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ABSTRACT 

Climate change is expected to have dramatic impacts on the water resources sector, 

and there is increasing concern that some degree of adaptation will be required to ensure 

sustainable water provision in many regions of the world. However, adapting to future 

climatic conditions is challenged by the considerable uncertainty and disagreement 

surrounding projections of future hydrologic conditions, particularly at local scales relevant 

for decision making. Furthermore, many argue that these impacts cannot be confidently 

represented probabilistically, resulting in uncertainty that confounds traditional approaches 

for decision support under uncertainty.  

In the face of these challenges, a number of methods have been developed to better 

characterize and make decisions in the face of climatic uncertainty. The objective of this 

dissertation is to critically evaluate methods for impact assessment and decision support in 

the water resource sector, with a particular emphasis on deep uncertainty surrounding 

climatic and environmental conditions. This issue is explored through the evaluation of four 

research questions: 

1. How does the choice of modeling approach for empirical streamflow simulation 

contribute to bias and uncertainty when predicting climate change impacts? 

2. How does Robust Decision Making (RDM), a method largely developed in the 

water resource and climate adaptation field, compare to other methods for risk 

assessment under deep uncertainty that have been developed in the risk analysis 

field? 

3. How does the method used to aggregate multiple criteria impact the results of 

the scenario discovery process within the RDM framework? 
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4. How can methods such as RDM, which generally still rely on complex simulation 

models and detailed climate model projections, be adapted to data-scarce regions 

where these models and projections may not be available? 

By providing a systematic and thorough evaluation of novel methods for climate 

change impact assessment and adaptation, this dissertation ultimately aims to improve our 

ability to create robust, sustainable water infrastructure in the face of highly uncertain future 

climate conditions. Additionally, the use of the Lake Tana basin in Ethiopia as a case study 

for three of the above questions has led to important applied contributions to infrastructure 

planning in data-scarce regions of the developing world. 

Readers: 

Dr. Seth Guikema 

Dr. Benjamin Zaitchik 

Dr. Benjamin Hobbs 
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1 INTRODUCTION 

1.1 Climate change adaptation in the water resources sector 

Water resource management is a sector that is highly vulnerable to climate change, 

and there seems to be a consensus that traditional planning paradigms are insufficient for 

dealing with the deep uncertainty surrounding climatic projections. Water managers have 

always had to consider aleatory uncertainty associated with natural variability in precipitation 

and streamflow, which was typically addressed by reviewing historical records and designing 

infrastructure to meet reliability and cost/benefit requirements. However, climate change 

makes this assumption of stationarity invalid (Milly et al., 2008), meaning that the historical 

planning paradigm of reliability1 based on historic records is no longer sufficient (Brown, 

2010). In situations where a long historic record isn’t available, safety factors are often used 

to account for epistemic uncertainty in water availability and demand (Kundzewicz and 

Stakhiv, 2010). However, the indiscriminate use of safety factors could result in highly 

inefficient allocation of resources, and in situations where the direction of climate-induced 

changes is uncertain, it may be difficult to determine what these safety factors should even 

be protecting against. Because of these issues, it has been claimed that decision rules and 

evaluation principles used to justify projects will need to be improved to meet the challenge 

posed by climate change (Stakhiv, 2011). 

Efforts to incorporate climate change information into water resource planning has 

most often been conducted in a “predict-then-act” framework, which aims to predict the 

                                                 

1 Reliability refers to the probability of failure, and is commonly used in water resource engineering to 
account for aleatory uncertainty in hydrologic conditions. For example, flood protection infrastructure is often 
required to protect against 100-year or 500-year floods.  
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hydrologic impacts of climate change in a given region and design water infrastructure to 

accommodate those impacts. However, development of these predictions is a complex 

process fraught with challenges. Generating climate projections at the local scales relevant 

for water planning generally requires an integrated approach, where projections from a 

global circulation model (GCM) are downscaled to regional projections, which can then be 

used as inputs for a hydrologic or water resource model. However, GCMs often result in 

varying projections due to different assumptions regarding boundary conditions, 

parameterization, and model structure (Tebaldi and Knutti, 2007). This is particularly evident 

in hydrologic projections, as GCMs disagree about even the direction of changes in 

precipitation in some regions of the world (See Figure 1.1 as an example). Furthermore, 

GCMs are notoriously limited in their ability to reproduce observed hydrologic climatology 

at regional levels (Kundzewicz and Stakhiv, 2010), meaning that confidence in their 

projections may be quite low. Using these projections as inputs to regional climate models 

and hydrologic models results in a “cascade of uncertainty” (Mitchell and Hulme, 1999; 

Wilby and Dessai, 2010), in which uncertainties at each stage of the modeling process 

influence outcomes at subsequent levels. The optimal choice of infrastructure can vary 

greatly depending on the model used to generate projections (Nassopoulos et al., 2012), 

creating a risk of maladaptation where adaptation measures actually increase vulnerability to 

climate change. For example, flood protection measures in Ho Chi Minh City that were 

designed to protect against projections of climate change available in 1999 are already 

expected to be insufficient for new projections of precipitation change and sea level rise, 

potentially worsening flood risks in many parts of the city (Lempert et al., 2013). 
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Figure 1.1: Projected percentage change in wet season precipitation for East Africa from the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) for multiple representative 

concentration pathway (RCP) scenarios. Thin lines represent individual model simulations, 
and bold lines represent ensemble means for a given RCP. Boxplots to the right show the 
distribution of model projections for the percentage change in precipitation in the period 

2081-2100 relative to 1986-2005 (van Oldenborgh et al., 2013) 

 

1.2 Probabilistic and scenario-based climate adaptation 

The uncertainty surrounding climate projections has resulted in calls for a risk 

management approach to adaptation, wherein adaptation options are implemented based on 

the relative likelihood of different climate impacts (National Research Council, 2009). This is 

particularly true in sectors such as water resources with a rich tradition of probabilistic 

planning (Dessai and Hulme, 2004), and a significant body of work has focused on 

generating probabilistic projections of climate change. This approach generally relies on 

using multi-model ensembles (MMEs) where individual model projections are used to 

develop a probability density function (PDF) for the outcome of interest. Models are often 

weighted so that those with a low bias relative to observed climate and high agreement with 

the ensemble average, which tends to outperform single models (Tebaldi and Knutti, 2007), 

have a greater influence on the PDF (Giorgi and Mearns, 2002; Tebaldi et al., 2005). 
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Extensive research has been conducted on this topic, and in the past few years this approach 

has begun to be put in practice for adaptation planning, particularly in the UK and New 

Zealand (Hall et al., 2012b; New Zealand Climate Change Centre, 2010).  

However, there are a number of challenges associated with developing probabilistic 

projections based on MMEs. There is not yet a clear consensus on the physical and statistical 

interpretation of MME projections (Stephenson et al., 2012), and the width and shape of a 

distribution of MME results is more a measure of model agreement rather than certainty 

regarding future projections (Tebaldi et al., 2005). Multiple methods exist for generating a 

PDF from a given set of MME projections, and the resulting distributions can be highly 

sensitive to assumptions and methodology used (Tebaldi et al., 2005; Tebaldi and Knutti, 

2007). While it seems logical to assign greater influence to the best GCMs, model weighting 

schemes are still subject to considerable debate. Low bias relative to observations is generally 

considered a necessary but not sufficient requirement for accurately predicting future 

climate, and may be the result of model tuning and reuse of datasets rather than accurate 

physical representation (Tebaldi and Knutti, 2007). Assigning weights based on agreement 

with the model average is based on the assumption that models are independent predictors. 

However, the commonalities in structure and parameterization that many models share make 

it unlikely that they are truly independent, and empirical evaluation of model outcomes 

indicates that this is not likely the case (Knutti et al., 2010). Assuming independence and 

assigning low weights to outlying projections can thus result in overprecision of probabilistic 

projections and the sampling process by which models are included in an ensemble likely 

represents a minimum rather than full range of uncertainty (Tebaldi and Knutti, 2007).  
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Recognizing these issues, scenario-based adaptation has been proposed as an 

alternative approach that does not rely on assigning probabilities to different climate 

impacts. In this approach multiple contrasting descriptions of potential future conditions are 

evaluated and used to inform planning efforts. Scenarios may be based on established 

storylines and assumptions, such as those developed in the IPCC Special Report on 

Emissions Scenarios (SRES), or assumptions and storylines relevant to the specific decision 

being evaluated. Scenario planning is often promoted as an example of process-focused 

decision support aimed exploring a wide range of future conditions and building consensus, 

rather than prescriptive determination of an optimal strategy (Lempert, 2013). However, the 

degree to which scenarios can inform climate adaptation decision-making has been 

questioned. It is noted that scenarios may be better suited to informing small groups of 

decision makers, rather than public debates with highly diverse stakeholders (European 

Environmental Agency, 2009). Evaluated scenarios may be selected in an arbitrary manner 

(often including a central estimate, worst case, and best case scenario), and may neglect 

surprises or discontinuities, focusing instead on extrapolation of current trends (Lempert, 

2013). Finally, in many situations each scenario will point towards a different policy 

implication and serve as proxies for a need to take action, providing little guidance if the 

relative likelihood of each scenario is unknown (Parson, 2008). 

1.3 Robust decision making 

These issues have led many to conclude that climate change is an example of “deep 

uncertainty”, a term commonly used to refer to situations where probabilistic models of 

uncertainty cannot be confidently determined or agreed upon (Cox, 2012) or where 

frequentist probabilities based on repeatable events cannot be developed (Aven, 2013). To 

address this uncertainty, there has been increasing interest in so-called “robust decision 
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frameworks” (Weaver et al., 2013) to support infrastructure planning in the face of climate 

change. These frameworks typically distinguish themselves from traditional “predict-then-

act” frameworks in two ways. The first is that they aim to identify strategies that are robust, 

or that perform well over many possible conditions that may be encountered, rather than 

strategies that are optimal for a specific set of assumed conditions. The second is that they 

do not focus on predicting what future conditions may be, but instead focus on identifying 

conditions that cause the system of interest to fail (Weaver et al., 2013). A number of novel 

methodologies fall into this general family, including robust decision making (RDM; 

Lempert et al., 2006), decision scaling (Brown et al., 2012), and info-gap decision theory 

(Ben-Haim, 2000). In addition to providing decision support in situations where deeply 

uncertain situations, they can also be useful in situations characterized by poorly understood 

nonlinear or threshold responses (Lempert and Collins, 2007) or many stakeholders with 

conflicting values and beliefs about the future (Hallegatte and Rentschler, 2015).   

RDM is one framework that has been applied to a number of climate adaptation 

problems (Groves et al., 2013a; Groves and Bloom, 2013; Lempert et al., 2013; Lempert and 

Groves, 2010). It is a multi-step, iterative approach that includes both analytical and 

deliberative components (Lempert et al., 2006). The analytical components of the process 

simulate how a system or policy alternatives will perform in many plausible future states of 

the world, and then use the results of these simulations to 1) compare the robustness of 

different alternatives and to 2) identify the conditions under which a preferred alternative 

will perform poorly (Lempert et al., 2006). Robustness is typically evaluated based on some 

measure of the regret of different alternatives across simulations (such as maximum or upper 

quartile) or on an evaluation of which alternatives meet pre-specified performance criteria in 

the largest number of scenarios.  The identification of conditions where an alternative 
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performs poorly uses the Patient Rule Induction Method (PRIM; Friedman and Fisher, 

1999) to identify regions of a multidimensional input variable space that result in undesirable 

values of the output variable. These regions are defined by quantitative logical conditions 

involving individual input variables. This process is referred to as scenario discovery because 

it identifies the conditions that represent vulnerabilities for a proposed policy and thus the 

conditions under which an alternative solution would be preferred (Lempert, 2013). By 

identifying these conditions, the scenario discovery process can identify which uncertainties 

are most important for a given decision problem (and thus potentially inform research 

activities) and specify the vulnerable conditions for which decision-makers may want to 

prepare. 

The key contribution of the RDM methodology is that it provides a systematic 

approach for identifying and developing strategies that are robust to non-probabilistic 

uncertainty. Traditional decision analysis requires that uncertain parameters be characterized 

probabilistically, which may not be possible in problems that must consider input from 

multiple stakeholders with different, often conflicting, beliefs about the future. While 

sensitivity analysis can be conducted to see how optimal strategies change when different 

probability distributions are assumed, this provides no guidance on choosing between 

several strategies that are optimal for different assumptions. Scenario planning has also been 

suggested as a better strategy for situations where uncertainties cannot be characterized 

probabilistically, particularly when multiple stakeholders are involved. However, the choice 

of scenarios to consider is often arbitrary, and it provides no systematic way to compare and 

choose between the optimal strategies for each scenario. RDM addresses this by generating 

scenarios that represent key vulnerabilities of candidate strategies and outlining a systematic, 

quantitative way to compare the strategies’ performance under these scenarios. Finally, it 
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doesn’t require any specific mathematical formalism in the underlying model, as would be 

required, for instance, in robust optimization. 

While RDM has been positively received in the water resources and climate change 

literature and used to support climate change adaptation in a number of water systems 

(Fischbach et al., 2015; Groves et al., 2013a; Groves and Bloom, 2013; Lempert et al., 2013; 

Lempert and Groves, 2010), there are questions and issues with the approach that remain to 

be addressed. One issue is that RDM has been developed in relative isolation from other 

techniques aimed at addressing non-probabilistic uncertainty. This topic has a rich history in 

the risk analysis field, and a number of methodologies have been developed to address 

situations where Bayesian probabilistic representation of uncertainty is insufficient (Dubois, 

2010). The differences and similarities between RDM and these methods have not been fully 

explored. Additionally, existing applications of RDM generally focus on a single outcome 

(Hall et al., 2012a; Lempert and Groves, 2010) or a very simplistic treatment of multiple 

criteria (Matrosov et al., 2013a, 2013b). Finally, RDM has been proposed as a method for 

climate adaptation in developing countries (Hallegatte et al., 2012; Lempert and Kalra, 2011), 

but most applications to date have been in relatively well understood hydrologic systems in 

the developed world. The process often relies on sophisticated simulation models and 

downscaled GCM projections that may be subject to considerable uncertainty or even 

unavailable in developing world regions. Further investigation of these issues will strengthen 

our ability to apply RDM and other robust decision frameworks in a variety of contexts and 

ultimately improve our ability to effectively incorporate climate change into water resource 

planning today.  
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1.4 Scenario Discovery 

The RDM framework is a multi-step, iterative approach to decision support under 

uncertainty that contains both quantitative analysis and deliberation. The process includes 

two analytical components based on simulation model results. When multiple alternatives or 

policy options are available for a given system, the first analytical component of the 

approach identifies the most robust alternatives based on regret minimization or satisficing 

criteria (Lempert et al., 2006). The second analytical component, termed “scenario 

discovery,” aims to identify the conditions which cause unsatisfactory performance in a 

preferred alternative. In this work, we focus on the scenario discovery process for two 

reasons. The first is that the measurement of robustness as described above is sensitive to 

the distribution assumed in generating samples of uncertain input parameters, and could be 

contentious in situations of deep uncertainty where there is disagreement or uncertainty 

surrounding these distributions (Whateley et al., 2014). The scenario discovery process 

provides a description of robustness and vulnerability (characterized by the conditions where 

an alternative is able and unable to achieve satisfactory performance) that is less sensitive to 

these input distributions. Secondly, the scenario discovery process provides additional 

important information that can inform decision making by both identifying the uncertain 

parameters that have the greatest impact on system performance (and thus suggest research 

priorities), and by highlighting the vulnerabilities that decision makers may want to address 

to make their system more robust. Because scenario discovery is a focus of three of the four 

chapters in the dissertation, it is described here in more detail. 

The scenario discovery process runs hundreds to thousands of simulations to assess 

system performance under different combinations of input variables. The patient rule 

induction method (PRIM) bump-hunting algorithm (Friedman and Fisher, 1999) is then 
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applied to the simulation results. The objective of the PRIM algorithm is to find regions of 

the multivariate input variable space X that result in unacceptable values of the output 

variable Y = f(X). This region R is made up of one or more “boxes” B that can be defined by 

simple logical conditions involving the value of individual input variables (Friedman and 

Fisher, 1999). For instance, in one study a regional water plan was found to result in 

unacceptably high costs when precipitation declined by more than 10%, groundwater 

recharge decreased by over 3%, and a water recycling program failed to meet its goals 

(Lempert, 2013; Lempert and Groves, 2010).  

To identify these boxes, the algorithm uses top-down successive refinement, referred 

to as “peeling,” followed by bottom-up successive expansion or “pasting” (Friedman and 

Fisher, 1999). The peeling phase begins with a box B0 containing all of the data. At each 

iteration, a small sub-box b* is removed, resulting in a smaller box equal to B-b*. The sub-

box b* chosen for removal is selected from a set of candidate sub-boxes, each of which is 

defined by a single input variable xj, to maximize the percentage of simulations in the 

resulting smaller box B-b* with unacceptable values of Y (Bryant and Lempert, 2010; 

Friedman and Fisher, 1999). This process is continued until the size of the box falls below a 

pre-specified value. The pasting process then readjusts the boundaries of this box by 

essentially reversing the peeling algorithm. In this stage, a small box b* is added to the 

existing box B from a set of candidate sub-boxes to capture more simulations with 

unacceptable performance in the new larger box B+b*. This process continues until the 

density of simulations with unacceptable values of Y within the larger boxes starts to 

decrease. The peeling and pasting algorithm can be repeated on remaining subsets of the 

data to obtain a set of boxes that collectively include a sufficiently high portion of the input 
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space where the output Y assumes unacceptable values (Bryant and Lempert, 2010; 

Friedman and Fisher, 1999). 

In this work, the PRIM algorithm is implemented using the SD toolkit package in R 

(Bryant, 2014). This package provides an interactive implementation of the PRIM algorithm 

on a binary output variable Y. The package generates a tradeoff-curve showing the sequence 

of boxes identified during the peeling and pasting process. Boxes are scored on the basis of 

1) box density, which describes the percentage of points within the box where Y is below the 

threshold, 2) box coverage, which describes the percentage of points where Y is below the 

threshold that are described by the box, and 3) restricted variables, which describes the 

number of input variables xj used to define the box(Bryant and Lempert, 2010). Ideally a box 

would have coverage and density equal to 1 while being described by only a small number of 

variables, but this will rarely be the case when applying the algorithm to complex, real-world 

systems. Generally, as the density of the boxes increases, the coverage decreases and the 

numbers of variables needed to describe the box go up. By presenting a tradeoff curve 

showing these three parameters, the user can compare and select boxes that have sufficiently 

high coverage and density for their purposes while remaining interpretable. 

1.5 Study area – Lake Tana, Ethiopia 

Three of the four chapters in this dissertation use the Lake Tana basin in Ethiopia as 

a case study. Lake Tana is the source of the Blue Nile River, located in the highlands of 

northwest Ethiopia at an elevation of approximately 1790 meters. The lake has a surface area 

of approximately 3000 square kilometers, and the catchment draining to the lake 

encompasses approximately 12,000 square kilometers (Figure 1.1). The four main tributaries 

providing water to the lake are the Gilgel Abbay, Ribb, Gumara, and Megech Rivers, which 
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collectively account for 93% of the inflow to the lake.(Alemayehu et al., 2010) The basin’s 

climate is characterized by distinct wet and dry seasons, with approximately 90% of rainfall 

and steamflow occurring during the wet period from May until October. Rainfall in the basin 

exhibits significant interannual variability, ranging from below 1000 mm/yr to over 1800 

mm/year (Achenef et al., 2013). Population growth and expansion of agricultural and 

pastoral land use in the region have resulted in substantial deforestation and land 

degradation (Garede and Minale, 2014; Gebrehiwot et al., 2010; Rientjes et al., 2011). 

 
Figure 1.2: Lake Tana Study Area 

The basin’s population of 2.6 million is largely located in rural areas and reliant on 

rainfed subsistence agriculture, making the region quite vulnerable to climate variability and 

change. To help address this vulnerability and promote economic development, the basin 

has seen extensive investment in planning and construction of water resources infrastructure 

in recent years. The Tana-Beles hydropower tunnel was completed in 2012, and is currently 

the largest hydropower facility in the country with a capacity of 460 MW. The 12-km tunnel 

collects water from Lake Tana and transfers it to the adjacent Beles River basin, taking 

advantage of a 350-meter difference in elevation. A reservoir with 83 million cubic meters 
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(MCM) of capacity was also constructed on the Koga River in 2010 to provide irrigation to a 

command area of approximately 7000 hectares.  There are five other reservoirs being 

planned for construction in the basin, ranging in volume from 80 to 220 MCM (Alemayehu 

et al., 2010). These reservoirs are generally designed to store water from the rainy season to 

support a second growing period during the dry season. Finally, there are three projects 

under consideration that would pump water directly from the lake to provide irrigation to 

surrounding areas. Planning documents for the basin describe three development levels that 

are planned to be progressively pursued in the coming decades (Achenef et al., 2013). 

Development level 0 (D0) consists only of existing infrastructure in the basin, including the 

Koga River irrigation reservoir and Tana-Beles hydropower transfer tunnel. Development 

Level 1 (D1) consists of existing infrastructure as well as four additional irrigation reservoirs 

and two pumped irrigation schemes. Development level 2 (D2) consists of all of the projects 

included in Development Level 1 as well as the Gilgel Abbay and Jema reservoirs and a 

pumped irrigation scheme from the southwestern portion of the lake. These development 

levels, and details on the projects comprising them, are summarized in Table 1.1. 

Because of the long-lived nature of these projects, there is understandable concern 

about how climate change and other future conditions may impact their long-term 

performance. However, quantifying and planning for these changes presents a number of 

challenges. Projections of climate change in Ethiopia are highly uncertain, with climate 

models disagreeing on even the direction of precipitation change (van Oldenborgh et al., 

2013). Efforts to reduce this uncertainty by identifying the best performing GCMs for the 

region have been unsuccessful, with little consistency between which models are best able to 

replicate the historical amount, seasonality, and variability of precipitation (Bhattacharjee and 

Zaitchik, 2015). Additionally, land cover in the basin has changed dramatically over the past 
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fifty years, with agricultural and pastoral land cover replacing native vegetation over large 

portions of the basin (Garede and Minale, 2014; Gebrehiwot et al., 2010; Rientjes et al., 

2011), resulting in changes to surface water hydrology and increased suspended sediment 

concentrations (Gebremicael et al., 2013; Rientjes et al., 2011). While it is reasonable to 

assume that land cover will continue to evolve in response to increasing agricultural 

development or expansion of conservation efforts, it is impossible to say how exactly it will 

change. 
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Project              
Name Type 

Annual 
demand 
(MCM) 

Reservoir 
capacity 
(MCM) 

Average 
annual flow 

into dam site 
(MCM) 

Catchment 
area    

(km2) 

Irrigable 
Area 
(km2) Min Max 

Development Level 0: Existing Projects 

Koga Irrigation reservoir 62 86 83 114 185 70 

Tana-Beles Hydropower tunnel 2681 2681 NA NA NA NA 

Development Level 1: Planned projects  

Gumara Irrigation reservoir 115 161 60 236 385 140 

Megech Irrigation reservoir  63 98 182 172 424 73 

Ribb Irrigation reservoir  172 220 234 210 677 199 

NE Lake Pumped irrigation 50 50 NA NA NA 57 

NW Lake Pumped irrigation 54 54 NA NA NA 67 

Development Level 2: Planned projects 

Gilgel Abbay Irrigation reservoir 104 142 563 1883 2044 103 

Jema Irrigation reservoir 57 80 200 128 218 78 

SW Lake Pumped irrigation 42 42 NA NA NA 51 

Table 1.1: Existing and proposed water resources infrastructure in the Lake Tana basin. 
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Even if future climate and land cover conditions were known, predicting the impact 

that these changes would have on surface water availability and sediment loads through the 

use of hydrologic models presents additional challenges. Data limitations hinder our 

understanding and quantification of hydrologic processes in the basin even today. Estimates 

of sediment loading rates in the five proposed reservoirs are generally based on a small 

number of samples or sediment rating curves from other rivers (Acres International Limited 

and Shawel Consult International, 1995; Water Works Design & Supervision Enterprise 

(WWDSE), 2008; Water Works Design & Supervision Enterprise (WWDSE) and Tahal 

Group, 2009a, 2009b, 2009c, 2009d), despite the fact that high sediment loads have had 

significant negative impacts on the performance of other reservoirs in the region 

(Haregeweyn et al., 2012). Estimates of evaporative losses of the proposed reservoirs were 

based on weather station data 20 to 50 miles away from the proposed reservoir sites, where 

meteorological conditions may be quite different due to microclimatic effects associated with 

the Lake and surrounding topography (Haile et al., 2009). These data limitations also hinder 

efforts to develop reliable hydrologic models for the region. Limited spatially explicit data on 

climatic, soil, and vegetation conditions means that many hydrologic models are heavily 

calibrated and sometimes based on physically unrealistic parameterization schemes (van 

Griensven et al., 2012). A number of models also rely on empirical relationships (such as the 

Universal Soil Loss Equation, curve numbers, and Hargreave’s equation for potential 

evapotranspiration) that were developed for temperate regions and may not be accurate in a 

highly seasonal climates. This results in considerable uncertainty surrounding the 

performance and downstream impacts of the proposed infrastructure even over the short 

term. 
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1.6 Research objectives and scope 

The objective of this dissertation is to conduct a critical evaluation of methodologies 

for climate change impact assessment and adaptation in the water resources sector, with an 

emphasis on the deep uncertainty surrounding climate change projections. In particular, this 

dissertation aims to answer the following research questions: 

1. How does the choice of modeling approach for empirical streamflow simulation 

contribute to bias and uncertainty when predicting climate change impacts? 

2. How does RDM, a method largely developed in the water resource and climate 

adaptation field, compare to other methods for risk assessment under deep 

uncertainty that have been developed in the risk analysis field? 

3. How does the method used to aggregate multiple criteria impact the results of the 

scenario discovery process within the RDM framework? 

4. How can methods such as RDM, which generally still rely on complex simulation 

models and detailed climate model projections, be adapted to data-scarce regions 

where these models and projections may not be available? 

Chapter 2 addresses the first research question by applying multiple regression and 

machine-learning approaches to simulate monthly streamflow in the tributaries of Lake 

Tana. The methods are compared in terms of their predictive accuracy, error structure and 

bias, model interpretability, and uncertainty when faced with extreme climate conditions. 

While the relative predictive performance of models differed across basins, data-driven 

approaches were able to achieve reduced errors when compared to physical models 

developed for the region. Methods such as random forests and generalized additive models 

may have advantages in terms of visualization and interpretation of model structure, which 
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can be useful in providing insights into physical watershed function. However, the 

uncertainty associated with model predictions under climate change should be carefully 

evaluated, since certain models (especially generalized additive models, multivariate adaptive 

regression splines, and random forest) can became highly variable or biased when faced with 

high temperatures. Because the majority of research into empirical streamflow simulation to 

date has focused on the predictive accuracy of a small number of model types, this broader 

comparison demonstrates the value in comparing multiple methodologies for a given 

streamflow simulation problem and improves our understanding of what makes models 

suitable for planning and management decisions.  

Chapter 3 addresses the second research question by comparing RDM with two 

other methods (uncertainty factors and probability bounds analysis) that have been 

developed in the risk analysis field to support risk assessment in deeply uncertain conditions. 

The three methodologies are applied to a simple example problem related to flood risk 

under climate change and compared in terms of their representation of uncertain quantities, 

analytical output, and implications for risk management. By comparing three methodologies 

that take very different approaches to dealing with the issue of deep uncertainty, this work 

builds upon previous research that have generally focused on relatively similar 

methodologies, such as robustness-based approaches or alternative uncertainty 

representations. While each methodology aims to assess and describe risks in a manner that 

is more reflective of the uncertainties and assumptions underlying the assessment, we find 

that the analytical output and implications for decision making are not necessarily consistent 

between approaches. This suggests the potential value in additional comparative research to 

better understand the sources of these deviations, as well as the need for analysts to consider 

the ways in which the choice of methodology might impact analytical results. 
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Chapter 4 addresses the third research question by applying the RDM scenario 

discovery process to proposed water resource infrastructure in Lake Tana and evaluating 

system performance in terms of five performance criteria related to water provision to 

different economic sectors and environmental conditions. In this analysis, multiple methods 

for multi-criteria aggregation, including multiplicative and additive utility functions with 

varying weight schemes, are used to identify failure scenarios that cause poor performance of 

the proposed infrastructure. These failure scenarios are then compared to those that are 

identified when each performance criterion is evaluated separately. We find that failure 

scenarios may vary depending on the method used to aggregate multiple criteria, and that 

common aggregation methods can obscure connections between failure scenarios and 

system performance, limiting the information provided to support decision making. 

Applying scenario discovery over each performance metric separately provides more 

nuanced information regarding the relative sensitivity of the objectives to different uncertain 

parameters, leading to clearer insights on measures that could be taken to improve system 

robustness and areas where additional research might prove useful.   

Chapter 5 addresses the final research question, again by applying the RDM process 

to proposed infrastructure in Lake Tana. This chapter demonstrates a modified application 

of the robust decision making methodology that is specifically tailored for application in 

data-scarce situations and makes two contributions that build on previously conducted RDM 

studies. The first is an emphasis on characterizing the relative contribution of uncertainty 

stemming from data limitations and model simplifications relative to uncertain future 

conditions, aimed at identifying priority areas for additional research and evaluation. The 

second contribution is a novel method for generating transient climate change sequences 

that does not rely on detailed GCM projections but accounts for potential dependencies 
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between uncertain parameters. By modifying the RDM methodology to account for model 

uncertainty and focus on the most valuable areas for additional research and model 

improvement, this work improves our ability to apply such methodologies in data-scarce 

regions where more complex modeling and analysis may be impractical.   
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2 EMPIRICAL STREAMFLOW SIMULATION FOR WATER 

RESOURCE MANAGEMENT IN DATA-SCARCE SEASONAL 

WATERSHEDS2 

2.1 Introduction 

Hydrologists and water managers have made use of observed relationships between 

rainfall and runoff to predict streamflow ever since the creation of the rational method in the 

19th century (Beven, 2011). However, the development of increasingly sophisticated 

machine learning techniques, combined with rapid increases in computational ability, has 

prompted extensive research into advanced methods for data-driven streamflow prediction 

in the past decade. Artificial neural networks (ANNs), regression trees, and support vector 

machines have been shown to be powerful tools for predictive modeling and exploratory 

data analysis, particularly in systems that exhibit complex, non-linear behavior (Abrahart and 

See, 2007; Solomatine and Ostfeld, 2008).  

