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Abstract

The 3x3 homography matrix specifies the mapping between two images of the

same plane as viewed by a pinhole camera. Knowledge of the matrix allows one

to remove the perspective distortion and apply any similarity transform, effectively

making possible the measurement of distances and angles on the image. A rectified

road scene for instance, where vehicles can be segmented and tracked, gives rise to

ready estimates of their velocities and spacing or categorization of their type.

Typical road scenes render the classical approach to homography estimation diffi-

cult. The Direct Linear Transform is highly susceptible to noise and usually requires

refining via an further nonlinear penalty minimization. Additionally, the penalty is a

function of the displacement between measured and calibrated coordinates, a quantity

unavailable in a scene for which we have no knowledge of the road coordinates. We

propose instead to achieve metric rectification via the minimization of an energy that

measures the violation of two constraints: the divergence-free nature of the traffic flow

and the orthogonality of the flow and transverse directions under the true transform.

Given that an homography is only determined up to scale, the minimization is
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performed on the Lie group SL(3), for which we develop a gradient descent algo-

rithm. While easily expressed in the world frame, the energy must be computed

from measurements made in the image and thus must be pulled back using standard

differential geometric machinery to the image frame. We develop an enhancement

to the algorithm by incorporating optical flow ideas and apply it to both a noiseless

test case and a suite of real-world video streams to demonstrate its efficacy and

convergence. Finally, we discuss the extension to a 3D-to-planar mapping for vehicle

height inference and an homography that is allowed to vary over the image, invoking

a minimization on Diff(SL(3)).
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Chapter 1

Introduction

1.1 Framework

We should soon be able to query the world around us for pertinent information

that is superimposed on our field of vision. Smart phones may suggest the best choice

from all product options on a supermarket shelf given our personal preferences, or

show us how that art piece we’ve been eyeing up would look on the wall. Smart

glasses may inform us whether or not the hotel we are passing has any vacancies ([1]).

At the heart of such augmented reality is an understanding of how the 3D objects

around us map to a 2D image and how the image changes with our orientation. While

this thesis entertains somewhat less lofty aspirations, it is nevertheless an attempt to

increase the amount of information we can extract from specific scenes by pursuing

that same understanding.
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We seek to use streaming traffic camera footage from a single camera to infer

instantaneous quantities of interest such as the heavy-vehicle density, road congestion

levels and average speed. One of the primary requirements is the classification of

different vehicle types; in particular the ability to differentiate trucks from other

traffic in order to keep a running measure of their flux. One of the most direct

Figure 1.1: Snapshot of a typical traffic scene

uses of this measure is as a

‘Truckometer’, a gauge of economic

activity that has recently been

suggested may lead GDP by six

months1. We consider a solution to

this problem valid only if it conforms

to several criteria: it must allow

for the typical low-resolution footage (several hundred pixels in each dimension)

ubiquitous on the internet, be robust to ample noise in the image and converge rapidly.

There are two broad approaches to the problem (see [2] for a review). The

first employs an unsupervised learning of the characteristics associated with each

moving object in the image ([3], [4], [5] for example). A model may be constructed

that describes how a vehicle silhouette deforms as it approaches or recedes, and a

1Using data published by the New Zealand Transport Agency and compiled by ANZ Bank as
described in Spinning in the Mud? April 2012, available at http://www.anz.co.nz/commercial-
institutional/economic-markets-research/truckometer/
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distribution of the silhouette area or other measurable learned at each point on the

road so that distinct vehicle types are identified as belonging to distinct clusters. The

second matches each object with a template derived from a 3D model mapped into the

image via the homography ([6], [7], [8]). Our approach is most similar to the latter;

the former suffers from the high number of training frames required as well as little

generalization capability to the field of view. A panning camera for example would not

require re-calibration under the second approach, but rather a simple adjustment to

the estimated homography. A 3D template however can only be superimposed on an

image if the intrinsic camera parameters are known. There are in general five of these,

made up of a focal length in each coordinate direction, a principal point and a skew

between axes. Our problem set-up only assumes uncalibrated cameras so the intrinsic

parameters would need to be estimated; this is possible for scenes that include at

least three non-coincident planes, a condition that unfortunately cannot realistically

be met in typical traffic scenes for which only the road surface provides a clear plane.

It is tempting then to cast the problem into one amenable to ’structure from motion’

techniques: we imagine the camera to be moving past stationary vehicles, a frame of

reference just as valid as that of the stationary camera and moving vehicles, as the

background is usually filtered out. Tracking points of interest from frame to frame

and exploiting the epipolar constraint - a constraint generated by the geometry of a

scene viewed from more than one viewpoint - yields a reconstruction of those points

in 3D space. While the change in coordinates of tracked vehicle vertices relative to
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each other may overcome the previous lack of non-road-plane information available,

the reconstruction is still only obtained up to a projective transformation without

knowledge of the intrinsic parameters. This leaves us little better off in terms of

mapping external 3D coordinates into the scene.

The upshot is that the best we can do, given tracked points that lie on or close

to a single plane in the scene, is estimate the homography - the linear mapping of

homogenous world coordinates on the road plane to homogenous image coordinates2.

Being a 2D to 2D transform, some geometric information inherent in the scene is lost:

objects that stand proud of the road plane appear distorted once the image has been

rectified to recover metric quantities such as angles and distances. In most of the

scenes we are interested in the distortion is not great enough to overwhelm the con-

venience of the planar assumption; where it is apparent, it does not necessarily make

our task harder. Larger vehicles will take on larger rectified silhouettes especially if

distorted due to their height, making them easier to categorize for instance.

The estimation of the homography from real-world scenes presents some chal-

lenges. Where road boundaries are clearly delineated and we can identify two bound-

ary points exactly opposite one another, the geometrical reconstruction has been

achieved by [9]. The boundaries and their tangents are not always found easily in

an automated fashion however, especially when the image contrast is low or the

background scene exhibits little color variation. A natural alternative to stationary

2See section 8.1 however for a proposed method to infer moving vehicle height when it extends
significantly above the road plane with respect to the camera position.
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points of identification is to use the trajectories of the vehicles themselves or other

vehicle-based geometric cues. The authors in [10] achieve affine rectification (which

represents an estimation of the homography up to similarity and skew transforms of

the scene) by tracking two objects moving along nonparallel paths at constant speeds

and exploiting an induced ratio constraint. Rather than using their trajectories,

the dominant gradient orientations of the vehicles are used in [11] to enforce known

information about the scene. This eliminates the need for nonparallel trajectories, a

requirement that is seldom met in highway scenes, and our approach to geometrical

constraints is similar: we also exploit constraint equations to estimate the affine

transformation-related parameters, but the perspective parameters on the other hand

we estimate by minimizing some measure of the violation of the constraints.

By setting up the homography estimation as a constrained minimization problem

over the parameter space, we can borrow from the Beltrami flow regularization

framework espoused by Sochen ([12], [13]). The main idea is to construct a functional

on the image that accounts for variation in quantities to be regularized such as

intensity, gradient or flow ([14], [15], [16]). An induced metric on the image domain

summarizes the degree of variation at every point in the image, and a gradient descent

iteration is then derived to perform the diffusion necessary to attain a state with lower

variation. This framework is known to encompass image denoising by minimizing

either of the L1 and L2 norms of the gradient as special cases. Tensor-valued fields

can also be regularized in this manner as an extension to the orientation diffusion
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applied to vector fields (see also [17] and [18] for a maximum likelihood methodology

rather than gradient descent). In these cases an image is thought of as the section of

a fibre bundle where each fibre is a Riemannian manifold. The 2D flow in an image

for example is captured by the Lie group SO(2) as fibre: each point in the image

is associated with the direction of the flow. The most significant departure of our

approach from this framework is that we do not modify elements of our image by

the diffusive process; rather, by modifying the homography the diffusion occurs in

the world frame that we are reconstructing. We expect then that as our homography

estimates converge, we are recovering a world frame that minimizes variation in some

sense while conforming to our constraints.

Given the importance of homography estimation to many robotics applications,

it is in this field that we find much of the work most similar in spirit to our own.

The homography g is only defined up to scale, a quality that allows us to specify

det(g) = 1, which in turn implies that g is an element of the Lie group SL(3). Being

a finite group, once we select a parameterization we can find the gradient of the

functional to minimize in a straightforward manner but some care must be exercised

to ensure that the minimization procedure yields a solution still on the manifold

SL(3). An efficient least-squares technique with second-order convergence properties

for incremental tracking of the homography on SL(3) is described in [19] and [20],

while a set of coupled ODEs on SL(3) is derived in [21] that is proved to drive

tracking error to zero. The similarity to our objective is that we are also using the
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difference between two views of the same plane to update an homography estimate,

but in our case the second view is imaginary: we think of the world frame as an

image taken with the camera pointing directly along the normal to the plane of the

road (the so-called fronto-parallel view). The homography is then the mapping from

this imagined camera position to the real one, so recovering the mapping can still be

posed as a tracking problem, but since we do not have access to the coordinates in our

world frame the same objective function cannot be used. We are left to create a new

one from geometrical cues that we can get our hands on. In particular, we use the

orthogonality of the vehicles’ trajectories and their transverse vectors (the direction

of least gradient variation over the vehicle) as well as the divergence-free nature of

traffic flow.

1.2 Contribution of the Thesis

The cornerstone of our approach is the assertion that under the true homography,

certain orthogonality and flow divergence conditions will be met in the world frame.

That is, we should be able to reconstruct from the image a world frame with a

divergence-free traffic flow for which the flow vectors are orthogonal to the transverse

vehicle direction. Given that such metric rectification is classically achieved by

Direct Linear Transform (DLT), a presentation is made of the standard techniques

in computer vision for establishing correspondences between images, the invariants
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that arise and their use in robust homography estimation. It is well known that the

DLT itself suffers from inaccuracies due to an inherent amplification of image noise;

we formalize this notion through a first-order analysis of the variance propagation

from image coordinates through to the elements of the homography, and demonstrate

the effect this can have on the rectification. The remedy is classically an additional

high-dimensional, non-linear minimization step to refine the result; we instead pro-

pose a novel, lower-dimensional constrained energy minimization that achieves the

homography estimation in a single procedure after being suitably initialized.

The minimization is performed on a Lie group, and a presentation is made of the

pertinent results in differential geometry leading to the representation of the gradient

descent algorithm both on the Lie algebra and in terms of the parameterization of

the group SL(3). Constraints are factored in through the use of Lagrange multipliers

and are pulled back into the same space, effectively restricting the minimization to

a submanifold of SL(3). The energy we construct is a functional that measures the

violation of our expected conditions in the world frame and we spend significant effort

deriving the expression for its pullback as computed from the image before putting

the algorithm to work on a noise-free mock scene to demonstrate its feasibility.

Thirdly, we tackle a suite of real-world traffic videos for which the vehicles must

be segmented and both flow and transverse vector fields estimated before the min-

imization can be run. We profile the convergence of the algorithm and show that

with a modification of the energy functional that incorporates well-known optical
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flow ideas, the convergence can be improved by making incremental adjustments

to the estimated vector fields. We also derive an improvement to the homography

initialization when the imaged road is known to be straight. The objective of this

work is thus achieved in that we arrive at a procedure that is more robust to noise in

low-resolution videos than a standard application of the DLT while maintaining an

efficient rate of convergence, though we also highlight instances where the algorithm

will fail due to violation of the underlying assumptions.

1.3 Thesis Outline

Three primary research directions constitute the bulk of the thesis: the differential

geometry that prescribes how objects should transform between spaces, 2D projective

geometry and its application to computer vision, and the image processing techniques

through which we capture the measurements needed in an application of the theory

to real scenes. Chapters 2 and 3 set up the abstract differential geometric formalism

before focusing on actions of a matrix Lie group on itself. Section 3.3 in particular

describes how gradient descent is performed on the Lie group by stepping in a direction

defined by a vector on the Lie algebra.

Before these results are used, Chapter 4 introduces the projective space in which

the transformation of points and lines between different images is linear. The mapping

itself is the homography, the estimation of which is dealt with in Chapter 5 in a
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classical manner: using geometric information from the image to perform a metric

rectification and resolving the remaining (similarity-oriented) degrees of freedom by

gradient descent. An error analysis of this approach is given in section 5.5 that makes

explicit the well-known need for an additional refinement procedure.

In Chapter 6 an energy functional is introduced, the minimization of which re-

solves the perspective- and skewness-oriented degrees of freedom while constraints are

derived that fix the remaining five. The descent equations are calculated and applied

in comparison to the DLT approach. The application to real-world traffic footage

is made in Chapter 7 along with a discussion of the segmentation and measurement

methods as well as an augmentation of the energy functional to incorporate optical

flow. The rectifications achieved on the test suite are depicted and the algorithm’s

convergence rate profiled.

Finally, Chapter 8 summarizes the approach taken in this thesis and briefly

discusses both its efficacy and directions that future work could take to improve

and generalize it further.
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Chapter 2

Differential Geometric Formalism

In establishing the mapping between the world and the image, we assume all

geometric cues to describe the road plane itself; we will not initially be concerned with

the height of the objects in the scene. Further, we expect the 2D-to-2D mapping to be

not only invertible but also smooth and therefore a diffeomorphism which preserves

structure from one space to the other. For instance, a smoothly varying traffic flow in

the world should be mapped so that the flow in the image also varies smoothly.

We should also have the freedom to specify the local coordinates in each frame

without affecting the underlying transformation; the usual Euclidean framework with

measurement by pixel in the image and metre in the world is just as valid as the

choice of radial coordinates, or different measurement units for example. We need to

be able to describe the relationships between objects in the world as a function of

their appearance in the image: parallel lines delineating the road will almost certainly
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not appear parallel in the image for instance, yet we need a way of recognizing their

parallelism in the world frame under the correct mapping. The differential geometric

tools to achieve this end are set out in the following section.

2.1 The Tangent Bundle

The road surface lies on a two dimensional manifold W embedded in the three

dimensional ambient space R
3. Both W and the scene image I are parameterized by

choices of coordinates, the latter by the continuous image coordinate chart ϕ : I → R
2

so that any location x on the image manifold is assigned the coordinate components

ϕ(x). The coordinate chart also by definition has a continuous inverse, rendering the

change of variables formula given two such coordinate charts ϕ1 and ϕ2 as ϕ2 ◦ ϕ−1
1 .

Moreover, given world coordinate chart ϕ1 and image coordinate chart ϕ2, a function

f : W → I has the representation in local coordinates

ϕ2 ◦ f ◦ ϕ−1
1 (2.1)

which we usually simply identify as ’f ’. The mappings that we are interested in

preserve the local structure of their domains and in particular are diffeomorphisms;

that is, they are differentiable and have differentiable inverses. More concretely this

means that the composition ϕ2 ◦ f ◦ ϕ−1
1 is differentiable at all points of its domain

(and for any choice of representation). Because it can be shown in the same sense

that every coordinate chart of a submanifold of R
n is smooth, it is still solely the
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nature of f itself that determines differentiability.

Traffic flow in the image is described by the differentiable paths γ(t) ∈ I the

vehicles follow; these are the integral lines stemming from a vector field that associates

each point in the image with a velocity, as will be explained below. The paths and

their velocities are measured using local coordinates; a path through the point x0 ∈ I

at time t = 0 has local coordinates

q(t)|t=0

.
= ϕ ◦ γ(t)|t=0 = ϕ(x0) (2.2)

and velocity (in local coordinates)

q̇(t)|t=0

.
=

d

dt

∣∣∣∣∣
t=0

(ϕ ◦ γ(t))

=
∑

i

∂ϕ

∂xi

(x0)
˙d

dt

∣∣∣∣∣
t=0

γ
i

(t)

= Dϕ(x0)γ̇(0)

= (Dϕ · v)(x0) (2.3)

where v(x0)
.
= d

dt

∣∣∣
t=0

γ(t) is the definition of the velocity along the path at x0. Of

course, there are many different possible paths through x0 with some specified velocity

v0, all of which will have identical measurements (q, q̇). For this reason we say that

the tangent vector v at x is the equivalence class of all paths γ(t) through x = γ(0)

with velocity v = γ̇(0). The point x is the base point of the tangent vector, and the

vector space TxI of all tangent vectors on the manifold I at x is called the tangent

space of I at x. The tangent bundle TI is the set of all tangent spaces over the
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Figure 2.1: The actions of the mapping f : W → I and its derivative Df : TW → TI.

manifold,

TI = ∪x∈ITxI .

A map f : W → I also encodes the transformation of the tangent space from the

world to the image manifold via its tangent map Tf : TW → TI. At a base point

X∈ W the tangent map is the derivative

TXf : TXW → Tf(X)I

.
= (f(X), Df(X)) (2.4)

which takes a tangent vector V ∈ TXW and returns a vector v ∈ Tf(x)I,

v = Df(X) · V ,

The components of a vector V ∈ TX0
W are expressed in local coordinates with

coordinate chart ϕ1 using equations (2.2) and (2.3) as

(Q, Q̇) = (ϕ1(X0), Dϕ1(X0) · V )

= TX0
ϕ1(X0, V ) (2.5)
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which is induced by the coordinate tangent map Tϕ1. The components (2.5) are

known as the tangent lifted coordinates. The mapping f can be expressed in tan-

gent lifted coordinates by invoking (2.1) so that for local coordinates q on I, the

transformation

q = f(Q) (2.6)

by which we more explicitly mean

q = (ϕ2 ◦ f ◦ ϕ−1
1 )(Q)

is extended to the transformation of the tangent space

(q, q̇) = Tx0
ϕ2TX0

f(ϕ−1
1 (Q), Dϕ−1

1 (Q) · Q̇)

= Tx0
ϕ2(f ◦ ϕ−1

1 (Q), Df(ϕ−1
1 (Q)) · Dϕ−1

1 (Q) · Q̇)

= (ϕ2 ◦ f ◦ ϕ−1
1 (Q), Dϕ2(f ◦ ϕ−1

1 (Q)) · Df(ϕ−1
1 (Q)) · Dϕ−1

1 (Q) · Q̇)

= (f(Q), Df(Q) · Q̇)

in the abbreviated notation of equation (2.6). Now if X = ϕ−1
1 (Q), we have

∂

∂Qi

(X) =
∂

∂Qi

ϕ−1
1 (Q) = Dϕ−1

1 (Q) · Ei (2.7)

where the Ei are the canonical basis vectors; E1 = (1, 0)T , E2 = (0, 1)T . The

coordinate tangent map Dϕ1(X) is an isomorphism; this follows naturally from the

fact that at all points X ∈ W the manifold “looks locally like R
2” as implied by

the mapping ϕ(U) → R
2 for some neighborhood U ⊂ W containing X. The map

Dϕ−1
1 (Q) is therefore also an isomorphism, which makes the set of vectors (2.7) a
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valid basis set for TXW . Accordingly we can decompose any vector V ∈ TXW into

its components

V =
∑

i

Vi

∂

∂Qi

(X) (2.8)

and in particular, the coordinates Q̇ = (Q̇1, Q̇2)
T on TXW are the components of the

tangent-lifted vector Dϕ−1
1 (Q) · Q̇ with respect to this basis:

Dϕ−1
1 (Q) · Q̇ =

∑

i

Q̇iDϕ−1
1 (Q) · Ei

=
∑

i

Q̇i

∂

∂Qi

(X) .

