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Abstract  

Background: Cognitive aging is associated with cognitive decline and poor functional 

connectivity in the brain; however, the lengthening of life also presents additional 

potential to contribute to society. Addressing both these challenges and opportunities, we 

studied brain networks and cognitive functions within a randomized controlled trial of a 

senior service volunteer program, Experience Corps (EC).  

Methods: Data are from the Brain Health Study (BHS), a longitudinal trial nested within 

the Baltimore Experience Corps Trial, randomizing 123 socio-demographically diverse 

community-dwelling adults over the age of 60. At Baseline, 12-month Follow-Up, and 

24-month Follow-Up, functional magnetic resonance imaging (fMRI) brain data and 

neuropsychological test data were collected. We investigated two brain networks whose 

coupling is known to be associated with cognitive aging and dementia risk, the Task 

Negative Network (TNN) and the Task Positive Network (TPN). We studied the 

associations between these biologic measures and the cognitive domains of executive 

function and memory, which are also known to be important to dementia risk. In 

particular, we investigated (Aim 1) TNN-TPN functional connectivity at baseline; (Aim 

2) how the connectivity between and within the TNN and TPN were associated with 

dementia-linked cognitive functions; and (Aim 3) how these connectivity scores and 

cognitive functions changed longitudinally in the EC and Control Groups. 

Results: In Aim 1, we found that, the TPN and TNN were not strongly anti-correlated. In 

Aim 2, we found heterogeneous relations between functional connectivity and cognitive 

functions. In Aim 3, we found that these brain networks remained remarkably stable, and 
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intervention effects were not statistically significant. Additionally, the EC group 

demonstrated an improvement in the executive functions domain of cognition compared 

to the Control group. 

Implications: The BHS is the first of its kind, to have investigated cognitive aging with 

biological markers in the brain and cognitive measures in a randomized controlled trial 

design of a volunteer intervention. These results contribute to a better understanding of 

functional connectivity in older adults, its relations to cognitive functions, and how these 

outcomes can be modified by senior service. We also developed analytic methodologies 

that can be standardized and applied to other fMRI studies.  

Thesis Advisor:  Dr. Michelle Carlson 
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1 Chapter 1. Introduction 
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1.1 Public Health Significance 
 

 By 2050, the demographics of the United States will dramatically shift, with 

individuals 65 and up accounting for more than one in four adults in the population.  This 

population shift means that diseases of the elderly will be directly relevant for everyone: 

one in four persons’ will face a serious threat of acquiring Alzheimer’s Disease, and all of 

us will know and care for a family member suffering from a stolen mind. If we could 

delay onset by 1-2 years, we would cut prevalence worldwide by over 20% (Brookmeyer 

et al., 2007).  Therefore, we have a public health responsibility to delay this degenerative 

trajectory, and to detect, treat, and prevent dementia. Perhaps we can transform the 

forecast for a silver tsunami to a better outcome. 

 However, we do not yet have the means to accurately detect or predict dementia 

in the brain, or the cognitive decline that precedes it by years. In our investigation, we 

aimed to detect changes in brain health prior to the onset of pathology.  One emerging 

avenue to accomplish this feat is in the study of the organization of the brain. The human 

brain is organized in networks, collections of regions that work together. Models of 

connectivity between these networks demonstrate that within each network, the regions 

work together, and across network, the regions also exhibit a sense of synchrony, such 

that competing networks do not activate simultaneously. This harmony between and 

within networks in the brain may hold a promising key to detecting abnormalities in the 

brain before they become pathological.   

 Indeed, a host of recent studies implicate healthy functional connectivity with 

improved cognition and reduced dementia (Jones et al., 2011; Jones et al., 2012; Buckner 

et al., 2007; Buckner et al., 2008; Voss et al., 2010; Vemuri et al., 2012; Sandrone, 2012;  
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Hampson et al., 2010; Sandrone et al., 2012; Van De Ville  et al., 2012; Whitfield-

Gabrieli et al., 2012; Fransson et al., 2006).  However, these studies are based on cross-

sectional data, which does not lend itself to the study of declines in cognition and 

subsequent development of a corresponding predictive model. Using longitudinal data, 

we investigated changes in functional connectivity and associated cognitive functions 

within the context of an intervention trial with preventative potential. 

 We assessed functional connectivity in the brain using functional magnetic 

resonance imaging (fMRI). This technology holds promise as a minimally invasive and 

easily standardized tool to aid in the development of a biomarker of preclinical changes 

in cognition. This tool can be adapted and incorporated in clinic settings, yielding major 

public health benefits for our aging society.  

 Lastly, the intervention trial, from which the data are drawn, presents a multi-

modal program of senior service. Differences between the intervention and control 

groups therefore suggest an intervention that older adults can take to improve brain health 

and cognitive functions. Furthermore, the nature of the intervention is a volunteer 

program, which places senior citizens as important members of society. This integration 

across generations benefits both senior volunteers and recipients of the services alike. 

This novel intervention takes the public health “problem” of shifting demographics, and 

turns it into a solution.  

 

1.2 Overview 
 In an average adult human, the brain occupies one fiftieth of the body’s mass and 

devours one fifth of its calories throughout the day and night (Raichle and Gusnard, 

2002; Clark and Sokoloff, 1999; Sokoloff et al., 1955). The continuous metabolism of the 
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brain demonstrates that this organ is always at work, whether or not the person is engaged 

in a task.  Indeed, the brain consists of intrinsic networks, representing groups of regions 

that work together and modulate one another continuously. Neuroimaging studies are 

beginning to map the functions of these networks in young healthy adults and in specific 

patient populations. However, data are lacking on the longitudinal behavior of intrinsic 

brain networks in community-based samples of older adults, and on what types of factors 

may promote improved functional connectivity in the aging brain.  

 This study sought to fill a void in the literature on functional connectivity in older 

adults. Our data were drawn from a randomized controlled trial (RCT) of the Experience 

Corps (EC) program, a model of senior volunteer service that increases physical, social, 

and cognitive activities. While pharmaceutical trials are failing to find a pill to preserve 

brain health and cognition, studies are demonstrating that lifestyle makes a difference 

(Daviglus et al., 2010).  Early evidence of the EC pilot RCT showed that relative to the 

Control individuals, participants of the intervention group exhibited increased activity in 

regions of the brain important for executive functions, including the prefrontal and 

anterior cingulate cortices (Carlson et al., 2009). These neuronal changes in the 

participants of the intervention group were also substantiated by improvements on 

cognitive tests, which supports the idea that lifestyle could improve cognition, even in 

socio-demographically at-risk older adults.   

 We studied the functional connectivity between two fundamental brain networks, 

the Task Positive Network (TPN) and the Task Negative Network (TNN) in a 

community-based sample of older adults, and compared connectivity patterns between 

the intervention and control groups. Differences in connectivity patterns that correspond 
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with cognitive function outcomes help elucidate mechanisms of the Experience Corps 

program, and further support a lifestyle approach to protect against cognitive decline. 

 The Task Positive Network (TPN) includes regions of the brain that activate in 

the presence of a task, and the Task Negative Network (TNN) includes regions of the 

brain that activate in the absence of tasks. These two networks provide a model for the 

organization of the whole brain, working synchronously according to cognitive demand, 

such that when one is on the other is off. While this dichotomous association has been 

observed and replicated in young healthy adults, less is known about the accuracy of this 

conceptual model in older adults. Cross-sectional studies in healthy seniors demonstrate 

that in older adults, the regulating switch appears to decay, and some regions of the TNN 

activate even in the presence of a task, and conversely, some regions fail to activate in the 

absence of a task (Jones et al., 2011).  In Alzheimer's disease, this hyperactive pattern 

that naturally occurs with aging, is exacerbated and associated with cognitive decline 

(Jones et al., 2011).     

Figure 1.1 depicts an overview of the aims of the study. The aims sought to 

explain how TNN-TPN functional connectivity may impact cognition in older adults and 

how the association may differ for those enriched by the EC program. First we validated 

the locations of the TNN and TPN pathways discovered in our data with those that have 

been established in the literature, and studied the connectivity between and within each 

network.  This validation study confirmed the integrity of our methods and provided 

conceptual support for further analysis. In my second aim, we studied the associations 

between functional connectivity and cognitive functions that are related to dementia risk. 

This aim links the novel connectivity fMRI results with results from tried and tested 
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measures of cognition from neuropsychological tests administered outside of the scanner.  

Together, the brain and behavior modalities helped to elucidate mechanisms of functional 

activity in cognition in the healthy aging brain. In the final aim, we characterized 

longitudinal changes in functional connectivity.  We investigated the changes in TNN-

TPN connectivity from one year to the next over the two-year period, including changes 

between the intervention and control groups. The following section explain each aim in 

detail, as illustrated also in Figure 1.1

 

Figure 1.1 Overview of Aims 

At each time point, fMRI brain data and cognitive test data are collected. The goal is to investigate 
functional connectivity at baseline; how the connectivity between and within the TNN and TPN are 
associated with cognitive test outcomes in the Experience Corps (EC) Intervention and Control Groups; 
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and how these connectivity scores change longitudinally in each group. Specifically, in Aim 1, we extract 
the TNN and TPN from Baseline, and evaluate inter and intra-network connectivity. In Aim 2, we compare 
changes in functional connectivity with performance on cognitive tasks. In Aim 3, we use longitudinal 
analysis methods to study the effect of EC on the trajectories of functional connectivity scores and 
cognitive performance including each time point: Baseline, Year 1, and Year 2. 

 

1.3 Specific Aims 
 

Each of the three aims is listed in the sections that follow, together with 

corresponding hypotheses. We developed hypotheses based on the latest findings in the 

fMRI literature regarding functional connectivity and cognition. 

1.3.1 Aim 1. Functional Connectivity 
 

Aim 1. Extract the Task Positive Network (TPN) and the Task Negative Network (TNN) 

at baseline and investigate the inter-network connectivity between these two networks 

and the intra-network connectivity within each of these networks. 

 

Hypotheses:  

 

1. Network Extraction. The Task Positive Network will correspond closely with the 

well-known TPN set of pathways from the literature that are known to activate in 

the presence of a task, including regions of the frontal lobes and dorsal attention 

network; Similarly, the Task Negative Network will match the TNN pathways 

from the literature that remain active during rest, including the prefrontal cortex, 

the posterior cingulate, and the retrosplenial cortex. 
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2. Inter-Network Functional Connectivity. The TNN and TPN will be anti-

correlated, as exhibited by the negative correlations between the inter-network 

sub-network pairs. 

  

3. Intra-Network Functional Connectivity. Each network will be positively 

correlated with itself, as evidenced by the positive correlations between the intra-

network sub-network pairs. 

1.3.2 Aim 2. The Brain Behavior Link 
 

Aim 2. Investigate the baseline relationship between inter and intra-network functional 

connectivity and cognitive functions important to dementia risk, including memory (Rey 

Auditory Verbal Learning Test) and executive functions (Trail Making Test and Digit 

Span Test). 

Hypotheses:  

1. The effect of inter-network connectivity on behavioral outcomes. Inter-network 

connectivity will be inversely associated with cognitive functions. In particular, 

larger anti-correlations between the TNN and TPN will be associated with better 

performance on neuropsychological tests of memory and executive functions. 

2. The effect of intra-network connectivity on behavioral outcomes. Intra-network 

connectivity will be positively associated with cognitive functions. In particular, 

increased correlations within each of the TNN and TPN will be positively 

associated with performance on neuropsychological tests of memory and 

executive functions. 
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1.3.3 Aim 3. The Intervention Effect 
 

Aim 3. Investigate the effect of Experience Corps (EC) on the longitudinal trajectory of 

1. inter and intra TNN and TPN functional connectivity patterns; and 

2. cognitive functions in the domains of memory and executive functions 

for baseline and two follow-up visits, capturing annual changes over a two-year period. 

 

Hypotheses:  

1. The effect of aging on longitudinal trajectories of functional connectivity. 

A. Inter-network correlations will increase (become less negative) over the study 

period. 

B. Intra-network correlations will decrease (become less positive) over the study 

period. 

2. The effect of aging on longitudinal trajectories of cognitive functions. 

Cognitive functions in the domains of memory and executive functions will decline 

over the study period. 

3. The effect of EC on longitudinal trajectories of functional connectivity. 

A. EC will halt the increase in inter-network correlations. 

B. EC will promote maintenance or increase in intra-network correlations. 

4. The effect of EC on longitudinal trajectories of cognitive functions. 

 EC will halt the decline in cognitive functions in memory and executive  

 functions. 
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2.1 The Integrationist Model of Brain Function 
 

On September 13, 1848, Phineas Gage, a 25 year old foreman, known as among 

the best in the business of constructing American railways, set to work as usual. 

Colleagues described him as “very energetic and persistent in executing all his plans of 

operation;” and on that autumn day in southern Vermont, he planned to carve a roadbed 

out of a mountain for the new Rutland & Burlington Railroad (Harlow, 1869, p. 14). The 

routine procedure to blast rocks entailed digging a hole, adding blast powder, a fuse, and 

sand, and then setting charge using a large iron rod. Mr. Gage’s rod was custom made at 

three feet seven inches in length and 1¼ inches in diameter, and smooth, like a javelin 

(Macmillan, 2002).    

Around 4:30pm, as Mr. Gage set the rod into the hole, something terrible 

happened: the iron struck fire, shooting the rod out, and straight through Mr. Gage’s 

“face ... passing back of the left eye, and out at the top of the head.”  Afterwards, Mr. 

Gage picked himself up, sat upright, and rode in an oxcart to the doctor’s office, where he 

explained to the attending physician what happened. Dr. Edward H. Williams reported 

(Bigelow, 1850, p.16): 

I did not believe Mr. Gage's statement at that time, but thought he was deceived. 

Mr. Gage persisted in saying that the bar went through his head. Mr. Gage got up 

and vomited; the effort of vomiting pressed out about half a teacupful of the brain, 

which fell upon the floor. 
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Phineas Gage is lucky to have survived the rock-blasting accident. However, the loss of 

the frontal portions of the left temporal lobes of his brain transformed his personality to 

someone who was “no longer Gage,” (Harlow, 1869, p. 14). Legend has it that he went 

from being a kind and charismatic gentleman to an “unstable, impatient, foul-mouthed… 

wastrel,” (Macmillan and Lena, 2010, p. 643). 

The story of Phineas Gage serves as a foundation for the localization theory of 

brain function. From Mr. Gage’s plight, one can infer that frontal lobes direct planning 

and executing, and controlling emotion. However, what is less known about Mr. Gage’s 

story is that he underwent a recovery. He served as a stagecoach driver in Chile for the 

last six years of his life. Driving a stagecoach required being “reliable, resourceful, and 

possess[ing] great endurance. But above all, they had to have the kind of personality that 

enabled them to get on well with their passengers," (Macmillan, 2002, p. 106). While Mr. 

Gage never recovered the portions of brain that flew out of his head, his success as a 

stagecoach driver, working 13 hour days for several years suggests that he recovered a 

number of cognitive abilities. Recent evidence further supports Mr. Gage’s social 

recovery: simulation studies incorporating his actual skull and the discovery of a 

photograph in 2009, depicting this man in a position of nobility, more like a king than a 

wastrel (Van Horn et al., 2012; Wilgus and Wilgus, 2009).   

Therefore, the full story of Phineas Gage actually disproves the localization 

theory of brain function, and presents instead, the integrationist model. Mr. Gage 

demonstrated that while the frontal lobes may command executive functions and 

emotional control, when an affront to this brain region occurs, the brain can re-wire itself 

to compensate for the loss. The functionality gained by the re-wiring presents the essence 
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of the integrationist model: while brain regions are important to function, the connections 

between regions are equally, and arguably, more important (Van Horn et al., 2004). The 

integrationist approach posits that groups of regions that operate in synchrony form 

networks among themselves and with other brain networks.  

The existence of networks in the brain to achieve function gives rise to the 

concept of functional connectivity, the study of relations between networks. The 

functional connectivity between two regions is defined as the correlation between the 

neural activities of these two regions, and characterizes the integrative state of the 

network (Marrelec et al., 2008). Studying functional connectivity provides a global 

approach to charting the organization of the brain and subsequent behaviors.  

Functional connectivity also makes room for plasticity in the brain. Plasticity 

posits that, contrary to commonly held beliefs that brain development ends by young 

adulthood, new connections can form throughout adulthood, and even into advanced 

ages. The story of Phineas Gage represents a classic case of plasticity in the brain. 

Parallels to the case of Mr. Gage have been made with modern cases of dementia. 

Individuals with dementia today exhibit atrophy and pathology in the same regions that 

Mr. Gage lost (Van Horn et al., 2004). The miraculous recovery of Mr. Gage suggests a 

lifestyle model for promoting plasticity in the brain, and provides hope for those living 

with dementia. New technologies to image the brain in action can facilitate our 

understanding of functional connectivity and the potential for plasticity at all ages.   
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2.2 Functional Magnetic Resonance Imaging 
 

 Background. Functional magnetic resonance imaging (fMRI) is a non-invasive 

technology that provides a window into the brain in action. fMRI studies can establish 

how structures work together for various processes, and ultimately, help identify 

neuropathology related to subsequent clinical symptomology. This technology uses the 

fact that the magnetic properties of blood molecules vary according to oxygenation level.  

Each hemoglobin molecule can hold up to six molecules of oxygen, and the magnetic 

properties of blood molecules that are fully loaded with oxygen are different than the 

magnetic properties of those with empty binding sites (Heller et al., 2006). This 

discovery coupled with the theory that active regions of the brain have greater metabolic 

demands than inactive areas led to our ability to image the brain in action with fMRI. 

 Mechanics. While the theory of tracing oxygenation patterns in the brain is basic, 

the mechanics of the procedure are highly intricate. The data are collected by using a 

powerful magnet, which aligns with hydrogen atoms in the brain, and inducing a current 

in the receiver coil (Lindquist, 2008).   The computer processes the resulting signals in 

the frequency domain, which lives on the complex plain, and therefore cannot be 

interpreted practically.  Moreover, a single measurement of a signal from this domain is 

meaningless—one must obtain thousands of samples from this domain so that data can be 

transformed to the biologically meaningful image space. The more points that are 

sampled, the higher the resolution (Lindquist, 2008).  The fMRI machine operates in this 

manner, collecting signals, sequentially one two-dimensional slice at a time.  Ultimately, 

computer software programs integrate all of these pieces to display a three-dimensional 

image of the brain. 
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 The BOLD Signal. The fMRI signal is known as the BOLD (blood-oxygen-level-

dependent) signal because it is a measure of the ratio of oxygenated to deoxygenated 

hemoglobin.  This signal is a measure of metabolism in the brain, representing a proxy 

for the desired measurement, neural activation. Blood flow in the brain corresponds with 

neural activity, and in fact, lab experiments show that the BOLD signal is related linearly 

to neural activation. This linear relationship between the BOLD signal and neural 

activation is a fundamental assumption of statistical analysis and subsequent 

interpretation of fMRI data. 

 Noise. Once the data have been acquired from the fMRI machine, reconstructed 

into image space, and summarized by a computer into a file, the problem of searching for 

meaning remains mathematically difficult.  The data are highly dimensional, amounting 

to several gigabytes for a single subject.  The data are full of correlations, both across 

space and time, with patterns that vary according to brain region.  The data are noisy, 

consisting of different types of noise that must each be managed accordingly (Ashby, 

2011).  Before one can begin to analyze such data, we run it through a preprocessing 

pipeline so that it will begin to resemble signals from the brain that could convey useful 

information. Our lab uses a standard preprocessing protocol consisting of the usual steps 

of slice-time correction; motion correction, co-registration, and normalization; and spatial 

smoothing executed in SPM.   

2.2.1 Imaging the Aging Brain 
 

The standard fMRI techniques to measure neural activation have been developed using 

populations of young healthy adults; therefore, imaging the aging brain presents 
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additional challenges. We present three chief challenges related to hemodynamics, neuro-

anatomy, and noise.  

Firstly, the cerebral blood flow in older adults differs from that of younger adults; 

therefore, the canonical hemodynamic response function used to model the BOLD signal 

may not provide an accurate proxy for neural activation in aging brains (Samanez-Larkin 

and D’Esposito, 2008).  

Secondly, the morphology of older brains differs from that of younger brains. 

Aging is associated with heterogeneous increased gray matter atrophy and sulcal 

expansion (Samanez-Larkin and D’Esposito, 2008). Therefore, the template brain used 

during spatial normalization may warp the brain images of older adults in ways that 

compromise accuracy (Raz et al., 2007; Samanez-Larkin and D’Esposito, 2008; Buckner 

et al., 2004). The template brain is based off an aggregate of brain images from young 

healthy adults. No standard template for older adults exists. Templates for the aging brain 

are more difficult to develop due to the increased neuro-anatomical variability in older 

adults (Samanez-Larkin and D’Esposito, 2008; Crinion et al., 2007).        

Lastly, fMRI data in older adults appear noisier than in younger adults. The 

increased source of noise is not fully understood, and could be due to increased 

anatomical variability or more difficulty breathing and staying still inside the scanner. 

Regardless, the results demonstrate that the signal is more difficult to detect in older 

adults. Compared to younger adults, the brain images of older adults show smaller 

clusters of functional activation and decreased correlations of interest (Samanez-Larkin 

and D’Esposito, 2008; Buckner et al., 2000; Aizenstein et al., 2004; D’Esposito et al., 
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1999). These challenges of imaging the aging brain must be considered when seeking to 

compare results from older adults with those of younger populations.    

2.3 Cognitive Aging 
 

Cognitive abilities underlie every action that one takes from reading the 

newspaper in the morning to preparing dinner in the evening. These abilities incorporate 

a range of domains, including attention, processing speed, executive functions, and 

memory, and entail mental skills that are required to accomplish both simple and 

complex tasks. While most of us take our cognitive abilities for granted, the degree of 

aptitude in each domain varies throughout the life course. From infancy through young 

adulthood, cognitive abilities in each domain grow rapidly. In the rhythm of adulthood, 

most cognitive abilities plateau, and slowly decline. Eventually, as adults advance in age, 

cognitive abilities deteriorate. This decline in cognition is generally accepted as cognitive 

aging. However, not every type of intelligence or class of cognition declines with age. 

While some processes in the brain lose efficiency over time, others cumulatively and 

continuously grow. Early Greek and Roman scholars noticed this phenomenon, 

describing the earliest models of cognitive aging: 

1. “Solon was under a delusion when he said that a man when he grows old 

may learn many things - for he can no more learn much than run much; 

youth is the time for any extraordinary toil.” (Plato, Dialogs, Phaedrus, 

Section 536-D) 
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2. “It is in old men that reason and judgment are found, and had it not been 

for old men no state would have existed at all.” (Cicero, De Senectute, 

chap, xix, Section 67) 

Plato's model describes the trajectory of fluid intelligence, which represents a native 

ability to think logically and solve problems, independent of acquired knowledge (Cattell, 

1971). Cicero's model describes the trajectory of crystallized intelligence and wisdom, 

reflecting cumulative knowledge that grows with experience (Salthouse, 1988). Modern 

studies of cognitive aging continue to show that fluid intelligence declines with age while 

crystallized intelligence continues to grow or maintain a steady state (Salthouse, 1988). 

While the fluid versus crystallized dichotomy offers a hopeful perspective of cognitive 

aging, this perspective captures only one component of cognitive aging. To better 

understand the trajectory of cognitive aging, the trajectories of the different domains 

should be investigated. 

After all, while cognitive decline is accepted as a normal part of aging, such 

declines do not occur uniformly across domain or across individuals. Some types of 

memory, such as semantic memory, reflecting general knowledge about the world, 

continue to improve well into older ages. Furthermore, a number of modifiable factors, 

such as education and physical health, are associated with maintenance of cognitive 

abilities with advanced age. Therefore, the normal trajectory of cognitive aging is 

complex and difficult to summarize neatly.     

 The abnormal trajectory of cognitive aging is characterized by severe 

deterioration that becomes pathological. The domains most affected are memory and 
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executive functions in ways that interfere with activities of daily life, making it 

impossible to read the newspaper or prepare dinner (Salthouse, 2004). This pathological 

deterioration manifests itself as dementia. However, the deterioration from normal aging 

to dementia is gradual, and if it can be pre-clinically detected, perhaps the decline can be 

put on pause, or even reversed. 

 Cognitive abilities are measured using a host of neuropsychological tests. These 

tests are designed to quantify abilities in specific cognitive domains. The tests are 

standardized and administered in an office environment so that performance of 

individuals can be compared to others across the population. Statistics are gathered and 

stratified by age and education level so that differences from these group-averages can 

help to detect irregular performances. Administering neuropsychological tests on the 

same individual repeatedly can help to detect and quantify declines in cognitive abilities.  

While these behavioral data are helpful, some argue that by the time the deterioration 

manifests itself in a test outcome, the biological change in the brain has already occurred. 

Therefore, we need studies in older adults that collect both behavioral data and brain data. 

2.4 Dementia 
 

 Dementia is a syndrome beyond normal aging that is characterized by multiple 

cognitive deficits and memory impairments. The 2013 publication of the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-5) replaced the term “dementia” with 

major neurocognitive disorder and mild neurocognitive disorder. Dementia comes from 

Latin roots that denote “mad” or “insane,” and the updated terminology aims to reduce 

stigma. Given the recency of the change, most individuals and health professionals 
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continue to use the former name. Because communication is crucial in public health, we 

also use dementia, the more commonly understood name.  The DSM-5 criteria for Major 

Neurocognitive Disorder state:   

A. Evidence of significant cognitive decline from a previous level of performance in one or more 
cognitive domains (complex attention, executive function, learning and memory, language, 
perceptual-motor, or social cognition) based on: 

1. Concern of the individual, a knowledgeable informant, or the clinician that there 
has been a significant decline in cognitive function; and 

2. A substantial impairment in cognitive performance, preferably documented by 
standardized neuropsychological testing or, in its absence, another quantified 
clinical assessment. 

B. The cognitive deficits interfere with independence in everyday activities (i.e., at a minimum, 
requiring assistance with complex instrumental activities of daily living such as paying bills or 
managing medications). 

C. The cognitive deficits do not occur exclusively in the context of a delirium. 

D. The cognitive deficits are not better explained by another mental disorder (e.g., major 
depressive disorder, schizophrenia). 

 
 The fact that “decline” is a part of the DSM 5 diagnostic suggests a requirement 

for longitudinal measurements, before and after changes in cognitive abilities. The 

measurements can come in the form of an informant’s report or a clinical assessment. 

The use of “decline” in the definition also allows room for person-specific variability. A 

deficit for one individual may not represent a deficit for another person, and each person 

can serve as his or her own standard for normal behavior. 

 The etiology of dementia is also variable. Because dementia is a syndrome, and 

not a single disease it arises out of multiple etiologies. The most common types of 

dementia are Alzheimer's disease, vascular dementia, frontotemporal dementia, semantic 

dementia, and dementia with Lewy bodies. The domains to be affected first vary in each 

of the dementia types, although ultimately, declines occur in multiple domains including 

executive functioning, language, working memory, spatial memory, and verbal memory.  

