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Abstract

Evaluating anatomical variations in structures like the nasal passage and sinuses is
challenging because their complexity can often make it difficult to differentiate normal
and abnormal anatomy. By statistically modeling these variations and estimating
individual patient anatomy using these models, quantitative estimates of similarity
or dissimilarity between the patient and the sample population can be made. In
order to do this, a spatial alignment, or registration, between patient anatomy and
the statistical model must first be computed.

In this dissertation, a deformable most likely point paradigm is introduced that
incorporates statistical variations into probabilistic feature-based registration algo-
rithms. This paradigm is a variant of the most likely point paradigm, which incorpo-
rates feature uncertainty into the registration process. The deformable registration
algorithms optimize the probability of feature alignment as well as the probability of
model deformation allowing statistical models of anatomy to estimate, for instance,
structures seen in endoscopic video without the need for patient specific computed

tomography (CT) scans. The probabilistic framework also enables the algorithms to
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assess the quality of registrations produced, allowing users to know when an alignment
can be trusted. This dissertation covers three algorithms built within this paradigm

and evaluated in simulation and in-vivo experiments.
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Chapter 1

Introduction

Understanding the range normal anatomy is a key step towards identifying ab-
normalities, associating deviations from normal to disease, and determining the best
course of treatment to improve quality of life. For some parts of anatomy, understand-
ing this normal range can be difficult. The nasal cavity and the paranasal sinuses
belong to this class of complex anatomical structures where accurately locating de-
viation from normal and identifying the exact cause of discomfort in patients can be
challenging. Therefore, although anatomical variations are understood be associated
with an increased likelihood of nasal diseases such rhinosinusitis,* a large percentage
of population continues to suffer from these diseases. In the following section, the
anatomical structure of the nasal cavity and sinuses will be described and the clini-
cal condition known as rhinosinusitis will be explained, including how it affects the

population and the challenges it presents to modern medicine. This will be followed
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by a review of the technical methods that have been introduced in the past in or-
der to address the problems involved in various surgical treatments, especially those
that can be applied to the treatment of rhinosinusitis, and where these methods fall
short. The following chapters will present new methods that facilitate a better under-
standing of the sinonasal anatomy, as well as methods that can exploit this improved
understanding to enhance endoscopic navigation during minimally invasive surgeries

that are performed to treat sinonasal diseases.

1.1 Clinical background

The term rhinosinusitis describes the general co-occurrence and coexistence of
the conditions rhinitis, which affects the nasal cavity, and sinusitis, which affects the
paranasal sinuses.? The nasal cavity extends from the nostrils to the nasopharynx
(Fig. 1.1) in the antero-posterior direction, and is divided into left and right by the
nasal septum. Both sides have a roof, a floor, a medial wall or nasal septum, and a
lateral wall.> Each nasal passage, or meatus, lying between these boundaries contains
three nasal conchae, or turbinates. The inferior turbinate is one of several bones
that make up the uneven and complicated lateral wall, while the middle and superior
turbinates are projections of the ethmoid bone.® The turbinates are covered by a
thick and highly vascular mucous membrane, or mucosa, that warms and humidifies

incoming air as it travels through the nasal cavity.® The turbinates undergo periodic
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Middle turbinate

Superior turbinate
Frontal sinus

Sphenoid sinus

Inferior turbinate Opening of auditory tube

Figure 1.1: Anatomy of the nasal cavity. Licensed under the Creative Commons
Attribution 3.0 Unported license (https://commons.wikimedia.org/wiki/File:
714_Bone_of_Nasal_Cavity. jpg)
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alternating contraction and expansion, known as the nasal cycle.® The decongested
side of the nasal cavity facilitates humidification of incoming air, and alternating is
thought to shift the workload back and forth.®

The nasal cavity presents openings, or ostia, for the four paranasal sinuses which
are cavities within the maxilla and the frontal, ethmoid, and sphenoid bones.> Ac-
cordingly, they are named the maxillary, frontal, ethmoid, and sphenoid sinuses, re-
spectively (Fig. 1.2). Not all of these sinuses are fully developed at birth. The process
of pneumatization, or cavities forming within bones, occurs over several years. The
maxillary and ethmoid sinuses are present at birth, but continue to grow until the
age of 15-16 years.”® The maxillary sinus turns into the largest of the sinuses, while
the ethmoid sinus ends up being comprised of numerous small cells that make up the
ethmoidal labyrinth.> The frontal sinuses are not distinguishable from the anterior
ethmoid cells at birth, but begin growing around the fourth year and continue to
grow until adult size is attained at around 19 years.”® Similarly, the sphenoid sinuses
are extremely small at birth, but experience a growth spurt around 6-10 years of age,
and complete their growth by 15 years.”®

Rhinosinusitis is defined in slightly different ways depending on several factors.
The main difference depends on the purpose of diagnosis. Diagnoses made in a clini-
cal setting require a clearly defined protocol to accurately describe patient population

(phenotypes) in order to provide standard treatment to patients with similar symp-

toms, as well as to maintain consistency in clinical studies relating to diagnosis and
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Figure 1.2: Anatomy of the sinuses. Licensed under the Creative Commons Attri-
bution - Share Alike 3.0 Unported license (https://commons.wikimedia.org/wiki/
File:724_Paranasal_Sinuses. jpg)

treatment.* Therefore, rhinosinusitis in adults is clinically defined as the inflamma-

tion of the nose and paranasal sinuses characterized by two or more symptoms:*

e One of the symptoms should be either nasal obstruction/congestion or nasal
discharge in the form of anterior or posterior nasal drip often accompanied by

— facial pain or pressure, and/or
— reduction or loss of smell.
e The other symptom should be endoscopic signs of
— nasal polyps, and/or
— mucopurulent discharge primarily from the middle meatus, and/or

— oedema/mucosal obstruction primarily in the middle meatus,


https://commons.wikimedia.org/wiki/File:724_Paranasal_Sinuses.jpg
https://commons.wikimedia.org/wiki/File:724_Paranasal_Sinuses.jpg
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and/or musocal changes within the osteomeatal complex and/or sinuses ob-

served in computed tomography (CT) scans.*

The definition of rhinosinusitis in children varies only slightly. In pediatric care, one
of the accompanying symptoms is cough, instead of reduction or loss of smell. The
duration of the condition dictates whether the condition should be termed acute or
chronic. If the symptoms described above are completely resolved within 12 weeks,
then the condition is termed acute.? If the symptoms persist beyond 12 without
complete resolution, then the condition is termed chronic.?

The epidemiological definition of rhinosinusitis imposes fewer restrictions in order
to facilitate the study of larger populations.? Therefore, the epidemiological definition
of acute rhinosinusitis (ARS) in adults is simply the sudden onset of two or more
symptoms, one of which should be either nasal blockage/obstruction/congestion or
nasal discharge, as described above, often accompanied by facial pain or pressure,
and/or reduction or loss of smell lasting fewer than 12 weeks.? In children, this

definition is further simplified to the sudden onset of two or more of the following

symptoms lasting fewer than 12 weeks:

e nasal blockage/obstruction/congestion, and/or
e discolored nasal discharge, and/or

e cough during the night or day.*

The presence or absence of symptoms need only be validated over the telephone or
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in an interview.* The epidemiological definition of chronic rhinosinusitis (CRS) in
adults is similar to that of ARS, with symptoms lasting 12 weeks or more, and in
children, the reduction or loss of smell is replaced by the presence of cough, as in
the clinical definition.? For research purposes, ARS is diagnosed according to the
epidemiological definition, with bacteriological and/or radiological tests advised but
not required.? However, for the more serious CRS, the diagnosis is made as per the
clinical definition.

Studies show that ARS affects about 6-15% of the population in the United
States,19 while CRS affects about 2-4%.1'3 Rhinosinusitis can be caused by both
viruses and bacteria. The epithelial cells of the airway serve as the first line of
defense against the infectious agents.? These release mucous to trap the microorgan-
isms, which are then mechanically removed from the body by ciliated cells.!* Further,
the ecosystem in the nasal cavity is determined by specific parameters like temper-
ature, pH, etc., and only microorganisms that require a similar ecosystem are able
to survive.!* The microorganisms that are able to breach these barriers disrupt the
epithelial cells and decreases the number of ciliated cells'® obstructing the sinus ostia
in the nasal cavity.'® The change in pressure caused by mucus retention in the sinuses
due to this obstruction changes the ecosystem in the nasal cavity, worses congestion,
and further impedes the removal of the microorganisms.'®*1° These changes form
an ideal environment for the growth of infectious microorganisms.2’ This creates a

vicious cycle of inflammation and blockage leading to obstructed nasal passage and



CHAPTER 1. INTRODUCTION

difficulty in breathing for the affected population.

In most cases, such infections are resolved without antibiotic treatment.2"2 Al-
though antibiotic treatment has been shown to not be useful in treating mild and
uncomplicated ARS and is not recommended by clinical guidelines, rhinosinusitis is
the fifth most common diagnosis for which antibiotics are prescribed.?’2* Long-term
antibacterial treatment can lead to the emergence of resistant bacterial strains. Other
treatments that are employed include oral antihistamines, nasal decongestants, nasal
irrigation, etc. When these other treatments are unable to relieve symptoms, surgical
treatments are employed to alleviate symptoms. These could include widening of
the sinus ostia in order to improve drainage from the sinuses, turbinate reduction to
reduce nasal obstruction, septoplasty in cases of severely deviated septum, etc. Most
such surgical treatments today are performed minimally invasively via endoscopic si-
nus surgery (ESS). ESS involves accessing the nasal cavity through the nostrils and
visualizing the anatomy using an endoscope. In order to enhance the limited field
of view of endoscopes, patients are generally required to obtain a preoperative CT
scan since it has high contrast between bone, soft tissue, and air making it easy to
differentiate between the sinonasal cavity and the surrounding bone and mucosa. The
purpose of the CT scan is to inform the surgeon about the area surrounding the site
of surgery in order to prevent accidental damage to critical structures that surround
the sinonasal cavity. The accuracy of the methods performing the alignment between

endoscopic video and preoperative CT scan can have an effect on the outcome of the
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treatment. Studies have shown that overconfidence in technology can have detrimen-
tal effects on surgical outcomes.?® Therefore, high accuracy in such systems and an
awareness of when this is not attained is critical.

Studies have also shown that although both medical and surgical treatments im-
prove symptoms of rhinosinusitis, significant difference is not seen between the medical
and surgical groups.?® It must be noted, however, that many of these studies do not
include results from medical treatment for those who proceeded to ESS having failed
medical treatment. Surgeries that increased the patency of the nasal cavity showed
that increased patency was maintained after several months, although this did not
improve subjective outcomes.?”?® Patients undergoing septoplasty only showed im-
proved quality of life (QoL) when septal deviation was accompanied with moderate
or severe nasal symptoms, whereas those with mild nasal symptoms did not.?® QoL
was even showed to degrade in those mild nasal symptoms, especially among older
patients.?® Although in some cases it may be clear that septoplasty will improve
QoL, there is a fine line between cases where surgical intervention will or will not
improve QoL.%° Most studies that have evaluated nasal patency among normal pop-
ulation only presented approximations.?®32 This may contribute to the difficulty in
finding correlation between patency and improved nasal obstruction among patients.
Improving these measurements to gain a better understanding of normal anatomy
has the potential not only to better inform when surgical treatment is necessary, but

also to improve patient outcome
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1.2 Technical background

As mentioned earlier, in order to make up for the limited field of view of endo-
scopes, most endoscopic sinus surgeries are accompanied by a preoperative CT scan
in order to better inform the surgeon of critical structures in the area surrounding
the surgical site. The view in the CT scan corresponding to the view seen by the sur-
geon in endoscopic video is computed through a process known as registration, which
finds the spatial transformation between data in two different coordinates frames that
maps them into a common coordinate frame. In addition to guidance or navigation
during endoscopy, registration is has several other applications in modern medical
practice, such as fusion of images for diagnosis, postoperative evaluation, or time-
varying change detection.®® These images may be of different modalities like magnetic
resonance (MR) or ultrasound (US) scans. Registration also has several applications
in other fields like robotics and computer vision. Image registration methods can be
divided into two broad classes based on the type of information used to compute the
alignment: intensity-based registration and feature-based registration.?* Intensity-
based registration methods compare information defined on the pixels of the images
being registered, like intensity or gradients.?* Feature-based registration methods
compare geometric information extracted from images, like point clouds, contours,
curves, or triangular mesh models, that describe positions of salient landmarks.3

Information from the images are compared using some similarity metric that allows

corresponding pixels or features to be matched correctly. Metrics used in intensity-

10
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based registration methods include sum of square differences (SSD), sum of abso-
lute differences (SAD), correlation coefficient (CC), normalized correlation coefficient
(NCC), mutual information (MI), etc. Some of these metrics, like SSD and SAD, are
suitable for comparing images belonging to the same modality, while CC and NCC
are suitable when the intensities of the images being registered are linearly related.
MI is useful for comparing images from different modalities, when the two images in-
tensities have considerable differences between them without a simple relation to map
one to the other.?® Feature-based registration methods use metrics that compare ge-
ometric distances between shape descriptors like points,® surface normals,®® surface
curvature,®” color,®® etc. Based on the metric used, different optimization schemes
can be used to compute the alignment between images. These include gradient-based
methods like gradient descent, Levenberg-Marquardt, quasi-Newton methods, etc.,
and gradient-free methods like random search methods, genetic algorithms, etc.?®
The remainder of this section will discuss feature-based methods since the focus of
this dissertation is on feature-based deformable registration techniques.

These optimization methods are used to solve for different types of transformations
that are required to align data into a common coordinate frame. Transformations
can be broadly classified as rigid and non-rigid (or deformable). Rigid registration
methods produce rigid-body transformations like global rotations and translations
to reposition the transformed data while maintaining the relative distance between

points in each dataset.?® In medical applications, such methods are useful when reg-

11
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istration is computed between the same object at different times or using different
imaging modalities with the knowledge that the object has not undergone any struc-
tural changes. One of the most popular registration algorithms is a feature-based
rigid registration algorithm called the iterative closest point (ICP) algorithm®® which
finds an alignment between a fixed set of points or shape (model shape) and a moving
set of points (data points). ICP is an iterative algorithm that iterates between two
phases: a correspondence phase and a registration phase. During the correspondence
phase, the closest point on the model shape is found for each data point by minimizing
Euclidiean distances, whereas during the registration phase, a spatial transformation

35 Prior to ICP, a specialized regis-

is computed to align the corresponding points.
tration method for registering 3D images of the human head was introduced which
found correspondences by finding intersections with the model shape of rays extend-
ing from the centroid of the data points through the data points being matched, and
computed a registration in a derivative-free manner.*! Champleboux et al. presented
a more general registration method that was able to quickly compute closest point to
surface distances by representing the model shape using a hierarchical distance map,
known as an octree-spline, and directly minimize the sum of square distances using
a nonlinear least-squares optimization.?

After the introduction of ICP, several variants were introduced to compensate for

the disadvantages of standard ICP. For instance, a robust ICP variant was intro-

duced to handle outliers and occlusion in the correspondence phase by incorporating

12
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robust statistics and adaptive thresholding.*®> In order to perform outlier rejection
in the registration phase, weighted point pairs were used by Maurer et al.,** which
also enabled normalization for non-uniformly point densities. In order to eliminate
ambiguities stemming from matching only point features using Euclidean distances,
several methods have augmented the match metric using additional features like sur-
face normals?® and curvature.®” Surface normals are critical in disambiguating point
sets facing different directions. Alternate metric-based distance functions have also
been introduce to take into account both translation and rotation errors produced
by sensors in 2D% and 3D%7 scan-matching problems. Several methods have been
introduced that perform a soft matching between each data point and each model
point with varying weight or probability assigned to each match.?®% More recently,
a series of algorithms based on the most-likely-point paradigm (IMLP, IMLOP, and
G-IMLOP) were presented that compute registrations by incorporating noise mod-
els associated with the model shape and data features into both the correspondence
and registration phases making them more robust.’’® Several of these methods
have been employed for the application of image guided navigation during endo-
scopic surgery. Other methods that use optical or EM tracking have also been used.
However, changes that might occur in patient anatomy between preoperative image
acquisition and the time of surgery due to breathing and other natural functions as
well as due to the insertion of surgical instruments make rigid registration methods

inadequate for accurate surgical navigation.
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Non-rigid registration methods, on the other hand, deform the data in some way
in addition to repositioning them. The simplest deformable registration methods
compute a global scale in addition to rotation and translation producing a similarity

54-56

transformation, or a general linear mapping producing an affine transformation.

Several extensions of ICP that additionally compute scale have been presented.54:5%:57
More complex deformable registration methods compute local transformations like
displacement or deformation fields.*® These local transformation parameters could
be defined at each pixel in a 2D image, each voxel in a 3D image or each point in a
point cloud or triangular mesh. Since the number of parameters to solve for is much
larger than the amount of available information, the problem of finding the best dis-
placement field is ill-posed. Therefore, in order to compensate for the ill-posedness of
the problem, most deformable registration methods incorporate a regularization term
or smoothness constraint within the registration cost function that is optimized. For
instance, deformations smoothed using thin-plate splines have been used to compute
deformable registrations.®® A deformable extension of EM-ICP which uses Gaussian
mixture models (GMMs) optimized within an expectation maximization (EM) frame-
work?® enforced coherency between backward and forward deformations to produce
a symmetric and consistent registration framework.?® Coherent point drift (CPD) is
another EM-based method which computes a closed form M-step solution for rigid

registration and uses Gaussian radial basis functions for deformable registration com-

putation.’® However, CPD only deforms the part of the model shape that data points

14
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are matched to, which might not be ideal for surgical navigation where only a limited
portion of anatomy is visible at a time and, therefore, data points extracted from these
regions might cause sudden and unrealistic deformations in the model shape. Further,
noise in the data can result in deformations not anatomically plausible. Several varia-
tions of CPD have also been explored. One method treats both the model shape and
data points as kernel densities formed from Gaussian kernel functions centered at each
point and computes registration by maximizing a kernel correlation (KC) metric be-
tween the two densities.®® Another forms GMMs from both the model shape and data
points and minimizes L2 distance between the GMMs to compute registration.! Al-
though CPD and its variants can achieve high accuracy, the exhaustive point pairings
make these methods less efficient than methods that perform single-point matching.
The deformable registration methods described in this dissertation are extensions of
the most-likely-point algorithms which compute single-point matching. More thor-
ough details of these most-likely-point algorithms will be explained in the chapters
corresponding to the deformable registration methods. These deformable algorithms
inherit the advantage of the most-likely-point algorithms in that their formulation
seamlessly incorporates measurement noise associated with both the model shape
and data points into the correspondence and registration phases making it robust to
noise in the data. This is critical since data extracted from real world applications
generally contains some amount of noise. Further, the deformations computed are

based in statistics learned from variations seen in anatomy. Therefore, regardless of
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the amount of noise in the data, deformations computed using these methods should
be anatomically plausible.

Up to this point, it has been assumed that features can be extracted from medical
images. However, this is often a difficult task. For endoscopic navigation, features
must be extracted from both preoperative CT scans and intraoperative video frames.
Several techniques have been introduced to automatically extract these features. In
many types of images, features can be extracted by segmenting or partitioning the
image into nonoverlapping constituent regions that are characterized by homogeneity
in some characteristic like intensity or texture.®? Segmentation can be obtained sim-
ply by thresholding image intensities.®®> However, such methods are sensitive to noise
and intensity inhomogeneities. Region growing is another segmentation technique
based on intensity information. This technique requires an initial seed point and
segments all pixels connected to the seed under some criteria, for instance, all pixels
with similar intensities.®® This method is also sensitive to noise and can result in
segmentations with holes or disconnected components, and requires user interaction
in the selection of the seed point. Clustering based methods alleviate the problem of
user interaction by iteratively alternating between segmenting the image and charac-
terizing the properties of each cluster.? Clustering methods like K-means iteratively
compute the mean intensity in each cluster and classify each pixel in the cluster with
the closest mean.%® Such methods, again, suffer from sensitivity to noise, and may not

directly incorporate spatial features resulting in misclassifications.®? Other methods
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use deformable models to delineate object boundaries by placing a closed curve inside
the object of interest, and allowing the curve to evolve using cues like image gradi-

66,67 However, again, this requires user interaction in placing the initial curve

ents.
within the object of interest. Atlas-guided approaches require the existence of an atlas
with segmentations. Given this requirement, any target image requiring segmentation
simply needs to be aligned with the atlas using a one-to-one transformation.?® Due to
anatomical variability, the transformation must be deformable.®*™ Ideally, in order
to avoid unnatural deformations in anatomical structures, the deformation should be
a differentiable one-to-one function with a differentiable inverse. Once aligned, the
segmentations from the atlas can simply be deformed to the target image. Further,
triangular meshes can be extracted from the pre-segmented atlas, and these can also
be deformed to the target image. One important advantage of this method is that
all segmented meshes produced are in correspondence with each other. These corre-
spondences can be exploited to build statistical shape models (SSMs) using standard
methods like principal component analysis (PCA).! These SSMs explain the variance
in the data, and are also able to estimate any shape that is in correspondence with
those used to build the SSM.

These segmentation methods are able to extract 3D shapes from volume data like
CT scans. However, these methods are not sufficient to extract 3D structure from

video due to the motion between frames. In order to extract 3D features from a

sequence of video frames, a structure from motion (SfM) framework was developed
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that used features extracted from each frame to triangulate to 3D points.”? Several
improvements to this initial method using improved feature extraction methods like
SIFT or SURF that provide rich features have been made.?® Further, methods to
jointly produce optimal structure and relative camera motion using bundle adjust-
ment have also been presented.” However, due to the paucity of texture in endoscopic
images, these methods are only able to produce sparse 3D structures. Newer meth-
ods based on machine learning techniques are able to produce dense 3D structures

3!

from single video frames®™ and provide reconstructions that can be used to compute

reliable registrations to features extracted from preoperative images.

1.3 Thesis Statement

Deformable feature-based registration algorithms that incorporate statistical shape
models (SSMs) demonstrate accurate registration to features not seen before by the

SSM as well as accurate reconstruction of the shape described by these features.

1.4 Thesis outline

This dissertation presents a method to build improved SSMs, and a family of
feature-based deformable registration methods belonging to the deformable most-
likely-point paradigm that use these SSMs to estimate shapes that are not in corre-

spondence with the SSM (Table 1.1). For instance, given dense features extracted
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Table 1.1: Summary of the deformable registration algorithms presented in this
dissertation.

Algorithm Feature type Noise model

D-IMLP 3D positions anisotropic

3D  positions, anisotropic for position

D-IMLOP 3D orientations features, isotropic for
orientation features

3D ositions anisotropic for position

GD-IMLOP p " and orientation fea-

3D orientations
tures

from video sequences containing a structure, the registration algorithms developed
within the deformable most-likely-point paradigm enable an SSM containing the same
structure to estimate the shape represented by the video features despite a lack of
correspondence between the two. This property can be harnessed during endoscopic
examinations to estimate patient anatomy and make quantitative measurements with-
out the need for patient specific CT scans.

Chapter 2 outlines established methods for automatic segmentation”™ and statis-
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tical modeling! of anatomical structures. It also covers established methods to im-

prove segmentation®6:67

and correspondences? between shapes in an effort to improve
SSMs. However, previous methods? 67 treat segmentation and correspondence im-
provement as separate tasks resulting in segmentation improvement methods that
allow correspondences to deteriorate and correspondence improvement methods that
assume perfect segmentation. In this chapter, a simultaneous segmentation and cor-
respondence improvement method is introduced.” This new method simultaneously
improves segmentation by moving the vertices in a mesh closer to edges in the cor-
responding CT image and improves correspondences between shapes using SSMs to
constrain the motion of vertices along the surface of the improved mesh.

Chapter 3 introduces the deformable most-likely-point paradigm™ which describes
how SSMs can be used in combination with probabilistic rigid registration algorithms
to include statistically informed deformations in the registration computation. The
algorithms developed in Chapters 4-6 follow the algorithm design process described
in this chapter. This paradigm was first introduced by Billings,”® and was improved
and implemented during the course of this dissertation work. Chapter 4 presents the
deformable iterative most likely point (D-IMLP) algorithm,”” which registers sam-
ple points with positional components characterized by anisotropic uncertainty to
a mean shape and, simultaneously, deforms the mean shape according to the cor-

responding SSM to fit the sample points. Chapter 5 presents the deformable it-

erative most likely oriented point (D-IMLOP) algorithm,”” which registers sample
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points with positional components characterized by anisotropic uncertainty and ori-
entation components characterized by isotropic uncertainty to a mean shape. The
mean shape, again, deforms according to the corresponding SSM to fit the sample
points. The additional orientation components allow the algorithm to disambiguate
points samples from surfaces facing different directions. Finally, Chapter 6 presents
the generalized deformable iterative most likely oriented point (GD-IMLOP) algo-
rithm,”” which registers sample points with positional and orientation components
characterized anisotropic uncertainty to a mean shape and, again, deforms the mean
shape according to the corresponding SSM to fit the sample points. Mechanisms for
autonomously assessing the outcome of a registration in order to assign confidence to
the result is also presented for each of the three algorithms.”™ All three algorithms
are thoroughly evaluated on several different datasets.

Chapter 7 evaluates the efficacy of these algorithms in a clinical setting using
in-vivo data.”™™ Dense point clouds are extracted from single frames of sinonasal

3™ and deformably registered to SSMs built from population

endoscopy video data
data. Further, confidence is assigned to each registration based on the autonomous
assessment mechanism designed for each deformable registration algorithm. Chap-
ter 8 presents several other applications of SSMs and registration algorithms using
SSMs in clinical use, for instance, understanding the types and extents of variabil-

ity present in different anatomical structures,” showing that population data is able

to compensate for individual variation such as that resulting from the nasal cycle,”
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and estimating measurements of cross sectional areas of the nasal cavity at different
landmarks to quantitatively evaluate the patency of a patient’s nasal passage. Chap-
ter 9 discusses the conclusions of this dissertation as well as future directions such
as ways to improve and extend methods discussed in this dissertation and different

applications that could benefit from this work.

1.5 Contributions

This dissertation presents several contributions with the most notable contribu-
tion being the development of the deformable most-likely-point paradigm which in-
corporates SSMs into a probabilistic registration framework. This paradigm enables
statistically informed model deformation during feature-based registration computa-
tion. This dissertation also presents methods to build improved SSMs as well as
clinical applications of SSMs and registration algorithms built within the deformable
most-likely-point paradigm. A detailed outline of the contribution of this dissertation

is presented below:

1. An novel method for simultaneous improvement of segmentation and correspon-
dences among a set of shapes in order to build better SSMs (Chapter 2)™
2. An implementation of the deformable most-likely-point paradigm, a general

probabilistic paradigm for incorporating deformable shape transformations within

a probabilistic registration framework that was first introduced conceptually by
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Billings.”™ This framework, an extension to the software architecture developed
by Billings,™ enables the development of deformable registration algorithms for
registering sample points to a deformable model shape that is characterized by

an SSM, where the shape deformations computed by the registration are driven

by the modes of the SSM (Chapter 3)™"™

3. A user friendly command line interface to perform registrations with different
datasets using several algorithms including but not limited to ICP, directional
ICP, the deformable registration algorithms presented in this dissertation, and

their corresponding rigid counterparts.

4. The improvement, implementation and evaluation of the deformable iterative

most likely point (D-IMLP) algorithm (Chapter 4)7

(a) a probabilistic algorithm that computes deformable registration between
an SSM and point features with unconstrained or anisotropic noise
(b) an efficient implementation of PD-tree update to accommodate a deform-

ing model shape

(c) a gradient-based solution to the optimization problem which is computed
using an off-the-shelf nonlinear box-constrained BFGS quasi-Newton opti-

mizer3?

(d) a mechanism for autonomously evaluating a registration in order to assign

confidence to the resulting alignment
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5. The development, implementation and evaluation of the deformable iterative

most likely oriented point (D-IMLOP) algorithm (Chapter 5)

(a)

a probabilistic algorithm that computes deformable registration between
an SSM and features with position and orientation components, where un-
constrained noise is associated with the position features and constrained

or isotropic noise is associated with orientation features

an efficient implementation of PD-tree update to accommodate a deform-

ing model shape

a gradient-based solution to the optimization problem which is computed
using an off-the-shelf nonlinear box-constrained BFGS quasi-Newton opti-

mizer3?

a mechanism for autonomously evaluating a registration in order to assign

confidence to the resulting alignment

6. The development, implementation and evaluation of the generalized deformable

iterative most likely oriented point (GD-IMLOP) algorithm (Chapter 6)7

(a)

(b)

a probabilistic algorithm that computes deformable registration between
an SSM and features with position and orientation components, where un-

constrained noise is associated with both position and orientation features

an efficient implementation of PD-tree update to accommodate a deform-

ing model shape
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(c) a gradient-based solution to the optimization problem which is computed
using an off-the-shelf nonlinear box-constrained BFGS quasi-Newton opti-

mizer3?

(d) a mechanism for autonomously evaluating a registration in order to assign

confidence to the resulting alignment™

7. An evaluation of the algorithms presented in Chapters 4-6 in a clinical set-
ting through deformable registration between SSMs and dense reconstructions
from in-vivo endoscopic video frames along with confidence estimates for each

registration (Chapter 7)™
8. A set of clinical applications (Chapter 8) including

(a) evaluation of anatomical variation in the maxillary sinuses, inferior and

middle turbinates, right and left nasal cavities in a normal population™

(b) demonstration of the nasal cycle in one patient with preoperative and

postoperative CT scans™

(c) automatic and exact measurement of the cross-sectional area at the internal

and external nasal valves
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Segmentation and statistical

modeling of CT data

Computed tomography (CT) scans are 3D volumes containing grayscale intensity
values at each voxel. These intensity values indicate the Hounsfield units (HU) which
comprise a quantitative scale used to describe radiointensity. Since different materials
exhibit different amounts of x-ray attenuation, they are associated with different HU.
Different tissue types have different material makeup, and therefore HU can be used
to differentiate them. CT scans allow for clear distinction between air, soft tissue, and
bone. This makes is relatively easy to automatically segment the airway and sinuses.
Although bones are generally also easy to segment in CT scans due to high contrast,
the bones surrounding the sinuses tend to be extremely thin making segmentation

more difficult.
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Automatic segmentation of CT scans and other medical images has become in-
creasingly more important as the use of non-invasive medical imaging techniques be-
came more prevalent in the medical community making manual labeling too time con-
suming and impractical. Several different methods have been explored that attempt

81

to accurately segment CT scans.®® Many early methods presented semi-automatic

ways to segment CT scans or images, for instance, region growing methods that re-
quire manual seed placement,®? intensity thresholding, or error correction.®® More
complex automated ways of assigning labels to each voxel have also been presented.
Automated region growing techniques have been explored, like adaptive region grow-
ing.®* Other evolution based methods include gradient vector flow snakes,®® which
require an initial curve or segmentation that can be evolved using gradients in the
image to converge to the boundaries of objects being segmented. Clustering and
majority voting based multi-atlas segmentation methods have also been explored.
Several of these methods require a rigid registration to transform given images into
the coordinate frame of images with predefined landmarks or segmentations. How-
ever, rigid image registration may not be sufficient due to the variability in different
anatomical structures between individuals.

Deformable registration techniques have been explored to produce deformation or
displacement fields that indicate how each voxel in one image should be displaced

in order to best match the target image. Different applications have different con-

straint requirements for the deformable model, for instance, topology preservation or
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diffeomorphism, but almost all methods have a smoothing or regularization term.%°

Both topology preserving and diffeomorphic deformable transformations fulfill the
desirable property of the transformation being invertible. This property has been
exploited by several segmentation techniques that deformably register an image, I,
to some standard template with presegmented labels, which can then be transformed

back to I using the inverse deformation field.

2.1 Automatic segmentation

The automatic segmentation method described here assembles different tools pre-
sented in the past into one pipeline that enables accurate automatic segmentation of
particular structures or regions of interest (ROIs). This method relies on the existence
of a template CT image with labels for relevant structures or ROIs. The template
CT image is built using one target CT image, and ngt other CT images of the same
dimensions and resolution as the target image. These ncr images are deformably
registered to the target image using a diffeomorphic deformable registration algo-
rithm, like the ANTSs registration software,®¢ resulting in deformation fields that can
transform each of the ncr CT images to the target image. Since the deformations
computed are invertible, the target image can also be transformed to each of the ngp
CT image coordinate frames. The mean of these deformation fields can be computed

and used to deform the target image, moving the target image towards the space of
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the mean of ncp CT images.®” The transformed target image then becomes the new
target image, and the process can be repeated. Each iteration further reduces the
individual variation of the initial target image, and moves the target image closer to
the population mean. The resulting image is a highly symmetric CT image, and will
be referred to as the template CT image in the following discussion (Fig 2.1).
Relevant anatomical structures and ROIs can be semi-automatically segmented
in the template CT image under the supervision of and with consultation from an
otolaryngologist. The semi-automatic segmentation involves selecting seed points in
regions that need to be segmented and performing 3D region growing to segment
the regions. The final segmentations are manually cleaned up to eliminate errors in
segmentation. This semi-automatic segmentation of the template is a one-time task
for each segmented structure or ROI. It is important to create these segmentations in
a template CT image that represents the mean of a population rather than in a CT
image of an individual in order to reduce bias from individual variation. Triangular
surface meshes are extracted from these segmentations using marching cubes.®® Once
a labeled template CT image is established, any CT image that covers the same
anatomical extent as the template can be deformably registered to the template. If
the deformable registration is successful, the resulting deformation field can be used
to deform the template meshes to the CT image. This method is not only able to
automatically segment CT scans, but also ensures that for each segmented structure,

meshes segmented from different CT scans in this manner are in correspondence with
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Repeat with output as new target

Deformably
——
Register

Average

Deformatlon

Fleld

Deform

Figure 2.1: Template creation pipeline: all input images are deformably registered
to one target image, which is then deformed by the mean of the deformation fields
resulting from the registrations. The colors in the deformation fields represent the
direction of the deformation vectors, whereas the intensity of the colors indicates the
magnitude of the vectors. Deforming the target image by the mean deformation field
takes the target image towards the mean of the input images. This process is iterated
with the output image as the new target image. Individual variation from the initial
target image decreases with every iteration, and the resulting output moves closer to
the mean of the input set of images.
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each other.

Since deformable registration may contain some errors, a segmented mesh obtained
using deformable registration may also contain errors. In order to reduce errors in
this initial segmentation, gradient based energies, like gradient vector flow (GVF),
in the corresponding CT image can be used to pull vertices in the mesh towards
edges in the CT image.%¢ The vertices in the mesh are treated as control points on
a 3D snake spline, which is evolved using GVF.®" In 2D, vertices on a curve can
be sequentially ordered to define control points on a snake spline. However, it is
not trivial to sequentially order vertices in 3D. Adjacency matrices that store per
vertex neighborhood information are often used, but these can have large memory
requirements. Simple blob-like structures have been approximated with high accuracy
using parametrized ellipsoids, which can then be evolved.®® However, structures in
the sinuses are often too complex to be approximated using parametrized ellipsoids.

Instead, a simple and efficient sampling technique is introduced to select vertices
that can serve as control points on a 3D snake spline. Points are sampled in a spiral
around each vertex (Fig. 2.2), as explained in Algorithms 2.1 and 2.2, so that points
on this curve can be stored in a sequential order into a vector. These ordered vertices,
serving as control points on a snake spline defined by the spiral curve, can be evolved
using simple vector-matrix operations. The number of points to be sampled at each
iteration, which defines the length of the curve, can be user specified. These curves

have consistent internal and external directions making it easy to define internal and
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external energies®” which are required for the evolution of the spline using gradients in
the image (Fig. 2.2). The only points of concern with this sampling technique are the
source and end points on the curve. Due to the closed-loop snake spline formulation,
these two points are attracted to each other despite being spatially distant from each
other. This is resolved by updating all points except the source and end points at
each iteration. These points are updated in other sampling iterations when they are
not source or end points (Fig. 2.3). GVF guides these control points toward edges in
the corresponding CT image producing highly accurate segmentations®” (Table 2.1).
Fine details that are not captured by deformable registration can be captured using

GVF (Fig. 2.8), resulting in lower segmentation errors (Fig. 2.9).