While the notion of a tangent map is a fundamental to how we will frame the

mapping of vectors from the world to the image and vice versa, we need to extend

our calculus to be able to take derivatives of a function defined over a manifold with

respect to a vector field for instance, or even calculate the rate of change of one vector

field with respect to another. This is tackled in section 2.2.

2.2 Flows & Lie Derivatives

A section of a tangent bundle (on the image manifold in this case) is a map

v : I → TI that assigns every point x0 ∈ I a tangent vector vx0
∈ R

2. A vector

field is then an instance of a section of the tangent bundle; the vector fields that

interest us generate flows that vary smoothly over the flow lines themselves even

if they may exhibit discontinuties in other directions. The rationale is that traffic
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movement, even if accelerating or slowing down, changes smoothly in the direction

of travel while vehicles in different lanes may travel at very different speeds or even

opposite directions. The set of all vector fields on manifold I is denoted X(I).

The tangent map TXf of equation (2.4) can be extended from vectors to deal with

vector fields via the pushforward f∗. Provided f is differentiable and invertible, the

pushforward of V takes for every point x ∈ I the tangent vector V (X) at its preimage

X = f−1(x) which it then tangent-lifts to TxI,

f∗V
.
= Tf ◦ V ◦ f−1 . (2.9)

The pullback f ∗ of a diffeomorphism f : W → I is the opposite of a pushforward;

rather than defining how the vector field V ∈ X(W) should be transformed to TI,

the pullback defines how a vector field v ∈ X(I) should be transformed to TW ,

f ∗v
.
= Tf−1 ◦ v ◦ f (2.10)

which by comparison with equation (2.9) is just the pushforward of f−1:

f ∗ = (f−1)∗ .

To calculate these transformations of vector fields we use local coordinates. Where

V (Q) is understood to be the vector V (ϕ−1
1 (Q)) covered by coordinate chart ϕ1 and

the abbreviated function signature (2.6) is used, the pushforward of V at Q is

(f∗V )(Q) = (f(Q), Df(Q) · V (Q)) .
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In particular we can identify the tangent lifted coordinates (2.5) as the components

of the pushfoward by coordinate chart ϕ1. The pullback of v is

(f ∗v)(Q) = (f−1(f(Q)), D(f−1)(f(Q)) · v(f(Q)))

= (Q, (Df)−1(Q) · v(f(Q)))

by the Inverse Function Theorem.

In the case that f is not a mapping to the image manifold but rather defines a

scalar field f : W → R, the directional derivative 〈df(X0), V (X0)〉 is the exactly the

pushforward of V (X0) by f ,

〈df(X0), V (X0)〉 = Df(X0) · V (X0)

=
∑

i

∂f

∂Xi

(X0)Vi(X0) (2.11)

which has the usual interpretation as the derivative of f at X0 in the direction of

V (X0). The extension to the whole manifold is trivial:

〈df(X0), V (X0)〉 = 〈df, V 〉 (X0)

which states that the directional derivative at X0 is the evaluation there of another

scalar field, namely the inner product of df with the vector field V . To put equation

(2.11) in the context of equation (2.3), given a path γ(t) ∈ W for which γ(0) = X0

and d
dt

∣∣∣
t=0

γ(t) = V (X0), the directional derivative is

〈df, V 〉 (X0)
.
=

d

dt

∣∣∣∣∣
t=0

f ◦ γ(t) . (2.12)
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The scalar field 〈df, V 〉 can then be understood as the derivative of f along the paths

in the manifold that are exactly described by the vector field V ; these are the integral

curves. An integral curve of the differentiable vector field V is a differentiable path

γ : R → W for which

d

dt
γ(t) = V (γ(t)) , (2.13)

that is, they “follow the flow” induced by V . In fact, the flow of V is the differentiable

map Φ : W ×R → W where ΦX(t) marks out the unique integral curve of V for which

ΦX(0) = X and d
dt

∣∣∣
t=0

ΦX(t) = V (X). We will have more use for the equivalent

notation Φt(X) which emphasises the flow field ’frozen’ at time t. The equation

(2.12) can now be extended to the whole manifold W with the identification

〈df, V 〉 =
d

dt

∣∣∣∣∣
t=0

f ◦ Φt

which is simply the definition of the derivative of the pullback by Φt of function f ,

〈df, V 〉 =
d

dt

∣∣∣∣∣
t=0

Φ∗
t f . (2.14)

Being able to describe the derivative 〈df, V 〉 of a function over a vector field leads

to an important extension: the derivative of a vector field with respect to another

vector field. The field 〈df, V 〉 is known as the Lie derivative of f along V and denoted

LV f ; we would like to be able to pin down LV1
V2, the Lie derivative of V2 along V1

which is itself a vector field. Taking inspiration from equation (2.14), what we mean

by this derivative is the quantity

LV1
V2

.
=

d

dt

∣∣∣∣∣
t=0

Φ∗
t V2
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where Φt maps out the flow induced by vector field V1. Using equation (2.10) this

becomes

LV1
V2 =

d

dt

∣∣∣∣∣
t=0

DΦ−1
t ◦ V2 ◦ Φt

=

[
d

dt
(DΦt)

−1 ◦ V2(Φt) + (DΦt)
−1 ◦ d

dt
V2(Φt)

]

t=0

=

[
− (DΦt)

−1 · d

dt
(DΦt) · (DΦt)

−1 ◦ V2(Φt) + (DΦt)
−1 ◦ d

dt
V2(Φt)

]

t=0

= − d

dt

∣∣∣∣∣
t=0

DΦt ◦ V2 +
d

dt

∣∣∣∣∣
t=0

V2(Φt)

= −D

(
d

dt

∣∣∣∣∣
t=0

Φt

)
◦ V2 + DV2 ◦

(
d

dt

∣∣∣∣∣
t=0

Φt

)

= −DV1 ◦ V2 + DV2 ◦ V1

where at time t = 0, Φt is just the identity operator Φ0(X) = X and its derivative

DΦ0(X) is the identity matrix. By DV1, the Jacobian matrix with elements (DV1)ij =

∂(V1)i/∂Qj in local coordinates is intended, though it is often more fruitful to treat

DV1 ◦ V2 in a coordinate free manner as the directional derivative

(DV1 ◦ V2) (X) =
d

dt

∣∣∣∣∣
t=0

V1 (X + tV2(X)) . (2.15)

The Lie derivative LV1
V2 happens to equate to the Jacobi-Lie bracket [V1, V2] on

X(W),

[V1, V2]X(W) = DV2 ◦ V1 − DV1 ◦ V2 , (2.16)

a useful fact in the discussion of minimization on Lie groups in section 6.3.3.
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2.3 The Cotangent Space

Taking another look at the directional derivative in equation (2.12), we note that

df exists in a natural dual space to V ; the pairing between them results in a scalar

field. The quantity df(X) is known as a cotangent vector or the differential of f at

X, and resides in the cotangent space T ∗
XW , itself a member of the cotangent bundle

T ∗W . Just as any vector field V ∈ TW can be written in terms of basis vector fields

∂
∂Qi

(X) with coefficients Vi(X), a differential P is written with the basis differentials

dQi(X),

P =
∑

i
Pi(X)dQi(X) .

In the case of a Euclidean space, the bilinear pairing 〈P, V 〉 should result in the scalar

field
∑

i PiVi, so the subsitution

〈P, V 〉 =

〈
∑

i
PidQi,

∑
j
Vj

∂

∂Qj

〉

=
∑

i,j
PiVj

〈
dQi,

∂

∂Qj

〉

implies that we must have
〈

dQi,
∂

∂Qj

〉
= δij .

To explore what it means to perform a cotangent lift on a covector P (X) given

a mapping f : W → I, we formalize the notion of duality in the tangent map

transformation. Given the pairing 〈P, V 〉X

.
= 〈P (X), V (X)〉, the cotangent map T ∗f

is defined by

〈T ∗f ◦ p, V 〉X

.
= 〈p, Tf ◦ V 〉f(X) (2.17)
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where

T ∗f ◦ p = P . (2.18)

The covector p(x) lies in the vector space T ∗
x I, and therefore T ∗f maps differentials

in the opposite direction to the mapping of vector fields by Tf . For this reason it is

normally more convenient to use the cotangent lift T ∗f−1 when f is a diffeomorphism;

this maps covector P (X) ∈ T ∗
XW into T ∗

x I. It should be noted that (2.17) equates

two pairings defined on different manifolds; in fact the pairing 〈·, ·〉x : T ∗
x I ×TxI → R

is induced here by f . A direct consequence of this is the orthogonality under this

pairing of the induced basis vectors and differentials

∂

∂q
(x) = TXf ◦ ∂

∂Q
(X) , dq(x) = T ∗

f(X)f
−1 ◦ dQ(X)

recalling that the components q are the local coordinates on I. This follows by first

noting that

〈P, V 〉 =
〈
P, Tf−1 ◦ v

〉

=
〈
T ∗f−1 ◦ P, v

〉

=
〈
T ∗f−1 ◦ P, Tf ◦ V

〉

=
〈
T ∗f ◦ T ∗f−1 ◦ P, V

〉

which implies that

(T ∗f)−1 = T ∗f−1 , (2.19)
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and using this result to show

〈
dqi,

∂

∂qj

〉

x

=

〈
T ∗f−1 ◦ dQi, T f ◦ ∂

∂Qj

〉

x

=

〈
dQi, (Tf)−1 ◦ Tf ◦ ∂

∂Qj

〉

X

=

〈
dQi,

∂

∂Qj

〉

X

= δij .

Now owing to the bilinearity of the pairings 〈·, ·〉 on both W and I, the orthonormality

of the bases on both spaces and the fact that TXf is the linear operator Df(X), the

dual operator T ∗
Xf is in fact the transposed matrix (Df(X))T . Again making use of

relation (2.19), this means that the local coordinate expression (2.18) can be rewritten

in the convenient form

p(q) = (Df(Q))−T P (Q) . (2.20)

2.4 Metrics

Although we are now equipped with the tools to transform vector fields and

differentials between the world manifold and the image, we need to be able to compare

and measure transformed quantities. For instance, two vehicle trajectories on the

road that are clearly nonparallel in the image should nevertheless be measureable

as parallel under an appropriate measurement methodology. This is done with the

right choice of Riemannian metric, a symmetric bilinear form which when defined
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at x ∈ I has the signature 〈·, ·〉TxI : TxI × TxI → R. As the similarity in notation

suggests, there is a close tie (see equation (2.21)) between the metric and the pairing

(2.11) that was introduced as the directional derivative. The metric will generally be

differentiated in the following with a subscript indicating the vector space hosting its

arguments.

Two vectors v1, v2 ∈ TxI are orthogonal under the metric if and only if 〈v1, v2〉TxI =

0. The Euclidean metric is the canonical choice on world manifold W , so for V1, V2 ∈

TXW ,

〈V1, V2〉TXW = V1 · V2 .

We would like the metric on I to be specified such that for vi the pushforward by

f : W → I of Vi,

〈v1, v2〉TxI

.
=
〈
Txf−1 ◦ v1, Txf−1 ◦ v2

〉
TXW

= 〈V1, V2〉TXW

where x = f(X). In fact, this definition of the metric on I is simply the pullback

by f−1 of the metric on W , and is known as the induced metric. The Euclidean

metric (used on the world manifold) is location-independent; two vectors at the same

basepoint have a constant inner product no matter where that basepoint happens

to be. On the other hand, the metric on the image inherits a location dependence

through the tangent lifts of its arguments, which are certainly location dependent.

This is how the distance effect is manifested: objects further away should appear
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smaller in the image, or equally, a similarly sized object in the image positioned

closer to the horizon should represent a larger object in the world.

Returning to the directional derivative, given a scalar field f defined over manifold

W , the gradient of f is the vector field ∇f defined by

〈df, V 〉X = 〈∇f, V 〉TXW (2.21)

for all X ∈ W and V ∈ TXW . Because the elements of TXW here are the usual

vectors and the metric is bilinear, it can be represented by the matrix J(X) say,

〈∇f, V 〉TXW = (∇f(X))T · J(X) · V (X)

which, coupling equation (2.21) with equation (2.11) gives

∇f(X) = J(X)−T df(X)

= J(X)−1df(X) (2.22)

since J(X) is symmetric. The gradient then is a linear transformation of the differ-

ential at each point in the manifold, but also varies over the manifold in a manner

related to the variation of the metric. Equation (2.22) also provides us with a mapping

T ∗W → TW closely related to the momentum map of section 3.3.1 that will be useful

in establishing gradient descent equations.
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Chapter 3

Matrix Lie Groups & Lie Algebras

We shift focus now from operations on the world and image manifolds to the

mapping between them. We have relied thus far on knowing the true mapping but in

fact its accurate estimation is precisely what we want to achieve. We propose to do

so by searching over the space of possible mappings for one that uniquely minimizes

some error measure. The applicable space in this case is the Lie group SL(3); each

element of the group effects a different image for a fixed world scene. A Lie group is

a smooth manifold where the group operation and its inverse are smooth in addition

to the usual group properties. For real-valued matrix Lie groups in particular, the

group operation is matrix multiplication; these are submanifolds of the set of all real-

valued n×n matrices M(n,R) and subgroups of the general linear group of invertible

real-valued matrices GL(n,R).
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3.1 The Lie Algebra

Lie groups describe succintly the continuously-varying nature of transformations

such as rotations, translations or (as in our case) projectivities, and are traversed by

means of left and right translations

Lh(g) = g · h , Rh(g) = g · h

for g and h in G, the matrix Lie group of interest. The composition relations

Lh ◦ Lg = Lh·g , Rh ◦ Rg = Rg·h (3.1)

follow directly. Thinking of Lh simply as a mapping from G onto itself, we can

construct the vector ξ as the velocity of a path γ(t) ∈ G through g at t = 0,

ξ(g)
.
=

d

dt

∣∣∣∣∣
t=0

γ(t) (3.2)

just as in equation (2.3), and immediately apply the tangent lift (2.4),

TgLhξ
.
=

d

dt

∣∣∣∣∣
t=0

h ◦ γ(t)

= (Lh)∗ ξ . (3.3)

Equations (3.2) and (3.3) extend trivially to vector fields ξ ∈ TG on G where the

notion of a path is replaced with that of a flow. This gives rise to a particular vector

field V L
ξ (g), the left extension of vector ξ ∈ TeG

V L
ξ (g)

.
= TeLgξ
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where e is the group identity. That is, V L
ξ is the vector field generated by left tangent-

lifting vector ξ from the identity. Now we say that a vector field V is left-invariant

if

TLgV = V

for any g ∈ G, and V L
ξ is shown to be such a vector field;

ThLgV L
ξ (h) = ThLg ◦ TeLhξ

= Te(Lg ◦ Lh)ξ

= TeLg·hξ

= V L
ξ (g · h) .

Then given a left-invariant vector field V , by definition

V (g) = TeLgV (e) = V L
V (e)(g) (3.4)

and therefore any left-invariant vector field V is just the left extension of its own

vector V (e) ∈ TeG. We have now established an isomorphism λ between the vector

space TeG and the space XL(G) of all left-invariant vector fields on G, λ(ξ) = V L
ξ .

This is the first step toward defining the Lie bracket [·, ·]TeG to be bundled, along

with the vector space TeG, into the Lie algebra g of Lie group G. The bracket is a

bilinear operator that is both skew-symmetric and observes the Jacobi identity. The

Jacobi-Lie bracket (2.16) is exactly such an operator on vector fields. What we need

however, is a conforming operator on elements of TeG. Luckily, the pullback of the
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Jacobi-Lie bracket by λ will achieve exactly that, so we can define the Lie bracket as

[ξ1, ξ2]TeG

.
=
(
λ−1

)
∗

[λ(ξ1), λ(ξ2)]XL(G)

=
(
λ−1

)
∗

[
V L

ξ1
, V L

ξ2

]
XL(G)

=
(
λ−1

)
∗

LV L
ξ1

V L
ξ2

(3.5)

which should be translated as “the unique element ξ of TeG for which λ(ξ) =

LV L
ξ1

V L
ξ2

”. That the Jacobi-Lie bracket [λ(ξ1), λ(ξ2)]XL(G) is still left-invariant is a

straightforward follow-on the equality of mixed partials applied to the vector field

definitions. Fortunately this simplifies a lot when dealing with matrix Lie groups.

Given matrix ξ ∈ TgG where ξ = d
dt

∣∣∣
t=0

γ(t) for a path γ(t) ∈ G, γ(0) = g, the

tangent lift operation is mere matrix multiplication as we see from the specialization

of equation (3.3),

TgLhξ =
d

dt

∣∣∣∣∣
t=0

h ◦ γ(t) = h · ξ .

Further, applying (3.4) it is apparent that all left-invariant vector fields have the form

V (g) = TeLgV (e) = g · V (e) (3.6)

so that from equations (2.16) and (2.15) for two left-invariant vector fields V1 and V2,

(LV1
V2) (g) = (DV2 · V1) (g) − (DV1 · V2) (g)

=
d

dt

∣∣∣∣∣
t=0

[V2 (g + tV1(g)) − V1 (g + tV2(g))]

=
d

dt

∣∣∣∣∣
t=0

[(g + tV1(g)) · V2(e) − (g + tV2(g)) · V1(e)]
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=
d

dt

∣∣∣∣∣
t=0

[(g + tg · V1(e)) · V2(e) − (g + tg · V2(e)) · V1(e)]

= g · (V1 · V2) (e) − g · (V2 · V1) (e)

= (V1 · V2 − V2 · V1) (g) .

The pullback to the tangent space TeG is evident; it is simply V1(e)·V2(e)−V2(e)·V1(e).

The Lie bracket (3.5) is then just

[ξ1, ξ2]TeG = ξ1 · ξ2 − ξ2 · ξ1

and is equivalent to the ad operator on matrix Lie algebras (introduced here for later

reference only),

adξ1
ξ2

.
= [ξ1, ξ2]TeG .

Taking stock, we have established the Lie algebra g as the tangent space TeG

coupled with the Lie bracket. We have already used the fact that every left invariant

vector field on G is generated by some element ξ ∈ TeG, and is in fact equivalent to

the left extension V L
ξ . To further connect the Lie group and Lie algebra we define the

one-parameter subgroup corresponding to ξ as the integral curve γξ(t) (see equation

(2.13)) for the vector field V L
ξ , where γξ(0) = e. The Lie exponential map exp : g → G

provides a formal mapping between the Lie algebra and the Lie group; it is defined

exp(ξ)
.
= γξ(1) .

Again this result is made more concrete in the case of matrix groups. Let us suppose

the exponential map to be the usual matrix exponential exp(ξ) = 1 + ξ + ξ2

2!
+ ... for
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which it is easily seen, satisfies the ODE

d

dt
exp(tξ) = exp(tξ)ξ .

However, as equation (3.6) states, exp(tξ)ξ is just the evaluation at exp(tξ) of the left

extension of ξ, so

d

dt
exp(tξ) = V L

ξ (exp(tξ)) .