 Dementia is typically viewed as progressive and irreversible. Its symptoms exist 



 

24 
 

along a continuum and are often difficult to distinguish from normal aging (Whalley, 

2002). Because the trajectory of aging varies from person to person and from one 

cognitive domain to another, there is no clear and standard definition of normal aging in 

the brain.  Compounded by a progressive set of signs and symptoms that simultaneously 

targets multiple domains of cognition that naturally decline with age, the boundary 

between dementia and aging remains elusive. Furthermore, some patients are better than 

others at concealing the signs and symptoms of dementia. In particular, individuals with 

more cognitive reserve are able to withstand age-related pathologies for longer time 

periods (Whalley, 2002; Stern, 2002).  

 The cognitive reserve theory, linking dementia and cognitive aging, grew out of 

the observation that the amount of pathology in a brain does not correspond linearly with 

clinical expression of symptomology. While some people express signs and symptoms of 

dementia with little to no brain pathology, others exhibit normal levels of cognition 

although their brains are full of the hallmark plaques and tangles of AD. The cognitive 

reserve theory posits that as pathology accumulates in the brain, the mind copes by 

utilizing brain networks more efficiently; recruiting alternate brain networks; or 

compensating by using structures that are ordinarily not used for such functions (Stern, 

2002). This model implies that each person has a different threshold for clinical 

expression of a pathology based on cognitive reserve. Factors associated with cognitive 

reserve include education levels, intelligence measures, language skills, and other proxies 

for cognitive outcomes. The fact that each person handles neuropathology differently 

further clouds the boundary between normal aging and dementia; nevertheless, it also 

suggests that preventative measures exist. 
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2.4.1 Prevention 
 

 The pervasive and growing epidemic of dementia coupled with the lack of 

curative treatment make prevention a primary objective. Even delaying dementia would 

result in massive public health benefits. Preventing Alzheimer’s disease (AD) by five 

years would reduce the prevalence of AD in the United States by over four million 

patients by 2047, resulting in an annual savings of $18 billion, and uncountable savings 

in quality of life preserved (Brookmeyer, 1998; 2007). However, how to prevent 

dementia remains unknown. Decades of epidemiologic studies have resulted in largely 

inconsistent findings. The majority of pharmaceutical trials have failed, with findings 

ranging from moderate benefits to harmful effects of drugs, including hormone 

replacement therapy, amyloid- β blockers, anti-hypertensives, and nonsteroidal anti-

inflammatory drugs (Pahnke et al., 2009). Studies on lifestyle factors, such as social 

networks, cognitive stimulation, leisure activities, physical exercise, and diet, have also 

yielded weak associations. However, the majority of these studies are not based on 

longitudinal randomized controlled trials with dementia incidence as an endpoint. Further 

epidemiologic studies are needed to help develop the most effective preventative 

strategies.    

 In the meantime, a number of studies on the cellular level and in animal models 

have helped to elucidate neuro-protective mechanisms for the aging brain.  Two of the 

most consistent interventions found to improve brain health involve exercise and 

intermittent fasting (Martin et al., 2006).  Exercise increases secretion of brain-derived 

neurotrophic factor (BDNF), especially in the hippocampus, cortex, and basal forebrain, 

regions which are important in higher order thinking (Cotman et al., 2002). BDNF 
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supports the survival of existing neurons and promotes the generation of new neurons and 

synapses (Huang et al., 2001). Intermittent fasting improves brain health on the neuronal 

level through a number of pathways that stimulate the production of protein chaperones, 

molecules that assist with the unfolding of macromolecules; neurotrophic factors, 

proteins such as BDNF that support the growth of developing neurons; and antioxidant 

enzymes, molecules that inhibit the oxidization of other molecules (Martin et al., 2006). 

These cellular mechanisms help the neurons cope with stress and resist pathology 

(Mattson and Wan, 2005).  While the neuronal benefits of exercise and intermittent 

fasting have been modeled, in order to test their preventative efficacy in the general 

population, we need longitudinal RCTs incorporating these interventions with dementia 

as an endpoint. 

 

2.5 The Quest for Biomarkers 
 

 One of the challenges of conducting RCTs with dementia as an endpoint involves 

the lack of homogenous diagnostic criteria, which currently rely on multiple modalities. 

The primary diagnostic modality involves traditional interviews and examinations, 

including the patient's medical and family history, physical exam, neurological 

evaluations, cognitive and neuropsychological testing, mental status exams, and 

psychiatric evaluations. Brain imaging modalities including MRI and CT scans, as well 

as blood tests, are also usually conducted to rule out other causes for dementia, including 

strokes or vitamin deficiencies. 

 Because brain pathology does not directly correspond with symptomology, 
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imaging the brain to visualize AD pathology is not included in the diagnosis protocol. In 

fact, there is no biomarker for dementia-related pathology. Jack et al. developed a model 

for biomarkers which includes a number of measurements of brain health (2013). Jack et 

al. graphically display the measurements as sigmoidal curves along a continuum with 

time to dementia onset on the x-axis and biomarker abnormality on the y-axis. Listed in 

order these markers include measurements of amyloid, as detected in cerebrospinal fluid 

(CSF) or positron emission topography (PET); CSF tau; brain volume and cortical 

thickness via MRI; and cognitive impairments from neuropsychological tests (2013). 

However, the sensitivity and specificity of these markers remains imperfect and 

measurements that rely on PET or CSF carry a health risk. PET involves injecting 

radioactive materials, which may pose a larger threat to vulnerable individuals who are 

already at risk for a neurodegenerative disorder. Extracting CSF can result in headaches, 

hemorrhage, or herniation, which could lead to further complications in the elderly. 

While changes in MRI-detected brain volume or performance on cognitive tests are not 

invasive, these modalities represent the last of the markers on the continuum towards 

dementia onset (Jack et al., 2013). They manifest themselves just before dementia onset, 

which may be too late to intervene. 

 We need biomarkers that are non-invasive and can detect early changes in 

cognitive abilities and pathology. Measuring abnormalities in brain network connectivity 

using fMRI could present an appropriate biomarker. Studies show that amyloid 

depositions alone do not cause AD, but perhaps in conjunction with malfunctions in 

functional connectivity, the pathology becomes symptomatic. An fMRI biomarker of 

brain network health could help to differentiate between levels of cognitive ability as an 
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initial step in the process, with the hope that one day such maps may offer clinical utility. 

This study will investigate the sensitivity of fMRI brain network maps to detect changes 

in cognition. A highly sensitive tool could detect the genesis of aging in the brain, and 

may serve as a preclinical tool to screen individuals at risk for dementia. 

 A brain network biomarker of cognitive decline would be especially valuable in 

our study because our data are drawn from a randomized controlled trial including a 

multi-modal intervention group. Differences between the intervention and control groups 

offer practical, protective lifestyle changes to preserve cognition.  

2.6 Successful Aging 
 

While aging may be portrayed as deterioration and decline, the extra time on Earth also 

presents a continued opportunity for development and growth. Successful aging presents 

a model for older adults to function comfortably and contribute to society. Rowe and 

Kahn defined successful aging in 1987 as being (1) free from disease and disability; (2) 

high functioning cognitively and physically; and (3) engaged and productive, socially. 

Definitions today range from Rowe and Kahn’s stringent tripartite criteria to less 

restrictive criteria. These modern definitions expand upon Rowe and Kahn’s third 

component, and include the older adult’s perception in the concept of successful aging 

(Phelan et al, 2004; Knight et al., 2007; Von Faber et al., 2001; Jeste et al., 2010). Rather 

than the physical component, these definitions emphasize non-material elements such as 

life satisfaction, longevity, mastery, active engagement with life and positive adaptation 

(Phelan and Larson, 2002). Another emerging element of successful aging is the feeling 

of generativity, “the adult’s concern for and commitment to the next generation, as 
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expressed through parenting, teaching, mentoring, leadership, and a host of other 

activities that leave a positive legacy of the self for the future” (de St. Aubin, McAdams, 

& Kim, 2004, p.4). These elements are more difficult to measure, and rely on the older 

adult’s self-evaluation of his or her experiences. Nevertheless, we as a society can 

promote activities that foster this comprehensive and personal approach to successful 

aging. This paper proposes one successful model for successful aging, Experience Corps, 

which draws upon the experiences of older adults to serve society.  

2.7 An Integrationist Model of Society 
 

The primary element of emerging definitions of successful aging emphasizes the 

potential of older adults to serve as contributing members of society. Placing older adults 

in important community roles, rather than stowing them away in nursing homes or 

centers for senior living promotes inter-generational living. The integrationist approach 

contrasts with the segregationist model that has come with modernity, which celebrates 

youth and hides aging. Both the young and the old can benefit from living and working 

together.  

Connecting infants, children, youth, young adults, and the middle aged with older 

adults provides advantages for everyone. Older adults have acquired a lifetime of 

knowledge and skills, which they can teach to others. Additionally, older adults can 

provide younger generations with a sense of purpose, an understanding of aging, an 

alleviation of the fear of aging, spiritual mentorship, an explanation of principles from the 

past, and lessons for the future. The young can also fill a void for the elderly. Younger 

individuals showing attention, care, and humility to seniors helps to reduce the isolation 



 

30 
 

that accompanies aging, reduce the likelihood of depression, provide a sense of purpose, 

and reinvigorate memories, ranging from family stories to real life chapters in history.          

Developed nations forecast demographic transition that will turn society upside 

down, with the old outnumbering the young in some projections. This forecast tends to 

increase the stigma against the elderly and spark debates about what to do with all of the 

old people. The young today fear that older adults will leech the last of public resources. 

However, attaining old age represents a success, and the young of today will be old 

tomorrow (hopefully). A truly successful society welcomes everyone of all ages, and 

recognizes that the action or inaction of one individual influences that of others because 

we are all connected. If we choose to confine the elderly to centers out of sight, we would 

not only lose a valuable resource, but also suffer the consequences of living in suboptimal 

conditions ourselves. 

The optimal brain functions in networks. No single neuron or region of the brain 

operates in isolation. Instead, the neurons operate in harmony, and when one cell or 

group of cells faces an injury, other cells from neighbors to those across the corpus 

callosum rush to the rescue. Successful human beings of all ages operate in this manner, 

as networks, too.      
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3 Chapter 3. Functional Connectivity in Older Adults: An 

Investigation of the Task Negative and Task Positive Brain 

Networks (Aim 1) 
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3.1 Introduction 
 

After decades of targeting structures in the brain as loci of function, the data have 

deemed the question null: brain activity cannot be localized by region. Rather than 

localization, the brain appears to operate using an integrationist approach: groups of 

regions operate together, forming networks among themselves, and modulating the 

activities of other networks.  These networks characterize our present understanding of 

the organization of the brain, and exist intrinsically, whether at rest or engaged in a task, 

ready to fire before the blink of an eye. We studied two particular brain networks that are 

believed to provide a binary organization for the structure of brain anatomy and 

corresponding function. Our results reaffirmed some aspects of the literature on this 

network pair, and challenged others.  

At rest, functional magnetic resonance imaging (fMRI) scans of the human brain 

exhibit activations in regions associated with the subconscious, such as memory 

formation; and deactivations, in other regions associated with conscious tasks, such as 

attention and executive control. These dichotomous networks, the task negative network 

(TNN) and task positive network (TPN), respectively, serve as a foundation for the 

organization of the brain: when one network is active, the other is inactive, and vice 

versa.  The TNN represents the regions active in the absence of a task, including the 

posterior cingulate, medial and lateral parietal and medial prefrontal cortex; and the TPN 

represents the regions active in the presence of a task, including a set of frontal, parietal, 

and dorsal cortical regions (Fox et al., 2005). The decoupling between these two 
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networks is hypothesized to operate in a balance according to cognitive demand, as 

illustrated in Figure 3.1 (Smallwood et al., 2012).   

The decoupling between the TNN and TPN has been replicated in study after 

study, and represents one of the most consistent and replicable results in the field of 

human neuroimaging (Greicius et al., 2003; Fox et al., 2005; Seeley, et al., 2007; Vemuri 

et al., 2012; Uddin, et al., 2009; Gusnard & Raichle, 2001; Shulman et al., 1997; 

McKiernan et al., 2003; Mazoyer et al., 2001; Fox et al., 2009). However, this canon of 

literature comes primarily from studies of young healthy adults. An emerging body of 

work on individuals in more diverse samples, such as those who have mental disorders or 

those who have lived to advanced ages, has found that the accepted pattern between the 

TNN and TPN does not always hold. For example, in individuals with Alzheimer’s 

disease (AD), the decoupling between the two networks appears to breakdown, as the 

networks respond differently to cognitive demand (Andrews-Hanna et al., 2007; Jones et 

al., 2011; Lustig et al., 2003; Greicius et al., 2004; Wang et al., 2006; Sorg et al., 2007; 

Celone et al., 2006; Buckner et al., 2009; He et al., 2007; Gili et al., 2011; Zhang et al, 

2010; Bai et al., 2009; Zhou et al., 2010; Damoiseaux et al ., 2012; Wang et al., 2007; 

Wang et al., 2006; Supekar et al., 2008; Fleisher et al, 2009; Buckner et al, 2005; Sauer 

et al., 2006; Seeley et al., 2009).  In AD patients, studies have found that the 

networks operate in reverse—the TNN is on in the presence of a task and the TPN is 

on in absence of a task, or even in tandem—both the TNN and TPN stay on either 

during a task or at rest. 

While the collapse of the decoupling between the TNN and TPN has been 

investigated and replicated in clinical settings, few studies have explored this brain 
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architecture within the context of normal aging. The purpose of this paper is to 

investigate the organization of the TNN and TPN in cognitively normal, community-

dwelling older adults. In particular, we answer the question, to what extent do these 

networks operate dichotomously? Is it the case, that when the TNN is on, the TPN is off, 

and vice versa?  

 

Figure 3.1 The TNN and TPN Decoupling 
This figure shows the decoupling conceptual model: at rest, the TNN, in blue is activated, while the TPN, 
in red is deactivated. During a task, as indicated in the shaded gray blocks, the TPN is activated, and the 
TNN is deactivated. 
 

We employed two methods to answer these questions: (1) a region of interest 

(ROI) method, which defines networks from the literature; and (2) an independent 

component analysis (ICA) method, which defines networks by a data-driven method. We 

then analyzed correlation coefficients for the TNN and TPN from each method to assess 

the extent of coupling or decoupling between and within the networks. 

Decoupling Diagram 
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The study of decoupling between networks and coupling within networks is 

commonly known as functional connectivity (Biswal et al., 1995). In a brain at rest, the 

existence of these networks and how they modulate other networks is measured by the 

low-frequency correlations within and between the networks that persist intrinsically. 

Functional connectivity is defined as a group of neurons that act together coherently 

(Aertsen and Preissl, 1991). These actions are measured as temporal correlations between 

groups of anatomically defined spatial regions (Friston, 1997). We studied the functional 

connectivity between the TNN and TPN and within each network in the Brain Health 

Study (BHS), which is nested within the larger Baltimore Experience Corps Trial. We 

tested the decoupling diagram in Figure 3.1.  

3.2 Methods 
 

 This investigation used data from the BHS, a longitudinal randomized controlled 

trial in community-dwelling older adults to establish the organization of brain networks.  

Using the Sternberg Task, a paradigm of working memory in the fMRI scanner, the task 

negative and task positive networks were extracted, and the connectivity between and 

within each network was assessed. In this section, we describe the data, the study sample, 

the cognitive outcomes, the imaging modality, and statistical methodology. 

3.2.1 Brain Health Study Sample  

The data were drawn from the Baltimore Experience Corps Trial (BECT), a randomized 

controlled trial of the Experience Corps (EC) program, a model of senior service in 

elementary schools. This trial included 702 participants who were recruited and 

randomized over four years into either the EC program or a low-activity control for two 
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years. To qualify for BECT, participants met the following eligibility criteria (Fried et al., 

2013): 

1. Age 60 years or older; 

2. English speaking; 

3. Minimum sixth grade reading level on the Wide Range Achievement Test 

(Wilkinson, 1993); 

4. Score of 24 or higher on the Mini-Mental State Examination (MMSE) (Folstein et 

al., 1975); 

5. Clearance on criminal background check for those enrolled in the Experience 

Corps arm. 

 Prior to randomization in the larger BECT trial, 123 participants were recruited 

and randomized into the Brain Health Study (BHS), a sub-study nested within (BECT) 

focused on investigating the biological mechanisms in the brain underlying associated 

behavior changes by using structural and functional MRI (Carlson, Kuo, Chuang, Varma 

et al., under review).  Randomization into this sub-study occurred prior to interventional 

placement in order to avoid potential selection biases. Additional eligibility criteria for 

BHS include the following: 

1. Right hand dominance; 

2. No implanted pacemaker, defibrillator, or other electronic or metal devices; and 

3. No history of atrial fibrillation, stroke, brain tumor, brain hemorrhage, or brain 

surgery for a cerebral aneurysm. 

The Johns Hopkins Institutional Review Board approved of this study and all participants 

provided written and informed consent criteria (Fried et al., 2013). 
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 Table 3.1 summarizes the demographic and cognitive characteristics of the BHS 

participants, stratified by randomization group. The sample is representative of the urban 

population of older adults in Baltimore: over 90% are African-American; almost 70% are 

female; 20% are widowed; and the average education level represents about two years of 

post-secondary schooling.  The average MMSE score indicates that participants are 

cognitively normal, as mandated by the eligibility criteria. 

Table 3.1 BHS Study Participants 
Characteristic EC, Mean Control, Mean   
N 65 58    
Female (%) 45 (69.2) 40 (68.96) 
Age, in years (SD) 67.79 (6.32) 66.57 (5.72) 
African American, n (%) 59 (90.77) 54 (93.10) 
Education, in years (SD) 14.28 (3.01)   13.71 (2.76) 
MMSE (SD) 28.23 (1.62) 28.32 (1.49) 
Geriatric Depression Scale 1.31 (1.44) 1.31 (2.37) 
EC, Experience Corps; MMSE, Mini-Mental State Examination. 

3.2.2 Paradigm Description 
 In the scanner, participants completed the Sternberg Task, a one-back test of 

working memory (Sternberg, 1969). In this task, participants view a set of four uppercase 

letters followed by a lower-case letter probe and the task is to indicate whether or not that 

letter has been previously viewed in the antecedent sequence. While lying in the scanner, 

the participant holds a button in each hand, and is instructed to press the button in the 

right hand if the letter was present in the preceding sequence; or to press the button in the 

left hand if the letter was not present, representing the match condition and non-match 

conditions, respectively.  Each subject completed a total of 40 trials, consisting of 20 
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trials of the match condition, and 20 trials of the non-match condition.  Figure 3.2 

outlines an example of a match and non-match trial. 

 

Figure 3.2 The Sternberg Paradigm 

This figure shows a snapshot of the Sternberg Task, as participants experience it in the scanner. The task 
periods, match and non-match, are indicated in light gray; the non-task periods, the inter-stimulus intervals, 
are indicated in light yellow. The time of each period is diagrammed along the x-axis in seconds. 

  

 Each stimulus letter sequence was presented for 2 seconds, followed by an 

average of 3 seconds of a central fixation cross. The experimental design is jittered, so 

the actual time period of each inter stimulus interval (ISI) varied, ranging from 1.5 

second to 18 seconds. The trials proceed throughout the entire scanning session without 

designated periods of sustained rest, representing an event-based paradigm. To 

investigate activity in the task negative and task positive networks, the entire time period 

inside the scanner is of interest: both the task itself and the short time periods between the 

trials, which represent the non-trial intervals of interest.  

3.2.3 Data Acquisition 
 

One hundred and thirteen BHS participants underwent an approximately 12-

minute (725 seconds) scan under the event-based Sternberg paradigm as described above. 

All imaging was performed on a 3T Intera Philips scanner (Best, the Netherlands). 
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Functional data were collected using T2*-weighted a spin-echo, echo-planar sequence 

sensitive to detect the blood oxygen level (BOLD) contrast (repetition time = 1500 ms; 

echo time = 30 ms; slice thickness = 4 mm/1 mm gap; 30 slices, interleaved acquisition; 

flip angle = 70°; matrix = 64 × 64; field of view = 240 mm). Whole brain coverage was 

obtained with 30 interleaved slices. A total of 480 volumes were acquired for each 

participant in a single run.  

A structural image was also collected for each participant using the magnetization 

prepared rapid-acquisition gradient echo protocol (repetition time = 8 ms, echo time = 

3.6 ms, field of view = 256 mm, matrix = 256 × 256, slice thickness = 1 mm; 200 slices).  

3.2.4 Preprocessing of Functional Data 

A diagram of the preprocessing stream is shown in Figure 3.3. All fMRI data 

processing, unless otherwise noted, was carried out using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/).   

 

 

 

 

Figure 3.3 The Preprocessing Stream 

This figure diagrams the sequence of preprocessing steps that we used to preprocess the fMRI data in SPM. 
Slice time-correction accounted for the inter-leaved sequence of data acquisition. Motion correction 
involved rigid body transformations. Co-registration and normalizations involved standardizing each fMRI 
image to its structural image, and both images to the MNI template. Spatial smoothing was performed 
using a FWHM Gaussian kernel of 7.0mm. 
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Preprocessing of the functional data included slice-time correction to account for 

the different times that each volume is acquired during a sequence. Rigid body 

transformations were applied to correct for movement of the head in the scanner. 

Afterwards, each functional scan was co-registered to its corresponding structural image, 

and then normalized spatially into standard space, using the Montreal Neurological 

Institute (MNI) image. Lastly, spatial smoothing was conducted using a 7.0 mm full 

width at half maximum (FWHM) Gaussian kernel, and high-pass temporal filtering with 

a 50-second cutoff.  

Additionally, preprocessing of the structural data entailed removal of non-brain 

structures using the brain extraction tool in FMRIB's (Oxford Centre for Functional MRI 

of the Brain) software library (FSL) 4.1.9 (www.fmrib.ox.ac.uk/fsl; Smith et al., 2004; 

Smith et al., 2002). Functional data were overlaid on the MNI template for presentation 

purposes. 

Final Sample: After preprocessing, 90 participants remained in the study and 

were included in this analysis. Participants were dropped due to not having function data 

(n=9) or structural data (n=1), poor image quality (n=12), or severe atrophy (n=1), as 

outlined in Table 5.1. 

3.2.5 Assessment of Networks 
Several methods exist for extracting the TNN and TPN from fMRI brain images, 

and these methods can be categorized into two types: a priori-region based methods and 

data-driven methods. We employed methods from each category to extract the TNN and 

TPN from the fMRI brain images of the BHS sample. While the two techniques represent 
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different approaches, the analytic inferences that result, explaining the connectivity 

between and within the networks, should be comparable.  

Most studies in this field use resting state or task-free fMRI protocols to extract 

intrinsic connectivity networks. However, in our study, we extracted networks from an 

fMRI protocol with an event-related design. Using data from an attention-demanding 

paradigm of working memory may actually facilitate the distinction between the TNN 

and TPN because of the presence of a task. Nevertheless, because the TNN and TPN are 

intrinsic to the organization of the brain, they exist whether or not there is a task. Studies 

support the inherent existence of these networks, and sensitivity to detecting each, both in 

resting state data and during cognitive processing tasks (Greicius et al., 2003). 

3.2.5.1 Region of Interest Method 

The Region of Interest (ROI) method utilizes a priori regions that have been 

shown in the literature to belong to the TNN and TPN. These are regions that have 

consistently shown increased deactivations and increased activations during tasks, for the 

TNN and TPN respectively. The peak coordinates of these regions are used to form ROIs 

and in conjunction, they represent networks. 

We used MNI coordinates defined by Yeo et al (2011) based on an fMRI study of 

1,000 young healthy adults. This study served as the definition for our networks because 

of its very large sample size and use of other well-established studies as starting points in 

establishing ROIs. Additionally, to develop the networks, Yeo et al. reserved 500 

subjects for validation purposes.  Therefore, these networks that are ultimately 

established served as a sound basis for our study. 
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For the TPN, we adopted what Yeo et al. calls the Control Network, which is 

illustrated in Figure 3.4. This network is parcellated into 6 regions, labeled A-F.  The 

anatomical regions of the TPN can be described as follows: 

Task Positive Network (TPN) 
A. Anterior control network  
B. Medial control network 
C. Lateral control network 
D. Dorsal attention network 
E. Premotor Cortex 
F. Superior Parietal Cortex 

 

For the TNN, we adopted what Yeo et al. calls the Default Mode Network, as 

pictured in Figure 3.5. This network is also split into 6 regions, labeled A-F, representing 

the following: 

Task Negative Network (TNN) 
A. Prefrontal cortex (PFC) 
B. Inferior parietal lobule (IPL)  
C. Lateral temporal cortex (LTC) 
D. Dorsal medial prefrontal cortex (dMFC) 
E. Parahippocampal cortex (PHC) 
F. Posterior cingulate/retrospenial cortex (PCC/Rsp) 
 

Each of the TNN and TPN networks, as defined in Figure 3.4 and Figure 3.5, 

shows connectivity with itself and little or no connectivity with other regions of the brain. 

This high intra-network connectivity and low inter-network connectivity support the use 

of these networks to define the locations of the TNN and TPN in the BHS data. We will 

use the MNI coordinates defined by Yeo et al. (2011) to construct TNN and TPN 
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networks using 6-mm spheres about each of the ROIs exhibited in Figure 3.4 and Figure 

3.5. Then we will assess the resulting inter and intra-network connectivity. 

 

Figure 3.4 The Control Network (From Yeo et al., 2011) 
This map shows the Control Network that Yeo et al., 2011 developed using a sample of 500 healthy adults, 
and validated on a similar sample of 500 other individuals. The map identifies 6 regions of this network, 
labeled A, B, C, D, E, and F. We refer to this network as the Task Positive Network (TPN). 
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Figure 3.5 The Default Mode Network (From Yeo et al., 2011) 
This map shows the Default Mode Network that Yeo et al., 2011 developed using a sample of 500 healthy 
adults, and validated on a similar sample of 500 other individuals. The map identifies 6 regions of this 
network, labeled A, B, C, D, E, and F. We refer to this network as the Task Negative Network (TPN). 

 

3.2.5.2 Seed Analysis Method 

Building from the ROI method, seed-based techniques also employ an a priori 

assumption, using previous literature or data, to determine the location of the network. A 

seed consists of a region, such as a collection of voxels within a spheroid. The average 

time course of this seed is then incorporated as a regressor in first level analysis, a 

regression model for each subject, as displayed in Equation 1: 

Y = Xβ + ε    (1)                                            
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where each matrix is defined as follows       

  

Y = [Y1,Y2,...,YN]T, 

 

β = [β1,...,βK,γ0,...,γq]T, and 

ε = [ε1,...,εN]T. 

In this level, an autoregressive model was used to specify the structure of the temporal 

correlation, εi = ρεi−1 + ζi, where |ρ| < 1 and ζi are independent and identically 

distributed (i.i.d.). In the second stage, we regressed on the β parameters to summarize 

groups of subjects: 

β = XGβG + εG    (2) 

where εG ~N(0,IσG
2). 

