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ABSTRACT 

 The Chesapeake Bay is home to an extensive in situ sampling campaign that has 

provided water quality measurements over multiple decades, aiding in the detection and 

regulation of environmental conditions that affect aquatic life, public health, and local 

economies. However, the current bi-monthly sampling can lack the temporal and spatial 

coverage needed for monitoring and modeling dynamic estuarine systems. While the time 

and cost of obtaining additional in situ samples can exceed available resources, satellite 

remote sensing has the potential to provide this higher temporal and spatial resolution data. 

The objective of this dissertation is to investigate the use of satellite remote sensing in the 

Chesapeake Bay for both water quality monitoring and the prediction of a naturally-occurring 

pathogenic bacterium, Vibrio parahaemolyticus, that is a leading cause of food-born illness. 

The dissertation does this by exploring the use of multispectral information to improve 

satellite-derived total suspended solids concentration and the potential for remotely sensed 

water quality products to predict V. parahaemolyticus in the Chesapeake Bay. In addition, the 

dissertation uses the application of remote sensing for V. parahaemolyticus prediction as a 

case study to present a prospective tool for communicating predictive model uncertainty to 

environmental management decision-makers and end-users. The work in this dissertation 

provides insights and recommendations that can aid in future development of operational 

models for water quality parameters or bacterial pathogens that incorporate remotely sensed 

data. As the effects of poor water quality are better understood and the incidence of Vibrio 
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illness increases, improved operational models and uncertainty communication will become 

progressively important for protecting public and ecosystem health. 
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1.   CHAPTER 1: INTRODUCTION 

1.1 Chesapeake Bay 

The Chesapeake Bay is a large estuary in the eastern United States that 

stretches over 300 km from Havre de Grace, Maryland to Virginia Beach, Virginia, 

where it connects to the Atlantic Ocean. The Chesapeake Bay watershed covers 

165,800 square kilometers of land located in six states, with over 150 major rivers and 

tributaries that feed freshwater into the estuary (Kemp et al., 2005). Three regions are 

typically used to describe the Bay based on its north-south salinity gradient: the 

oligohaline region in the Upper Bay (0-6), the mesohaline ragion in the Mid-Bay (6-

18), and the polyhaline region in the Lower Bay (18-30) (Baird & Ulanowitcz, 1989). 

The Chesapeake Bay has been used as a test bed for numerous studies relating to 

water quality because of an extensive and continuous in situ sampling network that 

spans multiple decades. 

Increasing sediment and nutrient loads in tributary runoff have significantly 

hindered the ecological health and productivity of the Chesapeake Bay since the onset 

of agriculture in the region (Brush, 1989). The cooperation of the six watershed states, 

some of which have no physical boundary with the Chesapeake Bay, in addressing the 

estuary’s health has had a contentious history ending with legislative action under the 

Clean Water Act in the form of Total Maximum Daily Load (TMDL) targets (Clean 

Water Act, 2017). The TMDL sets limits on the load of pollutants, specifically 

nitrogen, phosphorus, and sediment, in rivers and streams that eventually flow into the 
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Chesapeake Bay. These pollutants contribute to poor water quality, algae blooms, and 

turbid waters, which affect light penetration for submerged grasses, dissolved oxygen 

levels for aquatic life, and lower the appeal of recreational waters.  

In situ sampling is an essential tool for monitoring water quality, ecological 

processes, and environmental health, but it can lack the temporal and spatial coverage 

needed in dynamic estuarine systems and environmental management applications. 

While the time and cost of obtaining additional in situ samples can exceed available 

resources, satellite remote sensing has the potential to provide this higher temporal 

and spatial resolution data in coastal water bodies. 

 

 1.2 Satellite Remote Sensing in the Chesapeake Bay 

Satellite remote sensing in Chesapeake Bay waters is mainly achieved using 

techniques from ocean color remote sensing. Ocean color satellite sensors measure the 

upwelling visible radiation at the top of the atmosphere that emanates from water 

bodies. Visible light is the only electromagnetic radiation that can penetrate through a 

significant portion of the water column, and the absorption and scattering of this 

radiation is dependent on the constituents in the water column (Brown et al., 2007). 

Therefore, the radiation scattered out of the water and towards the satellite sensor can 

be used to infer water column properties. The upwelling water-leaving radiance only 

accounts for about 1% of the downwelling irradiance, so ocean color sensors measure 

in narrow, discrete wavelengths that can be used to both remove atmospheric affects 
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and distinguish between water characteristics (Brown et al., 2007). 

Ocean color remote sensing techniques were originally developed for open 

ocean waters, where the main determinant of water color is phytoplankton 

concentration. However, the Chesapeake Bay contains more optically complex waters 

in which water color also depends on dissolved organic material, suspended sediment, 

detrital matter, and concentrated phytoplankton blooms (Morel & Prieur, 1977). In 

these waters, changes to the atmospheric correction and other data processing 

techniques can be necessary to retain pixels that would otherwise be masked out for 

open ocean studies because of their proximity to land or brightness (Bailey et al., 

2010; Aurin et al., 2013). 

Ocean pixels in a satellite sensor swath are distinguished from land pixels by 

the lack of upwelling near-infrared (NIR) radiance, due to water’s strong absorption 

of this wavelength. However, turbid coastal waters can have near-infrared water-

leaving radiance signals from the interaction of downwelling irradiance with 

suspended sediment particles. The use of shortwave infrared (SWIR) wavelengths, 

which are absorbed even in turbid waters, has instead been proposed for use in coastal 

areas and the Chesapeake Bay (Werdell et al., 2010). 

Many coastal waters and estuaries have complicated geometries, and near-

shore data retrieval can be as important as the data from open water regions for many 

applications such as oyster bed management, recreational water use, and seagrass bed 

habitats for aquatic life. While ocean color remote sensing for the open ocean 
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removes data near land due to the contamination from bright land pixels, costal ocean 

color remote sensing studies attempt to keep as many of these pixels as possible by 

reducing the buffer around land pixels that is typically masked (Ondrusek et al., 2012; 

Aurin et al., 2013). This allows for satellite data retrieval not only in the Chesapeake 

Bay’s Mainstem, but also in its tributaries and coastlines. 

 

1.3 Satellite-Derived Total Suspended Solids  

Total suspended solids (TSS) is an important water quality parameter to 

monitor in estuarine systems due to its ecological, economic, and human health 

impacts. Suspended matter in the water column limits light penetration and radiation 

availability for phytoplankton and submerged aquatic vegetation growth and has been 

shown to have biological importance for predicting water-borne bacteria like Vibrio 

parahaemolyticus that pose a growing food safety concern (Caburlotto et al., 2010; 

Johnson et al., 2012; Davis et al., 2017). Increased sedimentation rates can also reduce 

the extent of benthic organism habits (Boyd, 2015).  

It can be impractical to monitor TSS in situ at a resolution sufficient for 

studying sediment plume dynamics, forecasting algal blooms, or modeling pathogenic 

bacteria due to the costs and time involved necessary for in situ sampling campaigns. 

Therefore, remotely sensed TSS estimates can be a useful alternative. Previous studies 

in the Chesapeake Bay used the observed correlation between TSS and reflectances in 

the red and NIR wavelengths to derive TSS concentrations from ocean color sensors 

(Stumpf, 1988; Hu et al., 2004; Ondrusek et al., 2012; Shen et al., 2014; Hasan & 

Benninger, 2017). Fewer studies have explored the relationships between TSS 
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concentration wavelengths outside of the red and NIR ranges for TSS algorithm 

development in estuarine environments (Qiu, 2013; Sokoletsky et al., 2016). 

 

1.4 Satellite-Derived Vibrio parahaemolyticus Concentration 

Vibrio parahaemolyticus is a naturally occurring, gram-negative bacterium 

found globally in brackish waters like those in the Chesapeake Bay and is considered 

one of the most common causes of seafood-borne illnesses in the United States 

(Colwell et al., 1977; Scallan et al., 2011). Over the past few decades, the rate of V. 

parahaemolyticus illnesses in the United States has been gradually increasing, with 

particularly large upticks recorded in 2013 and 2018 (Newton et al., 2012; U. S. 

Centers for Disease Control and Prevention, 2019). 

Studies have attribute this increase to rising sea surface temperatures and 

prolonged warm seasons in the mid-latitudes, as well of the arrival of new strains of 

the bacterium in these waters (Martinez-Urtaza et al., 2013; Baker-Austin et al., 2013; 

Baker-Austin et al., 2017). Historically, pre-harvest water temperature and post-

harvest air temperature have been the main environmental determinants used to 

estimate V. parahaemolyticus presence and abundance in shellfish and surface 

water. However, studies using in situ sampling campaigns have shown that additional 

environmental and water quality parameters are useful in predicting where and when 

high concentrations of V. parahaemolyticus occur (DePaola et al., 2003; Zimmerman 

et al., 2007; Patra et al., 2009; Caburlotto et al., 2010; Johnson et al., 2010; Johnson et 
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al., 2012; Turner et al., 2014; Davis et al., 2017).  

Satellite remote sensing has been suggested as a valuable tool for V. 

parahaemolyticus prediction and forecasting (Johnson, 2015). Previous studies have 

developed models to predict V. parahaemolyticus in surface waters and shellfish using 

only remotely sensed sea surface temperature (SST) (Phillips et al., 2007; Konrad et 

al., 2017). While some hydrodynamic models have begun to also include sea surface 

salinity (SSS) into Vibrio prediction models, there is a lack of remote sensing-based 

modeling that incorporates water quality products in addition to SST (National 

Centers for Coastal Ocean Science, 2017). 

  

     1.5 Dissertation Outline 

The first chapter of this dissertation provides an introduction to satellite 

remote sensing in the Chesapeake Bay and how it can be used for two contemporary 

issue-related applications: (1) total suspended solids retrieval and (2) prediction of 

Vibrio parahaemolyticus. The second chapter presents the evaluation and 

improvement of satellite retrieval algorithms for total suspended solids (TSS) 

concentration using additional spectral information, combined with advanced 

statistical and machine learning models. The third chapter evaluates prediction and 

forecasting models for V. parahaemolyticus concentration in Chesapeake Bay surface 

waters using satellite-derived water quality variables that have not yet been utilized in 

remote sensing-based models. The fourth chapter presents Quantile Regression 
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Forests as a tool for providing decision-makers with prediction uncertainty, using 

remotely sensed V. parahaemolyticus abundance models in the Chesapeake Bay as a 

case study. Finally, the fifth chapter concludes the dissertation work. The dissertation 

contributes methodology and insights for the improvement of coastal satellite remote 

sensing applications in the Chesapeake Bay that include environmental health for 

aquatic life, food safety, and science communication. 
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2. CHAPTER 2: CAN MULTISPECTRAL INFORMATION IMPROVE 

REMOTELY SENSED ESTIMATES OF TOTAL SUSPENDED SOLIDS? A 

STATISTICAL STUDY IN CHESAPEAKE BAY1 

 

ABSTRACT 

Total suspended solids (TSS) is an important environmental parameter to monitor in 

the Chesapeake Bay due to its effects on submerged aquatic vegetation, pathogen 

abundance, and habitat damage for other aquatic life. Chesapeake Bay is home to an 

extensive and continuous network of in situ water quality monitoring stations that include 

TSS measurements. Satellite remote sensing can address the limited spatial and temporal 

extent of in situ sampling and has proven to be a valuable tool for monitoring water quality 

in estuarine systems. Most algorithms that derive TSS concentration in estuarine 

environments from satellite ocean color sensors utilize only the red and near-infrared bands 

due to the observed correlation with TSS concentration. In this study, we investigate 

whether utilizing additional wavelengths from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) as inputs to various statistical and machine learning models 

can improve satellite-derived TSS estimates in the Chesapeake Bay. After optimizing the 

best performing multispectral model, a Random Forest regression, we compare its results to 

those from a widely used single-band algorithm for the Chesapeake Bay. We find that the 

Random Forest model modestly outperforms the single-band algorithm on a holdout cross-

validation dataset and offers particular advantages under high TSS conditions. We also find 

that both methods are similarly generalizable throughout various partitions of space and 

time. The multispectral Random Forest model is, however, more data intensive than the 

																																																								
1DeLuca, N. M., Zaitchik, B. F., Curriero, F. C. (2018). Can Multispectral Information Improve Remotely Sensed 

Estimates of Total Suspended Solids? A Statistical Study in Chesapeake Bay. Remote Sensing, 10, 1393. 
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single band algorithm, so the objectives of the application will ultimately determine which 

method is more appropriate. 

 

2.1 Introduction 

Total suspended solids (TSS) is an important parameter to monitor in estuarine 

systems due to its ecological, economic, and human health impacts. Suspended solids in 

a water column reduce light and other radiation availability for phytoplankton and 

submerged aquatic vegetation (SAV) growth, while increased sedimentation rates reduce 

benthic organism habitability. It has also been shown that the volume of suspended 

particles in water may have biological importance for predicting incidence and 

abundance of pathogenic bacteria like Vibrio parahaemolyticus (Caburlotto et al., 2010; 

Johnson et al., 2012; Davis et al., 2017). Forms of suspended particles that contribute to 

TSS concentrations include sediment, detrital matter, and microorganisms. The type of 

sediment and organics in a water body can vary widely by region because they are 

introduced into the water column through processes that include watershed inputs, 

resuspension of bottom sediments, and ecological productivity. 

It can be impractical to monitor TSS in situ at a resolution sufficient for studying 

sediment plume dynamics, monitoring and forecasting algal blooms, or modeling 

pathogenic bacteria, due to both the cost and time involved in in situ sampling and to the 

sometimes prohibitive logistics of installing dense monitoring networks. Remotely 

sensed TSS estimates can be a useful alternative. Many satellite-derived and in situ-

measured radiance algorithms for estuarine TSS retrieval have been developed based on 

the observed correlation between TSS and reflectances in the red and near-infrared red 

(NIR) wavelengths (Stumpf, 1988; Hu et al., 2004; Wang et al., 2010; Chen et al., 2011; 

Zhao et al., 2011; Ondrusek et al., 2012; Doxaran et al., 2012; Chen et al., 2013; Feng et 
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al., 2014; Shen et al., 2014; Dogliotti et al., 2015; Han et al., 2016; Hasan & Benninger, 

2017). Use of these bands is a particular advantage for studies that use the Moderate 

Resolution Imaging Spectroradiometer (MODIS), due to the higher spatial resolution of 

those bands on MODIS. This can be useful in geographically complex estuarine 

environments with small-scale dynamics and regions of interest near the shoreline. Many 

of these TSS algorithms are tuned to a specific site or region, since differences between 

water bodies in inorganic and organic particle types and sizes change the inherent optical 

properties (IOPs) of the water (Stumpf & Pennock, 1989; Tzortziou et al., 2006). 