But this, along with the verification γξ(0) = exp(0) = e, is just the definition of the

one-parameter subgroup γξ(t) = exp(tξ) which validates the matrix exponential as

the form of the exponential map in the case of matrix groups. It can also be shown

(see for example [22, pp. 103]) that not only is every one-parameter subgroup of G

of the form exp(tξ) for some ξ ∈ TeG, but the exponential map is a diffeomorphism

from g to a neighborhood of e ∈ G. This means that provided we are not “too far”

from the identity, the inverse of the exponential map can be used as a coordinate

chart over that neighborhood. That is, we represent any suitable group element g by

the components αi corresponding to the basis vectors ξi of the Lie algebra element

ξ = exp−1(g),

g = exp (ξ) = exp
(∑

i
αiξi

)
. (3.7)

These are called the canonical coordinates of the first kind, and will appear in section

6.3.3 as an efficient parameterization of the Lie group.
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3.2 Lie Group Actions

Lie groups interact with manifolds through Lie group actions to effect coordinate

transformations such as rotations or displacement along a flow. In the case of a Lie

group acting on itself, the result is a change in the state of the transformation the

group itself describes. For any point X ∈ W for example, and any group elements

g, h ∈ G the left action φ· : G×W → W is a diffeomorphism defined by the properties

1. φe(X) = X,

2. φh(φg(X)) = φhg(X)

which is often abbreviated to gX
.
= φg(X). A simple example for concreteness is

that of the rotation group SO(3) operating on R
3; the action φg for g ∈ SO(3)

on X ∈ R
3 in this case is linear: φg(X) = g · X. The right action entertains the

expected difference φh(φg(X)) = φgh(X) and is often shortened to Xg
.
= φg(X). The

context will otherwise dictate whether we are dealing with a left or right action in

the following.

The group action is a generalization of a flow, and induces the tangent lift de-

scribed by equation (2.4) but this time from the tangent bundle TW onto itself

Tφg(X, V ) = (φg(X), TXφg(V )) , (3.8)
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while the cotangent lift consistent with equation (2.19) is

T ∗ (φg)−1 (X, P ) = T ∗φg−1(X, P )

= (φg(X), T ∗
φg(X)φg−1(P )) (3.9)

for P ∈ T ∗
XW . Recalling that given a path γ(t) ∈ W for which γ(0) = X and

d
dt

∣∣∣
t=0

γ(t) = V , the expression TXφg(V ) in the case of a matrix group left action

becomes

TXφg(V )
.
=

d

dt

∣∣∣∣∣
t=0

φg(γ(t))

=
d

dt

∣∣∣∣∣
t=0

g · γ(t)

= g · V ,

simplifying equation (3.8) to

Tφg(X, V ) = (g · X, g · V ) .

The further specialization to a matrix group acting on itself is the trivial replacement

Tφg(h, ξ) = (g · h, g · ξ) (3.10)

for ξ ∈ ThG. Similarly for the cotangent lift, we analyze

〈
T ∗ (φg)−1 P, V

〉
φg(X)

=
〈
P, Tφ−1

g V
〉

X

=
〈
P, g−1 · V

〉
X

=
〈
g−T · P, V

〉
φg(X)
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where P ∈ TXW , V ∈ Tφg(X)W and the last line recalls the reasoning at the end of

section 2.3. Then

T ∗ (φg)−1 (X, P ) = (g · X, g−T · P ) (3.11)

and the analogous substitution to equation (3.10) can be made when the manifold is

the Lie group itself.

We will be primarily interested in the action induced by a Lie algebra element

rather than a group element. The infinitesimal generator ξW on manifold W is a

vector field that describes how the element ξ ∈ g should be expressed on the tangent

bundle TW via the right action1

ξW(X)
.
=

d

dt

∣∣∣∣∣
t=0

φexp(tξ)(X) =
d

dt

∣∣∣∣∣
t=0

X exp (tξ) . (3.12)

1Note that this definition is different from the one usually found in the literature (see for example
[23, Definition 6.22]) where ξW(X) is given as the left action d

dt

∣∣
t=0

exp (tξ) X. The reason for this
is that the latter is not in general left invariant, while we plan on exploiting such invariance later.
In contrast, if we focus on the case of the Lie group acting on itself (rather than another manifold)
and if we take a left invariant action to mean that

(Lg)
∗

ξ(h) = ξ(φL
g (h))

for any vector field ξ and left action φL, our definition of the infinitesimal generator exhibits left
invariance:

(Lg)
∗

ξG(h) =
d

dt

∣∣∣∣
t=0

φL
g (φexp(tξ)(h))

=
d

dt

∣∣∣∣
t=0

g (h exp (tξ))

=
d

dt

∣∣∣∣
t=0

φL
g (h) exp (tξ)

= ξG(φL
g (h)) .
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In the case that the manifold being acted on by a matrix group is the group itself,

equation (3.12) reduces to the expression

ξG(g) =
d

dt

∣∣∣∣∣
t=0

g · exp (tξ) = g · ξ (3.13)

which is also just the pushforward (Lg)
∗

ξ viewed as a vector field (and evaluated at

g ∈ G).

3.3 Gradient Descent on Matrix Lie Groups

It is of primary importance that given an energy functional (or penalization) E(g),

we are able to identify the group element g∗ ∈ G that minimizes the energy,

g∗ = arg min
g∈G

E(g) . (3.14)

An energy measuring the degree of violation of some constraint is then minimized by

the set of transformations most consistent with the constraint. If we can ensure that

the minimization yields a unique solution then we can identify the transformation

most representative of the true one generating our data. We use gradient descent to

steer a path to the solution on the group in both chapters 5 and 6, the basis of which

we establish now.
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3.3.1 Reduction to the Lie Algebra

The minimization over G requires some care when formulating the gradient descent

equation. For instance, the iterative method

gk+1 = gk − t∇E(gk) (3.15)

for some small t, valid on a Euclidean space, is inappropriate on G since the group

operation (in our case) is multiplication and not addition, implying that the update

gk+1 by (3.15) may not even lie in the group. Rather, taking the Taylor expansion of

E at gk in direction ξ (where ξ ∈ g) we get ([24])

E(gk exp(tξ)) =
∞∑

n=0

tn

n!
(ξn

GE) (gk) , t ǫ [0, 1] (3.16)

where ξG is the infinitesimal generator (3.13), that is, ξG(g) = TeLgξ. Now using

equation (2.12) in reverse,

(ξGE) (gk)
.
=

d

dt

∣∣∣∣∣
t=0

E(gk exp(tξ)) = 〈dE(gk), ξG(gk)〉

and we can expand (3.16) as

E(gk exp(tξ)) = E(gk) + t 〈dE(gk), ξG(gk)〉 + o
(
‖ξG(gk)‖2

)
. (3.17)

In analogy with the way in Euclidean space that the Taylor expansion

E(uk + tw) = E(uk) + t 〈dE(uk), w〉 + o
(
‖w‖2

)

yields the gradient descent update

uk+1 = uk − t∇E(uk) (3.18)
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by the identification of the tangent space with its dual, equation (3.17) suggests an

update of the form

gk+1 = gk exp(−t∇̃E(gk)) (3.19)

where ∇̃E encompasses a transformation of the 1-form dE from T ∗
g G to TgG as well

as an operation to account for the difference in tangent vectors ξG(gk) and ξ = ξG(e).

More succinctly,

(ξGE)(gk) = 〈dE(gk), ξG(gk)〉 =
〈
∇̃E, ξ

〉
g

(3.20)

where 〈·, ·〉g : g×g → R is some chosen Riemannian metric on the group. We proceed

to derive an expression for ∇̃E but note first that depending on its parameterization,

∇̃E may not lie in the Lie algebra g. This is easily seen if for example the coordinates

used are those of the ambient space: the derivative of E with respect to the nine

matrix entries gij making up the group element g ∈ SL(3) lies in R
9. On the

other hand, the derivative with respect to any sufficient eight-dimensional coordinate

system lies in the tangent bundle of SL(3) and occupies only a subspace of R
9;

these derivatives may not coincide. So while for small t the iterates gk in equation

(3.19) should approximately follow the flow on the manifold generated by the ODE

g−1ġ = −∇̃E(g), in practice they may drift away from the manifold. This can be

fixed in two ways: either a projection of ∇̃E back into g can be made (§ 3.3.2), or

a coordinate system chosen that ensures the update is made with a tangent vector

guaranteed to lie in g (§ 6.3.3).
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3.3.2 The Coordinate-Free Approach

To find an expression for ∇̃E we need to establish an isomorphism between T ∗
g G

and TgG. Equipped with a link between these spaces, we can then exploit the vector

space isomorphism ξG → ξ between left-invariant vector fields on G and g to work out

what ∇̃E must be. The key to this formulation is the metric 〈·, ·〉g which we extend

to the whole of G by left tangent-lifting,

〈u, υ〉TgG ≡ 〈TgLg−1u, TgLg−1υ〉
g

=
〈
g−1u, g−1υ

〉
g

. (3.21)

As suggested by equation (2.22) but now more generally, we introduce a positive

definite, ‘inertial’ operator J : TG → T ∗G such that

〈J(u), υ〉 ≡ 〈u, υ〉T G , (3.22)

(see [25, pp.323] where the inertial operator is restricted to the Lie algebra). We also

define the metric 〈·, ·〉T ∗G by the desired relation 〈J(u), J(υ)〉T ∗G ≡ 〈u, υ〉T G. Then

the adjoint operator J∗ is just the inverse J−1: for p ∈ T ∗
g G and u ∈ TgG we have

〈J(u), p〉T ∗
g G =

〈
u, J−1(p)

〉
TgG

=
〈(

J−1
)∗

(u), p
〉

T ∗
g G

which by comparison of the first and last terms yields the result. By noting that

the left action φg is just the left translation Lg, equation (3.11) states that the left

cotangent-lift of covector p operates as

T ∗Lg−1p = g−T p
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for matrix Lie groups. This prompts us to write

J = g−T
Ig−1 (3.23)

for some symmetric, positive definite operator I : g → g∗ that does not depend on g.

Equation (3.23) simply states that J is the composition of a tangent-lift into the Lie

algebra, a linear mapping into the dual Lie algebra followed by a cotangent-lift into

the cotangent space T ∗
g G.

If we choose the Euclidean matrix norm as metric

〈ξ, ϕ〉g ≡ trace(ξ (Iϕ)T ) (3.24)

which extends over G in the following way,

〈u, υ〉TgG =
〈
g−1u, g−1υ

〉
g

= trace(g−1u(Ig−1υ)T )

= trace(u(J(υ))T )

then we can also uncover how the dual metric 〈·, ·〉g∗ extends to the whole of G.

Observing that J is a matrix when G is a matrix Lie group,

〈p, Jυ〉T ∗
g G =

〈
J−1p, υ

〉
TgG

= trace(J−1p(Jυ)T )

= trace(pυT )
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as J is symmetric. Due to (3.22) this is also the expression for the natural pairing

〈p, υ〉. Now for q ∈ T ∗
g G we can make explicit the metric on the contangent bundle,

〈p, q〉T ∗
g G = trace(J−1p(JJ−1q)T )

= trace(p(J−1q)T ) , (3.25)

and substituting (3.23) into (3.25) gives

〈p, q〉T ∗
g G = trace(p(gI−1gT q)T ) .

The Lie algebra element ∇̃E is dual to the momentum map P : T ∗G → g∗,

P (g, p) = J
(
∇̃E

)
, an important quantity because it explicitly links the concept of

symmetry (or invariance to G) to conserved quantities. While this has later relevance

to the description of 3D traffic flow that must yield the invariant quantity (8.4) under

the action of G, for now we take P simply to be a mapping from the cotangent space

to the dual Lie algebra. Following (3.20) in its identification of p with dE(g) and

making explicit the dependence of J on G, we have

∇̃E = J−1(e)P (gk, pk) = J−1(e)P (gk, dE(gk)) . (3.26)

It remains to make explicit the momentum map P . Using the invariance of the inner
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product on TG we have

〈p, ξG(g)〉 =
〈
J−1(g)p, ξG(g)

〉
TgG

=
〈
g−1J−1(g)p, ξ

〉
g

=
〈
J(e)g−1J−1(g)p, ξ

〉

= 〈P (g, p), ξ〉

and thus

P (g, p) = J(e)g−1J−1(g)p . (3.27)

This yields for the gradient descent vector (3.26) the simple expression

∇̃E = g−1J−1(g)dE(g)

which when using the substitution (3.23) and observing that the coefficients of dE(g)

are denoted ∇gE, gives the vector coefficients

∇̃E = I
−1gT ∇gE . (3.28)

Referring back to the remark made at the end of section 3.3.1, there is no guarantee

that the calculation (3.28) actually lies in the Lie algebra. Aside from reasons of

precision, this is due to the expression’s coordinate-free nature. It is possible for

instance to over-parameterize the group G by selecting the coordinates as those of

the ambient space. This is certainly tempting in our case, parameterizing the eight-

dimensional group elements g ∈ SL(3) with the nine elements of the matrices gij.
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Doing so, the derivatives dE(g) then also lie in a nine-dimensional space rather than

the tangent space to the manifold T ∗G. To rectify this problem we use the projection

P(ξ)=̇ξ − trace(ξ)

3
I (3.29)

which enforces the zero-trace characteristic of all elements in g.

The minimization problem can be summarized in the following steps (similar to

[26, Definition 1]). Once an initial condition g0 and inertial matrix I has been chosen,

ξk+1 = −P

(
I

−1gT
k ∇gk

E
)

tk+1 = arg min
0≤t≤1

E(gk exp(tξk+1)) (3.30)

gk+1 = gk exp(tk+1ξk+1) .
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Chapter 4

2D Projective Geometry and the

Homography

The road surface is flat and straight, at least locally, and assumed to be uncam-

bered. In establishing the mapping between the world and the image, we assume all

geometrical cues to describe the road plane itself; we will not initially be concerned

with the height of the objects in the scene. The well-understood field of 2D planar

geometry can then be exploited to reduce structural relationships such as parallel

lines or orthogonality to algebraic conditions. We will use these to make a first pass

at constructing an algorithm to recover the homography. Much of the foundation of

this chapter is owed to [27].
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4.1 Basic Elements

4.1.1 Homogeneous Points and Lines

A line in the plane is represented by the equation

aX + bY + c = 0 (4.1)

for any point (X, Y ) lying on the line. The triplet (a, b, c) is not unique however;

any triplet (γa, γb, γc) for nonzero γ describes the same line. Therefore (a, b, c)

is representative of the equivalence class of such vectors and the space of all such

equivalence classes is the projective space P
2. Now for any point lying on the line

L = (a, b, c), equation (4.1) can also be written (X, Y, 1) · (a, b, c) = 0 and in just the

same way as the line, the point (X, Y, 1) represents the equivalence class of all points

(γX, γY, γ) for nonzero γ because any such point also satisfies (4.1). We say that

the point (X, Y ) ∈ R
2 has homogeneous coordinates X = (X, Y, 1) or equivalently,

(γX, γY, γ) and the inhomogeneous coordinates are recovered from X = (X1, X2, X3)

with the transformation (X1/X3, X2/X3).

The intersection point of two lines L1 and L2 is

X = L1 ×L2 (4.2)

and similarly, the line joining two points X1 and X2 is

L = X1 × X2 . (4.3)
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These relationships are easily justified: taking the former, L1 · X = L1 · (L1 × L2) =

L2 · (L1 × L1) = 0 by the scalar triple product, so X lies on L1. Similarly, we find

that X also lies on L2 so X must be the point of intersection of the two lines. The

latter relationship is justified in the same manner.

4.1.2 Points and Lines at Infinity

Taking two parallel lines L1 = (a, b, c1) and L2 = (a, b, c2), the point of their

intersection is given by X = (a, b, c1) × (a, b, c2) = (c2 − c1)(b, −a, 0) which is

equivalent to (b, −a, 0). This indicates infinitely large inhomogeneous coordinates

and highlights the notion that parallel lines meet only at infinity. Any homogeneous

point X = (X, Y, 0) is called a point at infinity. All such points lie on the line at

infinity L∞ = (0, 0, 1) as is evident with (X, Y, 0) · (0, 0, 1) = 0.

The line at infinity L∞ is not itself visible but when projected into images of

traffic scenes where perspective effects are manifest, it has the physical interpretation

as the horizon as depicted in Figure 7.6. In fact, given the line L = (a, b, c) traced

out by the trajectories of the vehicles in one lane along a straight road for instance,

the point at which L meets L∞ is (a, b, c) × (0, 0, 1) = (b, −a, 0). As we have already

seen, a parallel line traced out by the vehicles in another lane intersects at the same

point on L∞. A nonparallel line (a2, b2, c2) however will intersect L∞ at a different

point at infinity: (a2, b2, c2) is equivalent to (a, b2a/a2, c2a/a2) which intersects L∞ at
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(b2a/a2, −a, 0). The only difference is the first homogeneous coordinate, indicating

that we can ‘carve out’ in homogeneous coordinates the line at infinity simply by

varying the direction of the lines. The horizon, being the projection of L∞ by a

perspective transform into the image is no longer described by points at infinity and

can be identified with a nonparallel set of either parallel line pairs or constant speed

paths. This technique often forms the basis of affine rectification in images - the

recovery of parallel lines - and the first step in estimating the full homography (see

for example [10]).

4.1.3 Conics and their Duals

While the linear expressions so far are sufficient to resolve two of the eight degrees

of freedom inherent in the world-to-image mapping (as will be be seen in §4.3.1),

we can use a second order identity to resolve the two further degrees of freedom

necessary for a metric rectification. This enables the measurement of angles between

lines in the world from the image. In particular, while we can already establish vehicle

trajectories in the image as parallel in the world, a metric rectification will enable us

to measure orthogonality between a (box-like) vehicle’s adjacent sides. Starting from

the expression in inhomogeneous coordinates of a conic

aX2 + bXY + cY 2 + dX + eY + f = 0 (4.4)
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and substituting for homogenous coordinates via X = X1/X3, Y = X2/X3, we can

write equation (4.4) as

X
T
CX = 0 where C =




a b/2 d/2

b/2 c e/2

d/2 e/2 f




. (4.5)

Any point X satisfying equation (4.5) is said to lie on the conic C. Given the

symmetry we saw in the expressions above for the intersection of two lines and the

line joining two points, it is unsurprising that a dual conic C∗ exists as described

by LT C∗L = 0 where C∗ is the adjoint matrix to C in (4.5) and L is tangent to

the conic at the point X on the conic. It is primarily a particular singular conic

C∗
∞ that is of interest to us (see equation (4.6)) but when the conic is not singular,

C∗ = C−1 and the dual conic relation is established easily: first we realize that the

line L = CX is tangent to conic C because X lies on C and X must also lie on L

as equation (4.5) states that X
T
L = 0. If it were possible for a second point X2 on

C to also lie on L, that would imply (X +γ X2)
T C(X +γ X2) = 0 for 0 ≤ γ ≤ 1

and therefore that C is a degenerate conic, a contradiction. We can therefore write

X
T
CX = LT C−T CC−1L = LT C−T L = LT C∗L = 0.

