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Abstract

With the emergence of big data, the need for more computationally intensive pro-

cessors that can handle the increased processing demand has risen. Conventional com-

puting paradigms based on the Von Neumann model that separates computational

and memory structures have become outdated and less efficient for this increased

demand. As the speed and memory density of processors have increased significantly

over the years, these models of computing, which rely on a constant stream of data

between the processor and memory, see less gains due to finite bandwidth and la-

tency. Moreover, in the presence of extreme scaling, these conventional systems,

implemented in submicron integrated circuits, have become even more susceptible

to process variability, static leakage current, and more. In this work, alternative

paradigms, predicated on distributive processing with robust data representation and

mixed-signal processing tiles, are explored for constructing more efficient and scalable

computing systems in application specific integrated circuits (ASICs).

The focus of this dissertation work has been on heterogeneous chip multi-processor

(CMP) design and optimization across different levels of abstraction. On the level

ii



ABSTRACT

of data representation, a different modality of representation based on random pulse

density modulation (RPDM) coding is explored for more efficient processing using

stochastic computation. On the level of circuit description, mixed-signal integrated

circuits that exploit charge-based computing for energy efficient fixed point arithmetic

are designed. Consequently, 8 different chips that test and showcase these circuits

were fabricated in submicron CMOS processes. Finally, on the architectural level of

description, a compact instruction-set processor and controller that facilitates dis-

tributive computing on System-On-Chips (SoCs) is designed. In addition to this, a

robust bufferless network architecture is designed with a network simulator, and I/O

cells are designed for SoCs.

The culmination of this thesis work has led to the design and fabrication of a

heterogeneous chip multi-processor prototype comprised of over 12,000 VVM cores,

warp/dewarp processors, cache, and additional processors, which can be applied to-

wards energy efficient large-scale data processing.

Primary Reader: Andreas G. Andreou

Secondary Reader: Ralph Etienne-Cummings

Committee Member: Philippe O. Pouliquen
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Chapter 1

Introduction

Envisaged through Moore’s law decades ago,1 transistors have scaled to smaller

sizes, which has paved the way for exponential improvements in the functionality and

performance of integrated circuits over the years. Conventional computing paradigms,

such as Von Neumann architecture, have improved through this scaling with faster

processor speed and more functionality through higher circuit density. Nonetheless,

the very nature of the Von Neumann architecture with the separation of computa-

tional and memory structures requires a constant stream of data between memory

and processor, even in the ideal case of infinite bandwidth and zero latency. For

realistic implementations with finite bandwidth and latency, designers make recourse

to prefetching and caching schemes, which although resolves latency issues, do not

however alleviate energy cost issues of constantly streaming data.

Furthermore as emerging technologies are scaling with conventional integrated
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circuits, physical limiting factors affecting performance and power consumption has

escalated and misaligned what is achievable in principle and in practice. As transistors

have scaled to the order of a few nanometers, thinner dielectric has become more

susceptible to leakage current; manufacturing variations create a higher disparity and

mismatch in the design, and noise has become a bigger factor with supply voltage

scaling. Unconventional architectures, such as an analog-array processor,2 and charge-

injection device (CID) processor,3–6 have been proposed as energy efficient alternatives

to existing paradigms to rectify this scaling issue.

In this work, systems and architectures for chip multiprocessors (CMPs) that

exploit bio-inspired data encoding and mixed-signal processing are designed and op-

timized across different levels of abstraction and description for constructing hetero-

geneous chip multiprocessor. Conceptually, this hierarchical system design approach

is visualized through the diagram shown in Figure 1.1. Generally, system design be-

gins at the algorithmic level of description, where the system’s functionality is estab-

lished. Then, these algorithms or functions are mapped into a coherent architecture,

where the the macro system blocks, communication protocols, data representation

are defined in the architectural and representation level of description. This coher-

ent architecture is then translated into an integrated circuit, which is implemented

with physical devices from a technology process in the circuit and device level of

description.

Specifically in this dissertation, work is done on the representation level of descrip-

2





CHAPTER 1. INTRODUCTION

coding that trades off precision (variance) for either time or resource. With continued

technology trends pushing the brinks of transistor scaling, the need for error-tolerant

systems and architecture that are resilient to scaling issues has made alternative com-

puting paradigms, such as stochastic computing, attractive.

Moreover, on the level of circuit description, mixed-signal integrated circuits

hinged on charge-based computing have been designed and fabricated in submicron

CMOS processes for energy-efficient fixed point arithmetic. In the analog domain,

products can be done implicitly and efficiently at the thermal noise limits on a ca-

pacitor when one input is encoded as the voltage, and the other as capacitance.

Exploiting this principle, vector-vector multipliers were designed in this work that

use programmable capacitor arrays for computing inner products and a sigma-delta

(Σ∆) modulator for decoding these results back to the digital domain.9 Additionally,

a mixed-signal multiply and add processor based on a successive approximation ar-

chitecture is designed and fabricated in a submicron CMOS process as a competitive

alternative to conventional digital signal processor (DSP).

Finally, on the level of architectural description, different system blocks were de-

signed for facilitating distributive computing in CMPs. A compact instruction-set

processor that interfaces with both a switch circuit token-ring and packet-switching

mesh network-on-chip is designed that works as a direct memory access (DMA) and

processing unit (PU) controller on a SoC. This instruction set processor was inte-

grated with a mixed-signal vector-vector multiplication processing unit (PU VVM),

4
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an auxiliary memory unit (PU CACHE), and other PUs such as DSPs and morpho-

logical processors. Moreover, a bufferless scalable network architecture is designed

and emulated in a network simulator. This network presented in this thesis not only

provides a flexible communication solution that efficiently routes based on data traf-

fic, but also prevents network deadlocks and livelocks, and can handle faulty routing

channels due to increased fabrication defect with scaling network sizes. Other relating

work includes the design of custom I/O cells implemented in a large SoC chip.

The culmination of this dissertation is the multifaceted design of heterogeneous

mixed-signal processing units and system modules for a high performance comput-

ing and energy efficient 2.5D multiprocessor system-on-chip (MPSoC). Comprised of

12,544 VVM cores, a high bandwidth memory interface with 2 network on chips,

ARM Cortex-M0 cores, and additional auxiliary units in 246.8mm2 silicon area, this

chip was designed to be useful for wide area motion imagery with gigabytes of framed

images, large scale inference task with deep convolutional neural networks, and more.

This thesis is divided into 5 chapters. Chapter 1, this one, provides an introduc-

tion and overview of this work. Chapter 2 discusses a bio-inspired modality of data

representation, and how it was used to construct computational efficient architecture

predicated on stochastic computation primitives. Chapter 3 presents mixed-signal ar-

chitectures iteratively designed and optimized for energy-efficient vector-vector mul-

tiplication. Moreover, Chapter 4 presents a mixed-signal architecture, inspired from

the successive approximation analog-to-digital converter (SA ADC), as a competitive

5
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alternative to conventional DSPs for multiply-add operations. Finally, Chapter 5 de-

tails the design of noteworthy units and modules of a heterogeneous CMP prototype

implemented in a submicron CMOS process. Also in this chapter, some large-scale

applications of this CMP are presented with results from test chips.

6



Chapter 2

Stochastic Representation for

Computational Efficiency

The human brain is capable of computing over a quadrillion synaptic operations

per second; all while only consuming roughly 12 watts.10 Even with the exponen-

tial improvements in technology from advances in integrated circuits as envisioned

through Moore’s law,1 the efficiency that is observed in human brains is still many

orders of magnitude superior to current state of the art processors. The computational

efficiency of these neurobiological systems can be attributed to clever exploitation of

the underlining physics and mediums to efficiently represent and process information.

Generally, computing systems use time, space, and energy as physical resources

for processing information. Conventional computing paradigms over the years have

leveraged energy, while exploiting space and time for improving performance and

7
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throughput. Nonetheless, now in the age of big data, the increased computation cost

for intelligent data exploitation has made these computing systems inadequate and

less desirable for efficient computing at a large-scale.11 In this work, an alternative

data representation, inspired from neurobiological systems, is explored for designing

and implementing more computational efficient systems and architectures.

2.1 Data Representation

Biological and electronic signals can be categorized based on their representation

in time and in value. Four main signal representations are distinguished in prior

work.12,13 Signals that are continuous in value, commonly known as analog signals,

can either be represented as continuous-value continuous-time (CVCT) signals, such

as sound signals, or as continuous-value discrete-time (CVDT) signals, such as clocked

analog signals. On the other hand, signals discretized in value, conventionally known

as digital signals, can be represented as discrete-value continuous-time (DVCT) sig-

nals, such as anisochronous pulse-time modulated (PTM) signals, or discrete-value

discrete-time (DVDT), such as pulse code modulated (PCM) signals. An illustration

of these signal representations with example signals is shown in Figure 2.1.

8
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CV DV
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analog pulse modulation
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Figure 2.1: Four Types of Signal Representation. The graph is broken up into four
quadrant separated by continuity in time and value. In the upper left quadrant are
continuous-value continuous-time (CVCT) signals. In the upper right quadrant are
the discrete-value continuous-time (DVCT) signals. In the lower left quadrant are
the continuous-value discrete-time (CVDT) signals. In the lower right quadrant are
the discrete-value discrete-time (DVDT) signals.

2.1.1 Analog vs. Digital

Even with the overwhelming popularity and integration of DVDT signal repre-

sentation as the standard for conventional computing paradigms, there are distinct

advantages and disadvantages within each of these analog and digital domains that

can be exploited depending on the application. Generally, analog signals need less

resources for information encoding as many bits can be encoded in one wire, while

digital signals encode 1-bit of information per wire. Nonetheless, analog signals are

9
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more susceptible to inaccuracies in encoding because of mismatches in physical de-

vices and noise from thermal fluctuations or coupling devices, and digital signals are

more robust due to less information encoding per resource. Additionally, computa-

tion in the analog domain can be done using underlining physic governed by laws

such as Kirchoff’s current and voltage laws (KCL and KVL), which greatly simplifies

system implementation. However, analog signals are not restored after computation

stages compared to digital signals, and can thus accumulate noise from cascaded

stages. Consequently, complex digital systems with many computing stages are gen-

erally easier to design than complex analog systems with many computing stages.

These advantages and disadvantages across domains highlight trade-offs that can be

exploited for computational efficiency.

2.1.2 Unary vs. Binary

In digital representation, information can be encoded in different schemes based

on time and space. Standard digital computers, which are based on a binary nu-

meral system, use positional notation to represent order of magnitudes in a base-2

format, where each bit represents either a ‘0’ or ‘1’ value. This system has been

widely adapted for decades because of its straightforward implementation in digital

logic gates. Alternatively, a unary coding scheme such as pulse width modulation

(PWM) or random pulse density modulation (RPDM) can also be adapted which

equally weights all bits in a vector encoding information. Consequently, bit ordering

10
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the range (0.5 for a similar range of [0, 1]). With transistors scaling to the orders

of a few nanometers, parasitic factors from manufacturing variations and noise have

become a more significant concern, which has made digital computing systems based

on standard binary-radix arithmetic less efficient. In Section 2.2, a bio-inspired unary

representation based on stochastic encoding is detailed as an alternative for comput-

ing architectures.

2.2 Stochastic Encoding and Computing

Formally introduced in the 1960s, stochastic computing has been an alternative to

traditional digital logic that exploits probabilistic encoding of information to simplify

complex computations to simple bitwise logic operations.7,8 In stochastic computing,

a multi-bit value X is encoded temporally or spatially as a random unary stream. A

sample of this unary stream is denoted as a Bernoulli-distributed stochastic number

xk, whose mean value E[xk] = p encodes X by mapping its range to [0, 1]. Figure 2.3

shows an example of encoding the value 4/8 = 0.5, which can be represented as 4 in

a 3-bits unsigned binary representation, as a vector of stochastic numbers.

Moreover, in this domain, operations such as multiplication, weighted-sums, ab-

solute differences, and more can be mapped into simple logic functions as seen in

Figure 2.4. Multiplications can be done with an AND logic gate, absolute differ-

ences can be done using an XOR logic gate, and weighted sums can be done using a

12
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RANDOM NUMBER
GENERATOR (RNG)

4/8
0,1,1,0,1,0,1,0

Figure 2.3: Stochastic Number Encoding. Encoding 4/8 into a vector of stochastic
numbers using a random number generator (RNG) and a digital comparator.
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Figure 2.4: Stochastic Operations. (a) An AND logic gate for multiplication. (b)
A XOR logic gate for absolute difference (c) A multiplexer for weighted sum of two
inputs.

multiplexer.

After computing in this domain, the resulting stochastic numbers can be decoded

back into a binary number using a counter, and then scaling the count to the ap-

propriate output range. This decoding can be seen in the example illustrated in Fig-
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Σ 1
8

2/80,1,0,0,0,1,0,0

Figure 2.5: Stochastic Number Decoding.

ure 2.5. Similar to neurobiological systems, such as the human brain that operates on

low-dimensional spike trains, information in the stochastic domain is implicitly repre-

sented in the statistics of the stochastic numbers ergo allowing for a robust encoding

with a trade-off of variance for either time or space.

Stochastic computation has been useful for a variety of applications. Specifically,

stochastic computation has been exploited for numerous of practical applications in

image processing. Peng Li et al. explore stochastic computational elements for im-

plementing digital image processing algorithms.14,15 In both works, the authors show

how computational intensive functions such as the tanh and exponentiation func-

tions can be implemented with sequential logic in the stochastic domain for doing

fault-tolerant image segmentation. A comparison of hardware implementations of

kernel density estimation (KDE) image segmentation algorithm with conventional bi-

nary radix logic and stochastic logic shows the conventional implementation rapidly

degrading with the increased injection of soft errors, while the stochastic implemen-

tation is resilient to these errors. Additionally, Weikang Qian shows how any function

can be evaluated and approximated using synthesizable Bernstein polynomials, which

14
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can be implemented in a simple reconfigurable stochastic architecture;16,17 this work

has been applied to cutting hardware cost for image processing applications such

as gamma correction. Also, an intelligent imaging device that integrates stochastic

arithmetic with a digital pixel array for doing local image processing is presented in.18

Nonetheless, much more work has been done in integrating stochastic computation

based architectures for image processing.19–21

In addition to image processing, stochastic computation has also been applied to

simplifying computational intense arithmetic operations such as division and square-

root,22 matrix operations such as inverse-matrix transforms,23 error-correction for

digital communication standards,24 neural networks,25–27 and more. With continued

technology trends pushing the brinks of transistor scaling, the need for robust systems

and architecture that are noise-tolerant has made alternative computing paradigms,

such as stochastic computing, attractive.

2.2.1 Precision Analysis

By analyzing the encoding and decoding operation in stochastic computing, an

expression of the output precision as a function of the number of stochastic numbers

can be derived. As briefly described in Section 2.2 and also shown in Figure 2.6, a

stochastic number xk encoded from a binary input X, follows a Bernoulli distribution

with a probability of 1 given as p = X/2M , where M is the bit precision of X. That

15
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Moreover, since the decoded output is a random variable, an absolute finite bound

can not be derived for the precision of this output. Nonetheless, a probability mea-

suring confidence on an error bound in the decoded output can be deduced, and it

can be used as an indication of certainty to attain a particular output precision. The

output precision is derived from the number of quantifiable levels across the output

range. For an output to attain a certain precision of M-bits, all adjacent output levels

must be discernible by 1 least significant bit (LSB) with a value of 1/2M . Using the

LSB value as a bound on the standard deviation σ of the decoded output’s distribu-

tion, a probability can be derived from the cumulative distribution function (CDF)

that expresses a certainty in a confidence interval centered around the mean. In the

context of the decoded output, this probability signifies the certainty that a specific

output level will have at most a specific standard deviation or error. In the case of

an arbitrary bound of 2σ, the probability of this confidence interval can be deduced

as

P (µ− 2σ ≤ Y ′ ≤ µ+ 2σ) ≈ 0.95. (2.3)

For a value of 2σ bounded by half of an LSB (half because adjacent codes with this

same error will sum to 1 LSB), Equation 2.3 can be modified to

2σ = 2

√
p(1− p)

N
≤ 1

2

1

2M
, (2.4)
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where p is the expected output. Equation 2.4 can be simplified to

p(1− p) · 22M+4 ≤ N. (2.5)

For the worst case probability p = 0.5, the total N needed to guarantee 95% of

samples with M-bit precision is bounded by

22M+2 ≤ N (2.6)

Generalizing for 1σ, 2σ, and 3σ, the plot in Figure 2.7 shows the necessary integration

count N to achieve different bit precision with different certainty on a logarithmic

scale, where P (s) = P (X − kσ ≤ Y ′ ≤ Y + kσ) for kσs. The integration count scales

exponentially with the output bit precision. Although manageable for lower bit preci-

sion, the large integration count for high bit precision makes stochastic computation

less ideal for applications where accuracy and precision are critical.

2.2.2 Pseudo-Random Numbers

Inaccuracies in stochastic computation may be attributed to three main factors:

random fluctuations in the stochastic number representation, correlation across the

numbers that are being computed, and physical errors.19 As described in Section 2.2.1,

random fluctuations are accredited to the statistics of the random numbers, which
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Figure 2.7: Stochastic Number Precision. The plot shows the necessary integration
count to achieve a certain bit precision for a given confidence interval. P (s) represents
the probability of samples lying within sσ of the mean.

produce erroneous stochastic numbers. Pseudo-random numbers, such as maximum-

length sequences from linear feedback shift registers (LFSR), can be used to eliminate

random fluctuations induced into the stochastic numbers during encoding. With the

appropriate feedback taps, LFSR can generate periodic maximal-length sequences,

which although deterministic have good statistical properties, and have proven useful

for stochastic computation architectures.14,19,20,27 Thus, using a M-bit maximal-

length LFSR for the random number generator in Figure 2.3 and 2.6, guarantees an
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exact representation of the input X in the stochastic domain in 2M − 1 samples,

and hence removing random fluctuations in the stochastic number during encoding.

Nonetheless, inaccuracies can still be introduced from correlated stochastic numbers

and physical errors.

2.3 A Deep Belief Network Using Stochas-

tic Computation

Recently, deep belief networks, a subset of deep neural networks, have shown re-

markable performance in a variety of classification and recognition tasks involving

vision,28,29 speech,30,31 and more. Exemplary at dimensionality reduction,32 DBNs

have excelled at high-dimensional complex classification task, such as image classifi-

cation, because of their ability to encode high-dimensional data as low-dimensional

features over multiple layers. DBNs have also shown a significant advantage of per-

formance scalability with network size. However, due to the computational intensive

nature of these networks, DBNs have not been well suited for modern computing

implementations for real world tasks. Nonetheless, work has been done to imple-

ment more efficient DBNs that optimize for time using Graphical Processing Units

(GPUs)33,34 and that optimize for power implementing spike-based and event-driven

system.35–39 Under this dissertation work, unconventional methodologies based on

stochastic computing are explored for designing a computational efficient DBN in an

20



CHAPTER 2. STOCHASTIC REPRESENTATION FOR COMPUTATIONAL
EFFICIENCY

h
(2)
1 h

(2)
2 h

(2)
n

h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
m

x1 x2 x3 xp

Figure 2.8: A 2 Hidden Layer Deep Belief Network. Hidden layer h(1) encodes
features from the input layer x, and hidden layer h(2), which is the output layer of
this network, encodes more abstract features from the features in hidden layer h(1).

attempt to optimize for power, while still maintaining good performance.27

2.3.1 Background and Theory

Deep belief networks, which were introduced by Hinton and his collaborators

in 2006,40 are multi-layered generative graphical models that represents layers as

Restricted Boltzmann Machines (RBMs),41 and greedily train them with unsupervised

learning algorithms.42 Figure 2.8 shows the graphical model of a 2-hidden layer DBN.

RBMs, which are the building blocks of DBNs, are energy-based models that encode

useful properties of the variables in the shape of its energy function. Generalized

from exponential family models, a probability distribution can be defined through an

energy function as

P (x) =
e−E(x)

Z
, (2.7)
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where E(x) is the energy function, and Z is the normalization factor
∑

x e
−E(x) known

as the partition function. Applying gradient descent on the log-likelihood of the

observed data, an energy-based model like RBMs can learn features of the data.

Boltzmann machines have the modeling capacity to represent complex distribu-

tions through a set of observed visible units x, and unobserved hidden units h. This

modifies the probability distribution defined in Equation 2.7 to

P (x) =
∑

h

P (x,h) =
∑

h

e−E(x,h)

Z
(2.8)

Moreover, RBMs form bipartite graphs between these layers of visible units x, and

hidden units h, with no intra-layer connections. This creates a conditional indepen-

dence between the visible and hidden units across the layers, which mathematically

can be seen as

p(h|x) =
∏

i

p(hi|x)

p(x|h) =
∏

j

p(xj|h)

(2.9)

The energy function of an RBM is defined as

E(x,h) = −bTx− cTh− hTWx (2.10)

where b and c are vectors of offset values associated with the visible units in vector x
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and hidden units in vector h respectively, and W is a weight matrix associated with

visible to hidden unit connections.

In the case that hi and xj are binary units, P (hi|x) and P (xj|h) from Equation 2.9

can be derived as

P (hi = 1|x) =
e−(−ci−Wix)

1 + e−(−ci−Wix)
= sigm(ci + Wix)

P (xj = 1|h) =
e−(−bj−Wjh)

1 + e−(−bj−Wjh)
= sigm(bj + Wjh)

(2.11)

where sigm is the sigmoid function, commonly used as the activation function in

artificial neurons.

In training a deep belief network, the log-likelihood gradient is computed on train-

ing data for learning parameters associated with the energy function. For the distri-

bution defined in Equation 2.8, this gradient is deduced as

∂ log p(x)

∂θ
=
∂F(x)

∂θ
− 1

Z

∑

x̃

e−F(x)
∂F(x̃)

∂θ
(2.12)

where x is a single visible unit, h is a single hidden unit, the partition function

Z =
∑

x e
−F(x), and F(x) is the free energy function inspired from physic, which is

given as

F(x) = − log
∑

h

e−E(x,h) (2.13)

Computing this gradient is intractable because of the second term in Equation 2.12,

which requires taking the expectation over all configurations of x̃ under the distri-
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bution of the model. As opposed to deriving an analytical expression for the log-

likelihood gradient, a Markov Chain Monte Carlo (MCMC) sampling method, such

as Gibbs sampling, is used for estimating this gradient. Because of the conditional

independence of intra-layer units in RBMs, block Gibbs sampling can be applied

for iteratively sampling hidden and visible units in a Markov chain for training the

network. This sampling chain can be visualized as

x(0) ⇒ h(0) ⇒ x(1) ⇒ h(1) ⇒ . . . x(t) ⇒ h(t)

As t → ∞, x(t) and h(t) are guaranteed to be accurate samples from p(x,h). How-

ever, since the luxury of sampling till convergence can not be afforded, alternative

algorithms have been devised for efficiently sampling for learning.

One in particular, that has gained a lot of popularity, is the Contrastive Divergence

(CDk) learning algorithm.43 CDk initializes the Markov chain to samples from the

training set, and then generates samples from just k-steps of Gibbs sampling. This

learning algorithm has been applied for unsupervised training of DBNs with great

success, even with only one step of Gibbs sampling (k = 1).

The parameter update equations for training a network with binary units using
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the CDk algorithm is given as

W(t+1) = W(t) + η(h(t)x(t) − sigm(ci
(t) + Wi

(t)x(t))x(t+1))

b(t+1) = b(t) + η(x(t) − x(t+1))

c(t+1) = c(t) + η(h(t) − sigm(ci
(t) + Wi

(t)x(t)))

(2.14)

where η is the learning rate, and h(t+1) and x(t+1) are samples generated from their

conditional probabilities.

Furthermore, with top layer supervised learning, DBNs can also be implemented

as deep feedforward neural networks for applications in discriminative tasks, such as

classification.

2.3.2 Architecture and Implementation

For this work, a deep belief network, implemented with stochastic computation

primitives, was constructed for doing classification. The network, consisting of 1 vis-

ible layer of 784 units (28x28 image input), and 2 hidden layers of 200 and 10 units

respectively, was trained offline in MATLAB on the MINST training dataset using

conventional techniques and algorithms detailed in Section 2.3.1, and then imple-

mented as a feedforward neural network for classification.

In this feedforward network, a set of input data is fed into the first layer of the

network, and then features in the hidden units are hierarchical computed till the top
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layer. After a full hidden layer is computed, it becomes the visible layer for the next

hidden layer. For each hidden unit, the conditional probability of that unit given

the visible units, defined in Equation 2.9, is computed. These probability values are

then used to generates samples used in the next layer. Computing Equation 2.9 for

each hidden unit is a non-trivial task, and so stochastic computation is exploited for

simplifying the computation.

First, the inputs x, weights W , and offsets c are encoded into stochastic numbers.

Because the weight and offset parameters are unconstrained during training, and

can be negative or positive, a bipolar coding format is used, where ‘0’s represents

−1 and ‘1’s represents +1 in the stochastic domain. This is achievable with the

same architecture described in Figure 2.3, given that the random number generator

is uniformly distributed across the same domain as the signed input.

In the stochastic domain, the multiplication of the weight and the input can be

done efficiently with a simple XNOR gate, which was derived from the truth table.

Then, using an up-down counter that counts up for every ‘1’ in the stochastic numbers

and down for every ’0’ in the stochastic numbers, all the weighted inputs can be

summed up together. The result from this step is then normalized to the appropriate

range.

Finally, the sigmoid function is computed on the weighted sum to derive the

output for the hidden unit. To simplify this computation, a piecewise-linear function
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approximating the sigmoid activation function is computed instead as:

p(hi = 1|x) =





0, if (ci + Wix) ≤ −4

1
8

(
ci + Wix

)
+ 1

2
, if − 4 < (ci + Wix) < 4

1 if (ci + Wix) ≥ 4

(2.15)

Stochastically, this piecewise-linear function can be computed by offsetting the counter

for integrating the stream, and bit-shifting the result from the integration. Fig-

ure 2.9 shows a plot of the sigmoid activation function compared to the approximate

piecewise-linear function. Moreover, the same approximate piecewise-linear activation

function used for classification, was also used for training.

The architecture for computing each hidden unit, given the visible units was com-

posed, and can be seen in Figure 2.10. Because of the independence between intra-

layer hidden units imposed from the restriction on the Boltzmann machines, these

computation blocks were parallelized for the hidden units in a layer, which allowed for

a trade-off between computation time and resources. The full architecture is synthe-

sized in a Kintex 7350 field programmable gate array (FPGA) board, as seen in Fig-

ure 2.11. Optimized for the classification task, 20 parallel computation nodes, RAM

for locally storing the parameter and the activation outputs, and some periphery logic

to control the nodes, were implemented in the FPGA. Moreover, the architecture was

designed with a generic framework to allow for parameterizable synthesis tailored for
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Figure 2.9: Sigmoid Activation Function and an Approximate Piecewise-Linear
Function. The sigmoid activation function is in blue, and the approximate piecewise-
linear function is in red.

the application.

2.3.3 Results

This deep belief network architecture is evaluated using the MNIST database of

handwritten digits.44 After training in MATLAB, and implementation on a FPGA
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Figure 2.10: Architecture for the Computation Node for the DBN Using Stochastic
Logic.

Figure 2.11: Kintex FPGA board used for implementing the DBN architecture.

board, this deep belief network was evaluated at variable computation precision

(varied with the number of stochastic numbers) on the test dataset of the MNIST

database. A stochastic computation precision of 8 bits to 16 bits is used in this test-
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Table 2.1: DBN Experimental Results.

Computation Mean Classifications Test Acc
Precision Abs. Error per Second (%)

8 bits 0.1580 24.59 10.3
9 bits 0.0609 23.39 69.5
10 bits 0.0430 19.93 81.8
11 bits 0.0151 16.60 92.4
12 bits 0.0107 12.19 94.1
13 bits 0.0090 8.16 94.2
14 bits 0.0038 4.88 94.0
15 bits 0.0019 2.72 94.2
16 bits 0.0009 1.45 94.2

ing, which corresponds to 256 and 65536 samples respectively (i.e 2N relationship).

These results are compared to results produced from this network implemented us-

ing conventional arithmetic logic with double floating-point precision in MATLAB.

For analyzing the accuracy of this computation, the mean absolute error of the top

layer activation using stochastic computation, with respect to the activation from the

network implemented with conventional arithmetic, is computed. Table 2.1 displays

for each stochastic computation precision, the mean absolute error, the classification

rate on the FPGA, and the classification accuracy.

Also, a plot of the classification accuracy over different stochastic computation pre-

cision is included in Figure 2.12, and the mean absolute error is plotted in Figure 2.13.

Computing in the stochastic domain with 12-bit stochastic computation precision

or more generated results similar to the results produced with double floating-point

precision.
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Figure 2.12: Plot of the Classification Accuracy on the MNIST Test Dataset with
Different Stochastic Computation Precision for the Network. The plot in red is the
classification accuracy attained with a network implementing conventional binary
arithmetic at double floating-point precision. Plot in the blue is the accuracy using
variable stochastic computation precision.

2.4 Adaptive Background Modeling Us-

ing Stochastic Computation

Background modeling and subtraction is widely used in a variety of signal process-

ing applications to model the background and distinguish foreground data for tasks
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Figure 2.13: Plot of the Mean Absolute Error of the Top Layer Activation on the
MNIST Test Dataset. The mean absolute error for each precision in the stochastic
computation is computed with respect to the top layer activation results with double
floating-point precision.

involving classification, recognition, surveillance, and more. Some state of the art

implementations for image processing have used simple methodologies such as frame

difference across previous images for foreground detection, and arithmetic mean across

successive images to construct the background model45.46 However such architectures

don’t capture variance in the background pixels due to fluctuations in the lighting

32



CHAPTER 2. STOCHASTIC REPRESENTATION FOR COMPUTATIONAL
EFFICIENCY

and scenery, variation in the image sensor, and more. On the otherhand, statisti-

cal models for background modeling and subtraction have seen a lot of success for

this application; this includes a background subtraction method based on an online

mixture model of Gaussian distributions,47 an online Bayesian method,48 and more.

Additionally, many other methods have been developed over the years, notably, a

method based on a feed-foward neural network.49 Andrew Sobral presents a com-

prehensive review of these background subtraction algorithms evaluated with both

synthetic and real datasets.50

2.4.1 Parametric Probabilistic Background Model

One of the most ubiquitous image background modeling and segmentation meth-

ods is based on a parametric probabilistic background modeling algorithm proposed

by Stauffer and Grimson.47 In this image segmentation method, each pixel is inde-

pendently modeled by a mixture of weighted Gaussian distributions, which can be

expressed as

P (Xt) =
K∑

i=1

wi,t · η(Xt, µi,t,Σi,t), (2.16)

where P (Xt) is the probability of observing the current pixel sample Xt in a compos-

ite of k Gaussian distributions with weights wi,t and mean and covariance values µi,t

and Σi,t respectively. Through a background modeling process, each distribution is

labeled either foreground or background. Then, using a set of heuristic update rules,
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Table 2.2: Parameters for Stauffer et al. Image Segmentation Algorithm.

