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Abstract 

Predictive design and synthesis of materials with quantum, topological, and 

magnetic properties is the frontier in quantum materials research. One of the most 

critical areas of research is the development of design principles for 2-D and 3-D 

magnetic materials, which exhibit a wide array of quantum behaviors. In this 

thesis I discuss materials design principles for, and synthesis and characterization 

of, new and newly-understood 2-D and 3-D frustrated magnets. 

It was the employment of materials design principles that led to the 

discovery of two new compounds, MgNiMo3O8 and FeNiMo3O8, which were 

synthesized by site-specific chemical substitution on Ni2Mo3O8, an integer-spin 

nickel honeycomb with tetrahedrally and octahedrally coordinated nickel on the 

two halves of the bipartite honeycomb lattice. These 2-D magnetic materials are 

discussed in Chapter 2. Ni2Mo3O8 is the first known realization of zig-zag 

antiferromagnetic order in a non-centrosymmetric integer-spin honeycomb lattice.  

The diamond lattice in spinel structure compounds is a 3-D frustrated 

lattice. FeSc2S4 is a well-known material that has been predicted to host a 

disordered quantum spin liquid state down to the lowest measurable 

temperatures. In both powder and crystal samples, antiferromagnetic order was 

observed to develop below T = 10 K, placing FeSc2S4 close to, but on the 
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antiferromagnetically ordered side of a quantum critical point, which is within the 

paradigm of theoretical predictions on this material. 

Finally, two nascent projects are discussed in Chapter 4. One is the 

discovery and characterization of the first metallic kagomé antiferromagnet, 

KV3Sb5, and characterization of its physical properties. An antiferromagnetic 

transition at T = 80 K can be increased to T = 100 K by doping the material with Ba. 

In contrast, doping with Sn seems to reduce the magnetism in the material. The 

physical properties of M3(hexaiminobenzene (HIB))2, M = (Ni, Cu), have been 

reported as metals. However, resistivity and heat capacity measurements show 

that they are more likely small band gap semiconductors.  
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Chapter 1 Introduction 

 

Section 1.1 An Optimistic Vision for the Future 

Human demand for energy and progress is poised to outstrip our capacity for 

energy production. The vast majority of the energy economy is carbon and 

hydrocarbon based. There are a few reasons for this: liquid hydrocarbons have a 

particularly high energy density. They can be transported easily in tanks and 

pipelines and can sit easily in cars and generally produce a massive amount of 

energy relative to the volume that they occupy. But it is also well known that 

these resources are finite: the easily accessible hydrocarbons are gone and require 

increasingly more energy to mine and refine. Where is the economic tipping 

point of ‘worth it’ on energy consumption? 

Not only are resources dwindling, but the use of resources causes its own 

problems. It is written into one of the most fundamental chemical reactions: 

combustion. The burning of CxHy in an O2 atmosphere releases CO2, CH4, and 

other greenhouse gases that contribute to unprecedented rapid climate change. 

Every action that a person takes that uses energy, even the act of being born, 

starts the meter on a personal carbon debt.  
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So, where is the optimistic vision for the future? Human progress – the 

search for new renewable energy sources- is in a race against time against human 

progress – the use of carbon-based energy to do so. The optimistic vision for the 

future is that human progress might win.  

The history of human progress is inextricably linked with progress in 

materials research. It could be reasonably argued that science is the oldest 

profession. Even before language existed, early proto-homo-sapiens-sapiens 

must have thought “????” in response to seeing lightning. Perhaps a person, 

who, after falling and landing on a particularly sharp piece of diagenetically 

altered siliceous ooze (aka flint or chert) used it instead of sharpened wood on 

the end of their spear, might now be considered a scientist (Or an engineer? 

Differentiation between these terms is beyond the scope of this work). And the 

subset of ‘chemists’, long the purveyors of death via poison or explosion, have 

happily found more expansive uses for their multitudinous skills in recent years.  

Notably, some famous chemists have walked the line: Fritz Haber won the 

Nobel Prize in 1918 for his development of the Haber-Bosch process, a chemical 

process that produces ammonia from nitrogen gas and hydrogen gas. It has been 

used to mass-produce fertilizer and has quadrupled the productivity of 

agricultural land, thereby enabling the massive population boom and saving 
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billions of famine-endangered lives. Up to 50% of nitrogen found in human 

tissues is from the Haber-Bosch process. Before achieving notoriety for this, he 

was known as ‘the Father of Chemical Warfare’ (which is a slight to the many 

thousands of years of fabulous Asian alchemists, but that, too, is beyond the 

scope of this work) for his eager development of bromine and chlorine gases as 

chemical weapons in World War I. In fact, somebody watching the 2017 action 

film 

Most technology before the industrial revolution was geographically and 

temporally localized. For example, the best method for producing Damascus 

steel, was kept so secret that it was lost for thousands of years upon the death of 

the manufacturer. It is hard to imagine how that progress could go backward. 

Our technology is constantly and rapidly improving and evolving. But not so 

long ago, before the industrial revolution, the idea that progress could go 

backwards was culturally consistent. The Gauls, who came across the crumbling 

aqueducts after the fall of Rome, may have asked themselves “What Gods could 

have created these?” But even then – the math used to design the aqueducts was 

re-invented after having been discovered and lost thousands of years earlier in 

ancient Persia.  
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Methods for purifying silicon for use in transistors defines modern 

technology in the same way that Damascus steel defined its era. In the span of a 

human lifetime we have redefined human communication. I can correspond via 

e-mail with my grandmother, who didn’t have electricity in the house she lived 

in as a child. We live in the ‘silicon age’ and now we must discover what next 

‘age’ is. Some would say it is quantum computing. 

It is exciting to be a materials chemist at the forefront of innovation and 

discovery. Just as the inventor of the telephone didn’t know that the majority of 

Americans would carry a personal one, and just like the discoverer of the 

superconductor didn’t know that it would ultimately be used in some of the 

most powerful medical diagnostics that we can do, we don’t necessarily know 

the applications of new quantum materials a priori. But in some cases we start 

with an application – a problem that needs a solution – and in the process make 

great discoveries. This is the thrill of materials design – simultaneous 

engagement with applications and discoveries. 

To usher in the next age of progress, hopefully towards energy efficiency 

and renewable energy production and storage, we need to develop currently 

unknown sources of computing and predictive computing power. That is one of 

the many strengths of quantum materials – these materials can possibly be used 
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for information processing and storage and can, in conjunction with human–

developed intuition, accelerate the rate of research and save the human race from 

a self-imposed population apocalypse. 

 

Section 1.2 The Materials Lifecycle 

 

1.2.1 The Joy of Predictive Design 

When we talk about ‘predictive design’ we are referring to two things: (1) 

predictive design of synthetic methods where we choose a method to get a 

product, and (2) choosing a structural motif that gives a material desired 

properties. Deciding what to make and how to make it is easy; proving that you 

succeeded is the subject of essentially all theses on chemistry.  

The materials lifecycle is the fundamental principle that we use when 

looking for new materials. The development of a new material begins with a 

need, and it falls to the materials chemist to invent the material to address the 

need. After a survey of known materials, we decide on a structure, a 

stoichiometric ratio, and constituent elements to target a new material. Then we 

assess the results of the synthesis. Did we get what we wanted? Great - we 

measure the properties to see if we were right and predicted them correctly. If 
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we did not get what we wanted – why? What was wrong in the design 

principles? Did we get a different material instead? Why? What are the 

properties of that material? Are they useful? Sometimes when looking at the 

properties of those new materials we discover new phenomena. Sometimes the 

materials we make are useful for devices and advanced technology.  

 
Figure 1.1 Materials design conceptual feedback loop for the discovery of new 

materials 

 

 1.2.2 Predictive design of synthetic methods 

Our friends in organic chemistry experience the joy of experimental predictive 

design all the time. The catalog of methods available to the organic chemist gives 

them enough control to adjust the bonding environment of one atom in the 

middle of a massive molecule; to select a particular chirality of a molecule; to 

control the hydrophobicity of a polymer by changing one bond. The reason for 

this is that molecular chemists run reactions in the kinetic regime; the rate 
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limiting step is much faster than that of traditional ceramic methods which rely 

on diffusion of ions through solids. When the desired product is 

thermodynamically stable at the synthesis conditions, traditional methods are 

sufficient. However, this is certainly not the case for all materials. While the 

lexicon of methods for materials synthesis is by no means complete, there has 

been some excellent work on topotactic/soft chemistry/ chimie douce reactions. 

Recently and notably, the McQueen lab succeeded in using soft chemistry 

methods to electron dope the candidate spin liquid material Herbertsmithite [1].  

1.2.3 Predictive design of structural motifs 

Deciding on a structural motif is essentially answering the questions ‘what 

elements, in what coordination, on what lattice’.  

What elements? 

One of a chemist’s handiest tools for design of a new molecule or compound is 

elemental substitution. Elements in the same period often have similar reactivity, 

and that elements adjacent to each other on the periodic table are often similarly 

sized with one more/less electron than their neighbor. Many of the common 

periodic trends, Figure 1.1, are useful when designing chemical substitution 

experiments. 
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One of the most relevant periodic trends for solid state chemists is the 

increase in spin-orbit coupling (SOC) with higher mass. Other periodic trends 

such as metallic character, ionization energy, and electron affinity are highly 

relevant as well. Ionic radius is particularly important for chemical substitution. 

If the target compound is isostructural to a parent compound, then often the 

substituting element approximately the same size as the element that it is 

replacing. One point of interest is that atomic radii are different in molecules and 

vacuum than they are in crystals. This is visualized in Figure 1.2. 

The nature of the bonding in materials is directly related to properties. In 

solid materials, electrons can have varying degrees of localization. In metals, 

electrons are shared and delocalized between atoms. In covalent solids, the 

electrons are localized on the atoms. In rare earth compounds, electrons can be 

both – some are localized around the atoms, and some are shared in the lattice. In 

general, materials comprised of elements with very different electron affinity 

may tend to have more localized electrons and ionic bonds.  
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Figure 1.2 Periodic Trends and atomic and crystal radii of the elements. The crystal 

radii of cations and halogens are particularly different than the atomic radii. 

 

What coordination? 

The electrostatic interactions between ligands and metals centers cause orbital 

splitting. Figure 1.3 shows how the d orbitals split when coordinated ligands 

induce an anisotropic ligand field. These predictable orbital splittings can be 

leveraged, when combined with known elements and oxidation states, to control 
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the number of unpaired electrons in a system, and thus impacts the magnetic 

properties of a material. Some examples of electron filling in trigonal 

bipyramidal-split orbitals are shown in Figure 1.4. The green lines on the 

diagram connect similar states. For example, both d2 and d6 have two unpaired 

electrons in E orbitals, both d3 (low spin) and d7 (low spin) have one unpaired 

electron in an E orbital; the high spin configurations have three unpaired 

electrons. The configuration in d3 places all three in E orbitals, and d7 places one 

in a singly degenerate orbital.  

Degeneracy arises when there are two or more states in a system that are 

at the same energy. In Figure 1.4, the high spin and low spin d3 configurations 

have both spin and orbital degeneracy, while only the d7 low spin configuration 

has orbital degeneracy. Often a system is able to lower its overall energy by 

releasing degeneracy, which can happen via a myriad of mechanisms including 

orbital ordering, ligand distortions, et al. A manifold with electrons sitting in 

orbitals can have spin and/or orbital degeneracy, arising when two spin 

configurations have the same energy, or when there are multiple configurations 

of spin occupation in orbitals that have the same energy. While the vast majority 

of materials do lift their degeneracy, some may be able to host states that 

maintain finite degeneracy to T = 0 K. The materials that are able to do this tend 

to have atoms sitting on a frustrated lattice. [2-5] 
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Figure 1.3 The presence of a ligand field breaks the degeneracy of the d orbitals 

and results in various patterns of orbital splitting, shown here on an approximate 

energy scale for tetrahedral, square planar, trigonal bipyramidal, and octahedral 

coordinations. 
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Figure 1.4 Population of the trigonal bipyramidal orbital splitting with 

occupancies d0-d9.Lines are drawn between similar electron configurations. 

 

What lattice? 

There are a vast number of structure types of materials. While there are some 

restrictions that arise from tiling in three-dimensional space, there are many, 

many structures that materials can adopt. It is also true that the vast majority of 

them do not host quantum behavior. Geometrically frustrated lattices are, 

however, known to do so. The fundamental structural motif of frustration is the 

triangle, for the reason that antiferromagnetic interactions cannot be trivially 

resolved on the three vertices. The triangular motif can be seen on one of the 
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canonical frustrated lattices : the two dimensional kagomé lattice, visualized in 

Figure 1.5 [1]. In the right panel of Figure 1.5 the relationship between the 

kagomé and honeycomb materials can be seen – they are complementary 

structures.  

 

 

Figure 1.5 The relationship between the kagomé lattice and the honeycomb lattice 

is shown by: (left) a kagomé lattice of black atoms, and (right) the same structure 

where bonds between the green atoms make a honeycomb. 

 

Another three-dimensional frustrated lattice is the spinel structure, with a 

general chemical formula AB2X4, where the ‘A’ site is on a frustrated diamond 

lattice. This is visualized in Figure 1.6 where the dark green and purple atoms 

occupy the diamond lattice. The polyhedra centered around the ‘B’ sites are 

shown in pink. The fundamental unit of frustration is again the triangle; here, 

they comprise the tetrahedral geometry connecting the magnetic atoms to each 

other. The magnetic exchange paths are shown explicitly in Figure 1.6 (b), here for 
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NiRh2O4. As exchange interactions follow paths through ligands, the chemical 

identity and bonding interactions along these pathways are relevant as well.  

 

 

Figure 1.6 Spinel structure and 3D magnetic exchange pathways from Chamorro 

et al., (2018). [6] 

 

As the kagomé lattice is structurally related to the honeycomb lattice, 

Figure 1.8, the spinel lattice is related to another lattice of importance to the 

quantum materials community: the pyrochlore lattice. The A sites of a spinel, 

shown in the right panel of Figure 1.7, are on a diamond lattice, and the ‘B’ sites 

make up the pyrochlore lattice, shown in the left panel of Figure 1.7.  

 

Figure 1.7 Related 3D lattices: spinel and pyrochlore 

10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) The structure of a cubic AB2X4 spinel, consisting of a corner-sharing tetrahedral network of B-

ions and a bipartite diamond lattice of A-ions. The diamond lattice is a 3D version of the honeycomb 

network (one hexagon highlighted), and is predicted to exhibit a variety of magnetic ground states 

depending on the spin of the A-ion and the magnitudes of the nearest-neighbor JNN and next-nearest-

neighbor JNNN interactions. (b) NiRh2O4 is a realization of S = 1 on the diamond lattice, with non-magnetic 

B-ions (Rh3+, LS d6). Below T = 440 K, NiRh2O4 is tetragonal, preserving equivalent NN interactions, but 

with two distinct NNN interactions. Possible superexchange pathways are shown.  
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The honeycomb lattice is not inherently geometrically frustrated. It is a 

bipartite lattice comprised of two triangular lattices, visualized in Figure 1.8 

where one triangular sublattice is green atoms and the other is blue atoms. This 

lattice could support trivial “Néel” antiferromagnetic order where all green 

atoms have magnetic moments pointing “up” and the blue atoms have magnetic 

moments pointing “down” (or vice versa). Materials with this structure become 

frustrated in the presence of competing magnetic exchanges [7]. 

The layering inherent to 2D materials often results in many stacking 

variants in these materials. One such stacking variant is shown in the right-hand 

panel of Figure 1.8, where blue atoms are directly over green atoms, but one could 

imagine many others. 

 

 

Figure 1.8 Honeycomb lattice with one stacking variant. The two halves of the 

bipartite honeycomb are green and blue. 
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Section 1.3 Group Theory 

The symmetries of solids and materials can be usefully classified using 

Representation Theory, which is a subject in the mathematical discipline of 

Group Theory. Many excellent texts have been developed that describe how the 

symmetries of molecules are determined, and how these symmetries can be used 

to determine, for example, symmetry ‘allowed’ and ‘forbidden’ transitions in 

spectroscopy. Here I will describe the use of group theory to decompose/identify 

the symmetries of the states in a solid. 

Chemists tend to describe the symmetry of molecules using the 

Schoenflies notation, whereas physicists and materials scientists/engineers use 

Hermann-Maugin notation (equivalently: International notation). The 32 space 

groups and their Schoenflies and Hermann-Maugin notations are listed below in 

Table 1.1. 
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Table 1.1 The 32 space groups with Hermann-Maugin (International) notation and 

Schoenflies notation. 

Crystal 

system 

Hermann-

Mauguin 

notation 

Schoenflies 

notation 

Crystal system Hermann-

Mauguin 

notation 

Schoenflies 

notation 

Triclinic 1 C1 Trigonal 3 C3 

-1 Ci -3 C3i 

Monoclinic 2 C2 32 D3 

m Cs 3m C3v 

2/m C2h -3m D3d 

Orthorhombic 222 D2 Hexagonal 6 C6 

mm2 C2v -6 C3h 

mmm D2h 6/m C6h 

Tetragonal 4 C4 622 D6 

-4 S4 6mm C6v 

4/m C4h -62m D3h 

422 D4 6/mmm D6h 

4mm C4v Cubic 23 T 

-42m D2d m-3 Th 

4/mmm D4h 432 O 

   4-3m Td 

   m-3m Oh 

 

In each space group, there are special atomic Wycoff positions, denoted 

with letters a, b, c, etc. which each have a point group symmetry, a position 

operator (how the x, y, and z coordinates behave relative to each other, and a 

multiplicity (the number of these sites that exist in the unit cell under the space 

group symmetry). The Wycoff positions in space group P63mc are listed in Table 

1.2, with their multiplicities, point group symmetries, and position operators. 

