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A B S T R AC T

Antibodies are important immunological molecules that can bind a diverse array of

foreign molecules. The genetic mechanism that gives rise to antibodies and many

antibody sequences is known, but only by studying three-dimensional structures of

antibodies and antibody–antigen complexes can we reveal immunological mecha-

nisms and provide a starting point for developing rationally designed antibodies.

With the advent of high-throughput sequencing technologies, the gap between the

number of sequences and structures is widening, demanding accurate antibody

modeling methods. Our previously developed method, RosettaAntibody, served

as a starting point for antibody structure prediction. In this dissertation, I detail

my work assessing the predictive power of RosettaAntibody, and the development

and testing of new methods to address its weaknesses. First, I describe an effort to

assess the accuracy of RosettaAntibody on a set of unpublished crystal structures.

This challenge enabled us to combine manual and automated methods for selecting

models and compare RosettaAntibody to other antibody modeling methods. The

most challenging aspect of structure prediction in this assessment proved to be
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modeling the third complementarity determining region loop on the heavy chain

(CDR H3). Next I detail my work in studying CDR H3 loops to uncover why a vast

majority of them contain a kink at the loop’s C-terminus. Part of this work involved

searching the Protein Data Bank (PDB) for structures with a similar geometry of

the amino acid residues at the base of the loop, leading to a set of CDR H3-like

loops from non-antibody proteins. With a clearer understanding of CDR H3 loop

structures and the most detailed description of the kink to date, I developed a

new loop modeling routine that utilizes this information to restrict the geometry

of the loop to be kinked, resulting in an improvement in the weakest aspect of

antibody structure prediction. In summary, the structure prediction methods I have

developed and structural analyses I have performed provide a means to begin to

address the widening sequence–structure gap. Additionally, these methods can

be used to perform structural analysis in the development of rationally designed

antibodies.

Advisor: Prof. Jeffrey J. Gray (Chemical & Biomolecular Engineering)

Reader: Prof. Marc D. Donohue (Chemical & Biomolecular Engineering)

Reader: Prof. Roland L. Dunbrack, Jr (Institute for Cancer Research, Fox Chase
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C H A P T E R I

I N T RO D U C T I O N

1.1 Introduction to antibodies

Immunoglobulin G (IgG) proteins, commonly referred to as antibodies, are the major mole-

cule of the vertebrate adaptive immune system. Antibodies bind to specific regions of nearly

any foreign molecule and, once bound, promote other cells to degranulate or phagocytose

the pathogen. In addition to their natural proclivities, antibodies have proven to be a robust

model for biotechnological and pharmaceutical applications. One of the most successful

antibody therapeutics, trastuzumab, targets HER2-positive breast tumors and has been

shown to increase overall survival and disease free survival rates.1, 2 Nearly 100,000 women

receive treatment every year, and, as a testament to its success, trastuzumab generated a

revenue of $6.8 billion in FY2013.3 Structure-based design of novel antibodies has been

used to develop molecules that can serve as biosensors,4 and custom antibodies have even

become a part of routine biochemical assays (ELISA).5, 6

In order to have the capability to bind to nearly any infectious molecule, a diverse

population of antibodies is required. This diversity arises from a number of complex pro-

cesses beginning in the bone marrow and ending in lymphatic tissue.7 In the bone marrow,

1



C H A P T E R 1 . I N T R O D U C T I O N

hematopoietic stem cells differentiate into one of three primary blood cell types: red blood

cells, white blood cells and platelets. White blood cells (leukocytes) further differentiate

primarily into T cells and B cells, the latter of which ultimately express antibodies. During

differentiation into a B cell, a genetic shuffling event called V(D)J recombination occurs

wherein one of several Variable, Diversity and Joining gene segments are joined to form

a new immunoglobulin gene. The gene segments are selected randomly and junctional

diversification occurs, in which nucleotide additions and deletions are made at the interface

of the segments. There are several checkpoints throughout this process to ensure that the

newly formed gene produces a protein that folds properly and that the resulting antibody

does not bind strongly to “self” proteins. A similar process occurs in T cells to form T cell

receptors (TCRs), which are the T cell analogues of immunoglobulins. After successful

V(D)J recombination, the protein is expressed on the surface of the B cell as immunoglobulin

M (IgM), and the fully differentiated B cell, called a naïve B cell, leaves the bone marrow.

The IgM population on naïve B cells is referred to as the naïve antibody repertoire. The size

of the theoretical naïve human antibody repertoire is estimated to be > 1014. For reference,

there are roughly 1012 B cells in a human.8

The other major source of antibody diversity occurs after the host organism is

exposed to a pathogen in a process called affinity maturation. Major histocompatibility

complex II (MHC II) molecules form complexes with linear pieces of foreign molecules

(peptide epitopes) after they have been processed by antigen presenting cells (APCs), which

go on to activate T cells. Separately, a B cell receptor interacts with internalizes and process

the same antigen. The B cell presents peptide epitopes on its surface and can then be

2
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Figure 1.1: Schematic of IgG structure. In the top chains, domains encoded from germline
V, D, J and C segments are indicated. Nontemplated N-nucleotides are shown in red.
These top chains delineate the 5′ to 3′ genetic composition of the antibody. In the bottom
chains, framework (FR) and complementarity-determining regions (CDRs) are indicated.
These bottom chains delineate the N-terminal to C-terminal protein sequence. Dashed lines
denote disulfide bonds. Reprinted by permission from Macmillan Publishers Ltd: Nature
Biotechnology Georgiou et al. “The promise and challenge of high-throughput sequencing
of the antibody repertoire”,9 copyright 2014

stimulated by a T cell activated by the same epitope. Once this occurs, the B cell is activated

and it undergoes class switching to change the immunoglobulin molecule it is producing

from IgM to IgG and then begins a process called somatic hypermutation in which the B

cell divides rapidly with a high mutation rate in its complementarity determining regions

(CDRs). As this process repeats, only the daughter cells that improve affinity survive,

leading to clonal selection of stronger, more specific binders. At this point the B cell can

form either a plasma B cell, which produces a large amount of antibodies to combat the

infection, or a memory B cell, which can be reactivated in the event of a secondary infection.

The foundation of antibodies’ utility lies in their three-dimensional structure. As
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shown in Figure 1.1, antibodies consist of two sets of heavy and light chains arranged into a

“Y” shape, with the four polypeptide chains joined by disulfide linkages. The heavy chain

contains four domains, three adjacent constant domains (CH1, CH2, CH3) and one variable

domain (VH), and the light chain consists of a single constant domain (CL) and a variable

domain (VL). The CH1 and VH domains interact with the CL and VL domains to form the

antigen-binding fragment (Fab) to form the “arms” of the Y. Within the Fab, both variable

domains are directed away from the remaining heavy chain constant domains and make

up the variable fragment (FV). At the tip of the FV are three complementarity determining

region (CDR) loops on each chain (CDR L1–3 and CDR H1–3) that form the region of the

antibody, called the paratope, that recognizes its target.10, 11 Figure 1.2 depicts the structure

of an FV with the CDR loops shown in different colors. The FV’s sequence, including the

CDR loops, is determined by the genetic recombination events and affinity maturation.

Thus, the primary functional difference among antibodies is the conformation and chemical

identity of the CDR loops.12

Next-generation sequencing techniques have recently been developed to enable

rapid determination of large numbers of antibody sequences.9, 13, 14 Coupling these tech-

niques with library-based screening or isolation of IgGs from whole blood samples can

yield methods to identify high-affinity binders to a desired antigen. However, no infor-

mation about the targeted region of the antigen (the epitope) can be gleaned from these

processes. This level of detail is required in order to design therapeutic antibodies or to

design vaccines that are mimetics of extremely infectious antigens. In order to consider

specific antibody–antigen interactions, structural models are required.

4



C H A P T E R 1 . I N T R O D U C T I O N

1.2 Overview of antibody homology modeling

Structural models of proteins can be elucidated using data from one or more experimental

techniques. The most commonly used methods are single-crystal X-ray diffraction, nuclear

magnetic resonance (NMR) spectroscopy, and neutron diffraction. X-ray diffraction can

yield high-resolution structural models of molecules of any size. However, obtaining high-

quality crystals of proteins is often challenging. Producing crystals of sufficient quality is

only the first of many challenges, as interpreting diffraction data can be a time consuming

process and may even require the use of a synchrotron to tune the wavelength of the

diffracting X-rays. NMR spectroscopy experiments are performed on proteins in solution,

bypassing the challenges associated with crystallization. In order to produce a usable signal,

some heavy atoms in the protein need to be isotopically labelled (typically 13C and 15N).

The measured signals are then converted into various real-space restraints, which are then

represented as energies and used in a molecular mechanics modeling package to produce

a set of structures that collectively explain the restraints. However, the measured signals

degrade as the size of the protein being studied increases, which currently makes NMR

unsuitable for generating high-resolution models of large proteins. Protein structures can

also be elucidated via neutron diffraction experiments, which can be thought of as direct

observation of nuclear coordinates because neutrons are diffracted by atomic nuclei and

not electrons. Because nuclei are small compared to electron density, neutron diffraction

experiments require much larger crystals than those for X-ray diffraction experiments.

Additionally, a nuclear reactor is needed as a source of neutrons. Single-crystal X-ray
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diffraction, NMR spectroscopy, and neutron diffraction have proven extremely useful and

have been used to generate the more than 100,000 protein structural models in the Protein

Data Bank (PDB). However not all protein structures can be determined with these methods,

and limited resources make it impossible to determine the structures of all of the sequences

identified in high-throughput sequencing experiments.

To bridge the widening sequence–structure gap, one must turn to computational

structure prediction methods. Homology modeling uses parts of structural models of

related proteins that are predicted to be conserved in the target protein. Because the non-

CDR loop regions of antibodies (framework regions) are structurally conserved, antibodies

are highly amenable to homology modeling methods. There are nearly 2,000 antibody

structures in the PDB15 that can be used as templates for homology modeling. Analysis of

these structures has revealed that five of the six CDR loops (CDR L1–3, H1, H2) adopt a

limited number of distinct structures, referred to as canonical loop conformations.16–19 The

canonical conformation of a particular CDR loop can be readily identified from its length

and sequence. Antibody homology modeling methods must identify the best templates for

the heavy and light chain framework regions and canonical CDR loops and assemble them

to form a reasonable structural model.

The remaining piece is modeling the CDR H3 loop. Because it is the only one of

the six CDR loops that does not adopt canonical conformations, CDR H3 must be modeled

de novo. Unsurprisingly, CDR H3 modeling is the most challenging aspect of antibody

structure prediction.
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Figure 1.2: Variable (FV) region of the anti-lysozyme antibody (1BQL20). The heavy chain
variable region (VH) comprises of the heavy framework (blue), the canonical complementarity
determining regions (CDR) H1 (orange), H2 (orange) and the hypervariable CDR H3 (red).
The light chain variable region (VL) comprises of the light framework (yellow) and canonical
CDRs L1, L2 and L3 (cyan). From Sircar A “Computational antibody structure prediction
and antibody–antigen docking”.21 Reprinted with permission from Dr. Aroop Sircar.

1.3 CDR H3

Because the CDR H3 loop is the most structurally diverse region of antibodies, it is the most

challenging to predict. For example, models generated by RosettaAntibody have median

RMSDs of < 1.0 Å for the five non-H3 CDR loops, the median RMSD of H3 loops ranges

from 1.6 Å for very short loops (4–6 residues) to 6.0 Å for very long loops (17–22).22 In 2011,

the first antibody modeling assessment (AMA) blindly tested several antibody structure

prediction methods on the same set of FV sequences and found that the other methods tell a

similar story.23

Understanding the structure of CDR H3 has been the focus of several studies,
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many of which focus on identifying structural features that are conserved across a diverse

set of CDR H3 structures. Although CDR H3 loops do not adopt canonical conformations,

roughly 80% do share a common structural feature: a C-terminal kink.19, 24–29 The ability to

predict the presence of this kink allows restriction of some of the loop’s degrees of freedom,

providing a better starting point for de novo structure prediction. There has been progress in

developing a set of rules to predict the kink from the loop sequence,24–26 but these rules

have broken down as more structures have been determined by experimental methods.19

No replacements have been postulated thus far.

The inability to reliably generate accurate CDR H3 models is problematic because

CDR H3 often plays a critical role in antigen binding.10, 30 Structural models of antibody–

antigen complexes can reveal immunological mechanisms and empower protein engineers

with the requisite information to propose rational mutations for a specific application.4

However, predicting antibody–antigen complexes requires accurate input models.31 Thus,

improving CDR H3 structure prediction is necessary for the continued advancement of

computational antibody structure prediction and design applications.

1.4 Molecular modeling with Rosetta

The Rosetta software suite32 is a robust biomolecule structure prediction and design toolset.

There are two main challenges in structure prediction: scoring and sampling. Scores,

which are typically thought of as energies (i.e. lower is better), are computed from trial

conformations in order to rank them. In Rosetta, a score function is a combination of

physics-based and statistical potentials with a specific weights assigned to each term. The
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weights and the terms themselves can vary throughout the simulation to enable novel score

functions to focus on key interactions.

Sampling is the process by which trial conformations are generated. As articulated

by the Levinthal Paradox,33 the conformational space of even a small protein is too large to

search exhaustively; sampling strategies must be tailored to rapidly search large regions of

space and focus on areas that appear promising. To accomplish this, Rosetta simulations

use both multi-scale modeling and Monte Carlo-plus-minimization for optimization and

search.34

Multi-scale modeling in Rosetta has two stages: (1) a low-resolution mode that

represents side chains with a single pseudo-atom positioned at the centroid of the side-chain

atomic coordinates; and (2) an all-atom representation. Large conformational changes

are made using the low-resolution representation. and the all-atom representation is

used for refinement and more detailed scoring. The combination of these representations

enables Rosetta algorithms to spend a larger fraction of their time evaluating favorable

conformations.

Monte Carlo-plus-minimization optimization combines discrete jumps in confor-

mation-space using library-based approaches or by explicitly sampling specific degrees of

freedom with continuous gradient-based minimization. After a candidate conformation

is sampled and minimized, its score is used to determine if the new conformation is an

improvement. If the new conformation scores better than the previous conformation, it is

accepted and the simulation continues with it. If the score is worse, it is accepted by the

Metropolis criterion.35 By combining minimization with Monte Carlo sampling, Rosetta
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only needs to compare structures that are in local minima, which further focuses sampling

towards favorable conformations.

Figure 1.3: Free-energy landscape for the small protein barstar (PDB code 1A1936).
Rosetta all-atom energy (y axis) is plotted against Cα-RMSD (x axis) for models generated
by simulations starting from the native structure (refined natives, blue points) or from an
extended chain (de novo models, black points). The free-energy function includes the
entropic contribution to the solvation free energy but not the configurational entropy. From
Bradley et al. “Toward High-Resolution de Novo Structure Prediction for Small Proteins”,
Science.37 Reprinted with permission from AAAS.

In order to assess their performance, many Rosetta-based methods are tested on

a set of proteins of known structure. For successful predictions, a plot of Rosetta score vs.

root-mean-squared-deviation (RMSD) of the coordinates of the model from those of the

native structure will show a steep drop in score as the RMSD becomes small. Figure 1.3

shows an example of a successful simulation. These plots are referred to as “funnel plots”

as one can imagine a funnel-like shape in the highly dimensional conformational search

space that drives the structure to the global energy minimum.
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1.5 Organization of dissertation

Carl Sagan once said, “If you wish to make an apple pie from scratch, you must first

invent the universe.”38 In this case, the “apple pie” is a new tool for antibody structure

prediction and the “universe” that needs to be invented consists of the software tools and

the skills required to design and implement highly performant code capable of addressing

scientific inquiries. In Chapter 2 I summarize several projects that I have pursued, including

re-architecting the libraries that constitute Rosetta, developing new frameworks to enable

modeling new classes of proteins or to expressively control which degrees of freedom are

accessible by a protocol, designing a modern implementation of a key Rosetta application,

and creating a new visualization method. These projects have given me the necessary skills

to make that apple pie.

The remainder of the dissertation focuses on recent efforts to improve Rosetta-

based antibody structure prediction methods. Chapter 3 (previously published39) presents

the results of my participation in antibody modeling assessment II (AMA II), in which

11 antibody FVs were predicted from sequence. All of the antibodies in AMA II had

unpublished high quality crystal structures that were used to measure the accuracy of

the structure prediction method. A total of seven groups participated in this challenge

and a summary of the results can be found in Almagro et al.’s paper.40 By comparing the

results of all of the participants, the strengths and weaknesses that are present across all of

the methods become apparent. In this case, accurately modeling CDR H3 stood out as a

remaining challenge in the field.
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Chapter 4 (previously published41) reports the results of a structural analysis of

CDR H3 loops conducted using Rosetta. In this chapter, CDR H3 loops are compared

to loops from non-antibody proteins in order to assess the frequency of “H3-like” loops

and to gain insight into what factors contribute to adopting these conformations. A new

hypothesis of the structural underpinnings of the observed diversity of CDR H3 is ultimately

developed.

In Chapter 5, the findings from Chapters 3 and 4 are used to guide the development

of a new CDR H3 structure prediction method. The performance of this method is assessed

by generating models of CDR H3 loops both on the crystal frameworks and homology

models of known structures.

Finally, in Chapter 6, I summarize my contributions to the Rosetta project and

comment on what developments are needed for continued progress toward accurately

predicting antibody structures in atomic detail.
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T H E D E V E L O P M E N T O F
C O M P U TAT I O N A L TO O L S

2.1 Introduction

In computational research, if there is not a good tool for a particular task, one can build it.

While this is advantageous, it introduces an additional variable that needs to be considered:

the design and engineering of the tools themselves. Design decisions can impact the stability

and robustness of the tool, the ease of development of new tools in the future, and even

code compilation times. In this chapter I detail my involvement in several projects focused

on developing computational tools.

2.2 XRW: the eXtreme Rosetta Workshop

The Rosetta source code contains nearly 2 million lines of code and is changing constantly—

there are over 1,000 active branches and over 100 revisions made every week. Unsur-

prisingly, compiling Rosetta can take a very long time, which can make developing new

tools or fixing bugs tedious. A large part of the compile time issue could be attributed to

the compiler processing dependencies introduced by #include directives throughout the
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source code.

#include directives are used to instruct the compiler’s preprocessor to insert the

contents of another file into the current file during compilation, thus enabling complicated

programs to split into many smaller files. Problems can arise, however, when the total

number of inclusions is large for each file or if there are cycles in the dependency graph.

core::chemical

core::coarse

core::conformation

core::graph

core::id

core::io

core::kinematics

core::optimization

core::pack

core::pose

core::scoring

core::util

core::fragment

core::sequence

core::mm

core::grid

Figure 2.1: The dependency graph for Rosetta’s core library. The nodes are namespaces
and are depicted as ovals. Edges are directed arrows pointing from a dependent namespace
to the namespace upon which it depends. This graph illustrates the complexity of the core
library, includes many cycles.

Figure 2.1 shows the dependency graph for Rosetta’s core library as it existed in

the Fall of 2010, which contains the code responsible for representing protein structures,

scoring functions and side-chain optimization. Because of the complexity of this graph,

the Rosetta community decided to attempt to reorganize this library into a set of smaller
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graph grid

chemicalkinematics id conformationenvironment

scoring pose iosequence

util optimization pack

fragment import_pose indexed_structure_storeinit

Figure 2.2: The dependency graph for Rosetta’s core.1(top)–core.5(bottom) libraries.
The libraries are depicted as gray shaded boxes with the namespaces contained within
are shown as white ovals. Namespace dependencies within the same library are explicitly
represented with light gray arrows, while interlibrary dependencies are shown with black
arrows connecting the libraries. Note the black arrows only point up, i.e. toward lower
numbered core libraries.

libraries. A team of eight individuals was assembled to take on this task in what was

deemed the eXtreme Rosetta Workshop (XRW). With the community’s support, we spent a

full week splitting the core library into five libraries. Figure 2.2 shows the dependencies

of the newly formed core libraries. The resultant libraries are arranged in a directed

acyclic graph (DAG), which allows code within that library to include anything in the

same library or lower, but not higher. This simple restriction led to a dramatic speed up in

compilation time, as well as reduced memory requirements for compiling. The latter effect

has been shown to be extremely important for building Rosetta on some high-performance

computing (HPC) resources with small amounts of memory dedicated to each processor.

A second XRW resulted in splitting the protocols library, which resulted in further
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improvements to compilation time and memory usage. The XRWs led to a more modular

codebase that encouraged the community to adopt rapid build–test–debug workflows,

which in turn has contributed to increased stability and performance of Rosetta.

2.3 Designing the RosettaDock code
The text in this section is primarily taken from the methods section of Chaudhury et al. “Benchmarking and
analysis of protein docking performance in Rosetta v3.2”,42 with permission under the terms of the Creative
Commons Attribution License.

When Rosetta was migrated to an object-oriented implementation,32 existing applications

needed to be ported, which provided an opportunity to reconsider underlying assumptions

about how the software would be used. One such application was RosettaDock. At the time,

there were already several flavors of RosettaDock: (1) RosettaDock,43 used for rigid body

docking; (2) EnsembleDock,31 which incorporates backbone flexibility via an ensemble of

backbone conformations; and (3) SnugDock,44 which explicitly samples the conformational

degrees of freedom in antibody–antigen complexes. Based on the current applications, we

settled on two major goals for a new implementation: first, to allow for easier use of built-in

Rosetta functionality, such as constraints or ligand modeling; and second, to give developers

greater flexibility when developing their own protocols that use docking functions. My role

in this study was to design and implement the various classes that would enable current and

future applications to reuse the individual components. Figure 2.3 diagrams the structure of

the major classes associated with docking. Docking has been split into three major classes:

DockingProtocol, DockingLowRes and DockingHighRes. DockingProtocol is responsible

for handling user-specified docking-options, appropriately configuring various objected

associated with docking, and applying DockingLowRes and DockingHighRes objects.
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LowResScoreFunction HighResScoreFunction

HighResFilterLowResFilter

DockingProtocol

DockingLowRes DockingHighRes

DockTaskFactory DockingPrepackProtocol DockMCMProtocol

DockMCMCycleDockMinMover

Figure 2.3: A shaded diamond indicates composition (the object the diamond points
towards is responsible for the lifecycle of the other object); an open diamond indicates
aggregation (the object the diamond points towards has an instance of the other object
but it may not be solely responsible for that instance’s lifecycle); and an open triangle
indicates a class hierarchy with the triangle pointing towards the parent class. Reprinted
with permission under the terms of the Creative Commons Attribution License: PLOS ONE
Chaudhury et al. “Benchmarking and analysis of protein docking performance in Rosetta
v3.2”42

DockingLowRes and DockingHighRes contain all the data and functions associated

with the low-resolution docking and high-resolution refinement stages, respectively, includ-

ing the score functions, sampling functions (including translation/rotation parameters and

side-chain packing), and Monte Carlo data. Both objects are independent of the Rosetta

options system and can be called directly within the Rosetta source code or through Rosetta

interfaces such as PyRosetta45 and RosettaScripts.46 Given the wide range of minimization

and side-chain packing strategies that might be utilized in the high-resolution docking

stage, DockingHighRes is designed as an abstract class that underlies a diverse set of high-
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resolution docking functions including standard high-resolution docking, pre-packing, as

well as extensions of docking such as peptide docking and protein interface design. This

versatility is achieved through the DockTaskFactory class within DockingHighRes, which

handles all docking side-chain packing options and allows subclasses of DockingHighRes

to be able to create a tailored set of packing instructions (Figure 2.3). All docking objects

contain default parameters that allow them to be run with minimal setup; users only need

to specify docking parameters for non-default behavior.

As a testament to the flexibility of this design, the current versions of Ensem-

bleDock and SnugDock are implemented using derived classes of DockingLowRes and

DockingHighRes, docking is configurable via RosettaScripts and the docking classes are

widely used throughout the Rosetta source code.

2.4 Development of new visualization techniques
The text in this section is primarily taken from of Baugh et al. “Real-time PyMOL visualization for Rosetta and
PyRosetta”,47 with permission under the terms of the Creative Commons Attribution License.

Visualizing structural models of proteins is often a critical step in evaluating the perfor-

mance of a new method, formulating new hypotheses or identifying bugs that lead to

systematic errors. Although there are many excellent visualization tools available, success-

ful visualization requires outputting the atomic coordinates of the model at a particular

point in a simulation. In the case of debugging a new method, determining when to output

coordinates can be tedious and time consuming. Conversely, even when one is working

with an established method, the modes of motion can be mystifying in the absence of

visualization.
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Figure 2.4: Rosetta transmits data through the PyMOL_Mover’s UDP/IP socket client to
an IP address. Dotted arrows represent network communication and diamonds represent
composition (i.e. the PyMOL Observer contains a PyMOL Mover and an owning pointer to
a Pose). The PyMOL Observer monitors changes in a Pose and uses the PyMOL Mover to
transmit this information to PyMOL. The UDP/IP socket server running in PyMOL listens
for network traffic and translates appropriate packets. Once the data is translated, PyMOL
displays biomolecular structures. Reprinted with permission under the terms of the Creative
Commons Attribution License: PLOS ONE Baugh et al. “Real-time PyMOL visualization for
Rosetta and PyRosetta”47

Inspired by the interactive nature of PyRosetta,45 we developed a novel real-time

visualization solution that links PyMOL48 and Rosetta/PyRosetta. My role in this project

was determining the set of features that would be supported within Rosetta and developing

the API that could be used by developers. As shown in Figure 2.4, the solution relies on

running a UDP server within PyMOL and transmitting data via UDP from Rosetta. UDP

does not require implicit “hand-shaking” and tolerates lost transmissions, which enables

running each program separately. Maintaining the separation of these programs prevents

either from losing focus; Rosetta performs simulations and calculations while PyMOL
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performs visualization.

In addition to being a useful tool to display protein structures, PyMOL is well

suited for the production of informative movies. Rosetta simulations are often presented

visually to demonstrate or explain the principles underlying Rosetta algorithms. Previously,

making movies of Rosetta protocols required significant work. When sending data to

PyMOL, the user may simply retain output history to produce PyMOL movies. The history

feature also allows the user to inspect protocols that are otherwise inaccessible.

2.5 Modeling new classes of proteins
The text in this section is primarily taken from of Alford et al. “An integrated framework advancing membrane
protein modeling and design”,49 with permission under the terms of the Creative Commons Attribution
License.

Membrane proteins are critical functional molecules in the human body, but experimental

methods to determine their structures are fraught with difficulty. Thus, computational tools

tailored for membrane proteins lag behind those intended to be used for soluble proteins.

In contrast to the enormous structural diversity of soluble proteins, the structural motifs in

the membrane environment are either α-helical bundles or β-barrels, which, coupled with

constraints imposed by the membrane, leads to a restricted conformational search space.

This reduction in conformational sampling space is offset by the larger size of membrane

protein complexes, which necessitates the development of efficient sampling methods. The

distinction between native-like from non-native models requires accurate scoring functions,

which have proven difficult to formulate for the heterogeneous environment of the lipid

bilayer. To provide a central access point for protocol development, we sought to create a

class that stores all information necessary for representing the Pose in the membrane bilayer.
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For this project, I assisted in designing this class.

SpanningTopology

Inner Outer Membrane

Lipid Buried
Membrane

Protein

Peptide

Jump

Lipid Exposed

Membrane Info

• group of Span objects

LipidAccInfoResidue FoldTree

• single residue probabilities• name: MEM
• thickness - 30 Å
• center - (0,0,0)
• normal - (0,0,1) 

• relate membrane to protein

Conformation

Pose

Figure 2.5: The Membrane Framework represents the membrane bilayer using four main
components connected to a central MembraneInfo object (light gray). This object stores
information needed to represent the membrane (solid arrows) and tracks information already
in the Pose coordinates (dashed arrows). A special membrane residue is added to the
Pose, whose coordinates indicate the center, normal and thickness of the bilayer (bottom
left). A connection between the membrane residue and protein is established through the
FoldTree object using a Jump edge (bottom right). A SpanningTopology object is used to
describe regions of the Pose that span the membrane bilayer (second from left). Finally,
a LipidAccInfo object is used to describe single-residue probabilities of lipid exposure
or burial (second from right). Reprinted with permission under the terms of the Creative
Commons Attribution License: Alford et al. “An integrated framework advancing membrane
protein modeling and design”sub juice49

The information is organized in the MembraneInfo object, which stores descriptors

of sequence- and structure-based protein properties, such as membrane protein topology

and lipophilicity, and manages the attachment of a virtual membrane residue to the Pose to

represent the membrane bilayer. The MembraneInfo object is a member of the Conformation

object, which is part of the Pose (Figure 2.6). Because the Pose is the central object in Rosetta

protocols, the information in MembraneInfo is readily available to novel protocols. Thus, by

developing a robust solution to provide access to these properties, we have enabled Rosetta
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to model a new class of proteins.

2.6 Controlling access to degrees of freedom
The text in this section is primarily taken from of Porter et al. “A framework simplifying combined sampling
modes in Rosetta”,50 with permission under the terms of the Creative Commons Attribution License.

One of the core implications of the Levinthal Paradox33 for the development of computa-

tional structure prediction methods is the necessity of directing sampling algorithms toward

reasonable conformations. In Rosetta, such protocols frequently draw upon knowledge of

physical chemistry and, sometimes, experimental observations about the specific system un-

der consideration. As a result, the most effective sampling schemes for a particular system

are not the established, benchmarked protocols but rather variants of those protocols that

incorporate all the available information about the protein of interest. For example, incor-

porating explicit sampling of β-sheet pairing has been successful in a number of contexts.51

Most protocols, however, have not been developed with target-specific optimizations in

mind, making such modifications time consuming for experienced Rosetta developers and

impossible for others.

To address this we developed a framework, the BrokeredEnvironment, for the

rapid combination of sampling strategies, which reduces the burden on both developers and

users when combining various sampling strategies. The BrokeredEnvironment operates by

taking control over shared resources (e.g. the fold tree and control over simulated degrees

of freedom (DoFs)) within the simulation system and requiring participating sampling

algorithms to declare the required degree of control over these resources at application

launch time.
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I developed the methodology by which docking applications can be represented

within the BrokeredEnvironment. A virtual residue is positioned at the center of mass of a

specified region of a protein, and its position is updated automatically as necessary. This

approach enables docking to coexist with other tasks, such as loop modeling, in a single

simulation.

Using this information, a consensus fold tree and DoF accessibility are generated

and enforced. This system allows a number of useful but technically demanding features to

be incorporated into existing simulations without additional C++ development, including

procedural generation of fold tree based on decoy-specific data, trivial composition of

movers, and the ability to use a single fold tree in simulations with complex sampling

behavior. Together these features allow for a level of algorithm rapid prototyping previously

unavailable in Rosetta.

2.7 Summary

The tools described in this chapter are useful in their own right, and developing them has

imbued me with the ability to rapidly develop robust, correct code. Developing frameworks,

visualization methods and widely-used applications provided me with the expertise that

is required to tackle the daunting challenge of developing a tool to accurately model

antibodies.
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B L I N D P R E D I C T I O N
P E R F O R M A N C E O F

RO S E T TA A N T I B O DY 3 . 0
Adapted from Weitzner BD*, Kuroda D*, Marze N, Xu J & Gray JJ, “Blind prediction performance of RosettaAn-
tibody 3.0: Grafting, relaxation, kinematic loop modeling, and full CDR optimization,” Proteins 82(2), 1611–23.
Copyright 2014 John Wiley & Sons, Inc. Reproduced with permission. *Joint First Authors.

