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Abstract 

Delivery of neurotrophic factor gradients offers exciting potential for improving 

the regenerative outcomes in peripheral nerve injuries by enhancing the complete 

regeneration of nerves across large injury gaps. However, a major limitation to current 

gradient generation platforms has been the inability to develop gradient generation 

methodologies that exhibit control of gradient characteristics suitable for in vitro gradient 

screening while also being scalable to length scales relevant for in vivo nerve regeneration 

paradigms. Few studies have reported the influence of NF gradients on Schwann cell 

migration. We developed two gradient generation platforms capable of highly controlled, 

centimeter-scale gradient generation, which are capable of gradient delivery in both in vitro 

and in vivo gradient guidance paradigms. Furthermore, we developed a novel combinatorial 

cell migration platform, which combines topographical and biochemical guidance to 

investigate the effect of surface topography and gradient characteristics on the guidance of 

human Schwann cells. Using a live-cell imaging and analysis platform, we elucidated 

extensive details of the influence of these cues on the migration kinetics of Schwann cells, 

examining the roles of aligned fiber diameter and NF gradient characteristics in directing 

Schwann cell migration. Finally, we created a nerve guide that combines topographical and 

biochemical gradient guidance and demonstrated the utility of NF gradient delivery in 

enhancing regeneration in acute, short gap and long-term, large gap in vivo peripheral nerve 

injury models. The advances in gradient generation and delivery presented in this thesis 

offer new platforms for characterizing gradient guidance of a variety of neuronal and glial 

cell types and for enhancing nerve regeneration through in vivo NF gradient delivery.  
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Chapter 1 : Tissue engineering and peripheral nerve 

regeneration: utilizing engineering principles to enhance nerve 

regeneration         

 Introduction 

1.1.1 Tissue Engineering 

There is a story in Greek mythology about a Titan named Prometheus, who 

betrayed the Greek god Zeus. As punishment, Prometheus was chained to the top of a 

mountain where, every day, an eagle would consume his liver. However, due to 

Prometheus’ immortality, he would survive and the liver would regenerate every night, and 

thus his punishment would continue day after day. For thousands of years, mankind has 

envisioned the ability for humans to regenerate our organs and tissues and heal wounds 

beyond the capacity for the human body to normally regenerate. 

The practice of tissue engineering, utilizing knowledge of the structure and function 

of mammalian tissues to design biological substitutes for the repair of irreparably damaged 

organs and tissues, first arose in the mid-20th century [1]. However, it was not until 1988 

that the field of “tissue engineering” was clearly defined, formally establishing an exciting 

field of academic pursuit and ushering in an era of increased research and development in 

the tissue engineering and regenerative medicine (TERM) fields. Since the first publication 

in the journal Tissue Engineering in 1995 [1], the field has rapidly expanded in breadth, 

encompassing research in the repair and replacement of all nearly all organs and tissues. 

From January 2012 to September 2013 alone, there were 8000 publications in the TERM 

fields [2], an incredible demonstration of the amount of effort that researchers are putting 
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into this rapidly advancing field. Elite research universities around the world have 

established academic centers with the expressed purpose of conducting TERM research, 

including the Translational Tissue Engineering Center at Johns Hopkins University, 

demonstrating the importance of TERM research in the future of modern medicine.  

With the continued advancement in development of biologically-active materials 

and scaffolds and obtaining patient-specific cells which circumvent issues with tissue 

rejection typically seen in allogeneic organ transplants, the tools for modifying or creating 

tissues has increased exponentially since the TERM fields were first established [2, 3]. 

However, regulatory hurdles and safety concerns continue to hinder the clinical application 

of more recent technologies [3]. As researchers continue their efforts to improve our 

understanding of human biology, physiological development, and how human bodies 

respond and adapt to injury, the safety and efficacy of the latest TERM technologies will 

continue to improve. Considerable effort has been placed on the production of materials 

which mimic the form and function of mammalian tissues, recreating or redesigning the 

extracellular milieu of tissue-specific cells to control the migration and phenotypic function 

of these cells into organized, 3-dimensional engineered tissues for drug testing or tissue 

replacement as alternatives to organ transplantation. Engineered tissue scaffolds can be 

designed to mimic the biochemical and structural composition of their native tissues, and 

technologies for building these tissue scaffolds into complex, 3-D, hierarchical structures 

continues to advance. Through advancing our understanding of how native tissues are 

formed during development and the relationship between tissue structure and function, the 

TERM fields are constantly edging closer to being able to safely and effectively recreate 

or enhance the regeneration of damaged tissues and improve the lives of countless patients 
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suffering from disease and trauma for which current clinical practice has limited 

regenerative potential. 

1.1.2 Peripheral nerve regeneration 

Peripheral nerve injuries are a major cause of loss of limb function in patients 

worldwide, with nerve injuries occurring in 2.8% of traumatic injuries [4]. In the United 

States alone, approximately 360,000 people suffer from various forms of upper body 

paralysis on an annual basis [5]. The preferred surgical treatment is end-to-end 

anastomosis, but for injuries which produce a large gap in a nerve, the clinical gold standard 

is to use an autologous nerve graft. However, autologous nerve grafts have several major 

drawbacks limiting their use and efficacy, including donor site morbidity, motor/sensory 

nerve mismatch, neuroma formation, size restrictions, and limitation in functional 

regeneration [6]. Alternative FDA-approved products are available for applications in 

which large gap injuries occur, but the lack of directional guidance in these products limits 

their regenerative capacity, especially as gap size increases [7]. Newer approaches to nerve 

regeneration aiming to overcome the limitations of current clinically-available nerve 

regeneration methods utilize strategies ranging from biomaterials engineering to cell-based 

therapies, incorporating endogenous or exogenous sources of cells, extracellular scaffolds, 

or biochemical cues to enhance the regeneration of injured nerves [8]. Our lab is currently 

investigating methods for enhancing nerve regeneration through the design of nerve 

guidance conduits (NGCs) containing topographical and biochemical guidance, and 

delivery of genetically-modified glial or stem cells to the site of nerve injury (Figure 1.1). 

By using a combinatorial NGC incorporating nanofiber-based topographical guidance and 

biochemical gradients of neurotrophic factors to promote growth across the entirety of a 
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large nerve gap, we intend to improve nerve regeneration beyond levels achievable by 

current clinical standards. 

1.1.3 Biochemical cues in nerve tissue development and applications in nerve 

regeneration 

The human body provides tissue engineers a near limitless toolbox of biochemical 

cues consisting of growth factors, adhesive ligands, extracellular matrix proteins and 

peptides which guide human development, maintain the form and function of the body, and 

which are naturally produced after injury to promote regeneration. Many of the 

neurotrophic factors (NFs) which are effective in promoting regeneration in the adult 

mammals have primary roles in the development of the mammalian nervous system, 

providing selective differentiation of sympathetic, parasympathetic, cholinergic, 

adrenergic, dopaminergic, motor, and sensory neurons [9]. Cordes summarized many of 

the genes and proteins involved in the development of mouse cranial nerves and sensory 

ganglia and categorized the genes and proteins based on function within the developing 

nervous system and emphasized the specificity of their activity for specific nerve 

populations [9]. Many of these genes and proteins have significant roles in the development 

of both the central and peripheral nervous systems and have been investigated to enhance 

regeneration of injuries in the central and peripheral nervous systems. 

A subpopulation of proteins, collectively known neurotrophic factors, are of 

particular interest in nerve regeneration due to their characteristic activity promoting 

neuron survival, growth, and in some cases neuronal chemotaxis. Of the neurotrophin 

family of neurotrophic factors, nerve growth factor (NGF) is the most studied and is known 

to act specifically on small primary sensory and sympathetic neurons [10]. The effects of 
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NGF were first discovered by Elmer Bueker, who demonstrated that fragments of mouse 

sarcoma grafted in the body of three-day chick embryos promoted sensory nerve fibers to 

infiltrate the tumor from dorsal root ganglia adjacent to the tumor [11]. In normal nerves, 

NGF is expressed at similar levels in motor and sensory neurons, but following injury NGF 

expression is substantially upregulated in denervated sensory roots compared to levels 

expressed in denervated motor roots [12]. Herrup demonstrated that administration of NGF 

to chick dorsal ganglia promote upregulation of NGF receptors [13], indicating a potential 

feedback loop following an injury where NGF upregulation results in increased expression 

of NGF receptor and changes in sensitivity towards the growth factor. Whereas NGF has 

substantial effects on growth and survival of embryonic sensory neurons, the effect 

decreases in adult large sensory neurons [14] but is necessary for collateral sprouting of 

nociceptive and sympathetic axons into denervated skin [14, 15]. NGF has been shown to 

promote chemotaxis of sympathetic [16], dorsal root ganglion neurons [17-20], and PC12 

neurons [21, 22], and increases Schwann cell migration from nerve explants [23]. 

Additionally, NGF has been utilized to enhance regeneration of peripheral nerve injuries 

via controlled release in nerve guidance conduits [24-30], osmotic pump [31, 32], or 

lentiviral-based overexpression [33, 34]. However, due to the specificity of NGF towards 

sensory and sympathetic neurons, the potential for use as a suitable growth factor for 

enhancing regeneration of mixed nerve populations (i.e. motor and sensory), commonly 

found in peripheral nerve injuries, is limited due to the limited trophic activity of NGF 

towards motor neurons. 

Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members 

of the neurotrophin family which possess greater motor neuron trophic potential. BDNF is 
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expressed in uninjured motor and sensory neurons, but is primarily upregulated in sensory 

neurons following injury [12] and in Schwann cells in the distal stump of an injury [35]. 

The result by Höke et. al. showing greater upregulation in injured sensory neurons 

compared to injured motor neurons [12] is interesting considering the general role of BDNF 

and dose-dependent response on motor neuron survival and growth [35], but its 

upregulation in the distal stump of motor neuron-containing injuries is indicative of its 

influence on motor neuron survival and regeneration. NT-3 is expressed in adult skeletal 

muscle and exhibits a trophic role on motoneurons in vitro [36] and type 2b fast muscle 

fiber associated neurons [37], but has also been shown to enhance the survival of 

proprioceptive and mechano-receptive sensory neurons [38, 39]. Expression of NT-3 is 

generally higher in sensory roots compared to motor roots but have minimal difference in 

expression after injury [12]. 

Neuregulins (NRGs) are derived from alternative splicings of the NRG1 gene and 

consist of 14 separate protein variations [40]. NRGs elicit substantial influence of Schwann 

cell activity directed by cell-cell interactions with axons, which express both soluble and 

membrane-bound variants [40]. One of the most widely studied neuregulins is the glial 

growth factor (GGF), which is a soluble, paracrine signaling isoform of NRG expressed by 

sensory, motor and sympathetic neurons [41, 42]. GGF has pronounced effects on Schwann 

cells, as demonstrated by Mahanthappa et. al. who showed delivery of soluble GGF2 

increased Schwann cell migration from sciatic nerve cryosections [43]. GGF expression is 

upregulated in damaged sensory neurons and coincides with a coordinated upregulation of 

its receptor in Schwann cells, indicating coordination in NRG regulation in Schwann cells 

and axons following nerve injury [44, 45]. While NRG largely effects Schwann cell 
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activity, NRGs are expressed by axons and Schwann cells and act via autocrine or paracrine 

mechanisms [40, 45]. 

Glial-derived neurotrophic factor (GDNF) is an increasingly studied neurotrophic 

factor of the TGFα-1 superfamily, and has trophic effects on sensory, motor and autonomic 

neurons [46-52]. Overexpression of GDNF in the central nervous system promotes 

dramatic survival of motor neurons after axotomy [53]. Additionally, GDNF has been 

shown to be a potent chemotactic agent and binding ligand for Schwann cell precursors 

[54], providing strong trophic activity to both neurons and glial cells in the central and 

peripheral nervous system. GDNF is upregulated in both motor and sensory neurons 

following nerve injury [12] which subsequently upregulates the GDNF receptor [55], 

indicating its important role in neurotrophic support in both motor and sensory neuron 

populations. Comparison of the recovery of sciatic nerve injury following release of GDNF 

or NGF by synthetic nerve guidance conduit revealed significantly higher regeneration of 

both motor and sensory neurons using sustained GDNF delivery compared with NGF 

delivery [30], indicating greater regenerative potential of GDNF compared to widely-

studied NGF. Furthermore, GDNF plays an important role in myelination by inducing 

Schwann cell proliferation and axon myelination, and is even capable of promoting 

myelination of axons which are normally unmyelinated [56]. The significant trophic effect 

of GDNF and its ability to mediate axon-glial interactions made GDNF the primary 

neurotrophic factor of interest for the studies involved in this thesis, investigating novel 

methodologies for delivering GDNF which will maximize its influence in enhancing 

peripheral nerve regeneration. 
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1.1.4 Anisotropy and overcoming the “candy store” effect 

Although delivery of GDNF has been shown to improve the nerve regeneration 

potential of nerve guidance conduits by improving motor and sensory neuron survival and 

outgrowth, delivery of locally elevated levels of GDNF causes an axon trapping effect 

known as the “candy store” effect [57]. Axons are attracted to locations of high GDNF 

concentration, and maintenance of persistent levels of GDNF causes trapping of 

regenerating axons at the site of overexpression, preventing axons from migrating distally 

to their muscle and sensory targets [33, 58]. Several studies have demonstrated a 

neurotropic effect of GDNF, in which axons preferentially migrate towards regions of 

maximum GDNF expression and concentration [59, 60]. Similar effects have been elicited 

by lentiviral overexpression of BDNF [61] and NT-3 [62]. While the chemotropic effect of 

NFs can be utilized to guide nerve outgrowth, careful consideration must be made in 

designing a NF delivery method which is capable of harnessing the chemotropic capability 

of neurons without hindering their progression towards their reinnervation targets. One 

method of circumventing the axonal trapping effect is by expressing GDNF in the target 

muscle rather than at the injury site, a method which has been shown to enhance functional 

regeneration in a mouse crush injury model [63]. While promising, the positive effects of 

target-derived expression may be limited to injuries which are located close to the target 

site. For injuries in which the neurons must traverse large distances to reach the target 

muscle or sensory input, the likelihood for NFs expressed at the target site to diffuse to and 

reach the regenerating neurons may be severely limited. For injuries which are located 

large distances from innervation targets, localized delivery of NFs remains to be the most 
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effective method for promoting nerve regeneration through a nerve injury and into the 

distal nerve.  

Recently, a promising method for delivering localized GDNF in a temporally-

controlled manner was developed by Marquardt et. al.. By transfecting Schwann cells with 

a tetracycline-inducible GDNF lentivirus and injecting the transfected Schwann cells into 

the distal nerve of a 3 cm sciatic nerve defect bridged by fibrin-modified acellular nerve 

grafts, they were able to modify the duration of GDNF overexpression based on the 

duration of doxycycline administration and control release of GDNF using an affinity-

based release system. They found that 6 weeks of overexpression produced the greatest 

regenerative outcome compared to 4 or 8 week overexpression, exhibiting the greatest 

axonal regrowth in the midgraft and distal nerve and promoting the greatest mass recovery 

of target muscle. The study provided excellent insight into the importance developing a 

platform which provides temporal control of GDNF delivery to enhance regeneration 

across an injury gap while preventing the excessive localized GDNF overexpression that 

results in decreased functional recovery due to the “candy store” effect. However, 

tetracycline-inducible GDNF expression provides limited control over precise GDNF 

concentration levels, resulting in potentially sub-optimal GDNF expression levels and 

difficulty in controlling the spatial distribution of GDNF across the injury site. 

Additionally, the requirement for lentivirus-transfected, exogenous Schwann cells limits 

the potential for this method to be developed as an off-the-shelf product and reduces its 

potential clinical use. 

