylinder with an open seam. Set θi
i.i.d∼ U(0, 2π−0.5), εi1, εi2, εi3

i.i.d.∼ N(0, 0.152).

1R package ”vegan” was used to run ISOMAP. Landmark MVU with one time TPS fitting was fit in
”Matlab Toolbox for Dimensionality Reduction.
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and zi
i.i.d.∼ U(−3, 3), then let

xi =


cos θi + εi1

sin θi + εi2

zi + εi3

 .

Scenario 2 The second scenario is a simulated corpus callosum. Set θi
i.i.d.∼ U(π/2, 3π/2),

zi1 = cos(θi), zi3 = −1 + sin(θi) for i = 1, . . . , I/3. zi1
i.i.d.∼ U(0, 3) and zi3 = 0 for

i = I/3 + 1, . . . , 2I/3. Set θi
i.i.d.∼ U(−π/2, π/2), zi1 = 3 + cos(θi), zi3 = −1 + sin(θi) for

i = 2I/3 + 1 . . . , I . zi2
i.i.d.∼ U(0, 5) for all i. Then let εi1, εi2, εi3

i.i.d∼ N(0, 0.162) for all i.

xi =


zi1 + εi1

zi2 + εi2

zi3 + εi3

 .

Scenario 3 In the third scenario the data points form a flatten surface at the begin-

ning and then begin to bent over towards the bottom, which looks like a half of a cor-

pus callosum. Set zi1
i.i.d.∼ U(0, 2), zi3 = 0 when i = 1, . . . , I/2; zi1 = cos(θi) + 2,

zi3 = −1+sin(θi) for i = I/2+1, . . . , I , where θi
i.i.d.∼ U(−π/2, π/2). Let zi2

i.i.d.∼ U(0, 10)
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and εi1, εi2, εi3
i.i.d.∼ N(0, 0.42). All the random numbers are generated independently and

xi =


zi1 + εi1

zi2 + εi2

zi3 + εi3

 .

Scenario 4 In the last scenario, a two dimensional stretched digit “5” was used as a

basis for simulation. Let zi1
i.i.d.∼ U(0, 1), zi3 = 0 when i = 1 . . . , 3I/10; zi1 = 0,

zi3
i.i.d.∼ U(−1, 0) when i = 3I/10 + 1, . . . , 4.5I/10; zi1

i.i.d.∼ U(0, 0.5), zi3 = −1

when i = 4.5I/10 + 1, . . . , 6I/10; zi1 = 1
2

+ 1
2

cos(θi), zi3 = −3
2

+ 1
2

sin(θi) for i =

6I/10 + 1, . . . , 8.5I/10 where θi
i.i.d.∼ U(−π/2, π/2); zi1

i.i.d.∼ U(0, 0.5), zi3 = −2 when

i = 8.5I/10 + 1, . . . , I . Let zi2
i.i.d.∼ U(0, 5) and εi1, εi2, εi3

i.i.d.∼ N(0, 0.12) when i =

1, . . . , I . All the random numbers are generated independently and

xi =


zi1 + εi1

zi2 + εi2

zi3 + εi3

 .
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2.3.2 Simulation Results

For all four scenarios, the proposed algorithm converged in less than 10 steps and took

under two minutes on a i7-2.4GHz PC machine with 8Gb RAM memory. The results of our

principal surface fitting algorithm for four scenarios are shown in Figure 2.3. In the upper

right panel in Figure 2.3, one can see that the algorithm reconstructs the cylinder very well.

Since no constraints were used in fitting the surface, a closed cylinder is not obtained.

Finding principal surfaces for closed cylinders or spheres remains an interesting topic for

future research. The other panels of Figure 2.3 show the fitting results of the non-function

shaped carpet (half corpus callosum) data cloud, the corpus callosum-shaped structure and

the simulated digit “5” data cloud. The results are excellent for all scenarios. Given that the

desired corpus callosum model fit is simpler and smoother than all considered examples, the

simulations produce substantial evidence of the viability of the principal surface algorithm

as a robust method for a wide range of problems.
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Figure 2.3: Simulation results. In all panels, original data points are shown in green and the fitted surfaces
are shown in blue. The panels from top-left to bottom-right show the results for our method with 1,000
sub-sampling points, initiated by ISOMAP with the three, four, four and five basis functions respectively
implementing on (1) a non-function shaped “carpet” data cloud, (2) an cylinder with an open seam on one
side, (3) the CC-shaped structure and (4) a simulated digit “5” data cloud.

Figure 2.4 compares the fitting result using (1) proposed method with PCA initializa-

tion, (2) proposed method with ISOMAP initialization, (3) ISOMAP induced surface2 and

(4) HS’s original method. The proposed principal surface algorithm generates reasonable

fitting results with both initialization methods. Landmark MVU algorithm did not converge

in all simulation cases, so the results are not reported.

2ISOMAP induced surface is created using ISOMAP 3D to 2D parametrization with TPS smoothing with
each coordinates. It can be considered a surface fitting of ISOMAP result or the proposed method with only
one step without any projection and further iterations.
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Figure 2.4: Principal surface fitting of digit ”5” results comparison between different methods. Upper
left shows the fitting result of the proposed method initiated by principal scores from PCA, upper right panel
shows the result of the proposed method initiated by ISOMAP, bottom left panel shows the result of ISOMAP
and bottom right panel shows the result of HS’s principal surfaces.

Figure 2.5 shows the results for different number basis functions in TPS fitting. Starting

from upper left panel, the surface fitting with k = 20 yields a fitted surface with less

curvature. As k increases, the fitted surface becomes increasingly wiggly. Table 2.1 shows

the curvature3 and the corresponding thickness4 of the fitted surface. It is very clear that as

the number of basis functions increases, the curvature of fitted surface also increases and

the corresponding thickness decreases. In Figure 2.5, it is clear that a desired surface for

this particular case is with k less than or equal to 20.

3Integral of the second order derivatives
4A moving maximum of the distance from 3D data points to the fitted surface.
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Figure 2.5: Six panels demonstrate the fitting results of a Corpus Callosum-shaped structure with different
number of basis in the TPS fitting. From top left to bottom right, the number of basis increases from k = 20
to k = 25.

Table 2.1: Curvature and thickness comparison between different number of basis functions. Thickness is
in parenthesis.

Number of Scenarios
Basis functions Carpet Cylinder Corpus Five

4 26.174 (0.152) 41.703 (0.035) 46.051 (0.031) 30.065 (0.017)
0.204 0.054* 0.058 0.041*

5 32.824 (0.146) 77.866 (0.031) 48.592 (0.031) 31.228 (0.016)
0.264 0.147 0.058* 0.046

6 69.522 (0.124) 94.234 (0.023) 56.851 (0.030) 36.454 (0.012)
0.252 0.138 0.063 0.075

7 132.800 (0.093) 118.111 (0.020) 60.712 (0.027) 38.121 (0.012)
0.196 0.127 0.170 0.050

8 197.029 (0.076) 136.875 (0.018) 59.546 (0.027) 43.552 (0.011)
0.193* 0.150 0.154 0.064

9 259.639 (0.063) 164.889 (0.017) 64.241 (0.026) 45.822 (0.010)
0.214 0.128 0.167 0.045

10 308.302 (0.056) 189.778 (0.016) 65.219 (0.026) 49.801 (0.010)
0.237 0.127 0.143 0.065
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To account for a 3D (spatial) error structure, we propose a new cross-validation method

for finding the optimal number of basis functions. For each k, MSE(k) is calculated in four

steps: i) a reference principal surface is fitted using the entire sample; ii) the sample is

splitted into n=3 folds and n principal surfaces are fitted leaving a corresponding fold out;

iii) the points from each fold are projected onto the principal surface obtained by leaving

the fold out and the fold-specific MSE is calculated as the squared distance between these

projections and the projections obtained at step one; iv) MSE(k) is calculated as the average

of the fold-specific MSEs. The optimal k is the smallest number that minimizes MSE(k).

The key difference of the proposed cross-validation approach is step three when MSE

is calculated as a difference between fold-specific principal surface projections and projec-

tions onto the all data principal surface. Note that a traditional MSE would be proportional

to a thickness estimates and, in contrast to the MSE at step three, would not be informa-

tive about the stability of the fit. However, one should be careful when the data are very

dense so that sub-sampling results in surfaces similar to the original surface. In such case,

our suggestion is to implement the algorithm with different number of basis functions and

choose the most suitable one by visually exploring the fits.

In six scenarios in Figure 2.5, the leave-one-fold surface MSEs are 0.076, 0.082, 0.083,

0.101, 0.132 and 0.126, respectively. This is consistent with our observation that no more

than twenty basis functions are usually enough to provide a good fit to data. For four

cases in our simulation, the optimal number of basis functions are four, four, four and five

for corpus callosum shaped structure, curved carpet structure, cylinder structure and digit
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“five” shaped structure respectively.

2.3.3 Mean Square Error Comparison

In evaluating the goodness of fit, we used mean squared error (MSE) that measures the

distance from the fitted surface to the underlying true surface. The MSE was calculated by:

1) projecting each data point onto the fitted surface, 2) averaging the squared distance from

the fitted surface to the true surfaces. Two hundred simulations were conducted for different

number of sub-sampling points and the average MSE in each scenario is shown in Table 2.2.

The MSE generally decreases with the increase of the sub-sample size. Of course, in each

scenario, full dataset yields the lowest MSE. In the first three cases, ISOMAP initialization

yields lower MSE compared to PCA initialization. However, PCA has faster computing

time and lower memory demands.

Table 2.2: MSE comparisons between different number of sub-sampling points. The unit is 10−3.