3.1 Overview

Antibody Modeling Assessment II (AMA II) provided an opportunity to benchmark Roset-

taAntibody on a set of 11 unpublished antibody structures. RosettaAntibody produced

accurate, physically realistic models, with all framework regions and 42 of the 55 non-H3

CDR loops predicted to under an Ångström. The performance is notable when modeling

H3 on a homology framework, where RosettaAntibody produced the best model among

all participants for four of the 11 targets, two of which were predicted with sub-Ångström

accuracy. To improve RosettaAntibody, I investigated the causes of model errors. The

most common limitation was template unavailability, underscoring the need for more

antibody structures and/or better de novo loop methods. In some cases, better templates

could have been found by considering residues outside of the CDRs. De novo CDR H3

modeling remains challenging at long loop lengths, but constraining the C-terminal end

of H3 to a kinked conformation allows near-native conformations to be sampled more fre-
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quently. I also found that incorrect VL–VH orientations caused models with low H3 RMSDs

to score poorly, suggesting that correct VL–VH orientations will improve discrimination

between near-native and incorrect conformations. These observations will guide the future

development of RosettaAntibody.

3.2 Introduction

Antibodies are vital immunological molecules, protecting their hosts by binding to their

infectious targets, antigens, and triggering a directed immune response. In addition to their

biological role, antibodies serve as protein therapeutics.52, 53 Advances in computational

protein modeling and a growing understanding of the sequence–structure relationship

in antibodies have fueled development of methods to engineer improved affinity,54–57

stability58 and solubility.58–63

Antibody structure prediction typically focuses on modeling the variable frag-

ment (FV), which is composed of the N-terminal domains from the heavy and light chains

(VH, VL). The FV contains the antigen-binding site,64 composed of the six complemen-

tarity determining region (CDR) loops (L1–L3, H1–H3) that are responsible for antigen

recognition and binding. While the structure of the VL and VH domains is highly con-

served, the CDR loops, especially CDR H3, vary considerably both in terms of sequence

and structure, prompting many studies, both computational and experimental, focused on

CDR loops17–19, 24, 26, 28, 65–72 and their interactions with antigens.30, 73–81 Several antibody

prediction methods are available as servers on the web.82–84

In 2011 the first Antibody Modeling Assessment (AMA I) was conducted, in which
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some of these servers and commercial software tools were benchmarked against nine newly

determined antibody crystal structures.23 Templated regions were predicted to about 1

Å RMSD, and CDR H3 loops were predicted to about 3 Å RMSD. Since that time, efforts

in the antibody structure prediction field have included updated databases,85 additional

examination of the VL–VH orientation,86 reassessment of canonical loop clusters,19 designs

of antibodies for thermal resistance59 and non-canonical residue antigen crosslinking.4

In addition, progress has been made in ab initio loop modeling.87–90 In response to these

developments, a second antibody modeling assessment was organized in 2013.

In this report, I discuss the performance of RosettaAntibody implemented in

the Rosetta 3 framework32 when blindly predicting the structure of eleven unpublished

antibody crystal structures as a part of Antibody Modeling Assessment II (AMA II). This

experiment is the second blind test of several antibody-modeling methods and the first test

of an updated Rosetta-based antibody modeling method still under active development.

The eleven targets provided to me represent a diverse set of antibodies, including a rabbit

antibody (Ab01), a human antibody with a λ light chain (Ab05), antibodies derived from

phage display libraries (Ab03 and Ab05) and CDR H3 loops ranging from 8–14 residues

in length (Kabat/Chothia definition). Modeling these targets enabled me both to test

new methods and to incorporate the results from AMA I into our workflow. In addition

to our overall performance, I discuss sampling and scoring issues that can guide future

improvements to RosettaAntibody.
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3.3 Methods

3.3.1 Target Sequences

The target dataset consisted of the sequences for 11 unpublished antibody FV structures

crystallized in the free state with a maximum resolution of 2.8 Å comprising 6 mouse

antibodies, 4 human antibodies and 1 rabbit antibody.

3.3.2 Construction and relaxation of the crude FV models

I used a new Python script for the first step of antibody modeling to build a crude FV

model and relax it to remove grafting anomalies. The script inputs light and heavy chain

sequences and calls BLAST for the template selections and several Rosetta applications for

the template grafting and refinement. Then, I assessed the model geometry and torsion

angles by MolProbity. If the MolProbity score91 for the model was poor, the problematic

templates were removed from the database and the process repeated. This process produced

a Chothia-numbered intermediate structure and a constraint file for CDR H3 loop de novo

modeling.

3.3.3 Kinematic loop modeling and simultaneous VL–VH

optimization

After the initial model was refined, the CDR H3 loop was modeled de novo while simul-

taneously refining the VL–VH orientation using the Rosetta docking algorithm42 (stage

1). Next-generation KIC (NGK)89 without two-body Ramachandran sampling and legacy
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KIC88 were used to sample CDR H3 loop conformations. The conventional sequence-based

classification rules26 predicted all targets other than Ab07 to have a kinked CDR H3 loop.

The sequence of the Ab07 is featureless, and since the majority of antibodies have a kinked

CDR H3 conformation, it was also presumed to adopt a kinked conformation. The kink

prediction is incorporated into the sampling routine by restricting the pseudodihedral angle

of the four consecutive Cα atoms of residues H100X, H101, H102 and H103 to -10° to 70°, a

range consistent with the kink.24

3.3.4 CDR H3 loop modeling on a crystal framework

For stage 2, I was given the crystal structures for the targets with the CDR H3 loop coordi-

nates removed. After repacking the side chains, I ran NGK with two-body Ramachandran

sampling as well as legacy KIC without any constraints for 7 targets (Ab04/05/06/07/09/

10/11), and legacy KIC with the kink constraint for 3 targets (Ab02/Ab03/Ab08). Given

the rapid turnaround required for this challenge, the protocols for each target were chosen

based on the estimated computational time required and available resources. For Ab05/

Ab06/Ab10, however, the kinked conformations were rarely sampled in the unconstrained

simulations, so I employed legacy KIC with the kink constraint as described above.

3.3.5 CDR loop definitions

RosettaAntibody uses the Chothia numbering scheme.18 CDRs L1–L3, H2 and H3 follow

the Kabat definitions (L1: L24–L34, L2: L50–56, L3: L89–L97, H2: H50–H65, H3: 95–102),

while CDR H1 is defined as residues H26-H34. FRL and FRH are defined as the whole VL

and VH domains except for the CDR loops.
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3.3.6 VL–VH packing angle calculation

The VL–VH packing angle, α, is calculated using a Rosetta implementation of the protocol

described in Abhinandan and Martin,92 which defines the packing angle as a pseudo-torsion

angle between four non-atomic points at the VL–VH interface. These points are identified

using two pairs of conserved β-strands at the VL–VH interface, one pair located in the

VL framework (L35-L38, L85-L88), the other in the VH framework (H36-H39, H89-H92).

For each β-strand pair, Cα coordinates were extracted, and the centroid and best-fit line

(first principal component) of the coordinate set were identified. Points 2 and 3 in the

pseudo-torsion calculation are defined as the VL centroid and VH centroid, respectively,

while points 1 and 4 are defined as points along the VL and VH best-fit lines, respectively,

that lie to the same side of the centroid as the CDRs.

3.3.7 RMSD calculation

As reported in AMA I,23 all RMSDs for model assessment were calculated over the backbone

atoms (C, Cα, N, O). The RMSDs of CDR-H and L are computed after superposing the

corresponding FR, while the RMSDs used to assess domain orientation are defined as the

RMSD of FRH and FRL after superposing FRL or FRH, respectively. The RMSD of template

availability was examined based on the CDRs in the Chothia definition, which excludes

structurally conserved regions from our CDR definitions. All RMSDs were computed

using the McLachlan algorithm93 as implemented in the ProFit software.94 All antibody

models generated by RosettaAntibody 3.0 are available upon request or on the web (http:

//www.Abmodeling.com).
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3.3.8 MolProbity

I used MolProbity version 3.91 To ensure fair comparisons between crystal structures and

models, all hydrogen atoms are removed from the models before calculating MolProbity

scores.

3.3.9 Algorithm Availability

All methods used for this work are included in the Rosetta biomolecular modeling suite,

distributed freely for academics and non-profits through the Rosetta Commons (http:

//www.rosettacommons.org). Along with compiled Rosetta executables, there are pre-and

post-processing scripts and tools. The initial template grafting and refinement is driven by

a master python script as follows:

./antibody.py --light-chain <L.fasta> --heavy-chain <H.fasta>

This script generates several PDB files and a constraint file called cter_constraint, which is

for the kink constraint. The grafted.relaxed.pdb is recommended to use in the H3 modeling

step below. The script is included in the latest Rosetta release (Rosetta/tools/antibody/

antibody.py),

The H3 modeling jobs above can be run using the Rosetta command. For NGK

with kink constraint, the command line is:

./antibody_H3.macosclangrelease
-s ./grafted.relax.pdb
-antibody::remodel perturb_kic
-antibody::snugfit true
-antibody::refine refine_kic
-antibody::cter_insert false
-antibody::flank_residue_min true
-antibody::bad_nter false
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-antibody::h3_filter true
-antibody::h3_filter_tolerance 20
-antibody:constrain_cter
-antibody:constrain_vlvh_qq
-constraints:cst_file ./cter_constraint
-ex1
-ex2
-extrachi_cutoff 0
-kic_bump_overlap_factor 0.36
-corrections:score:use_bicubic_interpolation false
-loops:legacy_kic false
-loops:kic_min_after_repack true
-loops:kic_omega_sampling
-loops:allow_omega_move true
-loops:ramp_fa_rep
-loops:ramp_rama
-loops:outer_cycles 5
-run:multiple_processes_writing_to_one_directory
-nstruct 2000

For legacy KIC with the kink constraint, the command line is:

./antibody_H3.macosclangrelease
-s grafted.relaxed.pdb
-antibody:remodel perturb_kic
-antibody:snugfit true
-antibody:refine refine_kic
-antibody:flank_residue_min true
-antibody:bad_nter false
-antibody:h3_filter false
-antibody:cter_insert false
-ex1
-ex2
-constraints:cst_file ./cter_constraint
-nstruct 2000

These flags are compatible with the public Rosetta release 2013-wk48 (3-Dec-2013).
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3.4 Results

The basis of our approach used for AMA II is the original RosettaAntibody algorithm

described by Sivasubramanian et al. in 2009,22 with each component revisited and updated.

Briefly, RosettaAntibody uses templates from other antibody structures for the framework

regions (FRs) and non-H3 CDR loops.95 Because CDR H3 does not form canonical confor-

mations, it is modeled de novo while optimizing the VL–VH orientation and minimizing

CDR loop torsions. In this chapter, I analyze successes and shortcomings at each step of

the process, starting with template selection, then de novo CDR H3 modeling on both a

homology and a crystal framework, and finally VL–VH orientation.

Target FRL FRH L1 L2 L3 H1 H2 H3 light_heavy

Ab01 2hwz 1mvu 3ghb 2aj3 2otu 3s34 2ojz 1uz6 1dql
Ab02 1mvu 3cvi 3o2d 3t65 3o2d 2ok0 1ktr 1p7k 3q3g
Ab03 3eo9 3qot 1rzg 3ncj 1yqv 3nps 3qot 1fgn 2cmr
Ab04 1ncc 2jel 1ztx 1h8n 1kb5 1nlb 2jel 1uz6 1ztx
Ab05 1aqk 3njc 4d9l 3c2a 1rzf 2b1h 3ncj 1uz6 2xwt
Ab06 3uc0 3kdm 1vge 3idg 1vge 3s34 2hrp 1dql 3bn9
Ab07 2xqy 1ft8 2vl5 3phq 2aab 3rvv 1hq4 1uj3 1f58
Ab08 2ap2 1q0x 1mvu 3t65 1mvu 2q76 1d5i 3phq 1mvu
Ab09 3eo9 3njc 1hez 3ncj 3qot 2h32 2xwt 3qot 3nab
Ab10 3t65 1e4x 3qot 3t65 3oz9 1kb5 1ktr 2xzq 3o2d
Ab11 1yy8 3cvi 1yy8 2ih3 1bm3 3cvi 1igj 1s3k 2oz4

Table 3.1: PDB accession codes of the source of the template used for each antibody
structural component. FRL and FRH, light and heavy variable domain framework tem-
plates; L1. . . H3, complementarity determining loops L1 through H3 templates; light_heavy;
template for initial FRL–FRH orientation.
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3.4.1 Template based modeling is accurate. . . except when it’s not

RosettaAntibody begins by searching curated databases containing sequences of structural

components (FRL, FRH, L1–3, H1–3) from high-quality antibody crystal structures (resolu-

tion ≤ 2.8 Å CDR Cα B-factors ≤ 50) in the Protein Data Bank (PDB)15, 96 as of June 2012.

Templates are selected by BLAST97 bit-score. A template for the initial VL–VH orientation is

similarly identified by using an overall sequence similarity to a complete FV. The template

structures are then assembled into a crude model and refined in Rosetta. The templates for

each structural component are listed in Table 3.1.

Table 3.2 shows RMSDs of the templates for each submitted model. Excluding the

rabbit Ab01, the average backbone RMSDs of the L1, L2, L3, H1 and H2 CDR loops were

0.61± 0.27 Å, 0.48± 0.12 Å, 1.02± 0.54 Å, 1.00± 0.63 Å, and 0.99± 0.64 Å, respectively. All

of our submitted models have sub-Ångström FRL and FRH regions relative to the crystal

structure including Ab01. So as in previous works,16–19 the CDRs, other than H3, form

canonical conformations, which, when identified correctly, provide high-quality backbone

atom coordinates for the loop. In this assessment, 42 of the 55 non-H3 CDR loops submitted

were predicted to sub-Ångström accuracy.

I examined the validity of our hypothesis of choosing templates based on BLAST

bit score by investigating the causes of modeling errors in the 13 non-H3 loops that were not

predicted accurately Figure 3.1 shows the RMSD of all possible candidate templates to the

crystal loop structure for three representative loops. Figure 3.1A shows the successful case

of the CDR L1 loop for Ab06; there are many accurate (low RMSD) loop templates in the

database, and those with the highest sequence identity or BLAST bit score are accurate. In
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Table 3.2: RMSD of heavy and light variable domain framework regions (FRH/FRL) and
non-H3 CDR loops (L1. . . H2) for all submitted models in stage 1. The model FRL and FRH
were superposed onto the corresponding crystallographic framework before computing
the RMSD, while CDR loop RMSDs were computed after superposing the FR (i.e. to
compute the RMSD of CDR L1-3, the model FRL was superposed onto the crystallographic
FRL, and FRHs were superposed before computing the and the RMSDs for H1 and H2).
In order to measure the effect of VL–VH orientation, the RMSD of each framework was
computed after superposing the other framework (i.e. the RMSD of FRL was computed
after superposing FRH). These values are annotated as FRL-frh and FRH-frl where the FR
written in lowercase is the FR that was superposed. All RMSDs are reported in Å.

this case our models were based upon the 1vge template and, after all refinements, resulted

in loop RMSDs of 0.71–0.84 Å.

Figure 3.1B shows accuracies of all template candidates for CDR loop H2 in Ab11.

In this case, many low-RMSD templates were available, but the algorithm chose a template

from 1igi that was less accurate. Four cases in total exhibited this failure mode (Ab03-L3,

Ab10-L3, Ab06-H1, Ab11-H2), missing potential sub-Ångström templates. These failures

suggest that incorporating other environmental effects into template selection may be

necessary. The structural determinants of the canonical CDR conformations includes some

residues in the framework regions,19, 65 and the identity of these residues has a species

dependence. This information has been used to guide the humanization of antibodies98 and

would likely be useful in building a more sophisticated template selection scheme.

Figure 3.1C shows a third example, namely the CDR H1 loop of Ab03. In this

case, there are no near-native templates in the structural database, even though there are

three templates with an exact loop sequence match. Five failure cases in total suffer from

lack of accurate (sub-Ångström) templates (Ab01-L1/L3/H2, Ab03-H1, and Ab05-L3).

Unsurprisingly, three of these five loops are in the rabbit antibody and have uncommon

loop lengths (Ab01-L1, L3, and H2). The other targets in this category, Ab03 and Ab05,
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C Ab03-H1

B Ab11-H2Ab06-L1A

Xtal

D Ab03-H1

Figure 3.1: CDR loop template selection. Scatterplot of the RMSD versus sequence
identity (SID) for (A) a typical success case (Ab06-L1) where a sub-Ångström template is
selected; (B) a case where a good template is in the database but RosettaAntibody does not
select it (Ab11-H2); and (C) a case where there are no templates in our structural database
with an RMSD ≤ 1.0 Å of the target, which results in a modeling failure (Ab03-H1). Dashed
line at RMSD = 1.0 Å for reference. The superposition of the models on the crystal structure
(D) shows the result of this modeling failure.

are human antibodies derived from phage display libraries, suggesting that phage display

may yield structures that depart from those in biologically derived antibodies. Ab01, the

rabbit antibody, requires separate discussion. During the challenge, only 1 rabbit antibody

(4HBC) was available in the PDB, and I used it for templates for the frameworks (FRL,

FRH), the CDRs that matched in length (L2, H1, H2) and the initial VL–VH orientation.

However, the RMSD values are much higher than the other targets. Thus, more rabbit

antibody crystal structures are needed for more diverse templates, or I must recognize
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challenging, non-template loops and resort to de novo loop building.

Ab03 CDR H1 has templates with excellent sequence identity (100% SID; 3NPS/

3QOT/1RZI) but incorrect structures (Figure 3.1D). Based on the BLAST bit-score, I choose

3NPS, which is a complex of a human antibody and a membrane-type serine protease with

some contacts between the H1 and the antigen. Although the unbound-state antibody is not

available in the current PDB, the H1 can be classified into a known canonical conformation,

and it is typical that the backbone of the H1 conformation is not influenced by the contact

with the antigen. In the case of the human germline antibody 3QOT, the B-factors of the H1

region are high, but it still forms the same canonical conformation as 3NPS. 1RZI is a crystal

structure of anti-HIV human antibody, which contains eight unique FVs in the asymmetric

unit. I included only the first heavy and light chains in the file (B and A) during the database

construction process, resulting in a candidate template with 2.7 Å RMSD (Figure 3.1D). The

H1 loop of chain L, which was not included in our database, is closer to the target with 2.3

Å RMSD, indicating that structural differences between different FVs in the asymmetric

unit can be significant. Thus, if all asymmetric unit chains were included in our database,

it would have been possible to identify a better loop template. Further, H1 conformations

both with (2CMR, 1.3 Å RMSD) and without a helical region are present in the database

with 90% sequence identity to Ab03-H1, indicating that canonical conformations are heavily

influenced by the local environment and highlighting the difficulty of selecting the best

template for this target.

Ab05 has a λ light chain, which is underrepresented in the PDB (i.e. 61 of 415

light chains in our curated non-redundant database). Although there are 56 templates of
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11-residue CDR L3 loops available in the database, the highest sequence identity is only 55%

(2J6E; RMSD 1.7 Å), and no template is structurally similar to the CDR L3 loop of Ab05.

The remaining four poorly predicted non-H3 CDR loops (Ab02-L3, Ab03-H2,

Ab05-L1, Ab10-H1) have low-RMSD templates in the database which our protocol can

select correctly, but minimization of the loop perturbed the coordinates to an incorrect

conformation. As discussed in the previous antibody modeling assessment,23 relaxation to

improve the physical realism of a model can destroy the accuracy originally present in a

crystallographically-derived template. In fact, an antibody modeling server, PIGS, often

generates better non-H3 CDR backbones, but several steric clashes and bad geometries are

observed as reflected in poor MolProbity score.23

In summary, three scenarios led to failures in CDR template selection: 1) no

availability of low-RMSD templates, (six cases); 2) inability to identify the best template

(four cases); and 3) perturbation of the template away from the native structure by energy

minimization and refinement (three cases). Fortunately these scenarios were relatively rare,

and 42 of the submitted non-H3 CDR loops were predicted correctly (i.e. backbone RMSD

≤ 1.0 Å).

3.4.2 Template refinement improves physical realism of models

In the first Antibody Modeling Assessment,23 some Rosetta antibody structures suffered

from poor MolProbity scores. MolProbity tests structure files for reasonable backbone

torsion angles and clashes.91 I determined that some of these issues arose from uncommon

template backbone angles and odd torsion angles at the graft points. To improve these

ratings and make the RosettaAntibody models more physically realistic, I tested new
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relaxation methods after the template grafting and before the CDR refinement steps.

The new template refinement steps are as follows. After grafting the selected

template structures, the bond angles and bond lengths are set to standard values99 to

alleviate artifacts at the graft points. The model is refined by running side-chain repack and

minimization cycles, where I gradually increase the weight of the repulsive component of

the Lennard-Jones potential and enforce all-atom constraint to prevent large distortions

from the original templates.100 Figure 3.2 shows the improvement in geometry as assessed

by MolProbity scores. Initial models after grafting have clashes and strained backbone

dihedral angles, but the refinement process results in models with geometries that score

well within the range of the crystal structures.

3.4.3 β-sandwich assembly is accurate for antibodies with a

near-average packing angle

The accuracy of the β-sandwich assembly process can be assessed by superposing the model

and crystal FRH domains and examining the RMSD of the FRL domains. This RMSD is

sub-Ångström for five out of the eleven targets (Ab07, Ab08, Ab09, Ab10, Ab11).

All five of the correctly-predicted targets have a VL–VH packing angle,92
α(see

Methods), within one standard deviation of the mean packing angle of antibodies in the

PDB (-52.3° ± 3.9°). Among the six targets without a sub-Ångström model, three (Ab01,

Ab02, and Ab05) have packing angles further than one standard deviation from the PDB

average: -46.6°, -56.8° and -47.2°, respectively. The initial orientation of these three targets

was taken from 1DQL (α = -50.7°), 3G3G (α = -49.9°), and 2XWT (α = -52.4°), respectively;

each of these initial orientations was closer to the PDB average than to the target packing
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Figure 3.2: MolProbity scores of model quality at various stages. Scores for each target
are plotted (1) after the initial grafting; (2) after relaxation using the Rosetta force field; and
(3) for the final model. The crystal structure score is shown for reference. Hydrogen atoms
were omitted. Overall, MolProbity scores improve throughout refinement, ending up within
the range of the crystal structures.
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angle. Similarly, our final models for these three targets have packing angles ranging from

-49° to -52°, also closer to the PDB average packing angle than to the target.

A B Ab09

C D Ab08

Figure 3.3: Examples of convergent (A, B) and divergent (C, D) modeling attempts. RMSDs
are plotted for each structural component (top line along horizontal axis) when a particular
alignment (bottom line along horizontal axis) is performed. (A) Ab09; (C) Ab08. When CDR
H3 and the VL–VH orientation varies between models, top-scoring models diverge (C). The
top-scoring models superimposed on the crystal structure are shown for Ab09 (B) and Ab08
(D). Figures generated in UCSF Chimera.101

Figure 3.3A shows the RMSD for each structural component when a particular

alignment is performed for Ab09, a typical success case. The non-H3 CDR loops and the

self-aligned frameworks show little variation between models because these regions are

not explicitly sampled after they are grafted. Figure 3.3B shows the top-scoring models

41



C H A P T E R 3 . B L I N D A N T I B O D Y S T R U C T U R E P R E D I C T I O N

superimposed on the crystal structure, showing the variation is localized to the H3 loop.

In contrast, for Ab08, the top scoring models diverge (Figure 3.3C), and the FRL

RMSDs when superposing FRH are 3.28 Å, 0.90 Å and 2.99 Å for the three submitted models.

Although 1MVU (α = -53.0°) was used for the initial orientation of Ab08 (αxtal = -49.0°), the

submitted models have packing angles ranging from -49° to -55°. Figure 3.3D shows the top

scoring structures superposed on the crystal structure (white), showing that models 1 and

3 have a significantly different VL–VH orientation than the crystal. In this view it is clear

these models would be difficult to use for additional simulations such as docking because

the variation within the antigen binding site may prevent important atomic interactions

from forming. Comparison of the hydrogen bonds of the H3 loop of the these models and

the native structure reveals a possible explanation of the discrepancy (Figure 3.4). In the

native structure there are two notable hydrogen bonds involving the H3 loop: (1) the side

chain of the Ser H100A points back toward the VH domain and forms a hydrogen bond

with the backbone of the Tyr H98 within the H3 loop; and (2) the backbone of the Gly H99

forms a hydrogen bond with the side chain of the Trp L50 in the L2 loop. Conversely in

the submitted models, the Ser H100A points toward the VL domain, and in models 1 and 3,

it forms a hydrogen bond with the backbone of Trp L50. In model 2, Ser H100A forms a

hydrogen bond with the side chain of Trp L50. As a result, the VL domain in models 1 and

3 is tilted back compared to the native structure, resulting in the increased RMSDs.

These issues can be classified into sampling and scoring problems. Sampling

problems can occur both in the initial orientation template selection as well as in de novo H3

modeling, while scoring problems arise from favorable scores of non-native interactions
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Figure 3.4: Non-native contacts arising from errors in VL–VH orientation lead to scoring
complications. The crystal structure for Ab08 (white) forms a hydrogen bond between H99
Gly and the side chain of L50 Trp. However, two of the submitted models have an incorrect
VL–VH orientation that is incompatible with this hydrogen bond and instead allows the side
chain of Ser H100A to form a hydrogen bond with the backbone N of Trp L50. These
non-native hydrogen bonds cause these structures to score favorably. Figure generated in
UCSF Chimera.101

with the CDR H3 loop. These observations suggest a relationship between H3 conformation

and the packing angle, which is discussed further below.

3.4.4 New loop modeling methods and constraints for CDR H3 pre-

diction

The classic RosettaAntibody algorithm performs de novo CDR H3 modeling by inserting

small fragments of residues from known structures followed by loop closure using the cyclic

coordinate descent (CCD)102, 103 algorithm. Recently, new loop prediction algorithms have

shown promising results. I updated RosettaAntibody to take advantage of two of these
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new methods: Kinematic Closure (KIC)88 and next-generation KIC (NGK).89 KIC randomly

perturbs several loop angles and then solves for the remaining six torsions of three ‘pivot’

residues to close the loop using a fast analytical formulation. NGK improved the KIC ap-

proach by incorporating annealing via ramping of van der Waals energy and Ramachandran

potential weights, including neighbor-dependent Ramachandran propensities104 and ω

angle sampling.105 Unfortunately the large neighbor-dependent Ramachandran propensity

arrays exceeded the memory available on our standard supercomputing nodes, so I disabled

this feature.

When building H3 on a homology framework (AMA II stage 1), I used KIC and

NGK in conjunction with a constraint to favor kinked24, 26 C-terminal conformations. For

CDR H3 conformations on the crystal environment (AMA II stage 2), I used NGK and

KIC with and without kink constraints. I first summarize the results of modeling short H3

loops (8–10 residues) on a crystal framework, long H3 loops (11–14 residues) on a crystal

framework, and then H3 loops on a homology framework.

M O D E L I N G S H O RT H 3 L O O P S ( 8 – 1 0 R E S I D U E S ) I S M O D E R -

AT E LY AC C U R AT E ( A B 0 3 / 0 4 / 0 5 / 0 7 / 0 9 / 1 1 )

I was able to build a model of all short CDR H3 loops with an RMSD < 2.0 Å for all targets

except Ab11. Among the submitted models, the average loop RMSDs were 1.66 ± 0.96 Å

and 1.58 ± 0.97 Å for the top-ranked and lowest-RMSD models, respectively (Table 3.3).
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Figure 3.5: Score vs. RMSD plots for unconstrained de novo modeling the CDR H3 loop
of Ab10 (A) shows that near-native conformations of CDR H3 are rarely sampled. Utilizing
next-generation KIC (B) results in more near-native conformations sampled, but lowest
scoring models are still far from the native structure. Including a constraint to prefer the
C-terminal kink of the H3 loop (C) greatly improves the result.
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Target H3 length Best scored (I) Best RMSD (I) Best scored (II) Best RMSD (II)

Ab02 11 3.52 2.35 2.85 1.42
Ab03 8 2.48 2.31 1.82 1.36
Ab04 8 1.62 1.62 1.2 1.17
Ab05 8 3.02 2.92 1.86 1.86
Ab06 14 3.9 3.88 3.77 3.7
Ab07 8 1.27 1.27 0.68 0.68
Ab08 11 2.88 2.79 3.33 2.03
Ab09 10 1.75 0.92 1.02 1.02
Ab10 11 2.21 1.68 1.13 1.13
Ab11 10 3.3 0.91 3.39 3.39

Short H3s 8–10 2.24 ± 0.82 1.66 ± 0.81 1.66 ± 0.96 1.58 ± 0.97
Long H3s 11–14 3.13 ± 0.74 2.68 ± 0.92 2.77 ± 1.16 2.07 ± 1.15

Table 3.3: H3 RMSDs for top ranked and lowest RMSD models in stages I and II. All
RMSDs reported in Å.

L O N G H 3 L O O P S ( 1 1 – 1 4 R E S I D U E S ) B E N E F I T F RO M

C O N S T R A I N T S ( A B 0 2 / 0 6 / 0 8 / 1 0 )

For long CDR H3 loops built on the crystal frameworks, the lowest RMSD models have

RMSDs of 2.07 ± 1.15 Å (Table 3.3). For insight, I examine the loop sampling and scoring

through a plot of candidate structure score vs. distance from the native structure. Figure 3.5

compares A) unconstrained KIC, B) unconstrained NGK, and C) KIC using a kink constraint

for Ab10 (11-residue CDR H3 loop). Although unconstrained KIC samples a couple confor-

mations as low as 2 Å, those models score worse than other structures with RMSD ∼5.0

Å (Figure 3.5A). NGK samples more near-native conformations than unconstrained KIC,

but some non-native structures still score better (Figure 3.5B). Enforcing the kink constraint

drastically alters the results, with the best scoring model having an H3 RMSD of 1.1 Å

(Figure 3.5C).

When using the kink constraint, the lowest-scoring structure scores approximately

40 units higher than the lowest-scoring structures when using unconstrained KIC or NGK
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(Figure 3.5), suggesting that our choice of constraints is preventing formation of the lower-

scoring near-native loop structures. Further, the constrained algorithm created a cluster of

structures with RMSDs between 10 and 13 Å (Figure3.5C) that satisfy the constraints with a

kink rotated into a conformation inconsistent with antibodies. Therefore, predictions might

be further improved by a more precise constraint defining the kink (Chapter 5.

3.4.5 CDR H3 prediction on a homology framework can

produce models with sub-Ångström accuracy

Figure 3.6 shows the RMSD of the closest-to-native model submitted by each group in stage

1 of the challenge for Ab02–Ab11. Our lab contributed the lowest-RMSD models for four

targets (Ab02, Ab09, Ab10, Ab11), two of which have sub-Ångström RMSDs (Ab09, Ab11).

For short (7–10 residue) CDR H3 loops, the average RMSD of the best submitted H3 model

is 1.66± 0.81 Å, while for long (11–14 residue) H3 loops the average H3 RMSD of the lowest

RMSD model is 2.68 ± 0.92 Å.

Even on a homology framework, RosettaAntibody built models of 4 of 6 short

CDR H3 loops with an RMSD < 2.0 Å. For the two failures (Ab03 and Ab05), near-native

H3 conformations were sampled (1.6 Å and 0.5 Å, respectively) but scored poorly, so they

were not submitted. Retrospective analysis revealed that the poor scores of the models

with near-native H3 conformations are due to the lack of low-RMSD templates for non-H3

CDRs (Ab03-H1–2, Ab05-L3) as discussed above. These failures in particular highlight the

importance of accurately predicting all of the CDR conformations in order to model H3

successfully.
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Figure 3.6: Modeling CDR H3 RMSD on a homology framework. The lowest-RMSD model
for targets Ab02-Ab11 from each participant in AMA II stage I reveals the progress that
has been made toward accurately modeling CDR H3. For four targets (Ab02, Ab09, Ab10,
Ab11), RosettaAntibody (green plots, circled) produced the best CDR H3 models, two of
which are sub-Ångström (Ab09, Ab11). Chemical Computing Group (blue plots) produced
the best model for Ab03, and the collaboration between Astellas and Osaka University
(purple plots) produced the best models for the remaining five targets.