Controlled-release methods which deliver NFs by administration of NF-loaded 

microspheres [60, 64-66], polymeric films [30], lipid microtubules [26], nanofibers [67], 
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and crosslinked [27] or affinity-based hydrogels [68] can overcome the limitations of 

lentivirus-based NF overexpression by providing improved spatial and temporal control of 

NF delivery. With these methods, nerve guidance conduits can be designed to specific 

lengths and conduit diameter depending on the location and size of the injury and loaded 

with a variety of NFs at specified concentrations. The ability to manufacture nerve 

guidance conduits containing these controlled release platforms improves their potential 

for development of off-the-shelf products for clinical applications compared to 

transfection-based platforms.  

Effective nerve regeneration requires not only the promotion of the axonal 

outgrowth, but also directional guidance of the regenerating axons towards the target site. 

Methods of guiding axons within the NGC have thus been employed to promote directional 

regrowth. A study by Parrinello et al. revealed that Ephrin signaling between fibroblasts 

and dedifferentiated and migrating Schwann cell progenitors is important in forming cords 

of Schwann cells, akin to the Bands of Büngner in vivo, which then serve as regenerating 

tracks guiding axonal regrowth [69]. This process can be recreated in vitro by generating 

Ephrin-B2 bands on growth matrix that organize Schwann cells into a band-like structure. 

Such directional guidance promoted axonal growth along the Schwann cell bands [69]. 

This strategy can certainly be adopted in NGC design to enhance the ability of Schwann 

cells to organize into Bands of Büngner, therefore enhancing directional axon regrowth. 

Gradients of NFs and adhesive molecules have also been employed in NGCs due to their 

ability to promote directional axonal growth and their enhancement of nerve regeneration 

and function compared to isotropic concentrations of similar molecules [26]. Dodla et al. 

incorporated gradients of nerve growth factor (NGF) and laminin into a NGC and 
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compared the results of various combinations of NGCs containing isotropic concentrations 

of the two signaling molecules or combinations of isotropic and anisotropic concentrations. 

They found that functional recovery was significantly higher in the NGCs containing 

gradients of both laminin and NGF when compared to those containing isotropic 

concentrations of the two molecules [26]. Although the author did not include data for axon 

length, number, and myelination for the isotropic NGCs, the significant difference in 

functional recovery between isotropic and anisotropic NGCs demonstrates that gradients 

of NFs and adhesive molecules provide greater ability to promote axon regrowth across the 

lesion than their isotropic counterparts. Moreover, the gradient approach is capable of 

providing directional cues along the entire length of the lesion, both promoting growth 

from the proximal stump to the distal stump and allowing axons to grow into the distal 

stump and target tissue. The latter is of particular importance to avoid axonal entrapment 

within the NGC caused by the “candy store” effect. 

The simple incorporation of a gradient does not necessarily ensure maximal 

regenerative capacity. Mortimer et al. created a model to predict the response of neurites 

to varying concentrations and gradients of NGFs. Their model predicted that both the 

gradient steepness and concentration range determine the regenerative capability of a NF 

gradient, a prediction confirmed by culturing DRG explants on collagen sheets printed with 

different NGF gradient concentration ranges and steepnesses [19]. Not only does this paper 

demonstrate the importance of multiple variables of a NF gradient, but it also provides a 

means to better predict the optimal conditions with which to develop and apply a NF 

gradient to a NGC. In addition, variation in nerve response to gradients depends upon the 

location of the injury [70], and the type of nerve can determine which NFs may provide 
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the greatest regeneration effect [12, 71]. This characteristic of NFs enables high specificity 

in nerve regeneration by selecting NF cocktails tailored for a particular nerve type. This 

approach may be advantageous to regenerate the desired nerve type and function and avoid 

formation of undesired nerve connections. Therefore, NF gradients provide an effective 

approach to improve the speed and directionality of nerve regrowth, which can synergize 

well with other nerve regeneration approaches. 

 Hypothesis and Specific Aims of the Thesis 

 Current gradient generation platforms are limited by the length of gradients which 

can be produced, lack of scalability, and poor control of gradient characteristics. Many 

gradient methods are specialized for the study of cell migration in gradients of short length 

scales (<1 mm), or limited to long-range (>1 cm) length scales due to limited control of 

gradient production and can only be used in large gap nerve injury models. The significant 

discrepancies in the scale at which current gradient can be produced results in the inability 

to develop in vitro gradient guidance platforms for screening NF gradients and gradient 

conditions for their efficacy in guiding neuronal and Schwann cell outgrowth which can be 

easily translated to in vivo gradient delivery platforms. To address this knowledge gap, we 

developed two unique gradient generation techniques, as described in Chapter 2. The first 

technique is a rapid, convection-driven method developed in collaboration with the 

Khademhosseini lab at MIT which is capable of generating NF gradients of tailorable 

concentration ranges and millimeter to centimeter length, which encapsulates the gradients 

in a UV-crosslinkable methacrylated gelatin hydrogel. This method allows for rapid, 

scalable production of gradients over a large range of length scales and is a suitable 

platform for use in in vitro neuron and Schwann cell migration guidance assays for the 
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screening of the effects of gradient characteristics on migration behavior. Additionally, the 

ability to generate gradients of multi-centimeter length scales allows for utilization of this 

method to generate gradients for implantation in nerve guidance conduits for critical gap 

nerve injury (>10 cm) regeneration. The second method we developed is a diffusion-based 

method capable of gradient generation at centimeter scales in cell culture environments and 

is capable of generating gradients in a variety of hydrogel film materials for in vitro and in 

vivo delivery. Our first hypothesis is the rapid convection-based method can be utilized to 

for in vitro migration guidance assays investigating both aligned nanofiber topographical 

guidance and can be easily translated into our combinatorial NGCs for in vivo peripheral 

nerve regeneration. Our second hypothesis is that the diffusion-based platform will be an 

ideal model for investigating the mechanisms underlying the response of Schwann cells 

and neurons in 2D and 3D in vitro culture platforms. 

After developing and characterizing the two gradient platforms, we found both 

gradient platforms exhibited excellent control over gradient characteristics and were able 

to utilize heparin conjugation to control the release of NFs from methacylated gelatin 

hydrogels. Hydrogels generated by the convection-based platform were then incorporated 

into a novel cell migration chamber which cultures cells on aligned nanofibers of 

controllable diameters and which delivers NF gradients via gradient-loaded methacrylated 

gelatin hydrogel. In Chapter 3, we used these novel gradient/nanofiber chambers and 

developed a live-cell imaging and analysis program to evaluate the migration of Schwann 

cells in response to fibers of different diameters, gradients of different NFs, and different 

gradient steepness and concentration range conditions. Our hypotheses are (1) that there 

exists an optimal fiber diameter upon which Schwann cell migration rate will be 
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maximized, (2) that gradients of GDNF, NGF, and NRG1 will elicit different migration 

behavior, and (3) that Schwann cell migration kinetics will differ depending on gradient 

concentration and steepness. 

While evaluating the migration response of Schwann cells in our combinatorial 

migration chambers, we found that Schwann cell migration rate was fastest on 1.2 µm 

diameter aligned fibers, GDNF elicited the strongest chemotactic response of the three NFs 

tested, and that both gradient steepness and concentration range were important 

characteristics in guiding Schwann cell directional migration in vitro. In Chapter 4, we 

evaluated the effect of GDNF gradient delivery in our combinatorial NGC in two in vivo 

models: (1) a 7-mm gap, rat sciatic nerve model which was used to evaluate the effect of 

gradient steepness on axonal growth and to select a gradient condition for the second 

model, (2) a canine peroneal nerve 20-mm gap model to evaluate the efficacy of GDNF 

gradient delivery in enhancing nerve regeneration across a critical nerve injury gap. We 

hypothesize that (1) gradient steepness is an important characteristic for enhancing in vivo 

nerve growth and (2) that delivery of GDNF as a gradient will enhance the regeneration of 

axons across a critical nerve injury gap and improve functional recovery compared to 

uniform GDNF delivery. 

The following specific aims were pursued in this thesis to test the aforementioned 

hypotheses. 

Aim 1 (Chapter 2): Develop platforms for generating/delivering diffusible NF 

gradients on 2D substrates and encapsulating gradients in 3D hydrogels as a gradient 

delivery vehicle for in vitro and in vivo cell migration and nerve regeneration. 

Two gradient generation techniques were developed: (1) rapid, scalable method for 

in vitro and in vivo gradient delivery, and (2) diffusion-based method for generation of 
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gradients in live-cell, 2D and 3D migration platforms. The rapid, convection-based method 

was modified to improve scalability and release kinetics were controlled via heparin-

conjugation. The diffusion-based platform was modeled using COMSOL and utility as a 

hydrogel-based gradient-loading method was established. 

Aim 2 (Chapter 3): Establish live-cell imaging and cell migration analysis platform 

for investigating effects of growth factor gradient delivery and topographical guidance on 

the migration guidance of Schwann cells. 

Schwann cell migration on aligned nanofibers and in response to gradients of 

GDNF, NGF, and NRG1 was tested in novel migration chambers. Live cell imaging and 

migration analysis was conducted to evaluate influence of nanofiber diameter and gradient 

characteristics on in vitro migration kinetics of Schwann cells. 

Aim 3 (Chapter 4): Evaluate efficacy of NF gradient delivery in small and large 

animal in vivo peripheral nerve injury models. 

GDNF gradients were incorporated into aligned nanofiber NGCs and evaluated for 

efficacy in improving in vivo peripheral nerve regeneration. Two gradient steepness 

conditions were evaluated for efficacy in an in vivo non-critical gap model to select most 

effective gradient for increasing axonal outgrowth. Gradient NGC was then tested in an in 

vivo critical gap defect model and evaluated for efficacy in improving axonal growth across 

entirety of critical gap and functional recovery. 
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 Figures 

 

 
Figure 1.1: Signaling cue presentation and cell-incorporation approaches to enhance nerve 

regeneration. NGC functionality can be enhanced by incorporating (a) topographical and 

adhesion signaling, (b) neurotrophic factor (NF) gradients, (c) Schwann cells over-

expressing NFs, and (d) adult stem cells such as mesenchymal stem cells (MSCs) and bone 

marrow-derived stromal cells (BMSCs). Figure reproduced by permission from Elsevier 

Publishers Ltd: Current Opinion in Biotechnology,8 copyright 2011. 
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Chapter 2 : Gradient Generation Platforms for In Vitro and In 

Vivo Neurotrophic Factor Delivery  

 Introduction 

The pioneering work of Paul Letourneau provided the first evidence that neurons 

exhibit a chemotactic response to NF gradients, developing the first platform for studying 

axonal extension under well-defined NGF gradient conditions [1]. The study was concrete 

evidence that axonal migration can be directed though control of NF presentation. Since 

that study, numerous methods have been developed to improve our understanding of 

neuronal chemotaxis in efforts to utilize NF gradient delivery as a method for enhancing 

central and peripheral nerve regeneration [2-29]. Microfluidics-based methods offer 

excellent control of gradient characteristics and provide insight into neuronal guidance in 

short-range (<1 cm) in vitro gradients [7, 17, 18, 20, 29, 30], but suffer from the inability 

to scale the method to centimeter length scales relevant to in vivo nerve applications. 

Surface-immobilized gradient techniques provide a greater potential range of gradient 

lengths, but suffer from limited control of gradient concentration and restrict the influence 

of gradient presentation to only cells in direct contact with the gradient-immobilized 

surface [3, 4, 7, 24, 30, 31]. Gradients formed by mixing of NFs into electrospun or 

extruded fibers are capable of establishing long-range (>1 cm) macroscopic gradients for 

in vivo application, but suffer from a lack of localized gradient control limiting their 

efficacy for investigating in vitro neuronal guidance in response to finely-tuned gradient 

conditions [25, 26, 28]. Printing-based methods offer adequate gradient control and a range 

of length scales suitable for in vitro and in vivo gradient applications, but gradients are 

rapidly diminished after printing and the requirement for specialized printing machines 
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limits the potential scalability of the platform [10, 19, 22]. The lack of scalable gradient-

generation techniques, which provide precision control of gradient characteristics and are 

capable of generation of stable centimeter-scale gradients has limited the advancement of 

our understanding of how localized gradient conditions effect macroscopic neuronal 

outgrowth on multi-centimeter scales. Furthermore, the limitations of current gradient 

generation platforms result in the specialization of the gradient generation techniques for 

either in vitro or in vivo-specific applications, limiting their capability to be utilized both 

as in vitro neuron guidance screening tools while being easily translated into in vivo nerve 

regeneration platforms. 

In this chapter, we discuss the development of multiple gradient generation 

techniques capable of generating gradients with tailorable and well-controlled gradient 

characteristics, which provide scalable gradient production and are capable of delivery of 

gradients in both in vitro and in vivo gradient guidance platforms. First, we developed a 

rapid, convection-driven gradient generation technique in collaboration with the Ali 

Khademhosseini lab [32, 33] which provided tailorable, scalable gradient generation 

immobilized in a crosslinked methacrylated gelatin hydrogel for controlled delivery in in 

vitro and in vivo gradient guidance assays. By modifying the channel dimensions and 

changing the hydrogel composition, we were able to establish a scalable, controllable 

gradient generation platform with tailorable gradient release kinetics. We then discuss the 

development of a diffusion-based microfluidics gradient generation method capable of 

generation of centimeter-scale gradients under cell-friendly conditions for 2D and 3D 

tissue cultures. With this platform, we demonstrate the ability to generate stable centimeter-

length gradients under shear-free conditions for high-throughput live-cell migration assays 
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in 2D and 3D culture conditions, which can be utilized for generating gradients in hydrogel 

films for in vitro and in vivo delivery. 

 Materials and Methods 

2.2.1 Methacrylated gelatin synthesis 

Methacrylated gelatin (MG) was prepared as described by Nichol et al. [33]. Type 

A porcine skin gelatin (Sigma) was dissolved in Dulbecco’s phosphate buffered saline 

(DPBS, Gibco) at 10% (w/v) and heated at 60°C until dissolved. The solution was then 

reduced to 50°C and 1 mL of methacrylic anhydride was slowly added to the gelatin slurry 

at 0.5 mL/min while being stirred. The solution was reacted for 1 hour, after which the 

solution was diluted 5× with DPBS warmed to 40°C to stop the reaction. The mixture was 

then dialyzed in distilled water in 12 – 14 kDa cutoff dialysis tubing at 4°C for one week, 

with the dialysis solution being replaced daily. After one week, the MG solution was 

distributed into 50 mL conical tubes, frozen at -20°C, transferred to -80°C, and lyophilized 

until dry. The tubes were then stored at -20°C until ready for use. 

2.2.2 Fabrication of microfluidic devices 

All microfluidic devices were fabricated using standard soft-lithography methods. 

Photomasks with channel patterns were designed using Microsoft PowerPoint and printed 

on transparencies at 10,000 dpi resolution (In Tandem Design, Baltimore, MD). Master 

molds were prepared at 100 µm thickness by patterning a negative photoresist (SU-8 2050) 

on a silicon wafer. PDMS molds were prepared by curing pre-polymer (Sylgard 184, 

Kreyden) on the silicon masters. PDMS molds were prepared using a 10:1 ratio of 

elastomer to curing agent. The PDMS prepolymer solution was poured on the silicon 

master and baked at 80°C for 2 hours. The PDMS molds were then peeled off the silicon 
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master, and inlet and outlet of the microchannels were created for each channel using a 1 

mm hole punch. Each microfluidic device consisted of a top PDMS channel and a bottom 

glass or TCPS slide or well. 

2.2.3 Convection and diffusion-based microfluidics gradient platform 

Gradients immobilized in MG were prepared by modifying the method originally 

described by Du et al. [32]. For gradient characterization, microfluidics channels of 100 

µm height, 4 mm width, and 4 cm length were used. MG was dissolved in PBS at 5% (w/v) 

with 0.5% (w/v) Irgacure 2959 and heated to 37°C. PDMS channels were placed on glass 

slides and placed in a petri dish containing a damp paper towel soaked in water and warmed 

to 37°C on a hot plate. The PDMS channel was filled with warmed MG solution. A 200-

µL droplet of MG was added to the outlet, and a 10-µL solution of MG containing the 

molecule of interest was added to the inlet. The petri dish was then covered and the 

gradients were allowed to generate for before crosslinking the MG using a UV lamp. After 

crosslinking, the channels were removed from the glass and the crosslinked gradient 

hydrogels were dried before use in in vitro or in vivo gradient delivery experiments. To 

characterize gradient formation, FITC-lysozyme was used as the molecule of interest in the 

inlet and gradients were visualized using a Typhoon Gel Reader. 