Just as the transformation from the world to the image of the line at infinity L∞

gives us a geometric cue to take advantage of in traffic scenes, so too does the rank 2
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dual conic

C∗
∞ = IJT + JIT =




1 0 0

0 1 0

0 0 0




(4.6)

where I = (1, i, 0) and J = (1, −i, 0) are complex conjugate points at infinity known as

the circular points. If the transformed locations of the circular points were somehow

identified in the image, then metric rectification would be a matter of working out the

transform necessary to move them back to I and J. However, they are not directly

visible but are found indirectly using the images of known angles, known length

ratios or circles. By definition of the orthogonality of two lines L1 and L2 and direct

substitution,

LT
1 C∗

∞L2 = 0 (4.7)

but it turns out (see equation (4.13)) that this conjugacy relation holds true even

under a projective transformation from the world to the image. We exploit this fact

by identifying lines in the image we know are orthogonal in the world, enforcing

equation (4.7) and solving for the parameters involved in the transformation that we

make explicit now.

4.2 Transformation by the Homography

Having made several references to the transformation of geometric objects from

the world to the image, we need to formalize this notion and introduce notation that
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makes clear the distinction between world coordinates and those on the image. We

reserve upper case coordinates (X, Y, Z) for the world frame (where Z = 0 indicates

the road plane) and lower case (x, y) for the image. Further, as suggested above the

coordinate vectors are homogenized with a bar: x refers to (x, y, 1) ∼ (γx, γy, γ) and

X to (X, Y, 1).

4.2.1 Projectivities

A projectivity is an invertible mapping φ : P
2 → P

2 such that φ(X) = x and

colinearity is preserved. That is, if X1, X2 and X3 lie on the same line, so do

φ(X1), φ(X2) and φ(X3). This in turn implies that φ can be represented by the

3 × 3 homography matrix g:

x = φ(X) = gX (4.8)

or explicitly in elements of g,

x = φ(X) =



(g11X + g12Y + g13)/(g31X + g32Y + g33)

(g21X + g22Y + g23)/(g31X + g32Y + g33)


 . (4.9)

Clearly the mapping φ is defined only up to scale; its representation by g or γg makes

no difference. There are then eight degrees of freedom associated with the projectivity

that can be further categorized according to their effect on the image. The choice of

scale is also up to us; specifying that det g = 1 then anchors g to the group SL(3).

This also makes φg ≡ φ a group action of SL(3) on R
2:

φg2
(φg1

(X)) = φg2g1
(X) .
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4.2.2 Transformation Rules for Points, Lines and

Conics

Now just as the homogeneous points are transformed according to x = gX, we

have a dual transformation rule for lines

l = g−T L (4.10)

which preserves the incidence of points on lines (as it must by definition of φ): If the

world point X lies on line L we have 0 = L · X =
(
gT l

)
· (g−1x) = lT gg−1x = l·x

so x also lies on l. The line at infinity then is transformed to the image as

lT
∞ = LT

∞g−1

= (0, 0, 1)g−1

= (
(
g−1

)
31

,
(
g−1

)
32

,
(
g−1

)
33

)

= (det g)−1
MT

3 (4.11)

where M j denotes the j’th column of the matrix of cofactors of g, using notation in

line with that of [28]. We can establish the transformation rule for conics using the

same principle. Incidence of points on conics must be preserved, so 0 = X
T
CX =

xg−T Cg−1x from which we see that the conic transforms as c = g−T Cg−1. Similarly,

the dual conic transforms as

c∗ = gC∗gT . (4.12)
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We now have the tools to show the invariance of the conjugacy relation (4.7) to

projective transformations:

lT
1 c∗

∞l2 = LT
1 g−1

(
gC∗

∞gT
)

g−T L2

= LT
1 C∗

∞L2 (4.13)

so the transformed dual conic c∗ is all that is needed to measure from the image the

orthogonality of two lines in the world.

4.3 Homography Decomposition

4.3.1 Decomposition by Composed Transformations

For a 2D projective transform the homography matrix can be decomposed into a

chain of three basic transformation types,

g = gP gAgS =




I 0

ωT υ







K 0

0T 1






sR t

0T 1


 . (4.14)

Matrix gS provides the similarity transform component with rotational, translational

and isotropic scaling elements R, t and s respectively. Altogether gS contributes four

degrees of freedom to the projectivity. Matrix gA contributes a further two degrees of

freedom to give an affinity in combination with gS. Orthogonality is in general lost

under an affinity, and scaling is not necessarily isotropic. The 2 × 2 matrix K is an

element of the quotient group SL(2)/SO(2); since any 2 × 2 matrix in SL(2) can be

decomposed into orthogonal and upper triangular factors Q and U , K must be an
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upper triangular matrix (akin to U). We also specify that det K = 1 so K has two

degrees of freedom. The final two degrees of freedom are absorbed by the perspective

parameters ω in gP , the projective transform component. Also called an elation, it is

this component alone that moves the line at infinity L∞. The scale parameter υ is

fixed by the requirement that det g = 1,

det g = det gP det gA det gS = υs2

=⇒ υ = 1/s2 . (4.15)

4.3.2 Geometric Homography Decomposition

A second decomposition exists that is perhaps more intuitive from a geometrical

viewpoint (see Figure 4.1). Both world and image frames assume 3D coordinate

axes oriented with respect to the fixed road scene as if they both represent cameras

observing the road. Of course, only the image frame is truly freely oriented with

respect to the road; the world frame is actually aligned with and parallel to the

road and lies a set distance away. Our objective here however is to reconcile a

3D decomposition often invoked in the literature with that of equation (4.14) by

temporarily lifting those restrictions and denoting n as the normal to the road with

respect to the world frame and d as its distance away. The transformation of a 3D

point in the world frame to that of the image involves a rotation R, translation t

and any scaling or shifting necessary to match the units the image is measured with.
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Traffic surveillance cameras have κ = 0 and because we are estimating the transfor-

mation parameters, the ci can also be taken as zero by absorbing the difference into

a compensating transformation. That is, denoting K ′ as the desired matrix K with

ci = 0,

K

(
R +

tnT

d

)
= K ′R + K ′t

nT

d
+ cR3 + t3c

nT

d

where c is the vector (c1, c2, 0)T and R3 = (R31, R32, R33) is the third row of R. But

we can easily construct a vector b such that K ′b = c; in fact our specification of K ′

yields b = (c1/f1, c2/f2, 0)T . Substituting this in,

K

(
R +

tnT

d

)
= K ′

(
(R + bR3) + (t + t3b)

nT

d

)
(4.19)

so that R and t have been modified to R + bR3 and t + t3b respectively. We need to

maintain orthogonality in the rotation component but as it stands (R + bR3)
T (R + bR3) =

(1 + bT b)I, so putting R′ =
(
1 + bT b

)− 1

2 (R + bR3) and t′ =
(
1 + bT b

)− 1

2 (t + t3b) we

rewrite (4.19) as

K

(
R +

tnT

d

)
=
(
1 + bT b

) 1

2 K ′

(
R′ +

t′nT

d

)
.

Recalling that scaling a homography matrix does not affect the inhomogeneous co-

ordinates, the prefixed constant
(
1 + bT b

)
can effectively be ignored. The result is a

decomposition of the original form but as if we had set c1 = c2 = 0, a simplification

that we will take as granted in what follows.

If we do not know the (possibly modified) focal length values, we can take this a

step further and similarly absorb them into a further-modified parameterization with
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the resultant homography

K

(
R +

tnT

d

)
= R′′ +

t′′nT

d
. (4.20)

but in doing so have destroyed the orthogonality of original matrix R. This unfor-

tunately precludes the application of the relatively recent analytical decomposition

technique of Malis ([28]) as well as the standard numerical decompositions ([29] and

[30]) without knowledge of the focal lengths, though the homography form (4.20)

reinforces the fact that we can still perform the calibration between world and image

frames even if recovery of the true extrinsic parameters is not possible.

Our setup requires that the world frame and road plane be aligned, fixing n =

(0, 0, 1)T and X3 = d. Then (4.18) becomes

K

(
R +

tnT

d

)
X = K (RX + t)

= K




R11 R12

R21 R22

R31 R32

t1 + dR13

t2 + dR23

t3 + dR33







X1

X2

1




which, denoting the i’th column of R as Ri and recognizing the homogenization of

point X, can be written K [R1 R2 t + dR3] X̄. For convenience we specify d = 0,

that the world frame sit on the road plane, and reuse the fact that a scaling of the

transformation makes no difference to the result in inhomogeneous coordinates to get

x̄ = gX̄
.
= γK [R1 R2 t] X̄ , (4.21)
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normalizing by γ = det (K [R1 R2 t])−1. This is simply φg(X), the action on X

of group element g ∈ SL(3), which in spite of the different parameterization must

match the transformation (4.14). The choice of which form to use depends on the

application; it is often more convenient to use (4.14) for calibration purposes (see

section 5.3 for example) and (4.21) for reconstruction (as exemplified in section 8.1).

4.4 Calculating the Transformations

The energy E(g) to be minimized in (3.14) is some function of the degree to which

the image and the world match. Under the true transformation φg∗ all quantities

such as lengths, angles and ratios can be measured on either the image or the world

frame and yield the correct answer. When making such measurements however, we

implicitly transform all quantities to the world frame; the image is where we can

make the measurements but the world frame is where we know how they relate to one

another. It is fundamental then that we understand how the group action (4.9) and

its inverse transform coordinates and vectors between the spaces. We have already

established the principles for these transforms in (2.9) and (2.10) but their calculation

can be quite involved. Fortunately we can make substantial simplifications by taking

(4.9) as the basis of a new set of coordinates on the image (and its inverse on the

world). While this section applies to the action of any matrix Lie group, we specialize

to the group SL(3) for ease of notation and direct results that we will apply later.
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The inverse to (4.9) maps image coordinates to the world,

φ−1
g (x) = φg−1(x)

=
((

g−1
)

31
x +

(
g−1

)
32

y +
(
g−1

)
33

)−1




(g−1)11 x + (g−1)12 y + (g−1)13

(g−1)21 x + (g−1)22 y + (g−1)23




=
(
MT

3 x̄
)−1




MT
1

MT
2


 · x̄

which we will abbreviate to φ−1(x) =
(
φ−1

1 (x), φ−1
2 (x)

)T
and the label φ−1

3 (x)
.
=

MT
3 x̄. Strictly speaking, we should write φ−1(x̄) because the transformation (as an

algebraic manipulation) applies equally well to homogeneous vectors v̄ = (v1, v2, 0)T .

The inner products MT
i x̄ are calculated efficiently using Cramer’s rule as the scaled

determinants of the matrix g with x̄ inserted into the i’th column. For example,

denoting

Bi =

[

g1 · · · x̄ · · · g3

]

i′th col

(4.22)

we have

MT
3 x̄ = |g|−1 |B3| = |g|−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g11 g12 x

g21 g22 y

g31 g32 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now an image vector is transformed according to equation (2.11) in each component
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f = φ−1
i to give the transformed elements

〈
dφ−1

i , v
〉

= Dφ−1
i v

=
1

MT
3 x̄

(
D
(
MT

i x̄
)

v̄ − MT
i x̄

MT
3 x̄

D
(
MT

3 x̄
)

v̄

)

=
MT

3 v̄

MT
3 x̄

(
MT

i v̄

MT
3 v̄

− MT
i x̄

MT
3 x̄

)

=
φ−1

3 (v)

φ−1
3 (x)

(
φ−1

i (v) − φ−1
i (x)

)
, (4.23)

so that tangent vector (x, v) appears in the world frame as

(
φ−1(x),

φ−1
3 (v)

φ−1
3 (x)

(
φ−1(v) − φ−1(x)

))
. (4.24)

Though perhaps not obvious given the form of (4.23), it is of course a linear trans-

formation of v, the transformation matrix Dφ−1 calculated as

Dφ−1 =
(
MT

3 x̄
)−1




MT
1

MT
2




(
I −

(
MT

3 x̄
)−1

xMT
3

)
.

In fact, equation (4.24) conforms to such a characteristic hallmark of transformations

induced by a projectivity that we abbreviate the template

φ−1
3 (v)

φ−1
3 (x)

(f(v) − f(x)) → f (v, x))

for any scalar, vector or matrix-valued function f that maps from the image frame to

the world frame. Any tensor h(V , X) mapping in the opposite direction is of course

expanded as

h (V , X) → φ3(V )

φ3(X)
(h(V ) − h(X)) .
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It is precisely because vector fields transform linearly under inhomogeneous coordi-

nates that we prefer the world coordinate system φ−1 to that of the homogeneous

coordinates X̄, despite the fact that under the latter, points transform linearly.

This is of primary importance to the approach taken in this thesis, allowing us to

identify any vectors constructed from the image with tangent vectors transformed

from the world frame. Without this property for instance, given an image vector that

spans two points, the transformed tangent vector in the world frame may not span

the same transformed points, rendering more difficult the calculation of quantities

of interest. We will use transformation (4.24) extensively in the comparison with

(X, V ) - a predetermined world tangent vector we would expect to match under the

true homography.

For simulation purposes we also need to transform world vectors into the image.

This situation is symmetric to that above; the tangent vector (X, V ) appears in the

image as

(φ(X), φ(V , X)) =

(
φ(X),

φ3(V )

φ3(X)
(φ(V ) − φ(X))

)
(4.25)

where φ3(X) = g3X̄ and φi(X) = giX̄/g3X̄, gi denoting the i’th row of g.

To minimize a function of the transformed vector Dφ−1v we also need its deriva-

tives with respect to the parameterization of group element g. We can isolate the

effect of a change in parameterization by observing

∂

∂αj

Dφ−1
i v =

〈
d
(
Dφ−1

i v
)

,
∂g

∂αj

〉

g

(4.26)

where φ = φg and the αj are parameters of g. This means that we need only calculate
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the derivative of Dφ−1
i v with respect to the matrix entries gkl once; the effect of each

parameter is manifest through its derivative of g which is typically easy to compute.

Recalling for any matrix B the identity ∂ |B| /∂Bij = Cof(B), the matrix of cofactors

of B, we have for the particular matrices Bk from (4.22)

∂

∂gij

|Bk| =





(Cof(Bk))ij j 6= k

0 j = k

. (4.27)

This form is fundamental enough that we define the matrix-valued function

Γk(x)
.
=
(
|g| φ−1

k (x)
)−1 ∂

∂g
|Bk| (4.28)

which for Γ3(x) is explicitly

Γ3(x) =
(
|g| φ−1

3 (x)
)−1

[

g2 × x̄ x̄ × g1 0

]

=
(
|g| φ−1

3 (x)
)−1




−x2g32 + g22 x2g31 − g21 0

x1g32 − g12 −x1g31 + g11 0

−x1g22 + x2g12 x1g21 − x2g11 0




and is integral to the useful contractions

(Γ3(x))T

i g3 = −φ−1
i (x) (4.29)

and

g3Γ3(x)T g3 = g33 − 1/φ−1
3 (x) , (4.30)

that are easily verified through direct substitution. The matrices Γi(v) follow similarly

by replacing the homogeneous argument. Now starting with (4.24), using (4.27)
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repeatedly and rearranging, we get matrix Θi(v, x) for the components of d
(
Dφ−1

i v
)

in the basis gjk, that is,

Θi(v, x) =
φ−1

3 (v)

φ−1
3 (x)

(Θi(v) − Θi(x)) (4.31)

where Θi(a) = Γi(a) − φ−1
i (x)Γ3(a) − φ−1

i (a)Γ3(x) , (4.32)

reminiscent of the form of (4.23). Precomputing this matrix for each point of in-

terest leads to an efficient procedure via equation (4.26) for energy minimization, as

exemplified in section 5.3.
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Chapter 5

Homography Estimation by Direct

Linear Transform

The classical approach to estimating the homography is to coerce any information

we have about objects in the image into revealing the coefficients of the transformed

line at infinity l∞ or dual conic c∗
∞. Any planar curve of order n yields a system

of n(n + 3)/2 equations ([31]), the linear and conic cases given by (4.10) and (4.12)

respectively. We use their specializations to l∞ and c∗
∞ in expressions (4.11) and

(4.13) to respectively perform affine rectification followed by an inference task on the

circular points to attain metric rectification (the stratified method), or direct metric

rectification (the unstratified method). Both methods are described in [32], while the

latter will be employed below. Either method establishes the homography only up

to a similarity transform which is not sufficient for our purposes; we require the full

homography if we are to match vehicle templates with the vehicle images for instance.

To resolve the remaining degrees of freedom we provide additional constraints. This

section sets up the estimation problem in a classical manner and as a test of its
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efficacy, applies it to an artificial scene. We also assume access to the image vector

field v describing the flow of the traffic and the vector field w specifying the direction

of minimum gradient variation over the vehicles at each point. The latter field tends

to point along the dominant vehicle edges as seen from the camera, perpendicular to

the direction of movement so that in the world frame we have at each point V ·W = 0.

We will see in section 7.1 how these quantities are captured from the image, but for

now we take them to be noise-free.

5.1 Metric Rectification from Orthogonal

Lines

To find the line lv between points x and x + v we observe the convention for

vectors v = (v1, v2, 0)T and use equation (4.3) to get

lv = x × (x + v)

= x × v

= (−v2, v1, x1v2 − v1x2)
T (5.1)

and similarly for line lw. Applying the knowledge that these are the transformed

images of orthogonal lines in the world, we exploit equation (4.13) with six unknown

conic parameters (analogous to equation (4.5)) to write

lT
v c∗

∞lw =

[

−v2 v1 x1v2 − v1x2

]




a b/2 d/2

b/2 c e/2

d/2 e/2 f







−w2

w1

x1w2 − w1x2




= 0 . (5.2)
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This is rearranged into the inner product

(
v2w2, −z, v1w1, x2z − x1v2w2, x1z − x2v1w1, x2

1v2w2 − 2x1x2z + x2
2v1w1

)
· c = 0

(5.3)

where c = (a, b, c, d, e, f)T and z = (v1w2 + v2w1) /2, which forms a set of linear

equations in the unknowns once we stack equation (5.3) sufficiently many times over

different points in the image into matrix A. Though there are six unknowns, the dual

conic c∗
∞ is only specified up to scale, implying the need for x, v and w to be known

at no fewer than five distinct points. The solution of overdetermined system Ac = 0

with minimal Frobenius norm is given by the eigenvector of AT A corresponding to the

smallest eigenvalue. We thus perform the SVD A = WΣVT and take as the solution

ĉ the appropriate column of V. Now we take advantage of the form of the dual conic

transformation rule (4.12) in realizing that it reflects the spectral decomposition of a

positive semidefinite matrix B = UΛUT . Matrix c∗
∞ as constructed from the elements

of ĉ has rank two and is symmetric and therefore certainly positive semidefinite, while

C∗
∞ is diagonal. We assert that the homography, up to a similarity, is reconstructed

by

gi =
√

ΛiiUi (5.4)
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where gi and Ui are the i’th columns of their respective matrices. To check this,

c∗
∞ = gC∗

∞gT

=
3∑

i=1

gi (C∗
∞)ii gT

i

=
3∑

i=1

ΛiiUiU
T
i

= UΛUT , (5.5)

exactly the spectral decomposition we made to start with. The third line follows

because Λ33 should be zero, c∗
∞ having rank two. In practice a non-zero value does

not matter as we do not take g3 = 0 as suggested by equation (5.4). Rather, the

additional constraints we impose in section 5.3 to arrive at the full homography (not

just up to similarity) dictate the entries g3.