T-tests were performed on the group level using the maps from the β 

corresponding with the seed region of interest. The results for the contrasts for the TNN 
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and TPN seeds yielded the regions of the brain that were correlated with the TNN and 

TPN, respectively. Essentially, this method outlines a procedure to use a seed, a region 

hypothesized to be highly connected with other regions in the brain, to grow a network 

over the entire brain, revealing the seed-to-brain connectivity.   

In our implementation of the seed-based analysis, we included in the first analysis 

regression model additional variables to help maximize the signal of interest, and 

minimize the noise. We corrected for motion by including the six motion parameters 

from the SPM preprocessing, and we included the onset times for the task conditions, 

match and non-match, as well as corresponding errors.   

Diagrams of seed-based maps of the TNN and TPN from Vemuri et al. (2012) are 

illustrated in Figure 3.6: 

 

Figure 3.6 The Seed-derived network maps (From Vemuri et al., 2012) 
This map from Vemuri et al. shows the Task Negative Network (TNN) in the top panel and the Task 
Positive Network (TPN) in the lower panel that were derived using a seed-based approach in a group 
analysis of 341 elderly healthy control subjects. The TNN, the top panel, is the result of positive 
correlations to the 6-mm radius spherical seed in the posterior cingulate cortex (PCC). The TPN, the lower 
panel, is the result of the negative correlations to the PCC seed.   
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The top panel of Figure 3.6 exhibits the TNN and the lower panel exhibits the 

TPN. The seed region used is indicated in yellow, the 6 mm-radius spheroid in the 

posterior cingulate cortex. The top panel indicates the regions positively correlated with 

the seed, yielding the TNN. The lower panel indicates the regions negatively correlated 

with the seed, yielding the TPN. 

3.2.5.3 Independent Component Analysis Method 

In Independent Component Analysis (ICA), instead of selecting regions in an a 

priori manner, the networks are determined by spatial patterns in the data. ICA is a 

method of blind source separation that can be used to recover the original sources from 

any multivariate signal. The original signals are recovered by using algorithms to make 

the multivariate signal as independent as possible. In fMRI brain imaging, the fMRI 

BOLD signal is a combination of multiple brain networks operating simultaneously. 

Applying ICA to these data separates the mixed signal into maximally independent 

components (ICs) that represent temporally coherent functional networks. That is, the 

regions included in each IC spatial map share similar time courses, and subsequently 

represent an individual brain network or sub-network, including among other networks, 

the TNN and TPN. Performing this algorithm on a group of subjects identifies the spatial 

maps that are shared across participants while also accounting for the individual 

boundaries of each subject. 

Diagrams of ICA-derived TNN and TPN spatial maps from Vemuri et al. (2012) 

are illustrated in Figure 3.6.  
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We employed ICA using the GIFT toolbox (http://icatb.sourceforge.net/). We set 

the algorithm to estimate 40 components, which studies find sufficient for detecting the 

TNN and TPN (Kiviniemi et al., 2003).    

 

 
Figure 3.7 ICA-derived network maps (From Vemuri et al., 2012) 
This map from Vemuri et al. shows the Task Negative Network (TNN) in the top panel and the Task 
Positive Network (TPN) in the lower panel that were derived using Independent Component Analysis 
(ICA) (20 components) with 341 elderly healthy control subjects. Three independent components within 
the TNN were detected by ICA in the upper panel; and four independent components within the TPN in the 
lower panel. 

 

We used the maps in Figure 3.7 as guides in identifying the TNN and TPN 

networks from ICA in our data. 

3.2.6 Correlation Techniques 

For both the ROI and ICA methods, the correlation analysis proceeded in an 

identical fashion. After obtaining the networks from either method, we sought to 

determine the extent to which each network is correlated with one another and with itself. 

Each network consists of a set of time courses. The exact number of time courses 

depended on the number of subcomponents of the network. We started by computing the 



 

54 
 

correlation coefficients between each of the subcomponent pairs both within and between 

the TNN and TPN for each subject. This resulted in a p x p connectivity matrix for each 

of the 90 subjects, where p represents the number of sub-networks. Then we took the 

average of the 90 matrices across all participants’ networks, and plot the resulting 

average connectivity matrix.  

The connectivity matrix contains the average correlation coefficients for each sub-

network pair, with possible values ranging from -1 to 1. Values close to 0 indicate that 

the two sub-networks exhibit no relation. Positive values indicate that the two sub-

networks operate in tandem such that the activation of one network is associated with the 

activation of the other network. Negative values indicate that the two sub-networks 

operate in opposition such that the activation of one network is associated with the 

deactivation of the other network. We expected that intra-network, the sub-networks will 

exhibit positive correlations; and inter-network, the sub-networks will exhibit negative, 

or, anti-correlations (Vemuri et al., 2012; Raichle, 2010; Fransson, 2006; Whitfield-

Gabrieli et al., 2012).  

To visualize which networks serve as hubs of connectivity, we also visualized the 

correlation coefficients using a network graph. We used a threshold of ±0.35, 

representing a moderate correlation, for the calculation of edges on the graph. Correlation 

coefficients between (-0.35, 0.35) remain important, as well; however to help identify the 

sub-networks that are the most connected, we omitted these nodes from the network 

graph visualization.  

3.3 Results 
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This section details the results from the ROI and ICA methods. While each 

method produced quantitatively and qualitatively different networks, the results 

converged to reveal a congruent pattern of TPNs and TNNs.  

3.3.1  Region of Interest Method 
 

Figure 3.8 is a plot of the time courses for each of the sub-networks for the 90 

participants. The participants are stacked horizontally along the x-axis, and the BOLD 

signals are indicated on the y-axis. While the plot reflects the variable nature of the raw 

data, some patterns are visible. For instance, Control Network D, illustrated in teal-blue, 

consistently has a BOLD signal higher than any of the other sub-networks. Similarly, 

Default Mode Network B, illustrated in royal-blue consistently has a BOLD signal lower 

than any of the other sub networks. This pattern suggests that these two networks should 

be anti-correlated, a finding supported by a negative correlation between the TNN and 

TPN. 

 
Figure 3.8 ROI Time Courses 
This plot shows the raw time courses for each of the sub-networks for the 90 participants. The x-axis 
represents the participants, which are concatenated side by side; and the y-axis represents the fMRI BOLD 
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signals. The legend on the right indicates how the time course are color coded according to the sub-network 
including Control A - F and Default A-F, representing the TPN and TNN respectively.   

 

Figure 3.9 provides individual raw time course data for four random subjects from Figure 

3.8. The shades of orange represent the TNN and the shades of purple represent the TPN.  

 
Figure 3.9 ROI Time Courses Close-Up 
This set of plots shows the raw time courses for four randomly selected participants at Baseline. The x-axis 
indicates the scan number from 1 to 480 and the y-axis indicates the fMRI BOLD signal. The purple shades 
represent the TPN and the orange-shades represent the TNN. 
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These illustrations of raw time courses provide an indication of the connectivity 

between the networks; however, to quantify and visualize the connectivity more clearly, 

we compute the correlation between each network pair.  Figure 3.10 exhibits the average 

correlation values across all study participants. Hot colors (shades of red) indicate 

positive correlations and cool colors (shades of blue) indicate negative correlations, also 

known as anti-correlations. The connectivity matrix is equivalent along the diagonal, and 

the upper triangle exhibits a visualization of the correlation coefficient values, while the 

lower triangle exhibits the precise coefficient values. In the upper triangle, the diameter 

of the circle represents the magnitude of correlation.  

Figure 3.10 shows that there are substantial anti-correlations between the TNN 

and TPN. In particular, networks 4 and 8, Control Network D and Default Network B, 

which stood out immediately from the plot of the raw time courses in Figure 3.8, are 

indeed anti-correlated. Networks 4 and 12 (Control Network D and Default Network F) 

are also substantially negatively correlated. These anti-correlations provide support for 

the hypothesis that the TNN and TPN are decoupled, according to the conceptual model 

in Figure 3.1. However, there are also strong positive correlations between the networks. 

Networks 2 and 8 (Control Network B and Default Network B); 2 and 12 (Control 

Network B and Default Network F); 3 and 8 (Control Network C and Default Network 

B); and 3 and 12 (Control Network C and Default Network F) are each positively 

correlated with each other. 

Intra-network, Figure 3.10 also exhibited both positive and negative correlation 

coefficients. Within the TPN, there were no anti-correlations larger than 0.35, and there 

were four correlation coefficients with positive values larger than 0.35, indicating a 
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stronger intra-network connectivity. Within the TNN, there were two substantial anti-

correlation coefficients: the correlation between networks 8 and 10 (Default Network B 

and D) and that between 10 and 12 (Default Networks D and F) is -0.35. This suggests 

the inferior parietal lobule (IPL) and dorsal medial prefrontal cortex (dMFC); and the IPL 

and PCC, each pair representing components of the TNN, were not operating 

simultaneously. However there are also four positive correlations within the TNN. 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.10 The ROI Connectivity Matrix 
This connectivity matrix shows the average correlation values across the 90 study participants. Sub-
networks 1-6 represent the TNN and sub-networks 7-12 represent the TPN, as indicated in the legend on 
the right. Rows 1-6 crossed with columns 1-6 represent the intra-task positive network. Rows 7 – 12 
crossed with columns 1-7 represent the inter TNN-TPN network. Rows 7-12 crossed with columns 7-12 
represent the intra-task negative network. Shades of red indicate positive correlations and shades of blue 
indicate negative correlations. 

 

Figure 3.11 shows a network graph portrayal of the connectivity, which leads to 

three key observations. Firstly, within the TNN, networks 8 and 12, the IPL and PCC, 

Key 
1. Control Network A 
2. Control Network B 
3. Control Network C 
4. Control Network D 
5. Control Network E 
6. Control Network F 
7. Default Mode Network A 
8. Default Mode Network B 
9. Default Mode Network C 
10. Default Mode Network D 
11. Default Mode Network E 
12. Default Mode Network F 



 

59 
 

stand out as hubs, each with 7 connections to other regions. Secondly, network 10 the 

dMFC, is also a hub, with 5 connections. Thirdly, within the TPN, the network with the 

greatest number of connections is network 4, Control Network D, which connects to 5 

other sub-networks. Overall, the TNN sub-networks are more connected to other sub-

networks than the TPN sub-networks. After factoring in the 0.35 threshold used for the 

visualization of nodes, two networks stand out for not having any connections: Control 

Network E and Default Network C, representing the lateral temporal cortex (LTC). 

 
Figure 3.11 ROI Network Graph 
This network graph shows the connections between sub-network pairs that have average correlation values 
greater than |0.35|. Nodes 1-6 represent the TPN, and nodes 7-12 represent the TNN. 

 

Figure 3.8-Figure 3.11 exhibit the results of the ROI method to assess functional 

connectivity between the TNN and TPN at increasing levels of reduction. Figure 3.8 

shows the individual time course data for each subject, presenting all of the information 

without any modifications or reductions. This raw display shows the variability in the 
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data, and that despite this variability certain sub-networks appear to consistently exhibit 

higher or lower values than other sub-networks, indicating that a pattern exists and 

warranting further statistics. Thus, Figure 3.10 provides an average of the correlations of 

each sub-network pair across all subjects. This connectivity matrix provides a group-level 

display of the sub-network pairs that are the most positively correlated and those that are 

the most negatively correlated. The value of the average correlation coefficient is also 

provided for each sub-network pair. Figure 3.11 further summarizes this information by 

focusing in on only the sub-network pairs with average correlation coefficients of at least 

0.35. Therefore, only the sub-network pairs with moderate correlations are displayed, and 

to aid identification of regions that are the most connected, and which regions are 

disconnected with others in the brain. Together, this sequence of figures reveals the 

connectivity results, from the raw data to our interpretations. 

 

3.3.2 Seed Analysis  

The seed analysis incorporated behavioral measures and motion parameters in the 

subject-level regression models. Therefore, we took additional preprocessing steps to 

account for these measures. Namely, we examined the behavioral performance of each 

participant, and removed from this analysis those who performed below chance. Six 

participants were dropped from the analysis at this stage. Additionally, we re-examined 

the echo planar image quality, and removed from analysis those with significant imaging 

artifacts that interfered directly with the seed regions. The final sample for the seed-based 

analysis included 82 subjects. 
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The seeds were selected based on the results of the ROI connectivity analyses. We 

selected the seed region as the one with the most connections from each of the TNN and 

TPN, as illustrated in Figure 3.11.  The region with the most connections in the TPN is 

labeled node 2, which connects to seven other sub-networks in Figure 3.11, and 

represents Control B. The region with the most connections in the TNN also connects to 

seven other sub-networks, and is labeled node 12 in Figure 3.11, representing Default F, 

which is also known as the PCC. The time courses from Control B and Default F are used 

as regressors in the first level analysis, and Figure 3.12 exhibits the results of second 

level analysis containing the seed-to-brain connectivity results. 

The T-statistics in Figure 3.12 are ultra-thresholded using the family wise error 

rate for multiple corrections with P = 0.000000005 to exhibit only the regions that were 

highly correlated with each seed. Figure 3.12A exhibits the group level result of regions 

that are correlated with Default F, the PCC. Figure 3.12B exhibits the group level result 

of regions that are correlated with Control B. Figure 3.12A maps the TNN and Figure 

3.12B maps TPN, demonstrating that each network can be recovered by using an a priori 

seed from within that network. That is, each network is appropriately correlated with 

itself. However, the parallel T-tests to obtain the regions that are negatively correlated 

with each seed resulted in a null finding—that is no, or very few voxels survived the 

significance threshold. Therefore, the seed-based approach generated each map from its 

respective seed; but neither generated its hypothesized complementary map, indicating 

that the anti-correlations were not observed in these data. 
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A. The seed-based TNN 

 
B. The seed-based TPN 

 
Figure 3.12 Results of Seed-Based Analysis 
These images show the results of the seed analysis. (A), the upper panel, shows the TNN, the regions 
positively correlated with the posterior cingulate cortex seed. (B), the lower panel, shows the TPN, the 
regions positively correlated with Default B. All seed regions were constructed using 6-mm spheres. The 
results are ultra-thresholded using P = 0.000000005, and displayed on the standard MNI structural 
template. 
 

3.3.3 Independent Component Analysis Method 

Figure 3.14 exhibits the TNN derived from ICA. This network is parcellated into three 

components, consisting of the anterior DMN, posterior DMN, and anterior/ventral DMN. 

The figure is a group level map of the average spatial components; however the analysis 

was conducted on back-reconstructed time courses corresponding to the networks of 

interest for each individual. 
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Figure 3.14 exhibits the TPN derived from ICA. This network is parcellated into 

eight components, consisting of the upper left executive control network (ECN), lower 

left ECN, upper right ECN, lower right ECN, and dorsal attention network: Upper Left 

Executive Control Network (ECN), upper right ECN, lower left ECN, lower Right ECN, 

Bilateral ECN, Dorsal Attention Network (DAN) I, DAN II, and DAN III.   

The connectivity matrix in Figure 3.15 shows the average correlation pairs across 

participants. Sub-networks 1-3 represent the TNN and sub-networks 4-12 represent the 

TPN. Overall, most correlation coefficient values are smaller than those in the parallel 

connectivity matrix from the ROI method. Also, like in the ROI results, the ICA 

connectivity matrix shows both positive and negative inter-network correlations. The 

strongest inter-network anti-correlation is between the anterior DMN I and the dorsal 

attention network, which represent two regions that are located far apart in the brain. The 

largest inter-network positive correlation is between the posterior DMN and DAN III, 

suggesting that these two geographically proximal regions of the brain operate together. 

Similarly, intra-network, there are both positive and negative correlations; however, the 

majority of correlation coefficients within each network have low values of less than 

0.20. Within the TPN, the three DAN components are highly correlated with one another, 

as expected. 
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 Figure 3.13 The ICA-derived TNN 
This figure shows the results of Independent 
Component Analysis (ICA) (40 components) using 
GIFT (http://mialab.mrn.org/software/gift/). Three 
TNN components were detected: components 9, 11, 
and 14. 

 

Figure 3.14 The ICA-derived TPN 
This figure shows the results of ICA, from the same 
run as. Eight TPN components were detected: 
components 5, 8, 10, 13,18, 24, 27, and 29.  

 

 

 

 

Figure 3.15 The ICA Connectivity Matrix 
This figure shows the results of the average correlations across all 90 participants from Independent 
Component Analysis (ICA). Sub-networks 1-3 represent the TNN and sub-networks 4-11 represent the 
TPN. 

 

Key 
1. Component 11. Anterior Default Mode 

Network (DMN) I 
2. Component 14. Anterior DMN II 
3. Component 9. Posterior DMN  
4. Component 5. Upper Left Executive 

Control Network (ECN) 
5. Component 13. Upper Right ECN 
6. Component 27. Lower Left ECN 
7. Component 18. Lower Right ECN 
8. Component 29. Bilateral ECN 
9. Component 8. Dorsal Attention Network 

(DAN) I 
10. Component10. DAN II 
11. Component 24. DAN III 
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3.4 Discussion 

The functional connectivity results from the various methods converge on common 

findings: the intrinsic correlations in the brain map spatially to the TNN and TPN as 

expected. In the ROI method, the regions of the TNN were correlated with other regions 

of the TNN; and regions of the TPN were correlated with other regions of the TPN. In the 

seed-based method, the entire TNN was recovered using a single seed from this network; 

similarly, the whole TPN was recovered using one seed in the TPN.  Our results from the 

seed-based approach match the corresponding maps from the literature fairly well. The 

TNN map that we obtained, Figure 3.12A, closely resembles Figure 3.6 from Vemuri et 

al. (2007). The TPN map, Figure 3.12B, also resembles the TPN map from Figure 3.6, 

although the match is not as close as in the TNN. The increased difference between the 

TPN in the literature and the results from our data could be due to the different study 

designs. Vemuri et al. utilize resting state data. The consistency of the finding for the 

TNN compared to the relative inconsistency of the results for the TPN indicates that the 

TNN is more robust and homogenous than the TPN. 

In ICA, the TNN and TPN are produced without any a priori assumptions, and 

while the correlations within each network were lower than in the other methods, they 

tended to be positive. Thus, regardless of the method, we can be confident in the 

existence and generation of these brain networks in our community-based sample of older 

adults. 

However, the relation between the two networks did not replicate the canonical 

findings from the literature, as hypothesized in Figure 3.1. Namely, in each method, we 

found that while some anti-correlations between the networks were observed, the nature 
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of the relation between the two networks can be described more accurately as a variety of 

correlations types including positive, negative, and null. In the ROI method, there were a 

number of positive correlations between the networks, indicating that the TNN and TPN 

may operate simultaneously rather than one at a time in turn. The ROI method also 

yielded a subset of negative correlations, indicating that there were a few sub-network 

pairs that appear to operate in the binary fashion that the literature predicts. In the seed-

based method, there were no negative correlations, indicating that the two networks were 

not sufficiently anti-correlated at the group level. In the ICA approach, most of the 

correlations between the two networks were null. A correlation coefficient of zero can 

occur in two cases: (1) if the two networks indeed have no associations; or (2) if the data 

arise from a bimodal distribution such that some subjects have positive correlations and 

others have negative correlations, and the average is therefore zero. While further 

analysis is needed to determine the reason for the null correlation coefficients between 

the two networks, this finding is consistent with the results from the ROI and seed-based 

methods, that the TNN and TPN appear to display little to no anti-correlations. 

The lack of anti-correlations between the TNN and TPN suggests that these two 

networks were not decoupled in our sample of socio-demographically diverse 

community-based older adults. The majority of findings in the literature with conclusions 

to the contrary are based on studies of young healthy adults. Therefore, it may be that 

while the TNN and TPN are decoupled in young healthy adults, the two networks 

become less decoupled during aging. In fact, other studies in children and older adults 

are also finding that the relation between the TNN and TPN may be more complicated 

than the common binary understanding. Fair et al. found that in children ages 7-9 years 
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old, the TNN exhibits only sparse correlations with itself (2008). Developmental models 

of neuroanatomy demonstrate that the last areas to develop are also the first to 

deteriorate, which suggests that functional connectivity in the brains of children may 

provide a model helpful for the understanding of brain networks in older adults (Fair et 

al., 2008). Also, Steffener et al. found that in older adults, the TNN remains active during 

task performance, and they hypothesize that the functioning of this network, in parallel 

with the TPN may actually serve to enhance performance for older adults (2012). We test 

the association between TNN-TPN connectivity and cognitive performance in Aim 2. 

The speculation that the TNN and TPN operating together may enhance performance 

suggests that for older adults, these networks may function in a compensatory 

mechanism. Perhaps the binary organization of the brain exhibited in young healthy 

adults is not optimal for older adults, and in fact the coupling of the two networks is a 

natural part of cognitive aging.    

3.4.1 Strengths & Limitations 

The Brain Health Study includes a number of significant features that make it suitable 

to answer the questions of interest and subsequent future implications.  Extracting 

networks from an event-related paradigm represents a strength of the design and suggests 

a protocol for future studies. Because the networks match maps of the TNN and TPN 

from the literature, our study shows that it is possible to probe TPN and TNN activity in 

virtually any fMRI study. Usually, selecting or constructing the proper paradigm of 

interest for the desired outcomes represents the chief challenge for nearly every study 

design. Our study finds that because the networks represent intrinsic activity in the brain, 
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they can be extracted in both event-related and resting state designs. Thus, this simple 

protocol is straightforward to replicate. 

Participants from the BHS also distinguish this investigation and add value to the 

literature. While most fMRI studies of older adults consist of white, educated, and upper-

middle class individuals, this sample consisted primarily of black, variably educated, and 

lower income individuals. This sample represents an often neglected target population, 

the at-risk community-dwelling older urban denizen. Results indicated that our approach 

is flexible in diverse samples, compared to other more homogenous samples of well-

educated young and older adults, and specific patient samples. This approach thus has 

important implications for vulnerable and diverse groups of individuals. 

A limitation in our study design is the event-based protocol. Most studies on 

functional connectivity collect long periods consisting of several minutes of “resting 

state.” Here, we studied brain networks in the context of a working memory paradigm. 

This work fits with new and evolving precedent for evaluating functional connectivity 

using the Sternberg paradigm, such as (Fransson et al., 2006; Metzak et al. 2012). 

However, studies using resting state data to assess brain networks argue that because 

these networks exist intrinsically, they ought to be measured optimally in the absence of a 

task.  

The validity of using data from event-related study designs compared to task-free 

protocols has also been previously studied. In 2007, Fair et al. concluded that interleaved 

resting-state data (such as that from blocked event related fMRI designs) yielded resting 

state connectivity patterns that were both qualitatively and quantitatively similar to 
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continuous rest data (Whitfield-Gabrieli and Ford, 2012). The similarities in findings 

across study protocols adds further support to the intrinsic existence of the networks, and 

suggests that for a more nuanced understanding of the relationship between networks 

task-based fMRI, rather than task-free designs ought to be utilized.   

Thus, while the literature is based on resting state fMRI, we propose that if these 

networks exist spontaneously, then their presence ought to be magnified in the presence 

of a task. Therefore, using data from an event-based paradigm may represent a strength 

rather than a limitation. The consistency in findings across both event-based and resting 

state fMRI studies provides further support for the underlying biology of the relation 

between brain networks, and suggests that one day, this tool can be developed as a robust 

measure of brain health. 
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4 Chapter 4. The Association Between Functional Connectivity 

and Cognitive Outcomes in Older Adults (Aim 2) 
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4.1 Introduction 
 

Which patterns of connectivity in the brain are associated with better cognitive 

outcomes? If we could answer this question, the clinical and public health implications 

would be tremendous. We would be able to predict, in advance, declines in cognition in 

the elderly, and develop targeted interventions to preserve optimal functional 

connectivity. Using functional magnetic resonance imaging (fMRI), we aim to answer 

this question for a particular pair of networks, the task-positive (TPN) and task negative 

(TNN) networks. Our findings supplement the body of work linking brain network 

connectivity to cognitive outcomes, and demonstrate that in older adults the story is 

neither linear nor straightforward.  Unearthing biology from artifact using a technology in 

which the noise is often louder than the signal, and relating the results to cognition, 

presents challenges. Indeed, we have a long way to go to map the brain-print of cognitive 

aging; nevertheless, our investigation provides a conceptual model, statistical 

methodology, and practical application representing one step forward in the effort to 

solve a part of this brain-behavior paradigm.   
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Figure 4.1 The Brain Behavior Paradigm 
This diagram shows the conceptual model of the relation that we modeled: the association between brain 
network connectivity, as measured by correlations in fMRI BOLD signals; and cognitive functions, as 
measured by neuropsychological tests outside of the scanner. 
 

 The decoupling hypothesis of network connectivity posits that for optimal brain 

function, the TNN and TPN operate in separate phases according to cognitive demand. In 

the presence of a task, the TPN activates, and the TNN deactivates; in the absence of a 

task, the reverse occurs—the TNN activates, and the TPN deactivates. Previous studies 

have found that the binary organization of these brain networks is related to cognitive 

function in the direction that supports decoupling: better cognitive function is associated   

with more negative correlations between the TNN and TPN (Kelly et al., 2008; Hampson 

et al., 2010).  

 The focus of previous studies has been to establish the relation between functional 

connectivity and cognitive function in young healthy adults or in special patient 

populations. We investigated this association in a diverse population of community-based 

older adults. We studied the cross-sectional association between TNN-TPN connectivity 

and cognitive function, as well as the respective associations of intra-network 

connectivity within each of the TNN and TPN pathways. We selected cognitive outcomes 

from classic behavioral tests that are linked with dementia risk. By carrying out this 

investigation in a community-based sample of cognitively normal older adults, our results 
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have important implications for the aging population across the world. We predicted 

network pairs that are associated with better cognitive performance, and identified those 

that are associated with poorer cognitive performance, providing a framework for the 

prediction of cognitive decline, and the development of biomarkers to predict dementia 

pathology before it occurs. This analysis could lead to standardizable brain imaging tests 

that will allow older adults to examine the health of their brain connections, and take 

subsequent steps to improve brain health and preserve cognition. 

4.2 Methods 
 In this section, we describe the methodology used to investigate the association 

between brain network connectivity and functional outcomes in the Brain Health Study 

(BHS), an imaging trial nested within the Baltimore Experience Corps Trial (BECT).  

Using the Sternberg Task, a test of working memory in the fMRI scanner, we extracted 

the task negative and task positive networks, assessed the connectivity between and 

within each network, and then lastly tested the association between the functional 

connectivity measures and outside-of-scanner cognitive outcomes. Figure 4.2 diagrams 

this procedure. In this section, we describe the data, the study sample, the brain networks, 

the cognitive outcomes, and statistical methodology. The imaging modality and technical 

specifications have been described in 3.2.3. 
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Figure 4.2 Diagram of Methods 

 

4.2.1 Study Sample 
 The data are drawn from the BHS, a study nested within BECT, a randomized 

controlled trial of the Experience Corps (EC) program, a model of senior service in 

elementary schools. Details about EC and study participants are included elsewhere 

(Section 5.2.2). The sample included in this analysis consists of those participants with 

both usable fMRI data as well as complete behavioral tests outside of the scanner, which 

included 85 participants.  