Sub-sample Carpet Cylinder Corpus Five
PCA ISOMAP PCA ISOMAP PCA ISOMAP PCA ISOMAP

500 56.6 33.9 44.4 31.6 25.2 12.2 10.4 10.9
1,000 55.4 27.3 32.6 27.2 20.5 11.3 9.9 10.4
1,500 55.0 27.1 33.3 28.9 19.5 10.6 9.8 10.2

The MSE comparison between the proposed method and ISOMAP and HS is reported

in Table 2.3. For each scenario, the proposed method with ISOMAP initialization has the

lowest MSE. HS has a significantly higher MSE in each case compared to the proposed

method. ISOMAP has the highest MSE among all cases. LMVU algorithm did not con-
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verge in four cases, so no results for LMVU are reported in Table 2.3. The reason for that

is that though both ISOMAP and MVU find low dimensional representations of high di-

mensional structures, neither of them is suitable for finding a principal surface. Intuitively,

both algorithms try to preserve the local geometry such as distances or angles. However,

2D projections on the principal surface clearly do not preserve these properties. Therefore,

it would be more appropriate to use ISOMAP or MVU on zero thickness surface structures,

not on data cloud representing 3D structures such as corpus callosum. This is the reason

why MVU, while preserving both local distance and angles between neighborhood data

points, does not converges in most simulation cases.

Table 2.3: MSE comparison between our method and HS, ISOMAP for all four scenarios. The unit is 10−3.

Scenarios
Methods Carpet Cylinder Corpus Five
PS (PCA) 16.9 9.6 11.3 4.3

PS (ISOMAP) 16.3 11.5 2.5 2.1
HS 35.4 50.4 66.2 21.4

ISOMAP 94.3 476.7 296.9 164.6

Another important advantage of our method is that it obtains a more smooth parametriza-

tion than the original HS’s method. In Figure 2.6, a color scale (from dark red to yellow)

is used to represent the original data points. The color changes as the points move along

the true surface from one side to another. After applying HS’s, ISOMAP and the proposed

methods, the 2D parametrizations are shown along with their original labeled colors. The

proposed method as well as ISOMAP, in each scenario, shows more smooth, continuous

parametrization. In contrast, the HS’s method does not provide a natural parametrization
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in most scenarios, and produces a clear discontinuity in the cylinder scenario. ISOMAP

produces a natural parametrization, but has a disadvantage of not providing a well fitted

surface. Clearly, a comprehensive cross-algorithm study is needed to systematically ex-

plore resulting parametrizations and their properties.

Figure 2.6: Parametrization results in each scenario. We colored the original points from one side to the
other continuously using dark red to yellow. Each image shows the final parametrization space with each
data’s original labeled color. From top to bottom, Top: The proposed method; Middle: ISOMAP; Right: HS’s
method. From left to right, Left: Curved “Carpet” structure; Second from left: Cylinder structure; Third from
left: Corpus Callosum-shaped structure; Right: Digit “’five’.

2.4 Application

2.4.1 Fitting the Principal Surface of a Corpus Callosum

The MS study contained 466 scans generated from a diffusion tensor imaging (DTI)

experiment performed on 176 patients. For each scan, fractional anisotropy (FA) value
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for each voxel of the entire corpus callosum area were calculated via tractography. The

details are provided in (Ozturk et al., 2010; Reich et al., 2010). Fractional anisotropy has

been associated both cross sectionally and longitudinally with multiple sclerosis diagnoses

and symptoms (Goldsmith et al., 2011b, 2012; Greven et al., 2011; Reich et al., 2010;

Zipunnikov et al., 2011a).

We start with the principal surface fit. For each unregistered scan, there are roughly

70,000 data points in the corpus callosum area, while for each registered scan, there are

roughly 20,000 data points in the corpus callosum region of interest. For computational

simplicity, 1,000 were randomly sub-sampled to build the surface. The computing time for

unregistered corpus callosum is approximately 100 seconds, while the computing time for

the registered ones is approximately 35 seconds. The results for two arbitrary unregistered

scans are shown in Figure 2.7. The results for two arbitrary registered scans are shown in

Figure 2.8. Clearly, unregistered data has a larger portion of the corpus callosum compared

to the registered ones. The fitted surfaces for both registered and unregistered scans have

obvious face validity and is indicative of the fits from the other scans, each inspected visu-

ally. Cross validation suggests five and seven as the optimal numbers of basis functions for

registered and unregistered corpus callosum, respectively.
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Figure 2.7: Principal surface fitting results of unregistered corpus callosum data. Left panels show the
fitted surface with the original data cloud and right panels show the results of fitted surface.
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Figure 2.8: Principal surface fitting results of registered corpus callosum data. Left panels show the fitted
surface with the original data cloud and right panels show the results of fitted surface.

2.4.2 Flattened FA Representation

Our primary goal for the principal surface fitting is to flatten the surface to make a 2D

FA image for visualization and subsequent analysis under the belief that the principal sur-

face encodes the majority of the relevant biological information. Thus, our goal is to use

DTI-based morphometric information to create 2D images of MR contrast properties, such

as FA, axial diffusivity and so on. Thereby, each data point was projected onto the surface

by a grid search method. Then the associated FA values were smoothed on the surface by
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local averaging. Interpolating this smooth images onto a grid yields the 100 × 100 2D FA

images, Figure 2.9 shows a few typical examples. Top panels show the diffusion properties

of the flattened surfaces of the corresponding left panels. The similar 2D maps obtained

from ISOMAP and HS are shown at the middle and bottom panels of Figure 2.9. For regis-

tered corpus callosum data, all three methods yield similar parametrizations. Arguably, the

important FA information is retained. Thus this investigation provides the potential insight

that it may be sufficient to visualize the 2D FA values instead of the original 3D FA values.

Figure 2.9: 2D parametrization of corpus callosum. Top row shows 2D parametrization from the proposed
principal surface algorithm; middle row shows the result from ISOMAP and bottom row shows the result of
HS’s principal surface. Bright color indicates higher FA values and darker color indicates lower FA values.
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2.4.3 Correspondence

For corpus callosum data, it is crucial that the fitted 2D parametrization is consistent

across all subjects. In other words, it is desirable that assembled structures have aligned 2D

indices after the data points got projected onto the fitted principal surfaces. We admit that

stable parametrization is not guaranteed in fitting the principal surface, especially, when the

registration process involves complex non-linear transformation or linear transformation in

a relatively large scale. However, we provided a small simulation study to explore how

sensitive our algorithm is to mild registration errors. Specifically, for an arbitrary chosen

image, we created 50 ”unregistered” copies by applying random rotations and random scal-

ing along each of the three axes. We, then, ran our algorithm with ISOMAP initialization

on all fifty images and compared the obtained parametrizations. Mathematically, assume

X = (x1,
T , . . . ,xTn )T is the original data cloud. Let Φ(X) := XUD, where U is a ran-

domly generated 3× 3 rotation matrix5 and D = diag(d1, d2, d3) where all d′is, i = 1, 2, 3

are uniformly generated from U(0.9, 1.1). For one scan, we randomly generated 50 trans-

formations Φk, k = 1, . . . , 50. Let T = (tT1 , . . . , t
T
n )T be the 2D parametrization result

of the original corpus callosum and Tk be the 2D parametrization result of Φk(X). Then

MSEk := 1
n

∑
i

{
‖tik−ti‖2

}
is calculated to evaluate the mismatch of the parametrization

between the original data cloud and morphed data cloud. Ideally, zero MSE suggests zero

53 × 3 rotation matrices are generated as U = UxUyUz , where Ux =

 1 0 0
0 cos(θx) −sin(θx)
0 sin(θx) cos(θx)

,

Uy =

 cos(θy) 0 sin(θy)
0 1 0

−sin(θy) 0 cos(θy)

 and Uz =

 cos(θz) −sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

. θx, θy and θz are generated

uniformly from −0.1π to 0.1π.
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misalignment which means the proposed method is invariant to rotation and a restricted

scaling. Notice that the parametrization in the proposed method is restricted to [0, 1] and

minimal mismatch in each axis is 0.01, so that a 10−4 MSE would suggest that on average

the 2D parametrization moves one unit distance in 2D space. When the MSE is large, say

over 0.09, it means that averagely the parametrization moves more than 0.3 distance (30

units) when all points are flipped over, or there are large mismatches in the 2D spaces of the

morphed shape. Among 50 MSE’s using ISOMAP initialization, the median is 8.97×10−5,

the mean is 1.81 × 10−4 and the maximum is 2.26 × 10−3. In other words, under moder-

ate rotation and relatively mild scaling, our algorithm can achieve a good parametrization

consistency. More complex situations remain to be explored.

2.5 Discussion

In this manuscript a principal surface algorithm was introduced and used to fit the cor-

pus callosum. The goal of this work is largely developmental, creating a handy tool for

dimension reduction in morphological analysis of primary brain structures. In simulations,

the proposed algorithm performed superbly. While applied to the corpus callosum, the al-

gorithm could be applied to any other three dimensional manifold-like objects where a two

dimensional surface could be embedded and is of interest, for example, all the major white

matter tracts in the brain (Bazin et al., 2011). The two dimensional manifold characterizes

the original data and accomplishes both dimension reduction and better visualization. The
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surface that was constructed is smooth and could be easily projected onto to represent other

properties of the original structure, such as the FA, mean diffusivity, parallel diffusivity, lo-

cal thickness and so on. The algorithm is computationally feasible and scales well to larger

images and densely measured structures.

The role of the two dimensional sub-representation needs to be further explored. Be-

fore the sub-representation routinely practised in any statistics analysis, the boundary issue

mentioned in Section 3 should be carefully tackled. Due to the local averaging step, the

obtained surface is a shrinkage of the original data cloud. Therefore, more points are pro-

jected onto the boundary on the domain [0, 1]×[0, 1]. In applications, these boundary points

could be deleted since the 2D representations on the boundary are less representative.

The corpus callosum in our application is anatomically simpler than the one considered

in Yushkevich et al. (2008). Therefore, it remains to be explored how our principal surface

algorithm performs in structures of higher complexity. For future work, we are developing

functional data analysis tools Goldsmith et al. (2011b,c); Greven et al. (2011); Zhu et al.

