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Abstract

With the internet and rise of personal electronics there is an ever increasing

amount of data collected and transmitted every day; modern communication

systems will soon be overwhelmed. The driving force behind the demand

is an increasing speed of signal acquisition, in the public domain, as well as

medicine and industry; newer technologies allow massive amounts of data

produced through text, voice, and video. This puts strain on both signal

acquisition systems and communications systems to increase the total infor-

mation flow. Transmission down fiber links is enabled by the large but limited

bandwidth of optical fiber, and as we look toward the future, efficient use of

the available optical bandwidth is paramount. I apply the large bandwidth

of fiber and ultrafast speed of nonlinear optics to solve these problems, im-

plementing high-speed and efficient signal acquisition and communication

systems.

With the increased volume of information being transferred, compression

of data has become essential to allow multimedia communication. Data is

acquired then compressed and transmitted, requiring massive computing

power. Using the information theory technique coined “compressed sensing”,
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we demonstrate real time compression at signal acquisition, removing a time-

consuming and bandwidth inefficient step in a complete communication link.

I use dispersion and nonlinear wave mixing in optical fiber, and gigahertz

electro-optics to shape light at terahertz speeds, reaching towards the limit of

compressed image acquisition.

To complete a high-speed communications link, I investigate the use of

Nyquist optical time division multiplexing to maximize spectral efficiency.

The square spectral shape of a Nyquist pulse is ideal, but the pulse ripples on

forever in the time domain, presenting problems for demultiplexing Nyquist

signals at the receiver. I present a solution using coherent detection with a

biorthogonal Nyquist pulse to eliminate interference from neighboring chan-

nels, and implement a proof of concept system using nonlinear wave mixing.

Stable clock transfer is essential for coherent communication, but environ-

mental fluctuations erode clock information, reducing the effective data rate

of the communications channel. I present a versatile solution for stable time

and frequency transfer using dispersion and nonlinear wave mixing in optical

fiber.
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Chapter 1

Introduction

1.1 Thesis statement

Before the first optical fibers lit up the bottom of the oceans, light based tech-

nology had revolutionized how we can interact with each other and the world.

In order to enable future innovation such as petabyte communication, exotic

wave detection, and high-volume imaging we must continue to push technol-

ogy to its limit. The massive capabilities of optics can only be harnessed by

optical-to-optical interactions. In this thesis I will present multiple techniques

that use light to control light, pushing the limits of signal processing.

1.2 Motivation

Today we have a vast data network that spans throughout the globe, and with

the recent rise to information sharing we have finally begun to light up the

dark optical fibers laid down in the past few decades (Hecht, 2004). There has

been a tremendous amount of progress in increasing the speed and capacity

of network nodes, but data collection is increasing at a faster rate beginning to
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overflow modern networks (Kachris, Kanonakis, and Tomkos, 2013). What

this means for data networks is each node generates and demands more band-

width, not only straining the capacity of the network’s main pipelines, but

demanding efficient and robust signal processing and network control. New

solutions are needed to satisfy the requirements of next-generation communi-

cations networks. There are two macro-solutions to enable growth, primarily

by increasing speed of data flow using newer technology, and secondarily

through differentiating between data and information.

Fiber optics has become an essential part of communications and sensing

equipment. The development of low loss fiber and erbium doped fiber am-

plifiers in the 1970s and 80s opened up a huge window for communications

in the optical spectrum. The massive amount of capacity suddenly available

overwhelmed demand in the 90s, factoring into the following dot com and

telecom bubble (Hecht, 2004; Malik, 2003). Further research and development

has continued to improve the robustness of optical networks, where today we

are starting to see optical fiber connecting to individual residences, marking

the final step of an all-optical information distribution network (Shumate

and Snelling, 1991). With the infrastructure almost complete, the improve-

ments needed in network nodes and links have moved beyond the solutions

presented with modern digital signal processing technology, where the band-

width is limited by electronics. Only light can match the bandwidth of light,

meaning information technology needs to move from electro-optic signal

processing toward optical-optical signal processing.

Over the past couple of decades consumer technology, social media, and

big data have exploded the amount of data that is collected and transmitted.
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Big data, for example, has become extremely popular in both academia and

industry, trying to answer the question; what information can we extract from

large amounts data (Lohr, 2012)? Additionally, compression of digital media

has enabled sending and receiving large files based on the fact that real images

and signals have a much lower information content than the data required to

store or collect them would suggest (Wallace, 1992). In response to the massive

amount of data, research and industry have started to question traditional

methods of signal acquisition to maximize information content and minimize

cost. Simply, this means information acquisition systems need to smart, able

to extract the information in signals from noise or redundancy by knowing

how, where, and when to look.

The combination of maximizing network speed and capacity along with

isolating information from data demands the flexibility and bandwidth of

optical-optical control. Ideally, an optical signal can transmit terahertz of

information from node to node without needing to be decomposed or slowed

down due to electronic limitations.

The work presented in this thesis will provide a number of potential solu-

tions for high-speed and robust processing of optical signals. From bandwidth

efficient communications to high-speed medical imaging, I demonstrate how

optical-optical control of light can enable the next generation of communica-

tions networks and signal acquisition systems.
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1.3 Key concepts

1.3.1 Fiber optics

First demonstrated by trapping light inside streams of water, total internal

reflection is the core principle of fiber optics, allowing for the confinement

of light inside glass fibers (Hecht, 2004; Kapany, 1960). Today, fiber optics is

known best as the backbone of the internet, due to its ability to transmit light

long distances with extremely low loss.

Optical waveguides confine light along in the glass fiber, only suffering

from material loss of the very transparent silica. Total internal reflection is

achieved when two conditions are met. First, light in a high index of refraction

material must be incident to a lower index material, where the index of refrac-

tion is the ratio between the phase velocity of the light ν and the speed of light

in a vacuum nmaterial =
c
ν . Additionally, the angle of incidence has to be larger

than the critical angle, which is determined by the index difference between

the two materials. Total internal reflection can be maintained along an entire

length of fiber because the internal core has a higher index of refraction than

the surrounding cladding, ncore > nclad, together making up an optical fiber.

Not only do the material properties affect the propagation of light, waveg-

uide effects that depend on the size of the core and difference in index of

refraction between the core and cladding determine the shape, speed, and

number of modes that propagate. (Kapany and Burke, 1961; Agrawal, 2000).

When the waveguide is small enough compared to the wavelength of light,

only a single mode is allowed to propagate so inter-modal effects are removed,

this is called a single-mode fiber (SMF). This thesis will focus on use of various
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single-mode fibers, so only the fiber material and waveguide properties of

dispersion and nonlinearity will be discussed.

Standard single mode fibers are made of silica, designed for operation at

1550 nm with a core diameter of 8-10.5 um and cladding diameter of 125 um

with a very small index of refraction difference n1 ≈ n2 (Corning SMF 28 Ultra

Optical Fiber 2014). The index difference is chosen to maximize the size of

the core to ease coupling light into the fiber while maintaining single-mode

condition, and the cladding diameter is optimized to produce a flexible and

sturdy fiber.

Figure 1.1: The optical loss of a signal down fiber in terms of dB per kilometer in
the near-infrared. The communications bands original (O), extended (E), short (S),
conventional (C), and long (L) are shown, with the C-band from 1530 nm to 1565 nm
showing the lowest loss <0.2 [dB/km].

Corning SMF-28 has less than 0.2 [dB/km] of loss over a wide range of

wavelengths 1490 nm to 1625 nm, or over 15 THz of bandwidth (Corning SMF
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28 Ultra Optical Fiber 2014). This has enabled the fiber networks we have today,

with portions of this spectrum being sectioned for communications, most no-

tably the C-band 1530 nm to 1565 nm, show in Fig 1.1. This massive capability

of fiber optics inspired a new industry of optical communications, generating

a plethora of passive fiber components such as wavelength division multi-

plexers, couplers, circulators, optical delay lines, and polarization controllers

together enabling a complete and flexible optical network (Lefevre, 1980; Kach,

1979; Tomlinson III, 1978). This thesis will demonstrate a use of passive optical

components, standard and specialty fiber, electro-optic devices, and nonlinear

wave mixing to construct novel optical signal processing systems that fully

utilize the bandwidth of fiber optics.

1.3.2 Chromatic dispersion

The transverse electromagnetic wave propagates through a silica fiber at

speeds depending on the size of the core, index of refraction difference be-

tween core and cladding, and their material properties. Silica has an index

of refraction of nsilica = 1.46 at λ = 1550 nm, but material index of refraction

is wavelength dependent, resulting in a wavelength dependent change in

propagation time through a fiber.

The waveguide dimensions also provide a wavelength dependent ve-

locity, resulting in the waveguide index of refraction, adding an additional

wavelength dependent term to the total effective index of the propagating

mode. This effective refractive index ne f f (λ) = nmaterial(λ) + nwaveguide(λ)

determines the speed at which each wavelength travels through the optical
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fiber (DiDomenico, 1972).

This wavelength dependent change in refractive index results in what is

called group velocity dispersion (GVD), the group delay dispersion parameter

D(λ) = −λ
c

d2n
dλ2 describes how a wave travels through a uniform material. If

D < 0 shorter wavelengths will travel faster than longer wavelengths and if

D > 0 longer wavelengths will travel faster than shorter wavelengths.

Figure 1.2: An optical pulse travels down a dispersive fiber, |D|>0, spreading out as
it propagates, reducing the peak power and increasing the pulse duration.

An optical pulse that has some wavelength dependent time mapping is

chirped, and can be compressed back to transform-limited pulse duration.

Figure 1.2 shows how propagating down an optical fiber can spread a pulse

out, potentially distorting any information due to pulses spreading into one

another or fading below the noise floor. When describing the effects of dis-

persion on an optical pulse, it is convenient to look at how it effects the phase

velocity φ. This is manifested in a frequency dependent propagation constant
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β(ω) that can be expanded in a Taylor series around ω0 as

β(ω) ≈ β0 + β1(ω − ω0) +
β2

2
(ω − ω0)

2... (1.1)

where βn is the nth-order propagation constant. The third term β2 represents

the second order dispersion, producing a frequency dependent delay of the

spectral components. This spectral phase shift applied by dispersive propa-

gation depends on β2 as well as the total length L of fiber propagated. The

applied electric field E(ω) will undergo a quadratic spectral phase shift scaled

by β2L, and the resulting electric field Edisp(ω) can be described as

Edisp(ω) = E(ω)e−j β2L
2 (ω−ω0)

2
(1.2)

excluding higher order dispersion terms. Generally third and higher orders of

dispersion β3+ are negligible, although propagation through long lengths of

fiber L>10 km or using large bandwidth optical pulses BWMLL > 1 THz, the

effects becomes significant (Agrawal, 2000).

1.3.3 Nonlinearity

In a linear materials we can describe the polarization density field as a scalar

function of the applied electric field P = ϵ0χeE, where ϵ0 is the free space

permittivity, and χe is the electric susceptibility (Feynman, Leighton, and

Sands, 1964).

Nonlinear materials respond to the intensity of an applied electric field,

resulting in intensity dependent terms in the polarizability of the material.
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The polarization density can be described using a Taylor series expansion,

P = ϵ0(χ
(1)E + χ(2)E2 + χ(3)E3 + ...) (1.3)

where χ(n) are the nth − order susceptibilities of the material. χe is related to

the index of refraction by n =
√︁
(1 + χe) (Agrawal, 2000). The first term in

P describes the linear response of the material, χ(1), and the following are

nonlinear terms that alter the index of refraction depending on the material

susceptibility and intensity of the applied electric field. Silica is a centrosym-

metric material, therefore it has a non-existent second order susceptibility

χ(2) = 0, so this thesis will focus on nonlinear interaction based on the χ(3)

term (Levenson and Bloembergen, 1974). With the higher order terms being

negligible in most materials, we can define a nonlinear index of refraction

related to the effective index as n(λ, I)e f f = n(λ) + n2 I that is dependent on

the intensity of the applied electric field. The nonlinear parameter γ is defined

by material and waveguide properties as,

γ =
2πn2

λ0Ae f f
(1.4)

where Ae f f is the effective area of the mode in the waveguide, and the nonlin-

ear index n2 is related to material properties (Agrawal, 2000).

When a single wavelength or optical pulse of light travels through nonlin-

ear materials, it can experience self phase modulation (SPM), which can result

in spectral broadening, or third harmonic generation (THG), creating light at

three times the frequency of the input light 3ω0. Following, when multiple

wavelengths of light interact, effects such as cross phase modulation (XPM)
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and four-wave mixing (FWM) become relevant, specifically FWM generates

new wavelengths of light based on the combination of applied fields and will

be discussed in more detail.

1.3.4 LASERs and mode-locking

The term LASER is the acronym "Light amplified by stimulated emission of

radiation", and has become one of most influential devices in the last few

decades. Any LASER consists of a cavity, gain medium, and energy pump

shown in Fig 1.3. The gain medium converts the pump energy into light that

builds up in the cavity and produces a coherent monochromatic light beam.

Figure 1.3: A LASER consists of an optical cavity with a gain medium that is externally
pumped. The spontaneous emission excites modes of the cavity that can propagate
and receive gain through stimulated emission.

The light generated in the gain medium relies on absorption and emission

of optical radiation. The energy source, either optical, as shown in Fig. 1.3, or

electrical, excites the active atoms in the gain medium, raising their energy

level as shown in Fig. 1.4. Spontaneous emission occurs when the excited
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atoms relax, emitting a photon with energy corresponding to the energy dif-

ference between the higher and lower state ∆E = E1 − E0. This process is

shown in Fig. 1.4 where a pump photon of energy E2 is absorbed, and after

some time τ21 + τ10, a photon is spontaneously created from the relaxation.

Similarly, stimulated emission occurs when a photon passes through an atom

with a raised energy, stimulating the generation of a additional photon that

is the same wavelength and phase of the passing photon. This process, is

shown in Fig. 1.4, where both a pump photon and lasing photon pass into the

atom, and two coherent laser photons are generated. The initial spontaneous

emission that is parallel with the cavity, shown in Fig. 1.3, builds and passes

through the gain medium multiple times. This effect eventually starts the

cascading stimulated emission of light waves inside the cavity producing

monochromatic and coherent light beams known as LASERs (Gould et al.,

1959).

Figure 1.4: The energy diagrams of the spontaneous and stimulated emission process.
The spontaneous emission occurs after some relaxation time τ21, but if another photon
interacts with the atom, stimulated emission can occur, generating a coherent pair of
photons.
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Ultrafast optics deals with light interactions at the smallest time scales,

using ultrashort pulses with a duration of picoseconds or less. Since the

advent of LASERs, research has strived to generate shorter and more stable

optical pulses. Mode-locked lasers (MLL) have become the state of the art for

creating stable ultrashort pulses. These MLLs can produce extremely short

pulses down to a few femtoseconds allowing for high speed communication,

medical imaging, interrogation of ultrashort light interactions, and countless

more applications (Steinmeyer, 2002; Weiner, 2011).