Some TSS algorithms employ a switching function to swap between the red and 

NIR bands in accordance with some radiance threshold in order to account for a larger 

range of TSS values (Dogliotti et al., 2015; Han et al., 2016). Other ocean color remote 

sensing studies have found that two-band differencing approaches are effective 

algorithms for similar applications (Mitchell et al., 2017). Fewer studies have explored 

relationships between TSS concentration and optical properties in wavelengths outside of 

the red and NIR ranges for TSS algorithm development in estuarine environments (Qiu, 

2013; Sokoletsky et al., 2016). This has historically been due to both the limits of spatial 

resolution in other visible bands and the non-negligible scattering from phytoplankton 

pigments and water at wavelengths less than 580-nm (Smith & Baker, 1978; Bukata et 

al., 1995). However, the use of shorter wavelengths may be beneficial for estimation of 

low TSS concentrations due to the higher signal-to-noise ratio that offers higher 

sensitivity to suspended particles than longer wavelengths provide. 

Chesapeake Bay in the eastern United States has been used as a test bed for 

numerous studies relating to water quality because of an extensive and continuous in situ 

sampling network that spans multiple decades. It is the largest estuary in the United 

States, with a 165,800 square kilometer (64,000 square mile) watershed including six 
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states (Kemp et al., 2005). Over 150 major rivers and tributaries feed freshwater from the 

watershed into the estuary, the largest of which is the Susquehanna River in the 

northernmost reaches. Increasing sediment and nutrient loads in tributary runoff have 

significantly hindered the ecological health and productivity of the Chesapeake Bay 

since the onset of agriculture in the region (Brush, 1989). More recently, continued 

degradation of the estuary’s health has prompted legislative action under the Clean Water 

Act in the form of Total Maximum Daily Load (TMDL) targets (Clean Water Act, 2017). 

Remote sensing can aid in situ monitoring efforts to follow improvements or declines in 

Chesapeake Bay ecosystem health influenced by sediment loads. 

This study uses the Chesapeake Bay as a test case to investigate whether remotely 

sensed TSS estimates can be improved by utilizing additional MODIS Aqua bands 

alongside the commonly used red and NIR bands. Eight statistical and machine learning 

models, using 11 of MODIS Aqua’s visible and NIR bands as predictor variables, are 

evaluated for their prediction performance using Chesapeake Bay Program (CBP) in situ 

TSS measurements over years 2003 to 2016. TSS predictions from the best performing 

model are then compared to those from a single-band algorithm that is widely used for 

remotely sensed TSS retrieval in the Chesapeake Bay. Utilization of additional sensor 

bands can potentially improve satellite TSS retrievals in optically complex estuarine 

systems like the Chesapeake Bay. At the same time, highly multispectral sensors are 

expensive to build and to fly relative to sensors with fewer bands, so it is useful to 

understand if and how the addition of spectral bands contributes to environmental 

monitoring of TSS and other parameters. 
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2.2 Materials and Methods  

2.2.1 Data Description 

2.2.1.1 Satellite data processing 

Daily Level 1A MODIS Aqua (R2014.0.2) ocean color products for the 

Chesapeake Bay were downloaded from NASA’s ocean color archive (http://ocean 

color.gsfc.nasa.gov/) for years 2003 through 2016 for statistical and machine learning 

model analyses, and 2017 for mapped comparisons (NASA Ocean Color Web, 2017). 

All images were batch processed from Level 1 to Level 2 with NASA’s SeaDAS 7.4 

software using the standard iterative NIR atmospheric correction at 1-km resolution 

(Bailey et al., 2010). Instead of the default cloud mask we used the 2130 nm band for 

cloud detection with a threshold albedo of 0.018 (Aurin et al., 2013). We also turned 

off the Level 2 high light mask so that pixels in which the NIR bands saturate or 

nearly saturate, which is common for regions of high turbidity, would be included in 

the output (Ondrusek et al., 2012; Aurin et al., 2013). The Level 2 stray light mask 

removes pixels adjacent to bright objects such as clouds and land due to possible light 

contamination. However, the default setting in SeaDAS may be too conservative for 

an estuarine system like the Chesapeake Bay. To avoid removing crucial areas around 

clouds or near shorelines, we decreased the SeaDAS stray light mask to a 3 by 3 array 

(Aurin et al., 2013). This procedure produced all of the Level 2 MODIS data, 

including remote sensing reflectance (Rrs) and normalized water leaving radiance 

(nLw) products, used in the subsequent analyses (Table 2.1). 

 

2.2.1.2 In situ measurements 

In situ TSS measurements used in this study for years 2003 to 2016, and 

subsequently 2017 for mapped comparisons, were downloaded from the Chesapeake 
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Table 2.1. Summary of variables used in statistical and machine learning model 

development and single-band algorithm calculation for this study. 

Variable Mean Standard 
Deviation Maximum Minimum 

In situ TSS (mg/L) 8.50 5.41 47.00 2.18 

nLw(645) (µW/cm2/nm/sr) 0.7127 0.5240 3.4386 0.0683 

Rrs_412 (sr−1) 0.0021 0.0021 0.0239 8.71 × 10−10 

Rrs_443 (sr−1) 0.0030 0.0019 0.0223 0.0002 

Rrs_469 (sr−1) 0.0039 0.0020 0.0215 0.0002 

Rrs_488 (sr−1) 0.0044 0.0021 0.0192 0.0004 

Rrs_531 (sr−1) 0.0068 0.0029 0.0189 0.0013 

Rrs_547 (sr−1) 0.0075 0.0032 0.0212 0.0017 

Rrs_555 (sr−1) 0.0074 0.0031 0.0209 0.0016 

Rrs_645 (sr−1) 0.0045 0.0033 0.0217 0.0004 

Rrs_667 (sr−1) 0.0036 0.0030 0.0205 0.0002 

Rrs_678 (sr−1) 0.0036 0.0029 0.0205 0.0001 

Rrs_859 (sr−1) 0.0009 0.0009 0.0079 2.00 × 10-6 

 

 

Bay Program’s online water quality database (http://datahub.chesapeakebay.net) 

(Chesapeake Bay Program, 2017). This online database is a collection of bi-monthly 

water quality measurements taken by state and federal agencies at predetermined 

stations throughout the Chesapeake Bay (Figure 2.1). In situ TSS measurements in 

this database are determined according to the procedure from U.S. EPA method 

160.2. Only the measurements taken within the top 1 m of the water column were 

used for these analyses (Ondrusek et al., 2012; Urquhart et al., 2012). 
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Figure 2.1. Map of Chesapeake Bay estuary showing the 86 Chesapeake Bay Program 

measurement stations (black dots) used in the satellite-in situ matchup dataset in this 

study. 

 

2.2.1.3 Satellite-in situ matchups 

In situ measurements were matched with same-day processed MODIS pixels 

within 250 meters of the in situ station’s coordinates using a geographical distance 

matrix in the R package “fields” of the R Statistical Computing Environment (Nychka 

et al., 2015; R Core Team, 2013). Over the 16-year period, we created a dataset of 

1360 satellite-in situ matchups found on 490 unique days. Statistics for this matchup 

dataset are found in Table 2.1. The 490 days include representative data from all 

seasons and years, giving us a comprehensive dataset from which to conduct our 

analyses. There is thought to be no more than a few hours between satellite overpass 

and in situ sampling times for most matchups because Chesapeake Bay Program 
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sampling for 2003–2016 occurs most frequently during late-morning (Figure S2.1) 

while MODIS overpasses occur in the early afternoon. TSS can change within a few 

hours under storm conditions and in smaller tributaries, but the temporal proximity of 

the matchups is adequate under most weather conditions and away from the shore. It 

is also consistent with the matchup criteria used in previous studies (Ondrusek et al., 

2012). Our satellite-in situ dataset also includes eighty-six unique matchup locations 

that cover a large portion of the Chesapeake Bay spatially, including both the 

Mainstem and several large tributaries (Figure 2.1). 

Where one or more MODIS bands are saturated in our matchup dataset due to 

high surface reflectance or incompatibilities with the atmospheric correction method, 

missing values are present in the vectors of predictor variables. Because it is 

necessary to omit missing values in order to run many of our modeling approaches, all 

satellite-in situ matchups where these missing values occur were excluded from the 

dataset. This trimming of missing predictor values resulted in 36% of the raw 

satellite-in situ matchup dataset (n = 2111) being excluded from the final matchup 

dataset (n = 1360) used for analyses. After this incomplete data was removed 

(including in situ TSS values up to 137.0 mg/L), the range of in situ measured TSS 

used in our analyses was limited to 2.18 to 47.0 mg/L (Table 2.1). 

 

2.2.2 Methods  

2.2.2.1 Statistical Methodology 

Following a procedure outlined by Urquhart et al. (2012), eight statistical and 

machine learning models were evaluated for empirically estimating total suspended 

solids in the Chesapeake Bay using satellite-derived ocean color products. The 11 

MODIS remote-sensing reflectances (Rrs) used as predictor variables in these models 
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are summarized in Table 2.1. We randomly split our dataset of 1360 satellite-in situ 

matchups into 80% training data and 20% holdout data for cross-validation. We 

evaluated the predictive performance of our models using three metrics–mean 

absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). 

The absolute error gives equal weight to all errors while the two square error metrics 

give more weight to larger errors or outlier points, with RMSE having the same units 

as MAE for better comparison. All statistical and machine learning modeling and 

subsequent computations were done in R Statistical Computing Environment software 

(version 3.3.2) (R Core Team, 2013). 

 

2.2.2.2 Statistical and Machine Learning Models 

Eight statistical and machine learning models were chosen for their ability to 

regress non-parametric, high dimensional data with a continuous response variable. 

The remote-sensing reflectances (Rrs) from 11 MODIS-Aqua bands used for ocean 

color and land remote sensing are used as the predictor variables in these models, 

while TSS concentration is the response variable.  

We included three types of decision tree regression models: Classification and 

regression tree (CART) (Breiman et al., 1984), Bayesian additive regression tree 

(BART) (Chipman et al., 2010), and Random Forest (RF) (Breiman, 2001). These 

tree-based models follow rules at data-defined nodes in the covariates to predict 

output of the response variable. The RF model uses a large number of trees, thereby 

creating a “forest” and determines output based on the most commonly used decision 

path for the dataset. 

A generalized linear model (GLM) modifies the standard ordinary least 

squares linear regression model by adding a link function that can account for non-
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normal distributions of response data (Nelder & Wedderburn, 1972). We use a 

logarithmic link function for our GLM based on the log-normal distribution of TSS 

measurements in our dataset. Our generalized additive model (GAM) (Hastie & 

Tibshirani, 1986) works similarly to the GLM, but accounts for possible non-linear 

effects of the predictors on the response by first using a smoothing function on the 

predictor variables. The Multivariate Adaptive Regression Spline (MARS) (Friedman, 

1991) model is also similar to a GLM, but the number and type of link functions are 

automatically determined for the given dataset. 

Neural networks (NN) take their name from their resemblance to the 

interactions of neurons and synapses in the brain. A layer of input data consisting of 

predictor variable data are sent to a predetermined number of hidden layers through 

connections, for which weights are calculated. When the sum of a connection’s 

weights reaches a given threshold, the connection “fires” like a synapse and continues 

to the output data layer (Lee et al., 1992). 

Support Vector Machines (SVM) find a regression fit by using a scaled-linear 

contribution from data whose residuals fall outside of a user-specified threshold, 

while data whose residuals are within the threshold do not contribute to the fit (James 

et al., 2013). 

All 11 predictor variables (MODIS-Aqua bands) are retained in the training 

phase of model development except for in two models. The CART model only finds 

645-nm, 667-nm, and 412-nm to be significant predictor variables for tree splitting, 

while the MARS model excludes the 443-nm, 488-nm, 547-nm and 667-nm 

predictors. Forcing these models to use all 11 predictors presents the risk of 

overfitting, which would decrease their performance on the holdout cross-validation 

dataset.  
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Prediction errors from the eight models (models fit on the training set and 

predictions generated for the hold out sample) were compared to each other and to a 

mean statistical null model, which was a model containing only the mean of the TSS 

response variable for all predictions. P-values were calculated for each pair-wise 

comparison for MAE and MSE and corrected for multiple comparisons using the 

Holm method to test for statistical significance (Holm, 1979). 

TSS predictions from the best performing model were then compared to those 

from the optically based, single-band algorithm presented in Ondrusek et al. (2012) 

(referred to as O-2012 henceforth) for the same satellite-in situ matchups. The O-2012 

algorithm uses MODIS normalized water leaving radiance (nLw) at 645-nm and is 

commonly used for estimating TSS in the Chesapeake Bay. It was derived using in 

situ-measured optical data from only the mid-Chesapeake Bay in 2008 within a few 

hours of satellite overpass. The authors fit the following 3rd order polynomial function 

to their data to relate in situ nLw (645) to 35 in situ total suspended matter samples 

ranging from 4.50 to 14.92 mg/L: 

 
TSM(mg L−1) = 3.8813(nLw(645))3 – 13.822(nLw(645))2 + 19.61(nLw(645)) (1) 

 
The algorithm was validated using 270 matchups between MODIS pixels and 

Chesapeake Bay Program in situ TSS data from 2009 with concentrations up to 100 

mg/L. The authors found a mean percent difference of −4.2% and a mean absolute 

percent difference of 36%. 

 

2.2.2.3 Geographic and Temporal Cross-Validation 

A common criticism of empirical remote sensing models is that they are not 

generalizable throughout space and time when they are trained on a comprehensive 
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dataset. In order to test the ability of the model to deal with variable sediment 

distributions between the Mainstem of the Chesapeake Bay and its tributaries as well 

as missing data due to cloud cover, we trained our highest performing model on one 

region or time period and tested its performance on another region or time period. To 

do this, we divided our satellite-in situ matchup dataset into various training datasets 

based on latitude, longitude, region and time of year. Dataset partitions include East 

and West based on a selected longitude, North and South based on a selected latitude, 

Mainstem and tributaries of the estuary, and the high and low flow discharge seasons. 

We compared the MAE, MSE, and RMSE of our best model on the corresponding 

holdout datasets to that of O-2012 for the same holdout datasets to test our model’s 

ability to predict TSS in the Chesapeake Bay as successfully as a single-band, 

optically-based algorithm. 

 

2.3 Results and Discussion  

2.3.1 Model Comparison 

All eight statistical and machine learning models in this study outperformed the 

mean statistical null model in MAE and RMSE (Table 2.2). They were also statistically 

significant in MAE compared to the mean statistical null model based on a Holm 

multiple comparisons correction. This suggests that our eight models provide more 

information than assuming the mean of the dataset.  

