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Abstract 

Cystic fibrosis (CF) is one of the most common genetic lung diseases caused by a mutation of the 

chloride regulator in airway cells, which leads to dysregulation of iron transport and airway 

dehydration. As a result, airway mucus in CF patients (i.e. CF sputum) is highly viscoelastic and 

hard to be cleared by physiological mucus clearance mechanism, thereby promoting chronic 

infection and inflammation. Previously, bacteria cell growth and neutrophil-mediated bacterial cell 

killing were studied with mucus solution prepared with different concentration of mucin which is 

the major macromolecular component of airway mucus. However, mucus solution does not 

recapitulate airway mucus on the account of failure to form physiological gel-like structures 

relevant to behaviors of bacteria and neutrophils. Thus, to investigate the effect of microstructure 

of mucus on these behaviors on the cellular and molecular levels, we developed artificial 

irreversible and bio-reducible mucus hydrogel with well-defined pore sizes and similar 

biochemical contents comparable to CF airway mucus, by chemically crosslinking porcine gastric 

mucin (PGM). Since CF patients are often treated with mucus-altering agents (i.e. mucolytics) to 

reduce the viscoelasticity of mucus, we not only evaluated the microstructure of artificial mucus 

hydrogel per se but also examined the mucolytic-mediated microstructural changes using multiple 

particle tracking method. The results here show that the microstructure and mucolytic-mediated 

microstructure changes of artificial bio-reducible mucus hydrogels are comparable to what were 

observed in CF sputum. And we also confirmed that bulk rheology of bio-reducible artificial 

mucus is comparable to that of CF sputum. In addition, mucolytic-mediated changes in bulk 

rheology properties of the mucus hydrogel and CF sputum were virtually identical. Furthermore, 

we investigated the biochemical properties of bio-reducible mucus hydrogel (i.e. mucin and, 
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cysteines content), and lastly, the ability of bacteria to grow in artificial bio-reducible mucus 

hydrogel. These results show that the artificial bio-reducible mucus hydrogel is a promising model 

to investigate the effect of mucus microstructure on mucosal pathogenesis and innate immunity in 

CF airways. 
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Introduction  

1.1 The structure and function of airway mucus  

Mucus provides a physiological barrier to environmental toxins and pathogens and is one of the 

first lines of innate immune defense in the conducting airway epithelium [1]–[4]. Normal mucus 

clearance is mediated by a two-phase liquid system that interfaces with beating cilia [5]. The upper 

phase is a mucus layer, which is a polymeric network that has bulk viscoelastic physical 

characteristics despite being made up of ~97% water. Thus, mucus is a polymeric gel with both 

fluid and solid properties, such as soft, elastic and viscous [3], [6]–[9]. The composition of normal 

mucus are 97% water and 3% solids (mucins, non-mucin proteins, salts, lipids and cellular debris). 

Mucins are exceedingly large glycoproteins, the monomer of which is typically 10-40 MDa in size 

and 0.2-0.6 µm and linked together by disulfide bonds. The multimers are like long flexible strings 

densely coated with O-linked N-acetyl galactosamine and N-linked sulfate-bearing glycans, which 

are negatively charged [7], [10]–[15]. These glycosylated and highly hydrophilic regions are 

separated by hydrophobic regions that fold into hydrophobic globules which stabilized by multiple 

internal cysteines-rich domains [7], [10]–[15]. Five of the secreted mucins have terminal cysteine 

rich domains that can form disulfide bonds resulting in polymers that impart the properties of a 

gel. Two of these polymers, MUC5AC and MUC5B, are highly expressed in the airways [7], [9], 

[15]. They form the mucus gel both by network entanglement and by noncovalent calcium-

dependent cross-linking of adjacent polymers [6], [13]. Since the mucin chain can bind to large 

amounts of water, this can act as a liquid reservoir for periciliary layer [16]. The hydration of 

mucus significantly affects the viscosity and elasticity of mucus, which in turn determines the 
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ciliary action and the clearance effect of mucus [3], [6], [8], [13], [16], [17]. However, excessive 

secretion of mucin or maladjustment of surface fluid volume hinders clearance of mucus and 

increased mucus elasticity [3], [6], [8].  

1.2 Cystic Fibrosis 

Cystic fibrosis (CF) is one of the most common inherited chronic disease that affects nearly 30,000 

individuals in United States [18]. A hallmark of CF is chronic respiratory infection, which may 

start very early in the life of these patients. And much of morbidity and mortality associated with 

CF is related to the pulmonary system, primarily the upper and lower airways and ultimately 

leading to premature death in 90% of patients [19], since CF is caused by mutations in the CF 

transmembrane conductance regulator (CFTR) gene, which encodes the main anion channel 

expressed in the epithelium [20]. The most accepted hypothesis is that the mutation of CFTR 

causes a defect in CFTR proteins, and thus, a lack of transport of chloride and accompanying water 

across the airway epithelium. Then, excessive sodium reabsorption lead to dehydration of airway 

surface fluid and impaired mucociliary clearance. The resulting increased viscosity of mucus result 

in the inability of clearing secretions, which leads to chronic infection, inflammation and 

irreparable mucus clearance [5], [18], [21], [22]. Even patients that are treated with antibiotics and 

mucolytics that modify properties of mucus still suffer from irreparable lung damage. 

1.3 The formation of pathologic mucus 

In patients with cystic fibrosis, MUC 1, 2, 5AC and 5B are translated and MUC5AC and MUC5B 

products have been demonstrated to be the major components in airway mucins [23]. The 

characteristics of CF mucus are neutrophil infiltration, high concentrations of neutrophil-derived 
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DNA and actin filaments [9], [24]; infection with organisms such as Pseudomonas aeruginosa, 

Staphylococcus aureus, and aspergillus species, often form biofilms at the epithelial-cell surface.  