From this, we can understand that atoms on Wycoff positions have C3v symmetry 

(3m, Hermann-Maugin), those on the c position have Cs symmetry, and those on 
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position d have C1 symmetry. Sometimes the Wycoff positions are notated with 

their Wycoff positions, so in P63mc, the Wycoff sites are: 2a, 2b, 6c, and 12d [8].  

Table 1.2 Wycoff positions of space group 186, P63mc  

Wycoff 

position 

Multiplicity Point 

Group 

Position 

Operator 

d 12 1 x, y, z 

c 6 m x, -x, z 

b 2 3m 1/3, -1/3, z 

a 2 3m 0, 0, z 

 

When we categorize the symmetry of a molecule, we consider the 

symmetry operations in three-dimensional space. Another way to say this is that 

atomic positions vary under the inversion of space, but not under the inversion 

of time. In this space, a 360° rotation (the identity operation E) brings an atom 

back to its original position. In contrast, electrons and other spin-having objects 

are invariant under space-inversion, but do vary under time inversion. This 

means that the symmetry of electrons follows the symmetry of double groups. 

And, while there are 230 positional space groups, there are 1651 magnetic space 

groups. 

For comparison, the single group and double group character tables for Td 

(tetrahedral) symmetry are listed in Table 1.3 and Table 1.4, respectively. In the 

character tables, the columns are the symmetry operations (E, C3, etc.). The Td 
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double group is twice the size of the Td single group: there are 24 symmetry 

operations in the single group (1 E, 8C3, 3C2, 6S4, 6σd) and 48 in the double group. 

The rows of the character tables are irreducible representations (IRs). The 

dimensionality of an IR is easily seen in the number under the identity operator, 

E: A1, A2 are 1-dimensional; Γ1 and Γ2 are ‘singlets’; the E representation is 2-

dimensional and Γ3 is a doublet; T1 and T2 are 3-dimensional and Γ4 and Γ5 are 

triplets.  

Table 1.3 Character table for tetrahedral (Td) symmetry in the single group 

Td E 8C3 3C2 6S4 6σd 

A1 1 1 1 1 0 

A2 1 1 1 -1 -1 

E 2 -1 2 . 0 

T1 3 0 -1 1 -1 

T2 3 0 -1 -1 1 
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Table 1.4 Character table for tetrahedral (Td) symmetry in the double group 

Td E E̅ 8C3 8C3
̅̅ ̅ 3C2 

3C2
̅̅ ̅ 

6S4 6S4 3 σd 

3σd̅̅ ̅ 

A1 1 1 1 1 1 1 1 1 

A2 1 1 1 1 1 -1 -1 -1 

E 2 2 -1 -1 2 0 0 0 

T1 3 3 0 0 -1 1 1 -1 

T2 3 3 0 0 -1 -1 -1 1 

 

Really interesting interplay between crystal field splitting and symmetry 

comes about when an ostensibly high-symmetry crystal field coordination sits on 

a Wycoff site with lower symmetry. For example, a 4-ligand coordinated 

tetrahedral ion could sit on the 2a or 2b Wycoff position in a unit cell with P63mc 

space group symmetry. In this case, the double group Td IR’s would be 

symmetry-allowed to decompose into C3v symmetry. The details of how these 

IRs decompose has been helpfully tabulated in the book Properties of the thirty-two 

point groups by George F. Koster (1963) [9]. The decomposition of Td to its 

subgroups, may be found in Table 1.5. In the case of C3v, the singlets Γ1 and 

Γ2 remain as Γ1 and Γ2, the doublet Γ3 remains a Γ3, the triplet Γ4 decomposes into 

a singlet Γ2 and doublet Γ3 and the triplet Γ5 decomposes into a singlet Γ1 and 

doublet Γ3. So, for a CN=4 “tetrahedral” ion on the 2a or 2b Wycoff position, all 

doublets will behave symmetrically as Γ3 and there are no triplets, in contrast to 
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the CN=4 tetrahedral ion on a Td site which would have, symmetrically, one kind 

of doublet (Γ3) and two kinds of triplets (Γ4 and Γ5).  

Table 1.5 Decomposition of Td and O IR’s into various subgroups, one of which is 

C3v. 

Td O Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 

C3𝑣 D3 Γ1 Γ2 Γ3 Γ2 + Γ5 Γ4 + Γ5 Γ4 Γ4 Γ4 + Γ5 + Γ6 

T T Γ1 Γ1 Γ2 + Γ3 Γ4 Γ4 Γ5 Γ5 Γ6 + Γ7 

C2𝑣  Γ1 Γ3 Γ1 + Γ3 Γ2 + Γ3 + Γ4 Γ1 + Γ2 + Γ4 Γ5 Γ5 2Γ5 

D2𝑑 D4 Γ1 Γ3 Γ1 + Γ3 Γ2 + Γ5 Γ4 + Γ5 Γ6 Γ7 Γ6 + Γ7 

 

The symmetry decomposition on the Wycoff sites is particularly relevant 

for determining the ground state of a real system with crystal field splitting, spin 

orbit coupling, and ligand distortion.  

Continuing in the example of a CN=4 tetrahedral ion on the 2b site in 

P63mc, let us consider that the ion is Ni2+.Liehr and Ballhausen published the 

Complete Theory of Ni(II) and V(III) in Cubic Crystalline Fields [10] , and 

collected their results in Tanabe-Sugano diagrams to which we can refer (rather 

than arduously work out again). Their diagram of Ni2+ in a tetrahedral field is 

duplicated for convenience in Figure 1.9.  

In Figure 1.9, the lowest energy state is a singlet Γ1, 44 meV above is a Γ4, 

and then 72 meV above this Γ4 are Γ3 and Γ5 states. A tetragonal distortion from T 

symmetry to  C3v symmetrically allows the T Γ4 and Γ5 states to split into Γ2+Γ3 

and Γ1+Γ3, respectively. Ligand distortions and spin orbit coupling can cause 
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these singlet+doublet states to split further, and the ground state could easily 

become a doublet Γ3. Thus, an understanding of the double group symmetries of 

the Wycoff sites and thoughtful decomposition of the symmetries present in 

materials is an important part of understanding ‘designable’ material properties. 

 

Figure 1.9 Tetrahedral Tanabe-Sugano diagram, duplicated from Liehr and 

Ballhausen (1953). [10] 
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Section 1.4 Synthesis 

The methods employed in traditional ceramic methods are designed to overcome 

energy barriers and promote diffusion of elements through the reacting solids. 

Typical solid state methods involve thoroughly grinding stoichiometric ratios of 

powdered reactants together and reacting them in sealed ampoules under 

vacuum or in non-reactive vessels under atmospheric conditions at elevated 

temperatures for periods of 12+ hours. The temperatures used in solid state 

reactions are generally much higher than those used in other areas of chemistry, 

often in excess of 1000 °C.  

Some specific techniques can be used to promote the rapid synthesis of 

phase-pure products. An excellent example of a material made phase-pure by the 

employment of these methods is FeSc2S4, the subject of Chapter 3 of this work. 

Surfaces and interfaces are where reactions happen, and many solid state 

techniques are designed to promote reactions by increasing reactant surface area. 

Surfaces are where reactions happen! Compressing powdered reactants also 

promotes the rate of reactions by reducing barriers to diffusion and putting more 

surfaces in contact.  

Another important component of successful reactions is the set of starting 

materials. Some materials, like KV3Sb5, discussed in Chapter 4, can be made from 
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elemental starting materials. For others, like FeSc2S4 and Ni2Mo3O8, a mix of 

sulfides or oxides is used: FeSc2S4 is made from FeS and Sc2S3 (which are, in turn, 

made by reacting elemental reactants), and Ni2Mo3O8 is made from NiO and 

MoO2. Conceivably, Ni2Mo3O8 could be made from a mixture of MoO3 and NiO 

and Ni, but competing side reactions occur.  

In Chapter 3, the crystal growth of FeSc2S4 is discussed. This crystal 

growth was enabled by the use of a modified Bridgman traveling solvent floating 

zone method. The choice of solvent is critical to the success of this method. In the 

case of FeSc2S4, FeS was used as the solvent. This solvent melts at a temperature 

at which stoichiometric FeSc2S4 can crystallize. Dr. Seyed Koohpayeh at the 

Institute for Quantum Matter is a pioneer in traveling solvent floating zone 

growths and was instrumental to the success of the growths described in 

Chapter 3. 

Section 1.5 Materials Characterization Techniques  

1.5.1 Structural Characterization 

Long-range and average structure: X-ray and neutron diffraction 

X-ray and neutron diffraction are complementary techniques for determining the 

average long range ordered nuclear structure of a material. X-rays diffract off of 

the electron clouds around nuclei, while neutrons diffract off of the nuclei 
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themselves. The intensity of X-rays decreases with an angular dependence of 

sin(θ)/ λ; neutrons, however, have element and isotope dependent coherent and 

incoherent scattering cross sections that dictate the strength of scattering. In 

general, neutron sources are much less brilliant than X-ray sources, so signal 

strength can be a challenge in neutron scattering experiments. 

The diffraction pattern that we observe depends on (1) material 

properties, (2) instrumental setup, and (3) sample preparation. 

Material properties are those structural components inherent to the 

material that, ideally, are independent of sample preparation, but can depend on 

thermodynamic variables like the temperature of measurement, air pressure, etc. 

These are: lattice parameters (a, b, c), structural angles (α, β, γ), average atomic 

positions and occupancies, and atomic displacement parameters (formerly called 

and occasionally still referred to as thermal parameters, B and/or U).  

The instrumental parameters such as the type of incident radiation, the 

type of detector, the resolution, and time of exposure affect the peak shapes in 

the diffraction pattern. Some material properties and sample preparation 

techniques also affect peak shape. The instrumental parameters, though, are 

theoretically ‘knowable’ and can be accounted for.  

Sample preparation considerations are different for different geometries of 

measurement. For example, effects like sample height offsets, surface roughness, 
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and preferred orientation are very visible for the Bragg-Brentano geometry (our 

in-lab geometry), but are not for a rotating sample in Debye-Scherrer geometry 

used for diffraction at a variety of beamlines at national laboratory facilities.  

Table 1.6 Summary of peak attributes and their causes 

 Category Affected by… 

Peak Area Material Contents of unit cell 

 Sample Phase amount in 

mixture 

   

Peak Shape 

and width 

Sample Crystallite size 

 Sample/material Strain 

 Sample/material Disorder 

 

 Sample Surface 

Roughness/Absorption 

 Sample Preferred Orientation 

 Instrument Finite source size 

 Instrument Axial Divergence 

 Instrument Slits 

 Instrument Detector resolution 

Peak 

Position 

Material Lattice parameters 

 Sample Sample height offset 

 

Magnetic Structure Determination 

Just as X-rays and neutrons diffract off of long-range nuclear (structural) order, 

they also diffract off of long-range magnetic order that appears at temperatures 

below magnetic ordering phase transitions. It is far more common to use 

neutrons to study magnetic structure as the scattering factor of neutrons off of 
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magnetic order is approximately 1000 times greater than that of X-rays, though 

some X-ray techniques, such as X-ray resonance diffraction, are in use.  

Magnetic order can be either commensurate, with periodicity the same as 

unit cell periodicity, or incommensurate, where the periodicity of the magnetic 

order is not the same as the periodicity of the underlying unit cell. Magnetism is 

not the only kind of incommensurate structure to be found in crystallography: 

defects and local distortions can have incommensurate order as well. In general, 

incommensurate structures require a much more complicated theoretical 

treatment.  

There is a variety of software available for solving magnetic structures, all 

of which can be used for solving nuclear structures as well: GSAS [11] with 

EXPGUI [12] (free, uses ‘dummy’ nuclear atoms), FullProf [13] (free, 

commensurate and incommensurate structures), and TOPAS (not free, 

commensurate only). FullProf is the best free software for solving magnetic 

structures. Rather than defining each magnetic atom in the expanded unit cell, it 

populates structures using 𝑘⃗  propagation vectors. The 𝑘⃗  vector describes how the 

unit cell expands from the structural unit cell to the magnetic unit cell. For 

example, a 𝑘⃗  vector of (1/2 0 0) corresponds to a magnetic unit cell that is the 

same as the structural unit cell doubled in the a direction, a 𝑘⃗  vector of (1/2 1/2 
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1/3) is doubled in the a and b directions and tripled in the c direction, etc. The d-

spacings of the magnetic Bragg peaks are used to determine the magnetic 

supercell and 𝑘⃗  vector. A magnetic Bragg peak appearing at d = 2*a, for example, 

might suggest a doubling of the unit cell in a. In general, the largest 𝑘⃗  vector is 

the ‘correct’ one because it is the smallest real space distance that can describe the 

order. 

SARAh [14] is a program that uses Representation Theory to generate 

symmetric irreducible representations (IR’s) that can describe the symmetry of 

the ordered state, with the input of the magnetic 𝑘⃗  vector, the space group, and 

the atomic positions of the magnetic ions. According to Landau theory, one IR 

should be sufficient to describe the symmetry of the ordered state. Each IR has 

some number of components, and FullProf refines the coefficients of these 

components. Depending on the input parameters, there may be many IR’s that 

need to be sifted through to find the correct one, requiring hundreds of 

refinements. There is a thorough worked example in Chapter 2.  

Local nuclear and magnetic structure probes 

There is a plethora of techniques available for analysis of the local structure of 

materials. One of the most popular is Pair Distribution Function (PDF) Analysis, 

which can be done with both X-rays and neutrons. PDF data is collected as 
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diffraction data in Q-space (related to θ as |Q| = (4𝜋/𝜆)sin(2θ/2)), then Fourier 

transformed into real space (r). Because of the mathematical processing, the 

resolution in r is dependent on the Q-range of the measurement. The equation for 

G(r) that is plotted for PDF analysis describes the number of atoms at distance r 

away from a given atom, relative to a totally amorphous solid: 

𝐺(𝑟) =  
2

𝜋
∫ 𝑄(𝑆(𝑄) − 1) sin(𝑄𝑟) 𝑑𝑄

𝑄𝑚𝑎𝑥

0

 

X-Ray PDF can be done on both in-house and at synchrotron sources, like 

at the 11-ID-B beamline at Argonne National Laboratory. Lower intensity sources 

with Ag or Mo sources are available for universities, but generally suffer from a 

very small Q-range available for sampling, which, as mentioned above, severely 

limits the resolution. Neutron PDF is useful in the same way that neutron 

diffraction is a complementary technique to XRD: despite the low brilliance of 

neutron sources, the difference in scattering factors makes it very useful for 

seeing specific elements, particularly lighter elements such as oxygen. 

1.5.2 Physical Properties Characterization 

Heat Capacity 

Heat capacity is a powerful tool for understanding energy scales of interactions 

in materials. The constituent atoms of the lattice vibrate in symmetry-allowed 

acoustic and optic excited states which behave as quasiparticles and are called 
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phonons. Phonons have characteristic energies of interaction and if the thermal 

energy provided by the surroundings to the material goes below the energy of 

the phonon then the phonon will ‘freeze out’. This is why heat capacity generally 

increases from low temperature to high temperature: increasing the temperature 

increases the number of phonons in the solid. There are many other quasi-

particles of condensed-matter interest such as magnons and excitons that will be 

discussed later. 

One of the ways that we most often use a heat capacity measurement is to 

identify transitions and quantify their entropy. We are able to do this because of 

the thermodynamic relationship: 

 Δ𝑆𝑇1𝑇2 = ∫
𝐶𝑝

𝑇

𝑇2

𝑇1
 

where Δ𝑆𝑇1𝑇2is the change in entropy across the temperature range T1 to T2 and 𝐶𝑝 

is the constant-pressure heat capacity that we routinely measure using our in-

house instrumentation. The entropy of a given transition can be calculated by 

essentially accounting for the microstates associated with the transition, which 

can be expressed as  Δ𝑆 =  𝑅𝑙𝑛(Ω) where Ω is the number of microstates. For 

example, for an Fe2+ magnetic system, the microstates for S = 2 are s = 2, 1, 0, -1, -

2, and Δ𝑆 =  𝑅𝑙𝑛(5).  



31 
 

When the transition under consideration is a magnetic transition, it is 

often useful to measure a non-magnetic analog to isolate only the magnetic 

contribution to the heat capacity. The choice of an appropriate non-magnetic 

analog is critical for obtaining an as-accurate-as-possible determination of the 

magnetic contribution. The analog is generally a chemically similar material 

where non-magnetic atoms have been substituted for magnetic units. For 

example, and as will be discussed in subsequent chapters, Zn2Mo3O8 was a good 

choice of non-magnetic analog for Ni2Mo3O8 because zinc and nickel are similar 

in mass and Zn2+ has no unpaired, magnetically active electrons. For 

MgNiMo3O8, the phonon subtraction was found by averaging the measured heat 

capacities of Mg2Mo3O8 and Zn2Mo3O8. The Mg in Mg2Mo3O8 was too dissimilar 

from the Ni and the Zn in Zn2Mo3O8 to dissimilar from the Mg in MgNiMo3O8, 

but the average of the two measurements served as an excellent non-magnetic 

subtraction. 