 Table 4.1 summarizes the demographic and cognitive characteristics of the study 

sample. The sample is representative of the urban population of older adults in Baltimore: 

over 90% are African-American, almost 70% are female, and the average education level 

represents about two years of post-secondary schooling.  The average MMSE score 

Extract Brain Networks: TNN and 
TPN 

Assess inter and intra network 
connectivity between the TNN and 

TPN, and within each network.  

Test the associations between brain 
network connectivity and cognitive 

outcomes.  
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indicates that participants are cognitively normal, as mandated by the eligibility criteria. 

Table 4.1 Brain-Behavior Study Sample 

Characteristic Mean 
N 85 
Age, in years (SD) 67.44 (6.2) 
Male, n (%) 23 (27.1) 
African American, n (%) 79 (92.9) 
Education, in years (SD) 14.03 (2.75) 
MMSE (SD) 28.46 (1.35) 
Geriatric Depression Scale 1.02 (1.80) 
MMSE = Mini-Mental State Examination 

4.2.2 Brain Networks 
After preprocessing the data according to the previously described protocol in 

Section 3.2.4, we extracted each brain network of interest using the region of interest 

(ROI) method that is outlined in Section 3.2.5.  

We utilized a priori regions that have been shown in the literature to belong to the 

TNN and TPN from based on an fMRI study of 1,000 young healthy adults (Yeo et al., 

2011). 

These are regions that have consistently shown increased deactivations and 

increased activations during tasks, for the TNN and TPN respectively. Next we describe 

these regions, and their known associations with cognitive outcomes.  

4.2.2.1 Task Positive Network 
 

For the TPN, we used what Yeo et al. (2011) characterize as the “Control Network,” 

listed below: 
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Task Positive Network: 
A. Anterior control network  
B. Medial control network 
C. Lateral control network 
D. Dorsal attention network 
E. Premotor cortex 
F. Superior parietal cortex 
 

Because the TPN represents regions of the brain that exhibit increased activations 

during tasks, this network is believed to be involved directly in cognitive function. 

Previous studies have found increased activation in TPN regions to be associated with 

improved performance on cognitive tasks. For instance, Song et al. found that the 

strength of connections in the dorsolateral prefrontal cortex is positively correlated with 

performance on the Wechsler Adult Intelligence Scale, an overall measure of intelligence 

(Song et al., 2008). Additionally, Seeley et al. found that the connectivity within the 

intraparietal sulcus is positively correlated with performance on the Trail Making Test, a 

measure of executive function (Seeley et al., 2007). The literature shows that stronger 

intra-network connectivity within the TPN is associated with better cognitive outcomes 

(Hampson, 2010).  

4.2.2.2 Task Negative Network 
 

For the TNN, we use the MNI coordinates identified by Yeo et al. (2011) as the 

Default Mode Network, which is also parcellated into six regions: 

Task Negative Network: 
A. prefrontal cortex (PFC) 
B. Inferior parietal lobule (IPL)  



 

86 
 

C. Lateral temporal cortex (LTC) 
D. dorsal medial prefrontal cortex (dMFC) 
E. parahippocampal cortex (PHC) 
F. posterior cingulate/retrospenial cortex (PCC/Rsp) 
 

We adopted the term “task-negative,” as introduced by Fox et al. over “default 

mode” network (DMN) because of the meaning that each name implies (2005). “Default 

mode” implies that these regions are constantly activated, such that they may be engaged 

in processing that is critical to brain functioning at all times. However, neuroimaging 

studies demonstrate that these regions are activated in the absence of a task, and 

deactivated in the presence of a task, as implied by the term “task-negative.” Therefore, 

while some studies use the terms interchangeably, we opt for TNN instead of DMN to be 

more descriptively accurate based on the current state of research findings.   

Many TNN regions appear relevant to cognitive function because of their 

consistent reductions in activity during tasks, across different types of tasks. For instance, 

meta-analyses repeatedly show that regions of the prefrontal cortex (PFC) and posterior 

cingulate cortex (PCC) exhibit decreased blood flow during tasks (Shulman et al., 1997; 

Mazoyer et al., 2001). Task engagement appears to suspend activity in TNN regions. In 

the absence of a task, these regions are active, and the correlations between TNN regions 

are high, demonstrating that these regions form an integrated functional network 

(Greicius et al., 2003). The functions of this network are not fully known, and are 

believed to be involved in self-referential processes such as memory formation, the 

integration of the past and the present, daydreaming, planning, and decision-making. The 

TNN is believed to be involved in the functioning of types of processing that represent 
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the converse of task-related paradigms. For example, in order to read and digest this 

paragraph, the reader would benefit from focusing on this paragraph, rather than on 

planning activities for tomorrow. The neuroimaging literature supports this hypothesis 

that decreased activity in the TNN during tasks is associated with improved cognitive 

performance.  

4.2.3 Behavioral Measures 
Study participants completed tests outside of the scanner to measure performance 

in the domains of executive function and memory, two cognitive domains that exhibit 

declines with the onset of dementia (Carlson et al., 2009). BHS participants were healthy 

community based adults; and we evaluated their performance in the absence of dementia 

in order to establish the brain-behavior link in healthy aging and among older adults at an 

elevated socio-demographic risk for dementia. 

4.2.3.1 Executive Functions 
Executive functions supervise all cognitive operations. Functions in this domain 

include planning, assembling, coordinating, problem solving, sequencing, strategizing; 

shifting; inhibiting; and goal-directed behavior (Salthouse et al., 2003). Like all other 

functions, there is no one-to-one anatomical structure in the brain responsible for 

executive function; however, the structures in the brain commonly implicated include the 

frontal lobes, and particularly the prefrontal cortex (PFC). The PFC is the last region of 

the brain to develop in young adults, as it does not complete myelination until the late 

20’s for males; and the prefrontal cortex is typically the first to deteriorate in older adults 

(Craik and Bialystok, 2006). This set of functions is both extremely sensitive to aging and 

especially important for mental health, as a disruption in this central command system 

affects all of the other domains. Recent studies have further supported the chief role of 
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executive functions, and demonstrated that this domain may mediate the effects of age on 

cognition (Salthouse et al., 2003; Carlson et al., 2009).  

The regions believed to be implicated for executive functioning overlap with both 

regions of the TNN and TPN. Therefore, establishing the link between TNN-TPN 

connectivity and executive function will help to better provide an integrated 

understanding of how this domain operates. 

To assess components of executive functions, we used a test of set shifting 

entitled, the Trail Making Test (TMT), and a test of working memory entitled, Digit Span 

Test (DST). Both of these neuropsychological tests are completed outside of the scanner. 

The TMT is a visuomotor search task consisting of two parts, A and B, to measure 

psychomotor speed and task switching, respectively. In Part A, participants are instructed 

to connect a random dispersion of numbers, 1-25, on a page in sequentially ascending 

order by one. In Part B, the points on the page include both letters and numbers, from A-

L and 1-13, and the task is to connect each number with the corresponding letter, and 

continue onto the subsequent number letter pair (i.e., 1-A-2-B-3-C, etc.). Participants are 

instructed to complete the task as quickly as possible. Performing Part B successfully 

requires working memory, mental flexibility, attention, task switching, and rapid visual 

processing (Seeley et al., 2007). Both parts of this task are completed on paper with a 

pencil, and the time and accuracy for each participant are recorded. A lower score on 

TMT-B indicates a faster completion, and subsequent better performance. While TMT-A 

does not require executive function capabilities, it serves to ensure that the participants 

understand the task, and have the visuomotor skills necessary to complete TMT-B.  



 

89 
 

To assess the working memory component of executive function, we administered 

the Digit Span Test, a subtest of the Wechsler memory scale. It also consists of two parts, 

Forward and Backward. DST Forward consists of recalling a sequence of numbers in 

order, representing a control to the second measure of working memory. DST Backward 

consists of recalling a sequence of numbers in reverse order, which requires an additional 

manipulation of the information, and therefore represents a measure of Executive 

Function (Groeger et al., 1999; Lezak, 2004).  DST Forward does not require executive 

function capacities; however, it is necessary to conduct as a baseline measure of 

performance, and to ensure that participants can proceed to DST Backward. A higher 

score on DST Backward indicates that more digits were appropriately computed, and 

subsequently, a better performance. 

We developed a score for Executive Function by aggregating the scores from 

TMT-B and DST Backwards, the two tests that capture the domain of interest. Each score 

was normalized by subtracting the mean and dividing by the standard deviation.  The 

resulting z-score has mean zero and standard deviation of one, essentially eliminating the 

original unit of measurement such that the resulting scores can be compared. 

Additionally, the TMT-B score was multiplied by negative one so that in can be 

interpreted in the same manner as DST Backwards, in which a higher score indicates 

better cognitive performance. The executive function score that was used in this analysis 

consisted of the average of the normalized and sign calibrated TMT-B together with the 

normalized DST Backwards score as indicated in Box 1: 
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Box 1. Development of Executive Function Score 

 
 

 

4.2.3.2 Memory 
 Memory, one of the most often studied and poorly understood domains, includes 

both long-term and short-term memory, and encompasses both verbal and visuospatial 

abilities. Types of long-term memory include episodic, semantic, procedural, and implicit 

(Tulving, 1983). Overall, each of these subtypes declines linearly with age, beginning in 

the mid-20s, except semantic memory, which is considered a crystallized type of 

intelligence (Tulving, 1983). Several regions of the brain are implicated in memory, and 

these regions, such as the hippocampus and hippocampal formation, also overlap with 

both the TPN and TNN, respectively.   

 To assess memory, we employed the Rey Auditory Verbal Learning Test 

(RAVLT), which has been utilized since its development in 1958 (Rey, 1958). The 

purpose of this test is to assess verbal learning and memory (Spreen & Strauss, 1991; 

Spreen, 1998; Lezak, 2004). The test includes a number of components to measure 

immediate memory recall, new learning, susceptibility to interference, and long-term 

memory. Participants are read a list of 15 words, and asked to remember as many words 

as they can. Each participant completes five learning trials, an immediate recall, and a 

delayed recall after 15 minutes. The first five trials assess sequential learning, the 

immediate recall trial assesses short-term memory, and the delayed recall trial assesses 

long-term retention. The number of items recalled correctly in any order is recorded. 

EF Score  =  mean[(-1)*(Normalized Trails B) + (Normalized DST Backwards)] 
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 We developed a score for memory by aggregating the five trials of RAVLT 

together with the immediate recall and delayed recall trials, as indicated in box 2: 

Box 2. Development of Memory Score 

 
 

 

4.2.4 The Brain-Behavior Link  
The literature shows that the increased activity of TPN and the decreased activity 

of TNN during any cognitive task is associated with better cognitive outcomes. Seeley et 

al. reported significant inverse correlations between time on the Trail Making Test and 

intra-network connectivity within the executive control network, indicating that greater 

functional connectivity in the TPN is associated with faster performance (2007). 

Similarly, Rissman et al. found that intra-network connectivity within some components 

of the TPN is associated with better performance on a test of delayed recognition (2004). 

Miller et al. established a similar finding in a working memory recognition test: coupling 

of regions within the TPN, the prefrontal cortex and frontal fusiform area (FFA), and of 

the bilateral hippocampus and FFA occurs during the task (2012). 

While the regional results for TNN activity during tasks and cognitive outcomes 

tend to converge upon an inverse relation, the brain-behavior results using TNN 

connectivity rather than simple activation, are more nuanced. Esposito et al. found that 

the results depend on the sub-networks under investigation—connectivity in the anterior-

most region of the DMN is positively correlated with the level of task difficulty, and that 

connectivity in the posterior cingulate cortex (PCC), a posterior portion of the DMN, is 

Memory Score  =  mean[(Normalized Trial 1) + … + (Normalized Trial 5) + 

(Normalized Immediate Recall) + (Normalized Delayed Recall)] 
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negatively correlated with the level of task difficulty (2009). This finding that the 

association between TNN connectivity and task performance is not homogenous, and 

depends on the sub-networks in question, has been replicated. Leech et al. found that as 

task difficulty increases, the ventral PCC shows reduced integration within the DMN and 

less anti-correlation with the cognitive control network activated by the task (2011). On 

the other hand, Leech et al. found that another region of the PCC exhibited the opposite 

pattern: the dorsal PCC showed increased DMN integration and more anti-correlation 

with the cognitive control network, a sub-network of the TPN (2011). 

These heterogeneous results from the literature helped us to develop hypotheses 

about what we expected to find between functional connectivity and cognitive outcomes 

within and between the TNN and TPN. While few studies have investigated the 

connectivity between TNN and TPN together, the results on this subject, and on intra-

network connectivity from the literature suggest that the trend may depend on the 

particular sub-networks under investigation. Furthermore, the majority of studies 

investigated the effect of connectivity on activation during task, not on the performance 

of the task. Therefore, our hypotheses come from the literature on the classic regional 

studies relating regional activation with task performance, coupled with the findings 

relating the activation of TNN versus that of the TPN to task performance. These findings 

indicate that the TPN activates during tasks; the TNN deactivates during tasks; the TNN 

activates in the absence of tasks; and the TPN deactivates in the absence of tasks. 

Additionally, the literature shows that increased TPN and decreased TNN activity during 

task is associated with better cognitive performance. Taken together, we hypothesize that 

larger anti-correlations between the TNN and TPN will be associated with better 
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cognitive performance. Larger anti-correlations indicate that the two networks are more 

decoupled, and ascribing to the model of functioning suggested by the literature such that 

the TPN is activated only during the task, and the TNN is activated only in the absence of 

the task.  

Similarly, we expect that larger intra-network correlations, correlations between 

sub-networks within each network, will be associated with better cognitive performance. 

The more connected each network is with itself, the more efficiently that network is 

operating.  

Figure 4.3 presents a cartoon of our hypotheses.

 

Figure 4.3 Brain-Behavior Hypotheses 
This cartoon demonstrates our hypotheses that inter-network correlations will be associated inversely with 
cognitive performance, and intra-network correlations will be positively associated with cognitive 
performance on tests of Executive Function and Memory. 

 

While these hypotheses provide a helpful starting point through which to view our 

results, the reality may reflect the heterogeneity of findings from the literature. The 
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association between cognitive scores and inter-network and intra-network connectivity 

may depend on the specific pair of networks, and on the cognitive domain, as well. 

The domains of executive function and memory are not measuring the same thing, 

and it may be that one is more sensitive to inter or intra-network connectivity than the 

other. While both measures of cognition ought to be associated with network 

connectivity, executive function may serve as a particularly sensitive measure, compared 

to memory. After all, executive control represents the converse of the default mode. 

Better control of executive function would indicate a greater ability to overcome the 

automatic default mode of the brain, and complete the task at hand (Craik and Bialystok, 

2006). Less control of executive function would indicate that the TNN may remain 

activated during the task. Furthermore, other studies have observed that declines in 

executive function precede declines in memory (Carlson et al., 2009). Therefore, we 

expect stronger findings for executive function, compared with memory.  

4.2.5 Statistical Methods 
The statistical methods that we utilized to establish the brain-behavior link are 

outlined in 

Figure 4.4. On the left hand side of the figure, we outlined the steps taken to 

analyze and condense the neuroimaging data into useful markers of functional 

connectivity. First, the data were preprocessed according to the protocol described in 

Chapter 3.2.4. Next, the networks were extracted using the region of interest (ROI) 

method, which decomposed each the TNN and TPN into six sub-networks. Lastly, a 

correlation analysis was performed to obtain measures of connectivity between the two 
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networks and within each network. The measure of choice is the correlation coefficient, 

as described in Section 3.2.6.  

On the right hand side of  

Figure 4.4, we outlined the steps taken to condense the cognitive outcomes into 

useful measures that are representative of cognitive domains that we sought to quantify. 

For each of the executive function and memory domains, we collected the relevant tests, 

and normalized and aggregated them to form the Executive Function and Memory 

Scores. 

 

 

 

 

 

 

Figure 4.4 Summary of Statistical Methods 
The connectivity between the brain networks is assessed using the procedure outline in the box on the left. 
The resulting connectivity scores are then used as regressors to model their association with the normalized 
executive function and memory scores. 

 

Linear regression was used to link brain connectivity with cognitive outcomes. 

There were a total of 6 TNN sub-networks and 6 TPN sub-networks, which yielded 12 x 

12, or 144 intra and inter-network correlation pairs. Since the connectivity matrix is 
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symmetric along the diagonal, and each sub-network is perfectly connected with itself, 

this left only 66 unique correlation pairs to investigate. Of these, 15 correlation pairs 

represent connectivity within the TPN, 15 represent connectivity within the TNN, and 36 

represent inter-network connectivity. We ran a linear model to answer each question of 

interest: the association between intra-TPN connectivity and cognitive outcomes; 

between intra-TNN connectivity and cognitive outcomes; and between inter TNN-TPN 

connectivity and cognitive outcomes. Because there are two cognitive outcomes of 

interest, EF and memory this yields a total of six models as listed in Table 4.2. 

Table 4.2 Summary of Brain-Behavior Models 
 Memory Executive Function 
Inter-network Model 1 Model 2 
Intra-TNN Model 3 Model 4 
Intra-TPN Model 5 Model 6 
 

Each model also includes sex, education, and age, which are covariates that are known to 

be linked with cognitive aging (van der Elst, et al., 2006).  By including these covariates, 

we hoped to account for their effects, and obtain a more accurate model for the relation 

between the variable of interest, brain network connectivity, and cognitive outcomes. 

4.3 Results 
In this section, we describe the behavioral results followed by the results for the 

linear models that relate brain connectivity with cognitive outcomes. The results are 

structured according to the listing of models in Table 4.2, by connectivity type. 

4.3.1 Behavioral Results 
Raw data for the neuropsychological exams of interest are summarized in Table 

4.6 in the Appendix. However, the cognitive outcomes that were used as the behavioral 
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measure of interest in the linear regression are the aggregated and normalized cognitive 

scores. Figure 4.5 exhibits the distributions of these scores. Each outcome is 

approximately Gaussian and centered at 0, which reflects the manner in which these 

scores were developed. For EF, the distributions of males and females were similar, as 

indicated in pink, and blue respectively. However for memory, the men’s performance is 

lower than that of the women. 

 

 

 

 

 

 

 

Figure 4.5 Distribution of Cognitive Outcomes 
This figure shows the histograms of the scores for executive function on the left and memory on the right. 
Men are represented in pink and women are represented in blue. 

 

The Gaussian distribution of these behavioral measures helps to ensure the 

validity of using these measures as outcomes in the linear regression model. In the next 

section, we describe the results of the linear models. 
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4.3.2 Brain-Behavior Results 
Prior to conducting the formal linear models to assess the association between 

brain network connectivity and cognitive outcomes, we first performed an exploratory 

analysis. We computed the correlation between each pair of sub-networks’ correlation 

coefficient with each cognitive outcome, EF and memory, stratified by sex. These 

correlations are illustrated in Figure 4.6. Larger circles indicate larger correlation values. 

Smaller circles indicate smaller values. The correlation values range from -1 to 1, and in 

color from red to blue, with white falling at 0. For females for both EF and memory, the 

values representing the association between brain network connectivity and cognitive 

outcomes hover closer to zero, than for males. The cells with larger circles indicate that 

that sub-network pair has a stronger association with a given cognitive outcome. 
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Figure 4.6 Exploratory Analysis of Brain-Behavior Associations 
This set of matrices shows the average correlations between the functional connectivity score and cognitive 
outcome for each sub-network. The upper row, panels A and B, shows the average correlations for the 
executive functions outcome for women and men respectively. The lower row, panels C and D, shows the 
average correlations of functional connectivity with memory scores for women and men respectively. 

 

4.3.2.1 Inter-Network 
Models 1 and 2 investigated the effect of inter-network connectivity on Memory 

and Executive Function respectively. In the following section, results from the linear 
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models are provided, including estimates of the coefficients, measures of their variability, 

and scatterplots to illustrate the trends. 

 

Figure 4.7 Overview of Inter-Network Connectivity Models 
This pair of plots shows the results of the inter-network connectivity models for memory on the left and 
executive function on the right. The coefficient estimates, labeled on the left of each plot, for each of the 
inter-network connectivity pairs is plotted together with its 95% confidence interval. Covariates that are 
significant at the 0.05 level are indicated with an asterisk. 

 

Memory. In Model 1, we investigated the relation between inter TPN-TNN connectivity 

and the Memory score. We included all 36 TPN-TNN sub-network correlation pairs, and 

the panel on the left of  Figure 4.7 shows an overview of the results. To simplify the 

explanation of the results, these sub-network correlation pairs will be referred to as 

connectivity scores. The graph of the coefficient estimates for the connectivity scores 

illustrates that 20 out 36 of the coefficients are negative, indicating that these connectivity 

scores are inversely associated with the memory score.  

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

−1.96 **
−0.77
−0.63
−0.48
−0.45
−0.41
−0.40
−0.39
−0.38
−0.32
−0.30
−0.29
−0.28
−0.21
−0.20
−0.15
−0.14
−0.14
−0.11
−0.10
−0.08
−0.02
−0.01
−0.01
0.04
0.04
0.07
0.08
0.09
0.10
0.16
0.27
0.29
0.37

0.62
0.83
0.86
0.89

1.78

b0 = −0.136,  R2 = 0.471,  F = 1.03,  AIC = 238.86V57
V35
V20
V34
V48
V49
V71

male
V37
V11
V56
V70
V13
V12
V33
V44

V8
V24
V73
V59
V36
V10
V32
age
V72
V68
V46
V69

educ.x
V21
V47
V58

V9
V23
V25
V61
V22
V60
V45

−2 0 2 4
Estimates

The Association between Inter−Network Correlations
and Executive Function

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

−1.80 *
−1.59 *

−0.92
−0.90
−0.80
−0.73
−0.72
−0.68
−0.61
−0.51
−0.45
−0.31
−0.28
−0.22
−0.19
−0.19
−0.12
−0.08
−0.07
−0.05
−0.03
0.02
0.06
0.10 *
0.10

0.32
0.33
0.33
0.35
0.36
0.40
0.42

0.55
0.56
0.61
0.62

0.82
1.01

1.73

b0 = 1.11,  R2 = 0.606,  F = 1.77*,  AIC = 220.90V71
V57
V36
V72
V73
V34
V69
V10
V47
V48
V13
V37
V49
V35
V21

male
V58
V46
V56
V70
age
V11
V44

educ.x
V59
V68
V20

V8
V12
V22
V60
V33

V9
V45
V32
V23
V61
V24
V25

−3 −2 −1 0 1 2 3
Estimates

The Association between Inter−Network Correlations
and Memory



 

101 
 

Figure 4.7 also includes the 95% confidence intervals for the coefficient 

estimates, and most of these horizontal lines cross zero, indicating a large amount of 

variability in the data. The statistically significant coefficients, at the P-value of 0.05, are 

indicated with an asterisk in Figure 4.7. The significant findings are also highlighted in 

Table 4.3. Out of the five connectivity scores that are significant, three are negatively 

associated with the memory score. In the subset of connectivity scores that are 

statistically significant from Table 4.3, a couple of sub-networks appear multiple times: 

Control B and Default E, indicating that these sub-networks are highly integrated with 

corresponding sub-networks from the TNN and TPN respectively. 

Scatter plots of the significant connectivity scores and their association with 

memory are displayed in Figure 4.8. The scatter plots illustrate that memory scores 

increase with V24 and V25, and decrease with each of V36, V57, and V71.   
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Table 4.3 The Effect of Functional Connectivity on Memory 

Variable Meaning/Unit 

Coefficient 

Estimate 

Standard 

Error 
P-Value 

 
Education 

 
Years  

 
0.10 

 
0.04 

 
0.03 

V24 Control B,  
Default E 

1.05 0.51 0.05 

V25 Control B,  
Default F 

1.73 0.89 0.05 

V36 Control C,  
Default E 

-0.92 0.46 0.05 

V57 Control E,  
Default B 

-1.59 0.61 0.01 

V71 Control F, 
Default D 

-1.80 0.77 0.02 
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Figure 4.8 The Effect of Functional Connectivity on Memory 

This figure shows scatter plots of the five connectivity scores that were found to be significant in Model 1. 
Starting on the upper panel, and going from left to right to the lower panel, these functional connectivity 
scores are V24, V24, V36, V57, and V71. The x-axis indicates the inter-network correlation value and the 
y-axis indicates the memory score.  
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Executive Function. In Model 2, we investigated the relation between inter TPN-TNN 

connectivity and the EF score. The results are exhibited on the right side panel of Figure 

4.7. The figure shows that 23 connectivity scores have negative coefficient estimates, 

indicating an inverse relation with the executive function score. However, the 95% 

confidence intervals are very long, and only one connectivity score is significant at the 

0.05 level, as indicated in Table 4.4. This connectivity score represents the correlation 

between sub-networks Control E and Default B, and has a coefficient estimate of -1.95. 

This connectivity score also turned out to be significant in Model 1. The scatterplot for 

this coefficient is exhibited in Figure 4.9. 

Table 4.4 The Effect of Functional Connectivity on EF 
Variable Meaning/Unit Coefficient 

Estimate 
Standard 
Error 

P-Value 

 
Education 

 
Years  

 
0.94 

 
0.05 

 
0.05 

V57 Control E & 
Default B 

-1.95 0.67 0.005 
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Figure 4.9 The Effect of Functional Connectivity on Executive Function 
This figure shows scatter plot of the single connectivity score, V57 that was found to be significant in 
Model 2. The x-axis indicates the inter-network correlation value and the y-axis indicates the executive 
function score.  

 

4.3.2.2 Intra-TNN 
Models 3 and 4 investigated the relation between intra-TNN connectivity and 

Memory, and EF, respectively. For both the models on memory and executive functions, 

we found that while most (10 out of 15) connectivity scores have positive coefficient 

estimates, none are significant (p’s > 0.05). These results are displayed in the Appendix.   

4.3.2.3 Intra-TPN 
Models 5 and 6 investigated the relation between intra-TPN connectivity and 

Memory, and EF, respectively. Like in the Intra-TNN results, we found that for memory, 

the majority (11 out of 15) of the coefficient estimates are positive; however, none attain 

statistical significance (p’s > 0.05). The results for executive function turned out 

differently: only 7 of the 15 connectivity scores are positive; and while none of the 
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positive coefficient estimates are significant, two of the negative coefficient estimates are 

significant. The intra-TPN results are also displayed in the Appendix. 

4.4 Discussion 
 

The results of this cross-sectional analysis show that neither the TNN nor TPN 

behave homogenously; and that together, the ways in which these networks were 

integrated to affect cognitive outcomes were also variable. In this section, we discuss 

overall trends in the association between brain network connectivity and cognitive 

outcomes, and situate these highlights within findings from the literature. The results 

demonstrate that the association of brain connectivity on brain outcomes differs for intra-

network connectivity versus inter network connectivity. The results also show that sex 

may modify the nature of the relation—in some brain networks, connectivity is positively 

associated with cognitive performance in females and the opposite in males. 