As suggested by the name, mode-locked lasers generates pulses by locking

multiple optical modes that coherently mix to produce a short pulse of light.

Simply, this is done by inserting a loss mechanism into the laser cavity that

will cause all of the longitudinal cavity modes that are in phase with the loss

mechanism to build up and produce an ultrashort optical pulse. The duration

of the pulse depends on the bandwidth of the gain material, each longitudinal

mode corresponds with a different frequency or wavelength that can propa-

gate in the cavity, the larger the optical bandwidth of the pulse, the shorter it

can be in time. Femtosecond MLLs have hundreds of nanometers of optical

bandwidth. The rate at which a passively mode locked laser is determined

by the cavity dynamics, including the cavity length, the loss mechanism, and

other inter-cavity effects (Jones et al., 2000). Figure 1.5 shows how the cavity

modes and laser gain bandwidth combine to define a passively MLL spectral

profile.

For a Gaussian beam the pulse width is transform limited to ∆tFWHM =

0.441
BWFWHM

, determined by the full-width half maximum (FWHM) of the laser

gain bandwidth. This Gaussian spectral shape corresponds to a Gaussian
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Figure 1.5: The gain bandwidth of the cavity and the modes allowed in the cavity
determine the repetition rate and bandwidth of the MLL. The laser output pulses at
the inverse of the mode separation ∆ν.

temporal profile, shown in Fig. 1.5. Non-Gaussian gain spectra, internal

cavity filters, or external manipulation of the spectrum can produce different

temporal profiles. Generally, this is know as pulse shaping, a huge arm of re-

search with a variety of applications in communications and signal processing

(Weiner, 2011).

1.3.5 Optical amplification

Signals propagating down some medium incur loss, although optical fiber

has extremely low loss a signal sent from one side of the Atlantic could not

make it across to the other side. Maintaining the optical signal to noise ratio

is paramount for long-haul data transmission. Networks can employ optical

repeaters that detect a transmitted signal after some distance of fiber, then

re-transmit the signal further down the line. This optical-electrical-optical con-

version is power consuming and increases the system complexity, instability,
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and cost (Becker, Olsson, and Simpson, 1999).

Figure 1.6: The energy diagrams of a three level stimulated emission process that
leads to optical gain. Signal light is amplified as it propagates down the excited
erbium fiber.

Using the same process that is the core to LASERs, optical amplification

can be used to amplify a signal as it propagates down a fiber. For amplifica-

tion of communications signals, erbium doped fiber amplifiers (EDFA) have

dramatically increased the size and information capacity of fiber links. The

erbium doped fiber core is generally optically pumped with 1490 nm light

that excites the erbium atoms to a higher energy level. As shown in Fig. 1.6,

as the C-band light travels through the fiber, stimulated emission amplifies

the signal. Erbium allows for a gain bandwidth that stretches over the entire

C-band enabling high-throughput long-distance communication.

1.3.6 Specialty optical fiber

Optical fiber for long distance communication is designed for the lowest

possible loss, with the state of the art being Corning SMF-28, with less than

0.2dB/km from 1490 nm to 1625 nm. However, the dispersion of SMF in the

C-band is DSMF ≈ 18[ps/nm/km], meaning longer wavelengths will travel

faster than shorter wavelengths (Corning SMF 28 Ultra Optical Fiber 2014). As
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mention earlier, the resulting pulse spreading can limit bit rates. By altering

the waveguide dimensions from the standard core diameter of 8-10 um, the

waveguide refractive index nwaveguide(λ) can be altered to change the effective

index ne f f and consequently the fiber dispersion D f iber. This allows short

pulses of light to be stretched out in a positive dispersion waveguide, SMF,

then compressed in a negative dispersion waveguide, or dispersion compen-

sating fiber (DCF).

Generally DCF has a decreased fiber core, increasing the waveguide dis-

persion to mitigate or reverse the effects of material dispersion. Figure 1.7

shows the dispersion over the wavelengths around the C-band, where SMF

has positive dispersion and the dispersion-shifted fibers (DSF) have negative

or near zero dispersion due to their waveguide dispersion (Gruner-Nielsen

et al., 2005).

Figure 1.7: The total dispersion in purple is the combination of material dispersion
in red, and waveguide dispersion in blue. By altering the waveguide properties, the
waveguide dispersion can be increased, resulting in dispersion-shifted fiber (DSF)
and dispersion-compensating fiber (DCF).

All materials have a nonzero nonlinear parameter γ causing problems

for optical communications through spectral broadening or inter-modulation

effects that can distort the information in optical fiber links (Mitra and Stark,

2001). Recent communications research has incorporated nonlinearity directly
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Fiber Loss Dispersion (D) Dispersion slope (Dslope) Nonlinearity (γ)
SMF < 0.19 [dB/km] 18 [ps/nm/km] 0.092 [ps/nm2/km] 1 [W/km]
DCF < 0.27 [dB/km] −38 [ps/nm/km] −0.11 [ps/nm2/km] 4 [W/km]
DSF < 0.21 [dB/km] −4 [ps/nmkm] 0.12 [ps/nm2/km] 2 [W/km]
HNLF < 0.9 [dB/km] −0.5 [ps/nm/km] 0.019 [ps/nm2/km] 11.5 [W/km]

Table 1.1: The optical properties of different fibers at 1550 nm wavelength. The
fiber loss is lowest for SMF, but the dispersion requires long distance systems to
use DCF and DSF to compensate for the dispersion and dispersion slope. The large
nonlinearity of HNLF is paired with a small amount of dispersion to increase phase
matching, but suffers from higher loss.

into the modulation and demodulation process to overcome this limit (Gui

et al., 2017). However, nonlinearity can offer advantages using effects such

as FWM, so some specialty fiber is made to increase the nonlinear parameter

γ using its dependence on n2 and Ae f f shown in Eq 1.4 for various fibers.

This highly nonlinear fiber (HNLF) can be fabricated by doping or creating

a micro-structure core to increase the nonlinear index n2, or reducing the

fiber core size and increasing the core-cladding index mismatch to decrease

the effective area of the mode Ae f f . Due to the phase matching conditions

required for nonlinear effects, it is important to note the dispersion of the

nonlinear fiber, with applications requiring different dispersion profiles to

optimize certain nonlinear interactions.

Table 1 shows the parameters of optical fibers at 1550 nm used in this thesis.

The dispersion caused by SMF can be compensated for with DCF, and the

dispersion slope can be compensated with the proper addition of DSF (Corning

SMF 28 Ultra Optical Fiber 2014; Dispersion Compensating Fiber 2017; Non-Zero

Dispersion-Shifted Fiber 2018; Standard Highly Non-Linear Fiber Modules 2019).

Controlled nonlinear reactions using HNLF with appropriate input dispersion

are essential to the work presented in this thesis.
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1.3.7 Electro-optic devices

The combination of electronics and optics has been essential for both the

telecommunications boom as well as providing the camera devices we all

use every day. As opposed to the detection of light, electro-optics refers to

altering the light inside a material using electronics. This generally done

through the Pockels effect, found in materials that lack inversion symmetry,

where the effective index of can be modulated by an applied electric field

(Chmielak et al., 2011). If we consider applying a voltage V(t) = αsin(Ωt)

with some amplitude α and frequency Ω to the electro-optic device, the phase

shift introduced on a wave oscillating at the carrier frequency ω and slowly

varying envelope A is,

EPM = Aejωtejαsin(Ωt). (1.5)

Because α is small, we can use a Taylor series expansion to generate side

band around the carrier frequency

A(ejωt + ejαt(ω+Ω) + ejαt(ω−Ω)). (1.6)

This only includes the first order side-bands, in reality there are infinite at

±nΩ where n = 1, 2, 3.... This phase modulated signal can be combined with

the original field Aejωt to produce amplitude modulation through constructive

and deconstructive interference between the phase modulated and non-phase

modulated waves. Both phase and amplitude modulation can be used to

encode information of a light wave, where the amplitude α(t) or frequency

Ω(t) of the modulation can carry information (Winzer and Essiambre, 2008).
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Figure 1.8: Data can be modulated onto the amplitude of a laser pulse using construc-
tive and deconstructive interference. The phase modulator is place in one arm of a
mach-zehnder interferometer, where the LiNbO3 phase modulation causes decon-
structive interference with the non-modulated arm at the output.

In the C-band, phase modulation can be achieved using a lithium niobate

(LiNbO3) waveguide, where the electro-optic LiNbO3 provides a phase change

with respect to the applied voltage (Weis and Gaylord, 1985). In an electro-

optic amplitude modulator, shown in Fig. 1.8, the input is split using a Mach-

Zhender interferometer (MZI), with one arm containing a phase modulator.

By applying a voltage Vπ, the phase of pulse is shifted by 180◦, such that

when it is recombined with the other arm of the MZI there is deconstructive

interference, converting the encoded information from phase to amplitude.

In addition to electro-optic modulators (EOM), another key electro-optic

technology to this thesis is a programmable spectral filter. As mentioned

earlier, pulse shaping is essential to optical signal processing, with different

pulse shapes having various advantages. One way to control a pulse is using

the amplitude and phase of the spectrum, which gives near-complete control

over the pulse temporal shape and duration.
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Independent wavelength control can be achieved using wavelength to

space mapping of a diffraction grating, then applying amplitude and phase

shifts to the isolated wavelengths. Similar to an EOM, the light beams travel

through electro-optic cells in order to achieve amplitude and phase shifts. The

setup for a free space spectral shaper is shown in Fig 1.9, where the input

light is spatially mapped onto an array of electro-optic cells. Each cell can be

programmed to provide binary, as shown in Fig 1.9, or arbitrary modulation.

The output spectrum is recombined using the inverse mapping process, and

coupled back into a fiber (Stobrawa et al., 2001).

Figure 1.9: The spectrum of an pulse can be spread out using a diffraction grating,
then sent through an array of electro-optics cells that can individually control each
wavelength.

Although this method of spectral shaping has high precision and dynamic

range, the speed at which it can update the programmed patterns is limited

by the electro-optic modulation (Stroud and Foster, 2019). This thesis will use

this type of spectral shaping and present more exotic techniques for higher

speed and more flexible spectral shaping.
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1.3.8 Four-wave mixing

Parametric processes refer to lossless nonlinear interactions that occur essen-

tially instantaneously, a quantum mechanical process where photons raise

an atoms energy into a virtual state and relaxes near-instantly to produce

photons of equivalent energy. This light speed multi-wave interaction can be

used for control of light signals at the shortest of time scales.

Of the many nonlinear wave inter-modulation effects from the χ(3) sus-

ceptibility, FWM is the only wave generation technique that can be done with

the confinements of the C-band, meaning there is an abundance of telecom-

munications equipment that can be used to control light around the 1550nm

wavelength. However, the bandwidth of this nonlinear interaction is not lim-

ited to the C-band, potentially spanning over hundreds of nanometers (Wang

and Foster, 2012). The term four-wave mixing comes from the terms generated

by the χ(3) when three distinct frequencies are applied to a nonlinear medium

and a new frequency is generated, thus a four-wave interaction. The real part

of the nonlinear polarization density in a χ(3) material can be described as,

PNL = ϵ0χ(3)(E1cos(ω1t) + E2cos(ω2t) + E3cos(ω3t))3 (1.7)
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which produces the terms using Euler’s formula,

PNL =
ϵ0χ(3)

2
(E3

1e±j3ω1t + E3
2e±j3ω2t + E3

3e±j3ω3t+

3E1E2
2e±jω1te±j2ω2t + 3E2

1E2e±j2ω1te±jω2t+

3E1E2
3e±jω1te±j2ω3t + 3E2

1E3e±j2ω1te±jω3t+

3E2E2
3e±jω2te±j2ω3t + 3E2

2E3e±j2ω2te±jω3t+

6E1E2E3e±jω1te±jω2te±jω3t).

(1.8)

The first three terms in Eq 1.8, describe self phase modulation, while the

rest can be described as four-wave interactions. Including the corresponding

propagation constants, the general form of this can be simplified to

EFWM ≈ E1E2E3ej(±ω1±ω2±ω3)t

ej(±ω1β1±ω2β2±ω3β3).

(1.9)

where βn are the the propagation constants of the different frequency waves

ωn. Excluded from Eq 1.8 and 1.9 is the phase conjugation of the field En

depending on the sign chosen. The phase conjugated wave is called the signal,

and the other two are pumps ωpump1 and ωpump2 . When ωpump1 = ωpump2 ,

the so called pump photons come from the same optical source, the process

is degenerate, and when ωpump1 ̸= ωpump2 it is non-degenerate FWM. The

converted wavelengths ωidler = ±ωsignal ± ωpump1 ± ωpump2 are idlers waves

and notably, they are directly related to the pump waves and phase signal

waves. Figure 1.10 shows the energy diagrams for degenerate FWM, where

two pump photons are converted into signal and idler photon, where the idler
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wave is related to the pump waves and phase conjugated signal wave.

Figure 1.10: The energy diagram shows how the two pump photons in green raise
the energy to a virtual state, and two photons the signal in blue, and idler in red are
created.

In order for the FWM process to be efficient, the pump and signal waves

must be temporally and spatially coherent. While propagation in single mode

fiber maintains spatial coherence, the temporal coherence is determined by

the difference in propagation constants βn. This is called phase matching, and

is the main limiting factor for the bandwidth of FWM frequency conversion,

related to the dispersion in optical fiber (Agrawal, 2000). The phase matching

condition for the energy diagrams in Fig 1.10 is defined as,

∆β = βpump1 + βpump2 − βsignal − βidler = 0. (1.10)

Failure to satisfy this phase matching condition will eliminate most of the

terms produced simplifying Eq 1.9. Without phase matching techniques, opti-

cal power will only flow into the idlers where frequencies ωidler ≈ ωpump ≈

ωsignal such that dispersive effects are minimal. In this thesis, we use standard

communications equipment with C-band signal and pump waves to generate

idlers also in the C-band. This allows for traditional optical control using
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passive and electro-optic devices in addition to ultrafast processing using

FWM.

1.3.9 Optical time lens

The dispersive effect on a pulse through optical fiber can be described by a

change in the envelope A(z, t) of the optical pulse as it propagates down the

length L(z) of fiber. The development of the optical envelope can be described

as the derivative with respect to z,

∂A(z, t)
∂z

=
jβ2

2

[︃
∂2A(z, t)

∂t2

]︃
. (1.11)

This is analogous to the diffraction of a spatial beam,

∂A(z, x)
∂z

=
j

2k

[︃
∂2A(z, x)

∂x2

]︃
(1.12)

where the envelope A(z, x) describes the spatial beam with respect to x. Match-

ing variables k and β2 are the propagation constants of the spatial and temporal

beams respectively (Salem, Foster, and Gaeta, 2013).