The small differences in mass between substituted elements can be 

accounted for using a scaling factor of the form: 

Θ𝐿𝑚𝑌𝑠𝑍𝑝

3

Θ𝑋𝑚𝑌𝑛𝑍𝑞

3 =
𝑚𝑀𝑋

3
2⁄ + 𝑛𝑀𝑌

3
2⁄ + 𝑞𝑀𝑍

3
2⁄

𝑚𝑀𝐿

3
2⁄ + 𝑠𝑀𝑌

3
2⁄ + 𝑝𝑀𝑍

3
2⁄
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To scale the atoms in material 𝐿𝑚𝑌𝑠𝑍𝑝 to material 𝑋𝑚𝑌𝑛𝑍𝑞where Θ𝐿𝑚𝑌𝑠𝑍𝑝
 is 

the Debye temperature of 𝐿𝑚𝑌𝑠𝑍𝑝 and 𝑀𝑋 is the molar mass of element 𝑋 (and 

similarly for elements 𝐿, 𝑌, etc.). Both the heat capacity and the temperature 

should be scaled by this factor. 

Magnetization 

Materials can be diamagnetic, paramagnetic, ferromagnetic, or 

antiferromagnetic; there are many resources that quite ably describe their 

characteristics. All materials with more than one electron are somewhat 

diamagnetic: paired electrons in orbitals with no net magnetic moment produce a 

weak negative moment under an applied field. But diamagnetism is often 

significantly weaker than other types of magnetism, so is often only observed in 

their absence. 

A system selects a magnetically ordered state to lower inherent magnetic 

degeneracy and thereby lower the overall energy of the system. The magnetically 

ordered state that the system selects depends on the magnitude and nature of the 

magnetic interactions (J1, J2, …, Ji) between magnetic units in the material. The 

temperature of a transition is characteristic of the strength of the magnetic 

interactions – a material can magnetically order when the energy of the magnetic 

interactions is greater than the thermal fluctuations. Above this temperature, a 
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magnetic material shows paramagnetic (disordered) behavior. The ordering 

temperature for a ferromagnetic transition is called the Curie temperature (TC), 

while that of an antiferromagnet is the Néel Temperature (TN).  

The Curie-Weiss law can be used to analyze the paramagnetic response of 

a material to quantify the interaction strength, temperature independent 

contribution to the magnetism (𝜒0), and the magnetic moment. It takes the form: 

 𝜒𝑚 =
𝐶

𝑇− 𝜃𝑊
+ 𝜒0 

The Weiss temperature is a measure of the type and strength of the magnetic 

interactions. In the case of non-interacting spins the Weiss temperature 𝜃𝑊= 0. 

Stronger interactions correspond to further divergence from 0; spins that tend to 

align in the same direction will have 𝜃𝑊 > 0 and spins that tend to align in 

opposing directions will have 𝜃𝑊 <  0. The Curie constant, C, is related to the 

effective magnetic moment as 𝑝𝑒𝑓𝑓 =  √8𝐶. This equation is particularly useful 

for analyzing data plotted as 1/𝜒𝑚 versus T, where “Curie-Weiss behavior” is 

linear. In the case of impurity spins, the inclusion of a temperature independent 

𝜒0 term is sometimes necessary. 

The effective magnetic moment is related to the spin quantum number S 

(equal to half of the number of unpaired electrons per unit) as: 

 𝑝𝑒𝑓𝑓 = 𝑔√𝑆(𝑆 + 1) 



34 
 

Where g is the gyromagnetic ratio of the electron and is normally ~ 2. This is the 

spin-only case where the orbital angular momentum is totally quenched. In the 

case that there is un-quenched orbital moment: 

 𝑝𝑒𝑓𝑓 = 𝑔√𝐽(𝐽 + 1) 

Where 𝐽 = 𝐿 + 𝑆 and L is the orbital angular momentum quantum number. The 

effective magnetic moments of various transition metal ions are shown in Table 

1.7. 

Table 1.7 Experimental and theoretical values of 𝜇𝑒𝑓𝑓  for some transition metal 

ions. Reproduced from Smart, 1966 [15]. 

Ion S L J 𝑔√𝐽(𝐽 + 1) 2√𝑆(𝑆 + 1) 𝜇𝑒𝑓𝑓(exp) 

Ti3+, V4+ ½ 2 3/2 1.55 1.73 1.8 

V3+ 1 3 2 1.63 2.83 2.8 

Cr3+, V2+ 3/2 3 3/2 0.77 3.87 3.8 

Mn3+ 2 2 0 0 4.9 4.9 

Fe3+, Mn2+ 5/2 0 5/2 5.92 5.92 5.9 

Fe2+ 2 2 4 6.7 4.9 5.4 

Co2+ 3/2 3 9/2 6.63 3.87 4.8 
Ni2+ 1 3 4 5.59 2.83 3.2 
Cu2+ 1/2 2 5/2 3.55 1.73 1.9 

 

 

 

Section 1.6 Conclusion 

Using the knowledge introduced in this chapter, three new families of quantum 

magnets were explored that are described in the following chapters. Chapter 2 
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discusses the discovery of zig-zag antiferromagnetic order on an integer-spin 

honeycomb in a non-centrosymmetric space group – the first of its kind – and the 

successful selective substitution onto one of the two halves of the bipartite 

honeycomb lattice. Substitution was enabled by differences in coordination 

environment around the magnetic ions. Chapter 3 is a presentation of the first 

report of a growth of mm-scale crystals of FeSc2S4 – a compound that has been of 

great interest to the quantum materials community for decades. This work 

enabled the identification of an antiferromagnetically ordered state in this 

material – suggesting that it is close to, but on the ordered side of, a quantum 

critical point. Chapter 4 discusses two nascent projects: one on the first metallic 

kagomé antiferromagnet, and the other on characterization of highly conductive 

small band-gap semiconducting MOF’s. These studies push the boundaries of 

quantum magnetism and the possibilities of materials design of new quantum 

materials. Perhaps they will even help us step from the Silicon Age to the 

Quantum Age.  
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Section 2.1 Introduction 

Theoretical studies have predicted the existence of topological magnons in 

honeycomb compounds with zig-zag antiferromagnetic (AFM) order. Here we 

report the discovery of zig-zag AFM order in the layered and non-

centrosymmetric honeycomb nickelate Ni2Mo3O8 through a combination of 

magnetization, specific heat, x-ray and neutron diffraction and electron 

paramagnetic resonance measurements. It is the first example of such order in an 

integer-spin non-centrosymmetric honeycomb structure (P63mc). Further, each of 

the two distinct sites of the bipartite honeycomb lattice has a unique crystal field 

environment, octahedral and tetrahedral Ni2+ respectively, enabling independent 

substitution on each sublattice. Replacement of Ni by Mg on the octahedral site 

suppresses the long range magnetic order and results in a weakly ferromagnetic 

state. Conversely, substitution of Fe for Ni enhances the strength of the AFM 

exchange and increases the ordering temperature. Thus Ni2Mo3O8 provides a 

platform on which to explore the rich physics of S = 1 on the honeycomb lattice in 

the presence of competing magnetic interactions with a non-centrosymmetric, 

formally piezo-polar, crystal structure. 
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The prediction and discovery of topological phenomena in materials has ignited 

a global search for new quantum materials and states of matter [1, 2], with 

potential applications in quantum computing and information storage. The 

physical realization of theoretically proposed topological states requires the 

ability to produce materials with highly controlled structural, electronic, and 

magnetic properties. Most materials release inherent magnetic degeneracy at 

sufficiently low temperatures by mechanisms such as structural phase 

transitions, local magnetic ordering, and changes in the degree of electron 

localization (e.g. by formation of singlet pairs with neighboring ions), but there 

are some states of matter postulated to retain finite degeneracy to T = 0 K, such as 

quantum spin liquids (QSL’s) [3-6]. 

One of the main structure types known to host quantum frustrated 

magnetic topological phenomena is the ‘honeycomb’ structure, which is a two 

dimensional bipartite lattice. Unlike the triangular lattice or spinel structure, the 

honeycomb is not inherently geometrically frustrated, but becomes frustrated in 

the presence of competing longer range magnetic interactions or anisotropic 

magnetic exchanges. 

One example of this is the ruthenium honeycomb in α-RuCl3 which may 

host almost exactly the interactions that would allow a finite degenerate 
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quantum spin liquid (Kitaev QSL) state to emerge [7-11]; it is suggested that it is 

the strong next-nearest neighbor and next-next-nearest neighbor interactions that 

stabilize the frustration [12, 13]. Furthermore, extensive experimental and 

theoretical investigations into iridium honeycomb compounds Li2IrO3 [14-18] 

and Na2IrO3 [19-23] have realized many of the types of magnetically ordered 

states that are proximal to QSL states – i.e. stripy antiferromagnetic (AFM), zig-

zag AFM, and Néel AFM [24-29]. 

The nature of the spin interaction, relevant magnetic exchanges, structural 

geometry, order, symmetry, and spin orbit coupling (SOC) influence the 

magnetic ground state of a compound. SOC generally increases with atomic 

number and becomes a controlling factor in 4d and 5d transition metal 

honeycombs, particularly those incorporating iridium and ruthenium. Strong 

SOC has been posited as the reason that iridium honeycombs have a ground 

state that is magnetically ordered rather than a QSL [29]. 

Despite having weaker SOC than the 4d or 5d equivalents, 3d ions with 

strong anisotropy, e.g. Co2+, may also harbor strong bond-dependent interactions 

between ions [30, 31]. Further, recent theoretical predictions have shown that 

honeycomb compounds with zig-zag AFM and stripy AFM order may host 
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topologically non-trivial magnons that are robust under Dzyaloshinskii-Moriya 

interactions [32, 33].  

Here we report that Ni2Mo3O8, which contains a honeycomb of S = 1 Ni2+ 

ions and has previously been reported to remain paramagnetic down to T = 2 K 

[34], undergoes a transition to a zig-zag ordered antiferromagnetic state below 

TN = 6 K, and is thus a candidate for harboring topological excitations. Compared 

to other nickel compounds known to have zig-zag antiferromagnetic order, 

including BaNi2V2O8, BaNi2As2O8, Na3Ni2BiO6, A3Ni2SbO6 (A = Li, Na), and 

Cu3Ni2SbO6 [35-37], Ni2Mo3O8 is unique in that the two triangular sublattices of 

the honeycomb have different local coordination environments of the Ni2+ ions 

(octahedral and tetrahedral), permitting selective replacement of one of the two 

halves of the bipartite lattice. Additionally, it is the first example of zig-zag AFM 

order in a non-centrosymmetric S = 1 honeycomb material, complementing the 

only other known non-centrosymmetric zig-zag antiferromagnetic material, 

Na2Co2TeO6, with S = 3/2. 

In Ni2Mo3O8 substitution of non-magnetic Mg2+ on the tetrahedral site 

removes long range magnetic order, with remnant small ferromagnetic 

interactions between Ni2+ ions. In contrast, substitution of S = 2 Fe2+ for Ni2+ 

results in a large increase in the antiferromagnetic ordering temperature to 
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TN = 50 K. Ni2Mo3O8 is a realization of zig-zag order in a non-centrosymmetric 

antiferromagnet; The ability to selectively substitute one of the two sites in the 

honeycomb make this material an excellent platform from which to investigate 

the underlying physics of the selection of magnetic ground states on the 

honeycomb lattice.  

Section 2.2 Experimental Methods 

2.2.1 Powder Synthesis 

M2Mo3O8, M = (Mg, Ni, Fe, Zn), were synthesized by intimately mixing MO or 

M2O3 and MoO2 with a small stoichiometric excess of MO where M = (Mg, Ni) in 

an agate mortar and pestle, followed by compression into a pressed pellet and 

sealing in an alumina crucible in a quartz ampoule evacuated to 10-2 torr. The 

samples were first heated at 200 °C/hr to 950 °C, held at that temperature 

overnight, and then quenched by removal of the quartz ampoule from the 

furnace to the benchtop to cool. Successive regrinding, repressing, resealing, and 

overnight reheating cycles, with the sample placed directly into and removed 

from a furnace at T = 950 °C, were performed until phase purity was achieved. 

Purity was checked with Rietveld refinements of powder x-ray diffraction 

(PXRD) patterns.  
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2.2.2 Nuclear and Magnetic Structural Characterization 

PXRD patterns were collected on a Bruker D8 Focus diffractometer with a LynxEye 

detector using Cu Kα radiation. Rietveld refinements were performed using Topas 

4.2 (Bruker). Powder neutron diffraction (PND) experiments on Ni2Mo3O8 and 

MgNiMo3O8 were performed at the National Institute for Standards and 

Technology Center for Neutron Research on the BT-1 powder diffractometer using 

the Ge311 monochromator, 60’ collimation, and a wavelength 𝜆𝑛𝑒𝑢𝑡𝑟𝑜𝑛= 2.0775 Å. 

Nuclear structural refinements were performed using GSAS [38] and EXPGUI [39] 

and cross referenced with structural refinements done in the FullProf Suite [40]. 

Time of flight neutron powder diffraction experiments were done at the high 

resolution powder diffractometer POWGEN at Oak Ridge National Laboratory 

using Frame 1.5 at T = 10 K and T = 300 K. LeBail unit cell refinements were used 

to account for starting material (NiO, MgO, MoO2) and side product (NiMoO4) 

impurities, present at the  < 2% level. 

The magnetic unit cell was manually indexed using GSAS and EXPGUI and 

confirmed using k-search in the FullProf suite. SARAh Representational Analysis 

software [41] and FullProf were used in tandem to determine the final structure. 

Structures were visualized using Vesta software [42]. 
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2.2.3 Physical Properties Characterization 

Magnetization and heat capacity measurements were done using a Quantum 

Design Physical Properties Measurement System. Temperature dependent 

magnetization data were collected from T = 2-300 K under applied fields of 

μ0H = 0.5 and 1 T. Susceptibility was computed as 𝜒 = 𝛥𝑀/𝛥𝐻 numerically from 

the two fields for each temperature. The 0.5 T and 1 T fields were chosen as 

representative of a linear portion of the magnetization curve. Curie-Weiss analysis 

was performed over the temperature range 150 K < T < 300 K after linearization of 

susceptibility data with a temperature independent 𝜒0.  

Zero field heat capacity was collected from T = 2 to T = 300 K for Ni2Mo3O8 

and to T = 150 K for MgNiMo3O8 and FeNiMo3O8 using the semi-adiabatic pulse 

technique with a 2% temperature rise and measurement over 3 time constants in 

time.  Measurements were performed in triplicate. Field-dependent heat capacity 

was collected up to μ0H = 5 T from T = 2 to T = 20 K. Ni2Mo3O8 and MgNiMo3O8 

were measured as pressed pellets, while FeNiMo3O8 was pressed with clean silver 

powder. The heat capacity of silver is well known and was subtracted from the 

raw data. Heat capacity measurements in the T = 150 mK – 3.5 K range were done 

on a Quantum Design Dilution Refrigerator (DR) using the semiadiabatic pulse 

technique with a 2% temperature rise and measurement over 3 time constants in 
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time. Measurements were performed in triplicate. DR samples were pressed with 

clean silver powder to enhance thermal conductivity with the stage. The heat 

capacity of silver was measured and subtracted from the raw signal.  

The phononic contribution of Ni2Mo3O8 was found by scaling the measured 

heat capacity of Zn2Mo3O8 for the mass difference between nickel and zinc [43]. 

Similarly, the phononic contribution to the heat capacity of MgNiMo3O8 was found 

as the average of measurements on Mg2Mo3O8 and Zn2Mo3O8, scaled to account 

for the mass differences in the stoichiometric formulae. Literature reports on 

Fe2Mo3O8 were used to scale measurements taken on Zn2Mo3O8 manually to find 

the phonon contribution in FeNiMo3O8 [44]. 

2.2.4 Calculation Methods 

The energy splitting of the Ni2+ ions was calculated with a point charge model [45] 

using the PyCrystalField software package [46]. We built crystal electric field 

models using the ligand positions determined from the neutron diffraction 

experiments, and calculated the eigenstates of a single-ion Hamiltonian with 

crystal fields and spin orbit coupling treated non-perturbatively.  

The crystal electric field (CEF) Hamiltonian can be written as 𝐻𝐶𝐸𝐹 = ∑ 𝐵𝑛
𝑚𝑂𝑛

𝑚
𝑛𝑚  

where 𝑂𝑛
𝑚  are Stevens Operators and 𝐵𝑛

𝑚are multiplicative CEF parameters. To 

calculate the energy level splittings, we computed the single-ion eigenstates using 
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PyCrystalField [46]. This code is based on the method outlined in Hutchings 

(1964), which estimates the CEF Hamiltonian by treading ligands as point charges 

using Stevens Operators formalism. To fully account for spin-0orbit interactions, 

we calculated the singe-ion Hamiltonian in the intermediate coupling scheme by 

expressing the crystal fields by interacting the orbital angular momentum L and 

adding spin orbit coupling 𝐻𝑆𝑂𝐶 =  𝜆𝑆 ∙ 𝐿 non-perturbatively to the Hamiltonian 

so that 𝐻 = 𝐻𝑆𝑂𝐶 + 𝐻𝐶𝐸𝐹 . From here, the eigenvalues and eigenvectors are 

calculated by diagonalizing the Hamilonian. These are shown in Figure 2.12. Values 

of 𝜆 and Ni2+ radial integrals were taken from Abragam and B. Bleaney (1970). 