The dehydrated, highly entangled polymeric macromolecule that forms a gel matrix with a reduced 

pore size from about 500 nm to about 150 nm [3]. The reduction in pore size lead to immobilize 

the microorganisms in the mucus gel, thereby improving the formation of biofilms and inhibiting 

the movement of neutrophils that prevents clearing the infection [25]. The effects of these 

processes are manifested (a) radiographically as bronchiectasis, (b) pathologically as neutrophilic 

inflammation, airway fibrosis, (c) increased numbers of mucin-secreting cells, especially in the 

submucosal glands, (d)clinically as cough, purulent sputum, recurrent lung infections, and (e) rapid 

loss of lung function [26]–[28]. 

1.4 Recent progress in CF mucus study 

To investigate the effect of airway surface liquid (ASL) hyperabsorption on bacteria biofilm 

formation, Matsui, etc. used normal (2.5% solids wt/wt) and CF-liked (8%) concentrations of 

mucus which obtained from well differentiated human airway cultures as model to mimic the 

interaction of inhaled bacteria with a central feature of the CF lung. By investigating bacteria 

microcolony development, they found that the concentrated mucus (8%) generates a unique 

environment in which bacteria are confined spatially so that the capacity of bacteria to leave the 

site by their normal means of motility is restrained [29]. They also investigated the ability of 

neutrophil capture and killing bacteria by similar model. Furthermore, they found that in CF-like 

concentrated mucus (6.5%) harvested from in vitro airway epithelial cells, the ability of neutrophil 

capture and killing bacteria are suppressed [30]. However, they mainly focused on the bulk 

property of mucus as in mucus concentration (e.g. % solids contents).  
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In our previous study, it was proved that the microrheological and microstructural properties of 

human mucus secretions can be assessed by monitoring the diffusion rates of muco-inert 

nanoparticle (MIP) probes, also referred to as mucus-penetrating particles (MPP) in our prior 

studies [8], [31]–[33]. MIP with diameters smaller than mucus mesh spacings are capable of 

efficiently penetrating sputum since dense surface coatings with polyethylene glycol (PEG) render 

the particle surface muco-inert. MIP transport in mucus is primarily hindered by physical 

obstruction imposed by the mucus mesh structure rather than adhesive interactions [33], [34]. 

Duncan GA, et al., correlated patient-specific sputum microstructural properties and solids content 

with clinical status, FEV1 (i.e. the maximal amount of air you can forcefully exhale in one second). 

And they found that percent solids content which did not significantly corelate well with FEV1, 

however, the microstructures of mucus Log10 (median MSD1s) were positively and significantly 

correlated with measured FEV1 [21].  

1.5 Motivation  

Mucus hypersecretion and airway dehydration lead to pulmonary exacerbation associated with 

polymicrobial infection both virus and bacteria, which means that a CF patient at particular point 

of time may be infected with a number of different organisms. And the phenotype of bacteria like 

Pseudomonas aeruginosa may also change from non-mucoidal to mucoidal state when patients 

have been infected for a prolonged period of time [19]. Thus, duo to the complex 

microenvironment in CF airway mucus, it is hard for researchers to understand the behavior of 

bacteria and the distribution of inflammatory cells based on effect of microstructure. Thus, in order 

to get better understanding of bacteria behavior and inflammatory cell distribution, it is necessary 

to develop an artificial mucus hydrogel to mimic CF patients’ sputum not only from solids content 

but also from microstructure features.  
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Thus, in this study, we developed both irreversible and bio-reducible artificial mucus hydrogel to 

mimic CF airway mucus by crosslinking mucin from porcine stomach with different crosslinkers. 

We further assessed the microstructure of artificial mucus hydrogel with different crosslinking 

density, evaluated the mucolytics-mediated microstructure changes, and bulk rheology changes of 

artificial mucus hydrogel compared with that of CF airway mucus. We also examined the 

biochemical components such as the mucin content and disulfide bonds (e.g. cysteine 

concentration) in artificial hydrogel. We compared these components with those found in CF 

airway mucus. These results will establish a promising model to investigate the effect of mucus 

microstructure on pathogenesis and inflammatory cells transport. 
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Materials and Methods 

2.1 Develop artificial mucus hydrogel model  

For non-bio-reducible artificial hydrogel model, pig gastric mucin (PGM) solutions were prepared 

by dissolving PGM (Porcine gastric mucin, Sigma-Aldrich) with buffer solution containing 

154mM NaCl, 3mM CaCl2, and 15mM NaH2PO4 at pH 7.4 and were rapidly mixed for 2 hours 

using a magnetic stir plate to achieve concentration of 10% (w/v). MW 1000 SC-PEG-SC 

(Biochempeg Scientific Inc.) which contain NHS ester at two arms at varying final concentrations 

were added dropwise to PGM solutions to achieve a final concentration of 5% (w/v). The solution 

was mixed by pipetted several times. And the mixed solution was incubated overnight in the shaker 

at 37°C, 225 RPM to allow cross-linking to occur. The cross-linked mucus hydrogel was 

subsequently collected by centrifugation at 17, 000 g for 1 hour. The supernatant was removed, 

and the pellet was then flash frozen in liquid N2 and lyophilized overnight. The lyophilized, cross-

linked mucus hydrogels were reconstituted to the final overall solids content of 5% in the original 

buffer solution and then the hydrogels swelled for 24 hours before being used. 

For bio-reducible artificial hydrogel model, hydrogels mainly composed of PGM were prepared 

by addition of MW 2000 OPSS-PEG-OPSS (Laysan Bio, Lnc.). PGM solution with concentration 

of 10%, 20% 30% and 40% were prepared with same way.  The PGM solutions with different 

concentrations were treated with Dithiothreitol (DTT) (Sigma-Aldrich). The molar ratio of 

disulfide bonds in PGM solution and DTT is 1:2. The solutions were mixed by vertexing at the 

highest speed for 1 min. The mixed solutions were incubated at 37°C water bath for 2 hours to 

break the disulfide bonds. OPSS-PEG-OPSS was dissolved with original buffer solution and then 

mixed into PGM solution. The molar ratio of OPSS-PEG-OPSS and thiol group is 2:1. After mixed 
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by pipetted several times and quickly vortexed, the mixed solutions were incubated in 37°C shaker 

with shaking at 225 RPM for 48 hours to allow cross-linking to occur. The pellets were 

subsequently collected by centrifugation at 17, 000 g for 1 hour and the supernatant was removed. 