5.2 The Rectangle Ambiguity

The orthogonal lines we intend to exploit are those tracing out the trajectories of

the vehicles and their transverse counterparts, derived from the vehicles themselves.

When the road is straight however, these lines do not provide sufficient information

to render matrix A of rank five. Known as the rectangle ambiguity, this stems from

the fact that knowing three of the angles in a rectangle to be right angles implies the

fourth must be too; supplying the fourth angle yields no additional information. This

is easily understood by constructing two degenerate dual conics: With two parallel
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lines in direction v labelled l1
v and l2

v, their intersection on the line at infinity is

xv = l1
v × l2

v. Doing the same in direction w gives point xw. The rank-one conic

c∗
v = xvxT

v satisfies equation (5.2) for any combination (i ∈ {1, 2}, j ∈ {1, 2}) of

liT
v c∗

vlj
w because l1T

v xv = l2T
v xv = 0, that is, xv sits on both lines l1

v and l2
v. This

is also true however for the rank-one conic c∗
w = xwxT

w, and therefore any linear

combination of c∗
v and c∗

w satisfies (5.2). The fact that we have a one-parameter

family of suitable conics means that matrix A is only of rank four, manifesting itself

ultimately as an unknown aspect ratio built into the constructed homography (5.4)

so that a full metric rectification has not actually been achieved.

We do not have the luxury of the usual resolution to this ambiguity: the incorpo-

ration of additional orthogonal line pairs in a different orientation. However, we can

find the true aspect ratio by enforcing the condition that for two chosen vectors v0

and w0, their world-transformed, orthogonal counterparts have known lengths ‖V 0‖

and ‖W 0‖. We are required then to adopt an additional degree of freedom: the

parameter r that specifies matrix K of equation (4.14) as1

K =




r 0

0 1/r


 ,

an integral part of the calibration in the next section.

1In fact, K is of the more general form

[
r κ
0 1/r

]
for some skewness parameter κ. For most

cameras the image coordinate axes are orthogonal and κ = 0, but if it were suspected that some
skewness in the axes were present, we would need to take κ as a further degree of freedom to be
calibrated alongside r.
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5.3 Full Homography Estimation Proce-

dure

Following the procedure in section 5.1 we recover the pseudo-metric properties

of the world frame and can determine parallelism between objects in the world.

The additional prescription of section 5.2 enables a full metric rectification from

determination of the aspect ratio, but the rotation, translation and isotropic scaling

of the scene are however undetermined. Fortunately the two translational degrees of

freedom fall prey to a simple constraint. We choose a point x0 to serve as the image

of the world origin X0 = (0, 0)T . Then

x0 = gX0

= g3

with the immediate consequence that

g31/g33 = x0

g32/g33 = y0. (5.6)

So for any given value of g33, elements g31 and g32 can be calculated. We incorporate

this constraint directly into the decomposition of g as follows: From equations (4.14)

and (4.15) we have

g =




sKR Kt

sωT KR ωT Kt + 1/s2


 (5.7)
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but incorporating equations (5.6) we see

(
ωT Kt + 1/s2

)
x0 = Kt

which can be rearranged to give

(
x0ω

T − I
)

Kt = −
(
1/s2

)
x0

Kt = −
(
1/s2

) (
x0ω

T − I
)−1

x0 . (5.8)

Then

ωT Kt + 1/s2 =
(
1/s2

) (
1 − ωT

(
x0ω

T − I
)−1

x0

)
(5.9)

and substituting this into equation (5.7) we arrrive at a matrix with t eliminated,

g =




sKR − (1/s2)
(
x0ω

T − I
)−1

x0

sωT KR (1/s2)
(

1 − ωT
(
x0ω

T − I
)−1

x0

)


 =




K ′ t′

ω′T υ′


 . (5.10)

We proceed to resolve the final three degrees of freedom by minimizing an appropriate

energy E. As mentioned in section 5.2 we choose vectors v0 and w0 at any point

in the image that can be described in the world as V 0 and W 0; examples include

an average vehicle velocity vector that points in a direction we take to be along the

world X-axis, or the average vehicle transverse vector assumed to lie along the world

Y -axis. Both such vectors have world-frame components that can be estimated a

priori based on known average traffic speeds or average vehicle width. Moreover, for

an objective such as vehicle classification where the vehicle images as transformed in

the world frame are compared for size or shape, the moduli ‖V 0‖ and ‖W 0‖ can be
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set arbitrarily. The energy is chosen as a robust penalization Ψ (see equation (5.21))

of the mismatching between (v0, w0) transformed to the world and (V 0, W 0),

E = Ψ
(
Dφ−1v0 − V 0

)
+ Ψ

(
Dφ−1w0 − W 0

)
(5.11)

which we calculate using equation (4.23). Matrix KR is an element of Lie group

SL(2) and can be decomposed into its constituents via the RQ decomposition, from

which both the ratio r and the angle of rotation θ can be determined and updated. A

coupled descent must also be made with respect to scale parameter s which is found

from the current estimate of g using s =
√

det K ′. Crucially, the initial estimate of g

must have been arrived at after (at least) affine rectification so that the perspective

parameters ω can be uncovered, but the rectification of section 5.1 ensures this. The

equations (5.4) guarantee that

ω = K ′−1ω′ (5.12)

gives the correct parameter values from the initialization. The other elements t′ and

υ′ are then completely determined, and all constraints will be met at each iterative

update of matrix g. Each iteration requires the gradients ∂E/∂αj for αj ∈ {r, θ, s}

in the update procedure (3.18); equation (4.26) implies that we need only calculate

d
(
Dφ−1

i v
)

once each iteration by applying (4.31) and taking the inner product with

∂g/∂αj. These matrices are easy to compute and yield the expressions
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∂g

∂s
= 1

s
gΠs where Πs =




1 0 0

0 1 0

0 0 −2




, (5.13)

∂g

∂θ
= gΠθ where Πθ =




0 −1 0

1 0 0

0 0 1




∂g

∂r
=




Πr 0

ωT Πr 0


 where Πr = s




1 0

0 r−2


R

.

5.4 A Toy Example

To test the utility of the classical estimation procedure in a noise-free setting, we

construct an artificial scene by distorting a planar rectangle (the world frame) with

a known homography. We also transform the vectors V that describe an imagined

traffic flow and the corresponding transverse vectors W into the image using equation

(4.25). From there we use equations (5.1) and (5.3) to set up the metric rectification

problem using equally spaced grid points on the image. The vectors v and w at

the grid points are interpolated from the transformed vectors. The initial value

for g is arrived at by imposing (5.8) and (5.9) on (5.4) once an image origin has

been chosen. Assuming we know the components of vector V 0, the transformed

image vector at the image origin, we update our estimates for parameters s, θ and
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(a) Artificial scene produced
with a known homography.

(b) The pseudo-rectified im-
age after the calibration by
the DLT.

(c) Fully rectified image at
convergence of the gradient
descent. The true homogra-
phy would produce the dashed
bounds; the alignment is very
close.

Figure 5.1: Calibration by the DLT followed by a similarity transformation via energy
minimization.

r via the derivatives of energy (5.11) in a standard gradient descent procedure. The

calculation of these employs (4.26) and (5.13). Figure 5.1 illustrates the homography

estimation process. From an initial scene (with the blue arrows reflecting an imagined

traffic flow), the rectification by Direct Linear Transform delivers the center image.

This is then rotated and anisotropically scaled by gradient descent which converges

to machine precision after about 104 iterations as witnessed by the close alignment

between true (dashed) and achieved (solid) bounding boxes. The energy minimization

profile, largely an exponential function of the number of iterations, is shown in Figure

5.2. Some care must be taken to keep the relative step sizes larger for θ than s, at

least initially, or risk an undesirable descent to the local minimum at s = 0. We

observe a steady approach to the true minimum g∗, resulting in a mean square error

in the elements ĝ − g∗ on the order of machine precision.
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Figure 5.2: The energy on a logarithmic scale as a function of the gradient descent
iterations.

It is evident that the convergence is somewhat slow; we would like to achieve an

acceptable error tolerance within dozens or hundreds of iterations rather than thou-

sands and preferably without the heightened risk of being trapped in local minima.

These concerns are dwarfed however by the potential difficulty that the addition of

noise into the scene poses. The measurements possible on actual traffic scenes exhibit

a significant amount of noise which any estimation algorithm must be robust to. An

analysis of this effect on the DLT is the subject of section 5.5.

5.5 Error Analysis of the DLT

It is imperative that we understand how our estimate of the homography is affected

by noise in the image. It is well-known that such use of the SVD can amplify error
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considerably; an estimate that exhibits fine sensitivity to noise levels compromises the

validity of the vehicle template matching approach. We proceed by tracking the first-

order error propagation from the variances associated with the zi - the components of

x, v and w at each grid point in the image. Expressing the six-dimensional covariance

matrix for these elements as Λx, the next step is to calculate Λc, the covariance of

the solution vector ĉ in (5.3). Writing the Jacobian ∂ĉi/∂zj as Jc, we have

Λc = JcΛxJT
c . (5.14)

The difficulty is that ĉ is only an implicit function of the coordinates as outlined

below equation (5.4); the use of an intermediate SVD prevents derivatives from being

taken directly. However, Faugeras ([33, Theorem 5.28]) invokes the implicit function

theorem to sidestep this issue in the following manner: Declaring the dependencies

in AT Aĉ = AT Ac
∣∣∣
c=ĉ

= 0 we have

∂

∂zj

(
A(z)T A(z)c

)
i

=
∑

k

∂

∂zj

(
A(z)T A(z)

)
ik

ck +
∑

k

∂

∂ck

(
A(z)T A(z)c

)
i

dck

dzj

=
∂

∂zj

(
Ai(z)T A(z)

)
c +

(
Ai(z)T

)
A(z)

dc

dzj

= 0 when c = ĉ ,

where Ai denotes the i’th column of matrix A. This implies that

dĉ

dzj

= −
(
AT A

)† ∂

∂zj

(
AT A

)
ĉ (5.15)
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where the pseudo-inverse is taken due to AT A being singular. Now extending to all

derivatives D = d/dz,

∂

∂z

((
AT A

)
ĉ
)

i
=

(
∑

k

ĉkAT
k

)
DAi + AT

i

∑

k

ĉkDAk

= (Aĉ)T DAi + AT
i

∑

k

ĉkDAk

so that to calculate (5.15) we need the matrices DAi. Matrix DA1 for instance has

for the i’th row the form

[

0 0 0 w2 0 v2

]
where the vector components are

those valid at the i’th point. Covariance (5.14) is now attainable but there was one

more step in the procedure before reaching an affinely-calibrated homography g: the

spectral decomposition (5.5). Here again we face an implicit function for which the

derivatives are needed. Fortunately we can take advantage of a known analytical

solution ([34]) for the eigenvalues of a 3 × 3 matrix and re-use the implicit approach

for reconstructing the homography from the eigenvectors. The derivatives of the i’th

column of g with respect to the components of ĉ are from (5.4),

Jg
.
=

d

dĉ

(√
ΛiiUi

)
=

1

2
√

Λii

UiDΛii +
√

ΛiiDUi where D =
d

dĉ
. (5.16)

Putting q
.
= trace(c∗

∞)/3 and p
.
=
√

trace(c∗
∞ − qI)2/6, the eigenvalue matrix Λ is,

by an affine transformation,

Λ = pΛ
′

+ qI
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where Λ
′

is the eigenvalue matrix for the decomposition of B
.
= p−1 (c∗

∞ − qI). It

turns out that the values Λ
′

ii are given by

Λ
′

ii = 2 cos

(
1

3
arccos

(
det B

2

)
+

2(i − 1)π

3

)

which in turn enables the computation of

DΛii =
∂Λii

∂Λ
′

ii

dΛ
′

ii

d (det B)
D det B +

∂Λii

∂p
Dp +

∂Λii

∂q
Dq

=
p

3

√
1 −

(
det B

2

)2
sin

(
1

3
arccos

(
det B

2

)
+

2(i − 1)π

3

)
D det B +

1

72p
Dp + Dq .

We resort to Mathematica for the rather unwieldy derivatives D det B. If we now

consider the eigenvectors Ui as the solutions to

(c∗
∞ − ΛiiI) Ui = 0 = (c∗

∞ − ΛiiI)T (c∗
∞ − ΛiiI) Ui ,

then by the same reasoning leading to (5.15) we have

dUi

dĉj

= −
(
(c∗

∞ − ΛiiI)T (c∗
∞ − ΛiiI)

)†
(

d

dĉj

(c∗
∞ − ΛiiI)T (c∗

∞ − ΛiiI)

)
Ui . (5.17)

Noting that all the matrices in (5.17) are symmetric and putting

B
′ .
=

(
d

dĉj

c∗
∞ − ΛiiI + c∗

∞ − dΛii

dĉj

I

)
(c∗

∞ − ΛiiI) ,

we process (5.17) as

dUi

dĉj

= −
(
(c∗

∞ − ΛiiI)T (c∗
∞ − ΛiiI)

)† (
B

′

+ B
′T
)

Ui .

All of the elements of (5.16) can now be computed to arrive at the homography

covariance

Λg = JgΛcJ
T
g = JgJcΛx (JgJc)

T
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which, recalling that the elements of g3 are set subsequently given constraint (5.6), is

valid for the elements (Λg)ij, j ∈ (1, 2).

Making the argument that our image grid points are known exactly but that each

component of the vectors v and w have variance σ2, the matrix of variances for

gij, j ∈ (1, 2) is for the toy example above rounded to

σ2




124 162

31 71

22 300




, (5.18)

a result that appears to be stable with the number of grid points used. For a

variance in normalized coordinates of 0.0001 which typically understates the noise

level in our images, we would expect to see an average variance over the homography

elements of perhaps 0.012. To illustrate the significance of this error amplification,

Figure 5.3 displays a typical instance of the toy scene image distorted in the same

elements gij, j ∈ (1, 2) with an average variance of 0.01 (while still constrained to

be a valid homography). The difference is clearly large enough to render ineffective

any template-matching algorithm that relies on an accurate representation of vehicle

pose. This is the reason most applications of the DLT are on images with very

clearly delineated features that can be identified with high precision. Evidently we

are required to go beyond the DLT if we are to have any success with an automated

homography estimation procedure on noisy images.
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Figure 5.3: Example of planar scene disortion under an average variance per
homography element of 0.01. The dashed plane is the original, the red plane its
distortion.

5.6 Refining the Homography Estimation

The problem that noisy images pose to the classical homography estimation

by DLT is well understood. In fact there are both pre- and post-processing steps

that are generally accepted as compulsory. The DLT is not invariant to similarity

transformations of the coordinates used, so data normalization is used to avoid

spuriously large values of the Frobenius norm ‖Ac‖ of section 5.1 for example. The

coordinates are scaled and centered so their centroid lies at the origin and the mean

distance n−1∑n
i ‖xi‖ is

√
2. This step was performed on the data leading to the result

(5.18), so there is nevertheless a strong amplification of noise inherent in the SVD

procedure itself.

A nonlinear, iterative optimization is usually the tool of choice to further refine

the homography estimate after initialization by the DLT. If we knew sufficiently many
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world points X i and their counterparts xi on the image, we could minimize the total

error
∑n

i d·

(
xi, X i

)
over the parameterization of g for one of the following error

measures: the algebraic distance

dalg

(
xi, X i

)
=
(
di

1

)2
+
(
di

2

)2
where di = xi × ĝX i ,

or, denoting the inhomogeneous transform of ĝX i as x̂i, the geometric distance

dgeo

(
xi, X i

)
= ‖xi − x̂i‖2 , (5.19)

the symmetric transfer error that adds (5.19) together with its counterpart on the

world
∥∥∥X i − X̂ i

∥∥∥
2
, or the reprojection error

drep

(
xi, X i

)
= min

yi,Y i

‖xi − yi‖2 + ‖X i − Y i‖2 where yi = ĝY i .

Typically such a minimization would be executed with an algorithm such as Levenberg-

Marquardt.

While we will also minimize a metric that is defined on one space in terms of

quantities that have been transformed by the homography from the other, we have

only a few quantities that we know anything about in both spaces, namely x0, v0

and w0 along with X0, V 0 and W 0. These do not provide sufficient information to

enable a classical minimization, so we will pursue a metric of the form

d (V , W ) = Ψ (div V ) + Ψ (V · W ) , (5.20)

that penalizes a non-zero divergence in the traffic flow as well as a lack of orthogonality

between the trajectories and their transverse directions. Function Ψ is a ’robust
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penalization’ function, which when implemented in this thesis will take the form of

an L1-norm,

Ψ(t) =
√

t2 + ǫ
∣∣∣
ǫ→0

(5.21)

so that

Ψ
′

(t) = sign(t) and Ψ
′′

(t) = 0 .

In so doing, we hope to obviate the need of the DLT as an initialization device by

accounting for all eight degrees of freedom via both contraints and the minimization

itself. We expect the minimization of such a metric to be somewhat more prone to

local minima in the noiseless case than was seen in section 5.4 simply due to the

greater number of degrees of freedom and the lack of a guarantee of convexity in the

parameterization. On the other hand we expect it to exhibit far more robustness

to noise, similar to the end result after a classical minimization but adapted to the

situation where the coordinates in the world frame remain unknown. Of course, the

expression (5.20) must be formulated with quantities we actually observe in the image;

this is the grist of the next section.
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Chapter 6

Homography Estimation by Energy

Minimization

Once the affine rectification by Direct Linear Transform was achieved in chapter

5, we completed the calibration by minimizing an energy functional over the direct

product group SO(1) × R × R+. We could alternatively have realized the matrix K ′

in (5.10) by minimizing a similar energy over the Lie group SL(2). This would have

added the affine components to the transformation found through the minimization

procedure. Having seen that the the DLT is highly sensitive to noise, we can take the

minimization idea further and posit that estimating g itself over the group SL(3),

g∗ = arg min
g

E(g) ,

would afford an increased robustness. This again entails modifying the energy func-

tional so that it encompasses addtional degrees of freedom. Equipped with such an

energy E : SL(3) → R that we first derive in section 6.1, we keep to gradient descent

as a method to accomplish the minimization in section 6.3.
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6.1 The Energy Functional

We posit that an appropriate energy functional to consider is

E =

ˆ

W

Ψ (div V ) dX (6.1)

for penalty function Ψ. Vector field V is the pushforward by φ−1 of the vector field

v induced by the traffic movement as observed in the image. The intuition behind

(6.1) stems from the similarity between traffic flow and that of an incompressible

fluid: While we expect to see a range of average velocities over any cross-section of

the road, we also expect zero divergence over any surface area. This would not be the

case if in the scene of interest the vehicles are accelerating for instance; fortunately

on high capacity roads the times spent in a steady-state, constant velocity mode are

expected to heavily outweigh the finite-divergence cases, and any fleeting departures

from steady-state can in any case always be averaged out by selecting a long enough

timeframe on which to aggregate the velocity information.

