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Abstract 

Novel realizations of metal nanoparticles (NPs) are of continuing interest due to 

their unique optical properties and potential applications in optoelectronics, sensing, and 

catalysis.  The unique and customizable optical properties of these particles make them 

ideally suited to act as light harvesters across the energy spectrum.  Unlike bulk materials 

it is possible to modify metallic NP’s absorption characteristics simply by adjusting their 

size, shape, and medium in which they reside.  Aluminum is an inexpensive earth-abundant 

plasmonic material and a promising alternative to noble metals for applications requiring 

UV sensitivity and scalability. The plasmon resonance of bulk aluminum metal falls in the 

ultraviolet, but the LSPRs of aluminum NPs have been tuned successfully to the visible 

and NIR 

In this work, time-resolved ultrafast broadband transient absorption spectroscopy 

has been used to study the relaxation dynamics associated with photoexcitation of 

plasmonic aluminum NP’s.  Our Lab reported the first photophysical characterization of 

energy-transfer dynamics in large (100 nm diameter) plasmonic aluminum nanoparticles 

suspended in liquid isopropanol. Using a two-interface model, we find that a rapid thermal 

energy transfer from particle to solvent is accounted for by the presence of a compact ~4 

nm native oxide layer on the aluminum nanoparticles.  Size-dependent phonon 

“breathing”/vibrational modes are also observed as oscillations in total cross-section. We 

find that both the oscillation frequency and damping rate increase as the diameter of the 

particles decreases. Due to their rapid cooling, these particles are expected to be rather 

robust and could be utilized as an effective tool to engineer heat transfer rates from large 

particles to the surrounding medium. 
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Chapter 1 

Introduction 

  
1.0 OVERVIEW 

 
In order to reduce demand for petrochemical energy sources (oil, coal, gas, etc.) 

that produce CO2, a greenhouse gas, a great deal of effort has been put forth to develop 

“green” sources of energy.  One of the prevailing fields is the development of 

photocatalytic materials that harness solar radiation to provide the energy needed to 

produce H2 and O2 gas from the dissociation of water.1   Another, perhaps more direct 

approach, to reducing energy demand is through the use of photocatalysts in large scale 

production of common chemicals or chemical precursors.2–5  Use of catalysts in this 

capacity would be geared towards reducing reliance on traditional energy sources, rather 

than replacing them.  As of 2009 the chemical industry accounted for 6% of the total energy 

demand in the US.6 Reduction in the industries’ energy demand through the development 

of efficient photocatalysts composed of earth abundant materials capable of producing 

chemicals utilizing solar radiation is of great interest.  

 A fundamental understanding of the photophysical properties of materials that will 

be used in these processes is essential for their development.  One attractive option is the 

enhancement of photocatalytic efficiency by utilizing plasmonic nanoparticles as visible 

light harvesters that have enough energy to inject electrons into the conduction band (CB) 

of a semiconductor.  While this has been shown in TiO2 decorated with gold nanoparticles,7 
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the main focus of this thesis is to study the properties of nanoparticles made with earth-

abundant aluminum in order to assess their feasibility as a gold replacement. Transient 

absorption spectroscopy (TAS) is a powerful tool that can elucidate the energy-transfer 

dynamics of excited or “hot” particles after photoexcitation.  

 
1.1 PHOTOCATALYSIS   

 
A traditional catalyst functions by lowering the activation energy necessary for a 

chemical reaction or process while a photocatalyst actually harnesses the energy of light to 

increase the energy in a system to overcome the reaction barrier.  While these processes 

are very similar it is important to draw a distinction between the two. Figure 1.1 illustrates 

the difference between a traditional catalyst and a photocatalyst.   

 
 
 

The process of photocatalysis can be loosely defined as the acceleration or 

Figure 1.1:  Comparison of reaction coordinate energetics for 1) a photocatalyst and 2) a 
traditional catalyst. 
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facilitation of a chemical reaction in the presence of some photo-activated catalytic 

substance. Materials capable of this for heterogeneous photocatalysis are almost 

exclusively semiconductors such as TiO2.8 A photocatalytic reaction cycle, involves 

several steps beginning with the initial absorption of a photon or photons by the 

semiconductor, in which case valence band (VB) electrons are promoted to the conduction 

band via absorption of incident photon(s).  Ostensibly, after excitation there is a sufficient 

lifetime on the order of nanoseconds9, for the electron-hole pair to facilitate a redox 

reaction with a molecule adsorbed to the substrate.10   Finally, the cycle must be completed 

by replenishing the supply of electrons in the catalyst lost in the reaction, typically through 

a coupled redox reaction.  The efficiency of this reaction will be controlled by a number of 

factors, and an ideal catalyst possesses the following traits: (1) the ability to convert 

absorbed photons into electron-hole pairs across a broad region of the solar spectrum, in 

order to make use of as much solar energy as possible. (2) Allow for the separation of the 

electron-hole pairs and facilitate their transport to the surface of the material where redox 

reactions may occur. (3) The surface electronic structure should make each half reaction 

thermodynamically favorable, that is, in an ideal situation the product of each half reaction 

will have a lower free energy than the adsorbed/reactant state. (4) The system must be 

capable of continually regenerating electrons lost in the redox reaction with the target 

molecule (TM).  Most commonly materials are hampered by low photocatalytic activity or 

low response to solar radiation,11 making large-scale deployment impractical. 
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Since the seminal paper by Fujishima and Honda1 in 1972 demonstrating titania’s 

(TiO2) ability to split water, it has become the gold standard for catalysis.  This is due to 

its low toxicity, thermal stability, and because it is inert to the presence of most acids, 

alkalis and solvents.12 The importance of its high stability in aqueous solution under UV 

irradiation cannot be overstated.  When the conduction band energy (ECB) is higher than 

the evolution potential for a given reaction, photo-generated electrons can reduce the target 

molecule (TM) to product.  Given that the band gap energy in TiO2 is ΔEbg = 3.2 eV this 

only allows for the direct promotion of electrons to the CB via absorption of UV photons 

with λ ≤ 387.5 nm. However, the amount of UV light (280-400 nm) that reaches the earth’s 

surface is only approximately 8% of the total solar irradiance on the earth’s surface.13 From 

this information it would seem that TiO2 is a poor choice as a catalyst.  Indeed, the large 

bandgap in titania has proved to be a major obstacle however many SC’s with smaller 

bandgaps have been investigated and were found to corrode in aqueous electrolytes under 

Figure 1.2: Schematic of Conventional Photocatalysis via TiO2from left to right: (1) TiO2 lattice in 
direct contact with an adsorbed target molecule (TM) before excitation.  (2) Photoexcitation of the 
TiO2 with UV light. (3) Charge transfer from CB of TiO2, with reduction of the TM. (4) Charge 
recovery via oxidation of an electron donor.  
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irradiation, as well as have photo-generated holes oxidize the semiconductor itself.11
 

Thanks to its durability and low environmental impact, TiO2 remains a leading 

candidate as a potential photocatalyst; with the focus turning to the development of 

methods to inject electrons photoexcited by visible light photons, which account for 40% 

of the solar constant,12 into the CB of TiO2.  This idea was first pursued through the creation 

of dye sensitized solar cells (DSSC) the first of which was created in 1991.14 Recent 

DSSC’s have achieved efficiencies15 of ~15% however the primary limitation of these 

devices is the need for a liquid phase electrolyte which can cause significant engineering 

complications such as temperature sensitivity as well as structural integrity.  Additionally, 

the most efficient cells have utilized a prohibitively expensive design incorporating 

ruthenium and platinum. One possible avenue that is relatively new involves coupling 

traditional semiconductor photocatalysts such as titania with plasmonic nanoparticles 

serving as visible-light sensitizers.  

 

1.2 PHOTOPHYSICS OF PLASMONIC NANOPARTICLES 

 

1.2.1 What is Localized Surface Plasmon Resonance (LSPR)? 

Colloidal gold NP’s are responsible for the red color seen in stained glass windows 

that have been made for centuries.  The reason for the coloration wasn’t known until 

Michael Faraday published a paper outlining how gold and other metals interact with 

light.16 In 1908 Gustav Mie presented a solution to Maxwell’s equations that describes 

extinction spectra of spherical particles.  The Mie solution remains central to the study of 

plasmonic materials due to the fact that it is a simple, exact solution to Maxwell’s equations 

that can be applied to particles.  When metal surfaces and small particles are irradiated by 
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light that is resonant with the plasma frequency of conduction electrons near the surface, 

the oscillating electromagnetic field of the incident radiation causes a perturbation in the 

electrons. Coulombic attraction to the positive atomic nuclei acts as a restoring force, 

inducing an oscillation of the free electrons illustrated in Figure 1.3.  This depicts only a 

dipolar interaction however higher order, multipolar oscillations, do occur when the size 

of the NP is on the order of the exciting wavelength. 

 

 
The plasma oscillation frequency (ωp) can be calculated from Equation 1.1 and is 

dependent on four factors: the density of electrons (ne), the effective electron mass (me) 

which is dependent on the band structure in a periodic medium, the dielectric constant of 

the surrounding medium (ε0), in the example below the permittivity of free space is used 

for simplicity.   

𝜔𝜔𝑝𝑝 = �
𝑛𝑛𝑒𝑒𝑒𝑒2

𝑚𝑚𝑒𝑒𝜀𝜀0
       1.1 

 
The above equation holds true for non-thermally excited electrons where the particle 

mass is assumed to be infinite. When incident radiation resonant with the plasma frequency 

Figure 1.3: Schematic of plasmon oscillation for a metal sphere. A surface plasmon can 
be characterized as a surface charge density wave at a metal surface. 
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interacts with the particle a local surface plasmon resonance (LSPR) is induced.  In order 

to relate the plasmon frequency to the dielectric constant of the medium, it must be assumed 

that the wavelength on incident light is much greater than the length or diameter of the 

particle, this is referred to as the quasistatic approximation.  In this regime the electric field 

of the light can be assumed to be constant throughout the particle, allowing for an 

electrostatic as opposed to electrodynamic model to be used.17   

 

1.2.2 Absorption Characteristics 

 
The effect of a surface plasmon can be observed in steady state absorption spectra 

Figure 1.4: Plasmon resonance of gold nanoparticles with a 25 nm diameter results 
in an enhanced absorption near the plasma frequency ~520nm 
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as a strong absorption peak centered about the resonant frequency (Figure 1.4). 

One of the most notable traits that is common to all metallic LSPR's is the influence 

that the physical characteristics: size, shape, and composition as well as the dielectric of 

the surrounding environment, have on the resonant plasma frequency.  The dipole 

approximation works well for nanoparticles that are very small compared to the exciting 

wavelength (λ >> 2R), which is the case for the absorption spectra of 25 nm gold particles 

shown in Figure 1.2.2.  When the particle is too large light is no longer capable of polarizing 

the particle homogeneously at which point higher order multipolar modes with lower 

energy become increasingly dominant.18  Eventually the plasmon resonance becomes 

explicitly dependent on particle size and these higher order modes with lower resonant 

energies causing the absorption peak to red shift with increasing particle size proportional 

to 1/R.18,19  

Shape effects are also very pronounced in the optical absorption spectra.  The 

plasmon band splits into 2 distinct bands for cylindrical gold nanorods, where each band 

corresponds to the oscillation of electrons along the vertical and principle axes.  The band 

at lower energies represents the electron oscillation along the principle axis and is referred 

to as longitudinal plasmon absorption.  As the aspect ratio increases, the energy separation 

between the resonance frequencies of the two plasmon bands increases.18,19   

The effect of local environment has been studied previously.  When an Ag sphere 

10 nm in diameter is engulfed by a mica shell the LSPR wavelength is seen to shift 

dramatically to the red.17  This arises from the plasma frequency being inversely 

proportional to dielectric permittivity shown in Equation 1.1.  By tuning the particles to 

have specific shapes and sizes that have a broad absorption across the solar spectrum and 
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manipulating their interactions with the local environment it’s thought that plasmonic 

nanomaterials have great potential application in the production of composite 

photocatalysts that capture more solar radiation, thereby increasing their efficiency.  

 

1.2.3 Photophysical response to optical excitation 

 
The relaxation dynamics of a photoexcited “hot” particle can be well described by 

three processes.  Electrons are initially excited to a non-Fermi distribution with the excess 

energy quickly thermalizing through electron-electron (e-e) scattering which occurs within 

100 fs. This is followed by electron-phonon scattering (e-ph), where energy is deposited 

into the lattice within 1-10 ps. Last, the heat is slowly  dissipated to the surroundings 

through phonon-phonon (ph-ph) interactions occurring on the 100s of picoseconds 

timescale19 (Figure 1.5).  
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Immediately following excitation of electrons in a plasmonic particles there exists 

a coherent non-Fermi distribution of electron energies that match the gaussian profile of 

the laser pulse.  This coherence is lost very quickly on the order of femtoseconds and is 

difficult to observe directly in the time domain. Eventually the electrons thermalize into a 

hot electron gas with a Fermi distribution of energies via e-e scattering occurring within 

10-100 fs.  

A phenomenological two-temperature model20 (TTM) is commonly used to treat 

thermal energy transfer from electrons to the nuclear lattice in metals (Equations 1.2 & 

1.3).  The electron phonon coupling relaxation time depends on the laser excitation fluence 

and is usually on the order of a few picoseconds.  

Figure 1.5: Schematic of the non-radiative decay pathway experienced by a solitary 
plasmonic nanoparticle with relative time scales.   
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𝐶𝐶𝑒𝑒(𝑇𝑇𝑒𝑒)
𝑑𝑑𝑇𝑇𝑒𝑒
𝑑𝑑𝑑𝑑

= −𝑔𝑔(𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑙𝑙) 
1.2 

𝐶𝐶𝑙𝑙
𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑙𝑙) 
1.3 

 
  
The model is comprised of coupled differential equations where Te and Tl are the electronic 

and lattice temperatures, respectively, Ce(Te) and Cl are the specific heats and g is the 

electron-phonon coupling constants. The rate constant for the energy transfer scales 

inversely with the electronic temperature resulting in a nonexponential rise in the lattice 

temperature.  

Finally lattice phonons (ph-ph scattering) disperse the energy into the surrounding 

medium which occurs within a few hundred picoseconds.  This relaxation timescale has 

been found to be proportional to the square of the particle radius,21 but more interesting is 

the dependence this timescale has on the surrounding medium.   Recovery times become 

slower when thermal conductivity of the medium is decreased or if thermal contact with 

the medium is decreased,22,23 which shows that the surrounding medium has a profound 

impact on the cooling dynamics of these particles.  Additionally, acoustic breathing modes 

have been observed in previous femtosecond pump-probe studies with comparable 

timescales.24–27  The fast heating of the particle lattice causes thermal expansion and can 

be accurately modeled with a damped harmonic oscillator. 

 

1.3 PLASMON ENHANCED PHOTOCATLAYSIS 

 
Under ordinary circumstances it should be impossible for an electron generated from 

a visible photon to have enough energy to access the CB of TiO2.3  However it has been 
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found that upon absorption of resonant photons an LSPR generates hot electron-hole pairs 

with an elevated effective temperature, during nonradiative decay.29,30 The term “hot 

electron” is used to refer to an electron that possesses energy greater than those of thermal 

excitations at ambient conditions and is characterized by an elevated effective electron 

temperature. By employing plasmonic materials as visible light harvesters to increase the 

optical absorption range of photocatalysts, plasmon-enhanced photocatalysis has emerged 

as a possible avenue for the production of highly efficient photocatalysts.3,8,31,32 Having 

metal NP’s in contact with the semiconductor substrate results in an increased 

photoreactivity of TiO2 and other semiconductors, subsequently increasing their 

efficiencies.30,33 

When a metal and n-type semiconductor are brought into contact they form a 

Schottky junction.34 In order to increase the harvesting efficiency of the semiconductor is 

it important that a junction is formed between the NP and SC, as a poor contact will inhibit 

the electrons’ ability to enter the CB.  Once in contact, the Fermi level throughout the whole 

solid must be continuous at equilibrium which results in the bending of the CB and VB.34  

Figure 1.6 depicts a Schottky junction with a Fermi distribution of hot electron where some 

have energy above φB, the Schottky barrier height.  Indeed it has been shown that surface 

plasmons in Au and Ag can transfer energies between 1 eV and 4 eV to hot electrons.3,30  

This type of interaction is especially favorable in the case of TiO2 due to its high density 

of states (DOS) in the CB, which allows it to readily accept electrons.35  The transfer of 

electrons into the CB is a means by which the number of electrons that can participate in 

chemical reactions is increased.  After the successful electron injection to the TiO2 the 

metal particle will be left with a positive charge.  As such a ‘complete’ photocatalytic 
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system must include an electron donor solution or a hole transporting material in order to 

maintain charge balance (Figure 1.3.1).   

 
 

Previous studies on charge transfer dynamics in Au-TiO2 composite systems have 

measured the timescales of hot-electron creation, injection and recombination.36,37 Furube 

and Du’s group used ultrafast transient absorption spectroscopy with visible pump and 

infrared probe pulses in order to characterize charge-transfer kinetics. The LSPR was 

selectively excited using 550 nm light, with a 150 fs pulse duration, while the transient 

absorption of conduction-band electrons in TiO2 was measured at 3500 nm in order to 

directly observe injected electrons.  Their results revealed that hot electron generation and 

injection occurred in under 50 fs with the relaxation of non-Fermi electrons occurring 

within 100 fs through electron-electron (e-e) scattering, similar to what is observed for 

Figure 1.6: Simple schematic of the Schottky junction formed between a metal and n-type 
semiconductor.  Photoexcitation of the metal NP results in a Fermi distribution of hot 
electrons that have been shown to have enough energy to overcome the Schottky barrier 
φB and enter the CB of TiO2. 
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isolated particles as discussed in Figure 1.6. 