While distributed physical models that accurately represent hydrologic processes can still 

be considered the gold standard for rainfall runoff modeling, empirical models can be a 

useful tool in contexts where there is limited data on physical watershed processes but long 

time-series of precipitation and streamflow (Iorgulescu and Beven, 2004). The development 

of historical data centers and more recent efforts to merge satellite data with in situ 

observations to monitor climate and hydrology has made acceptable climate and streamflow 

data more widely available in data poor regions. Because obtaining measurement-based 

estimates of soil hydraulic parameters or details on hydrologically-relevant land management 

                                                 

2 This chapter is based on the following manuscript: Shortridge, J.E., Guikema, S.D., and Zaitchik, B.F. 
Empirical streamflow simulation for water resource management in data-scarce seasonal watersheds. Submitted 
to Hydrology and Earth System Sciences in September 2015. Currently under second round of review.  



22 
 

activities can be more difficult, empirical models may be particularly useful in these 

locations.While many criticize these approaches as “black boxes” with no relationship to 

underlying physical processes (See et al., 2007), a number of studies have demonstrated how 

empirical approaches can be used to gain insights about physical system function (Galelli and 

Castelletti, 2013a; Han et al., 2007). Additionally, improvements in interpretation and 

visualization methods can make complex models more easily interpretable (Jain et al., 2004; 

Sudheer and Jain, 2004). Finally, data-driven models can be useful in identifying situations 

where observed data disagree with what would be predicted based on conceptual models, 

and thus identify assumptions regarding runoff generation processes that may be incorrect 

(Beven, 2011).   

While there have been some applications of alternative machine learning methods, such 

as support vector machines (Asefa et al., 2006; Lin et al., 2006) and regression-tree based 

approaches (Galelli and Castelletti, 2013a; Iorgulescu and Beven, 2004) for streamflow 

simulation, the vast majority of research has focused on artificial neural networks 

(Solomatine and Ostfeld, 2008). While they have demonstrated impressive predictive 

accuracy in a number of different contexts, excessive parameterization of ANNs can result 

in overfit models that are not generalizable to unseen data (Gaume and Gosset, 2003; 

Iorgulescu and Beven, 2004). While methods exist to avoid overfitting, such as cross 

validation and bootstrapping, these methods are not always employed (Solomatine and 

Ostfeld, 2008). Relatively few studies have evaluated model performance based on 

parameters such as Akaike information criterion that would lead to parsimonious models 

that are likely to be more generalizable and interpretable (Maier et al., 2010). This can lead to 

complex models that only result in modest improvements (or no improvements at all) over 

much simpler approaches (Gaume and Gosset, 2003; Han et al., 2007). 
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Even outside of a hydrology context, it has been argued that ANNs are better suited for 

problems aimed at prediction without any need for model interpretation, rather than those 

where understanding the process generating predictions and the role of input variables is 

important (Hastie et al., 2009). Given the importance that this interpretation plays in 

understanding the contexts in which a hydrologic model is appropriate and reliable, the 

strong opinions surrounding the use of ANNs for water resources management are perhaps 

not surprising. To address this issue, a number of studies have focused on highlighting the 

structure and mechanism by which machine learning models make predictions to confirm 

their physical realism and gain insight into physical watershed function. For example, some 

studies have demonstrated how internal ANN structure corresponds to physical hydrologic 

processes (Jain et al., 2004; Sudheer and Jain, 2004; Wilby et al., 2003), while others have 

shown how variable selection and importance can be used to gain insights about model 

structure and runoff generating processes (Galelli and Castelletti, 2013a, 2013b). While these 

studies demonstrate that a number of methods exist for characterizing model structure, they 

generally focus on a single model type and thus provide little insight into the comparative 

ease with which different model types can be interpreted.  

While a number of comparison studies exist that apply multiple empirical models to a 

given problem, finding generalizable insights from these studies is hindered because of the 

limited number of models and datasets evaluated. Perhaps the most comprehensive 

comparison to date is that of Elshorbagy et al. (2010a, 2010b), who compared six methods 

for data-driven modeling of daily discharge in the Ourthe River in Belgium. This work found 

that linear models were able to perform comparably to much more complex methods when 

the data content of the models were limited, or when system input-output behavior was 

close to linear. However, other studies have demonstrated the value of using more complex 
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approaches when modeling more complex rainfall-runoff behavior (e.g., Abrahart and See, 

2007; Asefa et al., 2006). The differing results obtained across these studies indicate that no 

single method is likely to be suitable for all basins, timescales, or applications.  

However, it is important to recognize that predictive accuracy alone is not necessarily 

sufficient justification for applying a model to a given problem. Models should not only be 

accurate, but also be fit-for-purpose (Beven, 2011; van Griensven et al., 2012). For instance, 

accurate representation of low return period flows is more important in a flood forecasting 

model than one aimed at predicting average amounts of water available for withdrawal and 

human consumption. Similarly, the ability to provide insights into physical watershed 

function may be more important in basins where land-use change could alter the hydrologic 

regime, compared to a basin that is heavily urbanized and expected to remain so. The use of 

multiple objective functions in training data-driven models can address this to some degree 

by identifying models that provide sufficient balance between different performance 

objectives, such as accurate representation of different portions of the flow hydrograph (de 

Vos and Rientjes, 2008). However, more refined model training procedures will not 

necessarily address other aspects of model performance that make it suitable for planning  

purposes, such as interpretability (Solomatine and Ostfeld, 2008). More comprehensive 

consideration of model strengths and limitations should be standard practice in model 

development and selection, rather than simply evaluating global error metrics.  

In this work, we compare six methods for empirical streamflow prediction (linear 

models, generalized additive models, multivariate adaptive regression splines, random 

forests, M5 model trees and ANNs) in their ability to predict monthly streamflow in five 

rivers in the Lake Tana basin in Ethiopia. This study region was selected as it provides 
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insights into the use of data-driven models for streamflow simulation in tropical regions of 

the world that are underrepresented in existing studies; for instance, a review of 210 articles 

on water resource applications of ANNs found that over three quarters of the studies 

evaluated were conducted in North America, Europe, Australia, or temperate East Asia 

(Maier et al., 2010). Existing studies conducted in tropical regions generally apply a single 

methodology to the basin of interest and evaluate predictive accuracy alone (see for instance, 

Antar et al., 2006; Aqil et al., 2007; Chibanga et al., 2003; Machado et al., 2011), making it 

difficult to find generalizable insights into the relative advantages of different modeling 

approaches in these regions. Better development of data-driven models for these regions has 

the potential to be particularly valuable because data limitations and complex hydrodynamic 

processes often hinder the use of physical watershed models, but relatively long time series 

of streamflow, precipitation and temperature may be available at a monthly timescale. These 

data, combined with information on relevant landscape change (in particular, the expansion 

of agricultural land cover), can be leveraged to create reasonably accurate empirical models.  

Models are compared not only in terms of their predictive accuracy, but also in terms of 

model error structure and the implications that this structure may have for water resource 

applications. Additionally, we evaluate the methods by which model structure and predictor 

variable influence can be evaluated to gain insights into physical system function for each 

model type. Finally, we assess the suitability of using different model types for climate 

change impact assessment by comparing model uncertainty in projections made for 

increasingly extreme climate conditions. The overall objective of this research is not to 

identify a single “best” model, but rather to highlight some of the strengths and limitations 

of different approaches, as well as demonstrate important issues that should be kept in mind 

for model comparisons in the future. 
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2.2 Data and Methods 

2.2.1 Study Area 

This study used the Lake Tana basin in Ethiopia, described in Section 1.5. A 

summary of basin characteristics for the evaluation period of 1960-2004 is presented in 

Table 2.1, and Figure 2.1 shows a map of the study area with stream gauge locations and 

their contributing areas.  

 
Figure 2.1: Map of Lake Tana, stream gauge locations, and upstream contributing areas 
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Basin 
Drainage  

area above 
gauge 
(km2) 

Average 
annual  

streamflow 
at gauge 
(MCM) 

Standard 
deviation of 

annual 
streamflow 

(MCM) 

Coefficient 
of 

variation 
of annual 

streamflow 

Average 
temp  Average  monthly 

rainfall [mm] 

(°C) May-Oct Nov-Apr 

Gilgel  Abbay 2664 1883 217 0.12 15.7 206 39.3 

Gumara 385 236 71 0.30 17.7 186 29 

Koga 200 114 31 0.27 15.7 206 39.3 

Megech 424 172 66 0.31 20.6 234 41.4 

Ribb 677 210 83 0.36 18.2 263 45.8 

Table 2.1: Study basin characteristics over the evaluation period of 1961 to 2004
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To better understand the potential implications of proposed water resources 

infrastructure construction in the region this development, extensive effort has been put 

towards developing rainfall-runoff models for the Lake Tana basin, as well as other areas of 

the Ethiopian highlands with similar characteristics (van Griensven et al., 2012). Many of 

these studies rely on Soil and Water Assessment Tool (SWAT) models, although there are 

some that use water balance approaches (van Griensven et al., 2012). While these models 

have in some cases demonstrated reasonably high accuracy, previous evaluations were largely 

based on Nash-Sutcliffe Efficiency (NSE)  which can be a flawed performance metric in 

highly seasonal watersheds (Legates and McCabe Jr, 1999; Schaefli and Gupta, 2007). More 

importantly, the limited data available for physical parameterization of these models required 

a heavy reliance on model calibration, which sometimes resulted in parameterization 

schemes that are inconsistent with physical understanding of the region’s hydrology (van 

Griensven et al., 2012; Steenhuis et al., 2009). Furthermore, a number of studies relied on 

empirical relationships such as curve numbers and the Hargreave‘s equation that were 

developed for temperate regions (e.g., Mekonnen et al., 2009; Setegn et al., 2010). While 

these limitations are likely to introduce considerable uncertainty into model projections, 

particularly in situations where climatic or environmental conditions differ from those 

experienced in the calibration period, few studies from this region of Ethiopia include any 

sort of uncertainty analysis in model predictions.  Empirical models could provide a useful 

complement to physical models developed for the region by providing insights into physical 

system function and allowing for more comprehensive uncertainty analysis. 
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2.2.2 Data and Model Development 

Models were developed using monthly streamflow, climate, and land cover data for 

the period from 1961 to 2004, resulting in 528 monthly observations. In each of the five 

major rivers in the basin, we developed empirical models that estimated monthly streamflow 

as a function of climate conditions and agricultural land cover in each basin. Monthly 

streamflow data were taken from historic stream gauge records for each basin, as reported in 

feasibility studies developed for proposed irrigation projects (Alemayehu et al., 2010). 

Historic data for monthly average temperature, monthly total precipitation, and monthly wet 

days in each river basin were derived from the University of East Anglia Climate Research 

Unit (CRU) TS3.10 gridded meterological fields (Harris et al., 2014), which are based on 

meteorological station observations. Historic estimates of rainfall intensity were also 

calculated by dividing monthly total precipitation by CRU TS3.10 records of the number of 

wet days in that month, but was found to be highly correlated with monthly precipitation 

and did not result in significant improvements to the predictive accuracy of tested models. 

Thus, it was not included in the final model formulations. Finally, to account for historic 

increases in agricultural and pastoral land cover that have occurred in the basin, the 

percentage of land cover used for any crop or grazing was estimated from historic land cover 

analyses described by Rientjes et al. (2011), Gebrehiwot et al. (2010), and Garede and Minale 

(2014). These studies used historic aerial photos and satellite images to estimate land cover 

changes in the Ribb, Gilgel Abbay, and Koga basins from the periods of 1957 to 2011. The 

percentage of agricultural land cover was interpolated for years when data weren‘t available, 

and the value of agricultural land cover in the two basins without data was assumed to be 

equal to average agricultural land cover in the basins with data. Land cover was assumed to 

change on an annual, rather than monthly basis. While this approach is prone to errors that 
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could stem from differing rates of land use change through time and between basins, it does 

provide a mechanism for capturing the long-term trend of expanding agricultural land cover 

that has been observed throughout the Ethiopian highlands when detailed land-cover data 

are unavailable. Including this data improved out-of-sample predictive accuracy of the 

models, further suggesting that it was a valuable addition. 

Two general formulations for the empirical models were evaluated. The first 

(referred to below as the standard model formulation) was  

Equation 2.1:  

log⁡(𝑄𝑏,𝑡) = 𝑓(𝑃𝑏,𝑡, 𝑃𝑏,𝑡−1, 𝑃𝑏,𝑡−2, ⁡𝑇𝑏,𝑡, 𝑇𝑏,𝑡−1, 𝑇𝑏,𝑡−2, ⁡𝐴𝑔𝐿𝐶𝑏,𝑡) +⁡𝜀𝑏,𝑡 

where Qb,t is the monthly streamflow in river b at time period t, Pb,t  and Tb,t are the monthly 

total precipitation and average temperature in river basin b at time period t, AgLCb,t is the 

total percentage of agricultural land cover in basin b at time t, and εb,t is the model error. The 

subscripts t-1 and t-2 indicate lagged measurements from one and two months prior, and 

were included to roughly account for storage times longer than one month that could impact 

streamflow in each river. While the exact time of concentration is not known in each basin, 

the minor influence of climate conditions at two months prior suggest that climate 

conditions from beyond this time period do not contribute significantly to flow variability. 

The function f represents a general function that differed between the specific models 

assessed and is discussed in more detail below. The logarithm of monthly streamflow was 

used as a response variable to keep model predictions positive.  

In the second formulation, streamflow and climate anomalies were used as the 

response and predictor variables to better account for the highly seasonal nature of 
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streamflow and precipitation in the region. Streamflow anomalies were calculated for each 

observation by subtracting the long-term average streamflow for that month (m) from the 

observed value and dividing this number by the long-term standard deviation of that 

month’s streamflow as in Equation 2.2. This procedure was repeated for precipitation and 

temperature, and these values were then used to fit models of the form described in 

Equation 2.3. It should be noted that although this formulation uses long-term averages and 

standard deviations to convert anomaly values to flow volumes, the anomaly values 

themselves are calculated based on climatic and land cover conditions that are nonstationary 

through time.  

Equation 2.2:  

𝑄𝑏,𝑡
𝐴𝑁 =⁡

𝑄𝑏,𝑡 −⁡𝑄̅𝑏,𝑚
𝑠𝑑(𝑄𝑏,𝑚)

 

 

Equation 2.3: 

𝑄𝑏,𝑡
𝐴𝑁 = 𝑓(𝑃𝑏,𝑡

𝐴𝑁 , 𝑃𝑏,𝑡−1
𝐴𝑁 , 𝑃𝑏,𝑡−2

𝐴𝑁 , ⁡𝑇𝑏,𝑡
𝐴𝑁 , 𝑇𝑏,𝑡−1

𝐴𝑁 , 𝑇𝑏,𝑡−2
𝐴𝑁 ⁡𝐴𝑔𝐿𝐶𝑏,𝑡) +⁡𝜀𝑏,𝑡 

 

Six different types of models were compared using each formulation in each basin:  

1. A Gaussian linear regression model (GLM) using the basic stats package in the R 

statistical computing software (R Development Core Team, 2014). 

2. Gaussian generalized additive model (GAM): GAMs are a semi-parametric regression 

approach where the response variable is estimated as the sum of smoothing functions 

applied over predictor variables. These functions allow the model to capture non-linear 

relationships between the predictor and response variables without apriori assumptions 

about the form (eg., quadratic, logarithmic) of these functions, and are fit using 
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penalized likelihood maximization to prevent model overfitting (Hastie and Tibshirani, 

1986). GAMs were fit using the mgcv package in R (Wood, 2011).  

3. Multivariate adaptive regression splines (MARS): MARS are a non-parametric regression 

approach where the response variable is estimated as the sum of basis functions fit to 

recursively partitioned segments of the data (Friedman, 1991). MARS models were fit 

using the earth package in R (Milborrow, 2015). 

4. Artificial neural network (ANN): ANNs are a non-parametric regression approach 

represented by a network of nodes and links that connects predictor variables to the 

response variable. Each link in the network represents a function that maps the input 

nodes into the output node (Ripley, 1996). ANN models were fit using the nnet 

package in R (Venables and Ripley, 2013). 

5. Random forest (RF): Random forests are a rule-based, non-parametric regression 

approach where the model prediction is created by averaging the predicted value from 

multiple regression trees which are trained on separate bootstrapped resamples of the 

data. Each tree is fit using a small, randomly selected subset of predictor variables, 

resulting in reduced correlation between trees (Breiman, 2001). Random forest models 

were fit using the randomForest package in R (Liaw and Wiener, 2002). 

6. M5 model: M5 models are a rule-based, non-parametric regression approach that fits a 

linear regression model to each terminal node of a regression tree (Quinlan, 1992). M5 

models were fit using the Cubist package in R (Kuhn et al., 2014).  

7. Climatology model: A climatology model that simply predicted each month’s 

streamflow as equivalent to the long-term average streamflow for that month was 

included for comparison purposes. 
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Model 
type 

R package  
Parameters defined in model 
formulation 

Parameters selected through 
cross validation 

GLM stats family = Gaussian NA 

GAM mgcv family = Gaussian 
method = generalized cross validation 
variable selection = true 
basis dimension k = 3 
epsilon = 10-7 
maxit = 200 

 

MARS earth nk = 21 
thresh = 0.001 
fast.k = 20 
pmethod = backward 

degree = {1, 2, 3} 
nprune = {5, 10, 15, 20, 25} 

ANN nnet weights = 1 
rang = 0.7 
maxit = 100 
maxNWts = 1000 
abstol = 10-4  

reltol = 10-8 

size = {1, 2, 4, 8, 20} 
decay = {0.0, 0.1, 0.5, 1.0, 2.0}  

RF randomForest ntree = 500 
sampsize =  528 
nodesize = 5 
nPerm = 1 

mtry = {2, 3, 4, 5, 6, 7} 

M5 Cubist rules = 100 
extrapolation = 100 
sample = 0 

committees = {10, 50, 100} 
neighbors = {0, 5, 9} 

Table 2.2: Model parameters predefined and evaluated through cross validation 

2.2.3 Model Evaluation 

When using non-parametric regression approaches, it is important to avoid overfitting 

a model to a given dataset because this can result in large errors in out-of-sample predictions 

(Hastie et al., 2009). To avoid model overfit, the caret package in R (Kuhn, 2015) was used 

to determine model parameters for the MARS, ANN, RF and M5 models. This package uses 

resampling to evaluate the effect that model parameters have on the model’s predictive 

performance and chooses the set of parameters that minimizes out-of-sample error (Kuhn, 

2015). In this evaluation, 25 bootstrap resamples of the training dataset were generated for 

each parameter value to be assessed. A model was fit using each bootstrap sample and used 

to predict the remaining observations, and the parameter values that minimized average 

RMSE across all resamples. Details on the specific parameters evaluated for each model are 
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presented in Table 2.2. While the development of more complex structures are possible for 

some models, this process can result in over-parameterization and poor model performance 

(Gaume and Gosset, 2003; Han et al., 2007). Additionally, the use of a standardized 

parameterization procedure allows for a more even comparison between different model 

types.  

The predictive ability of each model was assessed using 50 random holdout cross-

validation samples. In each sample, a random selection of years were chosen, and 

observations from these years were removed (“held-out”) from the dataset. The size of the 

held-out sample ranged from 1 to 9 years. Each model was then fit to the remaining portion 

of the data, using the caret package described above to determine model parameters for the 

MARS, ANN, RF and M5 models. These models were then used to predict streamflow for 

the held-out portion of the data, and both the mean absolute error (MAE) and NSE were 

calculated after transforming model predictions after back to the original streamflow units. 

Mean MAE and NSE were calculated for each model across the 50 cross-validation samples 

and used to choose the model with the highest predictive accuracy in each basin. This cross-

validation procedure provides a mechanism for evaluating how well a model will generalize 

to an unseen set of data while avoiding some of the problems that can arise from the use of 

a single calibration and validation dataset (Elshorbagy et al., 2010a; Han et al., 2007).  

MAE was included as an error metric because it provides a simple and easily 

interpretable measure of error on the same scale as observed flow volumes. While NSE 

values are acknowledged to be a flawed performance metric in highly seasonal watersheds 

where seasonal fluctuations contribute to a substantial portion of flow variability (Legates 

and McCabe Jr, 1999; Schaefli and Gupta, 2007), this metric was included to provide a rough 
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comparison of how empirical model performance compared to the performance of physical 

models developed for the region. The use of alternative error metrics has been discussed 

extensively in the literature (for instance, Criss and Winston, 2008; Mathevet et al., 2006; 

Pushpalatha et al., 2012), and could provide additional insights into what contributes to 

predicitive capabilities of different model formulations. However, this work examined 

predicitve accuracy based on MAE and NSE alone to allow for greater focus on how models 

differ in terms of error structure and uncertainty.  

As a rough point of comparison for the statistical models developed in this research, 

we also evaluated discharge estimates derived from a process-based hydrological model. The 

model used in this application is the Noah Land Surface Model version 3.2 (Noah LSM; 

Chen et al., 1996; Ek et al., 2003). Noah LSM was implemented for offline simulations of the 

Lake Tana basin at a gridded spatial resolution of 5km for the period 1979-2010 using a time 

step of 30 minutes. Meteorological forcing was drawn from the Princeton 50-year reanalysis 

dataset (Sheffield et al., 2006), downscaled to account for Ethiopia’s steep terrain using 

MicroMet elevation correction equations (Liston and Elder, 2006). The Princeton reanalysis 

was selected because it provides relatively high resolution meteorological fields, including all 

variables required to run a water and energy balance LSM like Noah, for the period 1948-

present. While higher resolution and possibly higher quality datasets are available for recent 

years, this longer dataset was utilized to compare the process-based model to statistical 

models developed for a long historical period. Soil parameters for the Noah simulation were 

drawn from the FAO global soil database, land use was defined according to the United 

States Geological Survey (USGS) global 1km land cover product, and vegetation fraction 

was derived from MODerate Imaging Spectroradiometer (MODIS) imagery. Land cover was 
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treated as a static parameter over the full length of the simulation, as spatially complete 

estimates of historical land use were not available at the required resolution and specificity.  

The highest performing model in each basin based on MAE was retained for more 

detailed evaluation of model error structure, covariate influence, and uncertainty in climate 

change sensitivity analysis. To generate a complete time-series of out-of-sample model 

predictions for error analysis, the holdout cross validation procedure was repeated for the 

highest performing standard-formulation and anomaly-formulation models for each basin, 

but this time holding out a single year of observations in each iteration. The predictions 

from this cross validation were used to evaluate the how model error structure might impact 

model predictions used for water resource applications. The influence of different predictor 

variables on model predictions was also assessed for the highest performing model in each 

basin after being fit to the complete dataset. Each predictor variable was assessed using 

metrics for covariate importance and influence that are unique to that model type, 

demonstrating how models could be used to gain physical insights about data-scarce regions 

and the mechanisms for generating these insights for each type of model. Partial dependence 

plots (Hastie et al., 2009) were also generated for each covariate for the highest performing 

model in each basin to provide insights about how covariate influence compared across 

different basins and model types.  

Finally, two evaluations were conducted to assess uncertainty in model projections of 

streamflow under increasingly extreme climate conditions to better understand the 

implications of using different model formulations for climate change impact studies. Model 

projections of streamflow in different climate conditions are likely to be accompanied by 

considerable uncertainty, particularly when climate conditions exceed those experienced 
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historically. To assess this uncertainty, the best performing model in each basin was used to 

generate streamflow predictions for 1) changes in temperature from 0 to 5° C, 2) changes in 

precipitation from -30 to +30%, 3) an increase in temperature to 5° C combined with a 

decrease in precipitation to -30%, and 4) an increase in temperature to 5° C combined with 

an increase in precipitation to +30%. For each of the four assessments, the models 

generated predictions for the 45-year historic climate record adjusted for a given degree of 

climate change using the delta-change method (Gleick, 1986), while holding agricultural land 

cover constant at 60%. In this method, monthly temperature values are simply added to the 

temperature change value, and monthly precipitation values are multiplied by the 

precipitation change percentage. Model predictions for the altered climate record were then 

used to calculate the average annual streamflow in each river. This process was repeated 100 

times for models fit on random bootstrap resamples of the historic dataset to generate 

uncertainty bounds surrounding model predictions and evaluated how the uncertainty in 

these predictions increased as climate conditions became more extreme. It is important to 

recognize that these should not be interpreted as a prediction or assessment of actual climate 

change impacts, but rather a measurement of the sensitivity of modeled streamflow in the 

basin to different climate conditions. Since one of the key motivations for using rainfall-

runoff models is to understand how climate change may impact water resources, it is 

important to understand how model formulation contributes to this sensitivity and 

uncertainty. 

2.3 Results 

2.3.1 Model Accuracy and Error Structure 

Table 2.3 shows the out-of-sample cross validation errors for each model assessed in 

each basin. The random forest model had the lowest mean absolute error for the standard-
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formulation model in four of the five basins, with the M5 model performing best for the 

Koga basin. These models outperformed the Noah LSM simulations in all basins assessed. 

The Noah LSM errors are for a single period of analysis and thus don’t present an exact 

corollary to the cross validation performed for the empirical models. Nevertheless, the 

significant increases in errors associated with the Noah LSM model demonstrates the 

difficulty associated with the use of process-based models in the region, particularly when 

relying on global datasets that may be unreliable at the spatial and temporal resolutions 

required for physical modeling. Physical models developed for monthly streamflow 

prediction in other basins within the Ethiopian highlands have reported NSE values ranging 

from 0.53 to 0.92 (van Griensven et al., 2012), compared to values ranging from 0.71 to 0.87 

for the random forest models developed here.  If this measure alone was used for model 

evaluation, these empirical models would generally be classified as having good performance 

based on the guidelines suggested by Moriasi et al. (2007). However, the climatology model 

outperforms the best standard formulation models in all basins except Megech, indicating 

that in the majority of basins the errors from the fitted empirical models are higher than 

those that result from simply using the long-term monthly average for each month’s 

prediction. This is due to the fact that seasonality accounts for such a large portion of the 

variability in monthly flow values, and demonstrates how high NSE values can be quite easy 

to obtain in seasonal basins. 
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Standard 
Formulation 

GLM GAM MARS RF M5 ANN Climatology 
Noah 
LSM 

MAE 

GA 30.78 18.54 16.75 14.89 15.11 17.22 10.42 28.11 

G 4.29 3.41 3.28 2.67 2.96 3.15 2.57 3.95 

K 1.50 1.30 1.38 1.20 1.17 1.23 1.06 1.97 

M 4.45 2.64 2.83 2.37 2.53 3.04 2.54 4.09 

R 4.69 2.98 3.50 2.97 3.27 3.17 2.81 7.01 

NSE 

GA -0.02 0.81 0.83 0.87 0.86 0.84 0.95 0.59 

G 0.04 0.51 0.61 0.80 0.66 0.70 0.81 0.48 

K 0.45 0.71 0.65 0.76 0.77 0.76 0.83 0.25 

M -1.85 0.63 0.46 0.73 0.65 0.52 0.71 0.41 

R -1.14 0.71 0.39 0.71 0.31 0.67 0.73 -0.75 

Anomaly 
Formulation 

GLM GAM MARS RF M5 ANN Climatology 
Noah 
LSM 

MAE 

GA 9.73 9.82 10.10 10.12 9.94 9.79 10.42 28.11 

G 2.22 2.25 2.43 2.23 2.16 2.22 2.57 3.95 

K 1.03 1.06 1.08 1.09 1.05 1.05 1.06 1.97 

M 2.49 2.48 2.63 2.66 2.69 2.50 2.54 4.09 

R 2.79 2.76 2.84 2.70 2.78 2.77 2.81 7.01 

NSE 

GA 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.59 

G 0.85 0.85 0.82 0.85 0.86 0.86 0.81 0.48 

K 0.83 0.82 0.81 0.81 0.82 0.82 0.83 0.25 

M 0.73 0.72 0.65 0.66 0.61 0.72 0.71 0.41 

R 0.73 0.75 0.72 0.75 0.73 0.74 0.73 -0.75 

Table 2.3: Cross validation errors for each assessed model in the Gilgel Abbay (GA), Gumara 
(G), Koga (K), Megech (M), and Ribb (R) river basins. 

 

Evaluation of anomaly model errors indicates that the models using this formulation 

achieve better predictive accuracy than those using the standard formulation, and are able to 

outperform the climatology model based on both NSE and MAE in all basins. However, the 

highest performing models in each basin varies more when the anomaly formulation is used, 

with the GLM, GAM, random forest, and M5 models all minimizing MAE in different 
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basins. In all basins except Koga, the highest performing model significantly outperformed 

the climatology model based on paired Wilcoxon rank-sum tests (Bonferroni-corrected p-

value < 0.01). 

Further exploration of model residuals indicates another important advantage of using 

the anomaly model formulation. In the standard model formulation, model residuals appear 

to be non-random. Example autocorrelation plots are shown for the Gilgel Abbay and Ribb 

Rivers in Figure 2.2, and demonstrate that a positive autocorrelation exists at the 12 month 

time lag. For brevity, only plots for two rivers are shown, although this autocorrelation 

existed in the standard-formulation models for all basins except Megech (Table 2.4). This 

autocorrelation occurs because the standard-formulation models consistently underestimate 

wet-season streamflow while overestimating dry-season flows, as is apparent in hydrographs 

of observed and predicted streamflow (Figure 2.3). Because wet-season flows contribute 

such a large portion of the total annual flow volume, this results in regular underestimation 

of aggregate values such as mean annual flow (Table 2.4). This autocorrelation is reduced in 

the anomaly-formulation models, meaning that they are better able to capture the peak flow 

volumes experienced in the wet season and do not underestimate mean annual flow to the 

same degree that the standard formulation models do. 
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Figure 2.2: Autocorrelation in model residuals for the Gilgel Abbay and Ribb Rivers 

 

Autocorrelation Factors Mean Annual Flow (MCM) 

Standard Anomaly Observed Standard Anomaly 

Gilgel 0.33 0.11 22,925 20,703 22,958 

Gumara 0.29 0.07 2,870 2,392 2,734 

Koga 0.04 0.10 1,383 1,333 1,386 

Megech 0.05 0.04 2,035 1,637 2,028 

Ribb 0.21 -0.01 2,575 1,969 2,615 

Table 2.4: Residual autocorrelation factors at a 12-month lag for the standard formulation 
and anomaly formulation models, and resulting mean annual observed and predicted flow. 