3.4.6 Effect of VL–VH orientation on CDR H3 modeling

Even when the packing angle significantly deviates from the crystal structure, near-native

CDR H3 conformations were sampled (e.g. candidate structures for Ab04 deviate from

the crystal packing angle by as much as ∼10° yet still maintain an H3 RMSD of ∼1.0 Å).

However, these structures do not score as low as those with a near-native packing angle

and a sub-Ångström H3 RMSD. When such a decoy is produced, as it is for Ab05, the

near-native decoys can clearly be distinguished from those with deviating packing angles.

This suggests that important inter-chain atomic contacts are not present in the latter models

and that correctly identifying the VL–VH orientation is a critical factor for model ranking.
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3.5 Discussion and Conclusions

Computational antibody structure prediction algorithms have the potential to dramatically

alter the development of new antibody products, including therapeutics. The performance

of RosettaAntibody in AMA II demonstrates the progress made toward predicting atom-

ically accurate models solely from a query sequence. This community-wide challenge

provided me with the opportunity to test our knowledge of antibody sequences and struc-

tures with newly developed RosettaAntibody components and related methods of Rosetta

3.

An important lesson learned is the degree to which template availability is still a

limiting factor. Attempting to predict Ab01, a rabbit antibody, resulted in abject failure due

to the dearth of appropriate templates for the CDR loops and the fact that these algorithms

require templates. Both phage display antibodies, Ab03 and Ab05, also proved difficult due

to template availability. Ab05 prediction was complicated by the paucity of templates for λ

light chains. In humans the populations of κ and λ light chains are almost equivalent, but κ

antibodies are more abundant in the PDB since murine antibodies dominate the PDB and

mice have predominantly κ light chains. λ light chains can have a longer CDR L3 loop than

κ light chains,106 and thus accurately predicting the L3 loop may prove to be a bottleneck

for predicting and designing many human antibodies.107

Analysis of failures where RosettaAntibody did not select the best template in the

database revealed that more sophisticated search criteria may need to be developed that

include residues outside the target loop and use of all templates from crystal structures
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with multiple copies in an asymmetric unit. Additionally, some templates retain poor

MolProbity scores after refinement, indicating that a priori filtering of bad templates may

improve model quality. Finally, in cases where templates are clearly not adequate (such as

species not represented in the antibody database), de novo modeling might be used.

The scoring function used can also cause some systematic problems as evidenced

by situations where energy minimization of the template caused deviations from the target

crystal coordinates. This can result in an inaccurate model of non-H3 CDR loops even when

the best template structure in the database is selected, and these deviations can lead to

inaccuracies in the H3 modeling steps. Other sources of error in the H3 modeling stage

stem from the infrequent sampling of the native-like conformations and, in some cases, the

inability of the Rosetta score function to effectively discriminate native-like conformations

from incorrect ones. Using a constraint to penalize non-kinked conformations results in

significantly better sampling, and I am pursuing alternate kink constraint formulations, as

described in Chapter 5.

The difficulty of CDR H3 loop prediction is demonstrated by Ab06, which has the

longest H3 loop (14 residues; Kabat/Chothia definition) in the challenge set. Even when

building the loop in the crystal environment, near-native models are sampled rarely. The

difficulty of predicting long CDR H3 loops is problematic when considering that the average

human CDR H3 length is 12 residues (Kabat/Chothia definition). The conformational space

accessible by the large number of degrees of freedom in long loops remains the central

challenge for de novo loop prediction for CDR H3 modeling. Accurately modeling the

non-H3 CDR loops is critical to create the environment in which to model H3, so I believe
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that continuing to improve our template-based modeling efforts is a necessary aspect of H3

modeling. These improvements may involve incorporating multiple templates, as well as

metadata for each template to provide genetic information such as germline genes, species,

and length and conformations of the other CDR loops in the parent structure.

Although incorrect VL–VH orientations do not preclude sampling of near-native

CDR H3 conformations, the packing angle affects the score of the model such that the

correct loop conformation cannot be recognized. Our current method for selecting an initial

homology template for VL–VH orientation does not fare well when the native packing

angle is far from the PDB average, nor is the packing angle adequately corrected during

modeling. New approaches may require multiple VL–VH templates to capture a wider

range of orientations, a packing angle constraint during modeling to direct orientation

sampling, better VL–VH orientation predictions from sequence, or the development of

statistical filters for the VL–VH interface.

A major weak point with RosettaAntibody models generated for AMA I was their

poor MolProbity scores. By relaxing the structures after grafting the templates in AMA II, I

was able to build models with MolProbity scores within the range of the crystal structures of

the targets in the assessment. Because the differing target sequences, length of H3 loops and

the number of models considered in AMA I and AMA II, it is difficult to directly gauge the

difference of H3 modeling accuracy between AMA I and AMA II. However, there is a trend

toward improvement in H3 accuracy. In AMA I, the average RMSD of the medium–long

H3 (10–12 residue loops, 8 targets) was 3.3 ± 1.3 Å whereas that of the rank 1 models in the

AMA II (10–11 residue loops, 5 targets) is 2.7 ± 0.8 Å. Notably, when considering the lowest
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3 scored models in AMA II, the average H3 RMSD decreases to 1.7 ± 0.8 Å, highlighting

the importance of using multiple models for further applications such as computational

protein–protein docking,31, 108 design109 and drug discovery.110, 111

The object-oriented design in Rosetta 3 was critical during the challenge as it

enabled me to quickly incorporate new modeling routines into RosettaAntibody. The con-

tinued interest in antibodies and rapidly increasing number of antibody crystal structures

in the PDB contributes to the improvement of the method. RosettaAntibody 3 is available

through the web server ROSIE (http://rosie.rosettacommons.org/).112

52

http://rosie.rosettacommons.org/


C H A P T E R I V

T H E O R I G I N O F C D R H 3
S T RU C T U R A L D I V E R S I T Y

Adapted from Weitzner BD, Dunbrack RL Jr & Gray JJ, “The origin of CDR H3 structural diversity,” Structure
23(2), 302–11 Copyright 2015 Elsevier, Inc. Reproduced with permission.

4.1 Overview

Antibody complementarity-determining region (CDR) H3 loops are critical for adaptive

immunological functions. Although the other five CDR loops adopt predictable canonical

structures, H3 conformations have proven unclassifiable, other than an unusual C-terminal

“kink” present in most antibodies. To determine why the majority of H3 loops are kinked

and to learn whether non-antibody proteins have loop structures similar to those of H3,

I searched a set of 15,679 high-quality non-antibody structures for regions geometrically

similar to the residues immediately surrounding the loop. By incorporating the kink into

the search, I identified 1,030 H3-like loops from 632 protein families. Some protein families,

including PDZ domains, appear to use the identified region for recognition and binding.

My results suggest that the kink is conserved in the immunoglobulin heavy chain fold

because it disrupts the β-strand pairing at the base of the loop. Thus, the kink is a critical

driver of the observed structural diversity in CDR H3.
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4.2 Introduction

Structural diversity of antibodies is achieved through a highly coordinated, intricate process

of genetic recombination and hypermutation through which a relatively small number of

genes are able to produce antibodies against an immense array of pathogens. Antibodies

consist of two pairs of heavy and light chains linked by disulfide bonds. The N-terminal

domains of each chain compose the variable fragment (FV). The FV differs from antibody to

antibody and contains the antigen-binding site, which is composed of three complemen-

tarity determining region (CDR) loops connecting β-strands from each of the two variable

domains on a conserved framework.10–12, 113 Five of the CDR loops (L1–3, H1–2) form a

limited number of distinct conformations, while the third CDR loop on the heavy chain (H3)

has remained unclassifiable.16–19 High structural conservation among antibodies makes it

possible to model the framework and the five CDR loops that adopt canonical conforma-

tions, but the exceptionally diverse CDR H3 loop evades current methods, thus making

structure prediction of the antigen binding region difficult.23, 40

Because the FV is highly conserved, antibodies are an ideal system for both library-

based protein engineering techniques and computational protein structure prediction meth-

ods.23, 40, 114–116 Library screening and directed evolution techniques have enabled the

successful production of engineered antibodies used for sensors and assays as well as

novel therapeutics.4, 52, 117, 118 However, discovery and development of such antibodies

remains challenging. Because the CDR H3 loop is largely responsible for the diversity

among antibody structures, it is typically critical to antigen binding. Indeed, studies analyz-
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ing antibody–antigen complexes noted that CDR H3 was responsible for one third of the

antigen-binding contacts and binding energy.10, 30 Increased understanding of the factors

that govern CDR H3 conformations is vital to the continued development of engineered

antibodies.

Because of their high-throughput and low cost, computational methods hold

promise to decipher recently developed antibody sequence libraries obtained by high-

throughput sequencing techniques9, 13, 14 and usher in an era of rationally designed antibod-

ies, but these methods require accurate antibody structure prediction, especially for CDR

H3. To date, there have been several antibody structure prediction methods developed to

begin to address this issue.22, 82, 84 Most of these algorithms consist of three major steps:

(1) identification of reasonable structural templates for the framework region and the five

CDR loops that form canonical conformations; (2) assembly of these templates; and (3) de

novo prediction of the H3 loop. The major source of error is the final step.23, 40

The failure of de novo CDR H3 loop modeling is surprising in many cases because

of the modest loop lengths at which they occur. It remains unclear why CDR H3 is such a

challenging target for current loop modeling algorithms, but one possible explanation is

that V(D)J recombination7 can produce loops that access conformations that are extremely

rare in existing protein structural databases. An alternate hypothesis is that the environment

formed by the VH and VL domains stabilizes CDR H3 loop conformations that existing

methods do not detect as favorable. In either scenario, loop modeling algorithms may not

have been trained for, or proven capable of, predicting these structures.

The five non-H3 CDR loops can each be clustered into a small number of “canon-
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ical” conformations for each loop length.17, 19 While CDR H3 loop structures cannot be

described by such canonical conformations, the loop’s C-terminus often contains an unusual

“kink” or “bulge,” with the remainder of the structures continuing the β-strand pairing into

the loop (“extended”). I refer to these broad categories as having a kinked or extended

base geometry. Several studies have been conducted to develop a framework to predict

this kink’s presence to aid structure prediction methods.24–29 However, it was recently

shown that the rules used for this prediction have not held up as the number of solved

antibody structures has grown; the majority of structures contain the kink even when the

sequence-based rules would classify the CDR H3 loop as extended.19 More generally, rules

intended to aid structure prediction of CDR H3 loops developed from structural analyses

are complicated by the fact that the set of solved structures is not a representative set of

antibodies.69

I recently participated in Antibody Modeling Assessment II (AMA II)40 and found

that Rosetta rarely samples kinked CDR H3 conformations unless I exploited a geometric

kink constraint based on Shirai et al.’s description.24, 39 Other participants in AMA II40, 119

and the Web Antibody Modeling server84 also use constraints to favor the kinked geometry.

In contrast to antibodies, the available score functions prefer the extended base geometry.

In this study I investigate the physical and biological reasons for the majority

of CDR H3 loops being kinked, and I determine whether or not the underlying genetic

mechanism favors loops capable of adopting conformations not typically observed in non-

antibody proteins. To accomplish this, I compared the geometry of the CDR H3 loop anchor

regions (not including the residues involved in the kink) to all same-length segments in
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Figure 4.1: Loop anchor transform and C-terminal kink description. (A) An example CDR
H3 loop showing the construction of the loop anchor transform (LAT). Coordinate frames
(black) are constructed based on the backbone heavy atom coordinates (black dashed
circles) of the N-terminal (green) and C-terminal (magenta) loop anchors. The six degrees
of freedom (three translational and three rotational) required to perfectly superimpose the
coordinate frames constitute the LAT and are represented as a dashed line connecting the
coordinate frames. (B) Annotated antibody kink geometry showing the two angles I defined
to describe the kink: (1) τ101 , the Cα–Cα–Cα pseudo bond angle for the three C-terminal
residues in CDR H3 loops; and (2) α101, the Cα–Cα–Cα–Cα pseudo dihedral angle for the
three C-terminal residues in CDR H3 loops and one adjacent residue in the framework. (C)
A histogram of τ101 reveals a skewed right distribution. A Gaussian mixture model fitted to
the data with an expectation maximization algorithm showed the data can be partitioned
into two states with roughly 80% of the data belonging to one distribution, centered at
101◦. (D) A histogram of α101 is well represented by a two-state mixture model of von Mises
distributions. Approximately 85% of the data lies in the distribution centered at 39◦.

over 15,000 polypeptide chains. I found that a vast majority of the structures I identified

adopted an extended strand-turn-strand conformation, but by incorporating the kink into

the search criteria, I identified a diverse set of loops across a wide range of lengths. These

loops show that the kinked conformation of CDR H3 loops is common and constitute a

starting point for training new loop modeling routines or templates for antibody design.

Moreover, my results suggest that the kink is a critical part of the immunoglobulin heavy

chain fold that serves to disrupt the β-strand pairing at the base of the CDR H3 loop in

order to create structural diversity among loops of the same length. Thus, I believe the

C-terminal kink is a key component in generating CDR H3 structural diversity.
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4.3 Results

4.3.1 Description of CDR H3 base geometry using a 3D transfor-

mation from the beginning to the end of the loop

I curated a set of 444 high-quality, non-redundant IgG heavy chains and a set of 15,769

high-quality, diverse chains from the Protein Data Bank (PDB).15 For each heavy chain

I computed the three-dimensional transformation between the backbone heavy atoms

of the residue immediately preceding the conserved tryptophan after the CDR H3 loop

(residue 102 using the Chothia numbering scheme16) and the residue immediately following

the cysteine before the CDR H3 loop (residue number 93), and I stored the six degrees

of freedom in a relational database for future analysis. I refer to these six parameters

collectively as a Loop Anchor Transform (LAT). Figure 4.1A shows a CDR H3 loop with the

relevant residues annotated. Similarly, I calculated the three-dimensional transformation

for every 5 to 31-residue window in each chain in the non-antibody set (see 4.6).

The range of structural variation in the CDR H3 LATs is significantly more con-

strained than that of the non-antibody set from the PDB (Figure 4.2 shows 13-residue loops),

which is a result of having selected H3 definitions extending to a structurally conserved

position of the FV (to facilitate comparisons among such loops). After confirming that

the degrees of freedom have a negligible covariance and that the antibody LATs do not

vary with length, I fitted a Gaussian distribution to each parameter of the LATs of all of

the antibodies across all lengths. I then selected all regions from the PDB set with LAT

parameters within 3.0 σ of the mean of each antibody degree of freedom, resulting in 45,940

58



C H A P T E R 4 . C D R H 3 S T R U C T U R A L D I V E R S I T Y

matches.

φ ψ θ

X Y Z

D
e
n
s
it
y

D
e
n
s
it
y

Culled PDB CDR H3 Loops

Figure 4.2: Density estimates for each of the six degrees of freedom of the loop anchor
transform for each 13-residue segment from (1) the culled PDB set (gray); and (2) the known
CDR H3 loops (black) show the relative structural diversity between the two sets. The
tightness of the H3 distributions indicates the defined CDR H3 anchor points at structurally
conserved positions, while the diffuse distributions from the PDB show the structural diversity
of 13-residue segments in the other proteins. Because the six degrees of freedom are not
covariant, each can be considered independent and modeled with a Gaussian distribution.
These six Gaussian distributions are used to extract a set of non-antibody regions that
match the span and orientation of the CDR H3 loop anchors.

4.3.2 Geometric parameters defining the C-terminal kink

I sought a quantitative description of the previously observed C-terminal kink.19, 24–26, 28

I first measured the pseudo bond angle of the Cα atoms of the three C-terminal residues

(Chothia residue numbers 100x, 101, 102), termed τ101 based on the nomenclature introduced
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by Levitt in 1976.120 Shirai et al.24 described the kink using θbase, a pseudo dihedral angle of

the Cα atoms from Chothia residue numbers 100x, 101, 102 and 103, which I will call α101

(Figure 4.1B). Figures 4.1C and 4.1D show the distribution of τ101 and α101 for the antibody

set. The τ101 distribution is skewed right and can be accurately modeled as a mixture

of two Gaussians, the larger of which encompasses roughly 80% of the data. Structural

measurements and visual examination confirmed that the larger distribution is consistent

with kinked or bulged structures. The peak of the smaller distribution is consistent with

a β-strand or extended conformation. Thus, this parameter is effectively identifying the

geometry of the kink.

Because α101 has density near 0° and± 180°, I modeled it as a mixture of von Mises

distributions121 to account for the periodicity. Similar to the model for τ101, the larger distri-

bution represents about 85% of the structures, but unlike τ101, the distributions constituting

α101 have almost no overlap. Thus, these geometric parameters capture somewhat distinct

structural features, and I sought to find a combination of the parameters that enables me to

classify the base geometry of CDR H3 structures.

Previous sequence-based rules for predicting kinked vs. extended base geometries

posit that these residues’ ability to form hydrogen bonds at key positions is the under-

lying cause for the formation of the kink.24–26, 28, 122 Specifically, the interactions that are

considered are: (1) a salt bridge between the side chains of Arg94 and Asp101; (2) a back-

bone-backbone hydrogen bond between Arg94 and Asp101 that occurs in kinked structures

but not in extended structures, where the hydrogen bond is between residues 94 and 102

(typically Tyr102); (3) a hydrogen bond between the Trp103 side-chain and residue 100x

60



C H A P T E R 4 . C D R H 3 S T R U C T U R A L D I V E R S I T Y

No. stabilizing hydrogen bonds 0 1 2 3 4

τ
1
0
1
 (

º)

α
101

 (º)

100

120

140

−100 0 100

Figure 4.3: Scatterplot of τ101 vs. α101 for the antibody set. The gray, shaded regions
represent ± 3.0 σ from the mean of the distribution presumed to represent the kinked
subpopulation. Each point is colored by number of stabilizing hydrogen bonds in the
structure. Although α101 is useful for isolating structures with these hydrogen bonds, there is
a small subpopulation of well-hydrogen bonded structures with high values of τ101 (∼140◦),
suggesting that neither τ101 nor α101 alone suffices to describe the kinked conformation.
Structures in this region possess a β-bulge at position 101 but resume β-sheet strands
C-terminal from the bulge.

(typically Phe100x) carbonyl oxygen; and (4) a second bulge that sometimes occurs further

into the loop evidenced by a backbone-backbone hydrogen bond between residues 96 and

the fourth residue before the conserved Trp at position 103. I refer to these four interactions

as the stabilizing hydrogen bonds, and in Figure 4.3, I show a scatterplot of τ101 vs. α101

for the antibody set colored by the number of stabilizing hydrogen bonds. Overall there
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is a strong correlation between a structure’s τ101 and α101 values and the presence of the

stabilizing hydrogen bonds, with the majority of the structures that deviate from the most

common values having none of these interactions. However, there is a cluster of structures

with τ101 and α101 values of roughly 140° and 30° respectively that form several of the

aforementioned hydrogen bonds, demonstrating that these hydrogen bonds alone do not

cause the H3 loop to adopt the typical kink formation.

Visual inspection of individual antibodies in the kinked, extended, and high-τ101

populations reveals the roles of α101 and τ101. α101 positions the carbonyl group of residue

100x such that it lies in the plane of the base of the loop and points away from it. More

generally, this parameter positions the kink relative to the framework of the antibody. τ101

is a measure of the degree to which the loop is kinked; if the loop is not kinked enough

(large values), a strand pairing can still occur and if it is too kinked (small values) the

stabilizing hydrogen bonds at the base of the loop are not disrupted. Thus, these two

parameters describe the kink better when used together, and indicate that 79% of non-

redundant antibodies in the PDB contain a kinked H3. Figure 4.4 shows the τ101 vs. α101 for

the non-antibody loops set and reveals that the kink parameters describe a small subset of

these structures.

4.3.3 CDR H3-like regions in non-antibody proteins

I constructed conformation logos—seqLogos made using the DSSP secondary structure

assignments123—to compare the conformational diversity of sets of structures. Figures 4.5A

and 4.5B show the conformation logos for all 12-residue H3 loops and all of the 12-residue

structures from the PDB set with a LAT consistent with CDR H3 loops. The H3 loops begin
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Figure 4.4: Scatterplot of τ101 vs. α101 for the LAT matches. The gray, shaded regions
represent ± 3.0 σ from the mean of the τ101 and α101 distributions from antibodies. Unlike
the antibody set, there are a considerable number of structures within the range of one of
the parameters and not the other.

and end in an extended conformation, but are very diverse further into the loop, with a

majority of structures having loop/coil, turn or 310-helix conformations at each position

and very few residues adopting repeating secondary structure conformations (H or E). The

set of non-antibody matches identified using the LAT alone does not resemble the CDR H3

loop set structurally, with the set of matches from the PDB consisting almost entirely of

strand-turn-strand segments. This is not surprising considering the loop anchor residue

locations are in paired β-strands. Because of this, many extended β-strand motifs lacking
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Figure 4.5: “Conformation Logos” for CDR H3 loops and LAT matches with and without
a kink. WebLogo124 was used with DSSP codes to produce a distribution of secondary
structure elements in antibodies and the LAT matches using “E” for extended strand, “G”
for 310 helix, “H” for α-helix, “I” for π-helix, “T” for hydrogen bonded turn and “S” for bend,
“R” for β-bridge and “L” (loop) for unassignable conformations. Using the LAT parameters
alone to select the set of structures results in a set of antibodies with diverse conformations
(A) and set of structures from the PDB that are largely consist of strand-turn-strand motifs
(B). Including the additional constraint of the τ101 and α101 angles results in a set of LAT
matches in the PDB that more closely resembles the distribution in antibodies (D), while the
constraint has little effect on the antibody distribution (C).

Since the kink defined by α101 and τ101 is present in a large majority of CDR H3

structures, I restricted the search of the non-antibody structures to include only segments

that have a C-terminal kink. The antibodies and the LAT matches from the PDB were filtered

to remove structures with τ101 or α101 values beyond 3.0 σ of the mean of the distribution
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associated with the kink (τ101 = 101° [σ = 5.6°] and α101 = 39° [σ = 11.8°]), which reduced

the number of PDB LAT matches by roughly 90% (24,885 LAT matches to 2,207 LAT+kink

matches). Figures 4.5C and 4.5D show the result of this filtering process. The conformation

logo for the antibodies is nearly unchanged, while the results from the PDB display a very

different conformation logo that is now very similar to the antibody set.

A CB

Figure 4.6: Comparison of CDR H3 and LAT+kink matches. Aligned, superimposed
12-residue CDR H3 loops (A) and 12-residue LAT+kink matches (B) show the similarity
between the two sets of structures. The PDZ domain LAT+kink matches across all lengths
(C) are included to show the diversity spanned by this particular Pfam alignment. The kink
(red-orange) can be clearly seen and both sets occupy similar regions of space. Although
some of the outliers may clash with the FV framework, the PDB set could be included in a
template-based H3 modeling algorithm.

4.3.4 Comparison of CDR H3 loops and loop anchor transform

matches

Having a similar distribution of secondary structural elements does not mean the LAT

matches are necessarily structurally similar to the CDR H3 loops. To illustrate the diversity
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of the identified PDB segments, Figure 4.6 shows structures of 12-residue loops from

the antibody H3 set (Figure 4.6A) and the 12-residue LAT+kink matches from the PDB

(Figure 4.6B). The 12-residue segments were chosen for this visual comparison because they

are the most common H3 loop length in the dataset. The C-terminal kink can be seen in both

sets, and nearly all of the segments identified using the LAT and kink constraint appear

to adopt a reasonable H3-like backbone conformation. To assess the degree to which the

matches cover the structures of the H3 loops, I computed the root-mean-square deviation

(RMSD) of the backbone heavy atom coordinates between the matches and the H3 loops.

Figure 4.7 shows a cumulative density estimate of the lowest RMSD of a match to each CDR

H3 loop. Approximately 10% of CDR H3 loops have a match within 1.0 Å RMSD, and 50%

have a match within 2.0 Å RMSD, indicating that the LAT matches do in fact represent CDR

H3-like conformations.

Although there are LAT+kink matches that are structurally similar to CDR H3

loops, it is not clear if they are more similar to CDR H3 loops than other CDR H3 loops.

Figure 4.7 shows the cumulative density estimate of the minimum RMSD of an H3 loop to

another H3 loop, and Figure 4.8 shows cumulative density estimates for each loop length

being considered. I restricted the loop lengths to 9–20 residues and imposed a maximum

sequence identity of 30% to prevent the comparison of different H3 loops that differ only

by a small number of point mutations. Figure 4.7 shows that roughly 50% of CDR H3

loops are within 1.9 Å RMSD of another CDR H3 loop across all lengths. This may be

compared with a figure of 2.1 Å for comparison of H3 structures with LAT+kink matches

(Figure 4.7). In order to assess the degree to which the kink factors into selecting close
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Figure 4.7: Structural similarity of CDR H3 and LAT+kink matches. A cumulative density
estimate of the lowest root-mean-square deviation (RMSD) of backbone atomic coordinates
of each H3 loop relative to all other H3 loops with a maximum sequence identity of 30%
(gray curve), the minimum RMSD of any LAT+kink match relative to each antibody CDR
H3 loop (yellow curve) and a random set of LAT matches of the same size and length
distribution as the LAT+kink matches (blue curve). The green curve is a cumulative density
estimate of the combination of the CDR H3 and LAT+kink sets. Comparisons were limited
to H3 loops of 9–20 residues in length (296 H3 loops) to avoid kinematic constraints in loop
conformations and to ensure there were a sufficient number of reference CDR H3 structures.
Dashed vertical lines at 1.0 and 2.0 Å indicate the frequency of finding a PDB segment that
closely matches a known CDR H3 loop conformation. The red dashed line shows that for
50% of H3 loops from length 9–20, there is a structure from the LAT+kink set under 2.1 Å
RMSD, and within CDR H3 loops, there is a match within 1.9 Å RMSD in contrast to the 2.8
Å RMSD that would be expected from a set of random loops. Using the combined H3 and
LAT+kink set results in the lowest RMSDs overall.
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structural matches, I constructed a set of random LAT matches of the same size and length

distribution as the set of LAT+kink matches. In Figure 4.7, the blue curve shows that 50%

of CDR H3 loops are within 2.8 Å RMSD of random loops, indicating that requiring the

presence of the kink greatly improves the structural similarity to CDR H3 loops. Figure 4.8

shows that this relationship is strongly related to the length of the loop being examined.

The distribution begins to shift dramatically when the length of the CDR H3 loop exceeds

12 residues. The reasons for this are twofold: (1) longer loops have access to a significantly

larger conformational space; and (2) there are fewer solved structures of longer CDR H3

loops. This result shows that a template-based CDR H3 loop modeling routine using

only other known CDR H3 loops is unlikely to be successful for long loops. To gain

insight on how the LAT+kink matches may lead to improvements in CDR H3 structure

prediction, I also include a cumulative density estimate for the combined set of CDR H3

loops and LAT+kink matches (green curve), which shows that identifying templates from

non-antibody proteins provides a path to obtaining a set of useful templates for longer CDR

H3 loops. The combined set contains more low-RMSD structures than the CDR H3 set or

LAT+kink set alone, with 50% of CDR H3 having a match with RMSD ≤ 1.7 Å.

4.3.5 Summary of loop anchor transform matches

To assess the degeneracy of the non-antibody LAT matches, I examined the proteins and

protein families from which they originate. To determine whether matches originated in

similar positions of homologous proteins, I assigned each matching chain a Pfam chain

architecture125, 126 and recorded the positions within the Pfam alignments127 for each LAT

match. Table 4.1 compares the number of LAT matches to the number of H3 loops as
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Figure 4.8: Cumulative density estimate for minimum root-mean-square deviation (RMSD)
of backbone atomic coordinates for each H3 loop relative to all other H3 loops ranging
from 9–20 residues with a maximum sequence identity (SID) of 30% (gray curve) and the
minimum RMSD of any LAT+kink match relative to each antibody CDR H3 loop (yellow
curve), a random set of LAT matches of the same size and length distribution as the
LAT+kink matches (blue curve) and the union of the H3 loop and LAT+kink match sets
(green curve) split up by length. Dashed vertical lines at 1.0 and 2.0 Å indicate the fraction
of structurally similar H3 loops at each cutoff. As the loop length increases, so does the
distribution of minimum RMSDs, showing that longer H3 loops are more diverse. These
data underscore the difficulty of developing a template-based modeling method for long H3
loops and show that using the LAT+kink matches improves the coverage of known CDR H3
loops.

well as the number of unique Pfam alignments at each length. Whether the LAT matches

are broken down by length or taken as a whole, nearly all of the LAT matches originate

from a unique match position in a Pfam hidden Markov model. However, when multiple
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matches originate from the same Pfam, they nearly always align to the same positions in

the Pfam, indicating that antibodies are not the only proteins to select for loop structures

with the C-terminal kink. There are more than three times as many non-antibody loops as

H3 loops with kinked base geometry, with over 200 matches at very long loop lengths (≥

20 residues). The complete list of matches and their Pfams is available as a downloadable

text file (Appendix A). An example of how to use this file to generate a set of coordinates is

provided in 4.7.

Seven percent of the matches do not align to any Pfam, indicating that the match

does not originate from a structurally conserved region of the protein or that it is beyond

the bounds of the Pfam domain definition. Forty percent of the matches align to a Pfam, but

this Pfam alignment only occurs once. The remaining 53% come from repeated alignments

to the same Pfam, with the most common Pfam alignments being PDZ (23 matches) and

peptidase C1 (17 matches). Appendix B contains a list of all of the Pfams that occur more

than once, and lists the number of LAT+kink matches, the number of unique alignment

positions as well as the corresponding tags from the Gene Ontology server.128

Figure 4.6C shows the PDZ LAT+kink matches. The N-terminal strand of the

kinked loop forms an anti-parallel β-sheet pairing with the C-terminus of PDZ substrate

proteins and, along with a conserved helix, forms the binding region of PDZ domains.132

Several structures of PDZ domains in complex with their binding partners confirm that this

CDR H3-like region is involved in binding (Figure 4.9). In the case of heterodimeric protein

substrates (i.e., not peptide substrates or homodimers), residues in the loop region of the

kinked H3-like anchor segments are directly involved in domain-domain interactions with
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A B

DC

Figure 4.9: PDZ domains interacting with substrates through a kinked loop. (A) Super-
position of PDZ domains with LAT+kink matches shows that the kink is in a structurally
conserved position. The matching region is colored in rainbow with blue at the N-terminus
and red at the C-terminus of the loop. The structural diversity of the identified loop is on
display. I searched the PDB for PDZ–protein substrate heterodimers and found examples of
the matching loop being involved in binding: (B) the N-terminal PDZ domain of harmonic
in complex with Usher syndrome type-1G protein (3k1r)129 (C) Alpha-1 Syntrophin (PDZ
containing) in complex with neuronal nitric oxide synthase (1qav)130 (D) Periplasmic serine
endoprotease DegP (PDZ containing) in complex with lysozyme C (3otp).131 In this view,
the substrate is blue with the C-terminal residues shown in spheres and the PDZ containing
chain is pale green. The matching loop is shown in orange and all contacts between the
substrate and the loop are shown in magenta. Other contacts within 5.0 Å between the PDZ
domain and the substrate are colored yellow.
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Length CDR H3 Loops LAT+kink Matches Unique Pfams

9 18 27 18
10 24 221 131
11 34 143 103
12 58 123 80
13 40 25 19
14 32 72 58
15 26 49 35
16 24 57 48
17 11 34 27
18 12 26 23
19 9 22 21
20 8 32 25

>20 13 199 118
Total 309 1030 632

Table 4.1: Number of CDR H3 loops, LAT matches and unique Pfam alignments at each
loop length. Because I am using alignments to a consensus sequence for each Pfam,
matches of different lengths can have the same Pfam description. Note that the total
number of unique Pfams is not the sum of the number of unique Pfams broken down by
length.

the substrates. Interestingly, the matching regions in both PDZ and peptidase C1 domains

appear to be involved in recognition and/or binding. Thus, C-terminal kinks are present in

a wide variety of non-antibody proteins, and some other protein domain families use this

feature for binding and selectivity in the same way as antibodies.