The analogy between temporal and free space optical propagation suggest

that more techniques used in spatial optics can be translated to the temporal

domain. For instance, a prism can shift the direction of a monochromatic

beam by applying a linear phase shift across the beam. Further, lenses focus

or diverge light beams by applying a quadratic spatial phase shift through the

refraction of light across the curved surfaces. To replicated these effects in the

time domain, temporal phase shifts must be applied to optical pulses.

Electro-optic modulators can be used to apply a temporal phase shift. A
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sine wave voltage signal applied to an EOM can approximate both linear and

quadratic phase shifts. The peaks and troughs are approximate to a quadratic,

while the zero-crossing is approximately linear. However, in addition approxi-

mation errors, the total phase shift and modulation bandwidth is limited by

the electronics involved (Kolner and Nazarathy, 1989).

On the other hand, we can use FWM to convert pump photons into sig-

nal and idler photons, with a frequency shift on the idler. Using a single

wavelength pump, the idler will be an identical copy of the signal, but at the

idler frequency ωidler = 2ωCW pump − ωsignal. Noting that frequency is related

to phase through the derivative ν = dφ
dt , a frequency shift is equivalent to a

linear phase shift. Therefore, applying a quadratic phase shift is equivalent to

applying a linear frequency shift. This can be done using FWM with a chirped

pump pulse instead of the single frequency pump ωCW pump, with dispersion

acting as a linear phase shift that the will be applied to the idler. Figure 1.11

shows how the energy diagram for the FWM interaction is time dependent,

where the frequency of the chirped pump is time dependent ωChirpedpump(t).

This applies the linear frequency shift of the dispersed pump onto the idler, a

linear frequency shifted version of the signal pulse.

The amount of phase shift applied depends on dispersion β2 and the length

L of fiber used, making it extremely scalable to large phase shifts. Assuming

the phase matching conditions are met ∆β ≈ 0, the idler output from the

FWM is related to the signal wave with a phase shit due to pump dispersion.

Due to the factor of propagation length L, the FWM time-lens can easily be

scaled to large phase shifts.

Similarly to a spatial lens, a time lens can be used to magnify, reduce, or
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Figure 1.11: Spectrogram of the FWM process and energy diagrams of three different
times, showing how the linear frequency shift on the pump to be applied to the idler
pulse, shown in red.
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Fourier transform a temporal signal. This can be used for a variety of signal

processing applications, allowing for high speed control of optical pulses

(Salem, Foster, and Gaeta, 2013; Stroud and Foster, 2019; Petrillo and Foster,

2011; Stroud et al., 2018).

1.3.10 Compressed sensing

Compression has become a household term, with modern communication

requiring compression to move large amounts of data every day. Common

types of compression such as JPEG or JPEG-2000, uses local sparsity of the

image after some transform, commonly the discrete cosine transform (DCT)

or multi-level wavelet transforms (Wallace, 1992; Marcellin et al., 2000). All

compression techniques rely on the assumption that natural images are sparse,

meaning in some mathematical basis the signal can be represented by a very

small number of significant coefficients.

Traditional sampling is done by taking measurement of the signal ampli-

tude at a constant rate, know as the sampling rate Rb. According to Nyquist

theory, to collect the information in a signal the sampling rate must be at

least twice the maximum bandwidth of the signal of interest Rb ≥ RNyquist =

2BWsignal (Landau, 1967).

However, the total information content of the signal could be much smaller,

which is the driving force behind compression theory. This means that the

information bandwidth of the signal is far below the sampling rate required by

the Nyquist criterion. Figure 1.12 illustrates how mathematical compression

is efficient by comparing the under sampling of an image to compression,
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showing a clearly better image reconstructed using an image transformation.

Figure 1.12: A simple compression technique using a transform and inverse transform
generates better images than simply reducing the number of pixels. With only 10%
and 5% of the original components used, the transform compression maintains higher
image quality.

Recent information theory has shown that a sparse or compressible im-

age can be acquired with far fewer samples than required by Nyquist using

global image acquisition (Donoho et al., 2006; Eldar and Kutyniok, 2012).

By acquiring global information from the signal, each sample contains far

more information than the corresponding pixel by pixel sampling required

by Nyquist. Without prior knowledge of the sparse domain of a signal under

test, global information can be collected by taking a random selection of the

signal and integrating it into one sampled value coined "single-pixel" imaging

(Stroud and Foster, 2019; Duarte et al., 2008). This is mathematically described

as mixing a unknown signal of interest with a known binary pattern, where

27



the compressed measurements can be described as the inner product,

yCSi = Aixi (1.13)

where A is a known psuedorandom pattern and x is the signal of interest.

The signal can be represented in a sparse domain using some sparisfying

transform Φ,

s = Φx (1.14)

where s has few non-zero components. The number of compressed samples

yCSi required to reconstruct the signal i = 1, 2, 3...M is related to the sparsity

of the signal klog(N), where k is the sparsity, and N is the dimension of the

signal, or the number of samples required by Nyquist. Therefore, we can

reconstruct signal with far fewer samples than required by Nyquist M << N

(Candès and Wakin, 2008).

Using a minimization algorithm, the signal x̂ can be reconstructed by

minimizing the number of non-zeros components in ŝ, while maintaining the

fidelity of compressed measurement yCS (Figueiredo, Nowak, and Wright,

2007).

min ||ŝ − λ||1 . . . while Ax̂ − yCS = 0. (1.15)

Figure 1.13 illustrates the process of a compressed sensing reconstruction

algorithm. The compressed measurements yCS and known pseudorandom

matrix A used to formulated an initial estimate of the signal x̂. This estimate

is transformed into the spare representation ŝ where the sparsity is enforced

by the regularization parameter λ. This sparsified estimate is transformed

back in to sampled basis, and the difference between the estimated Ax̂ and
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true yCS compressed measurements is minimized. This processes is iterated

until the image has been reconstructed, reaching the sparsest solution that

maintains the fidelity of the collected measurements.

Figure 1.13: The process of a compressed sensing reconstruction algorithm. The
compressed measurements yCS and know patterns A are used to generate and image
estimate x̂. The iterative process finds the sparsest solution using an image transform
Φ.

Compressed sensing has revolutionized how signals can be acquired, show-

ing that compression can be achieved simultaneously with acquisition. This

thesis will use compressed sensing applied to multiple applications, and will

present two methods of collecting compressed data directly using photonic

hardware.
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Chapter 2

High speed optical coherence
tomography using real time
compression to achieve 28.8 MHz
A-scan rates

2.1 Introduction

Over the past decade, optical coherence tomography (OCT) has proven to

be an invaluable tool in medical diagnostics, allowing straightforward as-

sessment of the progress of macular degeneration, multiple sclerosis, and

glaucoma (Fercher et al., 2003; Tomlins and Wang, 2005). The massive amount

of data collected in an OCT acquisition poses a problems in data storage and

manipulation, requiring compression prior to any data processing (Zhang

and Kang, 2010; Grulkowski et al., 2009). Additionally, in many applications

the data acquisition needs to be done quickly to avoid motion artifacts that

can distort the image (Yun et al., 2004; Zhang et al., 2009). Without the need

for a scanning reference arm, spectral domain OCT (SD-OCT) techniques
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have increased A-scan rates from a few kHz to a few MHz (Leitgeb, Hitzen-

berger, and Fercher, 2003; Choi et al., 2012) by using CCD or CMOS cameras

to sample and digitize the spectral interference. However, techniques that

utilize cameras face limitations from the electronic data readout rate, as well

as motion blur due to exposure time (Leitgeb et al., 2003). To avoid using

cameras, swept source OCT techniques using Fourier domain mode locked

(FDML) sources and dispersed supercontinuum sources have been used to

produce a frequency mapped temporal signal that can be sampled with a

single ADC (Huber et al., 2007; Moon and Kim, 2006). The use of mode

locked lasers (MLL) and optical dispersion have become the state of the art in

terms of speed, demonstrating A-scan rates from 7.14 MHz to 90.9 MHz (Xu

et al., 2014; Goda et al., 2012). However, CCD/CMOS cameras, swept source

methods, and dispersed MLL methods all read out the spectral interference

signal serially using different methods of parallel to serial conversion. This

introduces a hard limit on the total pixel rate of the OCT system to the speed

of available ADC technology.

Information theory introduced compressed sensing (CS) (Candes and Tao,

2005; Candès, Romberg, and Tao, 2006; Donoho, 2006; Baraniuk, 2007; Candès

and Wakin, 2008), suggesting natural sparsity can be leveraged to reduce the

number of samples required to collect signals. This has been adopted by the

medical field and applied to MRI imaging, photoacoustic imaging, and OCT

(Lustig, Donoho, and Pauly, 2007; Guo et al., 2010; Liu and Kang, 2010). Partic-

ularly, Dr. Jin Kang’s group has done extensive work on under sampling OCT

data then implementing CS algorithms achieving successful reconstruction

with less than 20% of measurements required by the Shannon/Nyquist theory
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(Liu and Kang, 2010; Xu, Huang, and Kang, 2014). By taking advantage of the

compressibility of volumetric OCT data due to sparsity in some domain (Wu

et al., 2013), the data cube can be under sampled without the loss of image

quality (Young et al., 2011). However many of these method still require the

entire data cube to be recorded where the compression is applied after acquisi-

tion (Liu and Kang, 2010; Xu, Huang, and Kang, 2014; Wu et al., 2013; Young

et al., 2011). Although compressed sensing after data acquisition allows for

real time visualization, it fails to address the bottleneck due to serial readout

on a single ADC.

We have previously implemented CS in the sampling stage of a high-speed

microscope, ultra wide-band radio frequency (RF) sensing, and initial results

in OCT (Bosworth et al., 2015b; Bosworth et al., 2015a; Stroud et al., 2016). Pre-

liminary investigations into CS OCT system investigated the compressibility

of A-scan and B-scan images (Stroud et al., 2016; Mididoddi et al., 2017). In

this paper we present a system that utilizes compressed sensing in the axial

dimension of the detected OCT signal and reconstructions the volumetric

C-scan data utilizing transverse and depth sparsity. Taking advantage of CS

theory, we sample inner products between the interference signals and know

binary patterns such that each measurement contains information spanning

the entire depth profile. This allows for real time photonic compression of

the data prior to detection by a high speed ADC. We can remove the direct

limit imposed by Nyquist sampling on A-scan rates, further extending the

possibilities of high speed OCT.
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2.2 Experiment

2.2.1 CS source

The optical source we developed for acquiring compressed measurements has

been coined continuous high-rate photonically-enabled compressed sensing

(CHiRP-CS) (Bosworth et al., 2015a). We use dispersion in optical fiber to

directly modulate the spectrum of individual laser pulses. The principle for

the CHiRP-CS source is shown in Fig. 1, using optical fiber and an electroptic

modulator (EOM) the output laser pulses are modulated with unique binary

spectral patterns.

The broadband laser source at 1550 nm and native 90 MHz repetition

Figure 2.1: The dispersed and multiplexed MLL is modulated then recompressed
to generate our CHiRP-CS source, which is sent into an OCT system. The sampled
pulses are compressed measurements of the OCT interferogram.

rate is multiplexed twice up to 360 MHz. The pulse train is then sent through

853 ps/nm dispersion optical fiber module to spread the 22 nm of optical

bandwidth over 20 ns. This resulting frequency to time mapping allows the

spectrum of the laser pulses to be modulated in time with an EOM operating

at 11.52 Gb/s using a programed pseudorandom binary sequence (PRBS).
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With the 2.77 ns repetition cycle and over 20 ns pulse duration, neighboring

pulses overlapped greatly, resulting in up to three pulses to be modulated

simultaneously on different portions of their spectrum. Modulating the 360

MHz pulse source at 11.52 Gb/s results in sequential pulses spectrally shifting

the PRBS pattern by 32 bits. In order to reach our final 1.44 GHz repetition

rate, the patterned source is multiplexed twice more, with large delays of

166 ns and 306 ns. The dispersed pulses are recompressed in 50 km of SMF

resulting in distinct pulses with unique spectral patterns at a 1.44 GHz pulse

rate. We achieve spectral features of 12.53 GHz, over almost 3 THz of optical

bandwidth, determined by the dispersive frequency to time mapping and

EOM modulation rate.

In comparison with other work in CS OCT (Mididoddi et al., 2017), we

disperse, modulate, and compress our pulses prior to entering the OCT in-

terferometer, minimizing the losses in the EOM, optical fiber, and allowing

for multiplexing after modulation. We are able to reach near the limit for

the efficiency of our CS system, in terms of unique CS bits per second per

nanometer.

2.2.2 OCT system

The OCT interferometer is set up with a mirror as a reference arm and a

two-dimensional laterally scanning sample arm with a single 7.5 mm lens.

The input CHiRP-CS source is split by a 80/20 couple where 80 percent enters

the sample arm and 20 percent reaches the reference then are recombined in a

50/50 coupler then balanced detected by a 1.6 GHz amplified photodetector.
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Figure 2.2: The dispersed and pulse picked MLL is sent into an OCT system. The
interferogram on the dispersed pulses are directly sampled by a high speed detector.

The signal is digitized by a 20 GHz 40 GS/s oscilloscope and read out to a

computer for data processing and image reconstruction. When the CHiRP-CS

source returns from the interferometer the pulse spectrum is modulated by

the interference between the reference arm and the sample. As illustrated in

Fig. 1 a single sample of the pulse amplitude contains information spanning

the entire spectrum, the inner product between the interference signal and the

binary pattern.

In order to investigate the fidelity of our CS approach, we also acquire a

AOT-OCT measurement in series with our CS measurement (Xu et al., 2014;

Goda et al., 2012). As shown in Fig. 2, the 90 MHz MLL is sent into an EOM

to be pulse picked down to 18 MHz, necessary to avoid pulse overlap after

the pulses then propagate through 853 ps/nm dispersion module to achieve

sufficient frequency to time mapping for comparable resolution to our CS

system. This signal is balanced detected by a 20 GHz linear photodetector,

then digitized by a 20 GHz 40 GS/s oscilloscope. The range and roll-off of the

OCT system is shown inset in Fig. 2, demonstrating a 5 dB/mm loss of signal
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power when the reference mirror is shifted in the axial direction.