The pellet was then flash frozen in liquid N2 and lyophilized overnight. The lyophilized, cross-

linked mucus hydrogels were reconstituted to the final overall solids content of 5% in the original 

buffer solution and then the hydrogels swelled for 24 hours before used. 

2.2 Develop mucus-inert nanoparticle (MIP) 

Fluorescent, carboxylate-modified polystyrene spheres (PS-COOH) with 100 nm diameter 

(Molecular Probes) were coated by covalently with 5 KDa methoxy-PEG-amine (Creative 

PEGWorks) using carbodiimide coupling chemistry. The PS-COOH particles were sonicated for 

10 min prior to aliquoting. The aliquoted particles were diluted 4-fold in ultrapure water and then 

were sonicated for 7 min. PEG 5K-NH2 were added 2-fold excess to the particle suspension. After 

mixing the suspension solution and dissolving the PEG-NH2, N-hydrooxysulfosuccinimide 

sodium salt (sulfo-NHS, Sigma-Aldrich) was added and quickly dissolved by vertexing. The 

mixed solution was diluted 5 times by 200mM borate buffer, pH 8.2. 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC, Invitrogen) was added immediately and 

mixed by vertexing. The mixed solution was incubated at room temperature and mixed for at least 

12 hours. After incubation, the particle solution was dialyzed in ultrapure water for 24 hours by 

using the Spectra/Por Dialysis membrane MWCO: 100KD (Biotech CE Tubing) to remove 

byproducts. The dialyzed particle solution was collected and lyophilized overnight. The particle 

pellet was resuspended to achieve solid content 2%. The modified particles were stored in 4°C 

fridge before using.  
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2.3 Particle characterization and stability test   

Particle characterization: PS particles and PSPEG particles were diluted in 10 mM NaCl at pH 7.4, 

and then added in to pre-washed disposable folded capillary cells (Malvern) for zeta potential and 

UV-transparent disposable cuvettes (Sarstedt, Int.) for hydrodynamic diameter and polydispersity 

index (PDI). The zeta potential and size were tested using Zatasizer Nano ZS90. 

Particle stability test: PGM solution with different concentration was made with the original buffer 

solution. The PEG coated particles PSPEG and non-coated particles PS were diluted 1000 times 

with PGM solution. The solutions were mixed by sonicated 5 min. Then 150 µL mixed particle 

solution were added in the UV-transparent disposable cuvettes (Sarstedt, Int.). the size of each 

particles was measured at different time points by using Zetasizer Nano ZS90 (Malvern 

Instruments), at 137° scattering angle. 

2.4 Human specimens  

Spontaneously expectorated CF sputum samples were collected from patients at the adult CF clinic 

at Johns Hopkins University. And the microstructures of CF sputum samples were characterized 

within 24 hours, since after 24 hours the microstructures of sputum samples would change 

significantly because of degradation of mucins. And the rest of CF sputum samples used for 

biochemical properties analysis were stored in -80°C freezers.  

2.5 Characterize artificial mucus hydrogel and CF sputum with and without 

mucolytics treatment 

Ten microliter aliquots of hydrogels were dispensed in custom microscopy slides using positive-

displacement pipette (Gilson, Inc.). Next, 0.5 µL of pre-mixed PSPEG and PS particles with 

concentration of 0.002% and 0.0002% were dispersed gently in the hydrogel and CF sputum 
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samples. Also, to test the effect of mucolytic on hydrogel and CF sputum samples, 0.5 µL TCEP 

or 0.5 µL NAC were added into hydrogel to achieve 10-20 mM final concentration of mucolytics. 

The slides were sealed with a small coverslip to prevent evaporation and the slides were incubated 

for 30 min to 1 hour and avoiding the light. Samples were imaged at room temperature using an 

Axio Observer inverted epifluorescence microscope and ×100/1.46 NA oil-immersion objective 

with image resolution of 25 nm/pixel (Zeiss). To avoid edge effects due to the presence of glass 

coverslips, images were taken centrally within the sample approximately 2 μm away from the 

bottom coverslip. Videos were recorded at a frame rate of 15 Hz for 300 frames, using an EM-

CCD camera (Evolve 512; Photometrics). For each sample, 3–5 videos were collected. 

2.6 Multiple particles tracking analysis 

Motions of nanoparticles were captured at 15 frames per second (i.e. exposure time of 67 ms) for 

20 seconds and MetaMorph software (Molecular Devices, San Jose, CA) were used. The time-

averaged mean squared displacement (MSD) values are averaged squared distances travelled by 

individual particles at a given time interval (i.e. timescale in seconds) and thus are directly 

proportional to particle diffusion rates. The analysis was performed using automated software 

written in MATLAB (Mathworks), based on a previously developed algorithm. Briefly, the x and 

y positions of nanoparticle centers were determined based on an intensity threshold. Trajectories 

of particles were constructed by connecting particle centers of all images and obtaining the moving 

distance between each frame. The time-averaged mean squared displacement [MSD(τ)] can be 

calculated for each particle trajectory: <Δr2(τ)> = < [x(t + τ)-x(t)]2 + [y(t + τ)-y(t)]2 >, where τ is 

the time lag between frames. The median values were determined based on measured MSD for 

individual particle. Also, we have found previously that when MSD measured at τ = 1s (e.g. 
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MSDτ=1s), the static error does not cause significant effects on calculated MSD values. Based on 

this, Log10(median MSDτ=1s) was used as our primary readout for evaluating hydrogel pore size. 