Algorithm 2.1: Clockwise order vertices in one-ring neighborhood
Input : Model shape: ¥

Output: List of ordered neighbors for all vertices: O

1 for each vertex i in U do

2 Find faces incident on vertex i, ordered clockwise:°
f < find faces(z)
4 for j <+ 0 to f.size() do
5 ‘ O;; < vertex at far end of half-edge® incident on vertex i
end
end
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Algorithm 2.2: Sample vertices

Input : Model shape: ¥

List of ordered neighbors for all vertices: O
Number of vertices to sample: ngamples

Source vertex for spiral sampling: 4

Output: Vector of sampled vertices: S

1 Initialize k <~ 0, x < 0

2 Initialize S.resize() <= Nsamples

3 Initialize S¢ + ¢

10

11

13

16

17

18

for j <=1 to nsumpres do

Visit all neighboring vertices around current source vertex, i:
if k < O;.size() then
if current neighbor k is unvisited then
Add unvisited vertex in one-ring neighborhood of 7 to list of
sampled vertices:
S; < Oy
Mark O, as visited
Increment k:

k< k+1
Once all neighbors of current source vertex have been visited,

update current source vertex:
else

kE+0

r—x+1

14 S,

end

end
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Figure 2.2: Sampling scheme (blue dots represent sampled vertices, blue lines
indicate adjacency; dotted lines imply that connected points should not be attracted
to each other; translucent lines cut through the shape): Random sampling (top)
causes inconsistent internal and external directions. The middle sphere shows a vertex
(circled) with external energy pointing inwards into the sphere, and the right sphere
shows one (circled) with internal energy pointing outwards. The spiral sampling
scheme maintains internal and external direction consistency.

Figure 2.3: Segmentation improvement illustrated in 2D: from left to right, vertices
in the snake spline (orange) move towards the edge in the image. Since corner points
must not be drawn inward toward each other, corner points are not allowed to move.
However, these points are updated during other iterations when they are not corner
points. After several iterations all vertices converge to the closest edge.
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2.2 Statistical shape modeling

The segmentation pipeline described in Sec. 2.1 not only produces high quality
segmentations, but also ensures that the meshes representing these segmentations
are in correspondence. Segmenting images of several healthy individuals using this
method enables the statistical analysis of each segmented structure in this population.
One standard way of performing statistical analysis on these shapes is by using prin-
cipal component analysis (PCA).! In order to compute shape statistics, the meshes
are first aligned and centered, and the vertices in each mesh arranged into a column

vector called the shape vector,

Vi

Va2

where n, is the number of vertices in the mesh. Since the shapes are homologous,
that is, in correspondence with each other, the mean shape, V, can be computed by

simply averaging the shape vectors,

_ 1 &
v=—>Y vV, ,
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where V; is the shape vector for the ith mesh, and ng is the number of meshes.

Similarly, the shape covariance matrix can be computed as
1 _ _
X=—) (V;=V)(V;-V)T
V= VY= )

Eigen decomposition of this matrix, X, results in the modes and mode weights of

shape variation:

M

Y =[m;...my,] [m;...m,]"

b

Ang

where m; are the orthonormal set of eigenvectors that represent the modes of vari-
ation, and A; are the eigenvalues, or mode weights, that represent the amount of
variation along the direction of each mode (Fig. 2.4, Alg. 2.3). These SSMs are
able to show how different structures vary across the sample population. For some
structures, SSMs can also reflect natural variations that occur periodically in all in-
dividuals. These observations are discussed in more detail in Chapter 8.

Using the mean shape and the modes of variation, any homologous shape, V*,

can be estimated as

Vi=V+> bm; , (2.1)
where n, < ns is a user selected number of modes, and b; are the mode weights or
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shape parameters, which can be computed as

by =m; " (V' —=V) . (2.2)

If V* was one of the shapes used to construct the SSM, then it can be estimated
perfectly using all non-zero modes of variation. However, generally some number of
modes, n, < ns, is used to estimate shapes as long as the error in estimation is
below some acceptable threshold. This reduces the amount of computational as well
as storage overhead.

SSMs built using the described method require highly accurate segmentations in
order to capture correct and meaningful variation in the sample population. The
segmentation pipeline described in Sec. 2.1 computes highly accurate segmentations.
However, the segmentation improvement using GVF moves vertices in each shape in-
dependent of other shapes in the dataset resulting in errors in point correspondences
between the shapes. Methods have been presented that are able to improve corre-
spondences between shapes. Seshamani et al.?2 use the initial point correspondences
to build an SSM using ns — 1 shapes, and estimate the left-out shape using Egs. 2.1
and 2.2. The vertices on the left-out shape can then be moved along the surface
towards the corresponding vertices on the estimated mesh? (Fig. 2.6). This process
is repeated for each shape, and once vertices on all the shapes are updated, a new

SSM is computed using the set of shapes with updated vertices (Fig. 2.5, Alg. 2.4).
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Deformed
Meshes

ﬂ PCA>

Mesh in
template
space

Figure 2.4: Given correspondences between shapes in a dataset, PCA can be used
to understand the mean and variance in the dataset.!

Algorithm 2.3: Build SSM
Input : Template CT image
Mesh representing hand-segmented ROI in template CT image
Output: SSM
for each patient CT image do
Deformably register patient CT image to the template CT image
Use resulting deformation field to deform mesh in template coordinate
frame to patient coordinate frame

end
5 Use PCA on the set of patient shapes obtained to build SSM!
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Deformed Improved
Meshes Correspondence
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Figure 2.5: Correspondence improvement algorithm presented by Seshamani et al.?
using the middle turbinate as an example shape.

Algorithm 2.4: Correspondence improvement,

Input : Set of shapes with correspondences
Output: Set of shapes with improved correspondences
1 while not converged do
for i + 1 to ns do
Build an SSM using ns — 1 shapes leaving out patient 7
Estimate left out shape using the SSM (Egs. 2.1, 2.2)
Move the vertices on the left-out shape along the surface in the

direction of the corresponding vertices on the estimated shape?
end

G W W

end
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This process can be repeated several times until a desired quality of vertex correspon-
dence is achieved. This can be measured by computing the per vertex distance or
the residual surface error between the left-out and estimated shapes at each iteration,
averaging over all left out shapes, and testing to check if the mean vertex error or

mean residual error is below some specified threshold.

2.3 Simultaneous segmentation and cor-

respondence improvement

Instead of first improving segmentation and allowing the correspondences to de-
teriorate, and then trying to recover the correspondences, perhaps the two, segmen-
tation and correspondences, could be improved simultaneously. That is, segmenta-
tion improvement could be performed without compromising the correspondences.
This can be achieved using a constrained GVF algorithm presented here.”® In order
to maintain correspondence, the GVF algorithm is modified in order to constrain
the movement of vertices using an SSM. The original SSM is built using the set of
shapes obtained from automatic segmentation via deformable registration (Sec. 2.1).
Although this set of shapes contains inaccurate segmentation, the shapes are in cor-
respondence. Therefore, although the SSM built from this set of shapes cannot ac-
curately explain the variability in the population, the SSM is able to estimate the

shapes in the current set with small errors. This initial set of shapes is first evolved
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using GVF, and the new evolved shapes are then estimated using the current SSM.
The vertices on each evolved shape are moved along the surface in the direction
of the corresponding vertices on the estimated shape (Fig. 2.6). The new shapes
produced using this constrained GVF method exhibit improved segmentations, and
retain some amount of correspondence, which can be further improved using the corre-
spondence improvement algorithm described above? (Fig. 2.7, Alg. 2.5). Constrained
GVF followed by correspondence improvement can be iterated several times until a

satisfactory set of segmentations is obtained.

Shape
after GVF

Initial
Shape
I

Figure 2.6: 2D example illustrating the constrained GVF algorithm: Initial shape
(gray curve) is evolved to new updated shape (black curve), which is then estimated
using an SSM (dashed curve). Vertices (black dots) on the updated shape are moved
along the surface toward corresponding vertices on the estimated shape to obtain
new vertex positions (yellow dots) that preserve correspondence between the update

shape and SSM.
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Figure 2.7: Simultaneous segmentation and correspondence improvement using
the middle turbinate as an example shape. The middle (green) section performs
the constrained segmentation improvement which is followed by the correspondence
improvement method presented by Seshamani et al.?

Algorithm 2.5: Simultaneous segmentation and correspondence improvement
Input : Set of shapes with correspondences
Number of GVF iterations: P (default: 5)
Number of correspondence improvement iterations: ¢  (default: 3)
Output: Set of shapes with improved segmentation and correspondences
Build SSM using input set of shapes
while not converged do
for each shape do
Use GVF to move vertices towards edges in the corresponding image for
P iterations.
Estimate updated shape using the current SSM (Egs. 2.1, 2.2)
Move vertices on updated shape along the surface in the direction of the
corresponding vertices on the estimated shape? (Fig. 2.6)
end
Build SSM using updated set of shapes
9 Improve correspondences for () iterations

B W =

=T

end
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2.4 Experimental results and discussion

t91-9 containing 52 CT images and

A publicly available head CT image datase
the template CT image built using this dataset were used to build SSMs for various
structures and ROIs in the nasal cavity and sinuses. The resolution of all CT scans
was 1 x 1 x 1mm?® and the dimensions were 308 x 210 x 272mm? (axial x sagittal
x coronal). The algorithms were implemented in C++ and segmentation and shape

modeling results were evaluated using the maxillary sinus (Fig. 1.2), one of the four

paranasal sinuses.

2.4.1 GVF experiment

In order to assess the efficacy of the sampling technique presented in Sec. 2.1,
segmentation improvement using GVF is evaluated first. In order to evaluate the
improvement between segmentations obtained automatically using deformable reg-
istration and segmentations improved using GVF, the segmentations produced are
compared to corresponding manual segmentations in 6 CT scans using the Hausdorft
distance metric.? Results show that GVF improves the original segmentations ob-
tained using deformable registration (Table 2.1). Deformable registration is unable to
capture fine details, but these details are captured using GVF (Fig. 2.8) resulting in
lower segmentation errors (Fig. 2.9). The improvement in segmentation errors shows

that the spiral sampling technique can be used to efficiently construct snake splines
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Figure 2.8: Left: contours of hand-segmented (blue) and deformably registered
(red) left and right maxillary sinuses. Right: contours after GVF (green) overlap
almost perfectly with the hand-segmented contours.

e
' Ik

Figure 2.9: Top: errors from deformable registration visualized on the right max-
illary sinus mesh with lighting (left) to show structure and without lighting (right)
to focus on errors without distractions from specularities or shadows. Bottom: errors
after GVF, visualized similarly as above.
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that can be used along with GVF to evolve meshes.

2.4.2 Constrained GVF experiment

In this experiment, the constrained GVF algorithm is evaluated to assess the si-
multaneous improvement in segmentation and correspondences between the segmen-
tations. The constrained GVF algorithm was iterated 5 times before termination.
Within each iteration, GVF was repeated for 5 iterations followed by correspondence
improvement for 3 iterations. Each iteration took about 10 seconds per shape, with
the majority of the time spent in computing GVF in the CT volumes. As before, in
order to evaluate the improvement between segmentations obtained using deformable
registration and segmentations improved using constrained GVF, the segmentations
produced are compared to corresponding manual segmentations in 6 CT scans us-
ing the Hausdorff distance metric.”* Results show that constrained GVF improves
the original segmentations obtained via deformable registration. Further, constrained
GVF is able to match or improve the segmentations produced by traditional GVF
(Fig. 2.10). Table 2.1 shows cumulative errors in segmentation over all trails.

Next, in order to evaluate the improvement in correspondence between shapes,
a leave-one-out analysis was performed using SSMs built from shapes obtained from
deformable registration, shapes after traditional GVF, and shapes after constrained
GVEF. The left-out shape was estimated using an increasing number of modes and

errors between the left-out and estimated shapes were computed using the Haus-
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dorff distance metric.> Mean errors over all left-out shapes are shown in Fig. 2.11.
Residual errors are seen to deteriorate when GVF is used to improve segmentation.
Interestingly, with fewer than 30 modes, segmentations produced using constrained
GVF show similar some deterioration in residual error compared to the original seg-
mentations from deformable registration. This occurs because the original segmenta-
tions do not capture fine details resulting in a smoothed approximation of the correct
shape. Therefore, although SSMs built using these shapes may estimate left-out
shapes more accurately using few modes, the shapes being estimated do not capture
the real anatomy accurately. By improving the segmentations, high frequency de-
tails in the objects being segmented are captured reducing segmentation error, but
also requiring more modes to accurately estimate these details. With more than 30

modes, the residual errors using constrained GVF in the leave-one-out analysis show

Table 2.1: Segmentation errors computed using the Hausdorff distance metric:
GVF and constrained GVF (C-GVF) both produce comparable improvement over
deformable registration (DR). C-GVF has the added advantage of maintaining cor-
respondences (Figure 2.11).

Mean error + std. dev. (mm) Max error (mm)

DR 0.333 £ 0.315 2.338
GVF 0.113 £ 0.132 1.155
C-GVF 0.099 £ 0.128 1.036
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Figure 2.10: Left: Initial segmentation (red) of the maxillary sinus using deformable
registration does not capture details such as sharp corners, therefore introducing
errors when compared with hand-segmented gold standard (blue). Right: Constrained
GVF is able to capture these details (green).
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Leave-one-out analysis
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Figure 2.11: Residual surface errors from leave-one-out analysis: since the shapes
produced by constrained GVF (C-GVF') contain more detail than those produced
by deformable registration (DR) (Figure 2.10), it is hard to estimate shapes with
few modes. However, with more than roughly 30 modes, shape estimation errors for
segmentations improved using C-GVF show improvement (green) over the original
shapes obtained using DR (red). On the other hand, segmentations improved using
traditional GVF (purple) do not maintain correspondence between shapes, as reflected
in the deteriorating mean residual errors.
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improvement over both the original shapes obtained from deformable registration and
the shapes after GVF. These results show that constrained GVF is able to improve
both segmentation and correspondences.

Additionally, by restricting the movement of vertices during segmentation im-
provement using constrained GVF, the resulting shapes represented as triangular
meshes exhibit better triangle quality than when traditional GVF' is used. Meshes
obtained using GVF can cause high concentration of vertices at corners and regions
with strong gradients, creating skinny triangles which lead to pinching artifacts in
meshes. However, by restricting the movement of vertices using SSMs, this concen-
tration of vertices and problems arising from it, like pinching artifacts and triangle

flipping, are avoided producing more stable meshes (Fig. 2.12).

2.5 Concluding Remarks

A novel method for simultaneous improvement of segmentation per shape and cor-
respondences between a set of shapes is presented. This method leverages the advan-
tages presented by GVF and SSMs to segment structures accurately while maintaining
correspondences between shapes in a dataset, which other segmentation methods fail
to do. By maintaining correspondences, more accurate SSMs that better represent
the mean and variance in the dataset can be built. These SSMs are able to esti-

mate shapes with higher fidelity than both a) models constructed using initial shapes
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Figure 2.12: Meshes obtained using GVF (left) can contain skinny triangles near
corners causing pinching artifacts and flipped triangles, whereas meshes obtained
using constrained GVF (right) avoid these problems producing more stable meshes.

obtained from deformable registration that do not capture the anatomy accurately,
and b) models constructed using shapes after segmentation improvement using tradi-
tional GVF because the quality of correspondences deteriorates during this process.
Constrained GVF is able to overcome both of these problems, and also produce more
stable triangular meshes with fewer skinny triangles. Better mesh quality reduces the
chances of pinching artifacts and triangle flipping.

High quality SSMs of sinonasal anatomy have several advantages. These SSMs
enable a clear and quantitative understanding of the types and extents of variation

in anatomical structures. Periodic changes in anatomy, for instance in the nasal
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turbinates, and other changes between preoperative and intraoperative imaging can be
compensated for using these models. Further, SSMs built from a normal population
can be exploited to quantitatively measure the extent of disease by computing its

deviation from the normal range of variation.

2.6 Contributions

The contributions of this chapter include:

1. A novel method for simultaneous improvement of segmentation and correspon-

dences among a set of shapes in order to build better statistical shape models.™
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Material from this chapter appeared in the following publications:

1. A. Sinha, S. Leonard, A. Reiter, M. Ishii, R. H. Taylor, G. D. Hager, “Automatic
segmentation and statistical shape modeling of the paranasal sinuses to estimate

natural variations,” Proc. SPIE 9784, Medical Imaging 2016: Image Processing,

97840D (2016)

2. A. Sinha, A. Reiter, S. Leonard, M. Ishii, G. D. Hager, R. H. Taylor, “Simulta-
neous segmentation and correspondence improvement using statistical modes,”

Proc. SPIE 10133, Medical Imaging 2017: Image Processing, 101331B (2017)
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Chapter 3

The deformable most-likely-point

paradigm

Statistical shape models (SSMs) not only facilitate a better understanding of the
variation present in a given population, but can also be used to inform how different
shapes may be allowed to deform. Since PCA-based models are generative models,
new instances of shapes can be estimated using PCA-based SSMs, making these mod-
els extremely powerful tools. One area that can benefit tremendously from generative
models is the field of medicine. Ease of access to medical imaging technologies has
created an abundance of medical images in many different modalities, including CT
scans, making it possible to build large scale SSMs of various structures. This begs
the question of whether these existing images can be used to build a framework that

can be used to estimate the anatomy of new patients.
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In this chapter, a new deformable registration paradigm, known here on as the
deformable most-likely-point paradigm, is introduced. This framework computes de-
formations based on SSMs by restricting deformations to the statistical modes of
variation. The purpose of this paradigm is to enable registration between a point
cloud and a statistically derived target shape while deforming the target shape using
statistical modes to reflect the shape represented by the point cloud. This paradigm
is built upon the most-likely-point paradigm,® and extends it to include deformations
based on statistics in the optimization in addition to transformation parameters.
This paradigm is explained here at a high level which will enable the development
of several different deformable registration algorithms using different features, noise
models, and statistical shape models.

Deformable registration is an active area of research, and a large amount of prior

1.2 present an overview of the

work has been presented in this area. Crum et a
various different deformable registration methods. Deformable registration methods
can vary significantly based on the type of transformation applied to deform a given
shape. The similarity and affine transformation, which apply a global scaling or
general linear mapping to a shape, respectively, are two of the simplest deformations
that can be applied. Several less constrained and more complex forms of deformation
that apply local variations and allow different regions of the shape to vary differently

have been studied.?® Many of these methods typically compute transformations with

several parameters, like deformation fields, and attempt to restrict the deformations
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to be locally smooth by embedding a regularization term in the cost function, for
instance.

Some important deformable registration methods include deformable versions of
the iterative closest point (ICP) algorithm® .7 Coherent point drift is a standard
deformable registration algorithm and takes a maximum likelihood approach to reg-
istration.’® It uses expectation maximization (EM) to find the best deformation to
align two point sets. The thin plate spline robust point matching (TPS-RPM) al-
gorithm computes a joint estimate of pose and correspondence to register two point

98

sets.” Deformable registration has several important clinical applications as well,

and methods for computing deformable registration between CT volumes and video
features, for instance, have been studied for various applications.®®

Deformable registration can play a critical role in improving surgical navigation
during FESS. As explained earlier, minimally invasive procedures like FESS require
high resolution preoperative CT scans due to the thinness and pseudo stochastic
growth pattern of the ethmoid bones.'® However, CT image acquisition exposes
patients to high doses of ionizing radiation and can have adverse effects. The head
contains several important organs , and minimizing radiation to these organs is vital.
Therefore, reducing or eliminating the use of CT images is an important goal. In-
stead, the paradigm developed below employs deformable registration between SSMs

of target anatomical structures along with points extracted from intraoperative en-

doscopic video of corresponding structures to accurately estimate patient anatomy.
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This is a reasonable approach since there are a limited number of genes that govern
bone growth. Therefore, although the number of dimensions in bone development
may be large enough to appear pseudostochastic to a human, they are likely not to
an SSM.

The paradigm developed here is a general paradigm that can be used in several
applications. For instance, statistical shape models can be used to identify the modes
that account for deformations resulting from the natural nasal cycle,® and deformable
registration can be used to account for changes caused by these deformations between
preoperative and intraoperative image acquisitions. Further, deformations that occur
during procedures such as those caused by insufflation of the abdomen, breathing
activity, cutting or pressing from surgical tools can also be compensated for via de-
formable registration in order to provide accurate surgical navigation.

Other procedures like orthopedic interventions can also take advantage of this
paradigm. Most orthopedic procedures require preoperative CT scans because the
high contrast between bone and soft tissue exhibited by CT images allows for easy
bone segmentation and surface extraction, which can then be used for preoperative
planning and intraoperative surgical navigation. Orthopedic procedures involving the
hip or femoral head often require a full pelvic CT scan, which is detrimental to the re-
productive health of patients, especially women of reproductive age.!'%! Often partial
CT scans of hips are acquired to protect reproductive organs. Therefore, the ability

to estimate full patient shape from partial data without exposing vital organs to ion-
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izing radiation is critical. Other medical applications include registering anatomical
structures from different patients to establish correspondences, or registering struc-
tures from the same patient extracted from CT images taken over time to monitor
changes.

This paradigm has applications outside the medical field as well. For instance,
SSMs can be used to learn the range of human expression and pose. Since there are
limited number of expressions and poses that humans can achieve, SSMs are expected
to learn the range facial expressions and human poses with enough shapes and the
right type of statistical modeling. Therefore, although it may be hard to visualize
these when represented as point clouds, the emotion or actioned being rendered can
be inferred by deformably registering a statistically derived shape to the point cloud
and reconstructing the expression simultaneously.

In the following sections, the general probabilistic models for shape deformation
and deformable registration using a PCA-based SSM are developed, and the de-
formable correspondence and registration phases are explained. These ideas were
first developed by Billings,”® and are repeated here for ease of reference since they

serve as foundations for the ideas developed in the following chapters.
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3.1 Probabilistic model

SSMs can be used to describe shape deformation by establishing some statistically
derived shape, like the mean shape, as the statistically most likely shape, that can
be deformed according to the statistical modes of variation. The probabilistic models
developed below use PCA-based SSMs, which are explained earlier. As a reminder,
these SSMs are built from different shapes that represent different instances of some
object (e.g., an anatomical structure like the middle turbinate or the femur), have
the same topology, and are homologous (i.e., in correspondence with each other).
The process for building an SSM is described in Chapter 2. PCA-based SSMs are
generative models and, for ease of reference, the equation that allows an estimate of

a homologous shape, V*, to be constructed using such SSMs is repeated here:

V*=V+> bm, (3.1)

i=1
where V is the mean shape, m; are the orthonormal set of eigenvectors that represent
the modes of variation, n, < ns is a user selected number of modes, and b; are the

mode weights or shape parameters, which can be computed as
bi =m} (V' = V). (3.2)
In the following discussions, the shape parameters are converted to units of stan-
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dard deviation relative to the SSM covariance by rewriting Eq. 2.1 as
‘7—* = ‘_/— + Z SiWi, (33)
i=1

where w; = y/A\;m; are the weighted modes of variation, and s; are the shape param-
eters in units of standard deviation, which can be computed by projecting the mean

subtracted V* onto the weighted modes:

s =wr(V* =V). (3.4)

3.1.1 Probabilistic model for shape deformation

Using these s;, an expression is formulated in this section for assuming a proba-
bility on an instance of a model shape generated from an SSM. This allows the shape
deformation parameters to be optimized directly within the probabilistic framework
of the algorithms developed under the most-likely-point paradigm.™

Assuming a Gaussian distribution on the deformation from the mean shape, the

likelihood of a deformed vertex is defined by

Mm
1 lIs:113

fvert,ex(v;s) = H (2?1_)&(2-6 2 . (35)

i=1

Since, the weighted shape parameters, s = {s;}, are already in units of standard devi-
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ation, a variance parameter is not required for the Gaussian distribution in Eq. 3.5. In
other words, the variation is simply equal to one. Another point to note is that only
the shape parameters, s, are required in the calculation of the vertex probability, the
vertex position, v, is not required. However, v is included in fieex(V;s) in order to
signify that the expression represents the probability of the vertex given parameters
from an SSM-based deformation model for that vertex.™

Assuming that the deformation at each vertex comprising a shape is independent,
the likelihood of a complete shape can be defined by the following shape likelihood

function:

fshape (V: S) - H fvertex (Vt’; S)' (36)

Although, this assumption is not entirely accurate, since there is likely some local de-
pendence between the deformations of vertices representing a particular shape, this
assumption allows for a tractable formulation of the shape deformation probability.”™
Further, this assumption becomes more valid as the sparsity of the vertices repre-
senting the shape increases.”® This assumption may also become more valid when
used within the context of the full probabilistic model for deformable registration,”

as presented in the following section.
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3.1.2 Probabilistic model for deformable registra-

tion

Given the shape deformation probability model derived in Sec. 3.1.1, a probability
model that combines the shape likelihood with the match likelihoods of registration
algorithms can now be derived.”™ Assuming independence between the matches found
between data points, x, and model shape, y, and the deformation of the model shape,

the following deformable match likelihood function can be formulated:””

fmatch_deformah]e (X: Y, 9: s, V: W) - fmatch (X; Tssm (y; S): 9) : fsha.pe(Tssm (y; S); S): (37)

where fiaten 1S any point to point or point to shape match likelihood function with
0 representing the distribution parameters of a particular match likelihood function,
which vary by algorithm, fsape depends on the type of model used to compute shape
statistics, and s represents the shape parameters that define an instance of the SSM.
The expression for the probability of a vertex, and consequently for fgape, could also
be adapted to other non-SSM-based shape deformations by appropriately changing
the definition of s.

The expression for Ty, (y, s) also depends on the type of statistical model being
used. Since, the statistics in consideration here are computed on shapes represented
by triangular meshes, each matched point, y, can be assumed to reside within the

convex hull of the triangle face it is matched to. Therefore, it can be represented as
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the weighted sum of the triangle vertices,

3 3
y = Z,u(j)v(j) subject to Zu(j) =1, (3.8)
j=1

j=1

where {v() v? v} are the three triangle vertices. 1) can be computed as the
barycentric coordinates of y. If statistics are computed directly on a point cloud,
then each matched point would simply equal a vertex in the point cloud, y = v.
Each matched point, y;, can be defined to be the point on the mean shape, V,
and homologous to the actual point of correspondence, Ty (¥4, ), on the deformed
shape. Every time the model shape is deformed using the current shape parameters

during optimization, the deformed matched point can be estimated using the vertex

weights, 1), along with the current vertex positions:

Ssm YZa Z ,uz Ssm )7 (39>

where VZQ ) is the 4th vertex of the mesh triangle on which the ith matched point, y;,
is located, and pgj) are the corresponding vertex weights. Again, if statistics were
computed on a point cloud, then the deformed matched point could be computed
directly as Ty (¥i,8) = Tssm(Vi, s). Other representations of model shapes can also
be accommodated with appropriate assumptions.

How the vertices are deformed is dependent on the shape model being used to esti-

mate the deformation. Using a generative PCA model, the deformed vertex positions
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are computed as

Tam(vi,s) = Vi + 3 ;w5 (3.10)

Jj=1

where w'” is the component of the weighted mode, w; =

(1)
J [ J

ow™T

j , that cor-

responds to the ith vertex, v;. As before, the expression for the deformed vertex
position can be adapted to other SSM-based or non-SSM-based shape deformations.
Taking a product over all the data points, the total deformable match likelihood

function can be formulated as

Ndata
fmatch_deforma.ble (X: Y: 9; S, ‘7: W) - ( H fmatch (XJ&: Tssm (yt': S) 3 9@)) .
i=1 (3.11)

fshape (Tssm (Y; S) ; S) ]

where the matrix of weighted modes, W, and the mean shape, V, represent the SSM.

Unlike Eq. 3.5, Egs. 3.11 and 3.11 define the likelihood of shape deformation
based on the current set of matches, Y, rather than all the vertices, V, in the model
shape. This formulation for the shape deformation probability has the advantage of
normalizing the influence of the shape likelihood component compared to the influence
of the match likelihood component of the features being registered.”™ If all the vertices
of the model shape were used, then the influence of the shape likelihood component
within the registration could be easily increased by simply increasing the sampling
density of the vertices comprising the model shape. This is not a desired outcome.

Further, if the data points are more sparsely sampled than the model shape, which is
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often the case, then, again, the assumption of independence between the deformations

of the vertices comprising the model shape becomes more valid.™

3.2 Correspondence phase

With the probabilistic models set up, the discussion can now move to the two
phases of the registration framework: correspondence phase and registration phase.
In this section, the implementation of the correspondence phase of the deformable
most-likely-point paradigm is discussed. The feature matches between the data points
and the current model shape are computed during the correspondence phase by max-
imizing the match likelihood function. This computation is represented by the de-

formable most likely point correspondence operator:

y= CDMLP(X: ‘I’) = Mgﬂlll‘ax fmat.ch(x; Y)- (3-12)
ye

This results in the computation of a matched point on the current deformed model
shape for every data point. The deformable version of the correspondence phase is
similar to the correspondence phase in the corresponding rigid registration algorithms,
except that at each iteration, matched points are computed on th current deformed
shape rather than the initial shape. The details of the correspondence phase for
these algorithms will not be repeated here, with the focus strictly on the additional

details required in the deformable setting. The corresponding rigid algorithm for each
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deformable algorithm we develop in the following chapters will be referenced.

The rigid algorithms use principal direction (PD) trees®! to efficiently search for
the most likely match, and the PD tree construction and search techniques remain
the same for the deformable algorithms. The PD tree can be constructed using the
model shape vertices defined by an initial set of values for the shape parameters, s,
which are initialized by the user. The default shape parameters, s, can be set to
0, which results in simply the statistically mean shape. However, at the beginning
of each correspondence phase, the positions of the vertices of the model shape are
recomputed based on the current s. Therefore, since the vertices of the model shape
move from their prior locations at each iteration, the PD tree must also be updated
at every iteration.

Since the topology of the model shape does not change with deformation, the PD-
tree does not need to be reconstructed at every iteration. Instead, only the positions
of the vertices of the model shape within the PD-tree and the extents of the bounding
boxes that bound these vertices within each PD-tree node need to be updated. This
update is performed recursively, starting at the vertices and progressing up the PD-
tree, updating the extents of the bounding boxes at each node until the extents of the
bounding box at the root node are updated. In order to optimize the updates, only the
extents of the bounding boxes need to be updated even for oriented bounding boxes,
leaving the orientations of the bounding boxes unchanged, since small deformations

of the model shape should not drastically affect the bounding box orientations. In
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case the deformations are large enough, then the bounding box orientations could
be updated if the accumulated deformation over several iterations results in changes

that are greater than some user-defined threshold.”

3.3 Registration phase

Once matched points are found, a transformation to align corresponding points is
computed during the registration phase. In this section, the details of this registration
phase of the deformable registration paradigm are discussed. During this phase, the
total deformable match likelihood of Eq. 3.11 is maximized over all corresponding
points with respect to both the data transformation parameters and the deformable
shape parameters. This is different from rigid registration algorithms in that rigid
registration algorithms would maximize some total match likelihood function only
with respect to the data transformation parameters.

Maximizing the total deformation match likelihood function of Eq. 3.11 is equiva-
lent to minimizing its negative log, reducing the minimization to the total deformable

match error function:

Ndata

1 &
Ematch_deformable (X; Y; 9; S) = ; Ematch (T(Xt) ) Tssm (yt‘; 5) 3 91’; S) + 5 ; ||5j ||§ 3
(3.13)
where Epaien(+) is the negative log of the corresponding match likelihood function of
the rigid registration algorithm serving as the foundation for the deformable registra-
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tion algorithm. Each of these rigid registration algorithms will be reviewed briefly as
the corresponding deformable registration algorithms are developed in the following
chapters. T(x;) represents the standard transformation applied to the data points, x;,
which may be a rigid transformation or a similarity transformation, etc. Ty (y;,s)
is the SSM-based deformable transformation applied to the matched point, y;, as de-
fined earlier in Eq. 3.9. Finally, as explained earlier, § are the distribution parameters
of a particular match likelihood function, which depend, again, on the rigid registra-
tion algorithm, and s; € s are the deformable shape parameters that control how the
model shape deforms.

For PCA-based SSMs, the underlying distribution that the data used to build
the SSM is drawn from is assumed to be Gaussian. Therefore, when optimizing over
the deformable shape parameters, s, each shape parameter may be constrained to
some realistic range, for instance, +3 standard deviations from the mean shape since
this interval covers 99.7% of variations. In the following chapters, three deformable
registration algorithms are developed upon these foundations. For each of these
algorithms, s is initialized to 0, meaning the registration starts with the mean shape.

However, s may be initialized differently.
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3.4 Concluding remarks

In this chapter, a general approach for incorporating an SSM-based deformable
registration component within any probabilistic registration algorithm is developed,
as was in Billings.” Implementation details for three different algorithms are covered
in the following three chapters of this dissertation. It is possible to incorporate non-
SSM-based deformation models into this framework as well. The general approach
remains the same. What changes is the method for assuming a likelihood on the
shape being deformed based on some deformation parameters. Once this likelihood is
defined, it can simply be plugged into the total deformable match likelihood function
of Eq. 3.11.77

Further, it is possible to incorporate deformable models into both the data points
as well as model shapes.” Such a formulation would be useful, for instance, if the
deformations in the two feature sets follow different statistical distributions that could
be modeled using two independent SSMs, or if the deformations could be modeled in a
different way, not limited to SSMs. If it possible to also formulate this paradigm as an
expectation maximization (EM) problem. The current formulation would translate
to a hard EM problem, where an SSM is already built and being utilized to align
new objects with the SSM via deformable registration. This formulation could also
be modified and extended into a soft EM problem, where an SSM is not necessarily
given, but the registration framework optimizes over both aligning a set of shapes

and also building or improving SSMs using the aligned shapes’ correspondences by

68



CHAPTER 3. THE DEFORMABLE MOST-LIKELY-POINT PARADIGM

minimizing the error produced by the SSM in estimating correspondences.

3.5 Contributions

The contributions of this chapter include:

1. The improvement and implementation of the deformable most-likely-point paradigm,
a general probabilistic paradigm for incorporating deformable shape transfor-
mations within a probabilistic registration framework that was first introduced

8 This framework enables the development of de-

conceptually by Billings.”
formable registration algorithms for registering sample points to a deformable

model shape that is characterized by an SSM, where the shape deformations

computed by the registration are driven by the modes of the SSM™":7®

2. An extension to the software architecture developed by Billings™ to incorporate

deformable probabilistic registration algorithms

3. A user friendly command line interface to perform registrations with different
datasets using several algorithms including but not limited to ICP, directional
ICP, the deformable registration algorithms presented in this dissertation, and

their corresponding rigid counterparts.
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3.6 Published work

Material from this chapter appeared in the following publication:

1. A. Sinha, S. D. Billings, A. Reiter, X. Liu, M. Ishii, G. D. Hager, R. H. Tay-
lor, “The deformable most-likely-point paradigm,” submitted to Medical Image

Analysis (2018)
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Chapter 4

Deformable iterative most likely

point (D-IMLP) algorithm

This chapter presents the deformable extension of the iterative most likely point
(IMLP) algorithm, which is an algorithm that can register positional data charac-
terized by unconstrained uncertainty, that is, uncertainty that could be isotropic or

51 The deformable algorithm, called the deformable most likely point

anisotropic.
(D-IMLP) algorithm, is built upon the paradigm explained in the previous chapter,
and can deformably register positional shape data characterized by unconstrained
uncertainty.