2.3 Results

2.3.1 CS reconstruction

To scan a three-dimensional(3−D) object S of size N1 × N2 × N3, we generate

N1 × N2 number of measurements for a C-scan, with each measurement of

length M. Let y(i,j) ∈ RM, i = 1, 2, ..., N1, j = 1, 2, ..., N2 denotes the measure-

ments vector collected from the signal at a spatial location (i, j) : s(i,j), and

A(i,j) ∈ RM×N3 is the sensing matrix associated with that measurement. The

mathematical model of the system is simply:

y(i,j) = A(i,j)s(i,j) + z(i,j), (2.1)

where z(i,j) represents the noise vector added to the (i, j)-th noiseless mea-

surement from multiple sources that create noise such as the linearization

approximation error of the system, noise from the data collection process, as

well as pre-processing error, etc.

Due to the system setting, the frequencies correspond to different depths

of the object. Here, the sensing object: microscope slip has a few layers, result-

ing a small number of cosine tones along the direction that the system takes

measurement (A-scan direction). Therefore, if we represent the signal using

discrete Fourier basis, we would expect the coefficients corresponding to that

basis to be sparse. Accordingly, we utilize sparsity with respect to the inverse

discrete Fourier transform in the recovery algorithm. The noise of the system

is high frequency. Consequently, the high frequency parts of the signal become
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less distinguishable from the noise. While applying sparse recovery with the

classic ℓ1 min norm, we observe that as the sparsity level λ is increasing, the

power of the high frequency part vanishes much faster than the low frequency

part. As a result, certain depth of the object is almost complete missing. To

resolve this issue, we employ a weighted ℓ1 minimization. Similar treatment

is proposed in (Khajehnejad et al., 2009).

For non-negative weights wi ≥ 0, w = (w1, w2, ..., wN3), the weighted

ℓw,1 norm of vector x is defined as ∥x∥w,1 = ∑N3
i=1 wi|xi|. For variable matrix

X = (x(1), x(2), ..., x(N1N2)), we find:

˜︁X = arg minX∈CN3×N1N2

1
2

N1N2

∑
k=1

∥y(k) − A(k)Φx(k)∥2
2 + λ

N1N2

∑
k=1

∥x(k)∥w,1, (2.2)

where the sparisfying transform Φ is the inverse discrete Fourier basis. The

non-negative regularization parameter λ > 0 balances the ratio of sparsity

of the solution and the fitness of the solution respect to the measurements.

The larger value of λ leads to a more sparse solution. The equation (2.2) is

initialized by solving the regular ℓ1 minimization problem:

˜︂X0 = arg minX0∈CN3×N1N2

1
2

N1N2

∑
k=1

∥y(k) − A(k)Φx(k)∥2
2 + λ0

N1N2

∑
k=1

∥x(k)0 ∥1, (2.3)

where ∥x∥1 calculate the sum of absolute values of all entries of x : ∥x∥1 =

∑N3
i=1 |xi| . and the weight w in Eq. (2.2) is a function associated with the power

spectrum of ˜︂X0. More details is explained in the Section 2.3.2.

The above two optimization problems can be solved efficiently by sev-

eral methods such as iterative methods (Combettes and Wajs, 2005; Beck

and Teboulle, 2009), gradient projection (Figueiredo, Nowak, and Wright,
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2007), alternating minimization (Boyd et al., 2011), approximate message pass-

ing (Donoho, Maleki, and Montanari, 2009), etc. In our implementation, we

use gradient projection for sparse reconstruction (Figueiredo, Nowak, and

Wright, 2007).

2.3.2 Experimental Results

To visualize the reconstruction result, we calculate the 3−D power spectrum

of the recovered signal as the following: the magnitude for each discrete

frequency from ˜︁X is calculated by summing the squared coefficients of positive

and negative frequencies corresponding location.

The 3−D view of the power spectrum of the reference signal is shown

Figure 2.3: Recovery from 50 sequential measurements per A-scan. The top row: 3−D
power spectrum and the bottom row: 1-D power spectrum. The ground truth a), d) or
the raster scanning technique, compared to b), e) the GPSR compressed reconstruction
algorithm, and c), f) our improved CS algorithm showing noise reduction.
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in Fig. 3a, in which from top to bottom, different locations correspond to low

frequencies to high frequencies. The power spectrum of the reference signal

shows the shape of the actual object, an empty PDMS microfluidic channel

mounted on a glass slide. We then sum up the power values along each slice

that have correspond to the same frequency in different geometric locations to

obtain a 1−D spectrum statistics, which is depicted in Fig. 3d.

The initialization from ℓ1 minimization is displayed in Fig 3b. The solution

from ℓ1 minimization detects the frequencies of the signal relatively accurately

however we lose a lot of energy in the high frequency bands. Also, the energy

for the middle slice with curved line pattern is aliased to higher frequency

bands.

The 1−D power spectrum statistic is shown in Fig. 3e and we will use it

to determine the weights for weighted ℓ1 minimization algorithm to resolve

those issues. First we search for peaks from ℓ1 minimization solution to

determine the support and non-support part of the signal. We use three

parameters to determine the peaks: the lowest energy with ratio τ ∈ [0, 1]

that are non-support part of the signal based on sparsity assumption, the

minimum width δ ∈ Z+ to be a strong peak, and minimum peak radius from

peak boundaries to local maximum (peak centers) ρ ∈ Z+. In our experiment,

we pick τ = 85%, δ = 3, ρ = 2. We eliminate the support locations based on

the first two parameters. For the detected peaks, we find the local maximum

within each local region, treat it as the peak center and extend its boarder to

2ρ if the boarder to center distance is less than ρ, encouraging a smoother

transaction between support and non-support part in the solution. Then we

generate the weight function w according to the result from peak detection.
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The square root of the averaged power within each peak region are used as

weights. For the non-support part, we set the weights wi to be 2 times the

square root of the max value of the 1−D power spectrum vector. The green line

in Fig. 3e shows the weights assigned to each location of the half of the sparse

code. The higher the weight, the magnitude of corresponding location tends

to be zero because the weight contributes more to the penalty. All parameters

in peak finding function and weight function are determined empirically and

this choice of weight function will make the value of non-support part smaller

and boost the energy of high frequency bands. The resulting 1−D power

spectrum is depicted in Fig. 3f.

We could see that the energy of the non-support portion detected by the

algorithm decreases significant and the magnitude of the high frequency part

of the signal is boosted. Although it introduces some non-smoothness for

the 1−D spectrum of the signal, there is no visible non-smooth region in the

recovered 3− D spectrum.

We could see in Fig 4a, when the number of measurements increases, the

algorithm is able to recover more details of the signal and the reconstruction

result is improved. Fig. 4b and Fig 4c illustrate the reconstruction result

from 50 and 100 measurements randomly selected from all measurements

per A-scan direction respectively measured by Peak Signal-to-Noise Ratio

(PSNR). This is analogous with changing the multiplexing such that all the

stages are after the modulator with some delay. We could see that for the same

amount of measurements, randomly selected one has less aliasing in the high

frequency by comparing Fig 3b and Fig 4b.

We compare the reference Nyquist sampled AOT measurement of the

44



Figure 2.4: The PSNR of the CS reconstruction vs the number of compressed mea-
surements used a) shows an increase in PSNR around b) 50 measurements and we
see a slight improvement using c) 100 measurements.

section of microfluidic channel to our CS reconstructions in Fig. 4(b,c). The

ground truth image in Fig 3a shows three distinct layers, representing the air-

glass interface, the glass-PDMS interface, and PDMS-air interface from bottom

to top, or low to high frequencies respectively. The PDMS-glass low contrast

interface is interrupted by the air gap channel which is smaller than the axial

resolution of the system, creating the clear channel in the center layer of the

image. The CHiRP-CS reconstructions are shown at different compression

ratios, showing reconstructions with normal and random sampling, top and

bottom respectively. We can reconstruct the microfluidic channel with only

13% of the samples required by Nyquist, a 28.8 MHz A-scan rate. We also

show the image at 26% compression or 14.4 MHz A-scan shows a reduction

in noise and reconstruction artifacts. The random sampling improves the

reconstruction further, almost eliminating the artifacts, as well as reducing

the noise power in the middle layer outside of the channel. The 18 MHz
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A-scan rate achieved with AOT requires a detector a decade faster and takes

four times longer to complete an A-scan compared to our 13% CHiRP-CS

reconstructions.

2.4 Conclusion

In this paper we present a compressed sensing OCT system that both ad-

dress the need for high speed data acquisition and offers a solution to the

complications large volumetric data causes for storage and processing. We

show real-time compression of the OCT signals, allowing for far fewer mea-

surements needed to complete an A-scan, resulting in faster collection times.

Going further than previous work in CS OCT, we show the potential to lever-

age sparsity in both axial and transverse direction to reconstruct full C-scan

data cube. We show successful reconstruction with under a third of the mea-

surements required by Nyquist sampling, achieving up to a 28.8 MHz A-scan

rate. These results suggest that the limit on pixel rate imposed by the ADC

technology can be surpassed to expand the impact of OCT systems.
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Chapter 3

Optical time-lens spectral shaper
for high speed single-pixel imaging

3.1 Introduction

The ability to record images at a moments notice has become essential in

everday life. The widespread use of CCD and CMOS camera has not only rev-

olutionized communication and media, but medical image, materials science,

and many others (Brynk et al., 2012; Huang et al., 2011). These cameras allow

us to record the response of visible light, and convert it into a digital form at

ever increasing speeds, pixel number, and density. Today, we have high speed

camera that reach up to a few Megaframes per second, and high resolution

cameras with hundreds of megapixels (H6D-400C MS 2019; the world’s most

versatile family of high speed camera systems! 2019). However, with this technol-

ogy comes two setbacks, first being the limited wavelength response of these

silicon CCDs, and second the tradeoff between high-speed and pixel number

due to the serial digital readout.

Although technology inside CCD cameras has improved steadily, the core
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technology of silicon detectors has a limited wavelength response. Other ma-

terials used for non-visible light has proved difficult, with only bulky, power

consuming equipment available (Tonouchi, 2007; Onaka et al., 2007). This has

made it difficult for many applications in science and industry, where material

interaction occur in a different wavelength range (Oh et al., 2006). Secondly,

the digital readout of any detector based device is done serially, meaning each

pixel is read out one at a time. This provides a maximum limit for how fast

a certain amount of pixels can be generated by a camera, limiting either the

frame rate, or resolution of the image (the world’s most versatile family of high

speed camera systems! 2019; Grulkowski et al., 2009). The process of making

photo-receptive cells smaller, faster, and broader bandwidth can only go so

far in improve camera technology. With the limits of traditional cameras are

known very well, more exotic architectures are being investigated (Slyper,

Poupyrev, and Hodgins, 2011; Song et al., 2013). While different camera

array configurations provide some benefit, they all rely on the same Nyquist

sampling theory that limits total information sensing of the system.

Single-pixel imaging systems using compressed sensing (CS) have shown

the ability to capture images with far fewer samples than traditionally re-

quired by the Nyquist-Shannon sampling theorem (Donoho et al., 2006; Eldar

and Kutyniok, 2012). Information theory tells us that naturally images can

be represented in some mathematical basis where the signal is very sparse.

This allows modern compression such as JPEG and JPEG-2000, allowing the

storing of information to be far smaller than the collected data (Wallace, 1992;

Marcellin et al., 2000). Further, the theory can be extended, where an image

can be collected in a way such that it is already compressed, allowing for far
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fewer measurements to be taken. This can be realized using a single pixel

camera architecture, where the systems collects inner products between the

image and known patterns. As opposed to traditional Nyquist sampling,

where information from only one pixel is collected and sampled individually,

a single pixel measurement contains information throughout the entire image

(Duarte et al., 2008).

Hardware implementations of a single pixel cameras have been imple-

ment with success, and extended to a variety of applications where traditional

cameras are lacking (Chan et al., 2008; Welsh et al., 2013; Ma, 2009). How-

ever, these single-pixel imaging approaches are based on technologies that

modulate light spatially (e.g. digital micromirror devices (DMDs) and spatial

light modulators (SLMs)). Although these electronic devices are very flexible,

they are generally extremely slow and operate at pattern rates below 20 kHz,

limiting the frame rate of single pixel cameras to tens of Hz (Sun et al., 2016a;

Sun et al., 2016b). The limitation of these systems is the rate at which the

patterns can be programmed, not the number of samples that is ready out

by a digitizer. Solutions to this have been presented using laser speckle or a

coded aperture to generate multiple patterns simultaneously and collect then

with parallel detectors (Shin, Bosworth, and Foster, 2016; Shin, Bosworth, and

Foster, 2017). However, this is not a perfect solution, as it is simply spatially

multiplexing a compressed measurement, the true limit is still how quickly

the patterns can change. Solutions are needed to generate high speed patterns

for single pixel camera architecture to maximize the collected information per

second.
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We have previously demonstrated the use of high-speed electro-optic spec-

tral shaping for the compressive measurement of one-dimensional spectrally

mapped spatial signals (Bosworth et al., 2015; Stroud et al., 2016). This ap-

proach was extended to two-dimensions, but the number of programmable

image pixels was limited to only 320, creating a very small image frame

(Guo et al., 2015). The limitation in image pixels results from the use of a

chirp-processing and electro-optic modulation to generate the spectral pat-

terns. Such a chirp-processing system is bandwidth inefficient requiring the

use of much greater optical bandwidths than the signal bandwidth and thus

limiting the number of features that can be measured with a given optical

bandwidth (Bosworth et al., 2015; Stroud and Foster, 2017). Here we demon-

strate two-dimensional pattern projection at and 3,212 pixels per pattern and

289 Gpixels/s using a four-wave mixing (FWM) time-lens based spectral

shaper. In contrast to chirp-processing, a time-lens based system provides

much higher bandwidth efficiency and thus can greatly increase the number of

image pixels for a given optical bandwidth. Using this source, we demonstrate

continuous two-dimensional single-pixel imaging at tens of kHz frame-rates

and thousands of pixels per frame.

3.2 Experiment

3.2.1 Optical time lens spectral shaper

The operating principle of our spectral shaper is a parametric mixing based

optical time lens (Stroud and Foster, 2017; Salem, Foster, and Gaeta, 2013).
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Parametric mixing has terahertz of bandwidth, enabling a variety of com-

munications and signal processing technology. An optical time lens is based

on the analogous forms of diffraction and dispersion. Therefore, the spatial

manipulation of an optical beam can be translated to an optical pulse. One

of the more interesting effects of a lens is the ability to take a spatial Fourier

transform of an image. Figure 1a shows the process of a lens transforming an

image into the spatial Fourier domain, where a quadratic phase shift imparted

by the glass lens is the transform mechanic. In order to achieve an analogous

temporal Fourier transform, a quadratic phase shift needs to be applied to the

pulse.

