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Abstract 

The distribution of fitness effects, or fitness landscape, of a protein offers a 

picture of the relationship between mutations and their effects on a broad scale. 

Mutations in a protein can have positive, negative, or neutral effects on its function. 

Mapping these effects on a large scale allows us to better understand evolutionary 

dynamics in nature and informs our ability to better engineer proteins in the laboratory. I 

used deep-mutational scanning techniques, including saturation mutagenesis, high-

throughput selection, and DNA deep-sequencing, to explore two important and 

understudied aspects of the fitness landscape of TEM-1 beta-lactamase. First, I examined 

pairwise intragenic epistasis among sequential amino acid substitutions in TEM-1. 

Epistasis, or interactions between mutations, play a central role in shaping the fitness 

landscape, but a clear picture of the prevalence and patterns of epistasis has yet to 

emerge. This study is the first to systematically examine pairwise epistasis throughout an 

entire protein performing its native function in its native host. I explored the relationship 

between epistasis and secondary structure, solvent accessibility, distance from the active 

site, amino acid identity, and individual mutant effect. I found pervasive negative 

epistasis, particularly in highly structured regions of the protein and among buried 

residues, and a high frequency of negative sign epistasis among individually beneficial 

mutations. Second, I present a near-comprehensive analysis of the fitness effects of single 

amino acid insertions and deletions (InDels) in TEM-1. Short InDels are a common type 

of mutation in nature, often having important consequences, such as opening new 

pathways for adaptation. InDels also represent a useful source of variation in the protein 
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engineering toolbox. Despite their importance and utility, the distribution of fitness 

effects of InDels is vastly understudied compared to substitutions. I found InDels to be 

largely deleterious, but notable regions of tolerance were observed throughout the 

protein. I found secondary structure, weighted contact number, and evolutionary variation 

in class A beta-lactamases to be the most predictive of their fitness effects. 
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Chapter 1: Introduction and Background 

Mutations and the Fitness Landscape 

Mutations are the source of genetic variation in evolution. Typically, DNA 

sequences are copied with very high fidelity, but rare errors in replication or repair in 

protein-coding regions can result in various changes on the amino acid level, including 

substitutions, insertions, and deletions. These changes can have positive, negative, or 

neutral effects on the function and expression of that protein, resulting in different 

phenotypes. Under selection pressure, these differences can be determining factors in 

what genes become fixed in a population [1].  

Evolutionary biologists use the term fitness to describe the ability of an organism 

to survive and procreate, and thus predict evolutionary success. Understanding the 

relationship between genetic variation and fitness is a fundamental objective in biology. 

In 1932, Sewall Wright introduced the concept of the fitness landscape as a way to 

visualize this relationship [2]. The metaphor of the fitness landscape imagines a 

topographical map in which genotype space is represented on the x-y plane, and fitness is 

mapped onto the z-axis (Figure 1). The result is a landscape of high fitness peaks and low 

fitness valleys corresponding to different genotypes. This 3-D representation is a highly 

simplistic representation of a true fitness landscape, given the vast multi-dimensionality 

of all possible genotypes. For example, the sequence space of all combinations of 

possible point mutations a single 1000 base pair gene is 41000, a number greater than the 

total number of particles in the universe [2]. 
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Figure 1. The Metaphor of the Fitness Landscape  

The x-y plane represents possible genetic sequences and the z-axis represents the fitness 

conferred by that genotype. Fitness peaks are indicated in warmer colors and fitness 

valleys are indicated in cooler colors. Arrows on the landscape show potential adaptive 

walks starting from a specific point, ending at local or global maxima.    

 

Still, the metaphor of a landscape with fitness peaks and valleys provides a useful 

image to conceptualize evolutionary trajectories and adaptation. In 1970, John Maynard 

Smith proposed the concept of an “adaptive walk” to imagine how proteins may traverse 

the landscape via stepwise mutational changes [3]. He uses the analogy of a word game 

in which one word is changed to another word, one letter at a time, provided each 
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intermediate is also a word (WORD --> WORE --> GORE --> GONE --> GENE). 

Analogously, a protein variant can accumulate variation and traverse the landscape one 

mutation at a time, provided each subsequent mutation results in a functional protein. 

Accumulation of mutations toward a fitness peak can be pictured as an uphill climb, 

where each subsequent mutation is one step away in sequence space and results in a 

higher fitness (Figure 1). One might imagine a relatively smooth landscape with a single 

peak, or a more rugged landscape with multiple peaks and valleys, and the ways in which 

these different topographies could influence the outcomes of adaptive walks. In theory, 

the fitness landscape shows which outcomes are fundamentally possible in evolution.   

 

Epistasis and the Fitness Landscape 

The structure of the fitness landscape is complicated by epistasis, or genetic 

interactions that result in a deviation from the additive effects of mutations[4]. In other 

words, epistasis occurs when the effect of a mutation is different depending on the 

genetic background, or context, in which it occurs. In general, epistasis can be 

categorized as magnitude epistasis or sign epistasis. Magnitude epistasis describes when 

the size of the effect varies depending on the context. This type of epistasis can affect the 

curvature of the fitness landscape, but does not introduce ruggedness which can constrain 

evolutionary trajectories. Magnitude epistasis can be positive or negative. Positive 

epistasis occurs when the fitness conferred by two or more mutations is higher (more 

beneficial) than predicted based on their individual effects; negative epistasis occurs 

when the combined fitness effect is lower (more detrimental) than predicted (Figure 2).  

Sign epistasis describes when the sign (beneficial or detrimental) of the effect of the 
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mutation changes depending on the genetic background. For example, negative sign 

epistasis occurs if mutation A is beneficial alone, but the combined fitness effect of 

mutation A and B is detrimental. This type of epistasis can introduce peaks and valleys in 

the fitness landscape that render certain pathways inaccessible.  

 

 

Figure 2. Magnitude epistasis between two beneficial or two deleterious mutations 

 

 

Fitness Landscape Models 

Numerous models have been proposed to predict the shape of the fitness 

landscape. Among the most popular is the NK model [5], which aims to capture 

pervasive sign epistasis. In this model, the shape of the landscape is tuned by the size of 

the genome, represented as a binary sequence of length N, and the number of “interaction 

partners” (K). Under different parameters, the NK model can result in a smooth 

landscape with a single peak, a maximally rugged landscape, or something in between. 
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When K=0, the model results in a smooth mountain-like fitness landscape. This limit is 

termed the “Mt. Fuji” landscape and depicts the shape of a landscape without epistasis 

[6]. The other extreme, where K=N-1, results in a maximally rugged landscape, termed a 

“House of Cards” landscape [7]. The “Rough Mount Fuji” landscape aims to capture an 

intermediate ruggedness, thought to be more representative of true fitness landscapes [6, 

8]. While theoretical models of fitness landscapes are useful in providing a framework for 

what fitness landscapes may look like, they stand to benefit from empirical observations 

of real fitness landscapes.   

 

Empirical Fitness Landscapes 

Recently, advances in molecular biology and DNA sequencing have allowed for 

empirical studies of fitness landscapes. One way to study this relationship between 

genotype and fitness is with deep mutational scanning, a method that involves the 

creation of a large number of mutants, selection based on their function or fitness, and 

high-throughput DNA sequencing to link effects to their respective genotype. Deep 

mutation scanning is motivated by the question, as phrased by Fowler et al: “…what if 

we knew the functional consequences of every possible single amino acid change at 

every position in a protein?”[9] In these studies, which typically focus on a single protein, 

fitness is often more specifically referred to as “protein fitness” or “gene fitness”, to 

distinguish it from the true biological fitness of the organism, which encompasses 

everything involved in survival and reproduction. The link between the functional effects 

of mutations and their effect on organismal fitness is not completely understood, and the 

systems involved in deep mutational scanning studies are sometimes far removed from 
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biological conditions [10]. Still, these high-throughput mutational studies have the 

potential to advance our understanding of proteins by revealing important and often 

unpredictable results. They can identify thermodynamically stabilizing mutations, 

mutations that result in enhanced catalytic activity or improved binding, or mutations or 

residues that are important for structure. For example, mutations far away from the active 

site of the protein have been found to drastically affect enzyme activity and 

thermodynamic stability [11]. Together, these studies have also offered unexpected 

insight into the general impact of single amino acid substitutions. An analysis of 14 such 

studies comprising over 30,000 mutations revealed methionine to be the most tolerated 

amino acid substitution, while histidine and asparagine best predicted the effects of other 

substitutions [12].  

Large scale mutational studies also allow us to look at the epistatic effects of 

multiple mutations on a much larger scale than ever before possible. For example, a 2016 

study on the local fitness landscape of the green fluorescent protein examined over 

50,000 variants containing two or more mutations, and revealed patterns of epistatic 

interaction including up to 30% negative epistasis (depending on the number of 

mutations), a low frequency of positive epistasis, and a correlation between epistasis and 

functional sites, solvent accessibility, and mutational proximity[13].       

The sequence-function or fitness maps generated by deep mutational scanning 

offer insights into the nature of fitness landscapes and the patterns therein. Empirical 

studies also allow us to build models with parameters based on observation, in order to 

better understand and predict evolution. In the following studies (Chapters 2 and 3), we 
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utilize deep mutational scanning principles to characterize aspects of the fitness 

landscape of TEM-1 -lactamase.  

  

TEM-1 -lactamase 

TEM-1 -lactamase is a commonly studied model in protein evolution. -lactam 

antibiotics, such as ampicillin, kill bacteria by binding to the transpepdidases that 

catalyze cross linking of the cell wall. -lactamases are enzymes native to bacteria that 

provide resistance to -lactam antibiotics. They do so by breaking the four atom -lactam 

ring found in these antibiotics, rendering them inactive. There are 4 classes of -

lactamases (A-D). Class B -lactamases are zinc-dependent metallo-B lactamases, while 

the other three are characterized by a serine active site. TEM-1 is a class A -lactamase 

and the most common -lactamase found in gram negative bacteria[14]. It has been 

extensively studied and is a convenient model protein for molecular evolution studies 

because cells containing TEM-1 can be challenged to grow in the presence of ampicillin 

and resistance can be used as a proxy for fitness.  

A number of studies have focused on the distribution of fitness effects and 

epistatic interactions of substitutions in TEM-1. In a landmark study on epistasis, 

Bershtein et al hypothesized a “threshold robustness” to deleterious mutations that 

destabilize the protein [15]. They found that under low selection pressure, a large fraction 

of mutations was initially tolerated, but after this threshold was exhausted, the fitness 

resulting from accumulating mutations fit an accelerated fitness decline curve indicative 

of negative epistasis. They theorize that initial mutations result in some stability cost on a 
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physico-chemical scale, but these effects are buffered until they exhaust the threshold, 

after which deleterious mutations result in a more-than-additive negative effect on fitness.  