Comparing these dynamics with that of the ruthenium dye N3 coupled to TiO2, they 

found that electron injection efficiency was approximately 40% when excited at 550 nm, 

which corresponds to the observed maximum of the plasmon.  Surprisingly this represented 

a minimum in the percentage of electrons transferred between the wavelengths of 400 nm 

and 700 nm.  In subsequent studies they found a relationship between excitation 

wavelength and injection efficiency, with a maximum of 100% occurring at 480 nm.  

Interestingly they also found that at 600 nm the injection efficiency rose to 80%.  This 

bimodal behavior indicates that there are 2 possible injection pathways.  The authors 

attributed the higher energy pathway to interband transition in the gold from the d to the sp 

band, making an electron-hole pair.  Since interband transitions are not expected at 600 

nm, it stands to reason that the electron-hole pair formed in this pathway must be entirely 

due to the hot electrons formed in the plasmon.    

 
1.4 ALUMINUM FOR PLASMONICS 

 
Nanoparticles composed of noble metals (Au, Ag, Cu) present a very attractive 

option when studying plasmons, as they are very easy to synthesize, manipulate and 

functionalize.  However, any large-scale implementation of these materials into 

commercial photocatalytic systems would be prohibitively expensive.  Aluminum 

possesses a plasmon that has a tunable range that is wider than that of Au or Ag in certain 

circumstances,38 and has been proposed as a possible alternative to the use of noble metals.  

Furthermore, Al is earth abundant, making it more attractive from a financial standpoint.  

Unfortunately, thus far the experimental optical response of Al NPs has not matched with 

relative calculated spectra obtained using Finite Difference Time Domain (FDTD) 
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calculations.39,40 These discrepancies can be attributed to oxidation of aluminum during the 

deposition process.  In order to attain reproducible results, extreme care must be taken to 

ensure contaminants don’t extend into the bulk of the particle.38  Very little research has 

been conducted on the prospect of coupling Al NPs with TiO2 or other materials in order 

to produce a plasmon enhanced photocatalyst. 

Unlike gold, aluminum materials are readily oxidized under ambient conditions.  

As such, they require additional modification in order to be utilized.  Recently, high purity 

aluminum nanocrystals were synthesized in a variety of shapes (monodisperse, icosahedral, 

trigonal bipyramidal) and sizes (70-220 nm) that are air-stable for weeks due to the 

formation of a 2-4 nm passivating metal oxide layer on the surface.41   Addition of an 

alumina capping layer, which is an insulator with a bandgap of ~9 eV,41  will have a large 

influence on the carrier density of free electrons at or around the Al/Al2O3 interface.  

Invariably this will influence the aluminum LSPR frequency, rates of charge 

recombination, phonon-phonon thermalization timescales as well as the efficiency with 

which hot-electrons may be injected into the TiO2 lattice.  

The photothermal properties of these particles are poorly understood currently and 

will play a pivotal role in energy relaxation/transfer pathways. While characterization of 

the charge separation dynamics in particles that have 2 interfacial barriers, and how 

morphological alterations effect electron injection efficiencies is imperative for the design 

of photocatalysts, it is also important to understand how these particles will respond to an 

excess of thermal energy.  Even if there is a high charge injection efficiency much of the 

absorbed energy must still dissipate via thermalization. Finding the thermalization 

timescales of aluminum particles will provide valuable insight into what effects the oxide 
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layer has on energy transfer from the particles to the oxide layer as well as from the oxide 

layer to the surrounding medium. Al2O3 possesses vastly different thermal properties than 

that of aluminum metal and this additional interface will impact energy transfer timescales 

and efficiencies. It is well known that bare metal particles will melt or disintegrate from 

exposure to laser excitation given high enough intensities.  An oxide shell that facilitates 

very fast thermalization may indicate that these particles are robust and resistant to 

degradation caused by the absorption of additional energy.  

  
1.5 THESIS LAYOUT 

 
This thesis will cover the work done over the past 6 years of research. Chapter 2 

will cover all of the experimental techniques used to conduct the research of this thesis as 

well as offer a detailed fundamental description of the laser system used in all experiments.  

Chapter 3 will cover our seminal paper published about solution phase aluminum 

nanoparticles and their photothermal relaxation properties.  Chapter 4 will expand upon the 

work done with aluminum interrogating the changes in relaxation dynamics observed by 

altering the particle size.  The 5th and final chapter will discuss the work done to 

characterize exciton diffusion in the conjugated polymer PTMT using the singlet-singlet 

annihilation (SSA) method.       
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Chapter 2 

Experimental Methods 

2.0 BRIEF OVERVIEW 

All the experiments used in this thesis revolve around transient absorption 

spectroscopy (TAS), which is the ‘bread and butter’ technique used in the Bragg lab.  The 

details of this method are described below.  Briefly, aluminum nanoparticles suspended in 

isopropyl alcohol (IPA) were places into a 2 mm cuvette with a magnetic stir bar and 

excited with a femtosecond laser pulse.  The excitation wavelength can vary with the 

specific wavelength that corresponds to the plasmon resonance of the particles being 

interrogated.  The photoexcited or ‘hot’ particles are then probed by a femtosecond 

broadband white light laser pulse that gives a spectroscopic snapshot of the excited 

particles at various time delays after the initial excitation.  The arrival of the probe pulse is 

controlled via a translation stage and can range from sub picosecond to ~1 ns after 

excitation.  Intensity dependent studies were accomplished by placing neutral various 

density filters with well-known optical densities (OD) in the path of the pump beam to 

attenuate the excitation fluence.  

 

2.1 DESCRIPTION OF THE FEMTOSECOND LASER SOURCE 

The laser source consists of two devices: a mode-locked femtosecond oscillator 

which outputs light at 800 nm with a 35 fs pulse width at 80 MHz and a power density of 

~6 nJ/pulse.  This output is seeded into a regenerative amplifier that modulates this seed 

beam to produce pulses with an energy density of ~4.5 mJ/pulse at 1 kHz while preserving 
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the 35 fs pulse duration through chirped-pulse amplification (CPA).  This 800 nm 

fundamental beam can be used to drive various non-linear optical processes to create light 

of many different specific wavelengths from the UV (266 nm) to IR (2500 nm) to be used 

as an ultrafast excitation source. It can also be used to create a broadband white light 

continuum by being focused into different materials like sapphire or CaF2.  Details of this 

laser system has been documented extensively.1–3  The description here will be brief. 

Oscillator.  Any laser has 4 essential components: 1) pump source 2) gain medium 

3) high reflector 4) output coupler/partial reflector.  In the case of the femtosecond 

oscillator, a Ti:Sapphire rod acts as the gain medium and is pumped by a continuous wave 

(CW) solid-state diode laser with a fundamental wavelength of 532 nm.  Light traveling 

within the high-finesse cavity between the high reflector and output coupler will make 

many passes through the gain medium and is strongly amplified by constructive 

interference of stimulated emission from the gain medium.  Ti:Sapphire is capable of 

producing laser light anywhere from 680 nm to 1100 nm.  In order to amplify a specific 

wavelength, optics that only reflect a narrow range of the fluoresce are used inside the 

cavity.  Each lasing wavelength must be precisely an integral number of half wavelengths 

that fit inside the cavity; wavelengths that meet this criterion are referred to as longitudinal 

modes.   

It is not possible to conduct ultrafast transient absorption experiments using a CW 

laser. Part of what makes ultrafast spectroscopy so powerful is the ability to excite a 

material on a timescale that will not interfere with the dynamics of the process being 

interrogated.  Using a pulsed laser with a pulse width on the order of femtoseconds 

accomplishes this and in addition, the nature of generating short laser pulses results in very 
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high peak intensities that allow for many useful non-linear optical processes to take place 

as well as increased absorption by the sample. 

Creating laser pulses can be accomplished through various methods.  Here a 

“passive Kerr lens mode-locking” technique is used. Passive mode-locking requires a 

saturable absorber which is a material where the transmission of light through the material 

is intensity dependent. In a laser cavity at sufficiently high incident light intensity, atoms 

in the ground state become excited into an upper energy so fast that there is insufficient 

time for them to decay back to the ground state before the ground state becomes depleted, 

and the absorption subsequently saturates. Creating an artificial perturbation in the cavity 

by quickly varying the cavity path length the peak mode experiences self-phase modulation 

progressively locking adjacent modes together and forming a pulse.  Pulse broadening that 

would break up the mode-locked pulse is eliminated with negatively chirped mirrors that 

balance dispersion in other cavity optics.   The Gaussian spatial profile of the beam allows 

for the creation of a Kerr-lens4 in the gain medium, allowing for an optical discrimination 

of mode-locked vs. CW in the oscillator cavity.  

Amplification.  As mentioned earlier, once the femtosecond seed pulse is generated 

it is routed into a regenerative amplifier that maintains the ~35 fs pulse width while 

increasing the energy density from 6 nJ/pulse to ~4.5 mJ/pulse and decreases the repetition 

from 80 MHz to 1 kHz.  This is accomplished through Chirped-Pulse Amplification4 

(CPA).  While the total energy per pulse of the seed beam may be low, each pulse possesses 

exceedingly high peak intensities which have the potential to damage optics if amplified 

directly.  For this reason, the beam is stretched in time with a grating system which sends 

the higher frequency light (bluer) over a longer distance than the redder light. Stretching a 
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pulse in such a way results in a positive group velocity dispersion (GVD) and is said to be 

“positively chirped.”   

Amplification is accomplished by optically pumping another Ti:Sapphire rod with 

~30 mJ of 527 nm light at 1kHz from a solid-state laser (Nd:YLF).  Since the gain medium 

through which the seed pulse passes already contains atoms in the excited state the pulse 

is intensified through stimulated emission.  Regenerative amplifiers allow the seed to pass 

through the gain medium several times (in our case, 16-17) allowing for an overall 

amplification of greater than 106. The entrance of the seed pulse and exit of the amplified 

pulse are synchronized to the firing of the pump laser by a set of Pockel cells triggered at 

the repetition rate of the pump laser.  Once this stretched beam is amplified the pulse is 

recompressed by giving the pulse negative GVD, simply the reverse process that was used 

to stretch the pulse.     

 

2.2 EXPERIMENTAL SETUP 

After leaving the amplifier the 800 nm fundamental beam is split multiple times for 

use in various non-linear optical processes that generate the desired wavelengths of light 

for any given experiment. A very small fraction of light is focused into a 2 mm x 2 mm 

sapphire or calcium fluoride (CaF2) plate in order to generate the broadband white light 

continuum (WLC) which serves as the TAS probe pulse.  Immediately before the sample 

the light passes through a wire grid polarizer (WGP) set at magic angle relative to the pump 

pulse polarization to eliminate possible anisotropy in the absorption measurements.   

Another portion of the amplifier output is routed into a series of BBO crystals to 

produce photoexcitation pump pulses at harmonic frequencies of the original 800 nm 
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output.  Second harmonic generation (SHG) is achieved after passing through the first BBO 

to generate 400 nm light at relatively high fluences (~100 µJ/pulse). If desired, this output 

can be used as the experimental pump source after attenuation of the beam power.  

Alternatively, the 400 nm light can also be spatially overlapped with the original 800 nm 

pulse in a second BBO crystal where sum frequency generation (SFG) occurs to generate 

266 nm light which corresponds to the third harmonic of the fundamental.   

Lastly a portion of the amplifier output can also be routed into an optical parametric 

amplifier (OPA, Coherent OPerA Solo). Using internally generated WLC and the original 

800 nm beam the OPA is capable of generating tunable excitation pulses (290-2200 nm) 

via optical parametric amplification (splitting 800 nm photons into two photons of IR 

wavelength) followed by SFG and other non-linear processes. A schematic of the laser 

table with relevant non-linear processes can be seen in Figure 2.1. 
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2.3 STEADY-STATE SPECTROSCOPIES 

One of the simplest optical spectroscopy methods is UV/VIS absorption, which 

quantifies the absorption of light by molecules or materials. It has four general components: 

a light source, a molecular solution or sample, a spectrometer for dispersion of light by 

wavelength or photon energy, and a light detector. Absorption spectroscopy requires a 

reference intensity, I0, and is a differential measurement which detects an attenuation of 

light intensity, I of photons transmitted through the sample.  This experiment allows for 

observations of optical resonances between ground and excited electronic states. Equations 

2.2 and 2.3 give the relationships that quantify absorption, which are given in the unit-less 

parameters of percent transmittance (%T) or absorbance (ABS / OD). Equation 2.3 

corresponds to Beer’s law where ε is the absorption coefficient, l is the path length and c 

Figure 2.1: Simplified laser table layout schematic.  One of three primary experimental setups is chosen 
based on the desired excitation wavelength. Purple - 3rd harmonic UV light with a fixed wavelength of 
266 nm. Green - Femtosecond OPA with variable wavelengths ranging from 290 – 2200 nm.  Blue – 2nd 
frequency doubling BBO with fixed wavelength of 400nm. 
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is the concentration.  

%T =
I

I0
 2.2 

OD = − log
I

I0
= εlc 2.3 

 
 
 
2.4 INTRODUCTION TO TRANSIENT ABSORPTION SPECTROSCOPY 

Transient Absorption Spectroscopy (TAS) also referred to as “pump-probe” 

spectroscopy is a derivative of UV/VIS spectroscopy where instead of acquiring a time-

averaged or steady-state absorption spectrum a time-resolved absorption spectrum is 

acquired of some higher lying energy state following perturbation of the sample with light.  

In order to observe photophysical behavior of a higher energy state a light pulse, i.e. the 

“pump,” is required to initiate the photo-physical or photochemical process by 

photoexcitation in addition to the light source that monitors the change in sample 

absorption, i.e. the “probe”. The pump-probe measurement is a differential measurement 

like UV/VIS spectroscopy except that the transmission of probe light following sample 

excitation with the pump, ODp, is referenced against the probe transmission with the pump 

absent, ODu. Switching of the “pump” is generally achieved by using an optical chopper 

that physically blocks the light. Two phases, i.e. pump on/probe on and pump off/probe on, 

are required for determining the differential absorbance or ΔOD at a given pulse time delay 

as given by Equation 2.4. The observed changes in intensity arise from the difference 

between the absorbance of the pumped ODp and unpumped ODu signals which is a function 

of time and wavelength.  
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∆OD(t, λ) = ODp(t, λ) − ODu(λ) = log �
I0(λ)

Ip(t, λ)�  2.4 

 
 

 

 

 

This technique is ideally suited to study processes occurring on timescales ranging 

from 100s of fs to nanoseconds, depending on the particular experimental setup.  Some 

commonly studied processes include non-radiative relaxation of electronic excited states, 

vibrational relaxation, radiative relaxation, and thermalization of electrons excited in a 

metal.  Additionally, it is possible to monitor the presence of intermediate states involved 

in photochemical reactions or energy transfer mechanisms.  Due to the nature of this 

experiment as a differential signal measurement, it is possible to observe both positive and 

Figure 2.2: Basic schematic of pump-probe spectroscopy with relevant changes in signal 
response and their corresponding processes. The inset on the right describes the common 
molecular processes that result in different signal changes and the left side shows the response 
of a nanoparticle.   
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negative changes in absorbance with each response yielding different information about 

the target molecule or material.    

Figure 2.2 illustrates the consequences of transient absorption being a difference 

measurement. A positive ∆OD indicates a decrease in light transmission through the 

sample at certain wavelengths which corresponds to the formation of an excited state which 

has a different absorption spectrum than the ground state, commonly referred to as the 

transient absorption spectrum (TA). While the excited-state population increases the 

corresponding ground state is depopulated leading to an increase in transmitted light and a 

negative ∆OD, this is known as the ground-state bleach (GSB). Another feature commonly 

seen in these types of measurements is that of stimulated emission (SE) where an additional 

photon is emitted and corresponds to a negative signal.   While it is easiest to describe these 

processes in terms of discrete energy levels that would be found in photoactive molecules, 

a large portion of the work described here will refer to spectra collected from metallic 

nanoparticles which do not have discrete energy “states” and are instead referred to as “hot” 

or “cold” to denote the deposition of energy.  

The inset of Figure 2.2 depicts the molecular processes that would give rise to the 

various positive and negative signals observed in a TAS experiment, where the transient 

signal from an excited-state absorption (TA) can appear at a different wavelength than that 

of the ground state.  In the case of plasmonic nanoparticles the center wavelength of the 

hot plasmon lies directly on top of that of the cold plasmon.  This leads to a difference 

spectrum similar to that shown in the bottom left of the figure, however the hot particles 

have a wider range of energy distributions such that when the signals are subtracted there 

are areas on the periphery of spectrum that still appear as positive signals, sometimes 
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referred to as the “wings” of the TAS signal. 

The evolution of the excited absorption spectrum is tracked by acquiring multiple 

‘snapshots’ of the absorption spectrum at some time Δt after initial excitation at t0, which 

is accomplished by employing an optical delay stage that changes the path length for an 

incident laser pulse.  For processes occurring on an ‘ultrafast timescale’ laser pulses with 

a very narrow duration (σ < 200 fs) are able to populate the excited state almost instantly 

after excitation, where the rise of the sample response is limited by the convolution of the 

laser instrument response function (IRF) and the decay of the exited state.   

 
 
2.5 DATA ACQUISITION AND ANALYSIS 

All data collection was accomplished using a LabVIEW-based data acquisition 

program created by previous lab members. The transient spectra are calculated 

automatically by the LabVIEW program for each accumulation and averaged over the 

course of several accumulations before moving on to the next time delay.  Details of this 

acquisition program can be found elsewhere.2   

After experimental data is collected, the matrix of time- and wavelength-dependent 

transient absorption data is loaded into Mathematica for additional processing and analysis. 