Further modifications to the method were later made to increase the gradient 

generation throughput by reducing the channel size to 8 mm length by 2 mm width by 100 

µm height and producing larger numbers of channels parallel to one another. Gradients 

were established similar to the method described above but using modified volumes of 100 

µL solution at the outlet and 2 µL at the inlet. The smaller channels were used for 
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establishing gradients for in vitro migration cultures and were characterized using FITC-

lysozyme fluorescent gradients visualized using a Typhoon Gel Reader. 

2.2.4 Controlled release of growth factor gradients 

Release studies were conducted by producing in 4 cm long MG hydrogels using the 

method described previously. Briefly, gradients of glial-derived neurotrophic factor 

(GDNF) were generated by loading 20 mg/mL GDNF in MG solution in the inlet, after 

which the gradients were immobilized in the MG by crosslinking the hydrogel with UV. 

Gradients were also prepared using GDNF co-loaded with methacrylated heparin 

(graciously provided by the Khademhosseini lab, Harvard-MIT) at 1:1 and 10:1 ratios of 

heparin to GDNF. All gels were dried and cut into 6 equal sized segments, with each 

segment being placed in separate wells of a 96 well plate, and 50 µL of PBS was added to 

each well. The 96 well plate was sealed with parafilm and placed in a 4°C refrigerator. On 

days 1, 3, 7, and 14, the PBS was collected and replaced. After the release study was 

finished, a GDNF ELISA (R&D Systems) was used to measure the release of GDNF. 

GDNF ELISA values were compared to standards as instructed in the ELISA kit and 

measured in a plate reader. 

2.2.5 Diffusion-based gradient generation platform 

A novel diffusion-based gradient platform was developed for determining the effect 

of establishing centimeter-scale gradients in the presence of cells. Channels were 

microfabricated with the dimensions of 0.1 mm (height) × 4 mm (width) × 10 mm (length). 

PDMS was polymerized at a thickness of 5 mm and wells were bored at each end of the 

channel using a 3 mm hole punch. To generate gradients, the channels were placed on glass 

or TCPS and filled with PBS or media. The “inlet” was then sealed with a thin wafer of 
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PDMS and the “outlet” was filled with PBS or media. The “outlet” was then sealed with a 

thin PDMS wafer, the “inlet” on the wafer removed, and the “inlet” was filled with PBS or 

media containing the molecule of interest. The “inlet” was then sealed with a PDMS wafer 

and the gradient allowed to establish for 4-24 hours depending on the molecular weight of 

the molecule of interest. Gradients were characterized by establishing a gradient of FITC-

lysozyme and imaged using a Typhoon Gel Reader. 

2.2.6 Hydrogel loading using diffusion-based gradient generation technique 

The diffusion-based platform described in 2.2.5 was modified to be able to 

encapsulate gradients in a large variety of hydrogel materials. Thin 500 µm PDMS films 

were polymerized between aluminum plates and cut into frames with outer dimensions of 

14 mm (length) × 8 mm (width) and inner frame dimensions of 10 mm (length) × 4 mm 

(width).  Hydrogel films of fibrin, collagen, MG, or hyaluronan-PEG were then 

polymerized in the frames to form 500-µm thick hydrogels films. For gradient 

characterization studies, collagen films were polymerized in the frames by mixing 8 parts 

chilled 10 mg/mL collagen type I, 1 part chilled 7.5% (w/v) sodium bicarbonate, and 1 part 

chilled 10× PBS, and pipetting the solution into separate frames before incubating at 37°C 

for one hour. The diffusion gradient channels were then placed over the hydrogel frame 

and gradients of FITC-lysozyme were established using the method described in section 

2.2.5. As gradients established in the channels, they diffused into the underlying hydrogel, 

which could then be obtained for delivery of the NF gradient for in vitro or in vivo 

applications.  
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2.2.7 Data analysis 

Gradient establishment in both methods was imaged using the Typhoon Gel Reader 

and fluorescence was analyzed using Image J. Fluorescence was compared against 

standards. Plots of GDNF release represent mean ± Standard Error.  

 Results and Discussion 

2.3.1 Microfluidics gradient characterization 

In order to generate centimeter-scale gradients encapsulated in hydrogel films for 

in vitro and in vivo delivery, we have adopted a technique developed previously by 

Khademhosseini et al. [32]. This technique allows for the rapid (one hour or shorter) 

generation of gradients of tailorable concentration ranges and length scales ranging from 

millimeters to centimeters using a single microfluidics channel which are encapsulated 

within UV-crosslinked methacrylated gelatin strips (Figure 2.1). In brief, the gradient 

generation platform consists of a single microfluidics channel with a single inlet at outlet 

at each end of the channel. The channel is filled with a UV-crosslinkable hydrogel 

precursor solution. A large volume of hydrogel precursor solution is pipetted onto the outlet 

and a small volume of hydrogel solution containing the molecule of interest is pipetted 

onto the inlet. The differences in solution volume at the outlet and inlet causes a differences 

in surface tension which causes the small droplet at the inlet to be driven into the channel 

via convection-based flow, establishing a gradient. As the gradient generation continues, 

diffusion and backflow caused by evaporation at the inlet further elongates the gradient, 

allowing for greater control over the gradient characteristics. Once the gradients have been 

generated, the channel contents are exposed to UV light to crosslink the hydrogel and 

encapsulate the gradient in a hydrogel strip. The hydrogel can then be extracted from the 
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channel and placed in a variety of in vitro cell migration platforms or in nerve guide 

conduits for in vivo nerve regeneration. Use of methacrylated gelatin as the selected 

hydrogel material creates a highly-crosslinked hydrogel which provides prolonged release 

of NF and which is stable at physiological conditions [33].  

Gradient length scales are easily tailored by controlling the channel dimensions and 

further modified by changing the amount of time the gradients are established or by 

changing the inlet volume. By controlling the concentration of NF pre-loaded into the 

channel and NF in the droplet placed at the inlet, linear gradients of controllable 

concentration ranges and length scales can be established, as seen in Figure 2.2. The ability 

to use this method to generate well-controlled gradients at multi-centimeter scales allows 

for translation of gradient delivery for in vitro migration assays similar to those established 

using microfluidics-based platforms [7, 17, 18, 20, 29, 30], but with the scalability and 

ability to transfer the gradients into NGCs for in vivo gradient delivery, which is currently 

only feasible using gradient techniques for which gradient characteristics are less defined 

[16, 25, 26, 28].  

In addition to the multi-centimeter scale configuration originally developed by 

Khademhosseini et al., we modified the technique to decrease the length scale and increase 

the gradient generation throughput by fabricating parallel channel arrays (Figure 2.3) with 

which we could simultaneously produce numerous gradient hydrogels on smaller scales 

for easier incorporation in our in vitro cell migration platforms. By increasing the 

scalability of this method, we can simultaneously establish numerous gradient-loaded 

hydrogels for gradient delivery for high-throughput in vitro NF gradient screening and to 

ease production of gradient-loaded NGCs. The scalability of this method exhibits a 
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substantial advantage compared to microfluidics-based methods [7, 17, 18, 20, 29, 30], 

printing-based methods [10, 19], segmented gradients [16], or gradients generated using 

gradient mixers [9, 13] or electrospinning and extrusion methods [25, 26, 28], which 

generally require gradients to be produced one at a time. An additional benefit of this 

method is that it requires only small volumes of NF solution (<20 µL) to produce 

centimeter-scale gradients. By developing a low-volume gradient generation method, 

minimal NF is wasted during the gradient generation process and a significantly greater 

number of gradients can be produced from one NF stock compared to other gradient 

generation platforms. Printing-methods require small droplet volumes on the nanoliter 

scale, but it is unclear as to how many droplets are required to generate a centimeter-scale 

gradient [10, 19, 22] and the limited scalability and gradient stability reduce the potentially 

applicability of these methods. Gradient chambers [6, 8, 34] and gradient mixers [9, 13] 

are capable of generating controllable centimeter-scale gradients, but require significantly 

greater volumes of NF solution (100-1000 µL) to produce equivalent gradient 

characteristics. The high degree of gradient control at multi-centimeter length scales and 

ease of scalability make this gradient generation platform very unique in its capability for 

both short (<1 cm) and long (>1 cm) gradient generation for both in vitro and in vivo 

delivery that is difficult to achieve using other methods. 

2.3.2 Release of gradients from methacrylated gelatin hydrogel 

After loading of gradients into MG hydrogels, we needed to determine if NF 

gradients loaded into the MG hydrogels were released in a gradient-like fashion. We 

designed a release study investigating if GDNF was released in gradient hydrogels at rates 

that were proportional to the loading concentration within the different regions of the 
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hydrogel (i.e. differences between release rates in the high concentration regions versus the 

low concentration regions). Briefly, we established GDNF gradients in triplicate in MG 

hydrogels and cut the hydrogels into six equal-sized segments. Each segment was placed 

in separate wells of a 96-well plate and immersed in PBS. The PBS solution was collected 

and replaced on days 1, 3, 7, and 14, and GDNF release into the solutions collected was 

measured by use of an ELISA. From our release studies, we were able to see that release 

rates from the hydrogels differed in the 6 regions of the hydrogels, with higher release rates 

occurring in the highest concentration regions of the hydrogel and decreasing with 

decreasing GDNF loading (Figure 2.4). The greatest percentage of release was on day 1 

with gradient release continuing for at least 14 days. After the 14 days, the hydrogels 

largely remained intact and much of the initial GDNF loaded in the hydrogels remained 

sequestered within the hydrogels.  

Additionally, we tested whether incorporation of methacrylated heparin into the 

MG hydrogels during the GDNF loading phase altered the release rate of GDNF from the 

hydrogels. For this release study, methacrylated heparin was mixed with GDNF at 1:1 or 

10:1 ratios of heparin to GDNF and allowed to bind for 1 hour before pipetting the 

heparin/GDNF solutions onto the inlet of their respective gradient channels. Hydrogels 

were sectioned into six equal sized segments and the release study was conducted as before. 

Methacrylated heparin was used to conjugate the heparin to the MG hydrogel and act as an 

additional method to sequester GDNF to the hydrogel through heparin-GDNF binding. We 

initially hypothesized that the inclusion of heparin in the hydrogel formulation would 

reduce the release rate of GDNF from the MG hydrogel. Heparin-based controlled release 

systems have been used to prolong the release of NFs in nerve guides to enhance the 
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therapeutic efficacy of NF delivery [35-37]. However, from this study, we saw that the 

inclusion of heparin increased the rate of release from our hydrogels (Figure 2.5) compared 

to MG hydrogels without heparin. The release rate was actually highest for the highest 

concentration of methacrylated heparin. One possible explanation is that the inclusion of 

methacrylated heparin decreases the crosslinking density of the MG hydrogel by 

competitively conjugating to the methacrylate groups on the gelatin. Even though heparin 

itself is capable of binding to GDNF and slowing release, the data indicate that the potential 

decrease in crosslinking density offsets any benefits of heparin binding and causes a faster 

rate of release from the hydrogel. Due to these findings, future studies using MG hydrogels 

in in vitro and in vivo gradient delivery experiments did not include the use of 

methacrylated heparin in the formulations in order to provide more sustained release of NF 

from the hydrogels. 

2.3.3 Diffusion-based gradient generation platform characterization 

In addition to making modifications to the microfluidics-based convection-driven 

gradient method for in vitro cell migration studies, we developed a convection-free, 

tailorable, scalable gradient generation platform capable of creating NF gradients in the 

presence of cultured cells. Our gradient platform relies primarily on the diffusion of NFs 

in a microfabricated channel between a “source” and “sink” well (Figure 2.6). In this setup, 

the channel is filled with media, PBS, hydrogel, or cell solution in order to seed cells at the 

base of the channel prior to gradient establishment. If studying a non-zero baseline 

concentration of growth factor, the baseline level of growth factor can be loaded at this 

step, or can be loaded at the next step of the process. After pre-filling the channel, one of 

the wells is sealed with a removable PDMS stamp. The unsealed “sink” well is filled with 
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media or PBS containing no growth factor or containing the baseline concentration of the 

growth factor. After filling the “sink” well, it is sealed with a removable PDMS stamp and 

the stamp on the “source” well is removed. The “source” well is then filled with the highest 

desired concentration of growth factor and sealed with a PDMS stamp. Concentration 

differences between the “source” and “sink” wells result in a diffusion gradient being 

established between the two wells over the course of 4 – 24 hours depending on the 

molecular weight of the molecule of interest (Figure 2.7b). During this time, a well-

controlled linear gradient is established between the two wells, which can be easily 

modeled using COMSOL (Figure 2.7a). As seen in Figure 2.7, centimeter-scale gradients 

can be generated using this method, beyond the size limitations of most microfluidics-

based designs [7, 17, 18, 20, 29, 30] while still maintaining excellent control of gradient 

characteristics for prolonged periods of time (>24 hours).   

The use of the seal on the wells prevents gravity-driven flow from occurring in the 

channel after loading one of the wells, allowing the contents of each individual well to be 

replaced without disturbing the contents of the central channel or of the opposite well and 

keeping gradient generation convection-free. Convection-free gradient generation allows 

for the examination of the influence of gradients on shear-sensitive cell types, which would 

not be capable in flow-based systems [17, 32]. Neurons are known to be sensitive to shear 

and exhibit axonal retraction under excessive fluid shear conditions [17], for which 

convection-based gradient generation methods are not suitable. Figure 2.8 shows human 

Schwann cells cultured in gradient-generation channels prior at different time points after 

gradient generation was begun. Cells were seeded in the channels before beginning the 

gradient generation process. As can be seen, cells were viable after 4 hours of gradient 



38 
 

generation (Figure 2.8a) and remained viable 18 hours after gradient generation began 

(Figure 2.8b). Diffusion-based gradient generation does not rely on convection or flow to 

generate gradient profiles, and therefore does not exert fluid shear on cells during the 

gradient generation process and making this method compatible with neurons and Schwann 

cell cultures. Although gradient generation using this method is slower than for the 

convection-driven method, the ease of gradient generation using this method allows for 

fast and simple generation of a high number of simultaneous samples, increasing the 

scalability of gradient generation and allowing for the simultaneous testing of many 

gradient conditions. The scalability of this method provides a major advantage over 

methods for which gradient production must occur sequentially [7, 9, 10, 13, 16-20, 25, 26, 

28-30]. Our diffusion-based gradient method, like the convection-driven gradient method, 

requires only small volumes of NF solution (<20 µL) to produce centimeter-scale 

gradients, using significantly lower volumes of NF and minimizing NF waste compared to 

comparable methods [6, 8, 9, 13, 34]. The volumetric efficiency of this method is incredibly 

important when using expensive NFs or drug compounds. 

2.3.4 Use of diffusion-based gradient generation method for establishment of 

gradients in hydrogel films 

In addition to being able to form gradients directly in the channel using our novel 

diffusion-based gradient generation method, we are able to utilize this method to establish 

gradients within hydrogel films using a wide variety of hydrogel materials. Hydrogel films 

are first formed within PDMS frames of tailorable dimensions. First, a thin PDMS sheet is 

created by polymerizing Sylgard 184 monomer and crosslinker at 10:1 mass ratio between 

aluminum plates, using double-sided tape to control the spacing of the plates and allowing 
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for easy control of PDMS sheet thickness. PDMS frames are then cut to the desired 

dimensions from the sheet. Hydrogels can then be polymerized within the frames to 

produce thin frames of hydrogels with easily tailorable dimensions, and a wide variety of 

hydrogel materials can be used, including but not limited to collagen, methacrylated 

gelatin, fibrin, Matrigel, hyaluronic acid, and PEG-based materials. After the hydrogels are 

formed, gradient channels are placed over the PDMS frame and gradients are established 

using the method described in section 2.2.5. While the gradients form in the channel, the 

molecule of interest diffuses into the underlying hydrogel, simultaneously encapsulating 

the gradient in the hydrogel (Figure 2.9). Comparable gradient generation techniques 

which create hydrogel-based gradients suffer from the requirement for vastly higher 

volumes of NF (100-1000 µL per sample) [6, 8, 9, 13, 16, 34] compared to our diffusion-

based gradient method. Furthermore, this method has been adopted for functionalizing 

various other material platforms developed in our lab, including hydrogel-based 

electrospun fiber sheets (Figure 2.10), further demonstrating the extensive utility of this 

gradient generation technique. 