Allowing the noise model to be anisotropic is motivated by anisotropic measure-

ment uncertainties, which are common in several real world applications, especially in

medical applications. For example, intra-slice resolution of CT images is often lower
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than inter-slice spacing, which cause anisotropic position uncertainty in models seg-
mented from CT images. Similarly, points reconstruction from 2D images, like frames
from endoscopic video, will produce higher uncertainty in the depth direction because
depth is harder to estimate. This is also true for other non-medical stereo-vision based
reconstructions. Other applications outside the medical field include points obtained
from range imaging, which are also characterized by anisotropic measurement error.

Much research has been conducted to investigate probabilistic registration meth-
ods to improve upon the basic ICP algorithm, which is not built to handle noise in
measurements. Several of these registration algorithms compute rigid or similarity
transformations. Some of the deformable registration algorithms are reviewed in the
previous chapter. Here, IMLP will be briefly reviewed, and its deformable extension,

D-IMLP, will then be developed.

4.1 Probabilistic model

As a reminder, the probabilistic model of IMLP incorporates a generalized Gaus-
sian noise model that is able to account for anisotropic noise in both the data points

51 Assuming the errors in the measurements of these points

and the model shape.
to be independent, zero-mean, multivariate Gaussian distributed with unconstrained

covariance, the match likelihood function for each data point, x, transformed by a
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current rigid registration estimate, [R, t], is defined as

fma.tch(x; Y:EX: Ey: R: t) =
(4.1)

1 . e~ HO-Rx—) T(RERT+2y) " (y—Rx—t),
VP RERT + 5|

where y is the point on the model shape, ¥, assumed to be in correspondence with
data point, x € X, and ¥, and 3, are measurement error covariances for x and y,
respectively.’! This is the match likelihood function that is maximized during the
correspondence phase of the IMLP algorithm in order to find the matched points, y.
The same likelihood function is maximized during the correspondence phase of the
D-IMLP algorithm. The only difference in the correspondence phase of D-IMLP is
that the matched points are found on the current deformed shape.

Similarly, the match likelihood function for each x transformed by a similarity

registration estimate, [a, R, t], is defined as

fmatch(x; Y?EX: E)’? a, R} t) =

1 ) (4.2)
) e—§(y—aRx—t)T(RExRT+Ey)_1(y—aRx—t.)?

V@ RE.RT | 5]

where a is the scale variable. Since the two registration problems are similar, the focus
of the derivations will remain on derivations from Eq. 4.1, with technical differences
between the two pointed out wherever needed. Maximizing the likelihood of Eq. 4.1 is

equivalent to minimizing its negative log likelihood, resulting in the following match
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error function:5!

EmLp (X: Y, EX; E}': R: t) -
(4.3)

log |RERT + 3y + (y —Rx — t) T(RELRT + ;) 'y —Rx — t).
The registration phase of this algorithm is where the transformation that maxi-
mizes the total match likelihood function is solved for.’* This can also be achieved

by minimizing the total match error function with respect to the transformation pa-

rameters:°!
Ndata
T = argmin Z (log RERT + 3y, |
Rt] 55 (4.4)

+ (Y¢‘ — Rx; — t)T(REm‘RT + Ey@)_l(Yi —Rx; — t)):
which can be simplified by dropping the log term to the registration cost function:®!

Ndata

T = argmin Z (yi—Rx; — t)T(RERT + 2,) ' (yi — Rx; — t). (4.5)

[R?t] i=1

Substituting fiaten from Eq. 4.1 into the total deformable match likelihood func-

tion of Eq. 3.11 enables the derivation of the deformable registration cost function for
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the D-IMLP algorithm:

1 Tdata
T — argmin (5 Z:; ((Tssm(yi,s) ~Rx; — t)T(REGRT) ™ (Taam(yi, s) — Rx; — t))

R,t],s
1= )
+§jz_;”5j”2 ;

(4.6)

where a factor of %, which was excluded from Epqp in Eq. 4.3 for simplification,
is added back, and the model shape covariances, X, , are assumed to be zero since

the focus here is on the derivatives introduced by the shape deformations during

optimization.

4.2 Algorithm overview

In this section, a high level overview with pseudocode explaining the registration
pipeline is described. Several details that were developed along with the IMLP al-
gorithm will be referenced and not repeated, maintaining the focus on differences
due to the additional deformable aspect of the registration. Algorithm 4.1 provides a
summary of the D-IMLP algorithm in the same style as that of IMLP in Billings et
al.,’! and will be referenced throughout this section. Underlined variables in Alg. 4.1
indicate optional variables that would be needed when solving additionally for scale.

The inputs to the algorithm are straightforward and include data points, X, and
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Algorithm 4.1: Deformable Iterative Most Likely Point (D-IMLP)

Input : Data points as a point cloud: X = {x;}

Statistically mean model shape, ¥y, and associated SSM
Measurement-error covariances: Xx = {34}, Xy
Surface-model covariances: Ygx = {Xsx; }, Xsw

Upper bound on match uncertainty: o2, (default: o)
Chi-square threshold value for outliers: xZ . (default: 7.81)
Outlier variance expansion factor: @exp (default: 9)

Initial transformation estimate: [ag, Ro, to), So

Output: Final data transformation, [R, t], and shape parameters, s, that align

X with deformed W

1 Initialize transformation: [a, R, t],s < [ao, Ro, to], so
2 Initialize noise model: o2, < 0
3 while not converged do

4
5

10

if iter == 1 then
Compute initial correspondences on the mean shape (Eq. 3.12):

[Yz'; Eyi; ESy@] — CMLP(XZ': lIIDa I: I;Q: R: t)

else
Compute most likely correspondences on the current shape (Eq. 3.12):

[Yz'; Ey;’; ES_V@] — CMLP (Xi: lI’ite-r: Exi + Esz' =+ anatchla E'I' + ES‘IJ;Q: R; t)

end
Update the match-uncertainty noise-model term (Eq. 4.7):

Ez’einliers ||Yz' - QR‘X%' - t”g: Jl?rlax)

Identify outliers using a chi-square test (Eq. 4.8):

2
O matc

h(—min(

Minlier

(Xia Yz') is an outlier if ESqrMa.halDist (X% Yi, EX@': E)’@"_ana.tchla a, R; t) = X‘Ehresh
Update the outlier noise-model terms (Eq. 4.10):
Cexplly:i — aRx; — t||5  if (x4, y;) is an outlier,
pi
0 otherwise.

Set the noise-model covariances for the registration phase:

Ex: — Exz’ + ESX@ + %I ’ E}’: — 2)’@‘ + ES” T %I T Jl?na‘tChI
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Algorithm 4.1: D-IMLP (continued...)

11

12

13
14

Update the transformation and shape to align the point cloud and the
corresponding points on the shape (Eq. 4.6 or 4.14):

[a, R, t],s < argmin (% E?f{“ ((Tssm(y@, s) —aRx; — t)T(RE,RT) !
[a,R,t],s

(Tssm(Yi; S) - ﬁth‘ - t)) + %E?:l ||Sj||§)

Based on computed s, update the vertices of the model shape (Eq. 3.10):
lIIt‘te-r — Tssm (Vz': S)

Update extents of PD-tree bounding boxes based on Wy, (Sec. 3.2)
iter++

end

15 Detect registration failure using a chi-square test (Eq. 4.11):

Registration is unsuccessful if

Ndata

_ 2 2
E;D — § , ESqrMahalDist (Xi; Yi, Exéa E}f;' + o'matchI? a, Ra t) = X'thresh_final

i=1

model shape, W. For this implementation, ¥ is the statistically mean shape with s

initialized to 0, but can be changed to a different initial shape with a different initial

S.

mean shape, V € U, and the corresponding weighted modes of variation, w, and is
used to update the model shape at each iteration as s is updated (Egs. 3.9, 3.10).
The measurement-error covariances associated with both the data points and the
initial shape are represented by Xx and Xg. Xy = {Xy,} associated with matched
points, Y = {y;}, are drawn from this larger set of covariances, Xy, which is defined

over all the vertices in the model shape, rather than only at the matched points.?!

The SSM associated with the model shape is represented by the vertices of the
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Further, it would be impossible to specify Xy as input since the matched points are
unknown until the correspondence phase in every iteration. By default, Xx and Xy
are assumed to be generated from an isotropic Gaussian distribution with standard
deviation of 1 x 1 mm? in plane and 1 mm out of plane. However, this can be modified
by the user depending on the noise model that is appropriate for the data.

Additionally, surface-model covariances, Xgx and Xgy, are also specified in order
to obtain the complete noise model for each point by modeling the locally-linear
surface regions surrounding each point.>! Introduced as the basis for the generalized
ICP (GICP) algorithm,'?? these surface-model covariances are motivated by the aim
to increase the variances in the directions parallel to the surface so that match errors
distribute along the surface rather than perpendicular to it.5! This helps achieve closer
alignment of the underlying surfaces presented by the point cloud.* This concept
has since been incorporated in several algorithms, including anisotropic ICP!% and
IMLP.?! IMLP keeps the measurement-error covariances separate from the surface-
model covariances so that the surface-model covariances can be excluded from the
outlier detected phase, which improved the algorithm’s outlier detection.??

Finally, an initial transformation is specified with a guess for an initial rotation,
translation, and, optionally, scale which will be applied to the data points, and an
initial set of shape parameters to define the initial shape, which is set to 0 or the mean
shape, as mentioned earlier. The remaining input parameters will be discussed briefly

as they are encountered in equations seen in the algorithm outline (Alg. 4.1). The
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discussions will remain brief since many of these terms also appear in Billings et al.,?!
and the reader is directed there for a more thorough explanation. The output of the
algorithm is a final transformation that aligns the data points to the final deformed
shape, defined by a final set of shape parameters.

The convergence criteria used to terminate this algorithm are dependent on sev-
eral factors. These factors can be changed by the user, but have some default values.
In order for the algorithm to converge, the difference between the values attained by
the rotation, translation, scale, and shape parameters in the previous iteration and
the current iteration must be smaller than 0.01 twice in a row. This threshold as well
as the number of times the threshold must be met in a row can be modified by the
user. Whether or not scale is being optimized over does not affect the termination
conditions since if scale is not being optimized over then the value of scale does not
change between iterations. Therefore, scale always satisfies the termination condition,
and convergence becomes solely dependent on the remaining parameters, as desired.
Further, a cycling detection is added as as additional termination condition.®* Cy-
cling occurs when the minimal value of the cost function being minimized in the
registration phase increases twice within four iterations and if the cost following the
second increase in within a small tolerance of the first increase.® This is detected by
monitoring the value of the cost function. If detected, the algorithm terminates and
returns the registration corresponding to the last iteration where the cost function

decreased. This enforces computational efficiency since a cycling condition would
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otherwise cause termination at the maximum iteration count, which is set to 100
but can also be modified by the user. Therefore, if none of these conditions are met in
100 iterations, then the algorithm is forced to terminate and return the registration
at the last iteration.

Until convergence is achieved, every iteration computes the correspondences be-
tween the data points and the current model shape. Once correspondences are found,

the match-uncertainty term, o2 is updated to attempt to account for uncertainty

match?
in the matching process.?! This is achieved by adding isotropic variance to the noise
models with a magnitude equal to the estimated amount of misalignment between
the correspondences.®® The misalignment is computed as the average square residual
distance over all inlying corresponding points:

9 1

Omatch —

D lyi — aRx; — ][5, (4.7)

inlier .
icinliers

where n;yer denotes the number of inliers in the current set of matches. A more
detailed analysis of this model for estimating match uncertainty is explored in Sharp
et al.®” Since the match-uncertainty term is isotropic, it has the same effect on the
outcome regardless of whether it is added to the data points or the model shape.5!
However, for computational efficiency, the match-uncertainty term is added to the
151

covariances of the data points in the correspondence phase in Step 6 of Alg. 4.

A fully isotropic noise model is used to initialize correspondences in Step 5, since
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computing o2, requires a set of correspondences. For the registration phase, the
match-uncertainty term is added to the covariances of the matched points on the
model shape in Step 10 since this term intuitively affects the choice of correspon-
dences.?!

The match-uncertainty term also plays an important role in the chi-square outlier
detection test in Steps 8 and 9 by enabling the algorithm to account for large initial
misalignments in the noise model, and, therefore, avoid flagging several matches as
outliers based on the measurement-error covariances alone.’ However, in case shapes
with partial overlap are being registered, the average square match distance could
remain large even when the correct alignment is achieved.®® The match-uncertainty
term is kept from growing too large by defining a match-uncertainty mazimum thresh-
old, o2 .. By default, the maximum threshold is disabled by setting o2, = 00.”!

The chi-square test is used to identify outliers under the assumption of corre-
spondences and generalized Gaussian noise, so that the square Mahalanobis distance
between the matched points in 3D space can be assumed to distributed as the sum of
squares of three independent Gaussian distributions, each representing a distribution
along a different eigen-vector of the noise covariance matrix.’! Under these assump-

tions, the square Mahalanobis match distance has a chi-square distribution with 3

degrees of freedom (DOF), allowing outliers to be detected by comparing the square
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Mahalanobis distance for each corresponding pair of points

EsqrManalbist(X, ¥, Bx, By, a, R, t) = (y — aRx; — t) T (RELRT + 2y) 7' (y — aRx; — t)

(4.8)
to the value of the inverse cumulative density function (CDF) of a chi-square dis-
tribution with 3 DOF evaluated at some probability, p,*! denoted by chi2inv(p,3).
As a reminder, here y denotes a point on the current deformed shape matched to a
data point, x. If the square Mahalanobis distance for a correspondence exceeds the

chi-square inverse CDF value, X2, ..,

EsqrMahalDist (X, ¥, Zx, By, @, R, t) > chi2inv(p, 3) = X3 echs (4.9)

then that matched point pair (x,y), with corresponding noise covariances, Xy and
3y, respectively, is considered an outlier.®® By default, x2 .o, is set to 7.81, which
corresponds to a chi-square inverse CDF probability of p = 0.95.51 However, this value
can be modified by the user to accommodate different percentages of outliers. A few
different values of x2 .4 depending on different p values are specified in Table 4.1.
Outlier detection can be effectively disabled by setting xZ ., to a very large value.*

In order to reduce the influence of outliers on the computed registration, a set of
outlier noise-model terms, {y;}, are used to further add isotropic variance into the
noise of the matches that are identified as outliers.® This reduces the influence of

outliers in the registration phase (Step 11). {;} are set by using the following rule:
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exp|[Vi — aRx; — t||2  if (x;,y;) is an outlier,
%:{90 o B (v o

0 otherwise.

The default value for the variance expansion factor, ey, is set to 9, which pulls
the outlier match errors within approximately 1/3 standard deviation relative to their
noise models.’! In order to give more or less weight to the outliers, this value can
be decreased or increased, respectively, by the user. Alternatively, the registration
in Step 11 may be computed using only matches identified as inliers to completely
remove the influence from outliers.>!

Once the algorithm has converged or terminated and a registration computed, a

chi-square test similar to that in Eq. 4.9 is used to classify the registration as successful

or unsuccessful. The two tests differ in that for failure detection, the test is performed

Table 4.1: Different x3,.q, values based on different values of p for 3 DOF.

P thresh
0.95 7.81
0.975 9.35
0.99 11.34
0.9973 14.16
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over the sum of square Mahalanobis distances computed over all corresponding pairs,
(xi,y:). That is, a registration is rejected if this sum becomes greater than the value

of a chi-square inverse CDF with 3ng4,» DOF at some probability, p:

Mdata

E, = Z EsqrMahalDist (Xi, ¥is Zxis Sy @, R, t) > chi2inv(p, 3ndata) = Xihresh_finals
- (4.11)
where p is again set to 0.95. This test is used because the square Mahalanobis dis-
tance normalizes each match residual by its variance along each dimension, therefore

accounting for the anisotropy of the noise model used by D-IMLP.5! This means that

the sum is distributed as a chi-square distribution with 3ng4,:, DOF.%

4.3 Correspondence phase

This section briefly describes the correspondence phase of the D-IMLP algorithm,
which is very similar to the correspondences phase of the IMLP algorithm. Therefore,
for most of the details, the reader is referred to Billings et al.,>! while this section will
solely focus on the differences introduced by the deformable algorithm. As mentioned
before, the correspondence phase computes the most likely matches between the data

points and the current model shape at each iteration by minimizing the match error
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function of Eq. 4.3, repeated here for ease of reference:

Emrre(x,y, 2x, Xy, R, t) =
(4.12)

log |[RERT + 3| + (y —Rx — t) T(RERT + %) '(y —Rx — t).

As is clear from the term Epypp, this expression is the same as that minimized

I The main difference here

to compute correspondences in the IMLP algorithm.®
is that the matched points, y, are computed on a shape that is changing at each
iteration. The PD-tree search for the most likely correspondence on the model shape
is identical to that in the IMLP algorithm.>® However, since the model shape deforms
according to the the shape parameters, s, at every iteration, the algorithm must
ensure that the correspondences are computed on the correct shape. This is achieved
by updating the position of the vertices of the deformed shape in the PD-tree after
the model shape is updated and before correspondences are found at each iteration.
Additionally, the bounds of each PD-tree node are also updated to make sure each of
the new vertex positions are still accommodated for by the PD-tree. This is a recursive
process because in addition to including the new vertex positions within the leaf node
bounds, the bounds of each parent node must also be updated to accommodate the
new bounds of its child nodes. The process is completed when the bounds of the

root node bounding box are updated. For further details, including the building and

traversal of the PD-tree, the reader is referred to Billings et al.?!
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4.4 Registration phase

Once matched points are found on the current shape in the correspondence phase,
the deformable registration cost function for the D-IMLP algorithm (Eq. 4.6) is mini-
mized with respect to both the data transformation parameters and the model shape

parameters. This cost function is repeated here for ease of reference:

1 Tdata
T — argmin (§ Z:; ((Tssm(yi,s) ~ Rx; — ) T(RELRT) ™ (Tam (v, 8) — Rx; — t))

R,t],s
1 o= 5
"‘5;”'53'”2 :

(4.13)

If, instead of computing a rigid transformation between the data points and the cor-
responding matched points on the model shape, a similarity transform is computed,

then the cost function changes slightly to incorporate a scale factor, a:

1 Ndata
T = argmin (5 Z ((Tssm(yi,s) —aRx; — t)T(RE,RY) ™ (Teem(vi, s) — aRx; — t))

[a,R,t],s im1
1 &= >
+ 2 Z lls;115
=1

(4.14)

Before this minimization is performed, barycentric coordinates of the matched points
are computed in order to find the vertex weights, u), for j = 1,2, 3, as seen in Eq. 3.9,

for each matched point. These p) will be used during optimization to compute the
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deformed matched point, Ty (yi,s), as the shape is recomputed based on different
values of s.

Both these objective functions can be optimized by computing the gradients with
respect to the optimization parameters, and applying a nonlinear quasi-Newton based
optimizer. For the implementation described here, the box constrained BFGS quasi-
Newton solver available in the dlib open-source C++ software library®® was used.
In order to apply a quasi-Newton solver to minimize either of these equations, the
variables being optimized need to be reparametrized to enforce the algebraic con-
straints of the rotation matrix, that is, RTR = I and det(R) = 1.5' This is ac-
complished by using Rodrigues’ parametrization, which represents a rotation as a
3-vector, r = [ry, 1y, 7.], whose direction and magnitude signify the axis and angular
extent of rotation, respectively.

Additionally, the transformation T(x;) is re-expressed in the reference frame of
Y as T(y;) in order to keep all transformation in the same space. The deformable

registration cost function of Eq. 4.6 can then be re-written as

Mdata
T= a‘rgmin ( Z Crnatchz‘ + Cshape) ) (415)
[r,t],s i—1
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where

-1

T T
Chmatchi = Zi Exi z; and Cshape =8 5,

z; =R(r) T (Tem(yi,s) — R(r)x; — t) (4.16)

—R(r)T (Teem(yi, s) — t) — x;.

R(r) is the 3 x 3 rotation matrix corresponding to the Rodrigues’ vector, r, and is
defined as

R(r) = I +sin(#) skew(a) + (1 — cos(#)) skew(a)?,

where 6 = ||r||, is the magnitude of r, representing the angle of rotation, a = ”—f,” is
the unit vector in the direction of r, representing the axis of rotation, and skew(a) is
the skew symmetric matrix formed using the elements of a.

Similarly, Eq. 4.14 can be re-written as

Mdata
T= a‘rgmin ( Z Crnatchz‘ + Cshape) ) (417)
[a,r.t],s i—1

with a slight modification in the Ciaieni term in Eq. 4.16, so that

-1

T T
Chmatchi = Zi Exi z; and Cshape =8 5,

(4.18)
z; = R(r) T (Tym(yi,8) — t) — ax;.

The gradient, VC, of the deformable registration cost function of Eq. 4.15 with
respect to the transformation parameters [r, t] and the deformable shape parameters,
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s, is discussed next. VC is a stacked vector with the data transformation parameters
located on top of the deformable shape parameters. The notation J,; is used to
express the Jacobian of an expression, a, with respect to variable, b. With the notation

established, VC is expressed as:

Ndata

VC = Z vC(matchi + VC1shape (419)

=1

T
VCatchi = [Jcmatchi7ziJZi7r ’ JomatchhziJziyt ) Jcmatchiyzi']zivs] ) where

Jcmatchi,zi = 2ZiT2X;1
_ OR(r)T aR(r)T
Jzi,l‘ - arx (Tssm(qu S) — t) ’ 8ry (Tssm(y“ S) _ t) 7
OR(r)T
arz (Tssm(yi, S) - t)
Jzi,t = _R<T)T (420>

Jzias = Jzi7Tssm(Yias)JTssm(th)7S
JZ’LyTssm(yiys) = R(r)T

3
_ (9)
JTssm(Yias)vs - Z Hij JTssm(V,Ej)vS)vs
7j=1

p Do .. p
W, Wy an]

J

Tssm(vgj),s),s - [
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and

VCshape = [0, 0, 28T] T (4.21)

Here, each of ar;ir)'f’ %, and % denote the 3 x 3 matrix of partial derivatives of
R(r) with respect to the x, y, and z components of r = [r, , 7, , 7,] T, respectively.

The Jacobian, J, () O of a deformed vertex, Tssm(V,Ej)}S); with respect to the

(

shape parameters, s, is formed by positioning the weighted mode component, w?, at

(5)

the ith column of a 3 x n,, matrix, where p represents the global vertex index v;"’.

The gradient, VC, of the deformable cost function of Eq. 4.17 with respect to the
transformation parameters [a, r, t] and the deformable shape parameters, s, is almost
the same as VC defined in Eqs. 4.19, 4.20, 4.21, with an additional component in

VChateni so that

_ T
VCnatchi = [']Crnat.chhz:"]z:'sr ? Jcmatch:'szi‘]zist ) ']Cmatchiszi']zisﬂ ’ JCmat.chisziths] )

(4.22)
where the new term is simply
Jsa = —Xi. (4.23)
The VChape term simply gains an additional zero component so that
VCihape = [0, 0, 0, 2sT] T, (4.24)
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The dimensions of VC is dependent on the number of shape parameters being
used to estimate the shape. The sizes of the rotation, translation and scale (when
being used) components are fixed at 3, 3 and 1, respectively. So the total size of
VC is 6 + number of shape parameters, or 7 + number of shape parameters, when
additionally optimizing over scale. Once the optimization has computed the current
transformation and shape parameters, the data points are transformed by the com-
puted R, t and, optionally, a, and the model shape is deformed by the computed s

(Eq. 3.10).

4.5 Experimental results and discussion

Several different experiments were performed in order to evaluate the robustness

of D-IMLP. These experiments were performed using several different datasets:

1. 42 mesh pelvis dataset!

2. 53 mesh sinus dataset?1™94

3. 385 mesh human expression dataset!%®

4. 100 mesh human pose dataset!%

When ground truth is available, registration results can be evaluated based on how
well the transformation and shape parameters are recovered. Errors in rotation and

translation can be evaluated by comparing the initial offset applied and the final
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Figure 4.1: Registration metrics: TSE (top) measures the Hausdorff distance be-
tween the ground truth shape (green) and the shape estimated by our algorithm
in shape space (blue), not taking the final transformation computed by the algo-
rithm into consideration. TRE (bottom) measures the Hausdorff distance between
the ground truth shape (green) and the estimated shape (blue) transformed to sam-
ple point space, therefore also adding the transformation computed by our algorithms
into the error metric.
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transformation produced. The errors in shape parameter recovery can be measured by
computing the difference between the known shape parameters and those estimated by
D-IMLP, or by computing the Hausdorff distance between the shape from which points
were sampled and the shape recovered by D-IMLP (Fig. 4.1, top). This metric is called
the total shape error (TSE). Another metric that can be used is the total registration
error (TRE), which is the Hausdorff distance between the shape from which sample
points are generated and the shape recovered by our algorithms transformed into

sample point space (Fig. 4.1, bottom).

4.5.1 Sample size experiment

This experiment was performed in order to evaluate the performance of D-IMLP
with increasing number of sample points. A synthetic dataset was generated using the
mean shape and SSM from the pelvis dataset. The mean pelvis shape was deformed by
known shape parameters sampled within +3 standard deviations (SD), and oriented
points were sampled from the deformed shapes. Although this algorithm does not
make use of orientation, oriented points were sampled so that other algorithms that
use orientation (presented in the following chapters) can use the same data during
experiments for fair comparison. Known transformations within realistic intervals
were applied to the sampled points.

Experiments were run with 1000, 1500 and 2000 sample points. For each set of

sample points, 3 sets of experiments were run with 0, 5 and 10 modes used to deform
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the mean shape. In this experiment, the same number of modes were used by D-
IMLP to estimate the deformed shape as were used to generate the deformed shape
from which points were sampled. This was done in order to evaluate the performance
of D-IMLP with different number modes without bias since it can be assumed that
if fewer modes are used to estimate the shape from which points are sampled, the
performance will be worse than if that same number of modes are used. However,
how the performance of D-IMLP will be affected as the number of parameters to
optimize over increases in not known. When 0 modes are used, D-IMLP is effectively
IMLP, performing registration between the mean shape and points sampled from it.
10 registrations were performed in each set with known transformations sampled from
the intervals [0, 15] mm and [0, 9]° for translational and rotational offsets, respectively,
and applied to points sampled from the deformed shapes. Noise was added to both the
position and orientation of the sampled points, and two experiments were designed
based on different noise models. In this experiment, the noise assumptions made by
D-IMLP are identical to the noise in the generated data. In this chapter, the focus
will be on positional noise, and details of orientation noise added will be covered in

later chapters, where they are relevant.

4.5.1.1 Experiment 1: Isotropic position noise

For the first experiment, an isotropic noise model with SD of 1 mm in each direc-

tion in plane and 1mm out of plane (1 x 1 x 1mm?) for positional noise was used.
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D-IMLP produced small errors in recovering the shape and registering the sampled
points to the recovered shape for the different number of samples (Fig. 4.2). It also
showed an increase in successful registrations with increasing number of sample points
(Fig. 4.3, Table. 4.2), where success is defined as registrations producing TRE less
than 1 mm. A majority of the registrations performed were successful. Further, cues
from the algorithm, like the objective function (total match error) or the residual error
(Mahalanobis distance), show correlation with the TRE (Fig. 4.5, left). Therefore,
empirically chosen thresholds can be used to determine which trials succeeded and
which did not using the residual error. This is done retrospectively in the simulated
experiments because of availability of ground truth and to learn how to associate
residuals errors with measures of confidence or success in clinical or other experi-
ments where ground truth in not available. Using empirically found thresholds such
that there were no false positives, D-IMLP was able to correctly detect successful

registrations with high percentages (Table. 4.2).

4.5.1.2 Experiment 2: Anisotropic position noise

Second, an anisotropic noise model with 1 mm SD in each direction in plane and
2 mm out of plane was used for positional noise (or, 1 x 1 x 2mm?). Using anisotropic
positional noise, D-IMLP produced higher errors than with isotropic noise due to the
increased uncertainty along one of the dimensions (Fig. 4.4). Only about half the

trials produced successful registrations (Table. 4.2). However, again, the objective
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Figure 4.2: Sample size experiment: translation (left) and rotation (right) errors
produced using, from top to bottom, 1000, 1500 and 2000 data points sampled from
the pelvis model in Exp. 1 (Sec. 4.5.1.1)
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Figure 4.3: Sample size experiment: increasing TSE (top) and TRE (bottom) with
increasing number of sample points in Exp. 1 (Sec. 4.5.1.1). Note that errors are
increasing with increasing modes because for this experiment the number of modes
used to estimate the shapes equals the number of modes used to simulate a new shape
from which points were sampled.
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Table 4.2: Sample size experiment: percent successful registration runs, i.e., runs
producing TREs less than 1 mm and, in parentheses, percent successful runs correctly
detected as successful using residual errors.

# samples  D-IMLP (%)

Experiment 1 1000 73.33 (100.00)
1500 76.67 (86.96)
2000 80.00 (100.00)

Experiment 2 1000 56.67 (100.00)
1500 46.67 (100.00)
2000 56.67 (100.00)

function and residual error showed correlation with TRE (Fig. 4.5, right), and using
empirically found thresholds on the residual errors, D-IMLP was able to automatically

classify almost all successful registrations as successful (Table. 4.2).

4.5.2 Regularization term experiment

The cost function that is minimized to compute a registration using D-IMLP
(Eq. 4.6) contains an L2 regularization term, 1 P ||3j||§, that comes from the
assumption that the shapes used to build the SSM used to to drive the deformations in
the registration are sampled from a Gaussian distribution (Eq. 3.5). The effect of this
regularization term can be evaluated by computing registrations with and without this

term. Therefore, experiments using the same data generated for Exp. 4.5.1.1 using
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Figure 4.4: Sample size experiment: translation (left) and rotation (right) errors
produced using, from top to bottom, 1000, 1500 and 2000 data points sampled from

the pelvis model in Exp. 2 (Sec. 4.5.1.2)
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Figure 4.5: Sample size experiment: residual errors compared against TRE using
2000 sample points in Exp. 1 (left) and Exp. 2 (right). The two measures exhibit
correlation in both experiments 1 and 2 with correlation coefficients of 0.95 and 0.88,

respectively.
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Figure 4.6: Regularization term experiment: registrations produced by D-IMLP in
the presence of small noise were unaffected by the absence of the regularization term.

1500 sample points were repeated without the regularization term. Results showed
that removing the regularization term had no effect on results produced by D-IMLP
(Fig. 4.6). The noise in these data samples was small (1 x 1 x 1 mm?) and, therefore,
the algorithm did not suffer from fitting to noise in the absence of the regularization
term. However, with more noise in the data, performance could deteriorate without

this term.
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4.5.3 Noise model experiment

This experiment was designed to evaluate the stability of D-IMLP with different
noise models. A synthetic dataset was generated using the pelvis data in a similar way
as described in Sec. 4.5.1. The differences are that experiments in this section were
run with a fixed sample size of 500, and for each algorithm, 11 sets of 25 experiments
each were run with increasing number of modes used to deform the mean shape in
each set, starting at 0 and going up to 10 modes. Again, the same number of modes
are used by D-IMLP to recover the deformed shape as were used to generate the
deformed shape. Different noise models were used to add noise to both the position
and orientation of the sampled points, and the same noise models were assumed by
our algorithms. Again, focusing on positional noise, three experiments were designed

based on how the noise models were varied.

4.5.3.1 Experiment 1: Varying isotropic position noise

For the first experiment, 5 isotropic noise models with SDs of 1 x 1 x 1 mm?,
2x2x2mm? 3 x 3 x3mm? 4 x4 x4mm?® and 5 x 5 x 5mm? for positional
noise were used. D-IMLP showed a general trend of increasing TRE with increasing
noise SD (Fig. 4.7) due to the increase in uncertainty in the sample points. The
objective function and the residual errors are again found to be strongly correlated
with the TRE, which can be used to distinguish between successful and unsuccessful

registrations (Fig. 4.8).
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Figure 4.7: Noise model experiment: a general trend of increasing TRE as the
uncertainty in the sample points increases. Note that errors are increasing with
increasing modes because for this experiment the number of modes used to estimate
the shapes equals the number of modes used to simulate a new shape from which
points were sampled.
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Figure 4.8: Noise model experiment: residual errors compared against TRE using
500 sample points with 2 x 2 x 2mm?® SD positional noise and 2° SD angular noise
in Exp. 1 of the noise model experiment (Sec. 4.5.3.1). The two measures exhibit
correlation with correlation coeflicient of 0.86.
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4.5.3.2 Experiment 2: Varying anisotropic position noise

For the second experiment, anisotropic noise models with SDs of 1 x 1 x 2mm?,

2x2x3mm?, 3x3x4mm?, 3x3x5mm?, and 4 x4 x 5 mm? for positional noise were
used. Errors produced by D-IMLP showed the same trend as with varying isotropic
noise. That is, the TRE showed an increasing trend as the uncertainty in the sample
points increased (Fig. 4.9). Again, both the objective function and residual errors
again showed correlation with the TRE, which can be used to assign confidence to

the resulting registrations (Fig. 4.10).

4.5.3.3 Experiment 3: Noise parameter sweep

In the final experiment, the sample points were generated with a particular noise
model. However, it was assumed that this noise model is unknown to D-IMLP. Sample
points were generated with anisotropic position noise with SD 2 x 2 x 4mm?®. Then,
a hyper-parameter sweep was performed and the D-IMLP algorithm was deployed
with different isotropic and anisotropic position noise assumptions to evaluate how
well D-IMLP performs with inaccurate noise model assumptions.

The results show that D-IMLP is unaffected by changing orientation noise, which
is expected since D-IMLP does not take orientation into account. TREs using D-
IMLP are either stable or show a gradual trend downward as position noise becomes
more conservative. Another noticeable trend is that D-IMLP performs slightly worse

as the anisotropy in the noise estimates increases (Fig. 4.11).
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Figure 4.9: Noise model experiment: a general trend of increasing TRE as the
uncertainty in the sample points increases. Note that errors are increasing with
increasing modes because for this experiment the number of modes used to estimate

the shapes equals the number of modes used to simulate a new shape from which
points were sampled.
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Figure 4.10: Noise model experiment: residual errors compared against TRE using
500 sample points with 2 x 2 x 3mm?® SD positional noise and 2° SD angular noise
in Exp. 2 of the noise model experiment (Sec. 4.5.3.2). The two measures exhibit
correlation with correlation coeflicient of 0.87.
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Figure 4.11: Noise model experiment: parameter sweep results show that D-IMLP
is unaffected by changing angular noise assumptions since orientations are not taken
into account by D-IMLP. Therefore, only the last plot (20°) is visible since the plots
overlap almost perfectly. Errors are also stable (top) or gradually decreasing (bottom)
under changing position noise assumptions, although increasing anisotropy tends to
increase TRE (bottom).

106



CHAPTER 4. D-IMLP ALGORITHM

4.5.4 QOutlier experiment

Using a synthetic dataset generated using the right nasal cavity model from the
sinus dataset, the robustness of D-IMLP to outliers is evaluated. This dataset was,
again, generated similarly as described in Sec. 4.5.1; the difference being that here 6
sets of 10 experiments each are performed. The number of modes used to deform the
mean shape increases by 2 in each set, starting at 0 and going up to 10 modes. Again,
the same number of modes are used to estimate the deformed shape using D-IMLP
as were used to generate the deformed shape. All sample points were generated with
isotropic noise in position data with 1 x 1 x 1 mm? SD. Experiments were conducted
with 0%, 10%, and 20% outliers in the generated point samples. Outliers were gen-
erated by perturbing the position of a specified number of samples randomly in the
range [2, 5] mm.