Using my description of the kink, I tested the predictive power of the identity of

the base residues at positions 94 and 101, which are frequently Arg and Asp respectively in

antibodies. Table 4.2 shows the percentage of kinked CDR H3 loops with all combinations

of the presence or absence of the supposed stabilizing base residues. In agreement with

North et al., who used a Ramachandran-based criterion for identifying the kink, I find that

the majority of CDR H3 loops are kinked even when none of these residues are present.

I also applied the rules developed in a study by Kuroda et al.,26 which constitutes the
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No. Abs % Kinked
R/K and D both present 228 91.2
R/K or D present 111 73.9
R/K present; D absent 68 85.3
R/K absent; D present 43 55.8
R/K and D absent 45 60.0

Table 4.2: The number of and percentage of antibodies that are kinked for all combinations
of residues implicated in kink formation. As found earlier,19 regardless of the presence of
the stabilizing residues, the majority of CDR H3 loops are kinked.

most detailed analysis of explicit interactions among the H3-base residues, residues within

the kink, and tertiary interactions with light chain residues (Table 4.3). The accuracy of

these rules is 88.9%, which agrees with the published value of 89%. However, when one

classification dominates a population, balanced accuracy (BACC) is a more meaningful

measurement of the performance of a model.133 While 94.2% of kinked structures are

correctly predicted, only 46.2% of extended structures are identified as such, which results

in a balanced accuracy of 70.3%. Because the percentage of correctly predicted extended

structures is less than 50%, I conclude that the sequence-based rules do not fully explain the

presence or absence of the kink.

Additionally, I examined the flanking regions of the LAT and LAT+kink matches

and found that the LAT effectively constrains the environment to a β-strand scaffold (Figure

4.12). I investigated the CDR H3-like non-antibody loops for the presence of these stabi-

lizing residues and observed neither the Arg–Asp combination nor the tryptophan at the

equivalent of position 103. In fact, the sequences of the LAT matches and the LAT+kink

matches do not show any preferences at the base of the loops that would explain the

presence or absence of the kink (Figure 4.13).
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Figure 4.10: Ramachandran plots for four N-terminal residues of H3 loops (left) and
LAT matches (right), beginning with the residue preceding the N-terminal loop anchor.
In antibodies (A) this residue is the Cysteine that precedes H3 loops and is structural
conserved, but in the LAT matches (B), this residue is free to adopt an extremely wide
variety of conformations. At the H93 (or equivalent) position, the antibodies (C) are again
structurally conserved, but now the LAT matches (D) are almost entirely restricted to the β
region of the plot because this is the anchor residue that I use to identify LAT matches. The
next two positions show the antibodies (E and G) beginning to broaden as further into the
loop and the LAT matches (F and H) return to an extremely diverse set of conformations.
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Figure 4.11: Ramachandran plots for four C-terminal residues of H3 loops (left) and
LAT matches (right), ending with the residue following the C-terminal loop anchor. At
the position furthest into the loop, the antibodies (A) and the LAT matches (B) both show
conformational diversity. However, the penultimate residue shows the antibodies (C) and
the LAT matches (D) confined to different regions of Ramachandran space based on the
loop base geometry. Extended loops lie in the β region while kinked loops are in the α
conformation. Interestingly, loops with indeterminate base geometry lie in the β, α and the
Lα regions, showing that dihedral angles alone cannot be used to classify base geometry.
Position H102 is the C-terminal loop anchor, and, as with the N-terminal loop anchor, most
structures are confined to the β region of the plot. After the loop ends, the antibodies (G)
exhibit almost no conformational diversity while the LAT matches (H), while biased toward β
have density in a much larger region of the plot.
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Metric Description Value
True Positive Rate % of extended structures that are correctly predicted 46.5%
True Negative Rate % of kinked structures that are correctly predicted 94.2%
Positive Predictive Value % of predicted-extended structures that are extended 50.0%
Negative Predictive Value % of predicted-kinked structures that are kinked 93.4%
Accuracy % of correct predictions 88.9%
Balanced Accuracy Expected accuracy on a balanced dataset 70.3%
Matthews Correlation Coeff. Balanced correlation ranging from -1 to + 1 0.42

Table 4.3: Statistical analysis of H3-classification rules proposed by Kuroda et al.26

Because the majority of structures are kinked, predicting an extended structure is considered
a positive prediction. In my analysis I have a third base geometry: unclear. Those structures
are excluded from this calculation to ensure that only structures where both analyses
agree on how the base geometry should be classified are considered. Also left out are
23 structures that only have a heavy chain in the crystal (either because only the FV was
crystallized or because it is the structure of a VHH) and require using light chain residues to
apply the rules. Within this group, 20 structures are kinked and the other 3 are extended,
but I cannot apply the rules to these structures so they are not included in the analysis
below.

4.3.6 Conformation of base residues in CDR H3 loops

North et al.19 proposed an alternate description of the kink based on the conformation of

residue 101 and 102. If residue 101 is in the β region of the Ramachandran plot, the CDR

H3 loop is considered extended, whereas if residue 101 is in the α region, it is deemed

kinked. Residue Trp 102 is in the βregion in both cases. Based on this description, North et

al. reported that regardless of the identity of the base residues at positions 94 and 101, the

majority of CDR H3 loops are kinked.

To test this description, I generated Ramachandran plots for the terminal residues

of my set of CDR H3 loops and LAT matches. Figures 4.10 and 4.11 show Ramachandran

plots for the N and C-terminal loop residues including an additional residue on each side of

the loop of both antibodies and the LAT matches. The antibodies show much less diversity

at the anchor points and beyond the loop (Figures 4.10A,C and 4.11E,G) than the LAT
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matches (Figures 4.10B,D and 4.11F,H), but within the loops there is considerable diversity.

Only at the penultimate residue (residue 101) is there a clear distinction that can be made

between loops with kinked and extended base geometries. Loops with “unclear” base

geometries, those that match only τ101 or α101 and not both, populate all regions of the

Ramachandran map at residue 101 (or its equivalent) in both antibodies and LAT matches

(Figure 4.11C,D). From these plots I conclude that the dihedral angles for the residue at

position 101 (or equivalent) are not sufficient to classify loop base geometries and that

different base geometries are not confined to specific regions of Ramachandran space for

the other residues.
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Figure 4.12: “Conformation Logos” for the loop anchors and three flanking residues on
either side for (A) all LAT matches, and (B) LAT+kink matches. In both cases, positions
1, 2 and 3 correspond to N - 3, N - 2 and N - 1; position 4 is the N-terminal loop anchor;
position 5 is the C-terminal loop anchor; and positions 6, 7 and 8 correspond to C + 1, C +
2 and C + 3. Approximately 84% of LAT match environments and 90% of LAT+kink match
environments are extended β strands. The distributions are nearly identical in LAT matches
and LAT+kink matches.
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Figure 4.13: Sequence Logos for CDR H3 loops and LAT matches. Using the LAT
parameters alone to select the set of structures results in a set of antibodies with clear
sequence conservation at the termini and very little conservation in the central positions
(A) and set of structures from the PDB that have no clear sequence preferences save for
a small Glycine signal in the central-most positions (B). Including the additional constraint
of the τ101 and α101 angles does not alter the antibodies (C), while the constraint has a
small, but noticeable effect on the PDB sequence distribution (D). However, there is still no
detectable signal and the residues typically associated with kink formation in antibodies are
not observed in the LAT+kink set.
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4.3.7 The effect of loop apex glycine residues on base geometry

Extended CDR H3 conformations often consist of a continuation of the β-strands at the base

of the loop. As shown in Figure 4.5, this extended conformation is much more common

than a kinked base geometry in most proteins. It has been established that β-strands are

geometrically compatible with the “mirror image” turn types (types I′ and II′) that strongly

prefer glycine in central positions.134, 135 Since all of the loops must change direction to

maintain a continuous backbone, nearly all of them contain at least one β-turn, but the

position of the β-turn may be restricted by the base geometry. Thus, I hypothesized that

glycine in a central position may be indicative of an extended conformation. The effect of

glycine position in extended CDR H3 loops has been incorporated into previous CDR H3

classification rules,24–26 but the predictive significance of glycine in central positions has

not been investigated.

The paucity of extended H3 loop structures demands that I analyze all loop-lengths

simultaneously, but I restricted the loops to be 9–20 residues in length to remove geometric

loop continuity constraints. I recorded the position of every glycine in all of the H3 loops

and the LAT matches scaled from 0–1, with each count placed at the center of the bin. To

account for possible register shifts in H3 loops with an even vs. odd number of residues, I

treated them as separate groups. In this scheme, shorter loops have wider bins.

Figure 4.14 shows density estimates of glycine position for even and odd-length

H3 loops and LAT matches split up by base geometry.. In the H3 loops, glycine residues are

favored more on the N-terminal side of the loop in kinked structures while for structures

with extended or unclear base geometries a more central position is preferred. The unclear
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Figure 4.14: Density estimates for glycine positions in CDR H3 loops and LAT matches.
The data are split up by base geometries using the τ101 and α101 values for the loop. The
data are further split up by the parity of the loop length because defining a central position
differs between the two sets.

structures appear to have a much broader distribution than either kinked or extended struc-

tures and this is likely because of the small sample size (13 even-length loops, 13 odd-length

loops) and because the unclear base geometries may have a glycine position distribution

somewhere between kinked and extended structures. In the LAT matches, the structures

with unclear and extended base geometries have very similar glycine distributions, with

the peak of the distribution biased toward the C-terminal end. In the kinked structures, the

preference for glycine is also slightly biased toward the C-terminal end, but is more central

than for the other base geometries. The difference between the kinked and unclear struc-
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tures provides additional evidence that using both τ101 and α101 to define the kinked base

geometry identifies a subset of structures that is distinct from the extended conformations.

That the PDB LAT matches prefer glycine in more central positions for kinked structures

is likely a consequence of averaging the result of disparate evolutionary pathways. This

result supports my hypothesis, but the dearth of extended CDR H3 structures at various

lengths precludes using this result predictively.

4.4 Discussion

CDR H3 is the most diverse region in antibodies due to its position relative to the V(D)J

recombination sites, junctional diversification at these sites, and somatic hypermutation.

Accordingly, the CDR H3 loop often plays a central role in antigen recognition and is a

major contributor to binding strength. The success of several therapeutic antibodies and

the advent of next-generation sequencing techniques have led to an increased interest in

computational antibody structure prediction and design. While there has been progress

in these efforts, accurate modeling of CDR H3 has remained challenging, leading me to

question whether (1) the diversification of CDR H3 can lead to extremely rare conformations;

or (2) there are environmental factors encoded into the FV. My results indicate that CDR

H3-like conformations, while not common, occur with some regularity, occurring in 7.4% of

5,783 Pfams and 6.0% of the 15,769 chains in the non-antibody set. Environmental factors

are most likely responsible for kink stabilization.

I identified 1,030 protein segments of at least 9 residues from 632 distinct Pfam

alignments that match the same 3D transformation as the anchors of the H3 loop and
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include the C-terminal kink motif that is common in antibodies. Without the inclusion

of the kink in my search criteria, most of the matches are extended strand-turn-strand

conformations, suggesting that adopting CDR H3-like conformations is unusual. This

is helpful for understanding why de novo loop structure prediction of CDR H3 tends to

produce models with extended base geometry and indicates that using constraints for this

purpose is likely a wise course of action. In fact, when prediction algorithms use fragment

or template-based approaches, the libraries are predominantly composed of structures

that do not adopt the kinked base geometry, making it challenging to identify appropriate

conformations. The data presented here can be used to enrich fragment or template libraries

effectively.

For example, RosettaAntibody accounts for the kink either by using a curated set

of fragments or by filtering H3 loops with poor kink geometry.22, 39 Here I have established

a more detailed geometric description of the kink and identified a significantly larger set

of structures from which fragments can be selected. Both results can be used as a starting

point for improving de novo CDR H3 loop structure prediction.

The set of identified loops with LAT and kink matches contains close structures

(≤ 2.0 Å) for roughly 50% of H3 loops 9–20 residues in length, showing that CDR H3 loops

do not adopt conformations that are inaccessible to loops in other proteins. In most Pfams,

kinked loops appear to arise only in some family members, while in others they are highly

conserved structural features. One such protein family, PDZ domains, has evolved a motif

for protein recognition and binding that is strikingly similar in structure and function to

CDR H3. The appearance of the kink irrespective of the presence of the stabilizing residues
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indicates that environmental factors are crucial to kink formation.

Furthermore, I have produced a set of H3-like structures of a wide variety of

lengths from non-antibody proteins. Across all loop lengths, and especially for long loop

lengths, there are more potential template loops from non-antibody structures than from

antibody structures. If the quality and homology constraints that were used to cull the PDB

were relaxed, it is likely I would identify even more, albeit lower quality, H3-like regions

in non-antibody proteins. This set of structures could be incorporated into a database that

could be used to assist CDR H3 structure prediction by threading the sequence of interest

onto many possible H3-like backbones, analogous to successful database-based methods for

loop structure prediction.136–141 The green curve in Figure 4.7 shows that supplementing

known CDR H3 loops with the LAT+kink matches results in a set of template structures

that contains more structures with low-RMSDs to CDR H3 loops than either set alone.

Another possible use for this set of structures is in the field of computational

antibody design. The extremely large sequence and conformational spaces of long loops

often make incorporating backbone motions into design methods infeasible. Effective

sampling is further complicated if docking simulations are desired, as may be the case in

designing a binding region such as CDR H3. The large number of PDB matches at long loop

lengths for which there are few or no H3 loops provides an opportunity to present multiple

H3-like scaffolds for fixed and flexible backbone design routines. Using the provided

scripts and instructions included in Supplemental Information, a set of all of the backbone

coordinates of the LAT+kink matches can be extracted and used for novel design routines.

Thus, it is expected that the identified structures will improve antibody design.
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4.5 Conclusion

This is the first study to my knowledge that uses non-antibody loops to analyze CDR

H3 structures, which required developing the most detailed description of the CDR H3

loop to date (LAT+kink). While the kink has been discussed in the past,19, 24–26, 28 previous

descriptions were more useful for classifying CDR H3 loops than as a rigorous description

of the geometry, as demonstrated by various failures in CDR H3 prediction attempts. For

example, I observed that the previous kink geometrical description can be satisfied in

multiple ways.39 My work shows that the residues that had been previously indicated in

kink formation are not present in kinked structures from non-antibody proteins (Figure 4.13).

In fact, no local interactions among the loop residues fully explain the presence of the kink.

Instead, I am led to the conclusion that the Ig heavy chain fold stabilizes the kink, and thus

it is the extended H3 structures that are the exceptions and not the kinked loops. Whereas

previous studies have explained the presence of the kink as a “strange” structural feature, I

show here that the kink is not strange; it is found in a wide range of proteins, and some

other proteins even conserve it and use it in diverse loops that are involved in binding.

All of my results lead to my hypothesis of why the kinked base geometry is

preferred: it is an agent of loop diversification. The C-terminal kink in H3 loops disrupts

the β-strand pairing, allowing increased structural diversity with the same number of

residues. In other words, if it were not for the kink, most sequences would form extended

strand-turn-strand conformations, giving little structural diversity, but with a kink, many

structures of similar free energy can form instead. Such a feature is advantageous to an
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antibody undergoing somatic hypermutation to improve affinity and specificity to a newly

introduced antigen. For this reason, I believe the heavy chain fold has been selected to form

the kink, and it is only in rare circumstances that the extended geometry is energetically

favorable compared to the kinked conformation.

4.6 Methods

4.6.1 Datasets

A set of IgG heavy chain V domains, constructed and filtered as described by North et al.

(resolution ≤ 2.8 Å backbone B-factor ≤ 80.0 Å2, no missing coordinates, no cis-non-Proline

residues, conformational energy ≤ 9.5),19 was further filtered for redundancy by removing

structures with CDR loops of identical length with either a single residue difference or

no differences in sequence. Using the PISCES web server142 a diverse set of high quality

non-antibody protein chains was obtained by searching the PDB15 for chains with maximum

sequence identity of 70%, a resolution of 2.2 Å or better, and a maximum R-value of 0.25.

Before recording results, segments with high B-factors in backbone atoms (> 80.0 Å2) were

filtered out.

4.6.2 Loop anchor transform calculation

Unlike other investigations of CDR H3 structures,19, 24–29, 143, 144 this study focuses on com-

paring CDR H3 loops to non-antibody proteins rather than restricting the comparison to

other antibodies. For this reason, I developed a description of the CDR H3 loop environ-

ment based on structure independent of sequence. The definitions used by North et al.19
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(residue numbers 93–102 using the Chothia numbering scheme16) were used to identify the

terminal residues on the CDR H3 loop. A coordinate frame was defined using the main

chain backbone atoms (N, Cα, C) of each of these residues such that the z-axis is the unit

vector along the Cα–C bond, the y-axis lies in the N–Cα–C plane and the x direction is the

vector product of the y and z directions. The six degrees of freedom of the 3D transformation

of the C-terminal coordinate frame onto the N-terminal coordinate frame together compose

what I term the loop anchor transform (LAT). The covariance for each pair of degrees of

freedom revealed that each degree of freedom could be treated independently.

4.6.3 Loop Anchor Transform Parameters

A Loop Anchor Transform (LAT) is the three-dimensional transformation between the

anchor residues of the loop, i.e. the transformation matrix required to perfectly superimpose

the backbone heavy atoms of the residues immediately preceding and following the loop.

Figure 1A shows an example H3 loop annotated to highlight the anchor residues and

coordinate frames.

I compute the LATs using homogeneous coordinates because they incorporate

translation and rotation into a single matrix. For each anchor residue, I define the z-axis (ẑ)

as the unit vector pointing from Cα to the carbonyl carbon,

~C−~Cα∥∥~C−~Cα
∥∥ , (4.1)
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then ŷ as the unit vector normal to ẑ, that lies in the N–Cα–C plane:

ŷ =
~a− (~a · ẑ)ẑ∥∥~a− (~a · ẑ)ẑ

∥∥ , (4.2)

where

~a =
(
~N−~Cα

)
,

and x̂ is simply the cross product of ŷ and ẑ.

x̂ = ŷ× ẑ

The carbonyl carbon coordinates, ~C = (Cx, Cy, Cz), are used in conjunction with the or-

thonormal basis vectors determined above to construct a homogeneous coordinate transfor-

mation matrix,

F =



x̂1 ŷ1 ẑ1 Cx

x̂2 ŷ2 ẑ2 Cy

x̂3 ŷ3 ẑ3 Cz

0 0 0 1


. (4.3)

A single point p defined relative to the global origin can be related to the point p′ defined

relative to the N-terminal coordinate frame (F1) and the point p′′ defined relative to the

C-terminal coordinate frame (F2) as follows:

p = F1 p′ = F2 p′′. (4.4)
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By right multiplying by F−1
1 , the relationship between points defined in coordinate frames

F1 and F2 is found:

p′ = (F−1
1 F2)p′′ (4.5)

To invert F1, I take advantage of the fact that its upper 3× 3 submatrix is orthogonal, so

its inverse is its transpose. The inverse of the fourth column is computed by negating the

product of the submatrix and the carbonyl carbon coordinates.

I extract the LAT parameters from F−1
1 F2 by noting that the three translational

degrees of freedom (X, Y, Z) are defined by the fourth column in the matrix. The three

rotational degrees of freedom, represented by the Euler angles (φ, ψ, θ), can be computed

from the upper 3× 3 submatrix. Euler angles describe an arbitrary rotation as the successive

elemental rotations about ẑ (Φ) followed by a rotation about x̂ (Θ) and another rotation

about ẑ (Ψ). Elemental rotations by an angle θ about x̂ and ẑ are represented as

Rx̂ =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 and (4.6)

Rẑ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , (4.7)

respectively. Rotating by an angle φ about ẑ, then by an angle θ about x̂ and then by ψ about
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ẑ results in the rotation matrix

A = ΦΘΨ, (4.8)

A =


cos φ cos ψ− cos θ sin φ sin ψ − cos φ sin ψ− cos θ cos ψ sin φ sin φ sin θ

cos ψ sin φ + cos φ cos θ sin ψ cos φ cos θ cos ψ− sin φ sin ψ − cos φ sin θ

sin θ sin ψ cos ψ sin θ cos θ

 . (4.9)

Using the values from the upper 3× 3 submatrix of F−1
1 F2, I solve for the Euler angles

φ = atan2(A1,3,−A2,3), (4.10)

ψ = atan2(A3,1,−A3,2), and (4.11)

θ = arccos A3,3 (4.12)

Figure 4.2 shows density estimates of each of the six parameters for 13-residue H3

loops and segments from the culled PDB set. φ and ψ are on a domain of 0–2π and θ is on a

domain of 0–π.

4.6.4 Features analysis

LATs were calculated using the feature analysis framework145 within the Rosetta software

suite.32 A custom feature reporter was developed to compute (1) LATs for every 5–31

residue window in each chain in the non-antibody dataset and (2) the Cα–Cα–Cα pseudo

bond angle of the last three residues in each window. The results were saved to a relational

database (http://www.sqlite.org). Analysis scripts were developed to display distributions

of the results using the ggplot2146 library in R.147 The resulting database was then queried
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to identify regions of proteins with LATs and bond angles within ± 3.0 σ of the mean of the

distributions developed from the antibody dataset.

4.6.5 Primary & secondary structure analysis

Sequence and secondary structure comparisons were performed using a local copy of

WebLogo.124 When comparing secondary structures, the DSSP code123 is used in place of

the one-letter amino acid abbreviation. Due to limitations of WebLogo, the “B” DSSP code

(β-bridge) and a blank DSSP code are represented as “R” and “L”, respectively.

4.7 Extracting the LAT+kink matches from the PDB

In order to facilitate use of the data sets described in this manuscript, I have provided several

supplemental files than can be used to generate a local set of the backbone coordinates of

all of the LAT+kink matches. Readers interested in obtaining these structures will need

access to a computer running a POSIX-compliant operating system (Unix, GNU/Linux,

etc.), rsync, perl and python2.7.

1. First, the reader will need a local mirror of the PDB (approximately 30 GB). This

is most easily accomplished by using the script rsyncPDB.sh, which is provided by

RCSB here: http://www.rcsb.org/pdb/static.do?p=download/ftp/index.html

It is recommended that readers create a directory within the directory they would

ultimately like to use and set the script to mirror to the inner-most directory. For

example, if you want your nicely named files to be in /pdb, set rsyncPDB.sh to mirror

to /pdb/data. You will need to create these directories before running the script.
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2. Next, configure the pdbName.pl script (provided with this manuscript) to point to

the directories used in the previous step. Following the directory names above, the

correct configuration is $MIRRORDIR="/pdb"; and $data_dir ="data";.

3. Run pdbName.pl by typing perl pdbName.pl.

4. Run extract_lat_kink_matches.py (provided with this manuscript) to read in

supporting_file1.txt (provided with this manuscript) and point to the directory

that contains the PDB mirror and an output directory. An example command line for

this script is:

python extract_lat_kink_matches.py -f supporting_file1.txt

-p /pdb -o outdir

Descriptions of the flags can be accessed by typing:

python extract_lat_kink_matches.py --help
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I M P ROV E M E N T S I N C D R H 3
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5.1 Overview

Antibody structure prediction has made great strides, but accurately modeling CDR H3

loops remains elusive. Unlike the other five CDR loops, CDR H3 does not adopt canonical

conformations and usually must be modeled de novo. Recent advances in de novo loop

modeling methods have shown success in modeling longer loops and showed promise

during Antibody Modeling Assessment II (AMA II). In Chapter 3, my coworkers and I found

that simulations needed to be biased toward kinked CDR H3 conformations to generate

low-RMSD models, and in Chapter 4, I presented new geometric parameters, τ101 and α101,

that define the kink conformation. In this chapter, I use these parameters to develop a new

constraint that can applied during the simulation to bias toward kinked conformations.

The functional form of the constraint is selected to ensure that it is differentiable, to enable

minimization, and to avoid over-constraining the possible solutions. When applied to a

benchmark set of high-quality CDR H3 loops, the average minimum RMSD sampled is

0.93 Å, compared to 1.34 Å without the constriant. The constraint also enables Rosetta
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to find conformations that score closer to the native structure. The average RMSD of the

top-ranked model is 2.0 Å for the constrained simulation and 3.2 Å without constraints. The

performance of the constrained de novo method is then tested in the context of homology

modeling and rigid-body docking.

5.2 Introduction

The adaptive immune system in vertebrates is capable of raising antibodies against a count-

less number of antigens. More recently, however, engineered antibodies have been used as

therapeutic molecules52, 53 and biosensors.4–6 The source of these antibodies varies across

specific applications. In order to optimize specific modes of interactions, rational engineer-

ing techniques must be developed. Rational engineering of antibodies requires accurate

structural models, but crystallization is not always practical or even possible. Additionally,

expressing a large library of mutants in order to assess the energetic implications of specific

mutations is time consuming, resource intensive and, in some cases, technically challenging.

Computational methods, namely antibody homology modeling, are poised to enable the

realization of rational design.

RosettaAntibody’s approach to modeling22 is to break the structure into eight

distinct structural components: the heavy- and light-chain frameworks; CDR loops L1–3;

and CDR loops H1–3. Because the non-H3 CDR loops adopt canonical conformations,17, 19

accurate backbone conformations for them can usually be found in known structures.

RosettaAntibody exploits this by selecting templates from curated structural databases by

BLAST97 bit-score for CDRs L1–3, H1 and H2 and the framework regions. Each structural
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component is defined such that they have overlapping residues that can then be superposed

to create a grafted model. An initial VH–VL orientation is also selected from databases, and

the grafted heavy and light chains are each superposed to the corresponding chain in the

orientation template. After this, the CDR H3 loop is modeled de novo while sampling the

VH–VL orientation.

In Chapter 3,39 I presented the performance of RosettaAntibody in Antibody Mod-

eling Assessment II (AMA II).40 With few exceptions, RosettaAntibody selects templates

for the framework regions and the non-H3 CDR loops with sub-Ångström RMSD from

the native structure. The most difficult aspect of antibody homology remains accurately

predicting the VH–VL orientation and the CDR H3 conformation.

A large majority of CDR H3 loops have a C-terminal kink,19, 24–28, 41 and in AMA II

(Chapter 3) I found that producing low-RMSD models required filtering out non-kinked H3

conformations. However, the scores of the kinked structures was higher than some of the

extended structures that Rosetta produced. In response to these findings, I developed new

geometric parameters that describe the kink in Chapter 4.41

Because the CDR H3 loop lies at the interface between the heavy and light chains,

incorrect VH–VL orientations can frustrate identifying correct CDR H3 conformations.

In the time that has elapsed since AMA II was conducted, progress has been made in

predicting VH–VL orientation148 from sequence by training a random forest model149 on a

set of “fingerprint” residues at the VH–VL interface using ABangle’s six degree-of-freedom

description of orientation.86 Similarly, effort has been made to develop a CDR H3-specific

loop modeling routine,150 but successful predictions require extremely accurate atomic
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coordinates for the rest of the FV,150, 151 which may make these tools better-suited for refining

crystal structures with poor electron density around the CDR H3 loop than for homology

modeling.

De novo loop modeling has endured as a challenging problem in part because of the

large number of degrees of freedom that need to be sampled, as well as the challenges asso-

ciated with accurately ranking different structures that may appear to be very similar when

using a coarse-grained measurement such as RMSD. Additionally, side-chain interactions

may play key roles in stabilizing observed loop conformations, potentially complicating

low-resolution searches. Complicating the task even further is the most common source of

the reference coordinates: crystal structures. Crystals are extremely crowded environments

in which each protein molecule is surrounded by several by others; this may or may not

influence the observed conformation within the asymmetric unit. Without the existence of

a crystal structure of the same protein in more than one distinct crystal form, it cannot be

determined if these “crystal contacts” perturb the conformation of any region of the protein.

Similarly, another complication of loop modeling is the search for a single set of

coordinates. Proteins in physiological conditions are not completely rigid, and estimating

the conformational entropy of a loop requires supplying a model to describe the describe

the modes of flexibility accessible to the loop.152 Nevertheless, the possible existence of

multiple degenerate-energy conformations cannot be dismissed.

In this chapter, I use the parameters defend in Chapter 441 to constrain the kink

during the course of a simulation. To limit the uncertainty in the crystallographic coordi-

nates, I constructed a set of extremely high-resolution H3 loops. Given the high degree
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of confidence in the atomic coordinates, computed RMSD values are also better-defined.

The constraint is tested by predicting H3 conformations on the crystal framework structure

across the set of benchmark structures. Finally, to test the utility of the constraint, I also

assess the ability to dock an antibody with a modeled H3 loop and CDR H3 modeling on a

homology modeled framework.

5.3 Methods

5.3.1 Dataset

A set of FVs with accurate CDR H3 coordinates was constructed by querying the backend

databases of PyIgClassify153 for structures with a resolution of 2.5 Å or better, a maximum

R-value of 0.2, B-factor ≤ 80.0 Å2 for every atom in the structure, only one copy of the FV in

the asymmetric unit, and CDR H3 loop-lengths ranging from 9–20 residues. To ensure the

set has diverse chemical environments, no two heavy-chain CDR loops are permitted to be

identical in sequence. The structures were further filtered to remove antibodies from species

other than humans and mice, and modified residues (namely pyroglutamic acid (PCA), a

cyclized form of glutamine or glutamic acid). The resulting set of structures contains 49 FVs

and is summarized in Table 5.1.

5.3.2 Kink constraint

In de novo loop modeling simulations it is impossible to exhaustively sample all of the

structural degrees of freedom. To increase the likelihood of generating a model with a near-

native structure, Rosetta has the ability to add an arbitrary potential that is evaluated using
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the value of the distance of two atoms, angle of three atoms, or torsion angle of four atoms.

These potentials, referred to as “constraints” in Rosetta parlance, allow experimental data or

homology information to be exploited to improve the accuracy of structure prediction.32 In

the case of CDR H3, there are two parameters that can be constrained: (1) τ101, the Cα–Cα–Cα

pseudo bond angle for the three C-terminal residues; and (2) α101, the Cα–Cα–Cα–Cα pseudo

dihedral angle for the three C-terminal residues in the CDR H3 loop and one adjacent

residue in the heavy chain framework.

Because an objective of this study is to determine whether or not Rosetta can

correctly identify native H3 conformations, it is important not to over-constrain any of the

simulations. With this in mind, a FLAT_HARMONIC potential, which has a region wherein no

penalty is applied, is a natural choice. The FLAT_HARMONIC potential is of the form

f (x) =


0, if |x− µ| ≤ t

( |x−µ|−t
ξ )2, if |x− µ| > t

, (5.1)

where µ is the mean, t (tolerance) is the distance from µ with no penalty, and ξ is the scaling

factor that controls the penalty that is applied.