(2010, 2011) for relating the dimension reduced 2D manifold to outcomes of interest for

the purpose of inference, biomarker creation and prediction. Of note, we are particularly

interested in whether or not the 2D representation of the corpus callosum is less sensitive to

issues of whole brain registration often used in the processing pipeline. In fact, it is possible

that registering the 2D representation is preferable to whole brain registration a priori in

certain applications. Note also that MFPCA (Di et al., 2009) and LFPCA (Zipunnikov et al.,

2011a, 2014), methods have been shown to isolate registration error as a part of the model
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(Lee et al., 2015), thus raising the intriguing possibility of DTI processing streams that

dramatically decrease the need and importance of whole brain template-based registration.

Furthermore, current work could be easily modified to achieve dimension reduction

for different input and output dimensions.6. For example, sagittal mid-line callosum av-

erage thickness is meaningful in the study of neurological diseases (Luders et al., 2009;

Vidal et al., 2006). In addition, Zhang et al. (2010) used medial models for obtaining 2D

thickness maps of corpus callosum. With the proposed method, CC mid-sagittal thickness

or FA curves as well as the CC thickness or FA on principal surfaces could be achieved

simultaneously.

Finally, consider that the proposed procedure can be further extended as a general prob-

lem of fitting skeleton manifolds. We are also interested in fitting surfaces with fixed

boundaries. Work has been done to analyze principal curves with fixed origin and the

end point (Caffo et al., 2008). The extension to surfaces seems to be quite challenging.

A possible route is follows. Suppose t
¯

= (t1, t2) is the corresponding coordinate on the

surface of the original data point, x
¯

= (x1, x2, x3), which lies in 3D space. Now consider

a predetermined function for x
¯
(t
¯
) = (x1(t

¯
), x2(t

¯
), x3(t

¯
)) when the boundary values of t are

linearly constrained. Such constraints would yield cylindrical fits easily though extensions

to completely closed surfaces would require more elaborate constraints.

6A 3D to 1D principal curve algorithm could be easily achieved by changing the input and output dimen-
sion in TPS fitting
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Abstract

Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the

problem of quantifying the reproducibility of graphical measurements is considered. The

image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class

correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is

based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo

EM (mcmcEM) algorithm is used for estimating the GICC. Simulation results with varied

settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.

keywords: graphical intra class correlation coefficient, multivariate probit-linear

mixed model, MCMCEM
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3.1 Introduction

A crucial question in any statistical analysis is: how reliable is the data? Experimental

replication for the purpose of measuring the reliability of measurements is the most com-

mon method for establishing reproducibility. In this paper, we consider repeated measure-

ment of graphs and propose the concept of the graphical intra-class correlation coefficient

for measuring their reliability.

The Intra-class correlation coefficient (ICC) has been proposed (Fisher et al., 1970) and

used to evaluate the reliability of measurements in a variety applications (Bartko, 1966;

Shrout et al., 1979). ANOVA mixed-effect models have been proposed as a framework for

estimating the ICC (Stanish and Taylor, 1983). Suppose yij denotes the jth measurement of

subject i, xi denotes the subject specific random effect and uij indicates the measurement

error. The one-way ANOVA model is:

yij = µ+ xi + uij

xi ∼ N(0, σ2
x), uij ∼ N(0, σ2

u), i.i.d.

(3.1)

The ICC is then defined as:

ICC =
σ2
x

σ2
x + σ2

u

. (3.2)

In (3.1) and (3.2), the total variability of the data is decomposed into subject-specific vari-

ability and measurement error; ICC represents the proportion of variability that is due to

heterogeneity in subjects. In recent research, the ICC has been generalized to multivariate
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cases. The work in Di et al. (2009) proposed a model analogous to (1) in functional data us-

ing multilevel functional principal component analysis (MFPCA) and an image intra-class

correlation coefficient (I2C2) was subsequently proposed in Shou et al. (2013) to calculate

ICC for image data.

Graphical data are becoming increasingly popular in scientific research. Notably, graphs

are used in describing brain networks in neuroimaging. In such research, binary graphs are

often obtained from functional magnetic resonance image (fMRI) (Di Martino et al., 2008;

Guye et al., 2010; Huang et al., 2010; Salvador et al., 2005; Van Den Heuvel and Hul-

shoff Pol, 2010). The increasing number of graphical datasets motivates us to evaluate the

reliability of binary graphs.

Figure 3.1: The left panel shows a high GICC case, where graphical measurements are similar within
subjects. The right panel illustrates a low GICC case, where graphical measurements are less consistent
within subjects.
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Figure.3.1 illustrates idealized graphical measurements for three different subjects. Here

each subject is measured three times. The left panel shows a case where graphical measure-

ments resemble each other within one subject. The ICC, consequentially, should be higher.

The right panel, on the other hand, demonstrates the opposite situation, where the repeated

measurements within one subject show poor consistency. In such case, the ICC should be

relatively lower. In this manuscript, we propose the concept of the graphical ICC (GICC)

to quantify the similarity between repeated measurements of binary graphs. In Figure.3.1,

each binary graph is represented by a 0 − 1 vector. For example, the first graph of subject

1 is represented by (1, 1, 0, 1, 0, 0)T 1. Thus our goal is to define an ICC for multivariate

binary data.

Many authors have discussed the ICC for single variate binary data. Ridout et al.

(1999) proposed a moment based estimator. Probit linear mixed-effect models were used

by Rodrıguez and Elo (2003) and Zou and Donner (2004) to estimate a confidence interval

for binary data ICC.

There is also work discussing the similarity between graphs. The work in Zager and

Verghese (2008) and Blondel et al. (2004) discussed the similarity between nodes and edges

in graphs. One main purpose of these papers was to find assembled subgraphs between two

graphs. Instead of having a fixed node-to-node or edge-to-edge match, they found the

match between two graphs based on edge/node similarity score.

Our objective, on the other hand, is to estimate the ICC to evaluate the reliability of

1Each element of the vector is an indicator of the existence of an edge, the order of the six elements is
1©− 2©, 1©− 3©, 1©− 4©, 2©− 3©, 2©− 4©, 3©− 4©.
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replicated measurement of binary graphs. In section 3.2, a multivariate probit linear mixed

model is proposed. A Monte Carlo expectation maximization (MCEM) algorithm will be

discussed in section 3.3. Simulation results with various settings will be shown in section

3.4 and the results of our method being implemented on binary brain connectivity maps are

in section 3.5. We will summarize the paper in section 3.6.

3.2 Model

Suppose
{
oij(d) : i = 1, . . . , I; j = 1 . . . , Ji; d = 1, . . . , D,

}
are binary observations

representing repeated graph measurements for multiple subjects. Here, I is the total number

of subjects, Ji is the number of visits for the ith subject and D is the number of possible

edges for all graphs. Usually, we have D = N(N−1)
2

where N is the number of nodes.

In Figure.3.1, for example, we have I = 3, Ji = 3, N = 4, D = 6. The multivariate

probit-linear mixed model is as follows:

Φ−1
(
P (oij(d)|xi(d))

)
= µ(d) + xi(d),

xi ∼ N(0,Σx),

(3.3)

where xi = (xi(1), . . . , xi(D))T . The GICC, is then defined as:

GICC =
tr(Σx)

tr(Σx) +D
. (3.4)
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For the purpose of estimation, the model can also be viewed as a threshold model that

dichotomizes the observations from a latent Gaussian distribution. In other words:

oij(d) = I(yij(d)>0),

yij(d) = µ(d) + xi(d) + uij(d),

xi ∼ N(0,Σx), i.i.d.,

uij ∼ N(0, I), i.i.d.,

(3.5)

where xi = (xi(1), . . . , xi(d))T and uij = (uij(1), . . . , uij(d))T . The equivalency of these

two models can be easily shown by the following calculation:

P (oij(d) = 1|xi(d)) = P (yij(d) > 0|xi(d))

= P
(
uij(d) > −(µ(d) + xi(d))

∣∣∣xi(d)
)

= 1− Φ(−(µ(d) + xi(d)))

= Φ(µ(d) + xi(d)).

Formula 3.4 is a direct generalization from the univariate ICC Formula 3.2. GICC =

0 indicates that tr(Σx) = 0, which means that the between group variance is zero for

all dimensions, d = 1, . . . , D. GICC ≈ 1 indicates that tr(Σx) � D, implying that

the variation between subjects is much larger than the variation within subject. When

GICC = 0.5, tr(Σx) = D, implying that the overall between subject variation is equal to

the within subject variation.

43



CHAPTER 3. ESTIMATING A GRAPHICAL INTRA-CLASS CORRELATION
COEFFICIENT (GICC) USING MULTIVARIATE PROBIT-LINEAR MIXED MODELS

The advantage of using the trace is that: (1) it is an overall statistic instead of a edge

specific statistic, which provides a global measurement to quantify graphical reproducibil-

ity; (2) compared to other numerical methods (e.g. max(diag(Σ)),
∑

(σij)), the trace is

invariant to orthogonal transformations, which is critical in measuring the variability of

vectors.

Furthermore, using trace for measuring the global reproducibility was also proposed

for the image ICC (I2C2) (see (Shou et al., 2013)) in and the functional version of ICC (see

(Di et al., 2009)).

3.3 The Monte Carlo EM Algorithm

MCEM algorithms have been used in probit-linear mixed models with single variate

outcomes (Chan and Kuk, 1997). Here MCEM is generalized to the multivariate case. In

model 3.5, the parameters of interest are µ and Σx. In the procedure of estimation, we treat

o as observed data and [y, x] as the full data.
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3.3.1 M-step

Given the full data y and x, the MLE for both parameters yields an explicit form:

µ̂ =
1∑
i Ji

∑
i

∑
j

(yij − xi),

Σ̂x =
1

I

∑
i

xix
T
i .

(3.6)

Unlike McCulloch (1994), the estimate of µ does not involve Σx, since x is also treated

as part of the complete data. So µ̂ is obtained based on both x and y, rather than only on y.

Substituting y, x and xxT with E[y|o], E[x|o] and E[xxT |o] respectively on the right

side of 3.6, we obtain the M-step.

