
Graph Inference and Graph Matching

by

Henry Pao

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

August, 2014

c© Henry Pao 2014

All rights reserved

Abstract

Graphs are widely used in many fields of research, ranging from natural sciences to

computer and mathematical sciences. Graph inference is an area of intense research.

In this dissertation, we propose several methodologies in graph inference. We focus

on statistical inference using graph invariants, vertex nomination, and a divide-and-

conquer graph matching technique.

We present a comparative power analysis of various graph invariants for testing

the hypothesis that the graph has a subgraph with higher edge probability. Given a

graph drawn from a kidney-egg random graph model, the null hypothesis is that all

edge probabilities are equal. The alternative hypothesis is that there exists a subset of

vertices which are more likely to be adjacenct to each other than the rest of the graph.

Using Monte Carlo simulations, we estimate the power of several graph invariants

acting as test statistics. We discovered that for many choices of parameters in the

random graph model, the scan statistic and clustering coefficient often dominate other

graph invariants. However, our results indicates that none of the graph invariants

considered is uniformly most powerful.

ii

ABSTRACT

Given a graph drawn from a stochastic block model where one block is of particu-

lar interest, vertex nomination is the task of creating a list of vertices such that there

are an abundance of vertices from the block of interest at the top of the list. Vertex

nomination is useful in situations where only a limited number of vertices can be

examined and have their block membership checked. We propose several vertex nom-

ination schemes, derive theoretical results for performance, and compare the schemes

on simulated and real data.

Given two graphs, graph matching is to create a mapping from one set of ver-

tices to the other, such that the edge structure of the graphs is preserved as best

as possible. We develop a new method for scaling graph matching algorithms, and

prove performance guarantees. Any graph matching algorithm can be scaled using

our divide-and-conquer technique. The performance of this technique is demonstrated

on large simulated graphs and human brain graphs.

Primary Reader: Donniell Fishkind

Secondary Reader: Carey Priebe

iii

Acknowledgments

I want to first thank my advisors Donniell Fishkind and Vince Lyzinski for all their

help and support in writing this thesis. Their help is instrumental in completing my

thesis.

I would also like to thank Carey Priebe for serving as my second reader, and

insight on numerous graph inference subjects. I want to also thank Avanti Athreya

and Glen Coppersmith for serving on my defense committee.

Finally, I want to thank my friends and family for their help and support.

iv

Dedication

This thesis is dedicated to my fiancée Li Chen, whose continual love and support

is irreplaceable.

v

Contents

Abstract ii

Acknowledgments iv

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Overview . 1

1.2 Brief Literature Review . 4

1.3 Notation . 7

1.4 Random Graph Models . 11

1.4.1 Erdős-Rényi Random Graph 11

1.4.2 Dense Sub-block Random Graph 12

1.4.3 Stochastic Block Random Graph 13

1.4.4 Bernoulli Random Graph . 15

vi

CONTENTS

1.4.5 Stochastic Block Model . 16

1.4.6 Random Dot Product Graph 17

1.4.7 ρ-correlated Graphs . 18

2 Tools for Studying Random Graphs 22

2.1 Graph Invariants . 23

2.2 Adjacency Spectral Embedding . 25

2.2.1 Undirected Graphs . 27

2.2.2 Weighted Graphs . 28

2.2.3 Dimension Selection . 29

2.2.4 Unscaled Embedding . 29

2.2.5 Projection onto the Sphere . 30

2.2.6 Laplacian . 30

2.3 Spectral Partitioning . 31

2.4 Graph Matching . 35

2.4.1 Frank-Wolfe Algorithm . 37

2.4.2 Fast Approximate Quadratic Assignment Problem (FAQ) . . . 38

2.4.2.1 Seeded Graph Matching 42

2.4.3 Other Graph Matching Algorithms 44

2.4.3.1 U . 44

2.4.3.2 rank . 44

2.4.3.3 QCV . 45

vii

CONTENTS

2.4.3.4 PATH . 45

2.4.3.5 GLAG . 45

2.5 Mixed Membership Stochastic Block-model 46

3 Statistical Inference for Dense Sub-community Detection 49

3.1 Hypothesis Test for Dense Sub-community Detection 50

3.1.1 Null Hypothesis, κ(n1 + n2, p) 50

3.1.2 Alternative Hypothesis, κ(n1, n2, p, q) 50

3.1.2.1 Type I Error . 51

3.1.2.2 Power . 51

3.2 Synthetic Experiments . 52

3.2.1 Experiment Design . 52

3.2.2 Monte Carlo Simulations . 52

3.2.2.1 Size . 53

3.2.2.2 Max Degree . 54

3.2.2.3 Maximum Average Degree 55

3.2.2.4 Scan Statistic . 58

3.2.2.5 Number of Triangles 59

3.2.2.6 Clustering Coefficient 61

3.2.2.7 Average Path Length 61

3.2.3 Power Relationship with n2, q 61

3.2.4 Power Difference plots . 63

viii

CONTENTS

3.2.5 Most Powerful Statistic . 63

3.3 Densest k-subgraph . 68

4 Vertex Nomination 69

4.1 In Relation to Classification . 70

4.2 Performance Metrics . 72

4.3 Canonical . 74

4.3.1 Scheme . 74

4.3.2 Theoretical Results . 79

4.4 Metropolis-Hastings Sampling . 81

4.4.1 Scheme . 81

4.4.2 Number of Samples . 88

4.4.3 Theoretical Results . 89

4.5 Spectral Partitioning . 90

4.5.1 Scheme . 90

4.5.2 Theoretical Results . 91

4.6 Seeded Graph Matching . 91

4.6.1 Residual . 92

4.6.1.1 Phenomenon of Inversion by SGM Nomination . . . 99

4.6.2 Most Likely Partition . 107

4.7 Mixed Membership Stochastic Block-model 108

4.8 Performance . 109

ix

CONTENTS

4.8.1 Simulated Data . 110

4.8.2 Real Data . 115

4.8.2.1 Enron Email Data 116

4.8.2.2 Caenorhabditis elegans Neuron Network 117

4.8.2.3 Political Blog Data 121

4.8.2.4 Movie Dataset . 123

4.8.2.5 Discussion . 125

5 Large Seeded Graph Matching 127

5.1 Algorithm . 128

5.1.1 Selective Seeding . 133

5.1.2 Computational Efficiency . 134

5.2 Theoretical Results . 135

5.3 Performance . 141

5.3.1 Simulated Data . 142

5.3.1.1 Comparison with SGM 142

5.3.1.2 Different cluster sizes 147

5.3.1.3 Range of Effectiveness 151

5.3.2 Real Data . 154

5.4 Discussion . 156

Bibliography 158

x

CONTENTS

Vita 172

xi

List of Algorithms

2.1 Adjacency Spectral Embedding (for directed graphs) 26

2.2 Adjacency Spectral Embedding (for undirected graphs) 28

2.3 Spectral Partitioning . 32

2.4 Frank-Wolfe Algorithm . 38

2.5 Fast Approximate QAP Algorithm 41

4.6 Metropolis-Hastings Sampling . 82

4.7 Canonical Metropolis-Hastings Sampling 85

4.8 Spectral Partitioning Nomination . 90

5.9 Large Seeded Graph Matching . 129

xii

List of Tables

4.1 MAP and runtime of ΦMH with different numbers of samples. 89
4.2 MAP values for simulated data experiments. 115
4.3 Runtime in seconds for simulated data experiments. 115
4.4 MAP values for vertex nomination schemes on real data. 125

5.1 GM accuracy for different sized graphs in seconds. 145
5.2 LSGM accuracy for different sized graphs in seconds. 145
5.3 GM runtime for different sized graphs in seconds. 146
5.4 LSGM runtime for different sized graphs in seconds. 147
5.5 LSGM accuracy for different max cluster sizes with ρ = 0.6. 148
5.6 LSGM accuracy for different max cluster sizes with ρ = 0.9. 149
5.7 LSGM runtime for different max cluster sizes ρ = 0.6. 150
5.8 LSGM runtime for different max cluster sizes with ρ = 0.9. 151
5.9 LSGM standard deviation for simulated data. 153
5.10 LSGM accuracy across-subject vs within-subject. 155
5.11 LSGM accuracy on brain graphs. 156
5.12 LSGM runtime on brain graphs. 157

xiii

List of Figures

1.1 Depiction of a kidney and egg graph. 12

2.1 Plate notation of Latent Dirichlet Allocation. 46
2.2 A plate notation of mixed membership stochastic block model. 48

3.1 Hypothesis test for number of edges when the null hypothesis is H0 :
κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5). 53

3.2 Hypothesis test for maximum degree when the null hypothesis is H0 :
κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5). 54

3.3 Hypothesis test for maximum average degree when the null hypothesis
isH0 : κ(1000, 0.1), and the alternative hypothesis isHA : κ(950, 50, 0.1, 0.5). 56

3.4 Statistical power difference surface for β(MADe)− β(MADg) 57
3.5 Hypothesis test for scan statistic. 58
3.6 Hypothesis test for number of triangles when the null hypothesis is H0 :

κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5). 60
3.7 Hypothesis test for clustering coefficient when the null hypothesis is

H0 : κ(1000, 0.1), and the alternative hypothesis isHA : κ(950, 50, 0.1, 0.5). 62
3.8 Hypothesis test for average path length when the null hypothesis is H0 :

κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5). 62
3.9 Power surface plots for the various graph invariants 64
3.10 Comparative power surfaces for the various graph invariants. 65
3.11 Most powerful statistic for n = 100, p = 0.4. 66
3.12 Most powerful statistic for n = 100, p = 0.1. 67
3.13 Most powerful statistic for n = 1000, p = 0.1. 67

4.1 ΦMH using 1000, 10000, 100000, 50000 samples. 88
4.2 Example of accuracy inversion due to the graph matching vertex nom-

ination. 100
4.3 Plot of slope of the GM vertex nomination scheme accuracy 102
4.4 Plot of slope of the nomination accuracy when r = q. 105

xiv

LIST OF FIGURES

4.5 Plot of GM vertex nomination inversion. 106
4.6 Vertex nomination scheme comparison on small simulated data. . . . 112
4.7 Vertex nomination scheme comparison on medium simulated data. . . 113
4.8 Vertex nomination scheme comparison on large simulated data. . . . 114
4.9 Visualization of the Enron graph data. 116
4.10 VN via SGM and VN via SP for Enron data. 118
4.11 Visualization of the C.elegans graph data. 119
4.12 Vertex nomination scheme comparison on C.elegans data. 120
4.13 Visualization of the political blog graph data. 121
4.14 Vertex nomination scheme comparison on blog data. 122
4.15 Visualization of the movie graph data. 123
4.16 Vertex nomination scheme comparison for movie data. 124

5.1 Plot of SGM vs LSGM accuracy . 143
5.2 LSGM accuracy on large simulated data. 152
5.3 LSGM accuracy on brain connectome graphs. 155

xv

Chapter 1

Introduction

1.1 Overview

Graphs have been studied since the 1700s, when Leonhard Euler first contem-

plated traversals of the seven bridges of Königsberg [1]. Graphs naturally arise in

biology, neuroscience [2,3], computer vision [4,5], social networks [6,7], internet com-

munication [8], and many other fields. There has been a perpetual interest in graph

inference.

In this dissertation, we examine hypothesis testing using graph invariants as test

statistics, the problem of vertex nomination, and a divide-and-conquer graph match-

ing technique. We present a comparative power analysis of various graph invariants

for testing the hypothesis that the graph has a subgraph with higher edge probability.

Our results indicate that none of the graph invariants considered is uniformly most

1

CHAPTER 1. INTRODUCTION

powerful. Consider a graph drawn from a stochastic block model, where one of the

blocks is of particular interest. The task of vertex nomination is to create a “nomina-

tion list” of vertices such that vertices from the block of interest are concentrated near

the top of the list. We propose several vertex nomination schemes, derive theoretical

results for performance, and compare the schemes on simulated and real data. We

also develop a new method for scaling graph matching algorithms to large graphs, and

prove performance guarantees. The performance of this technique is demonstrated

on large simulated graphs and human brain connectomes.

This dissertation starts with an introductory chapter containing a literature re-

view, notations, definitions, and the underlying setting – in particular this includes

random graph models. In this thesis, most of the methodologies are developed in the

context of the stochastic block model or the random dot product model.

In Chapter 2, we discuss several foundational tools for random graph inference.

We begin with graph invariants, which are graph properties that are invariant under

graph isomorphisms. Next, we discuss spectral embedding methods for adjacency

matrices. We describe the problem of graph matching and review several inexact

graph matching algorithms. Of the graph matching algorithms, we focus on fast

approximation to quadratic assignment programing [34].

In Chapter 3, we study hypothesis testing, when given a random graph distributed

as a kidney-egg random graph, on whether the edge probability between a subset of

vertices is higher than the rest of the graph. Specifically, the null hypothesis is that

2

CHAPTER 1. INTRODUCTION

all pairs of vertices have the same probability of being an edge, and the alternative

hypothesis is that there is an “egg” of vertices with higher edge probability than in the

rest of the graph. We compare the power of several graph invariants as test statistics

via Monte Carlo simulations. Of the graph invariants we used, our results indicate

that there is no uniformly most powerful graph invariant among the collection which

we consider.

Following in Chapter 4, the problem of vertex nomination is introduced. Given

a graph drawn from a stochastic block model where one block is of particular in-

terest, vertex nomination is the task of creating a list of vertices such that vertices

from the block of interest are in abundance at the top of the list. Vertex nomina-

tion is useful in situations where only a limited number of vertices can be examined

to check their block membership. We propose several vertex nomination schemes,

including a canonical vertex nomination scheme, Metropolis-Hastings sampling ver-

tex nomination scheme, spectral embedding vertex nomination scheme, and graph

matching vertex nomination scheme. We derive theoretical results for performance,

and compare the schemes on simulated and real data.

Finally in Chapter 5, we present a method of scaling graph match algorithms.

This is a divide-and-conquer approach to parallelize inexact graph matching algo-

rithms. We compare the performance of many graph matching algorithms within this

paradigm, and demonstrate the effectiveness of our proposed technique on human

brain connectome graphs.

3

CHAPTER 1. INTRODUCTION

1.2 Brief Literature Review

In this dissertation, we consider the stochastic block model [11, 12] as the un-

derlying framework. For an observed graph drawn from a stochastic block model,

the task of estimating the block memberships of vertices has been widely studied.

Some methodologies include Bayesian methods [13], likelihood maximization [14,15],

graphical models [16,17], and spectral methods [18–20].

One major component of this dissertation is the graph matching problem. Given

two graphs, graph matching is to create a bijection from one set of vertices to the

other, such that the edge structure of the graphs is preserved as best possible. Graph

matching can be separated into three categories: exact graph matching, optimal inex-

act graph matching, and approximate inexact graph matching. Given two isomorphic

graphs, exact graph matching is to find an isomorphism – a bijection between the

two graphs which preserves all edge connectivity. Of course, when the graphs are not

isomorphic, exact graph matching is not possible. Optimal inexact graph matching is

to find the global minimum of a matching objective, where there are several possible

different metrics. We are interested in minimizing the number of edge disagreements

between two graphs [60]. Approximate inexact graph matching finds a local minimum

of the matching objective. Conte, Foggia, Sansone and Vento summarize recent graph

matching efforts in [21].

One problem closely related to exact graph matching is the graph isomorphism

problem, which is to determine whether two graphs are isomorphic. That is, one

4

CHAPTER 1. INTRODUCTION

intends to determine if there exists an isomorphism between the two graphs. This

problem is notoriously of unknown complexity [22–25]. Algorithms for solving many

related problems such as subgraph isomorphism, monomorphism, homomorphism,

and maximum common subgraph are NP-complete [21]. The problem of finding a

bijection to minimize the number of edge disagreements from one graph to another

graph for loopy, weighted, and directed graphs is equivalent to the quadratic assign-

ment problem, which is NP-hard.

Solving exact graph matching can be efficiently done for certain kinds of graphs.

Polynomial time exact graph matching algorithms have been found for matching trees

by Aho et al. [26], planar graphs by Hopcroft and Wong [27], and bounded valence

graphs by Luks [28]. One popular technique devised by Ullmann [29] for exact graph

matching on general graphs is tree search with backtracking. An algorithm called

Nauty not based on tree search was developed by McKay [30].

Since many of the exact graph matching problems are NP-hard, seeking a good

approximate solutions in reasonable time is still an active field of research. The al-

gorithms developed in this area are called inexact graph matching algorithms. One

category of these algorithms are derived from tree search, first developed by Tsai and

Fu [31]. Another technique for inexact graph matching relies on spectral embedding

by Umeyama [32]. A third category is based on continuous optimization methods, by

relaxing a combinatorial objective. One of the first such methods is due to Fischler

and Elschlager [33]. In this thesis, we are primarily concerned with inexact graph

5

CHAPTER 1. INTRODUCTION

matching, utilizing a continuous relaxation optimization method, developed by Vo-

gelstein et al. [34]. Henceforth, the term “graph matching” refers to inexact graph

matching.

6

CHAPTER 1. INTRODUCTION

1.3 Notation

This section defines the notation to be used through out this dissertation.

For any vector v = [vi], let vi denote the ith element of v. For any matrix M =

[mij], let mij denote the element in M from the ith row and jth column.

Let R be the set of real numbers, and N = {1, 2, 3, . . .} be the set of natural

numbers.

Let (a, b) denote the set of real numbers between a and b noninclusive, and [a, b]

denote the set of real numbers between a and b inclusive.

If A ∈ Rk×n and B ∈ Rk×m are matrices (or vectors) with the same number of

rows, let [A,B] ∈ Rk×(n+m) be the horizontal concatenation of A,B. Similarly, if

A ∈ Rn×k and B ∈ Rm×k are matrices (or vectors) with the same number of columns,

let [A;B] ∈ R(n+m)×k be the vertical concatenation of A,B.

A matrix A is symmetric if A = AT . A matrix A = [aij] ∈ Rn×n is hollow if, for

all i ∈ {1, 2, 3, . . . n}, aii = 0.

For all x, y ∈ Rn, we define the “Euclidean” dot product 〈·, ·〉 as 〈x, y〉 = xTy ∈ R.

Let ⊆ denote subset allowing equality and ⊂ denote subset excluding equality.

Let 1[·] denote the indicator function.

Let V be a set, then let
(
V
2

)
denote all (unordered) pairs {v, v′} such that v, v′ ∈ V

and v 6= v′.

7

CHAPTER 1. INTRODUCTION

Let ‖ · ‖p be defined to be the `p vector norm - that is, for a vector x = [xi] ∈ Rn,

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

.

In particular, we denote the `2 norm as

‖x‖2 =

√√√√ n∑
i=1

|xi|2.

Let ‖ · ‖F be the Frobenius norm - that is, for any matrix A = [aij] ∈ Rm×n

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

a2
ij.

We define the induced matrix norm of `α and `β vector norms as

‖A‖α,β = sup
x6=0

‖Ax‖β
‖x‖α

= sup
‖x‖α=1

‖Ax‖β.

In particular, for A ∈ Rm×n

‖A‖2,∞ = sup
‖x‖2=1

‖Ax‖∞ = sup
‖x‖2=1

max
i
|Aix| = max

i∈[m]
‖Ai‖2,

where Ai is the ith column of A.

For the following definitions, let f and g be functions defined on the set of real

numbers or natural numbers. If there exists some M > 0 and x0 ∈ R such that

|f(x)| ≤M |g(x)|, ∀x > x0,

then we say

f(x) = O(g(x)).

8

CHAPTER 1. INTRODUCTION

If for all ε > 0 there exists x0 ∈ R such that

|f(x)| ≥ ε|g(x)|, ∀x > x0,

then we say

f(x) = Ω(g(x)).

For every ε > 0, there exists a x0 ∈ R such that

|f(x)| ≤ ε|g(x)|, ∀x > x0,

then we say

f(x) = o(g(x)).

Definition Here, we present graph theory definitions and notation. For this disserta-

tion we are mainly concerned with undirected graphs. When convenient, we provide

details on how to apply methods to directed graphs.

• A graph G = (V,E) is defined to be a vertex set V and an edge set E, where

E consists of two element subsets of V . Again, we are primarily concerned with

undirected graphs, but occasionally we consider directed graphs for complete-

ness or convenience. In a directed graph the edge set E consists of ordered pairs

of elements from V .

• A vertex v ∈ V is adjacent to v′ ∈ V if {v, v′} ∈ E, we denote this as v ∼ v′.

• A subgraph G′ = (V ′, E ′) of G = (V,E) is a graph such that V ′ ⊆ V and

E ′ ⊆ E. This is denoted as G′ ⊆ G.

9

CHAPTER 1. INTRODUCTION

• For any V ′ ⊆ V , the subgraph of G induced by V ′, denoted G[V ′], is the

graph G′ = (V ′, E ′), such that for all v, v′ ∈ V ′, {v, v′} ∈ E ′ if and only if

{v, v′} ∈ E.

• A walk is a list of vertices w = (v0, v1, v2, . . . vl), such that vi−1 ∼ vi for

i ∈ {1, 2, 3, . . . l}. The length of a walk is the number of edges in the walk,

equivalent to the number of vertices minus 1, i.e. the length of w is l. A path

is a walk with no repeated vertices.

• The distance between two vertices in a graph is the length of a minimum length

walk between the two vertices. Distance is denoted as d(·, ·). For all v, v′ ∈ V ,

we have d(v, v) := 0, and if no path exists between v and v′, then d(v, v′) :=∞.

• The kth-order neighborhood of a vertex v are all vertices u such that d(u, v) ≤

k. We denote the kth order neighborhood of vertex v in graph G as Nk(v;G).

• Let G = (V,E) be a graph and say V = {v1, v2, . . . v|V |}. The adjacency

matrix A = [aij] ∈ {0, 1}|V |×|V | of G is a matrix, such that for all i, j ∈ [|V |]

aij = 1[{vi, vj} ∈ E]. Although the vertex set V may not have any natural

ordering, to create an adjacency matrix, an ordering of the vertices is required.

Any ordering is permitted. The adjacency matrix in our setting is symmetric

and hollow. If the graph is directed, then the adjacency matrix is not necessarily

symmetric but is still hollow.

Definition Consider a sequence of events (E1, E2, E3, . . .). We say the sequence

10

CHAPTER 1. INTRODUCTION

happens almost always to mean that

P[lim inf
n→∞

En] = P
[
∪∞i=1 ∩∞j=i Ej

]
= 1.

1.4 Random Graph Models

In this section, we present several random graph models pertaining to our subse-

quent analysis. In all of the presented random graphs, the vertex set is fixed, while

the edge set is random.

1.4.1 Erdős-Rényi Random Graph

Definition An Erdős-Rényi random graph G ∼ κ(n, p), has two parameters;

the number of vertices n, and edge probability p. Let V be a set of vertices such

that n = |V |. A graph is an Erdős-Rényi random graph, if for all {v, v′} ∈
(
V
2

)
,

1[{v, v′} ∈ E] is independent identically distributed (i.i.d.) Bernoulli(p). Let G ∼

κ(n, p) denote an Erdős-Rényi random graph.

The Erdős-Rényi random graph has been well studied and appears often in the

literature. It was first introduced in 1959 by Béla Bollobás’ [9]. We are interested

in the Erdős-Rényi random graph, because it is one of the simplest random graph

models with many known properties.

11

CHAPTER 1. INTRODUCTION

1.4.2 Dense Sub-block Random Graph

Definition A kidney and egg random graph G = (V,E) ∼ κ(b, p, q) has param-

eters; block membership function b : V 7→ {1, 2} and p, q ∈ (0, 1). Independently,

for all {v, v′} ∈
(
V
2

)
,

P[{v, v′} ∈ E] =


q, if b(v) = b(v′) = 1

p, otherwise

.

When q > p, we refer to the graph as a dense sub-block random graph.

For k ∈ {1, 2}, let the pre-image of b be denoted by Vk = {v : f(v) = k}; we call

these sets blocks.

Figure 1.1: Depiction of a kidney and egg graph.

This is a more complex random graph model than the Erdős-Rényi random graph

[35]. The “egg” refers to the induced subgraph of the vertices with inter-block edge

12

CHAPTER 1. INTRODUCTION

probability q, the “kidney” refers the induced subgraph of the remaining vertices

with inter-block edge probability p, and the edges between the egg and kidney have

probability p. A depiction of a kidney and egg random graph is shown in Figure 1.1.

Note that if p = q, then this model is not identifiable, because edges between

vertices in the “egg” have the same distribution as vertices in the rest of the graph.

Often, the parameter b is unobserved. It is also useful to consider the following

alternative definition of the kidney-egg random graph.

Definition A kidney and egg random graph G = (V,E) ∼ κ(n1, n2, p, q) has

parameters n1, n2 ∈ N and p, q ∈ (0, 1). Let the vertex set be V such that |V | =

n1 + n2. Consider all possible block membership functions b : V 7→ {1, 2} such

that the cardinality |Vk| = |{v : b(v) = k}| of the pre-image of k is nk. Let B

denote the set of all possible
(
n1+n2

n1

)
block membership functions. Let b be uniformly

distributed over B. Given b, independently for all {v, v′} ∈
(
V
2

)

P[{v, v′} ∈ E] =


q, if b(v) = b(v′) = 1

p, otherwise

.

1.4.3 Stochastic Block Random Graph

The next model is a generalization of the kidney and egg random graph.

Definition A stochastic block random graph G = (V,E) ∼ (b,Λ) has two

parameters; a matrix Λ = [λij] ∈ [0, 1]K×K and a block membership function

13

CHAPTER 1. INTRODUCTION

b : V 7→ K. For all {v, v′} ∈
(
V
2

)
, the edges are independent 1[{v, v′} ∈ E] ∼

Bernoulli(λb(v)b(v′)).

For k ∈ {1, 2, . . . , K}, let Vk denote the pre-image {v ∈ V : b(v) = k}. We call

V1, V2, . . . , VK blocks.

Notice that the blocks V1, V2, . . . , VK partition the vertex set. For this model to

be identifiable, the edge probabilities of different blocks must be different from each

other, i.e., all rows (or columns) of Λ are distinct. In the directed case for Λ to be

identifiable, for all distinct i, j ∈ {1, 2, . . . K} either row ith is not equal to the jth

row or the ith column is not equal to the jth column.

Often, the block membership function is not observed. As an alternative defini-

tion of the stochastic block random graph, we can define the model without b as a

parameter, in the following manner.

Definition A stochastic block random graph G = (V,E) ∼ (N,Λ), has parame-

ters Λ ∈ [0, 1]K×K and N = (n1, n2, . . . , nK), where nk are positive integers. Let V be

the set of n vertices, where n =
∑K

k=1 nk. Let B be the set of all block membership

functions b : V 7→ {1, 2, . . . K} such that, all k ∈ {1, 2, . . . , K}, the cardinality of

the pre-image |{v ∈ V : b(v) = k}| = nk. There are
(

n
n1,n2,...,nK

)
such block member-

ship functions. Let the block membership function b be uniformly distributed over

B. Then, conditioning on b ∈ B, for all {v, v′} ∈
(
V
2

)
, the edges are independent

1[{v, v′} ∈ E] ∼ Bernoulli(λb(v)b(v′)).