Parameters Description Nominal Values

α learning factor 0.05
k number of distributions 3
w0 initial weight 0.3
σ2
0 initial variance 0.0138
β distribution threshold 2.5
bth background threshold 0.75

the parameters of each pixel’s distributions are updated for each new image frame,

and the current pixels are classified based on their matching distribution’s label. By

modeling each pixel with a multitude of distributions, this method can adaptively

learn multimodal background scenes, which is useful for dynamic scenes with various

of lighting changes and flickering events. This image segmentation method is gov-

erned by four main processes: pixel initialization, pixel match evaluation, distribution

parameter update, and distribution labeling for classification.

Each pixel’s distribution parameters are initialized in the beginning of this algo-

rithm. These parameters, which are listed in Table 2.2, include a learning factor α,

number of distributions k, initial distribution weight w0, initial variance σ2
0, distri-

bution match threshold β, and background threshold bth. The nominal values shown

in the table are sample values used in running this image segmentation architecture;

these values are normalized to a [0,1] range. Also, the initial mean for the pixel’s

distribution is initialized to the starting pixel values from the first image frame.

Furthermore, apart from initialization at the beginning of algorithm, the pixel dis-

tribution parameters are also re-initialized when no distribution matches the current
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pixel; the lowest weighted distribution is replaced with a new distribution with the

aforementioned initial mean, variance, and distribution weight.

The pixel match evaluation is vital for discerning which underlining distribution

best matches the current pixel sample or if none of the distributions match at all.

As opposed to using a costly expectation-maximum algorithm based approach for

clustering and updating the distributions, a simple on-line K-means approximation

is used instead. Using this simpler method, pixels are checked against each of the K

distributions using the Mahalanobis distance metric, which is given as

|Xt − µk,t| ≤ βσk,t, (2.17)

where β is the distribution match threshold defined in Table 2.2, µk,t and σk,t are

the parameters of the k-th Gaussian distribution at time t. The distribution that

best represents the current pixel will have the lowest deviation from the mean of the

distribution, and also be within the distribution match threshold.

When the best matching distribution for a pixel is within the distribution thresh-

old, then the distribution parameters are updated as

µt = (1− ρ)µt−1 + ρXt

σ2
t = (1− ρ)2σ2

t−1 + ρ(Xt − µt)2

ρ = α · η(Xt|µt, σ2
t ),

(2.18)
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where ρ, scaled by the learning factor α expresses how much of a factor the new

current pixel has on the updated mean and variance. Moreover, the weights for each

pixel’s distributions are updated depending if the current pixel matched or not. The

update for the weight is given as

wt = (1− α)wt−1 + αM (2.19)

where M is a 1-bit value that represent whether or not the distribution is the best

match for the current pixel.

Finally, after the best matching distribution is computed and the parameters are

updated, the background and foreground labels are assigned for all distributions for

pixel classification. This is achieved by first sorting all k Gaussian distributions for

each pixel by the ratio of their weight to their standard deviation (that is wk/σk). Dis-

tributions that gain more evidence from pixels over the frames will gravitate towards

the top of the ordering, and more transient background distribution tend towards the

bottom of the ordering. From the ordering of the distributions, the set of background

distribution is computed as the first B distribution from the expression

B = arg minb(
b∑

k=1

wk > bth) (2.20)

where bth is the background distribution threshold, as listed in Table 2.2, that bounds

how many distributions are identified as background based on the sum of the weights.
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Furthermore, the label of the best matching distribution is then assigned as the

classification label for the current pixel.

2.4.2 Architecture Using Stochastic Computation

The popular Stauffer and Grimson online image segmentation method was re-

vised and implemented with stochastic logic for computational efficient unimodal

background modeling and subtraction. As opposed to modeling each pixel with a

mixture of Gaussian distributions, each pixel is instead modeled with just one dis-

tribution, which captures the variance and mean of the hypothesized background for

that pixel. Thus, an implementation of the image segmentation method described

earlier can be simplified into three main subblocks, as shown in the block diagram in

Figure 2.14.

First, the current pixel is evaluated against the pre-existing distribution using the

Mahalanobis distance metric. If the current pixel is within the threshold bound of

standard deviations with respect to the mean, then it is considered a match, otherwise

it is not. Depending on if the current pixel matches the distribution, the distribution

weight is updated. If that weight falls below a background threshold, which is a

bound on the minimum evidence in a distribution to be considered a background

distribution, then the distribution is reinitialized by resetting the parameters. The

final subblock then updates these parameters accordingly, where if the distribution

is not being reinitialized, then the parameters are updated through update rules
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Figure 2.14: Block Diagram of the Unimodal Background Modeling Method.

based on a learning factor. These updated parameters — the mean, variance, and

distribution weight – are used for the next processing cycle. Moreover, the pixel is

classified as background if the distribution was considered a match from the distance

metric, otherwise it is labeled as foreground.

The architecture for the unimodal background modeling and subtraction method
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presented in Figure 2.14 computes the following expressions:

|Xt − µt| < βσt

µt = (1− ρ)µt−1 + ρXt

σt = (1− ρ)σt−1 + ρ|Xt − µt|

wt = (1− /rho)wt−1 + ρMt−1.

(2.21)

This includes an additional conditional operation for checking when to reinitialize the

distribution parameters and the corresponding selector logic for updating the param-

eters. Furthermore, the total operations necessary for computing these expressions

and executing the parameter reinitialization for the background modeling method in-

clude: multiplication, absolute difference, and addition operations; these operations

can be mapped to basic logic gates in the stochastic domain.

Using stochastic computation primitives, this image segmentation architecture is

implemented as the circuit shown in Figure 2.15. In this architecture, first the cur-

rent pixel and the distribution parameters are encoded stochastically using stochastic

number generators. Then, the distribution match, evaluated from the Mahalanobis

distance metric, is computed using 4 basic logic gates; an XOR gate computes the

absolute difference |Xt − µt|, an AND gate computes the product βσ, and two NOR

gates are used to generate the up and down signals for an up-down counter that

measures whether or not the distribution matches the current pixel. The parameters

µt, σt, and wt are updated using a 2-by-1 multiplexer. The updated parameters are
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Table 2.3: Image Segmentation Architecture Macro Synthesis.

Logic Primitive Count
N-bit Comparator 6
N-bit Counter 4
N-bit 2-1 Multiplexer 5
2-input NOR 2
2-input AND 1
2-input XOR 1

(a) Input (b) Background (c) Foreground

Figure 2.16: Background Modeling and Subtraction with 8-bit Stochastic Compu-
tation Precision. (a) The input image from a video. (b) The background learned
after multiple frames. (c) The foreground mask extracted from the current frame.

revised architecture based on probabilistic computing was implemented on a Kin-

tex 7350-K410T FPGA board, as shown in Figure 2.11. It was then evaluated with

a traffic video dataset for different stochastic computation precision. Figure 2.16

and 2.17 show the architecture learning the background and extracting a foreground

mask at 8-bit (256 unary samples) and 12-bit (4096 samples) computation precision

respectively. The results for the background and foreground mask in both cases are

taken from the same image frame. Noticeable from the results, the architecture has

a more accurate representation of the background of the traffic scene when comput-

ing with 4096 samples (12-bit stochastic computation precision) as opposed to 256
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(a) Input (b) Background (c) Foreground

Figure 2.17: Background Modeling and Subtraction with 12-bit Stochastic Com-
putation Precision. (a) The input image from a video. (b) The background learned
after multiple frames. (c) The foreground mask extracted from the current frame.

samples. Nonetheless, the results of the foreground masks differ in the number of

false-positive foreground pixels, which can be attributed to camera movement jitters

during recording for the test dataset. By tuning the distribution match threshold β,

the background threshold bth, and the learning factor α, a more accurate foreground

mask can be achieved in both cases. Thus, increasing the stochastic computation

precision past 8 bits doesn’t improve the quality of the foreground mask. By incor-

porating stochastic logic in this implementation of a unimodal background modeling

and subtraction method, the trade-off of precision and energy for processing time can

be exploited for more computational efficient segmentation.

2.5 Conclusion

Despite the traction in recent years of stochastic computing based architectures

for applications in signal processing, machine learning, and more, still a major con-
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cern of these alternative solutions, is how they compare to the conventional deter-

ministic computing systems. Although advantages such as error-tolerant encoding,

simpler computation implementation, and robust encoding/decoding for flexible pre-

cision have been exploited in stochastic computing, the additional energy cost for

encoding and decoding in this stochastic domain is a significant constraint that lim-

its computation efficiency. In the case of solely implementing multipliers or edge

detectors, an analysis has been presented by Rajit Manohar51 that shows conven-

tional deterministic approaches more favorable than stochastic approaches even in

low-precision scenarios. Nonetheless, these advantages for stochastic computing still

exist, and if properly exploited, can be implemented for more computational efficient

systems.

2.5.1 Comparative Analysis

In order to gain more insight on the comparison of stochastic and deterministic

computing, the image segmentation architecture presented in Section 2.4.2 was im-

plemented in a conventional fixed-point representation with deterministic logic and

then in a stochastic representation with stochastic logic. The two designs were syn-

thesized with 16nm FinFET ARM standard cells. Both design were synthesized for

different computation bit precision, which scales the full design of the fixed-point

implementation, and only scales the encoders and decoders for the stochastic im-

plementation. Table 2.4 shows the synthesis results comparing the encoders, logic,
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Table 2.4: Synthesis Results for Stochastic and Deterministic Implementation of a
Image Segmentation Methods.

SC (Encoder) SC (Logic) SC (Decoder) SC Conv.
Area 8.4µm2 2.4µm2 33.3µm2 44.1µm2 140.6µm2

VDD 0.8V 0.8V 0.8V 0.8V 0.8V
Frequency 2GHz 2GHz 2GHz 2GHz 0.5GHz

Power 3.2µW 1.1µW 48.8µW 53.1µW 41.8µW
Energy 1.6fJ 0.6fJ 24.4fJ 26.6fJ 83.3fJ

Precision 1-bit unary 1-bit unary 1-bit unary 1-bit unary 4-bit binary

and decoders of the stochastic implementation, and also the fixed-point implemen-

tation at a maximum of 4-bit computation precision. In the table, SC refers to the

stochastic implementation of the image segmentation method, and Conv. is the con-

ventional fixed-point implementation. Both implementation were synthesized at the

same supply voltage, but since the complexity differs between the implementations,

they were synthesized at different speeds. The stochastic implementation, which op-

erates on 1-bit unary samples, can run up to 2GHz and has a total estimated area of

44.1µm2, while the conventional implementation can run at 0.5GHz and has a total

estimated area of 140.6µm2. Although the stochastic implementation has roughly 3

times less area and energy cost than the conventional implementation, it has to be

run for more clock cycles to achieve the same precision. However, just considering

the energy cost from the stochastic logic, it would take over 138 clock cycles to use as

much energy using the conventional implementation. Assuming minimal errors from

encoding (see Section 2.2.2), than the energy cost from just the computation in the

stochastic domain is more favorable than the cost of computing with the conventional

implementation. Nonetheless, as seen earlier, the energy cost of encoding and decod-
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ing for the stochastic domain is too costly, and the total energy cost to achieve the

same precision would not be be worth it with the stochastic implementation.

This assessment is done for this architecture for 4, 6, 8, 10, and 12 bits of compu-

tation precision, and the effective energy per operation is measured for each case. In

the case of stochastic, a rough estimate of 2N clock cycles is used for N -bit precision

(assuming pseudo-random numbers are used for exact encoding and there is no corre-

lation across streams). A plot of this result can be seen in Figure 2.18. Even though

stochastic computing scales exponentially with the bit precision, computing in the

stochastic domain for this image segmentation architecture provides an energy saving

over the conventional implementation for up to 10bits precision without considering

encoding and decoding cost. Nonetheless, the encoding and decoding energy cost

makes the stochastic implementation even less attractive at higher bit precision. In

order to fully capitalize on the strengths of stochastic computation, the encoding and

decoding cost must be minimized.

2.5.2 Exploiting Stochastic Computing for ASIC

A typical architecture exploiting stochastic computation, will have stochastic num-

ber generators for encoders, some logic that does computation, and then counters for

decoding the results. Most gains realized in this domain of computing is realized

from the simplification of the complex operations as simple logic gates. Nonetheless,

these gains may be overshadowed by the significant energy cost from encoding and
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Figure 2.18: Plot of Energy Cost per Operation Comparison between Stochastic and
Deterministic Implementation. An image segmentation method is implemented and
synthesized using stochastic logic and conventional deterministic logic for different
computation bit precision. The energy cost per operation is measured and plotted
for both implementation across different precision.

decoding. In custom application specific integrated circuit (ASIC) designs, stochastic

computation can be leveraged for simplifying the underlining circuit implementation

of the computation, while exploiting mixed-signal representation and circuit tech-

niques for mitigating encoding and decoding costs.
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As opposed to full digital representation for stochastic computing systems, as seen

in the comparative analysis in Section 2.5.1, alternative modalities of representation

that capitalize on the inherent physical structures can be exploited for computational

efficiency. Work by Figliolia et al.,52 show how the random telegraph noise sensed

on a single transistor can be used a source for a random number generator, which

could be used in a stochastic number generator. Additionally, computing implicitly

as charge using switch-capacitor, or current using memristors or non-volatile memory,

may allow for more computational efficient systems with less costly decoders.

Furthermore, since stochastic computation is inherently error-tolerant due to it’s

probabilistic encoding, voltage scaling can be leveraged for computing efficiently. The

encoders and logic circuits can operate on a low voltage domain, which may be more

susceptible to noise, while the decoder is run on a standard voltage domain to ensure

the decoded result isn’t perturbed by the scaling factors. This multiple voltage do-

main can take advantage of low voltage for better energy efficiency, while still being

resistant to scaling parasitic factors.
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Mixed-Signal Architectures for

VVM

As one of the most ubiquitous computation in machine learning and signal process-

ing, vector-vector multiplications (VVM) form the basis of several vital algorithms,

such as neural networks, k-means clustering, support vector machines (SVM), and

linear vector quantization (LVQ). With the advent of big-data, the computational

intensity of these algorithms have grown enormously, which in turn has drastically

increased the energy cost of conventional processing paradigms. Even with the tech-

nological advances in microelectronics envisioned through Moore’s law,1 the scaling

power constraints have posed challenges for data processing centers and comput-

ers at the scale.11 Additionally, with the emergence of mobile computing platforms

constrained by power and bandwidth for distributed computing, the necessity for
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more energy efficient scalable local processing has become more important. Un-

conventional compute-in-memory architectures such as the analog winner takes all

associative memory,53 charge-injection device (CID) processor,3,5, 6 and analog-array

processing2 have been proposed as alternatives.

In this dissertation work, mixed-signal architectures, that exploit charge-based

computing, are explored as energy efficient alternatives to conventional digital signal

processors (DSPs) for vector-vector multiplications. These architectures capitalize on

a unary representation for computing weighted sums in the analog domain as charge

on a programmable capacitor array at the thermal noise limits. In order to convert

this charge back into the digital domain, a first-order sigma-delta (Σ∆) modulator

is used as an analog-to-digital converter (ADC). These architectures were designed

and validated through 5 different test chips in submicron CMOS processes. Through

these design iterations, different programmable capacitor array design are explored,

and the Σ∆ ADC was optimized. Additionally, a stochastic unary representation is

explored for minimizing area and energy cost of the computation. Furthermore, the

measured results from these chips are presented, and some applications of these chips

for image and signal processing are detailed.
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Figure 3.1: Mixed-Signal 1-bit Unsigned Multiplier for Unsigned Products.

3.1 Charge-Based Computing

In the analog domain, the product of two inputs can be computed as the total

charge in a capacitor by programming the capacitance and voltage accordingly. By

scaling the capacitance and the voltage to the thermal noise limit, this computation

can be done efficiently with minimal energy cost. Exploiting this principle, a 1-bit

mixed-signal multiplier can be constructed as the architecture shown in Figure 3.1.

The output Y , which is stored as charge on the capacitor, is given as

Y = (WX)Qu, (3.1)
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Figure 3.2: Mixed-Signal Scalar Multiplier

where a 1-bit weight W modulates the capacitance, and a 1-bit input X selects the

voltage across the capacitor. The unit charge Qu on this capacitor is given as

Qu = CV, (3.2)

for a capacitance C and voltage V .

This convention can be expanded to scalar products of multi-bit weights and in-

puts, W and X respectively, if the weight W encodes the total capacitance in a

programmable capacitor array, and the input X temporally encodes the voltage po-

tential across this capacitor array. The product of the scalar values is then represented

as the aggregate of partial charge stored on the capacitor array over a set of sam-

pling periods. The architecture for this multiplier can be seen in Figure 3.2. Using

magnitude comparators, an M-bit weight W , which is given as

W =
2M−1∑

i=0

si, (3.3)
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is decoded into a set of unary samples si that connect or disconnect unit capacitors

in an array. As opposed to a binary-weighted encoding, the unary encoding of the

weights with unit capacitors mitigates computation inaccuracies due to capacitance

mismatch from fabrication variations.

An N-bit input X is encoded as a pulse-density modulated (PDM) value in time

that select the voltage across the capacitor array. That is,

X =
2N−1∑

t=0

x(t), (3.4)

where the sum of the unary samples x(t)s represent the input X over 2N time samples.

Thus, the product of the M-bit weight W and the N-bit input X can be constructed as

the total charge accumulated on the programmable capacitor over 2N time samples.

Mathematically, this can be seen as

Q =
2N−1∑

t=0

Qt

=
2N−1∑

t=0

(
Wx(t)

)
Qu

=

(
WX

)
Qu,

(3.5)

where Qt = (Wx(t))Qu is the partial charge at time sample t.

Moreover, the architecture can be generalized to computing vector-vector multi-

plications (VVMs) by constructing an array of programmable capacitors as shown in
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Figure 3.3: Mixed-Signal Vector-Vector Multiplier.

Figure 3.3. Similar to Equation 3.5, the total charge accumulated on the array can
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be expressed as

Q =
2N−1∑

t=0

Qt

=
2N−1∑

t=0

(K−1∑

k=0

Wkx
(t)
k

)
Qu

=

(K−1∑

k=0

Wk

2N−1∑

t=0

x
(t)
k

)
Qu

=

(K−1∑

k=0

WkXk

)
Qu,

(3.6)

where Wks are M-bit weights, Xks are N-bit inputs, and x
(t)
k is the unary time sample

of the input Xk.

3.1.1 Energy and Thermal Noise Limit

The total energy used by a supply to charge a capacitor a delta voltage V is given

as

E = CV 2 (3.7)

where half the energy is stored on the capacitor, and the other half is dissipated while

charging. As this energy scales quadratically with voltage and linearly with capac-

itance, scaling the total charge by modulating the voltage and/or capacitance can

be exploited for minimizing this energy cost. In relation to charge-based computing,

these mixed-signal multipliers, as shown in Figure 3.1, 3.2, and 3.3, can be scaled to
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the thermal noise (kTC) limit for energy efficiency.

Described as thermal agitations of charge carriers in electrical conductors, the

kTC noise power spectral density (PSD) in a RC circuit is derived as

V 2
R(f) = 4kTR, (3.8)

where V 2
R(f) is the PSD per hertz of bandwidth of the kTC noise in a non-ideal

resistor, k is the Boltzmann constant, T is temperature, and R is resistance. The

thermal noise in the resistor is white and independent of the frequency. Furthermore,

for a given bandwidth, the root mean square (RMS) of this voltage is

VRMS =
√

4kTR∆f. (3.9)

In a RC circuit composed of a resistor and capacitor, the noise is shaped by the

low-pass filtering of the circuit. The effective noise bandwidth given as

∆f =
1

2π

∫ ∞

0

|H(ω)|2dω =
1

2π

∫ ∞

0

1

1 + (ωRC)2
dω =

1

2π

π

2RC
=

1

4RC
(3.10)

Substituting in Equation 3.9, we have

VRMS =

√
4kTR

(
1

4RC

)
=

√
kT

C
. (3.11)
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Figure 3.4: Plot of the Root Mean Square Thermal Noise in a Capacitor.

The RMS thermal noise voltage in the RC circuit is independent of the resistance,

and only a function of the temperature T and capacitance C. Graphically, this

voltage noise as a function of capacitance can be seen in the logarithmic-scale plot

in Figure 3.4. Exploiting this curve while considering capacitance mismatch, charge

leakage, and parasitic capacitance can be advantageously used to build energy efficient

circuits.
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3.2 Analog-to-Digital Conversion

For the mixed-signal vector-vector multiplier, an ADC is important for convert-

ing the inner product as charge into a digital value. Nyquist-based converters use a

one-to-one correspondence between the input and output samples to convert across

domains. However, these converters scale exponentially in size with bit precision, and

are highly suceptible to linearity and accuracy issues due to mismatches in the analog

components. Oversampling converters, such as Σ∆ modulators, exploit oversampling

to obtain higher output precision with a trade-off of conversion speed. Fundamentally,

this increased resolution is attained through spectrum noise-shaping that improves

the signal-to-noise ratio (SNR) within the signal bandwidth.54 Σ∆ modulators have

been widely implemented in low power systems55,56 for audio processing,57,58 biomed-

ical application,59–61 and more. Specifically in this work, a simple first-order Σ∆

modulator is used for converting the analog output into the digital domain.

3.2.1 First-Order Σ∆ Modulator

A first-order Σ∆ modulator, which is comprised of low-resolution circuit blocks,

can be used to approximate analog values over time as pulse-density modulated se-

quences. As shown in Figure 3.5, a Σ∆ modulator for converting continuous-time

analog value sampled in timed u(t) into a unary PDM signal v(t), can be constructed

with an integrator, a 1-bit ADC, and a 1-bit DAC.
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Figure 3.5: First-Order Σ∆ Modulator Block Diagram.

In the time domain, the output from the integrator y(t) can be expressed as

y(t) = y(t− 1) + u(t− 1)− q(t− 1), (3.12)

where u(t− 1)− q(t− 1) is the previous input to the integrator, and the y(t− 1) is

the previous integrator output. The quantization error Qe(t), from the 1-bit ADC in

Figure 3.5 is given as

Qe(t) = v(t)− y(t). (3.13)

Combing Equation 3.12 and 3.13 results in

v(t) = Qe(t) + y(t− 1) + u(t− 1)− q(t− 1) (3.14)

Furthermore, for an ideal 1-bit DAC, the output v(t) can be approximated as q(t),
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Figure 3.6: First-Order Σ∆ Modulator Z-Model Block Diagram.

which implies that

v(t) = Qe(t) + y(t− 1) + u(t− 1)− v(t− 1)

= u(t− 1) +Qe(t)− (v(t− 1)− y(t− 1))

= u(t− 1) +Qe(t)−Qe(t− 1).

(3.15)

Thus, the output of the Σ∆ modulator v(t) is equivalent to a quantized value of the

input delayed by one time period u(t−1) summed with the difference in quantization

error Qe(t)−Qe(t− 1).

In the z-domain the first-order Σ∆ modulator shown in Figure 3.5 can be trans-

formed into the block diagram shown in Figure 3.6. The output of the integrator can

be expressed as

Y (z) = z−1Y (z) + U(z)− z−1V (z), (3.16)
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and the output of the Σ∆ modulator V (z), can be derived as

V (z) = Y (z) + E(z)

= z−1Y (z) + U(z)− z−1V (z) + E(z)

= U(z) + E(z) + z−1(Y (z)− V (z))

= U(z) + (1− z−1)E(z).

(3.17)

Assuming that the DC value of E(z) is finite, then for z = 1, the DC values of u and

v follow from Equation 3.17 as V (1) = U(1). Thus, high precision can be obtained

for DC inputs.

Furthermore, the signal transfer function STF (z) is 1 (unity), and the noise trans-

fer function NTF (z) is 1 − z−1. The in-band power of the quantization noise can

be estimated from the squared magnitude of the NTF in the frequency domain for

z = ej2πf as

|NTF (ej2πf )|2 = (2 sin(πf))2. (3.18)

Thus, shown from the analysis above, the NTF is a high-pass filter that suppresses

the quantization noise at and around DC, and amplifies the noise out of band in

higher frequency. This noise-shaping improves the SNR of the ADC, which improves

the output precision.
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Figure 3.7: Single-Ended Switched-Capacitor Σ∆ Modulator Circuit.

3.2.2 Switched-Capacitor Implementation

To work in conjunction with the programmable capacitor array, a charge-based

Σ∆ modulator that incorporates switched-capacitor circuits is implemented as the

ADC. The partial charge, as described as Qt in Equation 3.5, is decoded each time

sample t into a 1-bit PDM signal. In a single-ended topology, this can be done using

the circuit shown in Figure 3.7. Operating under two phases, φ1 and φ2, this circuit

converts a charge Qin, which is equivalent to CinVin, into a 1-bit signal y in time.

During φ1, the input charge Qin is stored on the input capacitor. Then during φ2,

that charge is integrated onto the integrating capacitor, which causes a delta voltage

on vo. When that voltage vo reaches or exceeds the common-mode threshold, then

the signal y goes high with a logic level of ‘1’. This triggers a feedback charge,

which is removed on the φ1 phase through the feedback capacitor Cfb. This feedback

charge is sized to the maximum possible input charge per cycle Qmax. Moreover,
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this circuit implements all the subblocks for the Σ∆ modulator, which includes the

integrator with the operational amplifier (op-amp) and the integrating capacitor, the

quantizer with the voltage comparator, and the 1-bit DAC, which is implied as the

voltage selector for the Vref through the output y. The average value of y in time will

represent the input charge Qin = CinVin relative to the maximum input charge Qmax.

As shown in Equation 3.6, the vector-vector multiplication operation done on the

programmable capacitor array can be represented as

(K−1∑

k=0

WkXk

)
Qu =

N∑

t=1

Qt (3.19)

where N is the number of clock cycles for summing the partial charge Qt. Using

this switched-capacitor Σ∆ circuit, the partial charge Qt in time is normalized to the

maximum charge Qmax and converted as

1

NQmax

N∑

t=1

Qt =
1

NQmax

(( N∑

t=1

y(t)

)
Qmax +Qres

)

=
1

N

N∑

t=1

y(t) +
Qres

NQmax

,

(3.20)

where Qres is the residual charge still stored on the integrating capacitor after N

cycles of converting, and y(t) is the sampled output of the comparator that controls

when a feedback charge equivalent to Qmax is removed from the integrating capacitor.
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Thus, the normalized weighted sum is approximated as

1

K

K−1∑

k=0

WkXk ≈
1

N

N∑

t=1

y(t), (3.21)

where the weights Wks and inputs Xks are normalized to a range of [0, 1], and the

second term from Equation 3.20 tends to 0 for large number of clock cycles N . Thus,

the vector-vector multiplication result can be converted as the PDM signal y from

the Σ∆ circuit shown in Figure 3.7.

Moreover, a differential topology is adapted for this switched-capacitor ADC in

order to minimize parasitic factors due to charge injection from the switches, ca-

pacitive feedthrough, and coupled noise on the input. For this implementation, the

circuit shown in Figure 3.7 is revised into circuit shown in Figure 3.8. Similarly, this

circuit operates just as the single-ended circuit, except it uses an additional set of

capacitors for integrating the negated input and feedback charge symmetric to the

common-mode voltage. This negated charge is translated into a voltage output vmo,

which is symmetric to the other voltage output from the integrator vpo with respect

to the common-mode voltage. Based on which voltage is greater, negative feedback

is applied through feedback charge injected or removed from the corresponding inte-

grating capacitor. The magnitude of this charge is sized to match the maximum input

charge Qmax. Moreover, the comparator output, which tracks the sign of the charge

integrated on the integrating capacitors, is an expression of the ratio of the maxi-
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or removed from that integrating capacitor. Put simply, the normalized weighted sum

is approximated as

1

K

K−1∑

k=0

WkXk ≈ 2

(
1

N

N∑

t=1

y(t)

)
− 1, (3.23)

where the weights Wks and inputs Xks are normalized to a range of [0, 1], and the

third term from Equation 3.22 tends to 0 for large number of clock cycles N . Thus, by

summing and scaling the sampled outputs of the comparator y(t) in time, the vector-

vector multiplication can be converted from charge into a digital value. This summing

and scaling post-processing can be done simply with a counter, and bit shifting the

count output. In the following sections, the subblocks of the switched-capacitor Σ∆

modulator circuit are detailed.

3.2.2.1 Integrator

The integrator for the Σ∆ circuit, detailed earlier, uses a fully-differential op-amp

for transferring the input and feedback charge to the integrating capacitor. In the

single-ended case, as shown in Figure 3.7, the voltage output of the integrator vo is

given as

vo = Av(−vi), (3.24)

where Av is the voltage gain. With a very large input resistance in the op-amp, current

mainly flows through and from the input and feedback capacitors to the integrating
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capacitors. Thus by Kirchoff’s current law, we have

jωCfb(Vref − vi) + jωCin(Vin − vi) = jωCint(vi − vo). (3.25)

The negative input in the op-amp vi can be expressed as

vi =
CfbVref + CinVin + Cintvo

Cfb + Cin + Cint
. (3.26)

Combining Equation 3.24 and 3.26 gives

vo = −Av
(
CfbVref + CinVin + Cintvo

Cfb + Cin + Cint

)
. (3.27)

Simplifying the expression in Equation 3.27 results in

vo =

(
Cin

Cfb + Cin + Cint(1 + Av)
Vin

)
+

(
Cfb

Cfb + Cin + Cint(1 + Av)
Vref

)
(3.28)

For large gain Av >> 1, the output voltage approximates to

vo = −
(
Cin
Cint

Vin +
Cfb
Cint

Vref

)
. (3.29)

Thus, with the two input terminals of the op-amp at virtual ground (the common-

mode voltage), the total charge accumulated on the integrating capacitor Qint(t) at
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time t can be expressed as

Qint(t) = Cint

(
Cin
Cint

Vin +
Cfb
Cint

Vref (t)

)
+Qint(t− 1)

= CinVin + CfbVref (t) +Qint(t− 1)

= Qin +Qfb(t) +Qint(t− 1),

(3.30)

which is the sum of the input charge Qin, the current feedback charge Qfb(t), and the

previous charge in the integrating capacitor Qint(t).

Low voltage circuits, inspired from the work of Dessouky et al. 57,62 and Mayr

et al61,63 are adapted for a low power implementation of the op-amp and analog

periphery blocks in the integrator. The fully-differential op-amp circuit can be seen

in Figure 3.9. This multi-stage op-amp is designed with minimal transistor stacking to

facilitate lower voltage supply to minimize power cost. The first stage of the op-amp is

a differential source-coupled pair (transistors M1 and M2) biased with current Ibias

from transistors M7 and M8. The common-mode feedback for this stage is attained

through the cross-coupled transistors M3 - M6, where both outputs are fed back for

positive and negative feedback to both outputs. The second stage is composed of

a common-source amplifier, which provides another stage of amplification with the

addition of a miller compensation capacitor and a nulling resistor to satisfy stability

in the closed-loop design. Furthermore, the output of this amplifier is connected to

a source follower to decouple the op-amp output from the compensation capacitor

which limits the slew rate.
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Figure 3.9: Fully-Differential Operational Amplifier Circuit.