2.7 Particle-tracking microrheology analysis 

The viscoelastic properties of hydrogels can be determined using the generalized Stokes-Einstein 

relation, which has been successfully used in prior studies of CF sputum, which relates the 

viscoelastic spectrum [G(s)] to the Laplace transform of <Δr2(τ)>, <Δr2(s)>, with the equation G(s) 

= 2kBT/[πas<Δr2(s)>] by assuming that the local viscoelastic modulus around a sphere is the same 

as the macroscopic viscoelastic modulus, where kBT is thermal energy, a is particle radius, and s 

is the complex Laplace frequency, s = i ω, in which i is a complex number and ω is frequency. 

Based on this, the complex modulus can be calculated as G*(ω) = G’(ω) + G”(iω) defined by 

storage modulus and loss modulus which given by Gr(t). The elastic modulus per blob is in an 

order of kBT, where kB is the Boltzmann constant and T is the absolute temperature. In polymer 

gels, the elastic blob is considered to be equal to the geometric blob (the size of the average distance 

between the crosslinkers or branch points); the polymer chains between crosslinkers are the 

elastically effective chains. The net elastic modulus (G’) of the gel is written as the product of 

number density of elastic blob (ρel), the elastic modulus per blob is: G’ = ρelkBT. By assuming a 

cubic lattice for simplicity, the size of elastic blob is given as: ξel= ρel
−1/3. Thus, the pore size of 

the sputum hydrogel (ξ) can be estimated based on measured G’ as ξ ≈ (kBT/G′)1/3 [35]–[38]. The 

microviscosity and pore size values were determined from individual PSPEG trajectories rather 

than based on ensemble average MSD, given the heterogeneous nature of PSPEG transport in CF 

sputum samples. 
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2.8 Examine the rheology of bio-reducible mucus hydrogel 

Rheological measures were derived from a MCR 302 Rheometer (Anton Paar Germany GmbH) 

with 8 mm roughened flat plate geometry set at a gap height of 150 microns. An aliquot of 25 

microliters of mucin hydrogel was placed between plates with the following procedures. For TCEP 

experiments, the gel was pre-incubated with 10-20 mM TCEP for 30 minutes before recording the 

data using Rheoplus V3.6 software (Anton Paar). An amplitude sweep was performed on each 

hydrogel to determine an appropriate strain rate. The G’ and G” values were derived from the 

linear viscoelastic regime of the frequency sweep between 0.1 to 10 rad/s at 5-10% strain at 25°C.  

2.9 Examine the disulfide bonds in PGM solution, bio-reducible mucus hydrogel 

and CF sputum  

CF sputum, PGM solution with different concentrations and bio-reducible mucus hydrogel with 

different pore size were papered using the original buffer and then diluted 10 times in 8M 

Guanidine Hydrochloride solution (Sigma-Aldrich). The diluted solutions were vortexed until 

became clear and homogeneous. The clear solutions were added 0.5M iodoacetamide (Sigma-

Aldrich) such that the final concentration is 10% (v/v) and incubation at room temperature for 1 

hour. 1M DTT was added such that the final concentration is 10% (v/v) and then the solutions 

were incubated at 37°C water bath for 2 hours. All small molecules were removed using premade 

zeba spin desalting columns. The column’s bottom closure was removed, and the cap was loosed. 

The columns were placed in a 1.5-2.0 mL collection tube, and then centrifuged at 1500 g for 1 

minute to remove storage solution. The columns were placed in a new tube. Sample was slowly 

added to the center if the compacted resin bed. The columns with sample were centrifuged at 1500 

g for 2 minutes to collect desalted sample. The serial dilutions of standard from 5mM L-cysteine 

(Sigma-Aldrich) were made. The 70 µL volume of 10 times diluted samples and standards were 
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added to plate. 70 µL of 2mM bromobimane (Sigma-Aldrich) were added to well and mixed. The 

plate was incubated at room temperature for 15 minutes and then read values by fluorescence (395 

excitation/ 490 emission) with auto scale option checked. All fluorometric measurements were 

performed using a microplate reader (BioTek Synergy Mx) [39].  

2.10 Examine the mucin concentration of bioreducible artificial mucus hydrogel 

and CF sputum 

The hydrogel sample was diluted with buffer solution containing 0.01M Na2HPO4 and 0.04% 

NaN3 at pH 7.4. Several dilutions of Mucin from bovine submaxillary glands (BSM) were made 

with filtered borate-phosphate buffer containing 0.3M borate, 0.3M phosphate dibasic at pH 8.0. 

0.5M Cyanoacetamide (Sigma-Aldrich) were made fresh. 0.1 mL Mucin solutions and sputum 

samples were mixed with 0.25 mL 0.5M Cyanoacetamide and 0.5 mL borate-phosphate buffer. 

The mixed solutions were incubated in oven for 3 hours at 100℃. The solutions were cooled by 

putting vials on ice for 15 min. Then solutions were aliquot into plate and read values by 

fluorescence (331 excitation/ 380 emission) with auto scale option checked [40], [41]. 

2.11 Bacteria Culture in Hydrogel 

To measure the bacteria growth in mucin from porcine stomach (PGM) and artificial bio-reducible 

hydrogel, 1 µl droplets (≈2000 CFU) P. aeruginosa were deposited on 15 µl of PGM (5% solids) 

and bio-reducible hydrogel (5% solids) of very MSD values in chambers. Before depositing P. 

aeruginosa in broth, 5% PGM and hydrogel, part of the stock bacteria suspension was collected, 

diluted with PBS, and plated on tryptic soy agar plates after serial dilution to test the starting 

number of P. aeruginosa. After that at 24, 48 h later, bacteria in PGM and hydrogel were collected, 

diluted with PBS containing 10mM DTT, and plated on tryptic soy plates after serial dilution. The 
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CFU (Colony-Forming Unit) of P. aeruginosa at different time point were counted after overnight 

incubation [29]. 