Section 2.3 Results 

2.3.1 Nuclear Structural Determination 

Ni2Mo3O8, MgNiMo3O8, and FeNiMo3O8 are isostructural and are comprised of 

alternating layers of hexagonal honeycomb and trimerized molybdenum oxide 

layers. Analyses of NPD (Figure 2.3(a-b)) and PXRD patterns support that 

Ni2Mo3O8, MgNiMo3O8, and FeNiMo3O8 crystallize in the non-centrosymmetric 

hexagonal space group 186, P63mc, Table 2.1.) 

The honeycomb lattice is a bipartite lattice comprised of two triangular 

sublattices. In Ni2Mo3O8, one triangular sublattice is octahedrally coordinated 

Ni2+ and the other is tetrahedrally coordinated Ni2+, making this material an 
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integer-spin honeycomb (Figure 2.3(c)). In MgNiMo3O8, 86(3)% of the 2b 

octahedral sites and 14(3)% of the 2b tetrahedral sites are occupied by nickel, and 

14(3)% and 86(3)% of these sites, respectively, are occupied by non-magnetic 

magnesium ions. The sensitivity of the fit statistics to changes in stoichiometry is 

shown in Figure 2.1. 

The fit statistic 𝜒2is calculated as 𝜒2 =
1

𝑁

Σ𝑖(𝐼𝐶.𝑖−𝐼𝑂,𝑖)
2

𝜎2[𝐼𝑂,𝑖]
 where N is the number 

of points less the number of refined parameters (for all fits, N >> number of 

refined parameters), 𝐼𝐶,𝑖 is the calculated intensity at each point i, 𝐼𝑂,𝑖 is the 

observed intensity at each point i, and 𝜎 is the standard deviation: 

The fit statistic 𝑤𝑅𝑝 is calculated as 𝑤𝑅𝑝 = √Σ𝑖𝑤𝑖(𝐼𝐶.𝑖−𝐼𝑂,𝑖)
2

Σ𝑖𝑤𝑖(𝐼𝑂.𝑖)
2  

the weighting factor 𝑤𝑖 = 1 𝜎2[𝐼𝑂,𝑖]⁄ .  

The fit statistic 𝑅𝑝 is calculated as 𝑅𝑝 = √
𝑁

Σ𝑖𝑤𝑖(𝐼𝑂.𝑖)
2 

 

 

 At T = 15 K, the oxygen ligands on the 2b Wycoff position in Ni2Mo3O8 are 

slightly distorted in the c-direction from their ideal positions around the nickel 

sites. In the octahedron, the O-Ni-O angle is 88.2(2)° rather than the ideal 90°. In 
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the tetrahedron, the O-Ni-O angle is 114.52(14)°, rather than the ideal 109.5°. This 

distortion has an anisotropic temperature dependence, shown in Figure 2.4. The c 

lattice parameter decreases almost linearly from T = 300 K to T = 15 K, while the a 

lattice parameter decreases more rapidly than c from T = 300 K to T ~ 180 K and 

remains relatively constant from T = 150 K to T = 15 K. The ratio of the lattice 

parameters a/c over temperature in the lower panel of Figure 2.4 is particularly 

instructive: it increases from T = 300 K to T ~ 180 K and decreases from T = 130 K 

to T = 15 K.  

 

Figure 2.1 Dependence of the fit statistic 𝜒2 on the fractional occupancy of nickel 

on the octahedral site of the Mg-Ni honeycomb lattice. Total occupancy of the site 

was held at 1. 

 

The oxygen ligand crystal field environment is similarly distorted in 

MgNiMo3O8 as it is in Ni2Mo3O8. In these materials, the oxygen locations can be 
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precisely located due to the scattering factor contrast available by NPD 

measurements. FeNiMo3O8 was characterized using PXRD; the best refinements 

are obtained with the octahedral site selectively occupied by Fe2+ (Table 2.1, 

refinements plotted in Figure 2.2). The placement of Fe2+ on the octahedral site 

somewhat surprising: while the ionic radius of Ni2+ is slightly smaller than that of 

Fe2+ (high spin) in both CN = 4, respectively 0.55 pm and 0.63 pm, and CN = 6, 

0.69 pm and 0.79 pm, which would tend to favor placement of Fe2+ on the 

octahedral site, crystal field stabilization energies would favor Ni2+ on the 

octahedral site. Despite this expectation, other data is also consistent with an 

ordering of the Fe2+ and Ni2+ ions: there is a sharp antiferromagnetic transition in 

the susceptibility (see below), which would not be expected if Fe2+ and Ni2+ were 

randomly mixed. Thus we assume ordering of Fe2+ and Ni2+, but note that site 

mixing at the 10-20% level cannot be ruled out.  
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Figure 

2.2 Rietveld refinement of P63mc to a room temperature PXRD pattern collected on 

FeNiMo3O8, measured with Cu K𝛼 radiation. Black asterisks denote a Si standard, and a 

green asterisk denotes a 1.6 % MoO2 impurity. 
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Figure 2.3 Neutron powder diffraction patterns of (a) Ni2Mo3O8 and (b) MgNiMo3O8, 

refined to the P63mc space group; Table 2.1. Tick marks in descending vertical display 

order: Ni2Mo3O8 (dark blue), NiO (dark green); MgO (brown); MoO2 (purple), and 

NiMoO4 (light green). MgO is not present in the refinement for Ni2Mo3O8. (c) Top-down 

view of the nickel honeycomb lattice, showing alternating adjacent octahedrally and 

tetrahedrally coordinated atoms and nearest neighbor (2N; 3.384(3) Å), next nearest 

neighbor (3N; 5.759(5) Å) interactions, and next-next nearest neighbor (4N; 6.680(5) Å) 

interactions. 
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Figure 2.4 Top: temperature dependence of the a (green triangles) and c (purple 

circles) lattice parameters of Ni2Mo3O8 relative to T = 300 K values of 5.75695(7) Å 

and 9.87967(9) Å, respectively. Bottom: temperature dependence of the ratio of the 

lattice parameters (blue squares). 
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Table 2.1 Atomic parameters for structural refinement of (M1)(M2)Mo3O8, M1 = (Ni, Mg, Fe), 

M2 = Ni; Ni2Mo3O8 and MgNiMo3O8 from NPD at T = 1.5 K and T = 15 K respectively with a 

neutron wavelength of 2.0775 Å, FeNiMo3O8 from PXRD at room temperature with 𝜆𝐶𝑢,𝐾𝛼 =

1.5406 Å. Occupancies of M1 and M2 are given as (Mg or Fe)/Ni and Ni/(Mg or Fe) respectively.  

  Ni2Mo3O8 MgNiMo3O8 FeNiMo3O8 

 a (Å2) 5.74683(5) 5.75166(3) 5.76580(2) 

 c (Å2) 9.8626(2) 9.85620(9) 9.90929(3) 

 T (K) 15 1.5 295 

M1 x 1/3 1/3 1/3 

2b y 2/3 2/3 2/3 

 z 0.9480(4) 0.9452(2) 0.9715(2) 

 Uiso 0.0057(7) 0.0006(4) 0.0109(3) 

 Occ. 1 0.86/0.14(3) 1.0(1)/0.0 

M2 x 1/3 1/3 1/3 

2b y 2/3 2/3 2/3 

 z 0.5116(3) 0.5120(5) 0.5348(2) 

 Uiso 0.0056(8) 0.00106(4) 0.0109(3) 

 Occ. 1 0.86/0.14(3) 1.0(1)/0 

Mo x 0.1440(2) 0.14586(9) 0.14688(3) 

6c y -0.1440(2) -0.14586(9) -0.14688(3) 

 z 0.2489(2) 0.25017(14) 0.2733(10) 

 Uiso 0.0042(7) 0.0002(2) 0.0058(2) 

O1 x 0 0 0 

2a y 0 0 0 

 z 0.6839(5) 0.3890(3) 0.6165(4) 

 Uiso 0.008(2) 0.0095(8) 1 

O2 x 1/3 1/3 1/3 

2b y 2/3 2/3 2/3 

 z 0.1461(4) 0.147(2) 0.1765(4) 

 Uiso 0.0012(13) 0.0003(5) 1 

O3 x 0.4880(3) 0.4878(2) 0.4882(2) 

6c y -0.4880(3) -0.4878(2) -0.4882(2) 

 z 0.3659(3) 0.36774(17) 0.3971(4) 

 Uiso 0.0044(4) 0.0047(3) 1 

O4 x 0.1688(3) 0.1723(2) 0.1665(3) 

6c y -0.1688(3) -0.1723(2) -0.1665(3) 

 z 0.6342(3) 0.36774(17) 0.6609(2) 

 Uiso 0.0015(7) 0.0173(4) 1 

 wRp 0.0715 0.0415 2.88 

 Rp 0.0521 0.0288 2.23 

 χ2 2.526 3.913 1.41 
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2.3.2 Physical Properties 

Ni2Mo3O8 and MgNiMo3O8 both exhibit a peak in heat capacity at T ~ 6 K, Figure 

2.5 (a,b). It is at slightly higher temperature and is sharper in Ni2Mo3O8, which is 

consistent with this material being less disordered and having stronger magnetic 

interactions than MgNiMo3O8. The application of a µ0H = 5 T magnetic field 

causes the peak to shift to lower temperatures in Ni2Mo3O8 and to higher 

temperatures in MgNiMo3O8, which is indicative of antiferromagnetic and 

ferro/ferrimagnetic interactions, respectively.  

Strikingly, Ni2Mo3O8 and MgNiMo3O8 recover the same amount of entropy 

per magnetic ion by T ~ 150 K. The entropy loss looks to be two step: one degree 

of freedom is lost between T = 10 K and T = 150 K and two more at the T ~ 6 K 

transition. The high temperature phonon contribution, calculated from the mass-

adjusted measured heat capacity of non-magnetic analogs, describes the high 

temperature behavior of the materials well. This is highlighted in the insets, 

which are plotted on a linear temperature scale. There is a large peak in the heat 

capacity of FeNiMo3O8 at T ~ 50 K that recovers ΔS = 20.54(5) J mol-1 K-1, between 

T = 2 K and T = 100 K,  
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Figure 2.6. The phononic background is consistent with reports on the 

related compound Fe2Mo3O8 [44]. The changes in entropy of all three compounds 

are summarized in Table 2.2.  

Table 2.2 Summary of recovered entropy per formula unit (f.u.), shown in Figure 

2.5(c) and the lower panel of  

Figure 2.6. 

 ΔSmag (J mol-f.u-1.K-1) 

Ni2Mo3O8  13.9(7) 

MgNiMo3O8  6.9(3) 

FeNiMo3O8  20.5(1.0) 
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Figure 2.5 (a) Heat capacity over temperature versus the logarithm of temperature 

of Ni2Mo3O8 (top panel, purple circles) and (c) MgNiMo3O8 (brown squares). 

Magnetic heat capacity (green curve) found by subtracting the phononic 

contribution (blue curve) determined from measured non-magnetic analog 

materials. Insets: Heat capacity over temperature versus linear temperature, 

highlighting the high temperature phonon contribution. (c) Entropy as a function 

of temperature. 
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Figure 2.6 Top: Heat capacity over temperature versus temperature of FeNiMo3O8 

measured from T = 2 to T = 150 K (dark blue squares). Inset: Raw measured data (black 

squares) included heat capacity from clean silver powder pressed with the sample (blue 

curve), which was subtracted to isolate only the contribution from FeNiMo3O8. A peak at 

T = 50 K capturing between Rln(5) + Rln(2) and Rln(5) + Rln(3) of entropy (bottom panel, 

dark blue curve) was determined to be magnetic (green curve, top panel) by subtracting the 

phonon contribution to the specific heat (light blue curve, top panel and inset, from 

measured non-magnetic analog Zn2Mo3O8, scaled to be consistent with literature 

measurements on Fe2Mo3O8 [44]). 

 

All three compounds exhibit Curie-Weiss behavior at T > 100 K,  

Figure 2.7(a). MgNiMo3O8 has a small positive Weiss temperature of 

𝜃𝑊 = 6.5(1.3) K, consistent with weak ferromagnetic interactions, and a Curie constant of 

1.280(7) and peff = 3.20(3) 𝜇𝐵. Ni2Mo3O8 has a larger negative Weiss temperature of 

𝜃𝑊 = -55.5(5) K, consistent with antiferromagnetic interactions, a total Curie constant of 

5.518(1.0), and an average peff of 4.70(3) 𝜇𝐵 per nickel atom, summarized in Table 2.3. 
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FeNiMo3O8 exhibits a clear antiferromagnetic phase transition at T ~ 50 K,  

Figure 2.7(b). The effective magnetic moment is 6.86(4) 𝜇𝐵, which is close 

to the expected spin-only moment of 7.32 𝜇𝐵 of combined high-spin Fe2+ (4.49 𝜇𝐵) 

and Ni2+ (2.83 𝜇𝐵). The Weiss temperature is T = -101.5(3) K, indicating strong 

antiferromagnetic interactions. 

At T = 2 and T = 6 K, the field dependent magnetization of Ni2Mo3O8 has 

metamagnetic curvature which is not visible at T = 15 K,  

Figure 2.7(a) inset. Such metamagnetism suggests that a low-lying (in 

field) magnetic phase transition is possible. This behavior could be interpreted as 

differences in in-plane and out-of-plane magnetic responses, for which single 

crystal samples are necessary to fully understand the nature of the transition [8]. 

There is no apparent hysteresis to the curve, suggesting that there is little to no 

ferromagnetic component of the magnetization at this temperature. The magnetic 

response of MgNiMo3O8 fits well to a Brillouin function in the T = 2 K to T = 300 

K temperature range and is thus likely paramagnetic at all measured 

temperatures (Fig. 3 and Table 2, SI).  
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Figure 2.7 Inverse susceptibility of Ni2Mo3O8, MgNiMo3O8, and FeNiMo3O8 linearized 

and fit to the Curie-Weiss law in the temperature range of 150 K to 300 K, fit values 

summarized in Table 2.3. (a) Inverse susceptibility of MgNiMo3O8 (brown squares) is non-

linear below T = 150 K but shows no clear ordering transition. In contrast, a small upturn 

at T = 6 K in the inverse susceptibility of Ni2Mo3O8 (purple squares) indicates an 

antiferromagnetic phase transition. The inverse susceptibility of this material is also non-

linear in the T = 6 – 150 K temperature range. Inset: Magnetization versus applied field of 

Ni2Mo3O8 at T = 2 K, 6 K, and 15 K. (b) A sharp uptick in the inverse susceptibility of 

FeNiMo3O8 indicates an antiferromagnetic phase transition at T ~ 50 K. 
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Table 2.3 Fit values for Curie-Weiss analysis of high temperature magnetic 

susceptibility of Ni2Mo3O8, MgNiMo3O8 and FeNiMo3O8, shown graphically in  

Figure 2.7. C and peff are per formula unit.  

 Ni2Mo3O8 MgNiMo3O8 FeNiMo3O8 

C (emu K 

mol-1 K-1) 

5.52(1.4) 1.28(7) 5.89(9) 

peff (µB) 6.64(6) 3.20(3) 6.86(4) 

θW (K) -55.5(5) 6.5(1.3) -101(1.0) 

TN (K) 6.0(2) - 50.0(2) 

𝜒0 (emu mol-1 

Oe-1) 

0.0025 0.0015 0.00055 

 

 
Figure 2.8 Field-dependent magnetization of MgNiMo3O8 measured at T = 2 K, 

10 K, 30 K, and 300 K. Red curves represent fits of a Brillouin function to the data. 

Fit values are summarized in Table 2.4 
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Table 2.4 Refined values and fit statistics for fits of a Brillouin function to field-

dependent magnetization of MgNiMo3O8 at T = 2 K, 10K, and 300 K. 

T (K) J R2 

2 0.7751(9) 0.99874 

10 1.051(18) 0.99504 

30 1.157(2) 0.9942 
 

The magnetization is defined as  𝑀 = 𝑔𝑗 × 𝐽 × 𝐵𝑗  

Where the Brillouin function 𝐵𝐽 as a function of angular momentum 𝐽 is: 

 𝐵𝑗 = 
2𝐽+1

2𝐽
𝑐𝑜𝑡ℎ (

2𝐽+1

2𝐽
× 𝑡) −

1

2𝐽
𝑐𝑜𝑡ℎ (

𝑡

2𝐽
) 

And the ratio of the magnetic and thermal energies is:  

 𝑡 =
 𝑓×𝑔𝑗×𝐽

𝑘𝑇
× 𝐻 

Where 𝑀 is magnetization, 𝐻 is applied field, and 𝑔𝑗 is held to the spin-only 

value of 2. 

2.3.3 Electron Spin Resonance 

The ESR data in Figure 2.10 (a) and (b) from Ni2Mo3O8 and MgNiMo3O8 have 

broad resonances, which is typical of S = 1 systems [47]. There are two magnetic 

sites in each unit cell: the octahedrally coordinated and tetrahedrally coordinated 

nickels on the two triangular honeycomb sublattices. In Ni2Mo3O8, these sites are 

equally populated. In MgNiMo3O8, 14(3)% of the tetrahedral sites and 86(3)% of 

the octahedral sites are populated by Ni (determined from NPD), and the 

remaining sites are non-magnetic. Thus, the ESR data from Ni2Mo3O8 should 
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show two equally-weighted resonances and the data from MgNiMo3O8 should 

show two resonances at 14% and 86% on each of the respective sites. This is 

visually consistent with the data, shown in Figure 2.9, Ni2Mo3O8, and Figure 

2.10, MgNiMo3O8. The resonance for Ni2Mo3O8 looks like one broad resonance, 

which can be decomposed into two similarly-sized overlapping features. The 

resonance for MgNiMo3O8 is clearly two components. These features were fit 

using two Lorentzian curves, from which the g factor, integrated intensity, and 

width could be extracted. The temperature dependence of these parameters are 

plotted in Figure 2.9 (d-f) and Figure 2.10 (d-f).  