The common-mode voltage of the second-stage of the op-amp is controlled by

a dynamic switched-capacitor common-mode feedback circuit shown in Figure 3.10.

This circuit operates under two phases, φ1 and φ2, to balance the op-amp outputs,

V outp and V outm, around the output common-mode voltage V cm. During the φ1

phase, a zero net charge is injected onto the C1 capacitors, and if the op-amp outputs,

V outp and V outm, are not symmetric around the common-mode voltage V cmfb, then

a nonzero charge is injected onto the C2 capacitors. Afterwards, in the φ2 phase,

charge is redistributed between the C1 and C2 capacitors, and the common-mode

voltage changes accordingly.
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Figure 3.10: Switched-Capacitor Common-Mode Feedback Circuit.

The charge on the C1 capacitors during the φ1 phase is set from the external

supplies V cm and V b as

Qφ1 = 2(V b− V cm)C1, (3.31)

and the charge on the C1 capacitors during the φ2 phase, after charge is redistributed,

is

Qφ2 = (V outp− V cmfb)C1 + (V outm− V cmfb)C1. (3.32)

The change in this charge from the φ1 to the φ2 phase, creates a proportional delta
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voltage in the common-mode voltage V cmfb with a relationship of

∆V cmfb ∝ Qφ1 −Qφ2

2(C1 + C2)
. (3.33)

By combining Equations 3.31, 3.32, and 3.33, the delta common-mode feedback volt-

age ∆V cmfb can be expressed as

∆V cmfb ∝ C1

C1 + C2

(
V b− V cmfb+

(V outp+ V outm)

2
− V cm

)
. (3.34)

Thus, the common-mode feedback of the op-amp will tend to the external voltage bias

V b, while the average of the op-amp outputs will tend towards the external output

common-mode voltage V cm. The convergence rate of these voltages are controlled

by the C1 to C2 capacitance ratio.

3.2.2.2 Comparator and Latch

The differential analog outputs of the integrator is quantized into a 1-bit digital

value for the feedback loop of the Σ∆ circuit through a voltage comparator. Since

there are no critical design constraints for the quantizer because of the robustness of

the ADC, a simple low-voltage comparator design is adapted; this circuit can be seen

in Figure 3.11. In the comparator, the output is reset to a metastable state during

the φ1 phase, and then the output swings to the corresponding rail from the p-type

differential stage with positive feedback from transistors M3 and M4.
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Figure 3.11: Low-Voltage Comparator Circuit.

Moreover, a low-voltage latch circuit, as shown in Figure 3.12, stores the output

of the comparator during phase φ2. The outputs Q and nQ are used as the selectors

for the voltage of the feedback charge for the next clock cycle in the Σ∆ modulator.
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Figure 3.12: Low-Voltage Latch Circuit.

3.3 GF1 VVM: A 6-bit MAC Processor

in 65nm CMOS

Based on the circuits presented in Section 3.1 and 3.2, a mixed-signal architecture

for computing vector-vector multiplications is designed in the IBM 65nm CMOS

process.9 This design utilizes a unary weighted capacitor array for computing the

products and sums as charge, and then converts the charge into a digital value using

a switched-capacitor Σ∆ ADC.
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3.3.1 Unary Weighted Capacitor Array

The programmable capacitor array used for computing the inner product is com-

posed of a two-dimensional (2D) grid of unit capacitor. Each weight is encoded as an

aggregate of unary bits in space that modulates the capacitance on the array, while

each input is encoded, unary in time, as the voltage potential applied across a row

of unit capacitors. The implicit product of the capacitance and voltage, results in a

discrete amount of charge, which is summed in the array as the inner product over

time. In the following subsections, the design methodology, physical layers (PHY),

and simulation results for the capacitor array are presented.

3.3.1.1 Unit Capacitor

Proper design of the unit capacitors for the capacitor array is critical for achiev-

ing good accuracy and minimizing energy and area cost in implementation the VVM

architecture. In order to align towards the design objectives, the capacitors are de-

signed to maximize capacitance density, minimize inaccuracies due to process voltage

and temperature (PVT) variation, and lessen the effects of parasitic nodes that cause

non-linearity in the array.

The MOS capacitor, which is formed from a MOSFET transistor with its source,

drain, and bulk tied together as one terminal and the gate as the other terminal,

provides the best capacitance density per unit area because of its thin gate oxide sep-

arating the terminals. Nonetheless, because of its non-linear capacitance relationship
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Figure 3.13: A Vertical Natural Capacitor (VNCAP).

to voltage variation, the MOS capacitor is ill-suited for the array design. Alterna-

tively, metal-oxide-metal (MOM) capacitors, which form plates between sheets of

metals, are viable options for this design because of its capacitance invariance to

voltage changes. Specifically, a back end of line (BEOL) vertical natural capacitors

(VNCAP), which is a MOM capacitor that achieve higher capacitance density through

multiple metal layer stacking, is used. The VNCAP is composed of inter-digitated

metal fingers over set of metal layers, where the total capacitance is derived from the

side and the fringe capacitance between the fingers of the two terminals. Figure 3.13

shows a cross-sectional view of a VNCAP designed across 2 metal layers.

The unit capacitor for the array was sized to 5fF capacitance. The root mean

square voltage noise from thermal agitations, which is detailed in Equation 3.11, for

this capacitor is deduced as 910mV. Thus, for a 50mV range, the signal-to-noise ratio

can guarantee 6-bits of precision for encoding in the array.
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Figure 3.14: Row Slice of the Programmable Capacitor Array for GF1 VVM. Mag-
nitude comparators are used to decode the binary weight into unary bits that discon-
nect/connect the capacitors for encoding the weight.

3.3.1.2 2D Capacitor Array

The 2D capacitor array is composed of 9 rows of 63 unit capacitors, where each

row of the array encodes a 6-bit binary weight Wk as capacitance using magnitude

comparators in the circuit shown in Figure 3.14. A unary encoding scheme is adapted

for representing each weight to facilitate a monotonic relationship between the capac-

itance and weight value. Although a binary-weighted design would be more compact,

the proposed unary capacitor array implements the additional decoder to minimize

inaccuracies from capacitor mismatch by only using unit capacitors.

Each magnitude comparator is a subtractor circuit that computes the difference

of the inputs and outputs the sign bit. For comparing two inputs, A and B, the
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Figure 3.15: Subtractor Circuit for a Magnitude Comparator.

comparison output Y can be deduced as

A−B ≥ 0 =⇒ Y = 0

A−B < 0 =⇒ Y = 1.

(3.35)

The architecture for this subtractor circuit can be seen in Figure 3.15. The inputs, A

and B, are M-bit values that are compared using the subtractor, and the output Y is

the most significant bit (MSB) of the difference. Since the output is only dependent

on the carry bits, the sum bits are disregarded. The underlining building block of

this magnitude comparator is based on a partial full adder (FA) circuit with just the

carry out logic. This circuit is shown in Figure 3.16. Because one of the inputs, B,

in the carry out circuit is always constant, the circuit shown in Figure 3.16 can be

simplified to two cases — B = 0 and B = 1. The circuit for these cases can be seen

in Figure 3.17. Thus, each magnitude comparator in the programmable capacitor

design can be simplified to a cascode of NAND and NOR logic gates. This gives

a 66% reduction in gate count, as the carry out circuit is decreased from 12 to 4

transistors.
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Figure 3.16: A Partial Full Adder Circuit with just the Carry Out Logic for the
Magnitude Comparator.

VDD

VSS

A A

AA

'0'

'0'

'0'

'0'

Ci Ci

Ci Ci

Co
A

Ci

Co

VDD

VSS

A A

AA

'1'

'1'

'1'

'1'

Ci Ci

Ci Ci

Co
A

Ci

Co

(a) B = 0 (b) B = 1

Figure 3.17: Simplified Carry Out Circuit for the Magnitude Comparator.

A MATLAB script was written in order to generate the RTL description for any

bit precision unary encoder. The code for this script, as shown below, infers the logic

blocks for each magnitude comparator depending on which constant is connected.

%ENCODING SCHEME

%0 -> ’0’, 1 -> ’1’, 2 -> inverter, 3 -> NAND, and 4 -> NOR

nbits = 6;

num = fliplr(logical(dec2bin(0:1:(2^nbits)-1,nbits) == ’1’));

blocks = zeros(2^nbits,nbits);
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for i = 1 : (2^(nbits) - 1)

for j = 1 : nbits

%initial block assignment

if (mod(j,2) == 0 && num(i,j) == 0) ||...

(mod(j,2) == 1 && num(i,j) == 1)

blocks(i,j) = 4;

else

blocks(i,j) = 3;

end

%further simplification

if j == 1

if blocks(i,j) == 3

blocks(i,j) = 2;

elseif blocks(i,j) == 4

blocks(i,j) = 0;

end

elseif j > 1

if blocks(i,j-1) == 0 && blocks(i,j) == 3

blocks(i,j) = 1;

elseif blocks(i,j-1) == 1 && blocks(i,j) == 4

blocks(i,j) = 0;

end

end

end

end

Parameterized by the bit precision, nbits, the script was used to generate the struc-

tural composition for the 6-bit decoder for the weight.

The schematic and layout for the 2D capacitor array slice was then designed and

tested; Figure 3.18 shows the layout construction for a generic row slice for this ar-

chitecture. The full 2D capacitor array, as shown in Figure 3.3, was constructed

with these row slices. The layout for this design is shown in Figure 3.19. As men-

tioned earlier, the full array contains 9 rows of 63 unit capacitors and the magnitude
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comparators for decoding the binary weights.

Furthermore, the 2D capacitor array was simulated in order to analysis the trans-

fer curve of this VVM architecture with respect to the weight values. In order to

measure the transfer curve, the charge injected on the array is integrated onto an-

other capacitor using an ideal integrator, and the delta voltage for the output is

measured. Transfer curves plots for different input voltage bias values are shown in

Figure 3.20. Specifically, this plot shows two transfer curves for input voltage bias

values of 60mV and 240mV. The integrating capacitor was sized to 1.53pF, and the

minimum LSB value measured on the output was a delta voltage of 0.74mV and

0.17mV for a input voltage bias of 240mv and 60mV respectively. The differential

non-linearity (DNL) and integral non-linearity (INL) for both transfer curves don’t

exceed an LSB equivalence in the output voltage. Nonetheless, these simulation plots

don’t capture the capacitance mismatch that is expected from fabrication variations.

Moreover, the 2D capacitor array was also simulated in order to measure the en-

ergy cost for different weight (capacitance) values. As described in Equation 3.7, the

energy cost of the VVM computation on the array scales linearly with the capacitance

and quadratically with voltage. The validation of this is illustrated in the simulation

results shown in Figure 3.21. This plot shows the energy measurements for different

weights encoded on the capacitor array for computing VVMs with respect two dif-

ferent input voltage bias values of 60mV and 240mV. The total energy includes not

just the energy used to charge the capacitors, but also the energy dissipated through
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Figure 3.20: Transfer Curve Plots of the Weight (Capacitance) to Output (Voltage)
for the VVM. The transfer curve is generated for two input voltage bias values of 60mV
and 240mV. The weight value corresponds to the capacitance of the array normalized
to the maximum capacitance.

the magnitude comparators for decoding the binary weightss.

To measure this energy, the current drawn from all the power supplies is integrated

on another capacitor with a fixed known capacitance. Since the energy is given as
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Figure 3.21: Plots of Energy Cost for the Capacitor Array with Different Weights
and Input Voltage. The energy is measured with an input voltage bias of 60mV and
240mV for all discrete values of the weight encoded as capacitance on the array.

the integral of power respect to some time, the energy can be deduced as

E =

∫ t1

t0

P (t)dt

=

∫ t1

t0

I(t)Vsupdt

=

∫ t1

t0

CV (t)

dt
Vsupdt

= CVsup(Vt1 − Vt0),

(3.36)
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where the Vsup is the fixed supply voltage, C is the capacitance of the capacitor used

to integrate the current from the power supply, and Vt1 − Vt0 is the delta voltage

corresponding to the charge injected onto the measuring capacitor.

The simulation results from Figure 3.21 show that even with an input voltage

bias of 240mV, the energy cost of the array to compute each cycle doesn’t exceed a

picojoule(pJ). It also shows the energy scale quadratically with the input voltage bias

as predicted from the theory. Furthermore, the energy cost is relative to the weight

values, and about 300fJ is dissipated on average from just the decoding logic.

3.3.2 VVM Core Architecture

The architecture for the vector-vector multiplier, which includes the programmable

capacitor array and the analog-to-digital converter, can be seen in Figure 3.22. A dif-

ferential topology is adapted for this design. The weight is encoded on two separate

capacitor arrays for generating the corresponding VVM outputs as charge. These

charges are then used in the first-order switched-capacitor Σ∆ modulator for gen-

erating the 1-bit PDM output. In the ADC, the feedback capacitors were sized to

match the maximum input charge respective to a feedback voltage. Additionally, the

integrating capacitors were sized such that the thermal noise in that capacitor did not

exceed a LSB in the output voltage. Overall, a total of 9 analog biases, 7 voltages and

2 currents, are used in this circuit for the VVM, and they can be seen in Table 3.1.

Furthermore, the ADC for this VVM core was simulated prior to tape-out, and
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Figure 3.22: GF1 VVM Core Architecture.

the characteristics of the ADC can be seen in Table 3.2. Subsequently, the full mixed-

signal VVM core was simulated for functional verification. The final layout for this

core can be seen in Figure 3.23. The full mixed-signal core measures 348µm by 271µm

( 0.09mm2) in area. Although the ADC accounts for less than 10% of the area core,

it accounts for a significant portion of the power and energy cost because of the static

power used in the ADC.
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Table 3.1: Analog Biases for the VVM Core.

Name Description Nominal Value
Vcmi Input common-mode voltage 0.3V

Vinm Negative input voltage for the capacitor array 0.25V
Vfbp Positive feedback voltage 0.41V
Vfbm Negative feedback voltage 0.19V
Vcmo Output common-mode voltage 0.5V

Vb Voltage bias for the operational amplifier 0.75V
Iopa Current bias for the operational amplifier 2.5µA
Icmp Current bias for the voltage comparator 2µA

Table 3.2: Summary of the ADC Characteristics for GF1 VVM.

VDD 1.2V
Frequency 2.5MHz

SNR 40.32dB
Power 16.8µW

3.3.3 Test Chip

A test chip in the IBM 65nm CMOS process was constructed in order to test the

mixed-signal VVM core shown in Figure 3.22. This core was interfaced to synthesized

digital periphery circuits that provided local register files for the weights and the

unary encoded inputs. The full chip layout, including custom built pad I/O circuitry

cells, can be seen in Figure 3.24. In addition to the VVM core and the periphery

circuitry, this figure also shows the annotated I/O port connections for programming

and running the VVM core. The weights and the inputs are loaded to the chip through

a serial interface using a shift register in order to reduce the number of required pins.

This serial interface uses a periphery clock clk and enable signals (en0 i and en1 i)
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Figure 3.23: Layout of the GF1 VVM Core Architecture.

to push in the bits of the inputs and the weight through a 1-bit data signal d i. The

acknowledge signal ack i is asserted whenever the input data has been fully loaded.

The full set of digital I/O ports for the chip are described in Table 3.3.

The test chip was wirebonded to a 40 dual in-line package (DIP), and then con-

nected to a breakout board that interfaces to a FPGA. Figure 3.25 shows the mi-

crograph of the chip and the test board with the chip. A Spartan-3 FPGA board

was used to program the VVM chip. On the board, a programmable clock divider

is synthesized for generating the non-overlapping clocks, phi1 and phi2. In addition,
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Figure 3.24: Layout of the GF1 VVM Chip.

the input encoders and output counter for decoding are synthesized for the VVM

core in the chip. The board is programmed through a USB 2.0 port to a PC using

a MATLAB interface. Specifically, the Opal Kelly FrontPanel software interface is

used to for sending and receiving test data through the PC to the FPGA and then
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Table 3.3: Digital I/O Ports for the GF1 VVM Chip.

Name Type Width Description
clk Input 1 Clock signal for periphery circuitry.

phi1 Input 1 VVM core clock signal for first phase.
phi2 Input 1 VVM core clock signal for second phase.
sel i Input 4 Select signal for writing to the 9 weights.

rst0 i Input 1 Reset signal for the weight register files.
rst1 i Input 1 Reset signal for the input register files.
en0 i Input 1 Enable signal used for loading the weights.
en1 i Input 1 Enable signal used for loading the inputs.
d i Input 1 Data signal for both serial interfaces..
d o Output 1 VVM core output signal.

ack o Output 1 Acknowledge signal for the input serial interface..

to the chip. Furthermore, the analog biases are programmed through a DAC board

connected through the breakout board. Programmed through the FPGA, the DACs

sets the values for the 9 analog biases with 12-bit precision and a voltage range of

[0, 1.2]V.

The packaged VVM chip was tested to measure performance, efficiency, and vari-

ability. Operating at 2.5MHz on a 1.2V power supply, the core was successfully

tested to compute 6-bit multiply-accumulates (MAC) at 5-bit output precision with

a throughput of 350KOPs and an efficiency of 14.6GOP/W (284.4GOP/W for the

capacitor array). The measured characteristics of the VVM core can be seen in Ta-

ble 3.4.

Furthermore, with numerous of applications in signal processing and machine

learning, this core was used for an image processing task of DeBayering an image.

The results of this task, showing both the Bayer image and the DeBayer image, can
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(a) Chip Micrograph

(b) Packaged Chip with Interface Board

Figure 3.25: GF1 VVM Chip Micrograph and Test Setup.

be seen in Figure 3.26.
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Table 3.4: Measured Characteristics of the VVM Core.

Technology 65nm CMOS
Die Area 0.09mm2

Operation 6-bit MAC
Precision 5-bit

Supply Voltage 1.2V
Frequency 2.5MHz

Throughput 350KOPs
Power Consumption 24µW

Energy/Op 68.27pJ (3.5pJ for the array)
Efficiency 14.8GOP/W (284.4GOP/W for the array)

(a) Bayer Image (b) DeBayer Image

Figure 3.26: DeBayering an Image Using the VVM Core.

3.4 GF2 VVM: A 6-bit MAC Processor

in 55nm CMOS

Similar to the previous chip, GF1 VVM, the GF2 VVM chip exploits charge-

based computing for energy efficient vector-vector multiplication operations. In this

second iteration of the mixed-signal design, an alternative capacitor array design

based on binary-weighting is explored in effort to cut area and energy cost. Using the
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Figure 3.27: Row Slice of the Programmable Capacitor Array for GF2 VVM.

same decoding architecture, the first order Σ∆ modulator, the output charge from

the computation is converted back into the digital domain as a PDM signal with

output precision varying with time. Furthermore, this design was implemented in the

GlobalFoundries 55nm Low-Power Enhanced (LPe) CMOS process.

3.4.1 Binary Weighted Capacitor Array

The capacitor array for the GF2 VVM core is comprised of 9 rows of programmable

capacitors for computing vector-vector multiplications qualitatively as charge. Each

programmable capacitor is modulated by a 6-bit weight to encode 64 different capac-

itance value. The circuit for this programmable capacitor is shown in Figure 3.27.

By adopting a binary-weighted encoding scheme, the area and energy cost was re-

duced from the previous design, which employed magnitude comparators for a unary-

weighted encoding scheme. Nonetheless, as the modified array uses different sized

capacitors, the revised design is more susceptible to inaccuracies due to fabrication

and process variations.
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Figure 3.28: Layout for the Binary-Weighted Capacitor Array for GF2 VVM.

Each programmable capacitor is composed of VNCAPs, similar to the GF1 VVM

design, and each capacitor is shielded to minimize noise. The layout for the full

binary-weighted capacitor array can be seen in Figure 3.28. Based on the noise

analysis using Equation 3.11, the capacitor for the least significant bit of the weight

was sized for 3.6fF. Collectively, the array encodes 567 different levels ((26 − 1) ∗ 9)

with a maximum capacitance of 321.9fF.

A simulation program with integrated circuit emphasis (SPICE) model of the ex-

tracted layout netlist is simulated to measure the output transfer curve characteristics

and the energy cost for computing with this circuit. An ideal integrator is used for

translating the charge from the implicit product of the weight as capacitance with a

fixed voltage bias as a delta voltage on an integrating capacitor. Plots of the output

transfer curve with two distinct input voltage biases, 240mV and 60mV, can be seen

in Figure 3.29. The integrating capacitor was sized to 1.48pF. Analysis of the transfer
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Figure 3.29: Transfer Curve Plots of the Weight (Capacitance) to Output (Voltage)
for the GF2 VVM. The transfer curve is generated for two input voltage bias values
of 60mV and 240mV. The weight value corresponds to the capacitance of the array
normalized to the maximum capacitance.

curve shows that the output has a minimum least significant value of 0.521mV and

0.131mV for a fixed input voltage bias of 240mV and 60mV respectively. The root

mean square thermal voltage noise on the integrating capacitor, which is 0.05mV,

doesn’t exceed these LSB values, and the DNL and INL values from the plots were

also below this LSB value.

Moreover, the energy cost for computing with different weight values (capacitance)
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Figure 3.30: Plots of Energy Cost for the Capacitor Array with Different Weights
and Input Voltage. The energy is measured with an input voltage bias of 60mV and
240mV for all discrete values of the weight encoded as capacitance on the array.

is also measured from SPICE simulations. The current from the power supplies

are integrated onto an other capacitor, and using the Equation 3.36, the energy is

measured for the different power supplies. The plots of this simulation can be seen

in Figure 3.30. The simulation results show that for both voltage bias values, 240mV

and 60mV, the energy cost on the array is on the order of femotoJoules(fJs). Using

a 240mV input voltage bias, the energy cost each cycle doesn’t exceed 130fJ, and
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10fJ for the 60mV input voltage bias. Furthermore, the results also show the energy

scaling quadratically with the input voltage bias. Compared to the GF1 VVM unary

capacitor array design, the binary-weighted capacitor array uses 4 times less energy;

this can mainly be attributed to the simplification of the digital periphery circuitry,

as the magnitude comparators are not implemented.

3.4.2 VVM Core Architecture

The VVM core architecture for the GF2 VVM design is composed of the binary-

weighted capacitor array and the same Σ∆ modulator ADC from the GF1 VVM

design. The full circuit for this core can be seen in Figure 3.31. The ADC has the

same specifications listed in Table 3.2. In addition, the analog biases are the same as

Table 3.1. The full mixed-signal VVM core was simulated for functional verification,

and the final layout for this core can be seen in Figure 3.32. The full mixed-signal core

measures 159µm by 265µm ( 0.042mm2) in silicon area. Compared to the GF1 VVM

core, the GF2 VVM core uses approximately 2.24 times less area. A comparsion of

these two designs can be seen in Figure 3.33.

3.4.3 Test Chip

A test chip is fabricated in GlobalFoundries 55nm CMOS technology in order to

test this revised VVM core design. The core is interfaced to synthesized periphery
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Figure 3.31: GF2 VVM Core Architecture.

circuitry that is used for local data and parameter storage. Similar to the GF1 VVM

test chip, data is loaded to and from the chip using a serial protocol with a 1-bit data

port because of limited I/O pins. The full chip layout, including custom built pad

I/O circuitry cells, can be seen in Figure 3.24. The micrograph of the GF2 VVM chip

can be seen in Figure 3.35. Because of top metal fill, the layout of the design can not

be easily seen.
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Figure 3.32: Layout of the GF2 VVM Core Architecture.
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Figure 3.33: Design Comparison of the GF1 VVM Core and the GF2 VVM Core.

Moreover, the digital I/O interface was slightly modified from the previous design.

The complete list of the digital I/O ports used for this test chip, as shown in the
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Figure 3.34: Layout of the GF2 VVM Chip.

Figure 3.35: GF2 VVM Chip Micrograph.
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Table 3.5: Digital I/O Ports for the GF2 VVM Chip.

Name Type Width Description
clk Input 1 Clock signal for periphery circuitry.

phi1 Input 1 VVM core clock signal for first phase.
phi2 Input 1 VVM core clock signal for second phase.
rst0 i Input 1 Reset signal for the weight register files.
rst1 i Input 1 Reset signal for the input register files.
en0 i Input 1 Enable signal used for loading the weights.
en1 i Input 1 Enable signal used for loading the inputs.
d i Input 1 Data signal for both serial interfaces..
d o Output 1 VVM core output signal.

ack o Output 1 Acknowledge signal for the input serial interface..

annotated chip layout, is described in Table 3.5. The select port sel i from the GF1

VVM design were removed, and all the weights are programmed sequentially through

the serial protocol. These changes not only simplified the periphery circuitry, but

also reduced the number of ports used in the design.

Similar to the test setup shown in Figure 3.25, the GF2 VVM chip was wire-

bonded to a 40 DIP, and then interfaced to a breakout board, which connects to a

DAC board and a Spartan-3 FPGA. This chip was programmed with different test

patterns from MATLAB in order to measure performance, computation accuracy,

and efficiency. The measured characteristics can be seen in Table 3.6. The measured

energy cost per operation for just the array decreased significantly from the GF1

VVM design; however, because the bulk of the energy cost is attributed to the ADC,

the overall efficiency of this revised VVM core only improved slightly to 15.2GOP/W

from 14.8GOP/W. Nonetheless, the area cost was reduced by 50% from the previous

design.
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Table 3.6: Measured Characteristics of the GF2 VVM Core.

Technology 55nm CMOS
Die Area 0.042mm2

Operation 6-bit MAC
Precision 5-bit

Supply Voltage 1.2V
Frequency 2.5MHz

Throughput 350KOPs
Power Consumption 23.1µW

Energy/Op 65.67pJ (0.9pJ for just the array)
Efficiency 15.2GOP/W (1.11TOP/W for just the array)

3.5 GF3 VVM: A 4-bit MAC Multicore

Processor in 55nm CMOS

In the third revision of the mixed-signal VVM design, a multicore processor based

on the architecture used in the GF1 VVM design (Section 3.3) is implemented in

55nm CMOS. The fabricated test chip is comprised of 192 VVM cores, which can be

configured as (192) 4-bit weight cores, (96) 8-bit weight cores, or (64) 12-bit weight

cores. Moreover, the multicore processor is designed with flexible output precision,

similar to the previous implementations detailed in Section 3.3 and 3.4, and can be

adjusted for 9-12-bits of output precision.
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` 

` 

Figure 3.36: 3D View of a Two-Layered APMOM Capacitor.

3.5.1 VVM Core Architecture and Design Improve-

ments

The GF3 VVM core is composed of a unary-encoded 2D capacitor array pro-

grammed through (16) 4-bit weights and the same Σ∆ modulator ADC circuit pre-

sented in Section 3.2 with characteristics shown in Table 3.2. As opposed to using

VNCAPs, custom alternative polarity metal-oxide-metal (APMOM) capacitors are

used that alternates the polarity of the metal fingers across the layers. This alternat-

ing polarity of interdigitated fingers increases capacitance density by adding top and

bottom capacitance along with the side capacitance in the same area. A 3D view of a

two layered APMOM capacitor can be seen in Figure 3.36. Exploiting this topology

for higher capacitance density, the unit capacitor for the array is laid out as seen

in Figure 3.37. This capacitor was designed across 5 metal layers (M2-M6), where

the bottom layer (M2) and the top layer (M6) are used for shielding, and a metal
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Figure 3.37: Layout of the Unit Capacitor in the GF3 VVM Core.

Figure 3.38: Annotated Layout of the GF3 VVM Core.

shielding is added along the perimeter to mitigate parasitic coupling from adjacent

cells. The capacitance of the unit capacitor was estimated to 10fF.

The annotated layout for the VVM core, which follows from the circuit displayed

in Figure 3.22, can be seen in Figure 3.38. With the modifications in the capacitor
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Figure 3.39: Design Comparison of the GF1 VVM Core and the GF3 VVM Core.

Table 3.7: Nominal Bias Values for the GF3 VVM Core.

Name Description Nominal Value
V cm i Input common-mode voltage 0.32V
V inp Positive input voltage for the capacitor array 0.37V
V inm Negative input voltage for the capacitor array 0.27V
V fbp Positive feedback voltage 0.64V
V fbm Negative feedback voltage 0V
V cm o Output common-mode voltage 0.5V
V reg Voltage bias for the operational amplifier 0.75V
I amp Current bias for the operational amplifier 2.5µA
I comp Current bias for the voltage comparator 2µA

array, the revised VVM core was designed in roughly 10 times less area than the

previous GF1 VVM core. This area comparison can be seen in Figure 3.39.

For the revised VVM core, the analog bias values were modified to account for

modifications in the input capacitor array, feedback capacitor, and integrating capac-

itor. The nominal voltage and current bias values are listed in Table 3.7.
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Table 3.8: Simulated Characteristics of the GF3 VVM Core.

Technology 55nm CMOS
Operation 4-bit MAC

Supply Voltage 1.2V
Frequency 1MHz

Throughput 1MOPs
Power Consumption 6.88µW

Energy/Op 6.88pJ (66.23fJ on the array)
Efficiency 145.34GOP/W (15.1TOP/W for the array)

Furthermore, the simulated characteristics of the revised VVM core can be seen

in Table 3.8. This core was simulated with a 1MHz clock for computing 4-bit MAC

operations in 16 clock cycles. In the analog domain, the capacitor array computes

the MAC operations with energy costs ranging from 51.83fJ to 80.63fJ. Totally, this

operation is executed using the core with an energy cost of 6.88pJ and a total efficiency

of 145.34GOP/W. On the array only, this efficiency is measured at approximately

15.1TOP/W.

After the core was designed and functional verified with simulations, timing anal-

ysis and physical characterization was done in order to construct a library that can

be used for synthesizing and placing and routing the multicore design. This timing

analysis included simulations from the parasitic extracted layout to measure relevant

timing information, such as input capacitance load and output rise and fall delays

relative to the output load and input slew rate, for meeting timing constraints for the

top level design. Moreover, physical characterization was done for extracting physical

information such as routing paths and blockages, pin details, and more for proper

placement and routing of these cores on the top level design.
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3.5.2 Multicore Design and Synthesis

The multicore processor of 192 VVM cores is synthesized across three levels of

hierarchy — first a Cell of 6 VVM cores that are multiplexed for variable weight

precision, then a Cluster of 4 cells with a total of 24 VVM cores that share periphery

logic for data encoding, and finally a Top level of 8 standalone clusters for a total

192 VVM cores.

3.5.2.1 Cell Design

The Cell is the first level hierarchy of the multiprocessor design that incorporates 6

VVM cores for computing inner products with different weight precision. By default,

this block uses these cores standalone to compute inner products on vectors with 16

elements and a weight precision of 4 bits. Alternatively, these cores can be combined

to compute with a weight precision of 8 bits or even 12 bits. For computing with

higher weight precision, first the bits of the weights are split into chunks of 4 bits

based on their significance, then the weights are distributed to separate VVM cores,

and finally the 1-bit PDM outputs are scaled according and added together with

synthesized digital logic. The addition and scaling is done with a stream adder that

handles scaling the input and also saturation in the 1-bit PDM output with the

implementation of additional counters. In order to implement the scaling, the lesser

significant input is accumulated on a counter, and once the appropriate count is

reached a 1 is added with a 1-bit adder. Furthermore, the overflow or carry-out of
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Figure 3.40: Block Diagram of the GF3 VVM Cell Design.

the adder is added to an additional counter to account for output saturation. This

stored saturated bit is asserted into the 1-bit output stream when the output is no

longer saturated. The final output of this computation is integrated from the output

stream with the possible output precision of 9 – 12 bits. A block diagram of this

VVM Cell design can be seen in Figure 3.40. Depending on the mode selected, the

Cell produces a variant of 11 possible outputs; the output assignment is detailed in

Table 3.9.
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in the diagram, and contain the design detailed in the prior section. A total of 24

VVM cores from 6 Cells are instantiated in this design, and they share a counter

and a LFSR, which are used for the unary encoding of the input data. Additionally,

each cluster incorporates a simple serial I/O interface for reading/writing with a data

widths of 4-bits due to pin limitation on the top level. This interface operates on a

separate I/O clock that runs at 100MHz.