3.3.2 E-step

Based on 3.6, it is necessary to calculate E(yij|o), E(xi|o) and E(xix
T
i |o). Note that

E[xi|o] = E[E[xi|y]|o],

E[xix
T
i |o] = E[E[xix

T
i |y]|o].

(3.7)
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The inner expectation can be obtained by using the joint distribution of
{
xi, yi1, . . . ,yiJi

}
.

Noticing the following fact:

[xi,yi1, . . . ,yiJi ] =
∏
j

[yij|xi]× [xi]

∝ exp

{
− 1

2

[∑
j

{
(yij − µ− xi

)T
(yij − µ− xi

)
}

+ xTi Σ−1
x xi

]}

∝ exp

{
− 1

2

[
xTi (JiI + Σ−1

x )xi − 2
[∑

j

(yij − µ)
]T

xi

]}
,

(3.8)

it can be derived that:

xi|yi1, . . .yiJi ∼ N
(

(JiI + Σ−1
x )−1(yi. − Jiµ), (JiI + Σ−1

x )−1
)
, (3.9)
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where yi. =
∑

j yij . Thus we have

E(xi|O) =E[E[xi|y]|o]

=E

[
(JiI + Σ−1

x )−1(yi. − Jiµ)|o

]

=(JiI + Σ−1
x )−1

(
E[yi.|O]− Jiµ

)
,

E[xix
T
i |o] = E[E[xix

T
i |y]|o]

=E

[
(JiI + Σ−1

x )−1(yi. − Jiµ)(yi. − Jiµ)T (JiI + Σ−1
x )−1 + (JiI + Σ−1

x )−1|o

]

=(JiI + Σ−1
x )−1E

[
(yi. − Jiµ)(yi. − Jiµ)T |o

]
(JiI + Σ−1

x )−1 + (JiI + Σ−1
x )−1.

(3.10)

However, the term E[yi.|o] and E[yTi.yi.|o] does not have an explicit form. Here we

use a Gibbs sampler to approximate the conditional expectation. Notice that, given o, the

distribution of y is multivariate truncated normal. The Gibbs sampler for such a distribution

has been discussed in Horrace (2005), Kotecha and Djuric (1999), Wilhelm and G (2013).

In the Gibbs sampling cycles, we choose the burn in period to be the first T = 200 and treat

the following B = 500 elements as limiting realizations from the conditional distribution

of y|o. Then an empirical conditional expectation is calculated as follows:

Ê[yij|o] =
1

B

T+B∑
b=T+1

y
(b)
ij ,

Ê[yi.y
T
i. |o] =

1

B

T+B∑
b=T+1

y
(b)
i. y

(b)T
i. .

(3.11)
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3.3.3 Observed information matrix for µ

Though we are not specifically interested in estimating µ for the graphical ICC, the

estimate of µ with its standard error remains of potential interests, especially for modeling

multivariate binary data using probit-linear mixed model. Louis (1982) expressed the ob-

served information matrix in EM algorithm using the first and second derivative of the full

likelihood.

Assume the observed log-likelihood is lo(o, θ) where θ = (µ,Σx) and the full log-

likelihood is lx,y(x,y, θ), following Louis (1982), we have:

Io(θ) =Eθ

[
−∂

2lx,y(x,y, θ)

∂µ∂µT

∣∣∣∣∣o
]
− Eθ

[(
∂lx,y(x,y, θ)

∂µ

) (
∂lx,y(x,y, θ)

∂µ

)T ∣∣∣∣∣o
]

+

(
∂lo(o, θ)

∂µ

) (
∂lo(o, θ)

∂µ

)T
.

(3.12)

Let Io = Io(θ̂), where θ̂ is the maximum likelihood estimator. Then we have:

Io(θ̂) = Eθ̂

[
−∂

2lx,y(x,y, θ)

∂µ∂µT

∣∣∣∣∣o
]
− Eθ̂

[(
∂lx,y(x,y, θ)

∂µ

) (
∂lx,y(x,y, θ)

∂µ

)T ∣∣∣∣∣o
]
.

(3.13)

Following the same path as in the E-step, we can use Gibbs sampler and empirical averages

to approximate the conditional expectation.
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3.4 Simulation

3.4.1 Estimates

We set number of subjects at I = 100, 200 and each subject receives J = 2, 4 repeated

measurements. The number of nodes is set to be N = 5 so that the number of possible

undirected edges is D = 10. The true µ is set to be 0.5 for all elements and

Σx[i, j] = rρ|i−j|, where ρ = 0.8.

The underlying true graphical ICC using definition 3.4 is controlled by r. We set r = 2, 4

in each setting so that the corresponding ICC’s are rD
rD+D

= 2/3 and 4/5 respectively. A

total of 500 simulations were run in each simulation group.

In Table. 3.1, the average estimated GICC for r = 2 groups are 0.702, 0.672, 0.683 for

I100J2, I100J4 and I200J4 group respectively, comparing to an underlying truth 2/3 ≈ 0.667.

As number of individuals increases, or as the number of repeated measurements increases,

both the bias and the standard deviation of the estimated GICC reduces. When r = 4, the

average estimated graphical ICCs are 0.817, 0.800 and 0.806, respectively. The MLE of

GICC in each case has a positive bias, which is reduced as either I or Ji increases.
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Table 3.1: Simulation results

Setting Estimates for σii ICC est.

I = 100, J = 2, r = 2
σ1,1 σ2,2 σ3,3 σ4,4 σ5,5 ICC
2.37 2.48 2.38 2.35 2.34 0.702(1.18) (1.09) (1.11) (1.04) (1.01)

ICCtrue = 2/3
σ6,6 σ7,7 σ8,8 σ9,9 σ10,10
2.45 2.36 2.43 2.43 2.38 (0.033)(1.09) (1.06) (1.13) (1.04) (1.18)

I = 100, J = 2, r = 4
σ1,1 σ2,2 σ3,3 σ4,4 σ5,5 ICC
4.56 4.74 4.62 4.40 4.56 0.817(2.11) (2.20) (2.30) (2.01) (2.28)

ICCtrue = 4/5
σ6,6 σ7,7 σ8,8 σ9,9 σ10,10
4.65 4.63 4.52 4.61 4.51 (0.025)(2.12) (2.04) (2.07) (2.04) (2.31)

I = 100, J = 4, r = 2
σ1,1 σ2,2 σ3,3 σ4,4 σ5,5 ICC
2.02 2.10 2.07 2.04 2.10 0.672(0.60) (0.64) (0.61) (0.65) (0.65)

ICCtrue = 2/3
σ6,6 σ7,7 σ8,8 σ9,9 σ10,10
2.08 2.06 2.08 2.08 2.05 (0.026)(0.59) (0.60) (0.63) (0.65) (0.61)

I = 100, J = 4, r = 4
σ1,1 σ2,2 σ3,3 σ4,4 σ5,5 ICC
4.00 4.08 4.04 3.96 4.17 0.800(1.29) (1.36) (1.28) (1.29) (1.36)

ICCtrue = 4/5
σ6,6 σ7,7 σ8,8 σ9,9 σ10,10
4.04 4.04 4.10 4.09 4.05 (0.020)(1.24) (1.20) (1.34) (1.32) (1.24)

I = 200, J = 2, r = 2
σ1,1 σ2,2 σ3,3 σ4,4 σ5,5 ICC
2.08 2.22 2.23 2.17 2.19 0.683(0.68) (0.77) (0.74) (0.73) (0.70)

ICCtrue = 2/3
σ6,6 σ7,7 σ8,8 σ9,9 σ10,10
2.17 2.17 2.16 2.20 2.13 (0.026)(0.76) (0.68) (0.71) (0.77) (0.74)

I = 200, J = 2, r = 4
σ1,1 σ2,2 σ3,3 σ4,4 σ5,5 ICC
4.07 4.33 4.25 4.20 4.18 0.806(1.38) (1.41) (1.57) (1.49) (1.42)

ICCtrue = 4/5
σ6,6 σ7,7 σ8,8 σ9,9 σ10,10
4.20 4.20 4.25 4.30 4.15 (0.020)(1.52) (1.36) (1.43) (1.47) (1.47)

3.4.2 Robustness

In the proposed multivariate probit-linear mixed model, the assumption was made that

the underlying within group error term is independent across edges. In other words, in
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model 3.5, the off-diagonal elements of var(uij) is set to be zero. In real applications,

this may not be the case. Therefore, we conducted simulations using the above settings

when I = 100, J = 2 and r = 2. However, instead of setting Σ = I , we set σij =

ρ|i−j|, where ρ = 0.1 and 0.5. The resulting GICC based on 100 simulations have means

0.699(0.025) and 0.722(0.026). The results highlight that the resulting GICC is still close

to the underlying truth when there are correlations between edges in the error term.

3.4.3 Comparison With Other Benchmarks

We compared our proposed method with other available methods using our first simu-

lation case (I = 100; J = 2; r = 2). The work in Deuker et al. (2009), Telesford et al.

(2010) and Telesford et al. (2013) used ICC derived from one-way ANOVA, Rodrıguez and

Elo (2003) proposed ICC for binary data using a single variate probit model. It should be

pointed out that, all the other methods are based on the single variate ICC, so the compar-

ison is limited. We compare our method with (1) average ICC(1)’s for all edges based on

one-way ANOVA, (2) ICC(1) for the mean of the binary vector and (3) average edge-wise

ICC based on single variate probit model. The results are shown in Table 3.2.

First of all, the first two ICCs are all derived from the one-way ANOVA model, thus

all of the binary data are considered to be continuous. The average edge-wise ICC is only

0.457, but ICC for the mean vector is 0.812. None of them are close to the truth. The edge-

wise ICC treats all binary data as pure jumps instead of treating them as having underlying

continuous data. The ICC for the mean of vector can only provide the ICC on the average
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statistic, but can not align the data with the same edge. The average edge-wise binary ICC

based on single variate probit model also yields lower ICC. It also shows the difference

between an unstructured covariance matrix for x and a diagonal matrix.