We can leverage our knowledge of the stoichiometry and site occupancy 

in MgNiMo3O8 and the measured signals from Ni2Mo3O8 and MgNiMo3O8 to 

separate the signals from the two sites. The higher intensity feature in 

MgNiMo3O8 corresponds to the 86% stoichiometric octahedral fraction, while the 

lower intensity peak corresponds to the 14% stoichiometric tetrahedral fraction. 

Subtracting the Ni2Mo3O8 and MgNiMo3O8 signals with scaling factors for 

occupancy yield the single-contribution peaks (Figure 2.11). The resonance at 

lower (higher) field corresponds to the tetrahedral (octahedral) component: when 

the scaled fraction of Ni2Mo3O8 is subtracted from the MgNiMo3O8, the higher 

field feature remains. 
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The g factor for the octahedral site is temperature insensitive in both 

MgNiMo3O8 and Ni2Mo3O8 and remains at ~ 2.2 from T = 300 K to T = 10 K. In 

contrast, the g-factor for the tetrahedral site remains constant at ~ 3.7 from 

T = 290 K to T ~ 120 K and then increases from T ~ 130 K to ~ 4.3 as temperature 

decreases to T = 10 K. 

 

Figure 2.9 (a) Temperature dependent electron spin resonance (ESR) signal of 

Ni2Mo3O8 in the T = 10 K to T = 325 K range. Two Lorenzian peak profiles were 

used to fit the data, shown for (b) T = 275 K and (c) T = 50 K, and the (d) g factor, 

(e) integrated intensity, and (f) width have a temperature dependence for the 

tetrahedral (red circles) and octahedral (blue triangles) coordination 

environments. Total integrated intensity is represented with green squares. 

Guides to the eye are drawn for panels d, e, and f. 
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Figure 2.10 (a) Temperature dependent electron spin resonance (ESR) signal of 

MgNiMo3O8 in the T = 10 K to T = 325 K range. Two Lorenzian peak profiles were 

used to fit the data, shown for (b) T = 275 K and (c) T = 50 K, and the (d) g factor, 

(e) integrated intensity, and (f) width have a temperature dependence for the 

tetrahedral (red circles) and octahedral (blue triangles) coordination 

environments. Total integrated intensity is represented with green squares. 

Guides to the eye are drawn in panels d, e, and f. 

 

Above T = 150 K, the octahedral data have two isosbestic points: one at 

0.28 T and the other at 0.18 T. Below T = 150 K, there is one isosbestic point at 

0.23 T.  The integrated intensity for both Ni2Mo3O8 and MgNiMo3O8  decreases 

from T ~ 150 K to T = 10 K. 
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Figure 2.11 (a) Temperature dependent electron spin resonance signal of (a) 

Ni2Mo3O8 in the T = 10 to T = 325 K range, and (b) MgNiMo3O8 in the T = 10 K to 

T = 290 K range measured at a frequency of 9.440 GHz. (c)(i) Plot of the octahedral 

(tetrahedral) component of the MgNiMo3O8 (Ni2Mo3O8) data, and fits of a 

Lorentzian profile to data at (d)(j) 290 K and (e)(k) 125 K (100 K). Plots of (f)(l) g-

factor, (g)(m) integrated intensity, and (h)(n) width parameters of fits at all 

measured temperatures.  

 

2.3.4 Single Ion Crystal Field Analysis 

Using the low temperature crystal structure, a point charge model can be used to 

construct the expected splitting of multielectron states for Ni2+ on the octahedral 

and tetrahedral sites, Figure 2.12. As expected, the trigonal distortion removes 

the orbital degeneracy for the tetrahedral case, but leaves the (orbitally non-

degenerate) ground state of the octahedral site intact. The confluence of the 

trigonal crystal field with spin orbit coupling lifts the degeneracy of the ground 

state triplet resulting in single ion anisotropies of Δ = 22 meV and Δ = 7.8 meV for 

tetrahedral and octahedral respectively. Crucially, the low lying states on the two 

distinct sites are symmetry compatible and thus can have significant 
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exchange/superexchange interactions, in agreement with the large and negative 

Weiss temperature observed for Ni2Mo3O8. Further, the single ion anisotropy of 

the tetrahedral site is consistent with the temperature dependent changes 

observed in ESR: the g-factor is expected to start to change from its high 

temperature to low temperature value around 0.42*Δ = 107 K, versus the 

observed T = 110 K. In contrast, the octahedral site would not have a local change 

in anisotropy until ~30 K, a temperature at which interactions between sites are 

already dominant.  
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Figure 2.12 Diagram of the single ion energy levels of the (left) undistorted 

tetrahedral and octahedral coordination environments, (middle) trigonal 

distortion, and (right) trigonal distortion and spin orbit coupling (SOC). Bottom: 

the two lowest energy states of tetrahedral and octahedral crystal field 

environments are similar in energy splitting and have the same Γ1  and Γ3 

symmetries. 

 

2.3.5 Magnetic Structure Determination 

Magnetic Bragg peaks were identified in NPD patterns of Ni2Mo3O8 at T = 1.6 K 

that were not present at T = 15 K, which is consistent with the magnetic phase 

transition observed in susceptibility data. These peaks were isolated by 
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subtraction of nuclear peaks measured at the two temperatures and can be seen 

in  

Figure 2.13. The largest propagation vector, 𝑘⃗ , the smallest vector in real space 

that indexes all of the magnetic peaks is 𝑘⃗  = (½ 0 0). This indicates that a doubling 

of the unit cell in the a direction is necessary to describe the magnetic order. It 

should be noted that space group P63mc is non-orthogonal, and this doubling is 

in internal abc directions, rather than orthogonal xyz directions. Representational 

analysis of this 𝑘⃗  vector in space group P63mc leads to four irreducible 

representations: Γ1, Γ2, Γ3, and Γ4 on six basis vectors 𝜓1-𝜓6, which are 

summarized in Table 2.5. Consistent with Landau theory, only a single 

irreducible representation is necessary to describe the structure resulting from a 

second order phase transition. 
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Table 2.5. Irreducible representations (IR) and basis vectors (BV) for the two 

magnetic nickel atoms in Ni2Mo3O8 and associated real components in the a, b, and 

c directions for 𝑘⃗  = (½ 0 0) in space group P63mc.  

IR BV atom 𝑚∥𝑎 𝑚∥𝑏 𝑚∥𝑐 

Γ1 𝜓1 Ni1 0 -1 0 

  Ni2 0 -1 0 
Γ2 𝜓2 Ni1 2 1 0 

  Ni2 2 1 0 

 𝜓3 Ni1 0 0 2 

  Ni2 0 0 -2 
Γ3 𝜓4 Ni1 0 -1 0 

  Ni2 0 1 0 
Γ4 𝜓5 Ni1 2 1 0 

  Ni2 -2 -1 0 

 𝜓6 Ni1 0 0 2 

  Ni2 0 0 2 

 

The intensity of neutrons scattering off of long range magnetic 

corresponds to the magnetic moment perpendicular to the neutron scattering 

vector. The tallest magnetic peak at 2θ = 24.10o corresponds to the (004) 

reflection. The significant amount of intensity in this and related reflections 

means that there must be intensity in the c direction. There is no coefficient 

giving rise to intensity in the c direction in the Γ1 and Γ3 irreducible 

representations, so these may be discarded. Both Γ2 and Γ4 allow for intensity at 

all indexed peaks; between the two, refinements of Γ2 show a better fit to the 

data, with a statistical χ2 of 4.479, where the best fit of Γ4 gives a χ2 of 5.502. A 

comparison of the statistical refinements can be seen in Table 2.6. 
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Table 2.6 Refinement statistics for fits using the irreducible representations  

Γ2 and Γ4  on the magnetic peaks in neutron powder diffraction patterns of 

Ni2Mo3O8. Initialization of refinements with more magnitude in the c direction 

or the ab plane resulted in subtly different solutions.  

 Γ2 Γ4 

 c direction ab plane c dir. ab plane 

χ2 4.479 4.479 5.546 5.502 

 

With no constraints on magnitude and direction of magnetic moment, the refined 

magnetic structure in Γ2 is a zig-zag structure. Three other common ordering 

patterns for honeycomb lattices were also explicitly tested: ferromagnetic (FM), 

Néel AFM, stripy AFM. In these refinements, the sign of the moment (+/-) in c 

relative to the honeycomb lattice was constrained, but the magnitude and 

direction of the magnetic moment were not. The results of these refinements are 

shown in Figure 2. (a-d), and the structure visualized in Figure 2.13 (e, f). It is 

clear that (a) FM, (b) stripe AFM, and (c) Néel AFM do not fit the data as well as 

the zig-zag AFM structure (d-f)  



72 
 

 

Figure 2.13 Refined models with enforced (a) ferromagnetic (FM), (b) stripy 

antiferromagnetic (AFM), (c), Néel AFM, and (d) zig-zag AFM order on neutron powder 

diffraction patterns collected at T = 1.6 K with the nuclear contribution subtracted using 

measurements done at T = 15 K. (a) FM and (c) Néel AFM order do not have intensity at 

many magnetic peaks; zig-zag AFM order results in the best fit. Red asterisks denote 

significant deviations of the fit from the data. The black asterisk denotes a remnant 

structural contribution. (e) Top-down and (f) side view of the zig-zag structure. Magnetic 

moment in the +c (-c) direction are light (dark) gray, dark (light) blue atoms are 

tetrahedrally (octahedrally) coordinated nickel. 

 

All combinations of larger moment on the tetrahedral site or the 

octahedral site, initiated with magnitude in the c direction or the ab plane, and 

every combination of positive and negative starting values for the coefficients of 

the basis vectors were refined using the nuclear-subtracted magnetic Bragg peaks 

with no constraints on magnitude and direction, Table 2.7and Table 2.8. All 

refinements resulted in zig-zag AFM order. While there is no statistical difference 

between the χ2 metric of the quality of the refinements that have more magnitude 

on the octahedral or tetrahedral nickel site (the sites are indistinguishable if only 
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the Ni atom positions are considered), it is clear from ESR data that there is a 

larger magnetic moment on the tetrahedral nickel. 

There are two statistically identical zig-zag AFM ordered magnetic 

structures with larger magnetic moment on the tetrahedral nickel. There is strong 

directionality to the magnetic moment of the two sites of both. In one, an ordered 

moment of 1.727 𝜇𝐵 on the tetrahedral site lies mainly in the ab plane and a 

moment of 1.431 𝜇𝐵 on the octahedral site points primarily in the c direction. In 

the other, an ordered moment of 1.997 𝜇𝐵on the tetrahedral site points partially 

in the c direction and a moment of 0.891 𝜇𝐵 on the octahedral site is mainly in the 

ab plane. These have been visualized in Figure 2.14. 



74 
 

Table 2.7  Γ2 refinements of 𝑐2 , the coefficient of basis vector 𝜓2 , and 𝑐3 , the 

coefficient of basis vector 𝜓3, initialized with greater intensity in the c direction on 

either the tehtrahedrally or octahedrally coordinated nickel. Magnitude and 

direction of the spins were not constrained. All refinements resulted in zig-zag 

order. 

 

 

 

 

Γ2 Initial Final 
𝜇𝐵 𝜒2 

Initial Final 
𝜇𝐵 𝜒2 

 𝑐2 𝑐3 𝑐2 𝑐3 𝑐2 𝑐3 𝑐2 𝑐3 

NiTd -2 -5 -0.463 -0.586 1.423 
4.48 

-2 -2 -0.463 -0.586 1.423 
4.48 

NiOh -2 -2 0.994 0.070 1.727 -2 -5 0.994 0.070 1.727 

NiTd -2 -5 -0.463 -0.586 1.421 
4.48 

-2 -2 -0.994 0.072 1.727 
4.48 

NiOh -2 2 0.994 0.070 1.727 -2 5 0.467 -0.586 1.424 

NiTd -2 -5 -0.463 -0.586 1.421 
4.48 

-2 -2 -0.994 0.072 1.727 
4.48 

NiOh 2 -2 0.994 0.070 1.727 2 -5 0.467 -0.586 1.391 

NiTd -2 -5 -0.463 -0.586 1.421 
4.48 

-2 -2 0.994 -0.072 1.727 
4.48 

NiOh 2 2 0.994 0.070 1.727 2 5 -0.467 0.586 1.430 

NiTd -2 5 0.467 0.590 1.430 
4.48 

-2 2 -0.994 0.072 1.727 
4.48 

NiOh -2 -2 -0.994 -0.069 1.727 -2 -5 0.467 -0.586 1.424 

NiTd -2 5 0.467 0.590 1.430 
4.48 

-2 2 0.994 -0.072 1.727 
4.48 

NiOh -2 2 -0.994 -0.069 1.727 -2 5 -0.467 0.586 1.430 

NiTd -2 5 0.467 0.590 1.430 
4.48 

-2 2 -0.994 0.072 1.727 
4.48 

NiOh 2 -2 -0.994 -0.069 1.727 2 -5 0.467 -0.586 1.424 

NiTd -2 5 0.467 0.590 1.430 
4.48 

-2 2 0.994 -0.069 1.727 
4.48 

NiOh 2 2 -0.994 -0.069 1.727 2 5 -0.467 0.586 1.430 

NiTd 2 -5 -0.463 -0.586 1.430 
4.48 

2 -2 -0.994 0.072 1.727 
4.48 

NiOh -2 -2 0.994 0.070 1.727 -2 -5 0.467 -0.586 1.424 

NiTd 2 -5 -0.463 -0.586 1.421 
4.48 

2 -2 0.994 -0.069 1.727 
4.48 

NiOh -2 2 0.994 0.070 1.727 -2 5 -0.467 0.590 1.421 

NiTd 2 -5 -0.463 -0.586 1.430 
4.48 

2 -2 -0.994 0.072 1.727 
4.48 

NiOh 2 -2 0.994 0.070 1.727 2 -5 0.467 -0.586 1.424 

NiTd 2 -5 -0.463 -0.586 1.430 
4.48 

2 -2 0.994 -0.072 1.727 
4.48 

NiOh 2 2 0.994 0.070 1.727 2 5 -0.467 0.590 1.430 

NiTd 2 5 0.467 0.590 1.430 
4.48 

2 2 0.994 -0.069 1.727 
4.48 

NiOh -2 -2 -0.994 -0.069 1.393 -2 -5 -0.467 0.590 1.424 

NiTd 2 5 0.467 0.590 1.430 
4.48 

2 2 0.994 -0.069 1.727 
4.48 

NiOh -2 2 -0.994 -0.069 1.727 -2 5 -0.467 0.590 1.430 

NiTd 2 5 0.467 0.590 1.430 
4.48 

2 2 0.994 -0.069 1.727 
4.48 

NiOh 2 -2 -0.994 -0.069 1.727 2 -5 -0.467 0.590 1.424 

NiTd 2 5 0.467 0.590 1.430 
4.48 

2 2 0.994 -0.069 1.727 
4.48 

NiOh 2 2 -0.994 -0.069 1.727 2 5 -0.467 0.590 1.430 
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Table 2.8 Γ2  refinements of 𝑐2 , the coefficient of basis vector 𝜓2 ,and 𝑐3 , the 

coefficient of basis vector 𝜓3, initialized with greater intensity in the ab plane on 

either the tehtrahedrally or octahedrally coordinated nickel. Magnitude and 

direction of the spins were not constrained. All refinements resulted in zig-zag 

order. 