Outliers were identified and rejected using the chi-square test as described in
Sec. 4.2. As a reminder, for position data, a match is rejected if the square Maha-
lanobis distance is greater than the value of the chi-square inverse CDF with 3 DOF
at p = 0.95. Since the square Mahalanobis distance normalizes each match residual
error by its variance along each dimension, the sum of the square Mahalanobis dis-
tance over all data points, ngata, is distributed as a chi-square distribution with 3ngata
DOF .1%7 This knowledge is used to reject a registration outcome if this sum exceeds
the value of a chi-square inverse CDF with 3n4.:a DOF at p = 0.95. Using this outlier

rejection criterium, D-IMLP is able to produce submillimeter registrations even in
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Figure 4.12: Outlier experiment: mean TRE with different number of outliers
using D-IMLP. Note that errors are increasing with increasing modes because for this
experiment the number of modes used to estimate the shapes equals the number of
modes used to simulate the deformed shape from which points were sampled.
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Figure 4.13: Residual errors compared against TRE using the right nasal cavity
meshes in the outlier experiment with 0% outliers. The two measures exhibit corre-
lation with a correlation coefficient of 0.88.
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Figure 4.14: Residual errors compared against TRE using the right nasal cavity
meshes in the outlier experiment with 10% (top) and 20% (bottom) outliers. The
two measures exhibit high correlation when the sample points contain 10% outliers
with a correlation coefficient of 0.81, and weak correlation with the sample points
contain 20% outliers with a correlation coefficient of 0.59.
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the presence of outliers in the sample points (Fig. 4.12). Although the performance
is slightly worse as the percentage of outliers in the sample points increases, D-IMLP
is able to detect them, as explained in Sec. 4.2, and limit their effect on errors. Even
with 20% outliers in the sample points, the mean TRE produced by D-IMLP remains
below 1 mm. Further, although the correlation between the TRE and residual er-
rors degrades with increasing number of outliers, the residual errors are still able to

discriminate between successful and unsuccessful registrations (Figs. 4.13, 4.14).

4.5.5 Scale experiment

In this experiment, the ability of D-IMLP to recover scale in addition to rotation,
translation, and shape parameters is evaluated. The dataset generated in Sec. 4.5.4
with 0% outliers was reused for this experiment. However, the sample points were
scaled by some amount in the range [0.7,1.3]. D-IMLP was executed with scale
optimization enabled, and the output scale was compared to the initial scale applied
to the sample points. D-IMLP was able to estimate scale in addition to rotation,
translation, and shape parameters well, but it performs better when optimization
over scale is not required (Fig. 4.15). This is due to the lack of sufficient information
in position features, causing ambiguity in matches and leading to convergence at local
minima. However, errors in scale estimation and TREs remain roughly stable as the

number of shape parameters to optimize over increases (Fig. 4.16).
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Figure 4.15: Scale experiment: additional scale optimization increases TRE as
compared to when scale optimization is not required.
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Figure 4.16: Scale experiment: errors in scale estimation using D-IMLP with in-
creasing number of modes remain stable.
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4.5.6 Leave-one-out experiment

The leave-one-out experiment was designed by building n, SSMs in a n; mesh
dataset, with a different shape in the dataset left out for each SSM construction.

This resulted in 53 different SSMs for the sinus dataset. The left out shape was then

estimated in two ways:

1. by projecting the left out shape onto the SSM to obtain mode weights, and then

using different numbers of modes along with the mode weights in Eq. 2.1, and

2. by using D-IMLP with different numbers of modes.

The left out shapes were estimated using 11 different number of modes, starting at
0 and increasing at increments of 5 upto 50 modes, producing a total of 1749 runs.
This experiment enabled the evaluational of D-IMLP in the presence of shapes not
seen before by the shape model. The errors produced by D-IMLP in estimating the
left out shapes were compared to ground truth since the left out shapes are known,
and also to errors produced by the SSM estimates of the left out shapes. The SSM
estimates of the left out shapes represent the upper bound for how well D-IMLP can
perform. This experiment enables us to relate the errors produced by D-IMLP to how
representative the SSM used was of the shapes being estimated. 1000 sample points
were generated for each experiment by uniformly sampling from the left out shape.
An isotropic positional noise model with a SD of 1 x 1 x 1 mm?® was used, since the

CT volumes used to segment the sinus structures had a resolution of 1 x 1 x 1 mm?.
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D-IMLP assumed the same noise model as was used to generate the sample points.

4.5.6.1 Experiment 1: Middle turbinates

In the first experiment, the middle turbinate models from the sinus dataset were
used to generate sample points. Registrations are also computed using deformable
coherent point drift (CPD), a standard deformable registration algorithm,*® for com-
parison. Since deformable CPD produces a deformation field that moves the vertices
from the mean shape towards to the sample points to fit the samples and does not
produce a transformation matrix, a TRE cannot be computed. However, since the
original offset transformation applied to the sample points is known, the final mesh
produced by CPD can be transformed by the inverse of the original transformation to
compute the TSE. In order to produce a transformation matrix, rigid or affine CPD
can be performed first, followed by deformable CPD. However, this is not as time
efficient. Note that since CPD does not use different numbers of modes to compute
its registration, results from CPD are shown as a baseline

Of the 1749 registrations, D-IMLP was able to recover the left out shape and the
transformation offset applied successfully (with mean TRE less than 1 mm) 76.39% of
the time. However, as the number of shape parameters increased, the performance of
D-IMLP deteriorated since the position component of the sample points is insufficient
information as the number of parameters to optimize over increases (Fig. 4.17). This

leads to slower convergence with increasing shape parameters. Therefore, when D-
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Figure 4.17: Leave-one-out experiment: TSE (top) and TRE (bottom) produced
by D-IMLP compared against that produced by CPD and SSM using the middle
turbinate meshes in the leave-one-out experiment.
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Figure 4.18: Leave-one-out experiment: runtime comparison between CPD and

D-IMLP.

IMLP terminates at the maximum number of iterations allowed, the final alignment
is worse with increasing number of shape parameters. D-IMLP was outperformed by
CPD and the computation time for both were comparable. The average time required
by CPD to perform registrations was 40.55s, as compared to 47.69s required by D-
IMLP when using 50 modes (Fig. 4.18). As before, the error metrics produced by D-
IMLP show correlation with the TRE, allowing it to accept or reject the registrations

produced (Fig. 4.20), while errors produced by CPD does not show correlation with
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the TSE (Fig. 6.18). Therefore, errors produced by CPD cannot be used to assign

confidence to or detect success or failure of the produced registration.

4.5.6.2 Experiment 2: Right nasal airway

Since both turbinates would generally not be visible at the same time during an
endoscopic procedure, in the second experiment, the right nasal airway models were
used to generate sample points. Apart from this difference, the experiment is set up
and evaluated identically to the previous experiment (Sec. 4.5.6.1). The performance
of D-IMLP in this experiment was similar to the one before with results deteriorating
as the number of parameters to optimize over becomes too large for the limited
information provided by the position components (Fig. 4.19). As explained before,
lack of sufficient information causes slower rate of convergence, meaning that D-IMLP
terminates at an earlier stage in the registration as the number of shape parameters
increases. However, of the 1749 runs, 82.39% of the D-IMLP runs were still able to
recover the left out mesh with mean TRE less than 1 mm. These results were not
compared to CPD because the machine used for these computations was unable to
handle the memory requirements of CPD with larger meshes. CPD computes a ny X ny
matrix, where ny is the number of vertices in the deformable mesh. This results in
extremely large memory overhead even for medium sized meshes, a drawback that
D-IMLP does not suffer from. Again, the residual errors produced by D-IMLP were

in correlation with the TRE (Fig. 4.21).

116



CHAPTER 4. D-IMLP ALGORITHM

Right Nasal Cavity

. 1 -I— SSM Inst
1} 1 ~—f—D-IMLP
&
-
~— 0.8
L
9]
|_
C 06
© l
m Y
= e Y
04t
0 10 20 30 40 50
Number of modes
Right Nasal Cavity
=F ssminst
—f—D-IMLP
—~ 2
&
E
LU 15}t
o
|_
c TF
®
GJ f - i o d -
205. :-:'._._I__'_I
0 1

0 10 20 30 40 50
Number of modes

Figure 4.19: Leave-one-out experiment: TSE (top) and TRE (bottom) produced
by D-IMLP compared against that produced by the SSM estimate using the right
nasal cavity meshes in the leave-one-out experiment.
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Figure 4.20: Leave-one-out experiment: residual errors compared against TRE
using the middle turbinate meshes in the leave-one-out experiment. The two measures
exhibit correlation with correlation coefficients of 0.91.
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Figure 4.21: Leave-one-out experiment: residual errors compared against TRE
using the right nasal cavity meshes in the leave-one-out experiment. The two measures
exhibit correlation with correlation coefficients of 0.95.
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Figure 4.22: Leave-one-out experiment: TRE produced by D-IMLP with 0%, 10%
and 20% outliers in the data points sampled from the right nasal cavity meshes in
the leave-one-out experiment.

4.5.6.3 Experiment 3: Right nasal airway with outliers

Since real data will most likely contain several outliers, the previous experiment
using the right nasal cavity data was modified slightly to introduce outliers in the
sampled data points. The experiment was set up identically to that in Sec. 4.5.6.2,
with the same number of data points sampled and the same offset applied to the
sampled points. However, 10% and 20% of the samples were perturbed to simulate

outliers in the generated data. The perturbation was similar to that explained in the
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previous outlier experiment (Sec. 4.5.4) and outliers were detected as explained in
Sec. 4.2. Results show that the TREs produced when there are 10% outliers in the
data samples is almost identical to those produced when there are no outliers, and

TREs are slighly worse with 20% outliers in the data samples (Fig. 4.22).

4.5.7 Partial data experiment

This experiment was set up similarly to the leave-one-out experiments. However,
in order to simulate more realistic scenarios, the pelvis and right nasal cavity SSMs
were used to generate point samples from part of the left out shape, rather than
uniformly from the entire mesh, for each registration (Fig 4.23). The part of the
meshes that points were generated from was dependent on the procedure being sim-
ulated. We designed two experiments simulating two different procedures. For both
experiments, 2000 points were sampled from the candidate regions of the meshes with
appropriate amounts of noise added to the sampled points. Although results using
CPD are not computed for this experiment due to computational limitations of CPD
with relatively large meshes, it can be assumed that it will not perform as well in

recovering the shape because only the parts of the mesh that the sample points are

matched to will be deformed by CPD.
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Figure 4.23: Partial data experiment: An example of data generated for the partial
data experiment: (top) points are sampled only from the ilium and ischium on the
pelvis mesh, and (bottom) points are sampled from the front section of the right
nostril which include parts of the septum and middle and inferior turbinates.
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4.5.7.1 Experiment 1: Pelvis

Simulating a situation in which only a partial CT scan of the pelvis is obtained
to prevent radiation exposure to reproductive organs, points were sampled only from
the ilium and ischium (Fig 4.23, top) regions of the pelvis model. Anisotropic noise
with SD 1 x 1 x 2mm?® was added to position data. An instance of the pelvis is
then estimated by D-IMLP using these sampled points and a generous noise assump-
tion with SD 2 x 2 x 3mm? for position data. Results from this experiment show
a big improvement in both transformation parameters and TSE from 0 to 10 modes
(Fig. 4.24). However, with over 10 modes, the improvement in transformation pa-
rameters stabilizes, and only a gradual improvement in TSE is observed, although
the trend followed by the TSE is similar to that followed by the error between the left
out shape and the SSM instance of the left out shape (Fig. 4.24). The resulting mean
TRE falls below 2mm with only 10 modes (Fig. 4.24), which is the desired accuracy
for pelvis registrations. The improvement in the TRE is also reflected in the residual
errors produced by D-IMLP (Fig. 4.26, top), although the correlation is weaker than

in the previous experiments.

4.5.7.2 Experiment 2: Right nasal airway

In order to simulate nasal endoscopy, points were sampled only from parts of the
nasal cavity that would be visible to the endoscope when inserted into the right nostril

(Fig 4.23, bottom). Anisotropic noise with SD 0.5 x 0.5 x 1 mm? was added to position
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Figure 4.24: Partial data experiment: TSE (top) and TRE (bottom) produced
by D-IMLP compared against that produced by the SSM estimate using the pelvis
meshes.

123



CHAPTER 4. D-IMLP ALGORITHM

data since this produced point clouds that resembled reconstructions obtained from in
vivo data using the method described in the chapter 7. Position noise in the generated
samples has a larger standard deviation in the z-direction since depth is harder to
estimate from video data. The left out nasal cavity was then estimated using these
sampled points and a noise model assumption with SD 1 x 1 x 2 mm? for position data.
This experiment yielded slightly different results due to the increased complexity of
the right nasal airway models. Although the transformation errors either remained
stable or showed slight improvement with increasing number of modes, the TSE
increased from 0 to 10 modes and stabilized or showed slight improvement beyond
that. Although, the mean TSE remained below 1 mm, the mean TRE for all modes
remained above 1 mm (Fig. 4.25). The results indicate that for complex structures
like the nasal cavity, position information is not sufficient to accurately estimate both
the registration and shape parameters. The TRE and residual errors, again, show

weak correlation (Fig. 4.26, bottom).

4.5.8 Failure detection experiment

In this experiment, the success or failure of the registrations produced are com-
pared to the outcome predicted by D-IMLP using the chi-square inverse test explained
in Sec. 4.2. A registration is considered successful if the TRE is below 1 mm. Two
experiments are designed based on whether or not the algorithm has knowledge of

the noise model used to generate the data samples.
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Figure 4.25: Partial data experiment: TSE (top) and TRE (bottom) produced by
D-IMLP compared against that produced by the SSM estimate using the right nasal
airway meshes.
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Figure 4.26: Partial data experiment: residual errors compared against TRE using
the pelvis (top) and right nasal airway (bottom) meshes. The two measures exhibit
weak correlation in both experiments 1 and 2 with correlation coefficients of 0.52 and
0.56, respectively.
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4.5.8.1 Experiment 1: Known noise

This setup for this experiment is the same as the setup for the leave-one-out exper-
iment with right nasal airway data (Sec. 4.5.6.2). As in Sec. 4.5.6.2, this experiment
assumes the same position noise SD as was used to generate the data samples. Re-
sults from the chi-square test at p = 0.95 show that although the test is successfully
able to detect registrations that were successful by the TRE < 1 mm criterium, the
test is not as successful at rejecting unsuccessful registrations (Fig. 4.27, top). This
is because registrations that only use position data can often find good incorrect sets
of correspondences. This leads to small residual errors although the registered pose is
incorrect. Since E, is simply the sum over the residual errors from all corresponding
point pairs, this sum may remain below the x2 . o . threshold for registrations pro-
ducing TREs > 1 mm. However, just like the mean residual error, the total residual
error, E,, is found to be correlated with the TRE (Fig. 4.27, bottom). Therefore,
although the x4 . fina1 threshold may not be able to discriminate between successful
and unsuccessful registrations, a different threshold can be found that is better able
to reject unsuccessful registration or assign degrading confidence to the registrations

based on E,,.

4.5.8.2 Experiment 2: Unknown noise

The setup for this experiment is similar to the partial data experiment setup for

the right nasal airway data (Sec. 4.5.7.2) with some differences to simulate a more
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Figure 4.27: Failure detection experiment: Confusion matrix (top) and correlation
between E, and TRE (bottom) with a correlation coefficient of 0.90 when the noise
in the data is known.
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realistic scenario. 3000 points were sampled from the nasal cavity region of the left
out shape, and anisotropic noise with SD 0.5 x 0.5 x 0.75mm? was added to the
position component of the sampled points. A rotation, translation and scale are
applied to these sampled points in the interval [0,10] mm, [0, 10]° and [0.95,1.05],
respectively. 2 offsets are produced in this interval for each left out shape. This
experiment assumes that it does not have knowledge of the noise model used to
generate the data samples. Therefore, D-IMLP makes slightly more generous noise
assumptions with SD 1 x 1 x 2 mm? for position noise, and restricts scale optimization
to within [0.9,1.1]. In this more realistic scenario, the performance of the chi-square
test at p = 0.95 is worse than in the previous experiment. This is expected since in this
experiment, a more limited amount of data is available to the registration algorithm as
compared to the previous experiment (Sec. 4.5.8.1). With only position information,
it is likely that the optimization will get trapped in local minima leading to low E, for
incorrect registrations. In addition, since the square Mahalanobis distance normalizes
each match residual by its variance along each dimension, assuming a larger noise SD
than the actual noise SD further lowers E,. Therefore, the X2 . fna threshold is
unable to detect any failed registration produced in this experiment (Fig. 4.28, top).
Further, E, and TRE only show weak correlation making it hard for the algorithm
to make decisions on the success or failure of the produced registration (Fig. 4.28,

bottom).
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Figure 4.28: Failure detection experiment: Confusion matrix (top) and weak corre-
lation between E, and TRE (bottom) with a correlation coefficient of 0.46 when the
noise in the data is unknown.
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4.5.9 Non-medical data experiment

The previous experiments evaluate the generalizability of D-IMLP within the med-
ical field. The following experiments evaluate D-IMLP on some non-medical data to
test its generalizability beyond the medical field. We used human expression and
human pose datasets in separate leave-n-out experiments by dividing the datasets
into training and test sets. We used the training set to build a shape model, and
estimated the meshes in the test set using the two methods described in Sec. 4.5.6.

This, and other registration algorithms presented in this thesis, are not expected
to perform well on this dataset because the assumption that facial expression or
human pose are Gaussian distributed is likely an incorrect assumption depending on
the dataset.!'® Further, the limited number of data points in our dataset was not
enough to explain well the complex variations that can exist in human expression
and pose. The deformable registration paradigm presented in this dissertation should
still, however, be applicable to this type of data as long as enough shapes are used to
build the SSM and an appropriate statistical model is used to explain the variation

present in the dataset.

4.5.9.1 Experiment 1: Human expression

For the human expression dataset, 300 meshes were used in the training set to
build an SSM for expressions from a single individual. The remaining 86 meshes, also

from the same individual, were reserved for the test set. 1000 points were sampled
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from meshes in the test set with anisotropic positional noise with SD 1 x 1 x 2mm?.
This simulates a realistic situation in which a scan of a head is obtained using a
depth camera, where error is larger in the depth direction. D-IMLP was executed
with a slightly more relaxed noise assumption, assuming that the position noise model
has a SD of 2 x 2 x 4mm?®. D-IMLP performed relatively well on this challenging
dataset. It was able to deformably register the mean face mesh to points sampled
from test faces to produce low TSEs, although improvement with increasing number
of modes stabilized quickly (Fig. 4.29, top). TREs showed a gradual trend up but
mean TREs remained below 2mm (Fig. 4.29, bottom). Again, these results indicate
that for higher accuracy, more information in the form of larger number of samples
or orientation components might be required. The residual errors produced by our
algorithms correlate with the TRE, indicating that D-IMLP has the ability to handle

such data (Fig. 4.31, left).

4.5.9.2 Experiment 2: Human pose

For the human pose dataset, 80 meshes were used in the training set to build an
SSM of poses. The remaining 20 meshes were reserved for the test set. As with the
previous experiment setup, in order to simulate a realistic pose capture system, 1000
points were sampled with the same anisotropic position noise model as before. D-
IMLP was deployed with a more relaxed noise assumption where the SD of the position

noise model was assumed to be 2 x 2 x 4mm. The search space for shape parameters,
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Figure 4.29: Leave-n-out experiment: TSE (top) and TRE (bottom) produced by
D-IMLP.
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s, in this case was restricted to +1 SD. The human pose dataset proved to be the
failure case for D-IMLP, as is clear from the high TREs and T'SEs (Fig. 4.30). This was
expected since the limited data available and perhaps the linearity assumptions made
by PCA-based models are not sufficient to explain the complex variations observed
in different poses. The failure of D-IMLP to accommodate this dataset is also clear

from the absence of correlation between residual errors and TREs (Fig. 4.31).

4.6 Concluding remarks

A novel deformable variant of IMLP, known as the deformable iterative most
likely point (D-IMLP) algorithm, is presented in this chapter. This method is able
to compute an alignment between a mean shape and data samples and simultane-
ously deform the mean shape to fit the data samples. The accuracy of this method
increases with data samples, but is not significantly affected by inaccurate noise as-
sumptions. Further, the performance shows only slight degradation in the presence
of outliers. These features are advantageous for real world applications where data
will likely contain both outliers and noise, and only an estimate of the noise can be
made. Although CPD outperforms D-IMLP in terms of errors, D-IMLP is faster than
CPD with fewer than ~ 35 modes and comparable with more modes. The biggest
advantage D-IMLP has over CPD is that D-IMLP has a lower memory requirement

than CPD, allowing D-IMLP to compute registrations using large meshes and several
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data samples. Further, unlike CPD, residual errors produced by D-IMLP correlate
with the TSEs and TREs computed allowing some assignment of confidence to the
registrations produced based on the residual errors.

However, since D-IMLP only makes use of position information, it does suffer from
convergence to local minima that do not represent the optimal solution due to the
lack of sufficient information to prevent such convergence. Additional information like
orientation, for instance, can help reject matches where position components produce

good alignment but the corresponding normals do not.

4.7 Contributions

The contributions of this chapter include:

1. The improvement, implementation and evaluation of the deformable iterative

most likely point (D-IMLP) algorithm™ ™ which

(a) incorporates deformable shape transformations using SSMs within a prob-
abilistic registration algorithm that uses point features with associated

unconstrained or anisotropic noise

(b) performs an efficient implementation of PD-tree update to accommodate

a deforming model shape
(c¢) computes a gradient-based solution to the optimization problem using an
80

off-the-shelf nonlinear box-constrained BFGS quasi-Newton optimizer
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(d) incorporates a mechanism for autonomously evaluating a registration in

order to assign confidence to the resulting alignment

Although many of these ideas were introduced by Billings,”™ they were refined
during implementation to accurately compute the gradients during optimization

and to include scale as an optional optimization parameter.

4.8 Published work

Material from this chapter appeared in the following publication:

1. A. Sinha, S. D. Billings, A. Reiter, X. Liu, M. Ishii, G. D. Hager, R. H. Tay-
lor, “The deformable most-likely-point paradigm,” submitted to Medical Image

Analysis (2018)
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Chapter 5

Deformable iterative most likely
oriented point (D-IMLOP)

algorithm

This chapter presents an extension to the D-IMLP algorithm which is inspired
by the iterative most likely oriented point (IMLOP) algorithm.?> IMLOP is an al-
gorithm that can register oriented data characterized by isotropic uncertainty not
only in position data, but also in orientation data.’? The deformable algorithm pre-
sented here, called the deformable most likely oriented point (D-IMLOP) algorithm,
is built upon the paradigm presented in Chapter 3, and incorporates a probabilistic
framework to combine the position and orientation information of features and de-

formably registers these features. D-IMLOP can incorporate features characterized
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by unconstrained uncertainty in the positional elements and constrained, or isotropic,
uncertainty in the orientation elements.

Algorithms that are able to use both position and orientation data are beneficial
for data samples that have orientation components along with position components.
In the medical field, surface normals can be computed on surface models extracted
from 3D volumes like CT or MRI scans to estimate the surface orientation per vertex
and/or per triangle. In other modalities, like videos from endoscopy or laparoscopy,
extracting surface models is not trivial. However, a large amount of research has
been dedicated to estimating structure from such data. Structure from motion!'%
algorithms of several varieties are able to compute sparse point clouds representing
structure seen in a sequence of video frames. A surface that fits this structure can
be approximated and surface normals can be computed for every vertex in the point
cloud.'™ Procedures that allow for physical probing like total hip replacement (THR)
surgery can compute normals directly on the surface using tracked probes with force
or torque sensors, for instance!!'.1'2 When physical probing is not possible, range-
imaging techniques can be used to reconstruct a surface and normals.®® Range-
imaging has several applications outside the medical field as well due to its accuracy
in capturing surfaces and orientations. They are often used to capture human motion
and facial expression, and also to digitize historical artifacts like statues by accurately

measuring surfaces and orientations using range-imaging.!!?

[CP based methods that use orientation in addition to position data have been
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developed before.?® However, several of the applications described above also require
the registration to be deformable. For instance, medical data from different modal-
ities captured at some time interval will exhibit some amount of differences. These
differences can be due to breathing movement or movement of tissues due to pres-
sure from tools during surgery, etc. Outside the medical field, registration may be
required between humans in two different poses or faces with different expressions,
etc. Some deformable registration algorithms that have been developed are reviewed
in Chapter. 3. In this chapter, IMLOP will be briefly reviewed, and its deformable

extension, D-IMLOP, will be developed.

5.1 Probabilistic model

For ease of reference, a brief description of the probabilistic model for IMLOP
is described here. As mentioned earlier, IMLOP incorporates isotropic Gaussian
and Fisher distributions''* to model measurement errors in position and orientation
data, respectively, into its probabilistic framework. The Fisher distribution is the
analog of the Gaussian distribution on the sphere.!!* Therefore, combining these two
distributions to model oriented-point measurement error in analytically convenient.”™
As before, assuming zero-mean, independent, identically distributed (iid) error for
both position and orientation data, the match likelihood function for an oriented data

point, X = (Xp, Xp), transformed by a current registration estimate, [R, t|, is defined
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52

& e 1 _ —_tl12
_eﬂ)"nR-xn %‘ZHYD RXD t||2} (5.1)

fmatch(x; Y, 0'2: K, R: t) —

vV (2mo2)3 - 2m(er — k)

where y = (yp, yn) is an oriented point on the shape model that is assumed to be in
correspondence with the oriented data point, x, 02 is the variance of the positional
noise model, and & is the concentration parameter of the orientation noise model.??
The oriented model point, y € ¥, is also a parameter of the joint distribution from
which the orientation noise is drawn, where y,, is the central direction and yy, is the
mean position.?? This is the match likelihood function that is maximized during the
correspondence phase of the IMLOP algorithm in order to find the oriented matched
points, y, on the model shape, W.

There are a few differences between this formulation and the formulation in the
deformable version of this algorithm. First, D-IMLOP incorporates a generalized
(Gaussian noise that is able to account for both isotropic and anisotropic noise to model

measurement, errors in position data. Therefore, the formulation for the deformable

match likelihood function is slightly different from Eq. 5.1:

fmat-ch(x; Yy, EX: E)’? K, R? t) =

K . eﬂjrnchn—%(yp—Rxp—t)T(REXRT-i—Ey)—l(yD—Rxp—t}’
V2r)RRERT + B, | - 27(er — e*)

(5.2)
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where measurement error covariances, ¥, and X, are used to describe the positional

noise model for x and y, respectively, instead of 02. As in D-IMLP, the oriented

matched points in D-IMLOP are also found on the current deformed shape.
Similarly, the deformable match likelihood function for an oriented point, x, trans-

formed by a similarity registration estimate, [a, R, t], is defined as

fmatch(x; Yy, EX: EY: kK, a, R: t) =

r . ef¥nRn—5 (yp—aRxp—0) T (RERT+3y) ! (yp—aRxp—t)
V21)RRERT + B, | - 27(er — e*)

(5.3)

where a is the scale variable. Since, the two registration problems are similar, the
focus of this chapter will be on derivations from Eq. 5.2, with differences between the
two pointed out whenever required. Maximizing the likelihood of Eq. 5.2 is equivalent
to minimizing its negative log likelihood, resulting in the following deformable match
error function:

Ep_mLor(X,y, 2x, 2y, 65, R, t) = (5.4)
5.4

1 A
i(y — Rx — t)T(REXRT + Ey)_l(y — Rx —t) — Ky RXy,.

In the registration phase, IMLOP solves for the rigid transformation that max-
imizes the total match likelihood function derived from Eq. 5.1. This simplifies to

minimizing the total match error function with respect to the transformation param-
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eters:?

Ndata

) 1 Ndata A .
T= ar[%m]ln (F Z ”ypi - R“Xpi - t”% — kK Z yniRXn:') 3 (55)
ot i=1 i=1

which is the registration cost function for IMLOP.
Plugging fuaten from Eq. 5.2 into the total deformable match likelihood function
of Eq. 3.11, the deformable registration cost function for D-IMLOP can be derived as:

) 1 Ndata B
T = argmin (5 Z (Tssm (¥p,,8) — Rxp, — ) T(RE,RT) ™ (T (¥p,, s) — Rxp, — t)

[Rt],s i=1

Mdata 1

—kK Z yniRﬁni + 5 Z “33”3) 3
i=1 Jj=1
(5.6)

where the model shape covariances, 3., are again assumed to be zero since the focus

here is on the derivatives introduced by the shape deformations during optimization.

5.2 Algorithm overview

In this section, a high level overview of D-IMLOP is presented along with pseu-
docode explaining the registration pipeline. As before, in order to maintain focus on
the new developments made for the D-IMLOP algorithm, in-depth details developed
along with the IMLOP algorithm will not be repeated here, but will be referenced

whenever necessary. Similarly, details already explained during the development of
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Algorithm 5.1: Deformable Iterative Most Likely Oriented Point (D-IMLOP)

Input : Data points as a point cloud: X = {x;} = {(xp,,Xn,)}

Statistically mean model shape, ¥y, and associated SSM
Measurement-error covariances: Xx = {34}, Xy

Surface-model covariances: Ygx = {Xsx; }, Lsw

Circular SD of sample orientations: ocirc_deg (default: 2°)
Weight representing relative importance of features: w (default: 0.5)
Upper bound on match uncertainty: o2, (default: o)
Chi-square threshold value for position outliers: Y2, (default: 7.81)
Outlier variance expansion factor: @exp (default: 9)
Initial transformation estimate: [ag, Ro, to), So

Initial orientation noise parameter: kg

Output: Final data transformation, [R, t], and shape parameters, s, that align

X with deformed W

1 Initialize transformation: [a, R, t],s < [ag, Ro, to], so

2 Initialize noise model parameters: k ¢ kg, 02,4 < 0
3 while not converged do

4
5

10

if iter == 1 then
Compute initial correspondences on the mean shape (Eq. 3.12):

[Yp,-: Ey@a ESyi] < Curp (Xpi; Vo, LLk,a,R, t)

else
Compute most likely correspondences on the current shape (Eq. 3.12):

[an Eyp ESH] — CMLP (Xp«n lIit'te-ra Exi+Esz‘+012r13tchI; E‘I'""ES'I‘: K, Q, R; t)

end
Update the match-uncertainty noise-model term (Eq. 4.7):

2 2
Ez’einliers ||YP:' - Q:R‘XD:' - 1:”21 oma.x)
Compute mean angle between matched normals:

1 ~ Tpsg
p — Eieinlier& ¥n; R‘Xni

Minlier

2

JITI atc

h(—ﬂllﬂ(

Minlier

Compute circular standard deviation and update angular threshold:
Oocee < V —2Inp , Oihresh < \/Pexp * Ooeire
Identify outliers (Eq. 4.8, 5.8):
(xi,yi) is an outlier if

2 2
ESqrMahalDist (Xp,-: ¥Yois Exi; 2}’;’ + Jma.tchlﬂ a, R; t) > Xthresh
~ Ta
OR  ¥n, Xn; < cos(Bthresh)
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Algorithm 5.1: D-IMLOP (continued...)

11

12

13

14

15
16

17

18

Update the outlier noise-model terms (Eq. 4.10):

Pexpllyp: — aRxp, — t|[3 if (x,:) is an outlier,
Pi
0 otherwise.

Set the noise-model covariances for the registration phase:

Yui & By + B + 2T, Byl By, + By, + 2T+ o |
Update the transformation and shape to align the point cloud and the
corresponding points on the shape (Eq. 5.15 or 5.16):

[a, R, t],s < argmin (% do ((Tssm(ypia s) — aRxp, —t)T(RZ,RT)™!
[a,R,t],s

(Tssm(Yp,-: S)_ﬁkapi _t)) +Ez?i€ita(l_ymmm)+% E?:l ||SJ||§ )

Based on computed s, update the vertices of the model shape (Eq. 3.10):
Viter < Tssm(Vi,s)
Update extents of PD-tree bounding boxes based on Wy, (Sec. 3.2)
Update orientation noise-model parameters:
R(3 - R?)
1— R?

K =

tter—++
end
Detect registration failure using a chi-square test (Egs. 4.11, 5.13):

Registration is unsuccessful if

Ndata
2 2
E ESqrMahalDiSt (Xpi » ¥Yp;s Exz’; E}fg' + o'ma.tchla a, Ra t) 2 Xpos_thresh_ﬁna.l

i=1

Ndata

Z PPN 2

OR ESqusoAngRes (Xn;-: ¥Yn;) K, R) > Xang_thresh_ﬁnal
i=1
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the D-IMLP algorithm will be referenced and not repeated here. Algorithm 5.1 sum-
marizes the D-IMLOP algorithm, and will be referenced throughout this section.
Underlined variables in Alg. 5.1 indicate optional variables that are required when
solving additionally for scale.

The inputs to this algorithm are similar to the inputs to the D-IMLP algorithm.
X and W represent the data points and the statistically mean model shape, respec-
tively, except that now these features must have an orientation component associated
with each position component. w, as before, are the mode weights that represent
the statistics associated with the model shape. The measurement-error covariances
associated with the data points and model shape are represented by 3, and Xy,
respectively, and surface-model covariances for the data points and model shape are
represented by Xsx and Xgy, respectively. As with D-IMLP, ¥y and X are assumed
to be generated from an isotropic Gaussian with SD 1 x 1 x 1 mm?3. This default value
can be modified by the user based on requirement. The orientation noise is assumed
to be drawn from an isotropic Fisher distribution with a default circular SD, o¢irc_geg,
of 2°. This value can also be modified by the user based on the application.

An initial transformation consisting of an estimated rotation, translation, and,
optionally, scale, and an initial set of shape parameters to define the initial shape,

which we set to 0 or the mean shape, must be specified. The orientation noise

147



CHAPTER 5. D-IMLOP ALGORITHM

concentration parameter, &, is initialized based on ogirc_geg in radians:

mw
Ocirc_rad = Ocirc_deg T oA
180
5.7
1 57)
Ko = —
Ocirc_rad

The remaining input parameters will be discussed as they are encountered in the
equations seen in the algorithm (Alg. 5.1) with the exception of those that have
already been covered in Alg. 4.1. The output of the algorithm is a final transform
that aligns the data points to the final deformed shape, defined by the final set of
shape parameters.

The convergence criteria for D-IMLOP are identical to those of D-IMLP. Until
convergence, every iteration of D-IMLOP computes the correspondences between the
oriented data points and the current orientated model shape. After correspondences
are found, the match uncertainty term for the position component of the matched
points is updated as described in Alg. 4.1. In addition, a threshold, Oinresh, for the
orientation component of the matched points is updated using the SD of g, and the

circular SD, 6

of the average orientation error between inlying matched points.

Ocirc?

Fn: Rn, < coS(Ohresh) (5.8)

is used in addition to x3,., to identify outliers in the orientation and position com-

ponents of the matched points, respectively. First, correspondences are tested for
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outliers in the position component, and correspondences that are identified as inliers
are additionally tested for outliers in the orientation component. This is reasonable
since points sampled from surfaces facing opposite directions can have low match error
in the position component, but would have an extremely high error in the orientation
component. Points that pass both these tests are marked as inliers.

The remaining noise-model updates before registration are identical to those in
Alg. 4.1. An additional update is made is made post registration in order to update
the concentration of orientation error, x, which is estimated using an approximation

to its maximum likelihood estimate:*?

R(3— R?)
KR~N—
1—R?’
ndat.a ndata
h T .f T ’
where Vn, RXp, —i— Rx,,
nda.ta i—1
Ndata (5.9)
[
a= Z 5. - [[Rex 1||
Ndata Mdata
, 1
X, = Xp, E X, y, . E Vp,
P Pi 1 Pis
P : rn»dal;a. i1 : p I nda.ta o1 !

where w weights the relative importance of the orientation and position data terms
used to estimate k. Both position data and orientation data are used to estimate
the distribution of orientation match errors because it is often possible to find good
orientation matches for any given orientation for a closed shape model.’? An extreme
case example is a sphere, where any orientation of the shape would result in nearly

perfect orientation matches. Therefore, estimating x based only on the orientation

149



CHAPTER 5. D-IMLOP ALGORITHM

component of matches would progressively over-estimate x by allowing it to grow
extremely large.? This can result in geometrically inconsistent matches, and to pre-
vent this, rotational misalignment is represented in both the orientation and position
components of the matched points when computing R. By default, the orientation
and position components are equally weighted using w = 0.5. The user can, however,
increase or decrease this value in the interval [0, 1] based on whether the application
allows for low or high confidence in the orientation component, respectively. It may
also be desirable to use an alternate formulation for R that restricts the effect of

position errors to only decrease orientation confidence:®?