The only measurements we can make are on the image itself so we need to express

E as a functional on I. Assuming here only that φ is a continuously differentiable,

bijective mapping we identify W as φ−1(I) so that a change of variables gives

ˆ

φ−1(I)

Ψ (div V ) dX=

ˆ

I

(φ−1)∗Ψ (div V )
∣∣∣det Dφ−1

∣∣∣ dx

=

ˆ

I

Ψ
(
(φ−1)∗ div V

) ∣∣∣det Dφ−1
∣∣∣ dx

with (φ−1)∗ div V simply the pullback of div V on the image. Now div V = tr(DV ),

where by DV we are denoting the component matrix of Lie derivatives of V such that
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(DV )ij is the i’th component of L ∂
∂Xj

V . Because we need to express all quantities

on W as induced by their counterparts on I, we define

L ∂
∂Xi

V ≡ (φ−1)∗Lφ∗
∂

∂Xi

v = (φ−1)∗

[
φ∗

∂

∂Xi

, v

]

which is just the pushforward of the Lie derivative of v with φ∗
∂

∂Xi
. Denoting the

i’th canonical basis vector (the zero vector with a 1 in the i’th position) as Ei, the

components of φ∗
∂

∂Xi
at φ−1(x) are written as Dφ(Ei) ◦ φ−1(x), the i’th column of

matrix Dφ ◦ φ−1(x). But this is just

Dφ(Ei) ◦ φ−1(x) =
∂

∂Xi

φ ◦ φ−1(x)

so that in local image coordinates

φ∗

∂

∂Xi

=
∑

j

∂φj

∂Xi

◦ φ−1(x)
∂

∂xj

.

Then the expansion of the commutator becomes

[
φ∗

∂

∂Xi

, v

]
=
∑

j,k

(
∂φj

∂Xi

∂vk

∂xj

− vj

∑

l

∂2φk

∂Xl∂Xi

∂(φ−1)l

∂xj

)
∂

∂xk

or in component form,

Dv
∂φ

∂Xi

−
(

∂

∂Xi

Dφ

)
Dφ−1v .

The pushforward by φ−1 of this vector gives the elements of DV ,

(DV )ij =
(
Dφ−1DvDφ

)
ij

−
∑

k,l

(
Dφ−1

)
ik

(
D2φ

)k

jl

(
Dφ−1v

)
l

(6.2)

where (D2φ)
i

jk

.
= Dk (Dφ)ij is shorthand for ∂2φi/∂Xk∂Xj. However, we can simplify

slightly the second term of (6.2) by exploiting the inverse function theorem to assert
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that Dφ−1 = (Dφ)−1. This is justified because φ is continuously differentiable and

Dφ has a non-zero determinant everywhere in W due to φ being a submersion. Then

using the identity

∂

∂Xi

(Dφ)−1 = − (Dφ)−1

(
∂

∂Xi

Dφ

)
(Dφ)−1

which we equate to the application of the chain rule

∂

∂Xi

(
Dφ−1 ◦ φ(X)

)
jk

=
∑

l

∂

∂xl

(
Dφ−1

)
jk

∂

∂Xi

φl =
∑

l

(
D2φ−1

)j

kl
(Dφ)li ,

we can rewrite the second term of (6.2) as

−
∑

k,l

(
Dφ−1

)
ik

(
D2φ

)k

jl

(
Dφ−1v

)
l
=
∑

k

∂

∂Xk

(
Dφ−1

)
ij

vk

=
∑

k,l

(
D2φ−1

)i

kl
(Dφ)lj vk

so that making all x-dependence via the pullback (φ−1)∗ explicit, (6.2) becomes

(φ−1)∗ (DV )ij =
(
Dφ−1DvDφ ◦ φ−1(x)

)
ij

+
∑

k,l

(
D2φ−1

)i

kl

(
Dφ ◦ φ−1(x)

)
lj

vk .

(6.3)

Taking the trace of (6.3) we get

(φ−1)∗ div V =
∑

i

(
(φ−1)∗DV

)
ii

= trace
(
Dφ−1DvDφ

)
+
∑

i,k,l

(
D2φ−1

)i

kl
(Dφ)li vk

= trace (Dv) +
∑

k

∑

i,l

(
D2φ−1

)i

lk
(Dφ)li vk

= div(v) + ρ · v
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where

ρi = trace

((
∂

∂xi

Dφ−1

)
Dφ

)
= trace

(
D2

i φ−1Dφ
)

.

We have now transformed the energy equation (6.1) into

E =

ˆ

I

Ψ(div(v) + ρ · v)
∣∣∣det Dφ−1

∣∣∣ dx . (6.4)

If we are able to sample from sufficiently many points in the image and are using the

penalization function (5.21), we can benefit from a reduced computational burden

by transforming (6.4) into a boundary line integral. In this case we split the image

into domains I+ and I− on which c±
.
= sign(div(v) + ρ · v) is positive and negative

respectively. This is largely a didactic tool; while we expect the contour between

domains to resemble a low-order polynomial1, in practice we need only sample c±

once. We typically want to assert the zero-divergence condition on a region of interest

within the image, such as the area occupied by approaching vehicles - a subset of either

I+ or I− - which obviates the need for a full distinction between domains as shown

in Figure 6.1. . On each we put f = |det Dφ−1| and observe that

ˆ

f div(v)dx =

ˆ

div(fv) − ∇f · vdx , (6.5)

so that the Divergence Theorem can be invoked to write

E =
∑

I±

c±

ˆ

I±

div(fv) + (fρ − ∇f) · vdx

=
∑

I±

c±

(
ˆ

∂I±

fv · ndl +

ˆ

I±

(fρ − ∇f) · vdx

)
.

1The contour between the analogous world domains W± describing the sign of div V should
coincide with the centerline between vehicles traveling in opposite directions. For a straight road
this is a polynomial of order one. Recall that the smooth mapping φ preserves lines and conics.
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(a) Region of interest encompassing approach-
ing vehicles only.

(b) Heatmap of quantity div(v)+ρ ·v over the ROI,
which clearly lies within I−. Vector field v has been
nearest-neighbor extrapolated to cover the region.

Figure 6.1: Regions of interest are typically contained within either domain I+ or I−.

Now for any invertible parameterized matrix A(x) we have the identity

d |det A|
dx

= |det A| trace

(
A−1 dA

dx

)

which we apply to matrix Dφ−1:

∂

∂xi

f = f trace

((
Dφ−1

)−1 ∂

∂xi

Dφ−1

)

= f trace
(
D2

i φ−1Dφ
)

= fρi

where we have again used the inverse function theorem to assert Dφ−1 = (Dφ)−1 as

justified above. This simply states that fρ − ∇f = 0, finally yielding

E =
∑

I±

c±

ˆ

∂I±

fv · ndl (6.6)

Comparing this with the divergence theorem applied directly to (6.1) under penalty
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function (5.21),

E =
∑

W±

c±

ˆ

W±

div V dX

=
∑

W±

c±

ˆ

∂W±

V · ndl (6.7)

which in comparison to (6.6) highlights the role of the Jacobian determinant f as the

sole scaling factor needed to account for the differing divergence measurements be-

tween world frame and image. The boundary integrals (6.6) are less demanding than

the surface integrals (6.4) to compute and in addition do not require the derivatives

Dv to be estimated, a task that augments the error involved in the minimization.

On the other hand, for relatively few points in the image, equation (6.4) yields more

accurate results and allows for a general penalty function.

A divergence-free criterion is not sufficient even for for affine rectification; in

fact it is only able to resolve one of the two perspective-related degrees of freedom

inherent in the homography. One option is to build a further geometric constraint into

the minimization process that we need to constrain anyway in order to recover the

similarity components of the transformation. The other option is to add a geometric

term to the energy functional. The latter is preferable in this case: active contraints

added to the minimization tend to impede the gradient descent by ’blocking off’

the free descent direction and allowing only very small decrements in the energy

(Figure 6.2). Additionally, imposing a direct constraint based on elements affected

by noise detracts from the robustness of the method; a penalty term deals with noisy
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using equation (4.23). For convenience we set the argument to Ψ in (6.8) equal to

χ(x, v, w), to give

E =

ˆ

I

Ψ(div(v) + ρ · v) + βΨ (χ(x, v, w))
∣∣∣det Dφ−1

∣∣∣ dx . (6.9)

6.2 The Constraint Submanifold

The minimization of energy (6.9) leaves five degrees of freedom to be resolved: the

four similarity degrees of freedom as well as the non-isotropic scaling associated with

the rectangle ambiguity of section 5.2. We can ensure these are fixed by incorporating

knowledge we have about the scene; in this case that the image vectors v0, w0 at

the chosen origin correspond to known world vectors V 0, W 0. The following five

constraints should then be observed:

φ−1(x0) = 0 (6.10)

Dφ−1v0 = V 0 (6.11)

Dφ−1
i w0 = (W 0)i (6.12)

where index i in the last constraint can be set to fix either component of W 0. Sum-

marizing these constraints with the vector-valued condition H(g) = 0, the constraint

submanifold on which the minimization is to take place is given by G′ = {g ∈ SL(3) :

H(g) = 0}. We follow [35] in establishing a modification to the gradient descent

direction (3.28) on such a submanifold. For a g∗ ∈ G′ that minimizes energy E, the
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method of Lagrange multipliers states that there exists a vector λ∗ ∈ R
5 such that

(g∗, λ∗) is a stationary point of the Lagrangian L(g, λ) = E(g) − λT H(g):





∇̃L = ∇̃E −∑
j λj∇̃Hj = 0

∂L
∂λ

= H(g) = 0

. (6.13)

Now the gradient descent takes the form

ξ = g−1ġ = −∇̃L(g, λ) (6.14)

where λ satisfies ∂L/∂λ = 0. This is achieved by requiring a zero Gateaux derivative

of the second expression in (6.13), thus specifying that the constraints must continue

to be satisfied in the update direction,

0 =
d

dt
Hi(g exp(tξ))

=
〈
∇̃H i, ξ

〉
g

= −
〈
∇̃H i, ∇̃L

〉
g

= −
〈
∇̃H i, ∇̃E

〉
g

+
∑

j

λj

〈
∇̃H i, ∇̃Hj

〉
g

.

Thanks to the definition of the metric 〈·, ·〉T ∗
g G in (3.25), vector λ is then the solution

to the linear system of equations

∑

j

λj 〈dHi, dHj〉T ∗
g G

= 〈dHi, dE〉T ∗
g G

which is plugged into (6.14) to give by (3.28) the descent vector

ξ = −I
−1gT


∇gE −

∑

j

λj∇gHj


 . (6.15)

89



An infinitesimal step on the full manifold SL(3) in this direction maintains the

condition H(g) = 0 provided this held true at the initial estimate of g. For this

reason we need to condition an initial guess (usually gk|k=0 = I) with information

derived from the constraints. This is simplest for the translational constraints (6.10)

for which (5.6) must hold, yielding gi3 = (x0)i g33 for any initial scale g33. The scaling

and rotational constraints (6.11) and (6.12) are somewhat more involved but benefit

from our knowledge of V 0 and W 0, enabling a replacement of the expression (4.24)

with its inverse (4.25). The latter equation is simplified at X0 = 0,

(v0)i = DφiV 0 =
g3V̄ 0

g3X̄0

(
giV̄ 0

g3V̄ 0

− giX̄0

g3X̄0

)
=

1

g33

[
gi −

(
gi3

g33

)
g3

]
V̄ 0 , (6.16)

which for a given initial row g3 can be used to solve for a valid initial leading 2 × 2

submatrix: Rearranging equations (6.16) as well as their counterparts for w0 and

setting B as the leading 2 × 2 submatrix of g3g
3, we arrive at another linear system

of equations to solve:




V T
0 0T

0T V T
0

W T
0 0T

0T W T
0







g11

g12

g21

g22




= g33


v0

w0


+

1

g33


B 0

0 B




V 0

W 0


 . (6.17)

Populating the leading submatrix of the initial iterate with the solution to (6.17)

ensures that the constraints (6.16) will at each iteration be met up to the accumulating

error generated by the finite step size. To combat this we periodically reset the

translational components of the homography and re-solve (6.16) with the new row

values g3 as a way of projecting back onto the manifold G′.
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6.3 Computing the Descent Direction

6.3.1 The Energy Derivative

The vector (6.15) requires the matrices ∇gE
.
= [∂E/∂gij] and ∇gH

.
= [∂H/∂gij],

from which the derivatives ∂E/∂αk and ∂H/∂αk can be calculated for the chosen

parameterization α, just as in section 5.3. We start by establishing some useful

identities. From (4.23) we have

det Dφ−1 =
1

(
MT

3 x̄
)2 det




M11 M21

M12 M22


− 1

MT
3 x̄


MT

1 x̄

MT
2 x̄



[
M13 M23

]



=
1

(
MT

3 x̄
)2 det




M11 M21

M12 M22







1 − 1

MT
3 x̄

[
M13 M23

]

M11 M21

M12 M22




−1 
MT

1 x̄

MT
2 x̄





 .

(6.18)

Now since matrix M = det(g)g−T , det(M) = (det(g))2 and

det(g)g = det(M)M−T =Cof(M) ,

with the implication that

det




M11 M21

M12 M22




 = Cof(M)33 = det(g)g33.

Then

[
M13 M23

]

M11 M21

M12 M22




−1

=
1

det(g)g33

[
M13 M23

]

 M22 −M21

−M12 M22




=
−1

det(g)g33

[
Cof(M)31 Cof(M)32

]

= −g−1
33

[
g31 g32

]
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and using the relation (4.29)

− 1

MT
3 x̄


MT

1 x̄

MT
2 x̄


 = −φ−1(x) =


(Γ3(x))T

1

(Γ3(x))T

2


 g3

the parenthesized factor in (6.18) becomes, with the help of (4.30),

1 − 1

g33

g3Γ3(x)T g3 = 1 − 1

g33

(
g33 − 1

φ−1
3 (x)

)

=
1

g33φ
−1
3 (x)

.

This brings us to the compact result

det Dφ−1 =
1

det(g)
(
φ−1

3 (x)
)3 . (6.19)

Following a similar though more laborious procedure, we also arrive at the expressions

ρ = − 3

φ−1
3 (x)

[

M13 M23

]
, ρ · v = −3

φ−1
3 (v)

φ−1
3 (x)

,

the first of which can be used to verify the identity used earlier in equation (6.6),

fρ − ∇f = 0: Again for clarity f = |det Dφ−1|, for which the derivative from (6.19)

is

∇f = − 3

det(g)
(
φ−1

3 (x)
)4

[

M13 M23

]
= −fρ (6.20)

as required. Progressing with the derivative calculations and applying the fact that

det(g) = 1 (which up to now we have been prevented from doing because it is not
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identically true),

∇gf = 2fM − 3fΓ3(x)

∇g(ρ · v) = ρ · v (Γ3(v) − Γ3(x))

∇gχ =
∑

i

φ−1
i (w, x)Θi(v, x) + φ−1

i (v, x)Θi(w, x)

using the matrices Θi(·, x) from (4.32). We then have

∇gE =

ˆ

I

∇gf (Ψ(div(v) + ρ · v) + βΨ (χ))

+ f (Ψ′(div(v) + ρ · v)∇g(ρ · v) + βΨ′ (χ) ∇gχ) dx

which after substitution becomes

∇gE = 2EM +
´

I

[
βΨ′ (χ)

∑2
i=1 φ−1

i (w, x)Θi(v, x) + φ−1
i (v, x)Θi(w, x)

+Ψ′(div(v) + ρ · v)ρ · v (Γ3(v) − Γ3(x))

−3 (Ψ(div(v) + ρ · v) + βΨ(χ)) Γ3(x)
]
fdx .

(6.21)

When the chosen inertial matrix I is a multiple of the identity, ∇gE simplifies

further under the observation that matrix M represents a direction orthogonal to

the manifold SL(3). Using equation (3.28), for any element ξ ∈ g,

〈M , ξG(g)〉 =
〈
I

−1gT M , ξ
〉
g

= det(g)
〈
I

−1gT g−T , ξ
〉
g

∝ trace(ξ)

= 0 ,
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recalling that the Lie algebra g = sl(3) is the space of real traceless matrices. Thus,

the first term of (6.21) vanishes as a contribution to the descent direction on the

manifold.

6.3.2 The Constraint Derivatives

The derivatives of the constraints are calculated in a straightforward manner.

From constraints (6.10), (6.11) and (6.12) we find

∇gHj =





Γi(x0) − φ−1
i (x0)Γ3(x0) j ∈ {1, 2}

Θ(v0, x0) j ∈ {3, 4}

Θ(w0, x0) j = 5

where i ∈ {1, 2} in each case.

6.3.3 Basis Coordinates of SL(3)

Section 3.3.2 developed the gradient descent equation in a coordinate-free frame-

work, where the one-form dE was assumed to be an element of T ∗G which would

otherwise need to be enforced by using the projection like (3.29) of the associated

Lie algebra element. As an alternative, we can parameterize the group SL(3) with a

minimal sufficient set of parameters that then guarantees I
−1gT ∇gE as a member of

the Lie algebra g, at least up to working precision. An obvious such set for example

are the parameters αi we relate physically to the homography: the three rotation,
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three translation and two intrinsic parameters of equation (4.17), or the equivalent

set in (4.14). A judicious choice of parameterization is likely to speed up the energy

minimization algorithm by enabling larger step sizes. We focus now on the first order

optimality condition Ė(g∗) = 0 where the curve t → (α1(t), α2(t), ..., αn(t)) denotes a

path in the parameter space that in turn gives rise to the path g = g(α(t)) through

G. Because the effect of the constraints is just to modify dE → dE − ∑
j λjdHj,

we can ignore their presence in the following development before reintroducing them

again later. First we note that

Ė(g) = 〈dE(g), ġ〉

=

〈
dE(g),

n∑

i=1

∂g

∂αi

dαi

dt

〉

=
n∑

i=1

α̇i 〈dE(g), ∂ig〉

=
n∑

i=1

α̇i

〈
I

−1gT ∇gE, ξi

〉
g

=
n∑

i=1

α̇i trace(I−1gT ∇gEξT
i ) (6.22)

where we have introduced the vectors ξi ∈ g that generate the infinitesimal action

vector fields (recalling equation (3.13))

(ξi)G (g) =
d

dt

∣∣∣∣∣
t=0

g exp(tξi)

= gξi

.
= ∂g/∂αi . (6.23)

95



We emphasize the difference between the coordinate-free approach and this one;

namely, instead of achieving gradient descent by directly finding the tangent vector

ξ ∈ g, we solve for the parameter velocities α̇i given the vectors ξi that couple to the

parameters αi via the left-trivialized derivatives ξi = g−1∂g/∂αi. We then employ an

integration scheme such as the Euler method to arrive at an update to the parameter

estimates, which updates the current configuration g in turn. This change of basis

allows us to retain the matrix group approach while keeping the manifold structure

(and in particular its dimensionality) explicit. Of course, a poorly chosen basis will

make computation of the derivatives ∂ig difficult. The physical parameters mentioned

above as a basis set have this problem. A perhaps more judicious basis set however

is that of the Lie algebra sl(3); the eight matrices Ai:

A1 =




0 0 1

0 0 0

0 0 0


 A2 =




0 0 0

0 0 1

0 0 0


 A3 =




0 1 0

0 0 0

0 0 0


 A4 =




1 0 0

0 −1 0

0 0 0




A5 =




0 0 0

1 0 0

0 0 0


 A6 =




0 0 0

0 0 0

0 1 0


 A7 =




0 0 0

0 0 0

1 0 0


 A8 =




0 0 0

0 −1 0

0 0 1


 .