14

CHAPTER 1. INTRODUCTION

Often we let the vertex set V be denoted as {v1, v2, . . . , vn}. In these cases, we

occasionally denote b = [bi] ∈ {1, 2, . . . , K}n as a vector with bi = b(vi). When there

is possible confusion, we denote the blocks V b
1 , V

b
2 , . . . , V

b
K .

For convenience, let us define an “expanded Λ” as A = [aij] ∈ [0, 1]n×n where

aij = Λbi,bj . When excluding the diagonal, A also may be viewed as the mean of the

adjacency matrix A, i.e. E[A] = A.

In certain instances, the block membership function b is partially observed. In

other words, its value is known for some vertices, say U ⊆ V , and not others, say

W ⊆ V . The observed and unobserved vertices partition the vertex set V = U ∪W .

We call these vertices in U seed vertices. Just as before, for all k ∈ {1, 2, 3, . . . K},

define Uk, Wk be the inverse image of k under b for vertices in U and W respectively

(Vk = Uk ∪Wk). Define S = [sk] ∈ NK , M = [mk] ∈ NK be vectors of length K, such

that for all k ∈ [K], sk = |Uk| and mk = |Wk|, and define s =
∑

k∈{1,2,3,...K} sk and

m =
∑

k∈{1,2,3,...K}mk.

Note that the dense sub-block model is a special case of a stochastic block random

graph with 2-blocks where

Λ =

q p

p p

 .

1.4.4 Bernoulli Random Graph

Definition A Bernoulli random graph G ∼ κ(A) has the parameter matrix of

edge probabilities A = [aij] ∈ [0, 1]n×n. Let V = {v1, v2, . . . , vn} be the set of ver-

15

CHAPTER 1. INTRODUCTION

tices. A graph G = (V,E) is an Bernoulli random graph if, independently for all

{vi, vj} ∈
(
V
2

)
, 1[{vi, vj} ∈ E] ∼Bernoulli(aij).

If the graph is undirected, then A is a symmetric and hollow. If the graph is

directed, then A may not be symmetric. If we write κ(A) where A is not hollow, then

let it be understood that we treat aii as if it is zero for i ∈ {1, 2, . . . , n}.

Consider a stochastic block random graph κ(b,Λ), and its associated expanded

lambda matrix A. Notice that κ(A) is precisely κ(b,Λ). Thus the stochastic block

random is a special case of a Bernoulli random graph.

1.4.5 Stochastic Block Model

Another variant of the stochastic block model which does not fix the block sizes

is as follows.

Definition A stochastic block modelG, denoted κ(n, π,Λ), has parameters: num-

ber of vertices n ∈ N, block probability vector π ∈ [0, 1]K such that
∑

k∈K πk = 1,

and a matrix of edge probabilities Λ ∈ [0, 1]K×K . For all v ∈ V , the block mem-

bership function value b(v) is distributed as i.i.d. Multinomial(π). In other words,

for all v ∈ V and k ∈ {1, 2, 3, . . . K}, P[b(v) = k] = πk. Then, given the block

membership function b, the edge probabilities between any vertices {v, v′} ∈
(
V
2

)
are

independent 1[{v, v′} ∈ E] ∼ Bernoulli(λb(v)b(v′)), as before. Notice that this makes

N = (n1, n2, . . . , nK) = (|V1|, |V2|, . . . , |VK |) a random vector.

16

CHAPTER 1. INTRODUCTION

1.4.6 Random Dot Product Graph

A further generalization on this variant of the random stochastic block model is

the random dot product graph (RDPG).

Definition A random dot product graph κ(n,F) has parameters: number of

vertices n ∈ N and a distribution F on Rd such that for all x, y ∼ F , the inner

product 〈x, y〉 ∈ [0, 1]. Let the vertex set be V = (v1, v2, . . . vn), then for all vi ∈ V , the

corresponding latent positions xi are distributed i.i.d. F . Conditioned on the latent

positions x1, x2, . . . , xn, independently for all vertices {vi, vj} ∈
(
V
2

)
, 1[{vi, vj} ∈ E] ∼

Bernoulli(〈xi, xj〉). For convenience, define the matrix X = [x1, x2, . . . , xn]T ∈ Rn×d.

Often it is convenient to assume that rank(XTX) = rank(X) = d. However, in

this model no choice of parameters is sufficient for this assumption.

Consider a distribution F with finite support, say the cardinality of the support

of F is K. If for all k ∈ {1, 2, . . . , K} we denote the kth element in the support of

F as zk, and the corresponding probability as πk, P[zk] = πk, then for any k, k′ ∈

{1, 2, 3, . . . K}, we can say λk,k′ = 〈zk, zk′〉 and this model is equivalent to κ(n, π,Λ).

Conversely, consider κ(n, π,Λ) and assume Λ is positive semi-definite, say rank(λ) =

d. Let the eigenvalue decomposition of Λ be UΣUT , where U ∈ Rn×d has orthogonal

columns and Σ ∈ Rd×d is diagonal. Since Λ is positive semi-definite, all the eigenval-

ues are non-negative and have real square roots. Then define X ′ = [x′1, x
′
2, . . . , x

′
K]T =

UΣ
1
2 ∈ [0, 1]K×d. Say the latent position for vi ∈ Vk is the kth row of X ′, and F is

17

CHAPTER 1. INTRODUCTION

defined with support {x′k} for k ∈ {1, 2, 3, . . . K} with P[x′k] = πk. Then we have a

random dot product graph κ(n,F).

In the setting where Λ is not positive semi-definite or G is directed, consider a

distribution F on R2d, where each vertex vi ∈ V has two latent positions. One “left”

latent position xi ∈ Rd and another “right” latent position yi ∈ Rd such that for all

vi ∈ V , [xi; yi] is i.i.d. F . Given the latent positions of every vertex, the probability of

an edge between any pair of vertices vi, vj ∈ V is, independent for all {vi, vj} ∈
(
V
2

)
,

〈xi, yj〉, i.e. P[1[vi ∼ vj]] = 〈xi, yj〉. Again for convenience, we collect the latent

positions into matrices X = [x1, x2, . . . , xn]T ∈ Rn×d and Y = [y1, y2, . . . yn]T ∈ Rn×d.

Unless otherwise stated, we do not use this as our RDPG. Proofs in Chapters 4 and

5 require the assumption that Λ is positive semi-definite.

1.4.7 ρ-correlated Graphs

Informally, these are a pair of random graphs such that there is a fixed correlation

across the two graphs. Correlation refers to the Pearson’s product-moment coefficient.

Definition The correlation of two random variables X and Y is defined as

corr(X, Y) =
cov(X, Y)

σXσY
=
E[X − µX]E[Y − µY]

σXσY
=

E[XY]− E[X]E[Y]√
E[X2]− E2[X]

√
E[Y 2]− E2[Y]

.

Definition Let GA = (V A, EA) and GB = (V B, EB) be two Bernoulli random

graphs, where edge probabilities in each graph are independent. Let V A = {vA1 , vA2 , . . . vAn },

V B = {vB1 , vB2 , . . . vBn }. The two graphs GA and GB are ρ-correlated if there exists

18

CHAPTER 1. INTRODUCTION

a bijection ϕ : V A 7→ V B such that for all i, j ∈ {1, 2, 3, . . . n},

corr(1[vAi ∼ vAj],1[f(vBi) ∼ f(vBj)]) = ρ.

Furthermore, this is the only dependence between the edges EA and EB.

We present a convenient procedure to produce two ρ-correlated Bernoulli random

graphs.

Consider a hollow edge probability matrix A for a Bernoulli graph. We first

generate a graph GA = (V A, EA) ∼ κ(A), then generate another random graph

GB = (V B, EB) in a specific manner. Then we show that GB ∼ κ(A) and the graphs

GA, GB are ρ-correlated with ϕ(vAi) = vBi . Conditioning on any event {vAi , vAj } ∈ EA,

let the probability that {vBi , vBj } ∈ EB be

P[{vBi , vBj } ∈ EB|{vAi , vAj } ∈ EA] = ρ+ (1− ρ)aij.

Still conditioning on any {vAi , vAj } ∈ EA, this implies the probability that the non-edge

{vBi , vBj } /∈ EB is

P[{vBi , vBj } /∈ EB|{vAi , vAj } ∈ EA] = (1− ρ)(1− aij).

Conditioning on every non-edge {vAi , vAj } /∈ EA, the corresponding non-edge {vBi , vBj } /∈

EB with probability

P[{vBi , vBj } /∈ EB|{vAi , vAj } 6∈ EA] = ρ+ (1− ρ)(1− aij) = (1− aij) + ρaij,

19

CHAPTER 1. INTRODUCTION

making the probability that the corresponding edges exists {vBi , vBj } ∈ EB with prob-

ability

P[{vBi , vBj } ∈ EB|{vAi , vAj } /∈ EA] = (1− ρ)aij.

This concludes our procedure to generate GB. Now we show GA and GB are ρ-

correlated and GB ∼ κ(A). Now let us compute the correlation of 1[vAi ∼ vAj] and

1[vBi ∼ vBj]. Let X be the event {vAi , vAj } ∈ EA and Y be the event {vBi , vBj } ∈ EB,

then

corr(X, Y) =
E[XY]− E[X]E[Y]√

E[X2]− E2[X]
√

E[Y 2]− E2[Y]

=
P[XY]− P[X]P[Y]√

P[X2]− P2[X]
√
P[Y 2]− P2[Y]

=
P[XY]− a2

ij

aij − a2
ij

.

Now the only probability we need to compute is P[XY], which is

P[XY] = P[Y |X]P[X] = P[{vBi , vBj } ∈ EB|{vAi , vAj } ∈ EA]P[{vAi , vAj } ∈ EA]

= (ρ+ (1− ρ)aij)aij = (ρ+ aij − ρaij)aij = ρ(aij − a2
ij) + a2

ij.

Substituting back into the correlation formula yields

corr(X, Y) =
ρ(aij − a2

ij) + a2
ij − a2

ij

aij − a2
ij

=
ρ(aij − a2

ij)

aij − a2
ij

= ρ.

20

CHAPTER 1. INTRODUCTION

Finally, we need to verify that the this new GB graph is κ(A),

P[{vBi , vBj } ∈ EB] = P[{vBi , vBj } ∈ EB|{vAi , vAj } ∈ EA]P[{vAi , vAj } ∈ EA]

+P[{vBi , vBj } ∈ EB|{vAi , vAj } /∈ EA]P[{vAi , vAj } /∈ EA]

= (ρ+ (1− ρ)aij)aij + (1− ρ)aij(1− aij)

= ρaij + (1− ρ)aijaij + (1− ρ)aij(1− aij)

= ρaij + (1− ρ)aij(aij + 1− aij) = ρaij + (1− ρ)aij

= aij(ρ+ 1− ρ) = aij.

Thus we have now verified that GA and GB are ρ-correlated and both are κ(A).

The joint distribution for two ρ-correlated Bernoulli trials, is fully determined by

the Bernoulli parameters and ρ. Therefore the joint distribution is unique. Thus this

is the only possible joint distribution for two ρ-correlated Bernoulli random graphs

distributed as κ(A). These ρ-correlated graphs are especially important for studying

graph matching (see Section 2.4 and Chapter 5). These models describe a well defined

way of creating dependency between two graphs, and provide theoretical framework

for our proposed methods.

21

Chapter 2

Tools for Studying Random Graphs

In this chapter, we describe three tools that we use in subsequent chapters for

graph inference. Section 2.1 introduces graph invariants, which are used as statistics

in Chapter 3, for hypothesis testing. Specifically, the statistics are used for random

graphs drawn from the dense sub-block random graph κ(n1, n2, p, q). We conduct

hypothesis testing with the null hypothesis p = q and alternative hypothesis p < q.

Section 2.2 covers the spectral partitioning method, which is used later in Chapter 4,

for the task of vertex nomination, and in Chapter 5 as a part of the LSGM algorithm.

Section 2.4 describes graph matching, which is also featured in Chapters 4 and 5.

22

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

2.1 Graph Invariants

This section introduces various graph invariants for use as test statistics in Chapter

3. We estimate their power in hypothesis testing, where the null hypothesis is an

Erdős-Rényi random graph and the alternative is a dense sub-block random graph.

In the following definitions, let G = (V,E) be an undirected graph.

Definition The order is the number of vertices in the graph, denoted as order(G) =

|V |, and the size is the number of edges in the graph, denoted as Size(G) = |E|.

Definition The degree of a vertex v ∈ V , d(v) is the number of edges containing v,

d(v) = |{(v, u) : u ∈ V, {v, u} ∈ E}|. The maximum degree δ(G) is the maximum

degree of all vertices in a graph

δ(G) = max
v∈V

d(v).

The maximum degree is a simple local graph invariant.

Definition The average degree of G is given by

d̄(G) =
1

|V |
∑
v∈V

d(v) =
2|E|
|V |

.

The maximum average degree of G is given by

MAD(G) = max
H⊆G

d̄(H),

where the maximum is over all subgraphs H of G.

23

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

Notice that it suffices to consider only induced subgraphs since for any subset of

vertices V ′ ⊆ V , subgraphs of G on V ′ with smaller edge sets will have lower average

degree than the subgraph induced by V ′.

Scan statistics are a local graph invariant studied by Priebe et al. [8] for inference

on the Enron graph.

Definition Recall that the kth order neighborhood of a vertex v ∈ V is the set of

vertices {u ∈ V : d(u, v) ≤ k}. Let Sk(G) denote the kth order scan statistic, which

is the maximum number of edges over all graphs induced by kth order neighborhoods,

Sk(G) = max
v∈V

Size(Nk(v;G)).

The scan statistic is very good for detecting high local activity in a graph. The

primary limitation is that it is computationally expensive to compute.

Definition A triangle is defined as a clique of three vertices. The total number

of triangles τ(G) is another graph invariant.

Definition To define clustering coefficient, first we define an angle as an induced

subgraph on three vertices that has exactly two edges. Let the total number of

induced subgraphs, which are angles in G, be denoted by angles(G), then the global

clustering coefficient is given by

CC(G) =
τ(G)

τ(G) + angles(G)
.

24

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

Consider when graph G is a social network, where the vertices represent people, and

the edges represent pairs of people who are friends. Over all instances where any

person v has two distinct friends u and u′, the clustering coefficient is the fraction of

the time that u and u′ are also friends of each other.

Definition The average path length is

APL(G) =

∑
{v,v′}∈(V2)

d(v, v′)

n(n− 1)

As currently defined, all disconnect graphs have an infinite average path length.

To avoid an infinite average path length, if there exists vi, vj ∈ V such that there

is no vi, vj path, then for average path length computation we use the convention

d(vi, vj) := 2 maxi′,j′ d(vi′ , vj′) over all vi′ , vj′ that are connected.

Average path length graph invariant is a way to quantify the connectivity of the

graph. It gives a sense of how far apart all the vertices are from each other. This

is related to the popular concept of “ six degrees of separation” also known as the

“small world” phenomenon [37, 38]. Graphs with small average path length exhibit

this phenomenon. This occurs in many real word graphs.

2.2 Adjacency Spectral Embedding

Here, we are primarily concerned with spectral embedding on the adjacency ma-

trix. Alternative matrices such as the Laplacian and normalized Laplacian have also

been studied in [18,19] (see Section 2.2.6).

25

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

We first discuss the adjacency spectral embedding of directed graphs, then consider

the undirected case. Adjacency spectral embedding requires an embedding dimension

d̂ ∈ N as a parameter. To compute the adjacency spectral embedding of a graph, first

one computes the singular value decomposition of the adjacency matrix A = UΣVT ,

where U ,V are real orthogonal matrices, Σ = diag(σ1, σ2, . . . , σn) is a diagonal matrix,

and σ1 ≥ σ2 ≥ . . . ≥ σn are singular values of A. The adjacency spectral embedding

uses the first d columns of U , call this sub-matrix Û , the first d̂ columns of V , call

this V̂ , and the leading d̂× d̂ principle sub-matrix of Σ, Σ̂ = diag(σ1, σ2, . . . σd̂). The

adjacency spectral embedding of A is X̂ = ÛΣ̂
1
2 ∈ Rn×d̂ and Ŷ = V̂Σ̂

1
2 ∈ Rn×d̂, where

each pair of rows x̂i of X̂ and ŷi of Ŷ , represent the embedding of vertex vi.

Algorithm 2.1 Adjacency Spectral Embedding (for directed graphs)

UΣVT ← A . Compute singular value decomposition

Û ← [U1,U2, . . .Ud̂] . Low rank approximation

V̂ ← [V1,V2, . . .Vd̂]

Σ̂← diag(σ1, σ2, . . . σd̂)

X̂ ← ÛΣ̂
1
2 , Ŷ ← V̂Σ̂

1
2

Ẑ ← [X̂, Ŷ] . Embedded Vertices

In the following lemma, if G ∼ κ(n,F), then the adjacency spectral embedding

approximates the latent positions up to rotation [19].

Lemma 2.2.1 Sussman et al. [19]

Let G ∼ κ(n,F) such that F has finite support, i.e. G ∼ κ(n, π,Λ). Let the singular

26

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

value decomposition of Λ be UΣVT and call µ = UΣ
1
2 , ν = VΣ

1
2 . Truncating matrices

µ and ν give us the adjacency spectral embedding of A, Ẑ = [X̂, Ŷ] ∈ Rn×2d, where

X̂ = ÛΣ̂
1
2 ∈ Rn×d and Ŷ = V̂Σ̂

1
2 ∈ Rn×d. Also let X, Y be the left and right

latent positions of the model respectively and define Z = [X, Y] ∈ Rn×2d. Then for

any sequence of graphs Gn ∼ κ(n, π,Λ), n = 1, 2, . . ., there almost always exists an

orthogonal matrix Q ∈ R2d×2d such that

‖ẐQ− Z‖F ≤
√

2

√
6

α2γ2

√
log n

n
= O

(√
log n

n

)
,

where α, β, γ are positive real numbers such that

• all eigenvalues of Y TY and XTX are greater than α.

• for all i, j ∈ {1, 2, 3, . . . n}, call µi and νi the ith column of µ and ν respectively,

then β < ‖µi − µj‖, β < ‖νi − νj‖.

• for all i ∈ {1, 2, 3, . . . K}, γ < πi.

This lemma states that the adjacency spectral embedding X̂ approaches the true

latent positions X up to an orthogonal transformation “as n goes to infinity,” and

is the crux of the parallelization of seeded graph matching to make the large seeded

graph matching algorithm (see Chapter 5).

2.2.1 Undirected Graphs

Now consider the case that G is undirected. Let the singular value decomposition

of the adjacency matrix be A = UΣVT . Since A is symmetric, using the eigenvalue

27

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

decomposition of A, we have

A = WΛW T =
n∑
i=1

wiλiw
T
i =

n∑
i=1

wi|λi|sign(λi)w
T
i .

Thus the rows of X̂ and Ŷ differ at most by a sign. In many cases, we only need to

consider X̂ = [ÛΣ̂
1
2]. For example, spectral partitioning improves by a factor of two

in misclassification rate when only using X̂ [19].

Algorithm 2.2 Adjacency Spectral Embedding (for undirected graphs)

UΣVT ← A . Compute spectral decomposition

Û ← [U1,U2, . . .Ud̂] . Low rank approximation

V̂ ← [V1,V2, . . .Vd̂]

Σ̂← diag(σ1, σ2, . . . σd̂)

X̂ ← [ÛΣ̂
1
2] . Embedded Vertices

2.2.2 Weighted Graphs

Another common variant of graphs are weighted graphs. Weighted graphs are

graphs where the edges can be positive real valued instead of binary valued, i.e.

A ∈ Rn×n
+ instead of A ∈ {0, 1}n×n. Adjacency spectral embedding can be applied to

weighted edges. It is also applicable to directed weighted graphs.

28

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

2.2.3 Dimension Selection

Let G ∼ κ(n, π,Λ) be a stochastic block model, or any other model where Λ

is known. In order to perform adjacency spectral embedding, we need to pick an

embedding dimension d̂. The embedding dimension d̂ we choose is rank(Λ), because

we can construct a latent position with dimension rank(Λ). Say the singular value

decomposition of Λ is XΣYT , where X ,Y ∈ RK×rank(Λ) and Σ ∈ Rrank(Λ)×rank(Λ). Call

the kth column of X as Xk, notice that zTbi = [XbiΣ
1
2 ,YbiΣ

1
2] is a latent position for

vertex vi.

In practice, Λ is typically not known, and dimension selection is a hard problem.

If the graph is drawn from a stochastic block model, and an upper bound of rank(Λ)

is known, then embedding to a dimension equal to the upper bound is sufficient to

estimate the latent position well (see Theorem 2.3.1) [20]. Choosing the embedding

dimension is a hard problem that has been studied as in topics of dimension selection

and model selection [39,40]. We can also avoid selecting a dimension by using sparse

representation techniques [41].

2.2.4 Unscaled Embedding

Another alternative is to use X̂ = Û directly without scaling by Σ
1
2 . The con-

sistency results of Lemma 2.2.1 still applies when using X̂ = Û . Thus subsequent

theorems based on this lemma also hold with the unscaled embedding. However, it

29

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

should be noted that Theorem 2.3.1 does not hold for unscaled embeddings [20]. The

embeddings displays noticeable performance differences in finite samples. There exist

scenarios where Û performs better than ÛΣ
1
2 and there exist other scenarios where

ÛΣ
1
2 performs better than Û .

2.2.5 Projection onto the Sphere

Projection onto the sphere is normalization following adjacency spectral embed-

ding. Let X̂ be the embedding of a graph G and let X̂ = [x′1, x
′
2, . . . , x

′
d]
T , where xj

denotes the jth column of X̂. For all j ∈ {1, 2, 3, . . . d}, define x̃j = x′j/‖x′j‖. The

projection of X̂ onto the sphere is X̃ = [x̃1, x̃2, . . . , x̃d].

2.2.6 Laplacian

Another version of spectral embedding uses the Laplacian matrix instead of the

adjacency matrix. The Laplacian of a graph is defined as D−A, where D is a diagonal

matrix with diagonals dii being the degree of vertex vi. An important and popular

variant is the normalized Laplacian defined as

L = D−1/2LD−1/2 = I −D−1/2AD−1/2.

For the stochastic block model, theorems analogous to Lemma 2.2.1 and Theo-

rems 2.3.1, 2.3.2, and 2.3.3, have been proven using the Laplacian. Clustering after

adjacency spectral embedding or Laplacian spectral embedding provides a consistent

30

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

estimation of the block membership function b. For finite samples, one embedding

may outperform the other depending on the graph structure [19].

2.3 Spectral Partitioning

The next natural progression is to analyze the embedding and make inferences on

the observed graph. Spectral partitioning is performing adjacency spectral embedding

then clustering the embedded vertices. The clusters identify similar vertices in the

graph. For a stochastic block random graph κ(b,Λ), we are interested in identifying

the block membership function b. The spectral embedding step requires an embedding

dimension d̂. Using an embedding dimension of d = rank(Λ) provides consistent

estimation of the blocks, see Theorem 2.3.3 [47]. If the exact value of d is not known,

results by Fishkind et al. [20] show that knowing an upper bound on d is sufficient

for achieving good performance (see theorem 2.3.1).

Consider a graph G drawn from a stochastic block model. Let X : UΣ
1
2 be the

adjacency spectral embedding of the graph G. We cluster the embeddings using mean

squared error as the objective

min
C∈Rn×d

‖X − C‖F ,

where there are at most K distinct-valued rows in C. Let Ci denote the rows of C

and let c′1, c
′
2, . . . , c

′
K denote the distinct-valued rows of C. The distinct-valued rows

c′k are called centroids and are the center of the K clusters. Since this objective

31

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

is not exactly solvable in practice, we use a clustering algorithm like the k-means

algorithm [43] or the R package mclust [44–46] to approximate the solution. See [42]

for a review of clustering methods.

The estimated block membership function for all i ∈ {1, 2, . . . n} is defined as

b̂i = k if and only if c′k = ci.

Algorithm 2.3 Spectral Partitioning

UDVT ← A . Compute singular value decomposition

Û ← [U1,U2, . . .Ud] . Low rank approximation

V̂ ← [V1,V2, . . .Vd]

Σ̂← diag(σ1, σ2, . . . σd)

X̂ ← [ÛΣ̂
1
2 , (Σ̂

1
2 V̂)T] . Embedded Vertices

C ← minC ‖X̂ − C‖F . Cluster Estimated Latent Positions

c′1, c
′
2, . . . , c

′
K ← distinct rows of C . Estimate Block Membership Function

for n = 1, 2, . . . , n do

b̂i ← arg mink ‖c′k − xi‖

end for

Theorem 2.3.1 Fishkind et al. [20]

For n = 1, 2, . . ., assume that the graphs Gn are random dot product random graphs

distributed as κ(n,F) whose F has finite support (i.e., a stochastic block model

κ(n, π,Λ)). Further, assume all unknown parameters, and only assume that the em-

bedding dimension d̂ ≥ rank(Λ). Let ΨK be the set of permutations on {1, 2, 3, . . . K}.

32

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

For any fixed ε > 3
4
, for the sequence of graphs G1, G2, . . ., Gn ∼ κ(n, π,Λ), the

number of misalignments

min
ϕ∈ΨK

|{vi ∈ V : bi 6= ϕ(b̂i}| < nε

almost always.

Specifically, this theorem shows that the resulting clusters from spectral partitioning

almost always have less than nε errors. The minimization over the set of permutations

ΨK is used to permute the clusters to optimally match the true membership labels b.

Another consistency result proved by Sussman et al. [19] shows that the number

of misalignments from spectral partitioning is only O(log n) vertices. This theorem

requires the stronger assumption that the embedding dimension d̂ = rank(Λ).

Theorem 2.3.2 Sussman et al. [19]

For n = 1, 2, . . ., assume that the graphs Gn are a stochastic block model κ(n, π,Λ)

or κ(n,F), where F has finite support, and the embedding dimension is d̂ = rank(Λ).

For the sequence of graphs Gn, n = 1, 2, . . ., where Gn ∼ κ(n, π,Λ), almost always

holds that

min
ϕ∈ΨK

|{vi ∈ V : bi 6= ϕ(b̂i})‖ ≤
23326

α5β2γ5
log n

where, as in Lemma 2.2.1, α, β, γ are positive real numbers such that

• all eigenvalues of Y TY and XTX are greater than α.

• for all i, j ∈ {1, 2, 3, . . . n}, call µi and νi the ith column of µ and ν respectively,

then β < ‖µi − µj‖, β < ‖νi − νj‖.

33

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

• for all i ∈ {1, 2, 3, . . . K}, γ < πi.

In the following theorem, Lyzinski et al. [47] has shown that spectral partitioning

correctly identifies all block memberships, under some mild conditions.