Of the eight models tested in this study, the Random Forest had the lowest MAE 

of 2.42, followed by the SVM with MAE of 2.57, the GAM with MAE of 2.64, and the 

GLM with MAE of 2.69 (Table 2.2). The RF model also had the best square error 

predictive accuracy with RMSE of 4.36, followed by the GAM with RMSE of 4.53, the 

BART with RMSE of 4.66, and MARS with RMSE of 4.69 (Table 2.2). 
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In order to better understand how the RF model predicts TSS in our holdout 

dataset, we looked at each predictor’s contribution to the model through partial 

dependence plots (Friedman, 2001). Partial dependence plots are valuable tools for 

interpreting predictive machine learning models like a Random Forest in which the 

relationships between predictors and response are not intuitive. They allow visualization 

of the amount of change in predicted response a given predictor variable produces when 

all other predictors in the model are averaged. 

 

Table 2.2. Holdout mean absolute error (MAE), mean square error (MSE) and root 

mean square error (RMSE) for all models evaluated in the study for the 20% holdout 

validation dataset. All models significantly outperform the mean statistical null 

model at p < 0.05 in both MAE and MSE, adjusted for multiple comparisons using 

the Holm correction. 

  RF GAM GLM NN MARS CART BART SVM Mean 

MAE 2.42 2.64 2.69 2.76 2.74 2.87 2.73 2.57 4.01 

MSE 19.04 20.49 22.43 24.32 21.98 23.22 21.73 22.19 35.36 

RMSE 4.36 4.53 4.74 4.93 4.69 4.82 4.66 4.71 5.95 

 

 

In order to better understand how the RF model predicts TSS in our holdout 

dataset, we looked at each predictor’s contribution to the model through partial 

dependence plots (Friedman, 2001). Partial dependence plots are valuable tools for 

interpreting predictive machine learning models like a Random Forest in which the 

relationships between predictors and response are not intuitive. They allow visualization 

of the amount of change in predicted response a given predictor variable produces when 

all other predictors in the model are averaged. 
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The partial dependence plots for all 11 MODIS bands in the RF model are shown 

in Figure 2.2. The red (645-nm, 667-nm, and 678-nm) and NIR (859-nm) bands play the 

largest role in predicting higher TSS values, which reflects the use of the red and NIR 

bands used in many TSS algorithms’ development (Stumpf, 1988; Hu et al., 2004; Wang 

et al., 2010; Chen et al., 2011; Zhao et al., 2011; Ondrusek et al., 2012; Doxaran et al., 

2012; Chen et al., 2013; Feng et al., 2014; Shen et al., 2014; Dogliotti et al., 2015; Han et 

al., 2016; Hasan & Benninger, 2017). Several of the blue (496-nm, 448-nm and 443-nm) 

and green (531-nm and 555-nm) bands appear to be important to predicting lower ranges 

of TSS. These results suggest that while most algorithms use the “red-ness” of sediment 

to remotely sense TSS concentrations, it could also be beneficial to use the “blue-ness” 

of clearer waters in developing algorithms to estimate TSS via satellite. The partial 

dependence plots also showed that the 412-nm, 443-nm, and 547-nm bands contribute 

very little to the RF model, shown by the lack of variation in TSS prediction over the 

respective ranges of remote-sensing reflectances (Figure 2.2). Pruning the RF model by 

excluding these three MODIS bands decreased the MAE and RMSE (2.38 and 4.30, 

respectively). The RF model referred to in the study henceforth is the pruned RF model 

that includes only 8 MODIS bands. 

 

2.3.2 Comparison with Single-Band TSS Algorithm 

We compared our top performing model, a Random Forest that was pruned to 

minimize error in MAE, MSE and RMSE, to the O-2012 for the holdout validation 

dataset. The O-2012 algorithm was applied with its published coefficients, as that is the 

version commonly used in Chesapeake Bay applications. We also generated a version of 

the same polynomial form but with updated coefficients and without the y-intercept 

being forced through zero (referred to as O-2012(fit)), fit using the training and 
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Figure 2.2. Partial dependence plots for the 11 MODIS bands used as predictors in 

the Random Forest model before pruning. 

 

evaluation datasets used for our other models: 

 

TSM(mg L−1) = 19.222(nLw(645))3 – 10.293(nLw(645))2 + 115.539(nLw(645)) + 8.467 (2) 

 

This customized polynomial model showed an improvement over the standard O-

2012 algorithm in our holdout validation test, which may be due to the larger range of 

TSS concentrations used to train our polynomial regression. However, the RF model 

using multiple bands still had better performance than the newly fitted O-2012(fit) using 

a single band (Table 2.3). Since O-2012 and O-2012(fit) show nearly identical 

performance and have similar behavior across geography and TSS concentrations, we 

focus on the original, published O-2012 algorithm through the rest of our analysis. 

The RF model produces significantly lower errors from the O-2012 algorithm in 

both MAE and MSE (Table 2.3). The RF model also introduces less bias (mean error of 

−0.04) in the holdout cross-validation than O-2012 (mean error of −0.54). The RF model  
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Table 2.3. Mean absolute error (MAE), mean square error (MSE), and root mean 

square error (RMSE) for the pruned Random Forest (RF) model, Random Forest 

model using only 645-nm (RF(645)), the O-2012 algorithm as published, and the O-

2012 algorithm fitted for our dataset (O-2012(fit)) for the 20% holdout validation 

dataset. Asterisk (*) indicates where RF model is statistically different than O-2012 

at p < 0.05. 

Model MAE MSE RMSE 
RF 2.38* 18.46* 4.30 

RF(645) 2.76 20.81 4.56 
O-2012 2.97 31.44 5.61 

O-2012(fit) 2.71 21.77 4.67 
 

 

introduces less bias (mean error of −0.04) in the holdout cross-validation than O-2012 

(mean error of −0.54). The RF model’s MAE accounts for 5.3% of the range in TSS 

values used in this study (2.4 to 47.0 mg/L), while O-2012’s MAE accounts for 6.6%. 

The accuracy necessary for each user’s application may indicate whether either, or both, 

methods have acceptable performance for TSS estimation. 

In order to assess the effect of the algorithmic approach (machine learning versus 

polynomial regression) we also compared a Random Forest model using only the same 

remote sensing reflectance in 645-nm as in the O-2012 algorithm. The single-band RF 

model, referred to as RF(645), performed better in MAE (2.76 vs 2.97) and RMSE (4.57 

vs. 5.61) than O-2012 and better in RMSE (4.56 vs. 4.67) than O-2012(fit) for the 

holdout cross-validation. This indicates that the application of machine learning alone 

provides some advantage over the polynomial method. The use of multiple bands 

provides further improvement (Table 2.3).  
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The one-to-one regressions for in situ measured TSS to predicted TSS for the 

pruned RF model and O-2012 algorithm show that higher TSS values are not predicted 

as well as lower TSS values for either prediction method (Figure 2.3). The pruned RF 

model consistently underestimates the higher range of TSS values, which may be due to 

the log-normal distribution of the response variable in our training dataset. More data in 

a higher TSS range in the training dataset may allow the model to better predict higher 

TSS values, but could come at the cost of not predicting the more frequently measured 

lower range as accurately. There is a wide spread in predictions for these high TSS 

events using O-2012. 

To better investigate this lack of prediction skill in both the RF model and O-

2012 algorithm at higher ranges of TSS, we compared the error for both models for 

holdout data above the 80th percentile (TSS > 11.3 mg/L, n = 55) (Figure 2.3). On high 

 

  

Figure 2.3. Log-log plots showing one-to-one regressions of CBP in situ measured 

versus satellite-derived TSS from (A) the pruned Random Forest model and (B) the 

O-2012 algorithm. Solid black line is 1:1 line, dotted line is the linear regression and 

dashed line shows the cutoff for higher TSS range analyses. 
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TSS values, the RF model had a lower MAE of 5.16 than O-2012, with MAE of 8.33 

(Table 2.4). The RF model also had a lower RMSE than O-2012, 8.24 vs. 11.71, 

respectively. The RF model’s MAE and MSE error metrics are significantly lower than 

the O-2012 algorithm’s error metrics to the 95% confidence interval (Table 2.4). The RF 

model and O-2012 have similar bias (mean error of 4.50 and 4.51, respectively) for the 

high TSS range predictions. These results suggest that the RF model is able to better 

predict TSS values farther from the mean than O-2012, although both methods produce 

larger errors for higher TSS ranges.  

It is also important to compare how the two models perform below the 80th 

percentile (TSS < 11.3 mg/L, n = 217) because it represents more commonly measured 

TSS values in the Chesapeake Bay. We find that the RF model and O-2012 perform very 

similarly for MAE (Table 2.4). The O-2012 algorithm performs better than the RF model 

for MSE, 4.67 and 5.92 respectively (Table 2.4). However, neither MAE nor MSE from 

the two methods are significantly different at the 0.05 level for this lower TSS holdout 

validation data (Table 2.4). 

 

Table 2.4. Mean absolute error (MAE), mean square error (MSE), and root mean 

square error (RMSE) for the pruned RF model and O-2012 algorithm for holdout 

validation dataset above and below the 80th percentile. Asterisk (*) indicates where 

RF model is statistically different O-2012 at p < 0.05. 

  Above 80th Percentile Below 80th Percentile 
  RF O-2012 RF O-2012 

MAE 5.16* 8.33 1.67 1.62 
MSE 67.97* 137.07 5.92 4.67 

RMSE 8.24 11.71 2.43 2.16 
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It is also important to compare how the two models perform below the 80th 

percentile (TSS < 11.3 mg/L, n = 217) because it represents more commonly 

measured TSS values in the Chesapeake Bay. We find that the RF model and O-2012 

perform very similarly for MAE (Table 2.4). The O-2012 algorithm performs better 

than the RF model for MSE, 4.67 and 5.92 respectively (Table 2.4). However, neither 

MAE nor MSE from the two methods are significantly different at the 0.05 level for 

this lower TSS holdout validation data (Table 2.4). 

 

2.3.3 Daily Satellite, In Situ Mapped Comparisons  

In order to compare the performance of the RF and O-2012 methods in space, we 

predicted remotely sensed TSS using each method on data that was not included in either 

the training dataset or holdout validation dataset. Figure 2.4 shows three MODIS images 

from 2017 dates with good spatial coverage of Chesapeake Bay from three seasons: (1) 

March 22, 2017 in the spring, (2) June 28, 2017 in the summer, and (3) October 22, 2017 

in the fall. In situ measurements from the same, previous, or subsequent day (in order to 

increase the number of comparison points) are also shown for comparison between 

remotely sensed and in situ measured TSS. Satellite-in situ matchups were determined by 

the same method outlined in Section 2.3. 

Overall, Figure 2.4 shows that both the RF model and O-2012 capture the general 

structure of TSS across the Bay in these randomly selected matchups. However, relative 

performance in MAE, MSE, and RMSE depends on the date chosen. In general, O-2012 

offers more consistent performance in the lower Mainstem for the three dates shown. In 

the upper Mainstem and tributaries, the RF model generally performs better than O-2012 

for the summer and fall dates, but not for the spring date. The differences in performance 



 

	 27	

between the two methods are not statistically significant in MAE or MSE for any of the 

regions (upper Mainstem, lower Mainstem, and tributaries) on any of the dates. 

 

2.3.4 Geographic and Temporal Cross-Validation 

In order to test whether our top performing model was generalizable in predicting 

TSS throughout the Chesapeake Bay, we tested the performance of the RF model for 

various training and holdout datasets. We then compared the generalizability of the RF 

model to that of O-2012 for the same holdout datasets using MAE and MSE metrics. The 

naming convention works similarly to the following example: “East for West” indicates 

that the model is trained on a dataset encompassing stations only on the Eastern side of 

the Chesapeake Bay and the holdout validation dataset is comprised of the remaining 

stations on the Western side. 

The results of the geographical and temporal cross-validation are presented in 

Table 2.5. Neither the RF model nor the O-2012 algorithm consistently outperforms the 

other in terms of MAE across the different validation scenarios. Based on MSE however, 

which gives more weight to larger errors, the RF model performs better than O-2012 in 

all but one scenario, West for East, and many of the differences between methods are 

statistically significant. Both methods were more accurate when predicting the East, 

South, and Mainstem sub-datasets than they were in other regions, and both also had 

higher skill for holdout predictions in the low discharge season. Both methods are 

generally similar overall in the accuracy of their predictions across various spatial and 

temporal partitions of the dataset, even though some differences have statistical 

significance. Again, the application may determine what level of accuracy or precision is 

needed in TSS estimations. 
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Figure 2.4. Mapped comparisons of daily remotely sensed TSS (mg/L) derived from 

O-2012 (A–C) and RF model (D–F) for 2017 dates not included in model training or 

holdout datasets. In situ measurement values shown in color-filled black circles. 
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2.4 Conclusions 

This study investigates whether additional information can be gained from statistical 

and machine learning models that utilize multispectral MODIS information when 

predicting TSS in estuarine systems, using the Chesapeake Bay as a case study. Eight 

models using 11 MODIS bands, as well as a single-band algorithm, were evaluated for 

their performance on predicting TSS measurements taken in situ over a 14-year time 

period throughout the estuary. The Random Forest model performed best out of the eight 

models and the single-band algorithm on the holdout validation dataset. It also 

outperformed the single-band algorithm on the top 20th percentile of test data, but did 

not perform better on the lower 80th percentile. We found that both methods of TSS 

prediction were generalizable throughout space and time, with relative performance 

dependent on the error metric used for comparison. 

The results of this study suggest that the single-band O-2012 algorithm is a valuable 

tool for estimating TSS via remote sensing in the Chesapeake Bay for general 

environmental applications. However, for applications where more accuracy or precision 

in waters with higher TSS concentrations may be needed, such as when modeling Vibrio 

bacteria (Davis et al., 2017), a statistical or machine learning model that utilizes 

additional MODIS bands could prove valuable. In estuarine systems, additional MODIS 

bands could provide information about suspended particles other than sediment that 

contribute to a TSS measurement, such as phytoplankton and detrital matter. 

Determining the supplementary bands to be added to statistical or machine learning 

models could vary from estuary to estuary based on the watershed characteristics, 

biology, and corresponding optical properties of each system. A recent study by Hasan et 

al. (2017) found that it is beneficial to determine the relationship between reflectance and 

TSS concentration separately for the Mainstem and tributaries of the Chesapeake Bay,
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Table 2.5. Generalizability cross-validation results. Mean absolute error (MAE) and mean 

square error (MSE) for the pruned RF model and O-2012 algorithm. Naming scheme for 

cross-validation is as follows: “East for West” indicates model trained on East dataset and 

validated West dataset. Asterisk (*) indicates O-2012 is statistically different than RF model 

at p < 0.05. The number of data points used in the training dataset for each scenario is 

indicated by n. 