2.12 Statistical Analysis 

Statistical analysis and graphs were performed in Prism (GraphPad, San Diego, CA). Two sample 

comparisons were made using two-tailed, paired t-tests. All P values are two-sided and P < 0.05 

was considered significant.   
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Results and Discussion  

3.1 Developing mucus-penetrating nanoparticles 

In our prior studies, we have shown that nanoparticles (NPs) with carboxylate and hydrophobic 

polystyrene (PSCOOH) cores are immobilized by mucus via muco-adhesion by hydrophobic and 

electrostatic interactions regardless of particle size [31], [42]. But polystyrene particles with 

hydrophilic coatings of high-density PEG are able to move through the pores in entangled mucin 

network by steric hindrance and thus, do not perturb biophysical properties of airway mucus. 

Therefore, these pegylated PSCOOH probes can measure the pores in the microstructure of mucus. 

We can infer about the size of the pores since the diffusion of particles is primarily blocked by 

steric interactions [43]. If size of NP < pore size, then particles are mobile, and if size of NP > pore 

size, then particles are immobilized. Our previous studies have established that 100 nm PSPEG 

particles are able to probe and be sensitive to the microstructure of mucus from patients with cystic 

fibrosis (CF) [21], [32], [43]. 

Furthermore, 100 nm PSPEG particles were developed and characterized along with PS 

counterparts by using dynamic light scattering and laser Doppler anemometry in this study. As 

shown in Table 1, we found that while the hydrodynamic diameters, polydispersity indices, and 

Log10(Median MSD t=1s) in H2O of size-matched PSPEG and PSCOOH were comparable, the ζ-

potentials (i.e. an indicative of particles surface charge) of PSPEG were near neutral charge unlike 

highly negatively charged PSCOOH. 
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Table 1. Physiochemical properties of nanoparticles 

Particle Type 
ζ-potentialα 

(mV) 

Hydrodynamic 

Diameterβ 

(nm) 

Polydispersity 

Indexβ 

Log (Median 

MSD t=1s) in 

H2O 

100 nm PSCOOH -35.7 ± 1.8 87.9 ± 3.8 0.1 ± 0.01 0.76 

100 nm PSPEG   -4.1 ± 0.2 98.0 ± 6.9 0.1 ± 0.01 0.79 

      α Measured in 10 mM NaCl at pH 7.4. 

      β Hydrodynamic diameter and polydispersity index measured by dynamic light scattering   

 

In our previous study, we have tested the stability of PSPEG particles in physiological lung fluid, 

and the results show that PSPEG particles are stable in physiological fluid. Since we made bio-

reducible mucus hydrogel based on PGM solution, we also evaluated the stability of PSPEG 

particles in pig gastric mucin (PGM) solution. As shown in Figure 1, while both PSCOOH and 

PSPEG retained their particle diameters at first 4 hours in 0.1 mg/mL PGM solution, only 

PSPEG particles were capable of retaining their stability within 6 hours of incubation at room 

temperature.  

 

 

 
 
 
 
 
 
 
 

 

Figure 1. Stability of nanoparticles in mucin solution. Compared with PS particles which 

aggregated in mucin solution, PSPEG particles were stable in 0.1% mucin content after 6 hours of 

incubation at 25°C. (**p < 0.01, two-tailed, paired t-test, n = 3) 
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3.2 Microstructural properties of irreversible artificial hydrogels 

Irreversible mucin-based hydrogels were developed by crosslinking mucin fibers (PGM) using 

1000 Da SC-PEG-SC, which contain NHS ester groups at the side of two arms that react with 

amine groups in the mucin gel solution. After formulation (see Methods), the resulting bulk 

viscoelastic properties of the model mucus gel were confirmed qualitatively by an inversion test 

(Figure 2A). As evidenced by 100-nm PSPEG transport rates in mucin-based hydrogels at a fixed 

solids content of 5%, increasing the SC-PEG-SC concentration led to an increase in crosslinking 

density of mucin-based hydrogel, thereby reducing mesh pore size, as shown in Figure 2B. We 

next compared the Log10 (Median MSD τ=1s) of 100 nm PSPEG of irreversible hydrogel with that 

of CF sputum samples. We found that the Log10 (Median MSD τ=1s) varied among CF patients and 

median values of CF sputum are comparable with that of artificial irreversible hydrogels (Figure 

2C).  

 

Figure 2. Microstructure analysis of irreversible cross-linked mucin hydrogel and patients’ 

sputum sample. (A) Inversion test of a sample in an Eppendorf tube showing bulk viscoelastic 

properties of permanent cross-linked mucin-based hydrogel (containing 5% solids) and a CF 

sputum sample (right) at room temperature. Log10(Median MSD τ=1s) measured in (B) Irreversible 

mucin hydrogel (n = 3 replicates) by varying final concentrations of crosslinker and (C) patients’ 

sputum samples (n = 3 replicates per patient sample). Values listed as mean ± SEM. 
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We also investigated the impact of mucus-altering agent on microstructure of the artificial 

irreversible hydrogels, since our previous studies have shown the microstructural changes of CF 

sputum samples occur with mucolytic agents. Thus, in our study, we treated artificial irreversible 

hydrogel and CF sputum samples with TCEP and compared the mucolytic-mediated 

microstructure changes of them. As shown in Figure 3A & B, while TCEP was able to alter the 

microstructure of CF sputum mucus, this agent was unable to change the microstructure of 

artificial irreversible mucus hydrogel. Due to the limited change in Log10(Median MSD τ=1s) of 

artificial irreversible hydrogel by the mucus-altering agent, we turned to creating a bio-reducible 

mucus hydrogel to closely mimic reduction of CF sputum. 