Additionally, the cognitive outcome of interest matters—the trends differ for executive 

function and memory. These patterns are discussed in detail below. Lastly, we discuss the 

strengths, limitations, and public health significance of applying these methods to 

develop a biomarker. 

4.4.1 Inter vs. Intra Network Connectivity 
Our hypothesis stated that inter-network connectivity would be negatively 

correlated with cognitive performance, and intra-network connectivity would be 

positively correlated with cognitive performance. The results support this hypothesis for 

select sub-network pairs, and show that in general, both positive and negative 

associations exist for both types of network pairs.  
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The models for inter-network connectivity fit the data better than those for the 

intra-network connectivity. The R-squared values, measuring the amount of variability 

that the model accounts for, for each model are summarized in Table 4.5. Model 1, the 

effect of inter-network connectivity on memory has an R-squared value of 0.6, indicating 

a good fit. Model 2, the effect of inter-network connectivity on EF has an R-squared 

value of 0.41, indicating a moderately good fit. While both of the inter-network models 

account for a large proportion of the variability for both of the memory and EF outcomes, 

the intra-network models all have R-squared values hovering below 0.28, indicating a 

less than moderate or poor fit. The fact that the inter-network models fit the data better 

than the intra-network models indicates that perhaps it is not the integration of each 

network with itself that promotes better cognitive performance, rather it is the 

connectivity between the TNN and TPN that function together to modulate cognitive 

performance. On a statistical level, this finding also explains why the inter-network 

models resulted in a number of significant connectivity scores, whereas these scores of 

interest were not significant in the intra-network models. 

Table 4.5 Summary of Model Fits 

Model Description R-squared 
1 Inter-network connectivity on memory 0.61 
2 Inter-network connectivity on EF 0.47 
3 Intra-TNN on memory 0.22 
4 Intra-TNN on EF 0.27 
5 Intra-TPN on memory 0.27 
6 Intra-TPN on EF 0.28 
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In Model 1, there were five connectivity score coefficients that are significant. 

Control B appears twice, and in Section 3.3.1 (Aim 1), this network exhibited the greatest 

number of connections with other networks. Control B is a sub-network located in the 

anterior portion of the TPN. The connectivity pair (Control B, Default E) and (Control B, 

Default F) are both positively associated with the memory score.  Default E and Default F 

represent sub-networks located in the posterior portions of the TNN, centered at the 

parahippocampal cortex (PHC) and posterior cingulate/retrospenial cortex (PCC/Rsp), 

respectively. The positive association between these TPN-TNN network pairs and 

memory suggest that the anterior regions of the TPN are communicating with the 

posterior regions of the TNN in the functioning of memory. Indeed, in studies that aim to 

localize structure to function, the PHC has been found to be associated with memory 

formation. Our results suggest that this sub-network of the TNN actually integrates with 

sub-networks from the TPN in the formation of memories. Similarly, the PCC is also 

implicated in memory retrieval, and known to be one of the most highly connected 

regions of the brain, representing a node of the TNN (Nielsen et al., 2005). Our results 

showed that the integration between the PCC, and an anterior sub-network within the 

TPN is associated with memory. Although we hypothesized that inter-network 

connectivity would be anti-correlated with cognitive outcome performance, due to the 

known functional roles of the PHC and PCC, the result should come as no surprise. 

Because these regions of the TNN are implicated in memory formation, it is logical that 

we found that the more coupled these sub-networks are with an anterior sub-network of 

the TPN, the better the memory outcome. 
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The remaining connectivity scores in Model 2 were negative, supporting the 

hypothesis that increased decoupling between the networks is associated with better 

cognitive performance. These connectivity scores represented sub-networks located at 

multiple points in the brain, from the anterior to the posterior, to the lateral. These results 

replicate those from the literature that have shown that better cognitive function is 

associated with smaller or more negative correlations between the TNN and TPN. In a 

study on the effect of brain connectivity on working memory, Hampson et al. found that 

the connectivity between dorsolateral PFC, a region in the TPN, and medial PFC, a 

region in the TNN, is negatively correlated with cognitive performance (Hampson et al., 

2010). Thus, these findings support the decoupling hypothesis between the TNN and 

TPN, as a mechanism for cognitive health.  

  In Model 2, the effect of inter-network connectivity on EF, only one connectivity 

score was statistically significant. The sub-network pair (Control E, Default B) was 

inversely related to the EF score. Control E is located in the medial portion of the TPN. 

Default B is also known as the inferior parietal lobule (IPL), a key region of the TNN. 

Because EF consists of a number of processes, there are fewer studies in the literature 

that investigate the effect of brain connectivity on EF. Nevertheless, our results are 

consistent with the current state of the literature. Kelley et al. found that the anti-

correlation between task-positive and task-negative networks was inversely associated 

with response time (2008). Our EF score is an aggregate of different tests to capture this 

domain more comprehensively, and response time from the Trail Making Test is 

incorporated into the EF score used in our analysis. 
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The intra-network models, did not yield any significant results of interest. 

Findings from the literature indicate that the strength of connectivity both within the 

TNN and within the TPN is positively related to task performance (Hampson, 2010). 

Such findings suggest that each network works with itself to facilitate cognitive 

processing. Although there are a number of positive connectivity score coefficients in 

Models 3-6, the lack of statistical significance suggests that the intra-network 

connectivity within each model does not account for the behavioral outcomes of the 

cognitive performance for the Memory and EF scores that are measured. This finding 

may suggest that inter-network integration is more important than intra-network 

integration for mediating cognitive processing necessary for memory and EF outcomes. 

Alternatively, the null results from Models 3-6 may indicate a lack of power to detect 

differences, a lack of variability in the intra-network correlations used in the models, or 

measurement error. Further studies are needed to investigate the effect of intra-network 

correlations on cognitive performance.  

4.4.2 Executive Function vs. Memory 
The models show that brain connectivity is both positively and negatively 

associated with EF and memory. However, the inter-network connectivity models fit the 

memory score outcome better than the executive function outcome (R-squared 0.61 vs. 

0.47), suggesting that synchrony between the TNN and TPN is more important in the 

modulation of Memory than EF. Regions in both the TNN and TPN are implicated in 

Memory, while regions implicated in executive functions tend to be restricted to the TPN. 

Therefore, the inter-network connectivity models utilizing memory as an outcome may fit 

the data better than EF because memory requires stronger synchrony between these two 

networks.  
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4.4.3 Males vs. Females 
A consistent finding in the neuroimaging literature has been that differences exist 

in the connectivity of male and female brains (Schmithorst et al., 2007; Kilpatrick et al., 

2006). In the brain-behavior models, sex was included as a covariate, and being male was 

associated negatively with the EF and Memory scores. This association achieves 

statistical significance (P < 0.05) in the model where we tested the effect of Intra-TPN 

connectivity on the memory score. 

While formal analyses stratified by sex were not conducted, graphical displays of 

the data revealed different qualitative patterns for men and women.  Figure 4.10 provides 

an example of this phenomenon in which gender appears to modify the relation between 

brain connectivity and behavioral outcomes. For the inter-network correlations displayed 

in Figure 4.6, women, in red, exhibited the expected pattern: correlations between the 

TNN and TPN were inversely associated with cognitive scores; and men, in blue, 

exhibited the opposite: inter-network correlations were positively associated with 

cognitive scores. These findings in men suggest a different mechanism is operating. Since 

men consistently scored lower than women on the cognitive tests, perhaps the differences 

in connectivity patterns represent a biological explanation for these behavioral 

differences. Longitudinal change models would allow us evaluate whether the reverse 

connectivity patterns in males precedes performance on the EF and Memory tests.     
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Figure 4.10 The Effect of Sex on Brain-Behavior Outcomes 

This figure shows the relation between inter-network correlations and cognitive performance, color coded 
by sex with women in red and men in blue. The x-axis represents the connectivity scores and the y-axis 
represents the cognitive performance scores. The panel on the left shows the association between V37 
connectivity scores and  executive function. The panel on the right shows association between V33 
connectivity scores and memory. 

 

4.4.4 Biomarker Development 
 

The methods outlined in this paper provide a potential framework for using fMRI 

imaging to detect pre-clinical changes in brain connectivity. By studying the association 

between functional connectivity and cognitive outcomes, we outlined connectivity 

patterns that were associated with better cognitive functions, and suggested a method to 

predict which connectivity trends are associated with poor cognitive functions.   
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An fMRI biomarker would be optimal compared to other imaging technologies 

because fMRI is minimally invasive and can be easily standardized to measure preclinical 

changes in cognition, which can help to differentiate between normal aging and 

Alzheimer’s Disease (AD) pathology. Recent evidence that brain pathology corresponds 

poorly with clinical symptoms greatly weakens present understanding of AD etiology. 

This schism suggests that perhaps amyloid deposition is not central in the pathogenesis of 

AD (Whalley et al., 2002). This disappointing result of the amyloid cascade hypothesis 

leaves us searching for the pathology of the signs and symptoms of dementia in the brain. 

Another useful approach will be to search more closely for markers of aging in the brain, 

such as those suggested by Jack et al. in his 2013 model laying out the time course for 

preclinical biomarkers of brain aging such as cerebrospinal fluid (CSF) tau, a protein 

implicated in maintaining the structure of cells; brain volume and cortical thickness via 

MRI; and cognitive impairments from neuropsychological tests. It may be that factors 

and biomarkers of aging are different from those that indicate pathology. Such a 

neuroanatomical distinction would help to reveal the boundary between normal aging and 

pathology.  

  

4.4.5 Strengths & Limitations 
 

One strength of this study arises from the study design. Because the data come from 

an event-based fMRI trial design with a cognitive task rather than resting state, the 

differences between the TNN and TPN can be measured within the same protocol and 

differences may be easier to identify. Larger differences between the networks, 
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engendered by the task, would create larger correlations and anti-correlations, which 

would exceed the spontaneous correlations, due to physiological noise, present in fMRI, 

and make it easier to detect true signals. 

Another strength is seeking to relate brain network connectivity with behavior. This 

quest presents a significant question, and the answer probes at not only mechanisms in 

the brain, but also their relation to behavior, outside of the scanner. Furthermore, this 

answer will contribute to the development of standardizable tools to detect pre-clinical 

changes in cognition to help predict dementia pathology while there is still time to 

intervene. 

 The results present a nuanced relation between brain connectivity and cognition. 

We did not observe full support for the hypotheses predicted, which suggests that in older 

adults, the relations are more complicated than is commonly appreciated based on similar 

data in young adults.  

 A future direction to definitively map the brain connectivity – behavior relation in 

older adults would be to use a data-driven approach. Instead of using a priori seeds for 

the connectivity scores, every possible seed voxel in the brain could be used, and those 

that correlate the most with cognition could then be tested using the methods we 

developed.  However, a strength of the ROI approach that we used is that the selected 

regions represent constituents of brain networks with known connectivity trends. 

Therefore, using these ROIs makes it easier to expand to the literature and to standardize 

results in the landscape of findings. 
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 To further compare results better with the broader literature, it would be helpful in 

future studies to perform the same analyses on resting state fMRI data. 
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4.6 Appendix 
 

Table 4.6 Behavioral Data (Mean ± SD) 

Neuropsychological	  	  Exam	   Unit	   Total	  

Digit	  Span	  (Forward)	  

Number	  
Correct	  

	  	  

7.74	  ±	  1.72	  
	  	  

Digit	  Span	  (Backward)	  
	  	  

5.14	  ±	  2.34	  
	  	  

Trail	  Making	  A	  

Time	  in	  
seconds	  

	  	  
45.44	  ±	  15.63	  
	  	  

Trail	  Making	  B	  
	  	  

131.8	  ±	  74.72	  
	  	  

RAVLT	  (learn)	  

Number	  
Correct	  

	  	  
39.23	  ±	  7.67	  
	  	  

RAVLT	  (Short	  Delay)	  
	  	  

6.63	  ±	  2.77	  	  
	  	  

RAVLT	  (Long	  Delay)	  
	  6.46	  ±	  2.85	  ⱡ	  
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Figure 4.11 The Effect of Intra-Network Connectivity on Memory 
This pair of plots shows the results of the intra-network connectivity models for memory. The left panel 
shows intra-TNN model and the right panel show the intra-TPN model. The coefficient estimates for each 
of the intra-network connectivity pairs is plotted together with its 95% confidence interval.  

Figure 4.12 The Effect of Intra-
Network Connectivity on Executive Function  

This pair of plots shows the results of the intra-network connectivity models for executive function. The 
left panel shows intra-TNN model and the right panel show the intra-TPN model. The coefficient estimates 
for each of the intra-network connectivity pairs is plotted together with its 95% confidence interval.  
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5 Chapter 5. The Effect of Experience Corps on Brain 

Connectivity and Neurocognitive Health in Older Adults   

(Aim 3) 
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5.1 Introduction 
 

Older adults, over the age of 60, are the largest growing demographic group in the 

United States (Administration on Aging, 2010). While this statistic represents a triumph 

of modernity for adding decades to the lifespan, many people view aging with 

trepidation. In the absence of diseases of the elderly, normal aging is associated with 

cognitive decline and poor functional connectivity in the brain. However, advancing age 

also represents a lengthening of life, and an additional potential to contribute to society. 

This paper presents neurobiological and behavioral changes in older adults who 

participated over two years in a randomized controlled trial of a senior service volunteer 

program, Experience Corps (EC). EC places teams of older volunteers in neighboring 

inner city Baltimore Schools to provide literary, scientific, and behavioral support. EC 

provides a model  to promote cognitive health and to harness older adults’ wisdom as a 

naturally growing resource to benefit the community. This paper evaluated the impact of 

EC on cognitive outcomes and functional connectivity in the Task Negative Network 

(TNN) and Task Positive Network (TPN), and suggests a new view of aging as a solution 

rather than a problem.  

5.1.1 Cognitive Aging 
Declines in cognition found in older adults is known as cognitive aging, and 

occurs across multiple domains of cognition, including memory, processing speed, 

language, attention, and executive functions. Characterizing the trajectories of decline in 

particular domains might offer insight into the mechanisms of pathology. Cross-sectional 
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studies show that the domains most affected by aging include memory, processing speed, 

attention, and executive control (Salthouse, 2004). In our longitudinal investigation, we 

studied the effect of EC on memory and executive functions.  

Memory includes both long-term and short-term memory encompassing both 

verbal and visuospatial abilities and can be characterized into multiple sub-types 

including, long-term memory include episodic, semantic, procedural, and implicit 

(Tulving, 1983; Baddeley, 1992.). Each of these subtypes declines linearly with age, 

beginning in the mid-20s, except semantic memory. In order to study cognitive decline, 

we included only tests that require episodic and semantic memory.   

Executive functions monitor all cognitive operations. Functions in this domain 

include planning, assembling, coordinating, problem solving, sequencing, strategizing; 

shifting; inhibiting; and goal-directed behavior (Salthouse et al., 2003). While there is no 

one-to-one anatomical structure in the brain responsible for executive function, the 

structures in the brain most implicated are the frontal lobes, particularly the prefrontal 

cortex. This region of the brain is the last to develop in young adults, as it does not 

complete myelination until the mid-20’s for females and late-20's for males; and the 

prefrontal cortex is typically the first to deteriorate in older adults (Craik and Bialystok, 

2006). This domain is both extremely sensitive to aging and especially important for 

mental health, as a disruption in this central command system would affect all of the 

other domains. Recent studies have further supported this chief role of executive 

functions, and demonstrated that this domain may mediate the effects of age on cognition 

(Salthouse et al., 2003). 



 

125 
 

 Some investigators argue that because executive functions serve as the control 

processes for a number of other domains, it is difficult to measure each domain 

independently, and determine the corresponding trajectories of each with aging 

(Salthouse, 1996). However, ultimately each of the domains of cognitive functions 

interacts with another, and the difficulty in measuring the domains separately identifies a 

limitation of current neuropsychological tests and statistical methods. By developing 

better methodology, it is possible to differentiate the trajectory of executive functions 

from the other domains. Carlson et al. developed standardized scores for multiple 

domains, which showed that declines in executive functions precede declines in memory 

(Carlson et al., 2009).  

5.1.2 Aging Brain Networks 
Aging is associated with altered functional connectivity between and within each 

of the TNN and TPN (Eyler, Sherzai, Kaup, & Jeste, 2011; Rajah & D’Esposito, 2005; 

Ghazes et al., 2012; Biswal et al, 2010; Damoiseaux et al., 2008; Andrews-Hanna et al., 

2007; Jones et al., 2010). The decoupling hypothesis of functional connectivity posits 

that the TNN and TPN are negatively correlated, and that each network is positively 

correlated with itself. While neuroimaging studies provide support for this hypothesis in 

young healthy populations, emerging studies in the elderly suggest that aging alters this 

model of network connectivity in complex ways that we have yet to fully understand.  

Intra-TNN connectivity. Some studies report increased intra-TNN connectivity 

with age, while other studies report the opposite (Damoiseaux et al., 2008; Andrews-

Hanna et al., 2007; Jones et al., 2010; Jones et al., 2011). One common trend reports age-

related differences in intra-TNN con nectivity according to the loci of the sub-networks—
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advancing age is consistently associated with declines in frontal-occipital sub-networks 

within the TNN (Wang et al., 2010; Jones et al., 2011; Andrews-Hanna et al., 2007). 

Furthermore, in studies investigating functional connectivity across the life course, the 

strength of association within the TNN has served as a marker for brain maturity that 

follows the trajectory of cognitive aging—in a study of children through young adults of 

30 years old, Dosenbach et al. found that intra-TNN connectivity parallels the maturation 

of the brain with a peak in positive connections at age 22, followed by a reduction in 

connectivity with increasing age (2010). However, others have observed no differences in 

intra-TNN connectivity throughout adulthood from ages 17-58 years (Bluhm et al., 

2008). 

In studies restricted to older adults over 60 years old, the majority have shown 

that aging is associated with a decline in intra-TNN connectivity; however, this trend 

does not apply homogeneously throughout the TNN. In a study of older adults, Jones et 

al. also found that anterior sub-networks within the TNN exhibit both declines and 

increases in within-network connectivity (2011). The majority of functional connectivity 

results come from cross-sectional studies; we performed a longitudinal investigation to 

help provide a more complete representation of the complex association between 

functional connectivity and aging. 

Intra-TPN connectivity. The effect of aging on intra-TPN connectivity also 

appears to be heterogeneous. There are fewer studies on this topic; however, the 

consensus from the literature reflects that of intra-TNN connectivity: young adults, 

compared to older adults, show increased connectivity. Additionally, investigators have 

also found that the location of the TPN may be different in older adults compared to 
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younger adults, which makes it difficult to compare functional connectivity in cross-

sectional samples (Gazes et al., 2012).  

Inter-Network connectivity. The relation between the TNN and TPN has been 

described in detail in Section 4.2.2. Studies demonstrate that in young healthy adults, 

these networks are anti-correlated (Greicius, et al., 2003; Fox et al., 2005; Seeley, et al., 

2007; Vemuri, et al., 2012; Uddin, et al., 2009; Gusnard & Raichle, 2001; Shulman et al., 

1997; McKiernan et al., 2003; Mazoyer et al., 2001; Fox et al., 2009). However, in older 

adults and individuals with mental disorders, the TNN and TPN become less and less 

decoupled. For example, in individuals with Alzheimer’s disease (AD), the TNN and 

TPN are simultaneously activated, and do not exhibit the classic anti-correlation 

(Andrews-Hanna et al., 2007; Jones et al., 2011; Lustig et al., 2003; Greicius et al., 2004; 

Wang et al., 2006; Sorg et al., 2007; Celone et al., 2006; Buckner et al., 2009; He et al., 

2007; Gili et al., 2011; Zhang et al, 2010; Bai et al., 2009; Zhou et al., 2010; Damoiseaux 

et al., 2011; Chen et al., 2011; Supekar et al., 2008; Fleisher et al, 2009; Buckner et al, 

2005; Sauer et al., 2006; Seeley et al., 2009).  Studies of healthy older adults also show 

that the TNN and TPN are not decoupled as they are in young healthy adults. Steffener et 

al. found that in older adults, the TNN remains active in conjunction with the TPN, such 

that the two networks are actually positively correlated rather than negatively correlated 

(2012). Steffener et al. speculates that the TNN and TPN may operate together in order to 

enhance performance, as a compensatory mechanism for older adults. These findings are 

based on cross-sectionals studies of older adults, and the field is lacking in longitudinal 

studies to better determine the effect of aging on inter-TNN-TPN connectivity.   
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5.1.2.1 Plasticity in Older Adults’ Functional Connectivity 
While the characterization of brain networks is variable, the pattern of increased 

intra-network connectivity and decreased inter-network connectivity between the TNN 

and TPN holds in the majority of studies on young healthy adults, and therefore 

represents a paradigm of healthy functional connectivity. In Aim 3, we compared how a 

lifestyle activity intervention impacts the functional connectivity of EC participants 

relative to Controls. While functional connectivity is a relatively new metric of interest in 

the fMRI literature, emerging studies show that brain networks are not fixed, and can be 

modulated by targeted interventions. In a longitudinal study of a language learning 

intervention, Ghazi et al found that after participating in a French learning program, 

native Persian speakers exhibited decreased functional integration between the language 

and control networks with increased proficiency in the new language (2013). This 

decreased connectivity suggests that as the participants become more proficient, they rely 

less on the control network, and more on the language network for automatic processing, 

as their language fluidity increases (2013). Ghazi et al. observed this trend across the age 

range of their participants from 26-66 years, indicating plasticity in functional 

connectivity throughout adulthood into older ages.  

Another intervention study exploring brain networks in older adults compared 

patients with aphasia to healthy controls, averaging 70 years old, before and after a 

language therapy. In this study, Marcotte et al. found that patients with Aphasia exhibited 

reduced anterior-posterior TNN connectivity, and that after the therapy, this intra-

network connectivity increased (2013). However, TNN connectivity remained stable in 

the Control subjects (Marcotte et al, 2013). This finding illustrates the plasticity of the 

TNN, in the face of pathology, and its stability in healthy aging, in the absence of 
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pathology.  Longitudinal studies in fMRI are limited, and these emerging findings 

illustrate that brain networks can be potential targets for intervention.  

5.1.3 Generativity in Older Adults 
The core principle of the Experience Corps (EC) intervention involves 

volunteering (Carlson et al., 2008; Fried et al., 2004; Glass et al., 2004; Rebok et al., in 

press).  We posit that generativity may serve as a mechanism through which EC may 

promote improved functional connectivity and cognitive outcomes. Generativity is 

defined as caring for and making a difference for others (Erikson, 1950). Studies have 

shown that the health benefits of volunteering are especially strong in older adults 

(Piliavin et al., 2007). One reason for the proposed more salient benefit of volunteering in 

older adults versus younger adults is that in many societies, elders are ostracized and left 

with limited social networks; volunteering helps to integrate these individuals back into 

society and give them a meaningful social network (Piliavin et al., 2007). Another reason 

for the potential benefits of generativity in elders is that at this stage in life, individuals 

have a life’s worth of experiences, and with mortality inevitable, they may be more likely 

to think about how to share their experiences and leave behind a legacy.  

The health benefits of senior volunteer service include lower rates of mortality 

and disability, as well as higher self-assessments of health and improved cognition 

(Carlson, 2011; Harris and Thoresen, 2005; Lum et al., 2005; Morrow-Howell et al., 

2003).  A number of studies have established the benefits of volunteering on physical 

health and subjective measures of well-being. However, the Brain Health Study is the 

only study to our knowledge that investigates the associations between senior service and 
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objective measures of brain function.  We explored the effect of generativity on both 

brain network connectivity and cognitive functions. 

5.2 Methods 
This section details the study sample; the Experience Corps intervention; the 

measurement of functional connectivity and cognitive outcomes; and the statistical 

analysis employed.  

5.2.1 Study Sample  
 The data are drawn from the BHS, a study nested within the Baltimore Experience 

Corps Trial (BECT). Details about study participants at baseline are included elsewhere 

(Aim 1 and Background). The sample in this analysis included participants at the baseline 

visit as well as the two follow-up visits at 12-month and 24-month intervals. At each 

visit, participants underwent an fMRI scan, according to the protocol described in Aim 1, 

as well as a battery of neurocognitive tests outside of the scanner. For the functional 

connectivity analysis, the study sample at each visit is described in Table 5.1. There were 

90 participants at baseline with usable fMRI data, 85 participants at Follow-Up I, and 67 

at Follow-Up II. The study sample for the parallel cognitive functions analysis is 

described in Table 5.6, which included 123 participants at baseline, 108 at Follow-Up I, 

and 105 at Follow-Up II. The sample sizes are larger for the analysis of the cognitive 

functions than for the analysis of the fMRI data because (1) not every participant 

underwent an fMRI scan; (2) not all the fMRI data were usable, due to scanner artifact 

and quality issues. For both the fMRI measures and the cognitive test measures, there 

were no differences in those lost to follow-up and those who were not lost to follow-up in 

intervention status, sex, race, education, income, or MMSE (p's >0.05).  
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5.2.2 The Baltimore Experience Corps Trial 
 

Intervention. Experience Corps is a community-based model of senior service in 

which older adults volunteer in public schools to help meet the greatest unmet needs of 

children, and simultaneously benefit from the act of giving back.  This model represents a 

win-win situation for both the older adult participants who are volunteering, and the 

school children who are receiving. The program was developed by members of the Johns 

Hopkins Center on Aging and Health together with Civic Ventures, a think tank on baby 

boomers’ societal issues (Freedman et al., 1999). Establishing community partnerships 

facilitated implementation of the program. A pilot randomized trial of EC took place in 

Baltimore in 1999-2001, implemented by the Greater Homewood Community 

Corporation (GHCC), which also took the lead in implementing the subsequent larger 

trial, the Baltimore Experience Corps Trial (BECT). This randomized controlled trial of 

EC took place incrementally in 22 Baltimore city public schools from 2006 – 2011 with 

funding from the National Institute on Aging. 

Structure.  The EC program requires significant commitment from each volunteer 

and a critical mass of volunteers in each school. These requirements differentiate EC 

from other types of volunteering. The significant time commitment amounts to 15 hours 

per week for the full academic year of September – June, with the option of continuing 

for a second year. The critical mass places teams of 15-20 volunteers per school to 

integrate EC into the culture of the school and provide networks of social support for the 

senior volunteers (Fried et al., 2013). This sustained dose coupled with a strong network 

helps to promote maximal benefit for both the children and the older adults. The 
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volunteers served in grades Kindergarten – 3rd grade to fulfill unmet needs. These 

standardized roles for older volunteers include, providing support in literacy, math, 

library, and computing skills; promoting behavior management, violence prevention, and 

school attendance; and enhancing the involvement of parents in school activities (Fried et 

al., 2004; Rebok et al., 2004). 