Ndata Ndata

_ ) 1 Ndata ) T ) 1 —w Ndata ) T ) w Ndata , T .
R = min ( > IRy, > Fu "Ry, + - > v, "Rx;, | . (5.10)

i=1 i=1 i=1

Once convergence or termination has been reached and a final registration com-
puted, two chi-square tests are used to determine whether the registration produced
is successful or unsuccessful. The first test, shown in Step 18 of Alg 5.1, is identical to
the test used in D-IMLP (Eq. 4.11). However, this test only evaluates the quality of
matches based on the positional components. Since there is an additional orientation
component in D-IMLOP, an additional test is performed to evaluate the quality of
matches based on the orientation components if the registration is not rejected based
on positional components. To evaluate whether the orientations of corresponding

points are consistent, a 2D wrapped-Gaussian approximation to the Fisher distribu-
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tion is used to convert the noise model for the orientation residuals to Gaussian form
in order to leverage the chi-square test with 2nq,¢, DOF.

A wrapped-Gaussian with zero mean has the form

1 = (6n-+27k)2
St (5.11)

o 27Tk:

—00

and in its approximation of the Fisher distribution, 0, = cos™! (y,RXy,) is the angular
residual between %, and y, and o ~ % is the variance of the Fisher noise model.
Under the assumption of correspondence and a wrapped-Gaussian approximation of
Fisher noise, the sum of square angular residual errors between the orientations of
matched points can be assumed to be distributed as the sum of squares of 2ngata
independent wrapped-Gaussian distributions. Therefore, the sum of square angular

residual has a chi-square distribution with 2ng.., DOF and a registration can be

rejected by comparing the sum of square angular residual errors over all corresponding

pairs, (XZ ) Y'L) )

Ndata Ndata

Z ESqusoAngRes (inuynia R, R) = Z K (COS_I (ynzTRinz»

i=1 i=1

? (5.12)

to the value of the chi-square inverse CDF with 2ng4..2 DOF at some probability, p,
denoted by chi2inv(p, 2ngat.). If a registration is not already rejected based on the

sum of square Mahalanobis distances computed over all (x;,y;), then the registration
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can be rejected if

Ndata

Z ESQTISDAHERES(inuwa K, R) = ChiQinV@: Qndat&) = Xgng_thresh_ﬁnal& (513)

i=1

ensuring that the angular residual remains within [0, 27). If the registration passes

both tests, then the registration is successful.

5.3 Correspondence phase

In this section, the implementation of the correspondence phase of the D-IMLOP
algorithm is explained. In the correspondence phase, D-IMLOP computes the most
likely oriented match on the current model shape for each data point by minimizing
the match error function of Eq. 5.4. For the implementation of D-IMLOP, Eq. 5.4
is rewritten with the addition of an extra x term to ensure that Ep_mrop is always
positive (see™ for justification):

Ep_mior(x,y, 2%, 2y, R, t) = (5.14)
5.14

(y — Rx — t)T(RIZ,RT + ;) "}y — Rx — t) + k(1 — y,R%,).

As in the correspondence phase of D-IMLP, the main difference here from IMLOP
is that the oriented matched points, y, lie on a shape that changes at every itera-

tion. The PD-tree construction and search strategies are also similar to that of IMLP,
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with differences stemming from the additional orientation component of the features.
Therefore, directional PD-trees are used for D-IMLOP which contain additional pa-
rameters within each node for orientation information. This PD-tree is identical to
the PD-tree used in the implementation of IMLOP,%? and therefore, details of its
construction and search strategies will not be repeated here. The difference, as in
D-IMLP, is that the PD-tree is updated at each iteration, as described in Sec. 4.3, in

order to incorporate the deformations in the model shape at each iteration.

5.4 Registration phase

Once correspondences on the current model shape are found, the deformable reg-
istration cost function for D-IMLOP (Eq. 5.6) is minimized with respect to the data
transformation parameters as well as the model shape parameters to compute the
transformation and shape parameters that best align the correspondences. As with
the match error function, the deformable registration cost function is rewritten to
ensure that it is always positive:

) 1 Ndata B
T= 3*{}?1]1111 (§ Z (Tssm(¥piss) — Rxp, — t)T(REx RT) !(Tssm (¥pi»s) — Rxp, — t)
s i=1

Ndata

N, 1 =
3 - SaRt) + 13 112).
i=1 Jj=1

(5.15)
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If, instead, a similarity transform is computed between the data points and the
corresponding oriented matched points on the current model shape, then the cost
function changes slightly to incorporate the scale factor, a:

Ndata
T = argmin (§ Z (Tssm(¥p,,s) — aRxp, — t)T (RERT)™!

[(‘I‘?R?t'] ,8 i=1

Ndata 1

A A = 2
(Tssm(YDw S) - G'R*Xpar - t) +K Z (1 - YmRXn:-) + 5 Z “33'”2) :

i=1 j=1

(5.16)

As in the registration phase of D-IMLP, before this minimization is performed, barycen-
tric coordinates of the matched points are computed to find the vertex weights, u(7),
for j = 1,2,3, for each matched point (Eq. 3.9). These u) are required during
optimization to compute the deformed matched point, Ty (yp,,s), as the shape is
recomputed for different values of s.

Both these objective functions can be optimized by computing gradients with re-
spect to the optimization parameters, and applying a nonlinear quasi-Newton based
optimizer. In order to do this, the variables being optimized need to be reparametrized
as in the optimization for D-IMLP. Specifically, the constraints of the rotation matrix,
that is, RTR = I and det(R) = 1, are enforced using Rodrigues’ parameterization,
which represents rotation as a 3-vector, r = [ry, 7y, 7,].*® The direction and magni-
tude of r signify the axis and angular extent of rotation, respectively. Further, the

transformation T(xp,,) is re-expressed in the reference frame of Y as T(y,,,) in order to
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keep all transformation in the same space. The deformable registration cost function

of Eq. 5.15 can then be re-written as

Ndata
T = argmin (Z (Cpi + Cni) + Cshape) . (5.17)
[r,t],s i—1

where
Ts—1 ~Tre T
Coi=2zi X2 , Ch=k(l-3,RX,) and Cgpape =5"s,

Z; :R(r)T(Tsm(yp“ s) — R(r)xp, — t) (5.18)

:R(F)T(Tﬁ-ﬁm(ypw S) - t) — Xp;-

R(r) is the 3 x 3 rotation matrix corresponding to the Rodrigues’ vector, r (defined

previously in Sec. 4.4). Similarly, Eq. 5.16 can be re-written as

Mdata
T = argmin ( > (Coi+ Cuwi) + cshape) , (5.19)
[a,rt],s i1

with a slight modification in the C}; term in Eq. 5.18, so that

Cpi = ziTE;ilzi , Chi=r(1-— jfg;R;im) and Cgpape = sTs,
(5.20)

Zi = R(r)T(TSSIﬂ(ypws) - t) — (Xp;.

Next, the gradient, VC, of the deformable registration cost function of Eq. 5.17

with respect to the transformation parameters [r,t] and the deformable shape pa-
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rameters, s, is discussed. As for D-IMLP, VC is a stacked vector with the data
transformation parameters located on top of the deformable shape parameters, and
Jap 1s used to express the Jacobian of an expression, a, with respect to variable, b.

Using these notations, VC is expressed as:

VC =Y (VCyi+ VCui) + VCinape (5.21)

=1
T
vopi = [JCpivziJziar ) JCpi,Zz'JZi7t ) JC’pi,ZiJzz‘,S] ) where

T -1
JCpi,Zi =2z;" Xy

_ |OR(r)T OR(r)*
Jaor = or, (Tssm(YDw s)—t) , or, (Tssm(YPiv s)—t),
OR(r)T
ai,z) (Tssm(}’pm s) —t)
Toe= R(T (5.22)

']ZZ‘,S = Jzi:TSSm(ypi7S)JT55m(ypizs)’s
_ T
Jzistsm()’piaS) - R<r>

3
JTSSm(ypi,s),S - Z MZ(])JTssm(vij),s),S
j=1

W WP WP
TP = W1 WE o Wy, ]

VCui=[Joyr, 0, 01T (5.23)
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S OR(M)T mOR(r)T L OR(D)T
JC““" = _K’ygi aE. ) Xn; 3 — IT; 6E') Xn; _K'yg,- 6&‘) Xn;
T Y z
and
vcshape = [0 , 0, 25T] T (524)

The partial derivatives and Jacobians introduced here are identical to those intro-
duced in Egs. 4.19 and 4.20. The gradient, VC, of the deformable cost function of
Eq. 5.19 with respect to the transformation parameters [a,r,t] and the deformable
shape parameters, s, is almost the same as VC defined in Eqgs. 5.21, 5.22, 5.23, and

5.24, with an additional component in VC,; so that

VC]H' - [']CpisziJZhT 3 JCp:',ZiJZi,t 3 ']Cpiszi‘]zha 3 ‘]Cpx',zi‘]zi,s} T: (525)

where the new term J;, , turns out to be

tha — _Xpi. (526)
The VCh;i and VCghape terms simply gain additional zero components so that
VCui=[Jcpr,0,0,07T (5.27)
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and
VCehape = [0, 0, 0, 25T T, (5.28)

As with VC computed for the deformable registration cost function of D-IMLP,
VC computed here is also dependent on both the number of components in the data
transformation parameters and the number of shape parameters. Therefore, the total
size of VC is either 6 + number of shape parameters when the data transformation
is a rigid transformation, or 7 4+ number of shape parameters when the data trans-

formation parameters also include scale in the case of a similarity transformation.

5.5 Experimental results and discussion

The experimental design for D-IMLOP was identical to that of D-IMLP. Therefore,
the reader is directed to Sec. 4.5 for details about the experiment design and the
motivation for each experiment. However, additional details introduced due to the
added features of D-IMLOP will be specified here. For instance, the noise model used
to generate noisy orientation data, which was not described in the previous chapter
since D-IMLP does not make use of orientation information, will be described for

each experiment.
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5.5.1 Sample size experiment

The same setup used and data generated for the experiment designed to evaluate

D-IMLP (Sec. 4.5.1 is used here to evaluate D-IMLOP.

5.5.1.1 Experiment 1: Isotropic position noise

As in the previous chapter, the noise model for positional data in this experiment
is isotropic with SD of 1 x 1 x 1 mm?. For orientation noise, an isotropic noise model
with SD of 2° was used. D-IMLOP produced smaller errors compared to D-IMLP
in recovering the shape and registering the sampled points to the recovered shape
for the different number of samples due to the added information provided by the
orientation component of the sample points (Figs. 5.1). In fact, all registration trials
resulted in TREs less than 1mm (Table. 5.1), with TREs decreasing further with
increasing number of sample points (Fig. 5.2) As with D-IMLP, the residual error
produced by D-IMLOP showed correlation with the TRE (Fig. 5.4). Therefore, using
empirically chosen thresholds such that there were no false positives, D-IMLOP was

able to detect correct registrations with some success (Table. 5.1).

5.5.1.2 Experiment 2: Anisotropic position noise

An anisotropic noise model with SD 1 x1x2mm? was used for positional noise. For
orientation noise, the parameters were the same as in Exp. 5.5.1.1. As in the results

from D-IMLP, errors for anisotropic positional noise were slightly higher than those
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Figure 5.1: Sample size experiment: translation (left) and rotation (right) errors
produced using, from top to bottom, 1000, 1500 and 2000 data points sampled from
the pelvis model in Exp. 1 (Sec. 5.5.1.1)
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Figure 5.2: Sample size experiment: increasing TSE (top) and TRE (bottom) with
increasing number of sample points in Exp. 1.
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Figure 5.3: Sample size experiment: translation (left) and rotation (right) errors

the pelvis model in Exp. 2 (Sec. 5.5.1.2)

produced using, from top to bottom, 1000, 1500 and 2000 data points sampled from
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Figure 5.4: Sample size experiment: residual errors compared against TRE using
2000 sample points in Exp. 1 (left) and Exp. 2 (right). The two measures exhibit
correlation in both experiments 1 and 2 with correlation coefficients of 0.96 and 0.94,
respectively.
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Table 5.1: Sample size experiment: percent successful registration runs, i.e., runs
producing TREs less than 1 mm and, in parentheses, percent successful runs correctly
detected as successful using residual errors.

# samples D-IMLP (%) D-IMLOP (%)

Experiment 1 1000  73.33 (100.00) 100.00 (66.67)
1500  76.67 (86.96)  100.00 (63.33)

2000  80.00 (100.00) 100.00 (66.67)

)

)

Experiment 2 1000 56.67 (100.00
1500 46.67 (100.00
2000 56.67 (100.00

86.67 (100.00
96.67 (100.00
83.33 (88.00)

R —

with isotropic noise (Fig. 5.3). However, a majority of the registrations performed
were able to produce successful registrations (Table. 5.1). Using empirically found
thresholds, D-IMLOP is more successfully able to use the residual errors produced to

correctly classify successful registrations than in the previous experiment (Table. 5.1).

5.5.2 Regularization term experiment

As with D-IMLP, the cost function that is minimized to compute a registration
using D-IMLOP (Eq. 5.6) contains an L2 regularization term, %E?; ||3j||§. The
effect of this regularization term is again evaluated by computing registrations without
this term on the data generated for Exp. 5.5.1.1 using 1500 sample points. Results

showed that removing the regularization term started to show a deteriorating effect on
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TRE with and without
regularization
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Figure 5.5: Regularization term experiment: registrations produced by D-IMLOP
without the regularization term showed deterioration with increasing shape parame-
ters.

results produced by D-IMLOP as the number of shape parameters increased (Fig. 5.5).

Therefore, as the optimization becomes harder, the regularization term allows D-

IMLOP to generalize better.

5.5.3 Noise model experiment

5.5.3.1 Experiment 1: Varying isotropic position noise

As in D-IMLP, 5 isotropic noise models with SDs of 1 x 1 x 1 mm?, 2 x 2 x 2mm?,

3x3x3mm? 4x4x4mm3 and 5 x 5 x 5mm? for position noise were used.
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Figure 5.6: Noise model experiment: a general trend of increasing TRE as the
uncertainty in the sample points increases. Note that errors are increasing with
increasing modes because for this experiment the number of modes used to estimate

the shapes equals the number of modes used to simulate a new shape from which
points were sampled.
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Figure 5.7: Noise model experiment: residual errors compared against TRE using
500 sample points with 2 x 2 x 2mm?® SD positional noise and 2° SD angular noise
in Exp. 1 of the noise model experiment (Sec. 5.5.3.1). The two measures exhibit
correlation with correlation coeflicient of 0.87.
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An isotropic noise model with SD of 2° for orientation noise was used. As with

D-IMLP, D-IMLOP showed a general trend of increasing TRE as the SD of noise
increases (Fig. 5.6). However, the TREs produced by D-IMLOP were lower than
those produced by D-IMLP. The residual errors were again found to be strongly
correlated with the TRE, which again can be used to distinguish between successful

and unsuccessful registrations (Fig. 5.7).

5.5.3.2 Experiment 2: Varying anisotropic position noise

Anisotropic noise models with SDs of 1 x 1 x 2mm?, 2 x 2 x 3mm?, 3 x 3 x 4mm?,
3 x3x5mm?, and 4 x 4 x 5 mm? for positional noise were used. For orientation noise,
the parameters were the same as in Exp. 1. Results from this experiment show the
same trends as those for isotropic noise (Fig. 5.8), with residual errors again showing

strong correlation with the TRE (Fig. 5.9).

5.5.3.3 Experiment 3: Varying orientation noise

In the third experiment, one isotropic noise model and one anisotropic noise model
with SDs of 1x1x1mm? and 1x1x2mm?, respectively, for positional noise were used,
and orientation noise models with SDs of 2°, 4°, 6°, 8 and 10° for each positional
noise model were used. Results show that changing angular noise does not affect
registration results using D-IMLOP significantly since the large number of samples

overwhelms the small change in the noise model (Fig. 5.10). D-IMLOP was also com-
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Figure 5.8: Noise model experiment: a general trend of increasing TRE as the
uncertainty in the sample points increases. Note that errors are increasing with
increasing modes because for this experiment the number of modes used to estimate
the shapes equals the number of modes used to simulate a new shape from which
points were sampled.
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Figure 5.9: Noise model experiment: residual errors compared against TRE using
500 sample points with 2 x 2 x 3mm?® SD positional noise and 2° SD angular noise
in Exp. 2 of the noise model experiment (Sec. 5.5.3.2). The two measures exhibit
correlation with correlation coeflicient of 0.88.
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Figure 5.10: Noise model experiment: mean TREs produced by D-IMLP (top)
and D-IMLOP (bottom) in Exp. 3 show that small changes in orientation noise do
not have large influence on registration result. Note that the errors are increasing
with increasing modes only because for this experiment the number of modes used to
estimate the shapes equals the number of modes used to simulate a new shape from

which points were sampled.
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Figure 5.11: Noise model experiment: residual errors compared against TRE using
500 sample points with 1 x 1 x 1 mm?® SD positional noise, 4° SD angular noise (top),
and 1 x 1 x 2mm? SD positional noise, 8° SD angular noise (bottom) in Exp. 3 of the
noise model experiment. The two measures exhibit correlation for both isotropic and
anisotropic position noise with correlation coefficient of 0.91 and 0.92, respectively.
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Figure 5.12: Noise model experiment: residual errors compared against TRE using
500 sample points with 1 x 1 x 1 mm?® SD positional noise, 4° SD angular noise (top),
and 1 x 1 x 2mm? SD positional noise, 8° SD angular noise (bottom) in Exp. 3 of the
noise model experiment. The two measures exhibit correlation for both isotropic and
anisotropic position noise with correlation coefficient of 0.72 and 0.78, respectively.
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pared to D-IMLP, which was also unaffected by the changing orientation noise models
since does not take orientation information into consideration. However, D-IMLP reg-
istration trials with isotropic positional noise produce slightly lower TREs than those
with anisotropic noise, as was seen in the previous chapter (Sections 4.5.3.1, 4.5.3.2).
Errors produced by D-IMLOP were smaller than those produced by D-IMLP due
to the added orientation information. However, errors produced by both algorithms

were correlated with the TRE (Figures 5.11, 5.12).

5.5.3.4 Experiment 4: Noise parameter sweep

In the final experiment, the sample points were generated with a fixed noise model
for both position and orientation components with SDs 2 x 2 x 4 mm? and 10°, respec-
tively. However, it was assumed that this noise model is unknown to D-IMLOP. How
the anisotropy is added to the orientation noise is covered in the next chapter (Ch. 6)
since D-IMLOP cannot make anisotropic orientation noise assumptions. A hyper-
parameter sweep was then performed and the D-IMLOP algorithm was deployed with
different isotropic and anisotropic position and isotropic orientation noise assump-
tions to evaluate how well D-IMLOP performs with inaccurate noise assumptions.
This experiment shows that D-IMLOP performs better when the noise assumption
is optimistic, but as the noise assumption becomes more pessimistic, its performance
degrades. Therefore, TREs for D-IMLOP do not show stabilization with increasingly

conservative noise estimates (Fig. 5.13).
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Figure 5.13: Noise model experiment: parameter sweep results show that D-IMLOP
produces lower errors when the noise assumptions are optimistic, and errors increase
as noise assumptions become more pessimistic.
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5.5.4 QOutlier experiment

Sample points for this experiment were generated with isotropic noise in position
data with SD 1 x 1 x 1mm? and anisotropic noise in orientation data with 2° SD.
Outliers were generated by perturbing the position and orientation components of
different amount of samples in the range [2,5]mm and [2,5]°, respectively. Three
experiments were designed where different numbers of samples, 0%, 10%, and 20%,
were perturbed. Outliers were identified and rejected using the chi-square test, as
described earlier in Sec. 5.2, as well as in Billings et al.>»>®* For position data, a
match is rejected if the square Mahalanobis distance is greater than the value of the
chi-square inverse CDF with 3 DOF at p = 0.95. Since the square Mahalanobis
distance normalizes each match residual error by its variance along each dimension,
the sum of the square Mahalanobis distance over all data points, ngata, is distributed
as a chi-square distribution with 3ng,:, DOF.1%7 Similarly, for orientation data, a chi-
square test with 2ng,¢, DOF is applied by converting the Fisher noise model for the
orientation match residual into Gaussian form.!!4

As with D-IMLP, D-IMLOP is able to perform well even in the presence of outliers.
Although the performance is slightly worse in the presence of outliers, D-IMLOP is
able to detect them, as explained in Sec. 5.2, and limit their effect on errors. As
shown in Fig. 5.14, the errors from 10% and 20% outliers in the sampled points are
comparable. Further, despite increasing number of outliers, the residual errors are

still correlated with the TREs and, therefore, able to discriminate between successful
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Figure 5.14: Outlier experiment: mean TRE with different number of outliers
using D-IMLOP. Note that errors are increasing with increasing modes because for
this experiment the number of modes used to estimate the shapes equals the number
of modes used to simulate the deformed shape from which points were sampled.
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Figure 5.15: Outlier experiment: residual errors compared against TRE using the
right nasal cavity meshes with 0% outliers. The two measures exhibit correlation
with a correlation coefficient of 0.93.
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Figure 5.16: Outlier experiment: residual errors compared against TRE using the
right nasal cavity meshes with 10% (top) and 20% (bottom) outliers. The two mea-
sures exhibit high correlation in both experiments with correlation coefficients of 0.95

and 0.92, respectively.
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and unsuccessful registrations (Figs. 5.15, 5.16).

5.5.5 Scale experiment

The dataset generated in Sec. 5.5.4 with 0% outliers was reused for this experi-
ment. The sample points were scaled by some known amount in the range [0.7,1.3],
as mentioned in Sec. 4.5.5. D-IMLOP is able estimate scale in addition to rotation,
translation, and shape parameters well, outperforming D-IMLP. D-IMLOP also per-
forms better when there is one fewer parameter to optimize over (Fig. 5.17). The
errors produced by D-IMLOP, however, are more irregular than those produced by
D-IMLP. This could possibly be due to a few outliers in the registrations produced by
D-IMLOP due to its inaccurate noise assumptions, as can be seen in the histogram
(Fig. 5.18) showing the distribution of errors produced by our methods. These outliers

can be detected and rejected by D-IMLOP.

5.5.6 Leave-one-out experiment

For this experiment, an isotropic positional noise model with a SD of 1 x 1 x 1 mm?
was used to generate data samples, since the CT volumes used to segment the sinus
structures had a resolution of 1 x 1 x 1 mm?. Further, an anisotropic orientation noise
model with 20° SD was used. D-IMLOP assumed the same noise model as was used

to generate the data.
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Figure 5.17: Scale experiment: additional scale optimization increases TRE as
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Figure 5.18: Scale experiment: errors in scale estimation using D-IMLOP with
increasing number of modes remain stable, and are lower than those produced using
D-IMLP.
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5.5.6.1 Experiment 1: Middle turbinates

The middle turbinate models from the sinus dataset were used to generate sample
points for this experiment. D-IMLOP was able to recover the left out shape and the
transformation offset applied successfully (with mean TRE less than 1 mm) in 88.85%
of the 1749 registrations performed. As the number of shape parameters increased,
shape estimation errors using D-IMLOP quickly stabilized (Fig. 5.19, top) around 15
modes, while registration parameters either remained stable or deteriorated slightly
leading to slowly degrading TREs (Fig. 5.19, bottom). This is likely because the
incorrect noise assumptions cause slower convergence rate with increasing number of
shape parameters. Although, D-IMLOP was outperformed by CPD in recovering the
left out shape, D-IMLOP was considerably faster than CPD. D-IMLOP required only
8.96s average time to converge at its slowest (using 50 modes), while CPD required
40.55s (Fig. 5.20). Again, unlike CPD (Fig. 6.18), error metrics produced by D-
IMLOP show correlation with the TRE, allowing it to accept or reject or assign some

confidence to the registrations produced (Fig. 5.22).

5.5.6.2 Experiment 2: Right nasal airway

The right nasal airway models, also from the sinus dataset, were used to gener-
ate sample points for this experiment. Of the 1749 runs, 94.57% of the D-IMLOP
runs recovered the left out mesh with mean TRE less than 1 mm. As with the middle

turbinate experiment, shape estimation errors show gradual improvement up to about
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Figure 5.19: Leave-one-out experiment: TSE (top) and TRE (bottom) produced
by D-IMLOP compared against that produced by CPD and SSM using the middle
turbinate meshes in the leave-one-out experiment.
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Figure 5.20: Leave-one-out experiment: runtime comparison between CPD, D-

IMLP and D-IMLOP.

15 modes and stabilization beyond 15 modes (Fig. 5.21, top), while registration pa-
rameters either remain stable or deteriorate slightly leading to slowly degrading TREs
with increasing modes (Fig. 5.21, bottom). The reason for this, as in the previous
experiment, is slower convergence rate with increasing number of shape parameters

likely due to incorrect noise assumptions. As before, the residual errors produced

showed correlation with the TRE (Fig. 5.23).
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Figure 5.21: Leave-one-out experiment: TSE (top) and TRE (bottom) produced
by D-IMLOP compared against that produced by the SSM estimate using the right
nasal cavity meshes in the leave-one-out experiment.
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Figure 5.22: Leave-one-out experiment: residual errors compared against TRE
using the middle turbinate meshes in the leave-one-out experiment. The two measures
exhibit correlation with correlation coefficients of 0.65.
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Figure 5.23: Leave-one-out experiment: residual errors compared against TRE
using the right nasal cavity meshes in the leave-one-out experiment. The two measures
exhibit correlation with correlation coefficients of 0.75.
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5.5.6.3 Experiment 3: Right nasal airway with outliers

Asin Sec. 4.5.6.3, D-IMLOP is evaluated on more realistic data containing outliers.
This experiment is set up similarly as the previous experiment (Sec. 5.5.6.2), but with
10% and 20% of the sample points perturbed to simulate outliers. The perturbation is
similar to that in Sec. 5.5.4, and outliers are detected using the techniques described in
Sec. 5.2. Results show that adding outliers did not have a large effect on registration.
Results were comparable with 10% outliers and only slighly worse with 20% outliers
in the sample points. Despite up to 20% outliers in the data, mean TREs for all

modes remained below 1 mm (Fig. 5.24).

5.5.7 Partial data experiment

5.5.7.1 Experiment 1: Pelvis

Anisotropic noise with SD 1 x 1 x 2mm? and 10° was used to generate sampled
position and orientation data, respectively, from a partial CT scan of the pelvis. An
instance of the full pelvis is then estimated by D-IMLOP using these sampled points
and a generous noise assumption with SD 2 x 2 x 3mm? and 30° for position data
and orientation data, respectively. D-IMLOP results follow similar trends as D-IMLP,
showing big improvement in both transformation parameters and TSE from 0 to 10
modes (Fig. 5.25), but stabilizing or only showing gradual improvement in errors

beyond 10 modes due to slower convergence rate with increasing number of shape
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Figure 5.24: Leave-one-out experiment: TRE produced by D-IMLOP with 0%, 10%
and 20% outliers in the data points sampled from the right nasal cavity meshes in
the leave-one-out experiment.

parameters. The trend followed by the TSE is similar to that followed by the error
between the left out shape and the SSM instance of the left out shape (Fig. 5.25),
with the mean TRE falling below 2mm with only 10 modes (Fig. 5.25), which is
the desired accuracy for pelvis registrations. The improvement in these errors is also
reflected in the residual errors produced by D-IMLOP (Fig. 5.27, top), although the

correlation between these errors is weaker than in previous experiments.
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Figure 5.25: Partial data experiment: TSE (top) and TRE (bottom) produced by
D-IMLOP compared against that produced by the SSM estimate using the pelvis
meshes.
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5.5.7.2 Experiment 2: Right nasal airway

Anisotropic noise with SD 0.5 x 0.5 x 1 mm?® and 10° was added to position data
and orientation data, respectively, since this produced point clouds that resembled re-
constructions obtained from in-vivo data using the method described in the chapter 7.
The left out nasal cavity was then estimated using these sampled points and a noise
model assumption with SD 1 x 1 x 2mm?® and 30° for position data and orientation
data, respectively. Due to the increased complexity of the right nasal airway models,
results from this experiment showed slightly different trends. Other than transla-
tional error, all errors stabilized quickly. Translational error, however, continued to
gradually degrade with increasing modes (Fig. 5.26). The degradation in translational
error might stem from the fact that the nasal cavity is a roughly cylindrical passage.
Therefore, translations along the z-direction yield several locations where both the
position and orientation components produce good matches leading to convergence
at suboptimal local minima. The overall TREs, however, were stable with the mean
TRE remaining either below or near 1 mm, and showed weak correlation with the

residual errors (Fig. 5.27, bottom).
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Figure 5.26: Partial data experiment: TSE (top) and TRE (bottom) produced by
D-IMLOP compared against that produced by the SSM estimate using the right nasal
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Figure 5.27: Partial data experiment: residual errors compared against TRE using
the pelvis (top) and right nasal airway (bottom) meshes. The two measures exhibit
weak correlation with correlation coefficients of 0.49 in both experiments.
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5.5.8 Failure detection experiment

5.5.8.1 Experiment 1: Known noise

This setup for this experiment is the same as the setup for the leave-one-out exper-
iment with right nasal airway data (Sec. 5.5.6.2). As in Sec. 5.5.6.2, this experiment
assumes the same position noise SD as was used to generate the data samples. How-
ever, since D-IMLOP cannot accommodate anisotropic orientation noise, it assumes
isotropic orientation noise with the same SD as the anisotropic noise used in data
generation. The chi-square tests using E, at p = 0.95 on the registrations produced
in this experiment show that the test is able to detect almost all successful registra-
tions (Fig. 5.28, top). However, over half of the failed registrations are also labeled
successful. Using the additional E, test along with the E, test, about 10% of the un-
successful registrations are incorrectly labeled as successful, although more successful
registrations are also incorrectly labeled as unsuccessful (Fig. 5.28, bottom). However,
this is a promising result because such systems are preferred more pessimistic rather
than optimistic because labeling an incorrect registration as successful can mislead
surgeons during an intervention and cause harm to the patient. On the other hand,
if a successful registration is labeled unsuccessful, the system can simply attempt to
produce a better registration. Further, both E, and E, show correlation with the
TRESs, meaning that confidence can be assigned to computed registrations based on

these values (Fig. 5.29).
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Figure 5.28: Failure detection experiment: confusion matrix using E, alone (top)
and both E, and E, (bottom).
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Figure 5.29: Failure detection experiment: both E, (top) and E, (bottom) are
correlated with the TRE with correlation coefficients of 0.73 and 0.62, respectively,
when the noise in the data is known.
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5.5.8.2 Experiment 2: Unknown noise

This experiment is set up as described in Sec. 4.5.8. The anisotropic noise in the
sampled points has a SD of 0.5 x 0.5 x 0.75mm?® and 10° in the position and orien-
tation components, respectively. The anisotropy in the orientation component will
be explained in the next chapter. D-IMLOP makes more generous noise assumptions
with SDs 1 x 1 x 2mm? and 30° for position and orientation data, respectively. As
with D-IMLP, in this more realistic scenario, the performance of the chi-square tests
at p = 0.95 is worse than in the previous experiment (Sec. 5.5.8.1). As in the previous
experiment, the algorithm is able to correctly detect almost all successful registrations
using E,,, but is not able to reject unsuccessful registrations (Fig. 5.30, top). With the
additional E, tests, more unsuccessful registrations are correctly rejected than when
only E, is used. However, unlike the previous experiment, the percentage of success-
ful registrations incorrectly labeled as successful is still very high (Fig. 5.30, bottom).
This difference most likely stems from the incorrect noise assumptions made by this
experiment. Further, although E, and TRE are correlated to each other, E, and

TRE are not, making it difficult to assign confidence to the registrations produced

(Fig. 5.31).
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Figure 5.30: Failure detection experiment: confusion matrix using E, alone (top)
and both E, and E, (bottom).

194



CHAPTER 5. D-IMLOP ALGORITHM

DIMLOP
12000 . : :
—TRE (mm) 16
10000 '
11.4
8000 | | E
o
6000 11 ~
. y
4000 198 =
10.6
2000 | 04
0 . . . . 0.2
0 100 200 300 400 500
Registration trials sorted by TRE
DIMLOP
1600 . : :
=——=TRE (mm)
1400 —E, 11.6
1200 F 14
12 &
o 1000 1 £
800 | LLI
| ’ ‘ r THL {08 |D_C
600 I | | |l o

400 0.4
200 ' ' ' ' 0.2
0 100 200 300 400 500

Registration trials sorted by TRE

Figure 5.31: Failure detection experiment: although E, is weakly correlated with
the TRE (top) with a correlation coefficient of 0.58, E, does not show correlation
with the TRE (bottom) when the noise in the data is unknown.
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5.5.9 Non-medical data experiment

5.5.9.1 Experiment 1: Human expression

Points were sampled from meshes in the test set with anisotropic position noise
and orientation noise with SD 1 x 1 x 2mm? and 10°, respectively. D-IMLOP was
executed with a slightly more relaxed noise assumption, assuming that the position
and orientation noise model has a SD of 2 x 2 x 4mm?®and 20°, respectively. As
with D-IMLP, D-IMLOP was able to deformably register the mean face mesh to
points sampled from test faces to produce relatively low TREs and TSEs (Fig. 5.32).
However, errors stabilize after 20 modes and do not show further improvement. The
residual errors produced by D-IMLOP correlate with the TRE, indicating that D-

IMLORP is able to handle such data (Fig. 5.34).

5.5.9.2 Experiment 2: Human pose

For this experiment, points were sampled with the same anisotropic position and
orientation noise model as before. D-IMLOP was, again, deployed with a more re-
laxed noise assumption where the SD of the position and orientation noise model was
assumed to be 2 x 2 x 4mm and 30°, respectively. The search space for shape param-
eters, s, in this case was restricted to +1 SD. D-IMLOP failed to produce meaningful
reconstructions and alignments with this dataset, as is clear from the high TREs and

TSEs (Fig. 5.33). As explained in the previous chapter, this is expected since the lim-
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Figure 5.32: Leave-n-out experiment: TSE (top) and TRE (bottom) produced by
D-IMLOP.
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ited data available and perhaps the linearity assumptions made by PCA-based models
are not sufficient to explain the complex variations observed in different poses. How-
ever, the weak correlation between residual errors and TREs produced by D-IMLOP
could be an indication that with sufficient data, the performance of D-IMLOP could

show improvement (Fig. 5.34).

5.6 Concluding remarks

A novel deformable variant of IMLOP, known as the deformable iterative most
likely orientated point (D-IMLOP) algorithm, is presented in this chapter. D-IMLOP
can accurately compute an alignment between a mean shape and data samples while
simultaneously deforming the mean shape to estimate the shape represented by the
data samples. Its accuracy increases as the number of data samples increases, and
its performance only degrades slightly with increasing number of outliers. CPD out-
performs D-IMLOP in terms of errors, but is about 5-8x slower than D-IMLOP in
terms of runtime. Further, CPD’s memory requirements become prohibitively large
very quickly, whereas D-IMLOP does not suffer from this problem. Further, errors
produced by CPD do not correlate well with ground truth error, whereas those pro-
duced by D-IMLOP do, allowing it to make confidence assignments to the registrations
based on these errors. However, D-IMLOP is only capable of making isotropic noise

assumptions in the orientation component, which is often not able to model noise in
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Figure 5.34: Leave-n-out experiment: residual errors compared against TRE show
that the two measures exhibit high correlation using the facial expression data with a
correlation coefficient of 0.81 (top), and weak correlation using the human pose data
with a correlation coefficient of 0.51 (bottom).

200



CHAPTER 5. D-IMLOP ALGORITHM

data from real world applications which may contain anisotropic noise.