 

Figure 2.3: Example observed and predicted streamflow for Gumara River from 1985 to 1990 
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2.3.2 Model Structure and Covariate Influence 

Evaluating the relationship between predictor covariates and streamflow response can 

lend insight into the physical processes underlying runoff generation in each basin. There are 

two components of this relationship that can be evaluated: how much each covariate 

contributes to model accuracy (covariate importance), and the direction and nature of the 

relationship between covariate values and model response (covariate influence). In many 

machine-learning models, complete description of the all of the mathematical relationships 

within the model (for instance, through description of each tree comprising a random forest 

model) is infeasible, requiring the use of other mechanisms for understanding covariate 

importance and influence.  However, because each model type is structured in a different 

way, these mechanisms differ. This section first describes the mechanisms available for 

obtaining insights about covariate influence in each of the highest performing models. To 

provide a mechanism for comparing results across different basins, each basin model is then 

assessed using the general approach of partial dependence plots. 
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Model type Linear model 
Generalized 

additive model M5 model tree 
Random 

forest 

Measure of 
influence 

Linear regression coefficients  
and associated p-values 

Estimated 
degrees of 

freedom (EDF) 
and associated p-

values 

Covariate usage in 
tree rules and model 

coefficients 

Increase in 
MSE when 
covariate is 
randomly 
permuted 

Basin Gilgel Abbay Koga Megech Gumara  Ribb 

Covariate 
Coefficient 

estimate 
P-value 

Coefficient 
estimate 

P-value EDF P-value 
Tree 
rules 

Model 
coefficients 

Percent 
increase in 

MSE 

Prec 0.22 < 0.01 0.24 < 0.01 1.346 < 0.01 5% 58% 7.71% 

Prec (lag 1) 0.10 0.03 0.16 < 0.01 0.624 0.08 0% 19% 2.79% 

Prec (lag 2) 0.01 0.74 0.05 0.26 0 0.29 0% 0% 1.10% 

Temp -0.09 0.08 -0.07 0.17 1.023 0.07 0% 47% 12.74% 

Temp (lag 1) -0.04 0.49 -0.06 0.22 0 0.32 0% 46% 4.97% 

Temp (lag 2) -0.01 0.81 -0.09 0.08 0 0.56 0% 0% 8.16% 

Agr. LC 0.00 0.33 0.02 0.01 1.986 < 0.01 86% 73% 15.21% 

Table 2.5: Covariate importance measurements from each basin's model
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In the Gilgel Abbay and Koga basins, the highest performing model was a simple 

linear regression model. These models can be evaluated by reviewing model coefficients and 

associated p-values, as shown in Table 2.5. In a standard linear regression, model coefficients 

can be interpreted as the mean change in the response variable that results from a unit 

change in that covariate when all others are held constant. These coefficients are for 

streamflow anomalies rather than raw values, making their immediate interpretation less 

intuitive. For instance, in the Gilgel Abbay model an increase of one standard deviation in 

precipitation results in an increase of 0.22 standard deviations in flow.  The associated p-

value for each coefficient evaluates a null hypothesis that the true coefficient value is equal 

to zero given the other covariates in the model, and thus has no influence on the response 

variable.  

Evaluating model structure based on regression coefficients is appealing due to their 

simplicity and familiarity. However, it is important to keep in mind that the above 

interpretations rely on specific assumptions regarding model error distributions. 

Examination of fitted model residuals from both basins indicate that errors are 

autocorrelated in the Koga basin and not normally distributed due to the presence of outliers 

in both basins. Non-normality and autocorrelation both impact the t statistics and f statistics 

used to test for the significance of model coefficients, and thus the p-values for these models 

are likely biased (Montgomery et al., 2012). 

   Interpretation of variable influence in GAMs is based on the estimated degrees of 

freedom (EDF) a covariate’s smoothing function s(Xi) uses within a model (Hastie and 

Tibshirani, 1986). An EDF value of one or below indicates a linear function relating the 

response variable to that covariate, while values greater than one represent a non-linear 
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smoothing function. An EDF value of zero indicates that the covariate smoothing function 

is penalized to zero (meaning it has no influence on model predictions). In the model for the 

Megech River, the terms for lagged temperature at one and two months, as well as 

precipitation lagged at two months were all smoothed to zero. Of the remaining covariates, 

lagged precipitation has a linear impact on model response, while precipitation, temperature 

and land cover have non-linear impacts. Smoothing functions can be plotted to gain more 

insight about these relationships (Figure 2.4). The functions for precipitation anomaly, 

lagged (one month) precipitation anomaly, and agricultural land cover show a positive 

relationships with streamflow, while the function for temperature anomaly predicts low 

streamflow at both high and low anomalies. 

P-values test the null hypothesis that a covariate’s smoothing function is equal to 

zero, but rest on the assumption that model residuals are homoscedastic and independent 

(Wood, 2012). Similar to the linear models, residuals in the Megech GAM model appear to 

be both autocorrelated and heteroscedastic, meaning that a formal statistical interpretation of 

this value may be inappropriate and that confidence bounds around smoothing functions 

might be misleading. 
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Figure 2.4: Plots of the smoothing functions used in the Megech River GAM. Hash marks 

along the x-axis indicate observation values of each covariate 

 

The M5 cubist model fit for the Gumara basin is an ensemble of 100 small M5 

regression trees. In each tree, the model splits observations based on logical rules related to 

one or more covariates and fits a linear regression model to each set of observations. The 

final model prediction is the average across all of the individual trees. Using this sort of 

ensemble approach can reduce model variance and improve accuracy if the individual trees 

are unbiased, uncorrelated predictors (Breiman, 1996). This can be useful in avoiding models 

that are overfit to the data, but can reduce model interpretability since direct visualization of 

model structure becomes impractical as the number of trees increases. However, the 
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frequency with which individual covariates are used as splitting points within trees and as 

regression coefficients can provide some insights about covariate importance (Table 2.5; 

note that because multiple covariates can be used for rules and linear models, these don’t 

necessarily add to 100%). Model rules were largely based on land cover, with some rules 

based on precipitation. These two covariates were also used most frequently in linear 

regressions at model nodes, followed by temperature (current and 1-month lag) and 1-month 

lagged precipitation. Notably, climate data from 2 months lagged were not used at all. While 

this can be useful in identifying which covariates have the largest impact on model 

predictions, it doesn’t provide any information regarding the nature or direction of that 

influence.  

Similarly, the random forest model developed for the Ribb basin is an ensemble of 

regression trees in which the final model prediction is the average of the predictions from 

each individual tree. However, random forests use standard regression trees that do not 

incorporate linear regression models at terminal nodes. Variable importance within the final 

model is measured by recording the increase in out-of-sample MSE that results when a 

covariate is randomly permuted for each tree in the ensemble. This increase in error is then 

averaged across all trees in the ensemble. In our model, the largest increases in error resulted 

from permutation of land cover and temperature, followed by 2-month lagged temperature 

and precipitation. Covariate influence can be evaluated through the use of partial 

dependence plots (Figure 2.5), which measure the change in model predictions that result 

from changing the value of one parameter while leaving all other covariates constant (Hastie 

et al., 2009). Partial dependence plots indicate that model predictions of streamflow are 

higher when the percent of agricultural land cover is greater than approximately 75%, when 

temperatures anomalies are low, and when precipitation anomalies are high. However, it 
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appears that the plot for lagged temperature might be sensitive to outliers at high 

temperature anomalies as evidenced by the large increase that occurs above an anomaly of 

+2, in a region where very few data points are present.  

 

Figure 2.5: Partial dependence plots for the Ribb River random forest model. Hash marks 
along the x-axis show covariate sample decile values 

Many of the measures used to evaluate covariate importance and influence are model 

specific, making inter-basin and inter-model comparisons difficult. However, the partial 

dependence plots used in the randomForest R package can be developed for any model and 

provide a mechanism for comparing the influence that covariates have in the different 
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models and basins (Shortridge et al., 2015). Partial dependence plots were generated for each 

basin’s best performing model and results are shown for climatic variables in Figure 2.6. As 

expected, models generally respond positively to increases in precipitation and negatively to 

increases in temperature, with the greatest influence in the current month and decreasing 

influence at one and two months prior. The influence of the current month’s precipitation is 

linear in three of the five basins; while this is constrained to the be the case in the Gilgel 

Abbay and Koga basins due to the use of a linear model, the linear response in Gumara is 

not required from the M5 model structure. Interestingly, both Megech and Ribb 

demonstrate a linear response to negative precipitation anomalies, but little response to 

positive anomalies. Streamflow response to temperature is strongest in the Gumara basin; 

interestingly, this is the basin with the smallest response to precipitation.  

The partial dependence plots for the percentage of the basin classified as agricultural 

land cover indicates a positive relationship between agricultural land cover and streamflow in 

all basins except for the Gilgel Abbay (Figure 2.7). This would be expected if deforestation 

had contributed to a decrease in evapotranspiration in the contributing watersheds. The 

exact nature of this response differs across the different rivers, with the relatively minor 

responses in Koga and Ribb, and much stronger responses in the Gumara and Megech 

basins. However, this plot also demonstrates some of the limitations associated with 

different model structures. The plot for Gumara is highly erratic, indicating that the M5 

model might be overfit to the training dataset, despite the use of model averaging to reduce 

model variance. Additionally, the GAM used in the Megech basin was only trained on 

agricultural land cover values up to 77%; while this model may be accurately representing the 

impact of land cover changes within this range, extrapolating this relationship to higher 

values leads to predictions that may not be physically realistic. 
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Figure 2.6: Partial dependence plots for the climate covariates in the highest performing 

model in each basin. Model type is indicated in parentheses. 
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Figure 2.7: Partial dependence plot for agricultural land cover in the highest performing 
model in each basin. Model type is indicated in parentheses for each basin. Dashed lines 
indicate values that exceed historic levels of agricultural land cover experienced in that 

basin. 

2.3.3 Climate Change Sensitivity and Uncertainty Assessment 

Figure 2.8 shows the results of the climate change sensitivity analysis for total flow 

from all five tributaries, with dashed lines representing 95% confidence intervals obtained 

through 100 bootstrapped resamples of the data set. As would be expected, increasing 

temperature independently of precipitation results in decreasing total flows while increasing 

precipitation results in higher flows. However, the uncertainty surrounding temperature 

sensitivity increases at higher changes in temperature, while the uncertainty surrounding 

precipitation sensitivity remains relatively constant, even at extreme changes in annual 

precipitation. The bottom panels of the figure show the sensitivity of total inflows to 

concurrent changes in temperature and precipitation. Unsurprisingly, decreasing 

precipitation combined with higher temperatures results in greater decreases in total flow 



52 
 

than when temperature and precipitation are varied independently. However, even if 

temperature increases are combined with higher precipitation, total flows decline in the 

majority of bootstrap resamples.  

 
Figure 2.8: Projected changes in total streamflow (relative to current long-term average) 

under changing climate conditions. The top two panels show the sensitivity to changes in 
temperature and precipitation when they are varied independently. The bottom panel shows 

sensitivity to changing temperature in conjunction with decreasing (left panel) and 
increasing (right panel) precipitation.  Dashed lines represent 95% confidence bounds from 

bootstrap resampling. 

The uncertainty surrounding temperature sensitivity is a key limitation to using data-

driven approaches for climate impact assessment. To better understand which models and 

basins are contributing to this uncertainty, Figure 2.9 shows how the coefficient of variation 

(the standard deviation of predictions from all bootstrap samples divided by the mean of 
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these predictions) varies as a function of temperature change in each basin. From this figure, 

it is apparent that the Megech model is by far the largest contributor to model uncertainty; 

however, it is not clear whether this contribution is due to model structure (the GAM model 

used for the Megech River) or characteristics associated with the basin itself. To investigate 

how different model structures contributed to this uncertainty, the bootstrap resampling 

procedure was used to assess uncertainty in streamflow predictions in the Gumara River 

from all model types. This basin was chosen because all six models were able to outperform 

the climatology model, and thus could be considered good choices for model selection based 

on predictive accuracy alone. The results indicate that the increase in uncertainty is highest, 

and increases non-linearly, in the GLM, GAM, and MARS models. Uncertainty increases 

more slowly in the ANN and M5 models, and no noticeable increase in uncertainty is 

apparent in the random forest model. 

 
Figure 2.9: Changes in the coefficient of variation across bootstrap resamples from the 

highest performing model in each basin (left panel) and multiple models all applied to the 
Gumara basin (right panel). 
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2.4 Discussion 

The objective of this study was not to identify the “best” approach for empirical 

rainfall-runoff modeling, as this is likely to be highly specific to the basin and problem to 

which a model is applied. However, we hope that the comparison conducted here can 

highlight some of the strengths and limitations of different approaches, as well as 

demonstrate some important issues that should be kept in mind for model comparisons in 

the future. One important finding was the limitation with using NSE as an error metric. Our 

results confirm previous studies that found that even uninformative models able to capture 

basic seasonality are able to achieve high NSE values (Legates and McCabe Jr, 1999; Schaefli 

and Gupta, 2007), and provide further evidence indicating that high NSE values should be 

considered a necessary but not sufficient requirement for model usage in planning situations. 

For instance, the simple climatology model used for comparison purposes here is able to 

achieve high NSE values, but would be unsuitable for planning since it does not account for 

any interannual variability nor the possibility for non-stationary conditions caused by 

changing climate and land cover. In particular, understanding error structure can be valuable 

in evaluating whether model biases might undermine the model’s suitability for management 

activities. In our example, the autocorrelation present in the standard-formulation models 

meant that these models were consistently underestimating wet-season flows, resulting in 

low estimates of the total annual flow in the rivers. Since multiple reservoirs are planned for 

construction on these rivers to support irrigation activities, this bias could lead to poor 

estimates of how much water is available for agricultural use in the short term (ie., seasonal 

forecasting) and long-term (due to climate change). Interestingly, difficulties in accurately 

capturing high flows has been observed in physical hydrologic models for Ethiopia (e.g., 

Mekonnen et al., 2009; Setegn et al., 2011) and more generally (e.g., Wilby, 2005). The 
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implications of this limitation should be carefully evaluated before using models for water 

resource planning or (more importantly) flood risk evaluation.  

Depending on the model type used, different mechanisms are available to evaluate 

covariate importance and influence within the model. This evaluation can be useful in 

confirming that the model is replicating physically realistic relationships between input and 

output variables. While the relationships identified in this evaluation are fairly 

straightforward (for example, increasing runoff with higher precipitation and lower 

temperatures), these simple relationships are still important in highlighting the mechanisms 

by which the models make predictions so that they are not “black boxes.” For instance, Han 

et al. (2007) explore how ANN flood forecasting models responds to a double-unit input of 

rain, finding that some formulations respond in a hydrologically meaningful way to increased 

rainfall intensity, while others do not. Similarly, Galelli and Castelletti (2013a) describe how 

input variable importance can be used to highlight differences in hydrologic processes 

between an urbanized and forested watershed. The easy manner in which covariate 

relationships within the GAM and random forest models can be visualized using a single 

command within their respective R packages is a strong advantage to these approaches 

compared to methods such as M5 model trees and artificial neural networks. Of course, 

partial dependence plots can be developed for any model type (as was done in this research), 

but code must be written by the user and thus requires a higher degree of effort than is 

necessary for in-package functions. A downside to most machine-learning models is that 

they do not support the statistical formalism in assessing variable importance that is possible 

when linear models and GAMs are used. However, this formalism often rests on 

assumptions regarding model residuals that are unlikely to be met in many hydrologic 

models (Sorooshian and Dracup, 1980).  
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Within the Lake Tana basin, evaluation of covariate influence indicates that each 

basin’s model is performing in a physically realistic manner, with a runoff increasing with 

higher precipitation levels and decreasing with higher temperatures. The influence of 

precipitation and temperature is greatest in the current month, and progressively declines to 

a very small influence after two months. This suggests that long-term (multi-month) storage 

does not significantly contribute to variability in flow volumes. One interesting finding is the 

non-linear relationship between concurrent month precipitation and runoff that exists in the 

Megech and Ribb basins, which suggests that above a certain point increasing rainfall does 

not result in a commiserate increase in streamflow. Other studies have noted the dampening 

effect that wetlands and floodplains have had on river flows in the region (Dessie et al., 

2014; Gebrehiwot et al., 2010); this phenomenon could explain the non-linear relationship 

identified in this work. The clearly negative relationship between temperature and runoff 

demonstrates the degree to which upstream evapotranspiration impacts streamflow and 

suggests that evapotranspiration is largely energy-limited, rather than water-limited. 

Increasing agricultural land-use appears to be associated with higher runoff in all rivers 

except for Gilgel Abbay (where no clear relationship between land cover and runoff was 

observed), and suggests that agricultural expansion at the expense of forest cover has 

reduced the evaporative component of the water balance in these basins. Finally, the relative 

performance of different model formulations themselves can also be informative. For 

instance, the improved performance of the anomaly-formulation models indicates that the 

relationship between precipitation and runoff varies throughout the year and could point 

towards differences in runoff-generating mechanisms in the wet and dry seasons that have 

been observed in other case studies (Wilby, 2005). 



57 
 

One limitation with data-driven approaches for streamflow prediction is that the 

relationships they model can only generate reliable predictions for conditions that are 

comparable to those experienced historically. Using these models to generate predictions for 

conditions that exceed historic variability is likely to introduce considerable uncertainty into 

their projections. Our results indicate that uncertainty in projections of streamflow under 

changing precipitation is relatively constant, whereas uncertainty increases markedly in 

projections of streamflow under increasing temperature. This result is not surprising when 

one considers the basin’s climate, which is characterized by highly variable rainfall but fairly 

consistent temperatures (Table 2.6). A temperature increase of 3° C equates to almost two 

standard deviations beyond the historic mean, whereas a change in precipitation of 30% is 

well within the range of conditions experienced historically. One would expect that in other 

climates (for example, temperate watersheds with only minor changes in rainfall throughout 

the year), this relationship could be reversed. Despite the uncertainty that exists in 

projections of streamflow under changing temperature, total annual flow appears to be quite 

sensitive to increasing temperatures. In fact, the decreases in streamflow due to increasing 

temperature appears likely to be more than enough to counteract any increases in streamflow 

resulting from higher precipitation that is projected for the region in some global circulation 

models (GCMs). This is consistent with the work of Setegn et al. (2011), who used 

projections from multiple GCMs as input for a SWAT model developed for the region and 

found that streamflow decreased in the majority of emissions scenarios and models, even 

when precipitation increased. Unfortunately, this suggests that any hopes for a “windfall” of 

additional water to support agriculture and hydropower in the region under climate change 

may be unfounded.  
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 Temperature 
(°C) 

Wet season 
rainfall 

(mm/month) 

Dry season 
rainfall 

(mm/month) 

Mean SD Mean SD Mean SD 

Gilgel  Abbay 15.7 1.54 206 145 39.3 56.5 

Gumara 17.7 1.55 186 137 29.0 43.6 

Koga 15.7 1.54 206 145 39.3 56.5 

Megech 20.6 1.75 234 118 41.4 60.9 

Ribb 18.2 1.61 263 115 45.8 57.0 

Table 2.6: Mean and standard deviation values for temperature, wet-season rainfall, and dry-
season rainfall in each basin 

 

 Repeating the climate change sensitivity experiment with multiple models fit to the 

Gumara watershed indicated that the MARS, GAM, and linear models all result in the largest 

increase in uncertainty at high temperatures. This indicates that when models are fit to 

slightly different bootstrap resamples of the historic dataset, the projected changes in 

streamflow at high temperature changes can be highly erratic. This is likely due to the fact 

that extrapolating the relationships that are observed between historic temperature and 

streamflow to higher temperatures can lead to very large changes in streamflow. Fitting the 

models to bootstrap resamples of the data results in minor changes to these relationships 

that can result in widely varying projections when the models are used to predict streamflow 

at higher temperatures, particularly when these relationships are nonlinear (as in the GAM). 

At the other end of the spectrum, the random forest model exhibits almost no increase in 

uncertainty at high temperatures, meaning that projections of streamflow at high 

temperatures are consistent across the bootstrap resamples. This is likely the result of the 

random forest model structure. The predicted value for each of a regression tree’s terminal 

nodes is the average of all observations that meet the conditions described for that node. 

Thus, the model will not predict values beyond those experienced historically, even if 
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covariate values exceed those contained within the historic dataset. Thus, this model is likely 

to underestimate the change in streamflow that results from increasing temperatures.  

2.5 Conclusions 

In this work, we compared multiple methods for data-driven rainfall-runoff 

modeling in their ability to simulate streamflow in five highly-seasonal watersheds in the 

Ethiopian highlands. Despite the popularity of ANNs in research on streamflow prediction 

to date, ANNs were not found to be the most accurate model in any of the five basins 

evaluated. Other methods, in particular GAMs and random forests, are able to capture non-

linear relationships effectively and lend themselves to simpler visualization of model 

structure and covariate influence, making it easier to gain insights on physical watershed 

functions and confirm that the model is operating in a physically realistic manner. However, 

it is important to carefully evaluate model structure and residuals, as these can contribute to 

biased estimates of water availability and uncertainty in estimating sensitivity to potential 

future changes in climate. In particular, autocorrelation in model residuals can result in 

underestimation of aggregate metrics such as annual flow volumes, even in models with high 

NSE performance. Uncertainty in GAM projections was found to rapidly increase at high 

temperatures, whereas random forest projections may be underestimating the impact of high 

temperatures on river flows. Thorough consideration of this uncertainty and bias is 

important any time that models are used for water planning and management, but especially 

crucial when using such models to generate insights about future streamflow levels. By 

considering multiple model formulations and carefully assessing their predictive accuracy, 

error structure and uncertainties, these methods can provide an empirical assessment of 

watershed behavior and generate useful insights for water management and planning. This 

makes them a valuable complement to physical models, particularly in data-scarce regions 
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with little data available for model parameterization, and warrants additional research into 

their development and application. 
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3 RISK ASSESSMENT UNDER DEEP UNCERTAINTY: A 

METHODOLOGICAL COMPARISON3 

3.1 Introduction 

The use of probabilities in describing uncertainty is a foundational pillar of risk 

analysis. Quantifying the likelihood of undesired consequences in complex systems requires 

a mechanism for drawing inference and quantifying uncertainty in situations where 

frequentist data is limited. The usefulness of Bayesian probability in meeting these needs is 

clear and unparalleled. Nevertheless, it has long been acknowledged that Bayesian 

probabilities are conditioned on underlying knowledge (Mosleh and Bier, 1996) and that low 

levels of underlying knowledge can present issues for probabilistic representation of 

uncertainty. Using a single probability (or probability distribution) to describe uncertainty 

masks information about what portion of the overall uncertainty is epistemic versus aleatory 

(Dubois, 2010; Paté-Cornell, 1996) as well as the strength of underlying knowledge 

supporting that probability (Aven, 2008). Conditions of deep uncertainty, such as situations 

where probabilities of different outcomes are unknown, previous data is deemed insufficient 

for estimating future consequences, and experts disagree on the consequences of different 

policies, present particularly difficult challenges (Cox, 2012). These issues have led to an 

ongoing, lively discussion regarding the theoretical and practical basis for alternative 

approaches to uncertainty representation in risk assessment – see, for instance, the 

discussion by Dubois (2010) and others in Risk Analysis Vol. 30, No. 3.  

                                                 

3 This chapter is based on the following manuscript: Shortridge, J.E., Aven, T., and Guikema, S.D. Risk 
assessment under deep uncertainty: a methodological comparison. Submitted to Reliability Engineering and System 
Safety in January 2016. Currently under first round of review. 
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Attempts to address high-profile contemporary issues such as climate change have 

also raised a number of practical issues associated with applying probabilistic risk assessment 

to these problems. These problems are often characterized by multiple experts, stakeholders, 

and decision-makers who may all have dramatically different beliefs regarding future 

uncertain events. A probabilistic analysis may be met with resistance in situations with 

multiple stakeholders who disagree with the likelihood and consequences assigned by 

selected experts (Aven and Zio, 2011). Some research has found that experts themselves may 

be hesitant to assign subjective probabilities that may be perceived as unreliable or 

untrustworthy (Chao et al., 1999). It has been argued that probabilistic projections of climate 

change could mislead decision-makers by obscuring the real range of possible futures and 

implying a greater degree of certainty than actually exists (Clark and Pulwarty, 2003), 

resulting in “disguised subjectivity” (Reid, 1992) when the underlying assumptions and 

uncertainties are not made clear. This has led to some organizations promoting the use of 

probabilistic analysis only in very limited cases. For instance, IPCC guidance on reporting 

climate impacts requires high confidence (based on robust sources of evidence that are in 

general agreement with each other) for authors to characterize uncertainties probabilistically 

(Mastrandrea et al., 2010).  

Given these concerns, a number of methodologies have been proposed to provide a 

more comprehensive treatment of non-probabilistic uncertainty, including “frequency of 

probability” approaches (Kaplan and Garrick, 1981); numerical alternatives to probabilities 

such as imprecise probabilities (Walley, 1991), probability bounds analysis (Ferson and 

Ginzburg, 1996), and possibility theory (Dubois et al., 1988); qualitative measures for 

describing the weight of evidence on which probability assessments are based (Aven, 2008); 

and robustness-based decision support frameworks that do not rely on probabilities such as 
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RDM (Lempert et al., 2006) and Info-Gap Theory (Ben-Haim, 2000). Existing research on 

these approaches largely focuses on their development, debate on their practicality and 

theoretical foundations, and application to specific problems. However, many of these 

methodologies have been developed in relative isolation from each other, making the 

advantages, limitations, assumptions and practical implications of each approach relative to 

others unclear. This limits the degree to which researchers and practitioners can build upon 

previous research in this field and apply these methods to problems where probabilistic 

analysis is considered insufficient or inappropriate. 

Systematic comparisons between different approaches could serve to address some 

of these issues. However, relatively few comparisons between different methods exist, and 

those that do tend to focus on numerical alternatives to probability without considering 

semi-quantitative and robustness-based approaches. For instance, Dubois and Prade (1992) 

compare Bayesian probabilities, belief functions, and possibility theory in their ability to 

combine multiple expert opinions, finding that all methods can be subject to numerical 

instability when faced with strongly conflicting information. Soundappan et al. (2004) apply 

Bayesian theory and evidence theory to a series of algebraic challenge problems related to 

expert disagreement and imprecision, comparing their underlying assumptions and treatment 

of different sources of uncertainty and imprecision. Aven and Zio (2011) critically review 

multiple uncertainty representations as applied to a simplified nuclear reactor failure risk 

problem and present a broad framework for uncertainty analysis that is compatible with 

these representations. Similarly, Hall et al.’s (2012a) comparison of RDM with Info-Gap 

theory to evaluate greenhouse-gas emission policies focuses on two robustness-based 

approaches.  
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The objective of this work is to systematically compare three diverse approaches to 

risk assessment under deep uncertainty in terms of their representation of uncertain 

quantities, analytical output, and information provided for risk management and decision 

making. This work builds on previous comparisons that have generally focused on relatively 

similar methodologies (for example, alternative uncertainty representations in Aven and Zio 

(2011) or robustness-based approaches in Hall et al. (2012a)) by comparing three 

methodologies (semi-quantitative uncertainty factors, probability bounds analysis, and 

Robust Decision Making) that address epistemic uncertainty in very different ways. A 

comparison of these methodologies also has the added benefit of evaluating two approaches 

(uncertainty factors and RDM) that are relatively new to the risk and reliability field. The 

methods selected for this comparison should not be considered a judgement on which 

methods are most appropriate or promising, and future work comparing additional 

methodologies would be a valuable extension of this research.  

We use a simple, stylized flood risk example to evaluate the informational 

requirements, underlying assumptions, and information provided to decision-makers in each 

case, and also evaluate how each approach relates to fundamental issues associated with risk 

assessment and description. While the example problem includes a number of simplifications 

that would make it unsuitable for evaluating flood risk in a real city, the use of a simple 

problem for methodological comparison does serve a number of purposes that have been 

highlighted by previous studies employing this approach (Aven and Zio, 2011; Flage et al., 

2013; Hall et al., 2012a; Lempert and Collins, 2007). One main advantage of using a stylized 

example problems is to avoid situations where computational challenges overwhelm and 

obscure fundamental differences between the evaluated methods(Flage et al., 2013). A 

simple problem “allows clear focus on the essential comparisons among decision 
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approaches,”(Lempert and Collins, 2007) rather than the intricacies of the example problem. 

The use of a stylized example problem is a logical first step in comparing three very 

divergent approaches to risk assessment under deep uncertainty. Once the fundamental 

differences between approaches have been highlighted and clarified, then comparisons using 

more sophisticated examples would be a valuable area for additional research.  By comparing 

these methodologies in a clear and comprehensive manner, this paper aims to improve 

understanding of how the choice of methodology may impact implications for risk 

management and suggest contexts in which certain approaches may be more suitable than 

others. 

3.2 Framework for Comparison 

To provide a clear framework for comparing non-probabilistic and quasi-

probabilistic approaches to risk assessment, it is important to be clear about what exactly risk 

assessment entails. In this analysis, risk assessment refers to an analytical process that aims to 

identify and describe possible hazards, their causes and consequences, and the uncertainty 

surrounding their occurrence. In a probabilistic risk assessment, this process includes hazard 

identification, cause and consequence analysis, and a probabilistic analysis that describes the 

likelihood of occurrence for different scenarios and their consequences (Aven et al., 2013). 

This process ultimately results in a risk description, which can be used alongside managerial 

review and judgment to inform risk management decisions.  

Traditionally, risk has been described using the “triplets” definition of risk 

introduced by Kaplan and Garrick (Kaplan and Garrick, 1981), which included possible 

scenarios or events A, the consequences that result from these events C, and the associated 

probability of an event P. Depending on the phenomena of interest, this probability P can 
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represent the frequency of a repeatable event or the Bayesian (subjective) probability of a 

unique event (Aven, 2012; Bedford and Cooke, 2001). However, this is not a perfect tool for 

describing uncertainty, particularly because it provides no information on the background 

knowledge on which P is based (23). To more explicitly account for this element of 

uncertainty, we use Aven et al.’s (2013) more general risk description which includes specific 

events A’, a measurement of the quantities of interest C’ that represent consequences C, a 

measurement Q of the uncertainty in A’ and C’, and the knowledge K on which A’, C’, and 

Q are based.  Figure 3.1 illustrates this conceptualization.  

 

Figure 3.1: Conceptualization of risk assessment process 

 

This comparison will assess how each of the three methods relate to the process and 

resulting risk description described above through the use of a stylized climate change 

adaptation problem related to flood risks in a riverfront city. The city is considering 

upgrading its existing floodwall due to concerns that its reliability has decreased with age and 

that climate change could result in floods occurring more frequently. The outcome quantity 

of interest is total cost over the next 30 years, which is the sum of damage costs from 

flooding and construction costs should the floodwall be upgraded. A number of simplifying 
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assumptions are made so that complexities in the example problem do not obscure or 

confuse the methodological comparison. Both floods and floodwall failures are assumed to 

be binary events; thus this analysis will not address varying magnitudes of flooding or flood 

damage. Should a flood occur, the floodwall will either hold or fail completely, resulting in 

either no damage or complete damage of all assets in the floodplain. Additionally, the 

analysis will be conducted assuming constant conditions over the 30 year period and not 

consider non-stationary conditions or discount rates. Finally, the comparison will only 

evaluate damage and construction costs, and will not consider other impacts such as lives 

lost or secondary economic losses.  