Three large scale distributions of fitness effects of substitutions have been 

reported for TEM-1. A 2013 study assessed the fitness effects of 64% of possible amino 

acid substitutions reachable by point mutation [16]. They used a minimum inhibitory 

concentration (MIC) assay to determine the fitness effects of mutations. The distribution 

was bimodal, with a peak around wildtype fitness levels and a peak for inactivating 

mutations. In the background of a known stabilizing mutation, the distribution shifted 

toward mutants showing no fitness effect, indicating positive epistasis between the 

stabilizing mutation and individually deleterious mutations. The effects on ampicillin 

resistance and cefotaxime resistance of all 4,997 single amino acid mutations in the 

mature TEM-1 protein were examined by Stiffler et al [17]. They also found a bimodal 

distribution for fitness effects with respect to ampicillin resistance. Interestingly, they 

found that mutational tolerance was dependent on the concentration of antibiotic, and that 

mutations that result in a new function (resistance to cefotaxime) are neutral only under 

low selection pressure. This suggests that adaptive mutations to new functions may not be 

able to accumulate in environments under strong purifying selection pressure.    

A comprehensive, high-resolution map of nearly every possible amino acid 

substitutions (95.6%) throughout the entire protein, including the signal sequence, was 

presented by Firnberg, et al [18]. In agreement with the other studies, they found TEM-1 

to be fairly robust to substitution mutations (Figure 3), with 53.2% of alleles maintaining 

at least half of the fitness of wildtype, as measured by resistance to ampicillin. They also 

found a small fraction (7.0%) of substitutions that conferred a fitness benefit above 
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wildtype. Fitness effects of synonymous mutations were marginal compared to missense 

mutations, and occurred most significantly at the beginning of the gene. They explore the 

underlying mechanisms of deleterious effect mutations and find reduced specific protein 

activity to be more determining than reduced protein abundance. In line with the 

threshold robustness theory, they hypothesize that TEM-1’s high tolerance to mutation 

may result in part from a buffering effect with respect to cellular protein levels. 

Following the study by Firnberg et al, Steinberg et al examined the fitness 

landscapes of TEM-17, TEM-19, and TEM-15 [19]. TEM-17 and TEM-19 are each one 

single amino acid mutation away from TEM-1. Together in TEM-15, the two mutations 

confer resistance to cefotaxime rather than ampicillin. Thus, the landscapes represent an 

adaptive pathway for the evolution of cefotaxime resistance. They examined epistasis 

along this adaptive pathway and found that the prevalence of epistasis depended on the 

background mutation. Epistasis was observed in 8% of mutations with TEM-17 and 53% 

with TEM-19. They found the epistatic landscape of TEM-19 best predicted the final 

TEM-15 epistatic landscape.           
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Figure 3. The sequence-function landscape of substitutions in TEM-1 [18] 
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Library Creation Methods 

Each of these studies [18, 19], and the work presented in the following chapters, 

involved the creation of saturation mutagenesis libraries, high-throughput selection for 

protein fitness, and deep-sequencing via next-generation sequencing technology. Firnberg 

et al and Steinberg et al created their libraries with a novel oligonucleotide-directed 

mutagenesis technique called PFunkel mutagenesis [20]. PFunkel allows for the creation 

of saturation mutagenesis libraries in a single tube. Based on Kunkle mutagenesis [21], it 

relies on uracil-containing DNA and PCR cycling with kinased mutagenic oligos. Though 

time-efficient and convenient, PFunkel has the limitation of having the frequency of 

library members dependent on how well the mutation-containing oligonucleotide works 

in the mutation generating reaction. This aspect biases the frequency of library members, 

making some mutations harder to study because they are not present or are scarce in the 

library.  

Another convenient method for creating high-throughput site-directed mutations 

in a 96-well format is inverse PCR (Figure 4). It is particularly attractive because 

individual reactions can be monitored, resulting in a less biased library once the reactions 

are pooled. In this method, pairs of oligos are designed to linearize the plasmid at each 

desired site. The forward oligo can be designed to create a substitution, insertion, or 

deletion of one or multiple nucleotides (Figure 4b). The individual reactions can be 

visualized on a gel to verify their success, and pooled to create a library. The method’s 

drawbacks are that it requires a separate PCR reaction for each codon mutagenized (i.e. it 

is more labor intensive) and it potentially has a higher spurious mutation rate, since the 
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method uses multiple cycles of PCR instead of the single extension reaction that is used 

in PFunkel.   

 

Figure 4. Schematic of Inverse PCR 

(a) At each desired site, a PCR reaction with mutagenic primers is performed to linearize 

the plasmid and introduce the mutation. After ligation, the recircularized plasmid 

contains the mutation. (b) The yellow highlighted area in (a) is magnified to show 

potential oligo primer designs to create a substitution, deletion, or insertion mutation. (c) 

PCR reactions can be performed in 96-well format and pooled to create a site-saturation 

mutagenesis library. 

 

Proxies for TEM-1 Fitness 

 Many studies examining fitness effects of mutation use growth competition 

experiments to measure fitness [22]. In the case of TEM-1, the combined population of 

alleles is challenged to grow in the presence of Amp. Sequencing the population before 

and after the growth competition allows for calculation of an enrichment value, which 

can be used as a proxy for fitness. However, growth competition experiments with TEM-
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1 suffer from some limitations, including the dependence of enrichment values on the 

concentration of Amp and the inability to measure low fitness values at high resolution. 

Minimum inhibitory concentration (MIC) assays are also commonly used to measure the 

level at which an allele is able to confer resistance to the antibiotic, which can be used as 

a proxy for fitness [16]. However, standard MIC assays rely solely on a positive selection 

for antibiotic resistance, which makes low-fitness alleles difficult to isolate. To overcome 

the limitations of both growth competition experiments and standard MIC assays for 

TEM-1, Firnberg et al and Steinberg et al used a synthetic biology approach that 

measures Amp resistance in a MIC-like manner.  

 

Bandpass selection for Amp resistance 

In contrast to typical positive selection for ampicillin resistance, in which cells 

grow only if they exhibit sufficient beta-lactamase activity to degrade the amount of 

ampicillin present, this system also restricts growth of cells with excessive beta-lactamase 

activity relative to the ampicillin concentration (Figure 5) [23]. This system allows for 

selection of cells exhibiting low or intermediate beta-lactamase activity. The system 

relies on a genetic circuit between the ampR gene and tetC gene, which allows for a user-

specified selection range based on the antibiotics added to the media (Figure 5a). In the 

absence of sufficient beta-lactamase activity to hydrolyze ampicillin, ampicillin 

compromises cell wall synthesis, which inhibits cell growth (Figure 5b). The breakdown 

of the cell wall results in the intermediate, aM-pentapeptide (aM-Pp), the accumulation of 

which induces the ampC promoter for the expression of TetC, which confers tetracycline 

resistance. This accumulation of AM-Pp (and induction of the ampC promoter) happens 
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even at levels of ampicillin that are too low to prevent cell growth.  However, if cells 

have too much beta-lactamase activity, ampicillin is rapidly degraded below the level that 

causes Am-Pp to accumulate, leaving the cells sensitive to tetracycline. Thus, in the 

presence of tetracycline, cells expressing beta-lactamase require that the ampicillin 

concentration be in a particular, narrow range that is set by the level of ampicillin 

resistance that beta-lactamase provides (Figure 5bc).  This system allows a library of 

alleles to be plated on different concentrations of Amp and parsed into multiple 

sublibraries ranging from low fitness variants to high fitness variants, as determined by 

resistance to Amp. To afford control over beta-lactamase expression, it is regulated under 

the tac promoter through IPTG-induction, which in the absence of IPTG is repressed by 

LacI. 

 

Figure 5. Bandpass selection for Amp resistance 

Figure adapted from [23] (a) Schematic of the genetic circuit between the ampR and tetC 

genes. (b) Depiction of the bandpass effect resulting from combining a positive and 

negative selection. (c) The growth of cells as a function of Amp concentration (y axis) 

and cellular β-lactamase activity (x axis). 



 15 

  

Deep-Sequencing of Libraries 

 Recent advances in DNA sequencing technology have been one of the most 

important boons for the progress of the study of fitness landscapes [24]. Next-generation 

DNA sequencing allows for the sequence identification of millions of gene variants. 

Variants can be linked to their respective phenotypes by adding identifying barcodes via 

PCR prior to sequencing. For example, Firnberg et al and Steinberg et al use 13 unique 

barcodes to represent the level of Amp at which each sublibrary of mutated alleles grew. 

Two of the most common deep-sequencing platforms are Illumina and PacBio (Pacific 

Biosciences) [25], each of which has strengths and limitations. Illumina offers the highest 

number of reads (currently routinely over 20 million), however, the read length available 

on most Illumina platforms is currently only 2x300 bp. Alternatively, PacBio offers 

longer read lengths (~10,000 bp), but about 100-fold fewer total reads.  

 

Limitations of previous studies 

 Previous studies of mutational effects in TEM-1 have focused almost exclusively 

on substitution mutations. Insertions and deletions (InDels) represent another important, 

yet understudied, source of genetic variation in nature and the engineering. Furthermore, 

studies of epistasis in TEM-1 are limited to mutation accumulation studies (ref) and 

epistasis with respect to a small number of anchor mutations (ref).  In the following 

studies, we utilize deep mutational scanning principles to further characterize the fitness 

landscape of TEM-1 by systematically examining epistasis between double mutants and 

investigating variation beyond substitutions.  In chapter 2, we describe the patterns of 
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epistatic interactions among sequential amino acid substitutions throughout the protein, 

and in chapter 3, we describe the effects of amino acid insertions and deletions 

(INDELs). This work constitutes a significant piece of the puzzle in the emerging picture 

of the distribution of fitness effects and epistasis, both for TEM-1 specifically, and for 

protein landscapes more broadly.     
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Chapter 2: Pervasive pairwise intragenic epistasis among 

sequential mutations in TEM-1 -lactamase  
 

Summary 

Interactions between mutations play a central role in shaping the fitness landscape, but a 

clear picture of intragenic epistasis has yet to emerge. To further reveal the prevalence 

and patterns of intragenic epistasis, we present a survey of epistatic interactions between 

consecutive mutations in TEM-1 -lactamase. We measured the fitness effect of ~12,000 

pairs of consecutive amino acid substitutions and used our previous study of the fitness 

effects of single amino acid substitutions to calculate epistasis for over 8,000 pairs. We 

found widespread negative epistasis, especially in beta-strands and a high frequency of 

negative sign epistasis among individually beneficial mutations. In general, we found 

secondary structure and solvent accessibility to be better predictors of epistasis than 

mutant amino acid identity or distance from the active site. This study is the first to 

systematically examine pairwise epistasis throughout an entire protein performing its 

native function in its native host.   

 

Introduction 

 Understanding the fitness effects of mutations is fundamental to the study of 

molecular evolution. Mutations can have different effects depending on the genetic 

background in which they occur. For example, a mutation that is beneficial in one context 

may become deleterious in another, limiting mutational trajectories or yielding 

evolutionary dead-ends. This interaction between two or more mutations, called epistasis, 
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plays a central role in evolution. Epistasis affects speciation [26, 27], the benefits of 

recombination and sex [28], genetic robustness [15, 29], and the predictability of 

evolution [30].  