  Model 
East for 

West 
(n = 604) 

West for 
East 

(n = 756) 

North for 
South 

(n = 581) 

South for 
North 

(n = 779) 

Mainstem 
for 

Tributary 
(n = 878) 

Tributary 
for 

Mainstem 
(n = 482) 

High for 
Low 

(n = 556) 

Low for 
High 

(n = 804) 

MAE RF 3.32* 2.41* 2.70 3.66* 3.65 * 2.58* 2.62 2.90 

 

O-2012 3.50 2.08 2.68 3.12 3.89 2.31 2.75 3.04 

MSE RF 26.95* 14.37 21.71 25.37 33.24 * 15.23 17.00* 21.50 * 

 

O-2012 35.26 11.94 24.31 25.70 40.34 16.43 22.82 27.91 

 
 
 
 
 

which may account for variability in the optical properties between the two estuarine 

features. This poorly characterized variability between regions of the estuary may be why a 

decision tree-based model like a Random Forest better predicts the high TSS values 

typically found in tributaries. 

However, it is important to recognize the utility of a single-band, optically based 

algorithm like O-2012. These algorithms are generally easier to use for conventional 

applications of remotely sensed TSS estimates, and their physical basis is more 

straightforward (Chen et al., 2013). In a comprehensive quantitative review of published 
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TSS algorithms, Dorji et al. (2016) found that optically based algorithms generally perform 

better than empirical algorithms in waters with unknown composition. 

Another noteworthy ability of the O-2012 algorithm and other red and NIR algorithms is 

that of having higher spatial resolution. While red and NIR algorithms can provide 250-

meter resolution, using other MODIS wavelengths limits spatial resolution to 1-km. This 

could be a significant disadvantage to using other MODIS bands in a model when near-shore 

TSS estimates are important. However, recently launched ocean color sensors like the Ocean 

and Land Colour Instrument (OLCI) provide improved spatial resolution at 300-meter 

resolution bands outside of the red and NIR wavelengths. Therefore, this MODIS study 

could provide a foundation for multispectral TSS retrieval in higher spatial resolution using 

newer sensors. 

Overall, our results suggest that the application of multispectral data using statistical and 

machine learning methods to estimate TSS in Chesapeake Bay may offer an increase in skill 

over standard single-band approaches. It may be particularly useful in regions that often 

experience higher TSS levels than the lower Mainstem region. However, the existing single-

band O-2012 algorithm does perform reasonably well when compared to our best-

performing multispectral RF model in Bay-wide evaluations, performing particularly well in 

lower TSS regions. The relative performance of the two models appears to be sensitive to 

sub-region, date, and the error metric being evaluated. For this reason, we conclude that the 

use of additional MODIS bands outside of the red and NIR wavelengths can be utilized to 

aid in satellite-derived TSS retrieval in estuaries like the Chesapeake Bay, but that the 

decision on whether adopt such an approach will depend on the objectives of the application. 
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Figure S2.1 Histogram of sampling times for all Chesapeake Bay program TSS data at or 

above 1 meter depth for years 2003-2016. Times shown are Eastern Standard Time. 
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3. CHAPTER 3: EVALUATION OF REMOTELY SENSED PREDICTION AND 

FORECAST MODELS FOR VIBRIO PARAHAEMOLYTICUS IN CHESAPEAKE 

BAY2  

	

ABSTRACT 

Over the last decade, an increase of gastrointestinal illness due to Vibrio parahaemolyticus in 

the consumption of raw shellfish has been reported in multiple regions around the United States. 

Studies mainly attribute this increase to rising sea surface temperatures and prolonged warm 

seasons in the mid-latitudes. Historically, temperature has been the main environmental 

determinant used to predict V. parahaemolyticus concentrations in shellfish and surface water. 

However, studies using in situ sampling campaigns have shown that additional water quality 

parameters can be useful in predicting the bacterium. While the time and cost of obtaining in situ 

samples throughout the Chesapeake Bay at regular time intervals can exceed available resources, 

satellite remote sensing has the potential to provide predictions at higher temporal and spatial 

resolutions. This study uses satellite ocean color remote sensing and sea surface temperature 

(SST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) to investigate the 

utility of remotely sensed information for Vibrio parahaemolyticus predictions in the 

Chesapeake Bay and whether additional remotely sensed information can improve predictions 

over conventional SST-based models. We find that the addition of remotely sensed salinity, total 

suspended solids, and chlorophyll-a improved presence and abundance predictions compared to 

SST-only models. Remote sensing reflectances also showed promise for V. parahaemolyticus 

																																																								
2	DeLuca, N. M., Zaitchik, B.F., Guikema, S. D., Jacobs, J. M., Davis, B. J. K., Curriero, F. C. (In review) Evaluation 
of Remotely Sensed Prediction and Forecast Models for Vibrio Parahaemolyticus in Chesapeake Bay. Remote 
Sensing of Environment. 
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prediction, which could bypass the intermediary step of deriving water quality products from 

reflectances. Remotely sensed information from one week prior to the in situ V. 

parahaemolyticus measurements was also evaluated for its ability to forecast the bacterium, 

which could provide lead time for management decisions. The forecasts using additional ocean 

color products and remote sensing reflectances showed improvement over SST-based forecasts. 

The results of this study suggest that remote sensing could be a valuable tool to aid in higher 

resolution V. parahaemolyticus predictions and forecasts in the Chesapeake Bay, particularly 

when multiple water quality predictors are employed. 

 

3.1 	Introduction	

The Chesapeake Bay is the largest estuary in the United States, spanning over 300 km 

from its northern reach in Havre de Grace, Maryland to its southernmost point in Virginia 

Beach, Virginia. The estuary provides habitats that foster a prosperous seafood industry, with 

over 500 million pounds harvested every year (Chesapeake Bay Program, 2018A). The 

oyster industry in particular has made a large contribution to the region’s economy and 

culture over the last century (Chesapeake Bay Program, 2018B). Along with the recent 

growth of the oyster aquaculture industry, an increase in the number of filter-feeding bivalves 

has the potential to improve water quality. Influence on water quality is an important 

consideration for a region with historically problematic sediment and nutrient pollution, 

which prompted legislation under the Clean Water Act (USEPA, 2011). However, the 

bivalves’ filtering mechanism also permits the accumulation of microorganisms in 

concentrations up to 100 times that which is found in the surrounding waters (Froelich et al., 

2017).  
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Vibrio parahaemolyticus is a naturally occurring, gram-negative bacterium found 

globally in brackish waters like those in the Chesapeake Bay (Colwell et al., 1977). There are 

both pathogenic and non-pathogenic strains of the bacterium, yet it is considered one of the 

most common causes of seafood-borne illnesses in the United States (Scallan et al., 2011). 

Infection typically occurs through the consumption of contaminated raw shellfish, causing 

gastroenteritis and more rarely septicemia.  

The U.S. Centers for Disease Control reported that V. parahaemolyticus incidence 

increased 4-fold from 1996 to 2010 based on FoodNet surveillance (Newton et al., 2012). 

While the trend has continued to increase since 2010, U.S. water bodies experienced a 

particularly large spike in illnesses related to V. parahaemolyticus in both 2013 and 2018 

with 147 and 187 cases reported, respectively (U. S. Centers for Disease Control and 

Prevention, 2019). Studies have attributed this positive trend to warming water temperatures, 

particularly in higher latitude water bodies, and the arrival of new strains of the bacterium in 

such waters (Martinez-Urtaza et al., 2013; Baker-Austin et al., 2013; Baker-Austin et al., 

2017).  

The increasing trend in incidence is expected to continue under the influence of 

anthropogenic climate change, and the spatial and temporal range in which Vibrio spp. 

related illnesses are found is anticipated to expand (Martinez-Urtaza	et	al.,	2010;	Jacobs	et	

al.,	2015; Muhling et al., 2017). Optimal conditions for the bacteria were previously found 

mainly in the Mid-Bay, Upper-Bay and western tributaries with concentrations peaking in 

July and August (Banaker et al., 2011). With Chesapeake Bay water temperatures projected 

to increase up to 5°C through the end of the 21st Century and extreme precipitation events 

projected to increase, these regions are likely to expand or shift and the timing of peak 
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concentrations is likely to extend into additional summer months (Jacobs et al., 2010; 

Banaker et al., 2011). Therefore, the ability to predict concentrated regions of V. 

parahaemolyticus is important for environmental managers and shellfish harvesters in order 

to reduce the risk of Vibrio-related illness (Davis et al., 2019). The recent surge in illnesses 

has also prompted interest in early warning systems, in which forecasted predictions would 

provide decision-makers and harvesters time to prepare for the implementation of 

preventative and control measures (Konrad et al., 2017). 

While water temperature has been shown to drive most V. parahaemolyticus variability 

(Kaneko & Colwell, 1973; Caburlotto et al., 2010; Johnson et al., 2010; Johnson et al., 2012), 

recent work has improved the characterization of other environmental determinants of the 

bacterium in estuarine waters. Salinity is a frequently studied variable in relation to V. 

parahaemolyticus concentration in estuarine environments, but there is little consensus in the 

results. Studies have found both positive and negative associations with salinity and V. 

parahaemolyticus, while others have shown that there is an optimal range of salinity in which 

the bacteria thrive (DePaola et al., 2003; Zimmerman et al., 2007; Patra et al., 2009; Johnson 

et al., 2010; Davis et al., 2017). These differences are thought to be due to variations in the 

range of salinity investigated, where low salinity waters limit V. parahaemolyticus growth 

and higher salinity waters are typically outside of the temperature range of optimal growth 

(Davis et al., 2017).   

Vibrio species are commonly associated with plankton density because the plankton 

provide the nutrient-rich surfaces to which the bacteria attach (Turner et al., 2014). Because 

chlorophyll pigments can be an indicator of plankton density, such pigment measures could 

be useful for V. parahaemolyticus prediction, particularly following algal blooms (Greenfield 
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et al., 2017). Algal blooms can also be an indicator of nutrient runoff, which introduces 

dissolved organic matter that has been found to proliferate V. parahaemolyticus (Thickman 

& Gobler, 2017). A lagged association of bacterium abundance with chlorophyll was 

previously suggested for further research (Davis et al., 2017).  

The tendency for V. parahaemolyticus to occur in an attached state rather than free-

floating also suggests that the volume of suspended matter in water could be an 

environmental determinant for the bacterium (Caburlotto et al., 2010; Johnson et al., 2012; 

Davis et al., 2017). It has been proposed that Vibrio spp. resides in estuarine sediments, and 

so the indication of resuspended sediments could also be a useful predictor for bacterial 

presence and abundance (Johnson et al., 2010; Davis et al., 2017). 

The time and cost of obtaining in situ samples at sufficient spatial and temporal 

resolution for Chesapeake Bay-wide V. parahaemolyticus modeling can be prohibitive, and 

the laboratory measurements needed for some determinants make much of the data 

unavailable in real-time. Satellite remote sensing could be a valuable tool to complement in 

situ sampling and hydrological modeling for real-time V. parahaemolyticus detection and 

early warning forecasts (Johnson, 2015; Konrad et al., 2017). Previous remote sensing-based 

studies have developed linear regression models to predict V. parahaemolyticus 

concentration in both oysters and surface waters using only sea surface temperature (SST) 

(Phillips et al., 2007; Konrad et al., 2017). While some hydrodynamic models have begun to 

also include sea surface salinity (SSS) into their Vibrio prediction models, fewer remote 

sensing-based models incorporate the additional environmental predictors that have shown 

importance in the in situ-based studies (Tyberghein et al., 2012; National Centers for Coastal 

Ocean Science, 2017). Although apparent optical properties of waters, like remote sensing 
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reflectances (Rrs), are usually converted into water quality products using bio-optical or 

empirical algorithms, models that use the remote sensing reflectances themselves as 

predictors could bypass this intermediary step.  

This study uses an extensive in situ sampling campaign conducted across Chesapeake 

Bay to evaluate remote sensing-based models for V. parahaemolyticus presence and 

abundance. Accurate pathogen predictions are important for the Chesapeake Bay, where a 

rising incidence rate is anticipated as water temperatures increase over the next several 

decades. Satellite data from the NASA Moderate Resolution Imaging Spectroradiometer 

(MODIS) aboard the Aqua spacecraft (2002 –) are used to investigate the following 

questions: 1) Do environmental parameters beyond SST improve remotely sensed predictions 

of V. parahaemolyticus? 2) Can V. parahaemolyticus be predicted using raw remote sensing 

reflectances instead of converting them into environmental determinants? 3) Do remote 

sensing-based V. parahaemolyticus prediction models perform as well as models that use in 

situ environmental measurements? 4) Can we forecast V. parahaemolyticus presence and 

abundance one week in advance using remote sensing-based models? 

 

3.2 Data Description 

3.2.1 In situ measurements 

Methodology for the water sampling campaign and V. parahaemolyticus analysis 

used in this study is described in detail in Jacobs et al. (2014) and Davis et al. (2017). A 

brief summary of these methods as they pertain to this study is described here. A total of 

1,523 surface water (0.5 m depth) samples were collected for V. parahaemolyticus 

determination at 148 monitoring stations located throughout the Mainstem and tributaries 
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of the Chesapeake Bay, which coincide with the decades-long record of Chesapeake Bay 

Program sampling stations, during three representative seasons (April - spring, July - 

summer, and October - autumn) in years 2007 to 2010.  Multiple water quality 

measurements, following Chesapeake Bay Program protocols, were taken in situ 

alongside the collection of each water sample (U.S. Environmental Protection Agency, 

1996). Procedures for in situ water temperature, chlorophyll-a, and total suspended solids 

measurements used in this study can be found in Jacobs et al. (2014). Abundance of total 

V. parahaemolyticus in units of genomic equivalents of colony-forming units (CFU) per 

milliliter (GE/ml) was determined for each water sample via quantitative polymerase 

chain reaction (qPCR). A large proportion of water samples (80.4%) contained 

abundances below the limit of detection and for this study was treated as an absence of V. 

parahaemolyticus. This dataset is unique because it provides comprehensive coverage of 

V. parahaemolyticus measurements throughout Chesapeake Bay along with the 

corresponding in situ water quality measurements for each sampling location and date.  