 

Figure 3.2: Characterization of uncertain input quantities for flood risk example problem 

 

There are four uncertain factors that impact total costs. The first uncertain factor is 

the flood return period. Historical data suggest a flood return period of 100 years, but 

climate change could alter precipitation amounts for the region, in turn impacting the 

frequency of flooding. Climate model projections of future precipitation in the region differ, 

with some models predicting an increase in rainfall while others predict a decrease. Because 

of this, there is significant uncertainty about what the flood return period will be in the 
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future. The second uncertain factor is the failure probability of the existing floodwall. The 

floodwall was installed many years ago and city engineers disagree about its failure 

probability should a flood occur. However, if the upgrades are installed, they will result in a 

floodwall reliability of 99%; thus, only the reliability of the existing floodwall is uncertain. 

The third uncertain factor is the value of assets that will be present in the floodplain in the 

future (including the costs to repair the floodwall should it fail), as this depends on the rate 

of development in the city in years to come. The fourth uncertain factor is construction 

costs. While the city has obtained preliminary cost estimates from multiple contractors, there 

is disagreement about how much upgrades are likely to cost. For simplicity, these four 

uncertain quantities are all assumed to be independent of each other.  

It is important to recognize that each of these four quantities (flood return period, 

floodwall failure probability, assets at risk, and construction costs) are all epistemically 

uncertain. They are not inherently variable or repeatable events; thus any probabilistic 

description of their values represents a Bayesian degree of belief. However, two quantities 

(the flood return period and number of floodwall failures) are parameters that describe 

frequentist models of varying phenomena (Figure 3.2). For a given flood return period, the 

distribution of the number of floods that will occur over the 30-year period of analysis is 

modeled using a Poisson distribution. Given a floodwall failure probability and number of 

floods occurring, the number of floodwall failures that will occur over the 30-year period is 

modeled as a binomial distribution.  Based on this, the total costs are modeled as:  

Equation 3.1: 

𝐶𝑇𝑜𝑡𝑎𝑙 = 𝐶𝐶 + 𝐶𝐷 = 𝐶𝐶 + 𝐴 ∗ 𝑁𝑓𝑎𝑖𝑙 
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where Ctotal, CC and CD are the total, construction, and damage costs, respectively, A is assets 

at risk, and Nfail is the number of floodwall failures that occur over the 30-year period of 

analysis. Note that the number of floodwall failures cannot exceed the number of floods that 

occur. If the upgrades are not installed, then construction costs are equal to zero. We assume 

all dollar values are in present-year dollars. 

3.3 Methodological Comparison 

3.3.1 Probabilistic Analysis with Uncertainty Factors 

Semi-quantitative uncertainty factors have been proposed as an additional 

component of risk assessment aimed at communicating the level of underlying knowledge 

supporting the assessment, thus providing a more “comprehensive risk picture” than 

expected values and probabilities alone (Aven, 2008). The term “uncertainty factors” refers 

to limitations in background knowledge that can be hidden in the assumptions made to 

conduct the assessment. This method aims to identify these assumptions and assess the 

strength of knowledge on which they are based, as well as the degree to which their violation 

would impact the quantitative results of the assessment (sensitivity). For example, an 

assumption has strong supporting knowledge if the involved phenomena are well 

understood and there is reliable data and expert consensus supporting the assumption (Flage 

and Aven, 2009). An assumption has a high sensitivity if its violation results in dramatic 

changes to the quantitative results of the risk assessment.  

For this approach, each of the four uncertain input quantities can be described 

probabilistically based on expert elicitation. However, because the flood return period and 

floodwall failure probability are parameters used to describe inherently variable 

phenomenon, allowing for uncertainty in these quantities would result in multiple 
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distributions of the frequency of floods and floodwall failures. While this corresponds to the 

“probability of frequency” analysis described by Kaplan and Garrick (1981) and the highest 

level of treatment of uncertainty outlined by Pate-Cornell (1996), we avoid this treatment to 

highlight the role of uncertainty factors and be consistent with typical risk assessment 

practices. Table 3.1 shows how each of the four uncertain input quantities are represented, 

along with key assumptions on which those representations rest:  

 The flood return period is estimated to be 50 years. This is based on the assumption that 

average annual precipitation in the region will increase by 15% relative to historic levels. 

A precipitation increase of 15% is the average projection from multiple climate models.  

 Multiple engineers have inspected the existing floodwall, and their elicited judgments on 

the probability of failure range from 0.1 to 0.2. The probabilistic assessment assumes a 

failure probability of 0.15, equal to the central value.  

 The value of assets at risk in the floodplain depends on economic development and 

population growth. Based on ranges of growth experienced in the past, the value of 

assets that will be present in the future is represented by a uniform distribution from 

$500M to $600M. This assessment is based on the assumption that growth rates will not 

exceed those experienced historically. 

 A distribution of possible costs is elicited from the lead city engineer based on 

preliminary cost estimates and their previous experience with similar projects. Their 

beliefs are found to roughly approximate a lognormal distribution with a mean of $45M 

and standard deviation of $7M, so this distribution is used for sampling and carrying out 

the probabilistic analysis. However, this distribution assumes that prices for land and 

materials remain consistent with current levels.   
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These quantities are used to determine a distribution of total costs for the existing 

and upgraded floodwall using 10,000-fold paired Monte Carlo simulations. The distribution 

of costs for each alternative is shown in Figure 3.3, and summary statistics are shown in 

Table 3.2. The expected total costs are similar for both alternatives ($53.08M and $47.99M 

for no-action and upgrades, respectively). However, the full distributions of cost for the two 

alternatives differ substantially. If no-action is taken, the probability of incurring no costs is 

0.91, with a 0.09 probability of incurring costs over $500M. If the upgrades are constructed, 

then there is a 95% probability that the costs will be between $32.85M and $61.32M.  

Uncertain Input 
Quantity 

Probabilistic Representation Underlying Assumption 

Flood return period 50 years Rainfall increases by 15% 

Floodwall failure 
probability 

0.15 
 

Actual probability is close to 
average value from city engineers 

Assets at risk Uniform ~ ($500M, $600M) Asset growth rates remain within 
historical range 

Construction Costs Lognormal ~ ($45M, $7M) Prices for land and materials remain 
consistent with current levels 

Table 3.1: Representation of uncertain input quantities in probabilistic assessment 

 No Action Upgrades 

Expected value $53.08 $47.99 

0.025 percentile $0  $32.85  

0.975 percentile $576 $61.32 

P(cost = $0) 0.91 Negligible  

Table 3.2: Summary statistics from probabilistic assessment 
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Figure 3.3: Probability distribution of total costs for  

no-action and upgrades alternatives 

 

Table 3.3 shows the qualitative assessment of each of the assumptions used to 

probabilistically represent the uncertain input quantities. The strength of knowledge 

supporting each assumption is the same regardless of which alternative is being evaluated, 

but the sensitivity of each alternative to a given assumption can vary. For example, the 

distribution of costs for upgrades relies on the assumption that land and material costs 

remain consistent with current levels, but the distribution of costs for the no-action 

alternative does not rely on this assumption.  

The assumption that rainfall increases by 15% is based on the average projection of 

changing precipitation from multiple climate models. This means that some models project 

increases greater than 15% and some models project increases less than 15% or perhaps 

even decreases. There is no reason to believe that this average is more likely than any single 

model’s projection, nor that the models evaluated capture the complete range that could 

occur. Thus, it is entirely possible that the change in rainfall could be something other than 

15%. Therefore, the strength of knowledge supporting this assumption is judged to be weak. 
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The assumption regarding failure probability is assigned a moderate strength of knowledge. 

While the majority of engineers believe the failure probability to be close to the central value, 

the possibility for more extreme values cannot be ruled out. The assumption about asset 

growth rates is assigned a high strength of knowledge since extensive long-term historical 

records exist on growth rates in the city and include periods of very rapid and even negative 

growth. Finally, the assumption about land and material costs is assigned a weak level of 

knowledge, since these prices have historically fluctuated and there is no reason to believe 

that they would not do so in the future.  

Assumption Quantity 
impacted 

Strength of 
Knowledge 

Sensitivity 

No Action Upgrades 

Rainfall increases by 15% Flood return 
period 

Weak Moderate Low 

Failure probability is equal 
to central value from 
engineers 

Floodwall failure 
probability 

Moderate Moderate None 

Asset growth rates remain 
within historical range 

Assets at risk Strong Moderate Low 

Land and material costs 
remain consistent 

Upgrade 
construction costs 

Weak None High 

Table 3.3: Qualitative assessment of uncertainty factors in probabilistic example 

 

The no-action alternative is judged to be moderately sensitive to the assumptions 

regarding rainfall, floodwall failure probability, and asset growth rates. The violation of these 

assumptions could change the probability of incurring a certain level of damage costs, but 

does not automatically result in damage costs since the number of floods and floodwall 

failures are subject to aleatory uncertainty. The upgrades alternative is judged to have a low 

sensitivity to the rainfall and assets assumptions, since the low failure probability of the 

upgraded floodwall means that even if more floods occur and assets at risk are high, it is still 

unlikely that damage will occur. The upgrades alternative is not impacted by the assumption 
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regarding the existing floodwall failure probability, just as the no-action alternative is not 

impacted by the assumption about land and material costs. However, the upgrades alternative 

is highly sensitive to the assumption about land and material costs, since construction costs 

are the main contributor to total costs for this alternative and could be significantly higher if 

this assumption is violated.  

These qualitative assessments can be combined into an overall judgment on the 

strength of knowledge supporting the probabilistic analysis as a whole. For the no-action 

alternative, the three assumptions that could impact total costs vary in terms of strength of 

knowledge but could all have a moderate impact on the quantitative results. Thus, the 

strength of knowledge supporting the evaluation of the no-action alternative is judged to be 

moderate. The evaluation of the upgrades alternative is also assigned a moderate strength of 

knowledge since there is only one assumption that could greatly impact it but the strength of 

knowledge supporting that assumption is low. 

3.3.2 Probability Bounds Analysis 

Probability bounds analysis (PBA) has been proposed as method to distinguish 

between aleatory and epistemic uncertainty (Ferson and Ginzburg, 1996). This method 

employs imprecise probability distributions to describe uncertain parameters, which in the 

simplest case can arise from aleatory uncertainty being represented using probability 

distributions, and epistemic uncertainty being represented using intervals. These two forms 

of uncertainty can be combined and propagated using standard mathematical procedures, 

resulting in bounds on a cumulative distribution function, referred to as p-boxes. 
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Uncertain Quantity Representation 

Flood return period 20 to 200 years 

Existing floodwall failure probability 0.1 to 0.2 

Assets at risk $500M to $600M 

Construction costs Lognormal:  mean $40M to $50M 
                    standard deviation $5M to $10M 

Table 3.4:  Representation of uncertain input quantities in probability bounds assessment 

 

In the example problem, the flood return period, existing floodwall failure 

probability, and the assets at risk are all epistemically uncertain, and thus represented as 

intervals (Table 3.4). The representation of these quantities in such a matter allows us to 

relax some of the assumptions that were required in the fully probabilistic analysis. For 

example, the probabilistic analysis assumed that annual rainfall would increase by 15% in the 

future, which was the average projection from multiple models whose individual projections 

ranged from decreases of 5% to increases of 25%. Instead of assuming that actual rainfall 

change will be equivalent to this model average, we can represent the flood return period as 

a range (20 years in the case of rainfall increase of 25% to 200 years in the case of a rainfall 

decrease of 5%). However, it is important to recognize that this analysis is still based on 

other (albeit weaker) assumptions. In the case of the flood return period, we still assume that 

the actual change in rainfall is captured within the model range.  

In some cases, an uncertain quantity could be representative of both epistemic and 

aleatory uncertainty. For instance, the construction costs could be a function of two 

uncertain values: the total quantity of materials required, and the unit costs for these 

materials. The total quantity of materials required is epistemically uncertain, whereas the unit 

costs for materials may fluctuate through time and thus exhibit aleatory variability.  Explicitly 

representing each of these quantities in the PBA framework would require combination of 

an interval encompassing possible material quantities and a probability distribution 
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representing unit costs. Combining these two parameters would result in an imprecise 

probability distribution, as shown in Figure 3.4. One can envision other situations where an 

imprecise probabilistic distribution for construction costs could arise as well. For example, 

an expert may be uncomfortable assigning precise values during probability elicitation 

procedures and prefer to express his degree of belief as ranges of probabilities, or elicitations 

may have been conducted on multiple experts, resulting in multiple probability distributions. 

In this paper we do not quantitatively explore all of the situations that could result in this 

imprecise distribution, but will instead simply assume that possible distributions of 

construction costs are found to approximate an imprecise lognormal distribution with a 

mean ranging from $40M to $50M and standard deviation ranging from $5M to $10M. 

However, understanding the rationale for imprecise representation of this quantity will be 

important when interpreting the final results of the analysis, and will be revisited in 

subsequent sections.  
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Figure 3.4: P-boxes for the uncertain input quantities used in the probability bounds 
assessment. The bottom two figures show p-boxes for the number of floods and the number 

of floodwall failures for each alternative. Dashed lines show the cumulative distribution 
function used in the probabilistic assessment. 

 

Probability bounds for the two alternatives were computed using the Williamson and 

Downs (Williamson and Downs, 1990) algorithm as described by Tucker and Ferson 

(Tucker and Ferson, 2003). Instead of point values for summary measures such as expected 

value, we now have ranges for each of these values (Table 3.5). Whereas the expected values 

for each alternative were fairly close in the probabilistic assessment, the range in expected 
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value for the no-action alternative is much wider than the range for the upgrades. The 

interpretation of this range depends on the rationale for using imprecise probabilities. In the 

case of the no-action alternative, the total costs are a function of three uncertain quantities: 

the flood return period, floodwall failure probability, and assets at risk. Because each of these 

are epistemically uncertain, they were represented as intervals, while variability in the number 

of floods and floodwall failures that will occur is modeled using probability distributions. In 

the resulting p-box for total costs, epistemic uncertainty regarding the three input quantities 

contributes to the width of the box, while aleatory uncertainty in the number of floods and 

floodwall failures contributes to the tilt. This is consistent with Ferson and Ginzburg’s 

(Ferson and Ginzburg, 1996) interpretation of uncertainty representation in PBA. Similarly, 

the range for expected value can be interpreted as resulting from lack of knowledge 

regarding the flood return period, floodwall failure probability, and assets at risk.   

 No Action Upgrades 

Expected value $7 - $182 $37.12 - $63.95 

0.025 Percentile $0 - $0  $23.95 - $41.05 

0.975 Percentile $0 - $1200  $47.18 - 89.08 

P(total cost = $0) 0.74 to 0.985 Negligible  

Table 3.5: Summary measures for the probability bounds analysis 
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Figure 3.5: P-boxes for total costs of each alternative 

 

The interpretation for the total cost of upgrades is different because this depends on 

construction costs, as well as the flood return period and assets at risk. In this case, the 

construction costs are characterized by epistemic uncertainty in the amount of materials 

required and aleatory uncertainty regarding future material costs. Therefore, the range of 

expected values can be interpreted as resulting from lack of knowledge regarding the flood 

return period, assets at risk, and the quantity of materials required. However, if probability 

bounds were used for other reasons, such as imprecision in elicited probabilities, this range 

would result from epistemic uncertainty regarding the flood return period and assets at risk, 

as well imprecision in the expert’s elicited beliefs regarding construction costs. Similarly, if 

the bounds on the distribution of construction costs resulted eliciting probabilities from 

multiple experts, the range in expected values would partly result from disagreement in 

expert’s elicited beliefs. 
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3.3.3 Robust Decision Making 

Robust decision making (Lempert et al., 2006) is a multi-step, iterative process aimed 

at identifying and designing robust strategies, where robustness implies satisfactory 

performance in conditions other than those for which the system was designed. The process 

consists of both quantitative analysis and qualitative deliberation and review. In this 

comparison, we evaluate one of the key analytical components of the process, referred to as 

“scenario discovery.” This process is motivated by the assumption that in highly uncertain 

situations, it is unlikely that any single alternative will be robust to all conditions it might 

encounter. For example, in our flood risk problem, the no-action alternative could result in 

large damage costs if the flood return period is low and the floodwall failure probability is 

high. However, the upgrades are likely to result in unnecessary construction costs if the 

flood return period is very high. Therefore, the scenario discovery process aims to identify 

regions in the input variable space that result in undesirable outcomes.  These regions are 

used to create a quantitative description of scenarios where an alternative will fail to meet its 

goals (Lempert, 2013). This process is based on the PRIM algorithm and described in 

Section 1.4. 

Input Quantity Representation 

Flood return period Uniform (20 to 200 years) 

Floodwall failure probability Existing: Uniform ~ [0.1 to 0.2]  

Assets at risk Uniform ~ [$500M to $600M] 

Upgrade Construction Costs Lognormal ~ mean: $45M, sd = $10M 

Table 3.6: Representation of uncertain input quantities in the RDM assessment 

 

For the flood risk example, we apply scenario discovery to identify the conditions 

where the upgrades result in lower costs than the no-action alternative. Because the objective 

of running the simulations is not to develop a distribution of total costs but instead to create 

diverse combinations of input quantities, 10,000 Latin hypercube samples were created using 
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relatively wide distributions for each of the four uncertain input quantities (Table 3.6). The 

flood return period, floodwall failure probability, and assets at risk were all sampled from 

uniform distributions over the intervals used in the probability bounds analysis. The 

construction costs were sampled from a lognormal distribution with a mean of $45M (the 

same value use in the probabilistic analysis) and standard deviation of $10M (the largest 

standard deviation used in the probability bounds analysis). 

 No action results in lower total costs than conducting the upgrades in 95% of the 

simulations. However, this result should not be interpreted as a probabilistic statement since 

we make no assumptions that each simulation is equally likely. There were 532 simulations 

where the upgrades had lower total costs than no-action. The SDtoolkit package in R 

(Bryant and Lempert, 2010) was used to run the PRIM algorithm on the simulation results 

and identify boxes that describe the 532 simulations where no-action results in higher costs 

than the repairs (for brevity, we refer to these as “high-cost simulations”). The first step of 

the process creates a plot called a “peeling trajectory” which shows the sequence of boxes 

created through the peeling process (Figure 3.6). Coverage refers to the percentage of high-

cost simulations captured by a box, while density refers to the percentage of simulations in 

the box that are high-cost. The peeling process starts at the lower right hand corner of the 

figure, with a box (represented by an unfilled circle) that includes all of the simulations. In 

this case, the coverage is 1.0 (it contains all of the high-cost simulations) but the density is 

only 0.05 (since only 5% of these simulations were high-cost). As the peeling process 

continues from right to left, the boxes become progressively smaller, resulting in decreases in 

coverage but increases in density. The number of restricted variables also increases as the 

peeling process continues, so that the boxes identified earlier in the algorithm are only 

defined by one variable, while the boxes identified later on are defined by multiple variables.  
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Figure 3.6: Boxes identified during scenario discovery process for no-action alternative 

 

Through visual inspection of this figure, it is evident that the majority of boxes have 

a very low density. For example, the circular 1-dimensional box at the far right hand end of 

the plot represents all simulations where the flood return period was less than 182 years. 

This box’s coverage is 100% but its density is only 5.3%; that is, it describes 100% of the 

high-cost simulations, but only 5.3% of the simulations with a flood return period of less 

than 182 years result in high-costs. Moving from right to left along the curve results in 

increasingly complex boxes with sizable decreases in coverage but only small increases in 

density. This result makes intuitive sense when one considers that there is a considerable 

amount of random variation that determines whether or not damage costs are incurred. For 

example, one could consider a “worst-case” scenario for the no-action alternative where the 

flood return period is low, the floodwall failure probability is high, and the assets at risk are 

high. Even under this scenario it is still possible that no damage costs will be incurred since 

the number of floods and floodwall failures are subject to aleatory variation.   
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The input variables used to define the boxes can be informative. For example, the 

circular one-dimensional boxes are all described by the flood return period. The diamond-

shaped two-dimensional boxes are described by flood return period and floodwall failure 

probability. Because the objective of the PRIM algorithm is to identify combinations of 

input quantities that most effectively predict whether the no-action alternative will result in 

higher costs than the upgrades, this provides an indication of which uncertain input 

quantities drive the decision. Ultimately, a user would select a box, or combination of boxes, 

that provides a satisfactory balance between coverage, density, and interpretability. This 

choice is of course subjective, and it is possible (particularly in a case like our example) that 

none of the boxes will be deemed sufficiently informative. For discussion purposes, we 

select the two-dimensional box with the greatest coverage: this box includes all simulations 

where the flood return period is less than 83 years and the floodwall failure probability is 

greater than 0.11. It has a coverage of 60%, but a density of only 9%. We could then infer 

that there are two scenarios that would drive our decision about whether or not the upgrades 

should be installed. The first scenario would be that the flood return period is less than 83 

years and the failure probability is greater than 0.11, and the second scenario would be if 

these conditions were not met. One could envision this informing a subsequent probabilistic 

analysis, where instead of developing probabilistic (or probability-bounds) distributions for 

the entire range of outcomes for each uncertain input quantity, expert elicitation would focus 

only on the relative likelihood of those two scenarios. 

3.4 Comparison Results 

The above sections describe how three diverse methods can be applied to the same 

simple example problem related to flood risk under deep uncertainty. In this section, we 

compare the approaches in terms of their representation of uncertain quantities, their 
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analytical output and its interpretation, and their implications for practical decision making. 

A summary of this comparison is presented in Table 3.7. 

Method Uncertainty Factors Probability Bounds Robust Decision 
Making 

Representation 
of uncertain 
quantities 

First order precise 
probability distributions 

Imprecise probability 
distributions 

Precise but 
uninformative 
probability 
distribution 

Analytical 
output 

- Precise distribution of 
costs for both 
alternatives 
- Key assumptions 
supporting probabilistic 
description, their 
strength of knowledge 
and sensitivity 
 

- Imprecise distribution 
of costs for both 
alternatives 

- Scenario describing 
conditions where 
upgrades result in 
lower costs than no-
action  
- Relative cost of each 
alternative across 
ensemble of 
simulations 

Risk 
management 
implications 

- Expected costs of 
upgrades is slightly lower 
than no-action, but with 
a lower probability of 
incurring very high costs 
- Moderate strength of 
knowledge 
- Key assumptions are 
flood return period and 
land/material costs 
 

- Expected costs could be 
lower for upgrades or no 
action 
- The probability of very 
high costs (above $500M) 
could be significant for 
the no-action alternative 
- Epistemic uncertainty 
has much larger impact 
on no-action than on 
upgrades 

- Key uncertainties 
driving decision are 
flood return period 
and floodwall failure 
probability 
- No action results in 
lower costs than 
upgrades in majority 
(95%) of simulations 

Table 3.7: Summary of comparison results 

 

3.4.1 Representation of Uncertain Quantities 

Each methodology takes a different approach in the manner in which it represents 

uncertain quantities. In the uncertainty factors analysis, all uncertain quantities were 

represented using first order precise probabilistic distributions. However, second order 

probability models could also be used if probability distributions were assigned to represent 

the analysts’ beliefs regarding the flood return period and floodwall failure probability. In 

general, the approach can accommodate one or two probability levels so long as frequentist 

models based on repeatable events can be justified to represent aleatory variation, as 



85 
 

discussed by Aven (2012).  In either case, the method focuses less on exact quantitative 

description of all uncertain quantities that may impact assessment results, and more on 

identifying underlying assumptions on which probabilistic descriptions of uncertainty 

(whether they represent the analysts’ beliefs or repeatable phenomena) are based.  

The probability bounds analysis represents uncertain parameters using imprecise 

probabilistic distributions. In the simplest case, these imprecise distributions can result from 

treating quantities that are epistemically uncertain as intervals and treating quantities that are 

inherently variable as probability distributions, although they can also arise from other 

circumstances as described by Tucker and Ferson (2003). This has the advantage of allowing 

for imprecision in probabilistic judgements when underlying data to support precise 

distributions may be limited.  However, it has been pointed out that in cases where there is 

little data or underlying knowledge to describe a probabilistic model for aleatory 

phenomenon (such as the number of floods in a 30 year period) there may be even less basis 

to describe upper and lower bounds on the parameters that describe that phenomena, such 

as the flood return period (Berner and Flage, 2015). Thus, even the use of intervals to 

describe epistemically uncertain quantities may be questioned in situations where appropriate 

bounds on those quantities is subject to disagreement or uncertainty.    

In the RDM analysis, uncertain quantities can be represented as intervals (which are 

effectively treated as uniform distributions for sampling purposes) or probabilistic 

distributions, and the method does not distinguish between epistemic and aleatory 

uncertainty. Because our example was focused on the scenario discovery process of 

identifying scenarios that result in poor outcomes for an alternative, uncertain quantities in 

our example were represented using relatively non-informative probabilistic distributions 
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that were used to generate samples across the uncertainty space. However, it is important to 

remember that these samples should not be interpreted in a probabilistic manner. Instead, 

each sample is interpreted as a “plausible future states of the world” (Lempert et al., 2006) 

which could conceivably occur, but does not assume that each sample is equally likely as 

would be the case in a Monte Carlo simulation.  

These different representations of uncertainty shed some light on the types of 

situations where one approach might be more suitable than the others. The uncertainty 

factors approach represents uncertain parameters in the same manner they are represented in 

traditional PRA, and is likely to be appealing in situations where decision makers would like 

to conduct a probabilistic assessment but with a more comprehensive understanding of the 

underlying knowledge on which that assessment is based. The manner in which probability 

bounds analysis can provide a measure of discernment between aleatory variability and 

epistemic uncertainty may be valuable in contexts where the underlying phenomena can be 

meaningfully separated into these two categories and where decisions makers are concerned 

about what degree of risk stems from reducible versus non-reducible uncertainties. 

However, it is important to keep in mind that this separation is only meaningful if the use of 

frequentist probability models based on repeatable events can be justified to describe 

aleatory uncertainty (Aven, 2012). Furthermore, this method may become contentious in 

situations where there are not obvious upper and lower bounds to describe epistemic 

uncertainties.  Finally, while the RDM methodology can use probabilistic distributions to 

generate samples across the uncertainty space, its analytical focus is not on determining the 

probability of different outcomes but instead on understanding the conditions where one 

alternative might be preferred over the other. This focus may be valuable when there is 

strong disagreement regarding the distribution of uncertain parameters or the likelihood of 
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different conditions which are unlikely to be resolved through the use of imprecise 

probabilities. 

3.4.2 Analytical Output 

The analytical output for the uncertainty factors assessment includes both the 

quantitative description of the distribution of total costs associated with each alternative, as 

well as the qualitative description of the underlying knowledge supporting this assessment. 

The quantitative output indicates that the expected costs between the two alternatives are 

relatively comparable, with the no-action and upgrades alternatives having expected costs of 

$53.08M and $47.99M, respectively. However, the distribution of costs for the no-action 

alternative is much wider than the upgrades, with a 95% uncertainty interval of $0 to $576M, 

compared to an interval of $32.9M to $61.3M for the upgrades. The strength of knowledge 

supporting these judgments is considered to be moderate for each alternative, suggesting 

that the phenomena may be well understood but modeled in a simple or crude way, or that 

only some reliable data to characterize the phenomena are available (Flage and Aven, 2009). 

Explicit description of the impact that each assumption could have on the different 

alternatives could be particularly useful when the strength of knowledge supporting the 

assessment of one alternative is significantly higher than the other. The systematic evaluation 

of each individual assumption also helps illuminate which assumptions are most critical to 

the validity of the quantitative assessment. Because it has a weak strength of knowledge and 

a moderate impact on no-action costs, the assumption regarding future rainfall levels appears 

most critical to the quantitative assessment of the no-action alternative. Meanwhile, the 

assumption regarding land and material costs is most critical to the upgrade alternative, 

because it has a weak strength of knowledge and a high impact on upgrade costs.  
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In the probability bounds analysis, the probabilistic distributions of costs from each 

alternative are now represented by imprecise p-boxes, and probabilistic summary statistics 

are represented by an interval of possible values rather than a precise value. The expected 

costs associated with the no-action alternative is represented by the interval from $7M to 

$182M, while the expected costs associated with the upgrades are represented by the interval 

from $37.12M to $63.95M. From this description, it is apparent that the expected cost of the 

upgrades may be higher or lower than the expected cost for no-action, but that the no-action 

alternative has the potential for a much higher expected cost than the upgrades. Visual 

examination of the p-boxes for each alternative can provide an understanding of the relative 

contribution of epistemic and aleatory uncertainty associated with each alternative as well. In 

comparing the two p-boxes, it is apparent that the total costs associated with the upgrades 

are associated with both less aleatory uncertainty (represented by a steeper cumulative 

distribution function) and less epistemic uncertainty (represented by the thickness of the p-

box). While this can provide some insight into the cumulative effect of epistemic uncertainty 

on assessment outcomes, it does not provide any information about the relative contribution 

of each input quantity. Thus, the decision maker may find that the resulting p-boxes are 

unsatisfactorily wide, but have no insights into which uncertainties have the greatest impact 

on this width and thus possible ways for additional research to reduce this width. Obtaining 

this information would require additional analysis, for example through a sensitivity analysis 

as outlined by Ferson and Tucker (2006).  

The analytical output from the RDM assessment takes a very different form. The 

results do not describe the likelihood of all outcomes that may occur, under the assumption 

that the limited knowledge available to support such an assessment would undermine its 

validity (Lempert et al., 2006). Instead, it provides an evaluation of the conditions where the 
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upgrades might be preferred over the no-action alternative, in the form of a scenario defined 

by a flood return period below 83 years and a floodwall failure probability greater than 0.11. 

While this is not as informative as a full distribution of the likelihood of different outcomes, 

this serves to reduce the complexity of a given problem to something more understandable. 

It would be possible to combine this approach with a later probabilistic analysis where the 

relative likelihood of different scenarios are evaluated, providing information more in line 

with that of a traditional risk assessment. This also provides insights into the uncertain 

inputs that have the most influence on the relative performance of the two alternatives, 

suggesting areas of additional research that may be particularly valuable. Additionally, the 

simulation process identified that the no-action alternative resulted in lower costs in the 

majority of simulations (95%) but this output cannot be interpreted in a probabilistic manner 

unless each simulation can assumed to be equally likely. 