Table 3.2: Compare to Benchmark

Models

ICCtrue = 0.667
ave. ICC(1) ICC(1) for vec.mean 1-var probit GICC

0.457 0.812 0.613 0.696
(0.028) (0.035) (0.025) (0.029)

3.4.4 Running Time

To evaluate the running time of the MCEM algorithm, we conducted simulations with

varied settings in which the number of subjects = 50, 100, the number of replicates = 2, 3, 4

and the number of edges = 10, 20 and 30. To be consistent with all settings, we terminated

the algorithm after 30 iterations. All simulations were conducted using a 2.4GHz core on

PowerEdge C6145 AMD Processor-based 2U Rack Server.

Table 3.3: Running Time (in seconds)

I=50 I=100
D = 10 D = 20 D = 30 D = 10 D = 20 D = 30

J = 2 17.2 28.7 62.4 33.5 57.2 124.8
J = 3 20.7 61.5 215.4 41.3 122.8 430.6
J = 4 28.0 144.5 586.5 55.9 289.0 1173.3

Table 3.3 shows that the number of subjects has a strict linear relationship with running

time. Running time increases nonlinearly with either the number of replicates or the num-

ber of edges in the graph. With under 30-edge graphs and 4 replicates, the running time

is less than twenty minutes. It is clear that if the number of replicates is 4, the running
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time grows faster than a quadratic function of the number of edges. Therefore, the current

algorithm requires a relative small number of edges for each graph. We will further discuss

it in Section 3.6.

3.5 Application

Resting-state fMRI scans consisted of a test-retest dataset previously acquired at the

FM Kirby Research Center at the Kennedy Krieger Institute, Johns Hopkins University

Landman et al. (2011) are used to highlight the method. Twenty one healthy volunteers

with no history of neurological disease each underwent two separate resting state fMRI

sessions on the same scanner. A 3T MR scanner was used (Achieva, Philips Healthcare,

Best, The Netherlands) utilizing a body coil with a 2D echoplanar (EPI) sequence and

eight channel phased array SENSitivity Encoding (SENSE; factor of 2) with the following

parameters: TR 2s, 3mm x 3mm in plane resolution, slice gap 1mm, for total imaging

time of 7 minutes and 14 seconds. One subject was excluded due to technical issues at

acquisition.

ICA (Independent Component Analysis) was performed using MEDOLIC (Multivari-

ate Exploratory Linear Optimized Decomposition into Independent Components) version

3.10 in FSL (FMRIB Software Library, FMRIB, Oxford, UK). Preprocessing included re-

moval of low-frequency drift with a highpass filter cutoff of 250s, realignment of the fMRI

time series using MCFLIRT, slice timing correction, brain extraction using BET, and spa-
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tial smoothing with FWHM of 6mm. Images were registered to MNI standard space with

resampling resolution of 2mm. ICA was performed using multi-session temporal concate-

nation with automatic dimensionality estimation and time-course variance normalization

implemented in MELODIC. 43 components were identified by MELODIC.

Figure 3.2: The figure illustrates two repeated measurements for one subject. On the left, raw correlations
between seven nodes are illustrated. Then the raw correlations are dichotomizing using different thresholds
(0.2, 0.35, 0.6 are listed here). Our algorithm is then implemented on binary graphes using each threshold.
Red suggests lower value and white (yellow) suggests higher value. In the binary graph on the right, red
indicates 1 and yellow indicates 0.

Relevant ICA components corresponding to known large scale brain networks were

identified by a board certified neuroradiologist with experience in resting state fMRI. Seven

total components were selected (default mode network, dorsal attention network, motor

network, visual network, salience network, and two lateralized executive control networks),
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and the 7 by 7 correlation matrix was calculated (see raw data in Figure 3.2). Different

thresholds were used to dichotomize the raw graphs into binary ones, where the thresholds

were chosen from 0.1 to 0.8 using grid 0.01 (see Figure 3.2). The GICC algorithm was

then implemented on these binary graphs.

Figure 3.3: The calculated GICC under different thresholds. The threshold were picked equally spaced
from 0.1 to 0.8 using grid 0.01. The maximized GICC is indicated in the figure, which corresponds to a 0.35
threshold.

The GICC was then calculated for each threshold (see Figure 3). The GICC remains

above 0.6 when the threshold is between 0.1 and 0.6. For threshold outside of this band the

GICC decreases dramatically. When the threshold is around 0.8, GICC fluctuates more sig-

nificantly and the value eventually drops to 0.1. Thus the GICC shows high reproducibility

of the raw data if a reasonable threshold is employed (from 0.1 to 0.6). When the threshold

is too high, only few raw values will be dichotomize to 1, such that poor reproducibility
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is obtained. For practical subsequent applications, one could use the value that maximizes

the GICC in this data set (see Figure 3.3).

3.6 Conclusion

In this paper, we propose the concept of the graphical intra-class correlation coefficient

using multivariate probit mixed-linear models. The GICC is defined as tr(Σx)
tr(Σx)+D

. We used

a Monte Carlo EM algorithm to obtain the MLE of Σx, while a Gibbs sampler was used in

the E-step. We show the results of GICC in varied simulation settings and in the KIRBY21

test-retest datasets.

While providing GICC, the estimation procedure can also be generalized to multivariate

probit mixed-linear model with fixed and random covariates components, which is:

oij(d) = I(yij(d)>0)

yij(d) =
P∑
p=1

µip(d)βp(d) +
R∑
r=1

xir(d)ηir(d) + uij(d)

ηir ∼ N(0,Σr), i.i.d.

uij ∼ N(0, I), i.i.d..

In the EM algorithm, η and y can be treated as full data and the procedure in Section 3.3

follows. In section 3.3.3, we also calculate the observed information matrix for the fixed

effects which can provide confidence intervals for β’s. Moreover, the procedure can also be
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used multivariate generalized mixed-linear models, such as multivariate poisson or logistic

regression.

Currently, our method works for small graphs. As the number of nodes in a graph

increases, the number of parameters of interests grows quadratically (D ∼ O(N2) and

#{σij} ∼ O(D2)). Thus a graph with 100 nodes will have tens of millions of parameters

to estimate. The Gibbs sampler could not be implemented effectively in such cases. There-

fore, the algorithm currently requires a relatively small number of nodes for each graph

(typically less than 10). In order to achieve faster convergence rate as well as control the

Monte Carlo error induced by Gibbs sampler, ascent based MCEM (Caffo et al., 2005) and

acceleration EM algorithm (Varadhan and Roland, 2008) could be implemented.

Notice that from the application, GICC could also be used for choosing thresholds for

dichotomizing raw graphs. The value that maximizes the GICC is a reasonable threshold,

since it yields the best reproducibility of a well known benchmark data set.

In summary, GICC provides us a way to measure the reproducibility of repeated graph-

ical measurements. The current algorithm gives us the estimates of GICC for relatively

small graphs. To our knowledge, GICC for large graphs has not been addressed before and

therefore deserves further investigation.
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Abstract

Principal component analysis (PCA) is a widely used dimension reduction technique.

In this manuscript, we extend PCA to multilevel binary data. Our framework is built on the

probabilistic PCA fitted by a variational EM algorithm. Variational Expectation Maximiza-

tion (VEM) algorithm is used in optimizing the likelihood function so that the model could

be implemented on large datasets with high dimensions. The performance and running time

of the proposed method is studied in a few challenging simulation scenarios. We also apply

the method to the National Health and Nutrition Examination Survey (NHANES) dataset

as well as a functional magnetic resonance imaging (fMRI) dataset. We then explore a re-

producibility of the results through the graphical intra-class correlation coefficient(GICC).

keywords: principal component analysis(PCA), binary data, variational EM, graphical

intra-class correlation coefficient
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4.1 Introduction

Principal component analysis (PCA) has been widely used for dimension reduction in

many scientific domains including psychometrics, genomics, brain imaging among many

others. Probabilistic PCA (PPCA), developed in Tipping and Bishop (1999), proposed a

rigorous framework to obtain principal components as estimated parameters in a Gaussian

statistical model. PPCA framework opened a way to model not only multivarite continuous

measurements, but also extended PCA to categorical and binary measurements (Collins

et al., 2001; Roy and Gordon, 2002). Several PCA approaches for non-Gaussian data were

developed via semi-parametric in Sajama and Orlitsky (2004) and Bayesian methods in

Mohamed et al. (2008).

To model binary data, Tipping (1999) proposed a probabilistic model and Jaakkola and

Jordan (2000) implemented a variational approximation to the logistic link function. The

binary PPCA in Tipping (1999) is modelled as follows:

P (xi(d) = 1|vi) = σ
(
µ(d) + θ(d)vi

)
, with vi

i.i.d.∼ N(0, IK×K), (4.1)

where xi = (xi(1), . . . , xi(D)) is a D-dimensional vector with binary entrees characteriz-

ing subject i, i = 1, . . . , I , K is the total number of principal components and σ(.) is the

expit function as σ(z) = 1
1+exp(−z) . As an example, xi could be a 256-dimensional vector

representing an unfolded 16×16 black-and-white image. In this model, the columns of the

D×K matrix Θ span the principal space and the elements of the K-dimensional vector vi
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are the principal scores of subject i. Note that binary PPCA relaxes the orthonormal con-

straints on the columns of Θ and assumes a standard normal prior on the principal scores

vi. Thus, the magnitude of PCs is absorbed into Θ. More details can be found in Tipping

(1999).

In many medical and epidemiological studies participants have multiple follow-up vis-

its during which many multivariate measurements, such as brain images, are collected.

Scientifically, it is critically important to take into account the design-imposed cluster-

ing structure in the data. To accommodate both the between- and within-subject specific

PCs, Di Martino et al. (2008) and Zipunnikov et al. (2011b) proposed principal compo-

nent methods for functional and high-dimensional continuous observations, respectively.

The framework in Di Martino et al. (2008) and Zipunnikov et al. (2011b) assumes that the

between-subject PCs characterize the difference between subjects, while the within-subject

PCs represent the visit-to-visit differences within subjects. Furthermore, Goldsmith et al.