 Genetic interactions can manifest in various ways. When two or more mutations 

interact such that their combined effect is more beneficial than predicted from their 

individual effects, it is termed positive epistasis. Alternatively, negative epistasis occurs 

when the combined effect is more deleterious than predicted. The magnitude of epistasis 

can have important consequences for the dynamics of evolution by affecting the 

curvature of the fitness landscape [6]. Sign epistasis occurs when a mutation is 

deleterious in one context, but beneficial in the presence of an additional mutation(s). The 

opposite is termed negative sign epistasis. A particular case of sign epistasis is reciprocal 

sign epistasis, in which two or more individual mutations are deleterious individually, but 

their combined effect is beneficial. This type of epistasis is particularly consequential in 

shaping the topography of the fitness landscape, causing local ruggedness and rendering 

certain peaks inaccessible [31]. 

Despite its theoretical importance in evolution, epistasis is understudied 

empirically and its contribution to evolution is not well understood. Empirical studies 

have aimed to elucidate aspects of epistasis in various ways. One way is by explicitly 

quantifying the functional or fitness effects of two or more mutations within a gene. 

Studies of intragenic epistasis have found it to be widespread [32-34]  or rare [35, 36], 

mutational interactions to be typically strong [37] or weak [38], and sign epistasis to 

occur at a wide range of frequencies [34, 39]. The lack of consensus reflects the variety 

of molecules studied, differences in measuring function or fitness, modes of analysis, and 
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fundamental limitations of multi-mutant studies. Recent studies of epistatic interactions 

in RNA molecules, which are attractive due to their typically shorter gene lengths and 

fewer possible combinations of mutations, reveal a predominance of negative epistasis 

[40]. While it is possible to characterize nearly all combinations of two point mutations in 

a small RNA molecule, capturing the full landscape of every pair of amino acid 

substitutions in an average size protein is currently beyond our limits. Intragenic epistasis 

studies of proteins necessarily compensate by looking at combinations of a small subset 

of mutations, focusing on a small region, or surveying a small fraction of the possible 

pairs. 

 Many studies have focused on combinations of a small set of mutations, or 

random mutations in the background of a few “anchor mutations”. For example, a study 

by Schenk et al [39] looked exclusively at combinations of beneficial mutations, 

quantifying epistasis in sets of four single mutations that had a known “large effect” or 

“small effect” on improving antibiotic resistance. They found significant negative 

epistasis in both landscapes and pervasive negative sign epistasis, especially among large 

effect mutations. Parera and Martinez (2014) tested epistasis by introducing a known 

deleterious amino acid substitution into various backgrounds of a protease and measuring 

catalytic efficiency compared to wildtype [37]. Significant epistasis was observed in 50 

of the 56 backgrounds tested. A study by Bank at el (2014) analyzed more than 1,000 

double mutants comprised of 7 point mutation backgrounds of neutral to slightly 

deleterious effect and found common negative epistasis (46%) and rare positive epistasis 

[32]. While these studies show important patterns in epistasis among a few known 

mutations, or among random mutations in the background of a few anchor mutations, 
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they may be limited in their ability to capture larger epistatic trends. We previously 

reported epistatic landscapes along an evolutionary pathway [19] wherein ~12,500 single 

amino acid mutants were analyzed in the background of the mutations that make up an 

adaptive pathway from TEM-1 to TEM-15 -lactamase. The anchor mutation in each 

landscape was found to be a determining factor in the patterns of epistasis observed. For 

instance, while epistasis was rare in one background (8%), it was observed for 53% of 

mutants in another. This suggests that the use of anchor mutations to capture general 

trends in epistasis may bias the conclusions.  

 Studies that looked at random pairs of mutations often focused their scope to a 

small domain within a protein.  Often the domain has been excised from its native 

protein, necessitating the characterization of interactions affecting a biophysical property, 

such as binding, in a non-native context.  These studies are instrumental in revealing local 

epistatic interactions involved in a particular biophysical property. For instance, Araya et 

al calculated epistasis for ~5000 variants in a 34-amino acid WW binding domain using 

phage display [38]. They found epistasis to be rare, with values small in magnitude, and 

no population tendency toward positive or negative epistasis. In a 2014 study, Olson et al 

quantified the effects of all double mutations between all positions in the IgG- binding 

domain of protein G (GB1), using in vitro mRNA display [35]. They reported notable 

instances of both positive and negative epistasis, as well as sign epistasis, but overall 

observed that epistasis was rare. Likewise, Melamed et al (2013) analyzed double 

mutants within a 90 amino acid RNA recognition motif in a poly(A)-binding protein and 

found that only 3.6% exhibited negative epistasis and 1.0% exhibited positive epistasis 

[36]. They also found that pairs of mutations zero to five residues apart along the primary 



 21 

sequence exhibited a significantly higher frequency of both positive and negative 

epistasis than pairs further apart.  Bank et al (2016) examined epistasis among all 

possible combinations of 13 amino acid mutations at 6 sites in the heat shock protein, 

Hsp90 [32]. They found a prevalent pattern of negative epistasis and ruggedness in their 

local landscape, concluding that predicting fitness landscapes from the effects of 

individual mutations is made exceedingly difficult by genetic interactions.      

 Few studies have examined interactions between random pairs of mutations 

throughout an entire protein. A 2016 study of the fitness landscape of the green 

fluorescent protein defined fitness as the level of fluorescence in E. coli [13]. The authors 

sampled ~2% of all possible pairs of mutations, representing 30% of pairs of positions in 

the protein, and found that less than 5% exhibited epistasis. They observed pairs 

exhibiting epistasis to be located at sites across the gene, but slightly closer together than 

random. They found that pairs containing weak-effect mutations exhibited epistasis more 

often than pairs containing strong effect mutations, and suggest that the combined effect 

of weak mutations exhausts a stability threshold. Finally, they observed both strong and 

weak epistasis more prevalently among pairs of two buried sites, compared to pairs 

containing at least one solvent exposed site. Overall, they conclude that pairwise epistasis 

is more common at sites important to function.  

Existing studies lack a survey of pairwise intragenic epistasis of a protein 

performing its native function in its native host in which the mutations are not limited to a 

particular domain or involve a small set of anchor mutations. Here, we examine pairwise 

epistasis throughout TEM-1 -lactamase, a 286 amino acid antibiotic resistance protein 

native to E. coli. Informed by the observation that epistasis is more prevalent in pairs 
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close together in primary sequence [36], we asked a specific question: how does epistasis 

present in pairs of consecutive amino acid substitutions throughout the protein? 

Previously, we quantified the fitness effect of nearly all (95.6%) possible single amino 

acid substitutions in TEM-1 [18]. We use this data set to compare individual effects of 

mutations to the fitness effects of over 8,000 sequential double mutants. We find 

widespread negative epistasis (especially in beta-strands), with negative epistasis (52%) 

occurring 7.6 times as frequently as positive epistasis (6.8%). 

 

Results and Discussion 

TEM-1 is a convenient model for the study of gene/protein evolution, as it confers 

an easily identifiable and quantifiable phenotype – resistance to penicillin antibiotics, 

such as ampicillin (Amp). Although growth competition experiments in the presence of 

Amp can be used to measure enrichment of various alleles as a proxy for fitness, the 

values obtain depend on the concentration of Amp used [17]. In addition, the relative 

growth rate of cells with different alleles will change over time as the Amp in the culture 

is degraded, so the fitness values obtained are not precise relative growth rate 

comparisons. In addition, growth competition experiments have low resolution of low 

fitness alleles.  As an alternative, minimum inhibitory concentration (MIC) assays can be 

used as a proxy for fitness, quantifying the ability of the allele to confer resistance to the 

antibiotic [16] [41], but MIC assays are not high throughput. Here, we use our previously 

described synthetic biology approach to quantify Amp resistance in a MIC-like fashion as 

a proxy for fitness [18, 23]. This method overcomes the limitations of growth 

competition experiments and standard MIC assays, as the fitness measures are ampicillin 
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concentration independent and low fitness values are as precisely measured as high 

fitness values. Our fitness values measure the level of ampicillin resistance conferred by 

the gene and are predictive of fitness values measured by growth competition 

experiments in the presence of a range of ampicillin concentrations (Figure 6). 

 

 

Figure 6. Fitness values for amino acid substitutions in TEM-1 measured by growth 

competition compared to fitness values measured by our bandpass MIC-like method 

Stiffler et al [17] performed the growth competition experiments in liquid LB media 

(with different concentrations of Amp as indicated) with DH10B E. coli cells containing 

TEM-1 under its native, constitutive promoter on plasmid pBR322. The fitness value 

associated with a mutation was measured by calculating the change in allele frequency 

relative to wildtype between before and after the growth competition. We performed our 

experiments on LB-agar plates with SNO301 E. coli cells containing TEM-1 under the 

IPTG-inducible tac promoter on a lower-copy p15A origin plasmid [18].  Fitness was 

measured as the resistance of cells carrying the mutation relative to wildtype using the 

bandpass system. This fitness measurement does not depend on the ampicillin 

concentration in the media (i.e. the fitness measurement for Firnberg et al is the same in 

all five graphs).  The line is x=y. 
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We created a library of ~30,000 sequential double mutants in TEM-1 using 

inverse PCR using abutting, degenerate primers in which the 5’-end of one primer had 

the sequence (NNN)2. [42]. We created separate libraries for each third of the gene to be 

compatible with the read length of the Illumina MiSeq 2x300 deep sequencing platform. 

We plated transformed SN0301 E. coli cells with the double mutant library on plates 

containing tetracycline and 13 different Amp concentrations ranging from 0.25 g/ml to 

1024 g/ml. Whereas Amp prevents growth if the Amp concentration is too high relative 

to the amount of Amp resistance conferred, tetracycline prevents growth if the 

concentration of Amp is too low relative to the amount of Amp resistance conferred.  As 

a result, a particular allele will confer growth only in a narrow range of Amp 

concentrations – a behavior that results from the band-pass synthetic gene circuit in 

SNO301 cells (see Firnberg et al for a detailed explanation [18]). We recovered the 

resulting sublibraries from the plates, PCR-amplified the appropriate third of the gene 

with Illumina MiSeq compatible barcodes, and deep sequenced the amplicons to 

determine how often each allele appeared on each plate. Sequencing reads of alleles 

containing synonymous codons were grouped together. The reported fitness is the 

calculated Amp concentration at which the mutant allele appeared most frequently 

relative to the same value calculated for wildtype allele. We calculated fitness values only 

for double amino acid mutants with 20 or more sequencing counts (see Materials and 

Methods for a more detailed explanation).  