There are a few methods of applying a temporal quadratic phase shift.

Electro-optic modulation can impart a sinusoidal waveform that can approx-

imate a quadratic, but the limited total phase shift and limit the time lens

performance. Parametric FWM allows for large phase shift and high-speed

processing, using a chirped pump pulse (Salem, Foster, and Gaeta, 2013). The

is due to the relationship between phase and frequency, where the phase is the

derivative of frequency δφ = δ f , meaning a quadratic phase shift is a linear

frequency shift. Figure 1a shows how a chirped pump pulse can impart a

linear frequency shift on the generated idler. Four-wave mixing is the process

where two pump photons generate a signal and idler photon through the χ(3)

nonlinearity. If the pump pulse is chirped, the frequency to time mapping

results in a time dependent FWM interaction that imparts a linear frequency

shift on the signal.

Analogous to how a lens can take a Fourier transform, a chirped pulse

FWM time lens can take the temporal Fourier transform. In order to achieve a
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spatial transform, the image must be placed at the focal point of the lens, and

the transformed image will be at the opposite focal point. Similarly, a time

lens requires propagation in optical fiber equal to the focal point of the time

lens, and then propagated back through the opposite dispersion to complete

the transform. Using a degenerate FWM time lens as shown in Fig. 1a means

the focal length of the time lens is half of the pump pulse dispersion, due to

the additive nature of the phase imparted by the pump pulse.

To realize a FWM time lens, we use a 90-MHz mode locked laser (MLL)

that is spectrally broadened and filtered to achieve a flat spectral profile over

8-nm of bandwidth. The ultrahigh-speed serial optical waveform is created

from 1.2-ps pulses from a 10.08-GHz MLL that are modulated at 10.08 Gb/s

with a pseudorandom bit sequence (PRBS) using an electro-optic modula-

tor (EOM) and temporally multiplexed up to a final 322.56-GHz pulse rate.

The 90-MHz (pump) and 322.56-GHz (signal) pulse trains are double passed

through spools of standard single mode fiber (SMF) with 550 ps/nm and

275 ps/nm of dispersion respectively, using circulators and Faraday mirrors.

The now dispersed pump and signal are amplified and combined before un-

dergoing FWM in 700-m of highly nonlinear fiber (HNLF), where the pump

applies the quadratic phase shift of the time-lens, converting the temporal

profile of the input signal onto the spectrum of the FWM idler. The optical

bandwidth and length of dispersive fiber determine the number and size of

our features. In this system, the 8-nm pump pulse is stretched to over 8.8 ns,

allowing for a spectral feature size of 730 MHz and over 3,000 features per

pulse bandwidth. The FWM idler is filtered out, amplified, and compressed

in dispersion compensating fiber (DCF) to produce optical pulses with unique
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Figure 3.1: a) Using the analogous relation between spatial diffraction and temporal
dispersion, we use a quadratic temporal phase shift to take the Fourier transform of a
signal. The phase shift imparted by a chirped pump in green produces the idler in
red, the Fouier transform of the signal in blue. b) By using a four-wave mixing time
lens, we can generate high-resolution spectral patterns by transforming a high-speed
pulse train. We us a 90-MHz MLL that is stretched in SMF by 1100 ps/nm and the
10.08-GHz MLL signal is dispersed by 550 ps/nm, or the focal length of the time lens.
The two are mixed in HNLF and the output idler is filtered and sent through -550
ps/nm DCF to complete the transform. We can generate unique spectral patterns
by modulating the signal with a PRBS at 10.08 Gb/s and multiplexing five times to
achieve a final 322.56 Gb/s. MLL - mode-locked laser, EOM - electro-optic modulator,
WDM - wavelength division multiplexer, SMF - single mode fiber, DCF - dispersive
compensating fiber.
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spectral patterns.

The full optical time lens spectral shaper (OpTiLenSS) system is shown

in Fig 1b, where the high speed time domain signal is transformed into a

high-resolution spectral pattern. The minimal spectral feature on the com-

pressed output is defined by the duration τpump of the transform limited

pump pulse by τres =
τpump√

2
. The total length of the time lens also depends on

the pump pulse bandwidth as well as the dispersion or focal length of the

lens, defined as D =, where β2 and L define the focal length and Ωpump is the

pump bandwidth. The temporal to spectral mapping shown in the insert in

Fig 2 translates a 10.08 Gb/s modulation to a 23 GHz separation defined by,

∆t
∆ω

= |β2L| (3.1)

With a final modulation rate of 322.56 GB/s generates 720 MHz spectral

features. The total transformed duration is about 8.8 nanoseconds, meaning

there are over 3000 spectral features per pulse. We use this large number of

programable spectral bits for compressed sensing single pixel camera using a

two-dimensional projector.

3.2.2 Two-dimensional spectral projector

The high-speed programable spectral shaper is combined with a two-dimensional

spectral mapper to collect single-pixel camera measurements. The spectrally

patterned laser pulses are mapped spatially using a diffraction grating and

virtually imaged phased array (VIPA) (Xiao, Weiner, and Lin, 2004). The

optical setup is shown in Fig. 2 where the input beam is focused into a line
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by a cylindrical lens, so it will enter the small VIPA entrance slit, where the

different wavelengths are mapped spatially in the vertical direction. This type

of interference based spatial mapping causes wavelengths separated by the

free spectral range (FSR) of the VIPA, determined by the structure, to prop-

agate out of the VIPA at the same angle. This results in a spectral mapping

of each FSR vertically, which is followed by a diffraction grating to separate

the different FSR horizontally. The output of the diffraction grating is sent

through a focusing lens that forms an image of the spectral pattern on the

object plane, with each wavelength projecting to a different spatial location

over a two-dimensional grid.

Figure 3.2: The two-dimensional spectral projection is done using a grating and VIPA
to spread the spectrum out horizontally and vertically, respectively. The grating
has 600 grooves per mm, and a 1.6-um blaze wavelength, while the VIPA has a 30
GHz FSR, resulting in our 73 by 44 projection over a 1.7 by 1.2 mm area. Using our
OpTiLenSS source, we show an example pattern detected using an infrared camera,
achieving a 322.56 Gpixels/s spectral projection.

The OpTiLenSS source pulses are collimated and focused into a line using

a 50 cm cylindrical lens that travels through a VIPA with a 30 GHz FSR and

diffraction grating with 600 grooves/mm and 1.6 um blaze wavelength. The
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vertical and horizontal mapping place each wavelength at a different spatial

location, producing a projected pattern over a 1.7 by 1.2 mm area with 73

and 44 pixels respectively. An example pattern is shown in Fig. 2 on an

infrared camera. The reflection from the object plane is returned through

the two-dimensional spatial mapper and detected with a 150 MHz amplified

photo-detector, where the power of each pulse in the 90 MHz pulse train

represents the inner product between the object and the projected pattern. The

pulse powers are sampled and digitized then processed by a reconstruction

algorithm that converts the compressed measurements and known OpTiLenSS

patterns into an image.

3.3 Results

3.3.1 Reconstruction algorithm

According to CS theory, a sparse signal of N length can be measured through a

set of M such inner products, y = Ax, where A is an uncorrelated basis (i.e. the

PRBS pattern set) by solving for x (the image of the object) in the minimization

min ||Wx̂ − λ||1 . . . while Ax̂ − yCS = 0. (3.2)

where W is a sparsifying matrix, and λ is a constant that bounds the re-

constructed signal x to the measurements y = Ax. Through iterations of

minimizing the number of active dictionary elements in Wx, the algorithm

reconstructs the signal x by finding the sparest solution that satisfies the M «

N pulse amplitude measurements y.
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In order to enforce sparse image reconstruction, we take advantage of local

image sparsity, similar to JPEG or JPEG2000. As shown in Fig. 3, the estimate

image reconstruction is decomposed into patches of 8 by 8 pixels, separated

by a single pixel.

Figure 3.3: The reconstruction algorithm is fed the collected OpTiLenSS compressed
measurements y, and the know pseudorandom binary patterns A. The iterative
algorithm generates an image estimate then deconstructs the image into 8 by 8
patches. The patches are transform by a DFT basis and sparsified, then inverse
transformed and reconstructed back into a sparse image estimate. This process is
iterated until the sparsity is maximized while the image estimate maintains fidelity of
the measurement vector.

These patches are transformed into a discrete Fourier transform (DFT)

basis and thresholded depending on the sparsifying regularization parame-

ter λ. The larger choice for λ will increase the sparsity of the reconstructed

image. The patches are then inverse transformed and stichted back together

to reform the image estimate. The estimate measurement vector from this

sparse image estimate is constrained by the true measurement vector, and is

iterated back into the patch form until a final image is reconstructed. Each

iteration in the minimization algorithm increases the sparsity while improving

the reconstruction image quality.
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3.3.2 Resolution target

To demonstrate this approach, we a USAF resolution target at the image plane

and reconstruct the images using 500, 1000, and 2000 pulse measurements.

In the results shown here, these measurements are averaged ten times to

improve the signal-to-noise ratio however with greater optical power this will

be unnecessary. Figure 4 shows CS reconstructions using only 15.5%, 31%, and

62% of the samples required by Nyquist corresponding to an imaging frame

rate of 18, 9, and 4.5 kHz, due to required averaging. Here we use 10 averages

of the returned signal to reduce noise, but reduces the potential frame rate by

a decade.

Figure 3.4: The idler is projected to 44x73 pixels (3,212 pixels) over a 1.7-mm by
1.2-mm area and onto a USAF resolution target test object. We show results using 500,
1000, and 200 measurements, or 15.5%, 31%, and 62% of samples required by Nyquist.
We see successful reconstruction of the resolution target with 1000 samples, or 31%
compression and a 9-kHz frame rate.
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3.4 Conclusion

We use nonlinear mixing and propagation in optical fiber to demonstrate an

optical time lens spectral shaper to produce a pulse source with unique binary

spectral patterns encoded on each pulse. This binary spectral patterning is

combined with a two-dimensional spectral projector to complete a single pixel

camera. We are able to project over 3000 binary spectral features at a 90-MHz

refresh rate, allowing for over a million frames per second single pixel imaging

speeds. We demonstrate our proof of concept system with a USAF resolution

target, show reconstructions using from 15% to 62% of what is required by

Nyquist.
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Chapter 4

All-optical demultiplexing of
Nyquist OTDM signal using a
biorthogonal Nyquist gate

4.1 Introduction

Due to the need for greater capacity and flexibility, optical communications

research has recently focused on the use of orthogonal multiplexing to achieve

Tbit/s communication systems while maintaining high spectral efficiency. In

orthogonal multiplexing, the orthogonality condition between multiplexed

channels eliminates the need for guard bands or intervals and allows for

significant channel overlap in the time or frequency domains, thus improv-

ing the superchannel’s spectral efficiency (Nyquist, 1928; Ellis and Gunning,

2005; Jansen et al., 2009). Furthermore, orthogonal multiplexing coupled with

higher-order modulation techniques can increase the net spectral efficiency to

the Shannon limit (Essiambre et al., 2010).

Originating from wireless and wideband communication, orthogonal fre-

quency division multiplexing (OFDM) systems combine orthogonal spectral
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channels with overlap in the frequency domain, removing spectral guard

bands. These channels are readily demultiplexed using a fast Fourier trans-

form (FFT) circuit. Optical OFDM systems have been demonstrated reaching

0.89 Bd/hertz and 3.37 bits/s/hertz spectral efficiency at 1 Tbits/s (Ma et al.,

2009) using digital signal processing (DSP) to up and down convert the or-

thogonal channels. However, the limit to these systems becomes the speed

of the FFT executed in DSP, where electronics ultimately restrict the data rate.

An all-optical method of demultiplexing optical OFDM using an optical FFT

circuit was demonstrated to achieve 0.78 Bd/hertz and 6.3 bits/s/hertz spec-

tral efficiency at a superchannel capacity of 26 Tbits/s (Hillerkuss et al., 2011).

This method uses an all-optical FFT circuit to demultiplex the optical OFDM

superchannel; the all-optical FFT is constructed from optical interferometers,

delay lines and phase shifters to cause constructive or deconstructive inter-

ference of the orthogonal subchannels followed by narrow temporal gating

with an array of electroabsorption modulators to reject intersymbol interfer-

ence (ISI) (Hillerkuss et al., 2010). This technique dramatically increases the

potential superchannel capacity of optical OFDM, but is challenged by the

implementation complexity of the all-optical FFT.

The Fourier counterpart to optical OFDM, Nyquist optical time division

multiplexing (OTDM), combines orthogonal temporal channels with overlap

in the time domain. Relative to optical OFDM, the ideal rectangular spectrum

of Nyquist OTDM reduces the effects of dispersion while reaching 1 Bd/hertz

spectral efficiency (Sakamoto et al., 2011; Mulvad et al., 2010; Hillerkuss et al.,

2012). Furthermore, Nyquist OTDM has a reduced peak to average power
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ratio (PAPR) relative to optical OFDM, mitigating impairments from fiber non-

linearities (Hirooka and Nakazawa, 2012). Recent demonstrations of Nyquist

OTDM systems using high speed electronic circuitry and DSP (Richter et al.,

2014; Zhang et al., 2014), have achieved 0.93 Bd/hertz with 1.86 bits/s/hertz

spectral efficiency at 250 Gbit/s.

Higher baud rates demand demultiplexing in the analog domain, but the

temporal overlap in Nyquist OTDM makes this process difficult to achieve

without introducing ISI from neighboring temporal subchannels. Specifically,

extracting a Nyquist OTDM subchannel has been demonstrated using a homo-

dyne receiver with a Nyquist local oscillator to convert the signal to baseband

and approximately integrate using an electronic low pass filter (LPF) (Miyoshi,

Kubota, and Ohashi, 2013; Sakamoto, 2014; Harako et al., 2014), reaching

spectral efficiencies of 1 Bd/hertz at up to 4.8 bits/s/hertz on an 80 GBd

superchannel. Although the bandwidth of the electronics does not limit the

bandwidth of the fully multiplexed Nyquist OTDM data signal, low-pass

filtering cannot truly replace the integral in the orthogonality condition of Eq.

(3) below, and therefore introduces ISI.

In contrast to electronic approaches, all-optical demultiplexing maintains

the information in the optical domain, while isolating a subchannel of interest.

This is particularly beneficial if further optical processing or routing is to be

employed but can also be used purely for receiving a subchannel of interest.