For the kink parameters α101 and τ101, the following penalty schedule was devised:

no penalty should be applied when the value is within 1.0 σ of the mean, and a penalty of

1.0 at 3.0 σ. This will encourage Rosetta to generate models with kinked H3 loops without

forcing the geometry toward the mean values of both parameters.

Because the penalty should begin after 1.0 σ, t can be set to σ. Now I solve for ξ in
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order to produce the desired penalty schedule. First, I solve for ξ at 3.0 σ as follows:

f (µ + 3t) = 1.0 =

(
µ + 3t− µ− t

ξ

)2

(
2t
ξ

)2

= 1.0 (5.2)

ξ = 2t

and then plug in ξ = 2t and evaluate the penalty at 2.0 σ to check if this intermediate value

produces a reasonable penalty

f (µ + 2t) =
(

µ + 2t− µ− t
2t

)2

(5.3)(
1
2

)2

= 0.25

and we find that setting ξ to 2σ will exactly produce the desired penalty schedule with the

useful feature of being a factor of four larger at 3.0 σ than at 2.0 σ.

Using the values determined in Chapter 4,41 the kink constraint for AHo-numbered

antibodies is written as:

# alpha: pseudo dihedral - last 3 residues in H3 and the following W
# mean: 38.85 degrees; SD: 11.75 degrees (in radians)
Dihedral CA 136H CA 137H CA 138H CA 139H FLAT_HARMONIC 0.678 0.41 0.205

# tau: pseudo bond angle of the last 3 residues in H3
# mean: 100.9 degrees; SD: 5.57 degrees (in radians)
Angle CA 136H CA 137H CA 138H FLAT_HARMONIC 1.761 0.194 0.0972

Figure 5.1A shows the functional form of the FLAT_HARMONIC potential used for

each of the constraints, and Figure 5.1B shows a contour plot of the combined value of

the τ101 and α101 constraints, with each line representing an increase in score of 2.0 Rosetta
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Energy Units (REU). Figure 5.1B also shows the regions of τ101 and α101 that define kinked

(orange; ± 3.0 σ of the mean of both parameters), unclear (gray; ± 3.0 σ of mean of one

of the parameters), and extended (white; beyond 3.0 σ of both parameters) conformations.

These definitions are used throughout this study.
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Figure 5.1: Functional form of the constraint used to bias de novo CDR H3 loop modeling
simulations toward generating kinked conformations. (A) A plot of the FLAT_HARMONIC
potential with the parameters that were found in equations 5.3 and 5.2. (B) A contour
plot showing the value of the kink constraint across all values of τ101 and α101. Each
line represents a 2.0 Rosetta Energy Unit (REU) increase in penalty. The orange box
demarcates ± 3.0 σ of the mean of the τ101 and α101 distributions. Throughout the rest
of this text, models falling within this region are classified as “kinked”, models with τ101
and α101 in the gray, shaded regions are classified as “unclear”, and all other models are
classified as “extended”.

5.3.3 De novo loop structure prediction

Rosetta has several loop modeling routines integrated into a unified framework. The

most popular loop modeling methods are cyclic coordinate descent (CCD),154 kinematic

closure (KIC)88 and next-generation KIC (NGK).89 Like most Rosetta applications, the

loop modeling methods consist of low- and high-resolution stages, where side chains

are represented as a single pseudoatom and in full atomic detail, respectively. The low-
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resolution stage of CCD consists of insertion of fragments of known structures followed by

cyclic coordinate descent loop closure102 to ensure loop continuity, and the high-resolution

stage uses small perturbations to the backbone dihedral angles, CCD loop closure and

side-chain packing.

KIC generates candidate backbone conformations by sampling φ and ψ dihedral

angles from a Ramachandran distribution155 for all but three “pivot” residues. The φ and ψ

dihedral angles for the pivot residues are solved analytically from a 16-order polynomial156

using resultants.157 The process of generating backbone conformations is the same method

in both stages, but the all-atom stage also includes side-chain optimization. KIC has been

shown to generate more near-native models on a benchmark set of 12-residue loops than

the CCD-based method.88

More recently, NGK has been developed to further improve the performance of

loop modeling in Rosetta. NGK is similar in approach to KIC but uses neighbor-dependent

Ramachandran maps,104 explicitly samples ω backbone dihedral angles and introduces a

simulated annealing strategy for repulsive and Ramachandran score terms in the all-atom

stage. On the same set of loops used to benchmark KIC, NGK generates substantially more

near-native models,89 which is why it is used as the starting point in this study.

The initial implementation of the neighbor-dependent Ramachandran sampling

required approximately 5 GB of memory, making it impossible to run on any HPC re-

source. Before this study could be conducted, I redesigned the underlying data structure

to include only the energy of each conformation and the cumulative probability across all

conformations, representing all of the data in less than 160 MB.
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The flags to run a standard NGK simulation are:

./loopmodel.macosclangrelease
-native input_file.pdb
-s input_file.pdb
-nstruct 500
-loops:loop_file h3.loops
-loops:remodel perturb_kic
-loops:refine refine_kic
-loops:outer_cycles 5
-kic_bump_overlap_factor 0.36
-legacy_kic false
-kic_min_after_repack true
-corrections:score:use_bicubic_interpolation false
-loops:kic_omega_sampling
-loops:kic_rama2b
-allow_omega_move
-loops:ramp_fa_rep
-loops:ramp_rama
-ex1
-ex2
-extrachi_cutoff 0

where h3.loops contains

# FORMAT JSON
{"LoopSet" : [{

"start" : { "resSeq" : 93, "iCode" : " ", "chainID" : "H" },
"stop" : { "resSeq" : 102, "iCode" : " ", "chainID" : "H" },
"extras" : { "extend" : true },

}]
}

NGK simulations with constraints use the above command line with the addition of the

following flags:

-constraints:cst_file kink.constraint
-constraints:cst_weight 1.0
-constraints:cst_fa_file kink.constraint
-constraints:cst_fa_weight 1.0

where the file kink.constraint contains the constraints as shown in Section 5.3.2.
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Because of their object-oriented design, the loop modeling methods in Rosetta

can be mixed-and-matched within a single simulation. To couple the more conservative

CCD refinement with the aggressive NGK sampling, a combined NGK–CCD simulation

can be run. The combined simulation uses the same command line as the constrained NGK

simulation, but with -loops:refine refine_kic changed to -loops:refine refine_ccd.

5.3.4 Discrimination score

The discrimination score is used to measure how “funnel-like”—that is, lower RMSDs

correspond to lower scores—a score vs. RMSD plot is, with a lower value being indicative

of a more successful simulation. As defined by Conway et al.,158 the discrimination score

relies on scaling the scores of the decoys such that a value of 1.0 corresponds to the 95th

percentile of scores and a value of 0.0 corresponds to the 5th percentile.

D = ∑
r∈{1,1.5,2,2.5,3,4,6}

min
i,RMS(i)∈[0,r]

Si − min
i,RMS(i)∈(r,∞]

Si, (5.4)

where r is the RMSD cutoff in Å, Si is the dimensionless scaled scored, and the discrimi-

nation score, D, is the sum of the score-differences of the best-scoring models above and

below the seven RMSD cutoffs.

5.3.5 Preparation of input structures

The crystallographic coordinates of protein structure often do not score favorably within

Rosetta. To address this, crystal structures must be relaxed, that is, optimized with respect

to the Rosetta scoring function. Relaxation will result in small changes to the atomic
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coordinates with significant improvements in the score; however, it is important that the

coordinates do not vary much, especially in the case of loop modeling. The command line

used for constrained relax is:

./relax.macosclangrelease
-s input.pdb
-nstruct 500
-relax:constrain_relax_to_start_coords
-relax:coord_constrain_sidechains
-relax:ramp_constraints false
-ex1
-ex2
-use_input_sc

Once the crystallographic coordinates have been optimized, the entire structure

can be subjected to fixed-backbone side-chain optimization to further lower the score

of the reference structure for loop modeling and to better approximate the side-chain

conformations in the free, unbound conformation. The command line used for fixed-

backbone side-chain optimization is:

./relax.macosclangrelease
-s output_from_previous_simulation.pdb
-nstruct 100
-relax:bb_move false
-ex1
-ex2
-extrachi_cutoff 0

The low-scoring model from each of these simulations is used as the input structure

in the subsequent calculations.

5.4 Results

A set of 49 high-quality CDR H3 structures was constructed as described in section 5.3.1.

Figure 5.2 shows an example loop from the data set with the electron density map for the
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Figure 5.2: The FV of an anti-peptidase S1 antibody (PDB accession code 3nps159) is
shown with the VH domain in cyan and the VL domain in magenta. The electron density
of the 19-residue CDR H3 loop is indicated with a mesh contour map within 1.6 Å of the
coordinates in the PDB file. The crystal structure has an R-value of 0.190 and a resolution
of 1.50 Å. The electron density is clearly resolved across the entire CDR H3 loop, indicating
that both a high-quality crystal and a stable loop conformation among several symmetric
copies of the antibody in the crystal. The crystal structure contains the full Fab bound to the
antigen, which may further stabilize the loop’s conformation.

H3 residues shown in a gray mesh over the residues represented in sticks. At this level

of detail all of the side-chain coordinates are well-defined, and the map even shows a

hole in aromatic residues. The level of agreement between the electron density map and

the coordinates and lack of ambiguity in the atomic coordinates suggests that this loop

is in a stable conformation in the crystal, making it a prime candidate for loop modeling
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experiments. The other loops in the set have similarly well-defined electron density.

Table 5.1 lists all of the loops in the set and includes information on the quality

and content of the crystal structure, the species from which the antibody was derived,

the length of the loop, the pH at which the crystallization experiment was conducted (if

available) and the light chain isotype. In the set, 24 of the 49 structures are crystallized in

the bound conformation with their antigen, 40 of the 49 structures are Fabs, six are FVs and

the remaining three are scFVs. Eighteen of the structures are of human antibodies, and 11

have λ light chains, making this a diverse set of structures.

The definition of the bounds of the CDR H3 loop differ from the Chothia-based defi-

nition16 used within RosettaAntibody,22 and instead are based on the Honegger–Plückthun-

based definition160 used by North et al.19 and in Chapter 4.41 Both definitions end on

Chothia residue number 102, but the Chothia-based definition begins at residue 95 while

the Honegger–Plückthun-based definition begins at residue 93, making the Honegger–

Plückthun CDR H3 loops two residues longer than Chothia loops. In this set, the median

and mode of the loop lengths are both 12 residues.

5.4.1 Unconstrained de novo modeling of CDR H3 loops

In Chapter 339 NGK was used to model CDR H3 loops on a crystallographic framework.

Due to the limitations imposed by high memory requirements, only a small number of

models could be produced using NGK, and the majority of modeling was done using KIC.

In these cases, a filter was employed to favor kinked structures, using the θbase (α101 in this

work) definition developed by Shirai et al. and refined by Kuroda et al.24–26 Without this

penalty, very few kinked structures were produced.
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Table 5.1: Structural information for the CDR H3 benchmark set.

PDB
Code

R
Value

Res.
(Å)

Max. B
factor
(Å2)

Max. H3
B factor

(Å2) Species

CDR
H3

length

Light
chain

isotype
Fragment pH

1x9q* 0.193 1.50 32.57 21.22 Human 9 κ scFV–Ag 4.6
2d7t 0.191 1.70 49.16 47.73 Human 9 κ FV 9.3
3hc4 0.162 1.62 41.11 33.50 Human 9 κ Fab 8
1mlb 0.181 2.10 49.63 34.78 Mouse 9 κ Fab —
2e27* 0.198 1.70 51.38 31.14 Mouse 9 κ FV–Ag 5.7
3g5y 0.199 1.59 40.08 35.90 Mouse 9 κ Fab–Ag —

3m8o* 0.154 1.55 55.22 24.48 Human 10 κ Fab 7

1jpt 0.182 1.85 49.59 29.78
Human-

ized
Mouse

10 κ Fab 4.6

3e8u 0.188 2.10 32.50 27.11 Mouse 10 κ Fab–Ag —
1mqk 0.136 1.28 51.66 37.15 Mouse 11 κ FV 6.0
1nlb 0.197 1.60 44.78 41.47 Mouse 11 κ Fab 9
2adf 0.192 1.90 35.22 20.68 Mouse 11 κ Fab–Ag 4.6
2fbj 0.194 1.95 60.06 41.76 Mouse 11 κ Fab–Ag —

2w60 0.171 1.50 54.60 36.38 Mouse 11 κ Fab 8
3gnm 0.189 2.10 46.42 43.99 Mouse 11 κ Fab 4.0
3hnt 0.199 1.80 54.27 28.18 Mouse 11 κ Fab–Ag 7.1
3v0w 0.184 1.73 60.85 60.81 Mouse 11 κ Fab–Ag 4.6
1mfa 0.166 1.70 69.57 41.64 Mouse 11 λ FV–Ag —
3mxw 0.181 1.83 72.85 31.98 Mouse 12 κ Fab–Ag —
2xwt 0.179 1.90 44.78 29.30 Human 12 λ Fab–Ag 5.0
1dlf 0.183 1.45 42.75 24.85 Mouse 12 κ FV 5.25
2ypv 0.183 1.80 75.36 37.38 Mouse 12 κ Fab–Ag 8.5
3ifl 0.180 1.50 34.75 22.57 Mouse 12 κ Fab–Ag 9.0

3liz* 0.178 1.80 52.33 43.85 Mouse 12 κ Fab–Ag 7.2
3oz9 0.192 1.60 55.29 31.28 Mouse 12 κ Fab 8.5
3umt 0.177 1.80 56.76 39.55 Mouse 12 κ scFV 9.5
4h0h 0.197 2.00 65.19 37.96 Mouse 12 κ scFV 6.5
4h20 0.197 1.90 45.61 20.26 Mouse 12 κ Fab 7.4
4hpy 0.171 1.50 55.43 42.96 Human 13 λ Fab–Ag 6.5
2v17 0.160 1.65 37.77 23.54 Mouse 13 κ Fab–Ag 7.5
3t65 0.194 1.45 63.85 34.13 Mouse 13 κ Fab–Ag 8.0
1oaq 0.160 1.50 44.45 43.75 Mouse 13 λ FV 5.00
2vxv 0.155 1.49 37.34 29.51 Human 14 κ Fab 10.5

3eo9 0.191 1.80 45.44 27.45
Human-

ized
Mouse

14 κ Fab 5.0

3p0y 0.182 1.80 76.35 25.77 Human 14 κ Fab–Ag 8
1jfq 0.196 1.90 57.19 40.56 Mouse 14 κ Fab 7.5

2r8s 0.196 1.95 63.07 34.21 Human
(library) 14 κ Fab–Ag 5.9

Continued on next page
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Table 5.1 – Continued from previous page

PDB
Code

R
Value

Res.
(Å)

Max. B
factor
(Å2)

Max. H3
B factor

(Å2) Species

CDR
H3

length

Light
chain

isotype
Fragment pH

3i9g 0.192 1.90 53.87 29.27
Human-

ized
Mouse

14 κ Fab–Ag 6.0

3giz 0.198 2.20 52.12 52.12 Human 15 κ Fab 6.3
3go1 0.192 1.89 37.78 31.35 Human 16 λ Fab–Ag 6.5
1fns 0.172 2.00 49.64 20.80 Mouse 16 κ Fab–Ag —

1seq† 0.194 1.78 68.08 68.08 Mouse 16 κ Fab 7.5
1gig 0.195 2.30 53.69 34.01 Mouse 16 λ Fab —
3mlr 0.181 1.80 42.10 37.70 Human 17 λ Fab–Ag 5.5
4nzu 1.370 1.20 69.10 32.80 Human 18 κ Fab 4.0
3lmj 0.194 2.20 58.27 58.27 Human 18 λ Fab 7.5
4f57 0.188 1.70 64.70 40.56 Human 18 λ Fab 6.5
2fb4 0.189 1.90 39.92 39.20 Human 19 λ Fab —
3nps 0.190 1.50 49.76 31.95 Human 19 λ Fab–Ag —
*Extended base geometry
†Unclear base geometry

Table 5.1: Structural information for the CDR H3 benchmark set. All structures have R-values lower
than 0.2, resolution better than 2.5 Å and maximum B factors lower than 80.0 Å2. For the purposes
of controlling which variables are being considered, the CDR H3 loops are restricted to range from
9–20 residues in length and to only be derived from human and mouse antibodies.

Now that the memory restrictions have been alleviated, NGK can be fully tested

on the new benchmark set of structures. Figure 5.3 shows the results of a de novo CDR

H3 modeling simulation on an anti-citrullinated collagen type II antibody (PDB accession

code 2w60161). In Figure 5.3A, a funnel plot shows the models ranked by the scaled score

and colored by their base geometry. The kinked models make up a small fraction of the

structures produced; however, they have lower scores than extended structures at the

same RMSD value. The top-ranked models have very low RMSDs, but only three such

models were produced. Nonetheless, because the score function successfully separates the

near-native and non-native conformations, the discrimination score is -0.5710.

Figure 5.3B shows the τ101 and α101 values for the models (black) and the crystal
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Figure 5.3: Results of unconstrained de novo NGK on an anti-citrullinated collagen type II
antibody (2w60161). 2w60 is derived from a mouse, has an 11-residue H3 loop and a κ light
chain. (A) Funnel plot showing scaled score vs. RMSD. • points correspond to a kinked
base geometry, • points to an unclear base geometry, and • points to an extended base
geometry. The discrimination score of -0.5710 is shown in the lower right of the plot area.
Very few kinked H3 models are produced, but the top-scoring models have sub-Ångström
RMSDs. (B) τ101 vs. α101. The • point is at the values of the native structure, and the •
points correspond to the models. The vast majority of the points have τ101 and α101 values
that correspond to extended conformations.

structure (red). The gray bars demarcate ± 3.0 σ from the mean of the distribution of each

parameter in kinked antibodies as found in Chapter 4.41 This plot shows a clear preference

for NGK to produce H3 loops in the extended conformation, likely because it can form

backbone–backbone hydrogen bonds in the low-resolution stage of modeling.

All of the CDR H3 loops in the benchmark set were modeled using the same

flags. As shown in Table 5.2, the average scaled native score for kinked targets is -0.9480

with a standard deviation of 0.5033 (Table C.1). This means the native conformation has a

significantly better score than the best decoys that are being produced by NGK.

Figures C.1 and C.2 in Appendix C show funnel plots and τ101 vs. α101 plots for the

rest of the structures in the dataset. Across the whole set, kinked models represent a small

fraction of the models that are produced, but those models tend to have lower RMSDs.
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Simulation
Min.

RMSD

Scaled
Nat.

Score

Top 10
RMSDs

RMSD
of Top

10
Scored

RMSD
of Top 1
Scored

Unconstrained 1.3360 -0.9480 2.0180 3.6433 3.2174
Constrained 0.9332 -0.5264 1.2473 2.2179 2.0000
Combined 1.3789 -0.2396 1.8398 3.4148 2.7564

Table 5.2: Summary of de novo loop modeling simulations. The minimum RMSD, scaled
native score, average of the top ten lowest RMSDs, average RMSD of the top 10 scor-
ing models and the RMSD of the top-ranked model are shown for unconstrained NGK,
constrained NGK and the combined NGK+CCD methods. Each value is the average of
the values of the 44 kinked targets in the benchmark set. NGK with constraints proves to
perform best over the whole set. Only the scaled native score in the combined simulations
have superior values, however this affects the ability of the score function to discriminate
between near-native and non-native conformations. Per-target values for each type of
simulation can be found in Appendix C. All RMSDs are reported in Ångströms.

5.4.2 Constrained de novo modeling of CDR H3 loops

Because the kinked structures that are made have low RMSDs, biasing the simulation

toward kinked conformations should increase the number of low-RMSD models produced

in the course of the simulation. As described in methods, I used the parameters of the

kink described in Chapter 4 to develop a kink constraint that can be employed during a

simulation (Figure 5.1). Because the constraint potential is smooth and continuous, the

conformation of a structure can be minimized with the constraint enabled.

Figure 5.4 shows the results of the constrained NGK simulation for anti-citrullinated

collagen type II antibody (2w60161). From the τ101 vs. α101 plot shown in Figure 5.4B, it is

clear that the constraint successfully biases the simulation to produce kinked structures. The

τ101 and α101 values for the models (black) and the crystal structure (red). This plot shows

that NGK with the kink constraint mostly produces kinked H3 loops. However, many
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models are not kinked, which indicates that the simulations are not being over-constrained.

−0.1721−1.0

−0.5

0.0

0.5

1.0

0 2 4 6 8
RMSD (Å)

S
ca

le
d 

S
co

re

0

45

90

135

180

−180 −90 0 90 180
α101 (Degrees)

τ 1
01
 (

D
eg

re
es

)

A B

Figure 5.4: Results of constrained de novo NGK on an anti-citrullinated collagen type II
antibody (2w60161). 2w60 is derived from a mouse, has an 11-residue H3 loop and a κ light
chain. (A) Funnel plot showing scaled score vs. RMSD. • points correspond to a kinked
base geometry, • points to an unclear base geometry, and • points to an extended base
geometry. The discrimination score of -0.1721 is shown in the lower right of the plot area.
Many kinked H3 models are produced, and the top-scoring models have sub-Ångström
RMSDs. The dashed horizontal line indicates the scaled score of the native structure,
which is much higher compared to the unconstrained simulation. This indicates that the
best-scoring models have a similar score to the native. (B) τ101 vs. α101. The • point is at
the values of the native structure, and the • points correspond to the models. While many
of the points have τ101 and α101 values that correspond to kinked conformations, there are
still many models that are not kinked. This suggests that the constraint has an appropriate
penalty that can be overcome in cases with favorable interactions.

Figure 5.4A shows a funnel plot for the constrained NGK simulation of 2w60. The

fraction of near-native structures has increased dramatically, demonstrating that generating

more kinked structures is critical for successful CDR H3 predictions. The dashed horizontal

line indicates the scaled score of the native structure, which was below the plotted bounds

on the unconstrained plot. Therefore, the geometry of the models generated with constraints

is more favorable than the geometry of the models generated by the unconstrained method.

However, because many more models between 1.0 and 3.0 Å RMSD are generated

and those models score more favorably, the discrimination score for the constrained simula-
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tion is -0.1721. Figure 5.4A shows that for many of the models with RMSDs < 2.0 Å, there is

a model with RMSD 3.5 Å that scores as well. This result underscores the importance of

producing many models even when using constrained NGK.

Figures C.3 and C.4 in Appendix C show funnel plots and τ101 vs. α101 plots for the

rest of the structures in the dataset. Across the data set, with the exception of five targets

(one of which has an unclear base geometry), the scaled native scores appear within the

plot bounds, indicating that the scores of the models are close to the native structure. Figure

C.4 shows that the four extended loops in the benchmark (1x9q, 2e27, 3liz, 3m8o) have

sets of models that are predominantly kinked. While this is problematic, it appears that,

with the exception of 1x9q, these particular targets were also not modeled successfully by

unconstrained NGK, which confounds any analysis to determine if the constraint penalty

could be overcome when appropriate.

The average RMSD of the 10 top-scoring models is lower with constraints in 40

of the 49 targets, and 30 targets have a lower RMSD of the top-scoring model. Without

constraints, the average RMSD of the 10 top-scoring models is < 1.0 Å for three targets.

This number increases to nine targets when using constraints. When considering only the

top-scoring model, seven targets with and thirteen targets without constraint have RMSDs

< 1.0 Å.

5.4.3 Generating low-RMSD models of CDR H3 loops

Although low-RMSD models can be produced by NGK with and without using constraints,

the low-RMSD models produced by the constrained simulation have scores that are closer

to the native score, even at very similar values of RMSD. This indicates that small deviations
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in backbone geometry can have a substantial impact on the score of a model. To further

probe the impact of small backbone perturbations, I used two methods: (1) CCD refine

(small, shear moves followed by CCD closure); and (2) NGK refine (randomize non-pivot

torsions, solve for the closed form). Both sets of simulations are performed starting with the

native loop conformation and without using constraints. Figure 5.5 shows a comparison of

CCD and NGK refinement for 2w60. The funnel plot uses the total score to allow the two

methods to be directly compares with the orange points corresponding to models produced

by CCD and the gray points being the NGK models, and the dashed horizontal line is the

native score.

With few exceptions, CCD refinement produces models with better scores and

lower RMSDs to the starting structure than NGK refinement. Both methods can produce

models with a better score than the native structure. NGK does produce some models with

lower scores than CCD, but at the expense of moving further from the native structure. The

τ101 vs. α101 plot shown in Figure 5.5B shows a similar effect, with the CCD structures (red

points) being more tightly clustered than the NGK structures (black points).

Figures C.5 and C.6 show the results of NGK refinement on the benchmark set,

Figures C.7 and C.8 show the results of CCD refinement on the benchmark set, and Figures

C.9 and C.10 show the comparison of CCD and NGK for the rest of the benchmark set. The

aforementioned trends hold across the dataset.

These results show that the high-resolution stage of NGK allows more movement

of the loop. It could be said that while CCD is refining the structure, NGK continues to

perform more sampling. In the case of de novo CDR H3 modeling, it is unclear if the high-

112



C H A P T E R 5 . C D R H 3 S T R U C T U R A L M O D E L I N G

−625.0

−622.5

−620.0

−617.5

0.0 0.5 1.0
RMSD (Å)

S
co

re

0

45

90

135

180

−180 −90 0 90 180
α101 (Degrees)

τ 1
01

 (
D

eg
re

es
)

A B

Figure 5.5: Results of NGK and CCD refinement on an anti-citrullinated collagen type II
antibody (2w60161). (A) Funnel plot showing total score vs. RMSD. • points correspond to
models produced by CCD, • points to models produced by NGK, and the dashed horizontal
line indicates the score of the native structure. All of the CCD models have a more favorable
score than the native structure and very low RMSDs (≤ 0.5 Å), while many of the NGK
models have higher scores than the native structure and and larger RMSDs than the CCD
models. (B) τ101 vs. α101. The • points correspond to models generated with CCD, and
the • points correspond to models generated with NGK. The CCD models are distributed
in a smaller region of the plot than the NGK models. Together these plots show that the
high-resolution phase of NGK is performing more sampling, while the high-resolution phase
of CCD is refining the input structure.

resolution stage should be doing more sampling or refining the structure that is produced

in the low-resolution stage.

5.4.4 Combined NGK+CCD

Because the high-resolution stage of CCD focuses more on refining the structure of model

developed in the low-resolution stage of modeling, combining it with the low-resolution

stage of NGK with constraints may prove to be a useful strategy for generating high-quality

models. To test this, I ran a combined simulation with constraints on the H3 loop benchmark

set. Figure 5.6 shows the results of the combined method for 2w60. The funnel plot in

Figure 5.6A shows that many low-RMSD models are being produced and their score is
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approaching that of the native structure. However, many other structures have scores that

approach the native score, even at an RMSD of 4.0 Å. Additionally, there are many more

structures with unclear base geometries than in the constrained NGK simulation. In Figure

5.6B the increased diversity in τ101 and α101 values is even more pronounced. In addition to

the kinked structures that are broadly distributed about the native values, there is a large

cluster of models with unclear base geometric centered near τ101 and α101 of 90°.
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Figure 5.6: Results of constrained de novo NGK+CCD on an anti-citrullinated collagen type
II antibody (2w60161). (A) Funnel plot showing scaled score vs. RMSD. • points correspond
to a kinked base geometry, • points to an unclear base geometry, and • points to an
extended base geometry. The discrimination score of -0.0350 is shown in the lower right of
the plot area. Compared to the results of the constrained NGK simulation shown in Figure
5.4, there are many more models with unclear base geometries and the discrimination score
is much higher. The dashed horizontal line indicates the scaled score of the native structure,
which is higher than in the unconstrained and constrained simulations. This shows that
the score of the models is approaching that of the native structure, however many models
across a wide range of RMSD values have similar scores. (B) τ101 vs. α101. The • point is
at the values of the native structure, and the • points correspond to the models. The points
are much more widely distributed than in the constrained simulation and appear to cluster
into two large groups, indicating that CCD was able to find a conformations that could offset
the penalty imposed by the constraint. Because CCD focuses on refining the loop structure,
the scores are better than when NGK is used, but it appears that the degree of refinement
eliminates the ability of the score function to identify near-native conformations.

As shown in Figure C.11, the scores of the models are much closer to the native
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score across the benchmark set. This translates to an increase in the scaled native score

and in the discrimination score. If a discrimination score < 0.0 is used as the criterion for a

successful simulation, the combined loop modeling mode has twenty-five successes, while

constrained NGK has thirty-three. By this loose criterion, the combined method is less

successful than constrained NGK.

That being said, evaluating sampling and scoring as separately as possible is useful

to point out where deficiencies in the method lie. The minimum RMSDs for each target

are lower with constrained NGK, with only four of the kinked targets achieving better

RMSDs with the combined method. This likely means either (1) NGK is under-sampling

conformation-space in centroid mode, so continuing to sample in all-atom (NGK) as op-

posed to refining that structure (CCD) yields better results, or (2) NGK may be attempting

to move the loop too much, resulting in most of those moves being rejected except in cases

where conformation moves substantially toward the native structure, resulting in better

discrimination by score.

5.4.5 Considering pH effects

Table 5.1 includes the pH at which the crystallization experiment was performed if available.

The effect of the pH on the structure of a protein, if any, is often impossible to discern due

to a variety of factors, including the fact that the protein may not crystallize equally well

at two significantly different pHs. The benchmark set contains thirteen structures that

were crystallized at a pH below 6.0 and seven structures crystallized at a pH above 8.0.

Among these more extreme-pH structures is 1dlf,162 an anti-dansyl antibody, which has

a histidine in its CDR H3 loop and was crystallized at pH 5.25. Interestingly, another
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high-quality crystal structure for the same antibody but at a higher pH (6.75) was produced

(PDB accession code 2dlf162) as part of the same study by Nakasako et al. for the purpose

of studying pH-effects. Nakasako et al. found that the structure of the antibody remained

the same except for the CDR H3 loop, which undergoes a pH-dependent conformational

change, presumably controlled by the protonation state of the histidine within the loop. The

rest of this section focuses on this anti-dansyl antibody because it has an ionizable residue

within the loop and the conformations of the loop with the protonated and deprotonated

histidine are known.

To test whether or not Rosetta and NGK can capture this pH-dependent change, I

performed two calculations: (1) a constrained NGK simulation with the pH-aware packer

and e_pH score term enabled;163 and (2) recomputing the RMSDs of the models produced

from the previously run constrained NGK simulation with the higher pH structure (2dlf)

as the reference structure. As shown in Table 5.3, the lowest-RMSD structure produced

by the pH-aware simulation has an RMSD of 0.94 Å, which is slightly worse than the

the pH-naïve constrained simulation, which produces a model with RMSD 0.88 Å. The

pH-aware packer’s inability to correctly predict this structure is likely because most of the

large structural perturbations occur in centroid mode, where the protonation state cannot be

sampled. After this, the loop has an additional charge to accommodate, which then becomes

a driving factor in the score. Using 2dlf as the reference structure results in twenty-six

models with lower RMSDs than the lowest-RMSD model from constrained NGK with 1dlf

as the reference. The average RMSD of the top-10 lowest RMSD structures is 0.66 Å vs. 0.95

Å when using 2dlf and 1dlf, respecively, as the reference.
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Although the best-sampled structures would suggest that Rosetta successfully

predicts the conformation at the pH closer to physiological conditions, the scores reveal a

slightly more complicated story. While the average RMSD of the 10 top-scoring models

is lower with 2dlf as the reference (0.9717 Å vs. 1.2657 Å), the RMSD of the top-ranked

structure is higher (1.2125 Å vs. 0.8847 Å). Interestingly, the lowest-RMSD structure with

2dlf as the reference is the tenth best-scoring, and the lowest-RMSD structure with 1dlf as

the reference is the best-scoring model. This scoring anomaly underscores the importance

of considering multiple models simultaneously when making predictions based on the

results of a Rosetta simulation.