In collagen hydrogels, the gradient generation in the channel and in the hydrogel 

was characterized by establishing gradients of FITC-lysozyme and imaging the channel 

and hydrogel before and after removal of the channel using a Typhoon Gel Reader. After 

four hours of gradient establishment, it can be seen that the gradients in the channels 

(Figure 2.11a) were transferred to the collagen hydrogel (Figure 2.11b), forming a highly 

linear gradient in the hydrogel film. The hydrogel film can then be dried and transferred 

for use in in vitro or in vivo gradient delivery platforms, similar to the hydrogel created 

using the convection-based gradient generation method. Using this method, we have begun 
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investigating guidance of motor neurons in an in vitro spinal cord organotypic model to 

demonstrate the influence of GDNF gradients on directional motor neuron outgrowth 

(Figure 2.12). Additionally, this method can be modified to generate gradients in the 

presence of cells cultured on hydrogel films. Cells can be pre-seeded within or on top of 

the hydrogel films prior to gradient generation, and live-cell 2D and 3D cell migration 

studies can be conducted using this gradient generation platform, further increasing the 

utility of this method. The technique of separately sealing the wells allows for simple 

replacement of “source” and “sink” well contents and for use in long-term gradient studies. 

An example is shown in Figure 2.13 where dorsal root ganglion neurons were cultured on 

a Matrigel film in a 0-10 ng/mL NGF gradient for three days, with the contents of the 

“source” and “sink” wells being replenished daily. The DRGs demonstrated robust survival 

over the course of the 3 days and confirmed the viability of this platform for use in long-

term, multi-day gradient migration assays. 

 Conclusions 

We were able to establish two scalable gradient generation platforms which both 

demonstrate excellent control of gradient characteristics and are capable of generating 

centimeter-length gradients. The first method provides rapid, scalable, convection-based 

generation of multi-centimeter gradients encapsulated within a crosslinked methacrylated 

gelatin hydrogel for ease of in vitro and in vivo gradient delivery. By conjugation of 

methacrylated heparin, the release kinetics of the hydrogel can be tailored depending on 

the desired rate of release. The second method provides shear-free gradient generation, 

which demonstrates significant utility, capable of generating highly controlled, stable 

centimeter-length gradients in the presence of cells, can be used to establish gradients in 
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2D and 3D culture systems, and which is capable of long-term gradient culture. The 

combination of these two gradient techniques will provide significant insight into the 

influence of NF gradient delivery on neuron and Schwann cell guidance using in vitro live-

cell migration to analyze cell migration kinetics and translating the gradients into our NGCs 

for in vivo nerve regeneration applications. 
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Figure 2.1: Rapid, convection-based gradient generation method. (a) Microfluidics 

channel with tailorable channel dimensions, channel height of 100 µm. (b) Channel is 

pre-filled with photocrosslinkable methacrylated gelatin (MG), large volume of MG 

is pipetted onto outlet, and small volume of NF pipetted onto inlet. (c) Surface tension 

drives convection-based flow of NF droplet into channel and establishes gradient. (d) 

After UV crosslinking, gradient is encapsulated in hydrogel.  
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Figure 2.2: Generation of multi-centimeter scale gradients of FITC-lysozyme using 

convection-based gradient generation method with controllable gradient 

concentration and steepness. 
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Figure 2.3: Gradient length can be tailored by modifying channel dimensions. (a) 

Gradient of FITC-lysozyme in 8 mm long channel. (b) Parallel channel configuration 

developed for increased scalability of gradient generation method. 
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Figure 2.4: Gradient release from GDNF gradient-loaded hydrogel film (N = 3). 

Films were produced in triplicate and were sectioned into six pieces and release 

was measured using GDNF ELISA and compared to standards per ELISA 

instructions. Bar graph denotes mean ± Standard Error. 
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Figure 2.5: Cumulative release of GDNF from methacrylated gelatin with different 

levels of methacrylated heparin loading (N=3). Release was measured using GDNF 

ELISA and compared to standards per ELISA instructions. Error bars denote 

standard error. 
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Figure 2.6: Diffusion-based gradient generation platform consisting of a 

microfluidics channel (10 mm length by 4 mm width by 100 µm height) 

with a 3 mm diameter “source” well and 3 mm diameter “sink” well. 

Channel is filled with media or PBS, and “source” and “sink” wells are 

filled with media/PBS or NF. Diffusion gradient establishes in channel 

due to differences in concentration between the “source” and “sink” wells. 
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Figure 2.7: Time-progression of diffusion-based gradients. (a) COMSOL 

modeling of diffusion-based gradient generation platform showing time-

course of gradient generation. (b) Experimental generation of FITC-

lysozyme gradient in diffusion-based gradient channels. Gradient was 

measured using a Typhoon Gel Reader and compared against channel 

standards. 
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Figure 2.8: Human Schwann cell viability in diffusion-based gradient 

channel in 0-10 ng/mL NRG1 gradient. (a) Schwann cells were well-

adhered 4 hours after beginning gradient generation. (b) Schwann cells 

remained viable for at least 18 hours after beginning gradient generation. 



50 
 

  

 

Figure 2.9: Modification of diffusion-based gradient generation platform 

for functionalization of hydrogel films. Hydrogel films (1 cm by 4 cm by 

500 µm) are polymerized in PDMS frames. Gradient channels are placed 

over the films and gradients are generated in the channel, transferring to 

the underlying hydrogel film. 
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Figure 2.10: FITC-Lysozyme gradient in fibrin hydrogel fiber sheet 

generated using diffusion-based gradient generation method. High 

concentration (100 µg/mL) of FITC-Lysozyme located on the right end of 

the channel. Visualized using 2.5x objective on Nikon Inverted 

Fluorescence Microscope. 
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Figure 2.11: FITC-Lysozyme gradient generated in collagen hydrogel using 

diffusion-based gradient method. (a) Gradient in channel above hydrogel. (b) 

Gradient in collagen hydrogel after channel has been removed. Gradient was 

measured using a Typhoon Gel Reader and compared against hydrogel and 

channel standards. 
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Figure 2.12: Directed motor neuron (red) migration in spinal cord 

organotypic culture on collagen hydrogel loaded with 0-1 ng/mL GDNF 

gradient using modified diffusion-based gradient method. 
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Figure 2.13: Dorsal root ganglion explants cultured on Matrigel, showing 

neuron survival and growth after 3 days in 0-10 ng/mL NGF gradient 

culture in modified diffusion gradient channels. Visualized using Nikon 

Inverted Microscope with 10x objective. Scale bar is 200 µm. 
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Chapter 3 : Effect of Neurotrophic Factor Gradient Profile on 

Schwann Cell Migration in Culture 

 Introduction 

Neuron guidance by controlled NF delivery, as described in chapter 1 and chapter 

2, has been extensively investigated. However, little effort has been made in the guidance 

of Schwann cells, particularly through the use of topographical and biochemical gradients, 

to direct endogenous Schwann cell migration into the site of nerve injury to enhance the 

efficacy of regeneration. The presence and activity of Schwann cells is of great importance 

in enhancing nerve regeneration due to the numerous roles of Schwann cells in the nerve 

repair process, during which Schwann cells precede the axons into the lesion site secreting 

extracellular matrix tracks called bands of Büengner upon which regenerating axons grow 

[1-4]. It has been shown that Schwann cells, especially in the distal stump of the nerve 

injury, produce a cocktail of NFs to promote neuron survival and growth of regenerating 

neurons into the distal stump [1, 2]. Seggio et. al. demonstrated the capability for aligned 

Schwann cell monolayers to guide DRG neuron outgrowth in in vitro culture, illustrating 

the inherent proficiency of Schwann cells in directing axonal extension and regeneration 

[5].  By harnessing this natural capability of endogenous Schwann cells and increasing the 

rate of Schwann cell infiltration into a nerve injury gap, regeneration of the injured nerve 

may be enhanced by utilizing the mechanisms inherent in axon-glial interactions. 

One potential method for guiding Schwann cell migration utilizes aligned 

topographical cues to constrain Schwann cell migration along a single axis. Daud et. al. 

compared the effects of 1, 5, and 8 µm diameter fibers on the migration of Schwann cells, 

neurons, and neuron-glia co-cultures [6]. It was shown that Schwann cells migrated the 
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furthest distance on 1 µm diameter fibers, significantly different than result for neurons 

which extended fastest on 8 µm diameter fibers. In co-cultures, Schwann cells formed a 

migration front upon with axons trailing behind, migrating preferentially on the Schwann 

cell basal lamina instead of the underlying fibers. One main limitation of the study was that 

they did not investigate cell migration on sub-micron diameter fibers to determine if there 

exists an optimal diameter range for promoting maximal Schwann cell migration rate and 

migration guidance. However, the study provided substantial evidence that neuronal 

outgrowth is largely dependent on Schwann cell migration and basal lamina production, 

and further strengthens the hypothesis that increasing Schwann cell migration into a nerve 

injury can enhance the regrowth of neurons into the injury site. 

Schwann cell migration can also be influenced by the presence of exogenous NF. 

Paratcha et al. have previously shown GDNF to be a potent migratory stimulant for 

Schwann cells via co-association with GDNF receptor alpha-1 (GFRα1) and neural cell 

adhesion molecule (NCAM) [7].  While it has previously been shown that NGF 

conditioning of Schwann cells increases their motility [8], studies by Cornejo et al. using 

Schwann cell precursor cells showed limited chemotropic activity of NGF compared to 

GDNF and to a lesser degree, NRG-1 [9]. Certain soluble of isotypes of NRG-1 are capable 

of increasing Schwann cell motility [10], but Cornejo et al. demonstrated that NRG-1 

exhibits only modest chemotropic activity in Schwann cell precursors compared to GDNF 

and macrophage inhibitory factor, a known potent chemotropic agent for Schwann cells 

[9]. Additionally, NRG-1 has been shown to influence Schwann cell proliferation, 

especially at higher concentrations [11], which may limit its role as a chemoattractant in in 
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vivo NGCs where higher NF concentrations may be necessary to provide prolonged 

delivery of therapeutic concentrations of NFs. 

In Chapter 3, we develop a novel migration chamber which combines topographical 

and biochemical gradient guidance with a live-cell imaging and analysis program to 

investigate the migratory response of human Schwann cells to different topographical and 

biochemical cues. We utilize the migration chamber to track and analyze the migration of 

thousands of cells simultaneously and compare the influence of fiber diameter, NF type, 

and NF gradient characteristics on the directed migration of Schwann cells. Here we report 

Schwann cell migration on a wide range of aligned electrospun fiber diameters ranging 

from 180 nm to 2 µm to determine the optimal fiber diameter for use in subsequent in vitro 

cell migration models as well as for incorporation into NGCs which combine aligned 

nanofibers on the surface of the lumen as well as hydrogel-based NF gradient delivery. The 

migration platform is used to determine the efficacy of multiple NF and gradient conditions 

on Schwann cell guidance, eliciting the effects of NF type, gradient concentration range, 

and gradient steepness in the directional guidance of Schwann cells. Using this method, we 

gained tremendous insight into which topographical and NF gradient parameters promote 

optimal guidance of Schwann cells, which can be used to improve the design and function 

of NGCs capable of enhancing Schwann cell and neuron growth. This work also highlights 

the potential for utilizing this platform for the study of cell and tissue engineering fields 

beyond the realm of nerve regeneration. 
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 Methods 

3.2.1 Aligned nanofiber sheet preparation 

Nanofiber sheets were generated using an electrospinning setup commonly utilized 

in our lab (Figure 3.1). In brief, polycaprolactone (PCL)-solvent solution is added to a 1-

mL plastic syringe. A blunt-end 27-gauge needle is added to the syringe and the syringe is 

placed in a syringe pump (KD Scientific, Holliston, MA). The syringe pump is mounted 

on a linear stage (Newmark Systems, Rancho Santa Margarita, CA) to allow controllable 

deposition of polymer solution over the area of interest. The needle is connected to a DC 

power supply (Gamma High Voltage power supply, Ormond Beach FL) to generate a 

positive charge to the solution at the tip of the of the syringe needle. A rotating collection 

wheel (40 cm diameter) is placed at a controlled distance from the end of the needle and is 

attached an electrical ground. Rotation of the collection wheel is controlled by a Dayton 

DC Speed Control. Aligned fiber sheets are created on the surface of the rotating wheel by 

extruding PCL solution through the end of the needle and applying a charge to the solution, 

resulting in deposition of fibers on the rotating wheel surface. After deposition onto the 

wheel surface, fiber sheets are removed from the wheel and cut to the desired size for in 

vitro migration studies. Fiber diameter can be tailored by controlling the PCL-solvent 

composition, collection distance, and wheel rotation speed. With this method, fiber sheets 

can be manufactured with fiber diameters ranging from 180 nm to 8 µm.  

3.2.2 Aligned fiber coverslip preparation for fiber diameter screening 

Nanofiber coverslips were prepared by modification of the method described in 

section 3.2.1. Coverslips were taped to the spinning wheel and fibers were deposited on 

the surface of the coverslips. Fibers were immobilized to the surface of the coverslips by 
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pipetting Factor 2 silicone surgical glue onto the outer edges of the coverslips. After fiber 

immobilization, coverslips were sterilized via either 40 min exposure to UV in the 

biosafety hood or ethylene oxide sterilization. The coverslips were glued to the bottom of 

the 24-well plates with Factor 2 silicone surgical glue, which was allowed to vent overnight 

to remove residual solvent. The coverslips were then washed with PBS and coated for cell 

adhesion by soaking in 1/100 Matrigel solution overnight at 37°C. The coverslips were 

washed the following day with PBS and were equilibrated for 1 hour at 37°C with the cell 

media prior to adding the spheroids or single cells for live cell tracking. 

3.2.3 Live-cell tracking of human Schwann cells on aligned nanofibers 

Fetal-derived primary human Schwann cells were purchased from Sciencell 

(Carlsbad, CA). The Schwann cells were seeded for two days prior to experiment and 

exposed to 1 µg/mL Hoechst 33342 (Pierce) for 30 minutes prior to use. Cells were washed 

to remove unused Hoechst, trypsinized, resuspended in cell solution, and pipetted at a 

concentration of 1000 cells per well onto each coverslip and allowed to adhere for 6 hours 

prior to cell tracking. Cell migration was observed every 10 minutes for 12 hours using a 

live cell imaging microscope with programmable stage (Nikon) and environmental 

chamber (37°C, 5% CO2, and 100%RH). Cell migration was analyzed using a custom cell 

tracking and analysis software package developed by our lab. 

3.2.4 Combinatorial biochemical gradient and topographical guidance cell tracking 

platform 

For NF gradient comparison experiments, hydrogels (1 cm in length) containing 

NF gradients of GDNF (0 to 1 µg/mL and 0 to 10 µg/mL), NGF (0 to 1 µg/mL and 0 to 10 

µg/mL), and NRG-1 (0 to 1 µg/mL and 0 to 10 µg/mL) were prepared and placed on 15 
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mm coverslips. For GDNF steepness comparison experiments, hydrogels (1 cm in length) 

containing GDNF gradients (0 to 1 µg/mL/cm, 0 to 10 µg/mL/cm, or 0 to 20 µg/mL/cm) 

were prepared and placed on 15 mm coverslips. Aligned electrospun fibers were placed 

over the hydrogels and immobilized using factor 2 tissue glue. A custom PDMS migration 

channel (4 mm by 10 mm by 0.1 mm) was placed over the hydrogel/fiber construct. 