We next applied an adjustment to these fitness measurements to account for 

potential experimental differences between the two sets of fitness measurements.  Our 
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epistasis calculations rely on consistent fitness measurements between our previous 

fitness measurements of single mutants [18] and the measurements of double mutants 

presented here.  Thus, we took measures to ensure that the fitness values were consistent 

between the two experiments. We hypothesized that small differences in plating, 

incubation temperature, or other experimental factors may affect a cell’s propensity to 

form a colony on each plate, perhaps resulting in a slight shift higher or lower in the Amp 

concentrations that favor growth.  Such phenomena would result in systematic shifts in 

fitness values between the two experiments, which could be different for different ranges 

of fitness values.  

To examine this possibility, we compared single mutant fitness values measured 

in each experiment. Our double mutant library creation technique also produced alleles 

containing one amino acid substitution and a synonymous wildtype mutation. We 

assumed that all observed synonymous mutations were neutral, consistent with our 

previous observations that the vast majority of synonymous mutations in TEM-1 are 

neutral [18]. We compared the fitness values for the 1,470 such alleles in our experiment 

with the corresponding single mutant fitness values from Firnberg et al. We observed 

small offsets in fitness values that were sometimes different for different fitness value 

ranges. For example, fitness values less than ~0.125 were uniformly ~30% higher in the 

double mutant data set than the single mutant data set, whereas fitness values nearer to 

the wildtype value had a much smaller offset. Based on this observation, we adjusted the 

double mutant fitness measurements set to account for these differences. We judge this 

cross-experiment normalization procedure to be the most justifiable way to compare the 
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two sets of data. However, we also analyzed the data without the fitness value 

adjustments, and the overall trends presented in this study remained the same. 

We obtained fitness values for 12,374 alleles of unique double mutant pairs, with 

an average of 30 pairs per position. This number represents 12.0% (12,374/102,855) of 

all possible consecutive double mutants. The distribution of fitness values of the double-

mutants shows a shift toward lower fitness values (Figure 7b), compared to the 

distribution of fitness values of the single mutants (Figure 7a). The bi-modal shape of the 

single mutant distribution, with one peak around wildtype fitness and one at low fitness, 

is nearly lost. Only 89 double mutations resulted in fitness values significantly higher 

than wildtype. Nearly half (49.9%) of double mutations resulted in a near-complete loss 

of function (w<0.05). This shift toward low fitness is expected and in agreement with 

other mutation accumulation studies [13, 15, 36].  

 

Figure 7. Distribution of mutational fitness effects of single and double mutants 

(a) Distribution of 5460 single mutant fitness values [18]. (b) Distribution of 12,374 

sequential double mutant fitness values. The single mutant distribution has a very small 

number of fitness values >1.8 that are not shown. Bars are stacked to show total fractions. 

Fitness values are normalized to that of wildtype TEM-1 beta-lactamase. Fitness values 

that are significantly different from 1.0 are indicated in red. 
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 We define pairwise epistasis as occurring when the product of the fitness values 

of two individual mutations differs from the fitness of the combined pair. Epistasis () 

between mutation A with fitness wA and mutation B with fitness wB is calculated as: 

 

 𝜀𝐴𝐵 = log10 (
𝑤𝐴𝐵𝑤𝑜

𝑤𝐴𝑤𝐵
) (2.1) 

 

where wo  is the fitness of wildtype TEM-1 and wAB is the fitness of the double mutant.            

We calculated epistasis for 8.1% (8,302/102,885) of all possible pairs of 

sequential amino acid substitutions. For our epistasis analysis, we exclude pairs 

containing mutations with individual fitness values less than 0.02 to avoid the lower limit 

in fitness measurements causing high epistasis values by artifact. Over half (58%) of all 

double mutants analyzed exhibited significant epistasis (Figure 8). The high prevalence 

of epistasis suggests a significant increase in epistasis among sequential mutations, 

lending support to a previous observation of this trend [36]. It may also reflect 

differences in the prevalence of epistasis with regard to fitness (here the ability of the 

allele to confer Amp resistance to live cells), compared to epistasis with regard to a less 

complex biophysical property, as hypothesized by Sackman and Rokyta [34]. The 

distribution of epistasis values was skewed toward negative values, with a mean epistasis 

of -0.32 and a median of -0.18, indicating that the combined fitness effect of two 

mutations is often more deleterious than predicted in the absence of epistasis. Negative 

epistasis (51%) occurred 7.5 times as frequently as positive epistasis (6.8%).  
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Figure 8. Distribution of epistasis values among sequential mutations 

(a) Observed fitness versus predicted fitness for 8,302 double mutant alleles. (b) The 

distribution of epistasis values among 8,302 double mutant alleles. Bars are stacked to 

show total fractions. Significant epistasis values are indicated in red.  

 

 We found that the product of single mutant fitness values (i.e. the predicted 

fitness in the absence of epistasis) predicted double mutant fitness values with a 

Pearson’s R2 of 0.71. This is within the range of the correlations found in other epistasis 

studies, which had R2 values ranging from 0.67 [38] to 0.76 [36].  

 Examining epistasis among sequential double mutant pairs allowed us to map 

median epistasis at each position and look at trends within secondary structures (Figure 

9). Although negative epistasis dominates, there were 19 pairs of positions with positive 

median epistasis values, indicating hot spots for synergistic potential (Figure 9a). 

Interestingly, we note a particularly high median epistasis at positional pair 221-222. This 

median was calculated from a total of 21 observations. With the exception of one pair, 

the double mutants at this position were combinations of deleterious single mutations 

(median fitness of 0.052). Residues 221 and 222 make up the first two amino acids of a 
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four-residue helical element (helix 10). Positive epistasis, indicating a higher than 

expected fitness between individually deleterious mutations at this positional pair 

suggests hot spot for compensatory interactions, possibly buffering structural disruptions 

in the helix. Positive epistasis occurred 3 times more frequently in the signal sequence 

(17.8%) than the mature protein (5.82%) (P<0.0001, Fisher’s exact test) (Figure 9c). The 

signal sequence is a 23 amino acid peptide that directs export of the protein to the 

periplasmic space of E. coli. The signal sequence is removed in the periplasm and is not 

part of the mature protein. However, mutations within the signal sequence can change 

protein abundance and therefore affect fitness. Over half (52%) of the occurrences of 

positive epistasis in the signal sequence were between one beneficial and one deleterious 

mutation, with the remaining 48% being between mutations that are deleterious 

individually. Positive epistasis in this region suggests detrimental mutations are easily 

partially compensated by mutations at adjoining positions. 
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Figure 9. The relationship between protein sequence, structure, and epistasis 

(a) Median epistasis values across the TEM-1 primary sequence. Median values were 

calculated only for position pairs with 5 or more epistasis values. Median epistasis for a 

mutation pair is plotted at the first position of that pair. Colored bars indicate regions that 

code for the signal sequence (yellow), alpha helices (green), beta strands (blue), and the 

omega loop (grey).  Asterisks indicate the location of important catalytic residues. (b) 

Median epistasis values mapped onto the TEM-1 structure. Active site residues are 

indicated in green. (c) Frequency of positive epistasis (blue), negative epistasis (red), and 

no or not significant epistasis (grey) in the signal sequence and secondary structure 

elements. Data are categorized by the structural identity of the first mutation.  
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In the mature protein, negative epistasis occurred most often in beta-strands 

(Figure 9c), indicating that the interaction between two sequential mutations within these 

structures is often more detrimental than the combination of their individual effects. A 

majority (68%) of mutations occurring in beta-strands were individually deleterious. 

These findings suggest that the threshold robustness to additional deleterious mutations 

[15] is more quickly exhausted in beta-strands, presumably because the complexity of the 

structure has more constraints on the amino acids at each position.  

 

 

Figure 10. Epistasis values for the signal sequence and secondary structures 

The central line indicates the median, and the bottom and top edges of the box indicate 

the 25th and 75th percentiles. The whiskers extend to the most extreme data points not 

considered outliers, which are represented by circles. 
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Figure 11. Epistasis distributions for buried and surface residues 

The median value of the distribution is indicated. 

 

We also examined epistasis among surface residues versus buried residues. We 

define surface residues as those with >20% solvent accessibility, and buried residues as 

those with <20% solvent accessibility. On average, buried residue pairs exhibited lower 

epistasis values than surface residue pairs (P <0.0001, by Student’s t-test), suggesting 

that multiple mutations at internally oriented residues are more likely to interact 

antagonistically (Figure 11). Epistasis values for buried residues also had a broader 

distribution of values than epistasis values for solvent accessible residues (P<0.0001 by 

Brown–Forsythe test). We find that position and structure is more important in predicting 

epistasis than the identity of the amino acid pair substituted. We observed no obvious 

pattern in epistasis between different pairs of amino acids, however we note that the 

lowest two median epistasis values occurred between pairs of two cysteines and pairs of 
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two aspartic acids (Figure 12). We found no correlation between epistasis and the 

distance from the active site (Figure 13).     

 

 

Figure 12. Median epistasis between pairs of mutant amino acids 

The heat map indicates median epistasis values for mutant amino acid pairs that occurred 

throughout the protein. Median values are presented only for pairs with five or more 

epistasis values.   
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Figure 13. Epistasis versus distance from the active site S70 

Distance was calculated from the first amino acid substituted. 

 

 

Previous studies have noted differences in epistasis among individually beneficial 

versus deleterious mutations [32, 39]. Additionally, it has been posited that the effect size 

of the mutation may influence its epistatic effect in the context of another mutation [43]. 

To probe this further, we examined epistasis versus the effect size of the individual 

mutations contained in the pair. We define a mutation as deleterious if its fitness is more 

than two times its error below wildtype fitness and beneficial if its fitness is more than 

two times its error above wildtype.   
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Figure 14. The effect of size and nature of the mutational effect on the frequency of 

positive and negative epistasis 

(a) Frequency among mutation pairs with at least one deleterious mutation and (b) 

Frequency among mutation pairs with at least one beneficial mutation. The deleterious or 

beneficial mutation must have a statistically significant effect on fitness, but the other 

mutation in the pair may be deleterious, beneficial, or neutral.  Boxcar smoothing was 

applied to the data to improve visualization of trends.     