3.5.2.3 Top Design

The final tier in the hierarchical GF3 VVM multicore design is the Top level, and

in this block, an array of standalone cluster subblocks are placed and routed together

with decoder logic for reading, processing, and writing to the individual clusters of

VVM cores. This top cell is based on a scalable design that places a generic number

of clusters to fit the allotted area. In the GF3 VVM design, this amounted to a total

of 8 clusters with a total of 192 VVM cores. A block diagram of the GF3 VVM Top

design can be seen in Figure 3.42. The individual Cluster subblocks are identified as

V VM6 CELL CLUSTER, and each contain 24 VVM cores. As described earlier,

each cluster is implemented with a serial I/O interface running on a separate 100MHz

clock. These I/O interfaces are coupled together in the top design and the inputs and

outputs are read and written to the individual clusters sub-blocks using address ports.
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(a) Layout (b) Micrograph

Figure 3.43: Annotated Layout and Micrograph of the GF3 VVM Chip.

products with 4-bit weights, 8-bit weights, and 12-bit weights.

A total of 59 I/O and power pins are used in the test chip for programming and

processing with the VVM cores, and they are detailed in Table 3.10. With regards to

pin types, POW is power, GND is ground, DI is digital input, DO is digital output,

and AI is analog input. Similar to the GF1 VVM and GF2 VVM designs, 9 analog

biases are used in this design.

Furthermore, the fabricated test chip was wire-bonded to a 144 DIP and mounted

on a custom breakout board that interfaced to a DAC board and Spartan-6 FPGA.
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Table 3.10: I/O and Power Ports for the GF3 VVM Chip.

Name Type Width multicolumn1—c—Description
GND POW N/A Ground

VDD12 POW N/A 1.2V power supply
VDD25 POW N/A 2.5V power supply
Vcm out AI N/A Output common-mode voltage for amplifier
Vcm in AI N/A Input common-mode voltage
Vfb m AI N/A Negative feedback voltage
Vfb p AI N/A Positive feedback voltage
Vin m AI N/A Negative input voltage
Vin p AI N/A Positive input voltage
V amp AI N/A Amplifier bias voltage
V reg AI N/A Voltage bias for regulating output common-mode

V comp AI N/A Comparator bias voltage
d clk i DI 1 I/O clock signal
phi1 i DI 1 Non-overlapping clock for the VVM cores
phi2 i DI 1 Non-overlapping clock for the VVM cores
bus i DI 12 Input data bus for control, address, and data signals

clus addr i DI 3 Address signal for selecting between the clusters
opcode i DI 2 Opcode for selecting bus functionality
bus sel i DI 1 Selects the output of the output data bus

bus o DO 12 Output data bus signal
rdy o DO 1 Data output ready signal

Figure 3.44 shows the test board along with the packaged chip mounted in a soldered

socket. The 59 pins for the analog biases, power supplies, and digital I/O signals are

wire-wrapped from the bonded package to the breakout board. Using the Opal Kelly

FrontPanel software interface, the DAC board and the chip can be programmed for

testing with the Spartan 6 FPGA.
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(a) Front View (b) Back View

Figure 3.44: GF3 VVM Chip Test Setup.

3.5.3.1 Chip Interface

The GF3 VVM chip communicates externally with a serial I/O interface using the

following ports:

• 12-bit input data bus

• 2-bit opcode

• 3-bit address

• 12-bit output data bus

• 1-bit bus output select

• 1-bit output ready signal

The input data bus is decoded into control signals, internal block addresses, and

input data bits based on the configuration of the 2-bit opcode. The 3-bit address

selects one of the 8 clusters to write the opcode and input data bus signals, and
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receive the output from. The output data bus transmits the input data bus when the

bus output select is low (for debugging purposes), and transmits the post-processed

VVM output when the select is high. Finally, the output ready signal is used as a

flag that signifies the completion of processing with the VVM cores. The various

programming procedures for the chip are outlined below.

• Reset Procedure

1. First select which cluster to reset by setting the 3-bit clus addr i signal.

2. Set the opcode to “00”, which allows the block to register the control

signals from the input data bus.

3. Next, set the input data bus to “000000000001”, which will put the block

in reset mode. (The input data bus has to be held at this value for at least

one clock period of the phi1 i and phi2 i.

4. Finally, set the input data bus to “000000000000” to take the block out

of reset mode.

• Set Mode & Precision Procedure

1. First select which cluster to set the mode and precision by setting the 3-bit

clus addr i signal.

2. Then set the opcode to “00”, which allows the block to register the control

signals from the input address.
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3. Finally, set the mode by programming the 3rd and 4th bit of the input data

bus, and the precision by programming the 5th and 6th bit of the input

data bus. For setting the mode to 1 and the precision to 12bits (precision

select of 3), the input data bus is configured as “000000110100”.

• Write Weight or Input Value Procedure

1. First select which cluster to write the weight or input value to by setting

the 3-bit clus addr i signal.

2. Set the opcode to “01”, to write address signals

3. In the input data bus

– set the 12th bit to“1”, which sets the write enable for the weight and

input values high.

– select which of the 4 Cell to write to, by setting the 10th and 9th bit.

– select which of the 6 VVM cores to write to by setting the 8th-6th bit.

– select which of 16 pair of weight and input value to set by setting the

5th-2nd bits.

– select whether to write a weight or an input value with the 1st bit

(“1” selects weight, while “0” selects the input value).

4. Next set the opcode to “10”, which writes the data signal.

5. Set the input data bus to the weight or input value that you want to write.
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6. Repeat step 2 & 3, but set the 12th bit to “0”, which sets the write enable

low.

• Set Encoder (LFSR or Counter) Procedure

1. First set which cluster by setting the 3-bit clus addr i signal.

2. Set the opcode to “00” to write the control signals.

3. To use the LFSR for encoding random pulse density modulated (RPDM)

unary signals, program the 7th bit in the input data bus as “1”. To use

the counter instead for generating pulse-width modulated (PWM) signals,

program the 7th bit in the input data bus as “0”.

• Program LFSR (Write Seed) Procedure

1. First select which cluster to program the LFSR by setting the 3-bit clus addr i

signal.

2. Set the opcode to “01”, to write address signals

3. In the input data bus

– set the 12th bit to “0”, which sets the write enable for the weights

and input values low.

– set the 11th bit to“1”, which sets the seed write enable high.

– select which of the 16 LFSR to write the seed to with the 5th-2nd bits.

4. Next set the opcode to “10”, which writes the data signal.
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5. Set the input data bus to the LFSR seed. (The input data bus must be

held to this value for at least one clock period of the phi1 i and phi2 i

6. Repeat step 2 & 3, but set the 11th bit to “0”, which sets the seed write

enable low.

• Enable VVM Core Processing Procedure

1. First select which cluster to enable processing on the cores by setting the

3-bit clus addr i signal.

2. Set the opcode to “01”, to write address signals

3. For the input data bus

– make sure the 12th and 11th bit are set to “0” which sets both write

enable low.

– select which of the 4 VVM6 cells to start processing data, by setting

the 10th and 9th bit.

4. Set the opcode to “00”, which writes the control signals.

5. Set the 2nd bit in the input data bus to “1”, which selects the process

enable signal, set the mode select and precision select bit, and ensure that

1st bit, which is the reset signal is low.

6. When the rdy o signal goes high for the block that was processing the data

(set the address accordingly to check the ready out signal). The output

data is ready to be read from the output data bus.
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Figure 3.45: Input Sweep for Fixed Weights with the 192 GF3 VVM Cores from a
Test Chip. For each plot, each weight is set to a normalized value of 0 (top left), 0.25
(top right), 0.5 (bottom left), and 1 (bottom right). All input are swept from 0 to 1
for each core.

3.5.3.2 Results

The GF3 test chip was tested to validate the multicore mixed-signal architecture,

and to also measure computation accuracy and variability across cores. To accomplish

this, input and weight test patterns are programmed on the cores, while measuring

the outputs. Specifically, the inputs and weights are swept across their respective

domain in LSB increments, and all 192 cores are recorded per step. Results showing

the core outputs for fixed weight values as the input is being swept can be seen in

Figure 3.45. To compensate for mismatch from the cores and variations in the shared
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Figure 3.46: Weight Sweep for Fixed Inputs for the 192 GF3 VVM Cores in a Test
Chip. For each plot, each input is set to a normalized value of 0 (top left), 0.25 (top
right), 0.5 (bottom left), and 1 (bottom right). All input are swept from 0 to 1 for
each core.

analog biases from parasitic coupling, each core is calibrated to minimize offset. Even

with this calibration, there are noticeable variations in the computation result across

the cores.

Furthermore, a plot of the core outputs for fixed input values and variable weight

values can be seen in Figure 3.46. Similar to the previous plot, variations are notice-

able across the cores even after calibrations. A histogram of the mean absolute error

for 192 cores, shown in Figure 3.47, properly highlight these variations. The mean

absolute error across cores varies from 0.017 to 0.158 on a normalized output scale of
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Figure 3.47: A Histogram Plot of the Mean Absolute Error from the 192 GF3 VVM
Cores.

[0,1]. More than 100 of the 192 cores can achieve 4-bit output precision in accuracy

while computing with 512 unary samples. Accuracy issues in this architecture are

primarily attributed to mismatches in the ADC from the integrating and feedback

capacitors. Additionally, coupling of the analog biases due to insufficient shielding

creates decoding errors, which degrade computation accuracy.

Nonetheless, even with the low precision limitation, this chip has been successfully

applied to a image processing task of DeBayering images. Figure 3.48 shows the
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Figure 3.48: Image DeBayering through MATLAB and the GF3 VVM Test Chip.

results of this task done through MATLAB with 64-bit floating precision and the

GF3 VVM chip done with 512 unary samples.

Measuring the energy efficiency of the core on this test chip was infeasible because

of the sharing of the core power supply and the IO circuitry power supply due to

limited pads. Nonetheless, the energy efficiency can be extrapolated from the GF1

VVM design, which has an identical architecture.

3.6 GF4 VVM: A 4-bit MAC Multicore

Processor in 55nm CMOS

In the fourth iteration of the mixed-signal VVM architecture, a series-parallel pro-

grammable capacitor array is explored as an alternative to the full parallel unary and

binary capacitor array architecture used in all of the previous designs. The revised

core architecture uses the same Σ∆ ADC, and is also designed in the same 55nm

process. By exploiting a series-parallel capacitor array topology, the integrating and
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feedback capacitance were reduced to minimize energy and area costs. Moreover,

the additional functionality of output scaling is integrated into the core with the im-

plementation of programmable feedback capacitors. The fabricated test chip consist

of 21 VVM cores that are each capable of computing weighted sums of 16-element

vectors with 4-bit weights and variable bit precision input and outputs (maximum of

12 bits).

3.6.1 Series-Parallel Capacitor Array

The series-parallel capacitor array is a composite of 16 binary-encoded programmable

capacitors interconnected for summing the individual products of the 4-bit weights

and the 1-bit unary samples of the inputs. The programmable capacitor encodes each

bit of the weight using a set of serially-connected capacitors, where the number of

capacitors connected is scaled exponentially with the bit position. For N capacitors

121



CHAPTER 3. MIXED-SIGNAL ARCHITECTURES FOR VVM

in series, the equivalent capacitance Ceq is deduced as

Ceq =
Q

V

Ceq =
Q

V1 + V2 + . . . VN

1

Ceq
=
V1
Q

+
V2
Q

+ · · · VN
Q

1

Ceq
=

1

C1

+
1

C2

+ · · · 1

CN

Ceq =
1

1
C1

+ 1
C2

+ · · · 1
CN

,

(3.37)

where V1, V2, . . . VN are the voltage potentials on the capacitors, and C1, C2, . . . CN

represent the capacitance of the individual capacitors in series.

Furthermore, these serially-connected capacitors are connected in parallel, as

shown in Figure 3.49, for encoding the 4-bit weights in the programmable capaci-

tor. The capacitance in this programmable capacitor can be expressed as,

C =

(
1

1
C0

+ 1
C1

+ · · · 1
C7

)
∗w0+

(
1

1
C8

+ 1
C9

+ · · · 1
C11

)
∗w1+

(
1

1
C12

+ 1
C13

)
∗w2+

(
C14

)
∗w3,

(3.38)

where C0, C1, . . . C14 are all designed with the same unit capacitance Cu, which means

C =

(
1

8
Cu

)
∗ w0 +

(
1

4
Cu

)
∗ w1 +

(
1

2
Cu

)
∗ w2 +

(
Cu

)
∗ w3. (3.39)

Similar to the GF3 VVM capacitor design, an APMOM topology is also adopted
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Figure 3.49: Circuit of the 4-bit Programmable Capacitor for the GF4 VVM.

for the unit capacitors in this design. Specifically, a parameterized cell from the

process, is used for this capacitor. This unit capacitor was sized for 4fF capacitance,

which gives a maximum capacitance of 7.5fF for the series-parallel programmable

capacitor.

Furthermore, because of the minimization of the capacitance through serially con-

necting the unit capacitors, the connecting switches have increased parasitic effects

from charge injection. In order to rectify this, the connecting transistors were sized
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Figure 3.50: Transfer Curve of the Programmable Capacitor for GF4 VVM.

according to the number of capacitors in series. The extracted netlist of this de-

sign, with and without the additional transistor scaling to compensate for increased

parasitic effects, was simulated to measure the different transfer curves. In these

simulations, 10nA over 5ns is sourced to the programmable capacitor for each weight

value, and the expected capacitance is evaluated against the measured capacitance.

The results of this simulations can be seen in Figure 3.50. In both simulations, the

measured capacitance never reaches the minimum and maximum bounds of 0 and

7.5fF respectively because of the parasitic factors. Nonetheless, there is better linear-
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Figure 3.51: Layout of the 4-bit Programmable Capacitor for the GF4 VVM.

ity with the programmable capacitor that incorporates the transistor scaling.

Furthermore, the capacitors were shielded to mitigate parasitic coupling from

adjacent digital and analog signals. The layout for the 4-bit programmable capacitor

circuit can be seen in Figure 3.51.

3.6.2 Core Architecture

The core architecture for the revised VVM design is largely the same with the

exception of a redesigned programmable capacitor array, and the addition of pro-

grammable feedback capacitors for output scaling. The schematic for this core circuit

can be seen in Figure 3.3, and the annotated layout for this design is shown in Fig-

ure 3.52. The VVM core is laid out in 81µm by 120µm silicon area, and has the same

interface as the GF3 VVM core with the exception of an additional 2-bit port for

programming the feedback capacitors.

In the previous iterations of the VVM core, the feedback capacitors, which are

responsible for removing or adding charge depending on the amount of charge accu-

mulated on the integrating capacitors, were fixed to handle the maximum charge that

can be accumulated on the input capacitor array. By making this feedback capaci-
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Figure 3.52: Annotated Layout of the GF4 VVM Core.

tance programmable, the feedback charge that is added or removed can be modulated,

and used to scale the Σ∆ output. In this design, the feedback capacitors are designed

to be able to inject/remove charge equivalent to 1, 2, 3, or 4 times the maximum

input charge, which in turn scales the integrated Σ∆ output by a factor of 1, 0.5,

0.33, and 0.25 respectively. A plot of the VVM core computing weighted-sums with

different feedback capacitance taken from the spice simulations can be seen in Figure

3.53. As seen in the plot, the running average of the PDM output from the Σ∆ ADC

is scaled proportionally based on the feedback capacitance programmed. Incorporat-

ing this programmability in the feedback capacitors, allows the revised VVM core to

implicitly compute an additional scaling operation.
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Figure 3.53: The GF4 VVM Core Output with Different Output Scaling. The plot
on the left side shows the PDM output from the VVM (bipolar encoding format,
where ‘1’ is +1, and ‘0’ is -1), and the right side plot shows the running average of
the accumulated output.

For this revised VVM core, the analog bias values were modified to account for

changes in the feedback and integrating capacitor. The nominal voltage and current

bias values are listed in Table 3.11.

Furthermore, the simulated characteristics of this VVM core can be seen in Ta-

ble 3.12. This core was simulated with a clock running at 1MHz for computing

4-bit MAC operations in 16 clock cycles. In the analog domain, the capacitor array

computes the MAC operations energy costs ranging from 1.95fJ to 4.91fJ. Totally,

this operation is executed using the core with an energy cost of 5.31pJ and a total

efficiency of 188.32GOP/W. On the array only, this efficiency is measured at approx-
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Table 3.11: Nominal Bias Values for the GF4 VVM Core.

Name Description Nominal Value
V cm i Input common-mode voltage 0.5V
V inp Positive input voltage for the capacitor array 0.685V
V inm Negative input voltage for the capacitor array 0.315V
V fbp Positive feedback voltage 1.075V
V fbm Negative feedback voltage 0.025V
V cm o Output common-mode voltage 0.5V
V reg Voltage bias for the operational amplifier 0.75V
I amp Current bias for the operational amplifier 1µA
I comp Current bias for the voltage comparator 0.5µA

Table 3.12: Simulated Characteristics of the GF4 VVM Core.

Technology 55nm CMOS
Operation 4-bit MAC

Supply Voltage 1.2V
Frequency 1MHz

Throughput 1MOPs
Power Consumption 5.33µW

Energy/Op 5.31pJ (3.43fJ on the array)
Efficiency 188.32GOP/W (291.55TOP/W for the array)

imately 291.55TOP/W.

3.6.3 Test Chip

A test chip of 21 VVM cores is fabricated in the GlobalFoundries 55nm CMOS

process. These cores are laid out across 3 rows and 7 columns, and synthesized with a

3-bit opcode instruction set processor for programming cores and reading and writing

to the local registers files. The micrograph and the layout of this test chip, annotated

with the I/O and power ports, can be seen in Figure 3.54.

The top design with the 21 VVM cores is rotated 90 degrees in order to fit in
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(a) Layout (b) Micrograph

Figure 3.54: Layout and Micrograph of the GF4 VVM Test Chip.

the pad frame. The full test chip including the pad frame is designed in 0.96mm by

1.94mm (1.86mm2) silicon area.

Moreover, there are 34 ports for this chip — 14 digital inputs, 5 digital outputs,

9 analog inputs, and 6 power and ground ports. These ports are described in detail

in Table 3.13. The digital I/O ports are used in programming the instruction set

processor for writing, processing, and reading data to and from the VVM cores. In

the following subsection, the chip interface is explained in more details.
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Table 3.13: I/O and Power Ports for the GF4 VVM Chip.

Name Type Width multicolumn1—c—Description
GND POW N/A Ground

VDD12 POW N/A 1.2V I/O power supply
VDD25 POW N/A 2.5V I/O power supply
VDD! POW N/A Core power supply

V cm o AI N/A Output common-mode voltage for amplifier
V cm i AI N/A Input common-mode voltage
V fbm AI N/A Negative feedback voltage
V fbp AI N/A Positive feedback voltage
V inm AI N/A Negative input voltage
V inp AI N/A Positive input voltage
V amp AI N/A Amplifier bias voltage
V reg AI N/A Voltage bias for regulating output common-mode

V comp AI N/A Comparator bias voltage
d clk DI 1 periphery clock signal
phi1 DI 1 Non-overlapping clock for the VVM cores
phi2 DI 1 Non-overlapping clock for the VVM cores

reset i DI 1 Global reset for cores and periphery circuitry
bus en i DI 1 Enable for registering the input data bus
bus sel i DI 2 Select for the 12-bit data buses
opcode i DI 3 Opcode for selecting bus functionality

bus i DI 4 Input data bus for control, address, and data signals
bus o DO 4 Output data bus signal
rdy o DO 1 Data output ready signal

3.6.3.1 Chip Interface

The GF4 VVM test chip communicates externally through an instruction-set pro-

cessor that reads, processes, and writes data through 4-bit data buses. Aside from

the clock ports, there are 7 ports used in this processor — 1-bit reset, 1-bit enable,

2-bit bus select, 3-bit opcode, 4-bit input data bus, 4-bit output data bus, and a 1-bit

output ready. This processor runs on the d clk clock signal, which was designed to

run at 100MHz. The reset i signal is the active-high reset that not only resets all
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Table 3.14: Instruction Set for GF4 VVM Test Chip.

Opcode Description

0 Sets the 2-bit row address (3 rows).
1 Sets the 3-bit column address (7 columns).
2 Sets the address for the weight and input register.
3 Sets the output precision for the VVM cores (range of 5-12bits).
4 Bit 0: Sets the feedback capacitance.

Bit 1: Sets the feedback capacitance.
Bit 2: Selects the weight or input registers.
Bit 3: Sets the mode to run the VVM cores

5 Bit 0: Sets the reset for a VVM core.
Bit 1: Write enable for weight and input registers.
Bit 2: Write enable for offset registers.
Bit 3: Process enable for VVM cores.

6 Writes the 4-bit input to part of the 12-bit data bus

registers, but also puts the processor in the reset state. Moreover, this processor only

functions when the bus en i is asserted. The bus sel i signal, which is the bus select,

programs which 4-bits of the full 12-bit data bus is written and read when the enable

is asserted. This 4-bit bus width is adapted for this design due to pin limitations.

The main instructions for this processor is selected by the 3-bit opcode, which

is detailed in Table 3.14. The first two instructions are used to select the VVM

cores based on the row and the column. The next instruction programs the address

for the weight and input register files. After that, the next 3 instructions are used

for configuring the cores, which includes setting the output precision , setting the

feedback capacitance, writing to respective registers, resetting the cores, and enabling

the cores for processing. Additionally, by programming the mode, the output readout

can be set to either a direct readout of the Σ∆ outputs or the integrated output from
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the counters. The important procedures for this test chip are detailed as follow:

• Reset VVM Core Procedure

1. Set the opcode to 0, and set the row address on the data bus.

2. Set the opcode to 1, and then set the column address on the data bus.

3. Set the opcode to 5, and then set the data bus to “0001” for at least one

clock cycle of the φ clock to reset the core.

4. After reset, set data bus to “0000” for another cycle of theφ to take the

core out of reset.

• Set Feedback Capacitance Procedure

1. Set the opcode to 0, and set the row address on the data bus.

2. Set the opcode to 1, and then set the column address on the data bus.

3. Set the opcode to 4, and set the feedback capacitance select with the first

two bits in the data bus. The feedback capacitance select modifies the

output scaling, and the exact mapping is detailed in Table 3.15.

Table 3.15: Feedback Capacitance Select Mapping for the GF4 VVM Design

Feedback Cap.
Select

Scaling Factor

0 1.00
1 0.50
2 0.33
3 0.25
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• Set Output Precision Procedure

1. Set the opcode to 0, and set the row address on the data bus.

2. Set the opcode to 1, and then set the column address on the data bus.

3. Set the opcode to 3, and set the output precision select. Table 3.16 shows

the mapping of this select to the precision.

Table 3.16: Output Precision Select Mapping for the GF4 VVM Design.

Output Prec.
Select

# of Samples (Precision)

0 32 (5bits)
1 64 (6bits)
2 128 (7bits)
3 256 (8bits)
4 512 (9bits)
5 1024 (10bits)
6 2048 (11bits)
7 4096 (12bits)

• Load Weight Procedure

1. Set the opcode to 0, and set the row address on the data bus.

2. Set the opcode to 1, and then set the column address on the data bus.

3. Set the opcode to 2, and selects which weight to set on the data bus.

4. Set the opcode to 4, and set the 3rd bit to “1”, while preserving the mode,

and the feedback capacitance select values on the data bus.

5. Next, set the opcode to 5, and then set the data bus to “0010” to set the

write bit high.
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6. Then, set the opcode to 6, and then set the 4-bit weight on the data bus.

7. Finally, set the opcode to 5, and then set the data bus to “0000” to set

write low.

• Load Input Procedure

1. Set the opcode to 0, and set the row address on the data bus.

2. Set the opcode to 1, and then set the column address on the data bus.

3. Set the opcode to 2, and selects which weight to set on the data bus.

4. Set the opcode to 4, and set the 3rd bit to “0”, while preserving the mode,

and the feedback capacitance select values on the data bus.

5. Next, set the opcode to 5, and then set the data bus to “0010” to set the

write bit high.

6. Then, set the opcode to 6, and then set the input over 4-bit segments using

the data bus and the bus seli signals (“00” sets the first 4 bits, “01” set

the middle 4 bits, and “10” for the last 4 bits in the 12-bit data).

7. Next, set the opcode to 5, and then set the data bus to “0000” to set

write low.

• Load Offset Procedure

1. Set the opcode to 0, and set the row address on the data bus.

2. Set the opcode to 1, and then set the column address on the data bus.
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3. Set the opcode to 2, and selects which weight to set on the data bus.

4. Next, set the opcode to 5, and then set the data bus to “0100” to set the

write bit high. The write bit must be held high for at least 1 clock cycle

of the φ clock.

5. Then, set the opcode to 6, and then set the input over 4-bit segments using

the data bus and the bus sel i signals (“00” sets the first 4 bits, “01” set

the middle 4bits, and “10” for the last 4 bits in the 12-bit data). Each

4-bit data loaded must be held for at least 1 clock cycle of the φ clock.

6. Next, set the opcode to 5, and then set the data bus to “0000” to set

write low. The write bit must be held low for at least 1 clock cycle of the

φ clock.

• Enable Processing Procedure

1. Set the opcode to 0, and set the row address on the data bus.

2. Set the opcode to 1, and then set the column address on the data bus.

3. Set the opcode to 5, and set the process enable as the 4th bit on the data

bus.

• Read Output Procedure

1. Set the opcode to 0, and set the row address on the data bus.

2. Set the opcode to 1, and then set the column address on the data bus.
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However, if mode is set to 1, then skip setting the column, and read outputs

for all columns in the selected row on the data bus.

3. If in mode 0 and rdy o signal is high, then read the output of the selected

VVM in 4-bit segments from the output data bus. (Setting bus seli to

“00” reads the first 4 bits, “01” reads the middle 4 bits, and “10” reads

last 4 bits of the 12-bit output data).

3.7 GF5 VVM: An 8-bit MAC Multicore

Processor in 55nm CMOS

In the fifth iteration of the mixed-signal VVM design, an alternative architec-

ture that exploits stochastic data representation and computation is explored. In

this design, products are computed temporally in the stochastic domain using 1-bit

mixed-signal multipliers . The aggregate of these products as charge is summed im-

plicitly through interconnection of these mixed-signal multiplier. Furthermore, a Σ∆

ADC, similar to the ones implemented in the previous VVM designs, is used in con-

verting this sum of products back into a digital value. By exploiting a stochastic data

representation, the energy and area cost for the revised VVM cores were minimized,

and the computational efficiency was increased. Not only was this validated through

simulations, but also through experimental results from a fabricated 55nm test chip

with multiple VVM cores.
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3.7.1 Mixed-Signal Stochastic Multiplier

Capitalizing on the strengths of stochastic computation, a mixed-signal circuit is

proposed that computes the product of two inputs probabilistically as charge on a

capacitor using the circuit shown in Figure 3.1. Analogous to an AND logic gate, this

circuit computes the unsigned product of stochastic numbers from the relationship of

Y = (WX) ·Qu, (3.40)

where the capacitor must be connected through the weight W and a voltage potential

through the input X must be asserted for a unit charge Qu to be stored on the

capacitor.

Moreover, this architecture was adapted to signed products with 2’s complement

input stochastically encoded with a 1-bit bipolar format (‘0’ = -1 and ‘1’ = +1), and

a sign-magnitude weight with a sign and magnitude component signified with SW and

W respectively. Using the circuit shown in Figure 3.55, the product is then computed

as

Y = W

(
(X ⊕ SW )(Qu) + (X ⊕ SW )(−Qu)

)
, (3.41)

which simply shows that a unit charge Qu will be added when the magnitude of the

weight is ‘1’, and this charge will be positive if the signed input and the sign of the

weight match, otherwise, it will be negative. Similar to the unsigned multiplier, the

magnitude of the weight W connects or disconnects the capacitor, but the sign of the
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Figure 3.55: Mixed-Signal 1-bit Multiplier for Signed Products.

weight SW now selects between the non-inverted or inverted input because capacitance

can not be negated. Hence by adding an additional multiplexer to the unsigned

multiplier a signed multiplier is implemented for four-quadrant multiplication.

The layout of the 1-bit mixed-signal multiplier for signed products in the 55nm

process is shown in Figure 3.56. A 3D design topology is adapted for this pro-

grammable capacitor cell, where the unit capacitor is designed as interdigitated metal

fingers across 3 metals layers (M4 – M6) on top of the routing logic and wires for

programming the cell. By vertically integrating the capacitor with this routing and

periphery circuitry, this cell was laid out in 3.8µm by 4µm (14.4µm2) area. The unit
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Figure 3.56: Layout of the Mixed-Signal 1-bit Multiplier for Signed Products.

capacitor in this design was sized for 10fF capacitance.

Furthermore, as opposed to connecting one of the terminals to a ground terminal as

shown in the multiplier circuit in Figure 3.55, that terminal for each of the multipliers

is instead connected together. By interconnecting these plates together, the array of

multiplier can then implicitly compute the sum of the product stochastically in time.

As opposed to a spacial encoding, the weights are encoded temporally, which reduces

139





CHAPTER 3. MIXED-SIGNAL ARCHITECTURES FOR VVM

respectively, can be encoded as an aggregate of stochastic numbers as

Xi =

(
2M

N

)N−1∑

t=0

xti and Wi =

(
2M

N

)N−1∑

t=0

wti , (3.42)

where w
(t)
i and x

(t)
i are stochastic numbers of Wi and Xi respectively sampled at time

t. Similar to Equation 3.40, the product, computed as charge Q(t) at time t integrated

from the multipliers, is given as

Q(t) =
K−1∑

i=0

(w
(t)
i · x

(t)
i ) ·Qu, (3.43)

and the total charge Q integrated for all N time periods is

Q =
N−1∑

t=0

Q(t)

Q =
N−1∑

t=0

K−1∑

i=0

(w
(t)
i · x

(t)
i ) ·Qu

Q =

(
N

2M

)K−1∑

i=0

(Wi ·Xi) ·Qu,

(3.44)

where the number of time periods N (integration count) scales the precision after

normalizing the output.