If data is exceptionally noisy a gaussian filter can be applied in the wavelength dimension 

in order to smooth the data.  Smoothing in the time dimension is avoided at all costs due to 

its effect on the time-resolution and possibly response lifetimes to be determined from 

analysis.  After smoothing is applied it is necessary to account for temporal chirp 

introduced when the WLC is generated.  The introduction of this temporal chirp causes 

bluer light to arrive at the sample earlier than redder wavelengths.  In order to obtain 

accurate timescales this must be corrected. An example or pre and post chirp correction 
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can be seen in Figure 2.3. 

 
 
 

 

Briefly, this is accomplished in Mathematica by fitting a low order polynomial to 

the half-rise of the transient signals; this fit provides a common reference delay at all 

wavelengths.  Corrected time delays are then calculated at each wavelength from a series 

of interpolating functions in order to shift all the experimental data to a set of common 

delays.  

f(t) ∘ IRF(t) = �H(t)� ane
−t
τn

n

�  ∘  
1

σ√2π
e−

(t−μ)
2σ2

2

   2.5 

 

Kinetic traces are created by integrating spectral intensities for each time delay over 

a specified range of wavelengths that correspond to a region of interest, usually for each 

Figure 2.3: Example of correction of chirp introduced by white light super continuum 
generation. 
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apparent spectral feature in the spectrum.  A non-linear regression algorithm is then used 

to fit the traces with an appropriate exponential kinetic model.  At early times ( < 1 ps) the 

signal rise is accounted for by the convolution of the instrument response function (IRF) 

with the particular model. The IRF is computed as the gaussian envelope of the pump-

probe cross-convolution. A general form is shown in Equation 2.5 where f(t) is the kinetic 

model being applied, H(t) is the Heaviside step function and IRF(t) is the instrument 

response. While this represents the general form of the function used, in some 

circumstances it is necessary to make customizations, such as the addition of exponential 

rise and damped oscillator terms.  From these fits relevant excited-state lifetimes are 

extracted and used to make conclusions about the dynamics of the excited molecules or 

particles.  More complex models for fitting time-dependent signals from Al nanoparticles 

are described in Chapters 3 and 4; fitting models accounting for singlet-singlet annihilation 

in polymer films are described in Chapter 5. 
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Chapter 3 

Dynamics of Energy Transfer in Large 

Plasmonic Aluminum Nanoparticles 

 
3.0 ABSTRACT  

We report the first photophysical characterization of energy-transfer dynamics in 

large (100 nm diameter) plasmonic aluminum nanoparticles suspended in liquid 

isopropanol. The spectral response of the particles to ultrafast excitation is characterized 

by a decrease in light transmission broadly across the visible and near infrared on a 700 fs 

timescale that is consistent with predictions for electron-lattice relaxation processes. Time-

dependent bleaching of the interband transitions is largely isolated from spectral changes 

to the intraband transition associated with light scattering and provides a window into 

electron-electron thermalization dynamics that occur on a ~350 fs timescale.  Subsequent 

relaxation in these particles is characterized by a 250 ps energy transfer to the surrounding 

medium – comparable to energy-transfer rates expected for much smaller particle sizes 

(<10 nm in diameter). Using a two-interface model, we find that the rapid thermal energy 

transfer is accounted for by the presence of a compact ~4 nm native oxide layer on the 

aluminum nanoparticles. We propose that using surface modifications, including 

controlled oxidation, could be an effective tool to engineer heat transfer rates from large 

particles to the surrounding medium and could be a handle for controlling thermal decay 

processes in a broad range of applications involving metal nanoparticles.  
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3.1 INTRODUCTION 

Novel realizations of metal nanoparticles (NPs) are of continuing interest due to 

their unique optical properties and potential applications in optoelectronics, sensing, and 

catalysis.1–6 Plasmonic materials have great appeal as harvesters of visible light, with 

plasmonic-enhancement promising increased efficiency and spectral sensitivity of catalytic 

materials.7–10 In contrast to bulk metals, metal NPs exhibit localized surface plasmonic 

resonances (LSPRs) that are tunable via adjustment of particle size, shape, and composition 

as well as the properties of the surrounding environment.11,12 Methods for synthesizing, 

functionalizing and manipulating gold and silver NPs are well established, and hence their 

photophysical properties, including narrow and tunable LSPRs across the visible and near-

infrared (NIR) regions of the electromagnetic spectrum, are well characterized.13–16 

However, large-scale deployment of precious-metal materials is impractical for many 

applications due to their high cost and relatively low earth abundance. Several alternatives 

have been proposed and synthesized,17–19 but there remains an urgent need to understand 

their photophysical properties, many of which differ non-trivially from gold and silver due 

to their unique electronic structures and complex dielectric constants.20,21  

Aluminum, in particular, is an inexpensive earth-abundant plasmonic material and 

a promising alternative to noble metals for applications requiring UV sensitivity and 

scalability. The plasmon resonance of bulk aluminum metal falls in the ultraviolet, but the 

LSPRs of aluminum NPs have been tuned successfully to the visible and NIR using size- 

and shape-modulation22–24 and are tunable over an even wider spectral range than those of 

Au or Ag.22 Aluminum also forms a native oxide layer at its surface in air25 that further 
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red-shifts the LSPRs of particles. Unlike the interband transitions of gold (5d-6s) and silver 

(4d-5s), with threshold energies that overlap with the intraband plasmon resonance, the 

interband transitions of aluminum fall at 1.5 eV and do not overlap significantly with the 

intraband transitions.21 Greater understanding of how these differences in electronic 

structure affect energy transfer mechanisms is critical for developing optoelectronic and 

photocatalytic applications26,27 based on plasmonic aluminum. 

The photophysical dynamics of noble-metal plasmonic nanomaterials have been 

characterized extensively with ultrafast transient absorption spectroscopy over the last two 

decades.28,29 Studies on relaxation dynamics of aluminum have been recently conducted on 

bulk films, nanorods and nanodisks.30–33 It is now well understood that interaction between 

a plasmonic NP and a femtosecond laser pulse creates a coherent electronic state (a 

“plasmon”) that rapidly dephases (typically in 5-10 fs) to a highly non-thermal electron 

distribution.34,35 These “excited” non-equilibrium NPs subsequently relax through a 

sequence of energy-conversion and transfer mechanisms beginning with thermalization via 

electron-electron (10-100 fs)36,37 and electron-lattice (~1-10 ps)29,38 scattering followed by 

lattice relaxation by intraparticle equilibration (10s of ps)38,39 and thermal energy transport 

to the surrounding environment (100s of ps to nanoseconds).40–42 The extensive body of 

work that has explored these processes has also led to an understanding of how energy 

transfer scales with NP dimensions35,38,40 and shape43–47 as well as particle composition48,49 

and interface properties.42,50 Transient optical methods have also been used to demonstrate 

that hot electrons generated in noble metal NPs are able to overcome an interfacial Schottky 

barrier when coupled to TiO2, a common and robust semiconductor, thereby facilitating 

enhanced photocatalytic activity.51–54 
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  In this study, we report the first photophysical characterization of energy-transfer 

dynamics in large, solution-synthesized aluminum NPs. Time-scales for spectral dynamics 

are similar to those ascribed for electron-electron, electron-photon, and lattice cooling 

temperatures for noble-metal particles,28,29,55 although we find that the spectral responses 

of Al NPs differ qualitatively. Notably, bleaching of the interband transitions is largely 

isolated from spectral changes associated with LSPR and provides a window into electron-

electron thermalization dynamics. Furthermore, we find a ~250 ps energy transfer to the 

surrounding medium – comparable to energy transfer rates for a small (<10 nm in diameter) 

NPs, but much faster than predicted for the particle size (98 nm in diameter) studied.  To 

understand this phenomenon, we investigated thermal energy transfer dynamics using a 

two-interface model and find that rapid thermal energy transfer out of the Al core is 

mediated by the presence of the ~4-nm thick native oxide layer, pointing the way to using 

surface modifications as a tool to engineer heat transfer rates in applications such as 

photocatalysis.  

 

3.2 RESULTS AND DISCUSSION 

We synthesized aluminum NPs using modifications of established procedures.56 

Briefly, the particles were formed through decomposition of dimethylethylamine alane 

under mild heating using titanium (IV) isopropoxide as a catalyst. Morphologies of the 

synthesized aluminum NPs are shown in the transmission electron microscope (TEM) 

image in Figure 1A. According to our analysis of the size distribution, the particles are 

relatively monodisperse with an average diameter of 98 ± 12 nm (see Figure A1.1). The 

NP shapes are primarily icosahedra and truncated trigonal bipyramids. Figure 3.1B shows 
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a high-resolution TEM image of a single aluminum NP taken using a FEI Talos S200 in 

which a thin oxide shell with an average thickness of approximately 3.7 nm is visible, 

consistent with previous observations.57  

 Based on the morphologies obtained from these images, we employed finite 

difference time-domain (FDTD) simulations to predict the LSPR spatial field intensity 

distribution (Figure 1C) and spectrum (Figure 3.1D) of the aluminum NPs. The blue curve 

in Figure 3.1D shows the experimental extinction spectrum of the aluminum NPs in 2-

propanol measured by UV-Vis spectrophotometry. The solution exhibited a clear 

broadband absorption peak due to the NP dipolar plasmon resonance with a maximum at 

392nm, as well as a peak at 269 nm associated with the quadrupolar plasmon resonance 

(spatial field intensity distribution shown in Figure A1.1d) in both simulated and measured 

extinction spectra. We used FDTD simulations to calculate the extinction cross section of 

an icosahedral aluminum NP 93 nm in diameter with and without an aluminum oxide shell 

of 3.7±0.8 nm in thickness. The simulated peak extinction cross-sections of the aluminum 

NPs without (red curve) and with (orange curve) an oxide layer are 389 nm and 393 nm, 

respectively; the latter matches well with that of the measured extinction peak, with the 

broadening of the peaks in the measured extinction spectra compared to the simulated ones 

attributed to the slight size inhomogeneity of the Al NP solution. We also observe that there 

is a broad shoulder, both in the measured and the calculated extinction spectra, between 

800 nm and 900 nm that is clearer from plots of the first derivative shown in the inset of 

Figure 3.1D. This shoulder in the experimental spectrum falls at 815 nm and agrees well 

with the known spectral position of the parallel-band interband transitions in aluminum 

(~1.5 eV).21 Importantly, the extinction spectrum is dominated by particle scattering except 
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in the region of the interband transition (vide infra) 

Guided by this understanding of steady-state properties, we interrogated the 

photophysics of these particles suspended in 2-propanol with transient absorption 

spectroscopy.  Figure 3.2A presents a contour plot of time-dependent changes in optical 

density (i.e. extinction) from 420 – 1150 nm following interaction with ultrafast laser 

pulses at 400 nm (fluence of 134 µJ cm-2). “Time zero” can be identified by the sharp line 

 

 near the bottom of the plot that is associated with ultrafast coherent interactions of the 

laser pulses with the sample solution that occur during the pulse cross correlation. Spectra 

collected at various time delays for each spectral region are plotted in Figure 3.2B.  In total, 

Figure 3.1. (A) TEM image of aluminum NPs. (B) A single aluminum particle surrounded by 
an oxide layer with an average thickness of 3.7 nm. (C) FDTD-calculated spatial 
electromagnetic field profile for a 93 nm-diameter aluminum NP at the LSPR wavelength of 
393 nm (color scale in a.u.). (D) UV-Vis-NIR extinction (blue curve) of an aluminum NP 
solution in 2-propanol. FDTD-calculated extinction cross sections for a single bare aluminum 
icosahedron in a 2-proponal background (red curve) and an aluminum icosahedron with a 
3.7±0.8 nm thick aluminum oxide shell (orange curve) in the same background. The inset 
shows the first derivative of measured (blue) and simulated (red/orange) extinction near the 
aluminum interband transition (1.5 eV). 
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Figure 3.2 demonstrates that changes in extinction occur broadly across the visible and 

NIR. 

 
 

  
Figure 3.3 plots temporal traces obtained by averaging over three different spectral 

regions:  a region to the red of the LSPR peak (415-500 nm), near the aluminum interband 

transition (825-900 nm), and in the NIR beyond the interband transition (1000-1125 nm).  

Figure 3.2. (A) Contour plot of transient spectra from 420 – 790 nm and 820-1150 nm 
after 400 nm excitation with a fluence of 134 µJ cm-2. The time axis is linear from 0-50 ps 
and logarithmic from 50-1450 ps. Data in the NIR region is scaled by a factor of 5 for 
clarity.  (B) Visible (left) and NIR (right) transient spectra at selected time delays of the 
same data sets (no scaling applied in NIR). 
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Transient spectral dynamics can be summarized as follows: Immediately following 

excitation, a slow induction to a positive ∆OD occurs broadly across the visible and beyond 

900 nm, reaching a maximum positive value by 8 ps.  At later time delays, this broad signal 

decreases in amplitude turning to a negative ∆OD on a timescale of a few hundred 

picoseconds. The time-dependence of transient signals collected in the visible and longer-

wavelength NIR are highly similar.  Interestingly, despite the plasmon resonance having a 

maximum extinction at 392 nm, no extinction bleach is observed in this region immediately 

after excitation, which differs from studies conducted previously with noble-metal 

nanoparticles and aluminum nanodisks.33 

A different temporal response is observed near the Al interband transition.  Here 

the extinction drops rapidly to negative values within a few hundred femtoseconds after 

sample excitation (Figure 3.3, red symbols) – a timescale slower than the experimental 

time resolution, but faster than the slow induction of extinction observed in other spectral 

regions. This negative dip arises from a “bleach” of the Al inter-band transition. At later 

delays, the bleach is overtaken by a broad negative extinction observed across the near 

infrared.  
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Numerous studies have demonstrated the effects of high-fluence laser excitation on 

the photophysics of plasmonic NPs, and it is critical to rule these out before ascribing the 

timescales observed to specific energy-transfer processes.  Non-linear effects can include, 

Figure 3.3. (A) Time-dependent traces obtained from three different spectral regions: near the LSPR 
peak, (415-500 nm) (blue); off the LSPR peak in the NIR (1000-1125 nm) (gold); and in the 
interband transition region of metallic aluminum (825-900 nm) (red).  Data from the visible region of 
the spectrum were scaled by a factor of 0.2 in order to display all three data sets in one plot. Fitting 
curves (described in the text) are displayed in black.  (B) Fits to damped signal oscillations observed 
in the visible region at each of the excitation fluences used in this study. 
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but are not limited to, bubble formation by local solvent vaporization,58 persistent hole 

burning through particle ablation or melting,59 and multi-photon absorption.60 Notably, the 

broad spectral response we observe long after photoexcitation manifests as a reduction in 

optical density.  In contrast, the formation of large vapor bubbles around photoexcited gold 

NPs has been shown to increase the probe extinction via increased Mie scattering; 

additionally, the threshold fluence for bubble formation (5.2 mJ cm-2 for 60 nm Au NPs58) 

is much higher (~100 fold) than what was used for our transient absorption studies (vide 

infra).  To rule out contributions from laser-induced melting, we examined NP morphology 

using high-resolution TEM (HRTEM) imaging both before and after prolonged exposure 

to the 400-nm excitation source (4-6 hours of irradiation with continuous sample mixing).  

The images in Figure A1.2 reveal that there is no observable change in particle 

morphology.  Additionally, there was no observable change in the steady-state absorption 

of the ensemble, indicating no changes in the particle properties with irradiation.  Finally, 

spectral transients were collected at a series of laser excitation fluences (Figure A1.3).  

Time-dependent traces collected at various fluences are shown in Figure A4A and exhibit 

similar time-dependent behavior across all fluences.  The fluence-dependence of the 

maximum positive and negative extinction is plotted as a log-log plot in Figure A4B and 

reflects a closely linear relationship between measured fluence and signal (slope = 

1.29+/0.15).  Together, these control experiments indicate that the spectral responses 

apparent in Figures 3.2, 3.3, A1.3 and A1.4 reflect the intrinsic relaxation dynamics of the 

plasmonic particles in a linear excitation regime.  

As described in the introduction, the photoinduced responses of Au and Ag NPs 

involve at least four processes that impact their transient spectral dynamics:  electron-
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electron thermalization (~100 fs), electron-phonon thermalization (~1 ps), and lattice 

relaxation dynamics, which include coherent phonon oscillations (~few-10s of ps period) 

and thermal energy transfer to the surrounding medium (10s to 100s of ps). The transient 

spectra of Al NPs evolve on qualitatively similar timescales as Au and Ag, although the 

transient spectra have somewhat different characteristics due to the weaker overlap 

between the intra and interband transitions in Al and the fact that extinction associated with 

the Al intraband transition is dominated by the scattering cross section. The ultrafast 

induction in the interband bleach region is similar to behavior observed with Ag NPs in a 

glass matrix;36 this induction in the bleach is attributed to electron-electron thermalization 

that fills states above the Fermi level that serve as terminal states for the interband 

transition, such that the bleach of this transition increases with electronic relaxation.61,62 

The rise in transient spectra broadly across the visible and NIR occurs in part due to particle 

lattice heating in response to LSPR excitation and subsequent electron thermalization.38 It 

also arises from modulation in the extinction coefficient due to phonon breathing modes 

activated by electron-lattice energy transfer.  The signal induction can be seen quite clearly 

for Al NPs, as there is no overlap with the interband transition in the visible spectral region. 

Importantly, we expect that this signal will be dominated by modulation in scattering cross 

section; qualitatively, the rapid thermal expansion of the particle should increase scattering 

cross-section.   The rapid photoinduced depletion of the interband transition in the NIR 

provides a direct signature of electron-electron thermalization within the material by which 

to clock the slow induction in electron-lattice thermalization and lattice heating.   