 

Figure 3. The effect of mucolytic (TCEP) on microstructure of irreversible crosslinked mucin 

hydrogel and patients’ sputum sample. (A) Log10(Median MSD τ=1s) measured in irreversible 

mucin hydrogel with and without treatment with TCEP (n = 3 replicates) under varying final 

concentrations of cross-linker. (B) Log10(Median MSD τ=1s) measured in patients’ sputum sample 

with and without treatment with TCEP (***p < 0.001, two-tailed paired t-test, n = 3 replicates per 

patient sample). Values displayed as mean ± SEM. 
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3.3 Microstructure properties of artificial bio-reducible hydrogels 

Considering that the mechanism of mucus-altering agents such as NAC and TCEP is breaking 

disulfide bonds in cysteines domain, and in turn reducing the size of mucin polymer chain, we 

chose another crosslinker to crosslink mucin with disulfide bridges, which is 1000 Da  OPSS-

PEG-OPSS, contains pyridyl disulfide ethyl at edge of two arms enabling to directly synthesize 

disulfide bonds via disulfide thiol interchange, and the byproduct Pyridine-2-thione is very stable. 

The artificial bio-reducible mucus hydrogel with increasing cross-linking density engineered by 

controlling the initial concentration of PGM solution, as shown in Figure 4A. We next compared 

the Log10(Median MSD τ=1s) of 100 nm PSPEG of bio-reducible hydrogel with that of CF sputum 

samples. We found that the Log10(Median MSD τ=1s) varied among CF patients’ sputum are 

comparable with that of artificial bio-reducible hydrogels (Figure 4B). The resulting bulk 

viscoelastic properties of the model mucus gel were confirmed qualitatively by an inversion test 

(Figure 4C).  

 

Figure 4. Microstructure analysis of bio-reducible cross-linked mucin hydrogel and patients’ 

sputum sample. Log10(Median MSD τ=1s) measured in (A) bio-reducible mucin hydrogel varied 

by final concentration of PGM (w/v %) and (B) patients’ sputum samples. Values represented as 

mean ± SEM. (C) Inversion test showing bulk viscoelastic properties of bio-reducible cross-linked 
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mucin-based hydrogel (containing 5% solids) and a CF sputum sample (right). (***p < 0.001, n = 

3) 

 

The mean pore size was also determined for artificial bio-reducible mucus hydrogel (Figure 5) 

from MSD values (Figure 4A). The impact of mucus-altering agent on microstructure of 

developed artificial bio-reducible hydrogels was also evaluated. We treated artificial bio-reducible 

hydrogel and CF sputum samples with two different mucolytics TCEP and NAC. As shown in 

Figure 6A & B, NAC was able to alter the microstructure of both bio-reducible hydrogel and CF 

sputum mucus with Log10(Median MSD τ=1s) around -1. However, no significant difference of 

microstructure changes was found in artificial bio-reducible hydrogel and CF mucus with 

Log10(Median MSD τ=1s) around 0 and -2. And as shown in Figure 6C & D, TCEP was able to 

alter the microstructure of artificial bio-reducible hydrogel and CF sputum mucus with 

Log10(Median MSD τ=1s) around -1 and -2. Based on these observations, TCEP appears more 

effective compared to NAC on reducing the viscoelasticity of mucus.  

P G M (% )

M
e

a
n

 p
o

re
 s

iz
e

 (
n

m
)

0 5 1 0 1 5 2 0

0

2 0 0

4 0 0

6 0 0

8 0 0
***

**

 

Figure 5. Microstructure analysis of bio-reducible cross-linked mucin hydrogel. Mean pore 

size measured in bio-reducible mucin hydrogel based on an obstruction scaling model[35], [44]. 

(**p < 0.01, ***p < 0.001, n = 3) 
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Figure 6. Characterization of microstructure change in bio-reducible cross-linked mucin-

based hydrogels. AH: artificial bio-reducible mucus hydrogel (A) Log10(Median MSD τ=1s) 

measured in bio-reducible mucin hydrogel with and without treatment with NAC. (B) 

Log10(Median MSD τ=1s) measured in patients’ samples with and without treatment with NAC. (C) 

Log10(Median MSD τ=1s) measured in bio-reducible mucin hydrogel with and without treatment 

with TCEP. (D) Log10(Median MSD τ=1s) measured in patients’ samples with and without 

treatment with TCEP. (***p < 0.001, two-tailed t-test, n = 3) 

 

Also, according to these data, the mucolytic-mediated microstructural changes of artificial bio-

reducible mucus hydrogel is comparable to what is observed in CF sputum. Of note, bulk rheology 

of bio-reducible mucus hydrogel with and without mucolytic treatment were also investigated 

(Figure 7A & B). We can see in figure A and B the Bulk elastic and viscous moduli significantly 

reduced upon mucolytic TCEP treatment in bio-reducible hydrogel with 180nm pore size, which 
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further confirmed the mucolytics responses of bio-reducible hydrogel in bulk size. And by 

comparing the storage and loss moduli with dash lines in figure which are literature values of CF 

sputum [45], we found that the bulk rheology of bio-reducible artificial mucus hydrogel is 

comparable to rheology of CF sputum.  

 

 

Figure 7. Bulk rheology of bio-reducible mucus hydrogel with and without mucolytic 

treatment. (A) Storage modulus of bio-reducible mucin hydrogel (B) Loss modulus of bio-

reducible mucin hydrogel. Values estimated as mean ± SEM from frequency sweep between 0.1 

to 1 rad/s along linear viscoelastic (LVE) regime with 5-10% strain. The dash lines are literature 

values of CF sputum’s storage and loss moduli [45].  Values shown as mean ± SEM along LVE. 