 

3.2.2 Satellite data processing and algorithms 

Uncalibrated Level 1A MODIS Aqua (R2018) products for years 2007 through 

2010 were downloaded from NASA’s ocean color archive (http://ocean 

color.gsfc.nasa.gov/) and extracted for the Chesapeake Bay region. Images were batch 

processed to calibrated and binned Level 3 (weekly composite files) for both ocean color 

and sea surface temperature (SST) products using NASA’s SeaDAS 7.5 software. The 

standard iterative NIR atmospheric correction was chosen for ocean color processing in 

this study because of the potential signal-to-noise limitation of MODIS’ SWIR bands 
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addressed in Bailey et al. (2010). Changes to the default l2gen processing settings for 

ocean color products include 1) the 2130-nm band used for cloud detection with 

threshold albedo 0.018, 2) the high light mask turned off, and 3) the reduction of the stray 

light mask to a 3x3 array (Aurin et al. 2013). These changes were shown to increase the 

number of valid pixels retrieved in coastal waters, specifically in the Chesapeake Bay, 

where the default masking of pixels due to the brightness of turbid waters and adjacency 

to land can be too conservative (Aurin et al., 2013). The sea surface temperature product 

was processed using the standard SST masks for invalid pixels provided in SeaDAS.  

This study uses 9 products at 1-km resolution derived from the MODIS 

processing procedure described above. Ocean color products include chlorophyll-a, total 

suspended solids (TSS), salinity, and four remote-sensing reflectances – Rrs(412-nm), 

Rrs(555-nm), Rrs(678-nm), and Rrs(859-nm). These four particular remote sensing 

reflectance wavelengths were chosen using a variance inflation function to reduce the 

correlation between them in order to avoid overfitting in the modeling efforts (James et 

al., 2014). The algorithms used to derive chlorophyll-a (using a regionally tuned OC3 

algorithm for the Chesapeake Bay), TSS, and sea surface salinity are described in 

Werdell et al. (2007), DeLuca et al. (2018), and Urquhart et al. (2012), respectively. The 

sea surface temperature product is obtained by transforming MODIS thermal infrared 

radiances into degrees Celsius (°C) using the Planck function. 

 

3.2.3 Satellite-in situ matches 

In situ measurements were matched to MODIS pixels within 1-km distance using 

a geographical distance matrix in the R package “fields” (Nychka et al., 2016, R Core 
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team, 2013). Where multiple MODIS pixels were paired to one in situ measurement, the 

mean value of the surrounding pixels was used. Records were dropped when no pixel was 

recorded within 1-km of the in situ sampling location due to cloud cover or the limit of 

spatial resolution of this sensor in tributary and coastal regions. Weekly Level 3 MODIS 

data that were collected during the same 8-day week as the in situ measurement was 

taken were used to create a “Same Week” matchup dataset, while weekly Level 3 

MODIS data collected the 8-day week prior to the in situ measurement were used to 

create the “1-Week Forecast” matchup dataset. The binned 8-day composites were used 

as a Same Week dataset in place of daily Level 2 data in order to increase the number of 

satellite-in situ matchups for a robust statistical analysis. This was particularly necessary 

for matchups during summer months when V. parahaemolyticus concentrations increase 

and cloud cover can severely limit MODIS data retrieval over the Bay (Urquhart et al., 

2013). 

All sampling months and years are represented in the final Same Week (n = 572) 

and 1-Week Forecast (n = 605) datasets. The satellite-in situ match-ups are located at 84 

stations throughout the Mainstem of the Chesapeake Bay and within several large 

tributaries (Figure 3.1). Match-ups where one or more MODIS band was saturated were 

excluded from the final datasets in order to omit missing values before running the 

models.  

Vibrio parahaemolyticus is heavily zero-inflated (with non-detects being the 

majority class) in the final Same Week and 1-Week Forecast datasets, with detected 

presence comprising only 13% (n = 77) of the Same Week dataset and only 16% (n = 98) 

of the 1-Week Forecast dataset. There were 22 (31) detected V. parahaemolyticus 
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samples from 2007, 13 (13) from 2008, 6 (10) from 2009, and 36 (44) from 2010 in the 

Same Week (1-Week Forecast) dataset. The number of match-ups and the percentage of 

presence in both final datasets are influenced by the coverage of optically valid MODIS 

pixels in the weekly composites and how that coverage corresponds to in situ 

measurements taken in the 8-day periods. 

 

3.3 Methods 

3.3.1 Statistical methodology  

In order to investigate our four objectives, seven input variable structures with 

various combinations of environmental determinants (denoted as “EC” model names) and 

remote sensing reflectances (denoted as “Rrs” model names) as predictor variables were 

used in the following analyses (Table 3.1). Several modeling approaches were applied to 

each of the input variable structures – two statistical models, a Generalized Linear Model 

(GLM) and a Generalized Additive Model (GAM), and two more complex machine 

learning models, a Random Forest (RF) and a Support Vector Machine (SVM) (Nelder & 

Wedderburn, 1972; Hastie & Tibshirani, 1986; Breiman 2001; James et al. 2013). All 

were chosen for their ability to exploit multi-dimensional explanatory variables and 

perform regression on both binary and continuous response variables. We chose to test 

our objectives using four different models in order to avoid potential bias in the results 

introduced by one specific model type. 

A GLM is a modification of an ordinary least squares (OLS) linear regression 

model in which the sum of squared residuals is minimized (Hastie & Tibshirani, 1986). 

The GLM includes a link function that describes how the expected response relates to the 
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linear predictors, thereby accounting for non-normal distributions of response data 

(Nelder & Wedderburn, 1972). However, GLMs are only able to incorporate a linear  

 

	

Figure 3.1. Map of Chesapeake Bay showing locations of satellite-in situ match-ups used 

in this study. Red circles indicate match-ups where Vibrio parahaemolyticus was detected, 

while black circles indicate match-ups where the bacterium was not detected. 

	

combination of predictor variables. A GAM is then an extension of the GLM, but is able 

to account for potential non-linear effects of predictor variables on the response variable 

through use of a non-parametric smoothing function (Hastie & Tibshirani, 1986).  
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A Random Forest is tree-based machine learning model where decision trees are 

constructed to follow rules at data-defined nodes in the predictor variables in order to 

predict the response variable. The RF is an extension of the classic classification and 

regression tree (CART), where multiple trees are constructed using bagging for the 

training data and predictor variables used in each tree (Breiman, 2001). This ensemble 

approach capitalizes on the majority or average output from the “forest” of decision trees 

in order to increase the accuracy of predictions and avoid overfitting. However, the 

relationships between predictors and the response in a RF model are not easily interpreted 

like a GLM or GAM, and the model is not able to predict a response outside of the range 

of the training dataset. 

A Support Vector Machine (SVM) is a machine learning model that performs 

classification by optimizing a non-linear hyperplane and margin between two classes of 

training data in multi-dimensional space (Smola & Schölkopf, 2004). Test data is then 

classified based on which side of the hyperplane it falls. For regression, the SVM 

minimizes a loss function using only data whose residuals fall outside of a user-specified 

threshold similar to the margin used in classification. Data whose residuals fall within the 

threshold do not contribute to the loss function fit (James et al., 2013). The response from 

a SVM is less susceptible to the influence of outliers, but finding appropriate tuning 

parameters is not trivial and large datasets can be computationally demanding.    

Due to the strong zero-inflation of our datasets (with non-detects), we predicted V. 

parahaemolyticus using both classification (detected presence versus absence) and 

regression (bacterial abundance) methods. To avoid bias toward the majority class during 

classification predictions, the training dataset was rebalanced so that the minority class 
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(presence) was oversampled and majority class (absence) was undersampled. The 

performance of each variation of model was evaluated over 100 iterations of a Monte 

Carlo holdout scheme, where the dataset was randomly split into variations of 80% 

training data and 20% holdout validation data. The evaluation metrics presented in this 

study are the mean value of that metric over the 100 iterations of holdout validation data. 

The same methodology was used for both the Same Week prediction models and the 1-

Week Forecast models.  All modeling and statistical computations were performed in the 

R Statistical Computing Environment (version 3.3.2) (R Core Team, 2013). 

 

 

Table 3.1. Description of environmental and remote sensing reflectance input structures 

used in this study.a 

  Structure 
Name   Description 

EC 1    SST 

EC 2    SST + SSS 

EC 3    SST + SSS + CHLA 

EC 4    SST + SSS + TSS 

EC 5    SST + SSS + TSS + CHLA 

Rrs 1    Rrs(412) + Rrs(555) + Rrs(678) + Rrs(859) 

Rrs 2    Rrs(412) + Rrs(555) + Rrs(678) + Rrs(859) + SST 
 

aSST, sea surface temperature; SSS, sea surface salinity; TSS, total suspended solids; 

CHLA, chlorophyll-a; Rrs, remote sensing reflectance. 

 

 



 

	 46	

3.3.2 Classification methods for bacterial presence and absence prediction 

The first phase in the modeling effort of the zero-inflated Same Week and 1-

Week Forecast datasets was to use binary classification models to predict detected 

presence or absence of Vibrio parahaemolyticus in Chesapeake Bay. To avoid bias 

toward the majority class in our predictions, in this study the absence of V. 

parahaemolyticus, the training data in each of the Monte Carlo iterations was rebalanced 

using the “ROSE” package in the R Statistical Computing Environment (Lunardon et al., 

2014; R	 Core	 team,	 2013). The chosen rebalancing technique both oversampled the 

minority class to 40% and undersampled the majority class to 60% of the training dataset. 

Each of the four statistical and machine learning models were run using seven 

variations of remote sensing-based EC and Rrs models (Table 3.1). The best threshold for 

classification into present or absent from predicted probability was determined iteratively 

by each model run, since there is no ecological basis to the default threshold of 0.5. Using 

the Same Week dataset, in situ measurements were input into the EC models in place of 

remote sensing data in order to compare the utility of remote sensing-based to in situ-

based models. 

Binary classification predictions from these models were evaluated using three 

metrics, which are calculated from the features of a confusion matrix  – accuracy (ACC), 

sensitivity (SE), and specificity (SP). Accuracy is the measure of a model’s ability to 

correctly distinguish between positive and negative, or presence and absence, V. 

parahaemolyticus samples. While accuracy is a widely used metric for classification 

models, we also consider the two additional metrics due to the potential for accuracy to 

misrepresent performance when a strong bias toward the majority class is predicted. 



 

	 47	

Sensitivity, also referred to as the true positive rate, is a measure of a model’s ability to 

correctly predict V. parahaemolyticus presence (detects). Specificity, or true negative 

rate, is a measure of its ability to correctly predict absence of V. parahaemolyticus (non-

detects). While we consider all three metrics equally within this study for the application 

to V. parahaemolyticus prediction, previous work has suggested other evaluation criteria 

(MacKenzie et al., 2002; Lobo et al., 2007).   

The calculations of classification metrics used in this study to describe the holdout 

validation results are shown below: 

ACC = (TP + TN) / (P + N)      (1) 

where TP is the number of true positives, or correctly predicted presence samples, TN is 

the number of correctly predicted absence samples, and the sum of both is divided by the 

total number of presence samples (P) and absence samples (N). 

SE = TP / (TP + FN)       (2) 

where FN is the number of false negatives, or presence samples that are misclassified as 

absence.  

SP = TN / (FP + TN)       (3) 

where FP is the number of false positives, or absence samples that are misclassified as 

presence.  

 We visualize the distribution of these classification metrics over the 100 iterations 

of randomly sampled training and holdout data using boxplots. A boxplot is constructed 

using quartiles, where the length of the box is bounded by the first and third quartiles 

(25th and 75th percentiles) and the median value is indicated by a horizontal line within 

the box. The “whiskers” extending from the box show the variability of data outside of 



 

	 48	

the first and third quartile range, while outliers are represented by open circles above or 

below these whiskers.   

 

3.3.3 Regression methods for bacterial abundance prediction 

To predict and forecast the abundance of V. parahaemolyticus, we employed the 

same statistical and machine learning models described above for continuous regression 

analyses. Abundance data was transformed using a log(x + 1) transformation in order to 

avoid negative values and preserve the natural limit of zero in the analyses. 

 Following the precedent of Urquhart et al. (2015) and offering realistic 

operational potential, the abundance predictions used a combination of the above 

classification procedure and continuous regression. The classification model first 

separated the holdout validation data into present or absent. Four modeling approaches 

(GLM, GAM, RF, SVM) capable of regression were then trained on the presence-only 

data within the same training dataset as was used for the classification model. Finally, the 

models predicted abundance for all holdout data that was classified as present for V. 

parahaemolyticus. This combination of procedures was done for each of the seven EC 

and Rrs models, using same EC or Rrs input variable structures for both the classification 

and regression steps. 

The regression models’ performance on the holdout validation data was evaluated 

using a weighted mean absolute error (WMAE), introduced for zero-inflated datasets in 

Shashanni et al. (2016). The WMAE takes into consideration true positives and false 

positives from the prior classification stage when evaluating the success of the regression 

holdout predictions. In this study, we weighted false positives in the mean absolute error 
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calculations more heavily (by a factor of 10) than true positives in the classified presence 

data. Various weights were evaluated in the previous study, but ultimately it was found to 

be an arbitrary choice based on the application (Shashanni et al., 2016). The WMAE 

metric produces large values compared to the range of the dataset and are not presented 

in the original units of the data. It is used in this study only as a tool to compare 

performance between models.   

In this work, we chose to weight by a factor of 10, versus 1 or 100, in order to 

represent an intermediate effect on the regression model results. This weighting could 

represent a scenario in which there is an economic cost to incorrectly predicting harmful 

concentrations of V. parahaemolyticus in a shellfish harvesting area due to an 

unnecessary closure. Currently there are no V. parahaemolyticus prediction or forecast-

based closures of shellfish harvesting areas, so the weighting method used to evaluate 

abundance predictions here is conservative. 

 

3.3.4 Statistical null models 

Statistical null models provide a baseline to which the classification and 

regression models in this study can be compared. The null classification models used in 

holdout validation were structured to imitate the ratio of presence to absence in the Same 

Week and 1-Week Forecast datasets, composed of randomly distributed 13% presence 

and 87% absence and randomly distributed 16% presence and 84% absence, respectively. 

For regression, the statistical null model used the above classification distribution of 

randomly assigned presence and absence and then assumed the mean abundance of the 
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datasets for presence predictions (1.13 log(GE/ml + 1) for Same Week, 1.12 log(GE/ml + 

1) for 1-Week Forecast).  

 

3.3.5 Spatial comparison 

To provide an example of the spatial variation in predictions between models 

using only SST versus those using additional environmental predictors, we compared 

maps of predicted abundances from two environmental input structures. We applied these 

models to a MODIS 8-day composite from dates 20-27 July 2013 that was not included 

in the previous model comparisons. Abundance predictions were generated through the 

classification-regression combination method using RF-EC1, with only SST as its input, 

and RF-EC5, which uses all of the remotely sensed environmental information available.  