Theorem 2.3.3 Lyzinski et al. [47]

Let G ∼ κ(n,F) be a stochastic block model with K blocks and block membership

vector b. Let the eigenvalues of Λ be σ1, σ2, . . . , σK. Let η ∈ (0, 1/2) and

∆ = max
i∈[n]

∑
i6=j

aij, γ = min
i∈[d]

|σi+1 − σi|
n

β =
85d∆3 log(n/η)

(γn)7/2
.

Let r > 0 be such that for all i, j ∈ {1, 2, 3, . . . n} with xi 6= xj, ‖xi−xj‖2 > 4r. Let

X̂ be the adjacency spectral embedding of G and b̂ : {1, 2, 3, . . . n} 7→ {1, 2, 3, . . . K} be

the optimal mean squared error clustering of the rows of X̂ into K clusters. Let ΨK

denote the set of permutations on {1, 2, 3, . . . K}. Finally, let nmin = mink∈{1,2,3,...K} nk

be the smallest block size. If r > β
√
n/nmin and γn > 4

√
∆ log(n/η) then with

probability at least 1− 2η,

min
ϕ∈ΨK

|{i ∈ {1, 2, 3, . . . n} : bi 6= ϕ(b̂i)}| = 0.

Blocks are sometimes referred to as communities in the literature. Communities

can have vertices which belong to multiple blocks. The problem of community de-

tection is to identify which communities a vertex belongs to. Vertex partitioning is

a procedure which can be used in community detection. See Fortunato [48], Now-

34

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

icki and Snijders [49], and Newman and Girvan [50] for a comprehensive survey on

community detection.

2.4 Graph Matching

Definition Consider two graphs GA = (V A, EA) and GB = (V B, EB) such that

|V A| = |V B| = n. For convenience, let V A = {vA1 , vA2 , . . . , vAn }, V B = {vB1 , vB2 , . . . , vBn }.

The task of graph matching is finding a bijection ϕ : V A 7→ V B such that the

number of edge disagreements is minimized after applying the bijection ϕ. An edge

disagreement is defined as follows: either {vAi , vAj } ∈ EA and {ϕ(vAi , ϕ(vAj)} 6∈ EB, or

{vAi , vAj } 6∈ EA and {ϕ(vAi), ϕ(vAj)} ∈ EB.

While numerous objective functions exist for matching graphs, we focus on the

number of edge disagreements between EA and EB after applying the bijection ϕ.

For possible alternative objective functions, see [4, 51–53].

We assume that there exists some underlying bijection ϕ∗. For example, let

GA, GB ∼ κ(A), then the underlying bijection would be the function ϕ, where

ϕ(vAi) = vBi for all i ∈ {1, 2, 3, . . . n}. In real data, suppose that we observed two

social networks on the same collection of people (perhaps one is Facebook and the

other is LinkedIn), then the alignment of the vertices corresponds to the same person.

Note that the permutation which minimizes the number of edge disagreements is not

necessarily the same as ϕ∗ [61].

35

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

The simpler problem of graph isomorphism is the problem of determining if two

graphs are isomorphic. The graph isomorphism problem is notoriously of unknown

complexity [22–25]. In the case, where we allow A,B ∈ Rn×n to be loopy, weighted,

and directed, then graph matching is equivalent to the quadratic assignment problem

(QAP), which is NP-hard [57].

Let A and B be adjacency matrices of two graphs GA, GB. Then some equivalent

objective functions are

arg min
P∈Pn

‖AP − PB‖F = arg min
P∈Pn

‖A− PBP T‖F , (2.1)

where Pn is the set of all permutation matrices of size n×n and ‖·‖F is the Frobenius

norm. The second objective function is equivalent to

‖A− PBP T‖2
F = tr((A− PBP T)T (A− PBP T))

= tr(ATA− ATPBP T − PBP TA+ PBP TBP T)

= tr(ATA)− tr(ATPBP T)− tr(PBP TA) + tr(PBP TPBP T)

= ‖A‖2
F − tr(ATPBP T)− tr((PBP TA)T) + tr(P TPBP TPBP TP)

= ‖A‖2
F − 2tr(ATPBP T) + ‖B‖2

F .

Thus we have that

arg min
P∈Pn

‖A− PBP T‖F = arg min
P∈Pn

−tr(ATPBP T). (2.2)

These objective functions in Equations 2.2 and 2.1, are all the mathematically

equivalent for P in the space of permutation matrices Pn, but are different when this

36

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

domain is relaxed to the space of doubly stochastic matrices D. In particular, we

can optimally solve the relaxation arg minP∈D ‖AP − PB‖F in polynomial time [54]

(see Section 2.4.3), since it is a convex relaxation over linear constraints. This is

in contrast to Equation 2.2, which is a non-convex relaxation. Unfortunately, this

optimal relaxed solution to arg minP∈D ‖AP − PB‖F is usually poorly related to the

solution to arg minP∈Pn ‖AP − PB‖F [55].

2.4.1 Frank-Wolfe Algorithm

Developed by Marguerite Frank and Philip Wolfe in 1956, the Frank-Wolfe algo-

rithm [56] is a first-order optimization algorithm, which approximately solves

min
x∈X

f(x),

where X ⊆ Rn is a polyhedron, and f : D 7→ R is continuously differentiable.

The first step is to pick an initial starting point in x0 ∈ X . For each iteration

of the Frank-Wolfe algorithm, we first compute the gradient ∇f(xt) to create a first

order approximation. Next, we find the minimum s of the first order approximation

to f(·) over the feasible region, X . Then, we find the minimum on the line segment

between s and the previous point xt. The minimum on the line may be found by a

line search, or alternatively it could be a shrinking predetermined step size. In our

application we compute the optimal step size.

37

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

Algorithm 2.4 Frank-Wolfe Algorithm

t← 0 . Initialization

Select x0 ∈ X

while xt has not converged do

st ← arg mins∈X s
T∇f(xt) . Direction-Finding

αt ← arg min0≤α≤1 f(xt + α(st − xt)) . Line Search

xt+1 ← xt + αt(st − xt) . Update

t← t+ 1

end while

2.4.2 Fast Approximate Quadratic Assignment Prob-

lem (FAQ)

The quadratic assignment problem is the graph matching objective, but for general

matrices A,B, which is equivalent to minimizing

f(P) = −tr(ATPBP T). (2.3)

The gradient of f(P) is

∇f(P) = −APBT − ATPB, (2.4)

and has Hessian

−B ⊗ A−BT ⊗ AT

where ⊗ means Kronecker product. Notice that the diagonals of the Hessian are zero.

Thus the trace of the Hessian is also zero. The objective is not necessarily convex.

38

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

If A or B has a nonzero entry, i.e., at least one edge, then there exists one positive

eigenvalue, and at least one negative eigenvalue.

A fast method to approximate the quadratic assignment problem (QAP) is pro-

posed by Vogelstein et al. [34] using the Frank-Wolfe algorithm. The fast approximate

QAP algorithm (FAQ) (see Algorithm 2.5) applies the Frank-Wolfe algorithm to the

QAP problem. The QAP objective function is not convex; however, the fast QAP

algorithm is still able to reach good solutions. The algorithm achieves better accuracy

than existing state-of-the-art graph matching algorithms in most benchmarks [34].

Recall that in the Frank-Wolfe algorithm X is in Rn (a vector), but in our problem

X is in Rn×n (a square matrix). Our X can be thought of as a long vector in Rn2
that

has been reshaped. The Frank-Wolfe process in FAQ is done as follows: The first

step is an iteration of the Frank-Wolfe algorithm. In our case, is the direction-finding

subproblem is formulated as

min
P ′∈D

tr(P ′T∇f(P)) = min
P ′∈D

tr(P ′T (−APBT − ATPB)). (2.5)

Notice that Equation 2.5 is precisely the linear assignment problem (LAP). The solu-

tions of the LAP for P ′ ∈ Pn and for the relaxed problems P ′ ∈ D are equivalent [57].

At the end of the Frank-Wolfe algorithm, P ∈ D and is not necessarily in P . We

project the final doubly stochastic matrix P into the space of permutations

arg min
P ′∈P

P ′TP.

This is again the linear assignment problem and is efficiently solvable by the Hungar-

39

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

ian algorithm [58]. Modern variants achieve a computational complexity of O(n3) [59].

The Hungarian Algorithm is known for solving the minimum weight bipartite match-

ing, which is equivalent to the linear assignment problem.

The optimal step size is obtained by solving

min
α∈[0,1]

f(αP ′ + (1− α)P)

= min
α∈[0,1]

−tr(AT (αP ′ + (1− α)P)B(αP ′ + (1− α)P)T)

= min
α∈[0,1]

−tr((αATP ′ + (1− α)ATP)(αBP ′ + (1− α)BP)T)

= min
α∈[0,1]

−tr((αATP ′ + (1− α)ATP)(αP ′TBT + (1− α)P TBT))

= min
α∈[0,1]

−tr(α2ATP ′P ′TBT + α(1− α)(ATPP ′TBT + ATP ′P TBT)

+(1− α)2ATPP TBT)

= min
α∈[0,1]

−tr(α2ATP ′P ′TBT + (−α2 + α)(ATPP ′TBT + ATP ′P TBT)

+(α2 − 2α + 1)ATPP TBT)

= min
α∈[0,1]

−tr(α2(ATP ′P ′TBT − ATPP ′TBT − ATP ′P TBT + ATPP TBT)

+α(ATPP ′TBT + ATP ′P TBT − 2ATPP TBT) + ATPP TBT)

= min
α∈[0,1]

−α2tr(ATP ′P ′TBT − ATPP ′TBT − ATP ′P TBT + ATPP TBT)

−αtr(ATPP ′TBT + ATP ′P TBT − 2ATPP TBT)

+tr(ATPP TBT) (2.6)

Equation 2.6 is quadratic in α and solvable using the quadratic formula. Then we

update P ← αP ′ + (1− α)P to complete one step of the Frank-Wolfe algorithm. We

40

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

repeat this until certain convergence criteria are achieved. Examples of convergence

criteria include small step size, gradient value, a maximum number of iterations, etc.

After the algorithm converges, the solution P may not necessarily be a permutation

matrix. Thus, we find the closest permutation matrix P ′ to P ,

arg min
P ′∈P

‖P − P ′‖F = arg min
P ′∈P

tr(P ′TP). (2.7)

Equation 2.7 can be solved by the Hungarian algorithm. The efficiency of the fast

approximate QAP algorithm lies in identifying that the direction-finding subproblem

is the LAP.

Algorithm 2.5 Fast Approximate QAP Algorithm

t← 0 . Initialization

P
(0)
ij ← 1

n
for all i, j ∈ {1, 2, . . . , n}

while P (t) has not converged do

P ′(t) ← arg maxP ′∈Pn P
′T (AP (t)B), via Hungarian Algorithm .

Direction-Finding

α← arg minα∈[0,1] f(αP ′(t) + (1− α)P (t)) . Line search

P (t) ← αP ′(t) + (1− α)P (t) . Update

end while

P ← arg maxP ′∈Pn(P ′(t))TP (t) . Project solution to permutation matrix

This algorithm is capable of matching graphs up to thousands of vertices. Scala-

bility of graph matching is explored later in Chapter 5.

41

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

2.4.2.1 Seeded Graph Matching

One way to improve the performance of the graph matching algorithm is to incor-

porate knowledge of partial alignment between corresponding vertices. Recall that

vertices with known alignments are called seed vertices (Section 1.4.3). Fishkind et

al. [60] proposed incorporating seed vertices in fast approximate QAP (FAQ). This

is the problem of seeded graph matching. Seed vertices do not significantly alter the

FAQ algorithm, but they improving the matching accuracy and runtime.

Let GA = (UA∪WA, EA) and GB = (UB∪WB, EB) be two graphs with adjacency

matrices A and B respectively, where UA, UB are the seed vertex sets and WA,WB

are the non-seed vertex sets. We subdivide A and B as

A =

A11 A12

A21 A22

 , B =

B11 B12

B21 B22

 ,
where the matrices A11, B11 ∈ Rs×s are the adjacency matrices of GA[UA], GB[UB] re-

spectively, and the matricesA22, B22 ∈ Rm×m are the adjacency matrices ofGA[WA], GB[WB]

respectively. The remaining matrices A12, B12 ∈ Rs×m, A21, B21 ∈ Rm×s indicate the

adjacencies between the seed and non-seed vertices.

We can incorporate the known mapping between the seed vertices into the graph

matching objective. Without loss of generality, let the true alignment ϕ for the first s

vertices be trivial, ϕ(vAi) = vBi for all i ∈ {1, 2, 3, . . . s}. For convenience let the seed

vertices be vertices v1, v2, . . . vs. Thus the seeded graph matching objective is

arg min
P

‖A− (Is×s ⊕ P)B(Is×s ⊕ P)T‖F ,

42

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

over all n× n permutation matrices P , where Is×s is the s× s identity matrix and ⊕

is the direct sum. Similar to the original objective in Equation 2.3, the new objective

can be rewritten as

= arg min
P∈Pm

‖A‖F − 2tr(AT (Is×s ⊕ P)B(Is×s ⊕ P)T) + ‖B‖F

= arg min
P∈Pn

−tr(AT (Is×s ⊕ P)B(Is×s ⊕ P)T).

Let f(P) be the objective function. We have

f(P) = tr
(
AT (Is×s ⊕ P)B(Is×s ⊕ P)T

)
= tr


AT11 AT21

AT12 AT22


 Is×s 0s×m

0s×m P


B11 B12

B21 B22


 Is×s 0s×m

0s×m P T




= tr


AT11 AT21

AT12 AT22


 B11 B12P

T

PB21 PB22P
T




= trAT11B11 + trAT21PB21 + trAT12B12P
T + trAT22PB22P

T .

Thus,

f(P) = trAT11B11 + trP TA21B
T
21 + trP TAT12B12 + trAT22PB22P

T , (2.8)

which has gradient

∇f(P) = A21B
T
21 + AT12B12 + A22PB

T
22 + AT22PB22.

Notice that the first two term of the, gradient is a constant. The remaining part is

the FAQ gradient part, which is very similar to the original gradient, except on A22

and B22 rather than A and B.

43

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

2.4.3 Other Graph Matching Algorithms

There are numerous other graph matching approximation algorithms. Most of

these algorithms currently do not have an immediate handling seed vertices. We

will examine the performance of these algorithms in Chapter 5. In this section, we

briefly explain each algorithm. All of these algorithms are implemented in the graphm

package, written by M. Zaslavskiy, F. R. Bach, J.-p. P. Vert, [54].

2.4.3.1 U

The Umeyama algorithm, referred to as U here, uses eigenvalue decomposition

to approximate the permutation of vertices [32]. Given the adjacency graphs of two

graphs A and B, let the eigenvalue decompositions of A and B be A = UAΣAUTA

and B = UBΣBUTB , respectively. Then we compute UAUTB , which gives us a unitary

matrix. We subsequently apply the Hungarian algorithm to project this matrix to a

permutation matrix.

2.4.3.2 rank

Rohit Singh, JinboXu, and Bonnie Berger developed the IsoRank algorithm [62],

which is referred to as rank. IsoRank has many similarities to the Google PageRank

algorithm. First we compute the scores between every vertex from graphGA and every

vertex GB. Then, the best alignment is determined via an eigenvalue decomposition

involving the scores.

44

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

2.4.3.3 QCV

The QCV algorithm [54] is similar to the FAQ algorithm, which is discussed in

Section 2.4.2. The difference between the algorithm FAQ and QCV is that the QCV

has objective ‖AP − PB‖F . When relaxed to doubly stochastic matrices, we can

solve this via the Frank-Wolfe algorithm in polynomial time. Often the matrix P is

not a permutation matrix. Hence, the Hungarian algorithm is used to find the closest

permutation matrix, just as in FAQ. It is important to keep in mind that the true

alignment is almost always not a solution to the QCV objective [55].

2.4.3.4 PATH

The PATH algorithm iteratively solves convex combination of two objectives [54].

One is the same as the QCV convex objective, say F0. The other is a concave

objective derived from the same objective, say F1. The objective that they solve

for is minP Fλ(P) = (1 − λ)F0(P) + λF1(P). Starting with λ = 0, the objective is

minimized with any quadratic programing algorithm. For sufficiently small dλ, one

uses Frank-Wolfe to solve minP Fλ+dλ(P), with previous solution minFλ as the initial

starting point. The final solution returned is when minP F1(P).

2.4.3.5 GLAG

The GLAG is an approximate graph matching algorithm based on sparsity tech-

niques [63]. The optimization is solved by augmented Lagrangian techniques. GLAG

45

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

is a fairly involved algorithm. The details of the algorithm can be found in [63].

2.5 Mixed Membership Stochastic Block-

model

In this section, we present the mixed membership stochastic block model (MMB)

[16]. This model is useful in identifying vertices belonging to a mixture of blocks,

and is a modification of latent Dirichlet allocation (LDA) [64]. LDA is widely used

in topic modeling in the field of natural language processing.

πi

bij

aij λbij

α

β

∀j ∈ {1, 2, . . . li}

∀i ∈ {1, 2, . . . n}
∀k ∈ {1, 2, . . .K}

Figure 2.1: Plate notation of Latent Dirichlet Allocation.

Here, we first present the LDA model in the standard topic modeling setting.

Suppose there are n documents and K topics. For each document i ∈ {1, 2, 3, . . . n},

suppose document i have li words. Each document can contain words from multiple

topics, and each word is related to only one topic. Let πi be the distribution of

46

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

topics in document i, let aij be the jth word in document i, let bij be the topic of

the jth word in document i, and let λk ∈ [0, 1]d be the distribution of words for topic

k ∈ {1, 2, 3, . . . K}, where d is the number of words in the set of all words (dictionary).

There are two hyper-parameters of LDA, say α and β. The generative procedure to

obtain the n documents with k topics is

• For each topic k ∈ {1, 2, . . . K}:

– Draw a word distribution λk ∼Dirichlet(β).

• For each document i ∈ {1, 2, . . . n}:

– Draw a topic distribution πi ∼Dirichlet(α).

– For each word j ∈ [li]:

∗ Sample a topic bij ∼Multinomial(πi).

∗ Sample a word aij ∼Multinomial(λbij).

The parameters of LDA can be trained with variational Bayes [64]. Thomas

Griffiths, and Mark Steyvers [65] performed inference of the parameters via Gibbs

sampling. Thomas Minka and John Lafferty [66] performed inference via expectation-

propagation.

Now we present the mixed membership stochastic block-model [16], a modification

of LDA. There are two main changes to the model. First, for all i ∈ {1, 2, 3, . . . n}

the number of words in each document, li = n. Second, there is the hyper-parameter

47

CHAPTER 2. TOOLS FOR STUDYING RANDOM GRAPHS

α and an edge probability matrix Λ ∈ [0, 1]K×K . Let G = (V,E) be a graph with

|V | = n. The generative procedure for MMB is

• For each i ∈ {1, 2, 3, . . . n}:

– Draw a mixed membership distribution for vertex vi, πi ∼Dirichlet(α).

– For each j ∈ {1, 2, 3, . . . n}:

∗ Sample vertex vi’s block membership for edge (i, j), bij ∼Multinomial(πi).

∗ Sample vertex vj’s block membership for edge (i, j) bji ∼Multinomial(πj).

∗ Sample edge 1[i ∼ j] ∼Bernoulli(λbij ,bji).

The parameters of this model are trained using a nested variational inference

algorithm.

πi

bij bji

aij λbij ,bji

α

∀j ∈ {1, 2, . . . n}

∀i ∈ {1, 2, . . . n}
∀k ∈ {1, 2, . . .K}

Figure 2.2: A plate notation of mixed membership stochastic block model.

48

Chapter 3

Statistical Inference for Dense

Sub-community Detection

In this section, we present a comparative power analysis of various graph invari-

ants for testing the hypothesis that a kidney-egg random graph has a subgraph with

higher edge probability [67]. Given a graph drawn from kidney-egg model, the null

hypothesis is that all edge probabilities are equal. The alternative hypothesis is that

there exists subset of vertices with higher edge probability than other edges in the

graph. Using Monte Carlo simulations, we estimate the power of the tests using graph

invariants as test statistics. We discovered that for many choices of parameters in

the random graph model, the scan statistic and clustering coefficient often dominate

our other graph invariants. However, our results indicated that none of the graph

invariants considered is uniformly most powerful. Graphs in this section are assumed

49

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

to be simple and distributed as κ(n1, n2, p, q). For convenience, let n = n1 + n2.

3.1 Hypothesis Test for Dense Sub-community

Detection

A hypothesis test is a statistical method to determine if there is enough evidence

for rejecting the null hypothesis (the de-facto belief) in favor of the alternative hy-

pothesis. For the purpose of our statistical inference, we design a hypothesis test to

determine whether the given graph is Erdős-Rényi (p = q) or dense sub-block (p < q)

random graph.

3.1.1 Null Hypothesis, κ(n1 + n2, p)

The null hypothesis H0 is p = q for an κ(n1, n2, p, q) graph. This is an Erdős-Rényi

κ(n1 + n2, p) random graph with n = n1 + n2 vertices and edge probability p.

3.1.2 Alternative Hypothesis, κ(n1, n2, p, q)

The alternative hypotheses HA is a kidney egg graph κ(n1, n2, p, q) such that q > p,

i.e. a dense sub-block graph model. The edges in the egg have higher edge probability

q, and the remaining graph has edge probability p. The comparative power study’s

goal is to quantify the ability of graph invariants to distinguish between a homoge-

50

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

neous Erdős-Rényi random graph and a graph with higher local communication.

3.1.2.1 Type I Error

To determine the ability of a statistic to distinguish between the null and alter-

native hypothesis, we have to pick an acceptable type I error, denoted α. The type I

error is the probability of rejecting the null hypothesis under the null hypothesis. In

a hypothesis test, we set α to a specific value, such as 0.05 or 0.01. This α is referred

to as a level of significance of the test.

3.1.2.2 Power

The power of a statistic is the probability of rejecting the null hypothesis under the

alternative hypothesis, denoted β. Here, we estimate the power of various statistics

using Monte-Carlo simulation.

If T (G) is a statistic calculated from observed graph G, we compute the power

of a statistic with approximate level of significance α from R Monte Carlo samples

as follows. First we generate R independent, identically distributed (i.i.d.) graphs

G1, G2, . . . GR under H0, and generate R i.i.d. graphs GA
1 , G

A
2 , . . . G

A
R under HA. Next,

we compute Tr = T (Gr), for each r ∈ {1, 2, 3, . . . R} and compute the order statistics

T(1) ≤ T(2) ≤ . . . ≤ T(R). The rejection region of this test of hypothesis is T (G) >

51

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

T(R(1−α)) and the empirical power is

β̂ =
1

R

R∑
r=1

1[T (GA
r) > T(R(1−α))].

Further details on estimating the power can be found in [68].

3.2 Synthetic Experiments

In synthetic experiments, we examine the power of graph invariants introduced in

section 2.1. We focus on one particular experiment.

3.2.1 Experiment Design

This section presents the Monte Carlo power results for seven graph invariants:

size, max degree, maximum average degree, scan statistic, number of triangles, and

average path length. The null hypothesis is H0 : κ(1000, 0.1), and the alternative

hypothesis is HA : κ(950, 50, 0.1, 0.5). We proceed to design and execute a Monte

Carlo experiment to generate comparative power results.

3.2.2 Monte Carlo Simulations

For each graph invariant from Section 2.1, we present Monte-Carlo histograms of

the null and alternative hypotheses and plot the critical region and the actual and

asymptotic distribution (if known).

52

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

3.2.2.1 Size

Size

D
en

si
ty

48500 49000 49500 50000 50500 51000 51500 52000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

50287

Figure 3.1: Hypothesis test for number of edges when the null hypothesis is H0 :
κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5).

Size is a simple graph invariant measuring global graph activity, so we do not

expect size to perform well when n2 is small. For an Erdős-Rényi random graph

G ∼ κ(n, p), the size of a graph is distributed as a binomial random variable

P [size(κ(n, p)) = k] =

((n
2

)
k

)
pk(1− p)(

n
2)−k.

In a kidney egg random graph κ(n − m,m, p, q), the size of a graph is dis-

tributed as the sum of 2 binomial random variables. The egg edges have probability

Binomial(
(
m
2

)
, q) and the remaining kidney edges have probability Binomial(

(
n
2

)
−

53

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION(
m
2

)
, p),

P [size(κ(n−m,m, p, q)) = k] =
k∑
i=0

[((m
2

)
k − i

)
qk−i(1− q)(

m
2)−k+i

((n
2

)
−
(
m
2

)
i

)
pi(1− p)(

n
2)−(m2)−i

]
.

3.2.2.2 Max Degree

Maximum Degree

D
en

si
ty

120 130 140 150 160

0.
00

0.
05

0.
10

0.
15

139

Figure 3.2: Hypothesis test for maximum degree when the null hypothesis is H0 :
κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5).

Maximum degree is a simple local graph invariant. The exact distribution is

complex. However the limiting distribution of δ(κ(n, p)) is a Gumbel(a, b) [9]

fδ(κ(n,p))(d)→ 1

b
exp

[
−d− a

b
− exp

(
d− a
b

)]
,

54

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

where

a = pn+
√

2p(1− p)n log n

(
1− log log n

4 log n
− log(2

√
π)

2 log n

)
,

b =

√
2p(1− p)(n− 1) log n

2 log n
.

The maximum degree of the model κ(n − m,m, p, q) is also distributed as a

Gumbel(a, b) when m = Ω(
√
n),

a = qm+ p(n−m) +
√
mq(1− q)2 logm

(
1− log log n

4 log n
− log(2

√
π)

2 log n

)
,

b =
σE+F√
2 logm

,

E ∼Binomial(m− 1, q), F ∼Binomial(n−m, p), and σE+F is the standard deviation

of the sum of E + F [69].

3.2.2.3 Maximum Average Degree

Exact computation of MAD is possible in polynomial time, also known as find-

ing the maximum density subgraph [70]. The algorithm solves min-cut max-flow a

logarithmic number of times. This invariant is difficult to implement so instead we

consider two approximations to maximum average degree; MADg(G) and MADe(G),

which we define next.

We consider a simple greedy algorithm MADg(G) to estimate the maximum av-

erage degree of a graph. At each iteration, this algorithm greedily chooses the vertex

with the smallest degree to remove from the graph. At each iteration we compute the

average degree of the induced subgraph. When there are no vertices left, the largest

55

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

Maximum Degree

D
en

si
ty

120 130 140 150 160

0.
00

0.
05

0.
10

0.
15

139

Figure 3.3: Hypothesis test for maximum average degree when the null hypothesis is
H0 : κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5).

average degree is returned as MADg(G). This simple greedy procedure approximates

maximum average degree (Scheinerman and Ullman) [71].

Another approximation to maximum average degree is the largest eigenvalue of

the adjacency matrix, denoted as MADe(G). Rayleigh-Ritzs Theorem [72] states that

if A is Hermitian, the largest eigenvalue of A is dmax, and the smallest eigenvalue of

A is dmin, then for all x ∈ Cn

λmax = max
x∈Rn:x6=0

xTAx

xTx
,

λmin = min
x∈Rn:x6=0

xTAx

xTx
.