EC Volunteers. Experience Corps training was conducted by the Greater 

Homewood Community Corporation (GHCC) and includes a number of components for 

both the older adult volunteers, and staff from the participating schools including teachers 

and principals. The senior volunteers training spans a five-day period over one week 

totaling to 30 hours. This EC standardized volunteer training program includes lectures, 

discussions, exercises, and other activities designed to orient the older adults to the 

school; teach skills in working with children; provide an overview of volunteer roles; and 

promote a sense of community among the volunteers (Fried et al., 2013). After the 

summer break, returning volunteers also participated in a refresher training session 

conducted at the beginning of the school year which is designed to review the protocol 

and remind volunteers of their roles (Fried et al., 2013). Throughout the school year, 

school-based teams meet bi-weekly to discuss, problem-solve, and continuously refresh 

training and strengthen community among the teams of volunteers. Additionally, the 

principal and teacher training programs consist of a 1-hour orientation session that occurs 

prior to the placement of volunteers in the school. The purpose of these trainings was to 

explain the EC program; describe the roles of the volunteers; and provide methods for 

solving problems that may arise (Fried et al., 2013).  
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Control. Participants who were randomized to the Control arm are connected with 

the Baltimore City Commission on Aging and Retirement Education (CARE), and given 

the option to serve in ordinary volunteer activities, aside from EC.  These types of 

opportunities do not have the sustained dosage of EC or the comprehensive social 

network of EC, and instead tend to represent more typical options, such as daylong 

activities at health fairs or senior events (Fried et al., 2013).  
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Table 5.1 Flow Chart of fMRI Enrollment 
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5.2.3 Brain Network Connectivity  
Functional connectivity was assessed by first applying the Region of Interest 

(ROI) method on the preprocessed fMRI brain images to extract the brain networks, 

followed by a correlation analysis, as described in Section 3.2.6. The ROI method 

resulted in 6 TNN sub-networks and 6 TPN sub-networks, using 6-mm a priori seeds 

from Yeo et al, as listed in Table 5.2 (2011). 

Table 5.2 Definitions of Networks 

Task Negative Network (TNN) Task Positive Network (TPN) 
A. Prefrontal cortex (PFC) 
B. Inferior parietal lobule (IPL)  
C. Lateral temporal cortex (LTC) 
D. Dorsal medial prefrontal cortex (dMFC) 
E. Parahippocampal cortex (PHC) 
F. Posterior cingulate/retrospenial cortex 
(PCC/Rsp) 

A. Anterior control network  
B. Medial control network 
C. Lateral control network 
D. Dorsal attention network 
E. Premotor Cortex 
F. Superior parietal cortex 
 

 

The correlation analysis resulted in a 12 x 12 connectivity matrix with the Pearson 

correlation coefficients between each of sub-network pairs for each participant. The 

matrix included 15 coefficients of intra-TNN connectivity, 15 coefficients of intra-TPN 

connectivity, and 24 coefficients of inter-TNN-TPN connectivity. This correlation 

coefficient represents a measure of functional connectivity, and an identical analysis is 

carried out at each of the three time points: baseline, follow-up I, and follow-up II. The 

trajectory of each connectivity score was investigated longitudinally to assess changes in 

intra-network and inter-network connectivity. Prior to performing the longitudinal 

analysis on the connectivity scores for each subject, these scores were averaged across 

subjects, and we present the average connectivity matrix at each time point. This group 
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level average helps to identify general trends in brain network connectivity from baseline 

through the two years of follow-up, and help to calibrate expectations for the subsequent 

longitudinal data analysis.   

5.2.4 Cognitive Outcomes 
The cognitive outcomes measured are described in Section 4.2.3. At each visit 

participants completed the same battery of behavioral tests to assess changes in the 

domains of executive function and memory over the two-year time period.  

5.2.4.1 Executive Function 
We developed the executive function (EF) score by normalizing and aggregating 

two tests that involve psychomotor speed, task switching, attention, mental flexibility, 

working memory, and processing: the Trail Making Test (TMT) Part B and the Digit 

Span Test (DST) Backward (Seeley et al., 2007; Groeger et al., 1999; Lezak, 1995). 

Details are described in Section 4.2.3.1. The normalized score was calibrated such that a 

higher score indicates better cognitive performance. 

5.2.4.2 Memory 
 We developed the memory score by normalizing and aggregating the five trials of 

the Rey Auditory Verbal Learning Test (RAVLT), which assesses immediate recall and 

long-term memory (Rey, 1958; Spreen & Straus, 1991). The score was normalized 

similarly to the EF score such that higher scores represent better performance, as detailed 

in Section 0. 

5.2.5 Statistical Methods 
We modeled the longitudinal changes in functional connectivity and in cognitive 

outcomes using generalized estimating equations (GEEs). GEEs allowed us to estimate 

the parameters of a generalized linear model, factoring in the correlation between the 
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outcomes. One benefit of using GEEs is that under mild regularity conditions, the 

parameter estimates remain consistent even if the covariance structure is miss-specified. 

This quality makes GEEs ideal for addressing questions in functional connectivity and 

cognitive outcomes, in which little is known about the correlation from one time point to 

the next. GEEs regression parameters represent population averaged effects, which will 

provide convenient summaries for the EC and control groups.   

All models included the standard covariates: age at baseline, education, and sex, 

in addition to the variables of interest, intervention status and visit. We chose to model 

age as a continuous variable because the vast literature on cognitive aging demonstrates 

that cognitive outcomes decline linearly with age. The models have the following basic 

structure, as outlined in Equation 1: 

Y = β0 + β1IEC + β2Xeduc + β3Isex + β4Xage + β5Xvisit + ε   (1)  

The indicators are labeled with an “I,” in equation 1. The indicator for EC 

indicates assignment to EC. The indicator for sex indicates being male. Education, age, 

and visit are modeled as continuous variables representing years of schooling, years since 

birth, and year in the study respectively. We selected an exchangeable structure for the 

covariance matrix.  All analyses were performed using an intention-to-treat (ITT) design. 

We performed the analyses using R (www.r-project.org/). 

5.2.5.1 Functional Connectivity Models 
In the functional connectivity models, the connectivity score served as the 

outcome. There were 66 connectivity scores, representing intra-TPN, intra-TNN, and 

inter-network connectivity. Therefore, 66 GEEs were run according to the structure in 
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equation (1). The goal was to assess the trajectory of functional connectivity over the 

study period, and to determine how the EC intervention may moderate that trajectory. 

Therefore, the two variables of interest are the variable for visit and the indicator for EC. 

First, a main effects model was run for each of the connectivity scores to assess the 

impact of visit and EC. We noted the P-values for these variables of interest. If these two 

variables were significant, then we re-ran the model including an interaction term to 

investigate how the intervention moderates the trajectory of the connectivity score 

throughout the study period. We present parameter estimates and provide model 

predictions to illustrate group level trends in functional connectivity.    

5.2.5.2 Cognitive Outcome Models 
In the cognitive outcome models, the Executive Function (EF) score and Memory 

score served as the outcome. The remainder of the model maintained the same structure 

as that in Equation 1. The analytic procedure to investigate the trajectory of EF and 

Memory also followed the sequence for that of assessing functional connectivity. First, 

the main effects models were run to determine if visit and EC intervention status were 

significant, and if so, the corresponding interaction term was incorporated.  

5.3 Results 
In this section, we describe the results from the GEEs for the functional 

connectivity and cognitive score models respectively. Exploratory data analysis is also 

provided.  

5.3.1 The Effect of EC on Brain Connectivity  
The association between EC and functional connectivity varied according to the 

sub-networks selected within each network. The majority of the network pairs exhibited 

consistent connectivity patterns at each time point, suggesting that the functional 
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connectivity was not changing over the two-year period. Figure 5.1 shows the average 

connectivity matrices, across subjects, at each time point. The connectivity matrix is 

symmetric along the diagonal, with the correlation values displayed as percentages in the 

lower triangle and corresponding circles representative of the sign and degree of 

correlation in the upper triangle. For the majority of the sub-network pairs, the averages 

are remarkably stable over repeated visits. For instance, the average correlation between 

the inter-network pair (1,12) representing Control A and Default F is -0.21 at Baseline,  

-0.23 at Follow-Up I, and -0.21 at Follow-Up II, indicating that the average trajectory of 

this connectivity score is unchanged. Other sub-network pairs exhibit increases or 

decreases in connectivity. The intra-network correlation between Default E and Default 

F, indicated by pair (11,12) in Figure 5.1 increases steadily at each time point—at 

Baseline, the correlation is 0.41, at Follow-Up I, it is 0.53, and at Follow-Up II, it is 0.57. 

Other sub-network pairs demonstrate steady declines in connectivity. The inter-network 

pair (4,11), representing Control D and Default E has an average correlation coefficient 

of -0.41 at Baseline, -0.43 at Follow-Up I, and -0.46 at Follow-Up II, indicating that these 

networks become more anti-correlated over the study period. Figure 5.1 provided an 

average global view of the data, and in order to extrapolate the effect of EC on functional 

connectivity, we took another look at the data that considers individual trajectories 

stratified by intervention group.  
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       Baseline    Follow-Up I   Follow-Up II 

 

Figure 5.1 Average Connectivity Patterns  

This figure shows the results of the average correlations across at each time point, from left to right: 
Baseline, Follow-Up I and Follow-Up II. The correlations are calculated using the ROI method, and the 
averages include  90 participants at Baseline, 85 at Follow-Up I and 69 at Follow-Up II.  

Figure 5.2 shows spaghetti plots of select connectivity scores stratified by 

intervention status and color-coded by sex (red indicates female, and blue indicates 

male). The plots included in Figure 5.2 represent those scores that exhibited the most 

significant changes in trajectories over time. The majority of connectivity scores did not 

exhibit significant changes over time, as suggested by the average connectivity scores 

shown in Figure 5.1. Therefore, we focused attention on the inter and intra-network 

correlation coefficients that appear to be most susceptible to longitudinal change. In 

Figure 5.2, the values of the connectivity scores are jittered to facilitate viewing. The y-

axes range from (-1,1) in the plots of connectivity scores V17 and V20; the y-axis for 

V25 spans the range from (-0.5,1) because these scores are not as widespread as the 

others. However, overall, each plot exhibits substantial variability both within subject and 

between subject. The blue line indicates the fitted line along with a transparent gray 95% 

confidence band, which helps in viewing trends in the data given the large amount of 

variability. The blue line also helps to view the nature of the connectivity scores over 
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time. The changes in connectivity are not linear, and exhibit increases followed by 

decreases, of vice versa over the three time points presented. 

The upper left panel of Figure 5.2 shows a select longitudinal intra-TPN 

connectivity trajectory, V17, as listed in Table 5.2. V17 represents the intra-network 

correlation between Control B and Control D. Both the EC and Control groups exhibit 

average negative correlations and demonstrate a gradual decline in connectivity.  

The remaining spaghetti plots in Figure 5.2 exhibit select inter-network 

correlations, V20 and V25, which are described in Table 5.2. The upper right panel 

shows the trajectory of V20, the inter-network correlation between Control B and Default 

A. Both the Control and EC groups showed negative connectivity scores for V20 at 

baseline, and both became more negative over the follow-ups. Lastly, the lower left panel 

of Figure 5.2, shows the trajectory of V25, representing the connectivity between Control 

B and Default F. Both the EC and Control groups exhibited increases in V25 

connectivity; however the Control group appears to start with a higher connectivity score 

at baseline. Additionally, the V25 connectivity score increased at a faster rate for the EC 

group. 

Table 5.3 Listing of select connectivity scores 

Connectivity Score Network Pair Interpretation 

V17 Control B, Control D Intra TPN: Medial and 
dorsal control 

V20 Default A, Control B Inter Network: PFC and 
Medial Control 

V25 Default F, Control B Inter Network: PCC/Rsp 
and Medial Control  
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Figure 5.2 Select 
Trajectories of Functional 
Connectivity 

 These plots show the longitudinal 
trajectories of functional 
connectivity stratified by 
Experience Corps (EC) and 
Control groups. The points are 
jittered to facilitate viewing, and 
males are plotted in blue, and 
females in red. The upper left 
panel , V17, represents an intra-
network connectivity score. The 
upper right panel, V20 and lower   
panel, V25, represent inter-
network connectivity scores. 

 

To investigate which connectivity pairs are the most likely targets for 

intervention, we applied a data-driven approach, which involved running 66 GEE models, 

as described in equation (1) using the connectivity score as the outcome of each. Figure 

5.3 displays the resulting P-values for the coefficients corresponding to visit and EC, 
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respectively. The probabilities have been converted to percentages for display purposes. 

Smaller circles indicate smaller probabilities, and thus more statistically significant 

results. The left panel of Figure 5.3 shows the P-Values corresponding with EC. At the 

0.05 level, EC achieves significance in 14 of the 66 connectivity scores, indicating that at 

baseline the EC and control groups are comparable for the majority of the network pairs 

investigated. The right panel of Figure 5.3 displays the P-Values corresponding with 

visit. At the significance level of 0.05, five coefficients for visit are statistically 

significant, indicating that on average the majority of the network pairs do not change 

significantly over the study period.   

Main Effects Models. In order to study how EC moderates functional connectivity over 

time, we selected the connectivity scores that exhibited the largest statistical differences 

from one visit to the next, and those that exhibited the largest differences between the EC 

and control groups. Using a P-Value threshold of 0.05 yielded three common 

connectivity scores with both significant coefficients for EC and for visit: V17, V20, and 

V25, which are displayed in Figure 5.3. The results from the main effects models for 

these connectivity scores are exhibited in Table 5.4. The coefficient estimates confirmed 

the trends inferred from the spaghetti plots in Figure 5.2. The coefficient for visit was 

negative for V17 and V20, indicating that on average there was a longitudinal reduction 

in connectivity between the network pairs that each of these scores represents. The 

coefficient for visit was positive for V25, indicating that on average, the connectivity 

between Control B and Default F increased over the study period. The EC coefficients 

also confirm the trends from the exploratory data analysis: although all of these estimates 
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hover close to one tenth of zero, the value is positive in V17, and V20, and it is negative 

in V25. 

EC P-Values     Visit P-Values 

 

Figure 5.3 Summary of GEE P-values 

This figure shows the P-values from the main effects GEE models corresponding with the Experience 
Corps (EC) variable on the left, and those corresponding to the Visit variable on the right. The P-values are 
probabilities ranging from 0-1, and have been converted to percentages for presentation purposes. The 
lower triangle of each image indicates the value and the upper diagonal indicates a graphic representation, 
in which the larger the circle, the closer the probability is to 1. 
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Table 5.4 Main Effect Model GEEs 

 

V17 
Estimate  

Robust 
S.E. P-Value    

Intercept -0.734 0.305 0.016    

Visit -0.058 0.029 0.050    

EC 0.156 0.046 0.0006    

         

 

V20 
Estimate  

Robust 
S.E. P-Value 

V25 
Estimate  

Robust 
S.E. P-Value 

Intercept -0.654 0.287 0.023 0.847 0.196 1.55E-05 

Visit -0.074 0.027 0.007 0.042 0.019 0.025 

EC 0.111 0.043 0.011 -0.121 0.032 0.0001 

         
This Table shows the results of the GEE regression on the indicated Connectivity Score adjusting for Visit, 
Intervention Status, Age, Sex, and Education. The top left panel shows the regression results for the 
Connectivity Score V17, and the lower panels from left to right show the results for V20 and V25, 
respectively. These connectivity scores each have significant visit and EC intervention coefficients at the P-
value = 0.05.  
Table 5.5 Interaction Model GEEs 

 

V17 
Estimate  

Robust 
S.E. P-Value    

Intercept -0.726 0.310 0.019*    

Visit -0.063 0.042 0.137    

EC 0.135 0.121 0.267    

Visit*EC 0.011 0.058 0.851    

        

 

V20 
Estimate  

Robust 
S.E. P-Value 

V25 
Estimate  

Robust 
S.E. P-Value 

Intercept -0.647 0.288 0.025* 0.882 0.195 6.12E-06* 

Visit -0.078 0.039 0.044* 0.019 0.025 0.448 

EC 0.095 0.115 0.407 -0.205 0.083 0.013* 

Visit*EC 0.008 0.054 0.877 0.043 0.038 0.247 

         
This Table shows the GEE regression results of the models above, with the addition of an interaction term 
between Visit and the EC Intervention Status for the connectivity scores V17, V20, and V25. Coefficients 
that achieve significance at the 0.05 level are marked with an asterisk, *. All models included the covariates 
age, education, and sex. 
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Interaction Models of EC vs. Control by Follow-Up. The main effects models 

were important for establishing which connectivity scores are subject to change over the 

study period, and the most sensitive to the intervention. However, interaction models 

were required to investigate how EC moderates the trajectory of change.  Table 5.5 

presents the interaction models. The interaction term coefficient estimate, Visit*EC, was 

positive in all of the models, including both the intra and inter-network connectivity 

models. However, this term did not attain statistical significance in any of the models. 

The coefficient associated with visit maintained its statistical significance in the inter-

network connectivity models, V20, and it did not achieve statistical significance in the 

other models. 

 

 

 

 

 

 

 

 



 

147 
 

●

●

●

−0
.3

5
−0

.3
0

−0
.2

5
−0

.2
0

−0
.1

5
−0

.1
0

Visit

V1
7 

C
on

ne
ct

iv
ity

 E
xp

ec
te

d 
Va

lu
e

●

●

●

●

●

●

●

●

●

1 2 3

 

 

 

 

 

 

 

 

 

Figure 5.4 Predicted Trajectories from Interaction Model 

This figure shows the predicted values of connectivity scores for V17, V20, and V25, based on the 
interaction models for an individual with the average age of 67.39 years and education level of 14.2 years. 
The dashed line represents the expected trajectories for the Experience Corps (EC) group, and the solid line 
represents the trajectories for the Control Group. The estimated trajectories for males and females are also 
indicated separately in blue and red, respectively.   

 

Graphic displays of the parameter estimates from Table 5.5 for predicted group 

level data are displayed in Figure 5.4. The dashed line indicates the estimated trajectory 

for the EC group and the solid line indicates the corresponding trajectory of functional 
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connectivity for the Control Group, for an individual with the average age of 67.39 years 

and education level of 14.2 years. The estimated trajectories for males and females are 

also indicated separately in blue and red, respectively.  In the Intra-TPN connectivity 

model of V17, between Control B and Control D, both the EC and control groups exhibit 

longitudinal declines with similar slopes. The two inter-network connectivity models also 

exhibit opposite trends: in V20, the connectivity decreased for both the EC and Control 

groups, while for V25, the connectivity increased longitudinally for both groups. In V25, 

the slope is larger for the EC group compared to the control group, indicating a faster 

increase in connectivity.  

5.3.2 The Effect of EC on Cognitive Outcomes  
 This section describes the results of performance on the cognitive tests 

administered outside of the scanner. Table 5.6 provides tabulations of the sample size at 

each time point.  

Table 5.6 Tabulations by Visit 

Visit Experience Corps 
N 

Control N Total N 

Baseline 65 58 123 
Follow-Up I 57 51 108 
Follow-Up II 56 49 105 
 

Table 5.7 provides summaries of performance on the neuropsychological tests that are 

used for the formation of the Executive Function (EF) and Memory Scores. This table 

.indicates performance on the test, prior to normalization of the data. The unit of each test 

is also listed.  
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T-tests were performed to detect differences between performance for the EC and 

Control groups at each time point, and to assess whether there are overall longitudinal 

differences in the data. The EC group performed significantly better than the Control 

group in DST Forward and in TMT Part A at Follow-Up II; however both of these tests 

were conducted for calibration purposes and are not factored into the calculation for the 

EF score. TMT Part B, a component of the EF score, was significantly different for the 

EC and Control groups at Follow-Up II with averages of 99.09 ± 57.96 seconds and 

146.06 ± 77.560 seconds, respectively. In the memory tests, there were no significant 

differences between the EC and Control groups. Overall, the means exhibited increases 

from Baseline –2-year Follow-Up in each of the memory tests, indicating improvement.    

The parallel summary statistics for the EF and Memory scores are provided in 

Table 5.7. For the EF score, the EC participants demonstrated improved performance at 

Follow-Up II, with a score of 0.27 ± 0.79 compared with the Control group, which has an 

average EF score of -0.20 ± 0.86. Consistent with the component-wise results, the 

memory score is not statistically different for the EC and Control Groups, while it does 

increase longitudinally across the two groups. The normalized and aggregated cognitive 

scores summarized in Table 5.7 serve as the outcomes of interest in the GEE models.  
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Table 5.7 Memory and Executive Function Scores (Mean ± SD) 
Score Formulation Visit Experience 

Corps 
Control Total 

Executive 
Function  

Digit Span 
Backwards & 
(-1)*Trails B 

Baseline 0.01 ± 0.85 -0.11 ± 0.84 -0.05 ± 0.84 
Follow  Up I 0.09 ± 0.83 -0.08 ± 0.87 0.01 ± 0.85 
Follow Up II 0.27 ± 0.79* -0.20 ± 0.86* 0.05 ± 0.85 

Memory RAVLT learn, 
short delay, & 
long delay 

Baseline -0.23 ± 0.87 -0.26 ± 0.81 -0.25 ± 0.84 ⱡ 
Follow  Up I 0.11 ± 0.88 -0.11 ± 0.77 0.0 ± 0.83 ⱡ 
Follow Up II 0.40 ± 0.97 0.17 ± 1.13 0.29 ± 1.05 ⱡ 

*Significant difference between the intervention and control at the α = 0.05 level. 
ⱡ Significant difference between the indicated time points. 
 

The longitudinal trajectories of the EF and Memory scores are displayed in Figure 5.5. As 

suggested in the summary statistics from Table 5.7, the executive function score, in the 

right panel of Figure 5.5, appears to increase more over the study period for the EC 

intervention group than for the control group. The memory score, exhibited on the right 

panel of Figure 5.5, increased for both the EC and Control groups. The spaghetti plots are 

color-coded by sex, although it is difficult to observe sex-specific trends due to the large 

amount of variability in the performance of both males and females.  
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Figure 5.5 Trajectories of Cognitive Outcomes 

This figure exhibits the longitudinal trajectories of the Executive Function (EF) and Memory scores, 
stratified by the Experience Corps (EC) and Control groups.  Women are indicated in red and men in blue. 

The results of the GEEs are exhibited in Table 5.8 for the EF and Memory Score 

models. The coefficient corresponding with EC is not significant in either model. In the 

EF model, the two significant predictors were age and education. As expected, increasing 

age was negatively associated with the EF score, and increasing education was positively 

associated with the EF score.  

 The right panel of Table 5.8 exhibits the results of the memory model. The 

significant predictors of performance were visit, sex (indicator for male), and education. 

Visit is positively associated with performance; being male was negatively associated 

with performance; and lastly, education was positively associated with the memory score.  
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Table 5.8 GEEs with Cognitive Outcomes 

 

EF 
Estimate  

Robust 
S.E. P-Value 

Mem 
Estimate  Robust S.E. P-Value 

Intercept 0.088 0.773 0.910 -0.477 0.829 0.565 
Visit 0.015 0.025 0.549 0.232 0.036 1.04E-10* 
EC 0.112 0.138 0.386 0.023 0.140 0.872 
Sex -0.236 0.156 0.130 -0.487 0.156 0.002* 
Age -0.021 0.012 0.073* -0.018 0.011 0.119 
Education 0.089 0.021 0.00002* 0.094 0.019 1.20E-06* 
Correlation  0.815     0.686     
*Indicates significance at the 0.05 level. 
The left panel of this Table shows the results of the GEE regression on the Executive Function Score, 
adjusting for visit, intervention status, sex, age, and education. The right panel shows the results for the 
parallel analysis on the Memory Score. 
 

The interaction models were not run for cognitive outcomes since visit and EC are not 

significant together in either model. 

5.4 Discussion 
The results demonstrated that the longitudinal trends in functional connectivity and 

cognitive functions in older adults from the BHS are complex. The majority of sub-

network pairs exhibited robustness in connectivity, remaining stable throughout the two-

year study period, which yielded null results in our attempt to observe intervention-

related change over time. The sub-network pairs that changed longitudinally did not do so 

in predictable ways, and the ways in which they were moderated by the intervention were 

subtle. Similarly, the cognitive results tell a story more complex than the literature would 

suggest. Rather than observing cognitive declines in each domain, the Executive Function 

(EF) score on average remained the same, while the Memory score improved. The effects 

of the EC intervention on performance on the neuropsychological tests appear subtle. The 

following subsections synthesize these findings.  
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5.4.1 Brain Connectivity 
The subset of connectivity scores that exhibited significant changes over time and 

significant associations with the intervention are listed in Table 5.3. The literature 

suggests that for intra-networks, the correlation should be high, and that a loss of 

correlation is associated with aging or pathology. The connectivity score V17 represents 

the intra-network connectivity measure that achieves significance in the main effects 

models. The differences between the EC and Control groups did not achieve statistical 

significance, and the graphical trends from both the model results in Figure 5.4 and the 

spaghetti plot of the data in Figure 5.2 confirmed this result, showing that the intra-

network connectivity of V4 declined at the same rate for both the Control and EC groups. 

The result for V17 showed that the connectivity scores between the medial and dorsal 

regions of the TPN decreased for both the EC and Control groups. Both showed declines 

in connectivity that are close to parallel. In the main effects model, this loss in intra-

network connectivity from one visit to the next is statistically significant (P-Value = 

0.050), as detailed in Table 5.4, suggesting that the correlations between these two 

networks are on average decreasing. This decline in intra-TPN connectivity could be due 

to aging.   

Inter-network, the literature suggests that negative correlations between the TNN 

and TPN represent healthier functional connectivity. V20, representing the inter-network 

connectivity between the PFC and Medial Control Networks, exhibited a decline in 

connectivity, as expected, illustrated in the lower left panel of Figure 5.4. Both the EC 

and Control groups exhibited this trend at similar rates. V25, the inter-network 

connectivity score representing the correlations between the PCC/Rsp and the Medial 

Control Network is illustrated in the lower left panel of Figure 5.4. This inter-network 



 

154 
 

connectivity score increased longitudinally for both the EC and control groups. The 

increase in V25 connectivity was steeper for the EC group than in the Control group. This 

increase in positive correlations for the EC group is contrary to what we expect, given 

that the literature suggests that the TNN and TPN are anti-correlated in young healthy 

adults. However, in older adults, this relation is not the same as that in younger 

populations, and other studies have also observed positive correlations between inter-

network TNN and TPN pairs (Steffener et al., 2012). It may be that the connectivity 

between the PCC/Rsp and Medial Control Network increases as a compensatory 

mechanism as suggested by Steffener et al (2012). In this case, an increase in 

connectivity is neuro-protective, and EC may confer improved functional connectivity.  

Figure 5.4 also shows differences between the intervention and Control groups at 

baseline. This difference was only observed in functional connectivity, and not in 

cognitive performance at baseline. The randomized controlled trial design should 

mitigate concerns about selection bias. 