With an increasing demand for flexibility in optical networks, techniques

for all-optical multiplexing, demultiplexing and bandwidth conversion have

become essential in increasing channel elasticity (Gerstel et al., 2012; Tan et al.,

2013). Existing all-optical methods to demultiplex Nyquist OTDM signals
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use an ultrashort pulse to optically gate the Nyquist OTDM signal at the

Nyquist ISI free point (Nakazawa et al., 2012) and achieve 1 Bd/hertz and

1 bits/s/hertz at 160 Gbits/s. Alternatively, a time lens system can trans-

form the OTDM signal to an OFDM-like signal prior to demultiplexing (Hu

et al., 2014a; Hu et al., 2014b) achieving a spectral efficiency of 1 Bd/hertz

and 1 bits/s/hertz at 320 Gbits/s. However, to extract a subchannel these

approaches rely on either a narrow temporal gate or spectral filter to approxi-

mate a delta function, creating a tradeoff between the ISI and signal power of

the extracted subchannel and thus limiting the realizable degree of higher or-

der modulation. Furthermore, neither of these approaches yield an extracted

subchannel with identical properties (e.g. bandwidth and pulse-shape) to the

original superchannel.

Here we present an all-optical method for demultiplexing Nyquist OTDM

superchannels using a temporally scaled Nyquist gate, which we term a

biorthogonal Nyquist gate due to the correspondence with biorthogonal

wavelets (Mallat, 2008). The Nyquist pulse shape has been used as an ul-

trashort gate in order reduce walk-off in the nonlinear fiber compared to a

Gaussian shape (Hirooka et al., 2015), but the effect of the pulsewidth was

not investigated. We show that the orthogonality relationship between the

biorthogonal Nyquist gate and the Nyquist OTDM subchannels allows for

full elimination of ISI over a finite spectral region of the mixed product, which

can be isolated using a spectral filter of finite width, thus eliminating the

aforementioned tradeoff between demultiplexed subchannel power and ISI

(Stroud and Foster, 2014). Furthermore, proper choice of the scale parameter

yields an extracted subchannel with bandwidth and pulse-shape matched
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to the Nyquist OTDM superchannel source, thus facilitating further optical

signal processing prior to remultiplexing as well as routing. Extending the

concept in our previous work (Stroud and Foster, 2014), we more thoroughly

examine the implementation of this approach and through simulation com-

pare the performance of a biorthogonal Nyquist gate to a conventional narrow

gate in the presence of imperfections including non-ideal gate pulse shape,

timing jitter, and dispersion. Furthermore, we experimentally demonstrate the

BER performance of this approach for demultiplexing of an 80-GBd Nyquist

OTDM signal to 10-GBd using nondegenerate four-wave mixing (FWM) in

highly nonlinear optical fiber.

4.2 All-Optical Demultiplexing of Nyquist OTDM

The rectangular spectrum of a Nyquist pulse makes it ideal for transmission on

band-limited channels by maximizing the utilization of the available spectrum.

In Nyquist OTDM, orthogonal channels composed of Nyquist pulses are

multiplexed in time with significant temporal pulse overlap. To achieve

channel orthogonality these Nyquist pulses are spaced by the inverse of the

channel bandwidth causing the peak of one symbol to coincide with the nulls

of the others, illustrated in Fig. 2(a). In a communications system, the primary

challenge becomes demultiplexing one of the subchannels without incurring

ISI from the others due to this temporal overlap. Notably, while the temporal

overlap allows Nyquist OTDM to reach the ideal 1 Bd/hertz symbol spectral

efficiency, the overall spectral efficiency (bits/s/hertz) of the communications

channel will be determined by the maximum number of bits per symbol that
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can be differentiated, which will be constrained by the signal to noise ratio

and ISI. Thus it is essential to reduce the ISI due to the demultiplexing in order

to maximise the system’s spectral efficency.

4.2.1 Existing All-Optical Approaches

All-optical demultiplexers are beneficial for applications where it is desir-

able to maintain the signal in the optical domain and thus avoid optical-to-

electrical-to-optical (OEO) conversion such as signal routing and regeneration

(Lee et al., 2008; Slavík et al., 2010). Recently demonstrated all-optical ap-

proaches to demultiplex Nyquist OTDM signals include using ultrashort opti-

cal gating as well as time lens based Fourier transformation(Nakazawa et al.,

2012; Hu et al., 2014a). Specifically, narrow time-domain gating of the Nyquist

ISI free point has been investigated with promising results (Nakazawa et al.,

2012). However, this approach possesses inherent limitations in avoidance

of ISI. As illustrated in Fig 2(a), the Nyquist pulse goes to null precisely a

time t = nTs, where n is an integer, Ts =
1
fs

is the symbol period and fs is the

OTDM baud rate. In order to theoretically eliminated ISI, a gate of infinitely

small width would have to be used, presenting an inherit tradeoff. A realistic

optical gate of finite temporal width △t will allow ISI through the demulti-

plexer and, furthermore, reducing △t to decrease ISI will limit the transmitted

optical signal power creating a tradeoff between the ISI and signal power.

This tradeoff is illustrated by the black curves in Fig. 1, where we plot the

demultiplexed subchannel signal’s transmission (solid black) and ISI (dashed

black) as a function of gate width for a Gaussian gate pulse. Additionally,
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Figure 4.1: With a Gaussian gate, the signal transmission (solid black) is inversely
related to the Signal to ISI (dashed black). Using a scaled Nyquist gate and the corre-
sponding scaled spectral bandpass filter, the Signal to ISI (dashed red) is completely
due to the Nyquist gate roll-off (α = 0.15), while maintaining suitable signal transmis-
sion (solid red). There is an ideal operating point with maximum transmission at gate
width to signal with ratio or γ = 0.5, and at this point the demultiplexed subchannel
has identical pulse shape to the input.

this tradeoff is not limited to this approach. The alternative time lens based

approach, which isolates the subchannel of interest with an optical bandpass

filter is effective for reducing the number of nonlinear interactions required in

the demultiplexer. However, this approach represents the Fourier equivalent

of narrow temporal sampling and yields an equivalent tradeoff between ISI

and signal power as a function of the spectral filter bandwidth.

4.2.2 Matched Nyquist Gate

As an alternative to narrow gating, we first investigate matched detection

using the orthogonality relationship between the Nyquist OTDM signal and a

matched Nyquist gate (Miyoshi, Kubota, and Ohashi, 2013; Sakamoto, 2014;

Harako et al., 2014). To begin, we note the orthogonality condition in Eq. (3)
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is perfectly satisfied by the DC component of the mixed product between the

Nyquist gate pulse

φm(t) = sinc (t − mTs) , (4.1)

φn(t) = sinc (t − nTs) , (4.2)

∫︂ ∞

−∞
φm (t) φn (t) dt = δmn, (4.3)

h (t) = φm (t) φn (t) , (4.4)

H (ω = 0) ≡
∫︂ ∞

−∞
h (t) dt = δmn, (4.5)

where h (t) is the mixed product between the Nyquist gate pulse Eq. (1)

and matched Nyquist signal pulse Eq. (2), H (ω) is the frequency domain

equivalent, and δmn is the Kronecker delta function. In Fig. 2(a) we illustrate

a perfectly matched Nyquist gate and the corresponding optical spectrum

of the mixed product, |H(ω)|2, is shown in Fig. 2(b). In Fig. 2(b) we plot

both the optical spectrum of the subchannel of interest (signal) and that of

the adjacent subchannels (ISI). As is shown, the ISI is completely eliminated

at precisely ω = 0, or the DC component, therefore, only the use of an

infinitely narrow optical band pass filter to isolate the ISI free point at the

center of the spectrum would truly satisfy the orthogonality relationship, as

described in Eq. (5). Unfortunately, such a filter would not pass signal power
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Figure 4.2: (a) Illustration of a perfectly matched Nyquist gate corresponding to
γ = 1. (b) Spectra of the mixed product for the desired channel or m = n (red) and
neighboring channels (black), showing zero ISI at ω = 0. In contrast, if we use (c)
a scaled Nyquist gate with γ = 0.5 illustrated in (c), the orthogonality condition
between the channels is satisfied over the spectral bandwidth fs as shown in (d),
which can be isolate with physically realizable filters.

and thus a perfectly matched Nyquist gate presents the same tradeoff as the

aforementioned approaches using narrow temporal gating.

4.2.3 Biorthogonal Nyquist Gate

To overcome the tradeoff between signal power and ISI common to existing

approaches, we investigate demultiplexing with a Nyquist gate of reduced

pulse width and a bandpass filter. We scale the Nyquist gate width and filter

bandwidth using the parameter γ, representing the ratio of the Nyquist gate

width to the Nyquist OTDM symbol width. As shown in Eq. (7), decreasing
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the Nyquist gate width below γ = 1, a perfectly matched gate, leads to an

orthogonality condition that is satisfied over a range of frequencies in the

spectrum of the mixed product,

∫︂ ∞

−∞
φm

(︃
t
γ

)︃
φn (t) dt = γδmn, (4.6)

H
(︃
−

(︃
1
γ
− 1

)︃
ωs

2
< ω <

(︃
1
γ
− 1

)︃
ωs

2

)︃
= γδmn. (4.7)

Furthermore, as γ and thus the Nyquist gate pulse width decreases, the

bandwidth of this ISI-free spectral region increases as given by Eq. (8),

(︃
1
γ
− 1

)︃
ωs 0 < γ ≤ 1. (4.8)

In Fig. 2(c), we illustrate the time-domain picture of such a biorthogonal

gate for the case of γ = 0.5. The corresponding optical spectrum of the

mixed product, |H(ω)|2, is shown in Fig. 2(d) for both the subchannel of

interest (signal) and the adjacent subchannels (ISI). As expected, the γ = 0.5

biorthogonal Nyquist gate produces no ISI over a finite spectral bandwidth

given by Eq. (8) and, after mixing, the subchannel of interest is readily isolated

with an optical bandpass filter of matched bandwidth. Thus unlike previous

approaches, mixing with a biorthogonal Nyquist gate allows for fully ISI-free

demultiplexing of the subchannel of interest using physically realizable gates

and filters. The signal to ISI of a Nyquist gate with a roll-off of α = 0.15 (dashed

red) is shown in Fig 1, this is due completely to the roll-off as illustrated in Fig

3(a), an ideal Nyquist gate fully eliminates ISI. Furthermore, Fig. 1 shows how

the Nyquist gate (solid red) compares to a Gaussian gate (solid black) in terms
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of demultiplexed signal transmission. We find that the signal transmission

exhibits an optimum at γ = 0.5. This optimum results from the interplay

between decreasing γ, which decreases the temporal overlap between the

Nyquist gate and symbol and thus yields greater loss, and increasing γ, which

decreases the ISI free bandwidth thus requiring a narrower filter and therefore

greater loss. Mixing with this biorthogonal gate fundamentally yields zero

ISI with tolerable signal loss. Additionally, with the choice of γ = 0.5 and a

spectral filter of width fs, the demultiplexed output possesses the identical

bandwidth and pulse shape as the original superchannel and thus can be

directly remultiplexed into another fs baud rate Nyquist OTDM superchannel.

4.3 Analysis with Impairments

The previous section shows that a biorthogonal Nyquist gate can demultiplex a

subchannel with zero ISI. However, in a real system impairments will degrade

this ideal performance leading to ISI on the demultiplexed subchannel. In

this section, we compare how demultiplexing using a biorthogonal Nyquist

gate performs under various impairments, including non-ideal gate pulse

shape, timing jitter and dispersion. Specifically, we investigate how mixing

with a biorthogonal Nyquist gate with γ = 0.5 and spectral filtering with a

bandwidth of fs performs in comparison to a narrow Gaussian gate operating

at the ISI-free point with γ = 0.13, corresponding to an 870 fs pulse width for

a 160 GBd signal to match the experimental optimum found in (Nakazawa

et al., 2012). For this comparison we calculate the EVM due to the ISI from all

the undesired subchannels. In this paper, we define EVM as the square root of
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Figure 4.3: (a) The EVM for a raised cosine gate as a function of roll-off factor α. As
the roll of factor increases, ISI is introduced into the sides of the ISI free spectral
bandwidth as shown in (b) and (c), increasing the EVM.

the inverse signal to interference ratio (Shafik, Rahman, and Islam, 2006).

4.3.1 Raised cosine gate

The ideal rectangular spectra of a Nyquist pulse are not realizable in practice.

Thus, we investigate a raised cosine pulse with a roll off factor α to analyze

the impact of non-ideal pulse shape,

g (t) = sinc ( fst)
cos (πα fst)
1 − 4α2 f 2

s t2 0 ≤ α ≤ 1. (4.9)

The raised cosine pulse becomes an ideal sinc pulse as the roll off factor α

approaches zero, but realistically the roll-off factor will be < 0.11 for experi-

mentally realizable optical Nyquist filters (Soto et al., 2013; Preussler, Wenzel,

and Schneider, 2014). In Fig. 3, we show the impact of a nonzero roll-off

factor on the ISI on the demultiplexed signal. Figure 3(a) shows that the EVM

remains below 2% for realistic α values and Figs. 3(b) and 3(c) illustrate the

spectral manifestation of the source of ISI at the edges of the filter bandwidth

for α = 0.15 and α = 0.3.
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Figure 4.4: (a) The EVM when the Nyquist gate is temporally detuned from peak of
the Nyquist OTDM symbol. The timing offset introduces ISI over the entire ISI free
bandwidth as shown in (b) and (c).

4.3.2 Timing jitter

All demultiplexing techniques for OTDM signals rely on mixing with a syn-

chronous pulsed gate. Thus the demultiplexers tolerance to timing jitter of

this gate is critical because the gate pulse is generally not derived from the

same source as the data signal resulting in pulse-to-pulse timing error. This

will cause each gate pulse to mix with a different offset from the peak of the

OTDM signal. To evaluate the impact of timing jitter, we detune the Gaussian

gate and biorthogonal Nyquist gate from the ideal temporal alignment with

the Nyquist OTDM symbol and characterize the resulting ISI on the demul-

tiplexed subchannel as shown in Fig. 4. In Fig. 4(a), we plot the EVM of

the demultiplexed subchannel as a function of gate timing offset up to one

eighth of a symbol period for a biorthogonal Nyquist gate with γ = 0.5 and

α = 0.15 as compared to a narrow Gaussian gate with γ = 0.13 or 870 fs. The

biorthogonal Nyquist gate in red shows excellent signal to ISI under small

temporal offsets, even with a roll-off factor of α = 0.15. However for larger

timing offsets the biorthogonal Nyquist gate becomes equivalent to an optical

sample, matching the increase in EVM of the narrow Gaussian gate. The
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Figure 4.5: (a) The EVM as a function of residual dispersion, showing second order
with a solid curve, and third order with a dashed curve. (b)-(e) show the spectral
nature of the ISI resulting from residual dispersion for the biorthogonal gate with
α = 0.15.

spectra of |H(ω)|2 in Figs. 4(b) and 4(c) show the spectral nature of the ISI

resulting from gate timing error.