Finally, the slower inversion of the broad transient spectrum occurs on timescales 

consistent with thermal energy transport observed with noble-metal NPs.40,42,49,63 The 
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optical response at the latest delays explored in our experiment (~1 ns) is characterized by 

a broadband negative signal that has been observed in silver and gold particles previously 

and has been attributed to thermal lensing64 or changes in the dielectric medium of the 

solvent.65  In the present study the possibility of thermal lensing was ruled out by varying 

the slit width of the spectrograph in order to confirm that 100% of transmitted light was 

observed on the detector. The dielectric constant of the solvent is expected to decrease as 

it heats up due to thermal energy transport. Previous studies that attributed negative 

extinction to changes in the dielectric of the solvent medium were conducted in water ( 

(∂εm/∂T)v = -6.2 x 10-5 K-1);65 in contrast, (∂εm/∂T)v ~ -0.15 K-1 for isopropanol.66  The 

authors of the previous study only observed this effect at very high laser excitation fluences 

(> 1 mJ cm-2); although our experiments were conducted with comparatively lower pump 

fluences the extremely high sensitivity of the isopropanol dielectric constant to temperature 

variation explains this effect.  Indeed, FDTD simulation shows that the scattering cross-

section will blueshift with lower dielectric of the surrounding medium (e.g. Figure A1.5), 

resulting in a broad negative change in particle extinction, consistent with observations 

from our experiments.  

In order to get a better handle on the timescales associated with these processes, we 

fit the traces plotted in Figure 3.3A with various time-dependent functions. The signal 

intensity after lattice heating was modeled with exponential rise (τ1) and decay (τ2) as well 

as damped harmonic oscillations according to Equation 3.1. 

 

𝑎𝑎1 �1 − 𝑒𝑒
−𝑡𝑡
𝜏𝜏1� + 𝑎𝑎2𝑒𝑒

−𝑡𝑡
𝜏𝜏2 + 𝑎𝑎3𝑒𝑒−(𝛾𝛾𝑡𝑡)2𝐶𝐶𝐶𝐶𝐶𝐶 �

2𝜋𝜋𝑑𝑑
𝜏𝜏𝑅𝑅

+ 𝜑𝜑� + 𝑐𝑐 3.1 
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Here τR, γ, and φ are the oscillatory period, damping parameter and phase offset for the 

phonon breathing modes. Timescales obtained for all three regions are very similar and are 

listed in Table 3.1 below (all fit parameters are given in Table A1.1). 

 
Table 3.1. Time constants obtained by fitting wavelength-dependent transients with Equation 3.1.  

 τ1 τ2 τR 

Visible  
(415-500 nm) 

0.7 ps 191 ps 25 ps 

NIR Interband 
(825-900 nm) 

0.35 ps 206 ps 23 ps 

NIR  
(1000-1125 nm)  

3.5 ps 244 ps 22 ps 

 

The rise timescale was necessary in order to obtain acceptable fits to the signal induction 

in the visible and is attributed to the electron-phonon thermalization.  (In the interband 

region this value corresponds with the ultrafast bleach induction.) This analysis in the 

visible therefore indicates an effective electron-to-lattice energy transfer lifetime of ~0.7 

ps; values obtained at all fluences ranged 0.7-0.9 ps, with no obvious trend (Table A1.2).   

We note that this model poorly resolves the phonon oscillations in the data when applied 

to the entire data set.  In order to obtain a more accurate period for this oscillation a 

truncated data set (5 to 100 ps) was fit for visible transients collected at each excitation 

fluence, as shown in Figure 3.3B.  Based on this analysis we find τR to be ~13.7 ± 0.6 ps., 

with a weak dependence on excitation fluence (Table A1.3).  

The decay timescales (200-250 ps) obtained from these fits is in qualitative 

agreement with expectations for thermal energy transport to the surrounding solvent 

medium (vide infra).42,49,50,63,67 The signal oscillation period is generally consistent with 

timescales associated with modulation in optical properties as a result of low-frequency 

“breathing” or coherent phonon displacement that can occur as a result of fast electron-to-
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phonon energy transfer.38,39 Using the method described in previous work68 the 

approximate longitudinal speed of sound of the particles was calculated using the equation 

 

𝜏𝜏𝑅𝑅 =
2𝜋𝜋𝜋𝜋
𝜂𝜂𝑐𝑐𝑙𝑙

 3.2 

 

Here 𝜏𝜏𝑅𝑅 is the oscillation period, R is the radius of the particles, cl is the longitudinal 

speed of sound of Al and η is an eigenvalue calculated from Lamb’s equation 

(approximated in this case using the melting point of Al).  Based on this analysis and using 

the observed period of 13.7 ps the longitudinal speed of sound was calculated to be 7,900 

m/s, which is not physical for pure Al.  The speed of sound in aluminum oxide is much 

higher than that of aluminum, 10,900 m/s vs. 6,405 m/s at room temperature, respectively69 

This intermediate value is reasonable for a particle composed of both materials.  Damping 

of these modes likely reflects attenuation of the acoustic breathing modes by the aluminum 

oxide shell as well as the effect of size polydispersity on the ensemble-averaged phonon 

breathing. 

A phenomenological two-temperature model (TTM)65 is commonly used to treat 

thermal energy transfer from electronic to lattice degrees of freedom in metals.  Briefly, 

the model is composed of two coupled heat equations that describe how the electronic 

temperature changes with time after laser excitation. 

 

𝐶𝐶𝑒𝑒(𝑇𝑇𝑒𝑒) 𝑑𝑑𝑑𝑑𝑒𝑒
𝑑𝑑𝑡𝑡

= −𝑔𝑔(𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑙𝑙)  and  𝐶𝐶𝑙𝑙
𝑑𝑑𝑑𝑑𝑙𝑙
𝑑𝑑𝑡𝑡

= 𝑔𝑔(𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑙𝑙) 3.3 
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Here Te and Tl are the electronic and lattice temperatures, Ce(Te) and Cl are the 

corresponding specific heats, and g is the electron-phonon coupling constant. This model 

involves a rate constant for energy transfer that scales inversely with electronic 

temperature, which results in a non-exponential rise in the lattice temperature.  The 

electronic specific heat is found using the relationship Ce(Te) = γTe.  Using the two 

temperature model with the Sommerfeld constant γ = 91.2 (J ∙ m-3 K-2), and an electron-

phonon coupling constant of g = 1.2 x 1017 (W ∙ m-3 K-1) for Al.70 The maximum electronic 

temperature was approximated using the same method and assumptions as previous 

studies,33 we estimate a maximum electronic temperature in the range of 500-1000 K and 

the electron-to-lattice energy transfer timescale corresponding to a decay of  (1/e) is found 

to be 300-600 fs, which is qualitatively consistent with timescales obtained from our fits.  

 The average intensity in the region of the interband transition of metallic aluminum 

(800-850 nm) exhibits a bleach signal that appears rapidly following the instrument 

response.  This behavior is similar to that exhibited by noble metals while probing in the 

region of their respective interband transitions.71 As noted above, transient signals in the 

region of the interband transition also have contributions from the time-dependent spectral 

response of the particles observed at other wavelengths (i.e. scattering); this is clear from 

the very similar modulations in signal intensity on the picosecond to nanosecond timescales 

that occur with a clear offset in spectral intensity between the interband and 1000-1125 nm 

regions. The superposition of these signals makes it difficult to analyze the time-

dependence of the interband bleach feature alone. When the model is applied to the region 

near the interband transition of aluminum this reveals a bleach induction time, 𝜏𝜏𝑏𝑏𝑙𝑙𝑒𝑒𝑏𝑏𝑏𝑏ℎ, of 

~350 fs that reflects the slowest phases of electron-electron thermalization.  This timescale 
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is slightly longer than the longest electron thermalization timescales observed in large Au 

and Ag NPs.36 As noted above, the signature of this bleach becomes less pronounced and 

is overtaken by the broad negative extinction spectrum at later delays, indicating that the 

bleach recovers as a consequence of thermal energy transfer out of the Al core.  Although 

exact separation of the time-dependent scattering cross-section and interband absorption is 

not possible, a crude analysis reveals that the interband transition recovers on a timescale 

commensurate with nanoparticle cooling (Figure A1.6).  

Based on precedent with noble-metal NPs, the slowest relaxation timescales 

observed in our measurements are assigned to thermal energy transport to the surrounding 

solvent environment.  Various models for thermal energy transfer from nanoparticles to the 

surrounding media have been developed and applied.42,49,63,67,71,72 For example, Vallée and 

coworkers63 have applied thermal transfer models to fit the time-dependence of transient 

absorption measurements conducted with Au and Ag in solution and embedded in various 

glasses.71,73 These previous studies have investigated a large range of nanoparticle sizes 

(from about 5 nm to 133 nm in diameter).71,72 Their model involved a single interface 

between a NP and the surrounding medium to compute the temperature evolution of both 

the particle and the medium. Thermal dynamics in this model are governed by the 

interfacial thermal conductance (G) as well as the thermal conductivity (Λ) and heat 

capacity (c) of both the metal NP and surrounding medium.  Whereas the bulk values of Λ 

and c are reasonable approximations for NPs, G is generally not known and is varied to fit 

the temporal behavior observed from optical measurements.  Therefore, this line of 

investigation has also explored the impact of particle size and the chemical composition of 

interfaces on energy transfer.40,42,50,63,67,71  
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We extended our analysis to a two-interface model to incorporate the native 

aluminum oxide layer on our particles, as described in the Supporting Information. Table 

3.2 gives a summary of parameters relevant for the aluminum NP / aluminum oxide shell / 

isopropanol system. 

 

Table 3.2. Heat capacities and thermal conductivities of aluminum, aluminum oxide and isopropanol.72 
Material c (106 J.m-1 .K-1) Λ (W.m-1.K-1) 
Aluminum (p) 2.43 205 
Aluminum Oxide (o) 3.48 30 
Isopropanol (m) 2.1 0.16 

 
 
 

 
 

 
 

Figure 3.4. Simulations of thermal energy transport. (A) Temperature evolution relative to the initial 
temperature increase (∆T0) of the nanoparticle after optical excitation at the surface of a large (93 nm 
diameter) aluminum nanoparticle (solid blue line) and 3 nm into the surrounding isopropanol (solid 
red line) for the case where no oxide is included, and where a thin oxide shell layer on the 
nanoparticle is incorporated into the model (blue and red dotted lines). The yellow dotted line 
corresponds to temperature evolution in the oxide layer. (B) Temperature evolution for a small (10 
nm diameter) aluminum nanoparticle without an oxide layer. The thermal decay dynamics in this 
case roughly match those of the larger particle with an oxide shell.  
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We used our model to explore the thermal dynamics in aluminum NPs with 93 nm 

diameters and 3.7 nm aluminum oxide shells suspended in isopropanol. Our results are 

plotted in Figure 3.4A and indicate that heat dissipates much more quickly from the 

aluminum core when an oxide shell is present (blue dashed line) compared to the case 

without an oxide shell (blue solid line).  Notably, the 1/e timescale for energy loss from the 

Al core from these simulations is ~300 ps when the oxide is present, in close agreement 

with the relaxation timescales observed in our experiments. Varying the free parameter G 

(thermal interface conductance) can control the rate of decay. The value used for the plot 

in Figure 3.4 was chosen from typical literature values for the thermal interfacial 

conductance of metal/metal oxide interfaces.71,74–77 Additionally, we predict that large Al 

NPs (93 nm in diameter) with an oxide layer possess thermal transport properties 

equivalent to those of much smaller particles (10 nm in diameter, solid blue line in Figure 

3.4B) with no oxide layer.  These results indicate that the native oxide coverage on Al NPs 

likely provides an intrinsic protection against melting or ablation after interaction with a 

high intensity laser pulse by facilitating fast and efficient thermal energy transfer to the 

surrounding solvent. Additional studies of the temperature evolution as a function of 

nanoparticle size (from 10 nm to 100 nm in diameter) with and without the presence of an 

oxide layer are included in the Supporting Information (Figure A1.7).  

We also found that the temperature evolution decay timescale (1/e) had little 

dependence on the oxide thickness, indicating that the addition of even a thin oxide shell 

could be a highly effective means for controlling the lattice temperature of plasmonic NPs 

(see Figure A1.8).  Previous work has demonstrated an increase in thermal energy transfer 

from Au NPs when encased by a silica shell.50 This work revealed a dependence on the 
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silica shell thickness, but that the method of shell formation greatly impacted control of 

thermal energy transport because porous SiO2 could allow penetration of solvent towards 

the Au core.  In contrast, direct oxidation of the Al surface results in a compact native oxide 

layer that should prohibit formation of channels through which solvent can directly 

interface with the metal surface. Methods for replacing the native oxide layer on Al NPs in 

the solution phase have been demonstrated using fluoropolymer capping ligands78,79 and 

oxidizing salts (aluminum iodate hexahydrate).80 The thickness of the oxide layer could 

also be potentially tuned by introducing varied amounts of oxidizing agents.81   

 

3.3 CONCLUSIONS 

We presented the first characterization of the photophysical dynamics of solution-

synthesized plasmonic aluminum NPs, an emerging earth-abundant materials platform of 

interest for photocatalysis, optoelectronics, and sensing applications. We found that the 

response of Al NPs differs qualitatively from noble-metal NPs near the interband 

transitions, which are largely isolated from spectral changes to the intraband transitions, 

allowing for study of electron-electron thermalization dynamics. We found that induction 

timescales match predictions for electron-lattice relaxation processes in related materials, 

and energy transfer to the surrounding medium from large particles is comparable to the 

energy transfer rates predicted for much smaller particles.  To understand this phenomenon, 

we investigated thermal energy transfer dynamics using a two-interface model to account 

for the presence of a native oxide layer on the aluminum NPs that mediates rapid thermal 

energy transfer out of the Al core.  We propose that using surface modifications, including 

controlled oxidation, could be an effective tool to engineer heat transfer rates from large 

particles to the surrounding medium and could be an important strategy for applications in 
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which thermal management is critical for system performance and stability, including in 

photocatalytic and sensing applications.  

 

3.4 METHODS 

Aluminum Nanoparticles Synthesis.  

All solvents and reagents were purchased from Sigma-Aldrich. Aluminum NPs were 

prepared in an air-free environment (Schlenk line) following published procedures56 with 

some modifications. In a typical procedure, 6.3 ml anhydrous tetrahydrofuran (THF), 6.3 

ml anhydrous 1,4-dioxane and 3.3 ml dimethylethylamine alane solution were sequentially 

injected into a flask and stirred at 40°C. Then 0.4 ml of 3.3 mM titanium (IV) isopropoxide 

in toluene was subsequently added as a reaction catalyst, and the solution turned light 

brown. Five minutes later, 70 µl oleic acid in dioxane was injected. The reaction was 

completed after 1.5 hours, and the solution became greyish. The particles were washed 

twice using THF and twice using 2-propanol and finally redispersed in 2-propanol for 

measurements.  

  Absorbance Measurement.  

Solution-phase steady-state absorption was measured using an Agilent Cary 5000 UV-Vis-

NIR spectrophotometer. Particles in 2-propanol were measured in a 0.4 mL quartz cuvette 

over a wavelength range of 200 to 1000 nm.  

  Finite-Difference Time-Domain Simulations.  

FDTD calculations were performed using commercial software (FDTD Solutions, 

Lumerical, Inc.). A total-field scattered-field (TFSF) wave source spanning a wavelength 
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range of 200 to 1200 nm was used as the excitation source. The nanostructures were 

modeled as aluminum icosahedra 93 nm in diameter possessing 3.7 nm aluminum oxide 

shells. The TFSF source is used to separate the simulation region into two distinct regions: 

one containing the total field (sum of incident and scattered fields) and the other region 

containing only the scattered field. Total-field and scattered-field monitors were placed at 

the edge of the simulation region to calculate the absorption and scattering cross-sections, 

respectively. Additionally, absorbing boundary conditions, in the form of perfectly 

matched layers (PMLs), were used to curb artificial reflections. Optical constants for 

aluminum used in the simulations were obtained from literature values.82 

  Ultrafast Laser Measurements.   

The ultrafast laser setup used for our experiments has been described previously.83 Briefly, 

a regeneratively amplified, 1-kHz Ti:sapphire laser (Coherent Legend Elite) was used to 

generate excitation and probe pulses for transient absorption measurements.  Ultrafast 

broadband probe pulses spanning 420-750 nm or 820-1100 nm were obtained by driving 

generation of a white-light supercontinuum in a 2-mm sapphire or rastered CaF2 plate with 

~100-200 nJ of the 800 nm laser fundamental.  A ~1-mJ portion of the amplified output 

was up-converted by second-harmonic generation in a BBO crystal as a source of 400-nm 

pump pulses. Photophysical dynamics were examined at multiple fluences in the range of 

10-100 µJ/cm2 to confirm linearity between excitation fluence and signal intensity. 

The 400-nm pump beam was gently focused to a 2.14-mm beam diameter at the 

sample using a 50-cm focal length lens positioned approximately 26 cm from the sample.  

The pump beam crossed the probe at a small relative incident angle of ~10° in the sample.  

The white-light probe was focused to ~100 µm within the excited region of the sample 
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using a parabolic mirror.  All transient spectra were collected with linearly polarized pump 

and probe, with the relative polarization of the probe beam aligned at the “magic angle” 

(54.7°) to that of the pump beam by passing the white-light continuum through a wire-grid 

polarizer (Thorlabs) immediately before the sample.   