Let A = [aij] be the adjacency matrix for graph G. Consider restricting x to

56

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

be x ∈ {0, 1}n, then xTAx
xT x

is the average degree of the related induced subgraph

wherein xi = 1 if and only if vi is present in the induced subgraph. This implies that

MADe(G) = dmax ≥ MAD(G).

In experiments comparing the power of MADe and MADg, MADe shows better

performance. Figure 3.4 shows β(MADe) − β(MADg) for n = 1000, p = 0.1 and

variousm, q, i.e. κ(1000−m,m, 0.1, q). For each value ofm and q, R = 1000 replicates

where used. This demonstrates (in one example) how MADe compares with MADg.

Δ
β

Figure 3.4: Statistical power difference surface for β(MADe) − β(MADg) with
n = 1000 and p = 0.1 over a range of (m, q) ∈ ΘA, via Monte Carlo. β(MADe)
dominates β(MADg) in this space of parameters.

57

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

Scan Statistic

D
en

si
ty

1000 1200 1400 1600

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

1108

Figure 3.5: Hypothesis test for scan statistic.

3.2.2.4 Scan Statistic

Recall that we consider the kth order neighborhood for a kth order scan statistic.

Limited by computation power, we will only consider the case k = 1. The first or-

der scan statistic is very similar to maximum degree, except that the scan statistic

includes neighbor-to-neighbor edges. As with maximum degree, the limiting distribu-

tion is shown to be a Gumbel(a, b) for an Erdős-Rényi κ(n, p) graph by Rukhin [35]

a =
1

2
p3n3 + p2

√
p(1− p)n3

√
2 log n

(
1− log log n− log(4π2)

4 log n

)
,

b =
p2
√
p(1− p)n3√
2 log(n)

.

The limiting distribution for a κ(n−m,m, p, q) random graph is also know to be

58

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

a Gumbel,

a = Nn,p,m,q + p

(
Nn,p,m,q

2

)
+ (q − p)

(
µE
2

)
b =

(
1− p

2
+ pNn,p,m,q

) σE+F√
2 logm

,

where E ∼Binomial(m− 1, q), F ∼Binomial(n−m, p), µE+F and σE+F are the mean

and standard deviation of the sum of E + F respectively, and

Nn,p,m,q = µE+F + zmσE+F

zm =
√

2 logm

(
1− log logm

4 logm
+

log(2
√
π)

2 logm

)
.

This is also shown by Rukhin [73]

3.2.2.5 Number of Triangles

The number of triangles can be computed as

τ(G) =
tr(A3)

6
,

where A is the adjacency matrix of G.

Note that the ith, jth entry of A3 is the number of length-three walks from i to j.

Thus tr(A3) is the number of all three closed walks, starting and ending at the same

vertex. The unlabeled triangles are over counted exactly 6 times. Three times for

starting at any of the three vertices times two times for each traversed orientation

(clockwise or counter-clockwise).

59

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

Number of Triangles

D
en

si
ty

155000 160000 165000 170000 175000 180000 185000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

169574

Figure 3.6: Hypothesis test for number of triangles when the null hypothesis is H0 :
κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5).

60

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

For random graph G ∼ κ(n, p) Nowicki and Wierman [74] show that when τ(G)

is appropriately normalized, τ(G) is asymptotically normal. Specifically

τ ∼ normal

((
n

3

)
p3,

[(
n− 2

1

)
p2

]2(
n

2

)
p(1− p)

)

Rukhin [35] shows τ(G) is also asymptotically normal when G ∼ κ(n−m,m, p, q).

τ ∼ normal

((
m

3

)
q3 +

(
m

2

)(
n−m

1

)
+

[(
m

1

)(
n−m

2

)
+

(
n−m

3

)]
p3,(

m

2

)
q(1− q)

[(
m− 2

1

)
q2 +

(
n−m

1

)
p2

]2

+

(
m

1

)(
n−m

1

)
p(1− p)

[(
m− 1

1

)
pq +

(
n−m− 1

1

)
p2

]2

+

(
n−m

2

)
p(1− p)

[(
n− 2

1

)
p2

]2
)

3.2.2.6 Clustering Coefficient

Remember that the clustering coefficient is a measure of “closure” in a graph.

3.2.2.7 Average Path Length

Recall that average path length is a measure of the “small world” phenomenon.

3.2.3 Power Relationship with n2, q

In this section, we present the power surface plots of 8 graph invariants described

in the previous Section in figure 3.9. The experiments use the random graph model

61

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

Clustering Coefficient

D
en

si
ty

0.098 0.099 0.100 0.101 0.102 0.103 0.104

0
20

0
40

0
60

0
80

0
10

00 0.100792030548

Figure 3.7: Hypothesis test for clustering coefficient when the null hypothesis is
H0 : κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5).

Average Shortest Path Length

D
en

si
ty

−1.899 −1.898 −1.897 −1.896

0
20

0
40

0
60

0
80

0
10

00

−1.897458

Figure 3.8: Hypothesis test for average path length when the null hypothesis is H0 :
κ(1000, 0.1), and the alternative hypothesis is HA : κ(950, 50, 0.1, 0.5).

62

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

κ(1000−m,m, 0.1, q). We are testing the hypothesis p = 0.1 against the alternative

hypothesis q > 0.1. The value of m ranged over {5, 10, 15, 20, . . . , 100}. The value of

q ranged over {0.10, 0.15, 0.20, . . . , 0.90}. Each square in the plot is the power of the

statistic generated from R = 1000 replicates.

We can see from the plots that with a large enough q and m, all of the statistics

are able to identify the difference between the null and alternative hypotheses.

3.2.4 Power Difference plots

To analyze the power of our graph invariants, we now compute the difference of

two graph invariants T1, T2 to get β̂(T1) − β̂(T2). Most of the pairs of invariants

have one that performs better in one set of parameters, but one invariant does not

dominate the other in the entire parameter space. Figure 3.10 contains the power

difference plots of five graph invariants. Out of the eight graph invariants, these five

were not completely dominate in performance and have areas of interest the plots.

3.2.5 Most Powerful Statistic

For a fixed choices of n and p, we can compute the most powerful statistic in our

hypothesis test for various q and m values. We have computed the most powerful

statistic for n = 100 p = 0.1, n = 100 p = 0.4, and n = 1000 p = 0.1.

With n = 100 p = 0.4, scan statistic S1 dominates as the most powerful statistic.

63

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

a. b. c.

d. e. f.

g. h.

Figure 3.9: Power surface plots for the various graph invariants, as obtained from
the Monte Carlo simulations for n = 1000, p = 0.1, m ∈ {5, 10, 15, . . . , 100},
q ∈ {0.10, 0.15, 0.20, . . . , 0.90}, α = 0.05, and R = 1000. a. Number of edges,
Size(G). b. Maximum degree, δ(G). c. Greedy maximum average degree approxima-
tion, MADg(G). d. Eigenvalue maximum average degree approximation, MADe(G).
e. Scan statistic, S1(G). f. Number of Triangles, τ(G). g. Global clustering coeffi-
cient, CC(G). h. Average Path Length, APL(G). Powers range from approximately
α for small m or q to approximately 1 for large m and q for all invariants. Substantial
differences exist, but may not be apparent, between the various invariants for mod-
erate m, q; these differences are readily apparent in the pairwise comparisons (Figure
3.10).

64

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

MADe(G) S1(G) τ(G) CC(G)

Size(G)

MADe(G)

S1(G)

τ(G) m q

∆(β̂)

1

Figure 3.10: Comparative power surfaces for the various graph invariants, as ob-
tained from Monte Carlo simulations for n = 1000, p = 0.1, m ∈ {5, 10, 15, . . . , 100},
q ∈ {0.10, 0.15, 0.20, . . . , 0.90}, α = 0.05, and R = 1000. Each surface plot is repre-
sentative of the power of the row invariant minus the power of the column invariant
(e.g. the upper left corner depicts the power difference of size and exponential MADe

β̂Size(G)− β̂MADe(G)) from Figure 3.9. Since powers are approximately α for small m or
q and approximately 1 for large m and q for all invariants, power differences are ap-
proximately 0 in these regions. Substantial differences are readily apparent between
the various invariants for moderate m, q in these comparative power surfaces.

65

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

m

q

5 10 15 20 25 30 35 40

0.4

0.5

0.6

0.7

0.8

0.9

1

S1

CC

Figure 3.11: Most powerful statistic for n = 100, p = 0.4.

There are some values of large q and m ≈ 20 where clustering coefficient has larger

power. This required more simulates to be certain of the behavior of the clustering

coefficient and scan statistic.

In the sparser graph n = 100 p = 0.1, there is no definitively most powerful graph

invariant (see Figure 3.12). The scan statistic S1 performs well for smaller m and

q > 0.5. Meanwhile, the eigenvalue maximum average degree performs well for larger

m and smaller q values. The number of triangles τ is most powerful sporadically in

between the two.

Finally in n = 1000 p = 0.1 in Figure 3.13, scan statistic S1 dominates most of

the plot. Number of triangles τ and clustering coefficient CC outperform the scan

statistic S1 for smaller values of q and m.

66

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

m

q

5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MADg

!

S1

MADe

Figure 3.12: Most powerful statistic for n = 100, p = 0.1.

m

q

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CC

!

S1

Figure 3.13: Most powerful statistic for n = 1000, p = 0.1.

67

CHAPTER 3. STATISTICAL INFERENCE FOR DENSE SUB-COMMUNITY
DETECTION

3.3 Densest k-subgraph

A closely related problem is the densest k-subgraph problem, which is finding the

subgraph of size k with the most edges

arg max
V ′⊂V,|V ′|=k

size(G[V ′]).

If we find the densest “m-subgraph,” we could study many interesting statistics. For

example one could compute graph invariants of this subgraph. Unfortunately, the

densest k-subgraph problem is known to be NP-hard by a reduction from the clique

problem. Even in planer graphs, the densest k-subgraph problem has been shown by

Keil and Brecht [75] to be NP-hard. It has been further shown by Khot [76] that

there does not exist a polynomial-time approximation scheme (PTAS) for the densest

k-subgraph problem by a reduction from the Minimum Distance of Code problem.

However, there do exist approximation algorithms that can find a subgraph within

a bounded ratio of the number of edges between the densest k-subgraph and the

approximate solution, such as [77] for Feige, Peleg, Kortsarz.

68

Chapter 4

Vertex Nomination

Given a graph G = (V,E) drawn from a stochastic block random graph κ(b,Λ),

where one block is of particular interest, vertex nomination is the task of creating

a list of vertices such that vertices from the block of interest are in abundance at

the top of the list. Vertex nomination is useful in situations where only a limited

number of vertices can be examined, to discover block membership. We propose

several vertex nomination schemes, include a canonical vertex nomination scheme,

Metropolis-Hastings sampling vertex nomination scheme, spectral embedding vertex

nomination scheme, and graph matching vertex nomination scheme. We derive theo-

retical results for performance, and compare the schemes on simulated and real data.

Much of this section is submitted as [78].

Using the notation from Section 1.4 for G = (V,E) distributed as a stochas-

tic block random graph κ(b,Λ), where V = (v1, v2, . . . , vn) and there are K blocks

69

CHAPTER 4. VERTEX NOMINATION

V1, V2, . . . , VK . For convenience and without the loss of generality, let the block of

interest be the first block V1. For simplicity, we assume knowledge of N and Λ, where

N = [nk] = [|Vk|] ∈ NK is a vector denoting the cardinality of the blocks and Λ is the

matrix of block connectivity probabilities.

Definition A nomination list ΦG = (vϕ(1), vϕ(2), . . . , vϕ(m)) of vertices is a list of

non-seed vertices. A vertex nomination scheme Φ is a procedure which produces

a nomination list.

Vertex nomination is most applicable in situations where one has limited resources

to process vertices. For example, if the graph is the communication network of a

corporation with corrupt employees, one might have limited resources to investigate

employees (see Section 4.8.2). Another example is a collection of political blog, where

one has limited time to read blogs and one wants to read the most liberal blogs (see

Section 4.8.2). For other recent work on vertex nomination, see [79, 80].

4.1 In Relation to Classification

The task of vertex nomination is very closely related to classification. In statis-

tical classification, (X, Y) is an Rd × {1, 2, 3, . . . K}-valued random pair, and a joint

distribution of (X, Y), say FX,Y , determines the probability of observing the pairs,

i.e. (X1, Y1), (X2, Y2), . . . (Xn, Yn)
iid∼ FX,Y [81]. X is referred to as a feature vector

and Y is referred to as a class label.

70

CHAPTER 4. VERTEX NOMINATION

Definition The task of classification is to predict a class Y ∈ {1, 2, 3, . . . K} for a

new observation of features X ∈ Rd, given a sequence of training data whose class

membership are known, i.e. (X1, Y1), (X2, Y2), . . . (Xn, Yn)
iid∼ FX,Y .

Definition The Bayes classifier predicts the class as the most likely class given the

conditional distribution FY |X . Let the density function of FY |X be fY |X , then the

Bayes classifier for an observed data point x is arg maxy fY |X(y|x).

For any distribution FX,Y , the Bayes classifier is the optimal classifier [81] and achieves

the lowest possible misclassification error. Since the joint distribution is unknown in

practice, this classifier is typically not available.

Related to classification, the task of ordering new data is referred to as informa-

tion retrieval. Information retrieval is usually presented in the setting of retrieving

resources from a library or database. Given a query, for example a keyword or key-

phrase, the task of information retrieval returns a list of documents with a high

concentration of relevant documents near the top of the list. The term “informa-

tion retrieval” almost exclusively refers to the setting of natural language, where one

wishes to retrieve documents, web pages, etc.

Let A be an adjacency matrix, let ai be the ith column in the adjacency matrices

A, and let bi be the block membership of vertex vi. In our setting, the feature vector

Xi := ai ∈ {0, 1}n, and the label yi := bi ∈ {1, 2, 3, . . . K}.

The tasks of classification and vertex nomination are closely related enough that

given a nomination list ΦG, one could classify the vertices. For example, one could

71

CHAPTER 4. VERTEX NOMINATION

classify the first n1 vertices in the nomination list ΦG as being from V1. Conversely,

most classification methods have an innate ordering, which can be easily adapted to

generate a nomination list.

4.2 Performance Metrics

In this section, we present and discuss the evaluation metric used to measure the

performance of vertex nomination.

4.2.0.0.1 Mean Average Precision

Let Φ be a nomination scheme with ΦG = {vϕ(1), vϕ(2), . . . vϕ(m)} as its nomination

list for a graph G.

Definition The precision at j for a vertex nomination list ΦG is defined as

P (ΦG, j) =

∑j
i=1 1[vϕ(i) ∈ V1]

j
.

Precision can be thought of as the accuracy of nominating the first j vertices to be

from block V1.

Definition The average precision is defined as

AP ′(ΦG) =

∑n
j=1 1[vϕ(j) ∈ V1]P (j)

|V1|
=

∑n
j=1 1[vϕ(j) ∈ V1]

∑j
i=1 1[vϕ(i)∈V1]

j

|V1|

=

∑n
j=1

∑j
i=1 1[vϕ(j) ∈ V1]1[vϕ(i) ∈ V1]

j|V1|
=

∑n
j=1

∑j
i=1 1[vϕ(i), vϕ(j) ∈ V1]

j|V1|
.

72

CHAPTER 4. VERTEX NOMINATION

Average precision is not the average of precision from 1 to n but, rather, it is the

integral of precision over recall.

Another average precision we can consider is by literally taking the average of

precision over the first n1 positions in the nomination list which, in the best of worlds,

would be the positions occupied by the vertices of V1.

Definition The literal average precision is defined as

AP (ΦG) =
1

|V1|

n1∑
j=1

P (j) =
1

|V1|

n1∑
j=1

∑j
i=1 1[vϕ(i) ∈ V1]

j
.

Definition The Mean Average Precision of ΦG as defined in the information

retrieval community is

MAP ′(Φ) = Eκ[AP ′(Φ)] = Eκ

[
1

|V1|

n∑
j=1

P (j)1[vϕ(j) ∈ V1]]

]

= Eκ

[
n∑
j=1

j∑
i=1

1[vϕ(i), vϕ(j) ∈ V1]

j|V1|

]
,

where κ is the distribution of the random graph model. This particular mean average

precision is most commonly used.

Definition Literal Mean Average Precision is

MAP (Φ) = Eκ

[
1

|V1|

n1∑
j=1

P (j)

]
= Eκ

[
1

n1

n1∑
j=1

|{i ∈ [j] : ΦG(i) ∈ V1}|
j

]

= Eκ

[
j∑
i=1

1[vϕ(i) ∈ V1]

j

]
.

Notice that literal mean average precision is linear in the indicator function. Mean-

while, mean average precision has interaction terms, 1[vϕ(i), vϕ(j) ∈ V1]. This makes

73

CHAPTER 4. VERTEX NOMINATION

the literal mean average precision more analytically approachable than the informa-

tion retrieval MAP ′. Henceforth, we shall use MAP and refer to it as mean average

precision.

4.3 Canonical

4.3.1 Scheme

Given an observed graph G drawn from a stochastic block model κ(N,Λ), the

canonical vertex nomination scheme orders the vertices by conditional probability of

their being in the block of interest V1. Recall that N = [nk] ∈ NK are the sizes of the

blocks and Λ ∈ [0, 1]K×K is the matrix of edge probabilities. In this model, the block

membership function b : V 7→ {1, 2, . . . , K} is uniformly distributed over B, where B

is the set of all block membership functions b : V 7→ {1, 2, . . . , K} such that for each

k ∈ {1, 2, . . . , K}, nk = |b−1(k)|. For any vi ∈ V , the conditional probability of a

vertex being interesting, upon observing the graph, is

P[vi ∈ V1|G] =
∑
b∈B

P[vi ∈ V1|G, b]P[b|G] =
∑
b∈B

1[vi ∈ V1|b]P[b|G]

=
∑
b∈B

1[vi ∈ V1|b]P[G|b]P[b]∑
b∈B P[G|b]P[b]

=
∑
b∈B

1[vi ∈ V1|b]P[G|b]∑
b∈B P[G|b]

.

The probability of realizing the graph G given the memberships P[G|b] is computed

as

P[G|b] =
K∏
k=1

K∏
l=k

λ
e(Vk,Vl)
k,l (1− λk,l)c(Vk,Vl)−e(Vk,Vl), (4.1)

74

CHAPTER 4. VERTEX NOMINATION

where e(Vk, Vl) is the number of edges in G with one endpoint in Vk and the other

endpoint in Vl and

c(Vk, Vl) =


(
mk+nk

2

)
, if k = l

(mk + nk)(ml + nl), otherwise

the number of possible edges in E between Vk and Vl.

Definition The canonical vertex nomination scheme for random graph dis-

tributed κ(N,Λ) orders the vertices by the probability P[vi ∈ V1|G] and is denoted

Φ∗G = (vϕ∗(1), vϕ∗(2), . . . , vϕ∗(n)).

When there are seed vertices, we further restrict the block membership functions

in B so that for all b ∈ B and for all seed vertices v that b(v) is the block associated

with v.

Now, we present the canonical vertex nomination scheme for random graphs dis-

tributed as κ(b,Λ). This method is an alternative model to κ(N,Λ). Here, the block

membership function b is not a random variable. Therefore, the block membership

of vertex vi ∈ V , b(vi) is not a random variable. In other words, either a vertex is a

member of the block of interest, b(vi) = 1, or the vertex is not, b(vi) 6= 1. There is

no distribution or “probability” for b(vi) = 1. Let us carefully define a conditional

probability to consider.

Consider the sample space of graphs in the stochastic block model κ(b,Λ). Fur-

thermore, we assume that S, M , N , and Λ are known, but b is not known. For

simplicity of explanation, let us start with no seed vertices, i.e., S = ∅,M = N .

75

CHAPTER 4. VERTEX NOMINATION

Consider the bijection ρ : V 7→ V of the vertices and consider the block member-

ship function b(ρ(·)). This produces an graph which has the same stochastic block

random graph distribution but a different block membership function. Thus any

relabeling of the graph produces an equivalent stochastic block model.

For a given graph G on the vertex set V , consider the set of all graphs iso-

morphic to G, denoted as 〈G〉. For any G with no symmetry, i.e., G only has a

trivial automorphism group, for any H ∈ 〈G〉, there exists a unique permutation

ξG,H : {1, 2, . . . , n} 7→ {1, 2, . . . , n}, which maps the vertex indices of graph G to the

vertex indices of graph H.

Recall, there are 2(n2) labeled graphs in the sample space. We condition on all

sample points isomorphic to G, 〈G〉. When G only has the trivial automorphism

group, there are n! such graphs. For any vi ∈ V , the event we consider in the

conditional sample space 〈G〉 is all sample points such that b(vξG,H(i)) = 1. That is,

all sample points H ∈ 〈G〉 such that vertex aligned to vi in G, vξG,H(i), is in block V1.

The conditional probability is written as

P[{H ∈ 〈G〉 : b(vξG,H(i)) = 1}|〈G〉]. (4.2)

Definition The canonical vertex nomination scheme orders the vertices by the

conditional probability P[{H ∈ 〈G〉 : b(vξG,H(i)) = 1}|〈G〉] and is denoted

Φ∗G = (vϕ∗(1), vϕ∗(2), . . . , vϕ∗(n)).

76

CHAPTER 4. VERTEX NOMINATION

Thus by definition, for all i ∈ {1, 2, 3, . . . n− 1},

P[{H ∈ 〈G〉 : b(vξG,H(ϕ∗(i))) = 1}|〈G〉] ≥ P[{H ∈ 〈G〉 : b(vξG,H(ϕ∗(i+1))) = 1}|〈G〉].

Later in Theorem 4.3.2, we show that ranking by these probabilities yields the highest,

by MAP metric, among all vertex nomination schemes. Thus, the canonical vertex

nomination scheme is the best possible scheme.

When the parameters N,Λ of the graph are known, and there is no symmetry in

the observed graph G (G only has the trivial automorphism group), current methods

to compute P[{H ∈ 〈G〉 : b(vξG,H(i)) = 1}|〈G〉] require exponential runtime.

Let Ψn be the set of all permutations on the set {1, 2, . . . n}. The probability space

of P[{H ∈ 〈G〉 : b(vξG,H(i)) = 1}|〈G〉] can be represented as all possible permutations

ξG,H ∈ Ψn,

P[{H ∈ 〈G〉 : b(vξG,H(i)) = 1}|〈G〉] =

∑
H∈〈G〉 1[b(vξG,H(i)) = 1]P[H]∑

H∈〈G〉 P[H]
.

The probability of a graph G given parameters b and Λ is

P[G] =
K∏
k=1

K∏
l=k

λ
e(Vk,Vl)
k,l (1− λk,l)c(Vk,Vl)−e(Vk,Vl), (4.3)

where e(Vk, Vl) is the number of edges in G with one endpoint in Vk and the other

endpoint in Vl and

c(Vk, Vl) =


(
mk+nk

2

)
, if k = l

(mk + nk)(ml + nl), otherwise

the number of possible edges not in E between Vk and Vl.

77

CHAPTER 4. VERTEX NOMINATION

Notice that even though we do not know b, we can still compute this probability.

We can simply consider a surrogate b′ such that for all k ∈ {1, 2, . . . K} the number

of vertices which map to k in b, |b−1(k)| is the same as the number of vertices which

map to k in b′, |b′−1(k)|. This is because any relabeling of the vertices does not affect

the probability of the graph.

In the case where there are seed vertices S, part of the block membership function

is observed. Let the seed vertices be v1, v2, . . . , vs. Then, instead of all possible parti-

tions ξG,H ∈ Ψn, consider permutations ξG,H ∈ Ψn such that for all i ∈ {1, 2, . . . , s},

ξG,H(i) = i. This reduces the set of permutations from n! to m!.

In the case where the automorphism group is not trivial, the conditional proba-

bility is no longer well defined. For graphs in the equivalence class 〈G〉, there exist

valid multiple permutations ξG,H . If we happen to observe a graph with symmetry,

then we treat it as if it has no symmetry. That is, we compute the probability as

Equation ??. Although this quantity is incorrect, the number of graphs which have

no symmetry quickly drops to zero as m+ n goes to infinity [82,83].

Note that

P[vi ∈ V1|G]

in the model κ(N,Λ) is computationally equal to

P[{H ∈ 〈G〉 : b(vξG,H(i)) = 1}|〈G〉]

in the model κ(b,Λ). These models are very closely related. Recall that the difference

between the κ(N,Λ) and κ(b,Λ) is that in the second model, we have conditioned an

78

CHAPTER 4. VERTEX NOMINATION

a specific b while in the first model b is uniformly distributed over B.

4.3.2 Theoretical Results

In this section, we prove that the canonical nomination scheme has a MAP greater

than or equal to the MAP of any other nomination scheme. Thus, the canonical

nomination scheme is the optimal vertex nomination scheme.

Lemma 4.3.1

Suppose that α1, α2, . . . αn and β1, β2, . . . , βn are non-increasing, nonnegative se-

quences of real numbers. Let ϕ ∈ Ψn be a permutation, then
∑n

i=1 αiβi ≥
∑n

i=1 αiβϕ(i).

Proof First consider the case where β1, β2, . . . , βn = 1, 1, . . . , 1, 0, . . . 0, where there

are m ones. In this case, it is clear that the lemma is true. Consider any permutation

ϕ ∈ Ψn and ϕ−1 the inverse of the permutation ϕ(ϕ−1(i)) = ϕ−1(ϕ(i)) = i, without

loss of generality, let αϕ−1
1
≥ αϕ−1

2
≥ . . . ≥ αϕ−1

m
. Then ϕ−1

i ≤ i and

n∑
i=1

αiβϕi =
n∑
i=1

αϕ−1
i
βi ≤

n∑
i=1

αiβi.

Now consider the general case. Let δi = βi − βi−1 for i = 2, 3, . . . , n, and δ1 = β1.

Notice if we use the sequence δi, δi, . . . , δi, 0, . . . , 0 where there are i δi followed by n−i

zeros as the sequence of β’s, then we are in the first case (with a multiplicative factor)

and the inequality holds. Denote this sequence δi, δi, . . . , δi, 0, . . . , 0 as γi1, γi2, . . . , γin.

Then, we have
∑n

j=1 γij =
∑i

j=1 δi = βi. Repeating this n times, once for each δi,

79

CHAPTER 4. VERTEX NOMINATION

yields

n∑
i=1

αiβϕi =
n∑
i=1

αϕ−1
i
βi =

n∑
i=1

αϕ−1
i

i∑
j=1

δj =
n∑
i=1

αϕ−1
i

n∑
j=1

γij =
n∑
j=1

n∑
i=1

αϕ−1
i
γij

≤
n∑
j=1

n∑
i=1

αiγij =
n∑
i=1

αi

n∑
j=1

γij =
n∑
i=1

αiβi.

Now, we are ready to prove that vertex nomination scheme has an optimal MAP .

Theorem 4.3.2

For every vertex nomination scheme ΦG, the mean average precision of Φ∗G is greater

than or equal to the mean average precision of ΦG.