 

 In general, epistasis was more frequently observed in pairs containing at least one 

deleterious mutation, whereas pairs containing at least one beneficial mutation more often 

displayed additive interactions (Figure 14). Epistasis was especially prevalent among 

large effect deleterious mutations (w<0.1), with nearly 90% of all pairs containing a large 

effect deleterious mutation exhibiting either positive or negative epistasis. In particular, 

pairs containing large effect deleterious mutations have a higher frequency of positive 

epistasis than pairs containing small effect deleterious mutations, suggesting that the 

fitness cost of highly deleterious mutations can be somewhat dampened by the presence 

of an additional mutation.  
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 We also examined sign epistasis for 11,679 double mutant alleles for which we 

had corresponding single mutant fitness values. Sign epistasis is solely determined by the 

sign of fitness measurements (beneficial or deleterious). Unlike magnitude epistasis, it is 

not calculated from the product or ratio of two fitness values. Therefore, we included 

pairs containing single mutants with w<0.02 in the analysis of sign epistasis. By 

definition, positive sign epistasis can only occur for pairs containing at least one 

deleterious mutation and negative sign epistasis can only occur for pairs containing at 

least one beneficial mutation. We observe positive sign epistasis in only 13 out of 9673 

pairs containing a deleterious mutation. The low frequency of positive sign epistasis 

indicates a scarcity of paths to climb above wildtype fitness in a single step next to 

deleterious mutations.  Negative sign epistasis is much more prevalent, occurring in 

55.4% of pairs containing a beneficial mutation. This indicates a moderately rugged 

landscape for sequential double mutants that is dominated by fitness valleys. We 

examined the relationship between negative sign epistasis and individual mutation effect 

size, but found the frequency to be >50% across all effect sizes. Thus, for beneficial 

mutations, the magnitude of the fitness effect does not predict the likelihood of 

surrounding fitness valleys. We found no cases of reciprocal sign epistasis, suggesting 

that many peaks may be accessible on the TEM-1 fitness landscape.  

 

Conclusions 

The picture of epistasis in protein evolution is still emerging. Our study examines 

pairwise intragenic epistasis in TEM-1 beta lactamase in the context of it performing its 

native function (antibiotic resistance) in its native host (E. coli). We specifically 
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examined pairwise epistasis between sequential amino acid substitutions across the entire 

length of the primary sequence. We postulated that consecutive double mutants represent 

a subset of possible mutational pairs that are more likely to exhibit epistatic effects due to 

spatial proximity and direct physical link in the backbone. Indeed, we find widespread 

negative epistasis in consecutive mutations throughout the protein, particularly in beta-

strands, where amino acid orientation of sequential residues is important to structure 

fidelity. Our results lend support to the emerging landscape of pervasive negative 

epistasis and the threshold robustness hypothesis, the connection between individual 

mutant effect and epistatic patterns, and the importance of solvent accessibility in 

predicting the magnitude of epistasis. Together with other studies of epistasis in proteins 

in their native context, and compared with studies of epistasis with regard to biophysical 

properties, our findings lend support to the hypothesis that epistasis may be pervasive 

with regard to fitness, while reflecting underlying additive biophysical phenotypes.  

 

Materials and Methods 

Library Creation 

The TEM-1 gene was expressed on pSkunk3, a 4.36 kb plasmid containing 

spectinomycin resistance and the p15 origin of replication, under the IPTG-inducible tac 

promotor in E. coli. We used inverse PCR with primers (IDT) designed to create every 

possible sequential double mutant in TEM-1, using NNN-NNN degenerate nucleotide 

oligos and a compatible reverse primer designed for each position. PCR products were 

visualized using gel electrophoresis, to confirm the creation of a linearized plasmid 

product at each of the 286 positions. We pooled the PCR products, isolated the ~4 kb 
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band from an agarose electrophoresis gel, phosphorylated the DNA at 37°C (NEB T4 

PNK), and ligated it overnight at 16°C. NEB 5-alpha F’ lacIq E. coli were transformed 

with the ligation product and plated on LB-agar plates containing 50 g/ml 

spectinomycin and 2% glucose. At least 500,000 transformants were obtained for each 

third.  

We recovered each library from the plate in LB media and isolated the plasmid 

library. We transformed electrocompetent SNO301 E. coli cells with each library and 

plated on LB-agar plates containing 50 g/ml spectinomycin, 50 g/ml chloramphenicol, 

and 2% glucose. At least 80,000 transformants were obtained from each third. We 

recovered each library from the plate in LB media and made glycerol stocks. The library 

sizes were greater than the number of sequences we could analyze by deep sequencing.  

Thus, we prepared a smaller sublibraries of each library by plating ~10,000 CFU from 

each library on LB-agar plates with 50 g/ml spectinomycin, 50 g/ml chloramphenicol, 

and 2% glucose (i.e. permissive growth conditions), recovering those cells, and creating 

final frozen sublibrary stocks for selection.          

 

Selection and Sequencing 

High-throughput selection for resistance to ampicillin (Amp) was performed 

using a band-pass genetic circuit, described previously [18]. Briefly, E. coli SNO301 

cells containing the double mutant library were plated on LB-agar plates containing 20 

g/ml tetracycline and 13 different Amp concentrations, ranging from 0.25 g/ml to 1024 

g/ml, in 2-fold increments. Plates were incubated for 21 hours at 37°C. The library was 

plated in triplicate on each Amp concentration and the CFUs from each plate were 
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counted to determine the frequency of colonies appearing on each plate. Based on these 

counts, a proportional amount of barcoded PCR amplicon from each plate was deep 

sequenced. Amplicons were prepared by recovering the cells from each selection plate, 

isolating the plasmid DNA, and performing PCR with appropriate primers as described 

previously [18, 19]. Barcodes to identify each plate and adapters compatible with 

Illumina MiSeq platform were added in this PCR step. Amplicons were pooled and 

sequenced using Illumina MiSeq with 300 base pair, paired-end reads.   

 

Data Analysis 

The de-multiplexed MiSeq reads were analyzed using custom MATLAB scripts. 

Paired-end reads were trimmed and concatenated to yield full length reads. Each read was 

then aligned to TEM-1 using a Smith-Waterman algorithm with a gap opening penalty of 

100. Reads with an alignment score lower than 300 were filtered out and only reads 

containing two sequential codon substitutions were used for analysis. Fitness was 

calculated for each unique double amino acid mutant based on the counts from each plate 

(Amp concentration). Synonymous codons were grouped together and total counts were 

used to calculate the single amino acid fitness. First, counts were adjusted based on the 

number of sequencing reads obtained from each plate relative to the CFUs observed on 

that plate, as described previously [19]. Detailed description of the fitness calculation can 

be found in our previous studies [18, 19], with a few differences. In this study, we 

excluded alleles with fewer than 20 counts and alleles with a maximum single plate count 

less than 1/3 the total count. For each allele (i) that passed these criteria, the plate with 

the highest adjusted counts and the four plates on either side (i.e. two plates with higher 
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Amp and two plates with lower Amp) were used to calculate an unnormalized fitness 

value, representing the midpoint resistance to Amp:  

   𝑓𝑖 =
∑ 𝑐𝑖,𝑝 log2(𝑎𝑝)
13
𝑝=1

∑ 𝑐𝑖,𝑝
13
𝑝=1

   (2.2) 

where ci,p is the adjusted count of allele i on plate p, and ap is the Amp concentration on 

plate p (in g/ml). The reported fitness values are normalized to wildtype TEM-1: 

 𝑤𝑖 =
2𝑓𝑖

2𝑓𝑇𝐸𝑀−1
   (2.3) 

Wildtype fitness was calculated in the same way (i.e. using adjusted sequencing counts) 

and verified separately by separately plating cells expressing wildtype TEM-1 in 

triplicate during the bandpass selection step. Both colony counts of the wildtype plates 

and wildtype sequencing counts revealed a midpoint Amp resistance of ~185 g/ml 

(186.1g/ml, 184.8 g/ml, and 182.3g/ml for each of the thirds, and 187.4 g/ml for the 

colony counts). 

 We adjusted the fitness measurements based on a comparison between fitness 

values for 1,470 single amino acid substitutions containing a synonymous wild type 

mutation and the corresponding single amino acid fitness values from Firnberg et al. We 

calculated a ratio of the two fitness values across different fitness value ranges. Based on 

the offset of this value from 1, we determined adjustment factors for each range of fitness 

values, which ranged from 0.52 to 0.97. We multiplied the calculated double mutant 

fitness values by these adjustment factors and used these cross-experiment normalized 

fitness values for all subsequent analysis.   
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Error in fitness (𝜎𝑤𝑖
) was estimated via Eqs 2.4 and 2.5, using our previously 

determined correlation between sequencing counts (𝑛𝑖) and the standard deviation of the 

difference in fitness between synonymous alleles [18, 19].  

 𝜎𝑤𝑖
= 𝑤𝑖 × 𝑒𝑖  (2.4) 

where ei, the upper-level estimate of the fraction error in fitness, is given by: 

 

 𝑒𝑖 = 0.667𝑛𝑖
−0.387 (2.5) 

Fitness values were determined to be significantly different than 1 if they were greater or 

less than 1 by twice the error estimate.  

Epistasis was calculated using Eq 2.1. To determine epistasis values that were 

significantly different than 0, upper and lower limits were calculated using Eqs 2.6 and 

2.7: 

 

 𝜖𝐴𝐵,𝑈 = log10 [
𝑤𝐴𝐵𝑤0

𝑤𝐴𝑤𝐵
](1 + √𝑒𝐴2 + 𝑒𝐵2 + 𝑒02 + 𝑒𝐴𝐵2)  (2.6) 

 

 𝜖𝐴𝐵,𝐿 = log10 [
𝑤𝐴𝐵𝑤0

𝑤𝐴𝑤𝐵
](1 − √𝑒𝐴2 + 𝑒𝐵2 + 𝑒02 + 𝑒𝐴𝐵2)  (2.7) 

 

Epistasis values were determined to be significantly positive or significantly negative 

based on Eq 2.8 and 2.9, respectively: 

 

 𝜀𝐴𝐵 − 2(𝜀𝐴𝐵 − 𝜖𝐴𝐵,𝐿) > 0   (2.8) 
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 𝜀𝐴𝐵 − 2(𝜀𝐴𝐵 − 𝜖𝐴𝐵,𝐿) < 0   (2.9) 

 

Sign epistasis was determined based on fitness measurements of the individual 

mutations and double mutant pair. Positive sign epistasis was defined as occurring when 

at least one of the mutants was individually deleterious (less than twice the error below 

1), and the double mutant was beneficial (greater than twice the error above 1). Likewise, 

negative sign epistasis was defined as occurring when at least one of the mutants was 

individually beneficial, and the double mutant was deleterious. Reciprocal sign epistasis 

required both mutants to be individually deleterious, while the double mutant was 

beneficial. Negative reciprocal sign epistasis was the inverse.  
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Chapter 3: Fitness effects of single amino acid insertions and 

deletions in TEM-1 -lactamase  
 

Summary 

 Short insertions and deletions (InDels) are a common type of mutation 

found in nature and a useful source of variation in protein engineering. InDel events have 

important consequences in protein evolution, often opening new pathways for adaptation. 

Yet much less is known about the effects of InDels compared to point mutations and 

amino acid substitutions. In particular, deep mutagenesis studies on the distribution of 

fitness effects of mutations have focused almost exclusively on amino acid substitutions. 

In this chapter, we present a near-comprehensive analysis of the fitness effects of single 

amino acid InDels in TEM-1 -lactamase. While we found InDels to be largely 

deleterious, partially overlapping deletion-tolerant and insertion-tolerant regions were 

observed throughout the protein, especially in unstructured regions and at the end of 

helices. The signal sequence of TEM-1 tolerated InDels more than the mature protein. 