Primary human Schwann cells (ScienCell) were seeded for two days prior to experiment 

and exposed to 1 µg/mL Hoechst 33342 (Pierce) for 30 minutes prior to use, washed with 

PBS, trypsinized, injected into the channel at 1000 cells per sample and allowed to adhere 

for 6 hours prior to cell tracking. Cell migration was observed using live cell imaging 

microscope with programmable stage (Nikon) and migration was analyzed using a custom 

cell tracking and analysis software package developed by our lab.  

3.2.5 Cell tracking and analysis programming 

Automated tracking of the cell images was done using the Trackmate plugin within 

the Fiji image processing program (Trackmate developed by Nick Perry, Jean-Yves 

Tinevez, Johannes Schindelin). Cells were identified by a Gaussian filter blob detection 

algorithm, and individual tracks were subsequently stitched together using a Linear 

Assignment Problem algorithm. Parameters for both detection and stitching algorithms 

were adjusted to optimize cell path quality on a file-by-file basis. Cell path attributes were 

calculated with a Matlab and Python-based routine developed in our lab using the 

spatiotemporal data outputted by Trackmate. Correlations of path attributes to local 

spatiotemporal areas were made by calculating weighted averages of attributes; the weights 

being the range of frames across which paths exist. Directionality for each cell is calculated 

as follows: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∙ 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹 𝑣𝑣𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) × 𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛(𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹 𝑣𝑣𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝑁𝑁𝑓𝑓𝑁𝑁𝑁𝑁𝑓𝑓
, where “Cell vector” is the 
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positional vector a cell has moved in one frame and “Field vector” is the vector defined as 

the direction of the gradient. Error bars show average ± Standard Error. Migration speeds 

are represented as average ± Standard Error. 

 Results and Discussion 

3.3.1 Effect of aligned fiber diameter on Schwann cell migration 

Using a live-cell imaging platform allows us to monitor the migration of large 

populations of Schwann cells, at a single-cell level, to elucidate the influence of local 

environmental factors, such as surface topography and the presence of biochemical cues. 

We first began investigating the effects of aligned fiber diameter on Schwann cell motility, 

utilizing electrospinning techniques developed in our lab to compare a wide variety of fiber 

diameters, ranging from 180 nm to 2 µm. In order to image Schwann cells through optically 

opaque aligned fibers, the Schwann cells first had to be labeled with a nuclear stain, 

allowing for simple tracking of individual cells by increasing the signal contrast between 

the cells and the underlying fibers (Figure 3.2). By seeding labeled cells on coverslips 

coated in aligned fibers of different diameters and using our cell tracking and analysis 

platform to track cell migration over the course of 12 hours, we were able to determine that 

Schwann cell migration was most optimal on 1.2-µm diameter fibers (Figure 3.3a). 

Schwann cell migration speed was substantially higher on the 1.2-µm diameter fibers 

(37.9 ± 0.68 µm/h) compared to smaller (25.8 ± 0.80 µm/h) and larger diameter 

(26.9 ± 0.74 µm/h) fibers (Figure 3.3b). This result was similar to the finding by Daud et 

al. who found Schwann cell migration was greatest at a diameter of 1 µm [6], but they did 

not compare fiber diameters below 1 µm. Further analysis of the fiber setup used by Daud 

et. al. showed lower density of fibers than those used in our study. Whereas the Schwann 
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cells were largely restricted to single fibers in the Daud setup, Schwann cells in our 

migration platform showed preferential migration between multiple fibers regardless of 

fiber diameter. This disparity results in significant differences in maximum Schwann cell 

migration rate in our high density 1.2 µm fibers (37.9 ± 0.68 µm/h) compared to that of the 

low density 1 µm fibers (11.25 µm/h) [6] in the setup by Daud et. al. Increasing the density 

of aligned fibers to allow attachment of Schwann cells to multiple adjacent fibers appears 

to result in increased migration rate compared to Schwann cells restricted to single fibers. 

This indicates that NGCs designed to increase Schwann cell infiltration should be designed 

with high aligned fiber densities in order to maximize the motility of Schwann cells 

migrating on the aligned fiber substrate. 

Our results also demonstrate the existence of an optimal fiber diameter range for 

Schwann cell guidance in high-density fiber substrates. On fibers with an average diameter 

of below 1 µm, Schwann cell migration was slowed due to the ability for Schwann cells to 

transmigrate across multiple fibers and was not restricted to the migration axis dictated by 

the fiber alignment. Fibers with an average diameter of 1 µm and above successfully 

restricted cell migration along the fiber axis, but Schwann cell migration rate slowed on 

larger diameter fibers. Schwann cells tended to migrate fastest when migrating between 

parallel fibers, which was mostly possible for fibers with an average diameter of 1 µm and 

smaller. For larger diameter fibers, the Schwann cells were restricted to single-fiber 

migration, potentially resulting in slower migration rate. While we currently lack the 

mechanistic understanding behind these phenomena, the results gleaned from this 

experiment were useful in the design of studies incorporating aligned nanofibers into 
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biochemical gradient models and in the selection of fiber diameter for our aligned fiber 

NGCs. 

3.3.2 Effect of NF type on Schwann cell migration 

In order to investigate the influence of different types of NF types and gradient 

concentrations in Schwann cell guidance, we developed a novel migration chamber, which 

combined topographical guidance from aligned nanofibers with NF gradients delivered 

from methacrylated gelatin hydrogels (Figure 3.5). Gradients were generated in 1-cm long 

methacrylated gelatin hydrogels using the methods described in Chapter 2. The growth 

factors selected for comparison were glial-derived neurotrophic factor (GDNF), nerve 

growth factor (NGF), and neuregulin-1 (NRG-1), and 1 cm length gradients were generated 

for each NF with two concentration ranges, 0 – 1 µg/mL and 0 – 10 µg/mL. Human 

Schwann cells were seeded within the migration chambers and incubated for 6 hours before 

observing cell migration for an additional 12 hours using a live-cell imaging microscope. 

The presence of aligned fibers in the migration chamber played an important role in the 

restriction of cell migration along a single axis, which simplified cell tracking and analysis 

and to better attribute any directional bias to the specific gradient conditions imposed on 

the cells. 

After cell tracking and analysis, we were able to demonstrate that GDNF was the 

most potent NF in promoting directional Schwann cell migration (Figure 3.6) within the 

concentration ranges tested, with both the 0 – 1 µg/mL and 0 – 10 µg/mL gradients 

successfully promoting biased migration of the Schwann cells. The strong migrational bias 

elicited by GDNF gradients supplements the results from Paratcha et al. who have 

previously shown GDNF to be a potent migratory stimulant for Schwann cells [7].  NGF 
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and NRG-1 did not elicit a strong directional migratory response in human Schwann cells. 

Cornejo et al. showed limited chemotropism of Schwann cell precursors in response to 

NGF gradients [9], although there may exist a concentration-dependent effect on Schwann 

cell motility [8]. The limited directional guidance elicited by NRG-1 was also similar to 

the results by Cornejo et al., who saw modest chemotropic activity in Schwann cell 

precursors in NRG-1 gradients with a maximum gradient concentration of 200 ng/mL (2 

µg/mL/cm steepness) compared to GDNF gradients with equivalent concentration range 

[9]. While the chemoattractant effects of these NFs may differ depending on the Schwann 

cell maturity [9], these data suggest that GDNF is a suitable candidate for the study of 

gradient-based chemotropic guidance of Schwann cells. With its capability as both a potent 

Schwann cell chemoattractant and survival cue for motor neurons [12], much of our 

subsequent in vitro and in vivo research focused on the delivery of GDNF gradients and 

the influence of GDNF gradient characteristics on its tropic activity.  However, it should 

be noted that chemotropic efficacy may vary significantly depending on the concentration 

range of the gradients presented [13-18], and different NFs may have different therapeutic 

concentration ranges. Future studies will need to consider these differences and investigate 

larger gradient concentration ranges in order to further optimize gradient migration 

guidance of Schwann cells. 

3.3.3 Effects of GDNF gradient characteristics on chemoattractive activity 

Given our findings demonstrating the efficiency of GDNF as a chemoattractant 

when delivered via gradient-loaded hydrogels, we utilized the combinatorial topographical 

and biochemical guidance migration chamber platform to investigate the effect of GDNF 

gradient steepness and concentration range on the guidance of Schwann cells. We 
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compared three gradient conditions of differing steepness configurations and concentration 

ranges, and evaluated the effect of different gradient characteristics on the migration 

guidance of human Schwann cells. One gradient condition ranged from 0 to 1 µg/mL 

maximum concentration with 1 cm total length (1 µg/mL/cm gradient steepness)  while 

two gradient conditions (10 µg/mL/cm and 20 µg/mL/cm) used the same maximum 

concentration (10 µg/mL) of GDNF but differed in gradient length (1 cm for the 10 

µg/mL/cm condition, 0.5 cm for the 20 µg/mL/cm condition) allowing us to directly 

compare both the influence of gradient steepness as well as concentration range. Gradient 

concentrations were selected based on previous work by Cao et. al. who demonstrated 

dose-dependent PC12 migration in concentration ranges of 0.1 µg/mL to 1 µg/mL NGF 

[14] and Moore et. al. who demonstrated directional guidance in chick DRG neurons in 

gradients of maximum concentrations up to 50 µg/mL [17], and gradient steepness was 

based on Cornejo et. al. which used 2 µg/mL/cm steepness GDNF gradients for Schwann 

cell precursor guidance [9]. Taking into account potential differences between the 

therapeutic window of GDNF and differences between neuronal and Schwann cell 

guidance, we used intermediate GDNF concentrations between the ranges of those used 

for NGF and gradient steepness values comparable to those used to guide Schwann cell 

precursors. 

 Using our live-cell imaging and analysis platform, we evaluated the migration of 

thousands of Schwann cells migrating under different gradient conditions and analyzed 

their migration characteristics in response to the imposed gradients. Figure 3.7a-c show 

positional heat maps of the migration bias of each individual Schwann cell under different 

gradient conditions. Every dot on the heat map corresponds to the weighted average 
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directional bias of an individual Schwann cell and is placed at the exact point of origin 

from which each cell was tracked. In these maps, red corresponds to cells which migrate 

positively towards the high concentration of the gradient, and blue corresponds to cells 

which migrate against the concentration gradient. In comparing the three gradient 

conditions, the shallowest GDNF gradient (1 µg/mL/cm steepness) exhibited the greatest 

level of directional bias of all gradient conditions, promoting a peak directional bias of 

63% positive cell migration near the high concentration region of the gradient (Figure 

3.7d). Peak directional bias decreased as gradient steepness increased, with a peak 

directional bias of 47% for the 10 µg/mL/cm gradient condition and 41% for the 20 

µg/mL/cm gradient condition. Within the 1 µg/mL/cm gradient condition, Schwann cell 

directional bias increased from 17% positive cell migration in the low concentration region 

of the gradient to the 63% positive cell migration in the highest concentration region of the 

gradient (Figure 3.7d), indicating a concentration range-dependent chemotactic response. 

In fact, this phenomenon was conserved within all gradient conditions (Figure 3.7d-f) 

regardless of maximum GDNF concentration or gradient steepness. Additionally, Schwann 

cell migration exhibited steepness-dependent migration in response to the different GDNF 

gradient conditions. This was most apparent in gradient regions containing GDNF 

concentrations near 1 µg/mL (1 µg/mL/cm – Region 6; 10 µg/mL/cm – Region 1) (Table 

3.1), where positive directional bias decreased with increasing steepness with 60% positive 

Schwann cell migration in the 1 µg/mL/cm steepness gradient condition, and 31% positive 

Schwann cell migration in the 10 µg/mL/cm steepness gradient condition. These data 

suggest Schwann cell guidance is strongly dependent on both the gradient concentration 

range as well as the gradient steepness. This result is consistent with research conducted 
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by Mortimer et al. demonstrating that concentration range and gradient steepness are both 

important determinants in the chemotropic effect of a NF gradient [18]. Interestingly, in 

the gradients with a maximum GDNF gradient concentration of 10 µg/mL, similar levels 

of positive directional guidance (>30% positive migration) were seen in gradient regions 3 

– 6 (Table 3.1, Figure 3.7e,f), but differed substantially in the lowest concentration regions 

(regions 1&2) where the shallower gradient exhibited greater positive Schwann cell bias. 

These results indicate that effective GDNF concentration range may differ depending on 

the steepness of the gradient. 

Further analysis of the migration shows that the gradient conditions significantly 

influence the distribution of Schwann cell migration bias (Figure 3.8). The distribution of 

the shallow GDNF gradient (Figure 3.8a) shows a relatively higher proportion of Schwann 

cells with a positive directional bias compared to cells in the higher concentration gradients 

(Figure 3.8b,c). However, there are also a higher proportion of Schwann cells that migrate 

against the gradient (Figures 3.7 and 3.8). When Schwann cells migrate on aligned fibers, 

they are able to migrate in two directions along the axis of the fibers. Some cells migrate 

in a single direction while others frequently switch direction of migration. In an 

environment where Schwann cells are exposed to a GDNF gradient, some cells oscillate 

(neutral) instead of migrating up the gradient (positive bias). However, there still exists a 

population of cells which began migrating against the gradient and maintain their path, thus 

appearing to migrate towards the low concentration (negative bias) unaffected by the 

gradient. Figure 3.8 shows the population distribution of migration directionality in 

Schwann cells in the three gradient steepness conditions. The distributions demonstrate 

that the lowest steepness gradient condition provides the strongest positive directional bias 
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(43% of total cell population), but cannot prevent a subpopulation of cells (15% of total 

cell population) from continuing to migrate against the gradient. Schwann cells in the 

highest steepness gradient, while less likely to migrate against the gradient (7% of total cell 

population), demonstrate a high tendency (62% of total cell population) to remain in a 

neutral, oscillatory state, and lower tendency to exhibit positive cell migration (30% of 

total cell population). The steepest concentration gradient thus exhibits the narrowest 

distribution of Schwann cell migrational bias with a majority of the cells existing in a 

neutral migratory state (Figure 3.8d). 

Additionally, both the steepness and concentration range influenced the migration 

rate of Schwann cells within the different gradient ranges. Cell migration rate was the 

highest for the 10 µg/mL per cm gradient group (12.0 ± 0.11 µm/h), but decreased as 

gradient steepness increased (7.6 ± 0.24 µm/hr) (Figure 3.9). This result indicates that 

while Schwann cell migration rate can be increased by increasing GDNF gradient 

concentration, gradient steepness must be tailored to prevent the “candy store” effect, in 

which cells are unable to detect the existence of a gradient and the NF conditions are 

favorable preventing Schwann cell migration out of the gradient region [19].  

The existence of optimal effective NF concentration range have been demonstrated 

in PC12 neurons [13, 15] and DRG neurons [14, 17, 18], but this is the first study, to our 

knowledge, that elucidates how NF gradient steepness and concentration range effect 

Schwann cell migration. While we gained tremendous insight into the use of NF gradients 

as a tool for guiding Schwann cell migration, further studies will be necessary to determine 

the optimal gradient conditions for maximizing directed Schwann cell migration. Current 

studies are ongoing which expand the cell tracking and analysis capability to the study of 



74 
 

neuron gradient guidance within our combinatorial platform. Although our migration 

channel platform is capable of providing significant insight into the influence of NF 

gradient delivery on single cell populations, it is important to consider how Schwann cells 

and neurons migrate under gradient conditions when in co-culture, which most closely 

mimics the conditions in an in vivo nerve injury. Further studies will be required to 

elucidate if axon-glial interactions modulate the response of Schwann cells and neurons to 

NF gradients by changing NF receptor expression via paracrine or juxtacrine signaling 

between neurons and glia. However, by creating a powerful gradient generation and 

migration analysis tool, we will be able to answer some of these questions in the near future 

and utilize the capabilities of our gradient generation and electrospun fiber platforms to 

develop the next generation of synthetic NGCs.  