Proof Let G ∼ κ(M,N,Λ) be a random graph. Let αi = 1
n1

∑n1

j=i
1
j

for i ≤ n1,

and αi = 0 otherwise. This αi sequence is nonnegative and non-increasing, thus we

can apply Lemma 4.3.1. Recall that Φ∗G orders vertices by non-increasing conditional

80

CHAPTER 4. VERTEX NOMINATION

probability given the observed graph, so

E

[
n∑
i=1

αi1[ΦG(i) ∈ V1]

]
=

n∑
i=1

αiP[ΦG(i) ∈ V1]

=
n∑
i=1

αi

(∑
G

P[G] P [ΦG(i) ∈ V1|G]

)

=
∑
G

P[G]

(
n∑
i=1

αi P[ΦG(i) ∈ V1|G]

)

≤
∑
G

P[G]

(
n∑
i=1

αi P[Φ∗G(i) ∈ V1|G]

)

=
n∑
i=1

αi P[Φ∗G(i) ∈ V1]

= E

[
n∑
i=1

αi1[Φ∗G(i) ∈ V1]

]
.

The literal mean average precision defined in Section 4.2 is this expression.

Theorem 4.3.2 shows that the canonical vertex nomination scheme is optimal for

any set of nonnegative, and non-increasing sequence of weights.

4.4 Metropolis-Hastings Sampling

4.4.1 Scheme

The canonical nomination scheme is not feasible for graphs larger than about

twenty vertices. Therefore, it is not practical for most graphs. This section de-

scribes methods to approximate the conditional probability, allowing us to estimate

the canonical vertex nomination scheme for much larger graphs. For simplicity we de-

81

CHAPTER 4. VERTEX NOMINATION

scribe sampling from B in the model κ(N,Λ). This is similar b(vξG,H(·)) when sampling

H from the sample space of 〈G〉 in the model κ(b,Λ).

An intelligent way to sample is to use Metropolis-Hastings algorithm. First used

by Nicholas Metropolis et al. [84] to estimate states in plasma physics simulation,

the Metropolis-Hastings algorithm is a method for generating random samples from

a probability distribution that is difficult to directly sample from. The samples are

generated from a Markov chain Monte Carlo (MCMC), and only the ratio probabilities

of samples needs to be known. The Metropolis-Hastings algorithm is often used for

approximating a distribution or an expectation.

Algorithm 4.6 Metropolis-Hastings Sampling

Draw a x−B uniformly at random from X . Initialization

for t = −B + 1 to T do

Draw a x′ from the distribution Q(·|xt) . Generate Candidate

α← P (x′)Q(xt|x′)
P (xt)Q(x′|xt) . Compute acceptance ratio

if α ≥ 1 or with probability α then

xt+1 ← x′ . Accept new candidate

else

xt+1 ← xt . Reject new candidate

end if

end for

82

CHAPTER 4. VERTEX NOMINATION

The Metropolis-Hastings Algorithm gives a practical way to estimate

E [1[vi ∈ V |G]] ,

by generating an MCMC of samples from B distributed as P[b|G].

The first step of the Metropolis-Hastings algorithm is to generate a initial starting

point x0. This can be a uniformly random point from the sample space X . At the

tth step, we randomly pick a new candidate x′ from a distribution Q(x′|xt). If this

distribution Q(x|y) is symmetric, e.g., Q(x|y) = Q(y|x), we accept the new state x′

if α ≥ 1 or with probability α, where

α =
P[x′]

P[xt]
.

Then, we repeat sampling until there are B+T samples, x−B+1, x−B+2, x−B+3, . . . , xT .

The first B samples are burn-in, and are discarded, to ensure the underlying Markov

Chain are sufficiently close to stationarity.

4.4.1.0.2 Neighboring Block Membership Function

We propose a transition distribution Q(b′|bt), such that it depends on the pre-

vious block membership function and is symmetric. We consider a subset of block

membership functions to transition to and call these neighboring block membership

functions.

Definition Let b ∈ B be a block membership function and V b
k be the kth block

determined by b. For any i, j ∈ {1, 2, . . . , n}, i 6= j, consider the following function

83

CHAPTER 4. VERTEX NOMINATION

b′ such that vj ∈ V b′
i and vi ∈ V b′

j , otherwise for all l 6= i, j, b(vl) = b′(vl). Thus, the

block membership function b′ differs from b for exactly two vertices. We define a b′

as neighboring partition of b, and the act of exchange two vertices in a partition

is called a swap. We denote the swap of two vertices of partition b as b(vi, vj).

Let bt be the block membership function of the tth iteration in this Metropolis-

Hastings algorithm. We select the next candidate b′ by first selecting two vertices and

swapping them. The first vertex vi is selected uniformly at random from V1 and the

second vertex vj is selected uniformly at random from V \V1, i.e., b′ := bt−1(vi, vj).

Then we compute the acceptance rate

α :=
P[b′|G]

P[bt−1|G]
=

P[G|b′]P[b′]
P[G]

P[G|bt−1]P[bt−1]
P[G]

=
P[G|b′]
P[G|bt−1]

,

to decide whether or not to accept b′ or keep bt as prescribed by the algorithm.

Recall P[G|b] is computed via Equation 4.1. Then we repeat this procedure until

some convergence criterion is met or a predetermined number of iterations is reached.

Calculating the acceptance rate α using Equation 4.3 is not particularly efficient.

A more clever way to compute P[G|b′] is to use the previously computed P[G|bt−1].

The values of P[G|b′] and P[G|bt−1] only differ by two columns of the expanded Λ

matrix, A. Using the log likelihood ratio, we significantly increase the efficiency.

Consider the log likelihood ratio of G for two block membership functions b and

for b′ = b(vi, vj)

log

(
P[G|b′]
P[G|b]

)
,

84

CHAPTER 4. VERTEX NOMINATION

Algorithm 4.7 Canonical Metropolis-Hastings Sampling

Uniformly at random select partition b−B ∈ B . Initialization

for t = −B + 1 to T do

Select a vertex vi ∈ V1 and vj ∈ V \V1 . Generate Candidate

b′ ← bt−1(vi, vj)

Compute α = P[G|b′]
P[G|bt−1]

if α ≥ 1 or with probability α then

bt ← b′ . Accept new candidate

else

bt ← bt−1 . Reject new candidate

end if

end for

85

CHAPTER 4. VERTEX NOMINATION

where vi ∈ V b
1 and vj /∈ V b

1 . Let the adjacency matrix A′ be the adjacency matrix

after swapping vertices vi and vj. This results in an adjacency matrix A with rows i

and j swapped, and columns i and j swapped. Then we can rewrite the log likelihood

ratio as

log

(
P[G|b′]
P[G|b]

)
=

∑
{l,m}∈([n]

2)

a′lm log

(
λb′l,b′m

1− λb′l,b′m

)
−

∑
{l,m}∈([n]

2)

alm log

(
λbl,bm

1− λbl,bm

)

=
∑

{l,m}∈([n]
2)

(
a′lm log

(
λb′l,b′m

1− λb′l,b′m

)
− alm log

(
λbl,bm

1− λbl,bm

))
.

Notice that for most indices l,m ∈
({1,2,...,n}

2

)
, the terms are identical. The indices are

not identical for terms when l 6= i, j or m 6= i, j, i.e., row and columns i and j. Since

the graph is undirected, we only need to consider columns i and j. This simplifies to

log

(
P[G|b′]
P[G|b]

)
=

∑
l 6=i,j

[
a′li log

(
λb′l,b′i

1− λb′l,b′i

)
+ a′lj log

(
λb′l,b′j

1− λb′l,b′j

)

− ali log

(
λbl,bi

1− λbl,bi

)
− alj log

(
λbl,bj

1− λbl,bj

)]
.

86

CHAPTER 4. VERTEX NOMINATION

Recall that the partition of vertices vi and vj are swapped in A′. Thus bi = b′j, bj = b′i,

and for all l 6= i, j, bl = b′l, Allowing further simplification, we have

log

(
P[G|b′]
P[G|b]

)
=

∑
l 6=i,j

[
ali log

(
λbl,bj

1− λbl,bj

)
+ alj log

(
λbl,bi

1− λbl,bi

)
− ali log

(
λbl,bi

1− λbl,bi

)
− alj log

(
λbl,bj

1− λbl,bj

)]
=

∑
l 6=i,j

[
ali

(
log

(
λbl,bj

1− λbl,bj

)
− log

(
λbl,bi

1− λbl,bi

))
+alj

(
log

(
λbl,bi

1− λbl,bi

)
− log

(
λbl,bj

1− λbl,bj

))]
=

∑
l 6=i,j

(ali − alj)
(

log

(
λbl,bj

1− λbl,bj

)
− log

(
λbl,bi

1− λbl,bi

))
=

∑
l 6=i,j

(ali − alj) log

(
λbl,bj(1− λbl,bi)
λbl,bi(1− λbl,bj)

)
. (4.4)

Computing this factor only requires examining two columns, which reduces the

computation time from O(n2) to O(n). Thus canonical Metropolis-Hastings sampling

is much more practical than directly computing P[G|b]. Since the algorithm has no

fixed number of samples, we are able to scale and apply the algorithm to larger graphs.

Definition Let the partitions obtained from canonical Metropolis-Hastings sampling

be (b−B+1, b−B+2, . . . , b1, b2, . . . , bT). The Metropolis-Hastings vertex nomina-

tion scheme, denoted by ΦMH
G , orders the vertices by estimating the conditional

probability P[G|b] as

P̂[G|b] :=

∑T
t=1 1[vi ∈ V bt

1]

T
.

87

CHAPTER 4. VERTEX NOMINATION

4.4.2 Number of Samples

In this section, we explore the number of samples needed in the Metropolis-

Hastings vertex nomination scheme ΦMH .

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position in the nomination list

em
pi

ric
al

 p
ro

ba
bi

lit
y

in
 V

1

1000
10000
100000
500000

Figure 4.1: ΦMH using 1000, 10000, 100000, 50000 samples. The simulated graphs
have 20 seeds and 500 non-seed vertices. This plot demonstrates the increase in
performance with more samples.

Figure 4.1 demonstrates the increase in performance with respect to the number

of samples used to estimate P[G|b]. This is done on the mid-sized simulation data

(see Section 4.8.1 for simulation parameters). The plot shows the vertex nomination

accuracy of Metropolis-Hastings vertex nomination using 1000, 10000, 100000, 500000

samples (all with 25000 burn-in). In Section 4.8, we use 500000 samples and 25000

88

CHAPTER 4. VERTEX NOMINATION

Samples 1000 10000 100000 500000

MAP 0.80 0.875 0.923 0.945

Runtime 9.5 12.8 45.6 191

Table 4.1: MAP and runtime of ΦMH for different numbers of samples. The runtime
in this table is in seconds.

burn-in for ΦMH .

4.4.3 Theoretical Results

Theorem 4.4.1 The Metropolis-Hastings vertex nomination scheme with sufficient

number of samples converges to the true distribution,

P̂[vi ∈ V1|G]→ P[vi ∈ V1|G]

Thus Metropolis-Hastings vertex nomination scheme converges to the canonical vertex

nomination scheme, and the MAP (ΦMH) converges to MAP (Φ∗).

The Markov process {bt}t=1,2,... is ergodic with stationary distribution P[vi ∈ V1|G].

With enough samples the canonical Metropolis-Hastings sampling algorithm con-

verges to the target distribution [85–89].

Proof

89

CHAPTER 4. VERTEX NOMINATION

4.5 Spectral Partitioning

4.5.1 Scheme

Another vertex nomination scheme we develop is based on the spectral partitioning

algorithm from Section 2.3. Applying spectral partitioning on all s+m vertices yields

the embedding X̂, and K clusters from minimizing ‖X̂−C‖F , where C has k distinct

rows. After performing the spectral partitioning, we determine which cluster is most

likely to be in block V1. We determine which block is most likely V1 by using the

seed vertices from block V1, denoted by U1. Let Ck be the vertices in cluster k.

We call the cluster with the most U1 vertices V̂1, let the centroid of this cluster be

Ĉ1. We rank vertices in V by their Euclidean distance from Ĉ1. Let ΦS denote

the spectral partitioning vertex nomination scheme, and the order of the vertices as

ΦS
G = (vϕS(1), vϕS(2), . . . vϕS(n)).

Algorithm 4.8 Spectral Partitioning Nomination

ODOT ← A . Compute spectral decomposition

Û ← [U1, U2, . . . Ud], D̂ ← diag(D1, D2, . . . Dd) . Low rank approximation

X̂ ← ÔD̂
1
2 . Embed Vertices

C ← minC ‖X̂ − C‖F . Cluster Embeddings

c′1, c
′
2, . . . , c

′
K ← distinct rows of C . Estimate Block Membership Function

V̂1 ← arg maxCk:k∈{1,2,...K} |{u ∈ U1 : u ∈ Ck}| . Estimate the V1 from seeds.

To approximately solve the clustering min ‖X − C‖F , we use the Mclust algo-

90

CHAPTER 4. VERTEX NOMINATION

rithm. This is not equivalent to solving min ‖X − C‖F . The approximate spectral

partitioning (SP) vertex nomination scheme using Mclust is denoted ΦS†
G

4.5.2 Theoretical Results

In this section, we show that the mean average precision MAP of the spectral

partitioning nomination scheme ΦS
G converges to 1 as n→∞.

Theorem 4.5.1

Under the same conditions as Theorem 2.3.3, the average precision of the spectral

partitioning nomination scheme ΦS
G converges to 1 as n→∞. Thus the mean average

precision of ΦS
G also converges to 1 as n→∞.

Proof Lyzinski et al. [47] showed that with high probability there are no incorrectly

clustered vertices as n → ∞ under mild assumptions (Theorem 2.3.3). This implies

that the mean average precision of ΦS converges to 1 as n→∞.

4.6 Seeded Graph Matching

Recall, the seeded graph matching algorithm from Section 2.4.2 takes two graphs

as input and returns a permutation P as output. In the vertex nomination framework,

we only have one graph, but we are also given N and Λ. Since the true expanded Λ

matrix A is unknown, we construct a permutation of the true A say Ã. For conve-

nience, in Ã we group all vertices of the same block together. Let b̃ be the associated

91

CHAPTER 4. VERTEX NOMINATION

block membership function for Ã. Thus b̃ = [1, 1, . . . , 1, 2, 2, . . . , 2, 3 . . . , K], where

there are n1 ones, n2 twos, etc., so Ã := [λb̃i ,̃bj] ∈ Rn×n.

For the graph-matching vertex nomination scheme, we first perform seeded graph

matching between A and Ã. The graph matching objective function is arg minP ‖A−

PÃP T‖F .

4.6.1 Residual

To evaluate the effectiveness of matching vertices, we compute a residual quantity

and use it to rank the vertices. Explicitly, the residual quantity for vertex vi is

ri = ‖[A− PÃP T]i‖2
2 = ‖[ri,1, ri,2, . . . , ri,n+m]‖2

2 =
∑
vj∈V

(1[vi ∼ vj]− Λb̃(ψ(vi)),̃b(ψ(vj))
)2.

Define R = A−PÃP T = [rij], then the residual for vertex vi is ‖[ri,1, ri,2, . . . , ri,n+m]‖2,

i.e. the `2-norm of the ith row of the objective. Let ψ : V A 7→ V B denote the solution

to the seeded graph matching problem. Notice that ri is simply the decomposition of

the graph matching objective,

n∑
i=1

ri = ‖A− PÃP T‖2
F .

The graph matching (GM) nomination scheme, is defined as

ΦM
G := (vϕM (1), vϕM (2), . . . , vϕM (n)).

such that first n1 vertices in V1 are ranked by the increasing order of the residual, and

the remaining vertices not in V1 are ranked by the decreasing residual.Notice that

92

CHAPTER 4. VERTEX NOMINATION

the nomination depends on the predicted block membership of the vertex. Thus the

algorithm treats vertices matched to different blocks differently.

Below we present a limiting result for graph matching vertex nomination scheme.

This result requires no seeds, i.e. s1 = s2 = . . . = sK = 0. We consider with K and Λ

fixed with graphs drawn from κ(N,M,Λ). The values n1, n2, . . . , nK are functions of

n. We assume that there exists a constant γ > 0 such that for all k = 1, 2, . . . , K, it

holds that nk > γn for all but a finite number of values of n.

Theorem 4.6.1

For the graph matching nomination scheme ΦM , with the assumptions above

a. If λ1,1 6= λi,j for all (i, j) 6= (1, 1) then there exists a real number c > 0 such that

almost surely ε ≤ c log n for all but a finite number of values of n.

b. Almost surely the average precision of ΦM converges to 1 as n→∞.

c. The mean average precision of ΦM converges to 1 as n→∞.

d. If λi,j 6= λi′,j′, for all (i, j) 6= (i′, j′) then almost surely ε = 0 for all but a finite

number of values of n.

Proof We begin with the proof of part (a) then part (d), and end with parts (b) and

(c).

Proof of Theorem 4.6.1: part (a)

Let β = min |λ1,1 − λi,j| over all (i, j) 6= (1, 1). For any permutation ψ ∈ Ψn, the

93

CHAPTER 4. VERTEX NOMINATION

graph matching objective function can be rewritten as

f(ψ) =
∑

{i,j}∈(n2)

(1[vi ∼ vj]− Λb̃(ψ(vi),̃b(ψ(vj))
)2

=
∑

{i,j}∈(n2)

1[vi ∼ vj]
2 + Λ2

b̃(ψ(vi),̃b(ψ(vj))
− 2Λb̃(ψ(vi),̃b(ψ(vj))

1[vi ∼ vj]

Minimizing f(ψ) is equivalent to maximizing

g(ψ) =
∑

{i,j}∈(n2)

Λb̃(ψ(vi),̃b(ψ(vj))
1[vi ∼ vj].

Let I denote the identity function, and without loss of generality let I be the true

underlying permutation. Then

E [g(I)− g(ψ)] = E

 ∑
{i,j}∈(n2)

(
Λb̃(vi),̃b(vj)

− Λb̃(ψ(vi),̃b(ψ(vj))

)
1[vi ∼ vj]


=

∑
{i,j}∈(n2)

(
Λb̃(vi),̃b(vj)

− Λb̃(ψ(vi),̃b(ψ(vj))

)
P[vi ∼ vj]

=
∑

{i,j}∈(n2)

(
Λb̃(vi),̃b(vj)

− Λb̃(ψ(vi),̃b(ψ(vj))

)
Λb̃(vi),̃b(vj)

=
∑

{i,j}∈(n2)

Λ2
b̃(vi),̃b(vj)

− Λb̃(vi),̃b(vj)
Λb̃(ψ(vi),̃b(ψ(vj))

=
∑

{i,j}∈(n2)

1

2

(
Λ2
b̃(vi),̃b(vj)

− 2Λb̃(vi),̃b(vj)
Λb̃(ψ(vi),̃b(ψ(vj))

+ Λ2
b̃(vi),̃b(vj)

)

For any permutation ψ, we have

∑
{i,j}∈(n2)

Λ2
b̃(vi),̃b(vj)

=
∑

{i,j}∈(n2)

Λ2
b̃(ψ(vi)),̃b(ψ(vj))

.

94

CHAPTER 4. VERTEX NOMINATION

Thus

E [g(I)− g(ψ)] =
∑

{i,j}∈(n2)

1

2

(
Λ2
b̃(vi),̃b(vj)

− 2Λb̃(vi),̃b(vj)
Λb̃(ψ(vi),̃b(ψ(vj))

+ Λ2
b̃(ψ(vi)),̃b(ψ(vj))

)
=

1

2

∑
{i,j}∈(n2)

(
Λb̃(vi),̃b(vj)

− Λb̃(ψ(vi),̃b(ψ(vj))

)2

(4.5)

Recall that Hoeffding’s Inequality states that for any independent random variables

Z1, Z2, . . . , Zs, such that for i = 1, 2, . . . , s the support of Zi is [ai, bi] and ai, bi are

real numbers, then for any positive t ∈ R,

P

[∣∣∣∣∣
s∑
i=1

Zi − E
s∑
i=1

∣∣∣∣∣ ≥ t

]
≤ 2 e

(
−2t2∑s

i=1
(bi−ai)2

)

Consider when s =
(
n
2

)
and Zi = Λb(vi),b(vj) − Λb(ψ(vi),b(ψ(vj)), where i indexes the pair

(u, v). Furthermore, take t = E[g(I)− g(ψ)],

P

[∣∣∣∣∣
s∑
i=1

Zi − E
s∑
i=1

∣∣∣∣∣ ≥ t

]
= P

[
|g(I)− g(ψ)− E [g(I)− g(ψ)]| ≥ E[g(I)− g(ψ)]

]
= P

[
− (g(I)− g(ψ)− E [g(I)− g(ψ)]) ≥ E[g(I)− g(ψ)]

∣∣∣g(I)− g(ψ)− E [g(I)− g(ψ)] < 0
]

+P
[
g(I)− g(ψ)− E [g(I)− g(ψ)] ≥ E[g(I)− g(ψ)]

∣∣∣g(I)− g(ψ)− E [g(I)− g(ψ)] ≥ 0
]

= P
[
0 ≥ g(I)− g(ψ)

∣∣∣g(I)− g(ψ) ≤ E [g(I)− g(ψ)]
]

+P
[
g(I)− g(ψ) ≥ 2E[g(I)− g(ψ)]

∣∣∣g(I)− g(ψ) ≥ E [g(I)− g(ψ)]
]

Notice that E [g(I)− g(ψ)] ≥ 0 (Equation 4.5), and applying Hoeffding’s Inequality

P
[
g(I)− g(ψ) ≤ 0

]
≤ P

[∣∣∣∣∣
s∑
i=1

Zi − E
s∑
i=1

∣∣∣∣∣ ≥ t

]
(4.6)

≤ 2 e

(
−2E2[g(I)−g(ψ)]

2E2[g(I)−g(ψ)]

)
= 2 e−E[g(I)−g(ψ)]. (4.7)

95

CHAPTER 4. VERTEX NOMINATION

Now we bound Equation 4.7. Let the pair of vertices Ω0 ⊆
(
n
2

)
such that vi, vj ∈ V1,

yet ψ(vi), ψ(vj) 6∈ V1, and the pair Ω1 ⊆
(
n
2

)
such that vi, vj ∈ V1, and exactly one of

ψ(vi) and ψ(vj) are in V1.

Let εψ′ = |{vi ∈ V1 : ψ(vi) 6∈ V1}| for any permutations ψ′, i.e. εψ′ is the number

of vertices ψ′ wrongly predicted to be in V1. Recall that β = min |λ1,1− λi,j|, now by

Equation 4.5 we have

E [g(I)− g(ψ)] ≥ 1

2

∑
{vi,vj}∈Ω0

(
Λb̃(vi),̃b(vj)

− Λb̃(ψ(vi),̃b(ψ(vj))

)2

+
1

2

∑
{i,j}∈Ω1

(
Λb̃(vi),̃b(vj)

− Λb̃(ψ(vi),̃b(ψ(vj))

)2

≥ 1

2
β2 εψ(εψ − 1)

2
+

1

2
β2(n1 − εψ)εψ =

1

2
β2εψ

(
2n1 − εψ − 1

2

)
≥ 1

2
β2εψ

(
2n1 − n1 − 1

2

)
=

1

2
β2εψ

(
n1 − 1

2

)
=

1

4
β2εψ (n1 − 1) .

It holds that

n− 1

k
≥ n

k + 1
(4.8)

for fixed positive integer k and large n >> k. In our case, n = n1 and k = εψ,

E [g(I)− g(ψ)] ≥ 1

4
β2εψ (n1 − 1) ≥ 1

5
β2n1εψ (4.9)

≥ β2γ

5
nεψ, (4.10)

when n is large enough.

Let Ψε
n be the set of permutations such that εψ ≥ 10

β2γ
log n, and note that |Ψε

n| ≤

|Ψn| ≤ nn. Then Equations 4.7, 4.10 and the sub-additivity of probability measure

96

CHAPTER 4. VERTEX NOMINATION

give us

P
[
∃ ψ ∈ Ψε

n : g(I) ≤ g(ψ)
]
≤

∑
ψ∈Ψεn

2 e
−β

2γ
5
nεψ

10
β2γ

logn
=
∑
ψ∈Ψεn

2 e−2nεψ logn(4.11)

≤ 2nn e−2nεψ logn = 2 en logn−2nεψ logn =
2

nn
. (4.12)

This is finitely summable over all n. Thus by the Borel-Cantelli Lemma, almost

surely there are at most a finite number of values of n for which any optimal graph

matching ψ has at least 10
β2γ

log n number of mismatched vertices.

Proof of Theorem 4.6.1: part d

For part d, let β̃ = min |λi,j − λi′,j′| for (i, j) 6= (i′, j′), and let εψ,k = |vi ∈ Vk :

ψ(vi) 6∈ Vk| for k ∈ {1, 2, 3, . . . K}, in particular εψ,1 = εψ. For k = 1, 2, . . . K, let

Ω0,k ⊆
(
V
2

)
be the set of {i, j} ∈

(
V
2

)
such that both vi, vj ∈ Vk, but vψ(vi), vψ(vj) 6∈ Vi.

Furthermore, let Ω1,k ⊆
(
V
2

)
be the set of {i, j} ∈

(
V
2

)
such that vi, vj ∈ Vk, and

exactly one of vψ(vi) or vψ(vj) are in Vk.

Let g(ψ) be defined as the same in Equation 4.5. We use Equation 4.10 and follow

97

CHAPTER 4. VERTEX NOMINATION

the same steps as equation 4.12 and 4.10,

E [g(I)− g(ψ)]

=
K∑
k=1

1

2

∑
{i,j}∈(n2)

(
Λb̃(vi),̃b(vj)

− Λb̃(ψ(vi),̃b(ψ(vj))

)2


≥

K∑
k=1

1

2

∑
{i,j}∈Ω0,k

(
Λb̃(vi),̃b(vj)

− Λb̃(ψ(vi),̃b(ψ(vj))

)2

+
1

2

∑
{i,j}∈Ω1,k

(
Λb̃(vi),̃b(vj)

− Λb̃(ψ(vi),̃b(ψ(vj))

)2


≥

K∑
k=1

[
1

2
β̂2 εψ,k(εψ,k − 1)

2
+

1

2
β̂2(n1 − εψ,k)εψ,k

]

=
K∑
k=1

[
1

2
β̂2εψ,k

(
2n1 − εψ,k − 1

2

)]

≥
K∑
k=1

[
1

2
β̂2εψ,k

(
2n1 − n1 − 1

2

)]

=
K∑
k=1

[
1

2
β̂2εψ,k

(
n1 − 1

2

)]
=

K∑
k=1

[
1

4
β̂2εψ,k (n1 − 1)

]

≥
K∑
k=1

[
β̂2γ

5
nεψ,k

]
=
β̂2γ

5
n

K∑
k=1

εψ,k,

when n is large enough.

Let Ψε,k
n to be the set of ψ ∈ Ψn such that

∑K
k=1 εψ,k ≥

10

β̂2γ
log n. Also note the

fact that |Ψε,k
n | ≤ |Ψn| ≤ nn, and following the same steps of Equation 4.11,

P
[
∃ψ ∈ Ψε,k

n : g(I) ≤ g(ψ)
]
≤
∑
ψ∈Ψε,kn

2 e−2n logn ≤ 2 en logn−2n logn =
2

nn
.