Most regions of the protein tolerated insertions more than deletions, but a few regions 

tolerated deletions more than insertions. We examined the relationship between InDel 

tolerance and a variety of measures to help understand its origin.  These measures 

included evolutionary variation in -lactamases, secondary structure identity, tolerance to 

amino acid substitutions, solvent accessibility, and side-chain weighted contact number. 

We found secondary structure, weighted contact number, and evolutionary variation in 

class A beta-lactamases to be the most predictive of InDel fitness effects. 
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Introduction 

Insertions and deletions (InDels) are an important source of genetic variation in 

nature. They occur nearly as frequently as point mutations in some genomes [44, 45], and 

can result in dramatic effects on the properties of a protein and how it evolves [45-48]. 

Within the metaphor of an adaptive walk across a fitness landscape [49], InDels can be 

thought to represent a “leap” across sequence space rather than a step [50]. As such, 

InDels have the potential to open up new pathways for adaptation. For example, amino 

acid substitutions appear to be enriched around the site of InDel events in evolving 

proteins, either because InDel events actively trigger amino acid substitutions [50], or 

because substitutions enable subsequent InDels to accumulate in their vicinity via 

“neutral roaming” [45]. This suggests that how the surrounding protein region changes 

during selection may be substantially impacted by InDels. In the human genome, 15-21% 

of polymorphisms can be attributed to short InDels [51]. In-frame InDels are known to be 

the cause of diseases such as cystic fibrosis and are implicated in numerous types of 

cancer [52, 53].  

 InDels also represent a potentially underutilized source of variation in protein 

engineering. Though routine engineering of backbone modifications has been 

challenging, InDels have long been recognized as important tools for altering protein 

structure and properties [45, 54]. Because insertions and deletions add or remove atoms 

from the polypeptide backbone, they can cause major structural modifications not 

available through substitutions alone. They may be particularly important when seeking 

to dramatically change active-site structure, as they have been found to propagate long-
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range effects on catalytic activity [54]. However, despite their importance in nature and 

the laboratory, InDels remain understudied compared to substitutions.   

The fitness effects of point mutations and substitutions have been extensively 

studied in recent years [12, 25]. Previously, the Ostermeier lab comprehensively 

characterized the fitness effects of single amino acid substitutions in TEM-1 -lactamase 

[18]. Other large-scale mutagenesis studies have been reported for over 14 proteins, 

characterizing the effects of single amino acid substitutions on function or fitness [12]. 

Such studies have advanced our understanding of the genetic code, protein structure, 

epistasis, and predictive models. However, we lack a similar systematic, large-scale 

analysis on the fitness effects of InDels.  

 Multiple studies have offered insight into the effects of deletions on a smaller 

scale. For example, a 2007 study of TEM-1 -lactamase assayed 53 single amino acid 

deletions occurring throughout the protein, and found that 13 (24.5%) of the variants 

were inactive, while the remaining variants varied in activity, including four that retained 

wild-type levels, as measured by a minimum inhibitory concentration (MIC) assay [55]. 

The majority of debilitating deletions occurred in secondary structure elements and 

buried/core residues. Similarly, a 2014 study on enhanced green fluorescent (EGFP) 

protein characterized the tolerance to 87 random single amino acid deletions throughout 

the protein [56]. They found that the majority of tolerated deletions occurred in loops, 

while the rest were found equally distributed in helices and -strands, with the termini of 

-strands being more tolerant than the middle. Computational analysis of the EGPF 

found that structural properties such as relative solvent accessibility and packing density 

can be used to predict tolerance to deletions [57].   
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 Insertion studies are even more limited, generally examining only a few rationally 

chosen insertion sites in a protein. For example, 2006 study in TEM-1 assessed the 

impact of random peptide insertion into three loops and found that tolerance depended 

largely on the insertion site [55]. Based on their findings, they also suggested that 

tolerance to insertions was not well-correlated to tolerance to substitutions in the same 

region.  

 While these studies provide important insights into the effects of InDels, they are 

limited by their scale. Here, we present a near-comprehensive analysis of the fitness 

effects of single amino acid insertions and deletions in TEM-1 -lactamase, a widely 

studied antibiotic resistance protein.  We find that while InDels are largely deleterious 

compared to substitutions, partially overlapping regions of tolerance to insertions and 

deletions exist throughout the protein.  

 

Results and Discussion  

TEM-1 -lactamase is a commonly studied protein and convenient model for 

protein evolution experiments. It confers high resistance to penicillin antibiotics, such as 

ampicillin, which can be used as a proxy for protein fitness [16-18]. We use our band-

pass, MIC-like approach for measuring antibiotic resistance in a high-throughput, high-

resolution manner, as described in the previous chapter.     

 We focused on in-frame insertions or deletions of three nucleotides. We did not 

study insertions or deletions that are one or two nucleotides in length, as such mutations 

are frame-shifting mutations with drastic changes to protein sequence and nearly always 

inactivate proteins. We did not study three-nucleotide insertions or deletions that are out 
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of frame, as they cause substitutions in the amino acid sequence in addition to the amino 

acid insertion or deletion. We wanted to be able to isolate the effect of the single amino 

acid insertion or deletion away from any substitution effects. 

We used inverse-PCR to create a plasmid library designed to code for every 

possible single amino acid insertion (5,720 variants) and every possible single amino acid 

deletion (286 variants) in TEM-1. For insertions, we used degenerate primers in which 

the 5’-end of the forward primer had an additional (NNN) sequence. For deletions, we 

used primers in which the 5’-end of the forward primer had a 3 base pair deletion. We 

transformed SNO301 E. coli cells with each library of InDel alleles and plated on 

tetracycline and 13 different Amp concentrations, as described in the previous chapter. 

We recovered the 13 sublibraries and performed deep-sequencing to determine how often 

each allele appeared on each plate. Sequencing reads of alleles containing synonymous 

codon insertions were grouped together, with the exception of the stop codons. The 

amber (UAG) stop codon exhibits nonsense suppression in SNO301 E. coli via the 

supE44 tRNA allele, which results in glutamine incorporation at UAG codons with 

variable efficiency depending on the nucleotides immediately flanking UAG [18]. To 

avoid convolution, we included only non-amber stop codons in our analysis. The reported 

fitness values are calculated as the Amp concentration at which the mutant allele 

appeared most frequently relative to the wildtype allele (see Material and Methods for a 

more detailed description).   

We obtained fitness values for 77.9% (4457/5720) of possible amino acid 

insertions and 97.9% (280/286) of possible amino acid deletions in TEM-1 (Figure 15). 

As expected, we find that insertions and deletions are largely deleterious. Over half of 
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insertions (51%) and deletions (59%) resulted in at least a 100-fold decrease in fitness 

relative to TEM-1. In contrast, only 9.8% of insertions and 11% of deletions retained 

50% of wild-type fitness, though close to half (40.9%) of these were in the signal 

sequence, which is cleaved and not part of the mature protein. Though we measured 74 

InDels alleles with fitness values greater than 1, only 27 were significantly different than 

1. Visual examination of the heatmap depicting the fitness landscape (Figure 15) suggests 

a higher tolerance to InDels outside of secondary structures. It also suggests that the 

fitness effect of an insertion depends more on the site of the insertion than on the amino 

acid identity. To examine this quantitatively, we looked at the distribution of mean fitness 

values per position and compared it to the distribution of mean fitness values grouped by 

amino acid (Figure 16). We found that the mean fitness values per position have a wider 

distribution of values than the mean fitness values grouped by the amino acid inserted 

(P=0.009, Brown-Forsythe test).  
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Figure 15. The sequence-function landscape of amino acid insertions and deletions 

in TEM-1 

The heat map indicates relative fitness values as calculated based on ampicillin 

resistance. Insertion position is defined by the new position of the inserted amino acid 
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(e.g. an insertion denoted at position 50 was inserted between residues 49 and 50 in 

TEM-1). Ambler consensus numbering for beta-lactamases is used. The signal sequence 

(yellow),  helices (green),  strands (orange),  loop (grey), and active sites (*) are 

indicated.  

 

 

 

Figure 16. Distribution of mean fitness values of insertions by position and amino 

acid  

(a) Mean fitness was calculated for each position in TEM-1 with >4 insertion fitness 

values. The distribution shows the fraction out of 270 positions. (b) A mean fitness was 

calculated for each amino acid insertion (regardless of position). The distribution shows 

the fraction out of 20 amino acids. 

 

 

Examining the median fitness of alleles containing insertions and the fitness of 

alleles containing deletions across TEM-1, we observed “hot spots” of tolerance for 

InDels in the gene (Figure 17). The pattern suggests some correlation between where 

insertions and deletions are tolerated, and indicates higher tolerance in the signal 
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sequence and in unstructured regions of the protein. Higher tolerance to InDels in loops 

compared to helices and strands is widely observed across many families of proteins [58]. 

Our results also agree with previous observations in TEM-1 in particular. For example, 

visual examination of Figure 1 and Figure 3 suggests a notable tolerance to insertions in 

the loop connecting the final -strand to the C-terminal helix, which is a location 

previously found to be broadly tolerant to random sequences of insertions [55].  

 

 

Figure 17. Fitness of TEM-1 containing InDels as a function of primary sequence.  

Median fitness values are presented for insertions. Arrows indicate positions at which 

other class A -lactamases contain an insertion or deletion (based on a multiple sequence 

alignment of 156 class A -lactamase and TEM-1). Pie charts indicate in yellow the 

fraction of sequences out of 156 that contain an insertion (top chart) or deletion (bottom 

chart) at that position. Fractions less than 3% are omitted. The colored bars indicate the 

signal sequence (yellow),  helices (green),  strands (pink),  loop (grey), and active 

sites (*).  
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We also examined the relationship between evolutionary variations in class A -

lactamases and the patterns we find in experimentally determined fitness of TEM-1. We 

aligned a published set of 157 class A -lactamase sequences (including TEM-1) [59] by 

progressive multiple alignment using a Gonnet scoring matrix in MATLAB. We 

identified the positions at which other sequences contained an insertion or deletion 

relative to TEM-1. We find that these positions generally overlap insertion-tolerant 

regions in TEM-1, but several regions in TEM-1 that tolerate insertions and especially 

deletions are not observed in natural class A -lactamases, at least in our dataset (Figure 

17).  

 

 

Figure 18. InDel fitness mapped onto TEM-1 structure  

(a) TEM-1 secondary structure colored by mean fitness of insertions. No mean fitness 

values > 1 are observed. Positions for which we obtained fewer than 4 fitness values are 

indicated in grey. (b) TEM-1 secondary structure colored by fitness of deletions. In both 

figures, the active site residues are colored in green.  
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 We find that the 23 amino acid signal sequence is the most InDel-tolerant region 

in TEM-1 (Figure 19). This sequence directs TEM-1’s export to the periplasm via the Sec 

export pathway. The signal peptide is removed upon export to the periplasm and is not 

part of the mature protein. Presumably, mutations in the signal sequence affect fitness 

through changes of TEM-1’s export efficiency to the periplasm. The signal sequence is 

also the most tolerant region to missense mutation. This tolerance reflects the loose 

sequence constraints for Sec-dependent signal sequences and its lack of secondary 

structure elements [60]. 