Each element g ∈ G sufficiently close to the identity is then parameterized as

g = exp

(
8∑

i=1

αiAi

)
(6.24)

and the coordinates αi are precisely the canonical coordinates of the first kind ref-

erenced in equation (3.7). Now the group SL(3) is not Abelian, so the mapping

exp : g →G is not a homomorphism2. That is, for ξ, η ∈ g, exp(ξ) exp(η) 6= exp(ξ +η)

2In fact, the exp mapping is not even surjective for group SL(3) (see for example [36, pp. 468]).
It can be shown that any matrix g in the group SL(2) with trace(g) < −2 is not the exponential
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but rather, the Baker-Campbell-Hausdorff formula provides the correction as a series

of commutator nestings [37, pp. 17]:

exp(ξ) exp(η) = exp(ξ + η +
1

2
[ξ, η] +

1

12
[ξ, [ξ, η]] − 1

12
[η, [ξ, η]] + ...) .

A particular consequence of this pertains to the derivative of the exp mapping at

ξ ∈ g [38, pp. 107-108],

dexpξ η =
d

dt

∣∣∣∣∣
t=0

exp(−ξ) exp(ξ + tη)

=
∞∑

n=0

(−1)n

(n + 1)!
adn

ξ η

= η − 1

2
[ξ, η] +

1

6
[ξ, [ξ, η]] − 1

24
[ξ, [ξ, [ξ, η]]] + ...

so that putting ξ =
∑

i αiAi, the derivative ∂ig is calculated

∂ig = ∂i exp (ξ)

=
d

dt

∣∣∣∣∣
t=0

exp(ξ + t∂iξ)

= exp(ξ)
d

dt

∣∣∣∣∣
t=0

exp(−ξ) exp(ξ + t∂iξ)

= exp (ξ) dexpξ ∂iξ

= exp
(∑

j
αjAj

)
dexp∑

j
αjAj

Ai .

of any matrix in sl(2). While the same analysis is more difficult in the SL(3) case (and lack of
a counterexample does not establish the principle), it appears as though surjectivity holds on the
subgroup g ∈ SL(3) : trace(g) > 0 which holds true for any homography that we are interested in:
Inspection of the form of the homography in (4.18) coupled with the fact that the camera must sit
‘behind’ the world plane yields this result. To our knowledge, the region on which surjectivity holds
on SL(3) is an open question.
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This gives for the left-trivialized vectors ξi from equation (6.23),

ξi = g−1∂ig

= dexp∑
j

αjAj
Ai

= Ai − 1

2

∑
j
αj [Aj, Ai] +

1

6

∑
j,k

αjαk [Aj, [Ak, Ai]] + .... (6.25)

While (6.25) may appear onerous to compute, the recursive series converges very

quickly [15, for group SO(3)]. In fact if all αi = 1 we have ξi = Ai with the exception

of ξ7, for which
∥∥∥ξ(100)

7 − ξ
(5)
7

∥∥∥
2 ∼ 10−6 under the Frobenius norm and where ξ

(n)
i

denotes the expression (6.25) calculated with the first n terms. Of course, for general

vector α we expect ξi 6= Ai and convergence will be slower, but in our experiments

we found that about 16 terms were sufficient with typical vectors α to achieve an

average tolerance
∥∥∥ξ(16)

i − ξ
(15)
i

∥∥∥
2 ∼ 10−6 across all vectors ξi. To solve for α̇i we use

the row-vectorize operator ·V and observe from (6.22) that Ė ≤ 0 is ensured when

n∑

i=1

α̇iξ
V
i = −(I−1gT ∇gE)V . (6.26)

In matrix form where B = [ξV
1 ξV

2 ... ξV
n ], (6.26) becomes Bα̇ = −(I−1gT ∇gE)V so

the solution is

α̇ = −B−1(I−1gT ∇gE)V . (6.27)

To incorporate the constraints and ensure a parameter update that lies on the con-

straint manifold G′, we simply replace ∇gE with ∇gE −∑
j λj∇gHj. Since the ODE

(6.27) is on the Lie algebra which is a vector space, a simple integration scheme such
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as Euler’s method

αk+1 = αk + tk+1α̇

for small tk+1 suffices. In fact tk+1 may be selected by line search as a minimizer of

the energy in the same manner as equation (3.30),

tk+1 = arg min
0≤t≤1

E(g(αk + tα̇))

without fear of drifting off the manifold; the parameterization sees to it that even if

the step size is too large for much confidence that the integration is following the flow

on the Lie algebra generated by (6.27) very closely, the configuration updates gk are

at least confined to G.

6.4 Toy Example Revisited

To test the efficacy of the proposed algorithm we apply it to the model scene used

in section 5.4. Although we have established that the gradient descent will work to

minimize the divergence while maintaining the world-based constraints, a hurdle we

still face in the noiseless case is the lack of a guarantee that the global minimium will

be found. In practice as Figure 6.3 illustrates, the gradient descent is rapid but often

falls prey to the wide basins of attraction typical of the local minima. We propose

two methods to overcome this difficulty: a random perturbation to the parameters αi

from equation (6.24) once it is apparent that a local minimum has been located, or

an initialization that puts the first iterate sufficiently close to the global minimum.
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(a) World-frame reconstruction given the
homography found at a local minimum.

(b) Descent into a local minimum. The
branching pattern is due to the static step
size with an L1-norm penalty function (5.21)
which renders the energy surface non-smooth
along local minima.

Figure 6.3: Example of a rapid gradient descent into a local minimum close to the
global one. See Figures 5.1 and 5.2 for comparison.

The former method utilizes the fact that the true homography ensures

ˆ

I

Ψ (χ)
∣∣∣det Dφ−1

∣∣∣ dx = 0 ,

which cannot hold for any other homography that observes constraints (6.11) and

(6.12). The condition
´

I
Ψ (χ) |det Dφ−1| dx > ǫ for some suitable ǫ > 0 is then

symptomatic of a local minimum when further iterations fail to reduce the energy

sufficiently. At this point the parameters αi are randomly perturbed and the min-

imization procedure restarts. While the global minimum is achieved almost surely

given sufficiently large perturbations, some of the performance gain with respect to

the classical procedure in section 5.4 is given up due to the need for multiple runs.

On the other hand, the latter method can be achieved by using the classical method

as an initialization itself. This tends to result in extremely fast convergence to the
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global minimum once the initialization has been performed (see Figure 6.4), but as

depicted in Figure 5.2, that can be a somewhat delicate procedure requiring at least

an order of magnitude more iterations for a comparable accuracy. A hybrid approach

could be adopted where the minimization on SL(3) is initialized with an homography

only coarsely estimated via the classical method, though we have favored sole use

of the random perturbation method for its greater robustness, particularly given our

observation that noise in the real-world examples of chapter 7 often obviates the need

for any multiple-starting at all. An average of around 103 iterations was sufficient to

arrive at a typical error of 10−8 in each entry of g but for column g2 for which the

error was on the order of 10−3.
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(a) Global minimum achieved via random
perturbations of the parameters from local
minima, using penalty function (5.21).

(b) The resulting world frame reconstruction
showing a close match to the true (dashed)
boundary.

(c) Example of the random perturbation method
when the penalty function is Ψ(t) = t2.

(d) Only a single iteration was needed for
convergence to the global minimum in this ex-
ample of an initialization with the homography
produced by the classical DLT followed by the
minimization procedure described in section 5.3.

Figure 6.4: Global minimization of the energy via the random perturbation and
classical-DLT-initialized methods.
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Chapter 7

Traffic Streaming Application

The image vector fields v and w representing respectively the traffic flow and

its transverse direction are critical inputs into the energy minimization approach to

homography estimation. To establish the algorithm we have assumed the use of these

fields, though in practice they need to be estimated. The methodology described

in this chapter was arrived at after substantial experimentation with leading image

processing techniques. As underpins the rationale for this homography estimation

method as a whole, the techniques settled upon needed to exhibit robustness to

varied image characteristics such as lighting and contrast.
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(a) Typical highway scene video frame (b) Unsatisfactory foreground decomposition.

Figure 7.1: Example segmentation via subtraction of a mean background image and
variance thresholding. The segmentations assume local pixel independence, leading
to high fragmentation, while noise produces spurious objects.

7.1 Vector Field Estimation

Both flow and transverse vector fields require the vehicles to be segmented in

each frame of the video stream. This is often achieved by computing a background

image, often a rolling mean image of the recent frames, and subtracting that from

the current frame. The vehicles are identified as the high absolute intensity regions

of the difference. While simple and fast, this method (and its extensions to a lesser

degree) suffers from a relatively high level of noise (see Figure 7.3). This can be partly

combatted with erosion/dilation operations and the dismissal of foreground objects

that appear too small, though we found it difficult to attain robust segmentations in

this manner. Instead, we implemented the Inexact Augmented Lagrangian Multiplier

method ([18]) to separate from a stack of successive frames a low rank component

and a sparse component. The former yields the stable, common element to each
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(a) The frame to be decom-
posed into background and
foreground elements.

(b) The background after ap-
plying the IALM method to 50
successive frames.

(c) The foreground objects,
easily segmented by applying
an intensity threshold.

Figure 7.2: An example of vehicle segmentation with the Inexact Augmented
Lagrangian Multiplier method.

frame which is immediately identified as the background while the latter picks up

the transient elements which are almost always the vehicles as shown in Figure 7.2.

This technique proved to be vastly superior to background subtraction, offering clean

vehicle silhouettes while remaining impervious to changes in lighting conditions that

were not too abrupt.

Each foreground object was used as a filter to convolve on the surrounding region

of the previous frame. The position of the largest value in the convolution indicates

where the object was located in that frame; the collection of all such displacement

vectors over all objects and frames is precisely the traffic flow vector field v. On the

other hand, the transverse vector field w uses the spatial derivatives ∇I(x) over the

object region R to build the structure tensor

ω(R)




´

R
(∂xI(r))2 dr

´

R
∂xI(r)∂yI(r)dr

´

R
∂xI(r)∂yI(r)dr

´

R
(∂yI(r))2 dr


 (7.1)

where r ∈ R and ω(R) is a normalization constant which we simply took as 1/
´

R
dr.
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(a) A bounding box for the foreground object
is used to isolate the region used to calculate
the flow (red) and transverse (green) vectors.

(b) The flow (blue) and transverse (green)
vectors after 50 frames.

Figure 7.3: The vector field construction process.

The largest eigenvalue of this matrix is associated with the orientation maximally

aligned with the gradient over the object. Because the video streams are of traffic

that is predominantly approaching or receding, the dominant lines on each vehicle

image are those defining the windscreen, roof and chassis which in turn cause a large

image gradient across these features. The eigenvector associated with the smallest

eigenvalue then aligns itself with these features, effectively marking out a direction

orthogonal to that of the traffic flow. The vector w(x) is exactly this eigenvector

computed at the object centroid x. The image derivatives are calculated by convolving

the image of the object with the filter set described in [39]. After pruning the outlying

vectors, those at an orientation significantly different to the local mean, the full fields

were constructed as linear interpolations of the surviving vectors. This result is

illustrated in Figure 7.3. It has been well established ([27]) that data normalization
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is an essential preprocessing step for the DLT due to the fact that the algorithm

is not invariant to the units used. This remains true for the proposed approach;

the image coordinates are normalized to the range [-1,1] in each dimension and the

world origin X0 is taken to be the point at the image centroid. The vectors V 0 and

W 0 are also coupled to the image vector fields at the centroid, with W 0 scaled to

make the ratio ‖V 0‖ / ‖W 0‖ equal to ‖v0‖ / ‖w0‖ provided the pixels are square.

Further, the transverse vector field w, for which ‖w(x)‖ = 1 as a consequence of its

construction, is scaled at each point so that ‖w‖ = ‖v‖ ‖w0‖ / ‖v0‖. This serves to

prevent an overweighting of any deviation from orthogonality of vectors w(x) and

v(x) far from the camera, and although we have experimented with a modification to

the energy functional that accounts for a normalization in vector lengths1, the energy

minimization is nevertheless better conditioned when the scaling is employed.

7.2 Initial Results

Initializing with the identity, we apply the system of equations (5.6) and (6.17)

at the world origin X0 to establish the homography parameters associated with the

similarity (and skew) component of the transformation between image and world

frames. The resulting matrix g
′

0 may not lie in SL(3) and is modified by inverting

the relation (6.24) to find the initial coordinates αi as the least-squares solution to

1Following the innovation as that described by [40] in the context of gradient vector diffusion for
image segmentation. The same modification (but applied to the image gradient) appears in equation
(7.9).
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(a) The rectified image shown in Figure 7.3 after 50 gradient descent iterations.

(b) The flow and transverse vectors imposed on the rectified background image.

Figure 7.4: Transforming to the world frame via the solution homography.

the linear set of equations

8∑

i=1

αiAi = log(g
′

0) ,

using the matrix logarithm operator. The initial iterate is then g0 = exp(
∑8

i=1 αiAi)

and has already accounted for a large reduction in the energy (6.9); the remaining

three degrees of freedom are resolved by the energy minimization. Setting the oth-

ogonality penalty constant β to 10, the rectification achieved by the solution after

50 iterations is shown in Figure 7.4. The convergence of the algorithm, shown in

Figure 7.5, is fast and robust to the considerable noise in the flow and transverse

vectors, though it is evident that there is some systematic bias in the estimation of

the latter, a result of the tendency for the transverse vectors to include a component

along the flow the closer the vehicles are to the camera and the greater the visibility

of their lateral lines. This affects the degree to which the perspective effect is

108



Figure 7.5: Convergence of the energy (6.9)

countered: some residual fore-

shortening is clearly visible.

We can marginally improve

on this result by incorporating

an optical flow term into the

energy functional (§7.4) and in-

troducing an horizon constraint

into the initialization (§7.3).

Nevertheless, the solution as it stands largely fulfills our objective: operating on the

world frame rather than that of the image we are able to measure with some accuracy

the various distances, areas and velocities of interest in the road scene. Moreover, we

found little utility in randomly perturbing the parameters in order to overcome the

convergence to a local mininum; the presence of noise appears to enlargen the basin

of attraction to the global minimum.

7.3 Straight Road Initialization

The road segment in many scenes of interest may be well described, at least

locally, as straight. One of the strengths of the divergence-based energy minimization

technique for homography estimation is its indifference to the direction and curvature

of the road as long as it lies on a plane. If the road is known to be straight however,
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Figure 7.6: The line at infinity l∞ as the bisection of points where the respective two
sets of world-parallel lines intersect in the image.

the homography initialization can be improved by incorporating a horizon constraint

that is worked in with the initial initialization (6.17) in an iterative fashion.

As mentioned in Section 4.1.2 and depicted in Figure 7.6, if lines l1 and l2 in the

image trace out vehicle trajectories that are parallel in the world, they intersect at

a point on the line at infinity l∞ that is commonly identified as the horizon. Using

equations (4.2) and (4.10) this is described

(
gT l1

)
×
(
gT l2

)
= L1 × L2 = (b, −a, 0)T (7.2)

for the parameters a, b that orient the line at infinity. The constraint we exploit is the

third equation in (7.2), (L1 × L2)3 = 0, the idea being to solve for the homography

parameter g31 (or g32) in terms of the other parameters.

While a solution can be derived by manipulating the constraint equation directly,

it is easier to start with the following observation: For matrix B3(x) from (4.22),

evaluated at any point x∞ in the image that lies on l∞, |B3(x∞)| = 0. This is
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because B3(x∞) is a rank-two matrix as follows from equation (4.8),

|B3(x∞)| =

∣∣∣∣∣

[

g1 g2 x∞

]∣∣∣∣∣

=

∣∣∣∣∣

[

g1 g2 gX∞

]∣∣∣∣∣

=

∣∣∣∣∣

[

g1 g2 g1b − g1a

]∣∣∣∣∣

= 0

for the parameters a, b defining the point at infinity X∞. Now using the Laplace

expansion of the determinant,

|B3(x∞)| = g31Cof(B3(x∞))31 + g32Cof(B3(x∞))32 + (x∞)3Cof(B3(x∞))33

so that by rearranging and recognizing l1 × l2 as a point on l∞,

g31 = −g32Cof(B3(l1 × l2))32 + (l1 × l2)3Cof(B3(l1 × l2))33

Cof(B3(l1 × l2))31

. (7.3)

Incorporating the solution g31 into the initial homography iterate may violate the

rotational and scaling constraints that were built into the initialization (6.17). For

this reason, equations (7.3) and (6.17) are applied in an alternating manner for a few

iterations. The energy minimization is then started once the initial matrix g0 reaches

an equilibrium, typically after 20 or so iterations.

7.4 Incorporating Optical Flow

The computation of the energy functional in section 6.1 assumes that the vector

fields v and w on the image are static. While that has been the case thus far,
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we can take advantage of the variational formulation under which optical flow is

derived to incorporate it into our energy functional and iteratively improve the vector

field estimates alongside the homography parameters. We benefit by this approach

in that each local vector update is guided by the global information inherent in

the homography, and on the other hand the resultant more accurate vector field

should improve the convergence rate of the homography estimate. Optical flow

methods estimate the motion in an image It at time t as the vector field v for which

It+∆t (x + v) = It (x) or equivalently, It (x − v) = It+∆t (x). Linearizing this relation

gives rise to the standard optical flow data term ∂I/∂t + ∇I · v to be minimized over

all fields v in a variational manner. Following the modern recommended practices

listed in [41], the linearization has been ‘delayed’ so that the term to be minimized is

Ψ (It (x − v) − It+1 (x)) (7.4)

where t indexes the image frame number and rather than a standard quadratic penalty

as in [42], a ‘robust’ penalization is achieved through the function Ψ, given by (5.21).

We thus extend the energy expression (6.9) to

E =

ˆ

I

Ψ (It (x − v) − It+1 (x)) dx+α

ˆ

W

Ψ (div V ) dX+β

ˆ

W

Ψ (V · W ) dX .

(7.5)

Minization of the optical flow data term (7.4) is not by itself sufficient in the iden-

tification of a unique vector field. The well-known aperture problem highlights the

ambiguity of the vector components perpendicular to the normal of an image bound-

ary: given an edge that translates while keeping its orientation constant between
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two successive frames, we cannot tell whether it has also moved in the direction of

its alignment. To combat this a smoothness term is adopted, often something like

Ψ
(
trace

(
DvDvT

))
, the addition of which both achieves uniqueness and encourages

smoothness in the vector field. Because the divergence is not a local quantity, as shown

below in equation (7.8) the second term in (7.5) cannot perform this regularization

role. One option is to add an additional smoothness term. This can be done in a way

that promotes non-isotropic diffusion, an important characteristic for a traffic scene

where vehicles in neighboring lanes may travel at different speeds so that smoothing

across lane boundaries is undesirable. However, it also increases substantially the

complexity of the optical flow implementation and energy minimization. For this

reason we fall back on the third term of (7.5) to provide a local regularization of the

flow vectors as well as the metric rectification.