 

5.4.2 Cognitive Outcomes 
 The results of the Executive Function (EF) and Memory models are listed in 

Table 5.8, and the data are displayed in Figure 5.5. Although EC was not significantly 

associated with improved performance on the neuropsychological tests, the longitudinal 

trajectories displayed in Figure 5.5 show beneficial trajectories for the EC group 

compared to the Control group. For both EF and Memory, the differences between 

Baseline and Follow-Up I were modest; and the larger differences were seen at Follow-

Up II. In fact, when cross-sectionally comparing the EF score of EC and Control 
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Participants at Follow-Up II, the EC group performed better at a level that achieves 

statistical significance. In order to detect this trend longitudinally in the GEE model, 

additional follow-up visits may be necessary.       

The EF score and Memory score trajectories exhibited qualitatively different 

patterns. The EF score improved for the EC group and remained stable for the Control 

group, while the Memory score improved for both groups. The longitudinal increase in 

the Memory score may represent practice effects. During each visit, the participants learn 

the same words on the RAVLT, and may begin to commit the words to their long-term 

memory. Therefore, perhaps, memory is not an ideal target domain in studies of cognitive 

aging. The domain of executive function appears more sensitive and reliable to study 

because it is less susceptible to practice effects.  

Although the memory score is susceptible to practice effects, if the EC 

intervention were to be associated with improvements in memory, the increase would be 

steeper for the EC group compared to the control group. However the trajectories are 

both qualitatively similar and not statistically different. Perhaps the memory score is less 

prone to change than the EF score as a result of EC because memory is not an explicit 

target of intervention for Experience Corps. While the senior volunteers surely used 

working memory in the classroom, the nature of their tasks changed daily, requiring 

higher executive functions to plan, task-switch, and make decisions on the spot. 

Therefore, in light of the nature of the intervention, it makes sense that the EF score is 

more sensitive to exhibit intervention-related changes. An additional follow-up measure 

could confirm this trend, and the sensitivity of EF over Memory as a target domain for 

this intervention.  
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The GEE results in Table 5.8 confirm what studies in cognitive aging have 

repeatedly shown: increased age is associated with cognitive decline while education is 

associated with improved cognitive outcomes. This result is statistically significant for 

both the EF and Memory scores. It is helpful to view this result as a validation of our 

study design and methods. For practical applications, however, these results cannot help 

an older adult today. Since time moves only forward, it is not helpful for one who has 

already attained old age to find that the education that one acquired from childhood 

through early adulthood is protective against cognitive decline. However, this is one of 

the most consistent findings in the cognitive aging literature, so it would be wise to 

promote education for all youth and young adults as a public health intervention to 

preserve cognition in later life. 

 

5.4.3 Men vs. Women 
 The longitudinal stability in the functional connectivity findings existed 

throughout the BHS population, including in both men and women. Exploratory data 

analysis exhibited few differences in the functional connectivity between men and 

women. Figure 5.6 shows the longitudinal trajectories of the intra-network connectivity 

score, V17, and the inter-network connectivity score, V25, stratified by sex with women 

on the left and men on the right of each plot. The intra-network connectivity score 

displayed decreases for both men and women, although one can observe differences in 

the trajectories. While V17 increased and then decreased for women, from Follow-Up I 

to Follow-Up II, for men, it decreased, and then remained stable. Another follow-up 

measurement would help to determine if both trajectories would continue along the same 
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trajectory of gradual decline. The inter-network connectivity score, V25, on the right 

panel of Figure 5.6, increased for both men and women, with both exhibiting 

approximately parallel trajectories. In the formal models that we conducted, Figure 5.4, 

also showed that the functional connectivity trajectories of both men and women is 

similar, and sex was not statistically significant. The robustness of functional 

connectivity within sub-groups of the study sample provided further support for the 

findings in the overall sample.   

Figure 5.6 Functional Connectivity Stratified by Sex  

This figure shows longitudinal functional connectivity trajectories stratified by sex, with women on the left 
and men on the right of each plots. The left panel represents  the intra-network connectivity score, V17 and 
the right panel represents the inter-network connectivity score, V25. 
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5.4.4 The Overall EC Effect 
 While the longitudinal differences between the EC and control groups were 

modest, and in most cases not statistically significant, the overall trends showed that in 

both the brain and cognitive measures, EC was associated with maintenance of or 

improved outcomes. EC was associated with decreased inter-network connectivity for 

V20, which supports the literature that links higher intra-network connectivity and lower 

inter-network connectivity with better brain health. On the other hand, EC was also 

associated with increased inter-network connectivity for V25, which could serve as a 

compensatory mechanism for the aging brain (Steffener et al, 2012). In the behavioral 

results, EC appears to have no impact on memory, although it was associated with better 

cognitive performance for executive function at Follow-Up II.    

5.4.5 Strengths & Limitations 
  

5.4.5.1 Strengths 
The longitudinal study design of the Brain Health Study represents a key strength 

of this investigation. The cognitive performance and fMRI brain image data are collected 

at each time point. This longitudinal study design makes it possible to investigate changes 

in brain structure and function over a period of two years. Few studies have explored the 

longitudinal trajectories of functional activity, making these fMRI data novel. 

The pool of participants included in the BHS data also distinguishes this 

investigation. While most fMRI studies of older adults consist of white, highly educated, 

and upper-middle class individuals, this sample consisted primarily of black, variably 

educated, and lower income individuals. This sample represents an under-served target 

population, the at-risk community- dwelling older urban denizen. Results therefore have 
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major implications for this socio-demographically vulnerable group of individuals. 

Lastly, the novel functional connectivity analysis was conducted within a 

randomized intervention trial. Therefore, the results grouped by intervention status help 

to illuminate mechanisms through which the intervention impacted brain connectivity. 

Differences between the volunteer group and the low-activity control group in functional 

connectivity and in cognitive outcomes help to suggest brain pathways and cognitive 

domains through which the intervention is acting. These results help to inform future 

preventative recommendations to preserve healthy brain network function and cognition. 

5.4.5.2 Limitations 
There are a number of limitations in this investigation that may have impeded our 

ability to detect differences between the intervention and control groups. While the 

behavioral measurement for executive function appeared sensitive to change, the memory 

score was highly susceptible to practice effects. This score is based on the RAVLT, in 

which participants are aurally presented with the same set of 15 words in each visit, 

which lends itself well to long-term memory storage. A more sensitive memory test may 

present a different set of words in each session. This strategy would reduce practice 

effects, although it would break from the standard in the field, which is to use the 

RAVLT as it is. 

The biological measure of interest in the brain that we used, functional 

connectivity scores, remained stable throughout the study period. This lack of change 

impeded our ability to investigate the effect of an intervention on longitudinal change 

trajectories. Therefore, perhaps it would be valuable to investigate a different fMRI 

marker that may exhibit larger changes, such as brain activity in response to a task or 
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brain volume. The fMRI marker that we selected is more complex than usual measures 

because each score involves a pair of regions, and represents the interactions between 

networks. Nevertheless, the fact that the complex measures that we used exhibited a lack 

of change demonstrated that these connectivity scores are robust. The fMRI world suffers 

from a lack of reliability and consistency due to the tremendous amount of noise relative 

to the signal. Therefore, the functional connectivity scores that we developed posit a 

reliable metric for use in future studies. Furthermore, although it is not what we had 

intended to find, the fact that the functional connectivity scores remained unchanging 

over a two- year period provided a result that is biologically interesting, and 

methodologically useful.    

Another limitation that makes it difficult to detect differences may be that the 

intervention acted on a number of pathways, and the selected targets, the TNN and TPN 

are among the most generally represented in the brain. Unlike a language task that acts on 

the language network, the EC intervention is multi-modal, and in this study we sought to 

determine the ways in which it acts on networks that modulate the activity of the entire 

brain. While this question is more difficult to answer, it may be more reflective of the 

integrationist nature of brain network function. Also, while it may be more difficult to 

deconstruct the mechanisms of action of a multi-modal intervention like EC, the multiple 

modalities through which this intervention works is also more reflective of the 

complexities of brain network activity. Perhaps generativity exists not just in one place in 

the brain, but throughout multiple networks. This investigation lays the foundation for 

measuring the effect of a highly complex multi-modal program on the health of brain 

networks, a collection of regions working together and modulating each other in ways 
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that are even more highly complex than a manmade program. In asking big questions, we 

lay the groundwork to help answer them. 

  



 

162 
 

5.5 References 
 

Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., & 

Buckner, R. L. (2007). Disruption of large-scale brain systems in advanced aging. 

Neuron, 56(5), 924-935.  

Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559. 

Bai, F., Watson, D. R., Yu, H., Shi, Y., Yuan, Y., & Zhang, Z. (2009). Abnormal resting-state 

functional connectivity of posterior cingulate cortex in amnestic type mild cognitive 

impairment. Brain Research, 1302, 167-174. 

Bluhm, R. L., Osuch, E. A., Lanius, R. A., Boksman, K., Neufeld, R. W., Théberge, J., & 

Williamson, P. (2008). Default mode network connectivity: effects of age, sex, and 

analytic approach. Neuroreport, 19(8), 887-891. 

Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., ... & Windischberger, 

C. (2010). Toward discovery science of human brain function. Proceedings of the 

National Academy of Sciences, 107(10), 4734-4739. 

Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., ... & 

Mintun, M. A. (2005). Molecular, structural, and functional characterization of 

Alzheimer's disease: evidence for a relationship between default activity, amyloid, and 

memory. The Journal of Neuroscience, 25(34), 7709-7717. 

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., ... & Johnson, K. 

A. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, 



 

163 
 

assessment of stability, and relation to Alzheimer's disease. The Journal of Neuroscience, 

29(6), 1860-1873. 

Carlson, M. C., Seeman, T., & Fried, L. P. (2000). Importance of generativity for healthy aging 

in older women. Aging Clinical and Experimental Research, 12(2), 132-140. 

Carlson, M. C., Saczynski, J. S., Rebok, G. W., Seeman, T., Glass, T. A., McGill, S., ... & Fried, 

L. P. (2008). Exploring the effects of an “everyday” activity program on executive 

function and memory in older adults: Experience Corps®. The Gerontologist, 48(6), 793-

801. 

Carlson, M. C., Xue, Q. L., Zhou, J., & Fried, L. P. (2009). Executive decline and dysfunction 

precedes declines in memory: the Women's Health and Aging Study II. The Journals of 

Gerontology Series A: Biological Sciences and Medical Sciences, gln008. 

Carlson, M. C. (2011, May). Promoting healthy, meaningful aging through social involvement: 

Building an Experience Corps. In Cerebrum: the Dana forum on brain science (Vol. 

2011). Dana Foundation. 

Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., ... & 

Sperling, R. A. (2006). Alterations in memory networks in mild cognitive impairment 

and Alzheimer's disease: an independent component analysis. The Journal of 

Neuroscience, 26(40), 10222-10231. 

Craik, F. I., & Bialystok, E. (2006). Cognition through the lifespan: mechanisms of change. 

Trends in Cognitive Sciences, 10(3), 131-138. 



 

164 
 

Damoiseaux, J. S., Beckmann, C. F., Arigita, E. S., Barkhof, F., Scheltens, P., Stam, C. J., ... & 

Rombouts, S. A. R. B. (2008). Reduced resting-state brain activity in the “default 

network” in normal aging. Cerebral Cortex, 18(8), 1856-1864. 

Damoiseaux, J. S., Prater, K. E., Miller, B. L., & Greicius, M. D. (2012). Functional connectivity 

tracks clinical deterioration in Alzheimer's disease. Neurobiology of Aging, 33(4), 828-

e19. 

Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., ... & 

Schlaggar, B. L. (2010). Prediction of individual brain maturity using fMRI. Science, 

329(5997), 1358-1361 

Erikson E.H. (1950). Childhood and Society. New York, NY: W.W. Norton & Company, Inc. 

Eyler, L. T., Sherzai, A., Kaup, A. R., & Jeste, D. V. (2011). A review of functional brain 

imaging correlates of successful cognitive aging. Biological Psychiatry, 70(2), 115-122. 

Fleisher, A. S., Sherzai, A., Taylor, C., Langbaum, J., Chen, K., & Buxton, R. B. (2009). 

Resting-state BOLD networks versus task-associated functional MRI for distinguishing 

Alzheimer's disease risk groups. NeuroImage, 47(4), 1678-1690. 

Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed 

anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270-

3283. 

Freedman M, Fried LP. Launching Experience Corps: findings from a 2-year pilot project 

mobilizing older Americans to help inner-city elementary schools. Oakland, CA: Civic 

Ventures; January 1999.  



 

165 
 

Fried, L. P., Carlson, M. C., Freedman, M., Frick, K. D., Glass, T. A., Hill, J., ... & Zeger, S. 

(2004). A social model for health promotion for an aging population: initial evidence on 

the Experience Corps model. Journal of Urban Health, 81(1), 64-78. 

Fried, L. P., Carlson, M. C., McGill, S., Seeman, T., Xue, Q. L., Frick, K., ... & Rebok, G. W. 

(2013). Experience Corps: A dual trial to promote the health of older adults and children's 

academic success. Contemporary Clinical Trials, 36(1), 1-13. 

Gazes, Y., Rakitin, B. C., Habeck, C., Steffener, J., & Stern, Y. (2012). Age differences of 

multivariate network expressions during task-switching and their associations with 

behavior. Neuropsychologia, 50(14), 3509-3518. 

Gili, T., Cercignani, M., Serra, L., Perri, R., Giove, F., Maraviglia, B., ... & Bozzali, M. (2011). 

Regional brain atrophy and functional disconnection across Alzheimer's disease 

evolution. Journal of Neurology, Neurosurgery & Psychiatry, 82(1), 58-66. 

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the 

resting brain: a network analysis of the default mode hypothesis. Proceedings of the 

National Academy of Sciences, 100(1), 253-258. 

Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network 

activity distinguishes Alzheimer's disease from healthy aging: evidence from functional 

MRI. Proceedings of the National Academy of Sciences of the United States of America, 

101(13), 4637-4642. 



 

166 
 

Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional 

connectivity reflects structural connectivity in the default mode network. Cerebral 

Cortex, 19(1), 72-78 

Groeger, J. A., Field, D., & Hammond, S. M. (1999). Measuring memory span. International 

Journal of Psychology, 34(5-6), 359-363. 

Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the 

resting human brain. Nature Reviews Neuroscience, 2(10), 685-694. 

Jones DT, Vemuri P, Machulda MM, et al. Age effect on functional connectivity. Presented at 

the American Academy of Neurology 62nd Annual Meeting, April 10–17 2010, Toronto, 

Canada. Abstract. 

Harris, A. H., & Thoresen, C. E. (2005). Volunteering is associated with delayed mortality in 

older people: Analysis of the longitudinal study of aging. Journal of Health Psychology, 

10(6), 739–752. 

He, Y., Wang, L., Zang, Y., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Regional coherence 

changes in the early stages of Alzheimer’s disease: a combined structural and resting-

state functional MRI study. NeuroImage, 35(2), 488-500. 

Jones, D. T., Machulda, M. M., Vemuri, P., McDade, E. M., Zeng, G., Senjem, M. L., ... & Jack, 

C. R. (2011). Age-related changes in the default mode network are more advanced in 

Alzheimer disease. Neurology, 77(16), 1524-1531. 



 

167 
 

Koch, W., Teipel, S., Mueller, S., Buerger, K., Bokde, A. L., Hampel, H., ... & Meindl, T. 

(2010). Effects of aging on default mode network activity in resting state fMRI: does the 

method of analysis matter?. NeuroImage, 51(1), 280-287. 

Lezak, M. D. (Ed.). (2004). Neuropsychological assessment. Oxford university press. 

Lum TY, L. E. (2005). The effects of volunteering on the physical and mental health of older 

people. Research on Aging, 27(1), 31–55.  

Lustig, C., Snyder, A. Z., Bhakta, M., O'Brien, K. C., McAvoy, M., Raichle, M. E., ... & 

Buckner, R. L. (2003). Functional deactivations: change with age and dementia of the 

Alzheimer type. Proceedings of the National Academy of Sciences, 100(24), 14504-

14509. 

Madden, D. J. (2001). Speed and timing of behavioral processes. Handbook of the Psychology of 

Aging, 5, 288-312. 

Marcotte, K., Perlbarg, V., Marrelec, G., Benali, H., & Ansaldo, A. I. (2013). Default-mode 

network functional connectivity in aphasia: Therapy-induced neuroplasticity. Brain and 

Language, 124(1), 45-55. 

Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houde, O., ... & Tzourio-Mazoyer, N. 

(2001). Cortical networks for working memory and executive functions sustain the 

conscious resting state in man. Brain Research Bulletin, 54(3), 287-298. 

Mckiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder, J. R. (2003). A parametric 

manipulation of factors affecting task-induced deactivation in functional neuroimaging. 

Journal of Cognitive Neuroscience, 15(3), 394-408. 



 

168 
 

Meunier, D., Achard, S., Morcom, A., & Bullmore, E. (2009). Age-related changes in modular 

organization of human brain functional networks. NeuroImage, 44(3), 715–723. 

Morrow-Howell, N., Hinterlong, J., Rozario, P. A., & Tang, F. (2003). Effects of volunteering on 

the well-being of older adults. Journals of Gerontology, Series B: Psychological Sciences 

and Social Sciences, 58(3), S137–145. 

Musick, M. A., & Wilson, J. (2003). Volunteering and depression: The role of psychological and 

social resources in different age groups. Social Science & Medicine, 56(2), 259-269. 

Rajah, M. N., & D'Esposito, M. (2005). Region-specific changes in prefrontal function with age: 

A review of PET and fMRI studies on working and episodic memory. Brain, 128, 1964–

1983. 

Rebok, G. W., Carlson, M. C., Glass, T. A., McGill, S., Hill, J., Wasik, B. A., ... & Rasmussen, 

M. D. (2004). Short-term impact of Experience Corps® participation on children and 

schools: Results from a pilot randomized trial. Journal of Urban Health, 81(1), 79-93. 

Rebok GW, Carlson, MC, Frick KD, Giuriceo KD, Gruenewald T, McGill S, Parisi JM, Romani 

WA, Seeman T, Tanner EK, & Fried LP (in press).  The Experience 

Corps®:  Intergenerational interventions to enhance well- being among retired people. In 

F. A. Huppert (Ed.), Wellbeing:Volume 6. Intervention and Policies to 

Enhance Wellbeing. Hoboken, NJ: Wiley-Blackwell.   

Rey, A. (1958). L'examen clinique en psychologie. Presses universitaires de France. 



 

169 
 

Salthouse, T. A., Atkinson, T. M., & Berish, D. E. (2003). Executive functioning as a potential 

mediator of age-related cognitive decline in normal adults. Journal of Experimental 

Psychology: General, 132(4), 566. 

Sauer, J., Ballard, C., Brown, R. G., & Howard, R. (2006). Differences between Alzheimer's 

disease and dementia with Lewy bodies: an fMRI study of task-related brain activity. 

Brain, 129(7), 1780-1788. 

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., ... & Greicius, 

M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and 

executive control. The Journal of Neuroscience, 27(9), 2349-2356. 

Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). 

Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42-

52. 

Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & 

Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in 

cerebral cortex. Journal of Cognitive Neuroscience, 9(5), 648-663. 

Sorg, C., Riedl, V., Mühlau, M., Calhoun, V. D., Eichele, T., Läer, L., ... & Wohlschläger, A. M. 

(2007). Selective changes of resting-state networks in individuals at risk for Alzheimer's 

disease. Proceedings of the National Academy of Sciences, 104(47), 18760-18765. 

Steffener, J., Habeck, C. G., & Stern, Y. (2012). Age-related changes in task related functional 

network connectivity. PloS One, 7(9), e44421. 



 

170 
 

Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of 

intrinsic functional brain connectivity in Alzheimer's disease. PLoS Computational 

Biology, 4(6), e1000100. 

Spreen, O., & Strauss, E. A compendium of neuropsychological tests, 1991. Controlled Oral 

Word Association (FAS). New York, 447-464. 

Tulving, E. (1983). Elements of Episodic Memory. Oxford: Oxford University Press Group. 

Uddin, L. Q., Clare Kelly, A. M., Biswal, B. B., Xavier Castellanos, F., & Milham, M. P. (2009). 

Functional connectivity of default mode network components: correlation, 

anticorrelation, and causality. Human Brain Mapping, 30(2), 625-637 

Vemuri, P., Jones, D. T., & Jack Jr, C. R. (2012). Resting state functional MRI in Alzheimer’s 

disease. Alzheimer’s Research Therapy, 4(2). 

Piliavin, J. A., & Siegl, E. (2007). Health benefits of volunteering in the Wisconsin longitudinal 

study. Journal of Health and Social Behavior, 48(4), 450-464. 

Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., ... & Li, K. (2006). Changes in 

hippocampal connectivity in the early stages of Alzheimer's disease: evidence from 

resting state fMRI. NeuroImage, 31(2), 496-504. 

Wang, L., Laviolette, P., O’Keefe, K., Putcha, D., Bakkour, A., Van Dijk, K. R., et al. (2010). 

Intrinsic connectivity between the hippocampus and posteromedial cortex predicts 

memory performance in cognitively intact older individuals. NeuroImage, 51(2), 910–

917. 



 

171 
 

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., ... & 

Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by 

intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125-1165. 

Zhang, Z., Lu, G., Zhong, Y., Tan, Q., Liao, W., Wang, Z., ... & Liu, Y. (2010). Altered 

spontaneous neuronal activity of the default-mode network in mesial temporal lobe 

epilepsy. Brain Research, 1323, 152-160. 

Zhou, J., Greicius, M. D., Gennatas, E. D., Growdon, M. E., Jang, J. Y., Rabinovici, G. D., ... & 

Seeley, W. W. (2010). Divergent network connectivity changes in behavioural variant 

frontotemporal dementia and Alzheimer’s disease. Brain, awq075. 

  



 

172 
 

5.6 Appendix 
Table 5.9 Behavioral Data for Intervention and Control Groups (Mean ± SD) 

Neuropsych  
Exam 

Unit Visit Experience 
Corps 

Control Total 

Digit Span 
(Forward) 

# correct Baseline 8 ± 1.72 7.45 ± 1.7 7.74 ± 1.72  
Follow-Up I 7.58 ± 2  7.11 ± 2.09 7.36 ± 2.05 
Follow-Up II 8.2 ± 2.15* 7.25 ± 1.79* 7.76 ± 2.04 

Digit Span 
(Backward) 

# correct Baseline 5.39 ± 2.35 4.86 ± 2.31 5.14 ± 2.34 
Follow-Up I 5.19 ± 2.61 5 ± 2.27 5.1 ± 2.45 
Follow-Up II 5.58 ± 2.64 4.91 ± 2.09 5.27 ± 2.41 

Trail Making 
A 

Time in 
seconds 

Baseline 45.89 ± 15.66 44.94 ± 15.71 45.44 ± 
15.63ⱡ 

Follow-Up I 39.95 ± 14.24 40.88 ± 15.66 40.38 ± 
14.84ⱡ 

Follow-Up II 38.61 ± 
12.07* 

46.56 ± 
22.57* 

42.33 ± 
18.22 

Trail Making 
B 

Time in 
seconds 

Baseline 131.34 ± 
76.82 

132.31 ± 73 131.8 ± 
74.72 

Follow-Up I 114.73 ± 
61.06 

131.69 ± 
76.61 

122.53 ± 
68.82 

Follow-Up II 99.09 ± 
57.96* 

146.06 ± 
77.56* 

121.08 ± 
71.46 

RAVLT 
(learn) 

# 
Correct 

Baseline 39.12 ± 7.74 39.34 ± 7.65 39.23 ± 7.67 
Follow-Up I 41.69 ± 8.14 39.62 ± 7.27 40.7 ± 7.77 ⱡ 
Follow-Up II 44.82 ± 8.62 42.49 ± 9.63 43.7 ± 9.15 ⱡ 

RAVLT 
(Interference) 

#  
correct 

Baseline 4.42 ± 1.48 4.53 ± 1.51 4.47 ± 1.49  
Follow-Up I 4 ± 1.57 4.22 ± 1.43 4.11 ± 1.5 ⱡ 
Follow-Up II 4.82 ± 1.52 4.44 ± 1.66 4.64 ± 1.59 ⱡ 

RAVLT 
(Short Delay) 

#  
correct 

Baseline 6.74 ± 2.93 6.5 ± 2.61 6.63 ± 2.77 ⱡ 
Follow-Up I 7.98 ± 2.7 7.2 ± 2.38 7.61 ± 2.57 ⱡ 
Follow-Up II 8.51 ± 2.94 8.07 ± 3.36 8.3 ± 3.14 

RAVLT 
(Long Delay) 

#  
correct 

Baseline 6.54 ± 2.97 6.38 ± 2.73 6.46 ± 2.85 ⱡ 
Follow-Up I 7.41 ± 2.69 7.07 ± 2.63 7.25 ± 2.65 ⱡ 
Follow-Up II 8.12 ± 3.22 7.98 ± 3.33 8.05 ± 3.26 

*Significant difference between the intervention and control at the α = 0.05 level. 
ⱡ Significant difference between the indicated time points. 
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6 Chapter 6. Conclusions 
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6.1 Summaries 
We have conducted a rigorous investigation of two fundamental networks in the 

brain: the Task Positive Network (TPN) and Task Negative Network (TNN). In Aim 1, 

we found that, compared to the literature based on young healthy adults, the TPN and 

TNN exhibit similar patterns of functional intra-network connectivity, and differences in 

inter-network connectivity, suggesting biological changes with aging. We then took the 

functional connectivity scores that we developed in Aim 1, and investigated the 

association between this score and dementia-linked cognitive functions in Aim 2. We 

found important associations that both confirmed and challenged our hypotheses. Lastly, 

in Aim 3, we studied the one-year longitudinal intervention effect on these associations. 

We quantified the ways in which Experience Corps may affect both functional 

connectivity and cognitive functions. In this investigation, each aim built upon the next, 

and together, they helped to develop a more comprehensive understanding of functional 

connectivity in older adults, its relations to cognitive functions, and how these outcomes 

can be modified by a lifestyle-based intervention of senior service. Details for the specific 

aims are summarized below and related to the original hypotheses, as stated in Chapter 1.  

6.1.1 Aim 1. Functional Connectivity  
In Aim 1, we assessed functional connectivity between and within each of the Task 

Positive (TPN) and Task Negative Networks (TNN) in the brain images of Brain Health 

Study participants using three methods: 

1. The Region of Interest (ROI) Method, an approach that defines the networks 

based on a priori seeds. 
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2. Independent Component Analysis (ICA), a method that searches for the networks 

using the data. 

3. Seed Analysis, an approach that uses a priori seeds and searches across the whole 

brain for correlations and anti-correlations. 

In the ROI results, each network showed substantial intra-network functional 

connectivity, supporting the hypothesis that each network ought to be highly connected 

with itself. The connectivity inter-network included both positive and negative 

correlations; the negative correlations support the decoupling hypothesis and the positive 

correlations challenge our hypothesis.   

 In the ICA results, the TPN was highly correlated with itself while the TNN was 

less correlated with itself, providing overall support for the hypothesis for intra-network 

connectivity. Inter-network ICA results exhibited both positive and negative correlations, 

as in the ROI method results. 