3.4.3 Implications for Risk Management and Decision Making 

It has been acknowledged that risk assessment, particularly in cases of deep 

uncertainty, is conducted within a context of deliberative review and managerial judgment 

(Aven, 2013), and that decisions related to the risk in question should be considered “risk-

informed”, rather than “risk-based” (Apostolakis, 2004). This is particularly true in cases of 

highly uncertain or ambiguous risk problems, which require a management approaches based 

on precaution and discourse that are aimed at producing collective understanding and 

identifying mutually acceptable solutions (Klinke and Renn, 2002).  For this reason, it is 

useful to consider how each approach contributes to improving understanding of the risks in 

a manner that could support and inform decision-making. However, it is important to 

recognize that none of the assessed methods are purely prescriptive; instead of identifying 

“an optimal decision”, they instead aim to characterize risk and uncertainty in a way that can 
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inform decision making. While each methodology could be used in a prescriptive manner 

when certain decision rules are assumed, these decisions rules are likely to be contentious in 

deeply uncertain conditions, particularly when multiple viewpoints and values must be 

considered. While these conditions make objectively “correct” risk management solutions 

elusive, risk assessment can inform decision making in other ways; for example, by 

identifying which aspects of a system contribute most significantly to risk and which 

measures offer the greatest risk reduction potential (Amundrud and Aven, 2015). For this 

reason, we avoid a prescriptive interpretation of analytical results here and instead focus on 

the insights that each approach would provide to support managerial review and judgement.  

In the uncertainty factors assessment, the expected value of the upgrades is slightly 

lower than the no-action alternative, but has a much smaller probability of incurring very 

high costs. This would suggest to many decision makers that the upgrades are a worthwhile 

investment, but the caveat that the strength of knowledge supporting this assessment is only 

deemed to be moderate might make planners less confident in that decision. However, one 

useful insight to arise from the qualitative component of the assessment is the identification 

of which assumptions are most critical for the quantitative risk assessment, as this can point 

towards assumptions that should be given additional consideration through either further 

research or more sophisticated treatment within the risk assessment. For instance, because 

the assumptions regarding future rainfall rates and land and material costs appear to be the 

most critical for comparison of the two alternatives, that might suggest that additional 

research aimed at understanding the validity of those assumptions would be a useful course 

of action. By providing improved knowledge and clarification about the risk context, this 

insight could be used to support an ongoing process of adaptive risk management (Bjerga 

and Aven, 2015). Alternatively, the risk assessment process could be repeated, but with these 
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assumptions relaxed through the use of intervals or imprecise distributions to describe the 

flood return period and land and material costs, as suggested by Berner and Flage (2015).  

This ability to refine the risk assessment or focus research activities could be one reason that 

including information on the background information that supports quantitative risk 

descriptions improves the perceived usefulness of risk assessments (Lin et al., 2015).  

However, one limitation with this approach may be the timing of the assessment. Ideally, if 

the strength of knowledge supporting an assessment is low, this could be identified and 

communicated prior to conducting a possibly resource-intensive quantitative assessment. 

In the probability bounds assessment, it becomes apparent that epistemic uncertainty 

makes it unclear which of the two alternatives actually has a lower expected costs. However, 

the probability of very high costs (for instance, above $500M) could be as high as 0.8 for the 

no-action alternative. It should be noted that one common critique of alternative uncertainty 

representations is that they might result in bounds that are too wide to support decision-

making (Aven, 2010), but this example demonstrates that this will not always be the case. 

While the bounds for the no-action alternative in our example are quite wide, this 

demonstrates that the impact of epistemic uncertainty on the no-action alternative appears 

much larger than the impact of epistemic uncertainty on the upgrades. This suggests that the 

possible costs associated with the upgrades are well characterized compared to the costs of 

doing nothing, and puts the upgrades in a relatively favorable light. The potential for very 

high costs associated with the no-action alternative due to both epistemic and aleatory 

uncertainty would likely suggest to decision makers that the upgrades would be a worthwhile 

investment.  
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In the RDM assessment, the analytical output provides more insight regarding the 

key uncertainties driving the decision, and thus the most valuable areas for further research 

and evaluation, rather than the comparison between the two alternatives. In this case, the key 

uncertainties were the flood return period and the floodwall failure probability. In particular, 

the no-action alternative appears particularly vulnerable to a scenario where the flood return 

period is less than 83 years and the floodwall failure probability is greater than 0.11. This 

would suggest that decision makers should base their decision around the likelihood of these 

specific conditions, rather than worrying about the full distribution of all uncertain 

parameters. If there is strong disagreement or uncertainty surrounding the likelihood of this 

scenario, it would suggest that additional research in this area would be valuable. The 

analysis also found that the no-action alternative resulted in lower costs in 95% of 

simulations, which at first glance might make the upgrades appear unnecessary. However, 

one must exercise caution in basing decisions on these results since they do not consider the 

likelihood or magnitude of costs in each case. While the magnitude of costs could be 

evaluated by using alternative performance measures based on regret-based or deviation-

based metrics as in Lempert et al. (2006) and Kasprzyk et al. (2013), these measures are still 

reliant on the assumption that each simulation is equally likely. If there is strong 

disagreement surrounding the distributions used to generate the samples, this assumption is 

likely to be contentious.  

It is interesting to note that the implications for risk management (both in terms of 

the choice between alternatives and suggested areas for additional research or refinement of 

the risk assessment process) are not necessarily consistent between the three approaches. 

The uncertainty factors assessment and probability bounds analysis both made the upgrades 

alternative appear quite favorable, while the RDM assessment (and particularly the fact that 
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the majority of simulations resulted in higher costs for the upgrades) could suggest to some 

decision makers that these upgrades are not necessary. While the probability bounds analysis 

suggested that the costs associated with the no-action alternative were much more sensitive 

to epistemic uncertainty than the upgrades, the uncertainty factors assessment suggested that 

the strength of knowledge supporting the assessment of each alternative was equal. This is 

likely due to the fact that the upgrade costs were judged to be highly sensitive to the 

assumption regarding land and material costs, which had weak supporting knowledge. While 

a violation of this assumption may result in high upgrade costs compared to the baseline 

quantitative risk assessment, these costs may still be quite small compared to the distribution 

of costs for the no-action alternative. Finally, the RDM assessment suggested that land and 

material costs were not actually a very important parameter in choosing between the two 

alternatives, and instead suggested that the flood return period and floodwall failure 

probability were most important. The divergence between risk management implications that 

occurred even within this very simple example suggest that further research comparing these 

methodologies using a more realistic problem could be very valuable. 

3.5 Discussion 

Relating each process back to the risk assessment framework described in Section 3.2 

allows us to clarify how each methodology contributes to this risk assessment process and 

resulting risk description. Uncertainty factors were specifically developed to clearly 

demonstrate the underlying strength of knowledge for a risk assessment, and thus provide 

each of the components of the risk description used here. In our example, A’ and C’ refer to 

a certain number of failures, combined with a specific realization of asset value and 

construction cost, and the total costs that result. The uncertainty associated with each of 
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these realizations is measured probabilistically, and K is the qualitative description of the 

underlying knowledge on which these probability measurements are based.  

The PBA provides the same description of A’ and C’, but the uncertainty 

measurement Q is now the bounds on the probability associated with A’ and C’. The 

underlying knowledge K is not explicitly described, but could be inferred by the shape of the 

resulting p-box for total costs in each case. This is a frequent interpretation of p-boxes, 

where the slant of the box represents variability while the width represents epistemic 

uncertainty. However, this interpretation depends on what led to the use of imprecise 

probability distributions in the first place. The width of the p-box for total costs of the no-

action alternative can be interpreted as the epistemic uncertainty associated with this 

alternative, since the imprecision in this distribution resulted entirely from lack of knowledge 

regarding the flood return period, floodwall failure probability, and assets at risk. However, 

the width of the p-box for the repairs alternative could arise from multiple sources, including 

epistemic uncertainty, imprecision in elicited probabilities, or disagreement between experts. 

Thus, the precise interpretation of the PBA results requires careful consideration of the 

various sources of uncertainty and imprecision leading to that result.  

The RDM analysis is the most challenging to relate back to the risk assessment 

process and description, but could be interpreted in one of two ways. The first could be that 

it serves as an alternative method for hazard identification which identifies specific 

combinations of uncertain conditions that lead to (or are relatively likely to lead to) 

undesirable outcomes. Another interpretation could be that it provides an alternative 

description of A’ and C’, where instead of considering any possible outcome A’ and its 

consequences C’, an “event” is simply a box that results in particularly high consequences C’.  
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In this interpretation, the set of outcomes A’ includes only Scenario 1 (flood return period is 

less than 83 years and the failure probability is greater than 0.11) and Scenario 2 (the above 

conditions are not met), rather than all possible outcomes. This interpretation could be 

useful in situations where decision-makers are overwhelmed by having to consider all 

outcomes that could occur, and prefer to consider a smaller number of scenarios that would 

drive their decision. However, one limitation with this interpretation is that there is not a 

clear set of consequences associated with each of those two scenarios due to the presence of 

aleatory uncertainty in the number of floods and floodwall failures that will occur. 

Additionally, it provides no measurement of the relative likelihood or uncertainty associated 

these events (Q’), and thus no description of the underlying knowledge K for that 

measurement.  

One advantage of the uncertainty factors methodology is its explicit description of 

the assumptions underlying the analysis, as well as the likelihood and consequences of their 

violation. While explicit description of underlying assumptions should be a component of 

any risk assessment, it could be argued that this is often treated as an afterthought to the 

quantitative analysis, if it receives any treatment at all. By creating an explicit framework for 

describing these assumptions and their impacts, uncertainty factors could make presentation 

of these assumptions more systematic and effective. While the assumptions underlying the 

probability bounds and RDM analyses are relaxed relative to the probabilistic analysis, they 

will always be present since complete modeling of all uncertainties and complexities is 

impossible in all but the most trivial of systems. Developing systematic and transparent 

methods for description and assessment of underlying assumptions for different technical 

approaches could be a valuable area of research for any method of risk and uncertainty 
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assessment, and could lead to important steps forward in improving the transparency of 

these analyses. 

3.6 Conclusions 

In this paper, we compare three methods that have been proposed for risk 

assessment under deep uncertainty and critically evaluate how these approaches contribute 

to the risk assessment process and resulting risk description. By applying each method to a 

stylized example problem related to flood risks under climate change, we are able to compare 

each approach’s representation of uncertain quantities, analytical output, and implications for 

risk management. While each methodology aims to assess and describe risks in a manner 

that is more reflective of the uncertainties and assumptions underlying the assessment, the 

analytical output and implications for decision making are not necessarily consistent between 

approaches. This suggests the potential value in additional comparative research to better 

understand the sources of these deviations, as well as the need for analysts to consider the 

ways in which the choice of methodology might impact analytical results. However, the 

methodologies also demonstrate the ways that risk assessment can inform decision making 

in conditions where uncertainty and ambiguity make prescriptive approaches inappropriate. 

In particular, the identification of epistemic uncertainties that most contribute to uncertainty 

in the resulting risk description or choice of alternatives can provide useful insights into 

places where additional research or more sophisticated representation could most benefit the 

assessment. This can ultimately inform more effective responses to deeply uncertain risks 

such as climate change and support adaptive, deliberative and precautionary approaches to 

risk management and governance.  
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4 SCENARIO DISCOVERY WITH MULTIPLE CRITERIA: AN 

EVALUATION OF THE ROBUST DECISION MAKING 

FRAMEWORK FOR CLIMATE CHANGE ADAPTATION4 

4.1 Introduction 

In recent years, there has been increasing concern and discussion over deep 

uncertainty in the risk analysis field (Cox, 2012). The term “deep uncertainty” is commonly 

used to refer to situations where probabilistic models of uncertainty cannot be confidently 

determined or agreed upon (Cox, 2012) or where frequentist probabilities based on 

repeatable events cannot be developed (Aven, 2013). Concerns over deep uncertainty have 

been particularly strong in the climate change adaptation field, with some arguing that 

traditional approaches to risk management, such as maximization of expected utility, are 

poorly suited to climate policy and adaptation problems (Kunreuther et al., 2013). This has 

led to interest in robust decision frameworks (Weaver et al., 2013), which include methods 

such as robust decision making (RDM; Lempert et al., 2006), decision scaling (Brown et al., 

2012), and info-gap decision theory (Ben-Haim, 2000). These methods are commonly 

contrasted with so-called “predict-then-act” frameworks by focusing on the identification of 

robust rather than optimal solutions, and by using analytics to first identify conditions where 

plans or strategies may fail, rather than first predicting what an uncertain future will look like 

(Weaver et al., 2013). These frameworks can be particularly useful in situations characterized 

by poorly understood nonlinear or threshold responses (Lempert and Collins, 2007) or many 

                                                 

4 This chapter is based on the following manuscript: Shortridge, J.E., and Guikema, S.D. Scenario discovery 
with multiple criteria: an evaluation of the robust decision making framework for climate change adaptation. In 
press at Risk Analysis. Early view published online in February 2016. DOI: 10.1111/risa.12582 
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stakeholders with conflicting values and beliefs about the future (Hallegatte and Rentschler, 

2015). 

RDM is one such framework that has been applied to a number of climate 

adaptation problems (Groves et al., 2013a; Groves and Bloom, 2013; Lempert et al., 2013; 

Lempert and Groves, 2010). It is a multi-step, iterative approach that includes both analytical 

and deliberative components (Lempert et al., 2006). The analytical components of the 

process simulate how a system or policy alternatives will perform in many plausible future 

states of the world, and then use the results of these simulations to 1) identify robust 

alternatives (those that perform relatively well in many states of the world) and to 2) identify 

the conditions under which a preferred alternative will perform poorly (Lempert et al., 2006). 

This second objective has been referred to as scenario discovery, as it identifies the 

conditions that represent vulnerabilities for a proposed policy and thus the conditions under 

which an alternative solution would be preferred (Lempert, 2013). Scenario discovery uses 

the Patient Rule Induction Method (PRIM; Friedman and Fisher, 1999) to identify regions of 

a multidimensional input variable space that result in undesirable values of the output 

variable. These regions are defined by quantitative logical conditions involving individual 

input variables. For instance, in one study a regional water plan was found to result in 

unacceptably high costs when precipitation declined by more than 10%, groundwater 

recharge decreased by over 3%, and a water recycling program failed to meet its goals 

(Lempert, 2013; Lempert and Groves, 2010). By identifying these conditions, the scenario 

discovery process can identify which uncertainties are most important for a given decision 

problem (and thus potentially inform research activities) and specify the vulnerable 

conditions for which decision-makers may want to prepare.    
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The PRIM algorithm was developed for problems where multiple input variables 

influence the value of a single response variable, and does not contain a mechanism for 

incorporating multiple response variables or outcome criteria. Because of this, existing RDM 

literature incorporates multiple criteria in a number of different ways. Some studies have 

conducted scenario discovery over a single outcome metric, such as cost (Lempert et al., 

2012; Lempert and Groves, 2010), system reliability (Groves et al., 2014), expected utility 

(Hall et al., 2012a), or a single aggregated performance score (Lempert et al., 2006). A 

number of evaluations that do consider multiple criteria apply scenario discovery over each 

criterion separately (Groves et al., 2013a, 2013b, 2014; Popper, 2009). By identifying the 

conditions that are likely to cause failure for each individual objective, this process can be 

highly informative but may be impractical for problems with a large number of performance 

metrics. Finally, some studies apply scenario discovery across multiple criteria where failure 

on any single criterion is equivalent to failure overall (Herman et al., 2014, 2015; Kasprzyk et 

al., 2013; Lempert et al., 2013). Collectively, these studies demonstrate that there are multiple 

methods that can be incorporated to conduct scenario discovery in a problem characterized 

by more than one performance metric. However, they provide little insight into how the 

choice of method used to incorporate multiple criteria might impact the scenarios identified 

by the PRIM algorithm and what methods may be the most informative for decision makers.  

In this study, we compare different methods for incorporating multiple objectives 

into the scenario discovery process to evaluate how the treatment of multiple criteria can 

impact the vulnerable scenarios identified within the RDM framework. We use the Lake 

Tana basin in Ethiopia (described in Section 1.5) as a case study, where multiple long-lived 

water infrastructure projects are planned for construction but whose effectiveness could be 

impacted by climatic and environmental uncertainties. The scenario discovery process is 



100 
 

used to identify the conditions which are likely to cause unacceptable performance of this 

infrastructure with regard to multiple criteria, including provision of water to different 

economic sectors and downstream environmental conditions. We first identify failure 

scenarios by assessing each performance metric individually, and the implications that these 

scenarios have for the design of system improvements and research efforts focused on key 

uncertainties. We then compare these to failure scenarios identified using different methods 

for aggregating the metrics into a single performance score. By evaluating the sensitivity of 

the scenario discovery process to the treatment of multiple criteria, this works aims to 

support more effective application of robust decision frameworks in contexts where 

performance across multiple economic and environmental metrics must be balanced. 

4.2 Methods 

4.2.1 Simulation Model 

A two-component simulation model was developed to assess how changes in 

climatic and environmental conditions would impact water resources in the basin. The first 

component consisted of empirical rainfall-runoff models that predicted monthly streamflow 

in each of the five rivers with proposed reservoirs (Gilgel Abbay, Gumara, Koga, Megech 

and Ribb) based on monthly temperature, rainfall, rainfall intensity, and agricultural land 

cover. The models were each fit by regressing a 40-year monthly time series of streamflow in 

that river against historic climate data taken from Climate Research Unit (CRU) gridded 

datasets (Harris et al., 2014) and agricultural land cover as reported by data taken from 

Rientjes et al. (2011), Gebrehiwot et al. (2010) and Garede and Minale (2014). Multiple 

regression and machine-learning algorithms were compared in their predictive ability 

through random hold-out cross validation. The highest performing models based on out-of-

sample mean absolute error were used to generate streamflow predictions using climate and 
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land cover data. These included a linear model, M5 model (Quinlan, 1992), artificial neural 

network (Ripley, 1996), generalized additive model (Hastie and Tibshirani, 1986) and 

random forest model (Breiman, 2001). Each basin’s model was compared to a null model 

which predicted streamflow in each month as simply the mean historic streamflow for that 

month. The models were able to achieve statistically significant reductions in predictive error 

based on bonferroni-corrected Wilcoxan signed rank tests. Additional details on model 

development is included in Chapter 2 and discussed by Shortridge et al. (2016). 

The second component of the simulation model was a Water Evaluation and 

Planning (WEAP; Sieber and Purkey, 2015) water allocation model developed for the basin 

by Alemayehu et al. (2010). This model simulates natural hydrologic processes such as 

streamflow and evaporation, as well as human extraction and use of water. In each month, 

the model performs a mass balance to account for both extraction and inflows, allocating 

water to different demand nodes in order of user-defined priorities (Sieber and Purkey, 

2015). The monthly streamflow sequences derived from the empirical rainfall-runoff model 

for each river, as well as time series of evaporation from the lake and each reservoir, were 

used as model inputs. The model then calculated the amount of water allocated and coverage 

(percent of demand delivered) for different demand nodes, as well as lake elevation and 

downstream flows. Additional information on WEAP model development, calibration and 

validation is discussed by Alemayehu et al. (2010). 

4.2.2 RDM Evaluation 

In the first step of the RDM evaluation, a range of feasible values was identified for 

each of the uncertain parameters that could impact infrastructure performance in the future 

(Table 4.1). Because the objective of the scenario discovery process is to find conditions that 
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result in unsatisfactory performance of the infrastructure, we used wide ranges of values to 

better identify the thresholds and tipping points that would result in poor performance.  

Uncertain parameter Symbol Range of values 

Change in temperature ∆T 0.5 to 5.5° C 

Change in rainfall  ∆P -20% to +35% 

Change in rainfall intensity ∆Int 0% to +20% 

Specific sediment loads SedRate 80 to 2400 tons/km2 annually 

Agricultural land cover AgLC 50% to 90% 

Evaporation coefficient EtC 0.8 to 1.2 

Table 4.1: Uncertain parameters 

Possible impacts of climate change were represented by a change in temperature 

ranging from 0.5 to 5.5° C and a change in annual precipitation ranging from -20% to 

positive 35%. These values were taken from IPCC multi-model ensemble projections for the 

East Africa region for the period 2081-2100 under all representative concentration pathways 

(van Oldenborgh et al., 2013). Additionally, there is concern that climate change could result 

in an intensification of precipitation, even when overall amounts of precipitation decrease 

(Barnett et al., 2006; Easterling et al., 2000; Kharin and Zwiers, 2005). For this reason, we 

also considered increases in rainfall intensity (defined as the total amount of rainfall in a 

month divided by the days where rainfall occurs) from 0 to 20%. Specific sediment yield is 

the amount of sediment deposited in the reservoir normalized by the upstream area 

contributing sediment. A range of values for specific sediment yield were taken from 

sampling results from various rivers in the basin (WWDSE, 2008; WWDSE and Tahal 

Group, 2009b) while future agricultural land cover was assumed to range from 50 to 90% 

based on values experienced over the past 50 years (Garede and Minale, 2014; Gebrehiwot et 

al., 2010; Rientjes et al., 2011). Finally, evaporation estimates were multiplied by a factor 

ranging from 0.8 to 1.2 to account for uncertainty arising from the limited meteorological 

data available to estimate evaporation from the reservoirs and lake. This parameter 
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represents the degree to which actual evaporation differs from our estimates, with any value 

over 1.0 implying underestimation of evaporation.  

To assess how the proposed projects would perform in various possible future states 

of the world, 5000 random combinations of the six uncertain parameters were generated to 

be used as inputs for the simulation model described above. Samples were generated using 

Latin Hypercube sampling across a uniform distribution for the range of possible values for 

change in temperature, sedimentation rate, agricultural land cover, and the evaporation 

coefficient. While Latin hypercube sampling is often used to generate multivariate 

probabilistic distributions, here it is only used as a mechanism for generating a diverse 

sample of future conditions that could feasibly occur. These samples are used as input for 

exploratory modeling (Bankes, 1993) that evaluates how the system responds to different 

multivariate conditions while making no inference regarding the likelihood of those states. 

Other methods for sample generation, including full combinatorial sampling across discrete 

uncertain parameters and GCM ensemble projections (Groves et al., 2013a; McJeon et al., 

2011), have been used in RDM evaluations and the application of further sample generation 

methods could be a valuable area for future research.  Changes in rainfall and rainfall 

intensity are likely to be correlated with changes in temperature, as greater climate forcing is 

expected to result in more extreme changes to both temperature and precipitation. To 

account for this, a correlation was induced between temperature and the rainfall and rainfall 

intensity parameters. For each of the 5000 samples, the change in precipitation was 

randomly selected to be either positive or negative with an equal probability. For the n’th 

sample, a parameter ∆𝑃̅̅̅̅𝑛 was calculated as in Equation 4.1 and a parameter ∆𝐼𝑛𝑡̅̅ ̅̅ ̅̅
𝑛was 

calculated as in Equation 4.2. The change in rainfall and rainfall intensity for sample n were 
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then randomly sampled from normal distributions with means equal to ∆𝑃̅̅̅̅𝑛 and ∆𝐼𝑛𝑡̅̅ ̅̅ ̅̅
𝑛,⁡a 

coefficient of variation equal to 0.5.  

Equation 4.1: 

∆𝑃̅̅̅̅𝑛 =

{
 
 

 
 (∆𝑇𝑛 − ∆𝑇𝑚𝑖𝑛)

(∆𝑇𝑚𝑎𝑥 −⁡∆𝑇𝑚𝑖𝑛)
⁡× ∆𝑃𝑚𝑎𝑥 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡∆𝑃 > 0

(∆𝑇𝑛 − ∆𝑇𝑚𝑖𝑛)

(∆𝑇𝑚𝑎𝑥 −⁡∆𝑇𝑚𝑖𝑛)
⁡× ∆𝑃𝑚𝑖𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡∆𝑃 < 0

 

Equation 4.2: 

∆𝐼𝑛𝑡̅̅ ̅̅ ̅̅
𝑛 =⁡

(∆𝑇𝑛 − ∆𝑇𝑚𝑖𝑛)

(∆𝑇𝑚𝑎𝑥 −⁡∆𝑇𝑚𝑖𝑛)
⁡× ⁡∆𝐼𝑛𝑡𝑚𝑎𝑥 

Each of the 5000 samples could be thought of as a possible future state of the world 

under which the infrastructure might have to operate. The simulation model was then used 

to assess how well the infrastructure would be able to meet the multiple objectives required 

of it under each of the 5000 possible futures. For each possible future, the change in 

temperature, rainfall, and rainfall intensity was used to adjust the 40-year historic climate 

record in each basin using the delta-change method (Gleick, 1986). These adjusted climate 

scenarios were then used, along with estimates of agricultural land cover, to generate 

streamflow sequences for each river. Evaporation from Lake Tana and each reservoir was 

calculated using Penman’s equation (Penman, 1948). These estimates used the adjusted 

temperature values reflective of climate change and historic monthly average values for wind 

speed, relative humidity and solar radiation from the Bahir Dar meteorological station as 

reported by Kebede et al. (2006). These evaporation estimates were then multiplied by the 

EtC parameter to account for uncertainty stemming from the use of historic average values 

for calculating evaporation rates under future climates. The capacity of each reservoir 
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diminished annually based on the specific sediment loading rate assumed for that possible 

future. 

This resulted in 40-year sequences of monthly streamflow, evaporation, and reservoir 

capacity for each possible future. These sequences were then used as inputs to the WEAP 

model of the basin, which allocated water to agricultural and hydropower demand nodes and 

calculated the resulting downstream flows and lake levels. Five performance metrics 

identified based on stakeholder discussions were calculated to assess how well the 

infrastructure performed in each possible future (Table 4.2). Previous studies have identified 

1784.75 meters as the minimum elevation that Lake Tana can reach before negative impacts 

to the navigation and fishing industries begin to occur (SMEC International, 2008). 

Alemayhu et al. (2010) calculated flow requirements needed to support tourism at the Tis 

Issat waterfall downstream of the lake, as well as environmental flow requirements for each 

of the tributaries to the lake. These were used to calculate the average percentage of flow 

requirement met as a measurement of impacts on tourism and environmental conditions. 

Table 4.2 shows baseline results for each metric, assuming that the infrastructure was 

operated under historic climate conditions. For each metric, an acceptable performance 

threshold was identified based on the project design documents (in the case of irrigation 

water delivery and reliability and hydropower delivery) or baseline performance levels (in the 

case of lake levels, Tis Issat flows, and environmental flows). These thresholds represent the 

minimum performance level for each metric that can be considered acceptable.   
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Objective Metric Units 
Baseline 
Results 

Acceptable 
Performance 

Threshold 

Maximize irrigation water 
reliability 

Percentage of years when 
minimum demand is met 

% 98% 90% 

Maximize hydropower water 
delivered 

Average water delivered 
annually 

MCM 2699 2681 

Minimize percent of time 
where lake elevation is below 
minimum acceptable level 

Percent of months where 
lake is above 1784.75 amsl 

% 100% 90% 

Maximize flows over  
Tis Issat waterfall 

Average flow requirement 
met for Tis Issat 

% 33% 30% 

Maximize environmental 
flows 

Average flow requirement 
met for all rivers 

% 78% 70% 

Table 4.2: Performance metrics. Baseline performance is based on historic climate 
conditions, an annual specific sediment yield of 1000 tons/km2, 50% agricultural land cover 

and an evaporation coefficient of 1.0. 

4.2.3 Scenario Discovery 

The RDM framework is a multi-step, iterative approach to decision support under 

uncertainty that contains both quantitative analysis and deliberation. The process includes 

two analytical components based on simulation model results. When multiple alternatives or 

policy options are available for a given system, the first analytical component of the 

approach identifies the most robust alternatives based on regret minimization or satisficing 

criteria (Lempert et al., 2006). The second analytical component, termed “scenario 

discovery,” aims to identify the conditions which cause unsatisfactory performance in a 

preferred alternative. In this work, we use the scenario discovery process to identify the 

conditions which cause unsatisfactory performance for the proposed infrastructure 

associated with the D2 development level shown in Table 1.1 and discussed in Section 1.5.  

The scenario discovery process uses the results of the 5000 simulations described 

above to identify specific combinations of uncertain input parameters that are likely to result 

in poor performance. It is based on the patient rule induction method (PRIM) bump-
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hunting algorithm (Friedman and Fisher, 1999). The PRIM algorithm was implemented 

using the SD toolkit package in R (Bryant, 2014). Details on the PRIM algorithm as 

implemented in the SD toolkit package are discussed in Section 1.4.   

The PRIM algorithm does not include a method for considering multiple output 

variables, and requires that multiple outcomes be either separately evaluated, or aggregated 

into an overall performance score. In this work, we first apply the PRIM algorithm to each 

of the five performance metrics separately. This identifies the specific scenarios that are 

likely to result in unsatisfactory performance for each individual performance metric. We 

then use five different methods to aggregate the performance metrics into a single overall 

performance score, and apply the PRIM algorithm to these aggregated results. The 

aggregation methods are shown in Table 4.3. In the first method, if the infrastructure fails to 

meet any of the six performance criteria in a given possible future, that is considered a failure 

overall. This approach is similar to a multiplicative multi-attribute utility function applied to 

binary performance scores, as a score of zero for any single attribute results in a score of 

zero overall. This is the approach used previously by Kasprzyk et al. (2013), Herman et al. 

(2014 and 2015) and Lempert et al. (2013). This method is demonstrated in Equation 4.3, 

where yi,n is the binary performance score (1 for acceptable performance and 0 for 

unacceptable performance) for individual metric i in possible future n, and Yn is the overall 

performance score for possible future n. In the other four methods, an additive performance 

score is calculated, with the weights between different attributes varied to reflect different 

priorities. In this approach, the scores for each metric are normalized across the range of 

outcomes experienced in the 5000 possible futures and a weighted sum is calculated as in 

Equation 4, where ui,n is the normalized performance score on attribute i in possible future n, 

and wi is the weight assigned to attribute i.   
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Equation 4.3: 

𝑌𝑛 =⁡∏𝑦𝑖,𝑛

𝐼

𝑖=1

 

Equation 4.4: 

𝑌𝑛 =⁡∑𝑤𝑖𝑢𝑖,𝑛

𝐼

𝑖=1

 

 Aggregation 
Method 

Multiplicative Additive – 
equal 
weighting 

Additive – 
agricultural 
priority 

Additive – 
hydropower 
priority 

Additive – 
environmental 
priority 

W
ei

gh
ts

 

Irrigation 
water reliability 

NA 
0.2 (1) 0.5 (1) 0.33 (2) 0.05 (4) 

Hydropower 
water delivery 

NA 
0.2 (1) 0.33 (2) 0.5 (1) 0.05 (4) 

Lake levels NA 
0.2 (1) 0.06 (3) 0.06 (3) 0.4 (1) 

Tis Issat falls 
coverage 

NA 
0.2 (1) 0.06 (3) 0.06 (3) 0.2 (3) 

Environmental 
flow coverage 

NA 
0.2 (1) 0.06 (3) 0.06 (3) 0.3 (2) 

 Acceptable 
performance 
threshold 

1.0 0.75 0.87 0.88 0.69 

Table 4.3: Weighting schemes used to calculate aggregate performance scores. Numbers in 
parenthesis are the importance rankings of each criteria for a given weighting scheme. 