Proof of Theorem 4.6.1: parts b and c

98

CHAPTER 4. VERTEX NOMINATION

From the above proofs, we have shown that almost surely for large enough n, it holds

that ε ≤ 10
β2γ

log n. Thus almost surely

1− AP (ΦM) = 1− 1

n1

n1∑
j=1

|{i ∈ {1, 2, 3, . . . j} : vϕM (i) ∈ V1}|
j

=
1

n1

n1∑
j=1

n1 − |{i ∈ {1, 2, 3, . . . j} : vϕM (i) ∈ V1}|
j

=
1

n1

n1∑
j=1

|{i ∈ {1, 2, 3, . . . j} : vϕM (i) 6∈ V1}|
j

≤ 1

n1

n1∑
j=1

ε

j
= ε

1

n1

n1∑
j=1

1

j
≤ 10

β2γ
log n

(
1

n1

n1∑
j=1

1

j

)

≤ 10

β2γ

log n (1 + log n1)

n1

,

which converges to 0 as n→∞. The mean average precision of ΨM is bounded by 1

and the average precision of ΨM . Thus the mean average precision MAP (ΨM) also

converges to 1 as n→∞.

4.6.1.1 Phenomenon of Inversion by SGM Nomination

For certain cases, graph matching vertex nomination nominates vertices in reverse

order. This means that the vertices nominated to be in block V1 are in order of

increasing empirical probabilities to be in V1 rather than decreasing probabilities.

For example, consider vertex nomination for a graph G distributed as κ(S,M,Λ),

where

Λ =

 0.2 0.15

0.15 0.1

 , S = [15, 0],M = [50, 50].

99

CHAPTER 4. VERTEX NOMINATION

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position in the nomination list

em
pi

ric
al

 p
ro

ba
bi

lit
y

in
 V

1

Figure 4.2: Example of accuracy inversion due to the graph matching vertex
nomination.

100

CHAPTER 4. VERTEX NOMINATION

Figure 4.2 shows the plot of nomination accuracy for 1000 Monte Carlo simulations.

In order to understand this inversion phenomenon, we consider the simplest case

of an undirected two block model κ(N,Λ),

Λ =

p r

r q

 .
This phenomenon of inversion is empirically explored in Figure 4.3. Our simulation

parameters are S = [15, 0],M = [50, 50], p ∈ {0, 0.1, 0.2, . . . , 1}, q ∈ {0, 0.1, 0.2, . . . , 1},r ∈

{0.1, 0.15, 0.2, . . . , 1}, over 100 simulations for each pixel. The slope of the empirical

probability is computed for the vertices in V̂1. The red areas of the plot indicate the

occurrence of inversion due to the graph matching vertex nomination.

We attempt a heuristic approach to explain this phenomenon. For simplicity,

suppose both blocks have the same size n. The reversal only occurs in areas when

the algorithm has incorrectly labeled some vertices as from V1. Let L be the error of

the graph matching vertex nomination scheme, then Ln vertices are matched to the

wrong block.

Recall the graph matching nomination scheme is matching A to Ã. We can heuris-

tically estimate the regions of slope reversal by computing the expected residual ri

for i of vertices matched to V1. Recall that

ri =
∑
vj∈V

(1[vi ∼ vj]− Λb̃(ψ(vi)),̃b(ψ(vj))
)2,

thus ri is a sum of n terms, with each term as λi,· or 1−λi,·. Let us group the residuals

101

CHAPTER 4. VERTEX NOMINATION

Figure 4.3: Plot of slope of the GM vertex nomination scheme accuracy with
parameters S = [15, 0],M = [50, 50], varying p ∈ {0, 0.1, 0.2, . . . , 1}, q ∈
{0, 0.1, 0.2, . . . , 1},r ∈ {0.1, 0.15, 0.2, . . . , 1}, and 100 simulations for each pixel.

102

CHAPTER 4. VERTEX NOMINATION

of the same block together as ri,b=k. Thus

ri,b=k =
∑

vj∈V :̃bj=k

(1[vi ∼ vj]− Λb̃(ψ(vi)),̃b(ψ(vj))
)2.

The number of terms which are (1−λi,1)2 can be approximated asXi,1 ∼Binomial(N(1), λi, 1),

and the number of terms which are λ2
i,1 is N(1) − Xi,1. Then the expected value of

ri,b=k is

E[ri,b=k] = (1− λi,1)2N(1) ∗ λi,1 + λ2
i,1N(1) ∗ (1− λi, 1)

For convenience, define the function

f(a, b, L) = (1− a)2Lb+ a2L(1− b).

Now we can estimate the expected residual ri where vi ∈ V1,

E[rV1] = f(p, p, 1− L) + f(p, r, L) + f(r, r, 1− L) + f(r, p, L).

Similarly the expected residual ri for vi ∈ V2,

E[rV2] = f(p, r, 1− L) + f(p, q, L) + f(r, q, 1− L) + f(r, r, L).

Notice that this relies on knowing the error. The actual distribution of the number of

edges is not binomial, because the nominated vertices to be in V1 are not distributed

as Bernoulli(p). The nominated vertices are chosen via graph matching, this creating

a biased sampling of the vertices in V1.

103

CHAPTER 4. VERTEX NOMINATION

Closer examination of the function f(a, b, L) yields

f(a, b, L)− f(a, c, L) = (1− a)2Lb+ a2L(1− b)− [(1− a)2Lc+ a2L(1− c)]

= (1− a)2L(b− c) + a2L[1− b− (1− c)]

= (1− a)2L(b− c) + a2L(c− b)

= L(b− c)[(1− a)2 − a2].

If a < 0.5 and b > c, then f(a, b, L) > f(a, c, L). This means, if p < 0.5, p > q, q = r,

then

E[rV1]− E[rV2] = f(p, p, 1− L) + f(p, r, L) + f(r, r, 1− L) + f(r, p, L)

−[f(p, r, 1− L) + f(p, q, L) + f(r, q, 1− L) + f(r, r, L)]

= f(p, p, 1− L)− f(p, r, 1− L) + f(r, p, L)− f(r, r, L) > 0

⇒ E[rV1] > E[rV2].

Thus in this case residuals of vertices in V2 have lower expected values than V1 vertices.

Notice this occurs regardless of the value of the matching error L. This means that

vertices with larger residuals are more likely to be from V1. This behavior is verified

in the simulation data as seen in Figure 4.4. The slope of when q = r is plotted.

In the case when q 6= r, the boundary between the positive and negative slope is

not as clear. Further complicating matters, the boundary depends on the value of

L. Using the estimated accuracy from the simulation results, we can compute when

E[rV2] > E[rV1] and compare with the case when the slope is positive (Figure 4.5).

Our heuristic derivation predicts the inversion behavior.

104

CHAPTER 4. VERTEX NOMINATION

Figure 4.4: Plot of slope of the nomination accuracy when r = q.

For cases with more than 2 blocks the inversions are not significantly better be-

haved. If the parameters in the Λ matrix λij < 0.5 or λij > 0.5 for all i, j ∈ 1, 2, . . . , n,

then the percentage of inversions slightly decreases with respect to the number of

blocks. When there are no restrictions on λij then the percentage of inversions drops

dramatically with respect to the number of blocks.

Thus we develop an alternative method, which still utilizes graph matching, but

does not suffer from inversions.

105

CHAPTER 4. VERTEX NOMINATION

Figure 4.5: Plot of GM vertex nomination scheme inversion compared with predicted
inversion. The plot is green when there is neither inversion nor predicted inversion.
The light blue denotes inversion and it is correctly predicted. The dark blue area
denotes inversion, but not predicted. The orange area denotes predicted inversion,
but not occurred.

106

CHAPTER 4. VERTEX NOMINATION

4.6.2 Most Likely Partition

As an alternative to residuals, we can use probability P[v ∈ V1|G] rank the vertices.

We can compute the probability of observing the graph G given the block membership

function b as in Equation 4.1,

P[G|b] =
n∏
i=1

n∏
j=i+1

λ
aij
bi,bj

(1− λbi,bj)1−aij

Taking a log of both sides this becomes,

log(P[G|b]) = log

(∏
i<j

λ
aij
bi,bj

(1− λbi,bj)1−aij

)
=

∑
i<j

log(λ
aij
bi,bj

(1− λbi,bj)1−aij)

=
∑
i<j

aij log(λbi,bj) + (1− aij) log(1− λbi,bj)

=
∑
i<j

log(1− λbi,bj) + aij(log(λbi,bj)− log(1− λbi,bj))

=
∑
i<j

log(1− λbi,bj) + aij log

(
λbi,bj

1− λbi,bj

)
= C +

∑
i<j

aij log

(
λbi,bj

1− λbi,bj

)
.

Notice that maximizing the probability is equivalent to the graph matching objective

of matching the adjacency matrix A with the matrix

Ã =

[
log

(
λbi,bj

1− λbi,bj

)]
.

Thus we can use the graph matching algorithm to estimate the most likely partition

of the graph,

P ∗ = arg max
P∈Pn

P[vi ∈ V |G].

107

CHAPTER 4. VERTEX NOMINATION

After finding the most likely partition, we still need a method to generate the

nomination list. Recall the canonical vertex nomination scheme nominates vertices

by

P[vi ∈ V1|G] =

∑
b′′∈B:b′′i =1 P[G, b′′]∑

b′∈B P[G, b′]
. (4.13)

To approximate this, we sum over the set of all neighboring block membership func-

tions, a much smaller set of functions. Let the set of all neighboring block membership

functions of b̂∗ be denoted by Bb̂∗ , where b̂∗ is the estimated most likely block mem-

bership function from graph matching. Then we order the vertices by

∏
vi∈V b̂

∗
1 ,vj∈V \V b̂

∗
1

P[G, b̂∗(vi, vj)]

P[G, b̂∗]
. (4.14)

for most likely partition (ML) nomination scheme. Notice that Equation 4.14

is similar to the numerator of Equation 4.13 except that Equation 4.14 uses a product

instead of a sum. Using a product instead of a sum prevents probabilities of large

values to dominate. Also empirical results show that ranking using Equation 4.13

yields better performance than using Equation 4.13.

4.7 Mixed Membership Stochastic Block-

model

For comparison with the other methods, we have also included a mixed member-

ship stochastic block model (see Section 2.5). Recall in the model that for all i ∈ [n],

108

CHAPTER 4. VERTEX NOMINATION

a mixed block membership distribution is drawn as πi ∼Dirichlet(α) for the vertex

vi. The probability distribution πi = [πij] is the distribution of blocks for vertex vi.

Thus πi1 is the probability that vertex vi acts as a vertex from block V1. If πi1 = 1,

then with probability 1 vertex vi acts as a vertex from block V1.

Just like in the spectral partitioning nomination scheme, we can create a ver-

tex nomination scheme by ordering the vertices by πi1. Let us define the mixture

membership stochastic block-model vertex nomination scheme as

ΦMMB
G = (vϕMMB

1
, vϕMMB

2
, vϕMMB

3
, . . . vϕMMB

n
),

such that for all i, j ∈ {1, 2, 3, . . . n}, ϕi, ϕj satisfy the property that

i < j if and only if πi1 ≥ πj1

Mixed membership stochastic block model is a different model from the stochastic

block model κ(k,Λ). Thus, under the idealized setting of the stochastic block model,

ΦMMB
G is not designed to perform well compared to our vertex nomination schemes,

which are asymptotically optimal under the stochastic block model. Real data does

not necessarily fit the stochastic block model. Thus, in our real data experiment, we

compare the performance of ΦMMB
G with the other four schemes.

4.8 Performance

In this section, we compare the performance of the nomination schemes on simu-

lation and real data.

109

CHAPTER 4. VERTEX NOMINATION

4.8.1 Simulated Data

All four vertex nomination schemes: canonical (CAN), Metropolis-Hastings (MH),

most likely partition (ML), and spectral partitioning (SP) have computational lim-

itations. The canonical scheme is only feasible in very small graphs, on the order

of 10 vertices. Most likely partition nomination scheme is feasible up to order of

1000 vertices, and spectral partitioning nomination scheme is feasible on even bigger

graphs, however its performance on small graphs (order 10) is no better than chance.

The Metropolis-Hastings vertex nomination scheme is feasible on many scales. We

fixed burn-in at 25000 samples, and 500000 samples after burn-in. In practice, the

number of samples should be adjusted for every problem. We fixed the number of

samples for simplicity.

These simulation experiments are designed to compare the schemes at various

scales. In the experiments we have K = 3 blocks in a stochastic block model. In

order to maintain an adequate level of difficulty at different scales, the parameters

M , N , and Λ are also scaled. Define

Λ(α) = α


.5 .3 .4

.3 .8 .6

.4 .6 .3

+ (1− α)


.5 .5 .5

.5 .5 .5

.5 .5 .5

 ,

which can be thought of as a mixture model between a 3-block stochastic block model

and an Erdős-Rényi model with p = 0.5. Larger α contains more signal, because with

a small α the model is closer to an Erdős-Rényi model creating more indistinguishable

110

CHAPTER 4. VERTEX NOMINATION

blocks. Also define ~n(β) = β[4; 3; 3]. For the three experiments we have the following

parameters:

N = ~n(1) =


4

3

3

 , M =


4

0

0

 , Λ = Λ(1) =


.5 .3 .4

.3 .8 .6

.4 .6 .3

 ;

N = ~n(50) =


200

150

150

 , M =


20

0

0

 , Λ = Λ(.3) =


.50 .44 .47

.44 .59 .53

.47 .53 .44

 ;

N = ~n(1000) =


4000

3000

3000

 , M =


40

0

0

 , Λ = Λ(.13) =


.500 .474 .487

.474 .539 .513

.487 .513 .474

 .

Figure 4.6 compares vertex nomination scheme via CAN, MH, ML, and SP. From

the figure, notice that ML vertex nomination scheme is very close to CAN, demon-

strating that ML could be used as an approximation to CAN vertex nomination

scheme. Surprisingly, MH vertex nomination scheme performs better than the CAN

vertex nomination scheme. This may be caused by CAN vertex nomination scheme’s

improper handling of symmetric graphs. Also 500000 samples is significant over-

sampling, since the
(

10
4,3,3

)
= 4200.

The small experiment is repeated 50000 items, the medium experiment is repeated

200 times and the large experiment is repeated 100 times.

Next in figure 4.7, ML vertex nomination scheme is plotted with SP vertex nom-

111

CHAPTER 4. VERTEX NOMINATION

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position in the nomination list

em
pi

ric
al

 p
ro

ba
bi

lit
y

of
 b

ei
ng

 in
 th

e
fir

st
 b

lo
ck

Figure 4.6: We compare four nomination schemes: CAN (red), MH (black), ML
(blue), and SP (green). The simulated graphs have 4 seed and 10 non-seed vertices.
CAN, MH, and ML all perform similarly, but SP performs about chance.

112

CHAPTER 4. VERTEX NOMINATION

ination scheme. Canonical vertex nomination scheme is currently computationally

infeasible at 500 vertices, thus it is not plotted. SP (blue) is able to perform ad-

mirably, but MH (black) and ML (red) are significantly better. This demonstrates

that in the situation that is possible to use graph matching, it should be favored over

spectral-partitioning.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position in the nomination list

em
pi

ric
al

 p
ro

ba
bi

lit
y

of
 b

ei
ng

 in
 th

e
fir

st
 b

lo
ck

Figure 4.7: We compare three nomination schemes: MH, ML, and SP. SP (blue) is
able to perform admirably, but MH (black) and ML (red) are significantly better.
This simulation has 20 seed and 500 non-seed vertices.

In the Figure 4.8, we have the third experiment where only MH and SP are

computationally practical. At this scale, seeded graph matching’s complexity of O(n3)

is very noticeable. Later in Section 5, we present a variation of the graph matching

algorithm with lower complexity.

113

CHAPTER 4. VERTEX NOMINATION

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position in the nomination list

em
pi

ric
al

 p
ro

ba
bi

lit
y

of
 b

ei
ng

 in
 th

e
fir

st
 b

lo
ck

Figure 4.8: We compare two nomination schemes: ML and SP. SP (blue) performs
better than MH. This simulation has 40 seed and 10000 non-seed vertices.

114

CHAPTER 4. VERTEX NOMINATION

MAP CAN ML MH SP

n = 10 0.6948 0.6515 0.6993 0.3991

n=500 N\A 0.9303 0.9452 0.7330

n=10000 N\A N\A 0.9281 0.9859

Table 4.2: MAP values for simulated data experiments.

Runtime CAN ML MH SP

n = 10 1.4 .04 138 .02

n=500 N\A 286 191 .8

n=10000 N\A N\A 546 534

Table 4.3: Runtime in seconds for simulated data experiments.

Note that since we are using ~n(β), 0.4 is chance accuracy for all three experiments,

and 0.4 is also chance MAP.

These experiments run in Matlab on a standard modern desktop. The following

table presents the average runtime of vertex nomination on one graph.

4.8.2 Real Data

In this section, we explore the effectiveness of our vertex nomination scheme on

real data. Four datasets are presented and performance of four vertex nomination

schemes are compared. The four scheme we compare are MH, ML, spectral, and MMB

115

CHAPTER 4. VERTEX NOMINATION

vertex nomination schemes. The first dataset is a email communication network from

the Enron Corporation. The next dataset is the neuron Network of a worm. The third

dataset is a weblog reference network. Finally we present a movie graph, created from

info-boxes on Wikipedia.

The MH and ML vertex nomination scheme need knowledge of the parameters.

We do not assume Λ is provided as it was in the synthetic examples. Instead, we

estimate the Λ via the empirical estimate using the seed vertices as a sample. For

example, to estimate λ12 we sum up the number of edges between vertices in V1 and

V2 and divide by n1n2.

4.8.2.1 Enron Email Data

Figure 4.9: Visualization of the Enron graph data.

116

CHAPTER 4. VERTEX NOMINATION

The data to be used is the email graph from the Enron Corporation. There are

more than 600,000 emails sent between Enron employees, with 184 distinct email

addresses over 198 weeks from 1998 to 2002. The graph we use has 130 vertices,

where each vertex is an employee’s email address in Enron with known job title.

Two vertices are adjacent if an email is sent from either email address to the other in

either direction. The 130 vertices are then divided into 2 blocks. One block contained

the “upper-echelon” or higher management (43 vertices). This block contained job

titles of CEO, president, vice president, chief manager, company attorney, and chief

employee. The other block contained the “lower-echelon,” containing the job titles

employee, employee administrative, specialist, analyst, trader, director, and manager

(87 vertices). Of the 130 vertices 30 are chosen as seeds, with 10 from the upper-

echelon and 20 from the lower-echelon. This experiment is repeated 30000 times.

Notice that before in the model we assumed Λ to be a known parameter. This is

not possible in this case, since the underlying model is not a stochastic block model.

Furthermore even if the underlying model is a stochastic block model, we would not

know the value of Λ. We estimate Λ using the seed vertices, for example with the 10

upper-echelon seeds we have the graph G[U1] (100 Bernoulli trials) to estimate λ11.

4.8.2.2 Caenorhabditis elegans Neuron Network

One well studied neural network is of Caenorhabditis elegans (C.elegans) neural

network. C.elegans are a nematode (roundworm), about 1 mm in length that live

117

CHAPTER 4. VERTEX NOMINATION

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position in the nomination list

em
pi

ric
al

 p
ro

ba
bi

lit
y

of
 b

ei
ng

 u
pp

er
−e

ch
el

on

Figure 4.10: VN via SGM and VN via SP for Enron data.

118

CHAPTER 4. VERTEX NOMINATION

Figure 4.11: Visualization of the C.elegans graph data.

in soil. There are two networks, one is the chemical synapses and the other is the

electrical synapses with 279 vertices. In each network the neurons are divided in to 67

sensory, 76 inter-neurons, and 110 motor neurons. We focus on the chemical network

and nominate the motor neurons. We use 60 vertices as seeds, 30 motor neurons, 20

inter-neurons, and 10 sensory neurons, chosen uniformly at random for each of the

1000 simulates.

In Figure 4.12 MH and ML nomination schemes have almost identical perfor-

mance, with MH slightly outperforming ML. The MMB nomination scheme performs

similarly to spectral, but is much more stable.

119

CHAPTER 4. VERTEX NOMINATION

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position in the nomination list

em
pi

ric
al

 p
ro

ba
bi

lit
y

of
 b

ei
ng

 a
 m

ot
or

 n
eu

ro
n

Figure 4.12: We compare three methods of vertex nomination: SP (green), ML (blue),
MH (black), and MMB (purple). For this dataset, ML performs the best, MMB
performs the second best, and SP performs like chance.

120

CHAPTER 4. VERTEX NOMINATION

Figure 4.13: Visualization of the political blog graph data.

4.8.2.3 Political Blog Data

This dataset is created from web-logs during the 2004 US presidential election [90].

The blogs are the vertices of the graphs. There is an edge between two blogs if one blog

links to the other blog. Each of the 1490 blogs are considered to be either conservative

or liberal. There are 636 conservative blogs and 588 liberal blogs. After removing

isolated vertices there are 1224 blogs remaining. We binarized and symmetrized the

data before applying our algorithms. In this experiment we chose 80 seeds from each

political orientation. The experiment is repeated 1000 times.

The blog dataset is well separated, and all except MMB are able to perform well.

MH performs the best, followed by ML, then spectral and finally MMB.

121

CHAPTER 4. VERTEX NOMINATION

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position in the nomination list

em
pi

ric
al

 p
ro

ba
bi

lit
y

of
 b

lo
g

be
in

g
lib

er
al

Figure 4.14: We compare four methods of vertex nomination: SP (green), ML (blue),
MH (black), and MMB (purple). For this dataset, MH performs the best, ML per-
forms second best, spectral performs third best, and MMB performs like chance.

122

CHAPTER 4. VERTEX NOMINATION

4.8.2.4 Movie Dataset

Figure 4.15: Visualization of the movie graph data.

The Movie data set was created by scrapping movie info-boxes from Wikipedia.

All movies from 5 movie studios (20th Century Fox, Columbia Pictures, Paramount,

Universal, and Warner Bros.) from 2000 to 2010 were collected. The directors,

producers, and actors (from the info-box) were saved along with categories (such as

movie genre). Each vertex in the movie graph is a movie from one of the 5 studios

between 2000 to 2010 and belongs to exactly one category out of comedy, action

thriller, and drama. Two movies have an edge between them if they have at least a

director, producer, or actor in common. There are 227 comedies, 157 action thriller,

and 235 dramas movies. This makes the total number of vertices 619. This experiment

123

CHAPTER 4. VERTEX NOMINATION

is also repeated 1000 times.

We nominate the movies for being a comedy. A total of 90 vertices, 30 from each

category, were chosen as seeds. The MAP of the ML nomination scheme is 0.5814,

of the spectral nomination scheme is 0.3500, and of the MMB nomination scheme

0.3766. Spectral and MMB nomination schemes performed approximately the same

as chance.

50 100 150 200 250 300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position in the nomination list

em
pi

ric
al

 p
ro

ba
bi

lit
y

of
 b

ei
ng

 a
 c

om
ed

y

Figure 4.16: We compare four methods of vertex nomination: ML (blue), MH (black),
SP (green), and MMB (purple). For this dataset, ML performs the best.

124

CHAPTER 4. VERTEX NOMINATION

Method ML MH SP MMB Chance

Enron 0.7779 0.7619 0.5970 0.3367

C.elegans 0.7272 0.7379 0.5096 0.5041 0.4145

Blog 0.8922 0.9317 0.7856 0.5429 0.4774

Movie 0.5814 0.5707 0.3764 0.3766 0.3724

Table 4.4: MAP values for ML, MH, Spectral, MMB, and chance vertex nomination
schemes.

4.8.2.5 Discussion

Areas of the graphs where the accuracy appear to be flat are an artifact of ties in

the MMB nomination scheme. The vertices are ranked by their posterior probabilities

in the MMB scheme. When the vertices all have the same posterior probabilities, all

of the vertices appear in the nearly the same positions. We randomize the ordering

in each simulation, which smooths out the ties into a plateau in the plot.

Note that the spectral and mixed membership stochastic block model do not fully

utilize the seed vertices. For example, consider the spectral nomination scheme. The

seed vertices are only utilized after the spectral partitioning. Spectral partitioning is

computed on all vertices with no special care given to seed vertices. Regardless of

how many times we re-sample the seed vertices, the embedding and clustering do not

change. The seed vertices are only used to determine V̂1.

Therefore in the real data experiments, there is only embedding and clustering

of seed and non-seed vertices for all experiments. If we pick the same cluster as

125

CHAPTER 4. VERTEX NOMINATION

V̂1 for all experiments, then there is only one nomination ordering, and we are only

remove different subsets of seed vertices for each experiment. This causes of the

sinusoidal artifact in the plots. Another cause of the sinusoidal artifact is that spectral

partitioning may be finding sub-communities in the data. The sub communities may

may be more or less likely to be from one block or another.

126

Chapter 5

Large Seeded Graph Matching

There exist many graph matching algorithms (see Section 2.4), each having advan-

tages and disadvantages; some are fast but have low accuracy e.g. QCV and others are

slower but have higher accuracy, e.g. GLAG. With current computational resources,

the state-of-the-art approximate seeded graph matching algorithms are practically

limited to matching graphs on the order of 1000 vertices. To bijectively match graphs

of larger orders of magnitude, a new algorithm must be developed. Our large seeded

graph matching algorithm first divides the graph into small subgraphs, which subse-

quent graph matching algorithms can more easily process. The work of this section

is submitted as [91].

There have been others who have employed divide-and-conquer techniques to

graph matching [4, 92, 93]. Our algorithm uses spectral partitioning to divide the

graph into subgraphs. Our algorithm’s theoretical basis and a priori use of seed

127

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

vertices distinguishes it from the current literature.

5.1 Algorithm

The Large Seeded Graph Matching (LSGM) algorithm is designed to be a scalable

graph matching algorithm. In order to make the algorithm scalable, we use a divide-

and-conquer approach, decomposing the large graph into smaller paired subgraphs

such that each pair is then independently matchable. This method is flexible and

does not require that we use any specific graph matching algorithm to match the

subgraphs.

The key to the mechanics of this algorithm is Lemma 2.2.1, which bounds the error

in the estimated latent position (suitably rotated) for random graphs distributed as

κ(b,Λ). From this, we show Lemma 5.2.1, which states that any two ρ-correlated

κ(b,Λ) graphs (defined in Section 1.4.7) have adjacency spectral embeddings (ASE)

that approximately differ by an orthogonal transformation. However, finding this

orthogonal transformation via Procrustes, requires us to know the complete alignment

of the two graphs. We know the correspondence of the seed vertices. We find the

Procrustes transformation on the seed vertices and hope to align the full graphs as

using the resulting transformation. Seed vertices are optional in graph matching, but

are necessary for LSGM. Having aligned the two graphs, we next divide the vertices

into smaller subgraphs, which state-of-the-art graph matching algorithms are able to

128

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

handle. As each of these matchings is treated as a separate graph matching problem,

this makes the algorithm fully parallelizable after dividing the vertices.