Pulling back the energy terms originating in the world frame of reference to that

of the image, (7.5) becomes

E =

ˆ

I

Ψ (It (x − v) − It+1 (x)) dx+α

ˆ

I

(φ−1)∗Ψ (div V ) fdx+β

ˆ

I

(φ−1)∗Ψ (V · W ) fdx

=

ˆ

I

Ψ (It (x − v) − It+1 (x)) dx+

ˆ

I

(
αΨ

(
(φ−1)∗ div V

)
+βΨ

(
Dφ−1v · Dφ−1w

))
fdx

=

ˆ

I

Ψ (It (x − v) − It+1 (x)) +αfΨ (div(v) + ρ · v) +βfΨ
(

vT
(
Dφ−1

)T
Dφ−1w

)
dx .

(7.6)

We denote by ϕ a small perturbation in v that vanishes on the boundary of the image
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∂I. Proceeding to take the variational derivative of the first term in (7.6),

δE1 =

ˆ

I

∂

∂ǫ

∣∣∣∣∣
ǫ→0

Ψ (It (x − v − ǫϕ) − It+1 (x)) dx

= −
ˆ

I

Ψ′ (It (x − v − ǫϕ) − It+1 (x)) ∇It(x − v − ǫϕ) · ϕdx

∣∣∣∣∣
ǫ→0

= −
ˆ

I

Ψ′ (It (x − v) − It+1 (x)) ∇It (x − v) · ϕdx

while similarly for the second and third terms, the linearity of the divergence and

inner product allow us to write

δE2 = α

ˆ

I

fΨ′ (div(v) + ρ · v) (div(ϕ) + ρ · ϕ) dx and (7.7)

δE3 = β

ˆ

I

fΨ′

(
vT

(
Dφ−1

)T
Dφ−1w

)(
ϕ ·

(
Dφ−1

)T
Dφ−1w

)
dx .

To ease notation we introduce the vector field µ(w) and scalar field κ(v):

µ(w) =
(
Dφ−1

)T
Dφ−1w ,

κ(v) = div(v) + ρ · v ,

recognizing that vT µ(w) = wT µ(v) = χ. In a similar application of the steps between

expressions (6.4) and (6.6) , we have

ˆ

I

fΨ′ (κ(v)) div(ϕ)dx=

ˆ

I

div (fΨ′ (κ(v)) ϕ) − ∇ (fΨ′ (κ(v))) · ϕdx

=

ˆ

∂I

fΨ′ (κ(v)) ϕ · ndl −
ˆ

I

∇ (fΨ′ (κ(v))) · ϕdx

= −
ˆ

I

(f∇Ψ′ (κ(v)) + Ψ′ (κ(v)) ∇f) · ϕdx
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as ϕ vanishes on the boundary. Substituting this into (7.7) gives

δE2 = α

ˆ

I

(Ψ′ (κ(v)) (fρ − ∇f) − f∇Ψ′ (κ(v))) · ϕdx

= −α

ˆ

I

f∇Ψ′ (κ(v)) · ϕdx

= −α

ˆ

I

fΨ′′ (κ(v)) ∇ (κ(v)) · ϕdx

= 0 (7.8)

given our choice of penalty function (5.21). This lack of a contribution to the total

energy from a vector field perturbation is a direct consequence of the non-local nature

of the divergence. The forced boundary condition ϕ = 0 on ∂I means by virtue of

the divergence theorem that the energy associated with the flow divergence remains

independent of ϕ in the image interior. Piecing the terms back together,

δE = −
ˆ

I

(Ψ′ (It (x − v) − It+1 (x)) ∇It (x − v) − βfΨ′ (χ) µ(w)) · ϕdx

from which we make the usual observation that a non-positive change in the energy

is guaranteed by the ODE

v̇ = Ψ′ (It (x − v) − It+1 (x)) ∇It (x − v) − βfΨ′ (χ) µ(w) .

Also in keeping with standard practice, we modify the gradient descent equation to

v̇ = Ψ′ (It (x − v) − It+1 (x))
∇It (x − v)

‖∇It (x − v)‖ − βfΨ′ (χ) µ(w) (7.9)

in order that spuriously large gradients caused by noise in the image do not adversely

affect the minimization. The vectors w, as mentioned in section 7.1, are typically
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normalized to reflect the same local length scale in the image as v. We note that

due to the subsitution in the energy of the usual optical flow smoothness term with

that derived from the vectors w, the gradient descent (7.9) is particularly easy to

implement as all the vectors v are independent of one another. There is no need of

a finite difference scheme over grid points with interpolated values for instance, but

rather it is just the values at the pixels of interest that need to be accessed.

Performing gradient descent over the vector field v in this manner assumes that

the transverse field w is fixed. As observed in Figure 7.3 however, w can exhibit

a significant amount of noise. In fact it is quite typical as the vehicles draw nearer

to the camera for systematic inaccuracies to appear: vehicle edges parallel to the

traffic flow such as hood and roof lines become more apparent, leading to a bias in

the flow direction of the eigenvector of the structure tensor (7.1) corresponding to

the smallest eigenvalue. Rather than refining our image processing of the segmented

vehicles we can simply apply the same variational procedure to w while keeping v

fixed. The predicate here is that, at least in an average sense over the vehicle image,

It (x + w) = It(x). Working through the same process as that of the optical flow

data term we arrive at the counterpart to gradient descent equation (7.9),

ẇ = −Ψ′ (It (x + w) − It(x))
∇It (x + w)

‖∇It (x + w)‖ − βfΨ′ (χ) µ(v) . (7.10)

116



(a) The rectified flow and transverse vectors when updated according to equations (7.9) and (7.10).

(b) A primitive vehicle tracking methodology applied to the rectified frame.

Figure 7.7: Rectification results once optical flow and straight road initialization is
incorporated.

7.5 Improved Results

The spatial derivatives ∇It, just as in Section 7.1, were calculated using the

optimized derivative filters described in [39]. Updating g via its coordinates αi

along with the vector fields v and w each iteration and using the straight road

initialization when appropriate, the solution estimate ĝ after 50 iterations is markedly

improved (see Figure 7.7a) while maintaining a comparable speed of convergence given

that the algorithm must now be able to access a lower energy state (Figure 7.8).

Transforming the streaming video frames by ĝ we use a simple rolling background

subtraction method to identify the rectified vehicles that have been highlighted with

bounding boxes in Figure 7.7b. This tracking methodology is primitive, making no

use of the segmentations available in the last frame coupled with the learned vehicle

flow field to enhance the current segmentations, nor any color information to more

accurately distinguish a dark vehicle from the road surface. Such enhancements would

certainly help eliminate the faults visible in the frame - a single vehicle identified
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as two objects and the inability to distinguish a low-intensity vehicle - but we can

nevertheless infer many quantities of interest, even with such a simple method.

Figure 7.8: Convergence of the energy (7.5)

Comparing the sizes of the

objects measured in the rectified

frame yields a basic classifica-

tion of vehicle type between all

vehicles of class three or below

(cars and light trucks), class

four to seven (medium to heavy

duty trucks) and class eight

(tractor trailers). The same

classification could be learned from the segmentation of the raw images but only

within a narrow window around a single point in the image unless a model is learned

that describes the deformation of the objects as they approach or recede. Much more

difficult on the raw images is the measurement of distance between vehicles in order

to classify the congestion level, the measurement of traffic velocity, identification of

vehicle type when they are distant or the classification of common vehicle trajectories

such as the merging from one lane to another, all of which are readily achieved once

the image is rectified.

To get a sense of the robustness of the algorithm we compiled a suite of 10 different

scenes for which the homography was to be estimated (Figure 7.10). The results
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Figure 7.9: Convergence of the test suite.

are qualitatively pleasing: most scenes have been well rectified even when the road

exhibits some curvature. Convergence is also fast, occuring within 20 iterations for 7

out of the 10 example video streams.

A notable exception is the last example (corresponding to the dashed line in

Figure 7.9) that appears to have converged particularly quickly but in fact has not

successfully rectified the perspective in the image. This is due to a violation in the

scene of our fundamental assumption of a divergence-free traffic flow. The vehicles

merging from the on-ramp were included in the estimation of the flow vector field

which then must exhibit a non-zero divergence. This illustrates the attention that

must be given to scenes where vehicles in different lanes need not travel parallel to

one another; any image region displaying this characteristic should be excluded.
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Figure 7.10: Rectification results once optical flow and straight road initialization is
incorporated.
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Chapter 8

Conclusion and Future Work

8.1 Object Height Inference

While the estimation of the planar homography allows measurement of many

useful quantities, they are all restricted to what can be observed on the road’s surface.

The speed of a given vehicle is attainable for instance, but its height is not. This can

detract from the accuracy with which vehicle classification or tracking (as exemplified

in Figure 7.7) is performed: the projection of the vehicle image onto the road plane

is certainly a unique attribute for that vehicle’s class that can be categorized, but

comparison with a template is more ambiguous. Moreover, the more aligned the

camera’s z-axis with the world plane and the further away the vehicle, the more

pronounced the height-induced distortion, an undesirable feature for a representation

that aims at conserving all measurable quantities at any point in the image. When
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K, the camera intrinsic matrix (4.16) is known, the problem of finding the true world

coordinates (X, Y, Z) for any trackable point on a moving object in the image boils

down to a linear system of equations that is easily solved. More difficult is the case

with unknown K, yet this would be a natural extension to the objectives achieved in

this thesis. We outline a possible linear iterative approach and, in the spirit of the

thesis’ central tenet, suggest that it may more robustly be achieved by minimization

of an extended energy functional.

The full 3 × 4 projection matrix P = K

[

R | t

]
linearly transforms a 3D

homogeneous world coordinate X ∼ (X, Y, Z, 1)T to image coordinate x ∼ (x, y, 1)T

as x = PX, where P is known only up to scale. The homography g, for which

all world points are assumed to lie on the plane Z = 0, is recovered as the 3 ×

3 matrix K

[

R1 R2 | t

]
. Making the unknown scale constant s explicit and

abusing notation slightly by fixing the equivalence class x as (x, y, 1)T we can write

X = (X, Y, Z)T = (KR)−1 (sx − Kt) .

Now the world coordinate X ′ that we infer from image coordinate x and which lies

on the world plane Z = 0 has the homogenous representation

X ′ = (X ′, Y ′, 1)
T

= φ−1(x) = g−1x

and because both X and X ′ are members of the same equivalence class, that is

gX = gX ′ = x, only the scale s differs between them. This implies that

X = X ′ + (s − s′) (KR)−1
x , (8.1)
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and in fact it is not hard to prove (see for example [43]) that for any world coordindate

X with counterpart x in the image,

X − s (KR)−1
x = −R−1t = −RT t = constant , (8.2)

where −RT t is the camera origin as seen in the world frame. Given a point on a moving

object that is tracked between two frames and labelled X1 and X2 respectively,

equation (8.2) yields

X2 − X1 = (KR)−1
(
s1x1 − s2x2

)
(8.3)

from which we first observe that the third component must be zero: the object has

not changed in height. Further, the third row of (KR)−1 is MT
3 , a function solely of

the elements of g so that

s2x2 · M 3 = s1x1 · M 3 (8.4)

is a conserved quantity for any tracked point between frames.

8.1.1 The Known K Case

Given the estimated planar homography g, the columns of matrix R are recovered

as

Ri =





(K−1g)i , i ∈ {1, 2}

R1 × R2 , i = 3

and t = (K−1g)3. Two distinct tracked points between two frames are sufficient to

solve for the ‘true’ world coordinates X from those projected onto the road surface,
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X’. With superscripts indexing the frame and subscripts the tracked points, the

first two components from (8.3) of the equality X2
2 − X1

2 = X2
1 − X1

1, which hold

if the vehicle is assumed to have a constant orientation between frames, lend two

equations in four unknowns sj
i . The equalities (8.4) for each pair of points add two

more equations. These can clearly be rearranged to form a linear system which once

solved, leads directly to coordinates X via equation (8.2).

8.1.2 The Unknown K Case

We do not have the benefit in this case of prior knowledge of the first two rows of

matrix (KR)−1. However, it is easily verified for those rows that

(
(KR)−1

)1 · x = (x × g2) · (KR3) and
(
(KR)−1

)2 · x = − (x × g1) · (KR3) ,

so that with knowledge of scales s′j, the three unknowns KR3 can be solved for in a

linear system of equations derived from (8.3) applied to the vector difference X ′2−X ′1

between the two tracked instances of a single point. The s′j are however not known,

and the resulting system of equations formed from stacking equalities (8.3) and (8.4)

for both desired coordinates X
j
i and known projected coordinates X ′j

i is nonlinear.

One possibility would be to initialize all s′1
i and s1

i with guesses, infer the scales for

subsequent frames from (8.4), solve the linear system (8.3) for KR3 and continue

iterating if it can be established that convergence is assured. Alternatively, for an
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inner product

f (X1, X2) = f ((X1, Y1, Z1) , (X2, Y2, Z2)) = ‖(X1 − X2, Y1 − Y2)‖2 + |Z1| + |Z2| ,

we could simply minimize a penalty function of the form

∑

i,j,k

Ψ
(
f
(
X

j+1
i − X

j
i , X

j+1
k − X

j
k

))
(8.5)

which expresses the expectation that while any vehicular tracked point remains at

constant height, it should maintain a constant distance from other tracked points on

the same vehicle.

8.1.3 3D Extension to the Energy Functional

Penalty (8.5) is in fact a 3D equivalent of the optical flow data term (7.4): Taking

V as a 3D vector field describing the traffic flow and I as a scalar field associating an

intensity to any vehicular point in the (3D) world frame, we have ∂I/∂t + ∇I · V = 0

along with the constraints

DV · (W , 0) = 0 and DV · (0, 0, 1) = 0 . (8.6)

The first constraint in (8.6) had no 2D counterpart in the development of the energy

functional in section 6.1, in fact such a constraint was avoided in order to account

for differing vehicle speeds in different lanes. By giving up that freedom here we are

introducing the same information (but without the constant-orientation assumption)

exploited in the linear system of section (8.1.1). But while that solution methodology
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is restricted in applicability and naturally comes with the same caveats as the DLT

in that it would be prone to noise amplification and likely benefit from some non-

linear refinement, a minimization of (8.5) suggests that the height information and

homography parameters could be inferred simultaneously by modifying the optical

flow term in (7.5) and incorporating the additional constraints (8.6). The mechanics

of pulling back the 3D optical flow equation to the image is left to future work.

8.2 Varying Homography

The planar homography has been assumed in this thesis to be constant over

the image. This is reasonable for scenes of road segments that possess no vertical

curvature nor cambering. On- and off-ramps, race tracks, bridges and undulations

are however examples of scenes that may violate this assumption. By thinking of

the road surface as the section of a fibre bundle where each point hosts the space of

all planar homographies SL(3), we can generalize to a scene where the homography

varies over the road. Just as both data and regularization terms were needed to

perform optical flow on the vehicle trajectories, we require their counterparts here to

fit and regularize the vector-valued ’homography field’ g. The latter term has been

well studied in the context of diffusions on groups (see for example [15]) and is briefly

outlined below; the latter requires new development.
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8.2.1 Diffusive Flow on SL(3)

We imagine a smooth eleven-dimensional manifold parameterized by coordinates

Y composed of the three 3D world-frame dimensions X in addition to the eight

homography parameters. Given a metric hE(Y ) in this embedding space, we can

calculate the induced metric hW(X) in the 3D world frame via the pullback

(hW)
ij

=
∑

k,l

(hE)kl

∂Yk

∂Xi

∂Yl

∂Xj

. (8.7)

Metric hW encodes the variation of the homography g over the world frame and

can incorporate any information we have about expected homography parameters at

any point. For instance, running the algorithm of chapter 6 on a small region of

interest first allows us to extrapolate the homography translation parameters to any

point in the scene, so when looking at the whole scene we can put greater weight

on regions with greater deviation between the data and expectations. We collapse

this information further to calculate the metric hW induced on the 2D road manifold

(itself embedded in the 3D ambient space) by adapting equation (8.7) again, and

pull the Lagrangian
´

W
Ψ
(√

det(hW)
)

dX back to the image using the techniques in

section 6.1. Taking inspiration from the variational calculus on groups in [44, Chapter

13], the original eleven-dimensional surface area is minimized by application of the

Euler-Lagrange equation. The result is an equation of motion for ∂tg(x) (or more

preferably for ∂tξ(x) on the Lie algebra) that induces a diffusive flow towards the

minimum surface. In this case, where the Lagrangian is a function of g and not ġ,
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∂tg simply describes gradient descent. A common example derived when Ψ is the

identity function and hE the identity matrix is mean curvature flow.

The data term must take the form
´

I
Ψ (U (∇v, ∇w)) dx for some potential U that

penalizes any deviation in observed image vector fields v and w from the expected

ones at x, given homography g(x) and its derivatives, and should also give rise to

an equation of motion via Euler-Lagrange considerations. The specification of hE , U

and the cranking through of the variational calculus machinery is left to future work.

8.2.2 Flow on Diff(SL3)

Rather than rely on the interaction between two opposing terms - the data term

and regularization term - to extract an equation of motion on SL(3) for every point

in the image, it is possible to develop an equation of motion on Diff(SL(3)) itself, the

group of diffeomorphisms of SL(3), by constructing an appropriate Lagrangian. Here,

the Lie algebra is Vect(SL(3)), the space of real vector fields on SL(3), and invoking

(3.21) we assume a left-invariant metric hG = 〈·, ·〉TgG that induces the bilinear form

B (u, υ) =

ˆ

SL(3)

〈u, υ〉TgG dV .

Constructing the Lagrangian L (g, υ) = B (g−1υ, g−1υ) − U(g) for some potential U

that emulates the role of the data term, we seek to extremize the energy functional

E(g) =

ˆ b

a

L (g(t), ġ(t))dt
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for the resulting stationary-action path g arrived at after following the equation of

motion on Vect(SL(3)). For instance, when U = 0 the Euler equation describes a

geodesic and has the form ([45, Chapter 13])

B (∂tυ, u) = −B (υ, Lυu) ,

referring to the Lie derivative L of section 2.2, for any u ∈ Vect(SL(3)). The

advantage of this approach is the ability to regulate how quickly and smoothly the

field g(x) may evolve. Again, an appropriate metric and potential must be specified.

8.3 Conclusion

The estimation of the planar homography from road scenes has traditionally been

challenging due to the lack of the usual direct geometric cues that metric rectification

is performed with. We have presented a method that exploits the orthogonality

between the vehicles’ trajectories and their dominant edges when approaching or

receding to enable rectification, but highlighted the inherent noise amplification of

the classical Direct Linear Transform when applied to this end. Instead, we proposed

a constrained nonlinear energy minimization that, while possessing no guarantee

of convergence to the global minimum, has been shown to efficiently recover the

homography in practice by updating the gradient descent steps on the Lie algebra

sl(3). The performance of the algorithm was also improved by the introduction

of an optical flow term into the energy functional to promote the ’diffusing-out’
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of estimation and systematic error in the image vector fields. As evidenced by a

suite of examples, the resulting algorithm appears robust to noise and low video

resolution, and stands as an effective first step toward automated vehicle classification

and estimation of other traffic-related statistics.
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