5.7 Contributions

The contributions of this chapter include:

1. The development, implementation and evaluation of the deformable iterative

most likely oriented point (D-IMLOP) algorithm” which

(a) incorporates deformable shape transformations using SSMs within a prob-
abilistic registration algorithm that uses point features with unconstrained

noise along with orientation features with constrained or isotropic noise

(b) performs an efficient implementation of PD-tree update to accommodate

a deforming model shape

(c¢) computes a gradient-based solution to the optimization problem using an

off-the-shelf nonlinear box-constrained BFGS quasi-Newton optimizer®’

(d) incorporates a mechanism for autonomously evaluating a registration in

order to assign confidence to the resulting alignment

5.8 Published work

Material from this chapter appeared in the following publication:
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1. A. Sinha, S. D. Billings, A. Reiter, X. Liu, M. Ishii, G. D. Hager, R. H. Tay-
lor, “The deformable most-likely-point paradigm,” submitted to Medical Image
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Chapter 6

Generalized deformable iterative

most likely oriented point

(GD-IMLOP) algorithm

This Chapter further extends the D-IMLOP algorithm, described in Chapter 5,
drawing inspiration from the generalized iterative most likely oriented point (G-
IMLOP).>® This Chapter describes the generalized deformable most likely oriented
point (GD-IMLOP) algorithm, which, like the G-IMLOP algorithm, incorporates
anisotropic noise models for both the position and orientation components, and can
deformably register oriented features characterized by anisotropic uncertainty in posi-

tion and orientation data. Like the algorithms presented in the previous two Chapters,

D-IMLP and D-IMLOP, GD-IMLOP is also an ICP-based method built on the frame-
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work described in Chapter 3 that incorporates a probabilistic framework to combine
the position and orientation information of the features and deformably registered
them.

As with the rigid algorithm, the anisotropic extension will allow GD-IMLOP to
achieve higher accuracy when registering realistic data that is often characterized by
anisotropic noise in the measured positions and orientations. Anisotropic noise is
present in features extracted from video, since error in the depth direction tends to
be larger, and also in features extracted from volumetric medical images, which tend
to have a lower out of plane resolution. Other sources of anisotropic measurement
uncertainties in medical and non-medical data were previously discussed in Chapter

4, and sources of orientation data were discussed in Chapter 5.

6.1 Probabilistic model

For ease of reference during the development of the probabilistic model for GD-
IMLOP, a brief description of the probabilistic model for GD-IMLOP is repeated
here. G-IMLOP incorporates a probabilistic framework formulated using anisotropic
Gaussian and Kent distributions to model the measurement errors in the position and
orientation data, respectively.5® Similar to the isotropic Fisher distribution that was
used in the previous chapter (Ch. 5), the anisotropic Kent distribution is the analog

on the unit sphere of a multivariate Gaussian distribution with unconstrained covari-
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ance, that is, covariance that may be isotropic or anisotropic. Assuming zero-mean,
independent, identically distributed (iid) error for both the position and orientation
components, the match likelihood function for an oriented data point, x = (xp, Xn),

transformed by a current registration estimate, [R, t], is defined as™

1
fma.tch(x; Y, E: K, 18: ;5{1;;]\/2: R: t) -
V (2m)3 X - e(k, B)

. en)‘.'nRj(n +5 (('?ITRin)2_('?2TR5(n)2) _%(YD_RXD_t)TRE_lRT(yp—RXp—t)

(6.1)

b

where y = (yp,¥n) is an oriented point on the shape model that is assumed to be
in correspondence with the oriented data point, x and X is the covariance matriz
of the positional noise model.®® k, the concentration parameter, B (0 < 28 < k),
the ellipticity parameter, and 4, and 4,, the major and minor axes which define the
direction of the elliptical level sets of the Kent distribution on the unit sphere, together
define the orientation noise model.>®* The major and minor axes are orthogonal to
each other as well as to yn, which is the central direction. The central position is
represented by yp. The ellipticity parameter, 3, controls the amount of anisotropy in
the orientation noise model.>® Larger values of 8 increase the anisotropy, while a value
of 0 reduces the expression to the isotropic Fisher distribution used by the IMLOP
algorithm, described in Chapter 5.>3 ¢(k, ) is the normalizing constant of the Kent
distribution, and consists of a complex expression of modified Bessel functions.!!* In
the correspondence phase of G-IMLOP, this is the match likelihood function that is

maximized in order to find the oriented matched points, y, on the model shape, W.
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One small difference in the formulation of the deformable algorithm is that GD-
IMLOP incorporates generalized Gaussian noise to account for unconstrained noise in
the position component of both the data points and model shape. Therefore, Eq. 6.1

is rewritten slightly differently as:

1
" VEOPRERT + 5| c(x, B) 6.2

. F¥nREntp (31" R&n)*~ (32" Rn)") — 4 (vp—Roxp—t) T (RERT+3,) ! (vp—Roxp—t)

fma.tch(x; Y, Ex; Ey: K, 18: '?1 3 ;]\/2: R: t)
3

where measurement error covariances, ¥, and X, are used to describe the positional
noise model for x and y, respectively. In the correspondence phase of GD-IMLOP,
as in the previous two deformable algorithms, this match likelihood function is max-
imized to find the oriented matched points, y, on the current deformed shape. Simi-
larly, the match likelihood function for each x transformed by a similarity registration

estimate, [a, R, t], where a is the scale variable, can be defined as

1
VEFRERT B s f) (g3

. or¥nR%n+B((11TR%n) "~ (32T Rsn) ) =3 (yp—aRxp—t) T (RERT+y) " (yp—aRxp—t)

fma.tch(x; Y, E: K, ﬁ: ;5{1 3 ;]\/2: a, R: t) =

K

As before, since the two registration problems are similar, the focus of the derivations
will remain on derivations from Eq. 6.2. Technical differences between the two regis-
tration problems will be pointed out wherever necessary. Maximizing the likelihood

function of Eq. 6.2 is equivalent to minimizing its negative log likelihood, producing
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the following match error function:

Ep_mror (X, y, Xx, Xy,k, 3,91, Y2, R, t)
1
_ §(y —Rx — t)T(RE,RT 4+ 2,) " (y — Rx — t) (6.4)

- KynRj'\cn - 18 ((’-’]\/I.I‘];{jcn)2 - (;S/QTRj'\Cn)Q) .

Since the major and minor axes, 4; and 4., are perpendicular to the central
direction, yn, of the matched point, y, this formulation would require recomputing 4,
and 4, for every oriented model point that is tested for correspondence.”® To avoid
this computational inefficiency, Eq. 6.4 can be reformulated to an equivalent match
error function where 4; and 4, are redefined to be perpendicular to the orientation,

Xn, of the data point, x:

Ep_mror (X, ¥, x, By, 8,91, %2, R, t)
1
=5y —Rx— t)TRERT +2,)H(y — Rx — t) (6.5)

~ k§uRn — B (1 TRT9m)" — (%2 RT)").

Using this formulation, 4; and 4, only need to be defined once with respect to the
measured data points, rather than the unknown matched points, and therefore, do
not need to be recomputed for every oriented model point that is tested for cor-

53

respondence.”” This change is able to reduce the computational overhead of the

correspondence phase of GD-IMLOP.
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In the registration phase, G-IMLOP solves for the transformation that maximizes
the total match likelihood function of Eq. 6.1.5 This simplifies to computing the
transformation, T that maximizes the following total match error function with re-

spect to the transformation parameters:®

Ndata
T = argmin a Z (ypi - R“Xpi - t)TRE;IRT(ypi - R‘:X'pi - t)
R \2 i (6.6)

Ndata
= (mignRsn, + B ( (1, "RT9m,)" - (%FRT%J?))) |
i=1

Substituting fiaten from Eq. 6.2 into the total deformable match likelihood func-
tion of Eq. 3.11, the deformable registration cost function for GD-IMLOP can be
derived as:

) 1 Ndata B
T= a[I;;%H]lln (5 Z (Tssm (YPU S) o R‘Xp:' o t)T(REXRT) 1(II\Ssrn (YP:'& S) - R‘:Xpi - t)
otls i=1

Ndata

A A~ ~ -~ A e 1 nm
= (rInR%n, + 8 (51 RT)" = (1 "R™¥0)") ) + 3D ||sj||§) ,
j=1

i=1

(6.7)

where the model shape covariances, 3., are again assumed to be zero since the focus
here is on the derivatives introduced by the shape deformations during optimization.
The redefinition of the major and minor axes, 4; and 4, as defined above for the

correspondence phase is carried through to the registration phase.
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6.2 Algorithm overview

In this section, a high level overview of the GD-IMLOP algorithm is presented
along with pseudocode explaining the registration pipeline. As in the previous two
chapters, details developed along with the G-IMLOP algorithm will not be repeated
in depth here, but will be referenced whenever required. Similarly, ideas already
developed in the previous two chapters will not be repeated here, but referenced
whenever needed. Instead, the focus will be on the new developments introduced
along with the deformable aspect of GD-IMLOP. Algorithm 6.1 provides a summary
of the GD-IMLOP algorithm, and will be referenced throughout this section. Under-
lined variables in Alg. 6.1 indicate optional variables that are required when solving
additionally for scale.

The inputs to GD-IMLOP are, again, similar to both D-IMLP and D-IMLOP.
X and VY represent the data points and the statistically mean model shape with
s initialized to 0, respectively. s can, as mentioned in the previous chapters, be
initialized to different set of values, which would lead to a different initial shape. w
are the mode weights that represent the statistics associated with the model shape,
3¢ and Xy represent the measurement-error covariances associated with the data
points and model shape, respectively, and X, and Xgg represent the surface-model
covariances for the data points and model shape, respectively. As with D-IMLP and
D-IMLOP, 3, and Xy are assumed to be generated from an isotropic Gaussian with

SD 1 x 1 x 1mm?, but the default SD can be modified by the user depending on
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Algorithm 6.1: Generalized Deformable Iterative Most Likely Oriented Point
(GD-IMLOP)

Input : Data points as a point cloud: X = {x;} = {(xp;,Xn;)}

Statistically mean model shape, ¥y, and associated SSM
Measurement-error covariances: Xx = {34}, Xy
Surface-model covariances: Ygx = {Xsx; }, Lsw
Orientation noise-model parameters: {91, }, {92, }

Circular SD of sample orientations: ocirc_deg (default: 2°
Eccentricity of sample orientations: e (default: 0.5
Upper bound on match uncertainty: o2, (default: oo
Chi-square threshold value for position outliers: Y3, (default: 7.81

Outlier variance expansion factor: @exp (default: 9
Initial transformation estimate: [ag, Ro, to), So

Initial orientation noise parameter: {«;,}, {8, }

Output: Final data transformation, [R, t], and shape parameters, s, that align

X with deformed W

1 Initialize transformation: [a, R, t],s < [ag, Ro, to], so
2 Initialize noise model parameters:

{K'i} A {"":’io}a {18%} A {ﬁio —€ n;O }: Jl?na.tch <0

3 while not converged do

4
5

10

if iter == 1 then

Compute initial correspondences on the mean shape (Eq. 3.12):
[ypn E}’;’a ESH] A CMLP(XP:': lIIUa L1, i, 18%': ﬂ/ln ;5/2:': a, R, t)

else

Update PD-tree based on current shape
Compute most likely correspondences on the current shape (Eq. 3.12):

[Yper By Byl ¢ Cmrp(Xp;, Viters Txi + Zsxi + Ommarenls Bw + Ssw,
Ki, 181': ﬁ{l,-: ;5{2,-: a, R? t)

end
Update the match-uncertainty noise-model term (Eq. 4.7):

2 2
Ez‘einlier& ||YP:' - QR“XP«J - t”z 3 o'max)
Compute mean angle between matched normals:
-~ T -
p < Eieinlier& ¥n, R‘Xni

Compute circular standard deviation and update angular threshold:

chim — /2 lnp ; Othresh v Pexp Qgcirc

2 .
O match <— min (

TMinlier

Minlier
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Algorithm 6.1: GD-IMLOP (continued...)

11

12

13

14

15

16
17

18

Identify outliers (Eq. 4.8, 5.8):
(xi,¥i) is an outlier if
EsqrMahalDist (Xp:> Ypi> Zxis s T Tmatchls @ R t) > Xihresh
OR ¥4, T%p, < cos(fihresh)
Update the outlier noise-model terms (Eq. 4.10):
Pexp [|yp: — aRxp, — t||> if (xi,y:) is an outlier,
o {U otherwise.
Set the noise-model covariances for the registration phase:
up ¢ Zi + Bsei + 21, ByF + By, + By, + LI+ 07 el

Update the transformation and shape to align the point cloud and the
corresponding points on the shape (Eq. 6.7 or 6.14):
1

4, R,t] s ¢ argmin (% Dy ((Tssm (Vp:s) — aRxp, — t)T(REGRT)

(Tssm (ypi’ S) - g]‘:{‘XD:' - t)) - E?:ita (K'iymmm
+6: (1. "R"5m)” — (32."R"52.)°) )

2
+% E?i‘l ||3j||2 )

Based on computed s, update the vertices of the model shape (Eq. 3.10):
lIIt‘te-r — Tssm (Vz': S)
Update extents of PD-tree bounding boxes based on Wy, (Sec. 3.2)
iter++
end
Detect registration failure using a chi-square test (Egs. 4.11, 6.12):

Registration is unsuccessful if

Ndata
2 2
E ESqrMahalDiSt (Xpi y Ypis Exz’; E}fg' + o'ma.tchla a, Ra t) 2 Xpos_thresh_ﬁna.l
i=1
Ndata
~ ~ ~ A 2
OR E ESqrAnisoAngRes (Xni s ¥n;, Ki, 183'1 V1is V25 R) 2 Xang_thresh_ﬁna.l
i=1
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the application. Additionally, the major and minor axes, 9; and 4,, representing the
ellipticity of the orientation noise-model must be defined for each data point. The
orientation noise is assumed to be drawn from an anisotropic Kent distribution with
a default circular SD, 0¢irc_deg, Of 2° and eccentricity, e = 0.5. These values can also
be modified by the user based on the application.

An initial transformation with an initial guess for rotation, translation, and, when
applicable, scale, and an initial set of shape parameters must be specified. As men-
tioned before, the initial shape parameters, s is set to 0, which describes the statistially
mean shape. The concentration parameter, &, of the orientation noise is initialized us-
INg Oire deg 1N radians as described in Eq. 5.7, while the ellipticity, 3, of the orientation

noise is initialized using the eccentricity, e, as

=
I
m

(6.8)

SE

k and [ for all data points are initialized to the same value, but this can be modified
by the user by specifying different circular SDs for each data point. The remaining
input parameters will be discussed briefly as they are encountered in the equations
in Alg. 6.1 with the exception of those that have already been covered in Alg. 4.1
and 5.1. The output of the algorithm is the same as the previous two algorithms,
D-IMLP and D-IMLOP, that is, a final transform that aligns the data points to the

final deformed model shape, defined by a final set of shape parameters, s.
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The convergence criteria for GD-IMLOP are identical to the convergence criteria
for D-IMLP and D-IMLOP. Until convergence is achieved, GD-IMLOP computes
correspondences between the oriented data points and the current deformed model
shape at every iteration. After correspondences are found, the match uncertainty term
for the position component of the matched points is updated and the threshold for the
orientation component of the matched points is updated as described in Alg. 4.1 and
5.1, respectively. Outliers are identified using the position component of the matched
points, followed by the orientation component. The remaining noise-model updates
before registration are identical to those in Alg. 4.1. Unlike D-IMLOP, & is not
updated after registration because registration results with and without updates were
comparable, and skipping the updates improves the efficiency of our computations.
However, the framework allows the user to change the setting to add these updates
back.

Once the algorithm converges or terminates and a registration is computed, two
chi-square tests are used to classify the registration as successful or unsuccessful.
The first test that evaluates the registration based on the positional components of
the match points, as shown in Step 18 of Alg. 6.1, is identical to that used in D-
IMLP and D-IMLOP (Eq. 4.11). If the registration passes this test, it is further
evaluated on the orientation components of the matched points. A 2D wrapped-
Gaussian approximation of the Kent distribution is used here to convert the noise

model of the angular residuals to Gaussian form. Once in Gaussian form, the chi-
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square test with 2 DOF' can be used to evaluate the quality of the orientation matches.

The wrapped-Gaussian, repeated here for ease of reference,

o0
1 _ (fnt2rk)?
E e 2052 s
oV 2m f
=—00

now has slightly different 6, and 0% to accommodate the anisotropy of the Kent
distribution. In this case, #,, is a vector containing the angular residual between the
orientation components of corresponding sample points and matched points, and also
of corresponding matched points and the major and minor axes of the elliptical level

sets of the Kent distribution on the unit sphere:

COS_I (yniTR‘in:‘ )

91'1 Sin_l ("’]\/ITRT y n) ’ (69)

sin”! (42 TRTy,)

which implies that @, is minimized if x,, and transformed y,, are aligned as best as
possible; meaning that transformed y,, is as perpendicular as possible to 4; and
due to the orthogonality requirement mentioned earlier (Sec. 6.1). o2 is actually a
covariance matrix, which will be represented by X.

¥ is a 3 x 3 diagonal matrix with each element representing the effective variance
of the wrapped-Gaussian along each of the orthogonal axes, y,, 41, and 4,. As

mentioned in Sec. 5.2, the variance along the y,, direction is approximately % The
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variances along the major and minor axes of the Kent distribution are —— and ——

Kk—2p8 Kk+28°

resulting in

Lo
Y=o nj26 0 |- (6.10)
1
00 )

Therefore, the sum of square angular residual is now

Ndata Ndata

Z ESqrAnisoAngRes ()A(nia S’nm R, /Biu ’Aylm ’3/21'7 R) - Z QniTEi_l‘gni
i=1 i=1
_ - T _ - -~ -
cos! (¥n, TRXx,) Ki 0 0 cos™" (¥n, "R%n,)
Ndata
=Y |sin ' G TR L) | |0 m—28, 0 sin ™! (5, "R yn,) | -
=1
sin™! (32, "Ry, )| |0 0 ki +26;| |sin™" (32, TRTyy,)

(6.11)

and has a chi-square distribution with 2ng4,. DOF. Therefore, a registration that has
not already been rejected based on the quality of the positional component of matches
can be rejected by comparing EggranisoAngRes(Xn; > ¥ni» i, Bis 1,5 2, R) with the value
of the chi-square inverse CDF with 2ng..» DOF at some probability, p, denoted by

chi2inv(p, 2ngata):

Ndata
- ~ ~ ~ ce- 9
E ESqrAnisoAngRes (Xniv Yn,;, Ki, ﬁia Y15 V245 R) > chi2inv (pa 2ndata) = Xang,thresh,ﬁnah
=1

(6.12)

ensuring that the angular residuals remain within [0, 27).

215



CHAPTER 6. GD-IMLOP ALGORITHM

6.3 Correspondence phase

In this section, the efficient implementation of the correspondence phase of the
GD-IMLOP algorithm is described. In the correspondence phase, GD-IMLOP com-
putes the most likely oriented match on the current model shape for each data point
that minimizes the match error function of Eq. 6.5. For the implementation of
GD-IMLOP, Eq. 6.5 is reformulated to incorporate an additional x term so that

Ecp_mrop is always positive (see™ for justification):

Ep-mwop (X, y, x, Xy,k, 8,91, 92, R, t)

1 _
_ §(y —Rx —t)T(RERT + %))}y —Rx — t)

+ k(1 — §uR%n) — B ((f'gf{fR’fyn)2 _ (f}QTRTyn):’) .

(6.13)

As in the correspondence phases of D-IMLP and D-IMLOP, a PD-tree construction
and search strategy is used for efficiency. The PD-tree is constructed in a similar
manner as the PD-tree for IMLOP for anisotropic position-based matching and for
the incorporation of orientation-based matching. The difference from IMLOP is that
the PD-tree must now accommodate anisotropy not just in the position component,
but also in the orientation component.?® A PD-tree search strategy is employed to
find the oriented matched point, y, on the current deformed shape that minimizes the

match error function of G-IMLOP for a given oriented data point, x.5® The details of
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the this search strategy are similar to that of G-IMLOP and the reader is directed to
Billings et al.? for further details. The difference from G-IMLOP is that the oriented
matched points, y, lie on a shape that is changing at each iteration. Therefore, as
for the previous two algorithms, the PD-tree must be updated to accommodate the
updated shape before correspondences are found. This update is identical to the

update described in Sec. 4.3.

6.4 Registration phase

In this section, an implementation for the registration phase of the GD-IMLOP
algorithm is presented. The registration phase solves for the transformation, T, and
the shape parameters, s, that best align the correspondences found in the correspon-
dence phase by minimizing the deformable registration cost function for GD-IMLOP
(Eq. 6.7), repeated here for ease of reference, with respect to the data transformation
parameters and the shape parameters:

) 1 Mdata B
T= BTP%IT?IH (5 Z (TSSTD (yp:'} S) - R‘:X'pi - t)T(szRT) I(TSSHI (ypw S) - R“Xpi - t)
tls i=1

Ndata

-3 (KJ@}In‘:RXn,- +6i (('uflfRTym)2 - ('Yz,;TRTym)Q)) +52. ||8j||§) :
j=1

i=1

Again, to compute a similarity transform between the data points and the correspond-

ing oriented matched points on the current model shape, the cost function changes
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slightly to incorporate the scale factor, a:

1 Ndata
T = argmin | = Z (Tssm (Ypss 8) — aRxp, — t)T(RE,RT)™
[a,.R,t],s 2 i1

(TSSTD (yp,-: S) - aRXP:‘ - t)

Mdata . A X ) . ) 1 Nm
- Z (H»iYH,-RXni + ﬁ‘i. ((WI,TRTYH,) 2 - (WQ:TRTYD:) 2)) + E Z ||S.:!I |I§) *
i=1 j=1

(6.14)

As in the registration phases of D-IMLP and D-IMLOP, before the deformable reg-
istration cost function is minimized, barycentric coordinates of the matched points
are computed to find the vertex weights, u¥), for j = 1,2,3, for each matched point
(Eq. 3.9). These u'%) are required during optimization to compute the deformed
matched point, T (yp,,s), as the shape is recomputed for different values of s.

As before, there is no closed form solution available to solve this nonlinear cost
function. Therefore, the minimization problem requires an iterative optimization ap-
proach. Again, a nonlinear quasi-Newton based optimizer is used to minimize either
of the two cost functions above (Eq. 6.7 or 6.14). In order to do this, some reparam-
eterization is required to enforce the constraints of the rotation matrix (RTR = I
and det(R) = 1). Rodrigues’ parameterization, which represents a rotation matrix
as a 3-vector, r = [ry, 7y, 7,],° is used to achieve this. The direction and magnitude
of r signify the axis and angular extent of rotation, respectively. Further, in order to

keep all transformation in the same space, the transformation T(xp,) is re-expressed

218



CHAPTER 6. GD-IMLOP ALGORITHM

in the reference frame of Y as T(yp,) . The deformable registration cost function of

Eq. 6.7 can then be re-written as

Mdata
T= argmiﬂ ( (Cpi + Cm') + Cshape) 3 (615)

[r,t],s i1

where

Cp.,; = Z._;;TE;EIZ@,
zi = R(r)" (Tosm (¥p.» 8) — R(r)xp, — t) (6.16)

= R(r)T(Tssm (¥Ypiy8) —t) —Xp,,

Cri = —Ki¥m R&n, — Bi (5. "R ¥m)* — (2. "R ¥m,)?)
and  Cghape = sTs.

R(r) is the 3 x 3 rotation matrix corresponding to the Rodrigues’ vector, r (defined

in Sec. 4.4). Similarly, Eq. 6.14 can be re-written as

Mdata
T = argmin ( > (Cpi+Cui) + cshape) : (6.17)
[a,rt],s i1

with a slight modification in the C}; term in Eq. 6.16, so that

Cpg = Zg’TE;lZ@
(6.18)

Z; = R(r)T(Tssm (yp«n S) - t) — GXp;,
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and the Cy; and Cgpape terms remain the same as before.

The gradient, VC, of the deformable registration cost function of Eq. 6.15 with
respect to the data transformation parameters [r, t] and the deformable shape param-
eters, s, is explored below. As for D-IMLP and D-IMLOP, VC is a stacked vector
with the data transformation parameters located on top of the deformable shape pa-
rameters, and J,p is used to express the Jacobian of an expression, a, with respect

to variable, b. VC is expressed as:

VC = Z (chz' + ch') + VCshape (619)

i=1
T
VCD@ = [Jcpiszi']zisr 1 JCphZ:"]Z:',t 1 ']CD:'szi']zisS] ] Where

o T —1
']Cphzi =2z; Exg

_|6R(@)T OR(r)T
‘]Zisr - or, (TSSHI(YD:': S) - t) ’ T[_y (Tssm(yl::“ S) o t) 3
OR(r)T
e (Tom(¥p.,5) — )
Jso = —R(r)T (6.20)

‘]Z:-,S - ‘]Zi,Tssm(ypi !S)JTSSITI(YD;'!S)!S
Jzi,Tssm(was) - R(r)T

3
(4)
JTssm(YDi ,S),S = Z#t JTssm(vgj)sSLS
j=1
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']Tssm(vt(.j),s),s = [W‘? Wg e W;It’]!lm] 3
VChi=[Jcpr, 0,07 (6.21)
JCm:,l' =\ K?:—f‘; aRail;)T il";‘ —2B; (('A:"I;T%yni) ('?I;TR(I')T?D;) - (’?2;:1‘%?“::) (’?2;: TR(r)Tj'ﬂi)) ’
— %, BI;(T':T %n, — 26 ((mf%m) (31, TR "9, ) - (@F%ym) (32.7R®5a,) ).
— k9T 'SI;(I_';)T n, — 26; (("n,-T%?m) (51.TR() T, ) - (ﬁ’zf%?m) (’?2iTR(r)T5'ni))]
and
VCihape = [0, 0, 28T T (6.22)

The partial derivatives and Jacobians used here are identical to those introduced in
Eqgs. 4.19 and 4.20. The gradient, VC, of the deformable cost function of Eq. 6.17
with respect to the transformation parameters [a,r,t| and the deformable shape pa-
rameters, s, is almost the same as VC defined in Egs. 6.19, 6.20, 6.21, and 6.22, with

an additional component in VC},; so that

VC]H' = [']Cpiszi‘]zhl‘ ! JCD:'sziJzist ! JCDiszitha ! JCDisziths} T? (623)

where the new term J, , is simply J,, o = —xp,. The VC,; and VCypape terms simply

gain additional zero components so that

VCni=[Jcpr, 0,0,07T (6.24)
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and
VCehape = [0, 0, 0, 25T T, (6.25)

Again, as with VC in D-IMLP and D-IMLOP, the number of components in VC
above is also dependent on the number of components in the transformation param-
eters and the number of shape parameters. That is, the size of VC is 6 + number of
shape parameters when the data transformation is a rigid transformation, and 7 +
number of shape parameters when the data transformation parameters include an

additional scale parameter in the case of a similarity transformation.

6.5 Experimental results and discussion

The experimental design for GD-IMLOP is also identical to that of D-IMLP 4.5,
and therefore, will not be repeated here. The reader is directed to Sec. 4.5 for details
on the motivation and setup for the experiments. Additional details, for instance,
the anisotropy of the orientation noise, introduced along with GD-IMLOP will be
specified for each experiment below. The anisotropy of the orientation noise is defined
using an eccentricity factor, e, which takes values in the interval [0, 1). The ellipticity

parameter, 3, is defined in Eq. 6.8.
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6.5.1 Sample size experiment

6.5.1.1 Experiment 1: Isotropic position noise

The noise model for positional data is as described in Sec. 4.5.1.1, since the data
being used here is the same data that was generated for the experiment to evaluate
D-IMLP. That is, isotropic noise with SD 1 x 1 x 1 mm? was used for position data.
The orientation noise used here was slightly different from the orientation noise used
in D-IMLOP. Instead of isotropic noise, anisotropic noise with SD of 2° and e = 0.5
was used.

GD-IMLOP outperformed D-IMLP in recovering the shape and registering the
sampled points to the recovered shape for different number of sample points due to
the added information provided by the normals (Fig. 6.1). GD-IMLOP also produced
lower TSEs and TREs than both D-IMLP and D-IMLOP (Fig. 6.2). All registrations
using different number of samples produced successful registrations (Table. 6.1). As
with D-IMLP and D-IMLOP, the residual error produced by GD-IMLOP showed
correlation with the TRE enabling a success or failure or confidence assignment in
the registration based on the residual error produced by the algorithm (Fig. 6.4,
top). Using empirically chosen thresholds such that there were no false positives,

GD-IMLOP was very successfully able to detect correct registrations (Table. 6.1).
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Figure 6.1: Sample size experiment: translation (left) and rotation (right) errors

produced using, from top to bottom, 1000, 1500 and 2000 data points sampled from
the pelvis model in Exp. 1 (Sec. 6.5.1.1)
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Figure 6.2: Sample size experiment: increasing TSE (top) and TRE (bottom) with
increasing number of sample points in Exp. 1.
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Table 6.1: Sample size experiment: percent successful registration runs, i.e., runs
producing TREs less than 1 mm and, in parentheses, percent successful runs correctly
detected as successful using residual errors.

# samples D-IMLP (%) D-IMLOP (%) GD-IMLOP (%)

Experiment 1 1000  73.33 (100.00) 100.00 (66.67)  100.00 (96.67)
1500  76.67 (86.96) 100.00 (63.33)  100.00 (96.67)
2000  80.00 (100.00) 100.00 (66.67)  100.00 (100.00)

)

)

Experiment 2 1000 56.67 (100.00
1500 46.67 (100.00
2000 56.67 (100.00

86.67 (100.00)  96.67 (100.00)
96.67 (100.00)  100.00 (93.33)
83.33 (88.00)  96.67 (93.10)

e M’ —

6.5.1.2 Experiment 2: Anisotropic position noise

An anisotropic noise model with SD 1 x 1 x 2mm?® was used for positional noise,
whereas for orientation noise, the parameters were the same as in Exp. 6.5.1.1. Errors
for anisotropic positional noise were only marginally higher than those with isotropic
noise (Fig. 6.3). Again, the residual errors produced by GD-IMLOP were correlated
with the TRE allowing the algorithm to accept or reject or assign confidence to the
registration produced (Fig. 6.4, bottom). Using empirically found thresholds, GD-
IMLOP is again very successfully able to use the residual errors produced to correctly

classify successful registrations (Table. 6.1).

226



CHAPTER 6. GD-IMLOP ALGORITHM

301

20 1

Count

10 1

1000 samples

301

20 1

Count

10 1

301

20 1

Count

10 1

Translation error (mm)

[ ID-IMLP
[D-IMLOP
[lGD-IMLOP

2 4 6
Translation error (mm)
1500 samples
[ ID-IMLP
TD-IMLOP
[lGD-IMLOP
!
2 4 6

Translation error (mm)

2000 samples

[ ID-IMLP

[D-IMLOP
[lGD-IMLOP
€
=
o
O
e
2 4 6 8

Count

Count

301

20 1

10 1

301

20 1

10 1

20 1

30- 1000 samples
[ ID-IMLP
TD-IMLOP
[lGD-IMLOP
J I E— |
0 2 4
Rotational error (degrees)
1500 samples
[ ID-IMLP
TD-IMLOP

[lGD-IMLOP

2 4
Rotational error (degrees)

2000 samples

[ ID-IMLP
[D-IMLOP
[lGD-IMLOP

]

4 6

2
Rotational error (degrees)

Figure 6.3: Sample size experiment: translation (left) and rotation (right) errors

produced using, from top to bottom, 1000, 1500 and 2000 data points sampled from
the pelvis model in Exp. 2 (Sec. 6.5.1.2)
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Figure 6.4: Residual errors compared against TRE using 2000 sample points in
Exp. 1 (left) and Exp. 2 (right) of the sample size experiment. The two measures
exhibit correlation in both experiments 1 and 2 with correlation coefficients of 0.94
and 0.91, respectively.
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Figure 6.5: Regularization term experiment: registrations produced by GD-IMLOP
without the regularization term showed larger errors than with the term.

6.5.2 Regularization term experiment

As with the previous two algorithms, the cost function that is minimized to com-
pute a registration using GD-IMLOP (Eq. 6.7) contains an L2 regularization term,
%E?:l ||3:_.||§ The effect of this regularization term is again evaluated by computing
registrations without this term on the data generated for Exp. 6.5.1.1 using 1500
sample points. Results showed that removing the regularization showed deteriorating
effects on results produced by GD-IMLOP right away (Fig. 6.5). Since, GD-IMLOP
solves a harder optimization problem, removing the regularization term makes it more

susceptible to noise in the data.
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6.5.3 Noise model experiment

6.5.3.1 Experiment 1: Varying isotropic position noise

As in D-IMLP, 5 isotropic noise models with SDs of 1 x 1 x 1mm?, 2 x 2 x 2mm?,
3x3x3mm? 4x4x4mm?, and 5 x 5 x 5mm? for position noise were used. An
anisotropic noise model with SD of 2° and e = 0.5 was used for orientation noise.
GD-IMLOP showed a slight increase TRE as the SD of noise increased. However,
TRES for all noise models remained below 1 mm, which was not achieved by D-IMLP
or D-IMLOP (Fig. 6.6. The residual errors were found to be strongly correlated with
the TRE, which again can be used to distinguish between successful and unsuccessful

registrations (Fig. 6.7).

6.5.3.2 Experiment 2: Varying anisotropic position noise

Anisotropic noise models with SDs of 1 x 1 x 2mm?, 2 x 2 x 3mm?, 3 x 3 x 4mm?,
3 x3x5mm?, and 4 x 4 x 5 mm? for positional noise were used. For orientation noise,
the parameters were the same as in Exp. 1. Results from this experiment show the
same trends as those for isotropic noise. Increasing noise SD only introduced small
increase in error, with all errors remaining below 1 mm (Fig. 6.8). Residual errors
again showed strong correlation with the TRE (Fig. 6.9) allowing the algorithm to

detect successful registrations.
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Figure 6.6: Noise model experiment: a slight increase in TRE as the uncertainty
in the sample points increases. Note that errors are increasing with increasing modes
because for this experiment the number of modes used to estimate the shapes equals
the number of modes used to simulate a new shape from which points were sampled.
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Figure 6.7: Sample size experiment: residual errors compared against TRE using
500 sample points with 2 x 2 x 2mm? SD positional noise and 2° SD (e = 0.5) angular
noise in Exp. 1 of the noise model experiment (Sec. 6.5.3.1). The two measures exhibit
correlation with correlation coeflicient of 0.83.
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Figure 6.8: Noise model experiment: a slight increase in TRE as the uncertainty
in the sample points increases. Note that errors are increasing with increasing modes
because for this experiment the number of modes used to estimate the shapes equals
the number of modes used to simulate a new shape from which points were sampled.

GDIMLOP
1.2 T L T 15 —
= TRE (mm) ()
T - = 1mm 1l @
Mahalanobis distance ©
1 o
—_— C
£ =
73]
E S
w )
= 3
= C
ey
©
c
©
=

0 50 100 150 200 250
Registration trials sorted by
Mahalanobis distance

Figure 6.9: Noise model experiment: residual errors compared against TRE using
500 sample points with 2 x 2 x 3mm? SD positional noise and 2° SD (e = 0.5) angular
noise in Exp. 2 of the noise model experiment (Sec. 6.5.3.2). The two measures exhibit
correlation with correlation coefficient of 0.85.
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6.5.3.3 Experiment 3: Varying orientation noise

In the third experiment, one isotropic noise model and one anisotropic noise model
with SDs of 1x1x1mm? and 1x1x2mm?, respectively, for positional noise were used,
and orientation noise models with SDs of 2°, 4°, 6°, 8 and 10° and e = 0.5 for each
positional noise model were used. Like D-IMLOP, results show that changing angular
noise does not affect registration results using GD-IMLOP significantly since the large
number of samples overwhelms the small change in the noise model (Fig. 6.10). GD-
IMLOP and D-IMLOP, Fig. 5.10 in the previous chapter, produce comparable errors.
The errors produced by GD-IMLOP were, again, found to be correlated with the

TREs (Fig. 6.11).