Normalized weights were calculated using the rank sum weighting procedure based 

on four different possible rankings of attribute importance (Stillwell and Edwards, 1979). A 

summary of the four weighting schemes evaluated is presented in Table 4.3. For the additive 

aggregation schemes, an aggregated minimum acceptable performance threshold is 

calculated using Equation 4.4 and the performance thresholds presented in Table 4.2. 

4.3 Results 

A summary of the simulation results for each individual performance metric is 

presented in Table 4.4. It is apparent that accounting for uncertainty in the parameters listed 

in Table 4.1 have the potential to result in dramatic ranges in performance, particularly with 
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regard to irrigation reliability, the amount of water provided for hydropower, and the 

elevation of Lake Tana. The performance thresholds are not met in 36% to 66% of the 

simulated futures, depending on the metric assessed. It is important to note that these 

percentages should not be interpreted as a statement regarding the likelihood of failure, since 

that would implicitly assume that each simulated possible future was equally likely. However, 

it can provide information about the relative sensitivity of the different metrics to the 

uncertain parameters listed in Table 4.1. For instance, the Lake Tana elevation metric 

appears relatively robust to this uncertainty (failing in only 36% of futures) whereas the 

hydropower delivery metric fails in 66% of them.  

 
Metric 

Acceptable 
performance 
level 

Minimum Maximum Futures 
where 
threshold is 
unmet 

Irrigation reliability 0.90 0.02 1.00 57% 

Hydropower water delivered 2681 271 2855 66% 

Lake Tana elevation 0.95 0.10 1.00 36% 

Tis Issat Falls coverage 0.30 0.26 0.39 46% 

Environmental flow coverage 0.76 0.64 0.83 48% 

Table 4.4: Simulation results. Baseline results assume historic climate conditions, a specific 
sediment yield of 1000 tons/km2, 50% agricultural land cover, and EtC = 1.0. 

 

The scenario discovery process was used to identify combinations of uncertain input 

parameters that best described the simulations where performance thresholds were not met. 

These combinations can be interpreted as scenarios to which the proposed infrastructure is 

vulnerable (termed “failure scenarios” from here forward). Table 4.5 shows the results of the 

scenario discovery process when it was run on each metric separately. Two failure scenarios 

were identified for each metric, and the box coverage and density are described for each 

individual scenario, as well as the ensemble as a whole, for each metric. When multiple 
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conditions are listed on a single line, this describes conditions which must simultaneously 

occur for performance to drop below the threshold. Conversely, when conditions are listed 

in separate failure scenarios for a given metric, this implies that either of those conditions 

will cause failure.  For instance, irrigation reliability can fail if the change in precipitation is 

less than -3.8% or if EtC is greater than 1.09, whereas coverage for the Tis Issat falls tends 

to fail if both EtC is greater than 1.08 and the change in precipitation is less than +16.4%. 

These scenarios are shown graphically in Figure 4.1. 

Unsurprisingly, precipitation plays a role in the failure scenarios for each metric, but 

the way in which it combines with other uncertain parameters differs. While a decrease in 

precipitation must be combined with certain conditions regarding temperature and 

evaporation estimates to cause failure for the lake elevation metric, it is enough to cause 

failure for the irrigation, hydropower, Tis Issat and environmental metrics on its own. 

Additionally, the relative sensitivity of the different metrics to changes in precipitation is 

apparent, with the Tis Issat metric vulnerable to any decrease beyond approximately 2% 

while environmental flow coverage is only vulnerable to decreases beyond approximately 

8%. Another important insight is that both irrigation reliability and hydropower are 

vulnerable to underestimation of evaporation, even if climate conditions are favorable.  

Interestingly, the only metrics that appeared sensitive to changes in temperature were lake 

elevation and environmental flows. This could be due to the large role that evaporation off 

of Lake Tana plays in the basin’s water balance, which would be expected to increase with 

higher temperatures. 
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Metric Percent 
failures 

Failure Scenarios Box 
density 

Box 
coverage 

Ensemble 
density 

Ensemble 
coverage 

Irrigation 
reliability 

57% 1. ∆P < -3.8% 0.86 0.56 0.83 0.79 

2. EtC > 1.09 0.77 0.25 

Hydropower 
water delivery 

66% 1. EtC > 0.99 0.91 0.73 0.91 0.93 

2. ∆P < -5.5% 0.91 0.93 

Lake elevation 36% 1. ∆P < 1.4%, EtC > 0.94, ∆T >1.16° 0.85 0.68 0.82 0.77 

2. ∆T > 4.1°, ∆P < 6.6% 0.65 0.1 

Tis Issat Falls 
coverage 

46% 1. ∆P < -2.2% 0.8 0.71 0.82 0.9 

2. EtC > 1.08, ∆P < 16.4% 0.9 0.19 

Environmental 
flow coverage 

48% 1. ∆P < -7.8% 0.7 0.38 0.61 0.78 

2. ∆T > 2.6° 0.55 0.40 

Table 4.5: Failure scenarios for individual performance metrics 

 

Aggregation Scheme Percent 
failures 

Failure Scenarios Box 
density 

Box 
coverage 

Ensemble 
density 

Ensemble 
coverage 

Multiplicative 77% 1. EtC > 0.96 0.91 0.7 
0.91 0.86 

2. ∆P < -5.5% 0.92 0.15 

Additive – equal 
weighting 

52% 1. ∆P < -4.6% 0.87 0.57 
0.84 0.79 

2. EtC > 1.11 0.77 0.22 

Additive – irrigation 
priority 

59% 1. ∆P < -3.7% 0.88 0.55 
0.87 0.78 

2. EtC > 1.10 0.86 0.23 

Additive – 
hydropower priority 

60% 1. EtC > 1.03 0.85 0.61 
0.86 0.86 

2. ∆T > 2.8°, ∆P < 7.0% 0.92 0.25 

Additive – 
environmental priority 

46% 1. ∆P < -0.34%, ∆T > 1.96° 0.85 0.64 
0.84 0.83 

2. EtC > 1.1, ∆P < 16.9% 0.81 0.19 

Table 4.6: Failure scenarios for aggregated performance scores
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Figure 4.1: Failure scenarios for individual performance metrics. Diagonal lines indicate a condition that has to occur in conjuction with 

specific conditions regarding the other parameters identified by diagonal lines. Boxes with hash marks indicate conditions that are 
sufficient to cause failure on their own, regardless of the values taken on by other parameters.  
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Figure 4.2: Failure scenarios for aggregated performance scores. Diagonal lines and hash marks are as in Figure 4.1.
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Table 4.6 and Figure 4.2 show the failure scenarios identified for the aggregated 

multiattribute performance measures. From looking at the percentage of simulations 

classified as failures based on each aggregation scheme, it is apparent that they give different 

pictures of overall system robustness. The multiplicative aggregation scheme is very strict 

when implemented in a binary fashion, since unsatisfactory performance on any single 

metric will result in failure overall. This results in a high percentage of simulations that were 

classified as failures when compared to the additive approaches, where poor performance on 

one metric can be compensated for by good performance on another. Because the additive 

aggregation methods are less strict than the multiplicative method, they provide a more 

optimistic view of system performance, with failure occurring in a smaller percentage of 

simulations. However, they do not provide any insight into which individual performance 

thresholds are being satisfied and which are not. While this method ensures that at least one 

performance threshold will be satisfied for the multi-criteria performance threshold to be 

met, it cannot ensure that any single metric (e.g., hydropower provision) is achieved.  

The failure scenarios for the multiplicative scheme closely mirror those for the 

hydropower water delivery, which was the most sensitive individual metric. This indicates 

that when such an aggregation scheme is used, it is possible for the resulting failure scenarios 

to be dominated by a single metric. When the additive method with a priority on 

hydropower delivery is used, the failure scenarios still indicate a vulnerability to evaporation 

overestimates, but do not indicate a vulnerability to decreases in precipitation unless 

combined with an increase in temperature. While three aggregation schemes (multiplicative, 

additive with equal weights and additive with a priority on irrigation) result in relatively 

consistent failure scenarios, the threshold values identified for the EtC and ∆P parameters 

differ between them. For instance, the additive method with an irrigation priority appears the 
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most sensitive to even small decreases in precipitation, while the multiplicative scheme is 

most sensitive to evaporation underestimates.  

Additional investigation into the conditions that cause failure for a given metric 

demonstrate how some insights and nuances about system performance can be lost when 

performance metrics are combined into a single score. The left hand side of Figure 4.3 

shows a scatterplot demonstrating how changing precipitation and evaporation estimates 

impact hydropower performance. Filled in dots represent simulations where the threshold 

for hydropower water delivery was not met, and hollow dots represent those simulations 

where it was. A fairly distinct linear divide is apparent, demonstrating how the system’s 

tolerance for higher rates of evaporation relates to the level of precipitation experienced. 

While the hyper-rectangles identified by the PRIM algorithm are unable to capture this sort 

of relationship precisely (although orthogonal transformations have been used to address 

this issue (Dalal et al., 2013)), the identification of precipitation and EtC as the key 

uncertainties driving performance, combined with a simple visualization, makes it apparent. 

However, when the same scatterplot is generated using the multiplicative performance 

metric, this relationship is no longer discernable. 



116 
 

 

Figure 4.3: Scatterplots showing simulations with hydropower performance and 
multiplicative aggregated perfomrance above their respective thresholds. Filled in circles 

represent simulations where the threshold was not met, and empty circles indicate 
simulations where it was. 

4.4 Discussion 

To understand the potential implications of these results, it is important to consider 

the different ways in which such scenarios might be used to support decision making. One 

useful outcome of the scenario discovery process is that it can identify the uncertain 

parameters that have the greatest impact on system response and thus, the areas where a 

reduction in uncertainty could be the most valuable. It also may provide useful insights by 

identifying the parameters that are not as influential over system performance and thus don’t 

warrant as much concern (Hallegatte and Rentschler, 2015). In our analysis the parameters 

identified as important were generally consistent over different metrics and aggregation 

methods, with precipitation and evaporation uncertainty being the strongest drivers of 

vulnerability while precipitation intensity, future land cover, and sedimentation rates were 

not identified as influential. However, there were some notable differences. One interesting 

result was that uncertainty in evaporation estimates could result in unacceptable levels of 

irrigation reliability and hydropower water delivered even in favorable climate conditions. 
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This indicates that even without the impacts of climate change, the proposed infrastructure 

might be unable to meet its goals if current estimates of evaporation prove to be too low. 

While uncertainty surrounding future projections of climate change is unlikely to be reduced 

in the coming years (Kunreuther et al., 2013), additional meteorological monitoring, 

combined with the development of remote sensing products, could be used to refine 

evaporation estimates and gain a better sense of likely system performance. However, this 

sensitivity to evaporation alone is not apparent when the environmental priority additive 

weighting scheme is used, indicating that this insight could be lost if individual metrics aren’t 

separately assessed.  

Another useful aspect of the scenario discovery approach is that it not only identifies 

which uncertain parameters are most influential, but can also determine threshold levels 

beyond which performance levels are unacceptable. This is one of the main advantages of 

the approach when compared to variance-based methods for global sensitivity analysis such 

as Sobol indices, which identify variables to which an outcome is most sensitive but not 

necessarily thresholds within that variable space (Herman et al., 2015). These thresholds can 

highlight the relative sensitivity of different performance metrics; for instance, Tis Issat flow 

coverage is more sensitive to decreases in precipitation than environmental coverage. These 

precipitation thresholds can also be informative when considering interannual variability in 

performance, even under current climate conditions. For example, during the 20-year period 

from 1977 to 1996 the basin experienced lower than average rainfall (Figure 4.4), and these 

decadal-scale dry periods would be expected to occasionally occur even without the impact 

of climate change. The average annual precipitation during this period was 1360 mm, which 

is approximately 8% less than the long-term average of 1470 mm and thus below the 

threshold for hydropower performance. The amount of water provided for hydropower thus 
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appears sensitive not only to long-term climate change, but also to interannual variability 

experienced currently. However, if one were to assess performance using the additive 

weighting scheme with a priority on hydropower, this vulnerability would not be apparent. 

Finally, these thresholds could be used in additional probabilistic analysis to determine the 

relative likelihood of the different scenarios identified, as has been done by Lempert et al.  

(2012). Because the probability of these scenarios is contingent on their quantitative 

definition, this could in turn impact the expected value and probability of failure.  

A third way in which the scenario discovery process can help inform decision 

making is by highlighting the vulnerabilities that decision makers may want to address to 

make their system more robust. For instance, after recognizing that water supply costs were 

vulnerable to a decrease in the amount of groundwater recharge, Lempert and Groves (2010) 

proposed additional investment in stormwater capture and groundwater replenishment 

facilities to help address this vulnerability. In this regard, the scenarios identified for the 

aggregated performance scores are much less informative than those identified for the 

individual metrics. In our example, the two metrics that are most sensitive to climatic and 

environmental uncertainty based on the number possible futures resulting in failure are the 

irrigation and hydropower metrics. This is despite the fact that these are the two objectives 

driving the large infrastructure investments in the region. Thus, decision makers may see this 

information and try to adopt policies or adapt the proposed infrastructure to make its 

performance with regard to those metrics more robust, particularly given their economic 

importance. For instance, the irrigation drainage systems could be adjusted to improve 

irrigation efficiency, or water allocation rules could be adapted to provide more water for 

hydropower. When the aggregated performance scores are used, these avenues for system 

improvement are not apparent.  



119 
 

 

 

Figure 4.4: Total annual precipitation (Gilgel Abbay). Horizontal lines indicate the thresholds for annual average precipitation identified by 
the PRIM algorithm.
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Based on these results, the insights that can be obtained through a process like 

scenario discovery appear to be compromised when multiple performance objectives are 

combined into a single score. While the uncertain parameters driving vulnerability were 

relatively consistent across the scenarios identified for different metrics and aggregation 

schemes, the more subtle ways in which uncertain parameters interact with each other to 

impact different objectives were not always apparent when the aggregated scores were used. 

It is also important to note that performance across the objectives in our example were 

relatively correlated, since a low availability of water impacts all of the objectives negatively. 

It is quite possible that the discrepancies in failure scenarios for aggregated metrics would be 

larger if other objectives were included that were impacted in the opposite direction, such as 

flood risk. Regardless of the aggregation method used, the information provided to decision 

makers using aggregated criteria cannot match the information provided through assessment 

of criteria individually. While we specifically evaluated the impact of aggregating objectives 

through multiplicative and additive utility functions, this result is likely to also occur when 

other methods, such as conversion of metrics to monetary flows through cost benefit 

analysis, are used. Admittedly, performing a separate scenario discovery on each of our 

metrics was made easier in our example problem due to the relatively small number of 

performance metrics assessed, and repeating this process may become increasingly 

impractical as the number of objectives under consideration increases, as may be the case in 

participatory processes involving many stakeholders. One potentially promising way to 

address this issue could be by identifying groups of objectives that are vulnerable to similar 

conditions and grouping them together so that failure for performance objectives are 
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described by the same scenarios. This would likely reduce the coverage and density of the 

failure scenarios for some objectives, but would make the evaluation’s results more 

interpretable and avoid the need to weigh and aggregate the objectives of competing groups 

early in the analysis. 

4.5 Conclusions 

Robust decision frameworks are becoming increasingly popular in both research and 

practice, particularly in the climate adaptation field. By identifying the conditions to which a 

given system or policy is vulnerable, these tools can provide valuable insights in situations 

with multiple deeply uncertain parameters that could impact the system of interest. These 

methods are increasingly being applied in sectors that have to balance performance across 

multiple criteria, such as water resource management, infrastructure protection, and energy 

policy. This research demonstrates that common methods used to aggregate multiple criteria 

into a single utility score can lead to inconsistent failure scenarios and obscure the 

relationship between key uncertainties and system performance. Applying scenario discovery 

over each performance metric separately provides more nuanced information regarding the 

relative sensitivity of the performance objectives and the ways in which they are impacted by 

different uncertain parameters. This in turn can provide insights on measures that could be 

taken to improve system robustness, as well as areas where additional research might prove 

useful. Because the RDM framework was designed to provide quantitative decision support 

in contexts where there may be conflicting beliefs about what the future will look and 

contentious disagreements about the best course of action, it is important that the steps of 

the process remain as transparent as possible. To this end, the additional effort required to 

apply scenario discovery to each metric separately provides valuable benefits by identifying 
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failure scenarios that inform a more complete picture of system performance and provide 

more detailed guidance for vulnerability-reduction efforts.  
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5 ROBUST DECISION MAKING IN DATA SCARCE CONTEXTS: 

ADDRESSING DATA AND MODEL LIMITATIONS FOR 

INFRASTRUCTURE PLANNING UNDER TRANSIENT 

CLIMATE CHANGE5 

5.1 Introduction 

Water resources is one of the sectors expected to be most vulnerable to climate 

change, and there is increasing concern that water systems require some degree of adaptation 

now to avoid severe consequences due to climate change in the future (Field et al., 2014; 

Melillo et al., 2014). This is particularly true when considering hard infrastructure such as 

reservoirs, canals, and levees, as these expensive systems generally have operating lives that 

will stretch decades into the future. However, incorporating climate change into 

infrastructure planning today is hindered by the considerable uncertainty surrounding general 

circulation model (GCM) projections of future rainfall. GCM projections disagree about 

even the direction of changes in precipitation in many regions of the world, and are notably 

limited in their ability to reproduce observed hydrologic climatology at regional levels 

(Kundzewicz and Stakhiv, 2010).  Using these projections as inputs to regional climate 

models and hydrologic models results in a “cascade of uncertainty”, in which uncertainties at 

each stage of the modeling process influence outcomes at subsequent levels (Mitchell and 

Hulme, 1999; Wilby and Dessai, 2010). While efforts have been made to represent climate 

change uncertainty probabilistically using multi-model ensembles, these distributions can be 

highly sensitive to the assumptions and methodology used (Tebaldi et al., 2005; Tebaldi and 

                                                 

5 This chapter is based on the manuscript “Robust decision making in data scarce contexts: addressing data and 
model limitations for infrastructure planning under transient climate change” submitted to Climatic Change in 
March 2016. Currently under first round of review. 



124 
 

Knutti, 2007), and there is not yet a clear consensus on the physical and statistical 

interpretation of MME projections (Stephenson et al., 2012). In situations where 

probabilistic climate projections have been developed, their use in adaptation decision 

making has been hindered by their complexity and inability to represent variables most 

important for adaptation planning, such as extreme events (Tang and Dessai, 2012). These 

issues have led many to conclude that climate change is an example of “deep uncertainty” 

where probabilistic models of uncertainty cannot be confidently determined or agreed upon 

(Cox, 2012), and prompted a number of water managers to argue that climate change 

projections are not yet a suitable basis for infrastructure design and planning (Kundzewicz 

and Stakhiv, 2010).    

These challenges impact infrastructure planning efforts the world over, but they are 

particularly acute in the developing world. While the construction of large water storage and 

transfer projects has slowed in developed countries due to environmental concerns and an 

increased reliance on managerial and conservation-based approaches to water management 

(Gleick, 2000), expanding hard infrastructure is still viewed as an essential path to economic 

growth in many developing countries. For instance, the African Development Bank’s 

Programme for Infrastructure Development in Africa currently calls for expanding 

hydropower capacity across major river basins in the country by approximately 600% and 

irrigation capacity by up to 700% in some basins (Cervigni et al., 2015). It is estimated that 

dam development in the Organization for Economic Co-operation and Development 

(OECD) countries has already reached 70% of economically feasible potential, but Africa 

has only exploited 10% of this potential (Wang et al., 2013). As developing countries are 

consistently recognized to be amongst the most vulnerable to climate change (Field et al., 

2014), there is understandable interest in improving climate change resilience through 
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methods such increased water storage and irrigation capacity. However, the overwhelming 

majority of climate research is undertaken in and focuses on developed countries 

(Washington et al., 2006), and GCM disagreement in terms of the direction of future 

precipitation changes is particularly prevalent in tropical regions of the world (van 

Oldenborgh et al., 2013). Attempts to address this lack of consensus by comparing GCM 

performance to identify the “best models” for a given region can be highly sensitive to the 

method used for evaluation and may not always be an effective way to reduce uncertainty 

(Bhattacharjee and Zaitchik, 2015). Finally, the use of ensemble projections such as those 

compiled through the Coupled-Model Intercomparison Project (CMIP) for adaptation 

planning in developing countries is likely to be hindered by the limited availability of 

computing facilities and expertise needed to process these large, complex datasets 

(McSweeney et al., 2010). 

Even without considering the impacts of climate change, data limitations in many 

developing countries hinder the ability to confidently evaluate the future performance of 

planned water infrastructure projects. The density of hydrological monitoring networks is 

low and even decreasing in many countries, and issues of missing and unreliable data plague 

many stations (Hughes, 2006). While satellite data and modeled reanalysis products can help 

fill these gaps, their accuracy in tropical regions of the world is not always well 

demonstrated, particularly over the seasonal and geographic scales most relevant for 

planning purposes (Hughes, 2006; Poccard et al., 2000). Limited data on other factors such 

as soil and land cover conditions can also lead to considerable uncertainty in the 

parameterization of hydrologic models used to project the impacts of infrastructure 

development and climate change on basin-level hydrology (van Griensven et al., 2012; 

Schuol and Abbaspour, 2006). These limitations can result in poor estimates of the actual 
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benefits that will accrue from the construction of water resource infrastructure projects even 

over the relatively short term. For instance, the Angereb dam reservoir in Ethiopia was built 

in 1994 to supply water to the town of Gondar for a period of 25 years, but sedimentation 

rates have been 50% higher than expected and effectively halved the functional life of the 

reservoir (Haregeweyn et al., 2012). More broadly, the World Commission on Dams reports 

that approximately half of large irrigation dams fail to provide irrigation to their planned 

command areas, with one quarter of projects reaching less than 35% of planned command 

areas (World Commission on Dams, 2000). When combined with miscalculation of actual 

project costs, this can result in significantly poorer ex post benefit cost ratios than ex ante 

estimates (Flyvbjerg, 2009).  

To support infrastructure planning under climatic uncertainty, there has been 

increasing interest in “robust decision frameworks” (Weaver et al., 2013) to support 

infrastructure planning in the face of non-probabilistic uncertainty. These frameworks 

distinguish themselves from traditional “predict-then-act” frameworks in two ways. The first 

is that they aim to identify strategies that are robust, or that perform well over many possible 

conditions that may be encountered, rather than strategies that are optimal for a specific set 

of assumed conditions. The second is that they do not focus on predicting what future 

conditions may be, but instead focus on identifying conditions that cause the system of 

interest to fail (Weaver et al., 2013). A number of novel methodologies fall into this general 

family, including robust decision making (RDM; Lempert et al., 2006), decision scaling 

(Brown et al., 2012), and info-gap decision theory (Ben-Haim, 2000). In addition to 

providing decision support under deep uncertainty, they can also be useful in situations 

characterized by poorly understood nonlinear or threshold responses (Lempert and Collins, 
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2007) or many stakeholders with conflicting values and beliefs about the future (Hallegatte 

and Rentschler, 2015). 

It has been pointed out that the comprehensive manner in which robust decision 

frameworks address uncertainty may be particularly well-suited to developing country 

contexts (Lempert et al., 2013). However, the majority of applications of robust decision 

frameworks to date have been in developed countries and often rely on sophisticated 

simulation models and projections that might not be available to planners in the developing 

world. For instance, applications of robust decision making to water planning problems in 

the United States have generally taken advantage of sophisticated water system simulation 

models forced by downscaled GCM projections that had already been developed for the 

region under evaluation (Fischbach et al., 2015; Groves et al., 2013; Groves and Bloom, 

2013). Applications in developing countries have generally required dramatic simplifications 

to this process that could potentially undermine their results. For instance, physically-based, 

well-established hydrologic models may be replaced by simple relationships or assumptions 

about how climate conditions impact streamflow (Brown, 2011; Kalra et al., 2015), or 

uncertain parameters related to climate change may be randomly sampled as independent 

variables even though they are likely to be dependent on each other (Lempert et al., 2013). 

While these are understandable simplifications that are likely necessary in poorly-studied, 

data-scarce regions, understanding the implications they may have on analytical results is 

crucial if these analyses are to inform expensive investment decisions.  

The objective of this paper is to demonstrate a modified application of the robust 

decision making methodology that is specifically tailored for application in data-scarce 

situations. Specifically, the approach outlined here makes two contributions that build on 
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previously conducted RDM studies. The first is an emphasis on characterizing the relative 

contribution of uncertainty stemming from data limitations and model simplifications 

relative to uncertain future conditions such as climate change. This can be informative 

because uncertainty in current conditions may be addressed through additional research and 

evaluation, whereas (at least for water managers and practitioners) uncertainty surrounding 

future climate conditions is largely irreducible. Thus, the identification of data-limitations 

that have the greatest impact on proposed infrastructure developments could provide 

valuable prioritization of research activities. The second contribution is a novel method for 

generating transient climate change sequences that do not rely on GCM projections but 

account for potential dependencies between uncertain parameters. The advantage of this 

approach is that managers can see how system vulnerability changes through time, rather 

than at an arbitrary period some years in the future. This methodology is demonstrated using 

the Lake Tana basin in Ethiopia (Section 1.5), where multiple water resource infrastructure 

projects have been recently constructed or proposed to support hydropower and irrigation in 

the basin. By demonstrating how established methodologies for infrastructure planning 

under uncertainty can be modified to better suit developing-country contexts, this work aims 

to ultimately improve the long-term effectiveness and sustainability of infrastructure 

investments in these countries. 

5.2 Methods 

5.2.1 Simulation Model 

An integrated simulation model was used to assess how changes in climatic and 

environmental conditions would impact water resources in the basin (Figure 5.1). The first 

component consisted of empirical rainfall-runoff models developed by Shortridge et al. 

(2016) that predicted monthly streamflow in each of the five rivers with proposed reservoirs 
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as a function of climate conditions and agricultural land cover. Monthly streamflow data was 

taken from historic stream gauge records for each basin (Alemayehu et al., 2010). In each 

river, the 40-year monthly streamflow series was regressed against historic monthly climate 

data taken from University of East Anglia Climate Research Unit (CRU) TS3.10 gridded 

meterological fields (Harris et al., 2014) and the percentage of agricultural land cover in the 

basin estimated from historic aerial photographs and satellite images reported by Rientjes et 

al. (2011), Gebrehiwot et al. (2010), and Garede and Minale (2014). To account for the 

strong seasonality in the region’s climate and hydrology, monthly flow anomalies and climate 

anomalies were used as the response variable and predictor variables, respectively, using the 

anomaly formulation discussed in Chapter 2. Flow anomalies in each basin were then 

regressed against climate anomalies and the percentage of agricultural land cover using a 

Gaussian regression model. While more sophisticated machine-learning models resulted in 

slightly lower errors than the linear model in some of the basins assessed, the simpler linear 

models were chosen for this evaluation for ease of interpretation and because it allowed for a 

consistent model formulation and measure of model uncertainty to be used in each river 

basin. Nevertheless, there are some aspects of hydrologic behavior in the region that are lost 

through the use of a linear model, such as non-linear relationships between agricultural land 

cover and streamflow anomalies that were observed in some basins (Shortridge et al., 2016). 

Evaporation off of Lake Tana and each of the proposed reservoirs was calculated 

using Penman’s equation (Penman, 1948). These estimates used the adjusted temperature 

values reflective of climate change and historic monthly average values for wind speed, 

relative humidity and solar radiation from the Bahir Dar meteorological station as reported 

by Kebede et al. (2006). To estimate the sediment load to each proposed reservoir, sediment 

rating curves developed by Guzman et al. (2013) for the Ethiopian highlands were used. 
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Suspended sediment concentrations in the region have been observed to exhibit a seasonal 

shift as the rainy season progresses, with high sediment concentrations early in the season 

and lower concentrations at the end (Guzman et al., 2013). To account for this shift, as well 

as the observed relationship between agricultural land cover and sediment concentrations, 

sediment rating curves took the form:  

Equation 5.1: 

𝐶𝑊 =⁡𝐴𝐶𝑎𝑅
𝑏 

where CW is the suspended sediment concentration in kg/m3, AC is the fractional cropland 

area in the watershed (ranging from 0.0 to 1.0), R is the runoff volume in mm/day, and a 

and b are regression parameters fit based on data collected from multiple basins in the 

Ethiopian highlands (Guzman et al., 2013). The two regression parameters a and b varied 

depending on the cumulative rainfall that had fallen by that point in the rainy season, as in 

Table 5.1. Assuming that runoff accounted for 40% of rainy season streamflow (Easton et 

al., 2010), this resulted in average annual specific sediment yields that ranged from 853 to 

2072 tons/km2 across the five rivers assessed. This appears comparable to the range used for 

the reservoir feasibility studies (289 to 2037 tons/km2), and thus suggests that this method 

provides a conservative but reasonable estimate of the sediment loads that these reservoirs 

could experience given the limited suspended sediment data available in the watersheds 

above the proposed reservoirs.    

Period Cumulative 
Rainfall (mm) 

a b 

Early Rainy Season < 150 75 0.45 

Mid Rainy Season 150 – 700 13 0.4 

Late Rainy Season > 700 9 0.4 

Table 5.1: Parameters of seasonal sediment rating curve equations 

 



131 
 

The final component of the simulation model was a Water Evaluation and Planning 

(WEAP; Sieber and Purkey, 2015) water allocation model developed for the basin by 

Alemayehu et al. (2010). This model simulates natural hydrologic processes such as 

streamflow and evaporation, as well as human extraction and use of water. In each month, 

the model performs a mass balance to account for both extraction and inflows, allocating 

water to different demand nodes in order of user-defined priorities (Sieber and Purkey, 

2015). The monthly sequences of streamflow and sediment load in each river, as well as 

sequences of evaporation from the lake and each reservoir, were used as model inputs. The 

model then calculated the amount of water allocated and coverage (percent of demand 

delivered) for different demand nodes, as well as lake elevation and downstream flows. 

Additional information on WEAP model development, calibration and validation is 

discussed by Alemayehu et al. (2010).
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Figure 5.1: Simulation Framework
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5.2.2 RDM Evaluation 

5.2.2.1 Development Alternatives 

The RDM evaluation initially considered the three different development levels 

based on current plans for infrastructure development in the region that are shown in Table 

1.1 (Achenef et al., 2013). Development level 0 (D0) consists only of existing infrastructure 

in the basin, including the Koga River irrigation reservoir and Tana-Beles hydropower 

transfer tunnel. Development Level 1 (D1) consists of existing infrastructure as well as four 

additional irrigation reservoirs and two pumped irrigation schemes. Development level 2 

(D2) consists of all of the projects included in Development Level 1 as well as the Gilgel 

Abbay and Jema reservoirs and a pumped irrigation scheme from the southwestern portion 

of the lake. This development level would entail full construction of all proposed water-

resource infrastructure projects in the basin.  