Furthermore, using a fully-differential switched-capacitor Σ∆ modulator, the full

design is constructed as the architecture shown in Figure 3.58. The mixed-signal

multipliers are implemented as circuit shown in Figure 3.55 for implementing signed

arithmetic in the stochastic domain. A total of 9 mixed-signal multipliers are incorpo-
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Figure 3.59: Layout of the GF5 VVM Core.

capacitors are designed with the same unit capacitors in order to minimize mismatch

in the core. Additionally, the feedback and integrating capacitor are designed as

programmable array for computing VVMs with less number of elements. This core,

can be configured to compute as few as 1-element VVMs (a single product) to up

to 9-element VVMs. The non-overlapping phi1 and phi2 clocks are locally generated

on the core with the periphery logic displayed at the bottom of the core. The full

VVM core measures 52µm by 64µm (3712µm2) in area, and compared to the GF4

VVM core, as shown in Figure 3.60, has a 62% area reduction. Not only was the

area cost reduced, but the revised core was also designed to handle higher precision

computations with up to 8-bit weights and inputs.
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Figure 3.60: Layout Comparison of the GF4 VVM Core and the GF5 VVM Core.

3.7.3 Test Chip

For a test chip fabricated in the GlobalFoundries 55nm CMOS process, 24 GF5

VVM cores were laid out and fabricated for validating this mixed-signal architec-

ture and measuring characteristics. These cores were synthesized with register files

for storing the weights and input locally, and counters for integrating the 1-bit Σ∆

outputs from the core. In conjunction to this, a simple 6-instruction processor is

implemented in this design for writing, processing, and reading data to and from the

cores. Figure 3.61 shows the layout of the top design for the GF5 VVM. The full

design with the 24 VVM cores was designed in 0.7mm by 0.7mm (0.49mm2) area.

The full GF5 test chip is comprised of multiple designs, including GF5 VVM,

that are incorporated together in one pad frame. Figure 3.62 shows an annotated

layout view of this test chip in the pad frame. In this test chip specifically, there
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Figure 3.61: Layout of the GF5 VVM Multicore Design.

is a charge injection device (CID) processor, which is charge-based multiprocessor

for computing 1-bit products. Additionally, there is an associative memory (ACM)

processor, which uses compute-in memory primitives for computing logical operations.

There is also a morphological processor (MORPHO), a phase-locked loop (PLL) for

clock frequency synthesis, and a mixed-signal implementation of an integrate and fire

array transceiver (IFAT). Finally, there is the multicore VVM processors, which has

been described extensively in the earlier section. The specific I/O ports for the VVM

design and the pin mapping is detailed in Table 3.17.
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Table 3.17: I/O and Pin Mapping for the GF5 VVM.

Pin Port Type Description

VSS VSS POW Ground
VDD I VDD I POW I/O internal power supply
VDD E VDD E POW I/O external power supply

VDD VVM GF5 VDD! POW GF5 VVM Power Supply
PAD io 6 V inp io AI Positive input voltage bias
PAD io 7 V inm io AI Negative input voltage bias
PAD io 8 V fbp io AI Positive feedback voltage bias
PAD io 9 V fbm io AI Negative feedback voltage bias
PAD io 10 V cmi io AI Common-mode input voltage bias
PAD io 11 V cmo io AI Common-mode output voltage bias
PAD io 12 V b io AI Common-mode output regulation

voltage bias
PAD io 15 I amp io AI Op-amp current bias
PAD io 16 I cmp io AI Comparator current bias
PAD i 0 clk i DI Clock signal
PAD i 1 rst i DI Reset signal
PAD i 2 en i DI Enable signal
PAD i 3 bus i[0] DI Input data bus signal
PAD i 4 bus i[1] DI Input data bus signal
PAD i 5 bus i[2] DI Input data bus signal
PAD i 6 bus i[3] DI Input data bus signal
PAD i 7 bus i[4] DI Input data bus signal
PAD i 8 bus i[5] DI Input data bus signal
PAD i 9 bus i[6] DI Input data bus signal
PAD i 10 bus i[7] DI Input data bus signal
PAD i 11 bus i[8] DI Input data bus signal
PAD i 12 bus i[9] DI Input data bus signal
PAD i 13 bus i[10] DI Input data bus signal
PAD i 14 bus i[11] DI Input data bus signal
PAD i 15 bus i[12] DI Input data bus signal
PAD i 16 bus i[13] DI Input data bus signal
PAD i 17 bus i[14] DI Input data bus signal
PAD i 18 bus i[15] DI Input data bus signal
PAD i 19 bus sel i DI Select signal for the output data bus.

(VVM output or address pointer)
PAD i 20 addr i[0] DI Block and data address signal
PAD i 21 addr i[1] DI Block and data address signal
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PAD i 22 addr i[2] DI Block and data address signal
PAD i 23 addr i[3] DI Block and data address signal
PAD i 24 addr i[4] DI Block and data address signal
PAD i 25 addr i[5] DI Block and data address signal
PAD i 26 addr sel i DI Selects between block and data ad-

dresses
PAD i 27 opcode [0] DI Opcode bit for instruction decoding
PAD i 28 opcode [1] DI Opcode bit for instruction decoding
PAD i 29 opcode [2] DI Opcode bit for instruction decoding
PAD o 0 bus o[0] DO Output data bus signal
PAD o 1 bus o[1] DO Output data bus signal
PAD o 2 bus o[2] DO Output data bus signal
PAD o 3 bus o[3] DO Output data bus signal
PAD o 4 bus o[4] DO Output data bus signal
PAD o 5 bus o[5] DO Output data bus signal
PAD o 6 bus o[6] DO Output data bus signal
PAD o 7 bus o[7] DO Output data bus signal
PAD o 8 bus o[8] DO Output data bus signal
PAD o 9 bus o[9] DO Output data bus signal
PAD o 10 bus o[10] DO Output data bus signal
PAD o 11 bus o[11] DO Output data bus signal
PAD o 12 bus o[12] DO Output data bus signal
PAD o 13 bus o[13] DO Output data bus signal
PAD o 14 bus o[14] DO Output data bus signal
PAD o 15 rdy o DO Output ready signal

The VVM cores operate on a frequency-divided clock from a main clock clk i that

runs at 50MHz. The voltage and current biases for the cores are programmed to the

nominal values displayed in Table 3.18.

3.7.3.1 Chip Interface

The top design with the 24 VVM cores in the GF5 test chip interface externally

through a set of digital ports, which are:
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Figure 3.62: Annotated Layout of the GF5 Test Chip.

• a 1-bit reset,

• a 1-bit enable,

• a 1-bit bus select,

• a 1-bit address select,

• a 6-bit address,

148



CHAPTER 3. MIXED-SIGNAL ARCHITECTURES FOR VVM

Table 3.18: Nominal Bias Values for the GF5 VVM Core.

Name Nominal Value
VDD 1.2V

V cmi io 0.3V
V inp io 0.35V
V inm io 0.25V
V fbp io 0.35V
V fbm io 0.25V
V cmo io 0.3V

V b io 0.53V
I amp io 10µA
I cmp io 2µA

Table 3.19: Instruction Set for GF4 VVM.

Opcode Description

0 Sets the control word.
1 Write weight or input.
2 Write sign data for weight.
3 Writes LFSR mask.
4 Writes initial value (offset) for the VVM cores
5 Writes select word for all VVM cores

• a 16-bit input data bus,

• a 16-bit output data bus,

• and a 1-bit output ready.

Using these ports and the instruction set processor, the VVM cores can be configured

and data can be loaded to the register files.

The instruction set processor is comprised of 6 instructions that are detailed in Ta-

ble 3.19. The control word configures a local core reset rst, a process enable proc en,

an output precision select prec sel, resets for the LFSRs lfsr1 rst and lfsr2 rst,

and an enable for the LFSRs lfsr en. The LFSRs, which are used for the stochastic
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encoding of the weights and inputs, are loaded with different seeds by asserting the

appropriate reset after enabling the shift registers for a fixed number of clock cycles.

The LFSRs can be used to generate different maximally length sequences by encod-

ing the appropriate mask using the 4th instruction (opcode = 3). This mask controls

which bits of the registers are logically combined with XOR gates for the feedback

tap. Additionally, the precision select in the control word selects an output precision

ranging from 6 to 13 bits, where the number of unary samples integrated from the

VVM cores range from 64 to 8192 samples. Furthermore, the select word is used to

program the feedback and integrating capacitance, which is based on the number of

elements in the vector for the VVM computation. This select word can select between

a scalar product of 1 weight and 1 input to a 9-element vector-vector multiplication.

3.7.3.2 Setup

The 3mm by 3mm test chip was wirebonded to a 145 pin grid array (PGA) package

and then mounted on a custom PCB board with on board DACs and an interface to

Spartan 3 and 6 FPGAs. Figure 3.63 shows the micrograph of the wirebonded chip

and the full test board. The test board was designed as a platform for testing any

of the individual designs, and the individual power supplies and analog biases can be

connected or disconnected using the jumpers shown on the test board.

A Spartan 6310 FPGA is used as a driver for testing the GF5 test chip. On this

FPGA, a first in, first out (FIFO) block is synthesized for loading instructions to send
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(a) Micrograph (b) Test Board

Figure 3.63: Chip Micrograph and Test Board for the GF5 Test Chip.

and execute with the chip, and another FIFO block is synthesized for storing output

data from the chip. Using the Opal Kelly FrontPanel interface, data is transferred

between the FPGA and the PC through a USB port. Furthermore, the behavioral

model of the GF5 VVM design was also synthesized and implemented on this FPGA

in order to compare experimental results.

3.7.3.3 Results

Both the emulated and the fabricated VVM cores were tested for computing fixed-

point arithmetic, specifically 8-bit signed products, with different integration counts

N ranging from 64 (6 bits) to 8192 (13 bits). A plot of the normalized absolute error

of the computation result from both the emulated and fabricated design evaluated

against the computation done in MATLAB with double floating precision is shown in
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Figure 3.64: Absolute Error Box Plot from a GF5 VVM Core Emulated on the
FPGA. The plot show the normalized absolute error of the output from one of the
VVM cores from the emulated design in the FPGA compared to the results from
computing with double floating point precision in MATLAB. For different integration
count, the error is evaluated for all possible input and weight combinations.

Figure 3.64 and 3.65. The results from both the emulated design in the FPGA and

the fabricated test chip distinctly show the median and also the max absolute error

scaling with the integration count. By exploiting pseudo-random numbers through

the LFSRs, as explained in Section 2.2.2, the necessary integration count to achieve

M-bit precision in the output is far less than the expected constraint of 22M+2 with

true random numbers. The core from the emulated design in the FPGA achieves M-bit
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Figure 3.65: Absolute Error Box Plot from GF5 VVM Core on the Chip. The plot
show the normalized absolute error of the output from one of the VVM cores from
the chip compared to the results from computing with double floating point precision
in MATLAB. For different integration count, the error is evaluated for all possible
input and weight combinations.

precision averagely with 2M samples.The chip also shows a similar integration count

to error relationship, but plateaus at 8-bit due to noise in the ADC and mismatch on

the capacitors.

The surface plots, displayed in Figure 3.66 and 3.67, show the output difference

when processing with different integration counts with one of the fabricated VVM

cores. In this plot, both 8-bit inputs and weights are swept across the full input and
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Figure 3.66: Surface Plot from a GF5 VVM Core Processing with an Integration
Count of 64. The VVM output is computed for all possible combinations of the 8-bit
weight and inputs and the normalized output is plotted.

Figure 3.67: Surface Plot from a GF5 VVM Core Processing with an Integration
Count of 256. The VVM output is computed for all possible combinations of the 8-bit
weight and inputs and the normalized output is plotted.
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Input Image VVM (N = 128) VVM (N = 1024) MATLAB (Double−Precision)

Figure 3.68: Montage of Image Processing Results Using the GF5 VVM Cores at
Different Precision. First row shows DeBayering and color transform. Second and
third row show vertical and horizontal edge detection respectively.

weight domain and the normalized output is plotted for an integration count of 64

and 256. In both cases the output is discernible, but for an integration count of 256

there is more resolution in the output as expected.

Moreover, this chip was applied for various image processing tasks, and the results

can be seen in Figure 3.68. Each row in the image montage represents a different image

processing task, and each column represents either the input image or the processed

image at different precision. In the first row, the chip is used to DeBayer and color

transform an image using a 3 by 3 filter, and in the next two rows the chip was

used for vertical and horizontal edge detection separately. The leftmost column is the

input image, the next column shows the images processed with an integration count
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Table 3.20: Measured Characteristics of GF5 VVM.

Technology 55nm CMOS
Die Area 0.45mm2

Operation 8-bit MAC
Output Precision 8̃bits

Throughput 25MOPs
Supply Voltage 1.2V

Frequency 16.67MHz
Power Consumption 36µW

Energy/Op 35pJ (570fJ for the array)
Efficiency 28.6GOP/W (1.8TOP/W for the array)

of 128 on the chip, the one after that is the images processed with an integration

count of 1024, and the rightmost column is the image processed with double floating

point precision.

The measured characteristic and performance of the GF5 VVM cores re detailed

in Table 3.20. Operating on a 1.2V power supply at 16.67MHz in 0.45mm2 die area,

the VVM chip computes 8-bit MACs at a throughput of 25MOP/s with an efficiency

of 28.6GOP/W. Comparing to the previous GF4 VVM core, which computes 4-bit

MACs, the energy per operation for the GF5 VVM core can be extrapolated to

2.19pJ with an energy cost of 35.63fJ on the array. With regards to efficiency, this

core would compute 4-bit MACs at 28.1TOP/W on the array with a total efficiency

of 457.1GOP/W on the core.
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3.8 Conclusion

By exploiting charge-based computing in the analog domain, alternative archi-

tectures for energy efficient vector-vector multiplication are explored in this work.

Fundamentally, these proposed architectures implicitly compute products as charge

Q through the relationship of Q = CV , where one of the input, the weight, is encoded

as capacitance C, and the other input is encoded as the V across the capacitor. By

connecting multiple capacitors in the array, the inner product of a vector of weights

and a vector of inputs can be computed as charge in the analog domain. Importantly,

this vector-vector multiplications/inner product can be done efficiently by scaling the

capacitance and voltage to the kTC thermal noise. In a 55nm and 65nm process,

the energy per operation, where an operation is a multiply and accumulate with 4 or

more bits has been scaled to the order of femtoJoules. Furthermore, after computing

on the array, a charge-to-digital ADC, specifically a first-order switched-capacitor Σ∆

modulator, is used to decode this charge in time as a PDM output, where the output

bit precision scales proportionally with the number of samples in time. In this work, 5

different mixed-signal architectures were designed and fabricated in submicron CMOS

processes. These fabricated test chips were successfully tested, and benchmarked for

performance and efficiency.
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3.8.1 Design Optimization

Through the iterations of the mixed-signal VVM design, improvements were made

to minimize inaccuracies due to the ADC and the capacitor array, improve efficiency

by minimizing energy cost through the array, and improve performance through mul-

ticore system design. In the GF1 VVM design, the inner product is done through a

unary-encoded 2D capacitor array composed of unit capacitors to foster good capac-

itance matching. In the next revision, GF2 VVM, a simpler binary-encoded array

topology is used for lower area and energy cost at the cost of greater mismatch from

fabrication variation. The VVM core was further simplified in GF3 VVM, where

the capacitor array was redesigned to compute with less bits, and the layout was

optimized for less area and energy cost. The GF4 VVM design further improved

computation efficiency through the implementation of a series-parallel capacitor ar-

ray that minimized capacitance in the array, and thus cut energy cost. Finally, the

GF5 VVM design exploited stochastic computation in the analog domain in order to

minimize energy and area cost by reducing the number of capacitors implemented in

the core.

In order to contrast computation efficiency across the VVM designs, the designs

were scaled to the same computation precision (4-bits), and the energy cost and ef-

ficiency were measured. The computation efficiency in the analog domain on the

capacitor array for the designs can be seen in the scatter plot in Figure 3.69. Al-

though all the VVM designs achieved more than 1TOP/W for computing 4-bit MAC
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Figure 3.69: Computation Efficiency in the Analog Domain Across VVM Designs
for a 4-bit MAC Operation (Simulation).

operations in the simulations, the GF4 VVM design achieved the best efficiency of

291.55TOP/W with the series-parallel capacitor array topology. Nonetheless, the

GF5 VVM capacitor array has a more scalable design that can compute with higher

weight precision with no added hardware resource, and still achieves an efficiency of

252.2TOP/W.

The computation efficiency for the full VVM cores, which includes the energy cost

from decoding with the Σ∆ ADC can be seen in Figure 3.70. With each iteration of

the VVM design, the overall efficiency was increased because of the improvements in
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Figure 3.70: Computation Efficiency Across VVM Designs (Simulation).

the capacitor array and ADC. In the final iteration of this design, the efficiency for

computing 4-bit MAC operations was measured at 457.6GOP/W.

3.8.2 Comparative Analysis

The mixed-signal approach to computing vector-vector multiplication as charge

in the analog domain is an alternative solution to compete with conventional DSPs.

In order to compare these mixed-signal architectures to conventional computing ap-

proaches, fixed-point vector-vector multiplication units were synthesized and char-

acterized in the same submicron process. Specifically, processors were designed and
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Table 3.21: Design Specification and Characteristic of the Synthesized DSP for 4-bit
MAC and the GF VVM Core.

DSP GF5 VVM GF5 VVM
(4-bit MAC) (array) (total)

Technology 55nm CMOS 55nm CMOS 55nm CMOS
Area 2116µm2 461µm2 3712µm2

Operation 4-bit MAC 4-bit MAC 4-bit MAC
Energy/Op 54.4fJ 4fJ 2185fJ

Efficiency 18.4TOP/W 252.2TOP/W 0.46TOP/W

synthesized for computing 4-bit MAC and 8-bit MAC operations. Similar to the GF5

VVM design, these processors were tailored for vector-vector multiplications with

9-element vectors.

The design specification and energy measurements from both the DSP, synthesized

for 4-bit MAC operations, and the GF5 VVM core can be seen in Table 3.21. The

array of mixed-signal multipliers in the GF5 VVM core is more computational efficient

than the conventional DSP synthesized in the same process. Not only does it use less

energy per operation, it also takes up less area. However, with the addition of the

ADC for decoding and the periphery logic for running the mixed-signal VVM core,

the full GF5 VVM core has higher energy and area cost than the conventional DSP

implemented in this process.

Moreover, the design specification and energy measurements from both the DSP,

synthesized for 8-bit MAC operations and the GF5 VVM core can be seen in Ta-

ble 3.22. Although the GF5 VVM core has better area utilization for scaling compu-

tation bit precision, the conventional DSP synthesized in this process achieves better
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Table 3.22: Design Specification and Characteristic of the Synthesized DSP for 8-bit
MAC and the GF VVM Core.

DSP GF5 VVM GF5 VVM
(8-bit MAC) (array) (total)

Technology 55nm CMOS 55nm CMOS 55nm CMOS
Area 7026µm2 461µm2 3712µm2

Operation 8-bit MAC 8-bit MAC 8-bit MAC
Energy/Op 193fJ 63.4fJ 35000fJ

Efficiency 5.2TOP/W 15.8TOP/W 0.03TOP/W

computation efficiency for higher computation bit precision. Nonetheless, the GF5

VVM core exploits stochastic computing to provide a robust and adaptable com-

puting solution that not only achieves better efficiency at lower bit precision on the

array, but also is more error-tolerant because if its innate probabilistic modality of

computing.

Each of the different mixed-signal VVM designs highlighted the advantage of

charge-based computing in the analog domain for better computational efficiency,

and despite the constraining decoding cost with the Σ∆ ADC, these mixed-signal

architectures could be optimized to be a competitive alternate to the conventional

computing systems. Furthermore, with bandwidth limitation becoming a critical

factor in technology scaling, this area efficient mixed-signal architecture approach to

computing can be exploited in building more scalable systems that properly leverage

computation time and precision.
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Chapter 4

A Mixed-Signal Successive

Approximation Architecture for

Energy-Efficient Fixed Point

Arithmetic

In the previous chapter, mixed-signal architectures were presented that exploit

computing in the analog domain for energy efficient vector-vector multiplications.

Leveraging charge-based computing, these architectures showed how implicitly com-

puting inner products as charge at the thermal noise limit can reduce energy cost.

Nonetheless, these gains in energy efficiency have been primarily limited to decoding

cost with the analog-to-digital conversion. Thus, an alternative design, inspired from
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the successive approximation (SA) analog-to-digital converter (ADC), is explored

that combines the computational and decoding structures to minimize energy cost

and improve computational efficiency. Specifically, an architecture is proposed that

uses a capacitive DAC and a successive approximation register (SAR) for computing

multiplication and addition operations at the thermal noise limit.

4.1 Successive Approximation (SA) ADC

As one of the most popular architectures for high speed low-power data con-

version, the SA ADC has been widely adapted for data conversion,64–67 biomedical

applications,60 imaging,68 sensor networks,69 and more. Specifically, the charge redis-

tribution SA ADC, which is comprised of a capacitive DAC, a comparator, and some

output decoding logic, SA ADCs can be designed for both high resolution and high

speed while being implemented in relatively small area. Using a SAR, the SA ADC

achieves efficient data conversion by performing a binary search through all possible

quantization levels to converge to the correct digital output representing the analog

input. The DAC and the comparator work concurrently with the SAR to perform

this search, and thus convert from the analog to the digital domain.

A block diagram of the charge redistribution SA ADC can be seen in Figure 4.1.

The voltage input V in in this architecture is converted into a digital value by encoding

as charge in the DAC, and then performing a binary search that manipulates this
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SAR & Control Logic

DAC

Capacitor ArrayVin

Figure 4.1: Successive Approximation ADC Block Diagram.

charge to deduce the converted output. To achieve this, first the V in is sampled

on the capacitor array. Then, using this capacitor array as a voltage divider, charge

quantized to different bit precision is added to the array, which creates a delta voltage

that is measured through the comparator. This modulated voltage from the shared

plate of the capacitor array Vt is given as

Vt = −V in+

(
D(N−1) ·

Vref
21

)
+

(
D(N−2) ·

Vref
22

)
+ · · ·+

(
D0 ·

Vref
2N

)
+ Vo, (4.1)

where Vref is the reference voltage, which represents the maximum the input volt-

age, Vo is the offset voltage from the comparator, and D(N−1), D(N−2),...,D0 are the

individuals bits of the SAR which represents the converted output.

The primary limitation of this ADC, is the capacitor matching, as accuracy and

precision in this architecture depends on the capacitance mismatch in the DAC. This
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capacitance mismatch gives a maximum integral non-linearity (INL) of

|INL|M =
Vref · 2(N−1) · |∆C|M

2N · C
=
Vref

2
· |∆C|M

C
, (4.2)

where |∆C|M is the maximum delta capacitance from mismatch. In order to achieve

N-bit precision, this maximum INL is limited to half an LSB, which corresponds to

a bit precision equivalent to

N = log2

(
C

|∆C|M

)
. (4.3)

Similarly, the maximum differential non-linearity (DNL) is given as

|DNL|M =
Vref · (2N − 1) · |∆C|M

2N · C
, (4.4)

and with a bound of half of a LSB for the maximum DNL, the deduced bit precision

is similar to Equation 4.3.

Despite these accuracy issues from capacitor mismatch, numerous of SA ADC

have been designed that achieve conversion precision of 8-bits,67,68,70 10-bits,64 and

even more.66,69
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4.2 SA Multiply-Add Architecture

4.2.1 Multiply-Add Operation

The proposed mixed-signal architecture, computes a fixed-point multiply-add op-

eration as

y = wx+ c, (4.5)

for a signed weight w, input x, and offset c encoded as signed magnitude. Conven-

tionally, the unsigned product of the magnitude of w and x can be computed as the

sum of the partial products deduced from the individual bits of the input and weight;

this is illustrated in Table 4.1. The sign of this product can be deduced from simple

Table 4.1: Unsigned Binary Multiplication.

wn−1 · · · w1 w0

× xn−1 · · · x1 x0

p(n−1,0) · · · p(1,0) p(0,0)

p(n−1,1) · · · p(1,1) p(0,1)
...

+ p(n−1,n−1) · · · p(1,n−1) p(0,n−1)
y2n−1 · · · y1 y0

logic of the MSB of the weight and input, and then the full result from the product

can be added to offset c to derive the output of this operation.
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and finally the Decode phase — for integrating the weighted partial product bits.

Firstly, in the Compute phase, a charge equivalent to the sum of the weighted

partial product bits is injected into the array of capacitors. The top plates of all

capacitors are connected to a common ground node, while the bottom plates are

isolated and connected to either a power supply with +V volts or the common ground

node depending on the partial product bits. This total charge QY can be expressed

as

QY =
N−1∑

i=0

N−1∑

j=0

2i+jp(i,j)(CV ), (4.6)

where i and j are the indexes of the partial product bits generated from the logical

AND operation between the weight and input as shown in Table 4.1, C is the unit

capacitance, and V is the voltage potential induced across the capacitors. Thus, by

connecting a set of capacitor in parallel using switches, the partial product can be

integrated as the total charge QY injected onto this capacitor array. Furthermore, by

scaling this voltage and capacitance to the thermal noise (kTC) and mismatch limit,

this computation can be done efficiently.

After the first phase, the charge QY is translated into a voltage VY in the Redis-

tribution phase. In this phase, charge is redistributed evenly across all the capacitors

in the array by disconnecting the top plates of the capacitors to ground, and connect-

ing all the bottom plates of the capacitors to ground. Since the charge is conserved
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between the Compute and Redistribution phase,

QY = CTVY (4.7)

N−1∑

i=0

N−1∑

j=0

2i+kp(i,j)(CV ) = CTVY (4.8)

VY =

(∑N−1
i=0

∑N−1
j=0 2i+kp(i,j)C

CT

)
V, (4.9)

where CT is the total capacitance of the array when all the capacitor are connected.

CT is sized for the precision of the computation, which is,

CT = (2N − 1)C (4.10)

Thus, the voltage VY represents the sum of the weighted partial product bits scaled

by the voltage of the power supply V and the capacitance of the array CT .

Finally, this voltage representing the output of computation is converted back into

a digital value in the Decode phase. Using a digital control word si, the capacitor

array is reconfigured from a parallel configuration to a series-parallel configuration in

order to perform the binary search to decode the voltage VY into the digital word.

In the series-parallel configuration, the VY is voltage divided according to each bit

position in the digital word, and compared to the common ground node indicating

the magnitude of that bit for the decoded result. Although the charge from the

computation is preserved on the capacitor array, an additional charge is injected into
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the array while decoding, which in turns creates a delta voltage; this voltage VD

during this phase is given as

VD = VY +

(
CD
CT

)
V, (4.11)

where CT is given earlier as (2N − 1)C, CD is total capacitance of the capacitors with

the bottom plate connected to the power supply with voltage V in the capacitor array,

and VY is initial voltage for this phase that represents the output of the computation.

During decoding, CD changes exponentially at a rate of 2i according to the control

word si from most-significant to least-significant bit. Through the binary-search the

result of the computation can be decoded in 2N time steps, where N is the bit-

precision of the weight and the input, and hence the total precision of the resulting

product.

Furthermore, by adapting this architecture to a differential topology, the addition

operation can be implicitly performed with a voltage offset on the other input of

the comparator. The full architecture implementation is described in the following

section.

4.2.3 Architecture

The full architecture implementing the fixed-point multiply-add operation can be

seen in Figure 4.3. This architecture operates under the 3 phases described in detail
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Figure 4.3: SA Architecture for Multiply-Add Operations.

in Section 4.2.2. As shown in the full architecture diagram, the partial product bits

are computed from the weight w and the input x, and these bits are then used to

program a capacitor array. The connected top plates of this capacitor array connects

to the comparator, which is used in decoding the output of the computation from the

analog domain. An additional programmable capacitor array is used for generating a

voltage offset used during decoding for implementing the addition operation and also

calibration if necessary.

Furthermore, the capacitor array for this architecture is shown in Figure 4.4.

The 3 phase process is simplified into two phases, where the first phase φ0 does the
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V out− are preserved. Then when clk is high (compare), the difference between the

inputs to the comparator V in+ and V in− is amplified and reflected in the difference

between Fp and Fm. This amplification from the first stage causes the outputs of

the second stage Sp and Sm to pull to the respective rail through positive feedback

from the cross-coupled inverters. The comparator outputs set the new value for the

latch which is held for a clock cycle.

4.2.4 Computational Efficiency

In order to compare the computational efficiency of this design to that of conven-

tional architectures, circuit simulations along with an energy analysis is done. The

mixed-signal SA architecture was designed in a 16nm FinFET process, and this archi-

tecture was constructed to compute 8-bit multiply-add operations with 5-bit signed

weights and inputs, and 8-bit offset. The capacitor array was designed with 4fF unit

capacitors, with an input voltage bias of 50mV (an LSB of 200µV). In addition, a

digital implementation of a fixed-point multiplier and adder with the same precision

was synthesized in the same process.

Subsequently, the SPICE models of both implemented designs were simulated

with different supply voltages and clock rates in order to measure performance and

efficiency. With a nominal process supply voltage of 0.8V, the power supply is swept

from 0.4-0.8V for both designs, and the total energy from these simulations were

measured based on a similar setup as described in Section 3.3.1.2. The results of this
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Figure 4.6: Energy Plot across Different Supply Voltages for the Different Multiply-
Add Designs.

analysis can be seen in Figure 4.6. As the energy fluctuates with both leakage current

and dynamic current from gates switching, numerous of measurements are recorded

as the inputs are randomly sampled in measuring the distribution of the energy cost

for different supply voltages. The SA-based multiply-add design on average is more

energy-efficient, and has lower maximum energy-cost compared to a conventional
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Figure 4.7: Energy Comparison for the Different Multiply-Add Designs at 0.4V
Supply Voltage.

implementation.

Moreover, as the energy scales quadratically with the supply voltage, both design

achieve their minimum bound of energy cost per operation at 0.4V from this analy-

sis. Comparing these two cases, the plot shown in Figure 4.7 contrasts the average

energy cost between these two designs at the aforementioned supply voltage. The

conventional multiply-add design uses 9.4fJ averagely per operation, while the SA
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Table 4.2: Simulated Characteristic of the SA Mulitply-Add Single Core.

Process 16nm FinFET
Operation 8-bit Multiply-Add

Supply Voltage 0.4V
Clock Frequency 50MHz

Throughput 3.57MOPs
Power 24.5nW

Energy/Op 6.85fJ
Energy Efficiency 146TOPs/W

multiply-add design uses 6.85fJ averagely per operation, which equates to an energy

savings of roughly 37%. Furthermore, as majority of the energy cost is attributed

to the dynamic comparator, the capacitor array, which computes the operation, uses

roughly 0.66fJ for the computation.