Algorithm 5.9 Large Seeded Graph Matching

1: VAΣAVTA ← A, VBΣBVB ← B . Compute ASE

X̂ ′ ← V̂AΣ̂
1
2
A, Ŷ ← V̂BΣ̂

1
2
B

2: Q← arg minR′ ‖X̂ ′sR′ − Ŷs‖F . Solve Procrustes for Seed Vertices

X̂ ← X̂ ′Q . Align ASE of the Full Graphs

3: C ← arg minC ‖C − [X̂, Ŷ]‖F , where C has K distinct rows . Cluster [X̂, Ŷ]

4: Partition X̂ and Ŷ into evenly sized clusters . Divide

5: Run GM in parallel on graphs GA[UA ∪ CA
k] and GB[UB ∪ CB

k] . Conquer

6: Return combined SGM results

Let GA = (V A, EA) and GB = (V B, EB) be two graphs. We use the notation from

Section 1.4.7 and 2.4. Let the associated adjacency matrices of GA and GB be A and

B respectively. Partition the respective vertex sets V A and V B into seed UA and UB

and non-seed vertex sets WA and WB.

Step 1: The initial step of the algorithm is to compute the adjacency spectral

embedding (ASE) for both adjacency matrices A and B. Recall, to compute the ASE,

we need to compute the eigenvalue decomposition A = UAΣAVTA and B = UBΣBVTB .

Then the ASE of A and B are X̂A = ÛAΣ̂
1
2
A and X̂B = ÛBΣ̂

1
2
B respectively, where

ÛA and ÛB are the first d = rank(Λ) columns of UA and UB respectively and Σ̂
1
2
A and

Σ̂
1
2
B are the (element-wise) square root of the leading d× d principle sub-matrices of

129

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

ΣA and ΣB respectively. Without loss of generality, let X̂A
s and X̂B

s be the first s

rows of X̂A, X̂B, and X̂A
s̄ , X̂

B
s̄ be the last m rows of X̂A and X̂B respectively, i.e.

the spectral embedding of the seed and non-seed vertices. Thus, X̂A = [X̂A
s ; X̂A

s̄] and

X̂B = [X̂B
s ; X̂B

s̄].

Step 2: The next step is to use only the embedded seed vertices X̂A
s and X̂B

s to

align the two graphs via a Procrustes transformation [94]. The orthogonal Procrustes

problem with scaling is to find

Q̂ = arg min
R∈R(d)

‖X̂A
s R− X̂B

s ‖F ,

where

R(d) =


R ∈ Rd×d : R = S1ΩS2 for diagonal S1, S2 ∈ Rd×d

and Ω ∈ Rd×d s.t. RTR = I

 .

The role of Q̂ is to be a surrogate for the transformation to align the ASE of the full

graphs.

Step 3: With the latent positions aligned, we can cluster all 2n vertices X̂A,B =

[X̂AQ̂; X̂B] ∈ R2n×d simultaneously. Ideally, we want to compute

Ĉ := arg min
C∈R2n×d

2n∑
i=1

∥∥∥∥∥∥∥∥
X̂AQ

X̂B


i

− C

∥∥∥∥∥∥∥∥ , (5.1)

where C is a matrix with K distinct rows. We use k-means to approximately cluster,

because of its wide availability and theoretical tractability. In other words, C is a

matrix containing the centroids of each vertex. We choose K clusters, because we

130

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

have K blocks.

Step 4: Ideally, each cluster would contain the same number of vertices from each

graph [60]. However, this usually does not happen. Let cAk , c
B
k be the number of

vertices from cluster k from graph A and B respectively, with cA1 + cB1 ≥ cA2 + cB2 ≥

. . . ≥ cAK + cBK . For all k ∈ {1, 2, 3, . . . K} clusters, we create two corresponding

subgraphs GA
k ⊂ GA and GB

k ⊂ GB. We set the order of subgraphs GA
k and GB

k to be

m̂k :=

⌈
cAk + cBk

2

⌉
− 1

[
K∑
i=1

⌈
cAi + cBi

2

⌉
≥ k + n

]
.

The first term averages the sizes of cluster k from both graphs and rounds up (ceiling

function). The ceiling function is defined on real numbers x ∈ R as

dxe = min{n ∈ Z : n ≥ x}.

Note that the sum of the first terms might sum to a value greater than n. To

correct this, the second term reduces the largest clusters by one, until sum is exactly∑
k m̂k = n. Having determined the order of each subgraph, the next step is to assign

vertices to subgraphs. Initially, all vertices start unassigned. For k = 1, 2, . . . , K,

the subgraphs are formed by assigning unassigned vertices sequentially. To create

the kth-subgraph vertex sets, the m̂k closest unassigned vertices of GA and GB are

assigned to GA
k and GB

k respectively. Let ŴA
k and ŴB

K denote the non-seed vertices

in subgraphs GA
k and GB

k respectively, with sizes m̂k = |ŴA
k | = |ŴB

k |.

Step 5: Recall that the s seeded vertices are U = (v1, v2, . . . vs). The next step

of the algorithm is to graph match the K clusters in parallel. For clusters which are

131

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

small enough to match efficiently, we directly apply the graph matching algorithm.

For all clusters which are too large to be matched, LSGM is applied (recursively) to

further divide these clusters.

In the matching subroutines, we could also use seeded graph matching instead of

graph matching. If including all of the seed vertices is not too large for the graph

matching algorithm, we would use all of the seed vertices, i.e. we match the subgraphs

GA[UA ∪ ŴA
k] and GB[UB ∪ ŴB

k]. Let the output permutation matrix excluding seed

vertices for matching GA[UA ∪ ŴA
k] and GB[UB ∪ ŴB

k] be the P̂k ∈ Rm̂k×m̂k . Using

more seed vertices improves performance of our graph matching algorithm, SGM.

Again this step can be done in parallel, as we can match these graphs separately. If

|UA ∪ ŴA
k | has too many vertices for the seeded graph matching algorithm, we select

a subset of vertices as seeds for the graph matching. We attempt to select the seeds

which provide the most information, see Section 5.1.1 for details.

Step 6: After matching all of the subgraphs separately, the matchings for each

subgraph are combined together into one bijection. Call P̂k the permutation from

the graph matching subgraph k. Once we have the permutations P̂k, we combine the

permutations into

P̂ = ⊕k∈{1,2,3,...K}P̂ (k),

where ⊕ is the matrix direct sum. This provides the matching for all the vertices

across the entire graph.

132

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

5.1.1 Selective Seeding

For extremely large graphs, it may not be computationally possible to include all

seeds for each SGM computation. Thus, seeds must be selectively chosen. We expect

optimal performance in SGM is achieved by selecting seed vertices with the maximum

mutual information between the seeds and non-seeds in the subgraph [61]. We use a

greedy selection process to approximate the optimal subset of seeds. We iteratively

select seeds with maximum added entropy. Entropy is a measure of uncertainty of a

random variable in bits and is defined as [95]

H(X) = E[− log2(P [X])].

Suppose we want to select a total of ŝk seeds for the kth subgraph, and the non-

seed vertices of the kth subgraph GA
k and GB

k are ŴA
k and ŴB

k respectively. First

we initialize the seed vertices for graphs GA
k and GB

k to the empty set, ÛA
k = ∅

and ÛB
k = ∅ respectively, then we iteratively select seed vertices vAi1 , v

A
i2
, . . . , vAiŝk

and

corresponding vBi1 , v
B
i2
, . . . , vBiŝk

via

it ∈ arg max
j 6={i1,i2,...,it−1}

H(F̂(GA[vAj ∪ ÛA
k ∪ ŴA

k])) +H(F̂(GB[vBj ∪ ÛB
k ∪ ŴB

k])),

where F̂(·) is the empirical cumulative distribution function of the columns of the

seed-to-non-seed adjacency matrix of the subgraph. At each iteration, this procedure

selects the seed vertex that increases the empirical entropy the most.

133

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

5.1.2 Computational Efficiency

In this algorithm, there are a few computationally intensive steps: the spectral

embedding, Procrustes rotation, and graph matching. For spectral embedding we

only use the first d eigenvectors and eigenvalues. For large graphs ideally d << n,

when d ≤
√
n, then this step has complexity O(n2d) [96]. Solving the orthogonal

Procrustes problem has complexity at most O(nd2). Finally SGM has a runtime of

O(n3) for a graph of size n, see Section 2.4.2. In LSGM, SGM is not computed on the

whole graph, as SGM is applied to the K clusters directly. Let cmax be the maximum

size of all the clusters, cmax = maxk ck, then SGM’s runtime is O((cmax + s)3).

Suppose there exists an α > 0, such that s = o(n1−α), K = Ω(nα), and cmax =

O(n1−α). When the independent SGM routines for each cluster are not parallelized,

the graph matchings would have complexity

O(K(cmax + s)3) = O(nα(n1−α + n1−α)3) = O(nαn3(1−α)) = O(n3−2α).

If α ≥ 1/2 then the complexity becomes O(n2). With α ≈ 1/2, the serial LSGM

algorithm has complexity O(n2d+ nd2 + n2) = O(n2d).

If we assume that the computer resource has O(K) cores such that the SGM

subroutines are fully parallelized, then the complexity is O((cmax + s)3), where s is

the number of seeds. Note that if cmax = Θ(n), then parallelized SGM would have

complexity O(n3) and LSGM is as computationally intensive as SGM. However, if ck

is too large, LSGM is again applied on cluster k, recursively partitioning the cluster.

134

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

If cmax = O(n1−α), the complexity of the SGM steps is

O((cmax + s)3) = O((n1−α + n1−α)3) = O(n3(1−α)).

For α ≥ 1/3 the complexity of the SGM step is O(n2). If α ≈ 1/3 then the parallelized

LSGM algorithm has complexity O(n2d + nd2 + n2) = O(n2d), which is a large

improvement over O(n3). It is interesting and important to note that parallelizing

the algorithm is not necessary to have the improved runtime.

5.2 Theoretical Results

In this section, we will prove consistency results for the LSGM algorithm. First, we

restate some convergence results. Next, we show that with some natural conditions,

the ASE embeddings of A and B almost always approximately differ by an orthogonal

rotation. Finally, we show that we can approximate this rotation by using the seed

vertices and hence LSGM almost always returns the true alignment function.

Let GA and GB be ρ-correlated κ(S,M,Λ) graphs. Let A and B be their respective

adjacency matrices. Without loss of generality, let the true alignment function be the

identity mapping, thus the block membership function is b = bA = bB.

Theorem 5.2.1

If the following hold:

1. There exist constants ε1, ε2 > 0 such that K = O(n1/3−ε1) and mini ni =

Ω(n2/3+ε2)

135

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

2. Define

β = β(n, d, δd) =
260d log n

δdn1/2
,

if i, j ∈ {1, 2, 3, . . . n} are such that xi 6= xj then ‖xi − xj‖2 > 6n1/6β.

3. Without loss of generality, let {xi}si=1 be the latent positions corresponding to the

seed vertices. Assume there exists an α satisfying α > 4β and
√
nβ/α = o(nε/2)

such that

min
v:‖V ‖2=1

‖Xsv
T‖ ≥ α

√
s.

Then for all but finitely many n, the b̂ of satisfies b̂ = b.

Given the above assumptions, for all but finitely many n, the b̂ of equation 5.1 satisfies

b̂ = b and for all k ∈ {1, 2, 3, . . . K}, P̂ (k) = {Im̂k}. Therefore P̂ = ⊕Kk=1P̂
(k) = In

is equal to the identity matrix and P̂ is the true alignment function. This theorem

states that given some mild assumptions for the sequence of graphs Gn ∼ κ(n, π,Λ)

the LSGM algorithm is able to find the true permutation almost always.

The following lemma is a version of Lemma 2.2.1, for two graphs with the same

latent positions, i.e. Λ.

Lemma 5.2.2 Sussman et al. [19] and Lyzinski et al. [47]

With previous notation, let

δd := min
i,j≤d+1,i6=j

|σi(XXT)− σj(XXT)|
n

,

136

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

where σi(·) means the ith largest eigenvalue in magnitude. Let

RA = arg min
R∈R(d)

‖X̂A −XR‖F , RB = arg min
R∈R(d)

‖X̂B −XQ‖F .

If d = o(
√
n) then it holds that for all but finitely many n,

‖X̂A −XRA‖2,∞ ≤ β, ‖X̂B −XRB‖2,∞ ≤ β. (5.2)

Now, we want to show that instead of two rotations RA and RB relating X̂A and

X̂B to X, there exists one rotation between X̂A and X̂B.

Lemma 5.2.3

With assumptions as in Theorem 5.2.1. For all but finitely many n it holds that

‖X̂AQ− X̂B‖2,∞ ≤ 8β/α + 2β,

where

Q = arg min
R∈R(d)

‖X̂A
s R− X̂B

s ‖F

Proof Let

Q̃ = RT
ARB.

137

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

It follows from lemma 5.2.2 that ‖X̂AQ̃− X̂B‖2,∞ ≤ 2β. Thus

‖X̂A
s Q− X̂B

s ‖F ≤ ‖X̂A
s Q̃− X̂B

s ‖F =

√∑
s

‖X̂A
s Q̃− X̂B

s ‖2

≤
√∑

s

‖X̂A
s Q̃− X̂B

s ‖∞ = 2β
√
s

⇒ 2β
√
s ≥ ‖X̂A

s Q− X̂B
s ‖F

= ‖X̂A
s Q− X̂A

s Q̃+ X̂A
s Q̃− X̂B

s ‖F

≥ ‖X̂A
s (Q− Q̃)‖F − ‖X̂A

s Q̃− X̂B
s ‖F

≥ ‖X̂A
s (Q− Q̃)‖F − 2β

√
s,

⇒ 4β
√
s ≥ ‖X̂A

s (Q− Q̃)‖F

⇒ ‖X̂A
s (Q− Q̃)‖F ≤ 4β

√
s.

Using the assumption

min
v:‖v‖2=1

‖Xsv
T‖2

2 ≥ α2s,

and the SVD decomposition of Q− Q̃ = VQΣQUTQ , we have

‖X̂A
s (Q− Q̃)‖F = ‖XA

s RA(Q− Q̃)−XA
s RA(Q− Q̃) + X̂A

s (Q− Q̃)‖F

≥ ‖XsRA(Q− Q̃)‖F − ‖(X̂A
s −XsRA)(Q− Q̃)‖F

≥

√√√√ s∑
i=1

d∑
j=1

〈Xi, RAVj〉Σ2
j,j − 2β

√
s‖Q− Q̃‖F

≥ (α− 2β)
√
s‖Q− Q̃‖F ,

138

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

Hence

(α− 2β)
√
s‖Q− Q̃‖F ≤ ‖X̂A

s (Q− Q̃)‖F ≤ 4β
√
s

‖Q− Q̃‖2,∞ ≤ ‖Q− Q̃‖F ≤
4β

α− 2β
.

Since ‖X̂A‖2,∞ ≤ 1 and α > 4β, we have

‖X̂AQ− X̂B‖2,∞ = ‖X̂A(Q− Q̃) + X̂AQ̃− X̂B‖2,∞

≤ ‖X̂A(Q− Q̃)‖2,∞ + ‖X̂AQ̃− X̂B‖2,∞

≤ ‖X̂A‖2,∞
4β

α− 2β
+ 2β

≤ 8β

α
+ 2β.

Lemma 5.2.4

For all but finitely many n, it holds that∥∥∥∥∥∥∥∥
 X̂B

X̂AQ

−
XRB

XRB


∥∥∥∥∥∥∥∥

2,∞

≤ 8β

α
+ 3β

Proof∥∥∥∥∥∥∥∥
 X̂B

X̂AQ

−
XRB

XRB


∥∥∥∥∥∥∥∥

2,∞

= max{‖X̂B −XRB‖2,∞, ‖X̂AQ−XRB‖2,∞}.

Recall from equation 5.2 that the first term ‖X̂B −XRB‖2,∞ is bounded by β. The

second term

‖X̂AQ−XRB‖2,∞ ≤ ‖X̂AQ− X̂B‖2,∞ + ‖X̂B −XRB‖2,∞ ≤
8β

α
+ 3β.

139

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

With these Lemmas we are ready to prove Theorem 5.2.1.

Proof Let N1,N2, . . . ,NK be the `2-balls of radius n1/6β around the K rows of XRB.

If xi 6= xj, then by assumption in part 2,

6r = 6n1/6β < ‖xi − xj‖2 = ‖(xi − xj)RB‖2,

and Ni’s are all disjoint.

Let X̂A,B = [X̂AQ; X̂B] ∈ R2n×d and XA,B = [XARB;XARB] ∈ R2n×d. Let

(Ĉ, b̂) be the optimal clustering solution of clustering X̂A,B. Suppose there exists an

index i ∈ {1, 2, 3, . . . 2n} such that ‖XA,B
i − Ĉi‖ > 2r. Lemma 5.2.2 states that for a

sequence of graphs Gn almost always ‖X̂A−XRA‖2,∞ ≤ β and ‖X̂B−XRB‖2,∞ ≤ β.

Thus, by the triangle inequality

‖X̂A,B
i − Ĉi‖ ≥ ‖XA,B

i − Ĉi‖ − ‖X̂A,B
i −XA,B

i ‖ ≥ 2r − β.

Then

‖X̂A,B − Ĉ‖F >
√

min
j
nj(2r − β).

Recall assumption 1 is minj nj = Ω(n2/3+ε2) for a constant ε2 > 0. This means

that

‖X̂A,B − Ĉ‖F >
√

min
j
nj(2r − β) = Ω(n2/6+ε2/2)(2n1/6β − β) = Ω(n2/6+ε2/2)(2n1/6 − 1)β

= Ω

(
n2/6+ε2/2n1/6 log n

n1/2

)
= Ω(nε2/2).

140

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

This contradicts Lemma 5.2.4. Therefore ‖XA,B − Ĉ‖2,∞ ≤ 2r. This with Equation

(5.2), yields

‖XA,B − Ĉ‖2,∞ = ‖XA,B − X̂A,B + X̂A,B − Ĉ‖2,∞

≤ ‖XA,B − X̂A,B‖2,∞ + ‖X̂A,B − Ĉ‖2,∞

≤ β + 2r = (2 + o(1))r.

For i, j ∈ {1, 2, 3, . . . 2n} such that Ĉi 6= Ĉj, ‖XA,B
i −XA,B

j ‖ > 6r (by assumption 2).

This implies

‖X̂A,B
i − Ĉj‖2 ≥ ‖X̂A,B

i −XA,B
j ‖ − ‖XA,B

j − Ĉj‖

≥ ‖XA,B
i −XA,B

j ‖ − ‖X̂A,B
i −XA,B

i ‖ − ‖XA,B
j − Ĉj‖

≥ 6r − β − 2r = 4r − β = (4 + o(1))r.

Therefore, for the sequence of graphs Gn ∼ κ(n, π,Λ) it almost always holds that

b̂ = [b; b], i.e.

min
ϕ∈ΨK

|{i ∈ {1, 2, 3, . . . 2n} : bA,Bi 6= ϕ(̂bi)}| = 0.

5.3 Performance

To evaluate the performance of the algorithm, we apply LSGM on simulated data

and real data. Since there are many parameters to LSGM, we examine some of the

parameters with different experiments. The first section compares SGM to LSGM,

141

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

the next section examines different max cluster sizes, and the last section shows

performance of LSGM over various values of M and ρ.

5.3.1 Simulated Data

To evaluate our algorithm, we designed several experiments to test and study

LSGM. The simulations are ρ-correlated stochastic block models κ(b,Λ). All of the ex-

periments are paired, meaning that all graph matching methods use the same graphs

and seed vertices.

5.3.1.1 Comparison with SGM

It is important to compare LSGM with SGM, to understand how much perfor-

mance is lost. We are certainly sacrificing performance when using the LSGM algo-

rithm for the following two main reasons. First when the clusters are created, if we

incorrectly assign vertices to a cluster, then the incorrectly assigned vertices are guar-

anteed to be incorrect. Second, in the small matchings, vast amount of the adjacency

matrix is discarded. All the off-diagonal sub-matrices are discarded, but they would

have been used in SGM.

In order to run both LSGM and SGM, the size of the graph must be small enough

for SGM to be feasible, and large enough such that LSGM is also feasible. The

142

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

parameters of the comparison are

ρ = 0.7, N +M =


200

200

200

 ,Λ =


0.6 0.3 0.2

0.3 0.7 0.3

0.2 0.3 0.7

 ,

and the number of seed vertices tested are m = 3, 4, 5, 6, 7. The seeds are drawn

uniformly from the 600 vertices.

2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Seeds

A
cc

ur
ac

y

SGM vs LSGM Accuracy

SGM
LSGM

Figure 5.1: This plot compares the accuracy of SGM and LSGM, with 2 standard
error bars.

From the figure we can see that SGM is able to perfectly recover the graph with

4 seeds, but LSGM needs 6 seeds to have comparable performance.

143

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

5.3.1.1.1 Comparison of Graph Matching Algorithms

In this section, we compare the graph matching algorithms in the standard graph

matching setting, and we compare them in the LSGM setting. The algorithms we

compare are described in Section 2.4.3. We use the abbreviations from that section

as well. Let FAQ be the abbreviation for fast approximate quadratic assignment

problem covered in Section 2.4.2, and let RAND be the method of uniformly at

random selecting a permutation from Ψn.

In this first table presents the accuracy of graph matching algorithms for different

sized graphs. The graphs are ρ-correlated, with ρ = 0.9. They are two block model

with

Λ =

.6 .3

.3 .6

 .
Each block has an equal number of vertices. Each experiment is simulated 100 times.

From Table 5.1 GLAG performs the best in most cases. PATH also performs

relatively well. QCV only does well for n = 100, and performs about the same as

FAQ for the rest. RANK performs better than U, but both have very low accuracy.

Now we repeat the experiment: two block model, correlation ρ = 0.9, and 100

simulates. Except, we perform LSGM and use 3 randomly selected seed vertices.

Since there are seeds, we can now also use SGM as a graph matching algorithm.

Notice in the LSGM accuracy Table 5.2 that even the random algorithm has in-

creased in accuracy. Thus LSGM is finding relevant subgraphs. In fact the accuracy of

144

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

n 100 200 300 400

RAND 0.0075 0.0048 0.0020 0.0033

U 0.0395 0.0160 0.0083 0.0074

RANK 0.0515 0.0290 0.0167 0.0135

QCV 0.9665 0.1760 0.0178 0.0138

FAQ 0.1855 0.1180 0.0583 0.0143

PATH 1.0000 0.3152 0.3583 0.0632

GLAG 0.8250 0.5500 0.3672 0.2719

Table 5.1: GM accuracy for different sized graphs.

n 100 200 300 400

RAND 0.0252 0.0128 0.0086 0.0058

U 0.0983 0.0366 0.0219 0.0148

RANK 0.0888 0.0477 0.0322 0.0258

QCV 0.9743 0.9313 0.8414 0.3441

FAQ 0.2094 0.1145 0.0690 0.0268

PATH 0.9840 0.9451 0.9557 0.6067

GLAG 0.7440 0.5548 0.4006 0.3030

SGM 0.9740 0.9550 0.9587 0.9558

Table 5.2: LSGM accuracy for different sized graphs.

145

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

n = 100 200 300 400

RAND 0.15 0.27 0.49 0.80

U 0.17 0.36 0.77 1.99

Rank 0.17 0.31 0.59 1.08

QCV 0.96 1.03 0.80 1.59

FAQ 1.84 8.42 21.1 38.0

PATH 5.85 50.0 101 682

GLAG 13.4 125 375 824

Table 5.3: GM runtime for one graph at different sized graphs in seconds.

SGM is almost 1, thus LSGM is dividing the graph into paired subgraphs well. PATH

and QCV greatly benefit from use of LSGM. The other graph matching algorithms

do not perform significantly better or worse than on the complete graph.

5.3.1.1.2 Runtime

One large factor in considering, which algorithm to use for a specific application

is runtime. Table 5.3 has the average runtimes for performing one graph matching in

seconds.

This table shows that PATH and GLAG have significantly longer runtimes than

all other algorithms. FAQ’s runtime is in between in the middle.

Table 5.4 has the runtime for LSGM with the various graph matching algorithms.

146

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

n = 100 200 300 400

RAND 0.0981 0.1308 0.1794 0.2552

U 0.0993 0.1419 0.2131 0.3470

RANK 0.0974 0.1377 0.1953 0.3002

QCV 0.3071 1.2485 2.9638 3.4646

FAQ 0.5194 3.1227 9.1300 16.6761

PATH 2.2159 9.9000 15.8238 69.3173

GLAG 8.5387 33.8370 109.4802 261.7222

SGM 0.1460 0.7852 2.1338 4.4985

Table 5.4: LSGM runtime for one graph at different sized graphs in seconds.

The runtimes for LSGM are mostly smaller than in graph matching, except for

QCV. Note that SGM is much lower runtime than FAQ, and higher accuracy. Using

seed vertices in the other graph matching algorithms should be studied. However,

this requires more intimate knowledge of all algorithms and is beyond the scope of

our study.

5.3.1.2 Different cluster sizes

Now that we have compared graph matching with large seeded graph matching

algorithm, we examine the effect that the maximum cluster size has on accuracy. In

these simulations, we use ρ-correlated stochastic block models with 10 blocks with

147

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

max cluster size 100 200 300 400 500

RAND 0.0090 0.0041 0.0034 0.0029 0.0013

U 0.0099 0.0043 0.0039 0.0028 0.0021

Rank 0.0135 0.0086 0.0050 0.0043 0.0036

QCV 0.0163 0.0127 0.0081 0.0063 0.0038

FAQ 0.0097 0.0057 0.0043 0.0042 0.0026

PATH 0.0138 0.0101 0.0122 0.0089 0.0029

GLAG 0.0147 0.0103 0.0088 0.0065 0.0067

SGM 0.4382 0.4187 0.5057 0.4951 0.5761

Oracle 0.5287 0.4801 0.5356 0.5266 0.5874

Table 5.5: LSGM accuracy for different graph matching algorithms at different max
cluster sizes with ρ = 0.6.

100 vertices each, 20 randomly chosen seed vertices, and ρ = 0.6. The Λ matrix

is λii = 0.3 on the diagonals and λij = 0.6 for i 6= j on off-diagonal entries. In

these experiments, the oracle accuracy is also computed. The oracle accuracy is the

maximum possible accuracy given the clustering in LSGM.

The results presented in Table 5.5 shows that the optimal max cluster size is about

300 vertices. The only exception is SGM, which closely matches the oracle accuracy.