 

 Γ2 Initial Final 
𝜇𝐵 𝜒2 

Initial Final 
𝜇𝐵 𝜒2 

 𝑐2 𝑐3 𝑐2 𝑐3 𝑐2 𝑐3 𝑐2 𝑐3 

NiTd -5 -2 -0.956 -0.559 1.998 
4.47 

-2 -2 0.430 0.012 0.747 
4.60 

NiOh -2 -2 0.508 0.021 0.881 -2 -2 -1.000 -0.488 1.988 

NiTd -5 -2 -0.956 -0.559 1.998 
4.49 

-2 -2 0.509 -0.021 0.882 
4.49 

NiOh -2 2 0.509 0.023 0.883 -5 2 -0.956 0.559 1.997 

NiTd -5 -2 -0.955 -0.559 1.997 
4.49 

-2 -2 -0.508 0.021 0.881 
4.49 

NiOh 2 -2 0.513 0.021 0.896 5 -2 0.959 -0.559 2.000 

NiTd -5 -2 -0.955 -0.559 1.997 
4.49 

-2 -2 -0.467 -0.586 0.747 
4.48 

NiOh 2 2 0.509 0.022 0.884 5 2 0.997 0.070 1.988 

NiTd -5 2 -0.994 0.080 1.727 
4.49 

-2 2 0.467 0.586 1.424 
4.57 

NiOh -2 -2 0.467 -0.586 0.000 -5 -2 -0.994 -0.069 1.727 

NiTd -5 2 -0.999 -0.489 1.987 
4.60 

-2 2 0.509 -0.020 0.747 
4.49 

NiOh -2 2 0.431 -0.010 0.747 -5 2 -0.956 0.559 1.988 

NiTd -5 2 -0.994 0.072 1.727 
4.48 

-2 2 0.508 0.022 0.881 
4.49 

NiOh 2 -2 0.468 -0.586 1.425 5 -2 0.959 -0.559 2.003 

NiTd -5 2 -0.999 0.489 1.988 
4.60 

-2 2 0.432 -0.009 0.748 
4.60 

NiOh 2 2 0.432 -0.009 0.748 5 2 1.000 0.489 1.989 

NiTd 2 -5 1.003 -0.488 1.990 
4.60 

2 -2 0.435 0.012 0.754 
4.49 

NiOh -2 -2 -0.431 0.012 0.747 -2 -5 -1.000 -0.488 1.988 

NiTd 5 -2 1.003 -0.488 1.993 
4.48 

2 -2 0.514 -0.021 0.759 
4.48 

NiOh -2 2 -0.431 0.012 0.747 -5 2 -0.955 0.559 1.997 

NiTd 5 -2 1.002 -0.488 1.987 
4.60 

2 -2 -0.501 0.020 0.747 
4.49 

NiOh 2 -2 -0.428 0.012 0.747 5 -2 0.964 -0.559 1.988 

NiTd 5 -2 0.998 -0.069 1.735 
4.48 

2 -2 -0.465 -0.586 1.422 
4.48 

NiOh 2 2 -0.462 0.586 1.420 5 2 0.996 0.070 1.731 

NiTd 5 2 0.963 0.559 2.008 
4.49 

2 2 0.470 0.588 1.431 
4.48 

NiOh -2 -2 -0.508 -0.021 0.881 -5 -2 -0.994 -0.069 1.727 

NiTd 5 2 0.960 0.559 2.003 
4.49 

2 2 0.500 -0.020 0.882 
4.48 

NiOh -2 2 -0.508 -0.019 0.881 -5 2 -0.956 0.559 1.998 

NiTd 5 2 0.964 0.559 2.009 
4.49 

2 2 0.500 0.021 0.867 
4.49 

NiOh 2 -2 -0.500 0.559 0.867 5 -2 0.964 -0.559 2.009 

NiTd 5 2 0.964 0.559 2.009 
4.49 

2 2 -0.430 -0.011 0.746 
4.60 

NiOh 2 2 -0.500 -0.019 0.867 5 2 1.000 0.488 1.988 
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Figure 2.14 Visualization of magnetic structures shown in Figure 2.15. Left: 

tetrahedral magnetic moment is in the ab plane, right: tetrahedral magnetic 

moment in the c direction. 

 

The ratio of the tetrahedral to octahedral g factors (which are proportional 

to the magnetic moment) is 1.21 for structure where the tetrahedral moment is 

primarily in the ab plane and 2.24 for the moment in the c direction. These 

numbers bracket the ratio of 1.8 observed in the ESR measurements at T = 10 K, 

Table 2.9. The refinement to the structure where the tetrahedral spins lie mainly 

in the ab plane better describes the data, based on visual inspection (Figure 2.15). 

This solution is more intuitive, too, as one would expect the magnetic moment to 

be roughly the same for the two sites, as nickel is 2+ on both. 
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Table 2.9. Values and ratios of tetrahedral to octahedral magnetic moments from 

ESR measured at T = 10 K and refinements in Γ2 to the magnetic Bragg peaks from 

NPD with the tetrahedral spins primarily in the ab plane or the c direction. 

 𝜇𝐵,𝑇𝑒𝑡. 𝜇𝐵,𝑂𝑐𝑡. 
𝜇𝐵,𝑇𝑒𝑡.

𝜇𝐵,𝑂𝑐𝑡.
 

ESR T = 10 K 4.32 2.43 1.78 

ab plane 1.727 1.431 1.21 

c direction 1.997 0.891 2.24 

  

  

Figure 2.15 Refinements to the magnetic contribution to NPD patterns. Top: 

tetrahedral magnetic moments in the ab plane. Bottom: tetrahedral magnetic 

moment in the c direction. Inset tables show the refined coefficients for the basis 

vectors for each refinement. Arrows identify peaks with significant differences 

between the two refinements. Visualizations of these structures can be seen in 

Figure 2.14. The coefficient c1 operates on a basis vector in the ab plane, c2 on a basis 

vector in the c direction. 
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Section 2.4 Discussion 

The ratio of the tetrahedral site g-factor to the octahedral site g-factor determined 

by ESR at T = 290 K is 1.46, which is very close to 1.52, the ratio of the effective 

magnetic moments per Ni of Ni2Mo3O8 to MgNiMo3O8 found by Curie-Weiss 

analysis of temperature-dependent magnetization. This further validates the 

agreement of the magnetic measurements and the conclusion that MgNiMo3O8 is 

an analog for the magnetic behavior for isolated nickels interacting on the 

octahedrally coordinated sublattice of the honeycomb. This ratio is also close to 

the ratio of the ordered magnetic moments on the tetrahedral and octahedral 

sites determined by NPD. 

The data supports the interpretation that there is anisotropy to the magnetism on 

the tetrahedral site in Ni2Mo3O8. (1) The zig-zag ordered structure shows a strong 

directional dependence of the magnetic moment on the two sites where the tetrahedral 

site has a strong ab plane component, (2) the observed metamagnetism in the field-

dependent magnetization (inset,   

Figure 2.7 (a)) is a signature of anisotropy in powder samples, and has 

been observed in other honeycombs such as 𝛼-RuCl3 [8], and (3) the entropy 

recovered in heat capacity measurements is consistent with Ni on the tetrahedral 

site recovering Rln(2) in Ni2Mo3O8.   
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The expected recovered entropy for a triangular lattice of S = 1 ions with 

three spin degrees of freedom is Rln(3) and for a honeycomb lattice (comprised 

of two triangular sublattices) is 2Rln(3). As summarized in Table Table 2.2, 

Ni2Mo3O8 recovers ~Rln(2) + Rln(3) and MgNiMo3O8 recovers 6.9(3) J mol-1 K-1 = 

0.764Rln(3) of entropy. The site disorder determined by NPD places 86% of Ni on 

the octahedral site in MgNiMo3O8. The theoretical change in entropy if the 

octahedral site were to recover Rln(2) and the tetrahedral site were to recover 

Rln(3) is 6.1 J mol-1 K-1. As this is smaller than the recovered value, it is clear that 

the octahedral site must be recovering Rln(3). The value of 0.76Rln(3) suggests, 

but does not conclusively prove, that the tetrahedral site does not recover 

significant entropy in MgNiMo3O8. That the entropy in Ni2Mo3O8 recovers 

Rln(3)+Rln(2) strongly suggests that the tetrahedral site recovers Rln(2) of 

entropy, and thus has one fewer degree of freedom than the octahedral site. This 

implies spin anisotropy, perhaps easy-plane, which is consistent with the 

magnetic structure.  

There are three known possible magnetic Hamiltonians which could 

stabilize zig-zag AFM order in Ni2Mo3O8: (1) bond-dependent Heisenberg-Kitaev 

interactions [48, 49], (2) isotropic interactions where nearest neighbor (2N), next-

nearest neighbor (3N), and next-next-nearest neighbor (4N) in-plane interactions 
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are all of similar strength [12, 13], and (3) bond-dependent anisotropic 

interactions through ligand distortion [35]. 

 (1) The Kitaev model requires that exchange anisotropy must be 

orthogonal to the Ni-Ni bond and that there are 90o interfering ligand 

superexchange pathways for Ising-like terms to emerge [50]. In Ni2Mo3O8, the Ni-

O-Ni bond lies along a mirror plane which precludes the necessary 

orthogonality. In addition, the alternating octahedral and tetrahedral 

coordination environments geometrically obstruct the ligand superexchange 

pathway.  

(2) Isotropic interactions can stabilize zig-zag order when the 2N, 3N, and 

4N in-plane interactions are all of similar strength. In Ni2Mo3O8, 2N interactions 

are Oct.-Tet. (3.39 Å; oxygen mediated), 3N interactions are self-sublattice Oct.-

Oct. and Tet.-Tet. (5.96 Å; oxygen and molybdenum mediated), and 4N are Oct. -

Tet. (6.680(5) Å). MgNiMo3O8 can be viewed as a magnetically dilute analog of 

Ni2Mo3O8 where the interacting magnetic atoms are predominantly structurally 

equivalent to the 3N interaction sublattice in Ni2Mo3O8. While not a perfect 

analog, the type and relative scale of the magnetic interactions in MgNiMo3O8 is 

suggestive of the characteristics of the Ni2Mo3O8 3N interactions in the absence of 

the 2N interactions. The result of this magnetic dilution is a dramatic loss of 
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interaction strength: the Weiss temperature of MgNiMo3O8 is small and positive, 

6 K, indicating that the interactions are small and ferromagnetic. For comparison, 

the Weiss temperature of Ni2Mo3O8  is -55 K. Thus it is likely that nearest 

neighbor interactions are making up the bulk of the antiferromagnetic 

interactions in Ni2Mo3O8 and isotropic interactions are likely not stabilizing the 

zig-zag order.  

(3) There are slight distortions of the octahedral and tetrahedral 

coordination environments from the ideal single-ion crystal field to the 

symmetry-adapted, spin-orbit-coupled regime. Both Ni2+ ions are on sites with 

3m (C3v) symmetry, which is significantly lower point symmetry than either the 

Oh or Td point groups in the single ion regime. As described in Figure 2.12, the 

lowest energy state in an undistorted octahedral complex is 3A, which 

decomposes into a singlet Γ1 and doublet Γ3 under small trigonal distortions and 

application of spin orbit coupling in 3m symmetry. The next lowest energy state 

is 490 meV higher.  In the tetrahedral coordination, the ground state is a spin and 

orbital triplet, 3T, which decomposes into a singlet Γ1 and doublet Γ3 under small 

trigonal distortions and application of spin orbit coupling in 3m symmetry. It is 

possible that the bond-dependent interactions that occur as a result of Γ1-Γ1 and 

Γ3-Γ3 mixing in adjacent octahedral and tetrahedral coordination environments 

stabilize zig-zag order in Ni2Mo3O8.  
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Bond-dependent interactions are consistent with the data collected. In 

particular, the rich temperature-dependent behavior in the ESR data suggest the 

presence of single ion anisotropy that changes with temperature: the g factor 

increases between T = 130 K and T = 10 K, and below T ~ 150 K the amplitude of 

the signal decreases. This is attributable to a change in the timescale of 

paramagnetic fluctuations to frequencies below those that ESR samples as the 

magnetic state heads toward long range order. Additionally, the ratio of the a 

and c lattice parameters shows anisotropic changes concomitant with the 

temperature dependence of the ESR data.   

Section 2.6 Conclusions 

Ni2Mo3O8 is the first realized example of an integer spin zig-zag AFM ordered 

honeycomb in a non-centrosymmetric space group (P63mc). Theoretical studies 

have predicted the existence of topological magnons in honeycomb compounds 

with zig-zag AFM order, and Ni2Mo3O8 may provide an opportunity to 

investigate this and other topological phenomena experimentally. The zig-zag 

AFM order on Ni2Mo3O8 may be stabilized by bond-dependent anisotropic 

exchange due to ligand distortion; the unique structure of alternating octahedral 

and tetrahedral Ni2+ on the honeycomb offers fundamentally different chemistry 

from other nickel honeycomb compounds in existence. We have also shown that 
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the magnetic exchanges in this material are tuneable by selective chemical 

substitution on the honeycomb, from weakly ferromagnetic (MgNiMo3O8) to 

strongly antiferromagnetic (FeNiMo3O8). Further studies on these materials will 

advance the search for realized non-trivial quantum states of matter. 
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Section 3.1 Introduction  

Iron scandium sulfide, a cubic spinel of the form AB2X4, Figure 3.1(a), is a material 

of great interest as a candidate spin-orbital liquid (SOL), and has been the subject 

of many experimental [3-8] and theoretical studies [9-11]. The nature of SOL’s 

remains an elusive subject for experimental observation, and the synthesis of more 

candidate SOL’s enables further study in this area. Unfortunately, progress in 

understanding and utilizing FeSc2S4 has been hampered by the lack of 

stoichiometric powders and single crystals. 

Previously reported growths of single crystal FeSc2S4 are via the iodine 

chemical vapor transport method [12]. Unfortunately, crystals produced in this 

fashion are quite small, yielding typical crystals of volume ∼6 μm3 after 30 days of 

reaction, and are often not quite stoichiometric due to changes in Fe/Sc ratio and 

substitution of I for S [12]. Here we report the first growths of stoichiometric single 

crystals of FeSc2S4 by the travelling solvent technique [13, 14], with FeS as a solvent, 

in an optical heating furnace. Further, we present a synthetic route to 

stoichiometric, polycrystalline FeSc2S4 that does not involve the use of toxic and 

explosive H2S gas.  
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Section 3.2 Experimental Methods 

 3.2.1 Preparation of Polycrystalline FeSc2S4 

Some of the main difficulties associated with the growth of this material are (1) the 

volatilization of sulfur during each stage of the precursor synthesis and growth 

process, and (2) the reactivity of precursor materials with quartz and alumina 

crucibles. Additionally, Fe, FeS, Sc2S3, and FeSc2S4 are all moisture sensitive, and 

thus were handled in an argon glovebox with pO2 < 2 ppm and pH2O < 1 ppm.  

FeS powder was synthesized by heating stoichiometric amounts of sulfur 

pieces (99.999%, metals basis, Alfa Aesar) and vacuum remelted iron (99.99%, low 

oxygen, Alfa Aesar) in an evacuated quartz ampoule. Sc2S3 powder was 

synthesized by heating scandium metal pieces (99.9%, distilled dendritic (REO), 

Alfa Aesar) and sulfur pieces (99.999%, metals basis, Alfa Aesar) in a boron nitride 

(BN) crucible in an evacuated quartz ampoule. BN was used to prevent the 

reaction of scandium with quartz. 

 Sulfur volatilization limits the size of the quartz ampoules used by this 

method, as gaseous sulfur exerts an enormous amount of pressure in the tube. 

Ultimately, tubes of size 12x16 mm (IDxOD) were found to work best for larger 

scale (1 g) syntheses, and 4x6 mm tubes for smaller batches. Sc2S3 is the most sulfur 

rich phase in this system, so excess sulfur may be added to account for 
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volatilization during sealing of the ampoule.  

To prepare FeSc2S4 powder, FeS and Sc2S3 in a 1:1 molar ratio were ground 

together, pressed into a pellet, sealed in an evacuated quartz ampoule, and double 

sealed into a larger evacuated quartz ampoule. This was quickly heated to 500 °C, 

held for 2h, then heated at a rate of 50 °C/hr to 1000 °C. The furnace was allowed 

to cool to room temperature after 30 hours of reaction at 1000 °C.  

Powder X-ray diffraction patterns were collected on a Bruker D8 Focus 

diffractometer with a LynxEye detector using Cu Kα radiation. Lattice parameters 

and Rietveld refinements were performed using Topas 4.2 (Bruker). 

3.2.2 Single crystal growth of FeSc2S4  

The pure polycrystalline FeSc2S4 powder and solvent (FeS) in a 2-3:1 mass ratio 

were placed in a pyrolytic boron nitride crucible with the solvent at the bottom of 

the container. The crucible was sealed in a quartz tube under 0.3 bar argon and 

placed vertically in an optical heating furnace (Crystal Systems Inc. FZ-T-4000-H-

VII-VPO-PC). The focused radiation at 80-85% lamp power melted the solvent 

which was then moved along the polycrystalline FeSc2S4 powder at a traveling rate 

of 0.3 mm/h. Single crystals of mm size were grown by this technique.  
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3.2.3 FeSc2S4 crystal characterization  

Single crystal X-ray diffraction data were collected using a SuperNova 

diffractometer equipped with an Atlas detector, irradiated with Mo Kα. The 

cuboid crystal, cut from a larger crystal piece, was mounted with Paratone-N oil. 

Diffraction patterns were analyzed using the CrysAlisPro software suite, version 

1.171.36.32 (2013), Agilent Technologies. This software was also used to perform 

data reduction. Initial structural models were developed using SIR92 [15] and 

refinements of this model were done using SHELXL-97 (WinGX version, release 

97-2 ) [16].  

Crystal alignments were done using back-reflection Laue diffraction. 

Selected area electron diffraction was done using a Phillips CM300 atomic 

resolution transmission electron microscope with a field emission gun and a 

bottom mounted Orius CCD camera. The accelerating voltage was 300 kV. 

3.2.4 Magnetization and Specific Heat Measurements 

Magnetization and heat capacity measurements were made on both FeSc2S4 

powder and single crystals using a Quantum Design Physical Properties 

Measurement System. Magnetization data was collected from T = 1.9 -300 K under 

applied fields of μ0H = 0.1-0.5 T. For single crystals, the field was applied along the 

[100] direction. Zero field heat capacity was collected from T = 1.9 to T = 70 K. 
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Field-dependent specific heat was collected up to μ0H = 14 T from T = 1.9 K to 

T = 20 K. Curie-Weiss analysis was performed over the temperature range 

50 K < T < 200 K, where previous reports indicate a region of linearity in the 

inverse susceptibility [3]. 

Section 3.3 Results and Discussion  

Rietveld refinements to a typical powder X-ray diffraction pattern from the as-

prepared polycrystalline material, Figure 3.1(b), show a structure consistent with 

previous reports: cubic, spacegroup 𝐹𝑑3̅𝑚, with lattice parameter a =10.5184(1) Å 

at room temperature. Previously reported values of a at room temperature are 

10.606 Å6 and 10.52 Å7. Further, no structural distortions other than minor lattice 

contraction were observed by laboratory powder X-ray diffraction down to 12 K 

(data not shown).  
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Figure 3.1 Structure and refinement of FeSc2S4 in spacegroup Fd3 ̅m. (a) The spinel 

(AB2X4) unit cell of FeSc2S4. Fe (purple) is tetrahedrally coordinated by S (yellow) 

and sits on the A-site diamond sublattice. Sc (blue) is octahedrally coordinated and 

occupies the B-site. (b) Powder X-ray diffraction pattern of polycrystalline FeSc2S4. 