 The transmitted probe beam was aligned into a 0.3-m spectrograph (Acton-2360, 

Princeton Instruments) outfitted with a low-resolution grating (800-nm blaze, 150 

lines/mm) with the center wavelength adjusted to either 600 or 1000 nm to acquire spectra 

in the visible or NIR regions, respectively.  A CCD camera (Pixis-100BR, Princeton 

Instruments) was configured to detect the white-light continuum from the probe on each 

laser shot.  Although the samples studied here did not fluoresce, they did scatter pump light 

considerably.  For this reason, the pump and probe beams were chopped at one-half and 

one-quarter the repetition rate of the laser, respectively, in order to enable corrections to 

the transmitted probe intensity for scattered pump light according to Equation 3.4. 

 

 
∆𝐼𝐼𝑡𝑡𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡 =

𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑡𝑡𝑝𝑝𝑏𝑏𝑒𝑒 − 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐼𝐼𝑝𝑝𝑡𝑡𝑝𝑝𝑏𝑏𝑒𝑒 − 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑑𝑑

 3.4 

 

Transient spectra were then obtained by averaging scatter-corrected signals over 

20,000-25,000 laser shots at each pump-probe time delay.  The pump beam was 

retroreflected off of an Al corner cube mounted to a motorized translation state (Newport); 

relative pulse time delay was controlled via stage position.  The relative position of the 

stage, collection of spectra and chopper phases, and the calculation and averaging of 

transient absorption (− logΔ𝐼𝐼𝑡𝑡𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡) were accomplished with an in-house data acquisition 

program written in LABVIEW.   
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 Transient data were “chirp-corrected” for group velocity dispersion prior to kinetic 

analysis.  The instrument response of transient measurements (i.e. the cross correlation of 

excitation and probe pulses) was determined to be 250 fs FWHM based on the time 

dependence of coherent artifacts observed at time zero (Figure A1.4). 

 Samples of Aluminum NPs (Al-NPs) re-suspended in Isopropyl alcohol (IPA) after 

synthesis were too optically dense for laser measurements and were diluted ~10x with 

reagent grade (99.9% purity) IPA from Fischer Scientific.  The diluted sample was placed 

in a 2-mm cuvette.  The samples were slowly stirred continuously throughout data 

acquisition in order to ensure a homogeneous distribution of particles within the beam.   
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Chapter 4 

Size and Surface-Dependent Photoresponses of 

Solution-Processed Aluminum Nanoparticles 

 

4.0 ABSTRACT 

Plasmonic aluminum nanoparticles have emerged as an exciting new materials 

platform, due to the high natural abundance of aluminum, their ability to be synthesized in 

the solution phase, and the potential of these materials to be used for photocatalysis and 

sensing. However, the photothermal properties of solution-processed aluminum 

nanoparticles, particularly how phonon energy transfer depends on particle size and surface 

properties, are critical for practical applications and are currently unexplored. Here, we use 

transient absorption spectroscopy, in combination with simulations of phonon and thermal 

energy dissipation, to investigate the photoresponses of aluminum nanoparticles of various 

diameters (54, 85, 121, and 144 nm) suspended in 2-propanol. Fast thermal transfer rates 

to the solvent (170-280 ps) are observed for particles of all sizes and are facilitated by 

native oxide coverage, as verified with a two-interface thermal energy-transfer model. 

Size-dependent phonon “breathing”/vibrational modes are also observed as oscillations in 

total cross-section. We find that both the oscillation frequency and damping rate increase 

as the diameter of the particles decreases. Based on results of finite element calculations, 

we attribute the damping strength and oscillation period observed to a combination of the 
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non-crystalline nature of the native oxide shell and the presence of surface-bound ligands, 

both of which increase the vibrational mode damping rates relative to bare Al and Al 

particles with a bare crystalline oxide shell. These insights should guide future work on 

controlling energy transfer through the use of size- and surface-tuning in sustainable 

aluminum nanomaterials systems for applications in catalysis and sensing. 

4.1 INTRODUCTION  

Plasmonic nanomaterials continue to attract considerable interest for novel 

applications in optoelectronics, sensing, and catalysis1–6 that take advantage of the 

concentration of electromagnetic fields of light and/or electronic excitation associated with 

localized surface plasmon resonances (LSPRs).  There is particular interest in using 

plasmonic nanoparticles as sensitizers for photocatalysis.7,8 Specifically, it has been 

demonstrated that hot electrons in plasmonic nanoparticles originating from optical LSPR 

excitation can overcome the Schottky barrier with an adjoining material to generate 

reactive conduction-band electrons for catalysis9,10 with an efficiency that depends on the 

electronic and thermal relaxation dynamics of the nanoparticle. The photothermal 

properties of plasmonic nanoparticles are also of great interest for their use in applications 

such as plasmonic photothermal therapies.11,12  The finite thermal conductivity of metal 

nanoparticles allows them to be utilized as extremely efficient heat sources through far 

field illumination.13  Optically resonant excitation of the LSPR results in localized heating 

around the particle with large temperature gradients. Not only can this thermal energy be 

used to destroy biological tissue (e.g. cancer cells),14,15 these temperature gradients have 

been used experimentally to direct motion of nearby objects through thermophoretic 
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forces.16,17 The impacts of material architecture, interfaces, and the chemical environment 

on electronic and lattice-energy dissipation pathways are critical to the efficacy of these 

applications.  

The LSPR underlying the photoresponses of these materials is a coherent collective 

response of carriers (i.e. electrons) to electromagnetic radiation that is tunable according 

to particle size, shape and composition.  Noble metal particles such as gold and silver have 

been studied extensively over the years both in efforts to elucidate fundamental properties 

of plasmonic nanomaterials and in the development of optical applications.18–21 However, 

largescale deployment of materials, devices or chemical applications based on precious 

metals has the potential to be costly and also limited by the relatively low elemental 

abundance of precious metals.22–24 In recent years, aluminum has emerged as an 

inexpensive, earth-abundant alternative to noble metals for plasmonic nanomaterials.25–28 

Yet, much less is known about the plasmonic responses of Al nanomaterials, including the 

impact of native oxides on their photothermal and photoacoustic behaviors as well as their 

charge-transfer potential for catalytic sensitization. A firm understanding of the 

photophysical properties of these particles and how they vary with size, shape, and 

chemical environment is essential for the development of Al-based plasmonic material 

applications.   

 There are currently few published studies of the photophysical properties of 

plasmonic Al nanomaterials in the literature.  Su et al. have investigated the electronic 

relaxation behaviors of single Al nanodisks.29,30 Due to the polycrystalline nature of the Al 

nanodisks, fast (sub-ps) electron-phonon relaxation timescales were observed, and 

damping of phonon vibrations was found to be largely determined by the presence of 
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intrinsic lattice defects and rough surfaces with minimal dependence on the substrate 

environment. The oxide shell was identified as providing an interface with the Al core that 

trapped and de-trapped carriers with the potential to enable long hot-carrier lifetimes. We 

recently reported on the photothermal energy-transfer dynamics of a different Al 

nanomaterial: solution-processed, single-crystal aluminum nanoparticles (~100 nm 

diameter) suspended in 2-propanol (IPA).31  We observed a rapid (sub-ps to ps) decrease 

in probe light transmission broadly across the visible and near-IR following sample 

excitation at 400 nm, which we attributed to a combination of electron-phonon energy 

transfer followed by changes in the scattering cross-section of particles as a result of 

electron-to-phonon energy transfer and lattice expansion. Periodic modulation in probe 

transmission across the visible and near-IR associated with coherent phonon/acoustic 

vibrations were resolved with a period of ~14 ps. These were followed by a slow increase 

in light transmission observed on a timescale of ~250 ps, ultimately leading to a net 

increase in light transmission by 1 ns that we attributed to a decrease in the surrounding 

solvent dielectric constant due to thermal energy transfer from the Al particle.  The latter 

assignment was supported with simulations of thermal-energy transfer:  A simple two-

interface (Al/Al oxide/solvent) model revealed that the fast local heating of the solvent is 

facilitated by the intermediary aluminum oxide, which quickly and efficiently mediates 

thermal energy transfer from the Al core to the surrounding medium.  Indeed, from the 

model it can be seen that oxide-coated particles cool on timescales that are roughly an order 

of magnitude faster than particles without an oxide layer; e.g. a 100 nm particle with an 

oxide layer will cool on a comparable timescale to that of a 10 nm particle without an oxide 

layer.  
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Here we present an extended study of Al nanoparticles to investigate in more detail 

the impacts of both particle size and surface composition on their photothermal properties. 

In particular, we examine the size-dependence of the frequencies and damping rates for the 

acoustic phonon vibrations that are activated by lattice expansion.32 These high frequency 

acoustic vibrations can be measured using techniques including transient absorption 

spectroscopy (as conducted in our work) and Raman scattering spectroscopy.33,34 The 

damped oscillations in time-dependent signals are not only sensitive to the mechanical 

properties of the plasmonic particles, but also how these resonators interact with the 

surrounding environment.35  There is considerable precedent in the literature regarding this 

sensitivity:  Studies of acoustic properties of alloyed and core-shell multi-compositional 

metal nanoparticles36–38  have revealed that both composition and mechanical interfaces 

are important factors that influence energy transfer.  The vibrational mode frequencies of 

metal-dielectric core-shell particles have been found to be strongly affected by their 

amorphous oxide shells.39 Additionally, surface ligands affect mechanical coupling 

between the metal, dielectric, and surrounding solvent; this has been demonstrated in recent 

studies on core-shell semiconductor quantum dots40 in which accurate interpretation of the 

vibrational resonances are obtained by including the capping ligands in an elastic 

continuum model. Inhomogeneous broadening in nanoparticle solutions can also accelerate 

the ensemble decay dynamics.41 Thus, the specific structure, composition, and surface 

functionalization of plasmonic nanoparticles are all important factors that dictate the details 

of their energy-dissipation dynamics.  Examinations of the nanomechanical resonances 

associated with solution-phase aluminum nanoparticles are currently lacking and would 

provide insight important for developing mass sensing applications, for example.42,43 
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Here we demonstrate strong sensitivity of phonon breathing mode frequency and 

damping with particle size, with the oscillation frequency and homogeneous damping rate 

decreasing with increasing particle diameter. We substantiate these experimental findings 

by employing finite-element calculations using continuum mechanics theory. We 

systematically demonstrate how the oxide shell composition and presence of the ligand 

shell affect phonon damping dynamics with particle size and find that the surface character 

of the single-crystal Al particles is the dominant factor in determining the homogeneous 

damping rates. 

 

4.2 RESULTS AND DISCUSSION  

Colloidal Al NPs were synthesized using solution-processed methods based on 

modifications of published procedures;31,44 details are provided in the Methods section. By 

delaying the addition time of the capping agent, we were able to controllably tune the size 

of the particles. We prepared four samples with varied particle dimensions in our study and 

verified their sizes using transmission electron microscopy (TEM), as shown in Figure 

1(a)-(d). The majority of the particles exhibit icosahedral shapes, and the four samples we 

studied have average particle diameters of approximately 54 nm, 85 nm, 121 nm, and 144 

nm. High resolution TEM images, shown in Figure 1(e) and in Figure A2.2(a), clearly 

indicate the presence of an oxide layer (thickness of 3.3 ± 0.3 nm) and an organic ligand 

layer (thickness of 1.6 ± 0.5 nm) on the surface of the Al particles. We also conducted X-

ray photoelectron spectroscopy and Fourier transform infrared spectroscopy (Figures 

A2.2(b) and A2.3) measurements to further confirm, respectively, the composition of the 

oxide shell and the identity of the ligands bound to the surfaces of the particles. We used 

UV-Vis-NIR spectrophotometry to measure the extinction spectra of the four particle 
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samples in IPA. The particles show tunable dipolar localized surface plasmon resonance 

(LSPR) peaks with wavelengths that range from 288 nm to 577 nm as the particle size 

increases (Figure 4.1(f)). Higher order modes also appear in the spectra at wavelengths 

below 400 nm with increasing particle size. The broad shoulder in all spectra near 850 nm 

in wavelength corresponds to the aluminum interband transition. 

 

Figures 4.2(a) and 4.2(b) present contour plots of transient absorption spectra 

collected for 54-nm and 144-nm Al nanoparticles, respectively, excited near the peak of 

their plasmon resonances (specifically, 400 nm excitation for 54-, 85- and 121-nm  

 

particles, and 580 nm excitation for 144-nm particles).  Here, positive absorption (shaded 

red) corresponds with decreased probe light transmission, whereas negative signal (shaded 

blue) corresponds with increased probe transmission.  Time delays are reported along a 

split linear/log axis in order to highlight spectral dynamics across all relevant timescales; 

Figure 4.1 (a)-(d) TEM image of Al NPs with mean diameters of 54 nm, 85 nm, 121 
nm and 144 nm. (e) High resolution TEM image showing both the surface oxide 
(thickness of 3.3 ± 0.3 nm) and organic ligand shell (thickness of 1.6 ± 0.5 nm) on 
an Al NP. (f) UV-Vis-NIR spectrophotometric extinction spectra for Al NP solutions 
with these four different mean diameters as indicated in the legend. 
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time zero is clear from the sharp coherent, nonlinear pulse interaction with IPA (what 

appears as a dark line in Figures 2(a) and 2(b)) that occurs prior to signal induction.   

 

 

The time-dependent spectral evolution observed with the particle ensembles of 

different sizes are qualitatively similar to what we have observed previously with ~100-

nm-diameter particles:31  In all cases a slow induction to a positive ∆OD (i.e. a decreased 

probe light transmission) occurs at wavelengths above 950 nm, peaking between 5 and 15 

ps after excitation.  This positive signal decays to ∆OD = 0 by ~100-150 ps and continues 

to decay to a negative value (i.e. increased light transmission) within a nanosecond. We 

have previously assigned the initial positive ∆OD increase to an enhanced scattering cross-

section due to lattice expansion that follows electron-to-phonon energy transfer; in 

Figure 4.2.  Contour plots of transient spectra (plotted in terms of change in optical 
density, ∆OD) collected for particles with a) ~54 nm and b) ~144 nm diameters.  
Transients are plotted on a split linear-log timescale to highlight spectral evolution on 
timescales up to ~1 ns after excitation. The contour for the smallest particles is scaled by 
0.25 for comparison. 
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contrast, the increased light transmission (∆OD < 0) observed at 1 ns is attributed to a 

change in the solvent refractive index due to local heating that alters both the scattering 

and absorption cross-sections of the nanoparticles, as modelled previously with FDTD 

simulations.31 For larger particles we observe a rapid bleach near the aluminum interband 

electron transition that peaks below 900 nm in wavelength; similar behavior was observed 

for 100-nm particles studied previously.   

Although the changes in optical transmission with probe delay remain qualitatively 

similar across all sizes studied, it is clear from Figure 2 that the presence of signal 

modulations associated with acoustic lattice modes (i.e. coherent phonon vibrations), 

which are initiated by rapid electron-to-phonon energy transfer, is highly dependent on 

particle sample.   For example, while a highly recurrent oscillatory response is observed 

after excitation of the 144-nm particles (Figure 2(b)), vibrations associated with the 54-nm 

particles are strongly damped (Figure 2(a)).  While data for each of the samples was 

collected out to 1 ns to track dynamics of photothermal energy transfer from nanoparticle 

to solvent, data sets containing a higher number of time delays through 100 ps were also 

collected in order to carefully characterize the time dependence of these phonon vibrations.  

Figure 3(a) plots the time dependence of transient cuts through the near-IR absorption for 

all particle sizes studied, illustrating the differences in acoustic particle vibrations with size 

both in terms of phonon frequency and overall damping.  For the larger particles studied 

(~121 and 144 nm), signal oscillations recur repeatedly through the first 100 ps that follow 

excitation.  In samples of particles that have a diameter of 100 nm or smaller, the vibrations 

are apparent but are highly damped.  Finally, as seen in Figures 2 and 3(a), the time delay 

at which the signal peaks (i.e. when the transmission is minimized) increases 
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monotonically with particle size. 

 

 

 

Figure 4.3.  (a):  Time-dependent changes in near-IR extinction (integrated 1000-1075 
nm) observed for particles of each size.  Fits are shown as dashed lines; fitting functions 
are described in the text. (b): Time-dependent signals for the same samples plotted on 
timescales relevant to thermal energy transfer to solvent. 
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The functional form used to fit the traces from TA data plotted in Figure 3(a) is 

given in Equation 1. 

 

 𝐼𝐼(𝑑𝑑) = 𝑎𝑎𝑡𝑡 �1 − 𝑒𝑒
−𝑡𝑡 𝜏𝜏𝑟𝑟� � + 𝑎𝑎𝑝𝑝𝑒𝑒−𝑡𝑡/𝑑𝑑1𝑒𝑒−𝑡𝑡2/(𝑑𝑑2∗)2 cos�

2𝜋𝜋𝑑𝑑
𝜏𝜏𝑝𝑝

+ 𝑝𝑝� + 𝑎𝑎𝑑𝑑𝑒𝑒
−𝑡𝑡 𝜏𝜏𝑑𝑑� + 𝑐𝑐 4.1 

   

Fitting function parameters include: an initial increase in cross section (induction time τr); 

a damped  periodic signal oscillation with period τp and phase p; oscillation damping with 

both homogeneous (T1) and inhomogeneous (T2
*) contributions; a slow cross-section decay 

(lifetime τd); and corresponding scaling constants (ar, ad, and ap) as well as a constant offset 

(c) that accounts for the reversal in light transmission arising from changes in the local 

solvent dielectric (or refractive index) due to thermal energy transfer from the nanoparticle 

to the surrounding solvent on longer timescales.  The thermalization lifetime, τd, could not 

be determined reliably from data sets extending only to 100 ps, the duration most useful 

for accurately determining the periods of the acoustic vibrations. In order to the find the 

thermal decay timescales more accurately, data collected on longer timescales (up to 1 ns, 

but after oscillations have ceased) was fit to a single exponential decay, as shown in Figure 

3(b).  Thus, in total, the timescales for the evolution of TA signals were determined as 

follows: The signal decay on longer time delays attributable to thermal-energy transfer 

from nanoparticle to solvent was fit separately to a single exponential decay (Figure 3(b), 

dashed lines).  Time constants extracted from these fits were found to be τd = 173 ps, 243 

ps, 244 ps and 284 ps for the 54 nm, 85 nm, 121 nm and 144 nm particles respectively.  