 Conclusions 

We successfully developed a novel combinatorial migration chamber platform with 

which we could investigate the effect of topographical and biochemical gradient guidance 

on the migration kinetics of human Schwann cells. Utilizing live-cell imaging microscopy, 

we tracked and analyzed the migration of thousands of individual Schwann cells in 

response to topographical and biochemical cues. We found that Schwann cell migration 

was the fastest on aligned nanofibers of a diameter of 1.2 µm, a fiber size that was selected 

for use in future in vitro and in vivo models. By incorporating gradient delivery into the 

migration platform, we determined GDNF to be the most potent chemoattractive NF for 

human Schwann cells, and demonstrated the importance of gradient steepness and 

concentration on the directional bias and migration rate of Schwann cells. This platform 

provides insight into important design parameters for creating NGCs containing NF 
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gradient delivery and nanofiber topographical guidance for improving the efficacy of in 

vivo nerve regeneration. Our platform is a powerful tool for investigating biochemical and 

topographical guidance, which has potential applications in a wide variety of cell and tissue 

engineering applications. 
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 Figures and Tables 

  

Maximum GDNF Concentration (µg/mL) 

Gradient Region Gradient Steepness 
1 µg/mL/cm 10 µg/mL/cm 20 µg/mL/cm 

1 0.17 1.67 1.67 
2 0.33 3.33 3.33 
3 0.50 5.00 5.00 
4 0.67 6.67 6.67 
5 0.83 8.33 8.33 
6 1.00 10.00 10.00 

Table 3.1: Maximum GDNF concentration in different gradient regions based on 

loading concentration of GDNF in hydrogel. 
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Figure 3.1: Schematic of electrospinning setup used to generate aligned nanofiber 

substrates. A voltage is applied to an extruded polymer solution, which is deposited 

onto an electrically-grounded spinning metal wheel, resulting in the formation of 

aligned, thin-fiber sheets. 
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Figure 3.2: Human Schwann cells visualized 

on aligned nanofibers with fluorescence 

microscope. Cells are stained with Hoechst 

stain to increase contrast against underlying 

fiber substrate. 
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Figure 3.3: Average migration rate of human Schwann cells on aligned fiber sheets 

with different fiber diameters (N > 1500 cells). (a) Migration speed distribution of 

cells in different regions of fiber sheets. (b) Weighted average migration speed of 

cells. Error bars signify Standard Error. 
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Figure 3.4: Population distribution of human Schwann cell migration speed on 

aligned fiber sheets with different fiber diameters (N > 1500 cells). 
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Figure 3.5: Schematic for production of combinatorial migration 

chambers incorporating aligned fiber topographical guidance and 

hydrogel-based NF gradient delivery for live-cell imaging and 

analysis. 
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Figure 3.6: Human Schwann cell migration bias in response to gradients of 

GDNF, NGF, and NRG-1 (N>1000 cells). 
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Figure 3.7: Directional guidance of human Schwann cell migration to 

GDNF gradients (N>1000 cells). (a) Directional bias heat map of Schwann 

cells in 1 µg/mL/cm GDNF gradient. Dots represent position of cells in 

gradient. Red dots represent cells exhibiting positive directional bias. Blue 

dots represent cells exhibiting negative directional bias. (b) Directional bias 

heat map of Schwann cells in 10 µg/mL/cm GDNF gradient. (c) Directional 

bias heat map of Schwann cells in 20 µg/mL/cm GDNF gradient. (d) Percent 

of negative, neutral, or positive migrating cells in different regions of 1 

µg/mL/cm GDNF gradient. (e) Percent of negative, neutral, or positive 

migrating cells in different regions of 10 µg/mL/cm GDNF gradient. (f) 

Percent of negative, neutral, or positive migrating cells in different regions 

of 20 µg/mL/cm GDNF gradient. 
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Figure 3.8: Population distribution of directional guidance of human 

Schwann cell migration to GDNF gradients (N>1000 cells). (a) Directional 

bias distribution of Schwann cells in 1 µg/mL/cm GDNF gradient in 

different hour ranges. (b) Directional bias distribution of Schwann cells in 

10 µg/mL/cm GDNF gradient in different hour ranges. (c) Directional bias 

distribution of Schwann cells in 20 µg/mL/cm GDNF gradient in different 

hour ranges. (d) Percent of negative, neutral, or positive migrating cells in 

total cell population of cells in different gradient conditions.  
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Figure 3.9: Migration rate of human Schwann cells in GDNF gradients 

(N>1000 cells). (a) Migration rate heat map of Schwann cells in 1 µg/mL/cm 

GDNF gradient. Dots represent position of cells in gradient. Red dots 

represent cells migrating at average rate of 20 µm/h. Blue dots represent non-

migratory cells. (b) Migration rate heat map of Schwann cells in 10 

µg/mL/cm GDNF gradient. (c) Migration rate heat map of Schwann cells in 

20 µg/mL/cm GDNF gradient. (d) Average migration rate of total cell 

populations in different gradient conditions. Error bars represent Standard 

Error. 



86 
 

 References 

1. Bunge, R.P., Expanding roles for the Schwann cell: ensheathment, myelination, 

trophism and regeneration. Current Opinion in Neurobiology, 1993. 3: p. 805-809. 

2. Fu, S.Y. and T. Gordon, The cellular and molecular basis of peripheral nerve 

regeneration. Molecular Neurobiology, 1997. 14: p. 67-116. 

3. Ide, C., et al., Schwann cell basal lamina and nerve regeneration. Brain Research, 

1983. 288: p. 61-75. 

4. Fawcett, J.W. and R.J. Keynes, Peripheral nerve regeneration. Annual Review of 

Neuroscience, 1990. 13: p. 43-60. 

5. Seggio, A.M., et al., Self-aligned Schwann cell monolayers demonstrate an 

inherent ability to direct neurite outgrowth. Journal of Neural Engineering, 2010. 

7(4): p. 046001. 

6. Daud, M.F., et al., An aligned 3D neuronal-glial co-culture model for peripheral 

nerve studies. Biomaterials, 2012. 33(25): p. 5901-13. 

7. Paratcha, G., F. Ledda, and C.F. Ibáñez, The Neural Cell Adhesion Molecule NCAM 

Is an Alternative Signaling Receptor for GDNF Family Ligands. Cell, 2003. 113(7): 

p. 867-879. 

8. Anton, E.S., et al., Nerve growth factor and its low-affinity receptor promote 

Schwann cell migration. PNAS, 1994. 91(7): p. 2795-2799. 

9. Cornejo, M., et al., Effect of NRG1, GDNF, EGF and NGF in the migration of a 

Schwann cell precursor line. Neurochemical Research, 2010. 35(10): p. 1643-51. 



87 
 

10. Mahanthappa, N.K., E.S. Anton, and W.D. Matthew, Glial growth factor 2, a 

soluble neuregulin, directly increases Schwann cell motility and indirectly 

promotes neurite outgrowth. Journal of Neuroscience, 1996. 16(15): p. 4673-4683. 

11. Heermann, S. and M.H. Schwab, Molecular control of Schwann cell migration 

along peripheral axons. Cell Adhesion & Migration, 2013. 7(1): p. 18-22. 

12. Chew, S.Y., et al., Aligned Protein-Polymer Composite Fibers Enhance Nerve 

Regeneration: A Potential Tissue-Engineering Platform. Advanced Functional 

Materials, 2007. 17(8): p. 1288-1296. 

13. Cao, X. and M.S. Shoichet, Defining the concentration gradient of nerve growth 

factor for guided neurite outgrowth. Journal of Neuroscience, 2001. 103(3): p. 831-

840. 

14. Cao, X. and M.S. Shoichet, Investigating the synergistic effect of combined 

neurotrophic factor concentration gradients to guide axonal growth. Journal of 

Neuroscience, 2003. 122: p. 381-389. 

15. Kapur, T.A. and M.S. Shoichet, Immobilized concentration gradients of nerve 

growth factor guide neurite outgrowth. Journal of Biomedical Materials Research 

Part A, 2003. 68A(2): p. 235-243. 

16. Belkas, J.S., M.S. Shoichet, and R. Midha, Peripheral nerve regeneration through 

guidance tubes. Journal of Neurological Research, 2004. 26: p. 151-160. 

17. Moore, K., M. Macsween, and M.S. Shoichet, Immobilized concentration gradients 

of neurotrophic factors guide neurite outgrowth of primary neurons in 

macroporous scaffolds. Tissue Engineering, 2006. 12(2): p. 267-278. 



88 
 

18. Mortimer, D., et al., A Bayesian Model predicts the response of axons to molecular 

gradients. PNAS, 2009. 106(25): p. 10296-10301. 

19. Eggers, R., et al., Lentiviral vector-mediated gradients of GDNF in the injured 

peripheral nerve: effects on nerve coil formation, Schwann cell maturation and 

myelination. PLoS One, 2013. 8(8): p. e71076. 

  



89 
 

Chapter 4 : Effect of GDNF Gradient Delivery on Peripheral 

Nerve Regeneration in Rat and Canine Models 

 Introduction 

Current approaches to nerve regeneration have taken multiple platforms, ranging 

from biomaterials engineering to cell-based therapies, all attempting to match the current 

clinical gold standard, the autologous nerve graft. Inherent issues with both the harvest and 

utilization of the autologous nerve graft have generated momentum to develop effective 

nerve guidance conduits (NGCs) to repair the damaged nerve. The biomaterials approach 

to NGC design focuses on providing a microenvironment conducive for nerve regeneration 

by mimicking the extracellular matrix (ECM) present in regenerating nerves, employing 

substrate-bound and diffusible signaling cues to promote cell adhesion and survival and to 

guide axonal re-growth through the lesion site. Neurotrophic factors (NFs) that promote 

the survival and regenerative activities of nerves, and adhesive cues, such as laminin, are 

commonly incorporated into NGCs to enhance the regenerative outcomes [1-4]. The cell-

based approach to NGC design utilizes Schwann cells, often with potentiated functionality 

through the over-expression of NFs and the organization of an aligned structure similar to 

Bands of Büngner, to provide trophic support for axonal regeneration, to secrete relevant 

ECM and to myelinate regenerating axons. Alternative cell sources such as mesenchymal 

stem cells (MSCs) [5] and bone-marrow-derived stromal cells (BMSCs) [6-8] transplanted 

in NGCs have also been shown to be an effective approach to promoting axonal 

regeneration.  

Delivery of extrinsic signaling cues at the repair site has been shown to significantly 

improve the axonal survival and re-growth and thus the functional recovery. Particularly, 
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the ‘local’ administration of NFs within NGCs or autographs has demonstrated great nerve 

regeneration potential, prompting more effort in optimizing systems to regulate the local 

release of these cues and understanding how to most effectively present these cues to 

regenerating nerves [1-4, 9, 10]. One of the major challenges in effectively utilizing NFs 

is how to properly deliver them to the damaged nerve site to provide both localized and 

sustained release in order to maximize their efficiency. Sustained NF release can be 

provided by encapsulating them within crosslinked hydrogels [11, 12], microparticles [13], 

or micro/nanofibers [4]. The incorporation of NF-binding molecules or direct conjugation 

of NFs to the NGC substrate using a cleavable chemical linkage can also provide sustained 

release and enhanced regenerative capabilities [14, 15]. A recent study by Marquardt et al., 

which injected genetically-modified Schwann cells transfected with a tetracycline-

inducible GDNF-overexpressing lentivirus into the distal stump of a 3-cm sciatic nerve 

defect and showed the greatest regenerative outcome for the groups in which GDNF was 

overexpressed for 6 weeks, demonstrated the importance of temporal control over NF 

delivery in promoting successful nerve regeneration [16]. 

In Chapters 2 and 3, we discussed the importance of Schwann cells in nerve 

regeneration and the development of gradient generation and cell migration and analysis 

platforms, which provided significant insight into the topographical and biochemical 

gradient cues necessary for promoting directional Schwann cell guidance. Human 

Schwann cells exhibited rapid migration on 1.2 µm diameter, aligned electrospun fibers, 

and we demonstrated the significant effects of concentration and gradient steepness on the 

efficacy of GDNF gradients in promoting directional Schwann cell migration. Therefore, 

we hypothesize that developing an NGC which incorporates both topographical and 
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biochemical gradient guidance will promote improved axon and Schwann cell migration 

into nerve injury gaps and increase the regenerative outcomes of peripheral nerve injuries 

compared to NGCs with uniform spatial NF distribution. Incorporating aligned fibers into 

the lumen of the conduit would provide a suitable upon which regenerating nerve tissue 

can grow [4]. Delivery of NFs in a gradient instead of uniformly distributed throughout a 

conduit will enhance bridging of nerve across the entirety of the nerve gap by increasing 

Schwann cell infiltration of the nerve gap, encouraging complete extension of regenerating 

neurons across the nerve gap [3], and preventing the prevalence of the “candy store” effect 

which occurs in uniform NF delivery [4] or with excessive NF overexpression [16-18]. An 

NGC such as this would provide great potential for enhancing the regeneration of large gap 

nerve injuries in which regeneration of nerve tissue across the entirety of the nerve injury 

gap is generally poor. 

In this chapter, we first discussed the development of NGC technologies which are 

capable of topographical and biochemical guidance (Table 4.1). We then demonstrated 

that delivery of NFs in the form of a gradient substantially improved axonal ingrowth into 

short-gap nerve injuries within the first month of regeneration. Moreover, we demonstrated 

a steepness-dependent response in which only the steep gradient condition elicited 

substantial improvement in nerve regeneration, enhancing axon growth and functional 

recovery. We also showed that delivery of GDNF gradients in our combinatorial NGCs 

increases axonal growth into large injury gaps and improves complete regeneration of 

axons across the nerve gaps compared to NGCs with uniform GDNF delivery. Finally, we 

demonstrated that functional recovery in NGCs containing GDNF gradients resulted in 

functional values similar to values measured in a normal nerve before operation, indicating 



92 
 

that GDNF gradient delivery enhanced the maturity of neuron-glial interactions and 

promoted substantial functional recovery. 

 Methods 

4.2.1 Electrospinning and preparation of S-Shaped nerve guide 

Nerve guides incorporating both topographical and biochemical guidance were 

produced using modification of an S-shaped conduit design first developed by Andrew 

Hurtado [19]. Electrospinning was performed as described in chapter 2 and previous work 

[20]. Briefly, a solution of 8%w/w PCL (molecular weight of 80k, Sigma) in a solvent of 

90%w/w DCM and 10%w/w DMF is electrospun at 5 mL/h through a 27-gauge needle at 

a distance of 11 cm from the face of a 40 cm-diameter wheel rotating at 70 rpm with a 13 

kV positive voltage. The apparatus was rastered across the face of the wheel using a 

programmable linear stage (Newmark Systems), repeatedly moving over a distance of 75 

mm at 0.1 mm/sec for 2 h. The nanofiber mat was partially melted to increase strength by 

heating with a hair dryer for 5 sec to create a mechanically strong film. Aligned PCL 

nanofibers were then electrospun directly onto the film, by spinning 12%w/w PCL in 

Chloroform at a flowrate of 0.6mL/hr and +8kV voltage 6cm from the wheel surface, 

rotating at 750rpm. The aligned fibers were spun for 12 passes at 0.1 mm/sec for travel 

distance of 70 mm. The conduit outer wall was electrospun with the 8 w/w% PCL in 

DCM/DMF solution at a flow rate of 0.75 mL/h through a 27-gauge needle 6 cm onto a 

rotating 1.5 mm steel mandrel. A 7.5 kV positive voltage is applied to the needle tip, while 

a 2.5 kV negative voltage is applied to the mandrel, spinning over a distance of 23 cm for 

70 passes at 5 mm/sec. The tubes were then lyophilized for 48 h to remove residual solvent, 

then heat-treated to increase strength by soaking in hot water, 20 minutes subsequently at 
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each of 50°C, 54°C, and 56°C. The tubes were then cut to 10mm segments and sterilized. 