6.5.3.4 Experiment 4: Noise parameter sweep

In the final experiment, the sample points were generated with a particular noise
model for both position and orientation data. However, it was assumed that this noise
model is unknown to GD-IMLOP. Sample points were generated with anisotropic po-
sition and orientation noise with SD 2 x 2 x 4mm® and 10° (e = 0.5), respectively.
A hyper-parameter sweep was then performed and the GD-IMLOP algorithm was
deployed with different isotropic and anisotropic position and orientation noise as-
sumptions to evaluate how well GD-IMLOP performs with inaccurate noise model
assumptions.

Since the noise in the generated sampled points, anisotropic in both position and
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Figure 6.10: Noise model experiment: mean TRE produced by GD-IMLOP in Exp.
3. Note that the errors are increasing with increasing modes only because for this
experiment the number of modes used to estimate the shapes equals the number of
modes used to simulate a new shape from which points were sampled.

orientation (2 x 2 x 4mm? and 10° (e = 0.5), respectively), can be best explained by
GD-IMLOP, it is expected to outperform the other two algorithms. As observed in
Fig. 6.12, GD-IMLOP does show larger TREs for less conservative noise estimates,
with TRESs improving or stabilizing with noise models equal to or larger than that of
the sampled points. This trend is most clear in the graph with the most conservative

orientation noise model with SD of 20° (e = 0.5) (Fig. 6.12, bottom). Interestingly,
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Figure 6.11: Noise model experiment: residual errors compared against TRE using
500 sample points with 1x1x1mm? SD positional noise, 4° SD (e = 0.5) angular noise
(top), and 1 x 1 x 2mm?® SD positional noise, 8° SD (e = 0.5) angular noise (bottom)
in Exp. 3 of the noise model experiment. The two measures exhibit correlation for
both isotropic and anisotropic position noise with correlation coefficient of 0.81 and
0.83, respectively.
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Figure 6.12: Noise model experiment: parameter sweep results show that GD-
IMLOP produces lower errors as the noise assumptions become more pessimistic
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D-IMLOP outperforms GD-IMLOP for less conservative noise estimates. This is also
expected since D-IMLOP optimizes a simpler cost function. Therefore, when the
noise assumption is optimistic, D-IMLOP converges faster than GD-IMLOP. How-
ever, as the noise assumption becomes more pessimistic, GD-IMLOP’s performance
improves while D-IMLOP’s deteriorates since GD-IMLOP models the noise in the
sample points more accurately. Therefore, TREs for GD-IMLOP show the stabiliza-

tion with increasingly conservative noise estimates, but not for D-IMLOP.

6.5.4 Outlier experiment

Sample points for this experiment were generated with isotropic noise in position
data with SD 1 x 1 x 1 mm? and anisotropic noise in orientation data with 2° SD
and e = 0.5. As in the experiment setup for D-IMLOP, outliers were generated by
perturbing the position and orientation components of different amount of samples
in the range [2, 5] mm and [2, 5]°, respectively. Three experiments were designed with
different numbers of samples, 0%, 10%, and 20%, that were perturbed. Outliers were
identified and rejected using the chi-square test, as described earlier in Sec. 5.2 and
in Billings et al.>:>® For position data, a match is rejected if the square Mahalanobis
distance is greater than the value of the chi-square inverse CDF with 3 DOF at
p = 0.95. Since the square Mahalanobis distance normalizes each match residual error
by its variance along each dimension, the sum of the square Mahalanobis distance

over all data points, mgas, 1s distributed as a chi-square distribution with 3nga¢.
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DOF .1%7 Similarly, for orientation data, a chi-square test with 2n4,, DOF is applied
by converting the Kent noise model for the orientation match residual into Gaussian
form,''* just as was done with the Fisher distribution, since the Kent distribution is
simply the Fisher distribution with non-zero ellipticity.

GD-IMLOP perform extremely well in the presence of outliers, outperforming both
D-IMLP and D-IMLOP. The degradation in performance with increasing outliers is
negligible, since GD-IMLOP is able to detect outliers effectively and reject them,
as explained in Sec. 6.2, limiting their effect on errors. As in Fig. 6.13, the errors
from 10% and 20% outliers in the sampled points are comparable. Fig. 6.13 shows
a very strong result in that although with 10 modes, GD-IMLOP must optimize
over 10 extra parameters, the degradation in the TRE between 0 modes and 10
modes is negligible (~ 0.05mm) when there are no outliers outliers in the sampled
points. The degradation in the presence of outliers is only marginally larger. Results
produced by GD-IMLOP in this experiment did not show correlation with the residual
errors because all TREs were extremely small and stable with increasing modes and,

therefore, did not exhibit any trends.

6.5.5 Scale experiment

The dataset generated in Sec. 6.5.4 with 0% outliers was reused for this experi-
ment. The sample points were scaled by some known amount in the range [0.7,1.3],

as mentioned in Sec. 4.5.5. GD-IMLOP is successfully able to estimate scale in ad-
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Figure 6.13: Outlier experiment: mean TRE with different number of outliers using
GD-IMLOP. Note that errors are increasing with increasing modes because for this
experiment the number of modes used to estimate the shapes equals the number of
modes used to simulate the deformed shape from which points were sampled.

dition to rotation, translation, and shape parameters. The difference between errors
produced when one fewer parameter is being estimated and those produced including
scale estimation are almost identical and far below 1 mm (Fig. 6.14). GD-IMLOP’s
performance also reflects errors in recovering scale, with mean errors ~ 0.01 and SD
< 0.01 (Fig. 6.15). This is reasonable given that noise assumptions made by GD-
IMLOP best fit the noise in the sampled points. As with D-IMLP and D-IMLOP,
GD-IMLOP remains roughly stable as the number of shape parameters to optimize

over Increases.
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Figure 6.14: Scale experiment: additional scale optimization increases TRE as
compared to when scale optimization is not required.
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Figure 6.15: Scale experiment: errors in scale estimation using GD-IMLOP are
similar to those using D-IMLOP and remain stable with increasing number of modes.
These errors are lower than those produced using D-IMLP.
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6.5.6 Leave-one-out experiment

For this experiment, an isotropic positional noise model with a SD of 1 x 1 x 1 mm?
and an anisotropic orientation noise model with 20° SD (e = 0.5) was used to generate

data samples. GD-IMLOP assumed the same noise as was used to generate the data.

6.5.6.1 Experiment 1: Middle turbinates

The middle turbinate models from the sinus dataset were used to generate sample
points for this experiment. GD-IMLOP recovered the left out shape and the trans-
formation offset applied successfully (with mean TRE less than 1mm) in 97.37%
of the 1749 registrations performed. As the number of shape parameters increased,
the performance of GD-IMLOP either stabilized or continued to improve gradually
as convergence rate slowed down (Fig. 6.16). Although, the errors produced by de-
formable CPD are comparable to GD-IMLOP using more than 20 modes, CPD was
slower than GD-IMLOP at its slowest. GD-IMLOP required 28.89s average time to
converge using 50 modes, while CPD required 40.55s (Fig. 6.17). Finally, unlike CPD
(Fig. 6.18), errors produced by GD-IMLOP show correlation with the TRE, allowing

it to accept or reject the registrations produced (Fig. 6.21).

6.5.6.2 Experiment 2: Right nasal airway

The right nasal airway models, also from the sinus dataset, were used to generate

sample points for this experiment. When assuming the same anisotropic noise in
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Figure 6.16: Leave-one-out experiment: TSE (top) and TRE (bottom) produced
by GD-IMLOP compared against that produced by CPD and SSM using the middle
turbinate meshes in the leave-one-out experiment.
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Figure 6.17: Leave-one-out experiment: runtime comparison between CPD, D-
IMLP, D-IMLOP and GD-IMLOP.
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Figure 6.18: Leave-one-out experiment: errors produced by CPD compared against
TSE using the middle turbinate meshes in the leave-one-out experiment. The two
measures do not exhibit correlation and, therefore, errors produced by CPD cannot
be used to assign success or failure to the registration.
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both position and orientation components as was used to generate the data samples,
the left-out right nasal cavity meshes recovered using GD-IMLOP were comparable
to the estimates produced by the SSM. GD-IMLOP produced mean TSEs almost
equal to those produced by the SSM up to about 30 modes (Fig. 6.19). This is an
extremely strong result since the errors produced by the SSM serve as the upper limit
for how well the left-out shapes can be estimated. GD-IMLOP performs almost as
well as is possible. Of the 1749 runs, 99.60% of the GD-IMLOP runs recovered the left
out mesh with mean TRE less than 1 mm. Further, errors produced by GD-IMLOP
were also in correlation with the TRE (Fig. 6.22). If the noise assumption made by
GD-IMLOP is modified so that the orientation noise assumed is isotropic, then GD-
IMLOP is essentially identical to D-IMLOP. The performance of GD-IMLOP with

e = 0 reflects this with results identical to those produced by D-IMLOP (Fig. 6.20).

6.5.6.3 Experiment 3: Right nasal airway with outliers

As in Sections 4.5.6.3 and 5.5.6.3, GD-IMLOP is evaluated on more realistic data
containing outliers. This experiment is set up similarly as the previous experiment
(Sec. 6.5.6.2), but with 10% and 20% of the sample points perturbed to simulate
outliers. The perturbation is similar to that in Sec. 6.5.4, and outliers are detected
and rejected using the techniques described in Sec. 6.2. Results show that adding
outliers caused some degradation in errors, but registrations performed comparably

with 10% and 20% outliers in the sample points. Despite up to 20% outliers in the
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Figure 6.19: Leave-one-out experiment: TSE (top) and TRE (bottom) produced
by GD-IMLOP compared against that produced by the SSM estimate using the right
nasal cavity meshes.
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Figure 6.20: Leave-one-out experiment: TSE (top) and TRE (bottom) produced
by GD-IMLOP with e = 0 (dotted green curve) compared against that produced by
D-IMLOP using the right nasal cavity meshes.
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Figure 6.21: Leave-one-out experiment: residual errors compared against TRE
using the middle turbinate meshes in the leave-one-out experiment. The two measures
exhibit correlation with correlation coefficients of 0.61.
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Figure 6.22: Leave-one-out experiment: residual errors compared against TRE
using the right nasal cavity meshes in the leave-one-out experiment. The two measures
exhibit correlation with correlation coefficients of 0.85.
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Figure 6.23: Leave-one-out experiment: TRE produced by D-IMLOP with 0%, 10%
and 20% outliers in the data points sampled from the right nasal cavity meshes in
the leave-one-out experiment.

data, mean TREs for almost all modes remained below 1 mm (Fig. 6.23).

6.5.7 Partial data experiment

6.5.7.1 Experiment 1: Pelvis

Anisotropic noise with SD 1 x 1 x 2mm? and 10° (e = 0.5) was used to generate
sampled position and orientation data, respectively, from a partial CT scan of the

pelvis. An instance of the full pelvis is then estimated by GD-IMLOP using these
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sampled points and a generous noise assumption with SD 2 x 2 x 3mm? and 30°
(e = 0.5) for position data and orientation data, respectively. The performance of GD-
IMLOP almost exactly matches that of D-IMLOP with a large improvement in both
transformation parameters and TSE from 0 to 10 modes followed by stabilization or
gradual improvement as convergence rate decreased with increasing number of shape
parameters. The trend followed by the TSE is similar to that followed by the error
between the left out shape and the SSM instance of the left out shape (Fig. 6.24),
with the mean TRE falling below 2mm with only 10 modes (Fig. 6.24), which is
the desired accuracy for pelvis registrations. The improvement in these errors is also

reflected in the residual errors produced by GD-IMLOP (Fig. 6.26).

6.5.7.2 Experiment 2: Right nasal airway

Anisotropic noise with SD 0.5 x 0.5 x 1mm?® and 10° (e = 0.5) was added to
position data and orientation data, respectively, since this produced point clouds that
resembled reconstructions obtained from in-vivo data using the method described in
the chapter 7. Position noise in the generated samples has a larger standard deviation
in the z-direction since it is more difficult to estimate depth from video data. The
left out nasal cavity was then estimated using these sampled points and a noise
model assumption with SD 1 x 1 x 2mm?® and 30° (e = 0.5) for position data and
orientation data, respectively. Despite the increased complexity of the right nasal

airway models, the TSE using GD-IMLOP shows steady improvement (Fig. 6.25).
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Figure 6.24: Partial data experiment: TSE (top) and TRE (bottom) produced by
GD-IMLOP compared against that produced by the SSM estimate using the pelvis
meshes.
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Figure 6.25: Partial data experiment: TSE (top) and TRE (bottom) produced by
D-IMLOP compared against that produced by the SSM estimate using the right nasal
airway meshes.
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Figure 6.26: Partial data experiment: residual errors compared against TRE using
the pelvis (top) and right nasal airway (bottom) meshes. The two measures exhibit
correlation in both experiments 1 and 2 with correlation coefficients of 0.56 and 0.64,
respectively.
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The transformation parameters shows gradual improvement or stabilization, resulting
in submillimeter mean TRE (Fig. 6.25). Again, the improvement in errors produced

by GD-IMLOP is reflected in the residual errors produced by the algorithm (Fig. 6.26).

6.5.8 Failure detection experiment

6.5.8.1 Experiment 1: Known noise

This setup for this experiment is the same as the setup for the leave-one-out exper-
iment with right nasal airway data (Sec. 6.5.6.2). As in Sec. 6.5.6.2, this experiment
makes the same anisotropic noise assumptions as were used to generate the data sam-
ples. Results show that the chi-square test using E, at p = 0.95 is not only able to
correctly detect almost all successful registrations, but is also able to successfully re-
ject a majority of the unsuccessful registrations (Fig. 6.27, top). This also means that
using the additional E, test along with E, only improves the percentage of incorrectly
labeled failed registrations from 27% to about 25.5% (Fig. 6.27, bottom). However,
using GD-IMLOP, these tests are able to retain more correctly labeled successful reg-
istrations than D-IMLOP. This result is reasonable since GD-IMLOP is able to model
the noise in the data most accurately leading to better results than the previous two
algorithms. Again, both E, and E, are strongly correlated with the TREs produced.
Therefore, confidence can be assigned to the registrations based on the E, and E,

scores (Fig. 6.28).
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Figure 6.27: Failure detection experiment: Confusion matrix using E, alone (top)
and both E, and E, (bottom).

254



CHAPTER 6. GD-IMLOP ALGORITHM

GDIMLOP
9000 . : . - 3.5
—TRE (mm)

8000 _Ep {3

7000 P

6000 , E
L~ 5000 —

4000 1o IEIKJ

41 =

3000 }

2000 } 10.5

1000 0

0 200 400 600 800 1000 1200
Registration trials sorted by TRE

GDIMLOP
8500 . - ; - 35
=——=TRE (mm)
8000 _Eo {3
7500 125
7000 =
@] 12 E
Ll 6500 f ~
6000 1 IEIKJ
41 =
5500 |
5000 } 10.5
4500

: : - : : 0
0 200 400 600 800 1000 1200
Registration trials sorted by TRE

Figure 6.28: Failure detection experiment: Both E, and E, are correlated with the
TRE (bottom) with correlation coefficients of 0.92 and 0.96, respectively, when the
noise in the data is known.
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6.5.8.2 Experiment 2: Unknown noise

The setup for this experiment is as described in Sections 4.5.8 and 5.5.8. The
anisotropic noise in the sampled points has a SD of 0.5 x 0.5 x 0.75mm?® and 10°
(e = 0.5) in the position and orientation components, respectively. GD-IMLOP
makes more generous noise assumptions with SDs 1 x 1 x 2mm?® and 30° (e = 0.5) for
position and orientation data, respectively. As with the previous two algorithms, the
chi-square test using E, at p = 0.95 is able to successfully detect all successful regis-
trations, but also incorrectly labels almost all unsuccessful registrations as successful
(Fig. 6.30, top). On the other hand, using both E, and E,, all failed registrations
are successfully rejected, but almost all successful registrations are also rejected as
unsuccessful (Fig. 6.30, bottom). That is, E,, is too lenient, while E, is too strict. By
increasing p to 0.9975, the chi-square test using E, produces the same results as with
p = 0.95 (Fig. 6.30, top), but adding E, is able to correctly detect more successful
registrations while still rejecting all unsuccessful registrations (Fig. 6.30, bottom).
Further, both E, and E, are correlated with the TRE, enabling some assignment of
confidence to the registration based on these scores (Fig. 6.31).

Registrations with E, < chi2inv(0.95, 3n4a,) and E, < chi2inv(0.95, 2n4,4,) can
be very confidently classified as successful. The average TRE produced by regis-
trations in this category over all modes was 0.34 (£0.03) mm. At p = 0.9975, all
successful registrations were again correctly identified. These registrations can be

confidently classified as successful with mean TRE increasing to 0.62 (£0.03) mm.

256



CHAPTER 6. GD-IMLOP ALGORITHM

Confusion Matrix using Ep at p=0.9500

_ 1400
Failure
g 1300
©
]
o)
= 200
|_
Success 100
0
Failure Success
Predicted Label
Confusion Matrix using
Ep and Eo at p=0.9500
1400
__ Failure
8 1300
©
]
S 200
-
Success

100

Failure Success
Predicted Label

Figure 6.29: Failure detection experiment: Confusion matrix using E, alone (top)
and both E, and E, (bottom) at p = 0.95.
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Figure 6.30: Failure detection experiment: Confusion matrix using E, alone (top)
and both E, and E, (bottom) at p = 0.9975.
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Figure 6.31: Failure detection experiment: both E, (top) and E, (bottom) are
weakly correlated with the TRE with correlation coefficients of 0.56 and 0.58, respec-
tively, when the noise in the data is unknown.
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Errors in correct classification creep in with p = 0.9999, where 3 out of 124 registra-
tions are incorrectly labeled successful. These registrations can be somewhat confi-
dently classified as successful with mean TRE increasing slightly to 0.78 (£0.04) mm.
Increasing p to 0.999999 further decreases classification accuracy. 10 out of 121 reg-
istrations in this category are incorrectly classified as successful with the mean TRE
increasing to 0.8 (4+0.05) mm. These registrations can, therefore, be classified as
successful with low confidence. The mean TRE for the remaining registrations in-
creases to over 1 mm at 1.31 (£0.85) mm, with no registration passing the E, threshold
except for registrations using 0 modes. Of these, however, 0 are correctly classified as
successful. Therefore, although about half the registrations that fall in this category
are successful, there can be no confidence in their correct classification. Fig. 6.32
(top) shows the distribution of TREs in these categories.

GD-IMLOP can, therefore, compute successful registrations between a statistically
mean right nostril mesh and points sampled only from the nasal cavity region of
the left-out shapes, and reliably assign confidence to these registrations. Further,
GD-IMLOP can accurately estimate the shape of the nasal cavity since points are
sampled from this region, while errors gradually deteriorate away from the cavity,
e.g., towards the front of the septum since points are not sampled from this region

(Fig. 6.32, bottom). Overall, mean shape estimation error was 0.77 mm.
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Figure 6.32: Failure detection experiment: mean TRE and standard deviation
increase as E, increases (top), and average error at each vertex computed over all
left-out trials using 50 modes (bottom).
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6.5.9 Non-medical data experiment

6.5.9.1 Experiment 1: Human expression

Points were sampled from meshes in the test set with anisotropic position noise and
orientation noise with SD 1x 1 x2mm?® and 10° (e = 0.5), respectively. This simulates
a realistic situation in which a scan of a head is obtained using a depth camera, where
error is larger in the depth direction. GD-IMLOP was executed with a slightly more
relaxed noise assumption, assuming that the position and orientation noise model
has a SD of 2 x 2 x 4mm?and 20° (e = 0.5), respectively. GD-IMLOP deformably
registered the mean face mesh to points sampled from test faces to produce relatively
low TREs and TSEs, as seen before using D-IMLP and D-IMLOP (Fig. 6.36). The
residual errors produced by GD-IMLOP correlate with the TRE, indicating that it
has the ability to handle such data (Fig. 6.36, top). Using more sample points also

further drives down the errors (Fig. 6.33).

6.5.9.2 Experiment 2: Human pose

For this experiment, points were sampled with the same anisotropic position and
orientation noise model as before. GD-IMLOP was, again, deployed with a more
relaxed noise assumption where the SD of the position and orientation noise model
was assumed to be 2 x 2 x 4mm and 30° (e = 0.5), respectively. The search space

for shape parameters, s, in this case was restricted to +1 SD.
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Figure 6.33: Non-medical data experiment: this particular target shape (right) has
a large amount of detail which is necessary to convey the emotion in this face. 1000
sample points are too few to capture this detail resulting in an inaccurate reconstruc-
tion (left). However, with 2000 sample points, we are able to estimate this expression
better (middle) since more sample points are better able to capture the detail in the
target.

GD-IMLOP, like D-IMLP and D-IMLOP, failed to produce meaningful recon-
structions and alignments with this dataset, as is clear from the high TREs and
TSEs (Fig. 6.35). This was expected since the limited data available and the linear-
ity assumptions made by PCA-based SSMs are possibly not sufficient to explain the
complex variations observed in different poses. The slight improvement in errors for
D-IMLOP over GD-IMLOP is, again, due to the relatively simpler objective function
minimized by D-IMLOP leading to faster decent towards the minima, as explained
in Sec. 6.5.3.4. The failure of GD-IMLOP to accommodate this dataset is clear from

Fig. 6.36 (bottom).
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Figure 6.34: Leave-n-out experiment: TSE (top) and TRE (bottom) produced by
GD-IMLOP.
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Figure 6.36: Leave-n-out experiment: residual errors compared against TRE show
that the two measures exhibit high correlation using the facial expression data with
a correlation coefficient of 0.78 (top), and no correlation using the human pose data
with a correlation coefficient of 0.18 (bottom).

266



CHAPTER 6. GD-IMLOP ALGORITHM

6.6 Concluding remarks

A novel deformable variant of G-IMLOP, known as the generalized deformable
iterative most likely oriented point (GD-IMLOP) algorithm, is presented in this chap-
ter. This algorithm is able to compute the optimal alignment between a mean shape
and data samples and simultaneously deform the mean shape to estimate the shape
represented by the data samples. GD-IMLOP shows improvement in accuracy with
increasing number of data samples, and is not significantly affected by increasing
number of outliers. GD-IMLOP also shows improvement in performance as the noise
model assumption becomes more pessimistic. These results make GD-IMLOP a fa-
vorable option for real world applications where data samples may be sparse, noisy,
and contain outliers. Since GD-IMLOP produces improving results as the assumed
noise model becomes larger than the true noise model, it allows GD-IMLOP to make
extremely pessimistic assumptions when noise in data samples is unknown and hard
to estimate and still perform well.

GD-IMLOP is able to match the performance of CPD in terms of errors using more
than ~ 20 modes, and is about 1.5-2x faster than CPD. GD-IMLOP also does not
suffer from the high memory requirements of CPD. Finally, unlike CPD, GD-IMLOP
produces errors that correlate with the true error allowing it to make confidence
assignments for registrations based on these errors. Although GD-IMLOP produces
highly accurate registrations, further improvements can be made using additional

features such as contours.
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6.7 Contributions

The contributions of this chapter include:

1. The development, implementation and evaluation of the generalized deformable

iterative most likely oriented point (GD-IMLOP)"" algorithm

(a) which incorporates deformable shape transformations using SSMs within a
probabilistic registration algorithm that uses point and orientation features
with associated unconstrained noise for both types of features

(b) performs an efficient implementation of PD-tree update to accommodate

a deforming model shape

(c¢) computes a gradient-based solution to the optimization problem using an

off-the-shelf nonlinear box-constrained BFGS quasi-Newton optimizer®’

(d) incorporates a mechanism for autonomously evaluating a registration in

order to assign confidence to the resulting alignment
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Chapter 7

Deformable video-CT registration

Minimally invasive procedures are increasingly becoming the preferred approach
for all interventions where such a procedure is possible. These procedures are car-
ried out through natural openings in the anatomy or small openings created by the
surgeon, and often make use to endoscopes or laparoscopes to visualize the target
anatomy. The advantages of such procedures are immense, resulting in faster patient
recovery time, shorter hospital stays, reduced scarring as well as reduced surgical

115 However, minimally invasive surgery also brings along with it several

trauma.
challenges. These challenges include a higher learning curve for surgeons, increased
cost due to the requirement of specialized equipment, and longer operating times.
However, one of the biggest challenges to minimally invasive surgeries is presented by

the limited field of view provided by endoscopes and laparoscopes.

In procedures such as functional endoscopic sinus surgery (FESS), the restricted
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field of view of endoscopes is further complicated by the small size and thin boundaries
of the nasal passage and sinus cavities. Further, the proximity of critical structures
like the brain, eyes, optic nerves and carotid arteries make any breach of the sinus
boundaries potentially fatal. For instance, the thickness of the fovia ethmoidalis or
the roof of the sinuses that separates the sinuses from the brain can be as low as
0.5mm, while the thickness of the lateral lamella, which separates the sinuses from
the olfactory system, can be as small as 0.2mm.!% The sheath surrounding the optic
nerves ranges between 0.45 mm and 0.91 mm closer to the eyeball.1'® Several of these
measurements include the layers of mucosa covering the boundaries. For example,
the boney parts of the uncinated process are about 0.16 mm thick, although the total
thickness of the uncinate process, including the mucosa covering the boney structures,

U7 However, mucosa are extremely soft and provide

can be as larger that 0.67 mm.
little resistance to tools. This makes it extremely critical that tools be kept away from
the skeletal boundaries of the nasal cavity and sinuses. Minimally invasive procedures
can, therefore, benefit tremendously from accurate surgical navigation systems since
they can provide context information, inform the clinicians about the safety margins,
and warm them when these margins are about to be violated. Further, navigating
complex anatomy like the ethmoidal cells of the sinuses can be extremely disorienting
for clinicians, and context cues from the navigation system can help reorient the
clinicians.

Several commercial navigation systems are available in operating rooms and are
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used during several procedures. Some examples include optical navigation systems,
which use markers attached to the endoscope that must be visible to some optical
tracking device, and electromagnetic (EM) navigation systems, which do not require
line-of-sight, but do require a sensor attached to the endoscope to remain within the
magnetic field of the EM field generator.!'® These commercial tracker-based nav-
igation systems generally report errors around or larger than 2mm. Image-based
navigation systems, which rely on extracting features from video frames or images
and registering these features to features extracted from some preoperative image
(e.g. CT, MRI), have also been presented in several experimental settings.!'® Most
such systems developed more recently report errors around or below 1 mm. Regis-
trations performed between features obtained from preoperative and intraoperative
images can be rigid or deformable. Rigid registrations simply transform features from
one space to another via a rotation and a translation. ICP is a standard rigid reg-
istration algorithm.?® Its simplicity led to its popularization, but also contributes to
its limitations. For instance, standard ICP is unable to robustly handle outliers and
noise in the data. Further, in a clinical setting, often changes in the anatomy occur
making a simple rigid transformation insufficient for accurate registration. On the

other hand, deformable algorithms additionally modify features in some way.
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7.1 Deformable registration

As mentioned earlier, in realistic clinical settings, rigid registration is often not
sufficient to produce accurate registrations. For instance, due to the scale ambigu-
ity in camera-based vision, most algorithms that extract features from video frames
are only accurate up to scale. Therefore, additionally solving for scale is a desired
property in image-based navigation systems.>® Further, anatomy can change between
preoperative and intraoperative imaging. These changes can be natural, for instance,
stemming from heartbeat, breathing, or nasal cycle. Changes can also be artificially
introduced, for instance, from insufflation, cutting, tearing or moving of tissues during
surgical procedures. These require more complex local deformations to be accounted
for in order to produce accurate registrations. Such deformations can be applied via
displacement or deformation fields®® or using statistics that explain how features de-
rived from known anatomy can deform.”” Several deformable registration algorithms
have been introduced in order to counter these problems presented in real world surgi-
cal settings. A more thorough discussion of these is presented in Sec. 1. However, one
main assumption that these methods make is the availability of preoperative images.
This assumption is not accurate in all settings.

For instance, it cannot be assumed that a protocol requiring the acquisition of a
preoperative image exists worldwide since often these image acquisitions are expen-
sive, and those requiring medical intervention could possibly not afford such image

acquisitions. Further, even if image acquisition is affordable, high doses of ionizing
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radiation exposure from some image acquisition technologies is not desired. Often, a
decision on whether surgical intervention is required or not, as in the case of FESS,
is preceded by endoscopic exploration of the target anatomy for diagnosis and/or
surgical planning. Although FESS is accompanied by a preoperative patient CT im-
age, prior endoscopic exploration is not since radiation exposure is avoided unless
necessary. This means that clinicians performing endoscopic exploration must rely
entirely on the endoscopic camera for visualization and, therefore, must cope with its
restricted field of view. Further, monocular lenses used in most endoscopic cameras
make depth perception difficult. These in addition to the challenges presented by the
complex anatomy of the nasal cavity and pseudostochastic growth pattern of some

sinuses, like the ethmoidal cells, lead to clinicians becoming disoriented.

7.1.1 The deformable most-likely-point paradigm

In order to reduce the reliance of clinicians on experience or memory in such
cases, the deformable registration paradigm and associated algorithms presented in
the previous chapters (Chapters 3, 4, 5 and 6) can be used to estimate patient anatomy
and enable navigation without the need for accompanying patient CT image. That
is, the abundance of available CT scans from several different individuals can be used
to build statistical shape models of relevant structures. Statistically derived shapes,
for instance the mean shape, can then be deformably registered to features extracted

from endoscopic video according to statistics explaining feasible deformations in these
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structures. These registrations accomplish two tasks simultaneously. First, they
align endoscopic video to the statistically derived shape. Second, they deform the
statistically derived shape to fit the structure obtained from video and estimate the
patient shape. These methods are also able to associate confidence measures to the
navigation being provided allowing clinicians to know when and how much to rely on
the navigation without introducing any additional devices, like trackers, etc., than
those already used in clinical endoscopic exploration, that is, the endoscope. The
confidence measures also allow the navigation system itself to attempt to improve

itself if its current registration estimate has low confidence.

7.1.2 Dense reconstruction from video

Since the deformable registration algorithms presented in Chapters 4, 5 and 6
are additionally estimating the patient shape, they need to optimize over many more
parameters than the 6 required to compute a rigid transformation. Therefore, they
require more dense point clouds extracted from endoscopic video than algorithms like
structure from motion (SfM) are able to extract due to the lack of texture in these
videos.

Shape from shading based methods have been able to produce dense reconstruc-

120

tions from endoscopic videos by explicitly'?® or implicitly’ modeling the relationship

between appearance and depth using a bidirectional reflectance distribution function
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(BRDF):

dLy(w,)  dL,(w,)
dEi (QJ.,;) - L@(Wﬁ) COSs H-gd{,u'.,; '

fr(wi,wy) = (7.1)

where w; and w, represent the incoming and outgoing light directions, respectively,
while the fraction on the right hand side of the equation is the ratio of reflected
radiance, L, exiting along w, to the irradiance, F, incident onto the surface along
direction w;.'?! Radiance is the luminous flux per unit area per unit solid angle, while
irradiance is the incident luminous flux per unit area and depends on the incident
radiance and the angle, 0, between the incident direction, w; and the surface normal,
n, where w; intersects the surface. The purpose of BRDF's is to model how light
incident from a particular direction and viewed from a particular direction interacts
with surfaces of various geometries and material properties. If modeled accurately, a
BRDF can explain how light forms pixel intensities on observed images and, therefore,
can accurately describe the scene geometry from pixel values. However, it is difficult
to know exactly how much light is incident on a surface, especially due to the presence
of other light sources in the environment, as well as to know, for each incident angle,
how much light is scattered in each outgoing direction.

One common way of simplifying this problem is by using the Lambertian re-
flectance model, which assumes that light is reflected equally in all directions. This
assumption is more accurate for opaque objects, but not for surgical data. Differ-
ent tissues have different reflectance properties, but can generally not be described as

opaque, meaning that some light experiences absorption as well as subsurface scatter-

276



CHAPTER 7. DEFORMABLE VIDEO-CT REGISTRATION

ing. Light that is reflected is not reflected equally in all directions. Further, presence
of liquids and mucous in the nasal cavity can result in high specularity, which the
Lambertian model cannot explain. Therefore, although previous methods have shown
that dense point clouds can be reconstructed from endoscopic video, these methods
are not accurately able to recover depth from images and fail in the presence of spec-
ularity. However, new deep learning based methods® have shown that these and other
challenges, like occlusion and scale ambiguity, can be overcome to produce accurate
and dense reconstructions from single frames of endoscopic video (Fig. 7.2). These
reconstructions contain enough structure to allow deformable registration algorithms

to accurately estimate the shape represented by the point clouds.

7.2 Experimental results and discussion

An anonymized in-vivo clinical dataset consisting of endoscopic videos of the nasal
cavity and EM-tracking information was obtained from several consenting patients
who were examined at the Johns Hopkins Outpatient Center. Permission to collect
this dataset was approved by the Johns Hopkins internal review board (IRB) under
application number NA_00074677. Two experiments are performed on this clinical
dataset using slightly different reconstructions from video that are manually initial-
ized in the mean mesh of the appropriate nasal cavity. Since, ground truth for these

datasets is not available, residual errors produced by the registration algorithms are
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reported as registration error. Additionally, obvious registration failures can be de-

tected by visualizing the final alignment produced.

7.2.1 Reconstruction from single frame

In this experiment, reconstructions from 2 individual frames were subsampled to
obtain 2000 points which were manually initialized in the left nasal cavity mesh.
Registrations were computed using D-IMLP, D-IMLOP and GD-IMLOP with 10
modes restricted within +1 SD. Scale estimation was also restricted to within [0.7,1.3],
and anisotropic noise was assumed by the algorithms (where applicable) with SDs of
1x1x2mm? and 40° (e = 0.5) for position and orientation, respectively. GD-IMLOP
was able to produce submillimeter registrations for both sets of samples (Table 7.1),
which also produced visually convincing alignments (Fig. 7.1). This is as expected
since GD-IMLOP is best equipped to model the noise present in data extracted from
real in-vivo endoscopy video. D-IMLP and D-IMLOP exhibit less reliable behavior.
Using the first reconstruction (RenStr01), D-IMLP appears to produce an extremely
accurate alignment with very low mean residual error (Table 7.1). However, the TRE
for this registration is larger than 1 mm, and the alignment, on visual inspection,
appears to be wrong (Fig. 7.1). D-IMLOP, on the other hand, produces both high
residual error and TRE (Table 7.1), and a visualization of the registration confirms
the error in alignment (Fig. 7.1). For the second reconstruction (RenStr02), both D-

IMLP and D-IMLOP succeed in producing low residual errors and TRE (Table 7.1).
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Table 7.1: Registration results using single frame reconstruction from in-vivo data.

Algorithm  Residual error TRE
D-IMLP  0.25 (£0.40) 1.26 (+1.25)
RenStrOl - 1\Lop 213 (43.28)  1.42 (+1.39)
GD-IMLOP  0.92 (+1.44) 0.98 (+0.81)
D-IMLP  0.50 (£0.82) 0.96 (+0.83)
RenStr02 - 1NLOP 061 (+0.98)  0.95 (+0.83)
GD-IMLOP ~ 0.77 (+1.18)  0.95 (+0.88)

Visualization (Fig. 7.1) shows improving alignment from D-IMLP to D-IMLOP to
GD-IMLOP with fewer outliers (points outside the nasal cavity).

Two problems become clear from this experiment. First, although the dense
reconstructions provide much needed structural information, reconstructions from
single frames are unable to capture enough range of information to avoid falling into
local minima in registration computation. This is what results in the low residual error
produced by D-IMLP using RenStr01, although the registration fails. This knowledge
of failure will not be available during surgical navigation because of the absence of
ground truth, and can cause serious damage to the patient if the surgeon is not able

to catch the error in navigation. This creates an additional responsibility on the

surgeon by having to divert attention from the patient to evaluating the navigation
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Figure 7.1: Using RenStr0O1 (top), registration results using D-IMLP (left) and D-
IMLOP (middle) show failed registrations, while that using GD-IMLOP (right) shows
good alignment (along with some outliers). RenStr02 (bottom) yields better results,
with all three algorithms producing good alignments. However, we can see that the

number of outliers or bad matches (red points matched to the outside of the nose)
goes down as we go from D-IMLP (left) to D-IMLOP (middle) to GD-IMLOP (right).
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Figure 7.2: A dense point cloud obtained from a single frame of endoscopic video
using the method of Liu et al.?

being provided by technology meant to aid the surgeon. This brings up the second
problem, which is that the residual error cannot always reliably be used as an indicator
of registration success of failure, and that additional confidence measures are required

to indicate the confidence of the system in the registration produced.