4.3.3 Dispersion

In long distance ultrahigh-speed OTDM systems, dispersion compensation

is critical to correct the pulse distortion before the receiver. However, the

dispersive distortions may not be fully removed and puts the burden on the

receiver to be resilient to any residual dispersion. Demultiplexing with a

biorthogonal Nyquist gate depends on satisfying the orthogonality condition

with the Nyquist OTDM signal and dispersion will add a spectral phase term

to Eq. (19), degrading the orthogonality condition and introducing ISI.

We show the impact of second- and third-order dispersion on the ISI

in Fig. 5(a) with solid and dashed curves, respectively. As is shown, the

biorthogonal Nyquist gate performs better than the Gaussian gate for small

amounts of dispersion, but in both cases with sufficient residual dispersion the
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Figure 4.6: A 10-GHz MLL is slightly broadened in HNLF and carved into the signal
and pump pulses. The Nyquist signal pulse is modulated and multiplexed then
recombined and with the pump. The two Nyquist pulses are propagated through
100m of HNLF with a CW laser and the demultiplexed idler is filtered and detected.

biorthogonal Nyquist gate closely approaches the performance of the narrow

Gaussian gate. The spectra of |H(ω)|2 when the OTDM signal is affected by

second- and third-order dispersion are shown in Figs. 5(b)-5(e), illustrating

the spectral nature of the ISI.

4.4 Experiment

To experimentally demonstrate this approach we implement the system shown

in Fig. 6. We make use of all-optical mixing through nondegenerate four-

wave mixing (FWM) between an 80-GBd OOK Nyquist channel at 1546.5

nm, a biorthogonal Nyquist gate at 1542.5 nm, and a continuous wave (CW)

laser at 1554.5 nm. This all-optical mixing process generates a new lightwave

at an idler wavelength 1558.5 nm. Notably, other all-optical mixing tech-

niques such as sum and difference frequency generation could alternatively

be employed, which would eliminate the need for the CW laser. Additionally,
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pump-degenerate FWM with a root-raised cosine gate pulse can also be imple-

mented instead of a CW laser and Nyquist gate pulse. One advantage of using

FWM is that all of the interacting lightwaves lie in the telecommunications

band making it ideal for integration with conventional telecommunications

hardware and facilitating additional all-optical processing and remultiplexing

of the subchannel for further transmission. However, the FWM bandwidth

of the HNLF would limit the processing bandwidth of the system, but with

standard wavelength division multiplexing (WDM), this would not limit the

channel bandwidth or spectral efficiency. In addition, other FWM devices such

as silicon waveguides (Ji et al., 2011; Wang et al., 2012) can be implemented

with FWM bandwidths well beyond a typical communications channel.

We generate our Nyquist signal and gate pulses by spectrally broadening

a 10-GHz passively mode locked laser (MLL) in HNLF followed by filtering

with a programmable spectral filter (Finisar Waveshaper 1000s). The 80-GHz

Nyquist signal pulses and tunable biorthogonal Nyquist gate are phase and

amplitude corrected to achieve Nyquist pulses corresponding to a roll-off

factor of α ≃ 0.1. The Nyquist signal pulse is separated with a WDM de-

multiplexer, modulated with an OOK signal at 10 Gbit/s, and temporally

multiplexed three times to create an 80 GBd Nyquist signal. The Nyquist

signal is amplified and combined with the biorthogonal Nyquist gate and

CW laser, which provides the third lightwave for the nondegenerate FWM

interaction. Nondegenerate FWM is then implemented in a 100-m HNLF,

where a longitudinally varying tension plan with 10-step stair-ramp distri-

bution is applied to reduce stimulated Brillouin scattering (SBS) (Yoshizawa

and Imai, 1993). The tension applied to the fiber spectrally shifts the SBS gain
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Figure 4.7: (a) The BER curves of an 80 GBd Nyquist OTDM system demultiplexed
into eight 10 Gbit/s channels. (b) The spectra of Nyquist gates with 80 GHz, 160 GHz,
240 GHz, and 320 GHz bandwidth. (c) The idler after Nyquist filtering with 30 GHz,
40 GHz, 80 GHz, 120 GHz, and 160 GHz bandwidth.

peak in different sections of the fiber increasing the SBS threshold. The tension

also slightly affects the zero-dispersion wavelength, however this dispersive

change does not impact the FWM performance given our fiber length and

operating wavelengths. The idler is filtered over the ISI free bandwidth with

a tunable Nyquist filter then amplified, detected and sent to a bit error rate

(BER) tester.

In Fig. 7(a), we compare the BER curves of the demultiplexed signal with

a biorthogonal Nyquist gate of different pulse bandwidths illustrated in Fig.

7(b), namely 80 GHz (γ = 1), 120 GHz (γ = 0.66), 160 GHz (γ = 0.5), 240 GHz

(γ = 0.33), and 320 GHz (γ = 0.25). In Fig. 8(c) we can see the bandwidth

83



change on the detected idler as the Nyquist gate and output filter bandwidths

are tuned. The filter bandwidths are 30 GHz, 40 GHz, 80 GHz, 120 GHz, and

160 GHz for the γ values of 1, 0.66, 0.5, 0.33, and 0.25 respectively. When

the Nyquist gate is set the theoretically ideal γ = 0.5 shown in red, with

160-GHz bandwidth and 6.25-ps pulse duration, the ISI free bandwidth and

output Nyquist filter are matched to the signal bandwidth of 80 GHz and we

can see error free performance across all eight 10 Gbit/s subchannels. When

we tune the Nyquist gate to γ = 0.66 shown in green, the 40-GHz ISI-free

region allows for error free transmission with only a slight noise penalty. Sim-

ilarly, with the Nyquist gate γ = 0.66 shown in blue, the 120-GHz ISI-free

region allows for error free transmission. However, when the Nyquist gate

is matched in pulsewidth to the Nyquist signal bandwidth γ = 1 shown in

purple, the output filter of 30 GHz required to achieve sufficient signal power

is much larger than the ISI free region, allowing ISI noise to limit the BER

performance. Finally, the shortest pulsewidth for the Nyquist gate γ = 0.25

shown in orange, generates interference from cross-phase modulation inside

the ISI-free region, degrading the BER performance.

As expected from our simulations, we find that a Nyquist gate of γ = 0.5

is the ideal sampling pulse for a Nyquist OTDM signal. The Nyquist gate and

output Nyquist filter remove the tradeoff between signal power and signal to

ISI noise. This allows us to increase the relative pulse width between the gate

to the signal, mitigation nonlinear effects and improving the signal power into

the receiver.
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4.5 Conclusion

We present a novel method for all-optical demultiplexing of Nyquist OTDM

signals. We show a biorthogonal Nyquist gate to demultiplex the signal with-

out interference from neighboring, overlapping subchannels. In the presence

of dispersion and timing jitter, the biorthogonal Nyquist gate shows an in-

creased tolerance to ISI, increasing the potential channel spectral efficiencies.

In our proof-of-concept experiment, we successfully demultiplex a 10 Gbit/s

Nyquist OTDM signal from an 80 GBd carrier by mixing it with a biorthogonal

Nyquist gate using nondegenerate FWM. We show error free performance

with multiple Nyquist gates, verifying the ideal γ = 0.5 Nyquist gate. The

baud rate scalability and format transparency of this approach paired with

high order modulation can facilitate future communication systems with

spectral efficiencies close to the Shannon limit.
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Chapter 5

Passive timing stabilization over a
33-km single mode fiber link using
temporal imaging

5.1 Introduction

The need for a stable and universal clock has become essential for precise

meteorology, navigation, gravitational wave detection and long-distance radio

telescopes (Huang, Tjoelker, et al., 2012; Predehl et al., 2012a). State of the

art for generating stable clock signals has recently moved from microwave to

optical based sources, with the stability of an oscillator is related to its carrier

frequency (Gill, 2005). Although precise radio frequency (RF) sources using

optical combs have been developed in laboratory (Diddams, 2010; Riehle,

2017), traditional methods for transmitting the time-frequency information is

not adequate for long distance distribution an optical clock source. Environ-

mental effects on optical links induce delay fluctuations that distort the phase

of the clock signal, reducing the accuracy, and limiting the synchronization be-

tween master and slave clocks (Sinclair et al., 2014). The spread of technology

90



and demand for speed require new optical methods for transmitting these

precise optical clocks to meet these needs and enable precise communication

around the globe and beyond.

Demonstrations of optical time-frequency transfer over fiber links have

shown a lot of promise. Stabilized links with fluctuations on the order of fem-

toseconds can be achieved using actively stabilized links and precise optical

frequency comb (Foreman et al., 2007; Predehl et al., 2012b). Methods such

as two-way time and frequency transfer (TWTFT) have been extended from

fiber to free space, locking optical clocks with excellent accuracy by using the

time difference between two optical pulses traveling in opposite directions

in the link. This has been shown to stabilize the two clocks with a fractional

frequency error below 1 × 10−18 at 1000 seconds averaging time (Giorgetta

et al., 2013). However, TWTFT is not compatible with many applications,

as it requires expensive and complex optical combs on both the transmitter

and receiver and complicated balanced cross-correlators needed to detect the

timing signal. Thus this is only a partial solution, challenges arise creating a

robust solution for transmitting a stable clock through various environments

and applications.

Methods that use a single clock source to distribute time-frequency infor-

mation are called one-way time and frequency transfer (OWTFT) are more

robust and practical for stabilizing a remote link (Sprenger et al., 2009). Gen-

erally, a probe signal is sent down the link and returned to determine the

environmental error induced in the link. This phase error in the link is as-

sumed to be the same in both directions in the link, so the returned probe is

corrupted by twice the phase noise in the link (Levine, 2008; Kumagai et al.,
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2009). To compensate this error, the transmitted clock signal must be adjusted

depending on the detected error on the probe. Modern optical OWTFT in

fiber and free space systems use RF mixing to determine the phase error on

the returned probe and correct it with active control loop using phase shifters

(Wang et al., 2012; Chen et al., 2017). However, these techniques are limited

by the speed and accuracy of the compensation devices, such as piezo fiber

stretchers and thermal controllers, as well as by the complexity of measuring

the link phase noise.

Techniques for passive stabilization using RF mixing for phase conjuga-

tion or combining multiple signals to eliminate noise have shown promising

results (Li et al., 2014b; Li et al., 2014a). However, these techniques are also

limited by the bandwidth and distortion of the analog electronics. An all-

optical method has been introduced using nonlinear phase conjugation, but

this system requires fine optical filters, limiting the operation to extremely

high clock rates of tens of GHz or more (Guo et al., 2016). More flexible and

robust OWTFT systems are needed for high-precision time-frequency transfer

in extreme environments. We propose a passive all-optical one-way time

and frequency transfer system using simple optical components and material

properties, allowing us to transmit a stable clock over an optical link with

extremely low latency and a flexible clock rate.
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Figure 5.1: a) The energy of the pump photon in FWM will change depending on the
arrival time of the probe pulse. b) The error in the probe is caused by fluctuations
inside the optical link. c) With the proper mapping of pump dispersion and fiber link
dispersion we can send a stable clock to a remote site.

5.2 Stabilization using temporal imaging

The operating principle of our system relies on the temporal imaging based on

an optical time lens (Kolner and Nazarathy, 1989). With the analogy diffrac-

tion of a beam propagating in space and the dispersion of a optical pulse

through fiber, we can draw upon techniques used in spatial optics to imple-

ment them in the time domain. The most important of these effects is the lens,

able to focus a beam of light on to a single spot. Further, a lens can reduce,

magnify or Fourier transform an image, allowing for spatial control of light.
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5.2.1 Optical time lens

Figure 1 shows how a spatial lens and time lens are analogous with the lens

imparting a quadratic phase shift to create the lens effect. To achieve the

necessary quadratic spectral phase shift, we note that the frequency is the

derivative of phase, meaning a quadratic phase shift is a linear frequency shift.

Using dispersion in optical fiber, we can generate a linear frequency shift that

can be applied to a pulse using four-wave mixing (FWM). This type of FWM

time lens has been used in a variety of signal processing techniques including

temporal magnification and pulse shaping (Salem, Foster, and Gaeta, 2013).

This method takes advantage of the large optical bandwidth available in the

C-band as well as the large phase shift that can be applied using dispersion

(Bennett and Kolner, 2000).

We use this chirped pump FWM to induce an quadratic phase shift that

corresponds to the error in the optical link, resulting in a focusing of the

converted idler. This nonlinear mixing produces a clock signal that changes in

wavelength depending on the error in the link. Phase fluctuations caused by

temperature changes that modulate the effective index of the link, resulting

in the arrival time of the probe signal shown in blue in Fig. 2 to vary. We can

easily achieve the energy or wavelength to time mapping in the pump pulse

using dispersion in optical fiber. In order to correct for the link distortions the

amount of dispersion in the pump must be chosen to match the dispersion in

the link. With a proper dispersion ratio between the link and the pump, the

clock signal will provide a stable time frequency signal at the remote site.
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Figure 5.2: a) The energy of the pump photon in FWM will change depending on the
arrival time of the probe pulse. b) The error in the probe is caused by fluctuations
inside the optical link. c) With the proper mapping of pump dispersion and fiber link
dispersion we can send a stable clock to a remote site.

5.2.2 Link error compensation

We show the ideal operating conditions of our proposed system in Fig 2,

where the returned probe with twice the link error ∆t, is mapped to different

wavelengths. With the proper mapping, the clock signal will change wave-

lengths and will arrive through the link with no effective ∆t. To determine

this relation, we describe how the probe and clock signal propagate through

the link. The propagation time of the probe can be described as,

τprobe = τcenter + Dlink∆nmprobe + errorlink (t) (5.1)

where τcenter is the propagation time for some reference wavelength λcenter,

used to describe the dispersion Dlink in the fiber link, and ∆nmprobe is the
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difference between our probe and reference wavelengths. The probe wave-

length will not change, so the only time dependent variable is the link error

denoted errorlink, but we assume that this varies slower than the round trip

time through the link. The clock signal is generated from the returned probe

pulse,

τsignal = τcenter + 2τprobe + Dlink∆nmsignal (t) + errorlink (t) (5.2)

The relationship between the wavelength of the clock signal and the error

in the link is based on the degenerate FWM with the dispersed pump as

λsignal = 2
(︃

λpump + 2
errorlink (t)

Dpump

)︃
− λprobe (5.3)

∆nmsignal (t) =
(︁
2λpump − λprobe − λcenter

)︁
+ 4

errorlink (t)
Dpump

(5.4)

By solving for Eq 2, we can see that the propagation time of the signal

depends on the link error, as well as the pump dispersion Dpump.