In the next example, the parameters are all the same except ρ = 0.9, results are

shown in Table5.6. With increased correlation, the accuracy also increased. Again

SGM closely matches the oracle accuracy. Some of the graph matching algorithms

148

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

max cluster size 100 200 300 400 500

RAND 0.0126 0.0046 0.0035 0.0025 0.0023

U 0.0170 0.0092 0.0052 0.0048 0.0037

RANK 0.0285 0.0153 0.0119 0.0091 0.0059

QCV 0.1575 0.1141 0.0780 0.0592 0.0161

FAQ 0.0478 0.0173 0.0092 0.0075 0.0047

PATH 0.2556 0.2863 0.3447 0.2167 0.0917

GLAG 0.0993 0.0775 0.0719 0.0554 0.0411

SGM 0.6823 0.6483 0.6761 0.6971 0.7029

Oracle 0.6831 0.6483 0.6762 0.6972 0.7029

Table 5.6: LSGM accuracy for different graph matching algorithms at different max
cluster sizes with ρ = 0.9.

149

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

max cluster size 100 200 300 400 500

RAND 3.2596 2.6439 2.4327 2.4810 2.9755

U 3.4398 2.8298 2.9099 3.2896 5.1298

RANK 3.3780 2.7582 2.6970 2.7694 3.6935

QCV 8.9928 15.3820 20.2138 20.4410 12.4421

FAQ 11.9592 27.1262 44.1289 60.6957 88.6032

SGM 7.7951 18.6063 31.8337 42.6478 56.5288

Table 5.7: LSGM runtime for different graph matching algorithms at different max
cluster sizes with ρ = 0.6.

perform about the same as the lower correlation, U, RANK, FAQ, GLAG, while QCV,

PATH, and SGM perform moderately better with higher correlation.

5.3.1.2.1 Runtime

Here are the runtimes for the 10-block stochastic block model simulation experi-

ments. First in Table 5.7 is the runtime for when ρ = 0.6.

Next in Table 5.8 is the runtime for the ρ = 0.9 LSGM experiments. The runtimes

shows that when ρ = 0.9, the runtime is generally the same. Only SGM has noticeably

quicker runtimes.

150

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

max cluster size 100 200 300 400 500

RAND 3.4980 2.7161 2.6049 3.0694 3.3027

U 3.6668 2.9568 3.1161 3.8657 5.3905

RANK 3.5652 2.9044 2.8677 3.3720 3.9648

QCV 8.9891 14.5505 23.4681 18.5633 13.0882

FAQ 11.6440 26.6528 45.0535 58.4471 83.2101

SGM 5.1524 12.4141 20.9582 31.7462 45.4332

Table 5.8: LSGM runtime for different graph matching algorithms at different max
cluster sizes with ρ = 0.9.

5.3.1.3 Range of Effectiveness

To demonstrate the regions where LSGM is effective we generated a surface plot in

figure 5.2. For the ρ-correlated stochastic block models, m ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

and ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} are varied while d = 10,K = 900, and M +N = 30 · ~1

are fixed. This makes the graph size 27000 vertices, well beyond the size for which

SGM is feasible.

Notice that LSGM is able to perform well with only 15 seed vertices and correlation

ρ = 0.7, or 25 seed vertices and correlation ρ = 0.5.

151

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

0
0.2

0.4
0.6

0.8
1

0
10

20
30

40
50

0

0.2

0.4

0.6

0.8

1

Correlation

Accuracy 900 blocks with 30 vertices each, rank 10

Number of Seeds

A
cc

ur
ac

y

Figure 5.2: Monte Carlo LSGM simulation for 900 blocks with 30 vertices each, with
rank(Λ) = 10 and SGM as the graph matching algorithm. With 50 seeds and ρ = 0.5
the accuracy is 78.75%.

152

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

s\ρ 0.1 0.3 0.5 0.7 0.9

5 0.0003 0.0006 0.0030 0.0055 0.0106

10 0.0054 0.0196 0.0694 0.2325 0.1958

15 0.0101 0.0256 0.0281 0.0223 0.0074

20 0.0013 0.0056 0.0190 0.0120 0.0051

25 0.0017 0.0065 0.0094 0.0089 0.0044

30 0.0019 0.0069 0.0085 0.0082 0.0048

35 0.0016 0.0072 0.0070 0.0070 0.0070

40 0.0019 0.0106 0.0123 0.0109 0.0031

45 0.0020 0.0104 0.0108 0.0048 0.0036

50 0.0009 0.0076 0.0058 0.0077 0.0059

Table 5.9: LSGM standard deviation for simulated data.

153

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

5.3.2 Real Data

In this section we LSGM on brain graphs. The graph is generated from a 3-D brain

scan. The vertices are voxels in the scan, and edges are neural connections between

voxels. For more details on how the brain graphs were created see [3, 97]. The data

is freely available at http://openconnecto.me/data/public/MR/MIGRAINE/. We

binarized, symmetrized and down-sampled the graphs. Down-sampling is done by

treating an 8× 8× 8 voxel as a single voxel. After processing two graphs we want to

match, we compute the intersection of the vertex sets. This results in a graph with

approximately 18000 vertices.

When we apply the LSGM algorithm with SGM, we set the maximum cluster size

to 800. We estimated the optimal embedding dimension to be 30 from the scree plot.

Each experiment is repeated 30 times. In Figure 5.3 we compare the performance of

matching two different subjects, graphs 8 and 29 against the performance of matching

two brain scans of the same subject, graphs 1 and 8. For experiments with large

numbers of seeds (s = 1000, 2000, 5000), we used the procedure is Section 5.1.1 to

select a subset of seeds for each subgraph.

As one would expect, matching two brain scans of the same person performs better

than of two different people. The low accuracy can be caused by noise in both the

raw brain scans and pre-processing tools used to register and generate the graphs.

In Table 5.11 we present the effectiveness of LSGM with other graph matching

algorithms on within subject graph matching. The maximum cluster size is again

154

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Seeds

A
cc

ur
ac

y

LSGM on Brain Graphs

Same Subject
Different Subjects

Figure 5.3: LSGM for matching brain connectome graphs n ≈ 18000, d = 30, with
30 MC simulates and ±2 standard error bars. The maximum cluster size is 800.

across-subject within-subject

seeds accuracy std accuracy std

200 0.0019 0.0004 0.0198 0.0024

1000 0.0054 0.0013 0.0493 0.0074

2000 0.0092 0.0009 0.0667 0.0054

5000 0.0164 0.0028 0.1098 0.0140

Table 5.10: LSGM accuracy on brain graphs across-subject vs within-subject.

155

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

s 2500 5000

rand 0.0017 0.0020

U 0.0034 0.0040

rank 0.0039 0.0047

QCV 0.0091 0.0106

FAQ 0.0064 0.0066

SGM 0.0773 0.1074

Table 5.11: LSGM accuracy for brain graphs for 2500 and 5000 seed vertices.

800 vertices and 20 simulations were used for each experiment. In Table 5.12 are the

corresponding runtimes per simulation in hours.

5.4 Discussion

The task of graph matching is important to many graph inference tasks, such as

vertex nomination. In this chapter, we have presented a parallelizable graph match

algorithm, whose computational complexity is O(n2d). This is a large improvement

over the complexity of state-of-the-art approximate graph matching algorithms O(n3).

We have shown in simulated and real data examples the ability of LSGM to perform

graph matching. Furthermore, we have shown, under mild conditions, theoretical

results proving LSGM perfectly matches ρ-correlated stochastic block model graphs.

156

CHAPTER 5. LARGE SEEDED GRAPH MATCHING

seeds 2500 5000

SGM 3.5669 4.4679

QAP 3.2825 4.2366

RAND 2.8425 3.6606

U 2.8496 3.5737

RANK 2.7859 3.2437

QCV 2.5952 2.9329

Table 5.12: LSGM runtime on brain graphs for 2500 and 5000 seed vertices in hours.

The choice of graph matching and clustering algorithms are left up to the user.

We chose to use k-means for its simplicity and known theoretical results. The cluster-

ing procedure should be tailored to the data. For example, if the vertex embeddings

resemble a mixture of Gaussians one should use Mclust instead. Choice of the graph

matching algorithm should not be limited to SGM. Currently SGM is the only al-

gorithm available able to use seed vertices. As other algorithms such as GLAG and

PATH are able to utilize seed vertices, experiments should be used to determine their

effectiveness in the LSGM algorithm.

157

Bibliography

[1] L. Euler, The seven bridges of Konigsberg. Wm. Benton, 1956.

[2] K. Haris, S. N. Efstratiadis, N. Maglaveras, C. Pappas, J. Gourassas, and

G. Louridas, “Model-based morphological segmentation and labeling of coro-

nary angiograms,” Medical Imaging, IEEE Transactions on, vol. 18, no. 10, pp.

1003–1015, 1999.

[3] W. G. Roncal, Z. H. Koterba, D. Mhembere, D. M. Kleissas, J. T. Vogelstein,

R. Burns, A. R. Bowles, D. K. Donavos, S. Ryman, R. E. Jung et al., “Migraine:

Mri graph reliability analysis and inference for connectomics,” arXiv preprint

arXiv:1312.4875, 2013.

[4] F. Zhou and F. De la Torre, “Factorized graph matching,” in Computer Vision

and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp.

127–134.

[5] M. Cho and K. M. Lee, “Progressive graph matching: Making a move of graphs

158

BIBLIOGRAPHY

via probabilistic voting,” in Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on. IEEE, 2012, pp. 398–405.

[6] P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques,”

in Proc. of the Thirteenth International World Wide Web Conference (WWW

2004). Manhattan, USA: ACM Press, 2004, pp. 595–601.

[7] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A

multiresolution coordinate-free ordering for compressing social networks,” in Pro-

ceedings of the 20th international conference on World Wide Web. ACM Press,

2011.

[8] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, “Scan statistics on

enron graphs,” Computational & Mathematical Organization Theory, vol. 11,

no. 3, pp. 229–247, 2005.

[9] B. Bollobás, Random Graphs. Cambridge university press, 2001, vol. 73.

[10] A. Athreya, V. Lyzinski, D. J. Marchette, C. E. Priebe, D. L. Sussman, and

M. Tang, “A limit theorem for scaled eigenvectors of random dot product

graphs,” arXiv preprint arXiv:1305.7388, 2013.

[11] A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi, “A survey of

statistical network models,” Foundations and Trends R© in Machine Learning,

vol. 2, no. 2, pp. 129–233, 2010.

159

BIBLIOGRAPHY

[12] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First

steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983.

[13] T. A. Snijders and K. Nowicki, “Estimation and prediction for stochastic block-

models for graphs with latent block structure,” Journal of classification, vol. 14,

no. 1, pp. 75–100, 1997.

[14] P. J. Bickel and A. Chen, “A nonparametric view of network models and

newman–girvan and other modularities,” Proceedings of the National Academy

of Sciences, vol. 106, no. 50, pp. 21 068–21 073, 2009.

[15] D. S. Choi, P. J. Wolfe, and E. M. Airoldi, “Stochastic blockmodels with a

growing number of classes,” Biometrika, p. asr053, 2012.

[16] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed membership

stochastic blockmodels,” in Advances in Neural Information Processing Systems,

2009, pp. 33–40.

[17] H. Zhang, B. Qiu, C. L. Giles, H. C. Foley, and J. Yen, “An lda-based community

structure discovery approach for large-scale social networks,” in Intelligence and

Security Informatics, 2007 IEEE. IEEE, 2007, pp. 200–207.

[18] K. Rohe, S. Chatterjee, and B. Yu, “Spectral clustering and the high-dimensional

stochastic blockmodel,” The Annals of Statistics, vol. 39, no. 4, pp. 1878–1915,

2011.

160

BIBLIOGRAPHY

[19] D. L. Sussman, M. Tang, D. E. Fishkind, and C. E. Priebe, “A consistent ad-

jacency spectral embedding for stochastic blockmodel graphs,” Journal of the

American Statistical Association, vol. 107, no. 499, pp. 1119–1128, 2012.

[20] D. E. Fishkind, D. L. Sussman, M. Tang, J. T. Vogelstein, and C. E. Priebe,

“Consistent adjacency-spectral partitioning for the stochastic block model when

the model parameters are unknown,” SIAM Journal on Matrix Analysis and

Applications, vol. 34, no. 1, pp. 23–39, 2013.

[21] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph matching

in pattern recognition,” International journal of pattern recognition and artificial

intelligence, vol. 18, no. 03, pp. 265–298, 2004.

[22] M. R. Garey and D. S. Johnson, Computers and intractability. wh freeman,

2002, vol. 29.

[23] S. Sahni and T. Gonzalez, “P-complete approximation problems,” Journal of the

ACM (JACM), vol. 23, no. 3, pp. 555–565, 1976.

[24] R. C. Read and D. G. Corneil, “The graph isomorphism disease,” Journal of

Graph Theory, vol. 1, no. 4, pp. 339–363, 1977.

[25] A. Lubiw, “Some np-complete problems similar to graph isomorphism,” SIAM

Journal on Computing, vol. 10, no. 1, pp. 11–21, 1981.

161

BIBLIOGRAPHY

[26] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “The design and analysis of

computer algorithms, 1974,” Reading: Addison-Wesley, pp. 207–209, 1987.

[27] J. E. Hopcroft and J.-K. Wong, “Linear time algorithm for isomorphism of planar

graphs (preliminary report),” in Proceedings of the sixth annual ACM symposium

on Theory of computing. ACM, 1974, pp. 172–184.

[28] E. M. Luks, “Isomorphism of graphs of bounded valence can be tested in polyno-

mial time,” Journal of Computer and System Sciences, vol. 25, no. 1, pp. 42–65,

1982.

[29] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of the ACM

(JACM), vol. 23, no. 1, pp. 31–42, 1976.

[30] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach (Interna-

tional Edition). {Pearson US Imports & PHIPEs}, 2002.

[31] W.-H. Tsai and K.-S. Fu, “Error-correcting isomorphisms of attributed relational

graphs for pattern analysis,” Systems, Man and Cybernetics, IEEE Transactions

on, vol. 9, no. 12, pp. 757–768, 1979.

[32] S. Umeyama, “An eigendecomposition approach to weighted graph matching

problems,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 10, no. 5, pp. 695–703, 1988.

162

BIBLIOGRAPHY

[33] M. A. Fischler and R. A. Elschlager, “The representation and matching of pic-

torial structures,” IEEE Transactions on Computers, vol. 22, no. 1, pp. 67–92,

1973.

[34] J. T. Vogelstein, J. M. Conroy, L. J. Podrazik, S. G. Kratzer, D. E. Fishkind, R. J.

Vogelstein, and C. E. Priebe, “Fast inexact graph matching with applications in

statistical connectomics,” submitted for publication, 2011.

[35] A. Rukhin, Asymptotic Analysis of Various Statistics for Random Graph Infer-

ence. Proquest, Umi Dissertation, 2011.

[36] Y. J. Wang and G. Y. Wong, “Stochastic blockmodels for directed graphs,”

Journal of the American Statistical Association, vol. 82, no. 397, pp. 8–19, 1987.

[37] S. Milgram, “The small world problem,” Psychology today, vol. 2, no. 1, pp.

60–67, 1967.

[38] M. E. Newman, “The structure and function of complex networks,” SIAM review,

vol. 45, no. 2, pp. 167–256, 2003.

[39] G. Schwarz et al., “Estimating the dimension of a model,” The annals of statis-

tics, vol. 6, no. 2, pp. 461–464, 1978.

[40] H. Akaike, “A new look at the statistical model identification,” Automatic Con-

trol, IEEE Transactions on, vol. 19, no. 6, pp. 716–723, 1974.

163

BIBLIOGRAPHY

[41] L. Chen, J. Vogelstein, and C. Priebe, “Robust vertex classification,” arXiv

preprint arXiv:1311.5954, 2013.

[42] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley &

Sons, 2012.

[43] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algo-

rithm,” Applied statistics, pp. 100–108, 1979.

[44] C. Fraley and A. E. Raftery, “Mclust: Software for model-based cluster analysis,”

Journal of Classification, vol. 16, no. 2, pp. 297–306, 1999.

[45] ——, “Enhanced model-based clustering, density estimation, and discriminant

analysis software: Mclust,” Journal of Classification, vol. 20, no. 2, pp. 263–286,

2003.

[46] ——, “Mclust version 3: an r package for normal mixture modeling and model-

based clustering,” DTIC Document, Tech. Rep., 2006.

[47] V. Lyzinski, D. Sussman, M. Tang, A. Athreya, and C. Priebe, “Perfect cluster-

ing for stochastic blockmodel graphs via adjacency spectral embedding,” arXiv

preprint arXiv:1310.0532, 2013.

[48] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3,

pp. 75–174, 2010.

164

BIBLIOGRAPHY

[49] K. Nowicki and T. A. B. Snijders, “Estimation and prediction for stochastic

blockstructures,” Journal of the American Statistical Association, vol. 96, no.

455, pp. 1077–1087, 2001.

[50] M. E. Newman and M. Girvan, “Finding and evaluating community structure in

networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.

[51] T. Caelli and S. Kosinov, “An eigenspace projection clustering method for inexact

graph matching,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 26, no. 4, pp. 515–519, 2004.

[52] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on, no. 2, pp. 224–227, 1979.

[53] D. Knossow, A. Sharma, D. Mateus, and R. Horaud, “Inexact matching of large

and sparse graphs using laplacian eigenvectors,” in Graph-Based Representations

in Pattern Recognition. Springer, 2009, pp. 144–153.

[54] M. Zaslavskiy, F. Bach, and J.-P. Vert, “A path following algorithm for the

graph matching problem,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 31, no. 12, pp. 2227–2242, 2009.

[55] V. Lyzinski, D. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe, and G. Sapiro,

“Graph matching: Relax at your own risk,” arXiv preprint arXiv:1405.3133,

2014.

165

BIBLIOGRAPHY

[56] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval re-

search logistics quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[57] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms

and complexity. Courier Dover Publications, 1998.

[58] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval re-

search logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[59] R. E. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems, Revised

Reprint. Siam, 2009.

[60] D. E. Fishkind, S. Adali, and C. E. Priebe, “Seeded graph matching,” arXiv

preprint arXiv:1209.0367, 2012.

[61] V. Lyzinski, D. E. Fishkind, and C. E. Priebe, “Seeded graph matching for

correlated erdos-renyi graphs,” arXiv preprint arXiv:1304.7844, 2013.

[62] R. Singh, J. Xu, and B. Berger, “Pairwise global alignment of protein interaction

networks by matching neighborhood topology,” in Research in computational

molecular biology. Springer, 2007, pp. 16–31.

[63] M. Fiori, P. Sprechmann, J. Vogelstein, P. Musé, and G. Sapiro, “Robust mul-

timodal graph matching: Sparse coding meets graph matching,” in Advances in

Neural Information Processing Systems, 2013, pp. 127–135.

166

BIBLIOGRAPHY

[64] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the Journal

of machine Learning research, vol. 3, pp. 993–1022, 2003.

[65] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings of the

National academy of Sciences of the United States of America, vol. 101, no. Suppl

1, pp. 5228–5235, 2004.

[66] T. Minka and J. Lafferty, “Expectation-propagation for the generative aspect

model,” in Proceedings of the Eighteenth conference on Uncertainty in artificial

intelligence. Morgan Kaufmann Publishers Inc., 2002, pp. 352–359.

[67] H. Pao, G. A. Coppersmith, and C. E. Priebe, “Statistical inference on random

graphs: Comparative power analyses via monte carlo,” Journal of Computational

and Graphical Statistics, vol. 20, no. 2, pp. 395–416, 2011.

[68] P. J. Bickel and K. A. Doksum, “Mathematical statistics, volume i,” 2001.

[69] A. Rukhin and C. E. Priebe, “A comparative power analysis of the maximum

degree and size invariants for random graph inference,” Journal of Statistical

Planning and Inference, vol. 141, no. 2, pp. 1041–1046, 2011.

[70] A. V. Goldberg, Finding a maximum density subgraph. University of California

Berkeley, CA, 1984.

[71] E. R. Scheinerman and D. H. Ullman, Fractional graph theory: a rational ap-

proach to the theory of graphs. Courier Dover Publications, 2011.

167

BIBLIOGRAPHY

[72] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press,

2012.

[73] A. Rukhin and C. E. Priebe, “On the limiting distribution of a graph scan

statistic,” Communications in Statistics-Theory and Methods, vol. 41, no. 7, pp.

1151–1170, 2012.

[74] K. Nowicki and J. C. Wierman, “Subgraph counts in random graphs using incom-

plete u-statistics methods,” Discrete Mathematics, vol. 72, no. 1, pp. 299–310,

1988.

[75] J. M. Keil and T. B. Brecht, “The complexity of clustering in planar graphs,” J.

Combinatorial Mathematics and Combinatorial Computing, vol. 9, pp. 155–159,

1991.

[76] S. Khot, “Ruling out ptas for graph min-bisection, dense k-subgraph, and bipar-

tite clique,” SIAM Journal on Computing, vol. 36, no. 4, pp. 1025–1071, 2006.

[77] U. Feige, D. Peleg, and G. Kortsarz, “The dense k-subgraph problem,” Algorith-

mica, vol. 29, no. 3, pp. 410–421, 2001.

[78] D. E. Fishkind, V. Lyzinski, H. Pao, L. Chen, and C. E. Priebe, “Vertex nom-

ination schemes for membership prediction,” arXiv preprint arXiv:1312.2638,

2013.

168

BIBLIOGRAPHY

[79] G. A. Coppersmith and C. E. Priebe, “Vertex nomination via content and con-

text,” arXiv preprint arXiv:1201.4118, 2012.

[80] D. S. Lee and C. E. Priebe, “Bayesian vertex nomination,” arXiv preprint

arXiv:1205.5082, 2012.

[81] L. Devroye, A probabilistic theory of pattern recognition. springer, 1996, vol. 31.

[82] P. Erdős and A. Rényi, “Asymmetric graphs,” Acta Mathematica Hungarica,

vol. 14, no. 3, pp. 295–315, 1963.

[83] G. Pólya, “Kombinatorische anzahlbestimmungen für gruppen, graphen und

chemische verbindungen,” Acta mathematica, vol. 68, no. 1, pp. 145–254, 1937.

[84] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

“Equation of state calculations by fast computing machines,” The journal of

chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[85] J. G. Propp and D. B. Wilson, “Exact sampling with coupled markov chains

and applications to statistical mechanics,” Random structures and Algorithms,

vol. 9, no. 1-2, pp. 223–252, 1996.

[86] J. A. Fill, “An interruptible algorithm for perfect sampling via markov chains,” in

Proceedings of the twenty-ninth annual ACM symposium on Theory of computing.

ACM, 1997, pp. 688–695.

169

BIBLIOGRAPHY

[87] S. Chib and E. Greenberg, “Understanding the metropolis-hastings algorithm,”

The American Statistician, vol. 49, no. 4, pp. 327–335, 1995.

[88] G. O. Roberts and A. F. Smith, “Simple conditions for the convergence of

the gibbs sampler and metropolis-hastings algorithms,” Stochastic processes and

their applications, vol. 49, no. 2, pp. 207–216, 1994.

[89] K. L. Mengersen, R. L. Tweedie et al., “Rates of convergence of the hastings and

metropolis algorithms,” The Annals of Statistics, vol. 24, no. 1, pp. 101–121,

1996.

[90] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 us election:

divided they blog,” in Proceedings of the 3rd international workshop on Link

discovery. ACM, 2005, pp. 36–43.

[91] V. Lyzinski, D. L. Sussman, D. E. Fishkind, H. Pao, and C. E. Priebe,

“Seeded graph matching for large stochastic block model graphs,” arXiv preprint

arXiv:1310.1297, 2013.

[92] M. Cho and J. Lee, “Feature correspondence and deformable object matching

via agglomerative correspondence clustering,” in Computer Vision, 2009 IEEE

12th International Conference on. IEEE, 2009, pp. 1280–1287.

[93] A. Armiti and M. Gertz, “Efficient geometric graph matching using vertex em-

170

BIBLIOGRAPHY

bedding,” in Proceedings of the 21st ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems. ACM, 2013, pp. 224–233.

[94] P. H. Schönemann, “A generalized solution of the orthogonal procrustes prob-

lem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966.

[95] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley

& Sons, 2012.

[96] M. Brand, “Fast low-rank modifications of the thin singular value decomposi-

tion,” Linear algebra and its applications, vol. 415, no. 1, pp. 20–30, 2006.

[97] W. R. Gray, J. A. Bogovic, J. T. Vogelstein, B. A. Landman, J. L. Prince,

and R. Vogelstein, “Magnetic resonance connectome automated pipeline: an

overview,” Pulse, IEEE, vol. 3, no. 2, pp. 42–48, 2012.

171

Vita

Henry Pao was born in Baltimore, MD. He attended Centennial High

school and graduated in 2004. Then he attended Johns Hopkins Uni-

versity and graduated with a Bachelor’s Degree in 2007, and a Master’s

Degree in 2008. Both degrees are in Applied Mathematics and Statis-

tics. He continued to study at Johns Hopkins University to receive a Master’s in

Computer Science in 2011.

172

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Overview
	Brief Literature Review
	Notation
	Random Graph Models
	Erdos-Rényi Random Graph
	Dense Sub-block Random Graph
	Stochastic Block Random Graph
	Bernoulli Random Graph
	Stochastic Block Model
	Random Dot Product Graph
	-correlated Graphs

	Tools for Studying Random Graphs
	Graph Invariants
	Adjacency Spectral Embedding
	Undirected Graphs
	Weighted Graphs
	Dimension Selection
	Unscaled Embedding
	Projection onto the Sphere
	Laplacian

	Spectral Partitioning
	Graph Matching
	Frank-Wolfe Algorithm
	Fast Approximate Quadratic Assignment Problem (FAQ)
	Seeded Graph Matching

	Other Graph Matching Algorithms
	U
	rank
	QCV
	PATH
	GLAG

	Mixed Membership Stochastic Block-model

	Statistical Inference for Dense Sub-community Detection
	Hypothesis Test for Dense Sub-community Detection
	Null Hypothesis, (n1+n2,p)
	Alternative Hypothesis, (n1,n2,p,q)
	Type I Error
	Power

	Synthetic Experiments
	Experiment Design
	Monte Carlo Simulations
	Size
	Max Degree
	Maximum Average Degree
	Scan Statistic
	Number of Triangles
	Clustering Coefficient
	Average Path Length

	Power Relationship with n2, q
	Power Difference plots
	Most Powerful Statistic

	Densest k-subgraph

	Vertex Nomination
	In Relation to Classification
	Performance Metrics
	Canonical
	Scheme
	Theoretical Results

	Metropolis-Hastings Sampling
	Scheme
	Number of Samples
	Theoretical Results

	Spectral Partitioning
	Scheme
	Theoretical Results

	Seeded Graph Matching
	Residual
	Phenomenon of Inversion by SGM Nomination

	Most Likely Partition

	Mixed Membership Stochastic Block-model
	Performance
	Simulated Data
	Real Data
	Enron Email Data
	Caenorhabditis elegans Neuron Network
	Political Blog Data
	Movie Dataset
	Discussion

	Large Seeded Graph Matching
	Algorithm
	Selective Seeding
	Computational Efficiency

	Theoretical Results
	Performance
	Simulated Data
	Comparison with SGM
	Different cluster sizes
	Range of Effectiveness

	Real Data

	Discussion

	Bibliography
	Vita