7.2.2 Reconstruction from multiple frames

In order to resolve the problems brought up by the first experiment, reconstruc-

tions used in this experiment were produced from individual nearby frames in en-
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doscopic video sequences that were aligned using relative camera motion from SfM.
Small misalignments due to errors in depth estimation were corrected using G-IMLOP
with scale to produce reconstructions spanning larger areas of the nasal passage than
those produced from single frames. Since it is clear from previous experiments that
GD-IMLOP is best suited for registrations using this type of data with anisotropic
noise in both position and orientation features, this experiment was only evaluated us-
ing GD-IMLOP. Registrations were computed using the GD-IMLOP with 3000 points
sampled from these dense point clouds and assuming noise with SDs of 1 x 1 x 2mm?
and 30° (e = 0.5) for position and orientation data, respectively. Scale and shape
parameter optimization was restricted to within [0.7,1.3] and +1 SD, respectively.
Registrations were computed using n,,, € 0, 10, 20, 30,40, 50 modes. At 0 modes, GD-
IMLOP is essentially G-IMLOP which was extended to additionally solve for scale.
In addition to residual errors, confidence is assigned to the computed registrations
based on the tests explained and validated in Chapter 6.

All registrations run with 0 modes terminated at the maximum iteration threshold
of 100, while those run using modes converged at an average 10.36 iterations in 26.03
seconds. Fig. 7.3 shows registrations using increasing modes from left to right for
each sequence plotted against E, (middle) and E, (right). All deformable registration
results pass the E, test as they fall below the p = 0.999999 and p = 0.95 thresholds
(Fig. 7.3, top) using the chi-square inverse test. However, several of these fail the E,

test (Fig. 7.3, bottom). Deformable registrations on sequence 01 using 50 modes and
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Table 7.2: Residual errors produced by registrations on clinical data.

Residual errors (mm)

Mean Max Min

All 1.09 (+1.03) 4.74 0.50
E, 0.76 (+0.14)  0.99 0.50
E, and E, 0.78 (£0.07)  0.94 0.74

on sequence 04 for all except 30 modes pass this test with low confidence. Using
30 modes, the registration passes somewhat confidently. The rigid registration on
sequence 04 (the only rigid registration to pass both E, and E,) and all deformable
registrations on sequence 05 pass this test very confidently. Although, the rigid
registration on sequence 05 passes this test very confidently, E, already labels it a
failed registration.

Successful registrations that passed both the E, and E, tests produced a mean
residual error of 0.78 (+0.07) mm, with maximum residual error of 0.94mm and
a minimum residual error of 0.74mm (Table. 7.2). The maximum residual error
produced by successful registrations is smaller than the maximum residual error over
all registrations and over all registrations that passed the E, test, as is expected.
The minimum residual error produced by successful registrations, however, is higher

than the minimum over all registrations and over all registrations that pass the E,
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Figure 7.3: E, (top) and E, (bottom) for all registration computed using GD-
IMLOP, plotted for each sequence. Within each sequence, from left to right, the plot
points indicate scores achieved using 0 to 50 modes at increments of 10. Crossed out
plot points indicate rejected registrations.
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test. This is because registrations that converge to the wrong local minima will
produce small positional errors and, therefore, pass the E, test. However, this does
not guarantee that orientations will also align well, causing these registrations to fail
the E, test. Visualizations of successful registrations also show accurate alignment

(Fig 7.4).

7.3 Concluding remarks

Through experiments on in-vivo clinical data, it is shown that GD-IMLOP is able
to produce submillimeter registrations in both simulation and in-vivo experiments
and assign confidence to these registrations. Further, it can accurately predict the
anatomy where video data is available. Using statistics built with thousands of CT
scans to better cover the range of anatomical variations, these deformable algorithms
could produce better estimations of patient anatomy. Additional features like con-
tours can also be used, as in Billings et al.,?® to further improve registration and to
add an additional test to evaluate the success of the registration based on the quality
of contour alignment. Using improved statistics and reconstructions from video along
with confidence assignment, this approach can be extended to be used in place of CT

images during endoscopic procedures.
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Figure 7.4: Top: One of the frames from the video sequence used to extract the
dense structure. Bottom: Visualization of the final registration and reconstruction
for Seq01 using 50 modes with dense structure points depicted in white.
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7.4 Contributions

The work described in this chapter was done in collaboration with Xingtong Liu,
whose work on dense reconstruction from single video frames was critical to producing

the results presented in this chapter. The contributions of this chapter include:

1. An evaluation of the algorithms presented in Chapters 4-6 in a clinical setting
through deformable registration between SSMs and dense reconstructions from

in-vivo endoscopic video frames.”"™

2. Assignment of confidence to the computed registration in order to inform clin-

icians of the reliability of the computed registration.™
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Chapter 8

Clinical applications of statistical
shape models of sinuses and

surrounding structures

Statistical shape models (SSMs) are extremely powerful tools and their advan-
tages are not limited to interventional clinical applications. SSMs can be used for a
variety of different applications in the study and understanding of anatomy prior to
interventions to inform whether or what kind of interventions will prove useful, and
also post interventions to understand what kinds of modifications best treat different
symptoms. In order to diagnose an abnormality to inform what kind of intervention is
required, there needs to be a strong understanding of what is normal. Such diagnoses

can be performed subjectively by the surgeon. However, this can mean that diagnoses
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may differ between different clinicians. Further, in order to determine the distance
of patient anatomy from normal anatomy by looking at endoscopic video data may
require experience and expertise. Another way to perform diagnoses is quantitatively.
Such diagnoses are objective and, therefore, if done accurately, can become a valuable
tool for clinicians.

As mentioned earlier, in order to provide quantitative feedback on the deviation
of patient anatomy for normal, the scope of normal anatomy must be studied. Few
studies have explored how normal anatomy in population varies. Weiglein et al.'??
conducted a fairly large study of 134 dried human skulls, ranging from newborn to
12 years of age. The length, width, and height for each of the sinuses (maxillary,
ethmoidal, frontal, and sphenoid) were measured directly from the skulls. Spaeth et
al.” performed a very large scale study using 5641 low resolution CT scans of male
and female subjects whose ages spanned from birth to 25 years. The ventrodistal
length and mediolateral width were measured for each of the sinuses using a compass.
Barghouth et al.'?® also performed a fairly large scale study using 179 head MRI
scans to evaluate the variation in the maxillary, sphenoid, and frontal sinuses. The
population studied consisted of children under the age of 17 years. The statistics
learned from Weiglein et al.!?? and Barghouth et al.!?*> may not fully explain the
variance in adults since the age of the sampled population in these two studies is below
17 years, while sinuses continue to develop until about age 20. Although the age of the

population studied by Spaeth et al.” goes up to 25, the method of manually collecting
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statistics employed is hard to scale and can introduce significant errors between the
first and last sets of CT scans measured. Further, only 2 or 3 discrete measurements
are likely not be enough dimensionality to fully explain the variance in the sinuses.

1.,14 evaluate the volume of sinuses. This

More recent studies, like Emirzeoglu et a.
study uses CT scans from 77 adult patients. However, the procedure employed by
this study to compute the volume of the sinuses is not scalable either since it involves
printing CT image slices on films and superimposing point-counting grids to count
the number of points making contact with the sinuses.

Similarly, few studies have extensively studied the nasal cavity or structure within
the nasal airway. For instance, the nasal conchae or turbinates that reside within the
nasal airway are known to undergo periodic alternating expansion and contraction.
This phenomenon, called the nasal cycle, has been studied via rhinoresistometry, or
the measurement of change in airflow resistance between the left and right sides of
the nasal airway.® These findings have more recently been confirmed using endoscopy
as well as acoustic rhinometry, where the geometry of the nasal cavity is estimated
based on reflected sound waves.'?® Although these methods show that a difference is
resistance occurs and changes sides at least once during a 7 hour period, it is not able
to quantify the amount of expansion and contraction in the turbinates that cause the
resistance. These and other methods have also been employed in the measurement of

nasal patency.?® Similar methods,®' along with methods involving volumetric scans

like those used in the measurement of sinuses,®? have also been used to measure
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particular landmarks in the nasal airway, like the piriform aperture. These methods,
however, either require patient interaction or manual measurements, and can be hard
to scale.

The methods presented in Chapters 2, 4, 5, 6, and 7 can be used to automatically
compute statistics explaining the variation in different structures over a large popu-
lation as well as to estimate patient specific statistics. For initial proof of concept, a
relatively small set of publicly available CT scans was used to conduct experiments.
However, due to the automated nature of the methods used, these statistics can easily

be recomputed using larger datasets.

8.1 Experimental results and discussion

The studies described below are performed on the publicly available dataset con-
taining 53 patient head CT scans that is described in Chapter 2. The automatic
segmentation of relevant structures in these CT images is also described in Chapter 2.
The studies described in this chapter use these automatically segmented shapes in
order to establish statistics on the variance present in a sample of normal popula-
tion, that is, population without sinus disease or other nasal anomalies. Statistics are

established using PCA on the segmented shapes as described in Chapter 2.
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8.1.1 Variation in population

As mentioned before, a clear understanding of the nasal airway and sinuses in
a normal population is critical in understanding deviations from normal. In order
to achieve this understanding, SSMs of different structures were built and variations
along different modes or principal axes were observed. These structures include the
maxillary sinuses, relatively simple structures within the nasal passage like the nasal
conchae or turbinates, as well as the full complex nasal passage along with the struc-
tures within.

Sinuses are formed due to the pneumatization of bones, or formation of cavities
within bones, that occurs over several years until about the age of 20. The maxillary
sinuses are perhaps the simplest sinuses to automatically and reliably segment because
they are formed by the pneumatization of the maxilla or the upper jawbone and do
not interact with the septum. This is a key difference between the maxillary sinuses
and the remaining sinuses, frontal, ethmoidal, and sphenoid. This interaction with
the septum in the frontal, ethmoidal, and sphenoid sinuses complicates the pneuma-
tization since the septum often deviations from the middle of the nasal cavity. If the
deviation is large, it may not be captured during deformable registration between
CT images causing errors in automatic segmentation. The ethmoid sinuses are by far
the most complicated sinuses because the pneumatization process in pseudostochastic
leading to the formation of several chambers in the ethmoid bone compared the two

chambers on either side of the septum present in the other sinuses.
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The variation present in the right maxillary sinuses of the population studied is
shown in Figures 8.1 and 8.2, while that in the left is shown in Figures 8.3 and 8.4.
The primary mode for both right and left maxillary sinuses shows variation along the
axial and coronal directions, while the second mode shows variation along the sagittal
or lateral direction. The third and fourth modes show enlargement of the posterior
section of the maxillary sinuses relative to the anterior section and the enlargement of
the anterior section relative to the posterior, respectively. This fifth shows that there
is an interdependent growing and shrinking between the medial and lateral sections
of the maxillary sinuses.

Next, the variation present in the nasal conchae or the nasal turbinates are stud-
ied. There are three pairs of nasal turbinates, the inferior, middle, and superior
turbinates, that are present in the nasal cavity. These structures are important for
various reasons, but perhaps the most important reason comes from the fact that
these structures contain erectile tissue which allows them to exhibit a periodic al-
ternating shrinking and growing behavior known as the nasal cycle. Understanding
the nasal cycle is important for surgical navigation because patients obtain head CT
scans and undergo procedures at different times resulting in a change in the turbinate
structure. Further, patients are generally administered decongestants before any tools
are inserted into the nasal cavity. Therefore, the appearance of the turbinates in an
endoscopic video is almost guaranteed to be different from that in a previously ac-

quired CT scan. Knowledge of how turbinates change, the range of normal variation,
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Figure 8.1: Front view of the right maxillary sinus: (L-R) Modes 1 to 5 with variance
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Figure 8.2: Right view of the right maxillary sinus: (L-R) Modes 1 to 5 with variance
ranging from —3 (top) to 3 (bottom) SDs.
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Figure 8.3: Front view of the left maxillary sinus: (L-R) Modes 1 to 5 with variance
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and the phase of the turbinates in the CT scan can enable navigation systems to
make up for the change in the structure between CT image acquisition and medical
intervention. Another reason to understand the normal amount of variation present
in the nasal turbinates is because the size of the turbinates is considered to be re-
lated to the amount of nasal obstruction. An understanding of normal variation
will allow clinicians to quantify the amount of deviation from normal in patients with
nasal obstruction, and how much turbinate reduction could optimally improve airway
resistance.

The variation observed in the inferior turbinates is shown in Figures 8.5 and 8.6,
and that in the middle turbinates is shown in Figures 8.7 and 8.8. The primary mode
for both the inferior and middle turbinates shows variation along the lateral direction
with slight stretching along the coronal direction. The second mode shows variation
along the axial direction, depicting a change in the height of the turbinates. Past the
second mode, the variation observed in the inferior and middle turbinates changes
slightly. For the inferior turbinates, the third mode shows an alternating variation
between the left and right turbinates along the lateral direction. This variation ap-
pears to show the turbinates swelling and contracting, as in the nasal cycle. A more
thorough study of the nasal cycle is described in the next section (Sec. 8.1.2). The
fourth mode also shows swelling and contraction in the lateral direction, but these
are more focused in the middle section of the turbinates and involve less lateral move-

ment. The fifth mode shows slight variation in both the axial and coronal direction,
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Figure 8.5: Front view of the inferior turbinates: (L-R) Modes 1 to 5 with variance
ranging from —3 (top) to 3 (bottom) SDs.
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with some lateral variation in the rightside section of the turbinates, which perhaps
depicts the variation in how the turbinates are connected to the lateral wall. For the
middle turbinate, on the other hand, the third mode depicts swelling and contrac-
tion in the middle section with alternating lateral movement between the left and
right turbinates, while the fourth mode shows alternating swelling and contraction
between the left and right turbinates with the variation more focused toward the
posterior section of the turbinates. The fifth mode shows swelling and contraction
toward the anterior section of the turbinates with some amount of alternating lateral
movement between the left and right turbinates.

The final structure studied are the nasal passages. This includes the boundaries
surrounding the right and left nasal passages, such as the septum and floor and roof
of the nasal cavity, as well as the structures contained within the nasal passages.
Understanding the variation in the nasal cavity is important for some of the same
reasons as the turbinates. Nasal airway patency is shown to be correlated to nasal
obstruction.'?® Further, understanding the normal range of septal deviations can help
clinicians quantify the amount of deviation from the normal range in patients with
septal deviation related disorders. The variations observed in the right nasal passage
are shown in Figures 8.9 and 8.10, while those in the left nasal passage are shown
in Figures 8.11 and 8.12. The first mode for both the right and left nasal passages
depicts variation in the form of stretching along the coronal direction. The second

and third modes show variation resembling septal deviation, with the second mode
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Figure 8.9: Front view of the right nasal airway: (L-R) Modes 1 to 5 with variance
ranging from —3 (top) to 3 (bottom) SDs.
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Figure 8.10: Right view of the right nasal airway: (L-R) Modes 1 to 5 with variance
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Figure 8.11: Front view of the left nasal airway: (L-R) Modes 1 to 5 with variance
ranging from —3 (top) to 3 (bottom) SDs.
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showing the septal wall deforming closer to the floor of the nasal cavity, while the
third mode showing septal deviation in the middle of the septal wall. The fourth
mode shows variation along the axial direction, while the fifth mode, again, shows

variation in the septal wall towards the posterior part of the nasal cavity.

8.1.2 Nasal cycle

Having shown that SSMs provide valuable information about the range of variation
present in anatomical structures, the next objective is to determine whether these
SSMs built from population data are able to capture the nasal cycle in individuals
without requiring a longitudinal study. Since the nasal cycle is a continuous process
taking place in each individual, it can be assumed that each image in the public CT
image dataset contains turbinates at different phases of the nasal cycle. Therefore,
it can be hypothesized that while most of the variation captured by the SSM must
reflect anatomical differences between individuals of different shapes and sizes as well
as anatomical differences between different turbinates, at least some of the variation
captured must reflect the nasal cycle. In order to evaluate this hypothesis, the skull
and inferior turbinates of an adult patient are automatically segmented in 2 CT
images, preoperative and postoperative, using the methods described in Chapter 2.
Both shapes were projected onto the respective SSMs (Eq. 2.2) in order to observe
the SSM estimate (Eq. 2.1) of the patient’s skull and inferior turbinates.

The pre- and postoperative skulls produce similar mode weights and, consequently,
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similar shapes, which is the expected outcome for the two skull segmentations since
the skull of an adult is not expected to change (Fig. 8.13). The minor differences in
the mode weights likely resulted from small segmentation errors. However, the pre-
and postoperative inferior turbinates exhibited a large difference in the mode weights
produced and, therefore, also in the estimated shapes (Fig. 8.14). This result is also
expected since it can be assumed that the inferior turbinates of the patient studied
were at different phases of the nasal cycle in the 2 CT images. Therefore, it can
be concluded that at least some of the variance captured by SSMs of the turbinates
can be attributed to the nasal cycle. However, a more thorough study with a larger
number of patients who have at least 2 head CT scans will be required to confirm

exactly which mode or modes capture the nasal cycle.

8.1.3 Shape inference

Results from Chapter 2 as well as from Sec. 8.1.2 show that SSMs are able to
accurately estimate shapes segmented from CT scans when these shapes are in corre-
spondence with the shapes used to build the SSM. Further, results from Chapters 4, 5
and 6 show that SSMs are able to estimate shapes even in the absence of correspon-
dences. Features sampled uniformly from shapes and deformably registered using
the registration algorithms presented in these chapters result in accurate reconstruc-
tions of the shapes that points were sampled from. Finally, in Chapter 7, results

show that SSMs are able to estimate shapes even in the absence of CT scans using
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Figure 8.13: Top: Population variation in the skull model. The middle shape is
the mean shape, the left shape shows mean shape with —1o, where o is the stan-
dard deviation, and the right shape is the mean shape with +10. Bottom: The left
image shows the pre-op patient skull, and the right image shows the post-op patient
skull. The two images show no, or negligible, difference, where minute difference can
sometimes be observed due to errors in registration. However, we can see that the
population variation is not reflected in the two patient images.
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Figure 8.14: Top: Population variation in the inferior turbinate (IT) model. The
middle shape is the mean shape, the left shape shows mean shape with —1o, and
the right shape is the mean shape with +10. Bottom: The left image shows the
pre-op patient IT, and the right image shows the post-op patient I'T. The two images
show significant differences, allowing us to conclude that the population variation is
reflected in the patient images.
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features extracted from different modalities, like video. This result is extremely valu-
able because it enables quantitative measurements in the nasal cavity directly from
endoscopic video, without requiring CT scans.

As mentioned earlier in the chapter, little work has been done towards achieving
accurate measurements of the nasal cavity. Prior work reported straight line estimates
of distances between landmarks in order to compute approximate cross-sectional areas
in CT images, or used acoustic rhinometry to estimate the volume of different parts
of the nasal cavity when CT images were not available. However, these estimates are
not accurate since straight lines are gross simplifications of the complex geometry of
the nasal cavity and acoustic rhinometry measures are affected by the sinuses. The
downsides of such estimations have caused considerable uncertainty in diagnosing and
predicting successful surgical outcomes for problems like nasal obstruction. Accurate
estimates can help mitigate these uncertainties. Directly estimating the shape of the
nasal cavity from endoscopic video using deformable registration has several advan-
tages. First, a CT scan of the patient is not required which prevents exposure to
ionizing radiation. Second, patient segmentations produced are in correspondence
with the statistically mean shape. Therefore, landmarks only need to be chosen once
on the mean shape and are transfered to patient shapes via registration. This prop-
erty can be used to define 3 non-collinear points or landmarks on the mean shape that
define a roughly coronal plane in each region where the cross-sectional area must be

computed (Fig. 8.15, top). These points should describe corresponding landmarks in
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Figure 8.15: Intersection (top) between a plane and a mesh, shown here at the
external nasal valve, produces contours which enable the computation of the cross-
sectional area within the contours (bottom).
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the deformed patient shapes after registration. An intersection between the shape and
the corresponding plane produces contours of the shape along that plane (Fig. 8.15,
bottom). The contours for each shape can be triangulated and the area can be accu-
rately computed (Fig. 8.15, bottom). These accurate measurements can enable better
understanding of nasal patency and, perhaps, will allow better correlation between
patency and disease or predicted outcome.

In order to evaluate how well information like cross-sectional area can be inferred
from estimated shapes, results from Experiment 6.5.8.2 on simulated data were used.
As a reminder, registration in these experiments are computed using the algorithms
described in previous chapters in a leave-one-out setting, where the left-out shape
is estimated based only on points sampled from the airway section of the left-out
shape. Results from this experiment showed that shape estimation errors are lowest
in the regions where sampled points were available, while errors increase away from
these regions. It is important to understand how these errors affect shape inference
both within and away from the regions where features were available. For all the left-
out and estimated shapes, the cross-sectional area of the internal and external nasal
valves is computed and compared to evaluate how well this area is estimated by the
deformable algorithms. The nasal valve is the sight of the highest nasal resistance,
and the internal and external nasal valves are the first few landmarks encountered

when entering the nose.
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8.1.3.1 Internal nasal valve

The internal nasal valve is evaluated first since it lies in the region where data
points were sampled from in Exp. 6.5.8.2. Therefore, this evaluation is expected to
produce reliable results. In order to evaluate the cross-sectional area at the internal
nasal valve, three landmarks were selected on the mean right nostril mesh that define a
plane intersecting through the mean mesh at the internal nasal valve. Since all left-out
shapes and estimated left-out shapes are in correspondence with the mean shape, the
same landmarks can be used to define planes intersecting through each of the left-out
and estimated left-out shapes. This intersection produces contours where the plane
intersects the mesh, and the area within the contours can be computed producing
the cross-sectional area at the internal nasal valve for each left-out shape as well as
for each of the estimated left-out shapes. Errors between the cross-sectional areas
computed for the left-out shapes and those for the estimated shapes are compared to
evaluate how accurately the internal nasal valve can be estimated by GD-IMLOP.

The mean cross-sectional area at the internal nasal valve over all left-out meshes
was 116.44 (4+24.22) mm?, which is comparable to the normal range of cross-sectional
area near the internal nasal valve estimated via acoustic rhinometry.!?” The mean
and median relative errors in cross-sectional area estimation are shown in Fig. 8.16
and Table 8.1. The errors show a clear trend downward as the number of modes used
for shapes estimation increases, with shape estimation using 50 modes producing the

lowest relative errors. However, even the lowest mean error is as high as 15.4%. One
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Figure 8.16: Top: Mean relative error and standard deviation in cross-sectional
area estimation of the internal nasal valve. Bottom: Median relative error along with
the 25th and 75th percentile errors (box) and min and max errors (bars) excluding
outliers, which are marked with + signs.
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Table 8.1: Percent errors in cross-sectional area estimation of the internal nasal

valve.

# modes Mean relative error (& SD) Median relative error

0 0.352
10 0.183
20 0.165
30 0.165
40 0.167
50 0.154

+0.134) 0.366
+0.140) 0.133
+0.138) 0.127
+0.138) 0.145
+0.142) 0.127
+0.134) 0.126

— e~ e e e

reason for this observation could be that the number of data points sampled from the
target region were not sufficient. Experiments using a larger number of data samples

can be used to evaluate whether the internal nasal valve can be better estimated.

8.1.3.2 External nasal valve

Unlike the internal nasal valve, the external nasal valve is situated at the periphery
of the region where data points were sampled from for the registration experiment.
This enables an evaluation of how well can information be inferred in areas that are
not seen, in the context of endoscopy. The cross-sectional area at the external nasal
valve for each mesh is computed using the same technique explained in Sec. 8.1.3.1.

Errors between the cross-sectional areas of left-out shapes and of estimated shapes
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using increasing number of modes are computed to evaluate how well information at
the external nasal valve can be inferred by GD-IMLOP.

The mean cross-sectional area at the external nasal valve over all the left out
meshes was 119.01 (£20.92) mm?, which is comparable to the normal range of cross-
sectional area near the external nasal valve estimated via acoustic rhinometry.'?”
The mean and median relative errors in cross-sectional area estimation are shown in
Fig. 8.17 and also in Table 8.2. Although errors in cross-sectional area estimation are
lowest using 50 modes, the decrease in error from 0 modes to 50 modes is small. That
is, errors when the left-out shape is not being estimated or errors between the mean
and left-out shapes are lower than expected. Several factors can lead to such results.
Only 52 CT scans are used to build the SSMs used in this study. It is possible that
these 52 individuals do not represent the full extent of variation that could exist in
the external nasal valve and, therefore, the the meshes extracted from these CTs are
similar to the mean shape. Another explanation for the low errors between the mean
and left out shapes could be that the automatic segmentation method was not able to
capture the external nasal valve region accurately. This could result in low variance
from the mean among the segmented meshes even if the CT scans do capture a fair

extent of variation in the external nasal valve.
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Figure 8.17: Top: Mean relative error and standard deviation in cross-sectional
area estimation of the external nasal valve. Bottom: Median relative error along with
the 25th and 75th percentile errors (box) and min and max errors (bars) excluding

outliers, which are marked with + signs.
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Table 8.2: Percent errors in cross-sectional area estimation of the external nasal
valve.

# modes Mean relative error (+ SD) Median relative error

0 0.155 (£0.130) 0.132
10 0.143 (£0.117) 0.112
20 0.193 (£0.355) 0.119
30 0.157 (£0.178) 0.122
40 0.149 (£0.195) 0.107
50 0.121 (£0.117) 0.095

8.2 Concluding Remarks

The application of the methods presented in this dissertation towards several
clinical applications is demonstrated. SSMs of various anatomical structures enable
an understanding of the types and extents of variation present in population. The
variance present in the maxillary sinuses, middle and inferior turbinates, and the
nasal cavity is shown. Population data can also be used show periodic variation in
structures that occurs in every individual. For instance, the nasal cycle is responsible
for the periodic expansion and contraction of the nasal turbinates. This periodic
variation can be observed in population data. Further, the deformation registration

methods presented in this dissertation use SSMs to drive the deformation and can
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be used estimate patient shape from video when CT images are not available. This
enables the inference of information like cross-sectional area at different landmarks.
Using more CT images to build SSMs and a larger set of data samples to estimate

patient shapes can improve results further.

8.3 Contributions

The contributions of this chapter include:

1. Evaluation of anatomical variation in the maxillary sinuses, inferior and middle

turbinates, right and left nasal cavities in a normal population™

2. Demonstration of the nasal cycle in one patient with preoperative and postop-

erative CT scans’™

3. A method for automatic and exact measurement of the cross-sectional area at

the internal and external nasal valves.

8.4 Published Work

Material from this chapter appeared in the following publications:

1. A. Sinha, S. Leonard, A. Reiter, M. Ishii, R. H. Taylor, G. D. Hager, “Automatic

segmentation and statistical shape modeling of the paranasal sinuses to estimate
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natural variations,” Proc. SPIE 9784, Medical Imaging 2016: Image Processing,

97840D (2016)

2. A. Sinha, S. D. Billings, A. Reiter, X. Liu, M. Ishii, G. D. Hager, R. H. Tay-
lor, “The deformable most-likely-point paradigm,” submitted to Medical Image

Analysis (2018)
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Conclusions

The main contribution of this dissertation is the development of deformable regis-
tration algorithms that use statistical shape models (SSMs) to drive the registration in
a probabilistic framework. In order to use SSMs to compute accurate registrations,
the SSMs themselves must be accurate. Therefore, a novel method for simultane-
ous improvement of shape segmentation in images and correspondence improvement
among a set of such shapes in introduced in Chapter 2. This method helps build
SSMs that can estimate accurate segmentations of anatomical structures with low er-
rors. These SSMs are incorporated into a probabilistic registration framework called
the deformable most likely point paradigm, presented in Chapter 3. This framework
enables registration between data samples and a statistically derived shape while si-
multaneously deforming the statistically derived shape using an SSM to fit the data

samples. This registration framework is an iterative two phase framework, where the
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first phase finds correspondences between the data samples and the current deformed
shape and the second phase finds the transformation and shape parameters that
transform the data samples and deform the shape to best align the correspondences.
The transformation and shape parameters are computed using a gradient-based solu-
tion to the optimization problem, which is computed using an off-the-shelf nonlinear
box-constrained BFGS quasi-Newton optimizer. Three algorithms were developed
within this framework with different optimization problems. The first, deformable
iterative most likely point (D-IMLP) algorithm, uses point position features with
unconstrained or anisotropic noise and is presented in Chapter 4. The second, de-
formable iterative most likely oriented point (D-IMLOP) algorithm, uses orientation
features with constrained or isotropic noise in addition to the position features with
unconstrained noise and is presented in Chapter 5. The third, generalized deformable
iterative most likely oriented point (GD-IMLOP) algorithm, uses both point position
and orientation features with unconstrained noise and is presented in Chapter 6. An
efficient PD-tree update routine is also implemented to accommodate the deforming
model shapes in these algorithms.

These algorithms were evaluated on data simulated from several different datasets,
including pelvis data, nasal cavity data, and human expression and pose data. In all
experiments except those using human pose data, all three algorithms are able to

accurately compute the optimal alignment between the deforming shape and data

samples, with accuracy increasing from D-IMLP to D-IMLOP to GD-IMLOP. Im-
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provement in results using D-IMLOP and GD-IMLOP over D-IMLP is as expected
since D-IMLOP and GD-IMLOP use orientations in addition to position features and,
therefore, make use of more information to compute the registration. D-IMLOP and
GD-IMLOP produce comparable results when the noise in the orientation components
is isotropic and both algorithms make isotropic noise assumptions. However, if the
noise in the orientations is anisotropic, then GD-IMLOP outperforms D-IMLOP since
GD-IMLOP is able to accurately model the anisotropic noise, whereas D-IMLOP is
only able to model isotropic noise. All three algorithms show improvement with in-
creasing number of data samples and do not show large deterioration in the presence
of outliers since they all employ outlier rejection mechanisms. D-IMLP shows stabil-
ity under changing noise assumptions, whereas D-IMLOP shows better performance
when noise assumptions are more optimistic because the simplicity of its formulation
leads to faster convergence. GD-IMLOP, on the other hand, shows improvement in
performance as the noise assumptions become more pessimistic. Coherent point drift
(CPD), a standard deformable registration algorithm, outperformed both D-IMLP
and D-IMLOP in terms of errors, but GD-IMLOP was able to match the perfor-
mance of CPD using ~ 20 modes. However, in terms of runtime, D-IMLP was faster
than CPD with fewer than ~ 35 modes and comparable with more modes. Both
D-IMLOP and GD-IMLOP were faster than CPD by about 5-8x and 1.5-2x, re-
spectively. Further, none of the algorithms presented in this dissertation suffer from

the prohibitively high memory requirements that CPD suffers from. Finally, unlike
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CPD, the errors produced by the algorithms presented here are correlated with the
ground truth errors, allowing these algorithms to assign success or failure labels or
some amount of confidence to computed registrations based on these errors.

These algorithms are also evaluated on in-vivo clinical endoscopic video data in
Chapter 7. Since ground truth is not available for this data, results were evaluated us-
ing residual errors produced and visually. On this dataset, GD-IMLOP outperformed
D-IMLOP, which outperformed D-IMLP. This is expected since reconstructions from
video data tend to have higher uncertainty or noise in the z-direction and, therefore,
are best characterized by anisotropic noise in both position and orientation. Finally,
in Chapter 8, other medical applications of SSMs and deformable registration are
explored. Results show that SSMs can be used to observe how different anatomical
structures vary in population as well as to understand the variation in structures that
naturally deform in each individual. Further, results also show that deformable regis-
tration can be used to estimate the anatomical shape of an individual and make some
inference about that shape, particularly in regions where data samples were matched

because these regions are more accurately estimated.

9.1 Future work

The results presented in this dissertation used SSMs built from relatively small

datasets, as described in Sec. 4.5. It is highly likely that these datasets do not
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capture the full range of variation present in the anatomical structures and in human
expression and pose. A recently acquired head CT image dataset containing roughly
5000 CT scans will be used in the future to build SSMs that are able to explain the
full range of variation in different anatomical structures present in the head. Results
for pose estimation reported in this dissertation show that the algorithms are not
able to accurately reconstruct pose. With a larger pose dataset, the performance
of these algorithms in pose estimation could show improvement. Human expression
results could also be improved by using curvature based sampling techniques since
most of the details are near high curvature areas like eyes and mouth. Further,
principal component analysis (PCA), which assumes that samples are drawn from a
multivariate Gaussian distribution, is used to build SSMs in this dissertation. It is
possible that this is not an accurate assumption for some anatomical structures and,
perhaps, also for human expression and pose.!%®

The algorithms presented in this dissertation can also be used to expand datasets
of shapes with correspondences. Any new shape that is not is correspondence with
the dataset can be estimated using the deformable registration algorithms to find
correspondences. The estimated shape, which is in correspondence with the dataset,
can then be added to the dataset and a new SSM can be built. Different methods for
building SSMs can also be explored to improve results. Another experiment where

the performance of the algorithms presented in this dissertation could be improved

was the partial data experiment, where data points were sampled from a part of
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the full mesh. This experiment simulates real in-vivo scenarios where the full nasal
cavity is not visible in a video sequence or only a partial pelvic CT image is available.
Although the deformable registration methods presented here are able to estimate
the full shapes with lowest errors where data is available, these errors can be further
reduced by stitching together the available data from the video or partial CT and the
estimated mesh where data was not available using thin plate splines'?® as described
by Grupp et al.1%

The current deformable registration paradigm assumes that the mean shape is
the most likely shape and, therefore, the shape parameters, s, are initialized to 0.
However, during minimally invasive surgery through the nasal cavities, decongestants
are administered to patients that lead to shrinking in several structures like the nasal
conchae or turbinates. Therefore, in this scenario, the mean shape is no longer the
most likely shape, but a decongested shape is. Therefore, for these shapes, s should
be initialized according to the weights that represent a decongested shape. How-
ever, for the surrounding structures that are not affected by decongestants, the mean
shape remains the most likely shape. Since different anatomical structures may vary
differently, it may be a useful extension to the current method to incorporate multi-
ple model shapes along with their respective SSMs. In this system, correspondences
would be found on the combined set of model shapes, but each model shape would
deform according to its own statistics. Additional measures would have to be taken

in order to prevent the shapes from intersecting. Finally, additional algorithms can
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be built within the deformable most likely point paradigm that can further improve
registration results. For instance, the video iterative most likely oriented point (V-
IMLOP) algorithm uses 3D point features (like IMLP) along with 2D oriented point
features that represent occluding surface contours.> Although this method only com-
putes a similarity transformation (rotation, translation and scale) between the data
samples and model shape, it achieves submillimeter registrations by avoiding subop-
timal local minima due to the additional constraints provided by the contours. These
occluding contours can be incorporated into the deformable registration algorithms
presented here in order to provide these algorithms with more information to guide
the registration.

The implementation of the deformable most likely point paradigm opens up the
opportunity to develop many types of deformable registration algorithms for vary-
ing applications that use different features, make different noise assumptions, or use
different types of SSMs. Such developments can accelerate the process of solving
the preoperative and intraoperative image alignment problem in computer assisted
medical interventions and, therefore, improve the quality of care provided to patients.
Outside the medical field, machines using video feeds to view the world could make
better estimates of human emotion and action based on estimated human expression
and pose, respectively. The possible set of contributions of the deformable most likely
point paradigm and the algorithms built with it is large and will hopefully continue

to be tapped.
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