The aligned nanofiber sheets and nanofiber outer walls were sterilized via ethylene oxide 

sterilization. 

4.2.2 Gradient hydrogels for nerve guidance conduits 

Hydrogels containing GDNF gradients were prepared using a 1-cm gradient 

channel (4.5 µL channel volume) and cut to 7 mm in length after gradient generation. All 

groups with GDNF contained 600 ng of GDNF in the final 7 mm hydrogel strip. Uniform 

GDNF was loaded at 190 µg/mL. To generate the shallow gradient, 4.5 µL of 95.2 µg/mL 

GDNF was preloaded into channel and 1.5 µL of 200 µg/mL GDNF was added at the inlet. 

Steep gradient hydrogels were generated by adding 1.5 µL of 400 µg/mL GDNF solution 

onto the inlet of a pre-filled channel containing no GDNF. The gradient gels were placed 

between two layers of aligned nanofibers, which were then wrapped around two 500-μm 

steel mandrels to form the S-shape seen in Figure 3.3. The wrapped sheets were then 

inserted into the lumen of the 10mm-long electrospun outer tube, and the mandrels are 

carefully removed. The sheets were oriented so that fibers were aligned longitudinally 

along the nerve guide. 

4.2.3 Sciatic nerve transection and repair in rats 

All animal surgeries and evaluation of the outcome of the nerve repair were carried 

out according to protocols approved by the Johns Hopkins Institutional Animal Care and 

Use Committee. The surgeries were performed on adult male Sprague-Dawley rats (200 – 

300 g). Following isoflurane anesthetization, the sciatic nerve in the left leg was exposed 

through a mid-thigh incision. The nerve guidance conduits were pre-wetted by soaking in 

sterile PBS. Nerve defects were then repaired with no-GDNF NGCs (control, N = 7), 
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shallow GDNF gradient NGCs (N = 8), steep GDNF gradient NGCs (N = 5) and uniform 

GDNF NGCs (N = 7). GDNF-loaded NGCs contained 600 ng total GDNF for all 

conduits.5mm of the nerve was resected, and each end of the nerve was inserted 1.5 mm 

into the nerve guidance conduit to leave a gap of 7 mm between the nerve ends. The nerve 

ends were sutured in place via 10 – 0 nylon sutures (Ethicon). The surgical site was closed 

with wound clips, and 0.1 mg/kg of buprenorphine was injected for pain management. The 

animals were allowed free access to food and water and were regularly monitored.  

4.2.4 Electrophysiology assessments in rat model 

One month post-surgery, the compound motor action potentials were recorded 

according to standard protocols using LabChart (AD Instruments) [4]. The stimulating 

needle electrodes were inserted into the sciatic notch, proximal to the nerve guide. The 

recording electrodes were placed into the ankle, at a distance of 7.2 cm +/- 0.3 mm from 

the stimulating electrodes.  

4.2.5 Harvesting of regenerated nerves in rat model 

Following electrophysiology testing (1 month post-surgery), the rats were 

euthanized. The nerve guide and surrounding nerve was removed and fixed in 4% 

Paraformaldehyde. After 24 h at 4°C, the middle segment of the nerve guide (2.5-5.5 mm 

from proximal nerve stump) was resected and fixed for a further 24 h at 4°C in 4% 

paraformaldehyde and 3% glutaraldehyde. The tissue was mounted in embedding resin, 

sectioned, and stained with toluidine blue [4]. 

4.2.6 Canine model protocol overview 

All animal studies were performed according to the protocol approved by the 

Animal Care and Use Committee and in accordance with the Animal Care Policies of Johns 
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Hopkins University. Twenty three healthy adult beagle canines weighing 9.0–13 kg were 

included in this study. All surgical procedures were performed in accordance with the 

“Guide for the Care and Use of Laboratory Animals” published by the National Institutes 

of Health. The experimental protocol was approved by the Animal Care and Use 

Committee (ACUC) of Johns Hopkins University, and all efforts were made to minimize 

animal suffering. Fasting was imposed on all canines for 24 h prior to the operation, but 

canines were given drinking water ad libitum. 

4.2.7 Preparation of NGCs for canine model 

NGCs were prepared identically to the previous rat S-design NGCs, with variations 

to the size of the conduit and length of gradients generated to accommodate increased larger 

diameter of nerve in canine model and increased length of nerve gap (20 mm gap length). 

The inner diameter of the conduit was increase from 1.5 mm for the rat model to 2.0 mm 

for the canine model. The conduits were made to be 22 mm in length, so that 1 mm of each 

nerve end can be inserted into the NGC for suturing, leaving a 20 mm gap for the nerve to 

regenerate. Aligned fiber sheets were cut into 20 mm long segments to bridge this gap. 

Hydrogel sheets were generated in 1 cm long gradient channels, with two 1 cm long 

hydrogels being placed end-to-end in each conduit, such that a total GDNF loading of 600 

ng per tube was achieved for the uniform-loading and gradient groups. 

4.2.8 Canine peroneal nerve injury surgery preparation 

All surgical procedures and physiological measurements were performed under 

general anesthesia. The animals were premedicated by intramuscular administration of 

10mg/kg Ketamin and 0.005-0.01 mg/kg Buprenorphine. They were then anesthetized 

with isoflurane under mechanical ventilation. Continuous monitoring was performed by 
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electrocardiography and oxygen saturation by reflectance oximetry using a sensor clipped 

to the ear. The lateral hind-limb region was shaved and the animals were positioned in the 

lateral position. The hind-limb region was disinfected with 70% ethanol and iodine 

tincture, and covered with sterilized drapes.  

4.2.9 Canine peroneal nerve injury surgical procedure 

The healthy beagles were deeply anesthetized using isoflurane throughout the 

surgical procedure. Surgery was performed on the canine’s hind-limb under aseptic 

conditions. For nerve conduit implantation, the superficial peroneal nerve was exposed 

by an incision in lateral leg, overlying muscles were separated by traction and 15 mm of 

the nerve was resected out to result in a 20-mm defect gap. Nerve defects were then 

repaired with no-GDNF NGCs (control, N = 10), GDNF gradient NGCs (N = 10), and 

uniform GDNF NGCs (N = 10). GDNF-loaded NGCs contained 600 ng total GDNF for 

all conduits. All nerve conduits (length = 20 mm) were filled with 15 µl of PBS prior to 

implantation. Next, the proximal and distal stumps were sutured to the conduit using a 

10–0 nylon monofilament. For autograft implantation (N = 10), a 20 mm superficial 

peroneal nerve was transected and reverse transposed into the gap. Both ends were then 

sutured using 10–0 strings. The incision was then closed using 4-0 absorbable braided 

suture in a subcuticular pattern, and 3-0 absorbable braided suture in a skin pattern. The 

canines were monitored and given 2 additional dose of Buprenorphine (0.005-0,01mg/kg, 

IM) in the evening after surgery and the following morning. For the post-operative care, 

the canines were monitored daily for three days following surgery, then 2-3 days for the 

first month, and then weekly until the end of the study. The animals were kept in 
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temperature (28°C) and humidity (45%) controlled rooms with 12 h light cycles and 

allowed free access to food and water. 

4.2.10 Electrophysiology assessments in canine model 

Six months after surgery, compound nerve action potential (CNAP) responses were 

used to evaluate electrophysiological recovery prior to harvesting the distal nerve and nerve 

conduits. After anesthetization with isoflurane under mechanical ventilation, superficial 

peroneal nerve with transplantation of nerve conduits was dissected free from connective 

tissue and prepared for electrophysiology test. The stimulating electrodes were placed at 

the proximal end of superficial peroneal nerve, 5 mm from the proximal end of nerve 

conduits, while the recording electrodes were placed at the distal end of superficial 

peroneal nerve, 5 mm to the distal end of nerve conduits to record the CNAP values. 

CNAPs were elicited with a stimulation of 1.00 ms delay, 0.10 ms duration with amplitude 

voltage ramped from 1 to 5 v.  Individual CNAPs were recorded at each step of the ramp.  

4.2.11 Harvesting of regenerated nerves in canine model 

The superficial peroneal nerve with nerve guide or autograft stump was resected 

for histologic analyses after electrophysiology test.  All other pre-operation, intra-

operation and post-operation protocols were the same as described in the nerve guide 

implantation surgical procedure. After 24 h at 4°C, the middle segment of the nerve guide 

and segment of nerve 3 mm distal to the nerve guide were resected and fixed for a further 

24 h at 4°C in 4% paraformaldehyde and 3% glutaraldehyde. The tissue was mounted in 

embedding resin, sectioned, and stained with toluidine blue [4]. 
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4.2.12 Histomorphometric analysis 

Imaging of the fixed nerve sections was conducted using an inverted microscope 

(Nikon) at 10× and 63× magnification. Total nerve tissue area was measured at 10×. Nerve 

count was measured at 63× by averaging the axon count within 5-8 randomized images 

within each sample nerve area and calculating total nerve count and nerve density using 

the measured nerve tissue area. 

4.2.13 Statistical analysis 

Axon counts, axon densities, and nerve area measurements are represented by mean 

± Standard Error. Electrophysiology measurements are represented by mean ± Standard 

Deviation. Statistical comparisons were conducted using ANOVA with Tukey’s post-hoc 

HSD test. Differences were considered statistically significant for p < 0.05. 

 Results and Discussion 

4.3.1 Nerve Guidance Conduit Design 

Multiple generations of NGC designs incorporating NF delivery and topographical 

guidance have been developed by our labs, as seen in Table 4.1. The latest iteration, the S-

shaped conduit, was found to be the most effective in promoting nerve ingrowth, providing 

an optimal combination of aligned fiber surface area and luminal space for tissue ingrowth. 

This method was first developed by Hurtado et al. [19] and was designed as a method for 

increasing fiber surface area compared to open-lumen designs. We have adopted this 

conduit design for this study. Modification of the conduit fabrication process allowed for 

incorporation of gradient-delivery hydrogel sheets between layers of the fiber sheets 

(Figure 4.1a). By placing a gelatin hydrogel sheet loaded with a predetermined GDNF 

gradient between two adjacent aligned fiber layers (Figure 4.1b), the gradient-releasing 
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feature can be incorporated into the NGC with an S-shaped cross-section insert in the 

conduit (Figure 4.1c). This modular design allows for separate production of the aligned 

fiber sheets and gradients, providing the ability to independently tailor both the 

topographical cues and biochemical guidance to the desired length, fiber diameter, NGC 

diameter, and gradient characteristics. 

4.3.2 Non-critical injury gap model for study of acute nerve regeneration 

Two nerve injury models were selected for the investigation of the effect of GDNF 

gradient delivery. The first injury model was a non-critical gap (7-mm injury), acute rat 

sciatic nerve regeneration model. The primary purpose of this model was to determine if 

the mode of delivery of GDNF (i.e. gradient vs. uniform) affected the acute regeneration 

(i.e. regeneration within 1 month) of axons into our combinatorial NGCs to determine 

which GDNF delivery configuration was most effective in promoting rapid nerve regrowth 

during the early phase nerve repair. The results of the acute regeneration model were also 

used to select the most effective gradient condition for use in the large gap (20 mm), long-

term regeneration (7 month recovery) model to be conducted in canines. In Chapter 3, we 

demonstrated that gradient steepness played an important role in the efficacy of GDNF 

gradient guidance of human Schwann cell migration. We demonstrated that for gradients 

of equivalent total GDNF loading, the migration rate and directional bias of Schwann cells 

were dependent on the steepness of the gradient to which they were exposed. Therefore, 

we elected to compare two gradient conditions for which the total GDNF loading was 

equivalent, but for which the gradient steepness varied significantly in order to elucidate 

whether the steepness of a GDNF gradient influenced the efficacy of in vivo nerve 

regeneration.  
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To investigate acute nerve regeneration, all nerve grafts were harvested 4 weeks 

after implantation. Histological analysis on the mid-graft sections shows that GDNF 

delivery, both in uniform and gradient configurations, improves the ingrowth of myelinated 

axons into the midpoint of the conduit compared to conduits without GDNF (Figure 

4.2a,b) by significantly increasing the area of functional nerve tissue regenerated into the 

lesion site (Figure 4.2b). Additionally, the delivery of GDNF in the steepest gradient 

further improves the axonal density and ingrowth and compared to other delivery 

configurations, providing significantly higher myelinated axon counts (4045.6 ± 1101.8 

axons per nerve) compared to that of the shallow GDNF gradient (2084.9 ± 554.6 axons 

per nerve) or uniform GDNF (1610.3 ± 626.1 axons per nerve) (Figure 4.3). This result 

indicates that the effect of gradient delivery is highly dependent on the concentration range 

and steepness of the gradient being delivered, but that delivery of selective gradient 

conditions can be effective in directing nerve growth across lesion gaps. 

Although the histomorphometric analysis was conducted at a short 4-week time 

point, EMG data exhibited impressive, albeit heterogeneous, functional recovery in the 

steep GDNF gradient group (Figure 4.4). Even after only one month of recovery, 

significant nerve function recovery was found in the steep GDNF gradient group. 

Additionally, the data revealed that the shallow GDNF gradient, while promoting adequate 

axonal ingrowth, exhibited markedly poorer nerve function, instead resulting in function 

comparable to that of the uniform GDNF group. These data indicate the shallow gradient 

suffered from similar axon trapping seen in NGCs delivering uniform GDNF [4], for which 

axon regrowth is significant but functional recovery is poor due to regenerating axons 

becoming entrapped within the NGC and unable to reinnervate the distal nerve stump. 
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These results emphasize the importance of gradient steepness in the ability for nerves to 

sense and respond to the presence of NF gradients. In this experiment, although both 

gradient groups contained the same amount of GDNF, the most pronounced improvement 

in nerve regrowth was seen in the steepest gradient configuration, which further 

strengthened the results we found in Chapter 3 demonstrating that gradient steepness plays 

an important role in the migratory and chemotropic activity of Schwann cells to gradients 

containing similar levels of NFs. The design of this NGC provides NF delivery localized 

to the lesion site, but by enhancing nerve growth across the entirety of the nerve gap and 

maximizing the number of axons successfully reinnervating the distal nerve, NF gradient 

delivery in NGCs can markedly improve the functional regeneration following peripheral 

nerve injuries. These results suggest that previous attempts to incorporate NF gradients into 

NGCs to enhance nerve regeneration may have been limited in their regenerative potential 

by using non-optimized NF concentration range and gradient steepness conditions, as well 

as suffering from their use of sensory-specific NFs [3]. While we were limited in the 

number of gradient groups tested in this experiment, the significant improvement in 

recovery exhibited by the steep gradient condition demonstrated the potential for NF 

gradients in enhancing peripheral nerve regeneration and was instrumental in the selection 

of design of future large animal (canine) experiments. 

4.3.3 Large gap injury, long-term nerve regeneration model 

In order to elucidate the effects of gradient delivery in long-term regeneration of a 

critical-gap injury, we developed a large-gap canine peripheral nerve injury model for 

investigating the efficacy of NGCs delivering NF gradients and topographical guidance in 

long-term peripheral nerve regeneration. A canine nerve injury model exhibits several 
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benefits compared to a rat nerve injury model. First, a canine model allows us to repair 

larger diameter nerves than are available in the rat model that are closer to the nerve 

diameters of human nerves. Second, because canines are of significantly larger anatomical 

size compared to rats, the canine model has greater potential for testing longer injury gaps 

than what is capable for rats [21], and therefore is a more suitable model for large gap 

injuries where gradient guidance may be necessary to promote complete regeneration 

across the length of the injury gap. Finally, because of their larger size, canines better 

potential model animals for peripheral nerve injuries in which the injury occurs significant 

distances from the target muscle or sensory innervation site, where regenerating nerves 

must bridge an injury gap and subsequently traverse large distances of distal nerve to reach 

the reinnervation targets. Long-term, long-distance injury models in rats are limited by 

their comparatively small anatomical size.  