(2015) proposed a multilevel functional principal component analysis for exponential fam-

ily. Though the model enjoys its flexibility of enriched family type, the long running time

of the Gibbs sampler makes it less useful. For less than 1,000 subjects with no more than

10 basis functions and up to 20 principal components, the running time takes more than 10

days. Therefore, a huge computational improvement is strongly required.

In this manuscript, we combine the ideas of binary PPCA and the multilevel design

and propose a multilevel binary principal component analysis (MBPCA) to model high-

dimensional binary data collected repeatedly. Our method enjoy a significant shorter com-
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puting time and can handle much larger datasets easily. Several simulation scenarios were

conducted for validation. We will apply the MBPCA method on the National Health and

Nutrition Examination Survey (NHANSE) dataset 1 as well as a case from resting-state

fMRI experiment. Furthermore, we will apply MBPCA to quantify the reproducibility of

estimated functional connectivity in an fMRI study through a graphical interclass cross-

correlation coefficient (GICC) (Yue et al., 2015).

The rest of the manuscript is organized as follows. We will introduce our model and the

adapted variational EM algorithm in Section 2. Simulation study will be shown in Section

3. Two application cases will be presented in Section 4. We will summarize in Section 5.

4.2 Model and Methods

Suppose xij = (xij(1)), . . . , xij(D) are observed D-dimensional binary vectors, where

i = 1, . . . , I indicates the subject ID and j = 1, . . . , Ji indicates the jth measurement for

subject i. We define Multilevel Binary Principal Component Analysis (MBPCA) model as

follows,

P (xij(d) = 1|vi,uij) = σ
(
µ(d) + θ(d)vi +ψ(d)uij

)
,

vi
i.i.d.∼ N(0, IK1×K1),

uij
i.i.d.∼ N(0, IK2×K2),

1http://www.cdc.gov/nchs/nhanes.htm
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where µD×1 is the population mean of the latent process, the columns of ΘD×K1 span the

between-subject principal space; the columns of ΨD×K2 span the within-subject principal

space; the rows of VI×K1 (denoted by vTi ) indicates the between-subject principal scores

and the rows of UN×K2 (with N =
∑
Ji) are the within-subject principal scores.

The MBPCA model assumes that each observation can be explained by the population

average µ, the between subject effect θ(d)vi and the within subject effect φ(d)uij . The

parameters of interest are µ, θ and ψ. It is clear that the MBPCA model is invariant to

any orthogonal transformation of θ and ψ. For instance, let θ be one estimate of between

subject principal component, then θ∗ := θP yields the same likelihood with redefined

v∗i = P−1vi as long as PK1×K1 is an orthogonal matrix. Therefore, for the purpose of

obtaining unique solution, a singular value decomposition (SVD) is applied for both θ and

ψ. Let θ = PDQt be the SVD, we define the unique solution as θ̂ = PD and the

corresponding principal scores as vi = Qtvi.

The full likelihood for observed matrix X and unobserved matrices U and V is given

by

L(X,U,V) ∝
I∏
i=1

Ji∏
j=1

D∏
d=1

{
σ
(
(2xij(d)− 1)Aij(d)

)}

×
I∏
i=1

{
exp

(
− vTi vi

2

)} I∏
i=1

Ji∏
j=1

{
exp

(
−

uTijuij

2

)}
,

(4.2)

whereAij(d) = µ(d)+θ(d)vi+ψ(d)uij . Obtaining the marginal likelihood of X involves

integrating out all vi’s and uij’s, which cannot be computed directly. To obtain MLE, we

will follow Tipping and Bishop (1999) and Schein et al. (2003) and use the variational
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approximation approach which was originally proposed in Jaakkola and Jordan (2000).

Next, we will discuss the approach with the necessary modification to accommodate the

multilevel design.

4.2.1 Variational Approximation of the Likelihood

We use the variational approximation to P (xij(d)|vi,uij) of the following form:

P̃ (xij(d)|vi,uij , ξij(d)) = σ(ξij(d)) exp
{
((xij(d)−

1

2
)Aij(d)

− 1

2
ξij(d)) + λ(ξij(d))

(
Aij(d)

2 − ξij(d)2
)}
,

(4.3)

where ξij(u) is the variational parameter and λ(x) = 0.5−σ(x)
2x

. Thus, the full likelihood can

be approximated by

L̃(X,U,V) ∝
I∏
i=1

Ji∏
j=1

D∏
d=1

{
P̃ (xij(d)|vi,uij, ξij(d))

}
×

I∏
i=1

{
exp

(
− vTi vi

2

)} I∏
i=1

Ji∏
j=1

{
exp

(
−

uTijuij

2

)}
.

(4.4)

Expectation-Maximization (EM) algorithm can be used to obtain the MLE for the varia-

tionally approximated likelihood. The EM algorithm has three steps:

(1) obtaining the posterior distribution of vi and uij , which depends on µ,Θ, Ψ and ξ;

(2) maximizing the variational approximation with respect to ξ;

(3) maximizing the variational approximation with respect to µ,Θ and Ψ.
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The three steps are then iterated until the convergence is achieved. Below, we present the

details of each of the steps.

(1) Joint posterior distribution of vi and uij:

The joint posterior distribution of vi and uij’s for a fixed i can be obtained from (4.4).

Tipping and Bishop (1999) and Schein et al. (2003) derived the formulas for the (one-

level) binary PCA. In the multilevel case, vi and uij’s are not independent in the posterior

distribution. We will now derive the joint distribution. Let mi and Ci are the posterior

mean and variance covariance matrix of the vector (vTi ,u
T
i1, . . . ,u

T
iJi

)T . Then we have:

Ci =


Hi Bi1 . . . BiJi
BT
i1 Gi1 0 0
... 0

. . . 0
BT
iJi

0 0 GiJi


−1

, (4.5)

mi = Ci · (hTi , gTi1, . . . , gTiJi)
T , (4.6)

where Hi = I − 2
∑
j

∑
d

λ(ξij(d))θ(d)
Tθ(d),

Gij = I − 2
∑
d

λ(ξij(d))ψ(d)
Tψ(d),

Bij = −
∑
d

λ(ξij(d))θ(d)
Tψ(d),

hi =
∑
j

∑
d

(
xij(d)−

1

2
+ 2λ(ξij(d))µ(d)

)
θ(d)T ,

and gij =
∑
d

(
xij(d)−

1

2
+ 2λ(ξij(d))µ(d)

)
ψ(d)T .

In (4.5), calculatingCi requires inverting aK1 +JiK2 byK1 +JiK2 matrix. This could

be quite computationally demanding for large Ji. The computations can be simplified by
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using the inverse block matrix formula:

(
A B
BT D

)−1
=
(

(A−BD−1BT )−1 −(A−BD−1BT )−1BD−1

−D−1BT (A−BD−1BT )−1 D−1+D−1BT (A−BD−1BT )−1BD−1

)
(4.7)

, where A = Hi, B = (Bi1, . . . , BiJi) and D = diag(Gi1, . . . , GiJi). Since D is a

diagonal block matrix, the highest dimension of matrix to be inverted is K by K with

K = max(K1, K2).

(2) Maximizing the variation likelihood with respect to ξ.

By construction P (xij(d)|vi,uij) > P̃ (xij(d)|vi,uij , ξij(d)), so the variational approxi-

mation can be improved by maximizing P̃ with respect to ξ. Using the EM algorithm, we

obtain that ξ̂ij(d)2 = Ep̃post(Aij(d)2). Thus we have:

ξ̂ij(d)2 =θ(d)〈vi,vi〉θ(d)T +ψ(d)〈uij,uij〉ψ(d)T + 2θ(d)〈vi,uij〉ψ(d)T

+ 2µ(d)θ(d)〈vi〉+ 2µ(d)ψ(d)〈uij〉+ µ(d)2,

(4.8)

where 〈vi,vi〉 = Civ+mivm
T
iv, 〈uij ,uij〉 = Ciuij +miuijm

T
iuij

, 〈vi,uij〉 = Civuij +mivm
T
iuij

,

〈vi〉 =miv and 〈uij〉 =miuij , and 〈·〉 denotes the corresponding posterior cross-moments.

The posterior distribution of vi and uij depends on ξ, so steps (1) and (2) are iterated

to improve the approximation of the posterior distribution. A small number iterations is

usually required to converge.

(3) Maximizing the variational likelihood with respect to µ, Θ and Ψ.

Let wij = (uTij,v
T
i , 1)T and φ(d) = (Ψ(d)T ,Θ(d)T , µ(d))T . The update for φ(d) has
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a closed form and is equal to

φ̂(d) = −
[∑

i

∑
j

2λ(ξij(d))ŵijwT
ij

]−1[∑
i

∑
j

(xij(d)−
1

2
)ŵij

]
,

where ŵijwT
ij =

 〈uij ,uij〉 〈vi,uij〉 〈uij〉〈vi,uij〉 〈vi,vi〉 〈vi〉
〈uij〉 〈vi〉 1

 ,

ŵij = (〈uij〉T , 〈vi〉T , 1)T .

The EM algorithm stops when the difference between the parameters estimated at two

consecutive iterations falls below a pre-specified threshold.

4.3 Simulations

4.3.1 Scenario 1

In the first scenario, the number of subjects is set to be I = 500 with Ji = 6 replications

of each. Each measurement has dimension D = 100.

The data were generated from two between subject principal components (between-

PCs) and two within subject components (within-PCs). We use a Cosine and a Sine func-

tion for between-PCs θ1, θ2, such that,

θ1(d) = 2 ∗ cos(π
2
∗ d− 1

D − 1
), θ2(d) = sin(

π

2
∗ d− 1

D − 1
), 1 ≤ d ≤ D
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and the within-PCs ψ1, ψ2 are defined by a linear function and a quadratic function respec-

tively:

ψ1(d) = 4 ∗ d− 0.5 ∗ (D + 1)

D − 1
, ψ2(d) = (2 ∗ d− 0.5 ∗ (D + 1)

D − 1
)2. 1 ≤ d ≤ D

As we discussed in Section 2, an SVD step will be performed on both true PCs (θ, ψ)

and estimated PCs (θ̂, ψ̂) for fair comparison.