Our in situ dataset does not extend into this time period for a quantitative “ground 

truthing” comparison between models. However, we analyzed the similarities and 

differences between the models’ output qualitatively and in reference to a reported year-

long shellfish harvesting area closure by the Virginia Department of Health on 12 July 

2013 that was enforced after three confirmed V. parahaemolyticus illness cases (Virginia 

Department of Health, 2013). The MODIS 8-day composite used here occurred after the 

infected shellfish were harvested, but it provides nearly full coverage of the Bay that is 

less limited by cloud cover than preceding 8-day composites from that summer. 

 

3.4 Results and Discussion 

The relationships between weekly MODIS-derived water quality variables and 

corresponding in situ measurements in the Same Week dataset are found in Figure 3.2. 
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Linear regression equations, explained variance (R2), bias (mean error - ME), and mean 

absolute error (MAE) are reported. While SST and SSS showed strong correlation (R2 > 0.6), 

MODIS-derived TSS and chlorophyll-a showed weak correlation between the satellite 

estimates and in situ measured values (Figure 3.2). The limited ability to distinguish between 

suspended solids, dissolved organic material, and chlorophyll-a using ocean color remote 

sensing in optically complex Case II waters like Chesapeake Bay has been well documented 

(Gons, 1999; Dall’Olmo et al., 2005; Schalles, 2006; Gitelson et al., 2007; Werdell et al., 

2009). Because MODIS 8-day composites are used here to increase satellite coverage in 

cloudy summer months, the satellite-in situ relationships are likely weakened further due to 

the dynamic nature of estuarine systems on sub-week timescales. However, satellite TSS and 

chlorophyll-a retrievals showed a low bias (0.73 and 1.72, respectively) while SST retrievals 

showed a larger bias towards lower values than in situ measurements (-3.78). Summary 

statistics for MODIS and V. parahaemolyticus data in the satellite-in situ matchup datasets 

are found in Table 3.2. 

 

3.4.1 Presence, absence predictions for Same Week 

All variations of the classification models used here performed better than the statistical 

null model (ACC = 76.73%, SE = 13.48%, SP = 86.88%) when taking all three metrics 

into consideration (Figure 3.3). While the accuracy of the null model appears to perform 

well, the true classification performance on the zero-inflated holdout data is revealed by 

the low sensitivity metric. Low sensitivity and high specificity indicates that the null 

model predictions rarely capture true positive samples. This result suggests that the 
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models in this study were better able to classify true presence and absence than a model 

that randomly guesses. 

For all four modeling approaches, the accuracy of the holdout predictions 

increased with the addition of remotely sensed environmental predictor variables (EC1 

 

 

Figure 3.2.  One-to-one comparison between Same Week satellite-in situ matchups for 

(A) sea surface temperature, (B) sea surface salinity, (C) total suspended solids, (D) 

chlorophyll-a and corresponding in situ measurements. Bias (ME) and mean absolute error 

(MAE) are reported along with linear regression equations. 
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versus EC4, EC5) (Figure 3.3). The accuracy of all model types’ EC4 and EC5 variations 

were statistically different (p < 0.05) than the respective EC1 variation that uses only SST 

(Table S3.1). The SVM-Rrs and RF-Rrs2 models also produced accuracies that were 

higher and statistically significant than their SST-only models (Table S3.1). 

Models with the highest accuracies were SVM-EC4 (70.74%) and GLM-EC4 

(70.63%) and SVM-Rrs2 (69.03%) (Table S3.1). The addition of chlorophyll-a in EC5 

did not improve the accuracy over EC4 in any of the models (Figure 3.3, Table S3.1). 

The Rrs models generally underperformed compared to the best EC models except for 

SVM-Rrs2, but they provided higher accuracies than EC1 and EC2 in all cases except 

RF-Rrs1 (Figure 3.3, Table S3.1). In situ models showed similar performance to their 

corresponding remote sensing models in most cases, with GLM-EC4 being a notable 

exception where the remote sensing model outperformed the in situ model by a wider 

margin (Figure 3.3, Table S3.2). 

The sensitivity metric helps to further differentiate the performance between the 

classification models by indicating the ability of the models to correctly predict presence. 

The GLM-EC and SVM-EC models showed decreased sensitivity with the addition of 

remotely sensed variables (EC1 versus EC4, EC5), while the GAM-EC and RF-EC 

models showed higher sensitivities than their SST-only models (Figure 3.3).  

 The highest sensitivities are achieved by GLM-EC1 (82.13%) and RF-Rrs1 

(79.02%) and the lowest sensitivities were produced by SVM-EC4 (57.97%) and RF-EC1 

(61.22%) (Table S3.1). The GAM-Rrs and RF-Rrs models perform better than their best 

respective EC models, while the GLM-Rrs and SVM-Rrs models did not perform as well 

as their EC models (Figure 3.3). The addition of SST in Rrs2 improved the sensitivity 
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over Rrs1 in all models except RF-Rrs (Table S3.1). The in situ models showed high 

sensitivities, outperforming their remote sensing counterparts in all cases (Figure 3.3, 

Table S3.2).  

 

 

Table 3.2. Summary of remote sensing products and in situ Vibrio parahaemolyticus 

measurements used in this study. 

     Same Week a       
 

1-Week Forecast b   

Variable Mean Standard 
Deviation Minimum Maximum Mean Standard 

Deviation Minimum Maximum 

Vibrio parahaemolyticus 
abundance (GE/mL)c 2.80 3.06 0.40 17.71 2.64 2.75 0.40 17.71 

Sea Surface Temperature 
(°C) 14.49 7.36 0.05 29.06 16.99 7.92 1.35 29.95 

Sea Surface Salinity (‰) 15.51 4.94 0.00 26.49 15.19 4.94 0.00 28.70 
Total Suspended Solids 

(mg/L) 8.71 3.59 3.80 31.97 8.97 3.71 4.15 26.67 

Chlorophyll-a (mg/L) 10.67 12.29 2.16 180.33 12.56 24.76 0.10 472.19 
Rrs_412-nm (sr-1) d 1.71E-03 1.19E-03 0.00E+00 7.17E-03 1.78E-03 1.34E-03 1.00E-05 9.96E-03 
Rrs_555-nm (sr-1)  7.50E-03 3.25E-03 2.02E-03 2.23E-02 7.50E-03 3.30E-03 1.65E-03 2.30E-02 
Rrs_678-nm (sr-1)  3.83E-03 3.59E-03 8.00E-05 3.08E-02 3.77E-03 3.04E-03 5.00E-05 1.96E-02 
Rrs_859-nm (sr-1)  7.83E-04 7.97E-04 0.00E+00 5.90E-03 7.74E-04 7.84E-04 1.50E-05 4.90E-03 

an = 572  
        bn = 605 
        cCalculated using in situ samples where Vp was detected, Daily (n =77 ) 1 Week Forecast (n = 98) 

dRemote sensing reflectance 
    

 

The specificity metric also helps to further diagnose the performance of the 

classification models by indicating the ability of the models to correctly predict absence. 

The performance in specificity generally increased with the addition of remotely sensed 

environmental variables (EC1 versus EC4, EC5) for each model type (Figure 3.3). 

Models with the highest specificities were SVM-EC4 (72.64%) and GLM-EC4 (71.14%) 
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(Table S3.1). The Rrs models showed lower specificities compared to the best EC 

models, but were higher than EC1 and EC2 in all cases except RF-Rrs1 (Figure 3.3, 

Table S3.1). In situ models had similar or lower specificities than their corresponding 

remote sensing models for all model types (Figure 3.3, Table S3.2). 

Based on all three classification metrics reported, we determined that the best 

performing Same Week classification models to predict V. parahaemolyticus presence 

and absence were GLM-EC4, GLM-EC5, and SVM-Rrs2 (Table S3.1). However, no 

model type performed better than the others when considering performance over all 

remotely sensed input variations.   

 

3.4.2 Abundance predictions for Same Week 

Abundance models in this study used a combination of classification and 

continuous regression due to the strong zero-inflation in the datasets. Here we used RF 

classification for all models, while varying only the model type for abundance 

predictions. The same input structures (EC1, EC2, Rrs1, etc.) were used for both the RF 

classification and regression steps. 

All variations of the classification-regression combination models were on 

average able to predict V. parahaemolyticus abundance better than the mean statistical 

null model (WMAE = 10.02) (Figure 3.4). This indicates that the models can better 

predict abundance than a model that assumes the mean detected abundance at sites with 

randomly predicted presence of V. parahaemolyticus.  
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Figure 3.3. Boxplots showing accuracy, sensitivity, and specificity for Same Week 

holdout classification predictions. Remote sensing-based models shown in gray and 

corresponding in situ models shown in white. Red diamonds indicate mean value. Dotted 

line shown only for ease of visual comparisons between models. 

 

 

Models with more remotely sensed environmental information (EC4 and EC5) 

produced lower WMAEs than models with less environmental information (EC1 and 

EC2) for all model types except SVM, where SVM-EC4 produced lower WMAE than 
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SVM-Rrs1 (8.43) (Table S3.3). GLM, GAM, and RF reflectance (Rrs) models exhibited 

higher WMAEs than the best EC models for each model type, but performed better than 

EC1 and EC2 in all cases (Table S3.3). Only SVM-Rrs1 produced lower WMAE than the 

SST-only SVM-EC1 model (Table S3.1). Many of the SVM models outperformed the 

other model types when considering all remotely sensed input structures. Unlike presence 

and absence prediction accuracy, some in situ regression models performed considerably 

better than their equivalent remote sensing-based models (Figure 3.4).  

Improvements that remote sensing offers over in situ-based models could be due 

to the nature of integrating information over a larger area. However, models using in situ 

data are able to incorporate environmental parameters that are not currently available 

from remote sensing (e.g. dissolved organic nitrogen). Compared to previous in situ 

modeling studies for V. parahaemolyticus in Chesapeake Bay, our remote sensing models 

performed similar in accuracy and sensitivity on holdout validation data (Urquhart et al., 

2015; Davis et al., 2019). However, the differences in size and distribution between data 

used in previous work and the dataset used here may not offer a fair comparison between 

studies. 

 

3.4.3 Spatial comparison 

To provide an example of the spatial variation in predictions, we compared maps 

of predicted abundances from two different environmental input models (Figure 3.5). 

Abundance predictions were generated through the classification-regression combination 

method using RF-EC1, with only SST as its input, and RF-EC5, which uses all four 

remotely sensed environmental input variables. The weekly composite used corresponds 
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to a reported year-long shellfish harvesting area closure by the Virginia Department of 

Health on 12 July 2013 due to confirmed V. parahaemolyticus illness cases (Virginia 

Department of Health, 2013). 

Both models predicted absence or low abundance of V. parahaemolyticus in the 

Upper Chesapeake Bay region and on the eastern coast of the mid-Bay region. Spatial 

differences in predictions between the models are apparent in many areas. In the James 

River and Potomac River, the SST-only model predicted absence or low abundance while 

the EC5 model predicted much higher abundances of the bacterium (Figure 3.5). The 

SST-only model predicted considerable V. parahaemolyticus abundance in the Mainstem 

of the Lower Bay and north of the Potomac River, but the EC5 model predicted that these 

regions were predominantly clear of detectable V. parahaemolyticus. 

When considering the area around Fisherman’s Island that would have been 

closed to shellfish harvesting during this time, both models predicted there to be small 

areas of higher bacterium concentrations. However, the SST-only model predicted this 

higher region to occur to the east of the Island while the EC5 model predicted it to be 

more westward (Figures 3.5C, 3.5D). It should be noted that bottom reflectance from 

shallow waters like those found in this area have been shown to affect ocean color 

retrievals and may contribute to particularly inaccurate TSS and chlorophyll-a retrievals 

(Carder et al., 2005). 

A key difference between the models shown in the mapped predictions is the 

ability of each to distinguish between V. parahaemolyticus presence and absence. 

Presence predictions, where the abundance shown is greater than zero, are widespread in 

the Mid and Lower Bay for the SST-only model (Figure 3.5A). However, the EC5 model 
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incorporating other water quality predictors distinguishes areas of presence in the Mid 

Bay and near shore Lower Bay regions from areas of absence in the Mainstem of the Bay 

(Figure 3.5B). This is consistent with our results in Section 4.1 where specificity, or the 

ability to correctly predict absence, is increased with the addition of SSS, TSS, and 

chlorophyll-a. While we do not have in situ data from this 8-day period to validate the 

model results, they agree with the smaller percentage of detects found in the Lower 

Mainstem in a previous study (Davis et al., 2017).   

 

 
Figure 3.4. Boxplots showing weighted mean absolute error (WMAE) for Same Week 

holdout presence-abundance predictions. Remote sensing-based models shown in gray and 

corresponding in situ models shown in white. Red diamonds indicate mean value. Mean 

statistical null model (WMAE = 10.02) shown as solid black line. 
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3.4.4 Presence, absence for 1-Week Forecast 

Results shown in the previous sections represented zero-lag predictions. Now we 

consider the ability of the remote sensing-based models to forecast V. parahaemolyticus 

one week in advance, which could provide shellfish managers and harvesters additional 

time to prepare preventative and control measures (Konrad et al., 2017). Here we assess a 

temporal lag of one week, but other sub-monthly lags could be investigated for future 

operational forecasts (Davis et al., 2019). Accurate forecasting is particularly important 

given the time that it takes to generate and disseminate predictions, which can be up to 

several days on account of satellite data latency and communication requirements. 

Classification models for forecasting V. parahaemolyticus in Chesapeake Bay one 

week in advance performed better than the statistical null model (ACC = 73.84%, SE = 

17.01%, SP = 84.56%) when taking all three evaluation metrics into consideration. 

Similar to the Same Week case, the low sensitivity and high specificity indicates that the 

null model’s predictions capture very few true positive samples.  

All four modeling approaches displayed increased accuracies on predicted 

presence and absence with an increase of remotely sensed environmental information 

(EC1 to EC5) (Figure 3.6). The accuracy of all model types’ EC4 and EC5 variations 

were statistically different (p < 0.05) than the respective EC1 variation that uses only SST 

(Table S3.4). Forecast models producing the highest accuracies were SVM-EC5 

(67.80%), SVM-EC4 (67.57%), and GAM-EC4 (65.94%) (Table S3.4).  

While reflectance (Rrs) forecast models did not perform as well the best 

environmental models in terms of accuracy, all but RF-Rrs1 outperformed the SST-only 

model for each model type. Both Rrs models for GAM and SVM, as well as GLM-Rrs2, 
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produced accuracies that were also statistically significant from the SST-only models 

(Table S3.4).  

The GLM-EC, GAM-EC, and SVM-EC models showed decreased sensitivity 

with the addition of remotely sensed variables (EC1 versus EC5), while the RF-EC 

models showed increasing sensitivity with the addition of inputs (Figure 3.6). The GLM-

Rrs GAM-Rrs and SVM-Rrs models produced lower sensitivities than their respective 

EC models, while RF-Rrs2 exhibited higher sensitivity than all of its EC models (Figure 

3.6). The addition of SST in Rrs2 improves the sensitivity over Rrs1 in all models except 

SVM-Rrs (Table S3.4).  