Simulation
Min.

RMSD

Scaled
Nat.

Score

Top 10
RMSDs

RMSD
of Top

10
Scored

RMSD
of Top 1
Scored

NGK+cst 0.88 -0.52 0.95 1.27 0.88
pH Mode 0.94 -0.57 1.02 1.69 1.38

2dlf 0.53 -0.52 0.66 0.97 1.21

Table 5.3: The ability to capture pH-dependent conformational changes is shown by
comparing the RMSDs of the models from constrained NGK simulations with (1) the low-pH
structure as the reference for RMSD calculations; (2) using a pH-aware variant of the
packer to sample protonated residues; and (3) the high-pH structure as the reference for
RMSD calculations. The pH-aware simulation performs worse than the others, likely due
to the amount of sampling that is performed in centroid mode. Using 2dlf as the reference
structure yields the best results, which suggests that Rosetta favors structures that are
present at physiological conditions. However, the top-ranked structure is closer to the low-pH
conformation (1dlf) than to the higher-pH conformation (2dlf). All RMSDs are reported in
Ångströms.

5.4.6 Utility of the new method

Accurately predicting CDR H3 conformations on a crystal framework is an important step

toward the ultimate goal of predicting antibody structures. The incentive for improving
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CDR H3 structure prediction in the context of the experimentally-determined framework is

the promise of improving homology modeling and producing models of sufficient quality

to be useful in downstream applications, namely antibody–antigen docking. In this section

I present some proof-of-concept calculations to demonstrate the utility of using NGK with

a kink constraint.

H O M O L O G Y M O D E L I N G W I T H C O N S T R A I N T S

In Chapter 3,39 I presented the performance of RosettaAntibody in a blind prediction

challenge. One of the takeaways from that study is the need to force Rosetta to generate

kinked structures in the de novo loop modeling stage of the simulation. In that study, this

was accomplished by using a filter based on Shirai et al.’s description of the kink.24, 25

I modified RosettaAntibody to apply constraints to the de novo loop modeling

phase and enabled the neighbor-dependent Ramachandran map sampling from NGK. This

modification will enable the H3 loop to be constrained with the kink constraint developed

in section 5.3.2 during the simulation. Figure 5.7 shows cumulative density estimates for

RosettaAntibody with a kink filter (gray curve) and with the new kink constraint (orange

curve) for 2w60. Both methods can generate low-RMSD models of the H3 loop, but with

the kink constraint, 1106 of the 2000 models have H3 RMSD < 2.0 Å as opposed to only 796

with the filter.

This shows that the kink constraint leads to sampling improvements even in cases

where RosettaAntibody is already successful. Comparable results can be achieved while

generating fewer models, and additional simulation time can be spent performing other

stages of modeling, i.e. VL–VH optimization.
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Figure 5.7: Modeling CDR H3 on a homology framework for 2w60. A cumulative density
estimate of the RMSD of the backbone atoms in the CDR H3 loops of homology models built
using the method described in Chapter 3 (gray) and with the new kink constraint (orange).
Dashed vertical lines indicate the fraction of models with RMSD of 1.0 and 2.0 Å or better
for each method. The red dashed line shows that 50% of the models produced by the
standard method have an RMSD of 3.74 Å or lower, while 50% of the models from the
method that exploits the kink constraint have an RMSD of 1.64 Å or lower. Although both
methods are successful in producing some low-RMSD models, a significantly larger fraction
are produced when using the kink constraint based on τ101 and α101 as opposed to the filter
based solely on α101.

D O C K I N G W I T H M O D E L E D H 3 L O O P S

Successful docking is highly dependent on having accurate models of the bound conforma-

tion of each binding partner. To test whether or not the H3 loop conformations predicted

using constrained NGK are accurate enough for binding, I focused on 2adf, which is crys-

tallized with its antigen. The CDR H3 loop in 2adf is 11 residues and the constrained

NGK simulation has a discrimination score of -0.1758, indicating a successful prediction.
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I selected the top ten models by Rosetta score as an ensemble to dock to the bound form

of the antigen using EnsembleDock.31 EnsembleDock functions by cycling through a set

of distinct backbone conformations after each rigid-body move during the low-resolution

stage of docking. Each member of the ensemble is scored, and the best-scoring conformation

observed in the low-resolution stage is the starting point for all-atom refinement.
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Figure 5.8: Results of docking an antithrombotic antibody to its antigen (2adf164). Funnel
plots showing scaled Interface Score vs. Interface RMSD. Interface score is calculated as the
score of the unbound partners subtracted from the score of the complex. Interface RMSD
is the RMSD of the backbone atoms of the residues within 8.0 Å of a residue on the other
docking partner. The points are colored using the CAPRI quality ratings,165 where • points
correspond to incorrect structures, • points to acceptable, • points to medium, and • points
to high-quality models. EnsembleDock using CDR H3 loops modeled with constrained
NGK results in 65 acceptable models, 8 medium-quality models and 4 high-quality models.
The high-quality models are clearly separated from the other models by interface score as
evidenced by the discrimination score of -0.9112 sown in the lower right corner of the plot
area.

The EnsembleDock results are shown in Figure 5.8. Points are colored to indi-

cate the Critical Assessment of PRedicted Interactions (CAPRI) quality rating165 of each
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model, with gray points corresponding to incorrect structures, orange to acceptable quality,

red to medium-quality and blue to high-quality models. For a model to be considered

a high-quality prediction by CAPRI metrics, the fraction of native residue–residue con-

tacts recovered (fnat) must be ≥ 0.5 and the Interface RMSD (I_RMSD) or Ligand RMSD

(L_RMSD) must be ≤ 1.0 Å. Medium-quality predictions must have fnat ≥ 0.3 and L_RMSD

≤ 5.0 Å or I_RMSD ≤ 2.0 Å, while acceptable predictions have fnat ≥ 0.1 and L_RMSD ≤

10.0 Å or I_RMSD ≤ 4.0 Å. Models that have fnat ≤ 0.1 or L_RMSD ≥ 10.0 Å and I_RMSD

≥ 4.0 Å are considered incorrect. The 10 top models by interface score encompass one

incorrect model, four acceptable models, one medium-quality model and four high-quality

models. The fraction of native contact recovered, ligand RMSD and interface RMSD for the

10 top-ranked models are shown in Table 5.4.

The ten models used in the ensemble have scores ranging from -594.19 to -586.90,

and the average H3 RMSD is 1.48 Å. The top-ranked model has a loop RMSD of 1.53 Å, and

the eighth structure in the set has an H3 RMSD of 0.75 Å. As shown in Table 5.4, the 10 top

models do not converge on a single member of the ensemble, showing that considering

several models simultaneously is a path forward.

5.5 Discussion and Conclusions

In this chapter I present the results of applying a constraint based on the kink parameters

determined in Chapter 4 to de novo CDR H3 loop modeling simulations. Successful structure

prediction required (1) developing a penalty that can be expressed as a differentiable

function to enable energy minimization; and (2) redesigning the underlying data structures
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Rank
Interface

Score
Interface
RMSD

Ligand
RMSD

fnat
H3

RMSD
CAPRI rating

1 -8.79 0.43 4.00 0.91 1.48 High
2 -8.51 0.54 1.78 0.86 0.75 High
3 -8.22 0.74 2.57 0.89 1.59 High
4 -7.67 0.43 1.60 0.91 1.53 High
5 -5.54 2.72 9.25 0.26 1.69 Acceptable
6 -5.55 3.50 9.49 0.29 0.75 Acceptable
7 -5.53 2.28 7.56 0.57 1.54 Medium
8 -5.27 13.75 25.24 0.11 1.54 Incorrect
9 -5.22 5.27 7.33 0.20 1.69 Acceptable

10 -5.18 2.76 9.38 0.34 1.53 Acceptable

Table 5.4: Summary of top 10 models produced by EnsembleDock. Interface score is
calculated as the score of the unbound partners subtracted from the score of the complex.
Interface RMSD is the RMSD of the backbone atoms of the residues within 8.0 Å of a
residue on the other docking partner. Ligand RMSD is the backbone atom RMSD of the
antigen after superposing the antibody to the native structure fnat is the fraction of native
residue–residue contacts recovered, where contacting residues are defined as residues
on opposite binding partners within 5.0 Å of each other. The H3 RMSD column shows the
RMSD of the CDR H3 loop of the model that was ultimately selected by EnsembleDock to
generate the docked model. Interestingly, a different member of the ensemble was used in
each of the high-quality docked models. All RMSDs are reported in Ångströms.
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used by the neighbor-dependent Ramachandran sampling method of NGK. Although the

CCD refinement protocol can achieve lower scores, the best structure results come from

using NGK for both the low-resolution and all-atom stages of the simulation.

Part of this study required constructing a set of high-resolution CDR H3 loops

from crystal structures. Not all CDR H3 loops meet the strict quality cutoffs that were

used in this study. It is possible that some of the loops that meet these criteria are simply

more stable or rigid than some other H3 loops. If that is the case, could that translate into

these loops being easier modeling targets? While this is possible, it remains an unanswered

question. However, since the atomic coordinates of these loops are well-defined, structural

comparisons between models and the loops have real meaning

While there are not enough loops at each length to draw conclusions about pre-

diction performance as a function of length, it is worth noting that the longest loop where

the average RMSD of the 10 top-scoring models < 1.0 Å without constraints is 13 residues,

and the longest with constraints is 14. At first glance this difference seems small, but the

RMSD of the top-scoring model for some longer loops reveals the extent to which the

kink constraint improves the performance of de novo loop modeling. For example, for the

19-residue CDR H3 loop in 2fb4, the RMSD without constraints is 14.67 Å, with constraints

it’s 3.63 Å. While this is a big improvement, it is unlikely that these models would lead to

successful docking simulations. It is unclear if further improvements will come from using

more cycles of NGK for longer loops, generating more models or incorporating knowledge

of additional local structures (e.g. β turns) in addition to the kink into the simulation.

Some of these crystals were formed at pHs that deviate substantially from physio-
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logical conditions, leading me to test the ability of the pH-aware side chain packer to model

loops in these conditions. For the example I tested, the pH-unaware method produces

results that are closer to the conformation of the loop in a crystal at a pH closer to physiolog-

ical conditions. Currently the pH-effects cannot be captured, likely because the majority of

the conformational sampling occurs in the low-resolution stage where side-chain protona-

tion states are not represented. A possible path forward may be to update the “pair” score

term by calculating statistics with separate counts based on predicted protonation states of

ionizable residues. For the purposes of benchmarking, the crystallization conditions of the

structures in the benchmark set should be considered.

The amount of sampling performed in the low-resolution stage raises another

issue. Some important interactions are mediated by side-chain interactions, which may be

lost entirely in a loop modeling simulation. Some modeling methods have been developed

that operate in all-atom mode throughout the entire simulation. One such method available

in Rosetta is step-wise assembly (SWA),90 which builds the loop one residue at a time.

While this method has shown promise, it is extremely computationally expensive and is

therefore not well-suited to antibody homology modeling tasks that rebuild the H3 loop

while simultaneously sampling VL–VH orientation. However, an all-atom loop-modeling

routine may enable Rosetta to capture pH-effects as well as critical side-chain interactions.

While this study focuses on modeling CDR H3 loops on the crystallographic

framework, the ultimate test of the utility of a new loop modeling method in the context

of antibody modeling is predicting CDR H3 conformations on a homology framework. I

tested the new method on a homology modeled framework by comparing the distribution
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of CDR H3 RMSDs from the standard method, which uses a filter based on α101, and

the new constrained method, which evaluates a potential based on both τ101 and α101.

The constrained method produces a substantially larger fraction of low-RMSD models,

which should enable the development of new protocols that focus more time on other

aspects of antibody modeling, e.g. VL–VH orientation optimization. Additionally, the

same performance as the current RosettaAntibody should be expected by generating fewer

models.

Another goal for antibody structure prediction is to generate models of sufficient

quality to be used in downstream applications, namely antibody–antigen docking. To

assess the quality of the predicted H3 conformations, EnsembleDock was used with an

ensemble of the 10 top-scoring models and the bound conformation of the antigen. The

simulation correctly predicts the conformation of the complex. This is an idealized case

because the CDR H3 loop was modeled on the crystal framework and the bound form

of the antigen was used, but the successful simulation serves as important motivation

moving forward. The success of both the homology modeling and docking simulations

is encouraging and these simulations should be expanded to a larger set of structures to

fully assess the implications of the kink constraint. In summary, a constraint developed by

studying structures of H3 loops has enabled accurate de novo structure prediction of the

most diverse region of antibodies.
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6.1 My Contributions

Antibodies are important immunological molecules that will have an ever larger role in

pharmaceutical and biotechnological contexts. Developing the therapeutic antibodies,

designed vaccines and biosensors of the future will be accelerated through an increased

understanding of antibody structures. High-throughput sequencing methods coupled

with computational tools will help paint the most complete picture to date of antibody

diversity both in terms of sequence and structure. Atomically accurate structural models of

antibodies, particularly of the paratope, will be critical inputs to downstream computational

methods such as antibody–antigen docking algorithms.

My graduate research has focused on developing methods to improve protein

structure prediction. Chapter 2 summarizes the development of several tools that assist

in developing new methods by establishing a more structured organization of Rosetta,

developing a new visualization technique47 and controlling access to the degrees of freedom

to which the simulation has access. Additionally, this chapter presented work that extended

Rosetta to new classes of proteins (membrane proteins) and reorganizes a widely used
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application (RosettaDock42) using object-oriented design principles.

In Chapter 3, I summarized my previously-published work39 in predicting the

structures of eleven unpublished crystal structures. I found that the existing method,

RosettaAntibody, was adept at selecting low-RMSD structural templates when they are

available, but does not produce models with CDR H3 conformations that are accurate

enough to be used as inputs for another simulation. This prompted me to analyze CDR H3

structures to determine which factors contribute to the observed structural diversity of the

loop.

My previously-published work studying CDR H3 structures41 is presented in

Chapter 4. I found that the previously observed C-terminal kink is actually a feature that is

encoded into the immunoglobulin heavy chain and is not determined solely by the sequence

of the CDR H3 loop. The kink serves to disrupt β-strand pairing at the base of the loop,

which enables loops of the same length to adopt dramatically different conformations. I also

found that other protein families, namely PDZ domain containing proteins, have evolved

to use the same C-terminal kink for the same purpose of recognition and binding. Along

the way, I developed the most detailed description of the geometry of the kink to date using

two parameters (α101 and τ101) that can be used to assess the quality of CDR H3 models.

Finally in Chapter 5, I use the description of the kink developed in Chapter 4

to develop a new kink constraint that can be applied during a de novo loop modeling

simulation. Using this constraint with the next-generation KIC loop modeling method89

dramatically increases the number of kinked and low-RMSD models of CDR H3 loops.

Furthermore, this method produces models of sufficient quality for docking simulations
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using EnsembleDock,31 and leads to a substantial increase in the number of low-RMSD H3

loops produced with RosettaAntibody.22, 39

While the focus of this dissertation is on identifying weaknesses in existing anti-

body homology modeling methods, collecting data from known structures to address those

weaknesses, and ultimately developing an improved CDR H3 structure prediction method,

the end goal of improving the accuracy of antibody homology modeling methods remains

as potent as ever. To address this, we will incorporate the newly developed methods into an

all-new version of RosettaAntibody, which will be available as a stand-alone application in

the Rosetta software suite,32 a web server powered by ROSIE112 and through PyRosetta.45

6.2 Future Directions

In Chapter 3, I found that CDR H3 modeling was not the only problem plaguing antibody

structure prediction methods. Specifically, predicting CDR L3 on λ light chains, and poten-

tial differences in canonical CDR loop conformations of antibodies from different species

have proven difficult.

The failed prediction of an antibody from a rabbit was discussed in Chapter 3, and I

pointed out that a complicating factor in predicting rabbit antibody structures is the paucity

of structural models of rabbit antibodies developed from experimental data. One factor

I did not mention, though, is that there is evidence that rabbits undergo a process called

gene conversion,166 wherein V(D)J recombination is predominantly restricted to a single V

and J gene segment and one of several pseudogene segments may be incorporated into the

cDNA as the major source of diversity in the antibody repertoire. While other mammalian
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species, including mice167 and humans,168 have been shown to use gene conversion at

low levels, rabbits appear to rely on it almost entirely.166 Chickens are also known to use

gene conversion in this way, which will likely complicate structure prediction of chicken

antibodies.169–172

Gene conversion is not the only species-specific antibody oddity. Cows produce

antibodies with extremely long CDR H3 regions that are highly enriched with cysteines

that adopt, as Wang et al. deemed them, “stalk and knob” conformations.173 Camelids174

and cartilaginous fishes175 produce heavy-chain antibodies, which are antibodies with two

heavy chains and no light chains.

Accounting for these and other species-specific effects will continue to be necessary

to improve the accuracy of antibody structure prediction methods. For example, North et

al.19 found that the cluster membership of an eleven-residue CDR L1 loops has a strong

species dependence. This species preference can be explained by an explicit interaction

between the loop and framework residue L71. Human antibodies have a phenylalanine

at position 71, while mice have either phenylalanine or tyrosine, the latter of which forms

a hydrogen bond with eleven-residue CDR L1 loops. Thus, I expect that incorporating

this observation into the template section stage of antibody modeling will improve the

accuracy of RosettaAntibody. In addition to performing analyses to uncover these kinds of

interactions, one must pay careful attention to new studies conducted by other research

groups.

In Chapter 3, I showed that the unavailability of template structures is the leading

cause of modeling failures. To address this, we must communicate with crystallographers
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and NMR spectroscopists to explain which structures will be most beneficial for our pur-

poses and to gain access to unpublished structures. Blinded tests are the best simulation of

real-world use cases and force method developers to grapple with a tool’s true strengths

and weaknesses.

In Chapter 4 I showed that different statistical analyses of the same data can lead

to substantially different conclusions. Moving forward, we must continue to develop and

make use of bioinformatics techniques on structures and sequences in order to determine

what the data are really showing.

While this dissertation has focused on the C-terminal kink in CDR H3 loops, there

are other local structures within loops that could be exploited to further improve sampling

strategies. A common motif in loops is the β turn,176–181 which is a four-residue segment

where the backbone turns such that the Cα–Cα distance between residues i and i + 3 of the

motif is less than 7 Å. Preliminary calculations show that in an average 18-residue loop,

there will be two to three turns (15.2% of the 15 overlapping four-residue intervals). Each

turn restricts the torsion angles of the central two turn residues. Thus, the 36 degrees of

freedom in the loop could be reduced (assuming non-overlapping turns) to as few as 24

degrees of freedom (36− 3× 4), equivalent to a 12-residue loop prediction problem. This

reduction in the number of degrees of freedom provides another path forward for accurate

de novo modeling of increasingly long CDR H3 loops.

In order to continue to push the boundaries of what can be accurately modeled,

we must continue to make efficient use of supercomputing resources. A principle known as

Moore’s law182 states that number of transistors on an integrated circuit (IC), and thus the
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computing power of that IC, doubles roughly every two years. In recent years, Moore’s law

has broken down for serial execution of instructions, which has led to the development of

multi-core processors that can make up the difference through parallel execution of code.

Unfortunately, taking advantage of parallelism requires writing code that can be split into

several parallel tasks while maintaining internal integrity, which can require significant

effort. Additionally, new massively parallel hardware resources, specifically GPUs, have

become available for general purpose calculations through the advent of OpenCL183 and

CUDA.184 A popular molecular dynamics package, NAMD,185 has already been adapted to

use GPU-acceleration for its Coulombic and non-bonded force calculations leading to a 100

fold speedup in those calculations and 10 fold overall increase in performance.186 I believe

that in order to solve increasingly complex problems, we will need to take full advantage of

these massively parallel computational resources.
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Accesion Code ChainID N anchor C anchor Pfam
3kt7 A 190 206 2OG-FeII_Oxy_3
1vgj A 80 89 2_5_RNA_ligase2
2pzh A 64 90 4HBT
2ov9 A 191 201 4HBT
1vh9 A 117 127 4HBT
3r87 A 93 104 4HBT
3e1e A 117 130 4HBT
2xem A 79 105 4HBT_2
2gf6 A 95 104 4HBT_2
2oiw A 88 97 4HBT_2
1tbu A 99 108 4HBT_3
2z1a A 442 456 5_nucleotid_C
4jmd A 120 137 ADC
3qwb A 45 70 ADH_N
2wek A 72 99 ADH_N
1g8m A 435 444 AICARFT_IMPCHas
1zcz A 359 368 AICARFT_IMPCHas
3nyq A 283 293 AMP-binding
3etc A 349 359 AMP-binding
2v7b A 331 342 AMP-binding
3rix A 339 350 AMP-binding
4eat A 325 336 AMP-binding
1amu A 322 333 AMP-binding
3fce A 293 304 AMP-binding
2d1s A 341 352 AMP-binding
3vnr A 306 317 AMP-binding
3kxw A 324 335 AMP-binding

Continued on next page
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Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

1jdp A 372 388 ANF_receptor
3ats A 255 264 APH
2cu9 A 99 108 ASF1_hist_chap
1roc A 98 107 ASF1_hist_chap
2dwc A 235 244 ATP-grasp
1kjq A 223 232 ATP-grasp
3k5i A 209 218 ATP-grasp

3mwd A 202 216 ATP-grasp_2
2fp4 B 205 220 ATP-grasp_2
2nu8 B 198 213 ATP-grasp_2
3t7a A 308 321 ATP-grasp_4
3sty A 140 152 Abhydrolase_6
3sk3 A 218 227 Acetate_kinase
4h0p A 21 32 Acetate_kinase
3gy9 A 112 137 Acetyltransf_1
2q0y A 56 65 Acetyltransf_1
1z4e A 59 68 Acetyltransf_1
2dxq A 55 64 Acetyltransf_1
3dsb A 69 78 Acetyltransf_1
3f8k A 58 67 Acetyltransf_1
3fnc A 61 70 Acetyltransf_1
2pdo A 47 56 Acetyltransf_1
2x7b A 55 64 Acetyltransf_1
2gan A 71 80 Acetyltransf_1
1cjw A 83 92 Acetyltransf_1
4l8a A 54 63 Acetyltransf_1
3c26 A 63 72 Acetyltransf_1
2qec A 64 74 Acetyltransf_1
4kvx A 44 54 Acetyltransf_1
2vez A 98 108 Acetyltransf_1
3te4 A 76 86 Acetyltransf_1
4ag7 A 72 83 Acetyltransf_1
3t90 A 55 66 Acetyltransf_1
2o28 A 88 99 Acetyltransf_1
2b5g A 56 73 Acetyltransf_1
3r8y A 206 217 Acetyltransf_11
2ree A 288 313 Acetyltransf_4
4jxr A 57 67 Acetyltransf_4
3gkr A 243 256 Acetyltransf_6
4ii9 A 243 256 Acetyltransf_6
2jdc A 43 52 Acetyltransf_7
1xmt A 26 41 Acetyltransf_CG

Continued on next page
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Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

2rfq A 153 162 Acyl-CoA_dh_M
2h30 A 144 154 AhpC-TSA
4eo3 A 106 116 AhpC-TSA
3gkn A 126 136 AhpC-TSA
3lwa A 175 185 AhpC-TSA
4grf A 362 372 AhpC-TSA
4fo5 A 141 151 AhpC-TSA
3ros A 5 16 Aldedh
3r31 A 33 44 Aldedh
4kna A 19 30 Aldedh
3ju8 A 20 31 Aldedh
4h7n A 6 17 Aldedh
3vz1 A 4 15 Aldedh
3u4j A 39 51 Aldedh
4e3x A 80 92 Aldedh
2v9l A 91 106 Aldolase_II
1z45 A 499 526 Aldose_epim
1yga A 138 165 Aldose_epim
2cir A 216 225 Aldose_epim
1vav A 102 117 Alginate_lyase2
3n40 P 151 174 Alpha_E2_glycop
3eyp A 245 270 Alpha_L_fucos
4f0r A 373 403 Amidohydro_1
3ooq A 130 145 Amidohydro_4
4ig1 A 215 228 ApbE
4gve A 387 396 Arena_nucleocap
3q7c A 390 399 Arena_nucleocap
1vra A 28 40 ArgJ
3it4 A 26 39 ArgJ
1vl2 A 347 360 Arginosuc_synth

1g4m A 234 254 Arrestin_C
3ugu A 240 260 Arrestin_C
3fz4 A 96 105 ArsC
3no2 A 265 275 Arylsulfotran_2
1b5f A 80 106 Asp
1j71 A 90 116 Asp

1mpp A 80 106 Asp
4i0e A 137 165 Asp
3fv3 A 84 110 Asp
3vf3 A 76 104 Asp
4b78 A 76 104 Asp
3pvk A 90 116 Asp

Continued on next page
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Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

3zkq A 92 120 Asp
2-Apr A 201 210 Asp
3k1w A 207 216 Asp
3qp4 A 59 74 Autoind_bind
2rhs B 311 320 B3_4
2bf6 A 621 644 BNR_2
4j9t A 98 118 BNR_2
2bf6 A 298 318 BNR_2
2sli A 679 700 BNR_2
4j9t A 348 359 BNR_2
2jkb A 625 640 BNR_2
1nnx A 86 103 BOF
1vqz A 123 132 BPL_LplA_LipB
3rkx A 180 189 BPL_LplA_LipB
2dxu A 104 113 BPL_LplA_LipB
2c8m A 138 147 BPL_LplA_LipB
2eay A 96 105 BPL_LplA_LipB
3dzw A 32 41 B_lectin
3a0e A 33 42 B_lectin
1b2p A 43 52 B_lectin
1xd5 A 32 41 B_lectin
4gc1 A 47 56 B_lectin
1xd5 A 94 104 B_lectin
4h3o A 64 74 B_lectin
3a0e A 64 74 B_lectin
3dzw A 63 73 B_lectin
1b2p A 74 84 B_lectin
2okx A 840 859 Bac_rhamnosid
4a8u A 67 87 Bet_v_1
2qim A 66 86 Bet_v_1
3i7j A 79 96 Beta-lactamase

1m40 A 249 259 Beta-lactamase2
1jz8 A 841 850 Bgal_small_N
1yq2 A 934 943 Bgal_small_N
4dou A 456 465 C1q
1o91 A 676 685 C1q
4dou A 315 324 C1q
4dou A 174 183 C1q
1gr3 A 613 622 C1q
2wnv C 96 114 C1q
2fk9 A 46 55 C2
1tjx A 315 324 C2

Continued on next page
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Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

3vvv A 108 118 CALCOCO1
3p6b A 122 134 CBM_4_9
1goi A 473 496 CBM_5_12
1t4w A 380 390 CEP1-DNA_bind
3a2z A 144 163 CHAP
3eif A 848 858 CHU_C

1hq0 A 993 1008 CNF1
2dyu A 119 129 CN_hydrolase
2uxy A 120 130 CN_hydrolase
1uf5 A 112 122 CN_hydrolase
3hkx A 97 107 CN_hydrolase
3ouz A 230 240 CPSase_L_D2
1ulz A 228 238 CPSase_L_D2

2w70 A 230 240 CPSase_L_D2
4h3t A 364 375 CRISPR_Cse1
3ulj A 33 53 CSD

3by9 A 102 112 Cache_3
3k6d A 78 88 Cadherin
3k6i A 78 88 Cadherin
3pow A 183 192 Calreticulin
3pow A 111 130 Calreticulin
3gzk A 35 45 CelD_N
1ut9 A 242 252 CelD_N
1clc A 79 89 CelD_N
1eyq A 35 48 Chalcone
4dok A 30 43 Chalcone
1en2 A 17 37 Chitin_bind_1
2bem A 120 145 Chitin_bind_3
1edq A 78 87 ChitinaseA_N
1tt8 A 79 88 Chor_lyase

3km5 A 1250 1267 Cleaved_Adhesin
3m1h A 1522 1540 Cleaved_Adhesin
1d2o A 562 571 Cna_B
2x5p A 45 55 Cna_B
1txn A 138 148 Coprogen_oxidas
4b28 A 78 102 Creatinase_N
3hz2 A 7 37 Crystall
4iau A 88 115 Crystall
3lwk A 16 46 Crystall
4iau A 8 31 Crystall
1kbv A 173 200 Cu-oxidase
2dv6 A 298 325 Cu-oxidase

Continued on next page
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Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

1aoz A 143 169 Cu-oxidase
4e9x A 1146 1167 Cu-oxidase
3zx1 A 220 245 Cu-oxidase
3aw5 A 175 200 Cu-oxidase
3gdc A 182 193 Cu-oxidase_3
1yi9 A 110 139 Cu2_monooxygen
3sxx A 377 385 Cu_amine_oxid
1oac A 408 427 Cu_amine_oxid
1ksi A 325 344 Cu_amine_oxid
3sxx A 344 363 Cu_amine_oxid
3hi7 A 397 416 Cu_amine_oxid
3hi7 A 219 235 Cu_amine_oxidN3
1qks A 247 257 Cytochrom_D1
1nir A 229 239 Cytochrom_D1
1qks A 269 280 Cytochrom_D1
1nir A 251 262 Cytochrom_D1
2cfm A 435 448 DNA_ligase_A_C
1x9m A 8 17 DNA_pol_A_exo1
2hbj A 239 253 DNA_pol_A_exo1
3cym A 43 57 DNA_pol_A_exo1
4fj7 A 115 135 DNA_pol_B_exo1
3qex A 115 135 DNA_pol_B_exo1
1noy A 113 132 DNA_pol_B_exo1
3iay A 322 341 DNA_pol_B_exo1
2xkj E 1247 1260 DNA_topoisoIV
2xcs B 1245 1263 DNA_topoisoIV
3npp A 88 97 DUF1093
2qzb A 160 186 DUF1131
3zxk A 446 468 DUF1349
2q0x A 267 277 DUF1749
3ia8 A 95 112 DUF1794
1qw2 A 73 91 DUF1805
1lmi A 118 127 DUF1942
1uoy A 34 47 DUF1962
2hqy A 210 219 DUF2156
1wna A 45 63 DUF3197
2hql A 66 89 DUF3217
2owp A 104 119 DUF3225
1vkd A 243 266 DUF377
3taw A 112 132 DUF377
3kzt A 149 162 DUF3828
3u7z A 72 85 DUF4430
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3rob A 114 128 DUF4440
1yoc A 125 134 DUF4442
2iml A 101 118 DUF447
2if6 A 28 49 DUF830

4a9v A 510 525 DUF839
1iwp B 106 119 Dehydratase_MU
1ueb A 112 121 EFP
1xb2 B 230 247 EF_TS
1cl8 A 94 108 EcoRI
1na6 A 122 133 EcoRII-N
3ju4 A 404 415 End_beta_propel
1dy2 A 142 152 Endostatin
1i5p A 313 337 Endotoxin_mid
2c29 D 227 256 Epimerase
1axi B 110 119 EpoR_lig-bind
2rcf A 50 75 EutN_CcmL
4jg3 A 84 97 Exo_endo_phos
1ikp A 118 128 Exotox-A_bind
2j1a A 702 716 F5_F8_type_C
4a41 A 1435 1449 F5_F8_type_C
1k3i A 86 101 F5_F8_type_C
1nkq A 232 241 FAA_hydrolase
3lzk A 144 164 FAA_hydrolase
2vfr A 212 223 FAD-oxidase_C
2x3n A 133 143 FAD_binding_3
2dkh A 328 344 FAD_binding_3
2rj2 A 226 236 FBA