The experimental data is plotted as black symbols. A refinement of the model to 

the 𝐹𝑑3̅𝑚 space group is plotted as a red curve, and the difference between the 

data and the fit is plotted below in gray (Rwp = 3.344). The hkl indices are 

represented by vertical ticks. The peak corresponding to an added internal Si 

standard is marked with a green asterisk. 

As reported in the Sc2S3-FeS phase diagram [17], FeSc2S4 cannot be 

synthesized by simply melting and cooling of the stoichiometric composition since 

it does not melt congruently. However, this compound can be grown with excess 

FeS by the traveling solvent technique using a high temperature optical furnace. 

Figure 3.2(a) shows a schematic of the mounting used to achieve this goal; given 

the high temperature (above 1517 °C) required, it was necessary to use a pyrolytic 

boron nitride crucible to avoid reaction with quartz; the boron nitride also acts as 

a thermal standoff to avoid melting the quartz.  
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Figure 3.2 Schematic and example FeSc2S4 crystal. (a) Diagram of traveling solvent 

in a container using optical heating. The temperature profile used during the 

growth is indicated by a bar on the side, where the temperature of the hot zone 

(red) is above 1517 ºC, based on the lamp power used and the phase diagram of 

this system [16]. (b) One crystal grown by this method, with dimensions 

approximately 4x4x2 mm. Facets are observable in this crystal. 

A representative crystal grown by this technique is shown in Figure 3.2(b), 

oriented with the (100) plane facing the camera, confirmed by back-reflection Laue 

diffraction, Figure 3.3(a). Consecutive Laue patterns collected across the length of 

this crystal show a uniform orientation. A Laue pattern from a second crystal 
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growth, also along the (100) plane, is shown in Figure 3.3(b). 

 

 

 

Figure 3.3 Diffraction patterns of single crystals and crystallites. (a-b) 

Representative back-reflection Laue diffraction patterns of the (100) face from 

FeSc2S4 crystals from two different growth runs. (c) Precession image from single 

crystal diffraction of FeSc2S4 crystal cut from a larger crystal piece. This image 

corresponds to the single crystal refinement results shown in Table 3.1 and Table 

3.2. (d) Selected area electron diffraction in the [552] direction from a crystallite in 

the polycrystalline sample. No diffuse scattering was observed. 

 

To determine whether samples produced in this fashion have appropriate 

stoichiometry, we carried out an extensive series of structural and physical 

property measurements. First, as expected from the precession images, shown in 
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Figure 3.3(c), modeling of single crystal X-ray diffraction data yielded a fit 

consistent with the 𝐹𝑑3̅𝑚  spacegroup, with a cubic lattice parameter 

a = 10.5097(2) Å at T = 110(2) K. This is also in agreement with selected area 

electron diffraction (SAED) images (Figure 3.3(d)) of FeSc2S4, which show no 

diffuse scattering and indicate that at room temperature, 𝐹𝑑3̅𝑚  symmetry is 

maintained even on the local scale. Sulfur deficiency and partial occupancy of Fe 

or Sc sites, equivalent to a change in Fe:Sc ratio, were not observed in any tested 

models. Antisite mixing of the form Fe1±xSc2±xS4 did not improve the quality of the 

refinement, and were held fixed at their ideal values. Explicitly, 3.5% site mixing 

had the effect of increasing R1 by 7% and GooF by 10%. Thus, within the limits of 

detection of single crystal diffraction, the pieces produced here have appropriate 

stoichiometry.  
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Table 3.1 Crystallographic parameters for the first FeSc2S4 crystal obtained from 

model fits to the X-ray diffraction data. Absorption correction was analytical using 

a multifaceted crystal model. 

Temperature (K) 110(2) 

Space Group 𝐹𝑑3̅𝑚 

a (Å) 10.5097(2) 

V(Å3) 1161 

Crystal Size (mm) 0.155 x 0.146 x 0.127 

Collected Reflections 7932/165 unique 

θmax / Completeness 36.13 / 1.000 

𝜇/mm 6.022 

Transmission min/max 0.503/0.576 

Req 0.0245 

GooF 1.417 

R1 [F2>2σ(F2)] 0.0261 

wR2 (F2) 0.0686 

Δρmax (Å-3) 2.59 

Δρmin (Å-3) -1.42 

 

Table 3.2 Atomic coordinates and atomic displacement parameters for FeSc2S4 in 

the 𝐹𝑑3̅𝑚 spacegroup. All occupancies refined to unity within error and thus were 

fixed at full occupancy in the final refinement. 

Atom Wyckoff 

site 

x y z U11=U22=U33 

(Å2) 

Fe1 8a 1/8 1/8 1/8 0.0054(2) 

Sc1 16d 1/2 1/2 1/2 0.0048(2) 

S1 32e 0.25553(3) 0.25553(3) 0.25553(3) 0.0049(2) 

 

A comparison between the physical properties of polycrystalline and single 

crystal samples was done to confirm the quality of the grown crystals of FeSc2S4. 

Figure 3.4 shows a comparison of dc magnetic susceptibilities (𝜒 ~ M/H) at T < 50 K 

between previous literature powder data, data from the polycrystalline material 
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prepared in this work, and data from two of our single crystals. Our powder and 

single crystals have similar behavior to the literature specimens, except in the low 

temperature regime where there is a pronounced roll-over in our measurements. 

The difference likely arises due to a greater density of defects in the literature 

samples: it is commonly observed in quantum magnetic materials that the 

presence of small non-stoichiometries or other defects results in the appearance of 

a Curie-tail, i.e. rising magnetic susceptibility, at low temperatures. This 

hypothesis is further supported by comparison of our data to literature 45Sc NMR 

data [5], which also shows a roll-over; NMR, unlike bulk magnetization 

measurements, directly probes the intrinsic local susceptibility and is much less 

sensitive to the defects that give rise to the Curie-tail effect. Based on these 

magnetization measurements, it appears that the polycrystalline samples here 

have a lower defect density than previously reported, and that the single crystals 

behave similarly.  
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Figure 3.4 Magnetic susceptibility of polycrystalline and single crystal FeSc2S4.  

Comparison of magnetic susceptibilities of polycrystalline FeSc2S4 measured at 

μ0H = 1T (solid gray)[3], the polycrystalline material in this work, measured at 

μ0H = 0.5T (red points), two FeSc2S4 crystals oriented to [100] at μ0H = 0.1T (light 

blue/black circles) and μ0H = 0.5T (dark blue triangles) and the susceptibility 

measured via 45Sc NMR Knight Shift at 90 MHz (solid orange line) [5]. Powder and 

crystal measurements from this work exhibit a peak at T = 11K, in agreement with 

the NMR Knight shift data. Asterisks denote data taken from literature. 

 

A Curie-Weiss analysis of the magnetic data in the paramagnetic regime 

gives parameters in agreement with previous reports, Table 3.3. The Weiss 

temperatures, θw, are negative, indicating net mean field antiferromagnetic 

interactions. The Curie constants, C, correspond to effective magnetic moments, 

peff, that are in good agreement with the spin-orbital model for Fe2+ on a tetrahedron 

that predicts peff = 5.32. One significant difference between our results and prior 

literature is the presence of a non-negligible temperature-independent 
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contribution, χ0, in the present samples. This is most likely due to the presence of 

residual contributions from residual travelling solvent, FeS, which is a 

ferromagnetic metal at all temperatures measured here. Residual FeS is likely 

contributing to the unreliably large θw in Crystal 2 (Table 3.3), which is 

significantly more negative than is seen in the other samples. The error on this 

calculated value is particularly large (20%), but the calculated χ0-subtracted 

susceptibility is well in line with other samples in this and other work (Figure 3.4). 

Based on the reported saturation magnetization for FeS, we can estimate between 

0.05% and 0.2% FeS in samples reported here18. The presence of these inclusions 

precludes more precise comparisons. Future optimization of the traveling solvent 

technique as applied here is expected to be able to eliminate these inclusions.  

Table 3.3 Curie-Weiss analysis of FeSc2S4: polycrystalline material in this work and 

reported in literature [1], and two grown crystals. C is the Curie constant (emu K 

Oe-1 mol f.u.-1), θw (K) the Weiss Temperature, peff the effective magnetic moment 

per ion, and 𝜒0 the temperature independent contribution to the magnetic 

susceptibility (emu Oe-1). 

 Powder Lit. Powder Crystal 1 Crystal 2 

C 3.45(5) 3.28 3.60(5) 3.5(2) 

θw -42(2) -45.1 -54(5) -100(20) 

peff 5.3(1) 5.12 5.4(3) 5.3(3) 

𝜒0 0.0311  0.07274 0.17748 

 

Figure 3.5 shows a comparison of heat capacity measurements on published 

powder data [3] versus the polycrystalline and single crystal samples prepared in 
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this work. In all cases, there is a broad maximum in C/T at T ~ 10 K. The maximum 

is at a slightly higher temperature and sharper in the specimens of this work, 

consistent with the presence of fewer defects (which tend to broaden transitions). 

These differences are not attributable to the presence of FeS inclusions, since there 

is only a weak field dependence to the specific heat (inset). The magnetic 

contribution to specific heat (Cmagnetic) was estimated by subtracting the phononic 

contribution (Cphonon) from the total specific heat in each case. We used existing 

literature data on CdIn2S4, which has no magnetic degrees of freedom, and scaled 

it based on the change in atomic masses per known methods19. The results are 

shown in Figure 3.5 and are similar amongst all four datasets. Note that our 

integrated entropies differ from that of Fritsch et al.3 due to a difference in how the 

non-magnetic heat capacity was scaled (future work with a more closely atomic 

weight matched analog is necessary to unambiguously resolve which is more 

accurate). Both the powder and the single crystals recover entropy to 

approximately 70% of Rln(5). The value Rln(5) corresponds to the spin and orbital 

degrees of freedom for Fe2+ in a tetrahedral coordination. The presence of a 

transition at low temperatures was explored by Plumb et al. [8] who observed 

evidence for a tetragonal distortion in this material at T ~ 11K. The physical basis 

of this peak at low temperatures is still under investigation. Synthesis of large 

single crystals will further enable this exploration.  
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Figure 3.5 Heat capacity of polycrystalline and single crystal FeSc2S4. (a) Heat 

capacity measurements on crystal 1 (blue squares) and crystal 2 (purple squares) 

are consistent with measurements on the powder (black circles). Both show a 

broad peak between T = 2 K and T = 15 K that responds minimally to fields up to 

𝜇0𝐻 = 14 T. The peak is slightly higher in temperature and sharper than reported 

heat capacity data for polycrystalline samples [3]. (b) Integrated entropy, and thus 

number of spin and orbital degrees of freedom involved, are similar between all 

four samples. 

 

Section 3.4 Continued Work 

In short, we report the successful preparation of polycrystalline powder and mm-

scale single crystals of stoichiometric iron scandium sulfide by the travelling 

solvent technique. This paves the way to finally understanding this fascinating 

material, with future optimizations to improve the purity and size of single 
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crystals. The use of an optical furnace to perform a traveling solvent crystal growth 

in a container is also adaptable to a wide range of other complex quantum 

materials [13]. 

3.4.1 Neutron Scattering 

The samples from this work were used in subsequent neutron scattering 

experiments to investigate spin wave excitations and possible orbital ordering in 

this material. One of the significant differences between the measurements made 

on these samples and those on the others reported in the literature is the broad 

antiferromagnetic feature at T = 10 K in magnetization measurements. 

Temperature dependent neutron scattering measurements revealed magnetic 

Bragg peaks arising from long range magnetic order, Figure 3.6. The peaks begin 

to appear around T = 10 K, and increase in intensity as temperature decreases.  



106 
 

 

Figure 3.6 (a) Temperature dependent neutron scattering of FeSc2S4. (b) A magnetic 

Bragg peak is apparent at T = 1.6 K that was not present at T = 16 K. (c) Energy 

dependence of the Bragg peak. Reproduced from Plumb, Morey et al., 2016. 

 

Magnetization measurements suggested antiferromagnetic interactions, 

and solved magnetic structures agree with this. As mentioned Chapter 2, 

according to Landau Theory, one irreducible representation should be sufficient 

to describe the order resulting from a second order phase transition. There was 

no single IR capable of describing the data in the presumed structural space 

group, Fd-3m. However, lowering the symmetry to a tetragonal subgroup, I-

4m2, then made it possible to use one IR. The result of this symmetry lowering is 

a metrically cubic unit cell that hosts tetragonal distortions of the Fe2+ tetrahedra, 
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resulting in two symmetrically non-equivalent iron sites, shown in Figure 3.7. 

This is consistent with earlier Moessbauer Spectroscopy data on FeSc2S4, which 

ascribed the two-site signal to Fe-Sc site mixing; no evidence for site mixing was 

found in the crystalline or polycrystalline scattering experiments done in the 

present studies. 

 

Figure 3.7 (a) Neutron scattering of FeSc2S4 and Rietveld refinement in I-4m2. (b) 

Tetragonal unit cell. Distortions of the tetrahedra lead to a breaking of magnetic 

degeneracy. Reproduced from Plumb, Morey et al., 2016. 

 

There were multiple candidate magnetic structures, resulting in the 

inability to distinguish between the k vectors 𝑘⃗ = (
1

2
,
1

2
, 0). and (0 0 1) in the above 

scatting data, but, notably, the two solutions resulted in the same moment; the 
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direction is not uniquely resolvable. However, inelastic magnetic neutron 

scattering was used to determine that the correct propagation vector in this case 

is 𝑘⃗ = (
1

2
,
1

2
, 0). The fit to the data with this model is shown in Figure 3.8(a) and the 

model is visualized in Figure 3.8(b). 

 

Figure 3.8 (a) Neutron powder diffraction showing the nuclear peaks (red tick 

marks) and the magnetic peaks (green tick marks) for a propagation vector 𝑘⃗ =

(
1

2
,
1

2
, 0), and (b) visualization of this structure, with moments in light and dark 

gray showing the symmetrically distinct Fe sites. Magnetic exchanges, Ji, are also 

shown. Reproduced from Plumb, Morey et al., 2016. 

 

3.4.2 Short range nuclear structure 

The synthesis of high quality polycrystalline and single crystal FeSc2S4 enabled 

additional experiments on this system, including local structure analysis and 

single crystal resistivity. Pair Distribution Function (PDF) analysis is a technique 
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used to determine local structure in a material, and plots G(r), which is related to 

a Fourier function in Q-space S(Q) as described in the Introduction, against r in 

real-space units. Prior to the above neutron scattering work, FeSc2S4 was reported 

as being in the space group Fd-3m.  

PDF measurements collected on two samples of FeSc2S4: one considered 

‘pristine’ which was stored in the glovebox once it was made and was dark 

gray/black in color, and the other which is considered ‘air-exposed’ which was 

taken from the same batch that was used for muon spin resonance experiments. 

This sample was a medium brown color after having been stored in air for 

months. The data were collected at the 11-ID-B beamline at the Advanced Photon 

Source at Argonne National Lab by Kathryn Arpino at index 311 with an energy 

of 58.66 keV and a wavelength of 0.2112 Å. CeO2 was used as a calibration 

standard. Karena Chapman assisted with data work-up during the Modern 

Methods in Rietveld Refinement for Structural Analysis workshop hosted at Oak 

Ridge National Laboratory in June 2017.  

The space group Fd-3m does fit well to the extended structure of an air-

exposed sample of FeSc2S4 at room temperature, shown in Figure 3.10 X-ray PDF 

of pristine (black) and air-exposed (green) samples of FeSc2S4. Peak locations where the 
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two samples differ substantially have been marked with a pink asterisk.. Fit deviations 

at low r are likely due to instrumental broadening parameters. 

 

Figure 3.9 Refinement of the space group Fd-3m to an air-exposed sample of 

FeSc2S4 at room temperature. 

 

The same data in Figure 3.9 is plotted in Figure 3.10 as the green curve. The 

pristine sample is plotted as the black curve. The top panel shows the full 

measured 40 Å range and the lower panel shows the same data in the 

0.5 < r < 15 Å range. 
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Figure 3.10 X-ray PDF of pristine (black) and air-exposed (green) samples of 

FeSc2S4. Peak locations where the two samples differ substantially have been 

marked with a pink asterisk. 

  

There are notable qualitative differences between the two FeSc2S4 samples. 

First, the intensity of the pristine sample is smaller than the air-exposed sample, 

and decreases more rapidly over the r range. This can be an indication that this 
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material is more disordered than the air-exposed one. There are peaks present in 

the pristine sample that are not present in the air-exposed sample. These have 

been marked with pink asterisks in the lower panel of Figure 3.10. The peak at r = 

Å looks to be a two-contribution peak in the air-exposed (green) data, but that 

the lower r peak has a low intensity. It seems that the higher r higher-intensity 

peak in the pristine sample is one contribution, and that the lower intensity 

contribution has increased in magnitude and decreased slightly in r. In contrast, 

the lower-intensity lower-r peak at r = 8.2 Å is at a higher r in the pristine sample. 

Another peak at r ~ 13.5 Å splits similarly.  