In the mature protein, helices and strands are the least tolerant to InDels. For both 

insertions and deletions, the mean fitness of mutant alleles in loop regions is higher than 

in secondary structure elements (P<0.0001 for insertions, P<0.001 for deletions, 

Student’s t-test). This is not surprising given that backbone modifications can cause 

structured regions to fold incorrectly and have dramatic effects on the protein [61]. 

However, we found some exceptions to this overall pattern. For example, the loop region 

between -strand S1 and -helix H2A, shows no tolerance for insertions or deletions. We 

also found that 2.9% (51/1765) of insertions in -helices, often at the ends of the 

structure element, resulted in less than a 50% decrease in fitness. 
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Figure 19. Relationship between InDel fitness and secondary structure  

Box plots of fitness values for insertions (blue) and deletions (red) are shown for the 

signal sequence and secondary structure elements. The central line indicates the median, 

and the bottom and top edges of the box indicate the 25th and 75th percentiles. The 

median fitness value for deletions in strands is at the 25th percentile, and therefore not 

visible on the plot. The whiskers extend to the most extreme data points not considered 

outliers, which are represented by circles. Outliers are defined as values more than 1.5 

times the interquartile range away from the top or bottom of the box. 

 

To more specifically examine the difference between tolerance to insertions 

versus deletions, we calculated the ratio of the mean fitness of alleles with insertions to 

the fitness of an allele with a deletion at each position across TEM-1 (Figure 20). Overall, 

we find more regions where insertions are preferred over deletions, but a few regions 

where deletions are preferentially tolerated. For example, the C-terminal -helix is 

dominated by preference to insertions, while the N-terminal -helix contains positions 

where deletions are relatively preferred.      
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Figure 20. Differences in tolerance to insertions and deletions across TEM-1  

(a) The log10 of the ratio between mean fitness of insertions and the fitness of a deletion 

at each position across TEM-1. The colored bars indicate the signal sequence (yellow),  

helices (green),  strands (pink),  loop (grey), and active sites (*). (b) TEM-1 structure 

colored by the same ratio values. Blue indicates positions with higher tolerance to 

deletions, white indicates the same tolerance to both insertions and deletions, and red 

indicated higher tolerance to insertions.  

  

 

We also examined the fitness effects of InDels compared to substitutions 

(measured in our previous study [18]). Unsurprisingly, we found a higher fraction of 

alleles containing InDels than alleles containing substitutions to be strongly deleterious. 

(Figure 21). The distributions of insertions and deletion fitness values are similar. The 

mean fitness of alleles containing an insertion is not significantly different than the mean 

fitness of alleles containing a deletion.  
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Figure 21. Distribution of Fitness Values for Substitutions and InDels  

Distributions depict fitness values for 5460 alleles containing substitutions [18], 4457 

alleles containing insertions, and 280 alleles containing deletions. The inset graphs show 

the same distributions that were truncated at a y-axis value of 0.1 to better show the 

distribution among higher fitness values. Grey bars indicate values that are not 

significantly different than 1.   

 

 

To explore the comparison between insertions and deletions further, we examined 

the correlation between the mean fitness of alleles with an insertion at a given position 

and the fitness of an allele with a deletion at the corresponding position (Figure 22a) and 

found a weak correlation (R2=0.32). We also compared the mean fitness change of an 

insertion of a given amino acid against the mean fitness change of a deletion of the same 

amino acid and found almost no correlation (R2=0.07) (Figure 22c). This further indicates 

that the location of the InDel is more predictive than the identity of the amino acid 

inserted or deleted.  

Next, we examined the correlation between fitness values when comparing 

insertions and substitutions. Specifically, we wondered if the fitness effect of an amino 

acid inserted before position N would correlate to the fitness effect of having position N 

mutated to the same amino acid. In this comparison, we included only fitness values of 
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insertions at positions with a mean fitness ≥ 0.1. We do this to account for the 

predominance of insertions that result in complete loss of function. By excluding those 

positions, we instead ask the question: where insertions are tolerated to some degree, 

what is the correlation between the effects of insertions and substitutions? We find very 

little correlation when we compare insertions to substitutions at the corresponding 

position (R2=0.07) (Figure 22b); however, the mean fitness change of an amino acid 

substitution is somewhat predictive of the mean fitness effect of the same amino acid 

insertion (R2=0.39) (Figure 22d).  For example, the two least tolerated amino acid 

insertions (Pro and Trp) are also the least tolerated substitutions and the two most 

tolerated insertions (Ser and Thr) are among the most tolerated substitutions (Figure 22d).        
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Figure 22. Comparison of the fitness effects of insertions, substitutions, and 

deletions  

(a) Mean fitness of alleles containing insertions compared to the fitness of an allele 

containing a deletion at the corresponding position. (b) Fitness of alleles containing 

insertion compared to the fitness of alleles containing the corresponding substitution [18] 

(c) Mean fitness change of an amino acid inserted versus deleted. (d) Mean fitness 

change of an amino acid inserted versus substituted. Particular amino acids of interest are 

labeled. For (b) and (d) only insertion fitness values at positions with a mean fitness ≥0.1 

are included. 
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 We further explored TEM-1’s tolerance to insertions by determining the effective 

number of amino acid insertions at each position. An analogous measure of tolerance (k*) 

derives from information-theoretical entropy and was originally proposed to quantify the 

variability at a given position in a set of aligned sequences [62]. As we showed 

previously, k* can be adapted to quantify the tolerance of substitutions based on 

measured fitness values[18]. For substitutions, a k* value of 1 indicates a position at 

which all missense mutations result in complete inactivation of the protein, and a k* 

value of 20 indicates that all amino acid substitutions result in the same fitness as 

wildtype. Here, we define a similar measure for insertions (k*INS) which includes the 

possibility of no insertion (i.e. wild type) in the distribution of protein fitness values at 

each position (Eqs 3.1-3.4) 

 

 𝑘𝐼𝑁𝑆
∗ =

21𝑘0,𝐼𝑁𝑆
∗

𝑛
 (3.1) 

 

 𝑘0,𝐼𝑁𝑆
∗ = 2𝑆 (3.2)  

 

 𝑆 = −∑ 𝑝𝑖 log2 𝑝𝑖
𝑘
𝑖=1  (3.3) 

 

 𝑝𝑖 =
𝑤𝑖

∑ 𝑤𝑗
𝑛
𝑗=1

 (3.4) 

 

A k*INS value of 1 indicates a position at which no amino acid insertion is 

tolerated (i.e. the fitness values of all amino acid insertions are zero) and a k*INS value of 

21 indicates a position at which all insertions retain wild-type fitness values.  
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 Over 30% of positions do not tolerate a single amino acid insertion of any kind 

(k*INS < 2.0) (Fig 23a). The peak in the distribution of k*INS values between 17 and 20 

indicates that there is a fraction of positions (19.3 %) for which most insertions are well-

tolerated. However, there are no positions for which every inserted amino acid retains 

wildtype fitness (k*INS = 21). Some positions in the signal sequence tolerated insertions 

after them more than substitutions at them. 
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Figure 23. Determinants of tolerance of TEM-1 to amino acid insertions  

(a) The distribution of k*INS values in TEM-1. k*INS values for the mature protein are 

colored in grey and k*INS values for the signal sequence are colored in blue. The inset 

shows the corresponding distribution of k* values for substitutions [18]. (b) Correlation 

of k*INS with k* of substitutions. [18] (c) Correlation of k*INS with distance from the 
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active site. (d) Correlation of k*INS with percent solvent accessibly surface area. (e) 

Correlation of k*INS with side-chain weighted contact number (WCN). (f) Correlation of 

k*INS with distance into secondary structure for positions within helices or strands. 

Distance is measured as residues away from the nearest end.   

 

 All 23 positions in the signal sequence had k*INS values above 13, but five 

positions had a k* for substitutions less than 13 (Fig 23a).  In the entire protein, a 

position’s tolerance for insertion, as measured by k*INS, weakly correlated its tolerance 

for substitutions (Fig 23b). We found that tolerance to insertions correlates weakly with 

distance from the active site (Fig 23c). Positions less than 10 Å away from the active site 

are almost completely unaccepting of insertions. We observed a slightly stronger 

correlation between k*INS and percent solvent accessible surface area, with buried 

residues being less amenable to insertions (Fig 23d). We found that side-chain weighted 

contact number (WCN), a measure of how densely packed a residue is [63], best predicts 

how well an insertion is tolerated (Fig 23e). WCN is also the single best predictor of 

whether a deletion is tolerated in eGFP [57]. Within -helices or -strands, the ends of 

structural elements are more accepting of insertions than positions deeper into the center 

of the structure (Fig 23f).    

 

Conclusions 

Our analysis of InDels in TEM-1 provides the first systematic and near-

comprehensive study of their fitness effect on a single protein and insight into a common 

yet understudied source of genetic variation. We found InDels to be largely deleterious, 

though regions of tolerance were observed, particularly in unstructured regions of the 

protein and at the ends of helices and strands. While regions of tolerance to insertions and 
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deletions partially overlapped, we found that most regions of the protein tolerated 

insertions more than deletions. Of the measures we examined, we found secondary 

structure, weighted contact number, and evolutionary variation in class A beta-lactamases 

to be somewhat predictive of InDel fitness effects. A broader understanding the fitness 

effects of InDels and how they relate to structural properties should allow for more 

informed protein engineering strategies, more robust computational prediction of protein 

structure, and a deeper understanding of the role that different types of mutations play in 

protein evolution.  

 

Materials and Methods 

Insertion Library Creation 

The TEM-1 gene was expressed on pSkunk2, a 4.36 kb plasmid containing 

spectinomycin resistance and the p15 origin of replication, under the IPTG-inducible tac 

promotor in E. coli. We used inverse PCR with oligo primers (IDT) designed to create 

every possible single amino acid insertion in TEM-1, using primers with a degenerate 

nucleotide (NNN) sequence on the 5’ end of the forward primer and a compatible reverse 

primer designed for each position. PCR products were visualized using gel 

electrophoresis, to confirm the creation of a linearized plasmid product at each of the 286 

positions. We were unable to create a product for a small number of positions, despite 

troubleshooting efforts. We pooled the PCR products, creating a library for each third of 

the gene, to be compatible with Illumia MiSeq 2x300 bp sequencing. We isolated the ~4 

kb band from an agarose electrophoresis gel for each third, phosphorylated the DNA at 

37°C (NEB T4 PNK), and ligated it overnight at 16°C. NEB 5-alpha F’ lacIq E. coli were 
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transformed with the ligation product and plated on LB-agar plates containing 50 g/ml 

spectinomycin and 2% glucose. At least 500,000 transformants were obtained for each 

library (i.e. each third of the gene).  