The summary of the simulated characteristics of the SA multiply-add single core

can be seen in Table4.2. Measurements presented in this table are solely based on

SPICE model simulations, and are not fully indicative of the performance and effi-

ciency of a fabricated core. Furthermore, the energy dissipated from the SAR de-

coding logic is not included in this simulation as this logic can be shared across

multiple cores with the exception of the state-holding successive approximation reg-

ister. Nonetheless, these results show that the proposed SA multiply-add core can

compute 8-bit multiply-add operations with an average efficiency 146TOPs/W.
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Figure 4.8: Layout of the Unit Cell of the DAC for the SA Multiply-Add Core.

4.3 16nm FinFET Test Chip

A test chip, comprised of multiple SA multiply-add cores, was laid out in a 16nm

FinFET process for validating the proposed architecture. The core layout, which was

matched to the circuitry described in Section 4.2.3, was optimized for minimal area

and energy through custom design validated with parasitic extraction simulations. In

order to maximize the efficiency of area utilization, the capacitor array for the DAC

was constructed as a 2D grid of cells containing a unit capacitor and the pass gate

logic for driving the cell (as seen in Figure 4.4). Similar to the the mixed-signal vector-

vector multiplier (VVM) capacitor array discussed in Chapter 3, a metal-oxide-metal

(MOM) capacitor design is used for the unit capacitors in the mixed-signal cores.

The pass gate logic and the capacitor are laid out jointly in a 3D layout topology,

where the MOM capacitors, which were designed across the higher level metals, are

underlaid with the periphery circuitry and routing. The layout for the unit cell for

the DAC can be seen in Figure 4.8. The MOM capacitor was designed across two

metal layers (M4 and M5), and was shielded below and laterally to minimize parasitic

178



CHAPTER 4. A MIXED-SIGNAL SUCCESSIVE APPROXIMATION
ARCHITECTURE FOR ENERGY-EFFICIENT FIXED POINT ARITHMETIC

Figure 4.9: Layout of the Dynamic Comparator and Latch for the SA Multiply-Add
Core.

coupling from the digital signals and adjacent cells. This cell measures 1.248µm by

2.976µm (3.714µm2) in area with an approximate unit capacitance of 4fF, which was

deduced from the parasitic extraction analysis.

Moreover, the dynamic comparator and latch (circuit shown in Figure 4.5) were

laid out in 1.056µm by 4.604µm (4.862µm2) silicon area, and a netlist, including

parasitic nodes, was extracted and simulated to verify functionality and measure

performance. The layout for this comparator and latch can be seen in Figure 4.9.

The comparator was simulated to run at 1GHz, and a Monte Carlo simulation was

done to characterize the comparator offset. A histogram plot of the result of this

simulation can be seen in Figure 4.10. The maximum comparator offset with this

design with process and mismatch variations didn’t exceed 21mV. With the added

functionality of calibration in the core, this offset can easily be corrected.

The complete layout of the capacitor array, comparator, latch, and periphery

circuits for the SAR multiply-add architecture can be seen in Figure 4.11. The de-

sign measures 51µm by 53µm in area (2703µm2) without the digital periphery circuit
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Figure 4.11: Layout of the SA Multiply-Add Core without SAR Decoding Logic.

accounts for approximately 10% of the total area of the core. Furthermore, majority

of this active logic used in this core is pass gate logic, which has minimal dynamic

power, as cells are not constantly switching between the power rails.

In the test chip, an individual core is placed with synthesized digital periphery

circuitry to measure single core performance and efficiency. In addition, an array

of 64 multiply-accumulate (MAC) units composed of SA-based multiply-add cores is

constructed in this chip. Each processor has a multiply-add unit along with a 16-bit

accumulator to do more general-purpose DSP. Although each unit should achieve the
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Figure 4.12: Layout View of the SA Multiply-Add Core with the Active Capac-
itors Highlighted. The main capacitor array for summing the partial product bits
is highlighted in red, and the capacitor array for calibration and the additional add
operation is in green.

simulated performance as shown in Table 4.2, this is not achievable due to bandwidth

constraints from limited number of pins. Moreover, this array is particularly useful for

measuring accuracy and performance variations across these mixed-signal processors.

The layout of the full test chip can be seen in Figure 4.14. A detailed description of

the pins for this test chip can be seen in Table 4.3. The pins are segmented by two

blocks — block #1 (B1) is the single core SA multiply-add core and block #2 (B2)

is the 64-core MAC processor. With regards to pin types, POW is power, GND is

182



CHAPTER 4. A MIXED-SIGNAL SUCCESSIVE APPROXIMATION
ARCHITECTURE FOR ENERGY-EFFICIENT FIXED POINT ARITHMETIC

ACTIVE
LOGIC

Figure 4.13: Layout View of the SA Multiply-Add Core with the Inactive Logic
Highlighted. The layout highlighted in blue is the inactive logic that is underlaid the
capacitors.

ground, DI is digital input, DO is digital output, and AI is analog input. The Vp

and VDD core ports are separated between the two blocks for power measurement

purposes. There are total of 30 pins used in this chip.
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Figure 4.14: Annotated Layout of the 16nm FinFET Test Chip.

4.4 Conclusion

In this chapter, a mixed-signal architecture based on successive-approximation is

presented as a energy efficient alternative to conventional digital signal processors

for fixed-point multiplications and additions. Based on the widely-popular succes-

sive approximation (SA) ADC, this architecture utilizes a programmable capacitor

array to compute products and sums, and then decodes into a digital value using

a binary-search scheme. Invoking similar charge-based computing primitives as the

mixed-signal VVM architectures presented in Chapter 3, this architecture takes a step

forward, and combines the analog computational structure with the decoding struc-

ture to minimize computation time and energy cost. Designed in a 16nm FinFET

process, the architecture was simulated to compute an 8-bit multiply-add operations

at 6.85fJ averagely with a 0.4V supply voltage, and an average energy efficiency of
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Table 4.3: Table of Pins for the 16nm FinFET Test Chip.

Pin Core Port Type Description

DVDD N/A POW External I/O power supply
VDD N/A POW Internal I/O and core power supply
VDDI VDD POW Power supply for the single core
DVSS N/A GND External I/O ground
VSS VSS GND Internal and core ground
VCM Vcm AI B1 and B2 common-mode voltage bias
VM Vm AI B1 and B2 negative input voltage bias w.r.t. Vcm
VP1 Vp AI B1 positive input voltage bias w.r.t. Vcm
VP2 Vp AI B2 positive input voltage bias w.r.t. Vcm
B1 IN[0] clk DI B1 clock signal
B1 IN[1] rst i DI B1 reset signal
B1 IN[2] en i DI B1 enable signal for the serial I/O interface
B1 IN[3] ld i DI B1 load signal for the serial I/O interface
B1 IN[4] d i DI B1 data input signal
B1 OUT[0] d o DO B1 data output signal
B1 OUT[1] d o DO B1 done signal
B2 IN[0] clk DI B2 clock signal
B2 IN[1] rst i DI B2 reset signal
B2 IN[2] en i DI B2 enable signal for the serial I/O interface
B2 IN[3] ld i DI B2 load signal for the serial I/O interface
B2 IN[4] d i[0] DI B2 data input signal
B2 IN[5] d i[1] DI B2 data input signal
B2 IN[6] d i[2] DI B2 data input signal
B2 IN[7] d i[3] DI B2 data input signal
B2 OUT[0] d o[0] DO B2 data output signal
B2 OUT[1] d o[1] DO B2 data output signal
B2 OUT[2] d o[2] DO B2 data output signal
B2 OUT[3] d o[3] DO B2 data output signal

146TOPs/W. Compared to a conventional digital architecture implementing the same

operation with the same simulation specifications, the proposed design used 37% less

energy. Furthermore, a test chip comprised of one SA multiply-add core for measur-

ing single core performance and efficiency, and an array of 64 MAC processors, was

designed and fabricated in the aforementioned process.
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Chapter 5

Heterogeneous Chip

Multiprocessor Design

Within the last few decades, transistor scaling, microarchitecture techniques,

and cache memories have fueled exponential gains in microprocessor performance.71

Through these advancements, single core processor performance has improved over

three-orders of magnitude, and paved the way to more complex computing systems

that can handle more complicated task. Nonetheless, with new challenges of dimin-

ished transistor-speed scaling and energy constraint, alternative design practices and

approaches hinged on large-scale parallelism and heterogeneity have been essential

for realizing recent performance and energy efficiency gains.72

Before the advent of chip multiprocessors (CMPs), skepticism of large-scale mul-

tiprocessor systems had been elucidated through Amdahl’s law,73 which attributes
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performance limitations in a multicore processor to the nonparallel code/algorithm

executed on the cores. Formally,

Speedup =
1

(1− f) + f
N

, (5.1)

where f is the fraction of the code that is nonparallelizable, and N is the number of

cores implemented. Equation 5.1 shows that as the fraction of executed code that

can be parallelized approaches 1, the processor speedup tends to the number of cores

N , and categorically, that this fraction is critical in the number of cores implemented

in the CMP.

Extending Amdahl’s law for energy efficient computing, design considerations with

regards to number of cores and types of cores becomes even more critical. Symmet-

ric multiprocessors with high single-thread performance can easily lose its energy

efficiency as the number of cores increases, and adopting a heterogeneous multicore

alternative that integrates specialized cores can yield more energy efficient solution.74

Moreover, properly exploiting heterogeneity in CMP design, can not only leverage

good performance and energy efficiency, but can also foster more generality for hard-

ware reusability.

A comprehensive design methodology for architectural exploration in CMPs, that

links parallel processing to traditional very large scale integration (VLSI) metrics, has

been done to further extend Amdahl’s law.75 Through a cost function minimization,
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a high-level architectural optimization approach is presented and demonstrated for

maximizing energy-delay performance for fixed area constraints. Not only does their

model analyze parallelism in CMPs, but also incorporates memory area utilization,

hierarchy, and communication contention for capturing complex behaviors in CMP

system design.

In conjunction to challenges faced for improving multicore performance and effi-

ciency, limited bandwidth scaling for both off-chip and on-chip traffic has also become

a critical concern.76,77 With pin limitations and power constraints, bandwidth scaling

has lagged behind the transistor scaling, and the rate of memory traffic generation has

exceeded the rate that it can be serviced. Innovations in 3D chip integration,71,78 such

as through silicon via (TSV) chip stacking, have brought increased interconnectivity

through the vertical dimension.

In recent years, high performance computing (HPC) and energy efficient systems

have been developed to tackle more data-intensive tasks. Specifically, a custom ap-

plication specific integrated circuits (ASIC) chip, the Tensor Processing Unit (TPU),

has been designed for accelerating inference for machine learning applications in data

centers.79 Additionally, different neuromorphic chip multiprocessors (CMPs) and

systems,80–82 have been designed for energy efficient machine learning, multi-media

processing, and neural simulation.

In this dissertation, work is done for the design of the 2.5D Nano-Abacus System-

on-Chip, which is a heterogeneous multiprocessor chip designed in 55nm CMOS pro-

188



CHAPTER 5. HETEROGENEOUS CHIP MULTIPROCESSOR DESIGN

cess for large scale energy efficient data processing. Starting from the individual pro-

cessing unit cores to the full system-on-chip with the network-on-chip and the I/O

interface, this CMP was designed to efficiently compute, while also achieving good

performance and generality. In this chapter, first the full system-on-chip is described.

Then, some processing units (PUs) applicable for general-purpose signal processing

are detailed along with a PU controller that facilitates distributive computing. After

that, a scalable bufferless network-on-chip architecture is discussed with the presen-

tation of a network simulator. Next, high speed pad I/O circuitry used for both a

general purpose I/O (GPIO) interface and a 3D DiRAM HUB interface is described.

Finally, a mixed-signal accelerator CMP is detailed with a few large-scale applications

in image processing and machine learning.

5.1 2.5D Nano-Abacus System-on-Chip

The 2.5D Nano-Abacus SoC is comprised of 3 CMPs, each designed in 14.133µm

by 17.466µm silicon area in a 55nm CMOS process, that are interconnected to a high

memory bandwidth 3D dis-integrated random access memory (DiRAM) and a Xilinx

Zynq 7100 FPGA on a 50mm by 64mm interposer in a 1µm process. This SoC is

constructed as a system-in-package (SIP), where the chip modules are mounted onto

the interfacing silicon interposer through a flip chip package of controlled collapse chip

connections. As opposed to a true 3D chip design, which employs TSV connections
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5.2 Processing Units

In the CMPs, the processing units (PUs) are specially designed to not only push

performance for data-intensive task through the high bandwidth NoCs, but also pro-

mote computational efficiency through architecture and circuit optimization. In this

dissertation work, three different PUs were designed — a mixed-signal processor with

128 cores for efficient fixed-point arithmetic, a computation memory controller that

can be used for rotational and translational data manipulation, and an auxiliary

memory unit that can work in conjunction with other PUs. Furthermore, a PU con-

troller based on a simple instruction set processor is designed to facilitate distributive

computing in the CMPs.

5.2.1 PU VVM: A Mixed-Signal Processor for Fixed-

Point Arithmetic

5.2.1.1 Overview

The processing unit vector-vector multiplier (PU VVM) is a mixed-signal acceler-

ator comprised of 128 cores for computing fixed-point arithmetic. Exploiting charge-

based computing and stochastic logic, each VVM core computes inner products at

the thermal noise limit in the analog domain for minimal energy cost using a capac-

itor array. Subsequently, a first-order Sigma-Delta (Σ∆) modulator ADC is used to
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Table 5.1: Simulated Characteristics of the PU VVM.

Technology 55nm CMOS
Core Area 1.152mm2

Operation 8-bit MAC
Precision 8-bit

Throughput 225MOPs
Efficiency 28.6GOP/W (1.8TOP/W for the array)

decode the computation output back into the digital domain. Each VVM core, which

comprises of this capacitor array and the ∆Σ ADC, is interfaced to periphery circuits

for local weight and parameter storage, input data encoding, and post-processing for

output scaling and thresholding. Furthermore, an instruction set-based processor is

implemented as a programmable DMA and processor controller for programming the

cores and I/O communication. This design capitalizes on the computational efficiency

of the VVM cores for computing 8-bit precision inner products of vectors with up to

9 elements at 1.8TMAC/W on the capacitor array and 28.6GMAC/W totally. Addi-

tionally, this mixed-signal processor is capable of computing 225MOP/s, and can be

used for numerous of signal processing and machine learning applications including,

image filtering, fast-fourier transform (FFT), neural networks, and more. Table 5.1

shows the simulated characteristics of the PU VVM. Additionally, figure 5.4 shows

an annotated layout view and an architectural diagram of the PU VVM.
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Figure 5.5: Annotated Layout of the PU VVM Core Design.

in the previous section in Figure 3.58. Moreover, the layout was revised to further

mitigate parasitic factors from routing, and the annotated layout of the VVM core

can be seen in Figure 5.5. The optimized core design, which measures 56µm by

50µm, is more compact than the GF5 VVM core design, which measured 64µm by

58µm. Additionally, level shifters were integrated in this core for lower supply voltage

operation.
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Furthermore, the nominal bias values for operation and measured characteristic

are reported in Table 3.18 and 3.20. Operating on a 1.2V power supply at 16.67MHz

in 0.0028mm2 silicon area, the VVM core computes 8-bit MACs at a throughput of

580KOPs with an efficiency of 28.6GMAC/W.

5.2.1.3 PU VVM Programmability

The PU VVM was designed with the programmability of adjusting the clock rate,

active cores, data type representation (unsigned or signed), random number genera-

tors, output offset, output integration count, output scaling, and output thresholding.

Each of these programmable settings are discussed in more details below.

• Clock Rate : A clock divider based on a 32-bit binary counter is implemented

for modulating the VVM core clock rate. The VVM core, which is running

on a separate clock domain may need to run slower when scaling the power

supply, thus the clock divider is important for scaling the clock rate for optimal

performance. Based on a 300MHz main clock, the clock divider can scale the

VVM core clock rate from as high as 150MHz to as low as 0.06Hz.

• Active Cores : Each of the 128 VVM cores in the PU VVM can be disabled,

which deactivates the clock signals for the core and the counter for integrating

the VVM core output. In the case that only a few cores are needed, this

functionality helps minimize power consumption from unused cores.
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• Data Type : The data type representation of both the weight and input (ei-

ther signed or unsigned) can be programmed, which modifies the encoders to

properly generate the unary samples. This parameter guarantees that the full

input domain is used based on the data type.

• Random Number Generators : The 2 random number generators used in

the PU VVM, one for the weight encoder and the other for the input encoder,

can be modified to have a different starting seed and tap mask. The tap mask

is used for configuring which bits of the LFSR are used in the feedback. This

allows for different maximal-length LFSR patterns across different bit precision

to be used with different seeds.

• Output Offset : A 16-bit signed offset value can be programmed in the output

counter for any of the 128 VVM cores. This allows for an implicit addition

operation, which can also be useful for VVM core calibration for mitigating

fabrication variations.

• Output Integration Count : The count threshold for integrating the VVM

output can be programmed for each core. This can be used for an implicit

multiplication operation or implementing gain function by scaling the count

threshold according.

• Output Scaling : The 16-bit output counter, can be scaled by a power of 2

(for both multiplication and division) through bit shifting.
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• Output Thresholding : The integrated output on the counters from the VVM

cores can be bounded by a programmable minimum and maximum value that

is particularly useful for event detection applications.

5.2.2 PU CMC: A Computation Memory Controller

5.2.2.1 Overview

The computational memory controller processing unit (PU CMC) is a processor

used for translational and rotational data manipulation through address remapping.

Using a programmable rotation and translation matrix, this processor performs a

destination-based data remapping, where each destination data point is derived from

the source data point. In order to minimize remapping latency from memory fetch

and store operations, this processor is designed to remap 2D patches of data with the

same rotation and translation matrix per processing cycle. The architecture for this

processor, along with the layout of the design can be seen in Figure 5.6.

For a 32 by 32 data patch, the processor computes the source addresses and

fetches the bounding source patch of 46 by 46 data points. As depicted in Figure 5.7,

this bounding patch encompasses all possible rotational points. The controller in the

processor, which is a finite-state machine, is used to initiate the address computa-

tions and manage the read and write operations to and from main memory for data

remapping.
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the new point (x2, y2) will have the relationship

x2 = rcos(θ1 + θ)

y2 = rsin(θ1 + θ)

(5.3)

with respect to the new angle (θ1 + θ). By applying the angle addition identities, the

new point can be deduced as

x2 = x1cos(θ)− y1sin(θ)

y2 = x1sin(θ) + y1cos(θ)

(5.4)

Combing this with a translational shift of (x0, y0), the address function computed for

this processor is given as

x2 = x1cos(θ)− y1sin(θ) + x0

y2 = x1sin(θ) + y1cos(θ) + y0

(5.5)

The sin(θ) and cos(θ) values are precomputed and stored before each processing cycle

along with the translational parameters x0 and y0. Thus, the first stage of the com-

putational memory controller then computes this multiply and addition operations

for generating the addresses for each 1024 data point. In addition to that, it also

keep track of the minimum and maximum values for each dimension to be used for

the next stage of fetching the source data patch.
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In the next stage, Fetch Source Patch, the controller makes a burst of read

requests from the main memory in order to populate the source patch register files.

This is done simply through looping from the minimum x and y source address to

the maximum x and y source address. Following that, the controller then performs

the Write Destination Patch operation, which cycles through the destination ad-

dresses in consecutive ascending order, and assign the data point according to the

corresponding source address. Finally, in the Store Destination Patch in Mem-

ory phase, the destination data points are written back to main memory through a

burst of write requests through the network.

5.2.3 PU CACHE: Auxiliary Memory Unit

5.2.3.1 Overview

The cache processing unit (PU CACHE) is an auxiliary buffer/cache unit used

for local data storage for the other processing units. A 10KB cache, composed of

an aggregate of five 2KB register files, is interfaced to a controller module, which

facilitates read and write operations to and from main memory to this cache and

other PU modules. The annotated layout view and block architecture for the PU

CACHE is shown in Figure 5.10. In order to achieve high speed performance, register

files are used as the memory banks for the cache. As shown in the block architecture,

a simple cache topology is adapted that shifts the responsibility of cache coherency
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Table 5.3: Simulated Characteristics of the PU CACHE.

Technology 55nm CMOS
Core Area 1.15mm2

Supply Voltage 1.2V
Frequency 300MHz

Throughput 76.8Gb/s
Read/Write Latency 6.7ns

5.2.3.2 2KB Register File Design

The 2KB register files used in the cache were synthesized from generic VHSIC

hardware description language (VHDL) code that exploits register duplication in

order to meet timing closures. In the conventional implementation of the output

decoder, the read address control signal drives logic that selects the output bits from

the rows of the register files. An example of this decoder for 16 row N-bit width

register file is shown in Figure 5.11. As the fan-out grows with the data width N

and the number of rows, meeting timing closures for place and routing this design

becomes more difficult. To avoid this scaling issue, an alternative solution is used

that systematically duplicates the read address signals in order to minimize fan-out

and maintain good performance for large register files. An example of this alternative

decoder design for the same register file in Figure 5.11 can be shown in Figure 5.12. In

this implementation, the 16-1 N-bit multiplexer is broken into a multiplexer tree with

the select signals driven by duplicated registered read address bits. Specifically, the

lower 2 bits of the read address, which drive a higher fan-out than the upper 2 bits, is

replicated into 4 duplicates that drive separate 4-1 N-bit multiplexer. Logically, both

206







CHAPTER 5. HETEROGENEOUS CHIP MULTIPROCESSOR DESIGN

wr_addr_i : in std_logic_vector(log2(DEPTH)-1 downto 0);

rd_addr_i : in std_logic_vector(log2(DEPTH)-1 downto 0);

data_i : in std_logic_vector(WIDTH-1 downto 0);

data_o : out std_logic_vector(WIDTH-1 downto 0)

);

end data_mem;

architecture arch of data_mem is

constant AWIDTH : integer:= log2(DEPTH);

type phase_address_type_16 is array (0 to 16-1) of

std_logic_vector(AWIDTH-1 downto 0);

signal rd_addr_reg : phase_address_type_16;

type reg_file_type_16 is array (0 to 16-1) of

std_logic_vector(WIDTH-1 downto 0);

type reg_file_type_4 is array (0 to 4-1) of

std_logic_vector(WIDTH-1 downto 0);

signal reg_file_16 : reg_file_type_16;

signal reg_file_4 : reg_file_type_4;

type mem is array (DEPTH-1 downto 0) of

std_logic_vector(WIDTH-1 downto 0);

signal mem_mod : mem;

signal wr_en_reg : std_logic;

signal wr_addr_reg : std_logic_vector(AWIDTH-1 downto 0);

signal data_reg : std_logic_vector(WIDTH-1 downto 0);

begin

--process for registering inputs and assigning data to the reg file

process(clk_i) is begin

if(rising_edge(clk_i))then

wr_addr_reg <= wr_addr_i;

wr_en_reg <= wr_en_i;

data_reg <= data_i;

if(wr_en_reg = ’1’)then

mem_mod(to_integer(unsigned(wr_addr_reg))) <= data_reg;
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end if;

end if;

end process;

--duplicate read address to minimize fan-out

gen_rd_addr : for ii in 0 to 16-1 generate

process (clk_i) is begin

if(rising_edge(clk_i))then

rd_addr_reg(ii) <= rd_addr_i;

end if;

end process;

end generate gen_rd_addr;

--1st stage of data out assignment pipeline

gen_16_out : for ii in 0 to 16-1 generate

reg_file_16(ii) <= mem_mod(ii*4+

to_integer(unsigned(rd_addr_reg(ii)(1 downto 0))));

end generate gen_16_out;

--2nd stage of data out assignment pipeline

gen_4_out : for ii in 0 to 4-1 generate

reg_file_4(ii) <= reg_file_16(ii*4+

to_integer(unsigned(rd_addr_reg(ii)(3 downto 2))));

end generate gen_4_out;

--final stage of data out assignment pipeline

data_o <= reg_file_4(

to_integer(unsigned(rd_addr_reg(0)(5 downto 4))));

end arch;

In this hardware description, the input control signals — write enable, write address,

and data input — are registered to avoid setup time violations from input delay. The

read address is duplicated on 16 registers, which are used to address the data word

from the 64 rows. The multiplexer tree for the output decoding is designed in 3 stages

for groups of 4 rows. This design was synthesized and placed and routed to run at
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300MHz in the 55nm process.

5.2.4 PU Controller

Through the high bandwidth interfaces and the numerous of PUs integrated in

this SoC design, the CMPs are capable of locally processing copious amount of data.

Nonetheless, how these PUs and the interface work in tandem to deliver the high

performance is critical in the full design of these CMPs. To address this, a central

processing unit (CPU), composed of general-purpose ARM Cortex M0 cores, and

a direct memory access (DMA) controller are also integrated in the system design.

However, a dire bottleneck arises when this CPU is tasked with micromanaging data

transfers and intermediate unit programming for hundreds of PUs on the chip. Fur-

thermore, scaling the number of M0 cores just to address specific memory and unit

operations is not only redundant, but also wasteful for area and energy. In this dis-

sertation work, a custom PU controller with a simple, yet adequate instruction set,

is designed to facilitate distributive processing so the unit can operate independently

and efficiently with the interfaces. As shown in Figure 5.13, the PU controller com-

municates to the core through the PU core interface, to other PUs and the GPIO

interface through the L2 network, and to the 3D DiRAM through the L1 network.

In the following sections, first the instruction set architecture (ISA) is explained.

Then, the three different interfaces are described. Finally, applications of the PU

controller are detailed along with a few example instruction call flows.
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Figure 5.13: Block Diagram of the PU Controller Interface.

5.2.4.1 Architecture

In order to provide a generic interface that is robust for various read/write patterns

for the PU cores, an instruction set-based processor is adapted for the PU controller.

This processor is composed of an instruction set that works in conjunction with a

network and core ports for generic reading and writing through both the token ring

(L1) and mesh (L2) network. Based on only 8 unique instructions, the PU controller

can perform read and write operations with addresses that span multiple dimensions.

Additionally, the controller can perform data manipulation operations that shifts the

bytes in a data word for data alignment. There is also a wait instruction, which can

be used for synchronization across PUs. Figure 5.14 shows a breakdown of the PU
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PU Controller
(8.7% Overhead)

128 VVM
 CORES

Figure 5.15: Layout of the PU VVM with the PU Controller.

PU VVM design.

Furthermore, the full instruction set for the PU controller can be seen in Ta-

ble 5.4. The first 3 instructions, LOAD, ADD, and LOOP, are the basic instructions

used for setting the data registers and counters for generating the read and write

address patterns. Using these instructions, addresses can be generated across mul-

tiple dimension. Particularly, this is essential for 2d or 3d image processing. The
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Table 5.4: Instruction Set for the PU Controller.

INST. OPCODE DESCRIPTION PARAMETER(s)
LOAD 0 Sets one of the data registers Address, Data
ADD 1 Adds or subtracts data registers Address, Data
LOOP 2 Loop to an instruction Loop Sel, Inst Address
READ 3 Read request to L1 or buffer Mode
WRITE 4 Writes to L1 or L2 Mode
SHIFT 5 Circular byte shift in buffer Num Shift
WAIT 6 Stalls instruction calls Mode, Count
DONE 7 End instruction calls

next 4 instructions, READ, WRITE, SHIFT, and WAIT, are subroutine instructions

that execute the main function of this architecture. The final instruction, DONE, is

used as an identifier for the end of instructions calls. There are total of 24 bits per

each instruction — 3 bits of opcode, and potential 21 bits for setting parameters and

registers.

Each instruction is explained in more detail below.

• LOAD: This is a basic instruction that sets one of the registers in the PU

controller to a value (16-bit) indicated in the instruction word. Currently there

are potentially up to 31 unique registers (5 bit address) that can be set with

this instruction; they are described in Table 5.5. Registers that are more than

16-bits are segmented into multiple addresses.

• ADD: This is another basic instruction that adds a signed value to one of the

registers. Using this instruction the address can be incremented or decremented

for address generation across dimensions. Since not all the registers listed in

Table 5.5 need to be incremented or decremented (e.g the byte mask), fewer
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Table 5.5: Registers for the PU Controller.

NAME #BITS ADDRESS DESCRIPTION
l1 rd addr 28 0 & 1 Main memory read address
l1 wr addr 28 2 & 3 Main memory write address
l1 addr inc 28 4 & 5 Increment value for L1 address
l2 addr 8 6 Destination L2 address (row and col)
pu wr addr 16 7 PU write address
pu rd addr 16 8 PU read address for write operations
byte mask 32 9 & 10 Byte mask for writes to memory
rd cnt 16 11 Packets received counter for L1 and L2
wr sel 2 12 Write select for buffer
loop cnts 16 16-31 Loop counters (Up to 16)

registers are addressable. Additionally, since the L1 address exceeds 16 bits, the

increment value must first be set, and an ADD instruction with reference to the

L1 address will add the signed values of the L1 address and the signed increment

value. Registers that can be added or subtracted with this instructions include:

l1 addr, l2 addr, pu wr addr, pu rd addr, and pu ctrl (arranged in ascending

address order)

• LOOP: This is essentially a conditional jump instruction that changes the

program counter (read pointer) to the specified instruction address as long as the

selected counter is not equivalent to 0. Primarily this instruction is used to loop

through a set of instructions for tasks such as address generation across multi-

dimensions. Each time the loop instruction is executed, the selected counter

(loop counters) is decremented, and if the count value isn’t 0, the read pointer

is updated to the address specified in instruction word. If 0, the read pointer is

incremented by 1 instead (similar to other instructions). Currently, there are 5

216



CHAPTER 5. HETEROGENEOUS CHIP MULTIPROCESSOR DESIGN

different loop counter that can be selected, and they can be set using the LOAD

instruction.

• READ: This instruction is used to send a read request to L1 (main memory)

or to read data stored in the interface buffer directly to the local cache of the

PU core (specified with the wr sel register). Since the L1 network and the PU

controller are on two different clock domains, the 4-phase handshaking protocol

is used during this subroutine for sending the read request. The interface stalls

at this instruction until the request has been acknowledged by the L1-network.

Because the subroutine process runs independently of the router, successive

read instructions can be called consecutively even though there may be a delay

in the arrival of the data. The WAIT instruction, described below, can then be

used to assure all the data was received before executing additional instructions.

Furthermore, the L1 read address and the destination address (PU core register

or data buffer) is specified beforehand with the LOAD & ADD instructions.

• WRITE: This instruction can either send a write request to L1 (main memory)

or to L2 (M0, FPGA, and other PU cores). Similar to the READ instruction, the

interface sends these write request through a 4-phase handshaking protocol, and

until the NoC sends an acknowledge back does the interface end this subroutine.

Moreover, the source address for the data and the destination address for the

write are specified beforehand with the LOAD & ADD instructions.
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• SHIFT: The shift is a special instruction utilized with the READ instruction

for offsetting the data word to be written to the PU core. Since the L1 & L2

data word has a size of 256bits, this instruction is particularly useful for reading

smaller size data (e.g 8bits) from the word. Data stored in the interface buffer,

which is of size 512bits (2 data words), is circularly shifted-right serially for a

certain number of bytes (specified in the instruction word).