3r1m A 204 215 FBPase_3
2he7 A 321 330 FERM_C
1mix A 338 349 FERM_C
1h4r A 242 254 FERM_C
1ef1 A 226 238 FERM_C
4bc3 A 23 33 FGGY_N
3gqs A 28 50 FHA
2brf A 32 51 FHA
3kt9 A 26 45 FHA
1sqh A 213 224 FR47
4b0b A 146 155 FabA
3tdq A 72 85 Fimbrial_PilY2
1usc A 118 140 Flavin_Reduct
2qck A 117 139 Flavin_Reduct
3fge A 134 158 Flavin_Reduct
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3d6r A 134 143 Flu_NS1
3d6r A 148 158 Flu_NS1
3rvc A 148 158 Flu_NS1
4iib A 842 852 Fn3-like
4i3g A 811 821 Fn3-like
3obi A 197 217 Formyl_trans_N
2d0o A 17 31 FtsA
2isb A 66 78 Fumerase_C
4agi A 186 206 Fungal_lectin
3tip A 595 606 G5

4g3v A 46 59 GAF
3s7o A 174 188 GAF
4glq A 461 475 GAF
2ool A 183 197 GAF
3w2z A 57 71 GAF

4.00E+04 A 170 184 GAF
3zq5 A 174 188 GAF
3db2 A 203 215 GFO_IDH_MocA_C
3q2i A 211 223 GFO_IDH_MocA_C
4koa A 200 213 GFO_IDH_MocA_C
2glx A 200 213 GFO_IDH_MocA_C
3dty A 230 243 GFO_IDH_MocA_C
3ip3 A 203 217 GFO_IDH_MocA_C
2p2s A 203 217 GFO_IDH_MocA_C
1h6d A 289 304 GFO_IDH_MocA_C
4hkt A 194 210 GFO_IDH_MocA_C
3ezy A 194 210 GFO_IDH_MocA_C
2wsh A 38 47 GIY-YIG
4jv8 B 79 88 GMP_PDE_delta
4jv8 B 21 32 GMP_PDE_delta
3g3s A 33 41 GNAT_acetyltran
3g3s A 163 172 GNAT_acetyltran
2ism A 233 262 GSDH
3das A 108 131 GSDH
1cru A 115 135 GSDH
2ism A 289 311 GSDH
2g8s A 96 116 GSDH
2ism A 106 124 GSDH
2c78 A 387 396 GTP_EFTU_D3
1d2e A 423 432 GTP_EFTU_D3
1jny A 363 374 GTP_EFTU_D3
2v36 B 470 479 G_glu_transpept
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3nv1 A 225 234 Gal-bind_lectin
2r0h A 49 59 Gal-bind_lectin
2wkk A 40 50 Gal-bind_lectin
4gxl A 259 270 Gal-bind_lectin
3mbr X 109 120 Glu_cyclase_2
2iwa A 69 80 Glu_cyclase_2
2vgd A 76 95 Glyco_hydro_11
3vgi A 174 203 Glyco_hydro_12
1ks5 A 95 122 Glyco_hydro_12
3amn A 112 140 Glyco_hydro_12
2nlr A 100 126 Glyco_hydro_12
3vl9 A 107 118 Glyco_hydro_12
2nlr A 106 119 Glyco_hydro_12
1olr A 105 119 Glyco_hydro_12
1ks5 A 101 115 Glyco_hydro_12
2hyk A 181 190 Glyco_hydro_16
3azy A 191 200 Glyco_hydro_16
3i4i A 159 168 Glyco_hydro_16

1o4y A 216 225 Glyco_hydro_16
2uwa A 154 163 Glyco_hydro_16
3dgt A 207 216 Glyco_hydro_16
4asm B 229 238 Glyco_hydro_16
4atf A 258 267 Glyco_hydro_16
3rq0 A 201 214 Glyco_hydro_16
3cmg A 282 291 Glyco_hydro_2
2je8 A 313 322 Glyco_hydro_2
3hn3 A 261 271 Glyco_hydro_2
4amw A 808 817 Glyco_hydro_31
3lig A 337 358 Glyco_hydro_32N
3lig A 245 269 Glyco_hydro_32N
3kf3 A 81 100 Glyco_hydro_32N
1w2t A 45 64 Glyco_hydro_32N
1w2t A 162 181 Glyco_hydro_32N
3bvx A 686 696 Glyco_hydro_38C
3bvx A 1010 1021 Glyco_hydro_38C
3bmx A 616 628 Glyco_hydro_3_C
3c7f A 126 148 Glyco_hydro_43
3c2u A 211 233 Glyco_hydro_43
3k1u A 38 59 Glyco_hydro_43
2exh A 212 234 Glyco_hydro_43
3p2n A 200 221 Glyco_hydro_43
2x8s A 127 147 Glyco_hydro_43
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3akh A 42 63 Glyco_hydro_43
3qee A 130 152 Glyco_hydro_43
1uv4 A 214 244 Glyco_hydro_43
3c7f A 256 276 Glyco_hydro_43
1yif A 211 233 Glyco_hydro_43

3nqh A 184 195 Glyco_hydro_43
1uv4 A 201 214 Glyco_hydro_43
3nqh A 71 90 Glyco_hydro_43
3fef A 203 216 Glyco_hydro_4C

4b5q A 81 106 Glyco_hydro_61
3vmn A 343 352 Glyco_hydro_66
2yfr A 491 514 Glyco_hydro_68
1oyg A 191 218 Glyco_hydro_68
3vss A 343 364 Glyco_hydro_68
2yfr A 495 508 Glyco_hydro_68
3lm4 A 181 190 Glyoxalase
2zyq A 192 202 Glyoxalase
2wl9 A 42 52 Glyoxalase_2
2ehz A 45 55 Glyoxalase_2
3lm4 A 45 57 Glyoxalase_2
3k1t A 47 60 GshA
4hxw A 148 167 HATPase_c
3lnu A 179 198 HATPase_c
1td4 A 39 62 HDPD
3k7i B 132 150 HH_signal
1v3e A 508 517 HN
2vsm A 251 269 HN
1v3e A 225 243 HN
2p08 A 21 31 HNOBA
4f01 A 398 412 HSP70
1u00 A 395 409 HSP70
2op6 A 425 439 HSP70
3dqg A 423 437 HSP70
2ykf A 41 55 H_kinase_N
1dk0 A 45 54 HasA
3oyo A 84 99 Hemopexin
1eyb A 167 187 HgmA
3tpd A 159 178 HipA_N
2z1c A 42 51 HupF_HypC
3esg A 29 40 HutD
2b0t A 432 442 IDH
2idr A 195 213 IF4E
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3mfi A 52 61 IMS
4ecq A 35 49 IMS
1yoe A 258 288 IU_nuc_hydro
2o99 A 132 142 IclR
1iam A 122 131 Ig_2
3bn3 B 125 134 Ig_2
3ry4 A 122 131 Ig_2
1rhf A 132 141 Ig_2
1jiw I 69 79 Inh

3m86 A 101 114 Inhibitor_I42
2qfl A 104 113 Inositol_P

2p3n A 99 108 Inositol_P
3lv0 A 106 115 Inositol_P
1ka1 A 161 170 Inositol_P
2q7d A 280 295 Ins134_P3_kin
2p26 A 65 80 Integrin_beta
1xs0 A 57 65 Ivy
3apa A 99 107 Jacalin
3cz7 A 54 63 KAT11
3biy A 1361 1374 KAT11
4fdw A 128 137 LRR_5
1ljo A 48 57 LSM

1mgq A 55 64 LSM
4fp5 D 80 93 LT-IIB
3scy A 259 272 Lactonase
3hfq A 111 125 Lactonase
1ri6 A 203 218 Lactonase
2erf A 88 99 Laminin_G_2
1t2d A 278 287 Ldh_1_C
1a5z A 291 301 Ldh_1_C
2i6t A 431 440 Ldh_1_C

1pzg A 291 301 Ldh_1_C
4bgt A 269 278 Ldh_1_C
4ajj A 292 301 Ldh_1_C

1mld A 268 277 Ldh_1_C
1guz A 268 277 Ldh_1_C
3vpg A 291 300 Ldh_1_C
1z2i A 209 225 Ldh_2
1ijq A 476 491 Ldl_recept_b
3sov A 118 133 Ldl_recept_b
4a0p A 1082 1097 Ldl_recept_b
3sov A 162 177 Ldl_recept_b
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4a0p A 728 743 Ldl_recept_b
4a0p A 814 829 Ldl_recept_b
4a0p A 1037 1052 Ldl_recept_b
4a0p A 685 700 Ldl_recept_b
3sov A 74 91 Ldl_recept_b
3zyr A 157 167 Lectin_legB
1hql A 146 156 Lectin_legB
1avb A 130 140 Lectin_legB
2fmd A 145 155 Lectin_legB
1fx5 A 145 155 Lectin_legB
1nls A 26 36 Lectin_legB
1led A 147 157 Lectin_legB
1gzc A 144 154 Lectin_legB
2eig A 137 147 Lectin_legB
2fsq A 220 234 LigT_PEase
3o22 A 114 137 Lipocalin
2ypv A 92 113 Lipoprot_C
2i5v O 224 233 Lipoprotein_1
2i5v O 124 134 Lipoprotein_1
1xs5 A 130 147 Lipoprotein_9
3fg1 A 699 713 Lipoxygenase
1iwm A 128 138 LolB
3fka A 100 113 Lumazine_bd_2
2hje A 116 125 LuxQ-periplasm
2nyk A 38 48 M157
2qyv A 253 263 M20_dimer
4gwm A 356 375 MAM
3gmo A 117 126 MHC_I
1lqv A 30 39 MHC_I
3fru A 111 120 MHC_I
1u58 A 31 40 MHC_I
3jvg A 111 120 MHC_I
4g43 A 25 34 MHC_I
1k5n A 25 34 MHC_I
4l4v A 111 120 MHC_I
1t7v A 30 39 MHC_I
1nez A 25 34 MHC_I
2pq8 A 302 316 MOZ_SAS
3k67 A 141 150 MaoC_dehydratas
4gr5 A 13 39 MbtH
2oiz A 361 372 Me-amine-dh_H

2p0w A 222 240 Mec-17
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2qfp A 403 416 Metallophos_C
1eu1 A 19 28 Molybdop_Fe4S4
1kqf A 61 77 Molybdop_Fe4S4
1jcf A 162 171 MreB_Mbl

2x5o A 247 256 Mur_ligase_M
2odi A 159 178 MvaI_BcnI
3pms A 213 222 N-glycanase_C
3pms A 64 79 N-glycanase_N
4art A 60 89 NA
1vlm A 175 199 NA
2zxr A 505 526 NA
3zwl B 123 145 NA
2z5w A 89 109 NA
4b70 A 76 104 NA
4b72 A 76 104 NA
3f8t A 128 136 NA
1lqt A 278 286 NA

2gwn A 21 30 NA
4asm B 42 51 NA
1kve B 192 201 NA
1p7t A 219 228 NA
2xfg B 600 609 NA
3ze9 B 35 44 NA
3fo8 D 117 126 NA
1e3d B 31 40 NA
1h72 C 16 25 NA
1g87 A 601 610 NA
4h3o A 32 41 NA
1cc1 L 30 39 NA
2wm1 A 38 47 NA
3hpa A 54 63 NA
3myr B 1021 1030 NA
3nzn A 2 12 NA
2cy2 A 62 72 NA
1nv8 A 264 274 NA
1sqj A 249 259 NA
2z8x A 125 135 NA
4ii9 A 45 55 NA
3gkr A 45 55 NA
4aio A 100 110 NA
2qub A 125 135 NA
3ayx A 35 45 NA
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3uqy L 35 45 NA
2w18 A 992 1002 NA
3fed A 119 129 NA
4jgp A 107 117 NA
2wfw A 203 214 NA
2x5r A 95 106 NA
2wlg A 179 190 NA
3fot A 449 460 NA
3jqy A 204 215 NA
3sbq A 156 167 NA
2cvb A 136 147 NA
3nok A 66 77 NA
3obf A 150 163 NA
2w18 A 1138 1149 NA
2xgr A 185 196 NA
1wzn A 230 242 NA
3bjn A 106 119 NA
2jbv A 336 348 NA
3it5 A 22 34 NA

4eqa C 144 157 NA
4f8l A 111 124 NA

4b9g A 137 150 NA
2ia2 A 112 125 NA
2py5 A 13 26 NA
3ts3 A 509 522 NA
4ha6 A 335 349 NA
4gt6 A 40 54 NA
3f6k A 205 220 NA
1dp4 A 377 392 NA
3thr A 268 283 NA
3qne A 353 368 NA
1ijq A 387 402 NA

4h2w A 237 252 NA
3f6k A 252 267 NA
1wle A 388 403 NA
3lss A 371 386 NA
3zn4 A 76 91 NA
3sov A 30 47 NA
1r85 A 332 349 NA
4fh3 A 130 147 NA
3hjr A 378 396 NA
3kya A 424 438 NHL
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3hrp A 174 189 NHL
3hrp A 367 382 NHL
4g38 A 502 519 NIR_SIR
3b0g A 512 530 NIR_SIR
3npf A 248 263 NLPC_P60
2wuu A 113 124 NMT
1iic A 136 147 NMT

2wuu A 312 321 NMT_C
3iu1 A 386 396 NMT_C
2vng A 142 151 NPCBM
4k1v A 105 115 NTF2
4k1u A 105 115 NTF2
1jkg A 113 130 NTF2

2xme A 150 170 NTP_transferase
1yp2 A 184 194 NTP_transferase
2fvv A 73 102 NUDIX
3ees A 79 106 NUDIX
3bho A 149 170 NUDIX_2
3hx6 A 849 860 Neisseria_PilC
4gdi A 204 213 Neur
1yqw Q 293 311 NiFeSe_Hases
1o13 A 6 26 Nitro_FeMo-Co
1x8q A 87 97 Nitrophorin
1x7d A 90 101 OCD_Mu_crystall
2x3l A 125 136 OKR_DC_1
2x3l A 398 409 OKR_DC_1_C
2x55 A 142 166 Omptin
3szv A 129 151 OprD
4frx A 137 159 OprD
3t0s A 130 152 OprD
2y2x A 132 154 OprD
2e8e A 70 82 OsmC
2d7v A 101 115 OsmC
4b2z A 269 279 Oxysterol_BP
1zhx A 249 265 Oxysterol_BP
3blj A 629 637 PARP

3hkv A 979 987 PARP
2pqf A 652 660 PARP
3smj A 1693 1701 PARP
2x5y A 868 876 PARP
4ew7 A 35 45 PAS
2qkp A 344 354 PAS_10
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3s7o A 42 53 PAS_2
2r78 A 28 38 PAS_9
3olo A 24 34 PAS_9
2gj3 A 39 49 PAS_9
3d72 A 74 87 PAS_9
4eet B 392 405 PAS_9
2z6d A 136 149 PAS_9
4hqa A 30 43 PAS_9
1n9l A 23 36 PAS_9
4hp4 A 30 43 PAS_9
3t50 A 35 48 PAS_9
4hoi A 31 44 PAS_9
2wad A 285 295 PBP_dimer
3chm A 141 156 PCI
3sfj A 32 60 PDZ
2h3l A 1334 1358 PDZ
2fe5 A 238 259 PDZ
3qe1 A 53 81 PDZ
3egg C 508 530 PDZ
2jik A 25 46 PDZ

4h11 A 110 131 PDZ
1r6j A 211 220 PDZ
3soe A 615 628 PDZ
1kwa A 503 517 PDZ
2qg1 A 1738 1753 PDZ
3o46 A 151 166 PDZ
1qau A 30 45 PDZ
2uzc A 16 32 PDZ
3nfk A 530 546 PDZ
2pkt A 16 32 PDZ
3hpk A 35 51 PDZ
1qav A 94 110 PDZ
2i04 A 464 480 PDZ
2q3g A 16 32 PDZ
2v1w A 15 31 PDZ
2pa1 A 15 31 PDZ
2v90 A 261 279 PDZ
3k50 A 98 118 PDZ_2
2wzb A 285 314 PGK
16pk A 288 316 PGK
1php A 266 294 PGK
3v5w A 589 599 PH
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3no8 A 423 434 PHR
1e8y A 386 395 PI3K_C2
3d8d A 432 443 PID
2ej8 A 69 80 PID
2wfp A 8 35 PMI_typeI
1qwr A 12 37 PMI_typeI
1jb7 A 147 173 POT1
3jqw A 926 936 PPC
4guc A 91 109 PPC
2nnu A 111 136 PPV_E2_N
1tue B 115 140 PPV_E2_N
2ad6 A 488 499 PQQ
3vgz A 297 308 PQQ_2
3vgz A 72 83 PQQ_2
2zuy A 492 507 PQQ_2
2wjn H 171 182 PRC
1rzh H 167 178 PRC
3n0a A 253 262 PTEN_C2
2xm5 A 110 120 PTase_Orf2
3d79 A 136 160 PUA
3r90 A 144 168 PUA
1q7h A 118 142 PUA
4dmg A 51 67 PUA
1wxx A 45 61 PUA
2qjf A 327 336 PUA_2
2f9w A 15 25 Pan_kinase
3qu1 A 81 106 Pep_deformylase
3svj P 117 146 Pep_deformylase
2os0 A 101 130 Pep_deformylase
2okl A 97 126 Pep_deformylase
1rl4 A 145 171 Pep_deformylase
1xeo A 80 105 Pep_deformylase
1lqy A 97 126 Pep_deformylase

1m6d A 133 159 Peptidase_C1
1iwd A 132 158 Peptidase_C1
2bdz A 133 159 Peptidase_C1
1cqd A 135 161 Peptidase_C1
1s4v A 136 162 Peptidase_C1
2fo5 A 141 167 Peptidase_C1
2wbf X 735 762 Peptidase_C1
3qj3 A 240 267 Peptidase_C1
3ovx A 83 108 Peptidase_C1
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3f75 A 141 167 Peptidase_C1
2p86 A 138 162 Peptidase_C1
3ioq A 133 159 Peptidase_C1
2pns A 131 157 Peptidase_C1
3kwz A 134 162 Peptidase_C1
1ppo A 133 159 Peptidase_C1
2cio A 133 159 Peptidase_C1
1yal A 133 159 Peptidase_C1
3i06 A 138 162 Peptidase_C1
3gq8 A 661 669 Peptidase_G2
1k7i A 322 332 Peptidase_M10_C
3u1r A 324 334 Peptidase_M10_C
1kap P 310 320 Peptidase_M10_C
3u1r A 454 465 Peptidase_M10_C
3rva A 218 240 Peptidase_M24
3nqx A 390 403 Peptidase_M4_C
3v39 A 334 354 Peptidase_S13
1k32 A 992 1011 Peptidase_S41
4hvt A 96 116 Peptidase_S9_N
2xe4 A 218 228 Peptidase_S9_N
2xdw A 362 373 Peptidase_S9_N
2bkl A 95 110 Peptidase_S9_N
4hvt A 201 217 Peptidase_S9_N
1yr2 A 244 261 Peptidase_S9_N
2xe4 A 228 245 Peptidase_S9_N
2xdw A 406 423 Peptidase_S9_N
4hvt A 217 234 Peptidase_S9_N
1yr2 A 134 152 Peptidase_S9_N
1pea A 341 355 Peripla_BP_5
3n0w A 358 379 Peripla_BP_6
4f06 A 361 378 Peripla_BP_6
4eyg A 362 379 Peripla_BP_6
4evq A 361 379 Peripla_BP_6
3w1e A 183 192 Pfam-B_10290
3lwt X 369 379 Pfam-B_11583
4ktb A 45 55 Pfam-B_11859
1jz8 A 699 716 Pfam-B_12060
1pl3 A 144 165 Pfam-B_12144
2o14 A 102 111 Pfam-B_1453
4h5u A 257 267 Pfam-B_15998
4hgd A 257 267 Pfam-B_15998
4hg5 A 257 267 Pfam-B_15998
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4i0o A 107 118 Pfam-B_164
3un7 A 54 63 Pfam-B_17421
1oxx K 212 221 Pfam-B_1850
4kl8 L 30 39 Pfam-B_19006
1wui L 41 50 Pfam-B_19006
1yqw Q 32 41 Pfam-B_19006
4kn9 L 30 39 Pfam-B_19006
4ko2 L 30 39 Pfam-B_19006
3gre A 1303 1314 Pfam-B_2035
2zxq A 484 514 Pfam-B_3371
2w18 A 935 943 Pfam-B_3828
3c9i A 1160 1169 Pfam-B_475
2wfw A 123 133 Pfam-B_475
3sbq A 472 485 Pfam-B_475
1fwx A 415 428 Pfam-B_475
1fwx A 185 205 Pfam-B_5
1fwx A 132 140 Pfam-B_5
1fwx A 106 117 Pfam-B_5
1fwx A 83 94 Pfam-B_5
3dwv A 142 152 Pfam-B_512
2v1m A 137 147 Pfam-B_512
3no2 A 36 47 Pfam-B_518
4ind A 315 331 Pfam-B_518
3gre A 1368 1384 Pfam-B_518
3sbq A 237 257 Pfam-B_5281
3sbq A 182 190 Pfam-B_5281
3s25 A 117 132 Pfam-B_5657
3e4g A 37 64 Pfam-B_655
3w9a A 156 165 Pfam-B_656
1fwx A 379 391 Pfam-B_7
3sbq A 436 448 Pfam-B_7
3h43 A 135 146 Pfam-B_7134
3te8 A 90 119 Pfam-B_7838

2.00E+11 A 218 228 Pfam-B_827
1uf5 A 249 259 Pfam-B_827
3hwp A 198 210 Pfam-B_8359
3f6k A 342 357 Pfam-B_89
2pkf A 15 41 PfkB
2abq A 15 30 PfkB
2v5i A 639 649 PhageP22-tail
2vfo A 594 604 PhageP22-tail
3d37 A 60 69 Phage_GPD
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3hxl A 134 143 Phage_sheath_1
1ub0 A 40 49 Phos_pyr_kin
1l5w A 180 195 Phosphorylase
3amr A 156 174 Phytase
3lxl A 889 899 Pkinase_Tyr
1vl4 A 33 42 PmbA_TldD
2vxq A 63 82 Pollen_allerg_1
2zzj A 91 110 Polysacc_lyase
1stm A 75 86 Potex_coat
4k8l A 129 138 Pro_racemase

1w61 A 46 63 Pro_racemase
3nec A 22 33 Profilin
2jkg A 25 36 Profilin
1ryp 2 19 28 Proteasome
3mfb A 396 407 Pyocin_S
3ef6 A 211 219 Pyr_redox
1nhs A 217 225 Pyr_redox
1q1r A 217 228 Pyr_redox
2q9k A 84 111 Pyridox_oxidase
3of7 A 373 383 RCC1
2ewf A 438 448 RE_AlwI
3dd6 A 165 186 RNase_PH_C
1r6l A 166 186 RNase_PH_C
2igi A 12 26 RNase_T

3v9w A 24 38 RNase_T
1wlj A 12 27 RNase_T
2gui A 13 32 RNase_T

2qm1 A 18 28 ROK
4htl A 16 26 ROK
1xiy A 140 149 Redoxin
4f82 A 136 145 Redoxin
2xhf A 162 171 Redoxin
1kng A 160 170 Redoxin
2b1k A 147 157 Redoxin
1fn9 A 25 42 Reovirus_cap
2b3g A 75 103 Rep-A_N
3i3f A 17 32 Ribonuc_L-PSP
1jy5 A 168 177 Ribonuclease_T2
2pqx A 195 206 Ribonuclease_T2
2gbw A 105 115 Rieske
1uli A 123 133 Rieske

2gbw B 142 155 Ring_hydroxyl_B
Continued on next page
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Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

1wql B 152 167 Ring_hydroxyl_B
1gqv A 109 129 RnaseA
1m07 A 94 103 RnaseA
3snf A 88 97 RnaseA
2zpo A 105 114 RnaseA
1oj8 A 88 97 RnaseA
2vq9 A 111 120 RnaseA
2p7s A 98 107 RnaseA
1agi A 106 115 RnaseA
2vq8 A 110 119 RnaseA
4aoh A 105 114 RnaseA
3tsr A 109 120 RnaseA
1rnf A 105 116 RnaseA
1dy5 A 108 119 RnaseA
2e0j A 108 119 RnaseA
4a2o A 109 128 RnaseA
1gk8 I 108 119 RuBisCO_small
3s82 A 186 195 S-AdoMet_synt_M
2cw5 A 82 107 SAM_adeno_trans
2q6k A 84 111 SAM_adeno_trans
2ece A 250 273 SBP56
2ece A 46 62 SBP56
2ece A 281 298 SBP56
3g4e A 174 194 SGL
2dg1 A 205 227 SGL
2ghs A 242 252 SGL
3o4p A 179 189 SGL
1pby B 118 129 SGL
2ghs A 150 163 SGL
2p4o A 233 247 SGL
3o4p A 47 62 SGL
3e5z A 91 106 SGL
2p4o A 189 208 SGL
2jk9 A 187 201 SPRY
1woc A 74 96 SSB
2sic I 15 29 SSI
3fss A 105 114 SSrecog
2prv A 111 126 SUKH_6
3hie A 154 168 Sec3-PIP2_bind
2q0z X 260 271 Sec63
2j3w A 8 18 Sedlin_N
3cxk A 52 63 SelR

Continued on next page

152



A P P E N D I X A . C O M P L E T E L I S T O F L AT + K I N K M AT C H E S

Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

3hcg A 419 430 SelR
3hcj A 50 61 SelR

3mao A 20 31 SelR
3al9 A 71 81 Sema
3ozq A 372 381 Serpin
2arr A 397 408 Serpin

1wz9 A 357 368 Serpin
2pef A 404 415 Serpin
1sjw A 109 118 SnoaL
1oh0 A 105 115 SnoaL_2
3ff2 A 31 41 SnoaL_2
1f1g A 118 145 Sod_Cu
1xtm A 164 185 Sod_Cu
1ej8 A 132 151 Sod_Cu
1p7g A 143 173 Sod_Fe_C
4f2n A 158 188 Sod_Fe_C
1coj A 130 160 Sod_Fe_C
2rcv A 133 161 Sod_Fe_C
1ids A 127 157 Sod_Fe_C
1b06 A 137 167 Sod_Fe_C
4f6e A 135 165 Sod_Fe_C
3dc5 A 124 152 Sod_Fe_C
4ffk A 145 175 Sod_Fe_C

1mng A 134 163 Sod_Fe_C
3h1s A 124 153 Sod_Fe_C
1dt0 A 124 153 Sod_Fe_C
3g66 A 221 229 Sortase
4g1h A 218 226 Sortase
3o0p A 219 227 Sortase
4g1j A 225 233 Sortase
1o6a A 124 141 SpoA
1ryq A 30 59 Spt4
3lpe B 27 56 Spt4
4ia6 A 252 265 Strep_67kDa_ant
2okg A 273 283 Sugar-bind
2qzu A 425 434 Sulfatase_C
2p0a A 351 365 Synapsin_C
3nje A 113 136 T2SJ
1t6e X 207 232 TAXi_C
4acj A 752 762 TLD
1aol A 16 26 TLV_coat
1uwv A 50 68 TRAM

Continued on next page
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Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

2ahn A 54 69 Thaumatin
2yj7 A 78 87 Thioredoxin
2i1u A 84 93 Thioredoxin
2voc A 76 85 Thioredoxin
1nw2 A 76 85 Thioredoxin
2yzu A 78 87 Thioredoxin
1v98 A 109 118 Thioredoxin
3die A 76 85 Thioredoxin
2hls A 199 208 Thioredoxin_3
2qgu A 152 165 Tol_Tol_Ttg2
1xkw A 630 638 TonB_dep_Rec
2h5f A 36 50 Toxin_1
1epw A 1014 1023 Toxin_R_bind_N
2vxr A 1023 1032 Toxin_R_bind_N

3pme A 1020 1029 Toxin_R_bind_N
3pbt A 510 518 Transpeptidase
3un7 A 446 454 Transpeptidase
2wad A 637 645 Transpeptidase
1vqq A 543 559 Transpeptidase
3qva A 23 32 Transthyretin
1fxy A 32 42 Trypsin
1elv A 620 636 Trypsin
1jke A 12 21 Tyr_Deacylase
2okv A 12 21 Tyr_Deacylase
1j7g A 12 21 Tyr_Deacylase
2pkh A 144 153 UTRA
2fa1 A 135 144 UTRA
2ikk A 133 142 UTRA
1wdj A 88 113 Uma2
3ijm A 68 79 Uma2
1uwk A 490 499 Urocanase
1hkf A 92 103 V-set
2pnd A 36 49 V-set
2jju A 37 50 V-set

2yz1 A 96 110 V-set
1smo A 54 68 V-set
3r0n A 69 83 V-set
2qhl A 33 47 V-set
2q87 A 85 101 V-set
3t3p A 390 405 VCBS
4drr A 175 188 VP4_haemagglut
1lsh A 50 68 Vitellogenin_N
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Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

2r51 A 208 229 Vps26
3odt A 163 172 WD40
3odt A 122 131 WD40
4gqb B 150 161 WD40
3zwl B 221 232 WD40
4ery A 112 123 WD40
4ery A 154 165 WD40
4j73 A 253 264 WD40
1nr0 A 264 275 WD40
3frx A 90 101 WD40
3vl1 A 161 172 WD40
4j0w A 348 359 WD40
3vl1 A 203 214 WD40
1got B 209 220 WD40
3zwl B 77 88 WD40
1got B 167 178 WD40
2pbi B 264 275 WD40
4ery A 239 250 WD40
4lg8 A 417 428 WD40
2pbi B 222 233 WD40
4j87 A 120 131 WD40
3w15 A 86 98 WD40
3vl1 A 313 325 WD40
4i79 A 243 255 WD40
3i2n A 142 154 WD40
4ggc A 291 303 WD40
3fm0 A 175 188 WD40
2hes X 178 191 WD40
3fm0 A 41 54 WD40
3fm0 A 130 144 WD40
2xyi A 257 271 WD40
1gxr A 508 522 WD40
3odt A 35 51 WD40
3gre A 1106 1123 WD40
2hes X 224 243 WD40
2ygo A 155 165 WIF
3hbz A 263 287 Xylanase
2oc3 A 91 101 Y_phosphatase
1t82 A 124 133 YiiD_Cterm
3lmb A 135 153 YiiD_Cterm
1t71 A 248 259 YmdB
3dn7 A 57 71 cNMP_binding
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Table A.1 – Continued from previous page
Accesion Code ChainID N anchor C anchor Pfam

3zpg A 34 43 dCMP_cyt_deam_1
2hxv A 29 38 dCMP_cyt_deam_1
2a8n A 29 38 dCMP_cyt_deam_1
1wkq A 29 38 dCMP_cyt_deam_1
2nx8 A 41 50 dCMP_cyt_deam_1
2yv5 A 50 64 eIF-1a
3i4o A 54 70 eIF-1a
1khi A 154 167 eIF-5a
2eif A 117 130 eIF-5a