Additionally, three modifications to Development Level 2 were also assessed to 

better understand the degree to which measures aimed at improved efficiency and land 

conservation might impact water resources management in the basin more broadly. In all of 

these instances, the quantitative impact that each modification would have on streamflow 

and sediment loading rates in the basin were estimated based on field studies and evaluations 

conducted in the Blue Nile highlands. However, these estimates are highly uncertain, given 

the heteregenous conditions across the basin and the potential for impacts to vary when 

implemented on a watershed level rather than a field or plot-scale. For this reason, the 

results should be interpreted as an initial estimate of the impact that the measures could have 
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on water resources in the basin more broadly if the quantitative impacts described here were 

achieved.    

The first modification measure (referred to as M1) was lined irrigation canals. The 

five proposed reservoirs for the basin and the existing Koga reservoir are all designed to 

utilize unlined canals to convey water from the reservoir to the irrigation areas. Five of the 

six reservoirs were designed assuming a conveyance efficiency of 81%, with one reservoir 

(Gumara) assuming a conveyance efficiency of 62.5%. However, evaluation of existing 

irrigation projects in the country suggest that actual conveyance efficiencies could be much 

less than this (Awulachew and Ayana, 2011). To evaluate the impact of installing lined canals 

at the time of reservoir construction, this modification assumed that irrigation demands 

from each reservoir would be 10% lower than the D2 development level for the full period 

of analysis.  

The second modification measure (M2) consisted of improved on-farm irrigation 

efficiency. The feasibility studies for the proposed irrigation systems assume that gravity-fed 

furrow or paddy irrigation will be used, resulting in field efficiencies of 60% to 80%. 

However, evaluations of other irrigation schemes in Ethiopia have often found that field 

efficiencies in practice can be closer to 50%. The adoption of more sophisticated methods 

for field irrigation, either through improved timing and management or through the use of 

pressurized irrigation, could reduce losses to runoff and deep percolation by an up to 30% 

(Bekele and Tilahun, 2006; WWDSE and Tahal Group, 2009a, 2009c). While these methods 

and technologies are likely to be impractical in the short-term due to limitations in financial 

capital and technical capacities, they could be progressively promoted and implemented 

through time as economic conditions improve. Thus, this modification assumes that 
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efficiency improvements gradually reduce total irrigation demands by 33% over the 50-year 

period of analysis.    

The third modification measure (M3) consisted of upstream soil and water 

conservation (SWC) measures. The expansion of agriculture in the basin, particularly on 

marginal lands, has resulted in extensive land degradation over the past few decades. This 

can degrade soil quality in farmed areas, reducing agricultural productivity, and harm 

downstream water quality by increasing rates of runoff and erosion. To combat these 

impacts, a number of agricultural practices aimed at improved soil and water conservation 

are being promoted throughout the region. These include measures such as the installation 

of soil bunds and terracing, gully treatment to reduce erosion, and the promotion of 

perennial crop production in marginal, sloped terrains (Simane et al., 2012). While the impact 

that these measures could have on a landscape scale are highly uncertain, field-scale studies 

suggest that their installation could reduce sediment loads to surface water by up to 50% 

(Adimassu et al., 2014; Tamene and Vlek, 2007) and reductions in runoff of up to 30% 

(Adimassu et al., 2014). Because the implementation and effectiveness of these measures is 

likely to increase through time, this modification assumes that the promotion of these 

methods will result in a gradual reduction in sediment loads to 50% of their current levels, 

and a gradual reduction in streamflow to 88% of its current level (based on the assumption 

that runoff contributes 40% of streamflow and the SWC measures reduce runoff by 30%).  

5.2.2.2 Representation of uncertainty in model simulations, future conditions, and system operation 

There are a number of uncertainties that could impact future performance of the 

proposed infrastructure, not only related to unknown future conditions, but also to system 

operation and simulation model simplifications. However, most RDM evaluations to date 
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have focused primarily on uncertainty related to future conditions, with little consideration 

of the impact that data limitations and model simplifications could have on infrastructure 

performance. To understand how these different sources of uncertainty could impact system 

performance, a range of feasible values was identified for eight uncertain parameters related 

to model limitations, future conditions, and infrastructure operation efficiency. Because the 

main objective of the analysis is to find conditions that result in unsatisfactory performance 

of the infrastructure, we used wide ranges of values to better identify the thresholds that 

would result in poor performance. The uncertain parameters evaluated are presented in 

Table 5.2 and described in more detail below.  

Source of 
Uncertainty 

Uncertain parameter Symbol Range of values 

Simulation 
model 

Streamflow model prediction interval Qmod 0.05 to 0.95 

Evaporation coefficient  EtC 0.8 to 1.2 

Sedimentation coefficient SedC 0.7 to 1.3 

Future 
conditions 

Change in temperature ∆T 0.5 to 5.5° C 

Change in rainfall  ∆P -20% to +35% 

Change in interannual variability ∆Var 0% to +20% 

Agricultural land cover AgLC -1% to +1% per year 

System 
operation 

Irrigation efficiency IrrEf 30% to 64% 

Table 5.2: Uncertain input parameters 

 

As discussed above, data limitations in the basin hinder the development of 

hydrologic models needed to relate climate and land cover conditions with outcomes such as 

streamflow and sediment loads. Because of this, the simulation of hydrologic processes such 

as streamflow generation, sediment loading and evaporation are highly simplified and subject 

to considerable uncertainty. Three parameters were included to account for uncertainty in 

the degree to which the proposed simulation model can accurately represent the system 

response to changing climate and land cover conditions. The Qmod parameter, which 
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ranged from 0.05 to 0.95, was used to incorporate uncertainty in the empirical streamflow 

models described in Chapter 2. The regression models used to predict streamflow as a 

function of climate and agricultural land cover are clearly very simple representations of the 

region’s hydrology and not able to capture system behavior with complete accuracy. As in 

any regression model, the fact that the model is built using only a sample of historic data (the 

period from 1960 to 2004) rather than the basin’s full history, as well as the limited number 

of explanatory variables included, introduces uncertainty and error. To account for this, the 

simulated streamflow for each simulation was taken from a prediction interval encompassing 

the 5th to 95th percentile of predicted values for each new observation in accordance with the 

randomly sampled Qmod parameter.  

Similarly, the equations used to estimate evaporation off of the lake and reservoirs, as 

well as sediment loads to the reservoirs, are based on limited data and fairly simplistic 

representation of complex landscape-scale processes. Because of this, they are likely to only 

provide a rough estimate of the true value of evaporative losses and sediment loads that will 

occur. For this reason, two coefficients (EtC and SedC) were introduced to estimate how 

actual evaporation and sedimentation rates could compare to the estimates. Monthly 

evaporation sequences were multiplied by the parameter EtC, which ranged from 0.8 to 1.2, 

prior to being used as inputs to the WEAP model. This parameter represents the degree to 

which actual evaporation might differ from our estimate, with any value over 1.0 implying 

that actual evaporation is higher than our estimates. Similarly, sediment loading rates to each 

reservoir were multiplied by a SedC parameter ranging from 0.7 to 1.3, with any value greater 

than 1.0 indicating sediment loads are higher than those estimated using the rating curve in 

Equation 5.1. 
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Possible impacts of climate change on average temperature for the region were 

represented by a change in temperature ranging from 0.5 to 5.5° C based on IPCC multi-

model ensemble projections for the East Africa region for the period 2081-2100 under all 

representative concentration pathways (van Oldenborgh et al., 2013). These same ensembles 

project changes in annual precipitation ranging from -20% to positive 35%. Furthermore, 

there is also concern that climate change could result in increasing interannual variability, 

regardless of changes in average annual rainfall (Barnett et al., 2006). To account for this, 

climate change was assumed to have the potential to increase interannual variability in 

rainfall by up to 20%. In addition to future climate conditions, changing land cover in the 

region and uncertain levels of irrigation efficiency could also impact system performance in 

the future. The possible change in the percentage of agricultural land cover in each basin was 

assumed to range from -1% to +1%, and continued to increase or decrease at this rate until a 

minimum value of 35% or a maximum value of 90% was reached. An increase of 1% per 

year would be roughly equivalent to a continuation of the maximum rate of agricultural land 

use expansion observed over the past 40 years in the basin, whereas a decrease of 1% per 

year would be a complete reversal of this trend. 

Finally, overall irrigation efficiency (the product of conveyance efficiency and field 

efficiency) was assumed to be uncertain. Feasibility studies prepared for the basin’s 

reservoirs each assume a specific value for overall irrigation efficiency ranging from 50% to 

57%. However, evaluations of existing irrigation projects in the country suggest that 

conveyance efficiency in unlined canals could be as low as 60%, and field efficiency for 

gravity-fed irrigation could be as low as 50%, which would result in an overall efficiency of 

approximately 30% (Awulachew and Ayana, 2011). In a best-case scenario, a conveyance 

efficiency of 80% combined with a field efficiency of 80% would result in an overall 



139 
 

efficiency of 64%. Thus, the evaluation assumed that actual baseline irrigation efficiency for 

the projects (without implementation of the modification measures described in Section 

5.2.2.1) could range from 30% to 64%. 

5.2.2.3 Generation of transient climate sequences 

One limitation with many climate change impact assessments is that they estimate 

the severity of impacts at a discrete period in the future (for example, at the end of this 

century) rather than estimating transient impacts through time. Understanding how the 

severity of climate change impacts develops through time provides more valuable 

information for adaptation decision making, but has generally relied on using downscaled 

climate projections that can be difficult to obtain and highly uncertain in developing regions 

of the world. To provide insights into how gradual changes in climate conditions would 

impact system performance through time, transient climate change sequences were 

developed based on the range of feasible 50-year changes in climate shown in Table 5.2. 

Transient climate sequences were developed first by generating correlated samples of 

changes in temperature, precipitation, and interannual variability because greater climate 

forcing is expected to result in more extreme changes to both temperature and precipitation. 

For each of the samples used to drive the simulation model, a value for the change in 

temperature was selected from a uniform distribution across the range of values presented in 

Table 5.2 and the change in precipitation was randomly selected to be either positive or 

negative with an equal probability. For the n’th sample, a parameter ∆𝑃̅̅̅̅𝑛 was calculated as in 

Equation 5.2 and a parameter ∆𝑉𝑎𝑟̅̅ ̅̅ ̅̅
𝑛̅was calculated as in Equation 5.3, with the maximum 

and minimum values for ∆T,  ∆P, and ∆Var as presented in Table 5.2. The change in rainfall 

and rainfall variability for sample n were then randomly sampled from normal distributions 
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with means equal to ∆𝑃̅̅̅̅𝑛 and ∆𝑉𝑎𝑟̅̅ ̅̅ ̅̅
𝑛̅⁡and a coefficient of variation equal to 0.5. This resulted 

in correlated samples of the ∆T, ∆P, and ∆Var parameters representing possible changes in 

temperature, precipitation, and interannual variability that could occur by 50 years in the 

future.  

Equation 5.2:  

 

∆𝑃̅̅̅̅𝑛 =

{
 
 

 
 (∆𝑇𝑛 − ∆𝑇𝑚𝑖𝑛)

(∆𝑇𝑚𝑎𝑥 −⁡∆𝑇𝑚𝑖𝑛)
⁡× ∆𝑃𝑚𝑎𝑥 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡∆𝑃 > 0

(∆𝑇𝑛 − ∆𝑇𝑚𝑖𝑛)

(∆𝑇𝑚𝑎𝑥 −⁡∆𝑇𝑚𝑖𝑛)
⁡× ∆𝑃𝑚𝑖𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡∆𝑃 < 0

 

 

Equation 5.3:  

∆𝑉𝑎𝑟̅̅ ̅̅ ̅̅
𝑛̅ =⁡

(∆𝑇𝑛 − ∆𝑇𝑚𝑖𝑛)

(∆𝑇𝑚𝑎𝑥 −⁡∆𝑇𝑚𝑖𝑛)
⁡× ⁡∆𝑉𝑎𝑟𝑚𝑎𝑥 

To account for gradual changes in climatic conditions, these parameters were then 

used to generate 50-year sequences of climate change perturbations with each parameter 

increasing linearly through time. For example, if the ∆T parameter was equal to 5°C for a 

given sample, then the ∆T perturbation sequence for that sample would gradually increase 

by 0.1°C per year from 0°C to 5°C by the end of the 50-year sequence. For each sample, a 

two-year blocked bootstrap sample of historic climate conditions was used to generate a 

random 50-year sequence of climate conditions that accounted for inherent climate 

variability while maintaining the moderate degree of autocorrelation that is observed in 

annual climate conditions. The bootstrapped climate sequences were then adjusted by these 
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perturbation sequences to account for gradually changing climatic conditions through time. 

The ∆T and ∆P perturbation sequences were applied using the delta-change method (Gleick, 

1986). To account for increasing interannual variability, each year of the bootstrapped 

climate was classified as a wet or dry year based on whether total rainfall in that year was 

greater or less than the long-term annual average. In wet years, the monthly precipitation 

values were increased by the percentage in the perturbation sequence, while monthly 

precipitation values in dry years were decreased by this percentage. 

5.2.2.4 Simulation and Evaluation Procedure 

The simulation model described above was used to assess how the proposed 

infrastructure development alternatives and modifications performed in a wide variety of 

“potential futures” (Lempert et al., 2006) represented by combinations of the eight uncertain 

parameters described in Table 5.2. In the first step of the simulation procedure, 10,000 

random samples were generated using Latin Hypercube sampling across a uniform 

distribution for the range of possible values for change in temperature (∆T), agricultural land 

cover (AgLC), irrigation efficiency (IrrEf), sediment coefficient (SedC), evaporation 

coefficient (EtC), and streamflow prediction model interval (Qmod). For each sample, 

correlated values of change in precipitation (∆P) and change in interannual variability (∆Var) 

were calculated based on the randomly sampled ∆T value and Equations 5.2 and 5.3. While 

Latin hypercube sampling is often used to generate multivariate probabilistic distributions, 

here it is only used as a mechanism for generating a diverse sample of future conditions that 

could feasibly occur. These samples are used as input for exploratory modeling (Bankes, 

1993) that evaluates how the system responds to different multivariate conditions while 

making no inference regarding the likelihood of those states. Other methods for sample 

generation, including full combinatorial sampling across discrete uncertain parameters and 
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GCM ensemble projections (Groves et al., 2013; McJeon et al., 2011), have been used in 

RDM evaluations and the application of further sample generation methods could be a 

valuable area for additional research.   

The ∆T, ∆P, and ∆Var parameters were then used to develop transient climate 

change sequences as described in Section 5.2.2.3. These climate sequences were then used as 

inputs to the empirical streamflow prediction models to generate a distribution of predicted 

streamflow values for each month in the 50-year sequence. The parameter Qmod was used 

to select a percentile value from this distribution to be used as the predicted streamflow 

value; for instance, if Qmod equaled 0.95, then the 95th percentile from the prediction 

interval was used, whereas a Qmod value of 0.5 would entail that the median value from the 

prediction interval was used. These sequences of monthly streamflow were then used to 

generate a sequence of sediment loading to each reservoir using Equation 5.1, which was 

multiplied by the SedC parameter to account for uncertainty in the sediment rating 

equations. Monthly sequences of evaporation from Lake Tana and the proposed reservoirs 

were calculated using Penman’s equation (Penman, 1948) and the perturbed temperature 

sequences and then multiplied by the EtC parameter.  

These 50-year sequences of monthly streamflow, sedimentation loads, and 

evaporative losses were then used as inputs into the WEAP simulation model. The WEAP 

model calculated three performance metrics for each simulation as shown in Table 5.3. The 

first performance metric was agricultural coverage, which is defined as the percentage of 

years where 90% of agricultural demand across the basin was provided. The second 

performance metric was the average annual water provided for the Tana-Beles hydropower 

transfer. The third performance metric was the percentage of months where the water 
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elevation in Lake Tana was above 1784.75 meters above mean sea level (amsl). Previous 

studies have identified this elevation as the minimum level that the lake can reach before 

negative impacts to the navigation and fishing industries begin to occur (SMEC, 2008); this 

metric therefore can be considered a proxy for the impacts to the navigation sector as well as 

environmental conditions in the lake. For each performance metric, an acceptable 

performance level was identified by reviewing feasibility studies for the proposed projects 

and evaluating system performance under historic climate conditions (Shortridge and 

Guikema, 2016).  

Objective Metric Units 

Acceptable 
Performance 

Threshold 

Maximize irrigation water 
reliability 

Percentage of years when minimum 
demand is met % 90% 

Maximize hydropower water 
delivered Average water delivered annually MCM 2681 

Minimize percent of time 
where lake elevation is below 
minimum acceptable level 

Percent of months where lake is 
above 1784.75 amsl % 95% 

Table 5.3: Performance metrics 

 

The robustness of each alternative is characterized in two ways. The first is by 

assessing the percentage of simulations where the alternative was able to achieve the 

acceptable performance threshold for an individual performance metric. This is consistent 

with the “satisficing” criterion employed by a number of prior RDM evaluations (for 

instance, Kalra et al., 2015; Lempert et al., 2013; Lempert and Groves, 2010). This metric 

was calculated over three time periods to demonstrate how system performance changes 

through time: early (years 1-15), all (years 1-50), and late (years 36-50). However, this 

measurement is sensitive to the distribution assumed in generating samples of uncertain 

input parameters, and could be contentious in situations of deep uncertainty where there is 
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disagreement or uncertainty surrounding these distributions (Whateley et al., 2014). 

Therefore, the robustness of each alternative was also characterized by evaluating the 

specific regions of the input variable space where an alternative was unlikely to meet the 

performance thresholds described in Table 5.3. These regions, referred to as failure scenarios 

in the remaining discussion, describe the specific conditions that are likely to result in 

unacceptable performance. This is similar to the robustness metric proposed by Whateley et 

al. (2014); however, we avoid quantifying the portion of the input variable space described 

by each failure scenario for two reasons. The first is that this quantification is sensitive to 

range of values assessed for each uncertain parameter, and there may not always be a strong 

basis for defining these endpoints for all parameters assessed. The second is that in an 

evaluation with multiple uncertain parameters, understanding the specific parameters and 

thresholds that define the failure scenarios is likely to be informative for decision makers, 

and characterizing robustness using a single numerical metric will not convey this 

information. The robustness of each alternative is evaluated over each performance metric 

separately to avoid biases or loss of information that can result from aggregation of multiple 

criteria in robust decision approaches (Shortridge and Guikema, 2016). The failure scenarios 

were determined using the RDM scenario discovery process in the SDtoolkit package in R 

(Bryant, 2014), which is based on the patient rule induction method (PRIM) bump hunting 

algorithm (Friedman and Fisher, 1999) described in Section 1.4.  

5.3 Results 

The percentage of simulations in which each performance metric was satisfied for 

each development alternative over the three time periods of evaluation is presented in Table 

5.4. In comparing the three development alternatives currently under consideration by 

planners in the region (D0, D1, and D2), it is apparent that the performance of D1 and D2 
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are comparable to each other, but are substantially less robust than D0 with regard to each 

performance metric. This is not surprising, given that these development alternatives would 

entail an approximate 7-fold and 10-fold increase in the amount of water withdrawn for 

agriculture, respectively. However, even though development level D2 requires more 

irrigation water than D1, it actually results in better performance than D1 across all 

performance metrics evaluated. This is likely due to the large capacity of the Gilgel Abbay 

and Jema reservoirs relative to the amount of irrigation water they are designed to provide, 

allowing for more long-term storage and ability to meet demands in dry periods. The two 

modification measures aimed at improving irrigation efficiency (M1 and M2) both result in 

more robust performance in terms of irrigation reliability when compared to the unmodified 

D2 alternative, with little-to-no impact on hydropower provision or lake levels. The SWC 

measures (M3) result in slightly poorer performance than the unmodified D2 alternative for 

each performance metric, due to their impact on streamflow volumes.  

Regardless of the alternative evaluated, irrigation water reliability appears highly 

sensitive to the uncertain parameters present in Table 3, with the minimum performance 

level being met in only 57% of simulations for D0 and between 8% and 24% of simulations 

for the other alternatives when evaluated over the full simulation time period. In 

comparison, the hydropower metric is met in anywhere from 58% to 74% of simulations 

when assessed over the full time period, and the lake level metric is met in 85% to 93% of 

simulations. For all metrics, there is a clear decline in performance through time, with the 

performance thresholds met more frequently in the early years of the simulation (years 1-15) 

when compared to the full 50-year simulation period and late years (years 36-50). This 

decline in performance is most dramatic for the irrigation water reliability metric, but is also 

apparent in the hydropower metric and (to a lesser extent) the lake level metric.
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Development alternative 

Irrigation water reliability Water for Hydropower Lake Levels 

Early  Full Late Early Full Late Early Full Late 

D0 0.82 0.57 0.49 0.91 0.74 0.73 0.99 0.93 0.91 

D1 0.30 0.08 0.06 0.80 0.62 0.63 0.98 0.87 0.87 

D2 0.33 0.10 0.07 0.80 0.63 0.64 0.98 0.88 0.87 

M1 - D2 with lined canals 0.54 0.20 0.15 0.82 0.66 0.66 0.98 0.89 0.88 

M2 – D2 with field 
efficiency 0.42 0.24 0.22 0.80 0.65 0.67 0.98 0.88 0.88 

M3 – D2 with SWC 0.32 0.08 0.05 0.79 0.58 0.57 0.98 0.85 0.84 

Table 5.4: Percentage of simulations where performance thresholds were satisfied
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Regardless of the alternative evaluated, irrigation water reliability appears highly 

sensitive to the uncertain parameters present in Table 3, with the minimum performance 

level being met in only 57% of simulations for D0 and between 8% and 24% of simulations 

for the other alternatives when evaluated over the full simulation time period. In 

comparison, the hydropower metric is met in anywhere from 58% to 74% of simulations 

when assessed over the full time period, and the lake level metric is met in 85% to 93% of 

simulations. For all metrics, there is a clear decline in performance through time, with the 

performance thresholds met more frequently in the early years of the simulation (years 1-15) 

when compared to the full 50-year simulation period and late years (years 36-50). This 

decline in performance is most dramatic for the irrigation water reliability metric, but is also 

apparent in the hydropower metric and (to a lesser extent) the lake level metric.  

To characterize the conditions that cause unsatisfactory performance for each 

alternative, the scenario discovery process was used to find failure scenarios for both the 

irrigation and hydropower metrics (assessed over the full simulation time period) for each 

development alternative. Failure scenarios for lake level are not presented because each 

alternative satisfied this metric in the vast majority of simulations conducted, but in practice 

this metric could be evaluated using the same methodology. Failure scenarios for irrigation 

reliability are presented in Table 5.5 and shown graphically in Figure 5.2. For each 

alternative, between two and three failure scenarios were identified. Sometimes these failure 

scenarios are defined by a single variable; for example, the D0 alternative is unlikely to 

achieve satisfactory performance if the Qmod parameter is below 0.36 (meaning that actual 

flows are below the 36th percentile of values predicted by the empirical streamflow models). 

Failure scenarios can also be defined by the intersection of conditions regarding multiple 

variables, as is the case for the second failure scenario identified for the D0 alternative, 
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which is defined by an irrigation efficiency below 45% occurring in conjunction with a 

Qmod parameter below 0.64. Collectively, these two failure scenarios describe 83% of the 

simulations where D0 resulted in unacceptable performance with regard to irrigation 

reliability (coverage), and 74% of the simulations contained within these failure scenarios 

resulted in unacceptable performance (density). 

Across all alternatives, it is apparent that the uncertain parameter with the greatest 

influence on irrigation water reliability is streamflow modeling uncertainty represented by the 

Qmod parameter. Although low values of this parameter are sufficient to cause failure for all 

alternatives evaluated, the specific threshold for failure differs between alternatives. For 

example the D1 alternative is likely to fail if the value of Qmod is below 0.64, whereas this 

parameter has to be substantially lower (below 0.52) for the D2 alternative to fail. This is 

consistent with the satisficing metrics presented in Table 5.4, which suggest that D2 is more 

robust to uncertainty than D1. Low irrigation efficiency is also sufficient to cause failure for 

the D1, D2, and M3 alternatives; however, the M1 and M2 alternatives (which were 

specifically designed to address irrigation losses) are no longer sensitive to this parameter. 

The other parameter that can cause failure is the change in temperature, suggesting that the 

D2 alternative will fail if the increase in average temperature over the next fifty years is over 

2.84°C. In general, the M1 and M2 modification measures mostly improve the robustness of 

the D2 alternative by reducing its vulnerability to uncertainty in irrigation efficiency and 

temperature increases, and but only reduce its vulnerability to model uncertainty by a very 

slight margin (Qmod < 0.48 rather than 0.52). The M3 modification actually makes the D2 

alternative more vulnerable to streamflow model uncertainty, but makes it less sensitive to 

temperature increases (∆T> 3.34°C). 
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Dev. 
Alternative 

Percent 
failures 

Irrigation Failure Scenarios 
Box 

density 
Box 

coverage 
Ensemble 

density 
Ensemble 
coverage 

D0 0.43 
1) Qmod < 0.36 0.78 0.63 

0.74 0.83 
2) IrrEff < 0.45, Qmod < 0.64 0.65 0.2 

D1 0.92 

1) Qmod < 0.64 0.98 0.7 

0.98 0.92 2) IrrEff < 0.46 0.99 0.18 

3) ∆T > 4.35 0.97 0.04 

D2 0.90 

1) Qmod < 0.52 0.98 0.27 

0.91 0.9 2) IrrEff < 0.43 0.99 0.09 

3) ∆T > 2.84 0.97 0.58 

M1 0.80 
1) Qmod < 0.48 0.97 0.58 

0.96 0.79 
2) ∆T > 3.78 0.92 0.2 

M2 0.76 
1) Qmod < 0.48 0.96 0.61 

0.94 0.79 
2) ∆T > 4.00 0.88 0.19 

M3 0.92 

1) Qmod < 0.64 0.98 0.7 

0.98 0.94 2) IrrEff < 0.44 0.99 0.16 

3) ∆T > 3.34 0.94 0.09 

Table 5.5: Failure Scenarios for Irrigation Reliability (full time period) 
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Figure 5.2: Failure scenarios for irrigation reliability. Hash marks indicate parameter values that are sufficient to cause failure regardless of 
other parameter values. Diagonal lines indicate parameter values that must be combined with certain values of other parameters to cause 

failure.  
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Dev. 
Alternative 

Percent 
failures 

Hydropower Failure Scenarios 
Box 

density 
Box 

coverage 
Ensemble 

density 
Ensemble 
coverage 

D0 0.26 
1) EtC > 1.03, Qmod < 0.52 0.75 0.66 

0.83 0.71 
2) EtC > 0.98, ∆P < -9.5 0.6 0.17 

D1 0.38 
1) EtC > 0.99, Qmod < 0.64 0.77 0.72 

0.75 0.84 
2) EtC > 0.94, ∆P < -9.4  0.65 0.12 

D2 0.37 
1) EtC > 0.99, Qmod < 0.64 0.76 0.73 

0.83 0.75 
2) EtC > 0.94, ∆P < -10.9  0.65 0.11 

M3 0.34 
1) EtC > 1.01, Qmod< 0.64 0.78 0.71 

0.76 0.83 
2) EtC > 0.95, ∆P < -10.8  0.65 0.12 

M4 0.35 
1) EtC > 0.99, Qmod < 0.64 0.74 0.75 

0.73 0.85 
2) EtC > 0.93, ∆P < -12.1  0.65 0.1 

M5 0.42 
1) EtC > 0.99, Qmod < 0.71 0.79 0.73 

0.77 0.84 
2) EtC > 0.92, ∆P < -9.7  0.68 0.11 

Table 5.6: Failure Scenarios for Hydropower Water Provision (full time period) 



152 
 

 

Figure 5.3: Failure scenarios for provision of water for hydropower. Hash marks indicate parameter values that are sufficient to cause 
failure regardless of other parameter values. Diagonal lines indicate parameter values that must be combined with certain values of other 

parameters to cause failure.
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Failure scenarios for hydropower water provision are presented in Table 5.6 and 

shown graphically in Figure 5.3. In this case, uncertainty in evaporation estimates off of the 

lake and reservoirs appears to be the most influential uncertain parameter, appearing in every 

failure scenario identified. However, high values of EtC (which imply actual evaporation 

above current estimates) are not enough to cause failure on their own for any alternative 

evaluated, but have to occur in conjunction with either low values of Qmod or strong 

decreases in precipitation. For instance, the D2 alternative tends to provide insufficient 

water for hydropower if EtC is greater than 0.99 and Qmod is less than 0.64 (implying that 

actual evaporation is greater or equal to current estimates and actual streamflow is below the 

64th percentile of model predictions), or if EtC is greater than 0.94 and precipitation 

decreases by over 10.9% in 50 years. With the exception of D0, which appears less sensitive 

to the Qmod and EtC parameters, there is only minor variation between the thresholds 

identified for the other development alternatives.  

 

Figure 5.4: Percentage of simulations where irrigation reliability threshold is met under the 
full set of simulations (left) and optimistic subset of simulations (right). 
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The strong influence that model uncertainty, and to a lesser extent irrigation 

efficiency, exerts on irrigation water performance makes it difficult to understand the relative 

vulnerability of each alternative to other uncertain parameters that may also influence their 

results. To better understand the influence of other uncertain parameters, a subset of 

simulations where Qmod was at least 0.5 and irrigation efficiency was at least 50% (termed 

“optimistic” simulations from here forward for brevity) was evaluated in more detail. These 

simulations would represent conditions if the streamflow models were known to be accurate 

or conservative and irrigation efficiency achieved levels assumed in the project feasibility 

studies. The percentage of optimistic simulations where the irrigation water performance 

threshold was met for each time period under the D2 alternative and its modifications is 

shown in Figure 5.4. Under these conditions, the performance threshold is met in the early 

period for the vast majority (95-99%) of simulations. However, even under these optimistic 

conditions, the performance metric is only met in 31-64% of simulations when evaluated 

over the full time period, and 23-56% of simulations in the late period. The failure scenarios 

for this subset of simulations are presented in Table 5.7. It is apparent that changes in 

temperature are the dominant uncertainty driving performance in these simulations. 