• WAIT: The wait instruction is used for stalling the execution of future instruc-

tions based on a set of conditions. This subroutine operates in 3 modes:

– Count Wait : Waits for a certain number of clock cycles, which is set by

a 20-bit counter in the instruction word (used for waiting for the core to

finish processing)

– Read Wait : Waits for the PU controller to receive the specified number

of packets from L1 and/or L2

– M0 Wait : Waits for a flag from the M0 processor. Additionally, for this

wait, an acknowledge is transmitted to the M0 to signal that the PU core

is waiting for the M0 to continue.

• DONE: This is an idle instruction, which signifies the end of instruction exe-

cutions for the PU controller. The interface waits for the start control flag, a

control signal used to start the execution of instructions, to resume again.
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Table 5.6: PU I/O Ports to the PU Controller.

NAME TYPE #BITS DESCRIPTION
pu rst i IN 1 PU reset signal
pu wr en i IN 1 Write enable for data writes
pu proc en i IN 1 Process enable for the PU core (if necessary)
pu wr addr i IN 16 PU Write address and/or control for input
pu rd addr i IN 16 PU Read address and/or control for output
pu data i IN 256 Input data
pu data o OUT 256 Output data

5.2.4.2 PU Core Interface

A PU using the PU controller communicates through a set of ports detailed in

Table5.6. The PU core has an input and an output data bus of 256 bits, and the

PU controller controls when data is written to the PU core’s local memory through a

write enable port. A 16-bit write address and read address ports are used for indexing

the PU core’s local input and output memory respectively. Both address ports are

unconstrained and can be used for selecting addresses or even decoding the data on

the data bus. There is also a process enable port that can be used to enable processing

with the PU core.

5.2.4.3 L1 Network Interface

The PU core communicates to the L1 network through an interface designed in

the PU controller. The summary of the ports in this interface is detailed in Table

5.7. Data going to and from main memory through the L1 network to the PU core

goes through a 256-bit data bus, which is read and written on the network through
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Table 5.7: L1 I/O Ports to the PU Controller.

NAME TYPE #BITS DESCRIPTION
DATA IN

N1 PU data i IN 256 Input data from the L1 network
N1 PU addr i IN 256 L1 address
N1 PU tag addr i IN 24 PU write address
N1 PU req i IN 1 Request in signal
N1 PU ack o OUT 1 Acknowledge out signal

DATA OUT
PU N1 data o OUT 256 Output data
PU N1 op o OUT 2 command (read (01) and write (11))
PU N1 addr o OUT 40 L1 address
PU N1 tag addr o OUT 24 PU write address
PU N1 req o OUT 1 Request out signal
PU N1 ack i IN 1 Acknowledge in signal

a 4-phase handshaking protocol. For this protocol, the sender makes a request to

the receiver, and this request set low when the receiver transmits an acknowledge

back to the sender. Accompanying this data is a 16-bit tag that identifies where data

coming from main memory is stored in the PU core. Furthermore, the PU controller

transmits read and write requests to the main memory, and in order to make this

request, a 2-bit command is sent, along with the L1 address for reading/writing, and

the previously discussed data and tag data is transmitted through the network.

5.2.4.4 L2 Network Interface

The PU core can communicate to other PUs through the L2 network. Using the

PU controller, this is done through a set ports detailed in Table 5.8. Similar to the

L1 network interface, data is transmitted to and from a PU core to other PU cores
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Table 5.8: L2 I/O Ports to the PU Controller.

NAME TYPE #BITS DESCRIPTION
DATA IN

N2 PU is data i IN 1 Configuration or data packet identifier
N2 PU data i IN 256 Input data
N2 ver addr i IN 256 L2 row address
N2 hor addr i IN 256 L2 column address
N2 PU reg addr i IN 10 Input PU address
N2 PU reg part i IN 6 Input PU identifier
N2 PU req i IN 1 Request in signal
N2 PU ack o OUT 1 Acknowledge out signal

DATA OUT
PU N2 is data o IN 1 Configuration or data packet identifier
PU N2 data o OUT 256 Output data
PU N2 dest ver addr o OUT 8 L2 row address
PU N2 dest hor addr o OUT 8 L2 column address
PU N2 reg addr o OUT 10 Output PU address
PU N2 reg part o OUT 6 Output PU identifier
PU N2 req o OUT 1 Request out signal
PU N2 ack i IN 1 Acknowledge in signal

through a 256-bit bus in the L2 network interface. This bus sends and receives either

data packets when l2 is data = 1, and sends and receives configuration packets, such

as instructions for the data interface processor, when l2 is data = 0. The remaining

ports for the L2 network interface include, the signals for the 4-phase handshaking

protocol for sending and receiving data through the network and address tags that

specify the destination of the data being transmitted.

5.2.4.5 Configuration

The PU controller is programmed through configuration packets sent via the L2

network from a configuration unit (CU). The CU, which can be the main CPU or
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Table 5.9: Configuration Packet for the PU Controller.

— Misc. word Acknowledge word Instruction Word
[255:192] [191:128] [127:64] [63:0]

Table 5.10: Instruction Word for the PU Controller.
— inst — wr addr num inst cu addr wen en req i rst set rst

[63:56] [55:32] [31:30] [29:22] [21:14] [13:6] [5] [4] [3] [2] [1] [0]

Table 5.11: Acknowledge Word for the PU Controller.

— ver addr — hor addr — ack3 ack2 ack1 ack0 ack en
[63:43] [42:40] [39:37] [36:32] [31:5] [4] [3] [2] [1] [0]

even the external FPGA, is responsible for sending these configuration packets, and

also managing the acknowledges from the PU. A breakdown of the configuration

packet can be seen in Table 5.9. The instruction word in this configuration packet is

described in Table 5.10. Also, the acknowledge word in this configuration packet is

described in Table 5.11.

Configuration packets with instruction words and acknowledge words are sent

between the CU and the PU controller, in order to program that PU to execute a set

of memory and processing operations. The protocol for this configuration is detailed

below.

1. Firstly, the CU SENDS a configuration packet to reset the PU controller, and

put it in configuration state by setting rst high in the instruction word.

• rst = 1 (instruction word)

2. Next, the CU SENDS a configuration packet to start the configuration. In the
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configuration packet, the set bit in the instruction word is pulled high, and the

configuration address cu addr is set so the PU controller knows which address

to send the acknowledge packet (this allows for robustness of configuration from

different unit). Additionally, the number of instruction num inst that will be

sent to the PU controller is set accordingly.

• set = 1 (instruction word)

• cu addr = [CU ver. addr & CU hor. addr] (instruction word)

• num inst = total # instructions (instruction word)

3. After that, the CU waits to RECEIVE an acknowledgement that the PU

controller is done with the first configuration phase.

• ack en = 1 (acknowledge word)

• ack0 = 1 (acknowledge word)

4. After acknowledgment of the first configuration, the CU SENDS all the in-

structions sequentially to the PU controller.

• wen = 1 (instruction word)

• wr addr = (PU instruction memory address) (instruction word)
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• inst = instruction (instruction word)

5. Then, the CU waits to RECEIVE an acknowledgment that the PU received

all the instructions concluding the configuration of the PU controller.

• ack en = 1 (acknowledge word)

• ack1 = 1 (acknowledge word)

6. The instructions have been loaded to program, and the PU controller can begin

executing instructions. This is done by setting the en bit high.

• en = 1 (instruction word)

7. While executing the instructions for running the PU, the PU may execute an

instruction to synchronize with other PUs while suspending future instruction

execution.While interrupted, the PU controller sends an acknowledge packet

back to the CU. The PU will continue after it receive a req from the CU.

• ack en = 1 (acknowledge word)

• ack2 = 1 (acknowledge word)

• req = 1 to continue instruction execution (instruction word)
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8. Finally, after all instructions are executed, a final acknowledgment is sent from

the PU controller back to the CU. The instructions can be reset and ran over

again by pulsing i rst.

• ack en = 1 (acknowledge word)

• ack3 = 1 (acknowledge word)

• i rst = 1 to restart executing instructions (instruction word)

Moreover, an assembler was written in MATLAB for inferring the machine code

executed by the controller from higher-level instruction calls. The code for this can

be seen below.

function inst_out = inst_call(inst_name,param1,param2)

switch upper(inst_name)

%LOAD (opcode = 0)

%DESCRIPTION : This instructions set one of the

%registers in the interface specified by the address

% below

% ADDRESS :

% 0 : l1_rd_addr (lsb)

% 1 : l1_rd_addr (msb)

% 2 : l1_wr_addr (lsb)

% 3 : l1_wr_addr (msb)

% 4 : l1_addr_inc (lsb)

% 5 : l1_addr_inc (msb)

% 6 : l2_addr

% 7 : pu_wr_addr

% 8 : pu_rd_addr

% 9 : byte_mask (lsb)

% 10 : byte_mask (msb)

% 11 : rd_cnt (set to 0)
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% 12 : wr_sel (0 or 1 for PU addresses &

% 2 or 3 for interface bufffer)

% 16 - 31 : reserved for loop counters

case ’LOAD’

if(nargin ==3)

opcode = 0;

address = param1; %register address

data = param2; %data value

%error check

if(address < 0 || address > 31 ||

data < 0 || data > 2^16-1)

error(’Invalid parameters for the LOAD

instruction’);

end

inst_out = opcode + address * 2^3 + data * 2^8;

else

error(’Invalid number of arguments for the LOAD

instruction’);

end

%ADD (opcode = 1)

%DESCRIPTION : This instructin adds to one of the registers

%in the interface specified by the address below.

% ADDRESS :

% 0 : l1_rd_addr

% 1 : l1_wr_addr

% 2 : l2_addr

% 3 : pu_wr_addr

% 4 : pu_rd_addr

case ’ADD’

if(nargin ==3)

opcode = 1;

address = param1; %register address

data = param2; %data value (signed)

%error check

if(address < 0 || address > 4 || data < -(2^15-1) ||

data > 2^15-1)

error(’Invalid parameters for the ADD

instruction’);
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end

inst_out = opcode + address * 2^3 +

bin2dec(dec2twos(data,16)) * 2^8;

else

error(’Invalid number of arguments for the ADD

instruction’);

end

%LOOP (opcode = 2)

%DESCRIPTION : A conditional jump instruction that sets the program

%counter if the selected counter (specified with the address) is

%equivalent to 0

% ADDRESS :

% 0 - 15 : selects between loop counters

% (depending on number of counters

% inferred with the NUM_LOOPS parameter

case ’LOOP’

if(nargin ==3)

opcode = 2;

address = param1; %loop select

inst_addr = param2; %data value (signed)

%error check

if(address < 0 || address > 15 || inst_addr < 0 ||

inst_addr > 2^16-1)

error(’Invalid parameters for the LOOP instruction’);

end

inst_out = opcode + address * 2^3 + inst_addr * 2^8;

else

error(’Invalid number of arguments for the LOOP

instruction’);

end

%READ (opcode = 3)

%DESCRIPTION : Subroutine instruction that either reads from L1

%or reads from an internal buffer, based on the MODE.

%(Note : pu_wr_addr, wr_sel, and read address register should be

% set before calling this instruction).

% MODE :

% 0 : read from L1

% 1 : read from internal buffer
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case ’READ’

if(nargin>=2)

opcode = 3;

mode = param1; % read from L1 or from data buffer

%error check

if(mode < 0 || mode > 1)

error(’Invalid parameters for the READ

instruction’);

end

inst_out = opcode + mode * 2^3;

else

error(’Invalid number of arguments for the READ

instruction’);

end

%WRITE (opcode = 4)

%DESCRIPTION : Subroutine instruction that either writes

% data to L1 or L2

% 0 : writes to L1

% 1 : writes to L2

case ’WRITE’

if(nargin>=2)

opcode = 4;

mode = param1; % write to L1 or to L2

%error check

if(mode < 0 || mode > 1)

error(’Invalid parameters for the WRITE

instruction’);

end

inst_out = opcode + mode * 2^3;

else

error(’Invalid number of arguments for the WRITE

instruction’);

end

%SHIFT (opcode = 5)

%DESCRIPTION : Instruction for circularly shifting data in

% the 64-byte buffer in the interface. Shifts are done in

% steps of bytes, and the number of shifts are specified

% with the num_shift parameter
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case ’SHIFT’

if(nargin>=2)

opcode = 5;

num_shift = param1; % number of shifts

%error check

if(num_shift < 0 || num_shift > 63)

error(’Invalid parameters for the SHIFT

instruction’);

end

inst_out = opcode + num_shift * 2^3;

else

error(’Invalid number of arguments for the SHIFT

instruction’);

end

%WAIT (opcode = 6)

%DESCRIPTION : Instruction for stalling the

%interface and processing unit core. There

%are 4 modes of wait for this instruction

% MODE :

% 0 : PROCESS WAIT

% 1 : RESET WAIT

% 2 : IDLE WAIT

% 3 : READ WAIT

% 4 : M0 WAIT

case ’WAIT’

if(nargin>=3)

opcode = 6;

mode = param1; % mode for wait

count = param2; % count for wait

%error check

if(mode == 0)

if(count < 0 || count > 2^20-1)

error(’Invalid count value for the count

wait instruction’);

end

inst_out = opcode + count * 2^4;

elseif(mode == 1)

if(count < 0 || count > 2^16-1)

error(’Invalid parameters for the WAIT

instruction’);
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end

inst_out = opcode + 2^3 + 2^6

+ count * 2^8;

else

mode = mode - 2;

if(mode < 0 || mode > 2 || count < 0

|| count > 2^16-1)

error(’Invalid parameters for the

WAIT instruction’);

end

inst_out = opcode + mode * 2^4 + 2^3 +

count * 2^8;

end

else

error(’Invalid number of arguments for the

WAIT instruction’);

end

%DONE (opcode = 7)

%DESCRIPTION : Instruction that identifies the

%end of instruction calls.

case ’DONE’

opcode = 7;

inst_out = opcode;

otherwise

error(’Can not recognize instruction name’);

end

end

5.2.4.6 Applications

Using the instruction set detailed in Table 5.4, the PU controller can be tailored

for an array of different read and write tasks between the the local PU core and main

memory or this local PU core and other PUs. Not only can this controller handle

multi-dimensional read and write patterns, but can do data alignment through shift
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INST ADDR INSTRUCTION 

0 LOAD  RD_CNT 

1 LOAD  L1_ADDR (LSB) 

2 LOAD  L1_ADDR (MSB) 

3 LOAD  PU_WR_ADDR 

4 LOAD  LOOP1 

5 LOAD  LOOP0 

6 LOAD  L1_ADDR_INC (LSB) (dim 1) 

7 LOAD  L1_ADDR_INC (MSB) (dim 1) 

8 READ  (L1 -> PU CORE) 

9 ADD L1_ADDR 

10 ADD PU_WR_ADDR 

11 LOOP LOOP0; ADDR = 8 

12 LOAD L1_ADDR_INC (LSB) (dim 2) 

13 LOAD L1_ADDR_INC (MSB) (dim 2) 

14 ADD L1_ADDR 

15 LOOP LOOP1 ; ADDR = 5 

16 WAIT RD_CNT 

17 DONE 

INSTRUCTION CALL  
Read 2D Data from Main Memory to PU CORE 

LOOP0 LOOP1 

P1 P2 P3 

P6 P7 P8 

P11 P12 P13 

READ 

MAIN MEMORY 

PU CORE MEMORY 

P1 

P2 

P3 

P6 

P7 

P8 

P11 

P12 

P13 

Figure 5.16: 2D Read From Main Memory to the PU Core.

operations on a local buffer, and also a read-modify-write operation that modifies the

partial content of a memory word in main memory. In this section, the instruction

call flow for executing some important tasks - 2-dimensional read from main memory

to PU core, serial read-shift from main memory to PU core, 2-dimensional write from

PU core to main memory, a read modify-write from PU core to main memory, and a

write from PU core to multiple PU cores through L2 - are detailed.

The instruction call flow for a 2D read from main memory to the PU core memory

is illustrated in Figure 5.16. For this instruction call flow, 2D data stored in main

memory is read to the PU core memory in 1D format. This is done through 18

instructions, where 2 loop instructions are used to repeat a set of instructions for
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INSTRUCTION CALL  

Serial Read-Shift from Main Memory to PU Core 

P Q 

Sh
ift

 

LOOP0 

INST ADDR INSTRUCTION 

0 LOAD  L1_ADDR (LSB) 

1 LOAD  L1_ADDR (MSB) 

2 LOAD  PU_WR_ADDR 

3 LOAD  L1_ADDR_INC (LSB) (dim 1) 

4 LOAD  L1_ADDR_INC (MSB) (dim 1) 

5 LOAD  RD_CNT 

6 LOAD  WR_SEL (buffer addr = 0) 

7 READ  (L1 -> BUFFER) 

8 ADD L1_ADDR 

9 LOAD  WR_SEL (buffer addr = 1) 

10 READ  (L1 -> BUFFER) 

11 WAIT RD_CNT 

12 LOAD  WR_SEL  (PU core) 

13 LOAD  LOOP0 

14 READ  (BUFFER -> PU CORE) 

15 SHIFT  NUM_SHIFT 

16 ADD PU_WR_ADDR 

17 LOOP LOOP0; ADDR = 14 

18 DONE 

READ 

BUFFER 
P1 

P2 

P3 

P4 

Q1 

Q2 

Q3 

Q4 

P1 

P3 

Q1 

Q3 

MAIN MEMORY 

PU CORE MEMORY 

READ 

Figure 5.17: 1D Read with Byte Shifts From Main Memory to the PU Core.

making the necessary read requests to memory.

Another example of reading from main memory can be seen in Figure 5.17. In

this example instruction call flow, data is read from the main memory to the local

register file buffer in the PU controller. This data is then byte shifted and then stored

on the PU core. This is done with 19 instructions, where a set of 4 instructions are

looped to accomplish this task with the PU controller.

For writing back to main memory, Figure 5.18 shows an example of a read-modify-

write operation from a PU core to the main memory. In this instruction call flow,

first the data word to perform the partial write to is read. Then, by masking the

read in data word with the new data from the PU core with a data mask, the new
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Read Modify-Write Data from PU Core to the Main Memory (L1) 

INST ADDR INSTRUCTION 

0 LOAD  BYTE_MASK (LSB) 

1 LOAD  BYTE_MASK (MSB) 

2 LOAD  L1_ADDR (LSB) 

2 LOAD  L1_ADDR (MSB) 

3 LOAD  PU_RD_ADDR 

4 LOAD  PU_WR_ADDR 

5 LOAD  WR_SEL 

6 LOAD  RD_CNT 

7 READ  (L1 -> BUFFER) 

8 WAIT RD_CNT 

9 WRITE (PU CORE -> L1) 

10 DONE 

A1 
& 
P1 

A2 A3 

A6 A7 A8 

A11 A12 A13 WRITE 

MAIN MEMORY 

PU CORE MEMORY 
P1 

P2 

P3 

P6 

P7 

P8 

P11 

P12 

P13 

READ 

Read and then 
Write 

Figure 5.18: Read Modify Write From the PU Core to the Main Memory.

modified data word is then written back to memory. This task is accomplished with

11 instructions, where 3 instructions are looped in order to perform the read-modify-

write. This instruction can be adapted to a full write, by simplifying the instruction

call to just write the data word directly from the PU core to the specified main

memory address.

The final example shows how a PU can write to other PUs using the PU controller.

Figure 5.19 shows the instruction call flow for this task tailored to writing to 3

different PUs. In this instruction call flow, PU CORE(0) writes data to PU CORE(1),

PU CORE(2), and PU CORE(3). This is accomplished with 14 instructions that

invoke 2 loops for addresses the PU addresses and the local register addresses in the

PUs.
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INSTRUCTION CALL  

Write Data from a PU Core to other PU Cores 

INST ADDR INSTRUCTION 

0 LOAD  BYTE_MASK (LSB) 

1 LOAD  BYTE_MASK (MSB) 

2 LOAD  PU_RD_ADDR 

3 LOAD  L2_ADDR 

4 LOAD  PU_WR_ADDR 

5 LOAD  L2_ADDR 

6 LOAD  LOOP1 

5 LOAD  LOOP0 

6 WRITE (PU CORE -> L2) 

7 ADD PU_RD_ADDR 

8 ADD PU_WR_ADDR 

9 LOOP LOOP0; ADDR = 6 

10 ADD PU_WR_ADDR 

11 ADD L2_ADDR 

12 LOOP LOOP1 ; ADDR = 5 

13 DONE 

P1 

P2 

WRITE 

PU CORE (1) 

PU CORE (0) 

P1 

P2 

P3 

P4 

P5 

P6 

P3 

P4 

PU CORE (2) 

P5 

P6 

PU CORE (3) 

Figure 5.19: 1D Write From the PU Core to another PU Core.

Multiple PUs can be used together coherently for doing a large-scale data pro-

cessing task. To show this on a smaller scale, 3 VVM processing units (detailed in

Section 5.2.1), which all have a PU controller, are combined together for a doing a

multi-stage processing task. Figure 5.20 shows this processing flow and the outputs

from the simulated PU VVMs. In this processing flow, horizontal and vertical edges

are extracted from two separate PU VVM that are executing instructions from their

respective PU controllers. The resulting images are written to a 3rd PU VVM which

combines the edges into one coherent image. Not only are each of the PU VVM

independently executing instructions, but they are also synchronized after processing

phase in order to prevent data collision.
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plications, energy efficient and scalable solutions for NoCs have become especially

paramount.83,84

Recent work in network architectures has led to high-speeds asynchronous net-

works,85 low voltage hybrid packet/circuit switching networks,86 bufferless routing

networks,87–89 and more. In the 2.5D Nano-Abacus SoC, a circuit switching network

is designed to provide fixed high speed communication paths of the PUs to main

memory, and a packet switching bufferless mesh network is designed that provides a

robust and efficient communication between PUs. The implemented packet-switching

network, not only provides a flexible communication solution that efficiently routes

based on data traffic, but is also resilient to network deadlocks and livelocks, and

can handle faulty routing channels due to increased fabrication defect with larger

networks. In this dissertation work specifically, a design approach is formalized for

constructing scalable bufferless networks similar to the one implemented in the 2.5D

Nano-Abacus chip. Additionally, a network simulator is designed for prototyping

these network models with different constraints.

5.3.1 Scalable Bufferless Network

The proposed network is based on a 2D packet-switching mesh topology, where an

array of nodes comprised of a router and an internal unit, which could be a processor,

memory block, or ASIC, is arranged in a 2D grid of rows and columns. Each node see

potential data traffic from the internal unit and traffic from a north, south, east, and
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with the number of nodes. Additionally, because of the modular and tillable design

of this architecture, this network is adaptable for heterogeneous and homogeneous

processing and memory cores. Furthermore, as SoC scale to larger sizes, fabrication

defects become a more critical concern; a broken link in the network can result in

dropped packets and unpredictable system behavior. Thus, a broken link detection

scheme, which works in conjunction with the adaptive routing table, is implemented

in the router to achieve fabrication defect tolerance for larger SoC.

5.3.1.1 Router

Each router employs a low complexity bufferless routing scheme based on a oldest-

first (OF) and most-deflected prioritization that guarantees a deadlock-free and livelock-

free network.87 Using the OF prioritization, the oldest packet is routed to the optimal

path, while all other packets are arbitrarily routed. Moreover, since packets can be

injected from any node into the network, it is possible for multiple packets with the

same time priority in the network to arrive at a node’s router. In order to priori-

tizes packets for this case, a ranking based on number of deflections is used. As the

oldest most-deflected packet in the network will be successfully routed, each packet

that stays in network long enough will have the opportunity to become the highest

priority packet, and thus be routed correctly. This guarantees a livelock-free network,

which ensures that a packet will not be routed in a loop indefinitely. Furthermore, a

deadlock-free network is also guaranteed because of a buffer-free design; every packet
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Figure 5.22: Architecture of the Bufferless Router in the Network.

will always route to another link each clock period. This is only possible because the

number of outputs links at each router doesn’t exceed the number of input links.

A block diagram of the router can be seen in Figure 5.22. As described above,

each router potentially receives packets from the north, south, east, west, and the

internal unit ports. For each clock period, first the incoming packets are sorted

based on the priority scheme detailed earlier. Then, the highest priority packet is

allocated to the optimal output link based on a simple routing table implemented

in the routing logic block. Since it is possible to have defective links especially with

very large NoC implementations, some additional logic is included in the route logic

that adaptively tunes the routing table to compensate for this issue. Moreover, after

the highest priority packet is allocated, the remaining packets are arbitrarily routed
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to minimize routing logic and hence reduce area and energy cost of the router. The

routing logic block supplies addresses that are used for selecting the correct packet

from the incoming input links to the output links. Furthermore, the internal unit can

only inject a packet into the network if there is a free output link.

For this network, a simple bound for the priority counter implementing the oldest-

first, and then most deflected priority scheme can be determined. Assuming the

network has M rows, N columns, K number of links per router, and no clock delay

for an internal unit at a node to accept a packet, then a bound can be deduced as

follow. Firstly, for the set of the oldest packets S0 in the network, the highest priority

packet (oldest and most deflected) of the network P0 exists in this set, and will have

at most a maximum time delay of

TP0 = ((M − 1) + (N − 1)) (5.7)

clock cycles, which is the delay for the longest path in the network. The second

highest priority packet in this set P1 can be deflected at most once (when competing

with the first highest priority packet), which could mean an additional latency of 2

clock cycles. Furthermore, the third highest priority packet in this set P2 can at most

be deflected twice which could mean an additional latency of 4 clock cycles, and so
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on. That is,

TP1 = (M +N − 2) + 2

TP2 = (M +N − 2) + 4

TPn−1 = (M +N − 2) + 2× (n− 1)

(5.8)

for n packets in the set of oldest packets in the network. Since a node can only

generate 1 packet per clock, at most only (M×N) packets can be in this set of oldest

packets. Thus, the maximum possible time it takes to deliver all these packets in the

set TS0 can be derived as

TS0 = (M +N − 2) + 2× (M ×N − 1) (5.9)

clock cycles. Expanding to the set of all packets in the network ranked first by time,

and then by most deflected, the least priority packet in the network could at most be

deflected 2× (M ×N ×K − 1) times and have a longest path of (M +N − 2) clock

cycles. Thus a simple time bound TM on the time priority counter for all packets can

be deduced as

TM = (M +N − 2) + 2× (M ×N ×K − 1) (5.10)

For a 4 by 4 network with 4 ports at each nodes and no defective routing links (M

= 4, N = 4, K = 4), the maximum time counter would be 132, which would require

each packet to have a minimum of 8 bits for the time counter. As this analyzes the
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worst case scenario, most packet time delay should be much less than this bound with

normal traffic patterns. Moreover, it is possible to deduce a lower bound for the time

priority counter if a more rigorous and realistic data traffic analysis is done with this

network.

5.3.1.2 Network Protocol

A 4 phase programming protocol is implemented for booting up, assessing, and

running the NoC. This protocol allows the NoC to clear all packets in the network,

diagnose the status of each links, check which nodes are reachable, and enable nodes

to send and receive packets.

• RESET: During the RESET phase, which is controlled by a global 1-bit sig-

nal (reset), all node links are cleared, and the status of all links are reset to

unhealthy. Reset phase ends once the reset signal is deasserted.

• DIAGNOSE: After the RESET phase is the DIAGNOSE phase, which is also

controlled by a global 1-bit signal (diagnose). In the phase, each node transmits

diagnose packets through each of its outputs links to surrounding nodes. When

a node receives a diagnose packet through one if its links, it compares it with a

programmable diagnose code, which is shared among all the node. If the code

stored on the node matches the transmitted code, the link is labeled healthy,

and is included as a valid link for the routing table. However, if the code does
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not match, then it is recorded as unhealthy/broken, and the link will not be

used. The DIAGNOSE phase last for as long as the diagnose signal is asserted.

• PING: Next, the PING phase is implemented for assessing which nodes are

reachable after diagnosing all links in the network. One of the input ports for the

networks transmits a ping packet, which is a configuration packet that elicits a

response (acknowledgment packet) from the router, to each node. A destination

address identifier is included in each ping packet so the destination node knows

which address to send the acknowledgement packet. Additionally, a source

address identifier is included in the acknowledgement packet so the configuration

unit for this ping protocol can identify the node. Furthermore, a list of reachable

nodes can then be compiled from the list of received acknowledgment packet.

The PING phase is coordinated by the external configuration unit, which can

adapted for different ping process routines.

• ENABLE: Finally, after the nodes have been pinged, and the list of reachable

nodes have been determined, then the ENABLE phase can be commenced.

Similar to the PING phase, an external configuration unit coordinates this

phase. Based on this list of reachable nodes, the external unit sends enable

packets, which can be used to enable internal unit processor, ASIC, and so on,

and also enables the router to send/receive packets from that internal unit, to

the nodes. Nodes that are not enabled in the network, will discard packets that
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are received through the router. After the ENABLE phase has concluded, the

network is ready to run, and can accept data traffic from any valid source.

5.3.2 Network Simulator

In MATLAB, a network simulator with a graphic user interface (GUI) was de-

signed for prototyping the proposed network architecture with different constraints.

The network simulator supports generic mesh networks of different sizes, can simu-

late the network programming protocol discussed in Section 5.3.1.2, and can run the

network with different data traffic while measuring network statistics. Additionally,

this simulator also incorporates defective/broken links in order to test the robustness

of the network.

To illustrate the functionality of this network simulator, a 4 by 4 mesh network

with defective links is emulated. Using the GUI, this network was constructed, and

can be seen in Figure 5.23. In this example network, only the west port is functional,

and there is also a defective internal link in the network. Furthermore, the nodes are

outlined in red because they have not pinged yet, and thus are presumed invalid.

After the RESET phase, the network links are diagnosed in the DIAGNOSE phase,

and this can be seen in Figure 5.24. As diagnose packets are transmitted through the

links, defective links are removed, as seen in the diagram.

Furthermore, after that all nodes are pinged during the PING phase; a snapshot

of this process can be seen in Figure 5.25. During this process, ping packets, which
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Additionally, the maximum time for a packet delivery doesn’t come to the computed

bound, even in heavy traffic case.

As shown in the detailed example. not only is this network simulator useful for

testing the network model, but is also useful for measuring network statistic under

different constraints. In this simulator, the average packet delivery latency, maximum

time counter, and the network throughput can be measured.