The MBPCA models were fit with K1 = K2 = 10 and the maximum number of

iterations was set to be 100.
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Figure 4.1: Scenario 1 simulation results for between subject PCs. Left: compares true
singular values versus estimated ones. Middle: true between subject PCs in smoothed
curves and estimated ones in dotted curves. Right: true PC scores versus estimated ones in
dots and identity function in solid line.

Figure 4.2: Scenario 1 simulation results for within subject PCs. Left: compares true
singular values versus estimated ones. Middle: true between subject PCs in smoothed
curves and estimated ones in dotted curves. Right: true PC scores versus estimated ones in
dots and identity function in solid line.

The left subplot of both Figure.4.1 and Figure.4.2 compares the estimated singular value

versus the corresponding true ones. It is found that the magnitudes of both between/within

subjects singular values list decrease significantly after the first two true components, indi-

cating that the first two principal components can explain the majority of variation patterns

in data, which is consistent with the simulation settings.

The comparison of estimated principal components versus the true ones is illustrated in

the middle subplots of Figure.4.1, 4.2 and the comparison of the principal scores is shown
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in the right subplots. All figures show estimates are close to the underlying truth.

4.3.2 Scenario 2

In Scenario 2, we set I = 500, J = 4 and D = 1, 000. There are still two true

between/within subjects principal components each. The patterns of principal components

are equally spaced bars, specified by:

θ1(d) = 0.447 ∗ I1≤d≤D/2, θ2(d) = 0.224 ∗ I(D/2+1)≤d≤D, 1 ≤ d ≤ D

ψ1(d) = 0.224 ∗ Id∈[1,D/4]∪[(D/2+1):0.75∗D], ψ2(d) = 0.112 ∗ Id∈[(D/4+1):D/2]∪[(0.75∗D+1):D]

where I. is the indicator function. The MBPCA model was fit with the number of between

and within subject principal components K1 = K2 = 20 and the maximum number of

iterations 200. The results are presented in Figure.4.3 and 4.4, with the same interpretation

as in simulation 1.
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Figure 4.3: Scenario 2 simulation results for between subject PCs. Left: compares true
singular values versus estimated ones. Middle: true between subject PCs in smoothed
curves and estimated ones in dots. Right: true PC scores versus estimated ones in dots and
identity function in solid line.

Figure 4.4: Scenario 2 simulation results for within subject PCs. Left: compares true
singular values versus estimated ones. Middle: true between subject PCs in smoothed
curves and estimated ones in dots. Right: true PC scores versus estimated ones in dots and
identity function in solid line.

4.3.3 Runtime Analysis

To evaluate the runtime of the MBPCA algorithm, we conducted simulations accord-

ing to scenario 1 with varied problem size, in which number of subject I = 500, 1000,

number of replicates J = 4, 8, and dimension of each observation D = 500, 1000. The

MBPCA model was fitted using K1 = K2 = 5, 10, 15. To be consistent with all setting,
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I = 500 I = 1000
K = 5 K = 10 K = 15 K = 5 K = 10 K = 15

D = 500 J = 4 167.0 297.0 440.3 315.1 551.7 830.1
J = 8 314.1 546.9 829.3 628.0 1092.4 1666.9

D = 1000 J = 4 325.7 566.5 831.0 628.8 1113.7 1664.7
J = 8 624.7 1085.0 1672.4 1247.4 2172.6 3262.0

Table 4.1: Runtime in seconds

we terminated the algorithm after 30 iterations, which is usually good enough for conver-

gence in many application cases. All simulations were conducted using processor: 3.1GHz

dual-core Intel Core i7 with 4MB shared L3 cache.

Table 4.1 illustrates the runtime of the VEM algorithm. First, we notice that the runtime

grows equals to or slower than a linear speed with: number of subjects I , the number of

replicates J , the number of dimensions of the data D and the number of PCs K. Second,

if we compare the running time of our model versus the one proposed in Goldsmith et al.

(2015), Table 4.1 shows huge advantages of our method. One particular setting in this table

is I = 500, J = 4, K = 10 and D = 500, which is comparable to the application case in

Goldsmith et al. (2015), takes less than 3 minutes in our simulation, while a similar setting

took more than 10 days in Goldsmith et al. (2015).

4.3.4 The Graphical Intra-Class Correlation Coefficient

(GICC)

Furthermore, we investigate the estimation quality of the GICC obtained by MBPCA,

which is an important measurement of graphical data reproducibility. The GICC is pro-
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posed in Yue et al. (2015) as follows:

GICC :=

∑Kb

k=1(dθk)
2∑Kb

k=1(dθk)
2 +

∑Kw

k=1(dψk )2
, (4.9)

where dθs’ and dψs’ are the singular values of the corresponding parameter matrices θ and

ψ.

We adopt similar simulation settings in scenario 2, in which I = 100, j = 4, D = 100,

with the true GICC score varying from 0.5 to 0.9 on a 0.1 step size. The MBPCA model is

fitted with K = K1 = K2 = 2, 5 and 10.

In Table 4.2, each estimated GICC is the average over 50 repeated runs. The true

number of between/within subjects principal components are both 2. We found that when

using K = 2 (equal to the truth) to fit the model, the estimated GICC is more accurate. As

K increases, the GICC tends to be under-estimated. Therefore, we suggests use moderate

number of PCs K1, K2 for better accuracy of GICC estimation. In practice, one could

start with a relatively big number of K and then reduce the K1 and K2 to the value K̂1 and

K̂2 such that the singular value starts to flatten out to zero after K̂1 and K̂2 respectively.

Left subplots of Figure 4.4 indicates that K1 = K2 = 2 is a good candidate for estimating

GICC.

True GICC 0.5 0.6 0.7 0.8 0.9

Estimated GICC
K = 2 0.49 (0.04) 0.60 (0.05) 0.69 (0.04) 0.80 (0.03) 0.90 (0.02)
K = 5 0.47 (0.03) 0.56 (0.04) 0.65 (0.03) 0.75 (0.02) 0.87 (0.02)
K = 10 0.46 (0.02) 0.53 (0.03) 0.60 (0.02) 0.70 (0.02) 0.82 (0.02)

Table 4.2: GICC Estimation. Numbers without parenthesis indicates the average GICC
estimates, numbers inside parenthesis indicates the standard deviation.
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4.4 Application

4.4.1 NHANES

The 2003-2004 wave of NHANES collected physical activity data for seven consecutive

days on participants aged 6 and older. The Actigraph AM-7164, a uni-axial accelerometer,

placed on a belt and participants were instructed to wear the device on the right hip at

all times other than during any aquatic activity, including swimming and bathing, and at

bedtime (Troiano et al., 2008). The participants were instructed to remove accelerometers

at bedtime, therefore, we excluded the nighttime period that we defined as 11pm to 7am.

In addition, non-wear time was identified using the algorithm in Van Domelen and Pittard

(2014) and the days with more than 10 percent of non-wear time or non-calibrated or non-

reliable data have been excluded. The remaining dataset contained 4,076 subjects having

on average 3 daily physical activity profiles.

The left panel of Figure 4.8 shows daily rest/activity profiles for five randomly cho-

sen participants. Each profile can be thought of as a 960-dimensional vector with binary

components representing a daytime fragmentation of physical activity.

MBPCA model was then implemented to this dataset, the number of between and within

subjects principal components were set to be 5. It took 30 steps for the algorithm to con-

verge.
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Figure 4.5: Population Averages and Between Subject PCs of NHANSE data

The population average, which is shown in the upper left subplot of Figure 4.5, shows

the population average probability of being active. The sharp increasing trend in the morn-

ing and the sharp decreasing trend in the late evening illustrates the getting up and going

back to sleep respectively. Three peaks could also be observed, The probability peaks in the

morning around 9AM and then slowly decays until 1PM. The second peak happens in the

afternoon at 3PM while the last peak suggests the evening activity at around 7PM. The first
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PC illustrates the largest activity component that different people vary on. The pattern itself

shows two main positive peaks and one negative peak. These large magnitude happens at

7AM, 1-5PM and 11PM. It informs us that the getting up activities, the afternoon activities

and the night activities has the largest variability across different people. Meanwhile, it

also suggest that the one with highest early morning and afternoon active probability also

enjoys an earlier sleep time. PC2 unveils a similar pattern but only emphasizes in the early

morning at 7AM and late evening at 11:00PM. The opposite sign shows that the one with

low active probability in the early morning will have higher values at night. PC 3 has two

negative peaks at 8AM and 11PM, while being around zero during other time period. PC4

and PC5 are much noisier comparing with the top three PCs’, the magnitude of the fourth

and fifth PCs are also much smaller (see Figure 4.7).
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Figure 4.6: Within Subject PCs of NHANES data

The first within subject PC shows that the largest variation activity type within a subject

is the early morning activity. One possible explanation is that people might get up at dif-

ferent times comparing weekday with weekend. PC 2 resembles the same one for between

subject PC. PC 3 has one negative peak in early morning, one positive peak at 11AM which

decays constantly until night. PC 4 shows the variability in the late afternoon to evening

while PC 5 has positive peaks at 10AM and 9PM with a negative peak at 3PM. Both PC 4
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and 5 have lower magnitude than the first three within subject PCs.

Figure 4.7: Singular Values of Between and Within PCs

Figure 4.7 illustrates the singular values of those 5 between subject PCs and within

subject PCs. For the between subject PCs, the top three PCs have a much larger magnitude

which explain more than 95% total between subject variability. The within subject PCs

have less magnitude difference. The top three ones only take 76% total variation. The

overall GICC is 87%.
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Figure 4.8: Heatmaps of the true activity map versus the reconstructed active probability
map. In the left panels, yellow color suggests being active and red being nonactive. In the
right panels, yellow suggests higher probabilities while red suggests lower ones.