There are a few interpretations that can be made of the data, though the 

quantitative analysis remains to be done. One possibility is that the samples were 

mixed up, and the one referred to as ‘pristine’ is actually ‘air-exposed’, and the 

extra/shifted peaks come from oxygen-iron and oxygen-scandium bonds and 

resultant distortions of the lattice. However, it is also possible that these curves 

are representative of pristine and air-exposed samples as labeled. In this case, it 

is possible that the extra peaks in the pristine sample are real signatures of the 

slight distortions of the lattice that can occur in I-4m2 symmetry, which was 

identified by Plumb, Morey, et al. (2016).  
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Resistivity measurements on a single crystal of FeSc2S4 oriented along 

[100], measured from T = 30 K to T = 145 K with an excitation of 1000 μA on a 

Quantum Design Physical Properties Measurement System show an upward 

curvature with decreasing temperature, with a relatively small absolutely 

resistivity of ~ 0.01 Ohm-m, Figure 3.11. This suggest that FeSc2S4 is a small band 

gap semiconductor. Linear behavior in ln (
𝜌

𝜌0
) 𝑣𝑠. 𝑇−1/4 suggests that the 

mechanism of conduction in the 2 < T < 150 K temperature range is variable 

range hopping. 

 

 

Figure 3.11 Resistivity of a single crystal of FeSc2S4, measured on the [100] face. 

Inset: diagram of four-probe measurement configuration, to approximate scale.  
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Section 4.2 A Metallic Kagomé Antiferromagnet: KV3Sb5 

Portions of this work were done in collaboration with Brenden R. Ortiz, who 

discovered the material, provided samples, solved the structure, and attempted 

many crystal growths, his advisor Eric S. Toberer at the Colorado School of 

Mines, and Tyrel M. McQueen at Johns Hopkins University. 

4.2.1 Introduction 

Like the honeycombs discussed in Chapter 2, the kagomé lattice is another 

frustrated lattice that is theoretically capable of hosting interesting quantum 

behavior [1]. One of the strongest candidate materials for hosting a QSL state is 

the copper kagomé material Herbertsmithite [2, 3]. The search for QSL’s has led 

to the discovery that interesting quantum states, including superconductivity, 

can arise when metallicity and magnetism coexist. There are theoretical 

predictions for QSL [4] and antiferromagnetic [5] states on the kagomé lattice, 

but very few structurally perfect kagomé compounds have been found. 

Metallic antiferromagnets are relatively rare, and are much rarer than 

metallic ferromagnets. And, while metallic kagomé materials [6], and 

ferromagnetic [7] and antiferromagnetic [2, 4] kagomé materials have been 

reported, there has never been a report of a metallic antiferromagnetic kagomé. 
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The discovery of such a material would be a great boon to the community. The 

zintl-type compound KV3Sb5 appears to be a metallic kagomé antiferromagnet. 

4.2.2 Experimental Methods 

KV3Sb5 was made by solid state reaction of elemental constituents, which were 

reacted in a ball mill for 2 hours, then sieved and sintered in an evacuated quartz 

ampoule at 600 °C for 48 h. Samples were doped with barium and tin as well. 

The elemental composition of the barium and tin doped compounds has not been 

determined. Powder X-ray diffraction patterns were collected at 273 K on the 11-

BM beamline at the Advanced Photon Source with a wavelength of 0.412619 Å. 

Rietveld refinement with the charge flipping method was used to solve the 

structure.  

The magnetization of KV3Sb5, barium doped KV3Sb5:Ba, and tin doped 

KV3Sb5:Sn powders were measured using a Quantum Design Physical Properties 

Measurement System (PPMS) from T = 300 K to T = 2 K under an applied field of 

𝜇0H = 1 T.  

Condensed pellets for heat capacity and resistivity measurements were 

made via uniaxial hot pressing at 500 °C under 40 MPa of pressure. Heat capacity 

measurements from T = 11 K to T = 300 K were performed on the PPMS and 

measurement from T = 0.055 K to T = 3.5 K were measured using a Quantum 
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Design Dilution Refrigerator. All heat capacity measurements were performed 

using the semi-adiabatic technique with 3 time constants, each temperature was 

measured in triplicate. Resistivity measurements were made using the 4-probe 

technique on bars cut from densified pellets of material. 

4.2.3 Results and Discussion 

The material was found to crystallize in the centrosymmetric space group 

P6/mmm, Figure 4.1, determined via Rietveld refinement. Minor impurities of 

VSb2 and Sb were detected. This material contains a structurally perfect kagomé 

network of vanadium ions, separated by layers of antimony and potassium. 

 

Figure 4.1 Rietveld refinement of KV3Sb5 in space group P6/mmm to data from 

the 11-BM beamline at the Advanced Photon Source, with an X-ray wavelength 

of 0.412619 Å. Small impurities of VSb2 and Sb are accounted for. Inset: 

visualization of the kagomé network and layers. 
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Figure 4.2 Temperature dependence of lattice parameters a (purple squares) and c (green 

triangles) of KV3Sb5 relative to values at T = 295 K. 

 

 

Figure 4.3 Temperature dependence of the full width at half max (FWHM) of seven peaks 

in PXRD patterns of KV3Sb5. Peaks in the (11l) family are purple squares, others are black 

squares.  
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Table 4.1 Lattice parameters refined from in-house PXRD patterns at room 

temperatures. 

 a (Å) c (Å) 

KV3Sb5 5.48169(4) 8.95478(9) 

Ba-doped 5.4836(19) 8.9297(4) 

Sn-doped 5.48481(4) 8.94018(8) 

 

The a and c lattice parameters show nearly linear decrease with decreasing 

temperature, Figure 4.2. The c parameter changes more than a across the 

temperature range. It is unclear from plots of the temperature dependence of the 

full width at half max (FWHM) of a variety of peaks in PXRD patterns whether 

there is a structural transition in this material. Peaks with indices (11l) may 

increase in FWHM at temperatures below T = 90 K.  

Refinements of the parent, Ba-doped, and Sn-doped samples do have 

different lattice parameters. Ba and Sn doping both increase the a lattice 

parameter (Sn more than Ba) and decrease the c lattice parameter (Ba more than 

Sn). This suggests that Sn and Ba do truly dope into the bulk material; further 

work needs to be done to quantify the amount. Nominal values were 10% 

substitution of K and Sb, for Ba and Sn respectively. It is intuitively believable 

that Ba doping would decrease the c lattice parameter: K and Ba are interlayer 

ions and are likely interacting coulombically with the layers. Ba is a 2+ ion, and 
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so has a stronger coulombic attraction to the kagomé layers. Sn has a larger ionic 

radius than Sb, and so is possibly straining the kagomé lattice.  

The parent compound KV3Sb5, as well as the barium and tin toped 

variants all show weak paramagnetic response and a large Curie tail, seen in the 

main panel of Figure 4.4. Molar quantities are approximate: the amount of 

doping of barium and tin is unclear, so all compounds are displayed as per mol 

of KV3Sb5.The kink in the magnetization data is much more obvious when 

plotted as 1/(M/H - 𝝌𝟎). Only KV3Sb5 displayed Curie-Weiss behavior with the 

application of a temperature-independent 𝝌𝟎, of 0.00005. No 𝝌𝟎 was found to 

improve the high temperature linearity of the barium and tin doped samples. 

The Weiss temperature of KV3Sb5 was found to be -157 K, and the effective 

magnetic moment peff= 0.66 𝜇𝐵 (C = 0.05445). The Néel temperature of KV3Sb5 

seems to be 80 K (Figure 4.4, inset). The barium doped material, measured on 

samples with two different sample amounts, shows a Néel temperature of 100 K, 

which is 20 K higher than the parent. Tin doping seems to mostly suppress the 

magnetism and/or possibly move the transition a little lower in temperature.  

Though identification of oxidation states in metallic compounds is not 

necessarily representative of the actual bonding in the material, some insight can 

be gained into the magnetic behavior by doing so for KV3Sb5. Potassium is 
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generally found as +1, and antimony often as -5, leaving +14 to distribute 

between the three V ions. V0 has a valence electron configuration of 4s23d3. Two 

V5+ and one V4+ would keep the material charge balanced. V5+ has a full valence 

and is therefore likely diamagnetic. V4+, however, should have one unpaired 

electron and could thus be magnetically active. 

 

Figure 4.4 Magnetization of KV3Sb5, the barium doped KV3Sb5:Ba, and the tin 

doped KV3Sb5:Sn showing paramagnetic response down to T = 2 K. Inset: KV3Sb5 

is the only material to show linear Curie-Weiss behavior from T = 100 K to T = 300 

K. 

 

The specific heat of KV3Sb5 from T = 11 K to T = 300 K shows no sharp 

features, Figure 4.5. However, there is a bump at T = 80 K that is reproducible on 

warming and cooling, and at H = 2 T and H = 5 T. This is the same temperature as 

the antiferromagnetic feature in the magnetization data, possibly a Néel AFM 

ordering temperature. Heat capacity is a bulk measurement, and therefore it is 
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likely that the antiferromagnetic feature in the magnetization is a signature of bulk 

antiferromagnetism in the material. Similarly, there is a subtle bump in the heat 

capacity of the barium doped KV3Sb5 at T = 100 K. This is the temperature that the 

antiferromagnetic feature in the barium doped material appears in magnetization; 

again, this implies that the antiferromagnetism is a bulk property, and that doping 

with barium increased the strength of the interactions. 

Barium likely substitutes in for potassium in the structure, as these elements 

are chemically similar. Barium is almost always found as a 2+ ion, whereas K is 1+. 

So, returning to the discussion of oxidation state in the material above, the 

substitution of barium could add another magnetic spin ½ to the unit cell as it 

induces V4+ to become V3+. While this could cause the transition temperature to 

increase (as the strength of the magnetic exchanges increases), it does not explain 

the lack of observable Curie-Weiss behavior in barium-doped KV3Sb5. Though this 

could be due to the small absolute magnitude of the measured signal. 
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Figure 4.5 Heat capacity of KV3Sb5 at μ0H = 0 T (blue squares), 2 T (thin black line), 

and 5 T (thick red line). Inset: There is a feature at T = 80 K that is reproducible on 

heating and cooling (indicated by arrows) and is present all measured fields. 

 

A linear fit to the DR HC data shows a fairly large gamma contribution, 

which is characteristic of a metal. The lowest temperature measurements, 

between 250 mK and 500 mK show hysteresis on cooling and warming. The 

origin of the heat capacity peak at the lowest temperatures is unclear – perhaps 

magnetism, perhaps a nuclear contribution.  
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Figure 4.6 Low temperature heat capacity plotted as Cp/T versus T2 of KV3Sb5. A 

linear fit to the 1 K < T < 3.2 K region (green line) fit to the equation Cp/T = 𝛾T2 + 𝛽3 

gives 𝛽3 = 5.12(2) mJ mol-1 K-4 and 𝛾 = 22.4(1) mJ mol-1 K-2. Inset: Cp versus T has no 

sharp features above T = 0.25 K. 

 

The resistivity of all three materials measured is characteristic of a metal: 

it decreases with decreasing temperature (Figure 4.7) .The resistivity of the 

barium doped sample and the parent compound almost exactly overlay. The tin-

doped compound shows slightly higher resistivity throughout the temperature 

range, dropping to a vanishingly small resistivity at T = 4 K. This is ascribed to a 

possible tin impurity; elemental tin is known to superconduct at T = 4 K. 

Elemental analysis will enable further understanding of this behavior. 
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Figure 4.7 Resistivity of KV3Sb5 (dark blue) and its barium-doped (green) and tin-

doped (grey) derivatives.  

4.2.4 Conclusions and Future Work 

KV3Sb5 is the first realization of a metallic antiferromagnet kagomé lattice. The 

metallicity, measured by resistivity and confirmed by linear fits to low 

temperature heat capacity measurements, is robust under doping with tin and 

barium. KV3Sb5 appears to have a weak AFM transition. Further work will be done 

to characterize the structure. Neutron scattering experiments could be done to 

solve the ordered magnetic state. While natural vanadium has mostly large 

incoherent scattering cross section (5.08 barns) and small coherent cross section 

(0.0184 barns), making it excellent as a material for sample canisters, the isotope 

50V has a large bound coherent scattering cross section (7.3(1.1) barns).and a much 

smaller bound incoherent scattering cross sections (0.5 barns). So, samples 

prepared with isotopically pure 50V. All isotopes of potassium have relatively 
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small and similar coherent scattering cross sections, no greater than 1.76 barns 

with 0.27 barns of incoherent cross section, so isotopic substitution of K will likely 

not improve the measurement. 

4.2 Small band gap metal organic frameworks 

Portions of this work were done in collaboration with Mircea Dinca at the 

Massachusetts Institute of Technology and his students, who discovered the 

materials, provided samples, and solved the structures, and Tyrel M. McQueen 

at Johns Hopkins University. 

4.2.1 Introduction 

Metal organic frameworks (MOF’s) are a class of materials defined by metal 

centers connected by organic linkers. The nature of the metal and the organic 

linker, as well as the structure, are what dictate the properties of the material. 

MOF’s are employed for many applications in a wide variety of fields, from 

electrocatalysis {8- 10] to applications as field effect transitors [11]. Many MOF’s 

are insulating or somewhat conductive, but there are few reports of metallicity in 

MOF’s, and no reports of superconductivity in MOF’s [12]. Nickel 

hexaiminobenzene (Ni3(HIB)2; Ni3(C6N6H6)2) and copper hexaiminobenzene 

(Cu3(HIB)2; Ni2(C6N6H6)3) have been reported to show metallic character above 

T = 300 K [13]. They crystallize in a layered structure, visualized in Figure 4.8.  
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Figure 4.8 Visualization of the structure of M2(HIB)2, M= (Cu, Ni) and comparison 

of experimental and calculated powder x-ray diffraction patterns. Adapted from 

Dou et al. (2017) [13].  

 

4.2.2 Results and Discussion 

Despite reports of metallicity, temperature dependent resistivity measurements 

done at μ0H = 0 T and μ0H = 3 T, Figure 4.9, show that resistivity on the order of 

30 Ohm-m in Ni3(HIB)2 and 5.00x105 Ohm-cm in Cu3(HIB)2 increases with 

deceasing temperature. This behavior and these resistivity values are consistent 

with two relatively small band gap semiconductors. A fit of a linear region in a 

plot of the natural log of the resistivity normalized to the resistivity at T = 300 K 

versus inverse temperature gives band gaps of Eg = 23.4 meV for Ni3(HIB)2 and 

Eg = 103.2 meV for Cu3(HIB)2, which are calculated based on the relationship 

ln(𝜌𝑇 𝜌300 𝐾⁄ ) = 2𝑘𝐵𝐸𝑔𝑇
−1 + 𝑏 where kB is the Boltzmann constant, Eg is the band 

gap, and b is the intercept of the line. 
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Figure 4.9 Resistivity measurements of (left) Ni3(HIB)2 and (right) Cu3(HIB)2, 

measured at fields of μ0H = 0 T (blue) and μ0H = 3 T (red). 

 

 

Figure 4.10 The natural log of the temperature-dependent resistivity normalized to the 

resistivity at T = 300 K plotted against inverse temperature for Ni3(HIB)2 (brown) and 

Cu3(HIB)2 (blue).  

One of the hallmarks of metallic behavior is a linear heat capacity at low 

temperatures when plotted as Cp/T versus T2 with a large 𝛾 when fit to the 

equation Cp/T = 𝛾T2 + 𝛽3. For Ni3(HIB)2, this fit gives 𝛽3 = 0.0043(8) mJ mol-1 K-4 
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and 𝛾 = 0.148(4) mJ mol-1K-2. The R2 metric of the quality of the fit is 0.9921, which 

indicates that this fit is not excellent. Indeed, visually, this region is not quite 

linear. Further, the 𝛾 obtained is much smaller than one would expect for a 

metal, further supporting the identification of these materials as small band gap 

semiconductors. 

 

 

Figure 4.11. Heat capacity measurement of Ni3(HIB)2 plotted as Cp/T versus T2 to 

highlight possible linearity indicating metallic behavior. A linear fit of the data fit 

to the equation Cp/T = 𝛾 T2 + 𝛽3  gives 𝛽3  = 0.0043(8) mJ mol-1 K-4 and 

𝛾 = 0.148(4) mJ mol-1K-2. from T = 4 K to T = 10 K is plotted (purple line). Inset: Heat 

capacity from T = 0.05 K to T = 225 K is plotted on a linear temperature scale. There 

are no sharp features indicative of a superconducting phase transition. 

 

The low temperature heat capacity of Cu3(HIB)2 shows a divergence, or the 

onset of a peak, at the lowest temperatures. This peak seems to move to higher 
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temperatures under the application of a μ0H = 1 T field, suggesting ferromagnetic 

behavior. The heat capacity of Ni3(HIB)2 shows a hump between T = 0.02 K and 

T = 2.5 K. There is a large divergence at the lowest temperatures in this material as 

well. It is possible that both features could be attributed to either magnetic or 

nuclear contributions to the heat capacity.  

 

Figure 4.12 Low temperature heat capacity of Cu3(HIB)2 under fields of μ0H = 0 T 

(dark blue squares) and μ0H = 1 T (light blue squares) and Ni3(HIB)2 under 

μ0H = 0 T. Inset: a zoomed in region in Ni3(HIB)2. 

 

Despite the reported metallicity in the MOF’s Ni3(HIB)2 and Cu3(HIB)2, 

our heat capacity and resistivity data suggest that these materials are actually 

small band gap semiconductors with some possible magnetic properties at very 

low temperatures. We do not observe evidence for superconducting transitions 

down to T = 0.05 K. 
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