3.4 Biochemical properties of bio-reducible mucus hydrogel 

As mentioned above the solids content of bio-reducible hydrogel is 5%. In order to ensure that 

other biochemical components (mucin and cysteine contents) in bio-reducible hydrogel is 

comparable to those in CF patients’ sputum samples. The mucin and cysteine content in bio-

reducible hydrogel and CF sputum were quantitatively measured. The range of mucin content in 

bio-reducible hydrogel is from 15 mg/mL to 25 mg/mL (Figure 8A), which is comparable with 

the range of mucin content in CF sputum have shown in Figure 8B (10 mg/mL–25 mg/mL). 
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Similarly, the cysteine content in bio-reducible hydrogel is in the range of mucin content in CF 

sputum. (Figure 8C & D). 
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Figure 8. Biochemical measurements of Bio-reducible cross-linked mucin hydrogel and CF 

patients’ sample. AH: artificial bio-reducible mucin hydrogel (A) Mucin concentration in bio-

reducible mucin hydrogel with different pore size. (B) Mucin concentration in CF patients’ sputum 

samples. (C) Cysteines concentration in bio-reducible mucin hydrogel with different pore size. (D) 

Cysteines concentration in CF patients’ sputum samples. (A) and (B) A fluorescent assay using 

cyanoacetamide (CNA) shows that the concentration of mucin in artificial bio-reducible hydrogel 

is in the ranges of that in CF sputum (n = 3). (C) and (D) A fluorescent assay using dithiothreitol 

(DTT) and monobromobimane (mBBr) shows that the number of cysteines of artificial bio-

reducible hydrogel is in the ranges of that of CF sputum (n = 3). 

3.5 Bacteria growth in bio-reducible mucus hydrogel 

Based on previous studies, a vexing problem in CF pathogenesis has been to explain the high 

prevalence of Pseudomonas aeruginosa biofilms in CF airways and P. aeruginosa is the major 

pathogen infecting the CF lung. Thus, P. aeruginosa has been chosen in our study on whether 
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developed bio-reducible hydrogels are suitable for bacteria growth. P. aeruginosa grew and within 

24 h reached the stationary phase at 108 cfu/chamber for broth and 5% PGM solution (Figure 9A) 

served as control group. P. aeruginosa grew in bio-reducible hydrogel with 330 nm and 180 nm 

mean pore size reached the stationary phase at 108 cfu/chamber within 24 hours. P. aeruginosa 

grew in bio-reducible hydrogel with 650 nm mean pore size reached the stationary phase at 106 

cfu/chamber within 24 hours and achieve 107 cfu/chamber within 48 hours (Figure 9B). These 

two figures have shown that bio-reducible artificial mucus hydrogel does not undermine the 

intrinsic ability of bacterial cells to grow. 
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Figure 9. Growth of P. aeruginosa strain in different mucin-based models. (A) Bacterial 

growth curve in broth and 5% PGM. Approximately 2000 P. aeruginosa were deposited in broth 

and 5% PGM solution. Number of bacteria was counted at 0, 6, 24, 48 h intervals; n=3. (B) Growth 

curve of bacteria in bio-reducible mucin hydrogel with different pore size. Bacteria were counted 

at 24 and 48 h time points, n=2. 
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Conclusion 

On account of the complexity of microenvironment in CF airway mucus, it is hard for researchers 

to get deep understanding of behavior of bacteria and distribution of inflammatory cells. Although 

in previous study, mucus with high solids content from well-differentiated human airway cultures 

are used as model to investigate the microcolony development and neutrophil migration, the poor 

correlation between solids content and clinical status, FEV1 indicated that this model based solely 

on solids content potentially is lacking to to mimic CF airway mucus. We hypothesize that 

microstructural properties significantly correlate with clinical outcome in previous study. 

Thus, we have developed an artificial mucus hydrogel with defined pore size and solids content 

with PGM and different crosslinker to try to mimic CF airway mucus. By crosslinking PGM 

solution with SC-PEG-SC, we synthesized irreversible mucus hydrogel. Although the 

microstructures of irreversible mucus hydrogel are comparable with that of CF sputum, the 

mucolytic-mediated microstructural changes of irreversible hydrogel were not as significant as 

observed in CF sputum. After that, we developed bio-reducible artificial mucus hydrogel by 

crosslinking PGM with OPSS-PEG-OPSS. We demonstrated that the microstructure of bio-

reducible mucus hydrogel is comparable to that of CF airway mucus, and its mucolytic-mediated 

microstructural changes are same with what observed in CF sputum. We also evaluated the bulk 

rheology and rheology changes after mucolytic treatment, the result confirmed that the rheology 

of bio-reducible mucus hydrogel is comparable to that of CF sputum. We compared the mucin and 

cysteines content in bio-reducible hydrogel with those in CF sputum. These results have shown 

that the contents of mucin and cysteines in bio-reducible hydrogel were in the range of mucin and 

cysteines in CF sputum. Thus, based on these evaluations, bio-reducible artificial mucus hydrogel 
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has been validated and can serve as a model to mimic airway CF mucus to help us understand the 

behavior of bacteria colonization and inflammatory cells migration.  
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Future work 

After we evaluated the bio-reducible artificial hydrogel comprehensively, we can further use this 

model to understand the behavior of bacteria and distribution of inflammatory cells. Although 

Matsui, H et al. group have previously studied bacteria distribution in mucus with different solids 

content, we still know little about the relationship between microstructure of mucus and bacteria 

colony distribution.  By investigating the microcolony development of bacteria in bio-reducible 

hydrogel we could understand the effect of microstructure on bacterial microcolony development. 

And to explore whether the microstructure of hydrogel will affect neutrophil velocity and whether 

neutrophil would be trapped in hydrogel with small pore size, we will examine the neutrophil 

migration in bio-reducible hydrogel. We can further investigate the ability of neutrophil to capture 

bacteria in bio-reducible hydrogels with different pore size to examine the effect of microstructure 

of mucus on neutrophil-bacteria capture. 