Five people with seven repeated measurement were randomly selected and their original

binary activity map were visually compared with th reconstructed probability in Figure

4.8. Overall, the reconstructed map can be visualized as a smoothed version of the binary

data. At the same time, it illustrates the between subject variability and the within subject

similarity. Take subject 1 and 3 for example, subject one has higher probability during

morning time and close to zero probability during night time while subject 3 being the

opposite. In addition, within subject variability can also be observed. Take subject 4 as an

example, he/she is more active in the morning during the second to the fourth day while

less active in other days. Subject 2 also has an activity during evening on the fourth day
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while being less active on the rest of the days.

4.4.2 Human Connectome Project

In this section we apply MBPCA to group resting-state fMRI data with four replicate

measurements per subject. We further estimate a GICC score to evaluate the reproducibility

of functional connectivity (FC), which is the study of the temporal dependencies between

multiple brain regions, and is usually quantified using statistical measures such as corre-

lation (Biswal et al., 1995). In resting-state fMRI, it is common to assume that the fMRI

time series follows a multivariate Gaussian distribution and measure FC by the estimated

covariance, correlation or precision (inverse covariance) matrices (Varoquaux et al., 2010;

Cribben et al., 2012). However, in high-dimensional settings, the estimation of covariance

or correlation matrices can be difficult due to the positive definite constraint. Using the idea

of variable selection, the graphical lasso (glasso) technique can be used to estimate a sparse

precision matrix for high-dimensional data, by imposing an L1 constraint to force many el-

ements of precision matrix to zero (Friedman et al., 2008). Each of the zero elements in the

precision matrix corresponds to the conditional independence between the corresponding

variables or regions.

The data comes from the 2014 Human Connectome Project (HCP) data release (Van Es-

sen et al., 2013). Resting-state fMRI data was collected for I = 461 subjects, with Ji = 4

repeated 15 min runs for each subjects. The multivariate fMRI time series has length

1200 for each run. The pre-processing procedures are described in Glasser et al. (2013),
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with artifacts removed using FMRIBs ICA-based Xnoiseifier (FIX) (Griffanti et al., 2014;

Salimi-Khorshidi et al., 2014). Group-PCA is applied followed by spatial-ICA with vary-

ing number of distinct ICA components (d = 25, 50, 100, 200, 300). The set of ICA

spatial components were mapped onto each subject’s fMRI time series by dual-regression

approach (Filippini et al., 2009) to obtain a single time series per ICA component.

A sparse precision matrix Σij was estimated for each subject i (1 ≤ i ≤ 461) and

repetition j(1 ∼ 4) using glasso, according to Xu and Lindquist (2015):

Σij = argmaxΣ

{
log(det(Σ))− tr(SijΣ)− λ‖Σ‖1

}

where Sij is the empirical covariance matrix for the fMRI time series based on the mul-

tivariate Gaussian distribution assumption, and the parameter λ controls the amount of

regularization in glasso.

After maximizing the penalized profile log-likelihood and obtaining a sparse estimate

of Σij , the matrix was binarized according to whether an element was zero or non-zero,

and the MBPCA algorithm was applied to obtain a GICC scores for different values of λ

and d. We manually choose a list of λ so that theverage proportion of non-zero elements in

Σij was approximately in a range from 0.1 to 0.9.

For illustration purposes, we only show results from the datasets with dimensions d =

25, 50, which corresponding to the parameter D = d(d− 1)/2 for the MBPCA algorithm.

Each D-dimension binary vector xij is the vectorized upper triangular part of the binarized
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version of Σij . The MBPCA model was then fit using K1 = K2 = 10 and allowing the

maximum number of iterations to be 100.

Figure. 4.9 shows how the level of sparsity in the precision matrix and estimated GICC

score change with the tuning parameter λ for the d=25 dataset. As λ varys from 500 to

2500, the sparsity level of the precision matrix increases substantially, but the GICC score

fluctuates around 0.6 and does not appear to varying as λ changes. This indicates that GICC

score is a robust measure of the reproducibility of a binarized precision matrix, without the

need to fine-tune the penalty parameter λ. Figure. 4.11 shows similar results for the d =50

dataset. It reveals the same property of the GICC score, with stable values around 0.8 under

a wide range of sparsity levels.

Figure. 4.10 and 4.12 shows the estimation results (mean, 1st/2nd PCs) under λ = 500

for d = 25 and d = 50 respectively. The mean figure indicates the average precision matrix

pattern, and regions with larger magnitude in their principal components indicate those with

larger variation between/within subjects. The clear separation of regions in the precision

matrix corresponds to different functional areas, including the visual, somatomotor, and

default mode networks. The mean image in Fig. 4.10 shows high positive values in regions

related to the visual network and cerebellum, and in the connections between these regions.

The first between-PC shows negative values throughout, particularly in cognitive-control

regions. The second between-PC shows high positive values in the somatomotor regions

and in its connections with all other regions, and negative values in the regions in the default

mode network (DMN), as well as in their connections with all other regions, indicating high
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between subject variation in these regions. The first within-PC shows negative values in

regions in the somatomotor network, as well as its connections, while the second within-PC

show positive values in the DMN and its connections. The interpretation for results of the

same analysis on the d=50 dataset, shown in Fig. 4.12, is similar. Of particular note is the

change in sign of the patterns in the second within-PC for regions in the DMN.

In summary, the results illustrate that the MCPCA algorithm can serve as an effective

way of exploring the reproducibility of an fMRI study. The estimate GICC score is robust

under a wide range of penalty values and corresponding sparsity levels of binary functional

connectivity pattern.

Figure 4.9: GICC score and sparsity level under different tuning parameter lambda for d
= 25 dataset. The red line with circle marker denotes the average proportion of non-zero
element of estimate precision matrix. The blue line with star maker denotes the GICC score
computed from MBPCA results.
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Figure 4.10: The estimated mean and 1st/2nd between/within subject principal components
for the d = 25 dataset.

4.5 Conclusion

We proposed Multilevel Binary PCA model that combines multilevel designs with a

binary PCA framework. A VEM algorithm was adapted for estimation and three simulation

studies demonstrated a good performance of the algorithm. Moreover, we linked MBPCA

and GICC, a novel reproducibility measure, and estimated GICC in both NHANSE dataset

and a fMRI dataset.

It is worth noting that the proposed MBPCA model collapses to the original (single-

level) binary PCA model (Tipping, 1999). Of course, one can use the original binary

framework and ignore the multilevel settings. However, the resulting principal compo-
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Figure 4.11: GICC score and sparsity level under different tuning parameter lambda for d
= 50 dataset. The red line with circle marker denotes the average proportion of non-zero
element of estimate precision matrix. The blue line with star maker denotes the GICC score
computed from MBPCA results.
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Figure 4.12: The estimated mean and 1st/2nd between/within subjects principal compo-
nents for the d = 50 dataset.
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nents could not be separated to between- and within-subject specific components (please

see Zipunnikov et al. (2011b)). Another point to be made is that PCs estimated by MBPCA

model is orthonormally invariant. Thus, we could only estimate the subspace spanned by

the original PCs, not the components themselves. If orthogonality is required, a further sin-

gular value decomposition could be implemented on the estimates of Θ̂ and Ψ̂. Moreover, a

Gaussian prior could be added to the principal components for Bayesian analysis by fitting

a Monte Carlo algorithm described in Mohamed et al. (2008).

Furthermore, the MBPCA model with VEM algorithm could also be generalized to

functional data scenarios which is described in Goldsmith et al. (2015). The algorithm

could be easily modified such that one can add functional terms as well as fixed or random

effect regression terms at no further big computational cost.

It also remains interesting for doing the multilevel principal component analysis for

other types of data. For instance, a dataset that records integer counts that follows Possion

distribution or Negative Binomial distribution are also popular in application and remains

to be explored.
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Discussion and Future Work

PCA is the best starting point for dimension reduction and has been a standard tool

in the statistician’s toolbox for almost a century. However, dimension reduction for new

and complex dataset requires new statistical methods that generalize and extends PCA.

For example, data with highly non-linear patterns and data with non-continuous types both

require new techniques for meaningful dimension reduction.

In this research three novel generalizations of PCA has been proposed. All methods

have both advantages and shortcomings.

First, the principal surface algorithm is a fast and simple algorithm that applies to

manifold-like structures. The first advantage of the algorithm is that there is only one

parameter one has to tune, compared with many other methods that have multiple tunning

parameters. Second, the algorithm can be easily applied to Rn ←→ Rm scenarios. Though

the algorithm was implemented in R3 → R2 in the corpus callosum application, it could
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also be applied to a principal curve algorithm which is R3 → R or higher dimension cases.

Third, the algorithm provides consistency in 2D parametrizations, which provides us the

convenience of further pixel based analysis on the 2D images. Nonetheless, this algorithm

also suffers from several shortcomings. First, the algorithm does not fit data structures with

high complexity, due to the lack of freedom. The algorithm was designed to be simple and

easily tuned so that it lacks degrees of freedom for complex structures, which may require

more adaptive algorithms. Second, the current algorithm does not allow boundary restric-

tions. Work has been done to analyze principal curves with fixed origin in Caffo et al.

(2008). The extension to surfaces seems to be quite interesting.

Second, we proposed the concept of graphical intra-class correlation coefficient (GICC).

The definition is based on a multivariate probit-linear mixed model. This model provides

a measurement of the reproducibility for binary graphs. Although GICC and the associate

probit models provide us a novel and useful measurement, it has one major pitfall. Due

to the Gibbs sampler step in the EM algorithm, this method does not have the ability for

scaling up.

Third, the multilevel binary principal component analysis (MBPCA) is proposed and

the variational expectation maximization (VEM) is used for optimizing the likelihood func-

tion. The MBPCA method not only provides us a fast and scalable method for modeling

high dimensional multilevel binary dataset, it also serves as an alternative way of calculat-

ing the GICC. The VEM algorithm also enables one to add fixed effect regression in the

model and also provides us a valid approach for modeling data follows other non-Gaussian
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distribution. At the same time, functional PCA could also be implemented for smoothness.
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