In contrast to the short gap, one-month rat nerve repair model, the canine study was 

designed to elucidate how NGC-delivered NF gradients influence large gap, long-term 

nerve recovery. For this study, we reconfigured the S-shaped conduit to bridge a larger 

injury gap (20 mm), a length which is larger than the critical gap of the more commonly-

used rat model [21]. The critical gap of a canine nerve is less known, but using the known 

critical gap for rats, an animal which exhibits significantly greater regeneration potential 

than humans and other species [21], provides an adequate estimate for the larger canine 

model.  NGCs were implanted into a canine peroneal nerve injury model, which was 

selected due to its ease of access for surgical implantation, mixed population of motor and 

sensory neurons, and ease of electrophysiological testing. Additionally, because canine 

models require adoption of the animal after all experimental procedures have been 
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completed, ethical issues can arise if the canines exhibit significant, permanent functional 

deficits following experimentation. The sacrifice of the peroneal nerve limits the functional 

loss of the animal, especially compared to models which sacrifice the sciatic nerve, a much 

larger nerve which innervates a significantly larger portion of the canine hind limb. As 

such, we are able to obtain a significant amount of information regarding the effect of our 

NGCs in the regeneration of the canine peroneal nerve without substantially reducing the 

quality of life of the animal after studies have been completed. 

For the canine large gap study, four experimental groups were compared to 

determine the effect of GDNF gradient delivery on large gap, long-term nerve repair 

compared to no GDNF, uniform GDNF, and autograft. Initial investigation of the gross 

histological sections elicited notable differences between the morphology of the nerve 

sections in the NGCs compared to the normal nerve and autograft (Figure 4.5). The canine 

peroneal nerve consists of four nerve fascicles, as indicated by the morphology of the mid-

graft image of the autograft (Figure 4.5a) and distal nerve images for all four experimental 

groups (Figure 4.5e-h), contrasted with the two large luminal spaces available in the S-

shaped NGCs (Figure 4.5b-d). The area of the lumens in the NGCs were, by comparison, 

significantly larger than the area of the nerve fascicles in the peroneal nerve, and generally 

had a much higher area of tissue ingrowth in the NGCs compared to that of the fascicles in 

the autograft and distal nerve. However, upon closer inspection of the nerve areas, much 

of the tissue in the NGCs consisted of fibrous tissue closely associated with the PCL fibers, 

which remained intact 7 months post-implantation (Figure 4.6a,b). Axonal growth was 

not present in the fibrous tissue, but rather was localized to small fascicles within the 

fibrous tissue (Figure 4.6a) or in larger regions where fibers were not present (Figure 
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4.6b). The presence of fibrous tissue in the NGC groups reduced the total nerve area in 

which myelinated neurons were present compared to that of the autograft (Figure 4.7), 

both in the middle of the nerve graft as well as in the tissue distal to the nerve graft. This 

result indicates that the aligned fibers provide a highly suitable substrate for fibroblasts, 

which compete with nerve tissue for growth into the NGCs.  Future NGC designs should 

utilize chemical or physical modifications to limit the amount of fibrous tissue production 

in order to increase potential functional nerve tissue ingrowth. 

Although the nerve areas across all three NGC groups were comparable (Figure 

4.7), it was evident that delivery of GDNF gradients in the NGCs increased the density of 

myelinated axons (Figure 4.8) growing into the nerve graft and into the distal nerve stump 

(Figure 4.9). GDNF gradient delivery increased the number of myelinated axons growing 

into the nerve graft, with an average axon count of 1675 ± 325 axons per nerve, compared 

to that of the no GDNF NGCs (494 ± 127 axons per nerve) and uniform GDNF (1043 ± 286 

axons per nerve). Additionally, GDNF gradient delivery improved the number of axons, 

which successfully bridged the entire 20-mm gap into the distal stump (970 ± 105 axons 

per nerve), compared to no GDNF (326 ± 86 axons per nerve) and uniform GDNF NGCs 

(578 ± 128 axons per nerve) (Figure 4.10). These results confirmed that over a larger gap, 

the gradient delivery of GDNF was the most effective method in promoting axonal growth 

across the entirety of a nerve gap. An optimized gradient GDNF delivery, i.e. with a steeper 

gradient, improved axonal growth into the conduit and across the gap to reinnervate the 

distal stump. 

The effectiveness of gradient delivery is further indicated by the recovery of nerve 

function after 7 months. Nerve EMG was recorded prior to nerve harvest and compared to 
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pre-surgical values. Animals with the GDNF gradient delivery exhibited signal latency 

values, both onset and peak, similar to that of pre-surgical values (Figures 4.11 and 4.12), 

an indication of the presence of mature, myelinated neurons. Additionally, signal amplitude 

was improved in both the uniform GDNF and gradient GDNF groups to levels comparable 

to pre-surgical values (Figures 4.13 and 4.14). Interestingly, the GDNF gradient group 

exhibited better functional recovery than the autograft groups, in spite of having lower 

nerve area and axon numbers. These data suggest that while the autograft promoted a 

higher number of axons to bridge the nerve gap, the delivery of GDNF as a gradient may 

have improved the maturation and function of the neurons, which reinnervated the distal 

stump, resulting in improved signal transduction and functional recovery. While limitations 

in the NGC design may have reduced its efficacy in the large animal model, the 

histomorphometric and functional data provide strong evidence that optimization of NF 

gradient delivery is an important approach for improving nerve regeneration in both small 

gap and large gap repairs in peripheral nerve injuries.  

 Conclusions 

We have successfully developed a NGC, which combines topographical and 

biochemical gradient guidance for the improvement of peripheral nerve regeneration. In a 

short gap repair model in rat, we demonstrated the importance of gradient steepness in 

promoting nerve regeneration, with the steepest gradient group promoting the highest 

degree of axonal regeneration and functional recovery. This gradient condition was then 

translated to a large gap repair model in beagles to determine if gradients were capable of 

improving regeneration across a larger gap. Our results demonstrated that the specific 

configuration of the GDNF gradient delivered in an NGC significantly influenced the 
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regeneration of axons across the entirety of a large nerve gap. Although our NGC design 

exhibited fibrous tissue ingrowth, which competed with growth of nerve tissue, the NGCs 

delivering gradients of GDNF improved the functional recovery of the large gap injuries 

and resulted in functional outcomes that were comparable to pre-surgical values. Future 

studies will aim to further optimize the gradient profiles and NGC designs in order to better 

improve the functional outcomes of our combinatorial NGCs.  
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 Figures 

 

  

 

Table 4.1: Generations of conduit designs incorporating aligned fiber topographical 

guidance and NF delivery. The 3rd generation of conduit was selected for use in our 

animal models. 
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Figure 4.1: Fabrication of S-shaped conduit containing aligned 

fiber topography and hydrogel-based NF gradient delivery. (a) 

Gradient-containing hydrogels placed between aligned fiber sheets 

and rolled into S-shaped conduit. (b) Aligned fibers with average 

diameter of 1.2 µm. Scale bar is 10 µm. (c) Scanning electron 

micrograph of S-shaped conduit. Scale bar is 100 µm. 
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Figure 4.2: Histomorphometry of small gap, acute regeneration rat 

sciatic nerve injury model (N > 5). (a) Representative images of 

nerve cross sections obtained using 63x objective. Scale bars are 

10 µm. (b) Average nerve area of different NGC groups. Error bars 

represent Standard Deviation. Differences considered statistically 

significant for P<0.05. 
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Figure 4.3: Average axon count of different NGC groups in small 

gap, acute regeneration rat sciatic nerve injury model (N > 5). Error 

bars represent Standard Deviation. 
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Figure 4.4: Electrophysiological measurement of different NGC 

groups in small gap, acute regeneration rat sciatic nerve injury 

model (N > 5).  
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Figure 4.5: Histological cross-sections of nerves of different NGC groups in 

large gap, long-term regeneration canine peroneal nerve injury model. (a) Mid-

graft of autograft control. (b) 3-mm distal to autograft control. (c) Mid-graft of 

no-GDNF S-shaped NGC. (d) 3-mm distal to no-GDNF S-shaped NGC. (e) 

Mid-graft of uniform GDNF S-shaped NGC. (f) 3-mm distal to uniform GDNF 

S-shaped NGC. (g) Mid-graft of gradient GDNF S-shaped NGC. (h) 3-mm distal 

to gradient GDNF S-shaped NGC. Images obtained with 2.5x objective. Scale 

bars are 300 µm. 
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Figure 4.6: Histology of nerve regions showing that PCL fibers remain 7 

months after implantation. Fibers (white dots, red arrows) are surrounded by 

fibrotic tissue, whereas nerve tissue is localized in regions where fibers are not 

present (tissue border noted by red line). Images obtained with 63x objective. 

Scale bars are 10 µm. 
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Figure 4.7: Average nerve area of different NGC groups in large gap, long-term 

regeneration canine peroneal nerve injury model (N >5). Error bars represent 

Standard Error. Differences considered statistically significant for P<0.05. 
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Figure 4.8: Representative histological cross-sections of nerves of different 

NGC groups in large gap, long-term regeneration canine peroneal nerve injury 

model. (a) Mid-graft No-GDNF S-shaped NGC. (b) Mid-graft uniform GDNF 

S-shaped NGC. (b) Mid-graft gradient GDNF S-shaped NGC. Images obtained 

with 63x objective. Scale bars are 10 µm. 
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Figure 4.9: Average nerve density of different NGC groups in large 

gap, long-term regeneration canine peroneal nerve injury model (N 

> 5). Error bars represent Standard Error. Differences considered 

statistically significant for P<0.05. 
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Figure 4.10: Average total axon count of different NGC groups in 

large gap, long-term regeneration canine peroneal nerve injury 

model (N > 5). Error bars represent Standard Error. Differences 

considered statistically significant for P<0.05. 
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Figure 4.11: Average onset latency of different NGC groups in large 

gap, long-term regeneration canine peroneal nerve injury model, 

measured with CNAP (N = 10). Error bars represent Standard 

Deviation. Differences considered statistically significant for 

P<0.05. 
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Figure 4.12: Average peak latency of different NGC groups in large 

gap, long-term regeneration canine peroneal nerve injury model, 

measured with CNAP (N = 10). Error bars represent Standard 

Deviation. Differences considered statistically significant for 

P<0.05. 
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Figure 4.13: Average signal amplitude of different NGC groups in 

large gap, long-term regeneration canine peroneal nerve injury 

model, measured with CNAP (N = 10). Error bars represent Standard 

Deviation. Differences considered statistically significant for 

P<0.05. 
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Figure 4.14: Average peak area of different NGC groups in large 

gap, long-term regeneration canine peroneal nerve injury model, 

measured with CNAP (N = 10). Error bars represent Standard 

Deviation. Differences considered statistically significant for 

P<0.05. 
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Chapter 5 : Conclusions and future directions for NF gradient-

guided nerve regeneration         

5.1 Conclusions 

In this thesis, we have developed multiple gradient generation and delivery 

platforms capable of tailorable, controllable gradient generation for in vitro and in vivo NF 

gradient delivery. By developing gradient generation techniques capable of establishing 

well-controlled, centimeter-scale gradients which can be scaled for rapid gradient 

production, we successfully overcame limitations of prior gradient generation techniques 

which were restricted to either in vitro or in vivo gradient delivery. Through use of a rapid, 

convection-driven gradient technique, hydrogel films could be generated which 

encapsulated and delivered centimeter-length gradients, and controlled the release rate of 

NF gradients through the incorporation of methacrylated heparin into the hydrogel film. A 

diffusion-based gradient generation platform was developed for flow-free gradient 

generation for in live-cell migration guidance. The technique was also utilized to 

functionalize a variety of hydrogel materials and was used to begin elucidating the effects 

of different NF gradients on the guidance of motor and sensory neuron outgrowth. 

Furthermore, we combined hydrogel-based NF gradient delivery with aligned nanofiber 

topographical guidance in a novel live-cell imaging and migration analysis platform to 

examine the effect of nanofiber diameter on human Schwann cell migration, demonstrate 

the efficacy of GDNF as a chemoattractant for human Schwann cells, and determine the 

influence of modulating gradient characteristics, particularly gradient concentration range 

and steepness, in the guidance of Schwann cell migration. Finally, we translated the 

hydrogel-based NF gradient generation platform into a NGC, which combined 
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topographical and biochemical gradient guidance, and demonstrated the effectiveness of 

delivering NF gradients in the enhancement of peripheral nerve regeneration and functional 

recovery in in vivo acute, short-gap injuries and large-gap injury models. The ability to 

effectively utilize these gradient generation platforms in both in vitro and in vivo nerve 

guidance applications provides significant value to the field of nerve regeneration. These 

methods are promising tools for elucidating the mechanisms underlying directed Schwann 

cell and neuronal guidance, the knowledge of which can be used to design the next 

generation of nerve guided capable of enhancing regeneration of severe peripheral nerve 

injuries. 

5.2 Future Directions 

While currently available nerve regeneration conduits and techniques have resulted 

in adequate axonal regeneration, the axonal regeneration does not always result in 

significant functional recovery [1]. One of the prevailing factors resulting in the 

discrepancy between promoting axonal growth and enhancing functional outcomes is due 

to improper reinnervation of motor and sensory targets. Peripheral nerves often consist of 

a mixture of motor and sensory neurons. In injuries that result in disruption of nerve 

continuity, axon regeneration is often misdirected resulting in axons innervating improper 

targets [2, 3]. Without proper axon guidance and repair, motor axons may improperly reach 

sensory targets or sensory neurons may reach motor targets, causing poor functional 

recovery resulting from the inability for axons to reach proper reinnervation target organs. 

Thus, it is important to develop new nerve guidance platforms, which are capable of 

enhancing the spatial guidance of specific neuronal populations to increase proper 

reinnervation and maximize functional recovery. 
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Neurons have been shown to exhibit motor- and sensory-specificity in axonal 

outgrowth and chemotropism in response to different types of NFs [1]. Höke et. al. have 

demonstrated that following peripheral nerve injury, growth factor expression differs in 

Schwann cells within motor-associated and sensory-associated nerves [4]. NGF, which is 

upregulated in sensory-associated Schwann cells following axonal injury, has been shown 

to act specifically on small primary sensory and sympathetic neurons. While it has been 

shown to promote chemotaxis of sympathetic [5] and dorsal root ganglion neurons [6-9], 

the chemotropic activity of motor neurons towards NGF is limited. GDNF is substantially 

upregulated in motor nerves after injury [4] and has been shown to dramatically improve 

the survival of motor neurons [10, 11] as well as sensory neurons [11]. PTN, which is also 

substantially upregulated in motor nerves after injury [4], exhibits mostly motor-specific 

guidance and regeneration [1, 12]. These inherent differences in motor and sensory 

neuronal chemotaxis in response to different NFs can potentially be exploited to promote 

motor-specific or sensory-specific nerve regeneration in vivo. 

The numerous gradient generation and delivery platforms developed in this thesis 

may provide significant insight into the utilization of NF delivery as a method for 

promoting nerve-specific guidance. With our gradient generation platforms, we are capable 

of examining the migration guidance of a variety of neuronal and glial populations, 

utilizing the tailorability and controllability of our gradient platforms for investigating the 

effects of different NFs in guiding migration of separate populations of cells. Our 

preliminary studies have been investigating the use of our hydrogel-based gradient delivery 

platforms for motor- versus sensory-specific guidance on collagen hydrogels 

functionalized with gradients of different NF type and gradient characteristics in motor and 
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sensory nerve organotypic models. Additionally, we are working to develop divergent 

gradient systems with which we can examine the use of divergent gradients of neuron-

specific NFs in separating mixed populations of motor and sensory neurons into organized, 

separate motor and sensory paths. These models will potentially uncover new insights into 

how to promote outgrowth of motor and sensory neuron populations along separate spatial 

paths. Such insights would be instrumental in the design of new generations of nerve guides 

capable of improving functional outcomes by better retaining the spatial organization of 

mixed peripheral nerve populations and improving the selectivity of reinnervation. 
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