We recovered each library from the plate in LB media and isolated the plasmid 

library. We transformed electrocompetent SNO301 E. coli cells with each library and 

plated on LB-agar plates containing 50 g/ml spectinomycin, 50 g/ml chloramphenicol, 

and 2% glucose. At least 100,000 transformants were obtained from each third. We 

recovered each library from the plate in LB media and made glycerol stocks.  

 

Deletion Library Creation 

 The deletion library was made in the same way as the insertion library with a few 

exceptions. The forward primer for inverse-PCR contained a 3-bp deletion on the 5’ end, 

to create a deletion at every position in TEM-1. The same reverse primers were used. The 

deletion library was not created in thirds, as it was subsequently sequenced using PacBio, 

which can accommodate longer reads.  

 

Selection and Sequencing 

High-throughput selection for resistance to ampicillin (Amp) was performed 

using a band-pass genetic circuit, described in the previous chapter, and in previous work 

[18]. Briefly, E. coli SNO301 cells containing each library were plated on LB-agar plates 

containing 20 g/ml tetracycline and 13 different Amp concentrations, ranging from 0.25 

g/ml to 1024 g/ml, in 2-fold increments. Plates were incubated for 21 hours at 37°C. 

Each library was plated in triplicate on each Amp concentration and the CFUs from each 
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plate were counted to determine the frequency of colonies appearing on each plate. Based 

on these counts, a proportional amount of DNA from each plate was deep sequenced. For 

the insertion library, barcoded amplicons were prepared by recovering the cells from each 

selection plate, isolating the plasmid DNA, and performing PCR with appropriate primers 

as described previously [18, 19]. Barcodes to identify each plate and adapters compatible 

with Illumina MiSeq platform were added in this PCR step. Amplicons were pooled and 

sequenced using Illumina MiSeq with 300 base pair, paired-end reads. For the deletion 

library, we recovered cells from each selection plate, isolated the plasmid DNA, 

linearized it with the SphI restriction enzyme, and separately sequenced each of the 13 

linearized plasmid libraries using PacBio.  

 

Data Analysis 

The de-multiplexed MiSeq reads and the PacBio reads were analyzed using 

custom MATLAB scripts. For MiSeq reads, paired-end reads were trimmed and 

concatenated to yield full length reads. Each read was then aligned to TEM-1 using a 

Smith-Waterman algorithm with the lowest possible gap opening penalty of 1 and a gap 

extending penalty of 0.1. Reads with an alignment score lower than 100 were filtered out 

and only reads containing a single amino acid insertion (or deletion) were used for 

analysis. Fitness was calculated for each unique InDel mutant based on the counts from 

each plate (Amp concentration). For insertions, synonymous codons were grouped 

together and total counts were used to calculate the single amino acid fitness. Amber 

codons (UAG) were excluded from the stop codon analysis.  
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For each allele, counts were first adjusted based on the number of sequencing 

reads obtained from each plate relative to the CFUs observed on that plate, as described 

previously [19]. Detailed description of the fitness calculation can be found in our 

previous studies [18, 19], with a few differences. For the insertion library, we excluded 

alleles with fewer than 20 counts and alleles with a maximum single plate count less than 

1/3 the total count. For the deletion library, we excluded alleles with fewer than 10 

counts. 

For each allele (i), the plate with the highest adjusted counts and the four plates on 

either side (i.e. two plates with higher Amp and two plates with lower Amp) were used to 

calculate an unnormalized fitness value, representing the midpoint resistance to Amp:  

 

   𝑓𝑖 =
∑ 𝑐𝑖,𝑝 log2(𝑎𝑝)
13
𝑝=1

∑ 𝑐𝑖,𝑝
13
𝑝=1

   (3.5) 

 

where ci,p is the adjusted count of allele i on plate p, and ap is the Amp concentration on 

plate p (in g/ml). The reported fitness values are normalized to wildtype TEM-1: 

 

 𝑤𝑖 =
2𝑓𝑖

2𝑓𝑇𝐸𝑀−1
   (3.6) 

 

Wildtype fitness was calculated in the same way (i.e. using adjusted sequencing counts) 

and verified separately by plating wildtype in triplicate during the bandpass selection 

step. Both colony counts and sequencing counts revealed a midpoint Amp resistance of 

~215 g/ml. 
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Error in fitness (𝜎𝑤𝑖
) was estimated via Eqs 3.7 and 3.8, using our previously 

determined correlation between sequencing counts (𝑛𝑖) and the standard deviation of the 

difference in fitness between synonymous alleles [18, 19].  

 

 𝜎𝑤𝑖
= 𝑤𝑖 × 𝑒𝑖  (3.7) 

 

where ei, the upper-level estimate of the fraction error in fitness, is given by: 

 

 𝑒𝑖 = 0.667𝑛𝑖
−0.387 (3.8) 

 

Fitness values were determined to be significantly different than 1 if they were greater or 

less than 1 by twice the error estimate.  
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Chapter 4: Conclusions and Future Directions 

Summary of Work 

 In this work, we characterized the fitness landscape of InDels and the epistatic 

effects of sequential double mutants in TEM-1 -lactamase. Each project involved a 

high-throughput, deep-mutational scanning approach resulting in the sequence 

identification of many thousands of mutations linked to their corresponding fitness 

effects. A near-comprehensive analysis of the distribution of fitness effects of single 

amino acid InDels and a systematic survey of epistatic effects throughout an entire 

protein performing its native function in its native host represent two thorough 

explorations of important, yet understudied aspects of the fitness landscape.  

 

Future Directions 

Adding to the InDel DFE Dataset  

 Fitness landscapes of single amino acid substitutions have allowed for general 

observations to be made about the impact of such mutations across various proteins. 

InDels have been studied far less comprehensively, in part because they are not part of 

the standard mutagenesis toolbox. We found that inverse PCR is a reliable and efficient 

way to create comprehensive libraries of single codon insertions and deletions in a gene. 

With this knowledge, future comprehensive studies of InDels may be possible in many 

other proteins, creating a dataset that allows for more general observations about their 

effects. This knowledge would be especially useful in protein engineering, where amino 

acid insertions are routinely used to introduce backbone flexibility and probe for new 

functions.  
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Computational Studies 

Computational studies are a useful complement to large-scale mutagenesis 

studies. In particular, our InDel study provides the most comprehensive dataset for this 

type of variation. This dataset can be used to test the results of predictive computational 

models. For example, a dataset of 87 deletions in the green fluorescent protein was used 

by another group to test various computational prediction of the deletion tolerance of 

proteins [56, 57]. We propose that our near-comprehensive dataset of both insertions and 

deletions in TEM-1 offers a trove of information for similar analyses.     

 

Expanding the Exploration of Epistasis 

 The study of epistasis is still largely in its infancy. Continuing advances in DNA 

deep sequencing technology will make increasingly larger studies possible. Our study of 

intragenic epistasis among sequential single amino acid substitutions represents one of 

many ways we imagine to better understand epistatic effects. For example, a comparison 

of the patterns of epistasis we observed in these sequential double mutants could be 

compared to that of double mutants randomly distributed throughout the protein. This 

type of study for genes lengths on the order of TEM-1 is currently complicated by the 

read-length limits of deep-sequencing, but we expect read lengths to continue to increase 

as the technology advances. Another realm of epistasis involves studying higher-level 

epistatic interactions between more than two mutations. Again, these types of studies 

become exponentially complicated by the number of combinations and interactions 

involved in more than two mutations, and are limited in part by the technology. However, 
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even small fractions of multi-dimensional epistatic landscapes could further elucidate 

patterns of mutational interactions, including providing more insight into the nature of the 

robustness threshold. In addition to interactions between mutations within a gene, 

epistasis encompasses interaction between mutations in two or more different genes. 

Using comprehensive mutagenesis techniques to probe interactions between an anchor 

mutation in one gene and every possible amino acid substitution in another interacting 

gene could be one way of studying this. 

 

Epistasis of InDels 

 Epistasis involving InDels is another potentially interesting avenue of exploration. 

Understanding mutational interactions could be key to understanding phenotypic effects, 

which would be especially useful in complex genetic diseases where this type of mutation 

is implicated. For example, while cystic fibrosis is known to be caused by a single 

deletion in the CF transmembrane conductance regulator protein, the protein acts within a 

network of components referred to as the “CFTR Functional Landscape” which influence 

synthesis, stability, and function [64]. A high-throughput systematic study of mutational 

interactions could provide insight into this network and inform more personalized 

therapeutics.   

 

Pleiotropy and Collateral Fitness Effects 

 Another related field of inquiry to epistasis is that of pleiotropy, wherein a single 

mutant has multiple phenotypic effects. One way to study pleiotropic effects of mutations 

could be to perform large-scale mutagenesis studies on genes known to affect two 
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phenotypes. Another way to categorize mutations is by their primary effects versus so-

called “collateral effects”. In the work presented here, we study primary effects of 

mutations on TEM-1, i.e. how mutations affect the ability of the protein to confer 

resistance to antibiotics. Ongoing work aims to examine collateral effects of mutations in 

TEM-1. Collateral effects may include those that cause misfolding and aggregation, or 

disrupt interactions between proteins. A similar saturation mutagenesis, high-throughput 

fitness measurement experiment in the absence of antibiotic will be the first to 

systematically study these effects.    

   

Understanding the Molecular Foundations of Fitness 

 Finally, one of the most fundamental challenges in the study of fitness effects is 

“bridging the physical scales” of biology [65]. Fitness is a complex biological trait that 

involves biophysical properties that affect structure, stability, expression, catalytic 

activity, and/or binding on the molecular scale. Some mutational studies probe 

specifically for function, such as binding affinity, while others such as the ones we 

present here, select for fitness as it relates to cell viability and growth. This complicates 

the ability to combine findings from various studies into a broader picture of fitness and 

epistatic landscapes. For example, observations of the effect of multiple mutations on 

physio-chemical properties tend to reveal mostly additive interactions [4, 66], while 

many studies of epistatic interactions with respect to fitness, as we study here, reveal 

pervasive non-additive effects. Thus, it appears that mutations often interact additively on 

one scale, but those properties interact non-additively to produce epistasis on another 
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scale. Better understanding how these scales interact would enhance our ability to unite 

the conclusions from different types of studies into a broader picture.  
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Appendix 

 

 

 

Figure 24. Plasmid map of pSkunk2-BLA.  

TEM-1 is under the expression of the tac promoter. The aadA gene confers resistance to 

streptomycin and spectomycin antibiotics. The p15a origin gives a low copy number (10-

12) plasmid. pSkunk3-BLA differs only in the non-coding region between TEM-1 and 

SmR (for improved compatibility in Sanger sequencing).  
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Figure 25. Amino acid and codon sequence for TEM-1.  

Highlighted regions indicated sequences that code for the signal sequence (yellow), -

helices (green), and -strands (pink).  
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