The specificity increased with the addition of remotely sensed environmental 

variables (EC1 versus EC4, EC5) for each model type (Figure 3.6). The Rrs models 

generally showed lower specificities compared to the best EC models, but were higher 

than EC1 and EC2 in all cases except RF-Rrs1 and RF-Rrs2 (Figure 3.6, Table S3.4). The 

addition of SST in Rrs2 increased the specificity over Rrs1 for all model types (Table 

S3.4). 

Based on all three classification metrics reported, the best performing Same Week 

classification model to forecast V. parahaemolyticus presence and absence was 

determined to be SVM-EC4 (Table S3.4). No model type outperformed the others when 

considering performance over all remotely sensed input variations. In contrast to the 

Same Week model results, the addition of remotely sensed chlorophyll-a in EC5 

improved the performance over EC4 for GLM, RF, and SVM models (Figure 3.6). 
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Figure 3.5. Spatial comparison of Random Forest abundance predictions on MODIS 8-day 

composite from 20 July 2013 to 27 July 2013 using (A) sea surface temperature and (B) sea 

surface temperature, sea surface salinity, total suspended solids, and chlorophyll-a as 

remotely sensed inputs. Red boxes show shellfish harvesting area near Fisherman’s Island, 

with (C) and (D) showing zoomed views of (A) and (B), respectively. 
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3.4.5 Abundance for 1-Week Forecast 

We again used a combination of classification and continuous regression due to 

zero-inflation in the matchup dataset. Random forest classification was again used for all 

models while the model type was varied only for regression. The same input structures 

(EC1, EC2, Rrs1, etc.) were used for both the classification and regression models. 

All classification-regression combination models were on average able to forecast 

V. parahaemolyticus abundance better than the mean statistical null model (WMAE = 

9.04) (Figure 3.7, Table S3.5). More remotely sensed environmental information (EC3 to 

EC5) improved the abundance forecasts over forecast from less environmental 

information (EC1, EC2) for GLM, GAM, and RF (Figure 3.7, Table S3.5). For SVM, 

only the EC4 and EC5 forecasts improved over EC1 and EC2. The lowest WMAEs were 

achieved by RF-EC5 (7.56) and SVM-EC4 (7.69) (Table S3.5).  

Forecasts using the remote sensing reflectance input structure Rrs2 performed 

similar to or better than EC models for GLM and GAM (Figure 3.7). This performance 

compared to EC models was not shown for RF and SVM. However, SVM-Rrs1 and 

SVM-Rrs2 produced lower WMAE than SVM-EC1 and RF-Rrs2 achieved lower 

WMAEs than RF-EC1 and RF-EC2 (Figure 3.7). 

 

3.5 Conclusion 

This study evaluates prediction and forecast models for V. parahaemolyticus in 

Chesapeake Bay using satellite-derived products. It investigates whether additional remotely 

sensed environmental information improves predictions and forecasts, and if untransformed 

remote sensing reflectances could be used as predictors in place of environmental products.  
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Figure 3.6. Boxplots showing accuracy, sensitivity, and specificity for 1-Week Forecast 

holdout classification predictions. Red diamonds indicate mean value. Dotted line shown 

only for ease of visual comparisons between models. 

 

 

Finally, the study considers whether remotely sensed predictions are comparable to 
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over a 4-year period. MODIS was chosen for this work because of its overlap with the in situ 

dataset and its vast literature of established ocean color algorithms. However, we 

acknowledge that these results serve as a proof of concept and additional testing is required 

when applying these methods to newer sensors with ocean color capacity like NOAA Visible 

Infrared Imaging Radiometer Suite (VIIRS) sensor aboard the Suomi National Polar-Orbiting 

Partnership spacecraft (2011 –) or the EUMETSAT Ocean and Land Colour Instrument 

(OLCI) aboard the Sentinel-3 spacecraft. 

 

 
Figure 3.7. Boxplots showing weighted mean absolute error (WMAE) for 1-Week 

Forecast holdout abundance predictions. Red diamonds indicate mean value. Mean 

statistical null model (WMAE = 9.29) shown as solid black line. 
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More environmental information generally improved the accuracy of predicting 

presence and improved abundance predictions in the same week. The same was found while 

forecasting V. parahaemolyticus presence and abundance, which was also shown in a recent 

study examining monthly temporal lags using in situ data in Chesapeake Bay (Davis et al., 

2019). Although an association with salinity has been commonly observed (DePaola et al., 

2003; Zimmerman et al., 2007; Patra et al., 2009; Johnson et al., 2010; Davis et al., 2017), 

the results of this study showed little improvement with the addition of SSS over models 

using only SST. However, the salinity estimates from hydrodynamic models have been 

shown to be more accurate than satellite-derived estimates (Vogel & Brown, 2016). 

Therefore, a mixed-media approach could improve these models and should be investigated 

in the future. 

 The addition of chlorophyll-a to EC models improved the performance of classification 

and abundance predictions for the 1-Week forecast, while they did not improve predictions 

for the Same Week models. This could be due to the association of V. parahaemolyticus and 

chitin-rich zooplankton, where chlorophyll-a indicates the presence of the primary food 

source of phytoplankton.  

Additional environmental information improved accuracy over SST models primarily 

because it reduced false positives (i.e., better prediction of absence), evident where accuracy 

results mirror the specificity results when comparing from EC1 to EC5. Our results suggest 

that including additional information could decrease the likelihood of false positive 

predictions thereby decreasing the likelihood of a shellfish harvesting area being 

unnecessarily affected by regulatory action. However, false positives may not be detrimental 
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from the perspective of protecting public health where a cautionary approach could be 

preferred. 

Models using reflectances as inputs did not show accuracies as high as models using 

environmental inputs for Same Week presence predictions. However, the reflectance models 

did show potential for forecasting presence one week in advance. The improvement of Rrs 

models over SST-only models indicates that these products alone have the potential to 

improve V. parahaemolyticus models in Chesapeake Bay. As new ocean color sensors 

become operational, the ability to use remote sensing reflectances instead of algorithm-

derived environmental products could streamline modeling efforts by eliminating the need to 

first develop algorithms for each environmental parameter needed. Remote sensing 

reflectance models may outperform models using environmental parameters because they 

capture ecological processes not represented in the chosen parameters. Their use could 

bypass the cascading effect on model accuracy first introduced in the derivation of ocean 

color products from imperfect algorithms.  

The remote sensing-based models in this study generally performed similarly to their 

equivalent in situ models for presence and absence prediction accuracy. Some models using 

more environmental information than only SST showed better accuracy than their in situ 

models by a relatively large margin. However, the remote sensing-based models were not 

always able to predict V. parahaemolyticus abundance as well as the in situ models.  

Although more complex machine learning models (RF and SVM) at times performed 

better than simpler models (GLM and GAM), the relationships between V. parahaemolyticus 

and the predictor variables in machine learning-type models are not always obvious. For this 

reason, some users prefer to implement models like GLMs where the relationships between 
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variables are apparent and can be verified with previous knowledge of Vibrio ecology. 

However, a larger satellite-in situ matchup dataset may contain more complex relationships 

between variables that cannot be captured by simpler models. Machine learning models may 

even be able to capture relationships between V. parahaemolyticus and environmental 

variables that are not yet known or understood. An ensemble prediction from both simple and 

complex models could also improve future predictions.  

Larger datasets with additional measurements of detected V. parahaemolyticus matched 

to satellite data are needed to robustly determine the preferred model for operational 

predictions and early warning systems. While cloud cover and coarse spatial resolution can 

limit the coverage of remote sensing datasets in coastal waters like the Chesapeake Bay, 

geostatistical interpolations (i.e. kriging) could be utilized for future models to fill gaps in 

space and time where satellite data is missing. Previous attempts to krige with MODIS data 

in the Chesapeake Bay have been effective (Urquhart et al., 2013) and recent advances in 

appropriately applying kriging to complex bodies of water could be useful in developing 

complete forecast maps based solely on remotely sensed data (Davis & Curriero, 2019). 

 The perspective from both shellfish harvesters and public health professional should be 

considered in future research leading towards an appropriate operational model for predicting 

or forecasting V. parahaemolyticus in water bodies. For example, there could be an 

advantage from the public health perspective in choosing a model that produces high 

sensitivity with low specificity, maximizing correctly predicted positives, if an 

overestimation of risk is acceptable. In contrast, a more conservative approach where the 

model maximizes correctly predicted absences could be preferred. In future work leading 
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towards an operational product, these varying perspectives such as these should be 

considered. 

Overall the results of this study show that satellite remote sensing can be a valuable tool 

for V. parahaemolyticus monitoring and forecasting in Chesapeake Bay surface waters, 

particularly when products in addition to SST are used. Utilizing higher spatial and spectral 

resolution sensors could further enhance the value of remote sensing data by providing more 

coverage of near-shore regions and additional spectral information that could capture 

additional environmental processes or associations. The results and considerations presented 

in this study could expand the use and effectiveness of future satellite-informed V. 

parahaemolyticus predictions and forecasts in estuarine and coastal waters.  
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Table S3.1  Percent accuracy (ACC), sensitivity (SE), and specificity (SP) for Same 

Week holdout classification predictions using remotely sensed inputs. 

    EC 1 EC 2 EC 3 EC 4 EC 5 Rrs 1 Rrs 2 

 
ACC 54.63 52.56 54.46 70.63* 68.49* 58.11 55.27 

GLM SE 82.13 78.89 78.36 67.40 70.41 66.19 77.92 

 
SP 50.31 48.54 50.72 71.14 68.11 56.90 51.68 

  ACC 61.58 54.04* 59.71 67.89* 64.75* 63.31 64.82 
GAM SE 69.32 74.97 74.34 71.05 73.53 75.77 76.56 

 
SP 60.31 50.63 57.50 67.39 63.34 61.47 63.04 

  ACC 61.70 54.79* 54.18* 66.88* 66.52* 61.03 65.27* 
RF SE 61.22 73.54 76.21 69.64 68.27 79.02 78.86 

 
SP 61.87 51.74 50.50 66.37 66.56 58.28 63.15 

  ACC 60.69 55.90* 54.48* 70.74* 66.41* 68.09* 69.03* 
SVM SE 68.02 70.31 76.39 57.97 63.40 63.97 67.02 
  SP 59.63 53.75 51.17 72.64 66.97 68.86 69.34 

      *indicates accuracy of input structure is statistically different from SST-only model 

 

 

Table S3.2 Percent accuracy (ACC), sensitivity (SE), and specificity (SP) for Same 

Week holdout classification predictions using in situ measured inputs. 

    EC 1 EC 2 EC 3 EC 4 EC 5 

 
ACC 57.84 56.70 53.94 59.63 59.13 

GLM SE 94.45 92.99 91.00 88.26 84.29 

 
SP 52.22 51.08 47.98 55.18 55.12 

  ACC 59.11 59.77 55.28 65.20 62.89 
GAM SE 91.55 90.77 89.62 84.48 81.58 

 
SP 54.07 55.04 49.78 62.24 59.80 

  ACC 65.11 61.18 60.63 62.78 66.55 
RF SE 68.91 84.31 83.66 85.85 80.60 

 
SP 64.41 57.61 56.95 59.15 64.13 

  ACC 59.33 57.36 57.46 61.37 61.60 
SVM SE 84.39 88.24 82.44 82.93 71.82 

  SP 55.19 52.13 53.21 57.79 59.89 
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Table S3.3 Weighted mean absolute error (WMAE) for Same Week holdout abundance 

predictions using remotely sensed (RS) and in situ inputs. 

    EC 1 EC 2 EC 3 EC 4 EC 5 Rrs 1 Rrs 2 
GLM RS 9.51 9.55 9.41 8.48* 8.48* 9.35 9.13* 

 
In situ 8.77 8.56 8.74 8.30 8.33 - - 

GAM RS 9.53 9.54 9.61 8.59* 8.58* 8.91* 8.62* 

 
In situ 8.75 8.55 8.66 8.31 8.36 - - 

RF RS 9.93 9.51* 9.38* 8.74* 8.81* 8.83* 8.91* 

 
In situ 8.71 8.57 8.46 8.20 8.28 - - 

SVM RS 8.49 9.13* 9.13* 8.36 8.59* 8.43 8.67 
  In situ 8.06 7.75 8.28 8.11 8.28 - - 

 
*indicates accuracy of input structure is statistically different from SST-only model 

 
 
 
 
 

Table S3.4 Percent accuracy (ACC), sensitivity (SE), and specificity (SP) for 1-Week 

Forecast holdout classification predictions using remotely sensed inputs. 

    EC 1 EC 2 EC 3 EC 4 EC 5 Rrs 1 Rrs 2 

 
ACC 54.11 54.69 54.00 61.78* 62.08* 54.76 63.06* 

GLM SE 91.60 88.52 90.14 82.49 82.2 76.65 80.41 

 
SP 46.76 48.13 46.95 57.76 58.24 50.49 59.95 

  ACC 51.79 54.90* 59.68* 65.94* 65.61* 60.18* 63.39* 
GAM SE 92.05 88.40 82.41 80.23 78.06 71.31 81.07 

 
SP 44.03 48.24 55.21 63.29 63.30 58.04 59.88 

  ACC 60.25 58.46 58.32 63.89* 64.84* 58.57 61.51 
RF SE 72.67 72.78 79.60 78.86 79.94 67.70 84.41 

 
SP 57.81 55.89 54.38 61.12 61.98 56.90 57.30 

  ACC 55.36 54.39 61.78* 67.57* 67.80* 59.60* 65.15* 
SVM SE 79.60 79.35 68.84 72.60 67.99 67.14 66.93 

 
SP 50.58 49.33 60.10 66.62 67.68 58.21 64.96 

 
*indicates accuracy of input structure is statistically different from SST-only model 
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Table S3.5 Weighted mean absolute error (WMAE) for 1-Week Forecast holdout 

abundance predictions using remotely sensed inputs. 

  EC 1 EC 2 EC 3 EC 4 EC 5 Rrs 1 Rrs 2 
GLM 8.76 9.05* 8.85 8.39* 8.26* 8.88 8.19* 
GAM 8.75 9.01* 8.42* 8.37* 8.01* 8.93 8.19* 

RF 8.53 8.97* 8.56 8.51 8.06* 9.19* 8.50 
SVM 8.13 8.52* 8.28 8.44* 8.21 8.85* 7.89* 

 
*indicates accuracy of input structure is statistically different from SST-only model 
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4. CHAPTER 4: PROVIDING PREDICTION UNCERTAINTY ON ENVIRONMENTAL 

MODELS USING QUANTILE REGRESSION FORESTS: A CASE STUDY FOR 

VIBRIO PARAHAEMOLYTICUS IN CHESAPEAKE BAY 

 

ABSTRACT 

With the improvement in predictions and forecasts from increasingly complex 

environmental models, Quantile Regression Forests (QRF) have the potential to communicate 

operationally relevant predictions and associated uncertainty to decision-makers and end-users. 