1x6o A 146 159 eIF-5a
4af1 A 159 172 eRF1_2
3lpw A 6 31 fn3
3f7q A 1220 1245 fn3
2w1n A 947 956 fn3
3b4n A 48 64 fn3
1nkg A 307 316 fn3_3
2wm5 A 409 422 p450
1q5d A 395 408 p450
3r9b A 396 409 p450
3ut2 A 721 732 peroxidase
3vlj A 669 680 peroxidase
3u1f A 487 497 tRNA-synt_1g
3nem A 354 363 tRNA-synt_2
1e1o A 414 423 tRNA-synt_2
3a74 A 404 413 tRNA-synt_2
2xgt A 463 473 tRNA-synt_2
1nnh A 206 217 tRNA-synt_2
1x54 A 348 359 tRNA-synt_2
1g5h A 262 275 tRNA-synt_2b
3hy0 A 183 211 tRNA-synt_2c
2ztg A 202 211 tRNA-synt_2c
1yfs A 174 193 tRNA-synt_2c
3teg A 240 253 tRNA-synt_2d
3nem A 74 94 tRNA_anti-codon
3a74 A 114 132 tRNA_anti-codon
1r0v A 244 260 tRNA_int_endo
2qkd A 256 268 zf-ZPR1
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PFam Architecture Matches Aligns GO tags

WD40 34 4 protein binding

PDZ 23 1 protein binding

Acetyltransf_1 21 5 N-acetyltransferase activity

Peptidase_C1 18 2 cysteine-type peptidase
activity; proteolysis

RnaseA 15 1 NA

Glyco_hydro_43 14 9 hydrolase activity, hydrolyzing
O-glycosyl compounds;
carbohydrate metabolic
process

Sod_Fe_C 12 1 superoxide dismutase activity;
metal ion binding; superoxide
metabolic process;
oxidation-reduction process

Continued on next page

157



A P P E N D I X B . P FA M S T H AT O C C U R M O R E T H A N O N C E

Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

PAS_9 11 2 signal transducer activity;
signal transduction

Asp 11 4 aspartic-type endopeptidase
activity; proteolysis

MHC_I 10 3 immune response; antigen
processing and presentation

Peptidase_S9_N 10 5 serine-type endopeptidase
activity; serine-type
exopeptidase activity

B_lectin 10 3 NA

GFO_IDH_MocA_C 10 5 oxidoreductase activity;
metabolic process;
oxidation-reduction process

AMP-binding 10 2 catalytic activity; metabolic
process

SGL 10 9 NA

Glyco_hydro_16 9 1 hydrolase activity, hydrolyzing
O-glycosyl compounds;
carbohydrate metabolic
process

Lectin_legB 9 1 carbohydrate binding

Ldl_recept_b 9 2 NA

Glyco_hydro_12 8 4 cellulase activity;
polysaccharide catabolic
process

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

Ldh_1_C 8 1 oxidoreductase activity, acting
on the CH-OH group of
donors, NAD or NADP as
acceptor; oxidation-reduction
process

Aldedh 8 1 oxidoreductase activity;
metabolic process;
oxidation-reduction process

V-set 8 4 NA

Pep_deformylase 7 3 NA

GAF 7 4 protein binding

Thioredoxin 7 1 cell redox homeostasis

tRNA-synt_2 6 1 nucleotide binding;
aminoacyl-tRNA ligase
activity; ATP binding; tRNA
aminoacylation for protein
translation

AhpC-TSA 6 2 antioxidant activity;
oxidoreductase activity;
oxidation-reduction process

BNR_2 6 2 NA

GSDH 6 3 oxidoreductase activity, acting
on the CH-OH group of
donors, quinone or similar
compound as acceptor;
quinone binding;
carbohydrate metabolic
process

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

Cu-oxidase 6 1 oxidoreductase activity;
oxidation-reduction process

C1q 6 2 NA

BPL_LplA_LipB 5 1 cellular protein modification
process

4HBT 5 4 NA

Cu_amine_oxid 5 2 copper ion binding; primary
amine oxidase activity;
quinone binding; amine
metabolic process;
oxidation-reduction process

PUA 5 2 RNA binding

Glyco_hydro_32N 5 3 NA

dCMP_cyt_deam_1 5 1 zinc ion binding; hydrolase
activity

Redoxin 5 2 oxidoreductase activity

PARP 5 2 NAD+ ADP-ribosyltransferase
activity

Peripla_BP_6 4 3 NA

Inositol_P 4 1 phosphatidylinositol
phosphorylation

SelR 4 1 peptide-methionine
(R)-S-oxide reductase activity;
oxidation-reduction process

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

Glyco_hydro_68 4 3 levansucrase activity;
carbohydrate utilization

Transpeptidase 4 2 penicillin binding

HSP70 4 1 NA

Sortase 4 1 NA

Gal-bind_lectin 4 1 carbohydrate binding

Ig_2 4 1 NA

CN_hydrolase 4 1 hydrolase activity, acting on
carbon-nitrogen (but not
peptide) bonds; nitrogen
compound metabolic process

FERM_C 4 2 NA

fn3 4 3 protein binding

Serpin 4 1 NA

Pfam-B_475 4 4 NA

Peptidase_M10_C 4 2 calcium ion binding;
extracellular space

RNase_T 4 2 NA

Crystall 4 2 NA

DNA_pol_B_exo1 4 1 DNA-directed DNA
polymerase activity

Pfam-B_5 4 4 NA

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

Cytochrom_D1 4 2 NA

OprD 4 1 porin activity; transport;
integral component of
membrane

Flavin_Reduct 3 1 FMN binding; oxidoreductase
activity; riboflavin reductase
(NADPH) activity;
oxidation-reduction process

Glyco_hydro_2 3 2 hydrolase activity, hydrolyzing
O-glycosyl compounds;
carbohydrate metabolic
process

4HBT_2 3 2 NA

PQQ_2 3 3 NA

Pfam-B_518 3 3 NA

FHA 3 1 protein binding

Tyr_Deacylase 3 1 hydrolase activity, acting on
ester bonds; D-amino acid
catabolic process; cytoplasm

Pfam-B_15998 3 1 NA

ATP-grasp 3 1 NA

Pyr_redox 3 1 oxidoreductase activity; flavin
adenine dinucleotide binding;
oxidation-reduction process

Glyoxalase_2 3 2 NA

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

NHL 3 2 protein binding

PGK 3 1 phosphoglycerate kinase
activity; glycolytic process

Lactonase 3 2 NA

eIF-5a 3 1 RNA binding; translation
elongation factor activity;
ribosome binding;
translational frameshifting;
positive regulation of
translational elongation;
positive regulation of
translational termination

Aldose_epim 3 2 isomerase activity;
carbohydrate metabolic
process

ATP-grasp_2 3 2 NA

NTF2 3 2 transport; intracellular

p450 3 3 iron ion binding;
oxidoreductase activity, acting
on paired donors, with
incorporation or reduction of
molecular oxygen; heme
binding; oxidation-reduction
process

CelD_N 3 1 cellulase activity;
carbohydrate metabolic
process

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

Toxin_R_bind_N 3 1 metalloendopeptidase
activity; toxin receptor
binding; pathogenesis;
inhibition of neurotransmitter
uptake; extracellular region

Pfam-B_19006 3 1 NA

Sod_Cu 3 2 metal ion binding; superoxide
metabolic process;
oxidation-reduction process

UTRA 3 1 DNA binding; regulation of
transcription, DNA-templated

SBP56 3 3 selenium binding

F5_F8_type_C 3 2 cell adhesion

DNA_pol_A_exo1 3 2 nucleic acid binding; 3’-5’
exonuclease activity;
nucleobase-containing
compound metabolic process

HN 3 2 exo-alpha-sialidase activity;
host cell surface receptor
binding; viral life cycle; viral
envelope

tRNA-synt_2c 3 2 nucleotide binding;
alanine-tRNA ligase activity;
ATP binding; alanyl-tRNA
aminoacylation

Flu_NS1 3 2 RNA binding

GTP_EFTU_D3 3 2 GTP binding

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

CPSase_L_D2 3 1 ATP binding

ArgJ 2 1 glutamate
N-acetyltransferase activity;
arginine biosynthetic process

Glu_cyclase_2 2 2 NA

NTP_transferase 2 2 nucleotidyltransferase activity;
biosynthetic process

Cadherin 2 1 calcium ion binding;
homophilic cell adhesion;
membrane

LSM 2 1 NA

eIF-1a 2 2 RNA binding; translation
initiation factor activity;
translational initiation

Chalcone 2 1 intramolecular lyase activity

SAM_adeno_trans 2 1 NA

OsmC 2 2 response to oxidative stress

NIR_SIR 2 1 oxidoreductase activity; heme
binding; iron-sulfur cluster
binding; oxidation-reduction
process

PhageP22-tail 2 1 NA

Calreticulin 2 2 calcium ion binding; unfolded
protein binding; protein
folding; endoplasmic
reticulum

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

Ribonuclease_T2 2 1 RNA binding; ribonuclease
T2 activity

Pfam-B_827 2 2 NA

Profilin 2 1 NA

Uma2 2 2 NA

Bet_v_1 2 1 defense response; response
to biotic stimulus

Lipoprotein_1 2 2 cell outer membrane

Oxysterol_BP 2 1 NA

Cna_B 2 2 NA

PMI_typeI 2 1 mannose-6-phosphate
isomerase activity; zinc ion
binding; carbohydrate
metabolic process

Fn3-like 2 1 NA

Acetate_kinase 2 2 kinase activity;
phosphotransferase activity,
carboxyl group as acceptor;
metabolic process;
phosphorylation; intracellular

ASF1_hist_chap 2 1 chromatin assembly or
disassembly; nucleus

Ring_hydroxyl_B 2 1 catalytic activity; cellular
aromatic compound
metabolic process;
oxidation-reduction process

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

tRNA_anti-codon 2 1 nucleic acid binding

KAT11 2 2 NA

HATPase_c 2 1 NA

Trypsin 2 2 serine-type endopeptidase
activity; proteolysis

Spt4 2 1 NA

IMS 2 1 damaged DNA binding;
DNA-directed DNA
polymerase activity; DNA
repair

peroxidase 2 1 peroxidase activity; heme
binding; response to oxidative
stress; oxidation-reduction
process

Pfam-B_7 2 1 NA

Pro_racemase 2 2 proline racemase activity

PfkB 2 2 NA

AICARFT_IMPCHas 2 1 IMP cyclohydrolase activity;
phosphoribosylaminoimida-
zolecarboxamide
formyltransferase activity;
purine nucleotide biosynthetic
process

FAA_hydrolase 2 2 catalytic activity; metabolic
process

YiiD_Cterm 2 1 NA

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

Molybdop_Fe4S4 2 1 oxidoreductase activity;
oxidation-reduction process

Acetyltransf_6 2 1 NA

Acetyltransf_4 2 2 NA

PRC 2 1 NA

C2 2 2 protein binding

RNase_PH_C 2 1 NA

NMT 2 1 glycylpeptide
N-tetradecanoyltransferase
activity

Rieske 2 1 oxidoreductase activity; 2
iron, 2 sulfur cluster binding;
oxidation-reduction process

PPC 2 1 NA

Bgal_small_N 2 2 beta-galactosidase activity;
carbohydrate metabolic
process; beta-galactosidase
complex

Pfam-B_5281 2 2 NA

Cleaved_Adhesin 2 1 NA

PPV_E2_N 2 1 regulation of DNA replication;
regulation of transcription,
DNA-templated; viral process

Continued on next page
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Table B.1 – Continued from previous page

PFam Architecture Matches Aligns GO tags

NMT_C 2 1 glycylpeptide
N-tetradecanoyltransferase
activity

PID 2 1 protein binding

GNAT_acetyltran 2 2 NA

SnoaL_2 2 2 NA

FAD_binding_3 2 2 NA

ROK 2 1 NA

Glyco_hydro_38C 2 2 mannosidase activity;
mannose metabolic process

DNA_topoisoIV 2 1 DNA binding; DNA
topoisomerase type II
(ATP-hydrolyzing) activity;
ATP binding; DNA topological
change

Glyoxalase 2 2 NA

DUF377 2 2 NA

Arrestin_C 2 1 NA

GMP_PDE_delta 2 2 NA

Pfam-B_512 2 1 NA

Arena_nucleocap 2 1 viral nucleocapsid

ADH_N 2 1 oxidoreductase activity;
oxidation-reduction process

Continued on next page
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PFam Architecture Matches Aligns GO tags

NUDIX 2 2 hydrolase activity
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 0.080 −0.040 −0.029  0.525 −0.187 −0.089
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−0.212 −0.087 −0.081  0.066  0.357  0.354

 0.244  0.417 −0.059 −0.092  0.408  0.030
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Figure C.1: Funnel plots showing scaled score vs. RMSD for unconstrained de novo NGK
on the H3 loop benchmark set. • points correspond to a kinked base geometry, • points to
an unclear base geometry, and • points to an extended base geometry. The discrimination
score is shown in the lower right of the plot area for each target. Very few kinked H3
models are produced, but, for kinked targets, they are frequently the lowest-RMSD models
produced. The dashed horizontal line indicates the scaled score of the native structure. The
scaled native score is too low to show up on the plot at the scale shown for 23 of the targets,
indicating that there are inaccuracies even in the low-RMSD models.
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Figure C.2: τ101 vs. α101 plots for unconstrained de novo NGK on the H3 loop benchmark
set. The • point is at the values of the native structure, and the • points correspond to
the models. The vast majority of the points have τ101 and α101 values that correspond to
extended conformations.
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Table C.1: Quantitative results for unconstrained de novo NGK

Target Minimum
RMSD

Scaled
Native
Score

Top 10
RMSDs

RMSD of
Top 10
Scored

RMSD
of Top 1
Scored

1dlf 1.0057 -0.8328 1.2948 1.8636 1.0057
1fns 1.9961 -0.8346 2.2998 4.3725 2.3848
1gig 2.5965 -0.9055 3.1920 5.5097 2.5994
1jfq 1.8429 -1.0615 3.3965 5.1614 10.7125
1jpt 0.9972 -1.4458 1.7116 2.6516 1.2253

1mfa 1.2040 -1.7568 1.3367 2.1203 2.1916
1mlb 1.0512 -0.0720 1.9308 2.6627 2.2141
1mqk 0.8169 -1.0959 1.7024 3.3905 0.8169
1nlb 0.4001 -0.9162 0.4869 0.5303 0.4173
1oaq 1.0488 -0.0821 1.2219 2.3602 1.1193
2adf 1.4002 -1.0710 2.3663 2.8760 3.2794
2d7t 0.9517 -1.2204 1.4048 3.0854 1.6668
2fb4 3.0953 -1.2726 4.1053 10.2298 14.6668
2fbj 0.9700 -0.4629 1.0430 1.2078 1.1228
2r8s 0.6297 -1.2372 1.7502 3.2798 2.2758
2v17 0.7926 -0.4927 1.4139 2.6154 5.4328
2vxv 1.1711 -1.2601 1.5343 2.6953 3.3303
2w60 0.4450 -1.4061 1.5948 2.9602 0.9427
2xwt 0.3709 -0.7166 0.5898 1.9048 3.0002
2ypv 1.1427 -0.8333 2.0470 4.9384 1.8491
3e8u 0.6829 -1.6625 0.9632 1.1115 1.0002
3eo9 3.6195 -0.2207 4.1799 7.7170 9.6596
3g5y 0.7744 -0.6838 0.8740 3.0755 3.0403
3giz 1.7031 -0.9452 1.9713 2.5700 2.3243

3gnm 0.7956 -0.3262 1.9960 3.8477 3.5173
3go1 1.4950 -1.7705 1.8737 2.7053 1.9785
3hc4 0.7802 -1.0223 1.1963 2.4972 0.8056
3hnt 1.2357 -0.3490 1.2818 1.3508 1.4207
3i9g 0.7581 -1.1165 1.6035 3.4776 0.7707
3ifl 0.7096 -1.2403 0.8878 3.3150 3.5032
3lmj 1.8205 -0.8880 2.3313 3.3540 2.1587
3mlr 2.4555 -1.4629 4.9032 7.2062 8.2206

3mxw 1.1074 -0.4166 1.9946 4.9173 2.6573
3nps 3.8113 -1.1921 4.5338 8.3031 7.3586
3oz9 0.5730 -1.0583 1.4198 2.3506 2.4056
3p0y 0.4399 -1.5656 1.8978 5.9468 0.4399
3t65 2.7751 -0.0409 3.0369 4.1281 4.4965

Continued on next page
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Table C.1 – Continued from previous page

Target Minimum
RMSD

Scaled
Native
Score

Top 10
RMSDs

RMSD of
Top 10
Scored

RMSD
of Top 1
Scored

3umt 1.2153 -1.0976 2.4331 3.4288 4.2158
3v0w 0.5647 -1.1450 0.9769 2.4002 1.0366
4f57 1.7381 -2.0141 3.7467 7.9585 5.3980
4h0h 1.1919 -0.1839 1.5712 1.9698 1.3644
4h20 0.8145 -0.4427 0.9513 1.2454 1.1819
4hpy 0.4970 -1.5788 0.9820 0.9909 1.1620
4nzu 3.2970 -0.3145 4.7625 8.0227 9.1961

MEAN 1.3360 -0.9480 2.0180 3.6433 3.2174
STD DEV 0.8890 0.5033 1.1448 2.2258 3.0977

1x9q 0.1933 -0.9542 0.2150 0.2953 0.2810
2e27 1.3989 -0.5466 1.5764 2.0258 1.7931
3m8o 0.8086 -0.4768 1.5090 3.7114 3.7824
3liz 1.3761 -0.2621 1.4268 3.3762 3.3939

MEAN 0.9442 -0.5599 1.1818 2.3522 2.3126
STD DEV 0.5702 0.2894 0.6474 1.5528 1.6049

1seq 3.1272 -2.0754 3.6206 5.6491 4.2490
Table C.1: Results of the unconstrained NGK simulation for each target in the benchmark
set. The results are split up by the base geometry of the native structure to show the
difference in performance across different base geometries. All RMSDs are reported in
Ångströms.
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Figure C.3: Funnel plots showing scaled score vs. RMSD for constrained de novo NGK
on the H3 loop benchmark set. • points correspond to a kinked base geometry, • points to
an unclear base geometry, and • points to an extended base geometry. The discrimination
score is shown in the lower right of the plot area for each target. Many kinked H3 models
are produced, and the top-scoring models often have sub-Ångström RMSDs. The dashed
horizontal line indicates the scaled score of the native structure. The scaled native score is
too low to show up on the plot at the scale shown for 5 of the targets, indicating that the
constraint consistently enables Rosetta to produce models nearly as energetically favorable
as the native structure.
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Figure C.4: τ101 vs. α101 plots for constrained de novo NGK on the H3 loop benchmark
set. The • point is at the values of the native structure, and the • points correspond to
the models. The vast majority of the points have τ101 and α101 values that correspond to
kinked conformations. This is problematic for targets 1x9q, 2e27, 3liz, and 3m8o, which
have extended base geometries, but 1seq, which has an unclear base geometry, is able to
sample conformations at near-native τ101 and α101 values.
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Table C.2: Quantitative results for constrained de novo NGK

Target Minimum
RMSD

Scaled
Native
Score

Top 10
RMSDs

RMSD of
Top 10
Scored

RMSD
of Top 1
Scored

1dlf 0.8847 -0.5242 0.9543 1.2657 0.8847
1fns 1.2479 -0.4160 1.5903 2.3255 1.6671
1gig 1.9806 -0.5957 2.7223 4.5488 4.6625
1jfq 0.5630 -0.5800 0.9476 1.3713 0.7621
1jpt 0.7319 -0.6053 0.7636 0.9550 0.8063

1mfa 0.3159 -1.1901 0.7432 2.2098 2.1495
1mlb 0.8055 -0.1031 1.0735 2.3342 2.2597
1mqk 0.7269 -0.5840 1.1203 1.9200 0.9632
1nlb 0.3155 -0.3380 0.3500 0.4191 0.5055
1oaq 0.8637 0.0092 0.9633 1.6457 1.1311
2adf 0.5459 -0.4331 0.9334 1.4835 1.5324
2d7t 0.8841 -0.6717 1.1722 1.6265 1.6384
2fb4 1.8331 -0.7694 3.1046 8.1272 3.6253
2fbj 0.8883 -0.2536 0.9904 1.1380 1.1326
2r8s 0.6658 -0.3648 0.7603 1.7915 2.6410
2v17 0.8039 -0.1895 0.9254 1.7289 2.0932
2vxv 1.1523 -0.7891 1.2648 2.9963 3.1094
2w60 0.3128 -0.2736 0.3864 0.7543 0.9680
2xwt 0.3651 -0.4075 0.4692 1.0994 0.7277
2ypv 0.5321 -0.5230 0.8209 2.3432 1.2450
3e8u 0.2630 -0.6061 0.5007 0.8308 0.2655
3eo9 1.2092 -0.0906 2.1158 2.5706 2.5314
3g5y 0.4713 -0.6198 0.6840 0.9594 1.3308
3giz 0.8620 -0.4162 1.3519 2.6305 3.4490

3gnm 0.5754 -0.1147 0.7056 3.1564 3.5112
3go1 1.6585 -0.8874 1.8769 2.6723 2.0606
3hc4 0.7545 -0.5954 0.9895 1.0121 0.8019
3hnt 0.9713 -0.1727 1.2096 1.3374 1.3806
3i9g 0.6414 -0.6051 0.7875 1.2535 0.7310
3ifl 0.5588 -0.7728 0.7645 0.9560 0.8367
3lmj 2.1115 -0.6141 2.5146 3.5080 3.2288
3mlr 2.2999 -1.0970 3.0873 5.5436 4.6692

3mxw 0.9767 -0.2255 1.1118 2.3990 2.8328
3nps 2.6624 -1.1616 3.1158 5.6184 3.7979
3oz9 0.5176 -0.5157 0.7455 2.2569 2.3685
3p0y 0.3675 -0.6203 0.4141 0.6348 0.5905
3t65 0.9007 -0.3983 1.3672 3.0506 1.7030

Continued on next page
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Table C.2 – Continued from previous page

Target Minimum
RMSD

Scaled
Native
Score

Top 10
RMSDs

RMSD of
Top 10
Scored

RMSD
of Top 1
Scored

3umt 1.0396 -0.3304 1.1139 1.2401 1.0631
3v0w 0.4142 -0.6155 0.5060 0.9577 1.0368
4f57 1.3136 -1.6805 2.6350 4.1318 4.9528
4h0h 0.6141 -0.0298 0.8704 1.4223 1.4427
4h20 0.8209 -0.5384 0.9284 1.2520 1.1060
4hpy 0.5774 -0.6418 0.8136 0.9908 0.9373
4nzu 2.0598 -0.2073 2.6145 5.1172 6.8650

MEAN 0.9332 -0.5264 1.2473 2.2179 2.0000
STD DEV 0.5808 0.3316 0.7847 1.5891 1.4331

1x9q 2.0763 -0.7465 2.2300 3.1290 3.2012
2e27 2.5348 -0.6156 2.6465 4.4264 3.7690
3m8o 1.1371 -0.6624 2.2234 4.8490 4.7532
3liz 2.0070 -0.7202 2.5639 3.4758 2.4243

MEAN 1.9388 -0.6862 2.4159 3.9700 3.5369
STD DEV 0.5835 0.0587 0.2211 0.8026 0.9805

1seq 2.8814 -1.0669 3.2300 4.5532 5.3418
Table C.2: Results of the constrained NGK simulation for each target in the benchmark
set. The results are split up by the base geometry of the native structure to prevent the
constraint from confounding the results. All RMSDs are reported in Ångströms.
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−0.235 −0.352 −0.638 −0.318 −0.303 −0.342

−0.397 −0.526 −0.621 −0.343 −0.208 −0.212

−0.349 −0.198 −0.560 −0.177 −0.290 −0.364

−0.373 −0.287 −0.158  0.046 −0.017 −0.021

−0.383 −0.381 −0.614 −0.301  0.050 −0.219
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Figure C.5: Funnel plot showing discrimination score vs. RMSD. • points correspond
to a kinked base geometry, • points to an unclear base geometry, and • points to an
extended base geometry. The discrimination score is shown in the lower right of the plot
area for each target. The dashed horizontal line indicates the scaled score of the native
structure. The NGK refinement simulations start with the native loop conformation and do
not use constraints. Most of the scaled native scores are greater than zero, meaning the
refinement protocol produces a significant number of models that score better than the
native conformation.
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Figure C.6: τ101 vs. α101 plots for NGK refinement on the H3 loop benchmark set. The
• point is at the values of the native structure, and the • points correspond to the models.
The NGK refinement simulations start with the native loop conformation and do not use
constraints. Most of the points remain tightly clustered around the native values, but some
models transition from kinked to extended during refinement.
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Figure C.7: Funnel plot showing discrimination score vs. RMSD. • points correspond
to a kinked base geometry, • points to an unclear base geometry, and • points to an
extended base geometry. The discrimination score is shown in the lower right of the plot
area for each target. The dashed horizontal line indicates the scaled score of the native
structure. The CCD refinement simulations start with the native loop conformation and do
not use constraints. Most of the scaled native scores are greater than zero, meaning the
refinement protocol produces a significant number of models that score better than the
native conformation. Unlike previous funnel plot figures, some scaled native scores do not
appear due to them being too high to be included in the plot area.
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Figure C.8: τ101 vs. α101 plots for NGK refinement on the H3 loop benchmark set. The
• point is at the values of the native structure, and the • points correspond to the models.
The CCD refinement simulations start with the native loop conformation and do not use
constraints. For all targets, the points remain tightly clustered around the native values
and there are no transitions from kinked to extended during refinement. Less sampling
of τ101 and α101, shows that the CCD refinement process moves the loop less than NGK
refinement.
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Figure C.9: Funnel plot showing total score vs. RMSD. • points correspond to models
produced by CCD, • points to models produced by NGK, and the dashed horizontal line
indicates the score of the native structure. Both sets of simulations start with the native loop
conformation and do not use constraints. All of the CCD models have a more favorable
score than the native structure and very low RMSDs (≤ 0.5 Å), while many of the NGK
models have higher scores than the native structure and and larger RMSDs than the CCD
models. CCD samples less space than NGK, but achieves lower scores.
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Figure C.10: τ101 vs. α101. The • points correspond to models generated with CCD, and
the • points correspond to models generated with NGK. Both sets of simulations start with
the native loop conformation and do not use constraints. The CCD models are distributed in
a smaller region of the plot than the NGK models. CCD does less sampling of τ101 and α101
than NGK, but achieves lower scores.
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Figure C.11: Funnel plots showing scaled score vs. RMSD for constrained de novo
NGK+CCD on the H3 loop benchmark set. • points correspond to a kinked base geometry,
• points to an unclear base geometry, and • points to an extended base geometry. The
discrimination score is shown in the lower right of the plot area for each target. The models
are predominantly kinked, although with more models with unclear base geometry than in
the constrained NGK simulation. The dashed horizontal line indicates the scaled score of
the native structure, which is higher than in the unconstrained and constrained simulations,
and is now visible for all targets. This shows that the score of the models is approaching
that of the native structure, however many models across a wide range of RMSD values
have similar scores. The discrimination score is higher for all of the targets, indicating that
the degree of refinement reduces the ability of the score function to identify near-native
conformations.
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Figure C.12: τ101 vs. α101 plots for unconstrained de novo NGK+CCD on the H3 loop
benchmark set. The • point is at the values of the native structure, and the • points corre-
spond to the models. The points are much more widely distributed than in the constrained
simulation and appear to cluster into two large groups, indicating that CCD was able to find
a conformations that could offset the penalty imposed by the constraint.
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Table C.3: Quantitative results for de novo NGK+CCD

Target Minimum
RMSD

Scaled
Native
Score

Top 10
RMSDs

RMSD of
Top 10
Scored

RMSD
of Top 1
Scored

1dlf 1.8731 -0.1371 2.2637 3.5617 3.3879
1fns 1.7367 -0.2661 2.2175 3.1091 2.8515
1gig 2.0493 -0.2807 3.1017 6.2559 5.6189
1jfq 1.5839 -0.3958 2.4753 7.1683 5.3348
1jpt 0.7126 -0.2825 0.8827 1.0769 0.7566

1mfa 1.0076 -0.7589 1.4710 2.4539 2.2864
1mlb 0.8296 -0.0401 1.1528 2.7493 2.1168
1mqk 1.2493 -0.1815 1.8356 2.7517 2.2314
1nlb 1.4574 -0.1354 1.8052 2.1917 1.5052
1oaq 1.1750 -0.0382 1.5320 2.1056 1.4066
2adf 0.5948 -0.0690 0.9090 2.0446 2.2096
2d7t 1.5838 -0.3509 2.0063 2.6899 1.5838
2fb4 2.4299 -0.2591 3.2692 12.4221 12.8322
2fbj 1.1181 -0.2544 1.2942 1.9516 1.3661
2r8s 1.3883 -0.3326 2.4096 3.3968 2.4095
2v17 1.2903 -0.0809 1.6221 2.5497 1.6868
2vxv 1.6912 -0.2455 2.0042 4.0897 3.7512
2w60 0.4083 -0.1444 0.6479 1.8338 0.4083
2xwt 0.7883 -0.2310 0.9380 2.4960 0.8652
2ypv 0.6068 -0.2493 0.9685 2.2491 3.0346
3e8u 0.7153 -0.3095 0.9608 1.2381 0.9581
3eo9 2.0257 -0.1378 2.7184 6.4946 2.8518
3g5y 0.4076 -0.0864 0.5173 0.7566 0.4076
3giz 1.8989 -0.1839 2.4836 7.0498 8.3471

3gnm 1.0890 -0.1088 1.5049 1.9327 1.6143
3go1 1.5085 -0.3463 2.1345 2.7728 1.9208
3hc4 0.6972 -0.0916 0.8092 0.9105 0.7954
3hnt 1.0599 -0.1567 1.3784 1.8165 1.3393
3i9g 1.4277 -0.2117 1.8726 4.4273 2.6732
3ifl 0.4775 -0.1634 0.6381 0.8673 0.8497
3lmj 2.1604 -0.3371 3.4260 4.8165 4.5231
3mlr 3.5985 -0.5553 4.3633 7.0475 6.5272

3mxw 1.0343 -0.0901 1.2049 1.9969 1.9518
3nps 2.5918 -0.7404 3.1771 4.9381 2.8715
3oz9 1.0039 -0.2430 1.6190 2.6541 2.5357
3p0y 1.7204 -0.2929 2.2138 3.8022 3.4332
3t65 1.4879 -0.0950 1.5587 3.1810 1.7673

Continued on next page
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Table C.3 – Continued from previous page

Target Minimum
RMSD

Scaled
Native
Score

Top 10
RMSDs

RMSD of
Top 10
Scored

RMSD
of Top 1
Scored

3umt 1.0984 -0.2136 1.1949 1.3720 1.4351
3v0w 0.4941 -0.1642 0.7036 1.2600 0.6040
4f57 3.1961 -0.3528 3.7584 6.9276 4.0201
4h0h 1.1704 -0.1001 1.5051 2.0440 1.7095
4h20 1.3224 -0.2056 1.4601 2.4175 2.4093
4hpy 1.2855 -0.4757 1.9110 2.3319 1.2855
4nzu 1.6257 -0.1482 3.0332 8.0501 6.8078

MEAN 1.3789 -0.2396 1.8398 3.4148 2.7564
STD DEV 0.6966 0.1603 0.9100 2.3858 2.3569

1x9q 1.9131 -0.4531 2.0984 2.7843 3.0757
2e27 2.5599 -0.5630 2.7943 4.2942 5.4418
3m8o 1.2944 -0.5833 2.0798 5.5863 3.9549
3liz 2.0570 -0.2890 2.5411 4.4809 3.3138

MEAN 1.9561 -0.4721 2.3784 4.2864 3.9466
STD DEV 0.5211 0.1348 0.3497 1.1524 1.0637

1seq 2.3088 -0.3780 3.0652 4.5330 3.0050
Table C.3: Results of the NGK+CCD simulation for each target in the benchmark set. The
results are split up by the base geometry of the native structure to prevent the constraint
from confounding the results. All RMSDs are reported in Ångströms.
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