5.4 PAD I/O Circuitry

For the CMPs in the 2.5D Nano-Abacus SoC, a set of custom I/O cells with con-

necting pads were designed in the 55nm process for power and analog connections, the

GPIO interface, and the 3D DiRAM interface. For the GPIO interface, bi-directional

I/O pads were designed to run at up to 1GHz on a power supply ranging from 0.7V

to 1.2V. For the 3D DiRAM interface, separate digital input and output pads were

designed to run at 1GHz on a power supply as low as 0.5V. In addition to this, power

and analog pads were made for the various power supplies and analog signals on

the chip. Each pad is designed with electrostatic discharge (ESD) protection diodes

to prevent high voltages on the transistors. These pads are assembled as shown in

Figure 5.29, for each CMP. The MHUB pads are used for the 3D DiRAM interface,

and the FPGA I/O pads are used in the GPIO interface. Moreover, in addition to

the C4 bumps that are used in the flip chip package for interfacing the CMP to the
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CMP Power
C4 2x2 Array

MHUB Power
 C4 2x2 Array

MHUB I/O
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MHUB Power Pads

CMP Power Pads

FPGA I/O & 
Power Pads
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Figure 5.29: Annotated Layout of the CMP Pad Frame.

interposer board, the power, analog, and digital I/O signals are also connected to

inline wire bond (WB) pads for the additional option of testing the CMPs on a PGA

package. The WB pads are arranged on the perimeter of the CMP chip, while the

C4 pads are placed on top of the internal circuitry. In order to minimize resistance

to the power supplies and ground, the power pads are replicated numerously across

the whole chip. The unique pad cells in this pad frame are listed as:

• MHUB I/O Pad

• FPGA I/O Pad
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• Power/Analog Pad

• C4 2x2 Pad Array

With the exception of the C4 2x2 pad array, the pad cells along with post-layout

simulations are discussed in the following subsection.

5.4.1 MHUB I/O Pads

The MHUB input and output pads are designed jointly in the same cell, and the

circuitry for these pads can be seen in Figure 5.30. The output from the MHUB

output pad, D o, is level-shifted to the correct voltage supply domain (range of 0.7-

1.2V), and then buffered out to drive the capacitive load of the WB and C4 pad and

external wiring (estimated at 20pF). The input to the CMP from the MHUB input

pad, D i, is buffered and level-shifted to the core voltage supply. Both input and

output pads are wired to a set of diodes to minimize current from ESD. The layout

for these pads can be seen in Figure 5.31. In this layout, the WB pads are placed on

the right side, and the C4 bumps for the input, output, power, and ground signals

are placed directly about the I/O circuitry. Majority of the layout is dedicated to the

output buffer, which is composed of thousands of transistors in parallel for driving

the capacitive load with the given power supply and timing constraints. The pair of

theses input and output pads measure 210µm by 954µm in area.

Post-layout simulations were done to measure the performance of the pads for
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Figure 5.32: Transient Simulation Results of the MHUB Output Pad. The output
is plotted for a 1GHz input signal and an external supply voltage of 1.2V (top), 0.9
(middle), and 0.7 (bottom).

of the output buffer in the pad, and the pad output, shown in blue, is the output

from the pad. The transient simulations results show that the output pads can run at

1GHz with an external supply of 1.2V down to 0.7V. The latency for these different

supply voltages varies from 0.4ns to 1.2ns.

Additionally, the input pad was simulated to ensure that it can run with the same

specification. Since the input pad doesn’t drive a huge capacitive load like the output

pad, the large buffer was not necessary. Furthermore, to determine the maximum

frequency the pads can run from the input to output in a closed system, a simulation

is carried out with an oscillator configuration of the I/O pads. With the input and
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Figure 5.33: Transient Simulation of a Oscillator Configuration of the MHUB Input
and Output Pads. The output from the connected pads is plotted for an external
supply voltage of 1.2V, 0.9V, and 0.7V.

output pad connected at the WB and C4 pad, the inverted input signal from the input

pad is connected to the signal driving the output pad. The period is measured for

different external voltage supplies, and this result can be seen in Figure 5.33. In this

setup, the latency due to the propagation delay heavily limits the maximum speed

measured at the pads. The maximum frequency for the different supply voltages was

deduced as: 1GHz at 1.2V, 625MHz at 0.9V, and 333MHz at 0.7V. Nonetheless, when

the pads are used independently, both pads can run up to 1GHz even with a supply

voltage as low as 0.7V.
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Table 5.12: Truth Table for the FPGA I/O Pad Circuit.

D p D n D i
0 0 1
1 0 U
0 1 X
1 1 0

Figure 5.35: Layout of the FPGA I/O Pad.

output pad with just the pull-up network with the inclusion of an external pull down

resistor. In this case D n is fixed low to leave the last stage NFETs off. Conversely,

the pad can also be configured as an output pad with just the pull-down network

with an external pull-up resistor. In this case D p is fixed high. If the Dp signal is

set low and the Dn signal is set high both transistors for the last stage of the buffer

will be on causing an undesirable short circuit.

The layout of this pad can be seen in Figure 5.35. In addition to the C4 pad used

for the I/O signal, there are C4 pads placed for the power and ground signals. There

is also a WB pad for the I/O signal, and a WB pad for one of the power or ground

signal. This pad was designed to match the vertical pitch of the MHUB pads, and the

full pad measures 210µm by 392µm in area. Because circuitry can be placed under
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Figure 5.36: Transient Simulation Result of the FPGA I/O Pad Configured as
Output. The output is plotted for a 1GHz input signal and an external supply
voltage of 1.2V.

the C4 pads, this pad cell can overlap other cells in the chip.

Similar to the MHUB pads, the FPGA I/O pad was simulated to measure perfor-

mance with different supply voltages. Specifically, this pad was designed to run with

a supply voltage between 0.3 to 1.2V. With a 1.2V power supply, the FPGA I/O pad,

when configured as an output, can run at 1GHz with a propagation delay of 0.4ns;

the simulation results can be seen in Figure 5.36.

Configuring the pad as an oscillator, where the inverted input drives the output in

a loop, the maximum frequency of this pad is measured for different voltage supplies.

The plot in Figure 5.37 shows the measured frequency for supply voltages across the
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Figure 5.37: Frequency Plot of the FPGA I/O Pad Configured as an Oscillator For
Different Supply Voltages

aforementioned range. In this setup, the pads can run at 1GHz with a 1.2V supply

voltage, while at 0.3V the pad can run at 8MHz.

5.4.3 Power/Analog Pads

This pad was designed to provide external connections for the power and analog

signals for both the CMP and MHUB driver circuitry through the WB and C4 ter-

minals. The layout of this pad can be seen in Figure 5.38. Aside from the bond pads,

this design include protection diodes for ESD, and the power and ground wires that

make up the pad frame supply rings. Furthermore, these pads are placed on the top
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Figure 5.38: Layout of the Power/Analog Pad.

and bottom edges of the pad frame, and measure 217.8 µm by 166µm in area.

5.5 The Yupana CMP: A Heterogeneous

Mixed-Signal Accelerator

5.5.1 Overview

The Yupana chip is a heterogeneous chip multiprocessor comprised of mixed-signal

processing units for large-scale energy efficient data processing. Fabricated in a 55nm

CMOS process, this chip consist of an array of heterogeneous processing units, a high
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Figure 5.39: Layout of the Yupana CMP.

bandwidth memory interface to a 3D DiRAM with a token-ring network on chip, a

switch-packet mesh network, and a general purpose input/output port interface to

a Zynq FPGA in 14mm by 17mm silicon area. The layout for this heterogeneous

chip multiprocessor can be seen in Figure 5.39. In this CMP, there are 16 by 8 (128)

1.152mm2 block areas partitioned for PUs. Within that 2D grid, 98 PU VVM cores,

each comprised of 128 mixed-signal VVM cores for a total of 12,544 VVM cores,

were placed. The PU VVM core, which was described in detail in Section 5.2.1, was
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design to exploit charge-based and stochastic computing for computational efficient

fixed-point inner products. Collectively, these mixed-signal PUs can compute over 20

billions MACs per second assuming minimal latency from the networks and interfaces.

The characteristics for the PU VVM are detailed in table 5.1.

Additionally, 14 PU CACHE blocks, with a total of 140KB of additional memory,

is included in this CMP. These cache blocks are additional memory units used as

local storage for the other PUs. As detailed in Section 5.2.3, these cache units are

designed with a PU controller, and can be used independently for performing data

remapping for PUs and even the main memory.

Furthermore, there are 2 ARM Cortex-M0 processors designed in this CMP as

the main CPU. There are also auxiliary units, which include: linear and non-linear

morphological processors, a computation memory controller (PU CMC), a high pre-

cision DSP, clock generators, and DACs (used for generating the analog signals for

the mixed-signal units).

5.5.2 Applications

This mixed-signal CMP is primarily tailored towards accelerating large-scale signal

processing and machine learning tasks efficiently with minimal energy cost. Through

the thousands of VVM cores implemented, this chip can be applied to real-time

processing in wide-area motion imagery of giga-pixels of images for information ex-

traction and analysis. Additionally, this CMP can be used for data intensive machine
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learning applications such as image classification through deep neural networks. Also

with the heterogeneous design that includes the auxiliary units, this chip can also be

generalized for other applications including morphological processing, high precision

fixed-point arithmetic for general purpose computing, and even image warping or

dewarping using the computation memory controller unit (PU CMC).

5.5.2.1 Wide Area Motion Imagery

Advances in optics90,91 and the proliferation of cheap CMOS image sensors have

enabled the creation of commercially available larger tiled image arrays such as the

Kestrel and Simera,92 CorvusEye 150093 and Sentinel CA-24794 with billions of pixels

based on essentially what is cell-phone camera technology. Wide area motion im-

agery (WAMI)95 from giga-pixel sensor systems is a rapidly growing data resource for

civilian and defense applications. These air-borne systems, aboard a moving platform

such as a small plane, a UAV or an aerostat, are capable of imaging objects with a

resolution of 0.2 to 0.8 meters at a distance of a few kilometers with giga-pixel image

sizes and temporal resolution of a few frames per second (3 to 15 fps).96 Advanced

imaging technologies such as analog97–99 or all digital100,101 event based cameras can

circumvent the challenges of limited frame rates but the latter have not found their

way yet into WAMI systems. Hence WAMI processing pipelines rely extensively on

motion dynamic information.

Availability of full motion high resolution data over large, city-size, geographical
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Figure 5.40: Wide Area Motion Imagery Processing Pipeline.

areas, (100 square kilometers) offers unprecedented capabilities for situational aware-

ness. The dynamic nature of the imagery offers insights about actions and patterns

of activities that static images do not. Civilian applications of WAMI data allow for

the monitoring and intelligent control of traffic across large geographical area and in-

ference of a hierarchy of events and activities that ultimately detail “life-patterns”.102

Additional applications include the coordination of activities in disaster areas and the

monitoring of wildlife. Algorithm development for WAMI tasks is facilitated through

databases such as CLIF103 and VIVID104 and data management standards.105

The processing pipeline used for the real-time high velocity wide area motion

imagery of giga-pixel sensor systems is shown in Figure 5.40. The processing flow

begins with raw pixel values from a camera, and implements DeBayer interpolation,

non-uniformity correction, camera motion compensation, background/foreground seg-

mentation, object attributes extraction, object tracking and object classification.

The preprocessing step of the WAMI processing pipeline, as shown in Figure 5.40,
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can be done efficiently with the Yupana CMP. Generally, the raw data collected

directly from imagers need to be corrected from fabrication variations on the pixel

level. To rectify this, a non-uniformity correction (NUC) is done to apply a linear

correction with fixed gain and offset values. Additionally, image sensors also use color

filter array (CFA) overlaid on top of pixels in order to generate color images. Because

all colors cannot be sampled at every pixel location, a CFA with a fixed pattern

such as a Bayer filter is used to sub-sample the individual colors. By applying a

demosaicing/DeBayer algorithm, the full color image can then be reconstructed from

the Bayer pattern image output. Furthermore, a color transform can then be done to

convert the color map to a more ideal color encoding for the image processing pipeline.

For the preprocessing stage, this CMP will be useful for the NUC, demosaicing, and

color transformation of the raw Bayer patterned images into a coherent color image

that can be further processed for information extraction and analysis. Figure 5.41

shows a raw 5 mega-pixel image which was preprocessed into a color image, and then

color transformed into a grayscale image using the emulated PU on a FPGA.

Using the VVM cores in the CMP, NUC, demosaicing, and color transformation

can be done efficiently. For the NUC, which has the operation:

y = ax+ b, (5.11)

where a is the gain, b is the offset, x is the uncorrected pixel, and y is the corrected
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(a) Raw Image

(b) Preprocessed Image

Figure 5.41: Wide Area Motion Imagery Preprocessing. A Raw Image is NUC,
demosaiced, and color transformed into a grayscale Image.

pixel. The multiplication operation is done on the capacitor array using only the

necessary number of capacitors, while the addition operation is done implicitly by

loading the offset on the counter of the VVM core.

The demosaicing operation is done on the capacitor array in the VVM cores using

fixed weights. For a specific Bayer pattern, such as ’GRBG’, which has tiled squares

of green, red, blue, and green filters repeated across the pixel array in the imager, a
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common filter is used for all color locations. That is,

yi =
(x1 + x2 + x3 + x4)

4
, (5.12)

where yi are the colored outputs that are deduced from the average of 4 pixels x1,

x2, x3, x4. The input pixels are chosen based on the pixel location with respect to

the Bayer pattern. Since there are either 1, 2, or 4 pixels that are being interpolated

for each colored pixel, either each input x1, x2, x3, and x4 will be unique, or will be

duplicated accordingly.

Furthermore, the RGB color image is converted to a grayscale (luminance) image

through the RGB-to-YCbCr color transformation. Specifically, the color pixels are

interpolated as

yo = 0.299xr + 0.587xg + 0.114xb, (5.13)

where xr is the red pixel, xg is the green pixel, xb is the blue pixel, and yo is cor-

responding grayscale value. The filter coefficients are quantized to a specific bit

precision depending on the required accuracy.

For this image preprocessing, a total of 8 multiplication and 6 addition operations

are needed per pixel. In the case of giga-pixel images, the total number of operations

to compute at a framerate surpasses a billion. Capable of computing MACs with a

throughput of over 20 billions operations per second, this CMP could efficiently be

applied to large scale image preprocessing for the WAMI pipeline.
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5.5.2.2 Deep Convolutional Neural Networks

Within the past decade, deep convolutional neural networks (DCNNs) have be-

come widely popular in large-scale image classification and recognition tasks.106,107

They have been applied to huge image databases and repositories, such as Ima-

geNet,108 with unprecedented success. Nonetheless, because of the structure of these

networks and the copious amount of data being processed, large amount of memory

is needed to store the parameters and billions of operations are required to run the

network. Different techniques have been used to simplify the complexity of these

networks including, weight pruning,109 limiting convolutional filter sizes,110 network

compression through vector quantization or matrix factorization,111 and more. These

algorithmic implementations and system optimization has given rise to DCNN accel-

erators such as Origami,112 Eyeriss,113 and others.114

Specifically in this dissertation work, a DCNN, based on a state of the art model,110

is constructed and trained offline using GPUs, and then implemented for image clas-

sification using emulated cores from the Yupana CMP on the CIFAR-10 dataset.115

This dataset includes 60,000 color images in 10 distinct classes; figure shows a few

examples of the images in this dataset. Moreover, the model of the DCNNs is shown

in Figure 5.43. This model is composed of 11 layers — an input layer for the 32 by

32 by 3 color images, 6 convolutional rectified linear unit (ReLU) layers with either

64 or 128 (3x3) filters, 2 max pooling layers, 1 average pooling layer, and a fully-

connected layer for the classification labels. There are approximately half a million
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Figure 5.42: Images from the CIFAR-10 Dataset.

parameters used in this model, which if quantized to 8-bit precision, would require

500KB of memory. During inference, there are total of 15.5 million VVM and add

operations needed for the convolutional layers, 17 thousand pooling operations, and

1.28 thousand MAC operations for the full connected layers.

This trained network is evaluated for different bit precision of the data and the

parameters during testing. The classification results of the DCNN evaluated on the

test dataset of the CIFAR-10 dataset for the different bit precision can be seen in

Figure 5.44. Although the network was trained with double floating point precision

using GPUs, this model can achieve a high classification accuracy of 9̃0% with just

5-bit weights and 6-bit data. In fact, notable from the plot, increasing the weight or

data precision past 5 bits and 6 bits respectively gives marginal improvements.

The convolutional layers were implemented on the emulated VVM cores for the PU
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Figure 5.43: A Deep Convolutional Neural Network for the CIFAR-10 Dataset.
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Figure 5.44: Classification Accuracy of the DCNN for Different Data and Weight
Precision on the CIFAR-10 Dataset.

VVM. Although the add operation which sums all the intermediate convolved outputs

could not be done within the emulated core, all convolutions and ReLU operations

were done on this platforms. The inference done with the model using the emulated

VVM core achieves a 8̃8% accuracy when computing with at least 256 samples.

Furthermore, the implementation of deep neural networks can also be useful for

the classification step in the WAMI processing pipeline (Figure 5.40). Similar to the

example with the CIFAR-10 dataset, a network can be trained offline, and then be
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implemented for inference in object classification/recognition using the Yupana CMP.

5.6 Conclusion

The culmination of this dissertation is the multifaceted design of heterogeneous

mixed-signal processing units and system modules for a high performance computing

and energy efficient 2.5D multiprocessor system-on-chip in a 55nm CMOS process.

Formally known as the 2.5D Nano-Abacus SoC, this chip was constructed of 3 CMPs

that interface to a high bandwidth 3D DiRAM and a Zynq FPGA through a vertically-

integrated interposer board. In this work specifically, the primary focus has been on

the different levels of design for the these CMPs from the individual processors to the

I/O interfaces.

In order to push performance in these CMPs while also bolstering computational

efficiency, special processing units (PUs) were designed. Particularly, a mixed-signal

processing unit, the PU VVM, was designed with 128 programmable VVM cores that

exploit charge-based and stochastic computing to efficiently compute inner prod-

ucts for a variety of signal processing and machine learning tasks. Laid out in only

1.152mm2 area, this PU is capable of computing 225 million 8-bit MACs per sec-

ond with an efficiency of 28.6GOP/W. Additionally, a computational memory con-

troller processor, PU CMC, was designed for rotational and translation data manipu-

lation through address remapping; this PU is capable of doing 61.44 million rotational
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and translational operations per second. Moreover, an auxiliary cache unit, the PU

CACHE, was designed with 10KB of memory in 1.152mm2 area for local storage for

other PUs.

In addition to the PUs, a specialized instruction set processor, the PU controller,

was designed as a DMA controller and a controller for the PU core in order to facilitate

distributive computing within the CMP. Composed of only 8 unique instructions, the

PU controller can perform multi-dimensional read and write operations across the

networks implemented on the chip and also program the PU core to operate syn-

chronously with other units. As seen in the PU VVM, this implemented controller

has less than 10% overhead, and has been simulated to run a multi-stage edge detec-

tion task (Figure 5.20) with multiple PU VVM cores.

Moreover, other work in this dissertation includes the design of I/O cells for in-

terfacing the input, output, power, and analog signals of the CMP to the periphery

blocks, and the design and simulation of a bufferless mesh network useful for large-

scale SoCs. The I/O cells, which were used for all the CMPs in the 2.5D Nano-Abacus

SoC, were designed and simulated to run at low voltage (as low as 0.3V for the CMP

to FPGA I/O interface) and high speed (up to 1GHz). Furthermore, not only was

a robust scalable bufferless network presented in this work, a network simulator, de-

signed in MATLAB, was also constructed for prototyping different network models.

These different PUs and system modules were integrated into one of the chips, the

Yupana CMP, for large-scale energy efficient data processing. Comprised of 12,544
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VVM cores, a high bandwidth memory interface with 2 NoCs, ARM Cortex-M0 cores,

and additional auxiliary units in 14mm by 17mm silicon area, this chip was designed

to be useful for wide area motion imagery with gigabytes of framed images, large

scale inference task with deep convolutional neural networks, and more. Although,

the fabricated chip could not be tested due to a costly fault in the final chip assembly,

the post-layout simulations have validated the architectural and design approach for

this mixed-signal heterogeneous CMP for large-scale efficient data processing.
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Appendix A

Mixed-Signal ASIC Design Flow

In this thesis, a bottom-up design approach is used for the construction of the

mixed-signal ASIC blocks. Starting with a set of specification, the full block is

designed hierarchically to the transistor level. In this hierarchically approach, the

individual blocks are designed stand-alone and verified to meet constraints outside

the context of the full system. After individual verification, these blocks are then

integrated together and verified for the system specification. Moreover, this design

flow has been used for the construction of the multiprocessor mixed-signal VVM chips

(GF3 VVM, GF4 VVM, GF5 VVM), the PU VVM in the 2.5D Nano-Abacus SoC,

the I/O cells, and more.

The outline of this design flow is detailed in Figure A.1. The first phase of the de-

sign flow is the custom digital or analog block design. Using the Cadence schematic,

layout, and simulation tools, the custom integrated circuits are finalized to the nec-
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Figure A.1: Mixed-Signal Design Flow.

essary design specifications. Afterwards, these custom cells are characterized and

compiled into a library that can be placed and routed with digital blocks. Next, the

digital blocks for the top design, which could include register files, processors, state

machines, and more, are synthesized into a gate-level netlist using a standard cell

library. This synthesized netlist is then placed and routed with the custom cells for

the full top level design, and then verified through the signoff step, which assures that

timing, geometric, schematic, and logical verification are met.

In the following sections, each of these steps in the mixed-signal ASIC design flow

are discussed in more details.

A.1 Custom Block Design

The first stage of the mixed-signal ASIC design flow is the custom analog and/or

digital block design. These custom blocks can be constructed using the design flow

shown in Figure A.2.

This iterative design flow is initiated with a behavioral modeling of the custom

block to be built. Using a hardware description language (HDL) such as VHDL or
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Figure A.2: Custom Block Design Flow.

Verilog-AMS, a functional model of the block is constructed to refine and validate

the block specification.

After the behavioral model is finalized and has been simulated to the expected

specifications, the circuit schematic is designed in the intended technology process

down to the transistor level. In order to ensure that the circuit schematic matches the

functionality of the behavioral model, the SPICE netlist of the schematic is simulated

in an analog design environment (ADE). In Cadence the Virtuoso ADE can be used

in conjunction with the Spectre circuit simulator to run fast and accurate SPICE-

level simulations. Additionally, the Virtuoso ADE XL tool can be used to run Monte

Carlo simulations for analyzing the block functionality with process and fabrication

variations taken into consideration.

Once the schematic has been designed and tested, the circuit layout is then drawn.

Generally, a hierarchical bottom-up approach is used for progressively constructing

the full layout. Moreover, in order to maintain good signal and power integrity, special

consideration is taken for routing; special low resistance routes are given to power and
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ground signals to prevent IR drops and electromigration, sensitive analog wires are

shielded to minimize cross-talk, and a systematic Manhattan-style routing technique

is adapted for efficient wiring of the signals. Once the custom block layout has been

completed, the SPICE netlist is extracted and compared with that of the schematic

to ensure that the designs match.

Even after matching the layout and schematic of the custom block, it is still

imperative to do a post-layout simulation, where parasitic resistive and capacitive

components are taken into consideration. Inefficient placement of subblocks and

signal routing can have detrimental effects on the functionality and performance of

the block. Using the Mentor Graphics Calibre xACT, a parasitic extraction of the

layout can be done. The resulting SPICE netlist is simulated using the same tools for

simulating the schematic, and if the design doesn’t meet the required specification,

the process is iterated back to the schematic design stage.

A.2 Library Characterization

After the custom analog and/or digital block has been designed, and the post-

layout design has been verified to meet specification, then this block is characterized

into a library that be can be used in the next level of hierarchy of the design. In

characterizing this custom cell into a library, there are 4 main files that are created:

• Behavioral model description (HDL) file
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• Physical abstract description (LEF) file

• Timing description (LIB) file

• Layout description (GDS) file

Each of these files are described in more detail in the following subsections.

A.2.1 Behavioral Model Description (HDL)

The behavioral model description is a high-level hardware description of the cus-

tom block, which can be used in system-level simulations of the block with other

components. As this is primarily used for functional verification before and after syn-

thesis, this description is constructed as an ideal model without timing annotation,

and can be written in the Verilog or VHDL language. Moreover, this HDL file must

match the ports of the custom block exactly as this description is also used in the

placement and routing of the design.

A.2.2 Physical Abstract Description (LEF)

The library exchange format (LEF) file is an abstract view of the custom block

that contains information on pin positions, routing details, place and route (PR)

boundary, and metal layer details. This file is used specifically by the electronic

design automation (EDA) tool for placing and routing this block, and can be created

using the Cadence Abstract Generator software. In this software, first the layout
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and logical view are imported, then the abstract block details are extracted, and

finally the output LEF file is exported. During the abstract generation, discrepancies

between the layout and logical view, incorrect power labeling, and shorting of pins

are flagged. Furthermore, additional constraints can be augmented to the LEF such

as extra blockages and preferred pin layer extraction and connection.

A.2.3 Timing Description (LIB)

The liberty (LIB) file is a library file that defines the timing, power, noise, input

and output, and the process voltage temperature (PVT) characteristics of the custom

cell in a particular technology. Generally, this file is deduced from post-layout sim-

ulations of the custom block characterized under specific PVT and I/O conditions.

Using the Cadence Liberate Characterization tool, the generation of this file for stan-

dard cells, I/O, and complex multi-bit cells can be automated. Alternatively, this file

can be manually derived from user-based simulations.

This file is structured with 3 unique headers — the library header, the cell header,

and the pin header. The library header denotes the library name, the delay models

used for relaying timing and power information, and the settings and parameters such

as units, threshold point, and PVT values used in the simulation. The cell header

is used as an identifier for unique cells within this library; this header describes the

cell name, area, leakage power, and footprint (cell type description). Finally, the pin

headers encompass all the details for a pin within a cell for the library; this includes
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details on the type, direction, function, and capacitance of the pin. For output pins,

the maximum output capacitance the pin can drive is included, and the rise/fall delay

and the rise /fall transition is defined for given input slew rate and load capacitance.

Moreover, the internal power for clock and output pins are also defined in this section.

Furthermore, this LIB file is used during synthesis by the design compiler for

timing and power analysis and optimization. Additionally, this file is also used during

the place and route stage for the same purpose.

A.2.4 Layout Description (GDS)

The GDS file is a binary file that represents the planar geometric shapes and

labels for describing the multi-layered layout hierarchically. This is one of the final

deliverable for a chip tapeout used in generating the layer masks for fabrication. The

GDS file for the custom cell is used in the top level place and route for generating

the final GDS. This file is simply generated within Cadence Virtuoso, by streaming

out using the layer map for the targeted technology.

A.3 Digital Design and Synthesis

Once the custom cell library has been established, the next level of hierarchy of the

design, which may use these cells, can be synthesized to a gate-level netlist. The design

flow to finalize the gate netlist for place and route is illustrated in Figure A.3. The
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Figure A.3: Digital Design and Synthesis Flow.

process begins with the HDL design. In the hardware description, the synthesizable

digital blocks are described with structural and/or behavioral code (either VHDL

or Verilog), while the ideal behavioral models from the custom cell library are used

for the custom blocks. Afterwards, the block is simulated for functional verification.

In this work, this verification is done with the Mentor Graphics ModelSim software

tool. If the design doesn’t pass verification, it is redesigned, and once it does, it

is then synthesized using the Synopsis Design Compiler tool. This synthesis tool,

compiles and maps the design to a gate netlist based on the allotted standard cell

library. After synthesis, a static timing and power analysis is done to evaluate whether

the synthesized block meets expected performance and expectation. Then, a post-

synthesis simulation is done with the gate-level netlist to functional verify the design

for the place and route stage.

An iterative flow for the design synthesis, where the HDL design is optimized from

the pre-synthesis simulations, static timing and power analysis, and post-synthesis

simulations, is used. Before the design is placed and routed, the post-synthesis gate-

level netlist must not only be functional accurate, but must all meet timing and power
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Figure A.4: Place and Route Flow.

constraints.

A.4 Place and Route

After synthesis, the gate-level netlist is placed and routed using the Cadence

Innovus tool. The steps of the place and route flow are detailed in Figure A.4. Each

of these individual steps are executed through a TCL script in the Cadence Innovus

tool.

The place and route process start with floorplanning. During this stage, the die

area, I/O area, and core area are set. Additionally, power planning is also done in this

stage; the power domains are established and power distribution is laid out through

rails, stripes, and rings. For assembling a top level with a pad frame, the I/O cells,

pads (C4 or WB), and I/O cell spacers can also be placed in this stage.

After establishing the floorplan, the cells are then placed within the core area.

Firstly, the I/O pins, both analog and digital, are placed (generally on the boundary

of the core area if the pad frame is not integrated). Then, the custom blocks are placed

with considerations to routing congestion and pin locations. Power connections are
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made between the custom blocks and the already placed power routes once the custom

blocks have been set. Afterwards, the tap cells, which are the bulk connections for

the transistors are placed with fixed interval spacing that adhere to the design rule for

minimizing latch-up. If necessary, end cap cells are placed after placing taps. Finally,

the remaining cells from the gate-level netlist are placed, and then a placement check

is done to ensure that all placements are valid. A trial route can be done after the

full placement to initially route the design.

Once all the cells are placed, an in-place optimization (IPO) is done. This is an

iterative process that extracts the RC model of the placed design, does a static timing

analysis for setup and hold timing violations (timing constraints specified in a SDC

file), and then reruns the placements with a trial route. To fix timing issues, the tool

may move the cells or add inverter and buffer cells for dealing with lengthy paths or

problematic capacitive loads. Generally, this stage is over once all timing constraints

are met with a valid placement of all cells.

Next, the clock tree for the design is synthesized, placed, and routed. Within the

Innovus software, the clock concurrent optimization (CCOpt) tool is used to synthesis

trees for clocks constrained for slew, latency, and uncertainty. This process uses both

the SDC clock constraints along with the CCOpt configurations for generating the

necessary clock tree in the design.

After creating the clock trees, the final stage is the routing and optimization of

the design. In this phase, not only does the tool route the full design based on the
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routing and timing constraints, but it also fixes all design rule violations (DRV). If

routing congestion is an issue, the tool may fail to route without DRV issues, and the

whole place and route process may need to be reiterated. Moreover, once the design

has been fully routed to the timing constraints without DRV issues, then fillers may

be placed to meet design rule checks.

A.5 Signoff

Signoff is the final step in the ASIC design flow for verifying the design before

tape-out. The main signoff checks include:

• Design rule check (DRC)

• Formal verification

• Static timing analysis (STA)

These checks ensure that the design is valid for the fabrication process, is functionally

accurate, and meets the required performance. The STA check is done within the

place and route tool, Innovus, and the design must meet timing under the worse case

process, voltage and temperature (PVT) settings. Moreover, the DRC is done on

the final GDS streamed into the Virtuoso tool using the Mentor Graphics Calibre

DRC software. The last main check, which is the formal verification, is a post-layout

simulation done with the Mentor Graphics ModelSim tool to ensure that the final

design operates as intended.
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In addition to these main checks, there are other important signoff checks that can

be done. This includes a schematic verification, LVS, done in the Virtuoso environ-

ment, where the post-layout netlist is imported as a schematic and compared with the

netlist derived from the GDS. That check can be useful in identifying discrepancies

due to inaccuracies in the custom cell library or the top level placement and routing.

Other checks include a voltage drop analysis, that measures the integrity of the power

grid, and a signal integrity analysis that measures the effects of cross-talk noise on

the circuit functionality.
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