Remaining fit parameters (τr, τp, p, T1, and signal amplitudes) were adjusted for best fit to 



73 
 

the signal oscillations seen in Figure 3(a).  Notably, although T2
* is listed as a variable 

parameter in Equation 1, for statistical particle size distributions it is related to the 

oscillation period as  

 

 𝑇𝑇2∗ =
𝜏𝜏𝑝𝑝
𝜋𝜋√2

�
𝑑𝑑
𝜎𝜎𝑑𝑑
� 4.2 

 

where d is the particle diameter and σd is its standard deviation.  Thus, T2
* was constrained 

by the size distribution determined with TEM for each particle sample (σd for each d listed 

in Table 1). Size histograms measured with TEM of Al NPs of four sizes are shown in 

Figure A2.1. Best-fit parameters obtained from this procedure are given in Table 1; errors 

determined for each fitting timescale are listed in Table A2.2.  In the case of the 85-nm 

particles, T1 could not be determined accurately given the width of the particle size 

distribution (and therefore dominance of T2
* in the overall damping dynamics), which is a 

consequence of the difficulty in controlling Al NP size dispersity through the use of 

carboxyl functional groups.45  However, when T1 was fixed at 38.7 ps (a value determined 

by simulations described below) the value of d/σd determined by fitting T2
* was within 10% 

of the value determined by TEM (4.4 vs. 3.95, respectively).  

           Based on our fits, we find that the phonon breathing period, T1 damping timescale, 

and thermal energy transfer timescales increase monotonically with increasing particle 

size.  In contrast, the initial signal risetime is similar across particle samples.  We note that 

we tried fitting the data without a rise component but found that the oscillatory component 

alone could not capture the shape of the signal induction correctly.  This behavior is 

consistent with impulsive particle expansion as a combined result of electron-phonon and 
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initial phonon-phonon thermalization that sets the coherent phonon modes into motion. 

Notably, τd, T1, and τp scale roughly linearly with nanoparticle diameter, d. 

 

Table 4.1: Parameters determined from fitting the time-dependent evolution of transient absorption signals 
to Equation 1 and from TEM analysis (d and σd) as a function of nanoparticle size.  Fitting details are 
explained in the text. Standard errors associated with the fitting timescales are given in Table A2.2. 

 

The periods and damping timescales of the phonon vibrations extracted from the transient 

absorption data are determined by the mechanical properties of the Al NPs and their 

interactions with the surrounding chemical environment. We performed finite-element 

method (FEM) calculations using frequency domain analysis to solve Navier’s and the 

Navier-Stokes equations to model the vibrational period and damping associated with the 

oscillations in the experimental data. Our three-dimensional model consists of a single 

aluminum icosahedron with or without a 4 nm thick continuous Al2O3 shell. The NP is 

surrounded by an IPA background in the simulations. For each particle size, we calculated 

the properties of the fundamental radial phonon mode which plays the dominant role in the 

TAS measurements. The inset of Figure 4(a) shows the displacement profile of the 

fundamental breathing mode of a core-shell Al/Al2O3 icosahedron.  

 In order to investigate the size dependence of the Al NP phonon oscillations, we 

calculated the vibrational period and damping time for particles of four different sizes 

d (nm) σd (nm) d/σd T1 (ps) T2
* (ps) τp (ps) τr (ps) τd (ps) p (rad) 

54 10.5 5.14 6.9 24.5 11.3 1.41 173 4.4 

85 21.4 3.97 39 27.0 15.5 1.09 243 4.6 

121 8.40 14.4 63 147 22.6 1.81 244 4.6 

144 4.30 33.4 88 364 24.2 1.83 284 4.5 
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corresponding to our measured samples. As shown in Figure 4(a), the oscillation periods 

of the core-shell particles are 7.6 ps, 12 ps, 17.1 ps and 20.6 ps for particles with diameters 

of 54 nm, 85 nm, 121 nm, and 144 nm, respectively. The oscillation periods of the 

fundamental breathing modes in the core-shell particles were slightly shorter than those 

calculated for pure Al NPs with the same diameters. The oscillation period has an 

approximately linear dependence on the diameter of the particle, consistent with Lamb’s 

theory.46 Our calculated results show similar trends compared with the values extracted 

from the transient spectral measurements with some deviations.  

           The damping timescale is defined as the time at which the displacement amplitude 

reaches 1/e of its initial value and is equivalent to T1 in Equation 1. In Figure 4(b), we show 

the results of our FEM simulations for the phonon vibrational modes associated with 

particles of different sizes. Damping times of 34.5 ps, 62 ps, 95.4 ps and 116.2 ps were 

obtained for core-shell particles with diameters of 54 nm, 85 nm, 121 nm, and 144 nm, 

respectively. The trend of longer damping times with larger particle size was consistent for 

both Al-only and Al/Al2O3 core/shell particles.    

 However, these calculated damping times from our simple particle model are in 

general much longer than the values we extracted from the TAS measurements. We 

attribute the discrepancy to the simplified model of the nanoparticle surface in the initial 

simulation model in which we assumed purely crystalline Al (in the case of the bare Al 

particles) and Al2O3 (in the case of the core-shell particles) interacting with the surrounding 

fluid. We hypothesize that continuum damping processes associated with surfactant 

molecules bound to the particle surfaces, as well as the non-crystalline and non-

stoichiometric nature of the native aluminum oxide layer, could play a non-trivial role in 
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the acoustic dynamics.  

 We sought to account for the hypothesized non-crystalline nature of the thin 

aluminum oxide shell47  by reducing its assigned Young’s modulus. As the Young’s 

modulus of the oxide shell decreases, the damping time for particles of all sizes also 

decreases, while the oscillation period increases (Figure A2.4), leading to a closer match 

with experimental values. The results of the FEM model for an oxide shell Young’s 

modulus of 50 GPa, consistent with literature reports on amorphous oxides,48  are shown 

in Figure 4.  

 We next added an additional 1.3 nm capping layer on top of the oxide surface in 

the simulation model to account for the presence of the oleic acid capping ligands, using 

mechanical properties for the ligand shell from literature reports.40 As can be seen in Figure 

4(a) and (b), adding a thin organic shell to the particles results in no significant change in 

the oscillation periods. However, the damping times were considerably decreased, and the 

soft ligand shell played a more important role in the damping properties of the smaller 

particles. This resulted in calculated decay times of 21.3 ps, 46.6 ps, 79.6 ps, and 104.4 ps, 

compared to the experimental decay times of 6.9 ps, 39 ps, 63 ps, and 88 ps. The results 

from the FEM model that includes both a soft oxide shell and a ligand layer are also shown 

in Figure 4.  
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We compare the vibrational periods and damping times for the four sets of 

nanoparticles obtained via fitting of our transient absorption spectra (τp and T1) and 

simulations of a single particle with soft oxide shell and ligand layer (τp.sim and T1.sim) in 

Table 2. In quantitative comparison with experiments, adding a soft oxide shell layer had 

the largest impact on the vibrational period, and the calculated results match with the 

experimental values to within 9.1%-18.1%, depending on particle size. Adding a ligand 

shell to a crystalline oxide shell had a smaller effect on the vibrational period (14.5%-

28.3% deviation from the experimental values) but produced damping times which are 

closer to the experimental values. In combination, the particle model that included both a 

soft oxide layer and an organic ligand shell most closely approached both the experimental 

Figure 4.4. (a) Vibrational oscillation periods and (b) damping times calculated for icosahedral 
Al NPs of different sizes via finite element method simulations. The solid circles, rhombuses, 
squares, triangles and open circles represent pure Al particles, particles with a 4 nm thick 
crystalline oxide shell, particles with a soft (reduced Young’s modulus) oxide shell, particles 
with a 1.3 nm oleic acid shell layer, and experimental results from TA measurements, 
respectively. The stars represent the combined simulation results for particles with both a soft 
oxide shell and an oleic acid ligand layer. The inset of (a) is a calculation of the displacement of 
the fundamental radial mode for a 144 nm icosahedral Al NP with a 4 nm crystalline oxide shell 
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vibrational period (due primarily to the soft oxide) and damping timescale (due primarily 

to the ligand).    

 
d (nm) τp (ps) τp.sim (ps) T1 (ps) T1.sim (ps) 

54 nm 10.6 9.1 6.9 16.2 

85 nm 15.1 13.5 39 38.7 

121 nm 22.6 18.7 63 69.7 

144 nm 24.2 22 88 90.5 

Table 4.2: Vibrational periods and damping times for 54 nm, 85 nm, 121 nm, and 144 nm Al NPs from 
TA experiments (τp and T1) and FEM simulations (τp.sim and T1.sim) including both a soft oxide layer and 
ligand shell. 
 
 
 
Finally, we used an extended two-interface model 31 to calculate the temperature evolution 

in both the particles and the solvent. As shown in Figure 5, we calculate solvent thermal 

heating times associated with the peak value of ΔT/ΔT0 in the solvent of 150 ps, 210 ps, 

280 ps and 320 ps for particles with average diameters of 54 nm, 85 nm, 121 nm, and 144 

nm, respectively. Fast heat transfer rates are observed for core-shell particles of all sizes 

compared to those predicted for aluminum-only particles which follow the same trend as 

in the TAS measurements. This further confirms that the oxide shell efficiently mediates 

heat transfer between the particle and the solvent independent of particle size.  
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4.3 CONCLUSIONS 

In conclusion, we studied the photothermal responses of solution-grown Al NPs as a 

function of nanoparticle size. In our TAS measurements, we observed fast heat transfer 

rates to the solvent for NPs of all sizes, mediated by the native oxide shell which is 

substantiated by results of a two-interface model for heat transfer. We also observed 

phonon vibrations in the optical spectra with decreasing periods and damping times as the 

size of the NPs decreases. FEM calculations verify the qualitative trends observed in 

experiment. We refined this model by considering surface effects on phonon damping and 

find that the non-crystalline nature of the native oxide shell and the presence of surface 

ligands leads to faster damping dynamics than predicted for pure aluminum nanoparticles 

interacting with a surrounding fluid only.  Our study provides insight on the roles of surface 

Figure 4.5. Normalized calculated temperature evolutions relative to the initial 
temperature increase at both the outer edge of the aluminum cores and 3 nm 
into the surrounding solvent (IPA) of core-shell Al/Al2O3 NPs with sizes 
ranging from 54 nm to 144 nm in diameter. An oxide shell layer of 4 nm in 
thickness is included in the simulation.  
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composition and particle size on both the photothermal and photoacoustic properties of Al-

based plasmonic NPs. Specifically, by adding or subtracting “soft” surface components, 

such as oxide or polymer shells, phonon damping rates and thermal energy transfer times 

can be systematically increased or decreased. This effect could be useful for tuning 

nanoparticle properties “on demand” through prescriptive design for applications in 

photocatalysis, sensing, and medicine. 

 

4.4 METHODS 

Nanoparticle Synthesis.  

All solvents and reagents were purchased from Sigma-Aldrich. We used a nanoparticle 

synthesis method similar to Reference 31. Briefly, anhydrous tetrahydrofuran (THF) (6.3 

ml), anhydrous 1,4-dioxane (6.3 ml) and 3.3 ml of dimethylethylaminealane were 

sequentially injected into a flask connected to an air-free Schlenk line. The solution was 

stirred and mildly heated to 40°C. Then 0.4 ml of 3.3 mM titanium (IV) isopropoxide in 

toluene was injected into the solution which became light brownish in color. 70 µl of oleic 

acid in dioxane was then injected at different times, ranging from three to thirty minutes, 

following titanium isopropoxide injection to obtain particles of tunable sizes. The reaction 

was completed after 1.5 hours and the solution became grey in color. The particles were 

washed twice using both THF and IPA and finally redispersed in IPA for measurements.  

 

Nanoparticle Surface Characterization.  Transmission Electron Microscopy (TEM) 

images were obtained with an FEI Tecnai T12 instrument with an accelerating voltage of 

120 kV. High Resolution Transmission Electron Microscopy (HRTEM) measurements 
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were conducted with a Thermo Scientific TF30 TEM instrument working at 300 kV with 

better than 0.2 nm point-to-point resolution.  

  X-ray photoelectron spectroscopy (XPS) data were obtained using a PHI 5600 

instrument equipped with a Mg Kα flood source (1253.6 eV, 15 kV, 300 W) and a 

hemispherical energy analyzer. Scans were taken using a pass energy of 23.5 eV and 0.025 

eV/step. Samples were attached to double-sided copper adhesive tape on an iron XPS 

sample stage. Spectra were energy adjusted to the C (1s) envelope at 285.0 eV and analyzed 

using CASA XPS software. Ion sputtering was performed using a PHI 04-303 differentially 

pumped ion gun operated at an emission current of 25 mA with argon pressure of 20 mPa. 

Samples were sputtered with 4 keV Ar+ ions for 4 min. or 14 min. with a raster area of 7 x 

7 mm2. 

 Fourier transform infrared (FTIR) spectra of oleate-capped nanoparticles and free 

oleic acid were measured using a Mattson Infinity Series FTIR with an EG&G Judson 

MCT detector. Nanoparticle samples were analyzed by drop-casting onto an NaCl salt plate 

and measuring a transmission spectrum. Free oleic acid samples were introduced by drop-

casting onto an attachment for attenuated total reflectance (ATR).  Nuclear magnetic 

resonance (1H NMR) spectra of oleate-capped nanoparticles and free oleic acid were 

collected with a Bruker Avance 300 MHz NMR Spectrometer.  Oleic acid was dissolved 

and nanoparticle samples were resuspended in deuterated chloroform for these 

measurements. 

 Thermogravimetric analysis (TGA) was conducted with a TA Instruments SDT 

Q600 under flowing Ar at a heating rate of 5.0 °C min-1.  An isothermal step was included 

at 82 °C for a duration of 30 min. to help drive off excess solvent.  The temperature range 
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for ligand decomposition was found to be well below the onset of Al oxidation (600 °C). 

UV-Vis Spectrophotometry Measurements  

Extinction spectra were obtained using an Agilent Cary 5000 UV-Vis-NIR 

spectrophotometer. Transmission through the solution of aluminum nanoparticles in IPA 

was measured in a 0.4 mL quartz cuvette over a wavelength range of 200 to 1000 nm.  

Ultrafast spectroscopic measurements.   

The laser system used to conduct our experiments has been described previously.31,49 

Briefly, the 800-nm output from a Ti:Sapphire regenerative amplifier  (Coherent Legend 

Elite, 1kHz, 4 mJ/pulse, 35-fs) was used to generate pump and probe pulses by non-linear 

optical processes. For the 3 smallest particle sizes the 400 nm pump pulses were produced 

by 2nd harmonic generation of 1 mJ of the fundamental in a BBO crystal. For the largest 

particles a 580 nm pump beam was generated from a femtosecond Optical Parametric 

Amplifier (Coherent OPerA Solo) was used to generate tunable pump pulses from 350 – 

580 nm via various sequential nonlinear processes.  The temporal resolution of these pulses 

has previously been measured between 50-70 fs. Broadband probe pulses were produced 

by driving white light supercontinuum generation with 100-200 nJ of 800 nm light in a 2-

mm thick sapphire plate.  We specifically utilized the near-infrared continuum (850-1150+ 

nm) to interrogate size-dependence of energy-transfer processes. 

Output from the optical parametric amplifier (OPA) as well as the 400-nm pump 

beam were attenuated and gently focused to a 2.14-mm beam diameter at the sample using 

a 50-cm focal length lens positioned approximately 26 cm from the sample ensuring that 

the pump beam completely encompassed the entirety of the 100 µm probe beam with a 

relative incident angle of ~10°.   Fluence dependent studies were conducted previously and 
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we found that the maximum energy density of these pump pulses under these focusing 

conditions was 134 µJ cm-2, which was found to be well-below the threshold for nonlinear 

excitation of Al NP’s.50–52  All transient spectra were collected with linearly polarized 

pump and probe, with the relative polarization of the probe beam aligned at the “magic 

angle” (54.7°) to that of the pump beam by passing the white-light continuum through a 

wire-grid polarizer (Thorlabs) immediately before the sample.  

The transmitted probe beam was aligned into a 0.3 m spectrograph (Acton-2360, 

Princeton Instruments) outfitted with a low-resolution grating (800 nm blaze, 150 

lines/mm) with the center wavelength adjusted to 1000 nm to acquire spectra in the NIR 

region. A CCD camera (Pixis-100BR, Princeton Instruments) was configured to detect the 

NIR white-light continuum from the probe on each laser shot. Although the samples 

studied here did not fluoresce, they did scatter pump light considerably.  In order to subtract 

the scattered light from the total acquisition corrections to the transmitted probe light was 

accomplished by alternately chopping the pump and probe to enable scatter-correction as 

summarized by Eqn 3. 

 

 ∆𝐼𝐼 =
𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑡𝑡𝑝𝑝𝑏𝑏𝑒𝑒 − 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐼𝐼𝑝𝑝𝑡𝑡𝑝𝑝𝑏𝑏𝑒𝑒 − 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑑𝑑

 4.3 

 

Transient spectra were then obtained by averaging scatter corrected signals over 20 000−25 

000 laser shots at each pump−probe time delay. 
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Finite Element Simulations.  