Interesting, changes in interannual variability also contribute to vulnerability for the D2 

alternative, but for the modifications the change in precipitation is more important. Again, 

the increase in vulnerability through time is apparent for all of the alternatives evaluated; for 

instance, when evaluated over the full time period the D2 alternative is vulnerable to any 

change in temperature above 3.86°C, whereas its performance in the late years is vulnerable 

to any change in temperature above 3.30°C.
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Alternative and 
time period 

Percent 
failures 

Irrigation failure scenarios 
(optimistic simulations) 

Box 
density 

Box 
coverage 

Ensemble 
density 

Ensemble 
coverage 

D2 Full 0.62 
1) ∆T  > 3.86 0.95 0.49 

0.84 0.84 
2) ∆T  > 2.26, ∆Var > 6.0 0.73 0.35 

D2 Late 0.71 
1) ∆T > 3.30 0.97 0.59 

0.91 0.81 
2) ∆T > 2.08, ∆Var > 6.1 0.79 0.22 

M3 Full 0.43 
1) ∆T > 3.99 0.85 0.57 

0.8 0.76 
2) ∆T > 2.9, ∆P < 5.5 0.68 0.19 

M3 Late 0.53 
1) ∆T > 3.50 0.9 0.66 

0.85 0.82 
2) ∆T > 2.63, ∆P < 14.85 0.69 0.16 

M4 Full 0.36 
1) ∆T > 4.27 0.79 0.52 

0.75 0.73 
2) ∆T > 3.08, ∆P < -5.97 0.66 0.21 

M4 Late 0.44 
1) ∆T > 4.04 0.87 0.56 

0.81 0.76 
2) ∆T > 2.91, ∆P < 10.5 0.67 0.2 

M5 full 0.69 
1) ∆T > 3.50 0.95 0.54 

0.91 0.72 
2) ∆T > 2.36, ∆P < 14.4 0.81 0.19 

M5 late 0.77 1) ∆T > 1.421 0.88 0.92 0.88 0.92 

Table 5.7: Failure Scenarios for Irrigation Reliability (optimistic simulations)
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5.4 Discussion 

This analysis results in a number of insights that could prove useful for decision 

making, both in terms of the relative robustness of different development alternatives and 

areas where additional research may be most useful for infrastructure planning in the region. 

Regarding the choice between different alternatives, this analysis demonstrates that the 

expansion of irrigation withdrawls associated with D1 and D2 does result in increased 

vulnerability to hydrologic and climatic uncertainty when compared to existing 

infrastructure. However, assuming that the benefits of this expansion in terms of irrigated 

area are deemed acceptable, the proposed infrastructure under D2 actually results in better 

performance not just in terms of irrigation reliability, but hydropower and lake levels as well. 

This is likely due to the fact that the Gilgel Abbay and Jema reservoirs have very large 

capacities relative to the amount of water they are planned to provide, which may allow the 

system to take advantage of wet periods more effectively. Across all alternatives, there is a 

clear decline in performance through time; for instance, existing infrastructure is able to 

provide sufficient irrigation water in 82% of simulations when evaluated over the next 15 

years, but only 49% of simulations when evaluated in years 36-50. This is not surprising 

when one considers the gradual onset of climate change and other issues such as reservoir 

sedimentation, but is a fact that can get lost in climate impact studies that focus on a discrete 

period of time decades in the future. Because of the gradual nature of these impacts, 

adaptable mitigation measures that can be modified based on changing conditions and new 

information are likely to be particularly valuable in addressing long-term risks to 

infrastructure performance (Hallegatte and Rentschler, 2015). While mechanisms for 
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developing adaptable infrastructure systems have been formally developed through methods 

such as adaptation pathways (Haasnoot et al., 2011; Ranger et al., 2013) and real options 

(Jeuland and Whittington, 2014; Woodward et al., 2014), this evaluation suggests that 

adaptability and learning in the non-engineered components of infrastructure systems (such 

as promoting improved irrigation efficiency) may be effective as well.   

The ability of the D2 alternative to provide reliable water for irrigation is 

substantially improved by measures aimed at increasing irrigation efficiency, either through 

lining canals or promoting gradual improvements in field irrigation efficiency. Both measures 

reduce vulnerability to climatic and environmental uncertainty, but act across different time 

scales. While the improvements associated with canal lining are greater in the early years of 

system operation, these improvements are surpassed by those associated with field efficiency 

improvements over the long term. The feasibility of these modifications are likely to be 

highly dependent on issues related to financing and support for irrigation users; for example, 

lining canals requires a greater capital investment at the time of construction while improved 

field efficiency would require an ongoing efforts towards farmer education and support. 

Additionally, improved field efficiency has the potential to result in other benefits such as 

higher crop yields as well (Mintesinot et al., 2004; WWDSE and Tahal Group, 2009c), 

potentially making this a “win-win” solution that would be justified even if climate 

conditions didn’t deteriorate (Hallegatte and Rentschler, 2015). The implementation of soil 

and water conservation measures upstream of the proposed reservoirs does have minor 

negative impacts on infrastructure performance since they reduce the amount of surface 

water flowing into the reservoirs; however, it is important to consider that these measures 

are likely to result in a number of benefits that weren’t considered in this evaluation, such as 

improvements in water quality and agricultural productivity. While reduced surface water 
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downstream is one potentially negative impact of these measures, this evaluation suggests 

that this impact is likely to be relatively minor.  

In addition to comparing the performance of different decision alternatives, the 

scenario discovery process also provides insights into which uncertainties have the greatest 

influence over infrastructure performance, and thus areas where additional research or 

understanding might be most valuable. The uncertain parameters that had the greatest 

influence over whether the infrastructure system was able to meet its objectives were related 

to uncertainty in streamflow simulation model accuracy, irrigation efficiency, and 

evaporation estimates. This suggests that uncertainty stemming from data limitations in 

hydrological processes today has a greater potential to negatively impact infrastructure 

performance than uncertainty regarding climate and land cover conditions in the future. 

From a risk management perspective, this is actually a positive outcome since focused 

research activities in the basin could help address and reduce some of these uncertainties. 

For instance, additional research on hydrologic processes in the region, combined with 

expansion of hydrologic monitoring networks and development of more sophisticated and 

realistic models for the region could help address the uncertainty associated with streamflow 

simulation modeling. Monitoring of water withdraws and usage from the Koga reservoir, 

which is already in place, could provide insights into likely values of irrigation efficiency. 

Finally, while predicting evaporation in the future due to climate change presents a number 

of challenges, the installation of additional meterological stations, combined with efforts to 

ground-truth satellite data products, could provide valuable information on evaporation rates 

under current climate conditions. This evaluation suggest that any of the above research is 

likely to be more valuable from an infrastructure planning perspective than a downscaled 

climate change impact assessment.  
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 It should be noted that the framework that we used to account for streamflow 

model uncertainty is fairly conservative, as the prediction intervals associated with the 

streamflow model are quite wide. However, it is interesting to note that these wide bounds 

do not exert the same influence over all components of the water resource system. While 

irrigation reliability is very sensitive to this uncertainty, the provision of water for 

hydropower is significantly less so, and lake levels appear relatively robust even to very low 

values from the model prediction intervals. This suggests that the intervals are not so wide as 

to undermine learning about the relative vulnerability of different system components. The 

importance of hydrologic model uncertainty in determining infrastructure performance 

mirrors a number of other studies suggesting that hydrologic model uncertainty is likely to 

be a significant contributor to uncertainty in streamflow under changing climate. For 

example, Wilby (2005) found that model uncertainty stemming from the choice of training 

data period and non-uniqueness of parameter values was comparable to uncertainty due to 

greenhouse gas emission scenarios when predicting future surface water flows in the River 

Thames. The relative contribution of hydrologic model uncertainty can be particularly 

dramatic when considering specific aspects of future flow regimes; for example, some 

studies suggest that estimates of low-flow values are especially sensitive (Jung et al., 2012). 

Additionally, climate change has the potential to alter the physical processes that hydrologic 

models aim to represent, making models calibrated to historic conditions biased in their 

prediction of future conditions (Brigode et al., 2013; Coron et al., 2012; Merz et al., 2011). It 

should also be noted that the majority of studies comparing the relative contribution of 

emissions, climate model, and hydrologic model uncertainty in were conducted in Europe, 

North America or Australia; it is not unreasonable to suspect that hydrologic model 

uncertainty would be even more severe in data-scarce regions of the developing world.  
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Collectively, this work suggests that any evaluation considering water infrastructure 

performance that relies on hydrologic models should carefully consider the degree to which 

model uncertainty contributes to uncertainty in infrastructure performance. Some RDM 

studies conducted to date have considered hydrologic uncertainty through evaluating 

different parameters related to groundwater recharge (Lempert and Groves, 2010) or 

evapotranspiration (Fischbach et al., 2015), but this has generally been given relatively little 

consideration compared to the evaluation of uncertainty in future climate conditions.  Our 

research suggests that more sophisticated evaluation of model uncertainty should be an 

important component of robust decision frameworks applied in data-scarce contexts. 

However, one practical challenge in doing so is representing uncertainty in a manner that can 

be evaluated through the scenario discovery algorithm, which requires uncertain input 

parameters to be represented by continuous numeric values. This would allow for 

comparison of simulation results across a range of values for a specific parameter, providing 

insights in situations where certain model parameters are known to have a limited empirical 

basis for their assigned values or which are observed to vary depending on the calibration 

procedure. For instance, a review of SWAT model applications in the Blue Nile suggested 

that a number of studies used calibration procedures that resulted in physically unrealistic 

values of parameters associated with loss of water to groundwater (van Griensven et al., 

2012). Sampling a range of values for these parameters would be one way to characterize the 

contribution of model uncertainty to infrastructure performance. However, incorporating 

competing hydrologic or conceptual models or uncertainty stemming from the use of 

different calibration periods would likely be more difficult. Development of methods to 

incorporate hydrologic model uncertainty into the RDM framework would likely be a 
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valuable area of research to support robust planning of water resource systems in data-scarce 

regions.   

While this evaluation demonstrates how an exploratory modeling framework can be 

combined with the RDM methodology to better understand infrastructure vulnerability over 

the near and long-term in data-scarce situations, it did include a number of simplifications 

that should be considered in interpreting its results and which suggest areas for further 

research. One simplification was that uncertain parameter values were assumed to take on 

the same values across the entire study area, even though in reality you would expect these to 

exhibit spatial variability. For instance, it is possible that existing methods for estimating 

evaporation result in underestimates in one region of the basin and overestimates in another, 

or that heterogeneous soil conditions mean that irrigation efficiency associated with certain 

projects is much higher than others. Incorporating this spatial heterogeneity into the RDM 

process without having to consider an overwhelming number of uncertain parameters could 

be valuable in understanding which uncertainties are most important in different regions. 

Additionally, the pre-defined development alternatives evaluated here may not be the most 

optimal selection of projects, and having a sense of which reservoirs are likely to provide the 

best performance could provide valuable insights into project prioritization. Methods that 

aim to identify high-performing combinations of projects and operating procedures, such as 

many-objective RDM (Kasprzyk et al., 2013) might prove useful in this regard. Finally, it 

should be acknowledged that the uncertain parameters evaluated in this study are not entirely 

separable; for instance, streamflow prediction uncertainty also impacts sedimentation rates 

and temperature change uncertainty also impacts evaporation rates. Understanding how 

these interactions may influence the failure scenarios identified by the PRIM algorithm 

would be a valuable area of additional research. 
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5.5 Conclusions 

The development of robust decision frameworks provides a valuable tool for water 

infrastructure planning under deeply uncertain climate change. The need for these tools is 

particularly severe in the developing world, where climate model projections are especially 

uncertain and difficult to evaluate, and where the construction of expensive, long-lived hard 

infrastructure is largely seen as an important step in improving economic and living 

conditions. However, applying these methods in data-scarce regions presents its own set of 

challenges. Limited availability of computing facilities and expertise may hinder the use of 

data from multi-model climate ensembles needed to characterize GCM uncertainty, and data 

limitations present challenges in the development of reliable hydrologic and water resource 

models to understand the impacts of potential climate change. To address these challenges, 

this work presented a modified application of the RDM methodology that is specifically 

tailored for application in data-scarce situations. This modification includes a novel yet 

simple method for generating transient climate change sequences that account for potential 

variable dependence but do not rely on GCM projections, and an emphasis on identifying 

the relative importance of data limitations and model uncertainty that may be addressed 

through future research. Application of this methodology to the Lake Tana basin in Ethiopia 

leads to a number of insights regarding the relative vulnerability of different development 

alternatives, as well as the potential for efficiency improvements to address these 

vulnerabilities across different time scales. Additionally, we find that uncertainty in 

streamflow model accuracy, irrigation efficiency, and evaporation rates has the greatest 

potential to impact infrastructure performance, suggesting that additional research to address 

these uncertainties could provide valuable insights for long-term infrastructure planning.  

Ultimately, this demonstrates how established methodologies for infrastructure planning 
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under uncertainty can be modified to better suit developing-country contexts and improve 

the long-term effectiveness and sustainability of infrastructure investments in these 

countries. 

  



164 
 

6 CONCLUSIONS 

6.1 Summary and Contributions 

Climate change has the potential to dramatically impact the water resources sector, 

and it is crucial that we consider these impacts today to avoid negative consequences in the 

future. However, the considerable uncertainty surrounding climate change projections, 

particularly at the local and regional scales relevant for infrastructure planning, makes this a 

difficult challenge. In the face of these issues, a number of methods have been developed to 

better characterize and address climate change impacts in the water sector. The objective of 

this dissertation was to critically evaluate methods for impact assessment and decision 

support in the face of deeply uncertain climate change projections, particularly focusing on 

the RDM methodology and empirical methods for streamflow simulation.  

Chapter 2 of this dissertation presented a comparison of multiple machine-learning 

methods for data-driven streamflow simulation in five seasonal rivers in the Lake Tana 

basin. To understand the relative suitability of different methods for planning and 

management decisions, this comparison evaluated each method not only in terms of its 

predictive accuracy, but error structure and bias, model interpretability, and uncertainty when 

faced with extreme climate conditions as well. Despite the popularity of ANNs in existing 

research on streamflow simulation, ANNs were not found to be the most accurate model in 

any of the five basins evaluated. Other methods such as GAMs and random forests are able 

to capture non-linear relationships effectively and lend themselves to simpler visualization of 

model structure and covariate influence, making it easier to gain insights on watershed 

function and confirm that the model is operating in a physically realistic manner. We also 

demonstrate how certain model formulations can lead to autocorrelation in model residuals 

and biased estimates of water availability, emphasizing the importance of considering error 



165 
 

structure when evaluating if a model is fit-for-purpose. Finally, we find that predictions from 

some model types (particularly GAMs, GLMs, and MARS) exhibit considerable variability 

when faced with extreme climate conditions, while others (such as random forests) may be 

biased in their predictions under these conditions. This work demonstrates the value of 

considering multiple model formulations for a given problem and the importance of 

evaluating multiple facets of model performance in determining if it is suitable for planning 

decisions.  

Chapter 3 compares RDM with uncertainty factors and probability bounds analysis 

in an effort to bridge developments in the water resources and risk analysis fields aimed at 

assessing and managing risk in the face of deep uncertainty. By applying each approach to a 

stylized example problem related to flood risk under climate change, this evaluation 

demonstrates how these methods differ in their representation of uncertainty quantities, 

analytical output, and implications for risk management. This example problem 

demonstrates the ways that risk assessment can inform decision making in conditions where 

uncertainty and ambiguity make prescriptive approaches inappropriate. In particular, the 

identification of epistemic uncertainties that most contribute to uncertainty in the resulting 

risk description or choice of alternatives can provide useful insights into places where 

additional research or more sophisticated representation could most benefit the assessment. 

However, we find that the analytical output and implications for decision making, both in 

terms of preferred alternatives and key sources of uncertainty, are not necessarily consistent 

between approaches. This suggests the potential value in additional comparative research to 

better understand the sources of these deviations, as well as the need for risk analysts to 

consider the ways in which the choice of methodology might impact analytical results.  
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Water resource problems are generally characterized by the need to balance multiple 

conflicting objectives, but RDM applications to date have provided little insight into how the 

treatment of multiple criteria impacts the method’s analytical results. To address this gap, 

Chapter 4 uses the proposed infrastructure in Lake Tana as a case study to evaluate how the 

method used to address multiple criteria impacts the process of system vulnerability 

identification within the RDM methodology. It demonstrates that common methods used to 

aggregate multiple criteria into a single utility score can lead to inconsistent failure scenarios 

and obscure the relationship between key uncertainties and system performance. Applying 

scenario discovery over each performance metric separately provides more nuanced 

information regarding the relative sensitivity of system objectives and the ways in which they 

are impacted by different uncertain parameters. This in turn can provide insights on 

measures that could be taken to improve system robustness, as well as areas where additional 

research might prove useful. Because the RDM framework was designed to provide 

quantitative decision support in contexts where there may be conflicting beliefs about what 

the future will look and contentious disagreements about the best course of action, it is 

important that the steps of the process remain as transparent as possible. To this end, the 

additional effort required to apply scenario discovery to each metric separately provides 

valuable benefits by identifying failure scenarios that inform a more complete picture of 

system performance and provide more detailed guidance for vulnerability-reduction efforts. 

Decision frameworks such as RDM that provide a comprehensive treatment of non-

probabilistic uncertainty have the potential to be particularly valuable in developing countries 

with extensive infrastructure needs. However, applying these methods in data-scarce regions 

presents its own set of challenge related to limitations in available data, impact models, and 

computing facilities. Chapter 5 demonstrates a modified application of the RDM 
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methodology that is specifically tailored for application in data-scarce situations. This 

modification includes a novel yet simple method for generating transient climate change 

sequences that account for potential variable dependence but do not rely on GCM 

projections, and an emphasis on identifying the relative importance of data limitations and 

model uncertainty that may be addressed through future research. In applying this 

methodology to the Lake Tana basin, we demonstrate how the approach can provide a 

number of insights regarding the relative vulnerability of different development alternatives 

and priorities for additional research. In particular, we find that uncertainty in streamflow 

model accuracy, irrigation efficiency, and evaporation rates has the greatest potential to 

impact infrastructure performance, suggesting that additional research to address these 

uncertainties should be a greater priority than downscaled climate impact studies. Ultimately, 

this demonstrates how established methodologies for infrastructure planning under 

uncertainty can be modified to better suit developing-country contexts and improve the 

long-term effectiveness and sustainability of infrastructure investments in these countries. 

Taken as a whole, this work demonstrates a number of issues that should be taken 

into account when applying novel methods for climate change impact assessment and 

decision support in water resource systems and long-lived infrastructure systems more 

broadly. Choices about empirical model structure, risk assessment procedures, and the 

treatment of multiple criteria can all have important impacts on analytical results; it is crucial 

that these choices be given due consideration if analytical results are to inform infrastructure 

design and investment decisions.  Ultimately, an improved understanding of how analytical 

steps in climate impact assessment and adaptation can be tailored to specific problems and 

objectives will improve our ability to create robust, sustainable infrastructure systems in the 

face of highly uncertain climate conditions.  
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6.2 Future Research 

This work demonstrated some of the ways in which systematic evaluation of novel 

methodologies for climate change impact assessment and robust decision support can 

highlight the abilities and limitations of these methods. Additional research has the potential 

to result in additional insights for sustainable infrastructure planning based on these tools. 

The following paragraphs discuss priorities for additional research regarding the use of 

machine learning and robust decision making to support climate change impact assessment 

and adaptation.  

Machine learning methods like those evaluated in Chapter 2 have the potential to be 

very useful in modelling complex systems characterized by nonlinearities and interactions 

between variables, making them well suited for complex hydrologic systems. This work 

compared a small number of model types in terms of their error structure, bias and 

uncertainty, but the inclusion of additional model structures could yield further insights into 

the benefits of using different model types. For instance, the autocorrelation present in 

model errors suggests that a persistence or time series model might be useful in simulating 

streamflow more accurately. While this has been done in the context of creating flood 

forecasting models based on machine learning methods (for instance, Galelli and Castelletti, 

2013a; Han et al. 2007; and Yu et al., 2014), the use of such models for long-term 

simulations raises questions about how model errors and uncertainty might propagate 

through time. Additional comparative studies could be useful in understanding how 

accounting for persistence in hydrologic conditions (for instance, by incorporating a lagged 

flow term as an explanatory variable) might impact the accuracy, bias and uncertainty of 

model predictions in long-term simulations.  
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One well noted limitation to empirical models is that they can only simulate 

conditions that are comparable to those in the model training data, presenting a problem 

when models are needed to simulate system response under extreme climates not well 

represented in the historic record. However, the degree to which climate change is likely to 

differ from historic climate conditions varies; for instance, in Lake Tana projected 

temperature changes could very well exceed historic variability, whereas precipitation 

projections are largely within the range of historic conditions. This work demonstrated how 

bootstrap sampling could be used to quantify the variance in model predictions under 

extreme climate conditions and better understand the implications of using the models under 

changing temperatures and changing precipitation patterns. A similar evaluation conducted 

in differing climatic regions (for example temperate, arid, or snow-dominated) could be 

valuable in understanding the where extrapolation of empirical relationships to projected 

climates presents the greatest uncertainty and where is may be more suitable.  

There are also a number of ways in which additional research could strengthen the 

RDM framework and suggest best practices for its application to climate adaptation 

problems. One issue that has not be thoroughly explored within the RDM framework is the 

degree to which the input parameter distributions used to generate samples might impact 

analytical results. It is somewhat concerning that many RDM applications to date focus 

heavily on identification of robust alternatives through satisficing or regret-based measures 

(e.g., Fischbach et al., 2015; Groves et al., 2013; Groves and Bloom, 2013) despite the fact 

that these robustness metrics are likely to be highly sensitive to the input distributions used 

to generate samples for simulation modelling. Since the framework was explicitly designed 

for use in situations where there might be disagreement or uncertainty surrounding these 

distributions, failure scenarios identified by PRIM (which are likely to be less sensitive to 
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these distributions) would likely be a more appropriate basis for evaluating robustness. 

However, a formal evaluation of how input parameter distributions impact the failure 

scenarios identified by the PRIM algorithm would be necessary to confirm that this was the 

case. Additionally, dependence and correlation between uncertain parameters could 

conceivably impact the results of the PRIM algorithm; for instance, if changes in 

temperature are correlated with changes in precipitation variability (as was the case in 

Chapter 5), it may be difficult to separate the influence of these two variables. Additional 

research would be useful in developing a better understanding of potential issues associated 

with input parameter distribution and dependencies, as well as mechanisms that could be 

used to address these issues.  

One limitation with the scenario discovery process is the requirement that 

performance be classified in a binary satisfactory/unsatisfactory fashion. While this may 

make sense in some contexts where there are obvious thresholds for unsatisfactory 

performance (for example, if project costs exceed benefits), in many cases these thresholds 

may not be apparent and evaluation of performance across a continuous scale may be 

preferable. In cases where there are no obvious thresholds for acceptable performance, the 

development of better methods to demonstrate how sensitive failure scenarios are to the 

chosen acceptable performance threshold could be useful. Additionally, in many cases the 

impact of uncertain parameters on system performance may not be independent; for 

example, the left panel of Figure 4.3 suggests that the impact of evaporation and 

precipitation are additive in their impact on hydropower performance. Previous research has 

demonstrated how orthogonal rotations based on principle components analysis can be used 

to identify failure scenarios that better reflect these interactions (Dalal et al., 2013) and could 

be further developed through the use of other methods for dimensionality reduction, such as 
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discriminant analysis. However, care must be taken since this may also make the scenarios 

less interpretable (Parker et al., 2015).  

Finally, the identification of the key uncertain parameters driving system 

performance is arguably one of the most valuable insights provided by RDM and other 

methods for risk and decision assessment under deep uncertainty. This leads naturally to the 

question of how valuable a reduction in uncertainty surrounding those parameters could be 

for the decision under consideration, and a useful area of additional research would be to 

develop methods for quantifying the value of reduction in uncertainty surrounding different 

parameters. This could conceivably be done by using the scenarios identified through RDM 

to create decision trees that could be used to calculate the value of perfect and imperfect 

information; however, some consideration would be needed to make these values robust to 

uncertainty surrounding the likelihood of different scenarios.  
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APPENDIX A: WEAP MODEL SUMMARY 

Model system overview 

The Water Evaluation and Planning (WEAP) system is a simulation modeling 

software designed to aid planners in water management and decision making. It integrates 

modeling of physical hydrologic processes with built infrastructure and water management 

operations to characterize how changes in system design, operation, and external conditions 

(such as climate or land use change) impact water availability and allocation at the basin 

scale. It uses a simple water balance accounting approach to represent both the supply and 

demand side of water resource systems. In this sense, it sacrifices physical realism when 

compared to distributed hydrologic models that simulate natural hydrologic processes in 

greater detail, but allows for more detailed representation of water allocation decisions. The 

model can be customized to support increasingly refined representation of both water supply 

and demand and has been used widely in water resources research; for instance, the 

Stockholm Environment Institute lists approximately 60 scholarly publications that used 

WEAP models in 20156. 

In the simplest case, water supply within the WEAP modeling system can be 

represented by user-specified time series of streamflow volumes. However, the system can 

also use semi-distributed hydrologic models that link surface water flows and groundwater 

levels to climate and land cover conditions. Hydrologic modeling capabilities within WEAP 

are based on a semi-distributed water balance approach that partitions water introduced to a 

watershed as precipitation into runoff, infiltration to groundwater, and evaporative losses 

                                                 

6 List of publications available at: http://www.weap21.org/index.asp?action=216 
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(Yates et al., 2005). The model can also incorporate interactions between groundwater and 

surface water through lumped modeling of aquifer storage levels and associated stream 

levels, or through connecting WEAP with a gridded MODFLOW groundwater flow model. 

It is also possible to include other sub-modules that provide more sophisticated 

representation of water quality and contaminant transport, if needed.  

 Water demand is represented by user defined demand nodes, which can represent 

municipal, irrigation, and industrial demand sites, as well as in-stream flow requirements. 

The model can support increasingly refined representation of water demand; for example, a 

user can simply represent municipal demand using a time series of demand for a whole city, 

or demand could be disaggregated into industrial and municipal use, which is then further 

disaggregated into single and multi-family residences and changes through time based on 

assumed population growth rates. Similarly, irrigation demands can be incorporated into the 

hydrologic modeling component (and thus account for water provided by precipitation or 

stored soil moisture) or be user-defined. These demand sites are linked with sources of water 

that can be used to provide supply, including rivers, groundwater, lakes and reservoirs. Users 

can define simple reservoir operating criteria to determine how much water can be released 

to satisfy downstream demands based on water levels within the reservoir. Demand sites are 

ranked in order of priority, ranging from 1 for highest priority to 99 for lowest priority, in 

case there are times when supply is insufficient to cover all demand nodes. These priorities 

can be adjusted through time to account for seasonal variations in water management needs 

(for example, the need to fill reservoirs during the rainy season so water can be released 

during the dry season).  
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To allocate available water to different demand nodes, the model first calculates a 

mass balance for each node and link within the system at each time step. Water is then 

allocated to demand nodes in decreasing order of priority. If multiple demand nodes have 

the same priority level, then a linear program is solved to maximize the coverage (defined as 

the percentage of demand supplied) of total demand at that priority level subject to mass 

balance and equity constraints (Yates et al., 2005). This process is repeated for subsequent 

priority levels until all demands have been satisfied to the greatest possible level, and then 

repeated for subsequent time steps. While water stored in reservoirs or groundwater is 

accounted for in subsequent time steps, the allocation of water in each time step is 

independent of allocation in previous time steps.  

Lake Tana WEAP Model 

The WEAP model for the Lake Tana basin was developed and calibrated by 

Alemayehu et al. (2010) to evaluate the impact that proposed water infrastructure 

development would have on downstream flows and lake levels under historic streamflow 

conditions. The model used historical streamflow sequences and externally estimated rates of 

evaporation off of the lake and proposed reservoirs as inputs, and the lake itself was 

simulated as a reservoir because flows out of the lake are regulated by the Chara Chara weir. 

The model was manually calibrated by comparing observed and simulated lake levels for the 

period 1960-2004, with the final model achieving a Nash-Sutcliffe efficiency of 0.74 

(Alemayehu et al., 2010).  

The simulations run for the research presented in this work did not rely on the 

internal hydrologic modeling capabilities of the WEAP software, and instead used external 

empirical models to estimate streamflow response to changing climate and land cover 
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conditions because spatially explicit data on vegetation and soil characteristics needed to 

meaningfully inform rainfall-runoff modeling within WEAP were not available. Similarly, 

evaporation off of Lake Tana and the proposed reservoirs was estimated externally using 

Penman’s equation and input directly into WEAP. Similarly, sediment transport was not 

explicitly modeled within WEAP; instead, monthly sequences of sediment loads into the 

reservoir sites were estimated using sediment rating curves for the region and then used to 

estimate how the capacity of each reservoir changed through time. This method assumes 

that all sediment is retained behind the dams with no removal, which is consistent with 

observations from other reservoirs in the region and plans for the proposed reservoirs, 

which don’t include any sedimentation abatement strategies.  

Water demands represented within the Lake Tana model included irrigated 

agriculture, the filling of reservoirs and Lake Tana, the Tana-Beles hydropower transfer, 

environmental flows, and flow requirements at the Tis Issat waterfall located downstream of 

the lake. Demands for agriculture were split into a “base” demand, which represented the 

minimum irrigation demand for that site, and “extra” demand which represented the 

difference between this minimum demand and the maximum possible demand outlined in 

feasibility studies for the projects. This allowed additional water to be allocated to irrigation 

sites when it was available to augment agricultural production at those locations, but only if 

other water demands within the basin were also met. The priorities for different demand 

nodes are shown in Table A.1 and were based on the stated priorities from the Tana Sub-

basin Authority. Priorities varied slightly between wet and dry season months to prioritize 

filling Lake Tana during the wet season so that dry season lake levels don’t drop too low.  
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Dry Season Wet Season 

Priority 
Rank 

Demand Sites Priority 
Rank 

Demand Sites 

1 Agriculture (base) 1 Agriculture (base) 

2 
Filling reservoirs, 

hydropower 
2 

Filling reservoirs, 
hydropower, filling lake 

3 Filling lake 3 
Environmental flows, Tis 

Issat waterfall flows 

4 
Environmental flows, 

Tis Issat waterfall flows 
4 Agriculture (extra) 

5 Agriculture (extra)   
Table A.1: Priority rankings for demand sites in Lake Tana WEAP model 

 

Because no operating rule curves were available to specify operation of the proposed 

reservoirs, water was held and released from the reservoirs in accordance with the priority 

levels defined in Table A1. Thus, there was no consideration of flood-control or forecasts of 

multi-month flows or storage, although the high priority for reservoir filling inherently 

results in limited releases to ensure that enough storage is built up during the wet season to 

meet dry season demands. Releases from the lake were treated in the largely the same 

manner as releases from the reservoirs. However, a buffer zone was also specified for the 

lake, below which releases were constrained to only be a specified fraction of stored water 

(10-30%, depending on the season) to prevent the lake elevation from dropping below the 

threshold of 1784.75 meters amsl (identified as the point where negative impacts to 

environmental conditions, navigation, and fisheries in the lake are expected to occur; SMEC 

International, 2008). Environmental flow requirements in the lake’s tributaries and the Blue 

Nile River downstream of the lake were determined using the desktop reserve method to 

account for seasonal and interannual variability of flow as described by McCartney et al 

(2009). 
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