Also, since there are some other diseases relating to mucus in other part of body, by altering the 

type of mucin to crosslink and controlling the ratio of crosslinker, we could develop an artificial 

mucus hydrogel model to mimic mucus in other part of our body, for example, gastrointestinal 

tract mucus. The artificial mucus hydrogel model can help us understand pathologies of different 

mucoviscid diseases. 
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densely coated with PEG to make particle surfaces resistant to muco-adhesion  

• Compared those particles’ physicochemical properties with non-pegylated counterparts (which is called 

conventional particles (CP) in this study), and proved MPP were muco-inert, stable and non-adhesive to CF 

sputum 

• Quantified mucus solids content and measured the concentrations of mucin, DNA and cross-linked cysteine 

via well-established fluorometric assays, which led to the findings that individual sputum constituents 

collectively impacted on the microstructure of airway mucus   

• Correlated biophysical (i.e. mucus microstructure or MSD) and biochemical (i.e. solids content and 

concentration of cross-linked cysteine) properties of sputum samples with lung functions of CF patients, 

which were measured by spirometry (i.e. FEV1s) at the day of their clinical visit and sputum expectoration, and 

observed the trend of positive or negative correlations between FEV1s and MSD or solids content 

• Carried out a pilot longitudinal study to monitor the changes in sputum biophysical property (i.e. pore sizes 

or MSD) over subsequent clinical visits of CF patients, correlated the changes with their lung function 

changes, and concluded that our biophysical analysis of expectorated sputum may serve as a surrogate to 

monitor lung functions of CF patients over time  

• Examined the utility of MSD measurements for evaluating the efficacies and kinetics of mucus-altering 

therapeutic agents via a pilot study, and proved that treatment of sputum with TCEP could significantly 

increase the pore sizes at a final concentration of 5 mM 

• To investigate whether biophysical property, or perhaps biochemical properties, may provide a means to 

predict future exacerbation events among CF patients 

A Biochemical Analysis of Chronic Obstructive Pulmonary Disease (COPD) Sputum Samples for 

Determination of Predictive Factors 

                                                                                                                                                     10/2017-10/2018 

• Analyzed features (biophysical and biochemical properties of the COPD sputum) including MSD, mucin 

solid concentration, mucin concentration, DNA concentration, disulfide bond concentration, Neutrophils 

(%), Macrophages (%) and Lymphocytes (%) to examine variation and correlation of the data. And 

correlated to patients’ demographics. 

• Correlated biophysical (i.e. mucus microstructure or MSD) and biochemical (i.e. solids content, osmotic 

pressure and concentration of cross-linked cysteine) properties of sputum samples with lung functions of 

COPD patients, which were measured by spirometry (i.e. FEV1s) at the day of their clinical visit and sputum 
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expectoration, and observed the trend of positive or negative correlations between FEV1s and MSD or solids 

content 

• Examined the correlation between MSD and mucus solids, mucin content, DNA content and osmotic pressure 

and observed that there are obvious negative correlations with MSD and solids, osmotic pressure 

• The first and second principal components of the PCA suggest its best to select Mucus solids, DNA 

concentration and Mucin concentration as inputs for a ML model for classification of COPD exacerbation.   

Study about the Effect of Coated Protein Nanocages in Brain-Penetration and Doxorubicin Efficacy for 

Treatment of Aggressive Gliomas                                                                              01/2018-

10/2018                                                                                                                                                                             

• Tested the moving ability (MSD; an averaged square of distance travelled by an individual particle over a 

given time interval) of Ftn-CY3 and PEG-Ftn-CY3 particles in normal and tumor brain section.  

• The result shows that moving ability of Ftn-CY3 particles are increased with PEG coated, and the MSD value 

of Ftn-CY3 and PEG-Ftn-CY3 particles in tumor brain section is increased compared with normal brain 

section. 

Synthesis and Characterization of Metal-fiber Structured Cu-Zn-Al Hydrotaclcite-like Compounds  

                                                                                                                                                          02/2017-

06/2017                                                                                                                                                                              

• Combined merits of Layered Double Hydroxide (LDHs) and structured-supports together to develop metal-

fiber structured Cu-Zn-Al-LDHs/FeCrAl-fiber, which has strong capacity to enhance mass/heat transfer and 

optimize fluid dynamics via in-situ hydrothermal growth method  

• Optimized the preparation conditions of metal-fiber structured Cu-Zn-Al-LDHs/FeCrAl-fiber via adjusting 

support, pH value of solution, reaction temperature and reaction time  

Study of the Applications for Determination of Polyamines Based on Capillary Electrophoresis Combined 

with Electromembrane Extraction  

                                                                                                                               09/2015-05/2016                                                                                                                                                                                                                                                                                                             

• A capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) method 

was developed for direct determination of polyamines, and the detection sensitivity was significantly 

improved based on electromembrane extraction (EME) 

• Ethanediamine and hexamethylendiamine are two diamine plastic restricted substances commonly existing 

in food contact materials and could be well separated from their aliphatic diamine homologs as well as the 

common inorganic cations within 25 min. 

• Under the optimum conditions, the highest enrichment factor of ethanediamine and hexamethylendiamine 

were 718-fold and 660-fold, respectively, and the limits of detection were both 0.04 ng/mL.  

• The research paper was published in the journal of Food Chemistry  

• (IF 4.052, http://dx.doi.org/10.1016/j.foodchem.2016.11.084) 

Catalysts Experiments                                                                                                                  07/2016-08/2016                                                                                                                                                                                                                                                                                                             
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• The research work focused on the introduction of the second metal to modify the performance of Pd catalyst. 

The Pd-In (indium) bimetallic catalysts with different ratio of Pd/In, i.e. Pd1In0.2, Pd1In0.4 and Pd1In0.6 (where 

1 and 0.6 represent the weight fraction of Pd and In in catalyst), were prepared with co-impregnation method. 

• The results suggest that the insertion of In component can isolate Pd active sites, i.e., geometric interaction, 

which reduces acetylene adsorbed on Pd-In bimetallic surface in bridged forms and leads to weakly π-

bonded acetylene on top sites of isolated Pd. 

SKILLS  

• Computer Skills: Python, Origin, Matlab, Graphpad 

• Experimental skills:  Nanoparticle Modification, Drugs Modification, Polymer Conjugation, Fluorescent 

Video Microscopy Experiment, Cell Culture, Bacteria Culture, Bacteria Transformation, Neutrophil 

Isolation, Animal Experiment and Surgery. 

• Languages: Chinese and English 

 

 

 

 

 

 

 

 

 