The phonon vibrational modes were calculated using Comsol Multiphysics software. 

The simulated structure consisted of a single Al/Al2O3 icosahedral NP immersed in IPA. 

We performed frequency domain analysis for 3D simulations by solving Navier’s and the 

Navier-Stokes equations. Continuity conditions for displacement, stress and velocity were 

applied at the particle’s boundaries to fully couple the interaction between the particle and 

the liquid environment. Bulk elastic constants of Al and Al2O3 were used as inputs for 

mechanical parameters. The soft shell of the oxide layer was modeled by reducing the oxide 

shell Young’s modulus from 269 GPa to 50 GPa. We included the effect of oleic acid 

surface ligands by adding a thin shell layer on the particle surface with a Young’s modulus, 

Poisson’s ratio and density of 3 GPa, 0.36 and 900 kg/cm3, respectively.40 The simulation 

results are independent of mesh size to within 0.1%.  
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Chapter 5 

Exciton Diffusion in Poly(thiophene-

methanoannulene) Characterized by Singlet-

Singlet Annihilation 

 

5.0 INTRODUCTION 

Another component of this thesis focuses on the photophysics of a novel polymer, 

poly(thiophene- 1,6-methano (10)annulene- thiophene) (PTMT).  This polymer was 

originally studied1 in our lab as part of a broader study interrogating photophysical 

properties of a set of four TMT polymers and oligomers with very similar structures shown 

in Figure 5.1 differentiated by the position of solubilizing alkyl groups (the so-called 

“tail”); these include no-tail PTMT (NT-PTMT), tail-in PTMT (TI-PTMT), tail-out PTMT 

(TO-PTMT) and the oligomer TTMTT.  These polymers exhibit amorphous thin-film 

morphology but maintain reasonably high hole mobility ~10-4 cm2 V-1 s-1 when used as 

semiconducting layers in organic field-effect transistor (OFET) devices.  This implies they 

may be of interest in the development of organic optoelectronics.2  The material herein will 

focus specifically on the TI-PTMT polymer because it was previously found to exhibit 

ultrafast depolarization of absorption transitions from the lowest excited singlet state after 

photoexcitation, implying the existence of fast energy transfer mechanisms. 
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Table 5.1:  Thiophene-methanoannulene structures; this chapter focuses on exciton diffusion in TI-PTMT.  

 

Singlet excitons in organic materials are coulombically bound electron-hole pairs 

which cannot inherently generate photocurrent. However, electron donor/acceptor 

heterojunctions are used to generate charge carriers where excitons are dissociated if the 

energy difference between the lowest occupied molecular orbital (LUMO) of the donor and 

highest occupied molecular orbital (HOMO) of the acceptor is enough to overcome the 

coulombic attraction.3 In order for these charge carriers to be harvested for photocurrent 

generation excitons need to diffuse to the interface between donor and acceptor materials 

before they relax back to the ground state.  As such exciton diffusion length in organic 
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photoactive polymers is of great importance and the focus of a great deal of research in 

organic photovoltaic materials. The diffusion length is given by Equation 5.1 below where 

D is the diffusion coefficient and τ is the exciton lifetime. 

 

𝐿𝐿𝐷𝐷 = √𝐷𝐷𝜏𝜏 5.1 

 

Interchain interactions can have profound effects on the optoelectronic properties 

of conjugated polymers, and notably the diffusion of excitons and charges.  P3HT is 

perhaps the best characterized polymer photophysically.  P3HT exhibits two 

microstructures within its films: 1) ordered semi-crystalline regions which are lamellar-

stacked or H-aggregated strands and 2) amorphous regions lacking interchain order.  The 

crystalline regions create networks that may facilitate energy migration and charge 

transport that are beneficial for photovoltaic applications but at the same time strong 

interchain interactions lead to the increased probability of exciton annihilation or other 

quenching processes. Amorphous domains in the film result in decreased effective 

conjugation limiting the conductive properties and decreasing diffusion length making the 

conversion to photocurrent less efficient. An interesting strategy to increase charge 

mobility is to use a combination of planar and non-planar conjugated building blocks to 

create an intrinsically non-planar conjugated polymer backbone that at the same time 

results in a relatively amorphous film morphology. The resultant microstructure is expected 

to inhibit extensive interchain interactions without compromising electron delocalization 

along polymer strands.  PTMT structures possess such structural characteristics, and the 

goal of the work described here is to determine if these unique structures can facilitate rapid 
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energy diffusion through an amorphous material structure.  

A common spectroscopic technique to observe diffusion dynamics in conjugated 

polymers is to characterize self-quenching via singlet-singlet annihilation (SSA)4 which is 

well known to occur in polymers such as poly(3-hexylthiophene-2,5-diyl) or P3HT.3,5 SSA 

is a biexciton interaction, whereby two singlet excitons “combine” to make a single highly 

excited state SN through the net reaction 𝑆𝑆1 + 𝑆𝑆1 → 𝑆𝑆𝑁𝑁 + 𝑆𝑆0;  the highly excited state SN 

subsequently deactivates nonradiatively to S1, resulting in an effective quenching 

efficiency per encounter of 50%.  As two singlets can be expected to encounter each other 

diffusively, it is possible to use SSA to determine the exciton diffusion rate.  Relatively 

high excitation fluences are typically used in experiments to increase exciton densities to 

induce SSA; at these densities’ exciton decay becomes much more rapid at shorter times 

but at longer times the intrinsic lifetime of the exciton remains unaffected.  The faster decay 

at short times has been found to be intensity dependent that is attributed to an increased 

rate of annihilation. We initially conducted intensity dependent experiments with 

aggregated PTMT nanoparticles that exhibit similar behaviors as polymer films but which 

can be studied in solution; however, unlike films, it was not possible to determine the 

precise exciton densities of dispersed NP’s in solution so a thin film of PTMT was created 

for more accurate determinations. The details of calculating the diffusion length and SSA 

rate from these experiments will be discussed in this chapter.   
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5.1 EXPERIMENTAL METHODS 

5.1.1 Determination of Basic Parameters 

 

A thin film was created by drop-casting a solution of TI-PTMT onto a window and the 

 

 

 

 

a b 

 

 

 

Figure 5.1: a) displays the thickness in nm of a 
film subsection. b) Values found for the real and 
imaginary parts of the refractive index. c) 
Absorption coefficient as a function of energy 
(eV) 

c  
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absorption coefficient, refractive index and film thickness were found using ellipsometry 

in a Woollam M-2000 ellipsometer. Figure 5.2a and 5.2b show the film thickness vs 

position and the optical constants n (refractive index) and k (extinction coefficient) with 

respect to energy. 

The optical density was found by measuring the steady-state absorption spectrum 

of the film in a Perkin Elmer, Lambda 2 UV/Vis spectrometer (5.2c).  It was not possible 

to utilize a technique that would produce a more uniform layer, such as spin coating, due 

to the polymer’s sparing solubility in solvents known to produce high quality films.  

Ultrafast broadband pump-probe experiments were conducted with polymer 

excitation at 400 and 500 nm.  At high excitation fluences the sample was found to degrade 

over a 5-15 min period if the focusing conditions of the beam were too intense. Thus, great 

care had to be taken to ensure the lowest energy densities possible to maintain polymer 

integrity; unfortunately, this also restricted the range of possible excitation fluences due to 

low signal amplitudes ∆OD < 0.005. 

 

5.1.2 Laser Fluence Determinations. 

In order to calculate accurate laser fluences, precise measurements of the beam 

diameter and pulse energy were required. Measurement of the first was accomplished using 

a razor blade mounted vertically on a spring-loaded stage controlled by a Thor-Labs 

TDC001 T-Cube DC Servo Controller.  The blade was slowly swept perpendicular to the 

beam path, resulting in spatial attenuation of the beam; the beam attenuation was measured 

with a photo-diode detector connected to an oscilloscope (Figure 5.2). The position of the 

razor with respect to beam intensity wan then plotted and fit to an error function (erf); the 
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derivative of the fitted error function gives the gaussian profile of the laser pulse to a good 

approximation. This was repeated for both the pump beam as well as the white light probe 

beam. 

 

        

The integral of a two-dimensional gaussian gives Equation 5.2. 

 

𝑃𝑃 = 2𝐴𝐴𝜋𝜋𝜎𝜎2 5.2 

Where σ is a measure of the beam waist in centimeters and calculated from the integration 

of the error function, P is the power in J/s and by using dimensional analysis it is straight 

forward to see that A must have units of J/cm2 and corresponds with the laser fluence.  The 

power P was measured with a power meter immediately before the sample. In order to 

prevent sample degradation, the pump beams were left unfocused with σpu ~ 0.31 / r ~ 1.75 

Figure 5.2: Schematic diagram of method used to find the beam width for calculation of the laser 
fluence. 
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mm while the probe beam was found to have σpr ~ 48 µm / r ~ 127 µm.  The pump beam 

energy density was found to be 261.6 µJ/cm2 for the 400 nm experiment 496.8 or 248.4 

µJ/cm2 for the 500 nm experiments.  The lower value was obtained after placing a neutral 

density filter OD = 0.3 (~50%) in the path of the pump.  

 

5.2 MODELING PROCEDURES 

5.2.1 Singlet-singlet annihilation model 

The rate Equation for singlet exciton decay used in these experiments was taken from 

previously published work by Tamai et. al.3 and is given by Equation 5.3. 

 

𝑑𝑑𝑑𝑑(𝑑𝑑)
𝑑𝑑𝑑𝑑

= −
𝑑𝑑(𝑑𝑑)
𝜏𝜏

−
1
2
𝛾𝛾(𝑑𝑑)𝑑𝑑(𝑑𝑑)2 

5.3 

 

Here N(t) is the exciton density at some delay time t after the pump pulse reaches the 

sample, γ(t) is the bimolecular decay rate coefficient for SSA and τ is the intrinsic exciton 

decay lifetime. The integrated rate law is solved as 

 

𝑑𝑑(𝑑𝑑) =
𝑑𝑑0exp (−𝑑𝑑 𝜏𝜏⁄ )

1 + 1
2𝑑𝑑0 ∫ 𝛾𝛾(𝑑𝑑′)𝑡𝑡

0 exp (−𝑑𝑑 𝜏𝜏⁄ )𝑑𝑑𝑑𝑑′
 

5.4 

 

N0 is the initial exciton density after optical pumping while the annihilation rate coefficient 

γ(t) can be given in three dimensions and is given by Equation 5.5. The form of γ(t) depends 

on the dimensionality of the system, however the 1D and 2D cases were not examined here. 
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𝛾𝛾(𝑑𝑑)3𝐷𝐷 = 8𝜋𝜋𝐷𝐷𝜋𝜋 �1 +
𝜋𝜋

√2𝜋𝜋𝐷𝐷𝑑𝑑
� 5.5 

   

D is the diffusion coefficient with units of cm2/s and R is the interaction radius in units of 

cm; the latter represents the separation at which SSA occurs. This function γ(t) can be used 

to solve Equation 5.3, resulting in Equations 5.6 and 5.7. The parameter a is a scaling factor 

necessary to scale fits to data measured in ΔOD which is proportional to N(t).  

𝑑𝑑(𝑑𝑑) =
𝑎𝑎 exp (−𝑑𝑑 𝜏𝜏⁄ )
1 + 𝑑𝑑0𝐹𝐹(𝑑𝑑)

 
5.6 

𝐹𝐹(𝑑𝑑) = 4𝜋𝜋𝐷𝐷𝜋𝜋𝜏𝜏[1 − exp(−𝑑𝑑 𝜏𝜏⁄ )] + 4𝜋𝜋𝜋𝜋2�𝐷𝐷𝜏𝜏 2� erf (�𝑑𝑑 𝜏𝜏� ) 
5.7 

 

Details about this procedure can be found at great length in the literature.3,6,7 Experimental 

data were modeled using Equations 5.6 and 5.7. 

 

5.2.2 Estimation of Initial Exciton Density (N0) 

In order to estimate N0 one must consider the overlap of the pump and probe beams.  

By manually steering the pump beam overlap to the area with highest ∆OD we can assume 

that the probe beam is at or very near the maximum of the pump beam envelope.  Using 

the fluence “A” calculated earlier, R the probe spot radius and Equation 5.7 the average 

exciton density Nphoton is found. 

 

𝑑𝑑𝑝𝑝ℎ𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡 =
1
𝜋𝜋𝜋𝜋2

� � 𝐴𝐴 𝑟𝑟 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑟𝑟2 2𝜎𝜎2⁄ )𝑑𝑑𝑟𝑟𝑑𝑑𝑑𝑑 =  
2𝐴𝐴𝜎𝜎2

𝜋𝜋2
[1 − exp(−𝜋𝜋2 2𝜎𝜎2⁄ )]

2𝜋𝜋

0

𝑅𝑅

0
 

5.7 

 

Using the Beer-Lambert Law the initial exciton density can be calculated 
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𝑑𝑑0 =
𝑑𝑑𝑝𝑝ℎ𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡(1− 10−𝑂𝑂𝐷𝐷)

𝑙𝑙
 

5.8 

 

Where l is the thickness of the film found from the ellipsometry data. Values found for N0, 

Nphoton, and l are listed in Table 5.1 Below. 

 

 N0 (cm-3) Nphoton (cm-2) l (nm) 

λp = 400 nm 1.19 x 1019 5.23 x 1014 413 

λp = 500 nm 1.98 x 1019 1.20 x 1015 413 

λp = 500 nm (50%) 9.91 x 1018 5.98 x 1014 413 

Table 5.2: Calculated values of Initial exciton density (N0), photon density (Nphoton), and effective path 
length (l). 

  

5.2.3 Transient Absorption Experiment 

Three data sets were examined with pump wavelengths at 400 nm and 500 nm, with a 

third experiment utilizing the 500 nm pump but including a neutral density filter of OD = 

0.3 placed in the pump beam to decrease its intensity by 50%. Transient absorption was 

conducted on all of these samples using a detection range in the NIR (800 – 1100 nm).  

This detection range was selected to avoid any contamination by the TA features that 

appear in the visible absorption spectrum.  Kinetic traces were calculated by averaging 

across a range of wavelengths (900 – 1000 nm) at each time delay.  These polymers are 

well known to possess a triplet absorption that can be observed across the visible and NIR 

ranges however the triplet persists long after the initial relaxation, on the order of a 

nanosecond.  In order to account for this signal, the intensity at the 5 latest time delays after 

1000 ps were averaged and subtracted from the kinetic traces.  The remaining time-
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dependent signal therefore only reflects the population of singlet excitons that decays by 

SSA or on the natural exciton decay lifetime. 

 

5.3 RESULTS AND DISCUSSION 

Since PTMT has not been studied previously the interaction radius of this polymer is 

not known, however it’s properties should be comparable to that of P3HT.  For the purposes 

of fitting the experimental data a series of 3 interaction radii (1-3 nm) which correspond to  

 

the range of radii found for P3HT5 were chosen and used as parameters for fitting the 

experimental data.  The intrinsic exciton lifetime of PTMT was found1 previously to be τ 

= 153 ps and this value was also constrained when fitting experimental data in this study.    

 

 

Figure 5.3: Kinetic traces of exciton decay in PTMT 
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Examination of the fits shows that for the sample pumped at 400 nm and 500 nm 

with the intensity modulated by a ND filter OD = 0.3 (50% reduction intensity) all of the 

fits are in reasonable agreement. For the 500 nm pump data with high intensity, as the 

interaction radius is increased from 1 to 3 the fits become noticeably worse.  This is likely 

a reflection on the fact that a large R results in a smaller value of D to account for the initial 

population decay by SSA; the smaller value of D at longer times results in poorer 

agreement with slower phases of diffusive SSA.   

 

r (nm)  D (cm2 s-1) x10-3 LD (nm) τ (ps) 

1 5.05 8.7 153 

2 1.7 5.17 153 

3 0.8 3.34 153 

Table 5.3: Calculated diffusion constant and length for TI-PTMT from varying interaction radius and fixed 
exciton lifetime 

 

Sample D (cm2 s-1) x10-3 LD (nm) Dimension 

RR-P3HT-H 7.9 20 1D 

RR-P3HT-L 3.3 14 1D 

RRa-P3HT 0.46 4.8 3D 

Table 5.4: Values taken from the literature of the diffusion constant and diffusion length for the polymer 
P3HT3 

 

Table 5.3 presents the values for the diffusion constant found at the three different 

interaction radii. The values can be compared to those found in the literature3 for P3HT 

that are shown in Table 5.4.  Across all interaction radii the diffusion coefficient for TI-
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PTMT is larger than that of the amorphous polymer regioregular (RR-P3HT) and 

regiorandom P3HT (RRa-P3HT); indeed, even at the longest interaction radius of 3 nm 

PTMT has a value of 0.8 x 10-3 cm2 s-1 which is very close to RRa-P3HT (0.46 x 10-3 cm2 

s-1).  At the shortest interaction radius of 1 nm the diffusion coefficient has a value of 5.05 

x 10-3 cm2 s-1 which is comparable to that of highly crystalline regioregular P3HT (7.9 x 

10-3 cm2 s-1).     