τsignal = 3τcenter + 2Dlink∆nmprobe+

Dlink

(︃(︁
2λpump − λprobe − λcenter

)︁
+ 4

errorlink (t)
Dpump

)︃
+ 3errorlink (t) (5.5)

To stabilize the link, we want to set the temporal derivative to zero.

dτsigna

dt
= 0 = 4

Dlink
Dpump

derrorlink (t)
dt

+ 3
derrorlink (t)

dt
(5.6)
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Figure 5.3: The passive stabilization system is shown here using a 100 MHz MLL to
both send a probe down the 33 km link and provide a pump to convert the returned
probe to different wavelengths depending on the probe timing. Three different ODL
positions of -160 ps, 0 ps, and +160 ps are shown inset.

This gives us the simple solution relating the time lens dispersion Dpump,

to the dispersion in the fiber link Dlink.

Dpump = −4
3

Dlink (5.7)

We can determine this result analytically remembering that we use degen-

erate FWM with the probe that has twice the fluctuation in the link. Therefore,

the clock signal wavelength is shifted relative to link error shift is four times

larger compared to the time to wavelength mapping of the clock dispersion.

Because the clock signal sees the link error three times, we find this −3
4 ratio

in Eq 7 between the pump and signal dispersion.

We can easiily select the approprate dispersion on the pump, allowing

for passive cencelation of the timing noise through the fiber link. The actual

dispersion value in conjunction with the amount of pump pulse bandwidth

used determines the compensation range of the system.
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5.3 Experiment

Our system uses a 100 MHz mode-locked laser (MLL) referenced to a 10 MHz

rubidium frequency source to generate our stable optical clock signal. The

large bandwidth of the MLL is used to produce a probe pulse train at 1541.3

nm and a pump pulse train at 1559 nm. The probe is sent down and back

through the link, where it experiences the delay fluctuations from the link

twice.

The returned probe is mixed via FWM in a highly nonlinear fiber (HNLF)

with the pump pulse that has been dispersed by a dispersion compensation

module (DCM) that spreads the 8-nm pump pulse to 6.8 ns. Figure 3 is the

system setup, our 33 km link including an optical delay line is between dual

circulators to separate the returned probe and clock signal at the transmitter

and receiver respectively. The insert in Fig. 3 shows the spectra with the probe

at three delays and the corresponding wavelength shift in the idler around

1576 nm. The idler is then sent through the 33 km single mode fiber (SMF) link,

where the total propagation time depends on both the link fluctuations as well

as the idler wavelength through the link dispersion. The error to wavelength

mapping in our system is 0.16 nanoseconds per nanometer, resulting in up

to 14 nm shifts in the idler. By adjusting the focal length of the time lens, the

link dispersion of 33 km in this experiment, the error to wavelength mapping

would change accordingly.
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Figure 5.4: a) The timing drift of the probe is shown in red, drifting over 300 picosec-
onds in less than three hours. b) The local clock shown in yellow is compared to the
signal clock in blue, both only drifting less than two picoseconds.

5.4 Results

We test our system using a time interval counter to determine the difference

between a test signal and the local clock. Long term tests of the 33 km free

running link are shown compared to the local clock signal in Fig. 4. The probe

signal in the 33 km link shown in red has a standard deviation of 73 ps while

the local clock only has a standard deviation of 0.23 ps over a few hours or

1 × 104 seconds. The passively stabilized clock signal in blue has only minor

fluctuations, a standard deviation of 0.4 ps over 1 × 104 seconds.

The Allan deviation is calculated for the three different signals in Fig. 5,

the local clock signal in yellow, the probe through the 33 km link in red, and

the clock signal through the 33 km link in blue. We see over two decades of

improvement in the clock signal at over 1000 seconds averaging time. The

Allan deviation calculated for over two days is shown in Fig. 5, where the

signal clock continues to fall to 2 × 10−17 deviation.
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Figure 5.5: a) The Allan deviation of the probe in red, and the signal in blue through
a 33 km link over three hours. The stabilized clock signal shows over two decades
lower Allan deviation compared to the probe, nearly reaching the noise floor of the
system shown in yellow. The clock signal deviation continues decrease for data taken
for over two days, shown with a dashed line.

The local clock shown in yellow is the MLL being compared to itself

in Fig. 4, where it is limited by the photo-detection process used for the

time interval counter. We expect the optical comb source to achiever lower

fluctuations using more advanced phase detection schemes. The limits on the

clock signal are mainly due to realistic deviations from the ideal ratio in Eq 7

due to dispersion measurement tolerances and higher order dispersion. The

proof of concept system shown here is not actively compensated for higher

orders of dispersion, limiting our results to about two decades, matching

the results we see experimentally in Fig. 5, where the probe and signal are

separated by two decades above 1000 seconds averaging time.

The large amount of optical fiber in the DCM limits the performance of
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our optical frequency comb to 2 × 10−13 at one second. The laser output of the

DCM is used as the reference for all the measurements and is defined as our

local clock. We use a simple DCM disperser and SMF fiber link pair to take

advantage of the dispersion naturally inside a link and because they are readily

available; however, dispersion can be provided using other methods. Written

dispersion profiles of chirped fiber Bragg gratings and tunable dispersion

compensation using spectral shapers make it straightforward to implement

this system on a variety of optical links, both fiber and free space, and increase

the noise floor of the system (Hill et al., 1994).

5.5 Conclusion

In this paper we present a passive system for transmitting a stable clock signal

to a remote location. We use natural dispersion of the fiber link to control

the wavelength of the clock to completely compensate for and fluctuations

in the link. With a simple relationship between pump and link dispersion,

this system is extremely scalable, and the all optical signal possessing is done

in less than 100 meters of fiber, minimizing the system latency. The passive

control, low latency, and receiver simplicity make the system excellent for

turbulent environments, including free space links.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis I have presented a number of optical systems designed to increase

the information flow of an optical network. The information from a image

acquired with real time compression can be sent down a spectrally efficient

optical link regardless of environmental fluctuations. By sending compressed

data, networks are free to service more users and deliver information to the

users who need them most. Next generation networks will utilize every

technology to increase bandwidth, reliability, and information content on the

wire.

My research utilizes ultrafast optics, electro-optics, and dispersion to use

light to control light for applications where high-speed signal processing

is essential. One of the main advantages of optical-to-optical processing is

the compatibly with integrated photonics. Next generation data centers and

everyday electronics will include integrated optical components used for

extremely high-speed and versatile processing.
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6.2 Reaching the limit of information

Nyquist sampling theory has been the backbone of signal acquisition for

decades. With the quantity of data acquired daily, more information needs to

be extracted and faster. Compressed sensing theory has revolutionized how

information is acquired, requiring far fewer samples than Nyquist theory.

The limits of Nyquist sampling are well know, sampling a signal with twice

the max signal bandwidth guarantees the acquisition of any signal. How-

ever the information bandwidth of most signals is far less than its maximum

bandwidth, leading to redundant information being acquired, exhausting

communications and signal acquisition systems.

This thesis demonstrates two methods for generating compressed measure-

ments by structuring the illumination on an image. The practical speed of any

CS system is determined both by how complicated the optical structure can

be and how fast the CS samples are collected. Simply, a CS system is sampled

at the rate of the CS measurements, with each measurement containing the

information about the structure, which is N-bits complex. For binary mod-

ulation, the number of these CS-bits is directly related to the reconstructed

resolution of the image. For the line scanning system deployed for our CHiRP-

CS OCT, we show CS measurements at 1.44 GHz, and 384 CS-bits per pulse,

resulting in 0.55 CS-Tbit/s. Comparatively, the OpTiLenSS system acquires

CS measurements at 90 MHz with 3,212 CS-bits per pulse, for a total of 0.29

CS-Tbit/s.

The number of CS-bits per second determines the speed and resolution

of a CS system, but the spectral efficiency determines the scalability. The
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CS-bit spectral limit is due to the time-bandwidth product of the optical pulse,

the more information on a limited spectrum, the longer it will be in time.

Including the spectral bandwidth, the CHiRP-CS OCT system achieves 0.115

CS-bit/s/hz and the OpTiLenSS system achieves 0.116 CS-bit/s/hz. This is

reaching towards the limit of 1 CS-bit/s/hz that ca be achieved with ideal

pulse shaping and coherent sampling.

In order to completely utilize the spectrum to collect information, sys-

tems need to maximize the CS-bit/s/hz and adjust the CS measurement rate

depending on the application. The CHiRP-CS system is limited in CS-bits

per measurements, but can be easily multiplexed to achieve a high spectral

efficiency. On the other had, the OpTiLenSS system is much more flexible in

trading off between the measurement rate and CS-bit content.

Future systems will need to juggle the measurement rate, bit content, and

structure to find the best solution to any problem. With the rise of application

based technology it is clear that the best way to extract information is knowing

where to look. Compressed sensing systems take full advantage of a priori

knowledge while maximizing the output information flow.

6.3 Next generation communications networks

The constant demand for bandwidth has pushed modern networks to the limit.

New technology is needed that is more flexible, lower power, smaller, and

cheaper. Integrated photonics has started to address this problem at the data

center level, moving toward more optical interconnects and signal processing.

The total integration of communications electronics and optics on a single chip
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is in the near future.

In this thesis I have demonstrated two techniques for increasing commu-

nication efficiency and reach that are compatible with integrated photonic

devices. The optical signal processing can be done at lower powers and

smaller area, making it flexible an compatible with CMOS technology.

6.3.1 Spectral efficiency

Although fibers are getting more transparent as more optical wavelengths

are viable, every communication system is bandwidth limited. To maximize

transmission, communications networks need to be flexible and efficient. Data

networks need to improve in spectral efficiency to meet future demands.

In this thesis I present a Nyquist OTDM system that can reach the limits

of spectral efficiency. I show ideal demultiplexing conditions with zero inter-

symbol interference due to the Nyquist pulse shape properties. To further

this work, the nonlinear optical signal processing needs to be adopted and

realized on a photonic chip.

6.3.2 Remote fiber interconnects

Connecting the world with fiber optics has been inevitable since the first

telephone call. While modern technology has been sufficient for connecting

large hubs, remote destinations lack coverage. Large transmission distances

include large fluctuations in operating conditions, meaning the farther the

link, the worse the information rate. Novel techniques for stabilizing optical

links are needed to reach every corner of the globe and beyond.
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Here I present a passive all-optical method of stabilizing an optical link.

Wth only a single clock source, the remote location can receive and send high

fidelity data through extreme environments. I show this system on a fiber link,

further work would involve demonstrating free space optical link stabilization.

The final frontier will soon be illuminated with our communications, new

robust and efficient information networks are essential to continued growth.
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Johns Hopkins University B.S. 2013 
Johns Hopkins University Ph.D. 2019 

Research experience and skills: 

Johns Hopkins Ultrafast and Nonlinear Photonics Group: (2011 - Present) 
Optical communication: 

• High precision time transfer over optical links using optical time reversal. 

• Spectrally efficient demultiplexing with zero intersymbol interference using Nyquist 
pulse shaping and nonlinear signal processing. 

• Communication networks using amplitude and phase electro-optic modulation with 
continuous wave and pulsed lasers including high order modulation and multiplexing. 

Nonlinear optics: 

• Comb generation using CW lasers with highly nonlinear optical fiber or silicon 
waveguides for multicasting communications signals and pulse generation. 

• Time to wavelength conversion using four-wave mixing in an optical time lens. 

• Four-wave mixing Bragg scattering for low noise single photon generation. 
Integrated photonics: 

• Characterization of photonic integrated chips with novel materials and interlayer 
couplers. 

• Finite-difference time-domain electromagnetic modeling of waveguides to optimize 
nonlinearity, dispersion, and coupling loss. 

• Infrared optical parametric oscillator in an amorphous silicon waveguide. 

• Pattern detection using nonlinear wave mixing in amorphous silicon waveguides. 
High speed imaging: 

• Temporal focusing two-photon microscopy using compressed sensing. 

• Structured illumination and dispersive mapping for applications in ultrafast microscopy. 

• Optical coherence tomography using compressed sensing to increase imaging speed. 
Radio frequency sensing: 

• Sparse GHz signal detection using compressed sensing with ultrafast laser pulses. 

• Photonically assisted analog to digital converter using a photonic sample and hold 
architecture. 

Physically unclonable functions: 

• Challenge and response pair authentication using an integrated photonic chaotic 
resonator for hardware security. 



• Information content extraction and analysis. 

• Mitigation of machine learning attacks using nonlinearity of amorphous and crystalline 
silicone waveguides. 

Professional activities: 

Teaching 

Women in science and engineering: (Spring 2019) 
Johns Hopkins program for mentoring local high school students to introduce them to 
STEM research ideas and techniques. 

Fiber optic communications: (Fall 2017) 
Johns Hopkins lower level undergraduate course focused on introducing research topics. 

Optics every day: (Jan. 2017 & 2018) 
Johns Hopkins short course on basic optics concepts that are a part of technology we 
interact with every day. Lab course with multiple hands on optics experiments. 

SABES: (2014-2015, 2016-2017) 
Baltimore City elementary school mentoring in a local afterschool program to promote 
STEM education and problem-based thinking. 

Professional development 
Treasurer of the Optical Society at Johns Hopkins: (2013-2018) 

The local student chapter put on social, professional development, and educational 
outreach events for graduate students working in optics. 

Organizer of the Optics and Photonics Conference at Johns Hopkins: (Dec. 2017) 
Treasurer and lead organizer for the first Optics and Photonics Conference at Johns 
Hopkins, designed to unite and foster collaboration in the optics community. We had 
five invited talks, six student talks and a poster session with over 40 submissions from 
departments all over campus, as well as surrounding universities. 

Peer review: (2016 - Present) 
Reviewing journal articles in Optics Express and Optics Letters. 

Johns Hopkins Homewood Researcher Safety Committee: (2014 - 2018) 
Treasurer then President of the graduate student run laboratory safety committee. Our 
goal is to keep researchers well informed of safety protocols and provide input for 
future standards and procedures. 

Peer-reviewed work: 

Google scholar 
 https://scholar.google.com/citations?user=i4swAZoAAAAJ&hl=en 
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Unclonable Functions”, in preparation for Applied Optics Letters. 

2. Jasper R. Stroud, L. Li, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Optical coherence 
tomography using physical domain data compression to achieve MHz A-scan rates”, in 
preparation for Optics Express. 



3. Jasper R. Stroud, O. Okusaga, G. Weaver. N. Mosavi, and M. A. Foster, “Passive timing 
stabilization over a 33-km single mode fiber link using temporal imaging”, in preparation. 

4. Jasper R Stroud and Mark A. Foster. "Optical time-lens spectral shaper for high-speed single-pixel 
imaging", in preparation. 

Journal publications 
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