 Results of the seed analysis showed that each network was correlated with itself, 

supporting the hypothesis for intra-network connectivity. However, no anti-correlations 

between the TNN and TPN survived the P-value threshold, which challenges the 

hypothesis that these networks should be negatively correlated.  

 Across all methods, intra-network pairs exhibited high functional connectivity 

with one another. This result is especially robust within the TPN, and it is more variable 

in the TNN. Inter-network, functional connectivity manifested itself as both positive 

and negative correlations between the TNN and TPN using both ROI and ICA 

methods. The seed analysis yielded no anti-correlations between the networks.  
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6.1.2 Aim 2. The Brain-Behavior Link 
Aim 2 investigated the baseline relationship between inter and intra-network 

functional connectivity and cognitive functions. The cognitive functions were selected 

due to their relevance to independent functions and dementia risk: memory and executive 

functions. To assess each cognitive domain of interest, we developed standardized 

cognitive outcome scores. The Memory Score consists of an aggregate of performance on 

the Rey Auditory Verbal Learning Test, and the Executive Function Score consists of a 

normalized aggregate of the Trail Making Test, Part B and the Digit Span Test, 

Backwards, in which higher scores indicate better performance.  

We ran linear models to test the associations between functional connectivity and 

cognitive scores. In the inter-network models, we found that the majority of functional 

connectivity scores that survive the significance threshold (p = 0.05) are inversely 

correlated with cognitive scores. These results support the hypothesis that inter-network 

connectivity ought to be inversely correlated with cognitive functions. In the intra-

network models, we found primarily positive associations between connectivity scores 

and cognitive outcomes, as expected. However, none of the connectivity score 

coefficients survived the significance threshold (p = 0.05). Nevertheless, the nature of 

this result supports the hypothesis that intra-network connectivity is positively associated 

with cognitive functions. 

When comparing the brain-behavior results by cognitive domain, we found that 

the memory and executive function outcomes were associated differently with functional 

connectivity. In the inter-network connectivity model with memory, both positive and 

negative connectivity score coefficients achieved significance. However, in the inter-
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network model with executive function as an outcome, the only connectivity score 

coefficient that achieved significance is negative. In both cases, the inter-network models 

were more strongly associated with cognitive functions than the intra-network models. 

These results suggest that functional connectivity between networks may have a more 

important role in cognitive functions than intra-network connectivity, and therefore 

represent better markers of cognitive aging in the brain.  

6.1.3 Aim 3. The effect of Experience Corps  
In Aim 3, we investigated the effect of Experience Corps (EC) on the longitudinal 

trajectory of (1) inter and intra TNN and TPN functional connectivity patterns; and (2) 

cognitive functions in the domains of memory and executive functions, for baseline and 

two follow-up visits. The longitudinal trajectories capture annual changes over a two-year 

period, and we investigated the effects of aging, and how EC moderates aging. 

6.1.3.1 Functional Connectivity 
Over the two-year study period, the connectivity between the majority of network pairs 

remains stable, neither increasing nor decreasing. Of the connectivity scores that do 

change, some exhibit age-associated deterioration in the expected direction (increased 

inter-network correlation and decreased intra-network correlation). In these cases, the 

intervention effect does not achieve statistical significance in the models with an 

interaction term.     

6.1.3.2 Cognitive Functions 
The longitudinal trajectories of cognitive functions differed. The memory score improved 

over the two-year study period for both the EC and control groups. The executive 

function score stayed constant for the control group, and further improved for the EC 

group. While this result was statistically significant at Follow-Up II, using cross-sectional 
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T-tests, the longitudinal modeling using GEEs did not detect statistically significant 

differences between the EC and control groups in executive function.  

6.2 6.2 Connections  
In this section, we draw connections from each of the three aims, and relate them to 

neurologic mechanisms, making inferences beyond the hypotheses. 

6.2.1 Functional Connectivity 
 The data demonstrated that while each network is correlated with itself, as 

expected, the two networks are not homogenously anti-correlated. This lack of uniform 

negative correlations between the TNN and TPN shows that in older adults, these 

networks are not anti-correlated, as they are in younger adults. These results provide 

biological insight into the functional connectivity of the aging brain. 

 In addition to the biological conclusions from Aim 1, our results also provide 

methodological contributions. The concordance of findings across methodology provides 

further evidence in support of the biological finding, and demonstrates that the different 

methods help to answer the same question. Because the ROI method is the simplest and 

the easiest to standardize across studies, this approach is used in the investigations for 

Aims 2 and 3.  

6.2.2 Functional Connectivity and Cognitive Functions 
The models linking functional connectivity and dementia-linked cognitive 

functions provide support for the integrationist model of brain function and help to 

suggest which domains would serve as more sensitive targets of intervention. The inter-

network models better explained the variability in the data and exhibited more 

statistically significant results, which supports the integrationist model of brain function. 



 

179 
 

The intra-network models include either only the TNN or only the TPN and the activities 

of each with itself, which restricts the regions being investigated to a more localized 

model of brain function. The activities of the two networks with each other provide a 

more global measure that takes into account how the divergent networks modulate one 

another. 

The brain-behavior models between functional connectivity and memory produce 

heterogeneous results compared to the models with executive function scores as an 

outcome. The heterogeneity in the memory models may be due to the fact that memory 

utilizes regions in the brain from both the TNN and the TPN. Executive function, on the 

other hand, requires the TPN in the absence of the TNN. The positive and negative 

coefficients for the connectivity scores in the inter-network model for memory reflects 

this biology. This result also suggests that executive function would be a more sensitive 

domain to target.  

6.2.3 Experience Corps and Functional Connectivity  
The longitudinal changes in functional connectivity are subtle for most network 

pairs. EC appeared neuro-protective for particular inter-network and intra-network 

connectivity scores of interest. However, the heterogeneity in the overall results suggests 

that it is difficult to measure the neuro-protective benefit of the intervention using global 

measures of brain connectivity. Since the overall connectivity scores remained stable 

over the follow-up period, it may be that there was not enough variability in the data to 

detect statistically significant differences between the EC and control groups. 

Nevertheless, the lack of change also represents a methodological advantage: the 
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functional connectivity scores are a stable measure with minimal noise, which can be 

used to evaluate changes in brain function. 

6.2.4 Experience Corps and Cognitive Function 
The analysis on the longitudinal effects of EC on cognitive functions 

demonstrated differences between the executive function and memory domains.  While 

executive function improvements were detected in the EC group compared with the 

control group at Follow-Up II; the memory score improves for both groups similarly. 

Therefore, this analysis provides further support that executive function may be the more 

sensitive domain to target for interventions.  

6.2.5 Strengths and Limitations 
Attributes of the study design, intervention, and methods used in the analysis 

carry both strengths and limitations. We discuss these attributes below. 

A methodological choice that we made is to use the results from the ROI analysis 

from Aim 1 to answer the questions posed in Aims 2 and 3. We used the ROI results to 

relate functional connectivity with cognitive functions, and to investigate the longitudinal 

intervention effect, in order to keep the method simple. As the conceptual problem 

became more complex, and we sought to answer more challenging questions, using a 

simple methodology provides a source of strength. The ROI methodology relies on a 

priori seeds from the literature, and this reliance on previously validated studies allows us 

to place our novel results answering new questions in the landscape of what has already 

been discovered. The ROI methodology is also the easiest to standardize, which would 

help to make our results more generalizable. However, using this method for Aims 2 and 

3 also presents potential trade-offs. The ROI method depends on seeds from the 
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literature, which were developed on populations of young healthy adults, and therefore 

may not be appropriate for the BHS sample of older adults. The ICA method is data-

driven, and therefore can be better calibrated for our sample, which would present a 

strength over the ROI method. However, because ICA is data-driven, it would be more 

difficult to standardize the results. Therefore, ultimately, the ROI method represented a 

sound methodological decision for our analyses. However, to improve the ROI method, 

seeds should be developed that are based on populations of older adults rather than 

relying on young healthy adults as the standard. 

The entire fMRI investigation utilized a standard preprocessing protocol that 

researchers originally developed using samples of young healthy adults. The 

normalization step involves warping the brains onto a standard MNI template, which is 

larger than the brain images from the BHS sample and its ventricles are smaller. Warping 

the BHS brain images onto the MNI template brain may result in changes that alter the 

biological inference from each image. Section 5.1.2 discussed how the brains of older 

adults are more heterogeneous than the brains of younger adults; therefore, the same 

structures from the MNI template may not necessarily map to the brain images from the 

BHS sample. A template that allows for more subject-specific variability would provide a 

more accurate standard for the BHS data. However, no such template exists for older 

adults, and investigations that do use their own template do so as the primary purpose of 

their studies. The purpose of this study extends beyond normalization, and seeks to 

establish brain-behavior relations. Therefore, we decided to use the standard template in 

the field in order to make the results generalizable to other trials, and instead we have 
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developed methodological advancements relevant to the questions that we have directly 

addressed. 

A potential limitation of the neuropsychological tests administered is that they are 

all susceptible to practice effects. This is a weakness of administering the same 

behavioral test at multiple points. In our investigation, the tests resulting from the 

memory score exhibited practice effects, and we treated the fact that the scores improved 

longitudinally in our interpretation as a nuisance because it became more difficult to 

gauge the effects of aging. However, perhaps the very existence of practice effects in 

samples of older adults is something to celebrate—it demonstrates that older adults can 

continue to learn and improve, challenging some theories of cognitive aging, and 

providing hope in developing interventions to promote growth and community 

involvement for older adults.  

The longitudinal study design represents one of the key strengths of this 

investigation. Few longitudinal fMRI RCTs exist in older adults. The longitudinal aim 

also exhibits the smallest effects, compared to Aims 1 and 2, and a number of the 

differences surface only at Follow-Up II. Therefore, this investigation may show stronger 

effects with additional follow-up visits. It may take more than two years to detect 

biologically meaningful changes.  

 The multi-modal nature of the intervention has been raised as a potential 

weakness due to the difficulty in detecting which aspects of the intervention may be most 

beneficial for functional connectivity and cognitive functions. What about Experience 

Corps should confer the benefits in brain network connectivity and in cognitive abilities? 
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Is it the generativity? Is it the expanded social networks? Is it the physical activity from 

traveling to the schools? To parse out which aspect is associated with the most benefit, 

novel technological devices are necessary to measure each aspect separately. Perhaps an 

accelerator could be incorporated to measure the physical activity; a GPS to measure and 

estimate social networks; and a smart device to measure feelings of generativity 

throughout the day. Trials incorporating these types of gadgets are under development in 

the BHS; and in the meantime, the study presented as it is also presents a strength 

because the multimodal nature of EC is more representative of real-life interactions. It 

may be that the benefits cannot be partitioned because it is neither generativity nor 

physical activity alone that improves brain health and neurocognitive functions. Perhaps 

it is the synergy between being generative and active that yields benefit. Such synergy 

would not be captured by separate analyses of each individual modality. The multimodal 

nature of EC also serves as a better intervention in the effort to prevent dementia, which 

has multifactorial origins, and therefore requires interventions that address multiple 

domains. Designing multi-domain interventions is a great challenge, and few such 

interventions exist in randomized controlled trials for older adults; therefore EC presents 

a paradigm that can be replicated.       

6.3 Future Directions 
This investigation provides a foundation for the understanding of functional 

connectivity, its relation to cognitive functions in older adults, and how these brain and 

behavioral measures are modified by Experience Corps. The data come from a 

community-based sample of socio-economically diverse older adults, which is unlike 

most fMRI studies, and makes the results more generalizable. One avenue that future 

studies could take is to develop the connectivity scores into clinically meaningful 
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measures with predictive utility for cognitive decline. Aim 2 showed that select cognitive 

scores are associated with better performance on neuropsychological tests. Thresholds 

could be selected based on these results and tested on new populations in order to further 

refine the connectivity score into a metric that could one day be used in clinic. This 

metric could help detect changes in cognitive functions before they become clinically 

meaningful, far before the onset of dementia, while there is still time to intervene.  
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Adobe	  Photoshop	  CSS,	  SPM,	  FSL,	  and	  Mipav;	  intermediate	  in	  SAS,	  WinBUGS,	  
and	  MPLUS	  

Languages:	   English	  (Native);	  Arabic	  (fluent	  in	  spoken);	  and	  Spanish	  (proficient)	  
	  
TEACHING	  &	  WORK	  EXPERIENCE	  
Spring	  2013	   Lead	  TA,	  280.375	  Cultural	  Factors	  in	  Public	  Health	  (undergraduate),	  	  
&	  2014	  	   Johns	  Hopkins	  University.	  Developed	  syllabus;	  taught	  select	  classes;	  wrote	  

and	  graded	  homework	  assignments,	  quizzes,	  papers,	  and	  presentations;	  led	  
discussion	  sections;	  held	  office	  hours;	  managed	  course	  website;	  and	  
addressed	  student	  needs.	  

Spring	  2013	   Lead	  TA,	  330.623	  Brain	  and	  Behavior	  (graduate),	  Johns	  Hopkins	  Bloomberg	  
School	  of	  Public	  Health.	  Graded	  essays	  and	  exams,	  gave	  a	  lecture,	  held	  office	  
hours.	  

2011-‐2012	   TA,	  140.621-‐2	  Statistical	  Methods	  in	  Public	  Health	  I-‐IV	  (graduate),	  Johns	  
Hopkins	  School	  of	  Public	  Health.	  Conducted	  lab,	  graded	  assignments	  and	  
exams.	  

2010-‐2011	   TA,	  140.651-‐3	  Methods	  of	  Biostatistics	  I-‐IV	  (graduate),	  Johns	  Hopkins	  
School	  of	  Public	  Health.	  Conducted	  lab,	  graded	  assignments	  and	  exams.	  

Summer	  2010	   TA,	  140.613-‐4	  Data	  Analysis	  Workshop	  I-‐II	  (graduate),	  Johns	  Hopkins	  
School	  of	  Public	  Health.	  Conducted	  STATA	  lab.	  

2007-‐2009	   Peer	  Led	  Instructor,	  Calculus	  I,	  II,	  and	  III	  (undergraduate),	  Bryn	  Mawr	  
College.	  	  Carried	  out	  weekly	  review	  sessions,	  facilitated	  group	  learning,	  
graded	  assignments.	  

2006-‐2009	   Head	  Supervisor,	  Haffner,	  Bryn	  Mawr	  College	  Dining	  Services,	  Bryn	  Mawr,	  
PA	  
Hired	  65	  student	  workers	  annually;	  recruited	  and	  hired	  3-‐6	  supervisors	  
annually;	  scheduled	  student	  workers	  regularly;	  worked	  with	  cooks	  and	  
manager	  to	  improve	  procedures;	  planned	  social	  events	  for	  student	  workers;	  
trained	  student	  workers;	  introduced	  improved	  sanitary	  practices	  and	  
healthier	  food	  options	  campus-‐wide.	  	  
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2006-‐2009	   Peer	  Mentor,	  Resident	  Dorm,	  Bryn	  Mawr	  College,	  Bryn	  Mawr,	  PA	  
Helped	  students	  excel	  by	  advising	  on	  time	  and	  stress	  management	  and	  
course	  planning.	  	  

Winter	  2005	   Researcher/Analyst,	  Telogical	  LLC,	  McLean,	  VA	  
Researched	  competitive	  marketing	  intelligence	  for	  Telecom	  service	  
providers;	  Prepared	  extensive	  report	  comparing	  digital	  video	  recorders’	  
features.	  

Summer	  2004	   Intern,	  Supervisor	  Penny	  Gross,	  Mason	  District	  Government	  Center,	  Fairfax,	  
VA	  

&	  2005	   Participated	  in	  zoning	  meetings,	  worked	  with	  Department	  of	  Motor	  Vehicles	  
to	  fix	  roads;	  drafted	  articles	  for	  The	  Civic	  Associations	  Newsletter;	  edited	  
weekly	  newsletter,	  wrote	  scripts	  for	  television	  show,	  Mason	  Matters;	  met	  
with	  constituents.	  

	  
HONORS	  	  	  	  
Summer	  2014	   Best	  New	  Investigator	  Poster	  Research	  Presentation.	  	  International	  Society	  

For	  Pharmacoeconomics	  and	  Outcomes	  Research	  
Spring	  2014	   2nd	  Place	  Poster	  Prize.	  JHSPH	  Gerontology	  Interest	  Group	  
Summer	  2013	   National	  Science	  Foundation	  Scholar	  awarded	  by	  the	  American	  Chemical	  

Society	  Green	  Chemistry	  Institute	  
2009-‐Present	   National	  Science	  Foundation	  Graduate	  Student	  Research	  Fellowship	  
2009-‐Present	   Sommer	  Scholar.	  Honors	  JHSPH	  students	  for	  leadership	  	  
Summer	  2009	   Enhancing	  Diversity	  in	  Graduate	  Education	  Scholar	  
Spring	  2009	   Charlotte	  Angas	  Scott	  Prize	  for	  excellence	  in	  mathematics	  
2007-‐2009	   Clare	  Boothe	  Luce	  Scholar.	  Honor	  for	  excellence	  in	  mathematics	  and	  

leadership	  record	  
2007-‐2009	   Mellon	  Mays	  Undergraduate	  Fellow.	  Awards	  commitment	  to	  higher	  

education	  
Summer	  2007	   International	  Summer	  Internship	  Award,	  Bryn	  Mawr	  College	  
Summer	  2006	   Green	  Grant,	  Bryn	  Mawr	  College	  Alumna	  
Spring	  2005	   Princeton	  University	  Prize	  in	  Race	  Relations	  
Spring	  2005	   National	  Conference	  for	  Community	  and	  Justice	  Brotherhood	  Sisterhood	  

Youth	  Award	  
Spring	  2005	   The	  Honorable	  Thurgood	  Marshall	  Scholarship	  
	  
LEADERSHIP	  
2010-‐Present	   Founder,	  President,	  Johns	  Hopkins	  Apiary	  Association	  

Installed	  a	  honeybee	  hive	  on	  campus,	  raise	  awareness	  on	  importance	  of	  
pollination;	  organize	  Earth	  Week	  annually.	  

2011-‐Present	   Mentor,	  Hopkins	  Honeybees	  at	  Homewood,	  Johns	  Hopkins	  University	  
Helped	  to	  found	  the	  club,	  established	  the	  beehive,	  and	  trained	  students	  in	  
beekeeping.	  

2010-‐2013	   President,	  Johns	  Hopkins	  Graduate	  Muslim	  Students	  Association.	  
Organized	  weekly	  prayer	  service	  for	  students,	  faculty,	  staff,	  and	  patients.	  
Served	  as	  liaison	  between	  Johns	  Hopkins	  Medical	  Institution	  international	  
Muslim	  patients	  and	  Chaplain's	  office;	  and	  between	  the	  Johns	  Hopkins	  
Bloomberg	  School	  of	  Public	  Health	  Muslim	  students	  and	  the	  Dean's	  office.	  
Organized	  annual	  events,	  including	  the	  Ramadan	  Banquet,	  Eid	  celebrations,	  
lecture	  series,	  and	  multi-‐faith	  conversations.	  
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Spring	  2012	  	   Campus	  Coordinator,	  Bike	  to	  Work	  Day,	  Johns	  Hopkins	  University	  
Increased	  participation	  by	  300%,	  planned	  safety	  and	  sustainability	  biking	  
workshops.	  

Spring	  2008	   President,	  Self	  Government	  Association	  of	  Bryn	  Mawr	  College,	  Bryn	  Mawr	  
Reformed	  election	  system	  to	  facilitate	  voting,	  developed	  initiatives	  to	  review	  
and	  revise	  constitution	  and	  Honor	  Code,	  increased	  participation	  in	  SGA	  by	  
50%.	  

2007-‐2009	   Founder,	  National	  Solidarity	  Project,	  Pennsylvania-‐Wide	  
Collaborated	  with	  33	  colleges	  and	  universities	  in	  Pennsylvania	  to	  raise	  
$47,000	  towards	  scholarship	  funds	  in	  memories	  of	  the	  Virginia	  Tech	  School	  
Shooting	  Victims.	  

2007-‐2009	   Founder,	  Instructor,	  Multi-‐Faith	  Running	  Initiative,	  Bryn	  Mawr	  College	  
Developed	  course	  for	  Physical	  Education	  credit;	  Organized	  weekly	  runs,	  
discussions,	  and	  dinners;	  All	  13	  members	  participated	  in	  Philadelphia	  
Marathon.	  

2006-‐2009	   Founder,	  President,	  Bryn	  Mawr	  College	  Apiary	  Association.	  
2005-‐2006	   Delegate,	  Model	  United	  Nations,	  Bryn	  Mawr	  College.	  	  
2004-‐2005	   President,	  Student	  Government	  Association,	  JEB	  Stuart	  High	  School,	  Falls	  

Church,	  VA	  
	  
	  
PUBLIC	  SERVICE	  
Summer	  2007	   Social	  Worker	  and	  Teacher,	  Jordanian	  Women’s	  Union,	  Irbid,	  Jordan.	  	  	  

Founded	  a	  school	  to	  teach	  Iraqi	  refugees	  ages	  5-‐17;	  taught	  English	  and	  Math;	  
worked	  with	  Iraqi	  mothers	  to	  obtain	  housing	  and	  healthcare;	  wrote	  grants.	  

Summer	  2006	   Volunteer	  Intern,	  Office	  of	  Pesticides	  Program,	  US	  EPA,	  Washington	  D.C.	  	  	  
Assisted	  in	  policy-‐making	  on	  pesticide	  regulations	  and	  health	  effects;	  
Drafted	  speeches	  for	  EPA	  Administrator,	  OPPTS	  Director	  and	  Deputy	  
Director;	  Drafted	  piece	  on	  10	  year	  milestone	  accomplishments	  of	  “Food	  
Quality	  Protection	  Act.”	  

Summer	  2006	   Volunteer	  Intern.	  Congressman	  James	  P.	  Moran,	  8th	  District,	  VA.	  
Developed	  10-‐year	  plan	  to	  make	  America	  oil-‐free;	  prepared	  memo	  about	  
foreign	  held	  federal	  debt	  and	  a	  report	  about	  US	  involvement	  in	  Israel;	  
responded	  to	  constituents.	  

2008-‐2009	   Senior	  Representative,	  Mathematics	  Department,	  Bryn	  Mawr	  College,	  Bryn	  
Mawr,	  PA	  

	   	   Attended	  meetings	  with	  faculty,	  planned	  social	  department	  activities.	  
2006-‐2008	   Photographer,	  Mathematical	  Association	  of	  America,	  Bryn	  Mawr	  College	  	  
	  
	  
RESEARCH	  EXPERIENCE	  
Summer	  2013	   Summer	  Program	  on	  Neuroimaging	  Data	  Analysis,	  Statistical	  and	  Applied	  

Mathematical	  Sciences	  Institute,	  Research	  Triangle	  Park,	  NC,	  USA	  
Summer	  2011	   Industrial	  Mathematical	  and	  Statistical	  Modeling	  Workshop,	  North	  

Carolina	  State	  University,	  Raleigh,	  NC,	  USA	  
	   	   Experimental	  Design	  and	  Inverse	  Problems	  in	  Plant	  Biological	  Modeling	  	  
2008-‐2009	   MA	  Dissertation,	  Bryn	  Mawr	  College,	  Bryn	  Mawr,	  PA,	  USA	  
	   On	  the	  Boundedness	  of	  Oscillatory	  Integral	  Operators	  in	  Harmonic	  Analysis	  
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2008-‐2009	   Honors	  English	  Thesis,	  Bryn	  Mawr	  College,	  Bryn	  Mawr,	  PA,	  USA	  
A	  Detached	  Path	  to	  the	  Sacred:	  The	  prose	  &	  poetry	  of	  Wallace	  Stevens	  &	  
Annie	  Dillard	  

Summer	  2008	   US-‐Hong	  Kong	  Undergraduate	  Research	  Experience,	  sponsored	  by	  
National	  Science	  Foundation,	  Hong	  Kong	  City	  University,	  Kowloon,	  HK	  

	   Evaluation	  of	  Hypersingular	  Integrals	  Utilizing	  Quadrature	  Rules	  
	  
PRESENTATIONS	  
Summer	  2014	   International	  Society	  For	  Pharmacoeconomics	  and	  Outcomes	  Research	  

19th	  Annual	  International	  Meeting,	  Montreal,	  QC,	  Canada	  
	   Provision	  of	  Cultural	  Competency	  Training	  in	  the	  National	  Home	  and	  

Hospice	  Care	  Survey:	  The	  Role	  of	  Organizational	  and	  Leadership	  Factors	  
Spring	  2014	   Department	  of	  Mental	  Health	  Seminar,	  Johns	  Hopkins	  Bloomberg	  School	  

of	  Public	  Health,	  Baltimore,	  MD	  
	   Functional	  Connectivity	  in	  fMRI	  Brain	  Images	  of	  Older	  Adults	  from	  the	  

Baltimore	  Experience	  Corps	  Trial	  
Spring	  2014	   7th	  Annual	  Research	  on	  Aging	  Showcase,	  Johns	  Hopkins	  University,	  

Baltimore,	  MD.	  Functional	  Connectivity	  in	  fMRI	  Brain	  Images	  of	  Older	  Adults	  
from	  the	  Baltimore	  Experience	  Corps	  Trial	  

Fall	  2013	   Gerontological	  Society	  of	  America	  66th	  Annual	  Scientific	  Meeting,	  New	  
Orleans,	  LA	  
Changes	  in	  The	  Default	  Mode	  Network	  of	  Older	  Adults	  from	  Experience	  
Corps	  
	  

Summer	  2011	   Statistical	  Methods	  for	  Very	  Large	  Datasets	  Conference,	  Baltimore,	  MD	  
	   Sample,	  Model,	  and	  Analyze	  with	  Regression	  Trees	  (SMART)	  for	  Very	  Large	  

Datasets:	  A	  Case	  Study	  of	  the	  Hearst	  Magazines	  Challenge	  
Fall	  2008	   Eastern	  Mathematical	  Association	  of	  America	  Regional	  Conference,	  	   	  	  	  	  	  	  	  

Ursinus	  College,	  Collegeville,	  PA	  
	   Evaluation	  of	  Hypersingular	  Integrals	  Using	  Numerical	  Methods	  
Winter	  2008	   Mellon	  Mays	  Regional	  Conference,	  Bryn	  Mawr	  College,	  Bryn	  Mawr,	  PA	  
	   Convergence	  of	  Hyperharmonic	  Series	  Using	  Residue	  Theory	  	  
Winter	  2008	   Nebraska	  Conference	  for	  Undergraduate	  Women,	  	  

University	  of	  Nebraska,	  Lincoln,	  NE	  
	   Convergence	  of	  Hyperharmonic	  Series	  Using	  Residue	  Theory	  
	  
PROFESSIONAL	  MEMBERSHIPS	  
Gerontological	  Society	  of	  America	  
International	  Society	  For	  Pharmacoeconomics	  and	  Outcomes	  Research	  
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