 

5.4 CONCLUSION 

This study demonstrated that the conjugated amorphous polymer TI-PTMT may 

possess beneficial energy transfer characteristics, despite exhibiting an amorphous 

morphology.  Despite lacking a crystalline nature, the diffusion coefficient was found to 

be greater than that of RRa-P3HT across a range of likely interaction radii and approaching 

that of crystalline RR-P3HT.  Notably, the relatively large diffusion coefficient of TI -

PTMT is modulated by the relatively short exciton lifetime, resulting in a net shorter 

diffusion length compared to crystalline RR-P3HT, but still somewhat longer than that 

observed for RRa-P3HT.  This limitation could be overcome by striking a balance between 

nonplanar structures that support amorphous morphologies with intrinsically continuous 

conjugation pathways per strand and the impact of nonplanarity on spin-orbit coupling and 

therefore intersystem crossing that reduces the exciton lifetime.  Further study of this class 

of polymer may reveal its potential use in photoactive devices without the interference of 

multiple structure domains that plague P3HT.   
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Appendix I 

 Supporting Information Chapter 3: 

Dynamics of Energy Transfer in Large 

Plasmonic Aluminum Nanoparticles 

 

 
Figure A1.1.  TEM images of aluminum NPs in (A), (B) and Figure 1A, were used to obtain the histogram 
(C) of the synthesized aluminum nanoparticle size. This analysis yields a size distribution with an average 
particle diameter of 98±12 nm. (D) FDTD-calculated spatial electromagnetic field profile for a 93 nm-
diameter aluminum NP at the quadrupole resonance wavelength of 269 nm (color scale in a.u.). 
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Figure A1.2. TEM images of aluminum nanoparticles before (A) and after (B) prolonged exposure to a 400 
nm excitation source show no observable changes in nanoparticle morphology. 
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Figure A1.3: Fluence dependent transient absorption data conducted at 101 µJ cm-2 (Top), 64 µJ cm-2 
(Middle), and 34 µJ cm-2 (Bottom).  Similar spectral responses were observed at all fluences with intensity 
having linear dependence on pump fluence Shown in Figure A1.4B. 
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A) 

 

B) 

 

Figure A1.4. (A) Time-dependent traces (415-500 nm) at different pump fluences ranging from 134 µJ cm-

2 (red) to 34 µJ cm-2 (yellow); fitting models described in the text are overlaid as dashed black lines.  (B)  
Fluence dependence of max positive and negative extinction obtained in TAS measurements; fit reveals 
closely linear relationship between signal and fluence (slope = 1.29, see main text). 
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Figure A1.5:  FDTD simulations of (top) absorption and (bottom) scattering cross sections of Al 
nanoparticle in IPA at different refractive indices (and corresponding dielectric constants).  These 
comparisons reveal that the scattering contribution dominates absorption by an order of magnitude in most 
regions.  Furthermore, local solvent heating (which generally induces reduction in refractive index and 
dielectric constants) can be expected to result in a net negative change in spectral scattering profile. 
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 τ2 τ1 τR φ a1 a2 a3 γ c 

415-

500 nm 

272 ps 0.91 ps 33 ps 4.25 1.95 34.0 15.4 0.09 -27.5 

825-

900 nm 

206 ps 0.3 ps 22 ps 3.5 2.12 5.03 1.51 0.09 -12.9 

1000-

1125 

nm 

244 ps 3.5 ps 22 ps 4 0.3 4.05 1.38 0.09 -6.85 

Table A1.1: Parameters for fits shown in Figure 3A in the text. 
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 τ2 τ1 τR φ a1 a2 a3 γ c 

134 µJ cm-2 272 ps 0.91 ps 33 ps 4.25 1.95 34.0 15.4 0.09 -27.5 

101 µJ cm-2 191 ps 0.7 ps 25 ps 4 2.29 16.9 7.02 0.09 -12.9 

64 µJ cm-2 216 ps 0.8 ps 27 ps 3.5 1.12 8.97 4.22 0.09 -6.85 

34 µJ cm-2 183 ps 0.7 ps 25 ps 4 0.76 4.79 2.35 0.09 -3.46 

Table A1.2: Parameters for fits shown in Figure A1.4A. 

 
 
 
 

 134 µJ cm-2 101 µJ cm-2 64 µJ cm-2 34 µJ cm-2 
τR 14.0 ps 13.8 ps 13.7 ps 13.3 ps 

Table A1.3: Oscillation period calculated from the truncated data sets 5-100 ps shown in Figure 3B in the 
text.   
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Figure A1.6: Crude isolation of interband bleach contribution.  (Top) Linear trend lines were calculated for 
NIR spectra obtained at each delay using points at 1000 nm and 1100 nm. The value of the trend line at the 
wavelength where the bleach maximum occurred (869 nm) was subtracted from measured value at this 
wavelength.  The difference is plotted in the bottom panel.  Although this method is a crude approximation 
for the shape of the scattering contributions in this wavelength range, this analysis shows that the interband 
transition recovers roughly on the timescale of thermal energy transport.    
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Two Interface Model 
 
Our model uses the following equations, adapted from the model in Reference 1,1 for the 

temperature dynamics of the aluminum NP core (p), the oxide shell (o), and the solvent medium  

(m): where ∆To is the initial temperature increase of the nanostructure after optical pump excitation,  

c is the heat capacity per unit volume, G is the interface thermal conductance, Λ is the thermal  

conductivity, κ1 = Λo
co

, κ2 = Λm
cm

, k1 = 3co
cp

, k2 = 3cm
co

, g1 = G1
Λo

, and g2 = G2/Λm. The numerical  

subscript refers to the interface investigated (p - nanoparticle, o - oxide and m - medium), and  

interface 1 refers to the aluminum/aluminum oxide interface while interface 2 refers to the  

aluminum oxide/isopropanol. 

 

 
 
 
 
 

 

 
 
 
 
 
 
  

 

∆Tp(t) =  
2
π

k1(Rg1)2∆T0 �
u2e−κ1u2t/R2

(u2(1 + Rg1) − k1Rg1)2 + (u3 − k1Rg1u)2
du

+∞

0
 

 
 

∆To(t) =  ∆T0
2R
πro

k1(Rg1)2 � u2e−κ1u2t/R2
u �1 − u2
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� cos �u(ro − R)
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k1Rg1

� sin �u(ro − R)
R �

(u2(1 + Rg1) − k1Rg1)2 + (u3 − k1Rg1u)2
du

+∞

0
 

 
 

∆Tm(t) =  ∆T0
2ro
πr

k2(rog2)2
∆Tp
∆To

� u2e−κ2u2t/ro2
u �1 − u2
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� cos �u(r − ro)

ro
�+ �1 − u2(1 + rog2)

k2rog2
� sin �u(r − ro)

ro
�

(u2(1 + rog2) − k2rog2)2 + (u3 − k2rog2u)2
du

+∞
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Figure A1.7. Normalized calculated temperature evolutions at the surface of varying sizes of aluminum 
nanoparticles (10 nm to 100 nm in diameter) and 3 nm into the surrounding medium: (Top) without the 
presence of an oxide layer, and (Bottom) with the presence of an oxide layer.  
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A B 

  
C D 

  
 
Figure A1.8: Temperature evolution time constant (1/e) 3 nm into the solvent medium as a function of oxide 
thickness in the case of: (a) constant total nanoparticle size (the metal core diameter decreases with increasing 
oxide thickness) and (b) constant metal core size (the total size of the nanoparticle increases with increasing 
oxide thickness). Associated spectra for (a) and (b) are plotted in (c) and (d), respectively. Solid lines are for 
temperature evolution in the particles, and dashed lines are for temperature evolution in the solvent medium. 
The blue, orange, yellow, purple, green, cyan, and red spectra correspond to 0, 0.5 nm, 3.5 nm, 6.5 nm, 9.5 
nm, 12.5 nm, and 15.5 nm oxide thicknesses respectively. These results indicate that changing the size of the 
aluminum metal core has a much greater influence on thermal energy transfer to the medium than changing 
the oxide thickness itself beyond a drastic decrease in the time constant after introduction of an oxide layer. 
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Although the thermal conductivities are different (205 Wm-1K-1for Al vs. 30 Wm-1K-1for 

AlOx), the heat capacities of aluminum metal and aluminum oxide are fairly similar 

(2.43e106 Jm-1 K-1 for Al vs. 3.48e106 Jm-1 K-1 for AlOx). The temperature evolution in the 

two-interface model depends more strongly on the interface properties than the size 

variation of the associated layers. In this case specifically, the oxide layer’s primary role is 

to act as a heat sink in facilitating the heat transfer from the core material. As a result, the 

addition of an intermediary oxide layer drastically changes the temperature time constant 

in the solvent, and subsequent increases in the oxide layer thickness have a minimal effect 

when compared to the core aluminum thickness due to the much lower thermal 

conductivity of the aluminum oxide material (almost ten-fold lower than in the aluminum 

metal). 
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Figure A1.9.  Solvent coherences during the pump-probe overlap were used to determine the instrument 
response function.  The inset displays the calculated IRF Gaussian obtained by fitting the solvent coherences 
at time zero.  The full width half max was calculated to be 262 fs. 
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Appendix II 

Size and surface-dependent photoresponses of 

solution-processed aluminum nanoparticles 

 

 
 
 
 
A2.1 Particles size histograms 

 
 

 
 

Figure A2.1. Histograms of aluminum nanoparticle (Al NP) diameters based on analysis of transmission 
electron microscope images of different NP ensembles. The particles have average diameters of (a) 54±11 
nm, (b) 85±21 nm, (c) 121±8.4 nm, and (d) 144±4.3 nm (d). 
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2.) Surface characterization of Al nanoparticles 
 

Figure A2.2. (a)-(f) Additional high resolution transmission electron microscopy (HRTEM) images of Al 
NPs. The oxide and organic ligand shells are visible in all images, although their thickness is obscured by 
faceting in (a)-(c). A thickness measurement is displayed in (f). Further characterization of oxide thickness 
and ligand surface coverage is provided below. 

 
 
 

Figure A2.3: X-ray photoelectron spectroscopy (XPS) measurements of (a) the Al0 2p and Al3+ 2p states 
before and after argon sputtering of the surface as indicated in the legend and (b) the C 1s region (red) of the 
Al NPs prior to sputtering and fits (yellow, green, blue) as indicated in the legend. The presence of the Al3+ 
2p peak in the XPS spectrum indicates the presence of an oxide shell on the Al NPs, and the thickness of the 
shell was determined to be 3.1±10% nm as described in the text below. The intensity ratio between the 
carboxylate-associated shoulder in (b) and the aliphatic C 1s feature is consistent with surface-bound oleate. 
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  X-ray photoelectron spectroscopy (XPS) measurements were conducted on 

the Al NPs to investigate their composition (Figure A2.3). The Al 2p spectra shown in 

Figure A2.3 (a) clearly contains features associated with both Al (Al0) and Al oxide (Al3+) 

at binding energies of 72.7 eV and 75.1 eV,1,2 respectively. Sputtering of the sample was 

conducted to confirm a metallic Al core existed. As the sputtering time increases, the 

relative intensity of the Al0 peak increases, corresponding to the removal of the oxide layer, 

the oxide layer thickness was calculated to be approximately 3.1±10% nm using 

established methods,3 consistent with that estimated from the HRTEM measurement in 

Figure A2.2 (f).  

 XPS spectra collected in the C 1s region (Figure A2.3 (b)) of the Al NPs prior to 

sputtering reveal a small shoulder (next to a dominant peak) whose peak position (289 eV) 

is consistent with a carboxylate group.4 The 5.3% intensity ratio between this shoulder and 

the dominant C 1s feature is consistent stoichiometrically with surface-bound oleic acid 

(C17H33COOH) and the absence of any other organics at the surface. 

We also utilized Fourier transform infrared (FTIR) spectroscopy and nuclear 

magnetic resonance (1H NMR) measurements to further characterize the chemical state of 

the oleic acid/oleate ligand (i.e. bound or unbound carboxylate). FTIR spectra obtained 

with our oleate capped aluminum nanoparticles as well as free oleic acid are shown in 

Figure A2.4. The FTIR spectra indicate modifications to stretching vibrations consistent 

with the oleate being bound to the surface of the aluminum nanoparticles: the spectrum of 

the nanoparticles shows two peaks for the CH2 symmetric and asymmetric stretches of 

oleic acid that are slightly lower in energy relative to the free oleic acid stretches, as has 

been observed previously for surface bound oleate ligands.5,6 More significantly, the strong 
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C=O stretching feature observed for free oleic acid at 1707 cm-1 does not appear in spectra 

measured with our Al nanoparticles; instead, we observe two broad features at lower 

frequencies (1588 and 1412 cm-1) that correspond with the COO- symmetric and 

asymmetric stretches of oleate bound to the nanoparticle sample, as has been observed 

previously. Table A2.1 summarizes the frequencies for these features. 

 
 
Figure A2.4. FTIR spectra of free oleic acid (blue) and oleic-acid-capped aluminum nanoparticles (pink) 
cast from IPA, multiplied by 5 and offset for comparison of vibrational features. 

 
 
 
 
Table A2.1.  Critical FTIR peak assignments. 
 

 CH2 

Symmetric 
Stretch 

CH2 

Asymmetric 
Stretch 

C=O 
stretch 

COO- 
Symmetric 
Stretch 

COO- 
Asymmetric 
Stretch 

Oleic 
Acid 

2852 cm-1 2922 cm-1 1707 cm-1 N/A N/A 

Al NP 2850 cm-1 2917 cm-1 N/A 1412 cm-1 1588 cm-1 
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1H NMR spectra were collected for ligand-capped aluminum nanoparticles and 

free oleic acid suspended/dissolved in deuterated chloroform.  Full spectra for each sample 

are presented in Figure A2.5.  Figure A2.6 (a) provides labels for hydrogen sites; Figures 

A2.6 (b-d) illustrate spectral differences for free vs. particle-bound oleate for specific 

hydrogen sites.  The spectrum of the nanoparticles shows characteristic peaks of oleate 

bound to the surface of nanoparticles. The peaks for hydrogens “e” and “f” are the most 

resolved but are broadened and are shifted slightly downfield (Figure A2.6 (b)), a trend 

previously observed in the literature.7 The peaks associated with hydrogens closer to the 

surface-bound carboxylate group (e.g. the “a” and “c” sites around the carbon double bond, 

Figures A2.6 (c-d)) are also broadened and either barely visible or not present due to their 

proximity to the nanoparticles which rotate slowly on the timescale of the measurement.8 

Table A2.2 summarizes the positions of features from NMR spectra. 

 
Figure A2.5. Full 1H NMR of (a) aluminum nanoparticles capped with oleate ligand and (b) free oleic acid 
with peak assignments (c.f. Figure A2.6 (a)).   
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Figure A2.6. (a) Structure of oleic acid with 1H peak assignments and (b, c, d) highlighted regions of 
aluminum nanoparticle and free oleic acid 1H NMR spectra.   
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Table A2.2. 1H NMR peak assignments.  
 

  Oleic Acid Al NP’s 
Peak H’s Center (ppm) Type Center 

(ppm) 
Type 

a 2 5.34 multiplet 5.34 broad singlet 
b 2 2.35 triplet 2.38 broad singlet 
c 4 2.01 multiplet 2.00 broad singlet 
d 2 1.63 multiplet n/a n/a 
e 20 1.29 multiplet 1.25 broad singlet 
f 3 0.88 triplet 0.85 triplet 

   

Finally, thermogravimetric analysis (TGA) was conducted using a TA Instruments SDT 

Q600 under flowing Ar at a heating rate of 5.0 °C min-1 to estimate the surface coverage of 

oleate ligand on aluminum nanoparticles with an average diameter of 125 nm (3-nm oxide 

shell) suspended in isopropanol.  An isothermal step was included at 82 °C for a duration 

of 30 min. We observe a significant weight loss between 80 and 100 °C due to the 

evaporation of the isopropanol solvent. Between 300 and 500 °C there is a 0.006 mg weight 

loss which we attribute to the decomposition of oleate bound to the surface of the 

nanoparticles, as shown in Figure A2.7. This result is consistent with previous TGA studies 

that show weight loss between 300 and 500 °C due to the decomposition of oleate strongly 

bound to the surface of Fe3O4 MNPs.9,10 Notably, weight loss from 

evaporation/decomposition of free oleic acid has been shown to occur at much lower 

temperatures, between 200 and 250 °C,9,10 and is not seen here (consistent with FTIR and 

NMR analyses).  Using the terminal mass of 0.149 mg, average particle diameter of 125 

nm, oxide shell thickness of 3 nm, and the bulk densities of aluminum (ρ = 2.7 g/cm3) and 

aluminum oxide (ρ = 3.2 g/cm3) for the particle core and oxide shell, we calculated the 

total particle surface area for the sample.  The surface area and mass loss from surface 
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bound oleate were used to determine the ligand number density on the surface.  From this 

data we estimate that there are 5 oleate ligands per nm2 bound to the surface of our 

nanoparticles.  This is consistent with results from previous studies of aluminum oxide 

particles with high densities of surfactant ligands (3.9-6.3 molecules/nm2).11  

 
Figure A2.7.  Thermogravimetric analysis (TGA) of oleate bound to Al nanoparticle surfaces used to 
determine surface coverage of ~5 oleate ligands per nm2.  See text for details. 

 
 
 
 
 
 
 
3.) Vibrational period and dephasing timescale with simulated surface properties 
 

 
Figure A2.8. (a) Vibrational periods and (b) damping times calculated using finite element methods for 
single Al NPs with diameters of 54 nm (red), 85 nm (yellow), 121 nm (green), and 144 nm (blue) as a 
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function of the Young’s modulus of a 4 nm oxide shell layer which is varied between 50 GPa and 269 GPa.  
 
 
 
 
 
 
 
4.) Fitting parameter errors 
 
Table A2.3. Standard errors associated with each fitting timescale. (T1 was fixed to simulated value as 
described in the text due to sample polydispersity for 85-nm particles.) 
 

 τp τr τd T1 
54 nm 0.38 0.69 6.71 0.91 
85 nm 0.29 0.20 13.5 - 
121 nm 0.22 0.53 53.3 11.7 
144 nm 0.23 0.53 37.6 20.0 
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