In this study we apply the QRF method to a case study in the Chesapeake Bay, where the 

prediction of Vibrio parahaemolyticus bacteria abundance in shellfish harvesting waters aims to 

decrease the incidence of shellfish-borne illness. Comparison of the mean, median (50th 

quantile), and 95th quantile predictions showed that the mean predicted bacterial abundance value 

was generally higher than the median predicted value, indicating a right-skewed prediction 

distribution that generally reflects bacterial abundance observations. This could be a particularly 

important difference for decision-makers during summer months, when the V. parahaemolyticus 

abundance and associated illness cases increase. The application of QRF to a user-defined 

threshold and acceptable level of risk of the prediction exceeding that threshold showed 

differences in the spatial extent and temporal frequency of affected harvesting sites when both 

decisions were varied. While the results of this study are not intended to suggest thresholds or 

acceptable risk levels for this case study or other environmental health applications, it provides 

an example for how QRF results could be presented in real-world operations to inspire better-

informed decisions.  
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4.1 Introduction 

Machine learning and other complex modeling techniques have proven to be effective for 

predicting and forecasting various types of environmental responses (Kanevski et al., 2004; 

Urquhart et al., 2012; Crisci et al., 2012; Dou & Yang, 2018; Shen et al., 2019). Many of 

these models are designed to provide insight for a specific purpose or problem, from 

informing decision-makers on a local scale to influencing the outcome of global negotiations 

(Beven 2007, p. 27). However, it can be difficult to present the results from these complex 

models to the end-users and decision-makers for whom they were intended. A challenge for 

scientists has been effective communication of the uncertainty associated with the output, 

which is important when considering environmental management action (Busch et al., 2015; 

Uusitalo et al., 2015). Communicating uncertainty to decision-makers properly and 

successfully allows them to evaluate the potential economic or public health consequences of 

their decision, making their evaluations better informed.  

An example of a public health issue in which decision-makers have begun to rely on 

complex environmental modeling output is the prevention of illness associated with Vibrio 

parahaemolyticus. Vibrio parahaemolyticus is a naturally occurring bacterium in brackish 

waters that is considered one of the most common causes of seafood-borne illnesses in the 

United States (Colwell et al., 1977; Scallan et al., 2011). Infection most commonly occurs 

through the consumption of contaminated raw shellfish, with gastroenteritis the main 

symptom of illness. The U.S. Centers for Disease Control reported that the rate of Vibrio spp. 

illnesses has been increasing over the past three decades, with particularly large numbers of 

incidence reported in in 2013 and 2018 (U.S. Centers for Disease Control and Prevention, 

2019). Prediction and forecasting of the bacterium’s abundance in shellfish harvesting waters 
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could help to reduce the public’s exposure to harmful concentrations of the bacteria by 

informing decision-makers to close a particular harvesting site or to impose strict post-

harvesting measures to reduce bacterial growth. Increasingly complex statistical and machine 

learning models have improved V. parahaemolyticus prediction (Davis et al, 2017; Davis et 

al., 2019; Chapter 3). While these models have begun to incorporate a variety of 

environmental predictor variables shown to be important for the bacterium’s prediction, there 

remains a need to effectively translate model output as valuable information for both the 

shellfish harvesters and regulatory decision-makers. Providing a measure of uncertainty with 

model predictions can aid these users in evaluating the implications of over-prediction or 

under-prediction from both the public health and harvesting industry perspectives.  

This study uses Vibrio parahaemolyticus prediction in the Chesapeake Bay as a case 

study to examine the potential of Quantile Regression Forests (QRF) for communicating 

scientific model output to users and decision-makers. Quantile Regression Forest (QRF) 

described in Meinshausen (2006) has been shown to be useful for various environmental 

applications (Vaysse & Lagacherie, 2017; Bhuiyan et al., 2018; Bogner et al., 2019). QRFs 

are an extension of an ensemble decision tree-based model known as a Random Forest (RF) 

that can be used for both classification and regression (Breiman, 2001). A QRF differs from a 

RF regression model because it provides a prediction interval that represents the full 

conditional distribution of response values from the ensemble, whereas a RF provides only 

one prediction value representing the mean of response values. This can be particularly 

useful when the mean prediction differs from the median prediction due to some skew in the 

prediction distribution. While predictions can be made from the median (50th quantile) 

values, they can also be made using a user-defined quantile value. For example, the 5th 
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quantile prediction may be used in applications where there is a need for predictions to be 

conservative. In this case, the predicted output would be lower than most of predicted 

outcomes. In contrast, a more radical prediction could be made at the 95th quantile, where 

output would be higher than most the distribution of predicted outcomes. 

The uncertainty provided by a QRF differs from the uncertainty that can be provided by 

other regression models because it is determined for each individual prediction point, known 

as a prediction interval. In contrast, the uncertainty for a typical regression model is defined 

by a confidence interval, which is a distribution of estimates of the true population mean of 

the predictions. This can be useful for applications where individual predictions and their 

uncertainty need to be communicated to individual users or decision-makers, such as 

providing predictions for specific shellfish harvesting beds.  

The prediction intervals can also be useful for applications that need to communicate the 

risk of a prediction exceeding a threshold. An example of this applied to shellfish harvesting 

area closures is shown in Figure 4.1. In the figure, some threshold of V. parahaemolyticus 

abundance is determined (dashed black line). Prediction interval distributions are represented 

by boxplots, where the 25th and 75th quartiles define the lower and upper limits of the box 

and the tails (arrows) represent the range of the distribution. While a RF model would deliver 

the mean value prediction for a given harvesting area, the QRF model can now provide the 

percent of the distribution that is above the abundance threshold (red shaded box). Figure 

4.1A shows a scenario where 30% of the prediction distribution is above the threshold, while 

Figure 4.1C show a scenario where 75% of the predictions are above the threshold. It is also 

a plausible scenario for 100% of the distribution (Figure 4.1B) or 0% (Figure 4.1D) to be 

above the abundance threshold. A higher percentage of the distribution being above the 
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threshold indicates a higher risk for that shellfish bed. A risk-based threshold can then be 

used to determine harvesting area closures. For example, a decision-maker could set a 

percent level of 50% where a harvesting area is closed if 50% of the predicted distribution is 

above the bacterial abundance threshold. 

 

 
Figure 4.1 Schematic of possible output scenarios (A-D) from a Quantile Regression Forest 

(QRF), showing how the prediction interval (boxplots) can be used to communicate the risk 

(red shaded area) of the prediction exceeding a user-defined Vibrio parahaemolyticus (Vp) 

threshold (dashed black line).  

 

The Chesapeake Bay, a large estuary in the eastern United States, is an ideal test bed for 

modeling studies due to its extensive history of water quality and aquatic biome monitoring. 

Chesapeake Bay water quality variables used in this study to model V. parahaemolyticus are 

A

B
C

D

V
p 

A
bu

nd
an

ce
 T

hr
es

ho
ld



 

	 78	

derived from satellite remote sensing, which is able to provide continuous data coverage 

throughout our 30-week period in 2010. Scenarios that could be applicable to a decision-

maker responsible for the closure of a shellfish harvesting area are investigated by varying 

the acceptable level of uncertainty in predictions or a bacterial abundance threshold. While it 

is still unclear whether the prediction of V. parahaemolyticus in surface waters used here has 

a direct relationship with the concentration of the bacterium in shellfish (Nilsson et al., 

2019), and therefore whether it is the most appropriate environmental indicator to apply for 

operational harvesting decisions, these case study results have the potential to influence 

environmental and public health communication beyond this specific application.  

 

4.2 Data Description 

4.2.1 In situ Vibrio parahaemolyticus measurements 

In situ sampling for Vibrio parahaemolyticus enumeration was conducted during 

the months April, July, and October for years 2007 through 2010. Surface water samples 

(0.5 m depth) were taken at 148 monitoring stations throughout the Chesapeake Bay and 

its major tributaries over this time period. Total V. parahaemolyticus abundance in units 

of genomic equivalents of colony-forming units (CFU) per milliliter (GE/ml) was 

determined via quantitative polymerase chain reaction (qPCR) with a limit of detection of 

0.14 CFU/ml. Many of the water samples (80.4%) did not have V. parahaemolyticus 

present in the sample or had abundances below the instrument’s limit of detection. Along 

with bacterial analysis, these same samples were also analyzed for numerous water 

quality parameters. Further detail on these measurements can be found in Jacobs et al. 

(2014) and Davis et al. (2017). 
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4.2.2 Satellite data processing  

Satellite data used in this study was derived from the Moderate Resolution 

Imaging Spectroradiometer on the Aqua platform (MODIS-Aqua). Level 1A MODIS 

Aqua (R2018) data over the Chesapeake Bay was downloaded from NASA’s ocean color 

archive (http://ocean color.gsfc.nasa.gov/) for the 4-year period from 2007 through 2010. 

This data was batch processed in NASA’s SeaDAS (version 7.5) software in order to 

obtain to binned 8-day composite files for ocean color products and sea surface 

temperature (SST). Changes to the default processing scheme in SeaDAS, developed for 

open ocean waters, in order to process coastal Chesapeake Bay waters are described in 

detail in Chapter 2. These changes to the cloud detection band, high light mask, and 

straylight mask increase the number of valid MODIS pixels around the Chesapeake Bay’s 

coastlines, within tributaries, and in turbid waters, where Vibrio are commonly found. 

Only 8-day weekly composites for months March through October (30 weekly 

composites in total) were used to overlap with the in situ measurement dates. 

Ocean color products were derived from MODIS weekly composites, including 

chlorophyll-a, total suspended solids (TSS), and sea surface salinity (SSS). The 

algorithms used to derive these products are found in Werdell et al. (2007), DeLuca et al. 

(2018), and Urquhart et al. (2012), respectively. Sea surface temperature (SST) is derived 

from MODIS by transforming thermal infrared radiances into degrees Celsius (°C) using 

the Planck function. 
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4.2.3 Shellfish harvesting areas 

Shellfish harvesting areas in this study were obtained from the Maryland 

Department of Natural Resources 

(https://gisapps.dnr.state.md.us/AquaDocs/coordinates.pdf) and the Virginia Marine 

Resources Commission (https://mrc.virginia.gov/Regulations/FR720.shtm). Here we 

represent the polygonal Chesapeake Bay shellfish lease sites as single point locations that 

are based on a corner of the recorded boundaries. Ninety-eight shellfish harvesting areas 

located throughout the Chesapeake Bay and major tributaries are used in the subsequent 

analyses. Satellite data were matched to these shellfish harvesting locations using a 

nearest neighbor approach within the R package “yaImpute” (Crookston & Finley, 2007; 

R Core Team, 2013). Each of the 98 harvesting areas were therefore matched with one 

satellite pixel for each of the 30 weeks in the study.  

 

4.3 Methods 

4.3.1 Modeling methodology 

 Vibrio parahaemolyticus data are commonly zero-inflated, with non-detects being 

the majority class and detected presence comprising only 20% of the in situ dataset. To 

account for the zero-inflation, we use a two-step approach to modeling bacterium 

abundance from the satellite data. This methodology is explained in detail in Chapter 2. 

For this study, we use a binary classification model to first predict whether the bacterium 

is present or absent at the harvesting site. For those sites where presence is predicted, a 

quantile regression model then predicts bacterial abundance. Both of these models are 

trained using the satellite-in situ matched dataset described in Chapter 3 and tested on the 
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30-week satellite dataset described in Section 2.2. A Random Forest model was used for 

classification and a Quantile Regression Forest (QRF) model was used for quantile 

regression. Both of these models used sea surface temperature, sea surface salinity, total 

suspended solids and chlorophyll-a as predictor variables. All modeling was performed in 

the R Statistical Computing Environment (version 3.3.2) using the package 

“quantregForest” for QRF analyses (R Core team, 2013; Meinshausen , 2017). 

 

4.3.2 Quantile Regression Forest 

QRFs are an extension of a Random Forest (RF), a decision tree-based machine 

learning model that can be used for both classification and regression (Breiman, 2001). 

The decision trees in a RF follow rules at data-defined nodes in the covariates in order to 

predict a response when fed with new data. The RF differs from a classic Classification 

and Regression Tree (CART) model because it comprises an ensemble of these trees, 

typically in excess of 500 trees, thereby making a “forest” of predictions. Each tree in this 

ensemble selects a random subset of training data (bagging) and predictor variables to be 

used at the decision-making nodes. When used for classification, the predicted response 

is the class with the majority vote from all trees in the forest. When doing regression, the 

predicted response is the mean of the predictions made by the ensemble of trees. The 

strengths of a Random Forest include the ability to manage non-linear and non-

parametric data, typically high predictive performance, the lack of intricate tuning of 

parameters, and robustness even when handling noisy predictor data (Tyralas et al., 

2019). A QRF model is an extension of the RF regression model because it stores and 

outputs information from all of the trees in the ensemble. Instead of providing one 
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prediction value representing the mean of all predictions, a QRF provides information 

about the distribution of all predictions in the ensemble and can produce prediction 

values using the median (50th quantile) or another quantile from the distributions. While 

the QRF has this flexibility in prediction options, they can overfit a model and should be 

used in conjunction with cross-validation. 

 

4.3.3 Model evaluation 

We evaluate the performance of the QRF model on the satellite-in situ matched V. 

parahaemolyticus dataset described in Chapter 3 using a Continuous Ranked Probability 

Score (CRPS) (Brown, 1974; Matheson & Winkler, 1976; Unger, 1985). The CRPS is a 

statistical tool that compares a distribution of predictions or a probabilistic forecast to an 

observed outcome. In order to calculate the value of the CRPS, both the prediction 

distribution and the outcome are represented as cumulative distribution functions (CDF). 

The total area between the two CDFs is the CRPS value given in units of the predicted 

variable. The CRPS for a deterministic prediction corresponds to a Mean Absolute Error 

(MAE) evaluation. A CRPS value of zero indicates perfect predictive accuracy. 

Here the CRPS was used to evaluate QRF model performance using a Monte 

Carlo holdout scheme. The satellite-in situ dataset was randomly split into 80% training 

data and 20% holdout data over 100 iterations. The two-step classification and regression 

approach described in Section 3.1 provided QRF prediction distributions for all data 

where presence was predicted. A CRPS was calculated for each of the data in an iteration 

of the Monte Carlo scheme and the mean CRPS value from that iteration was recorded. 
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The mean CRPS from all 100 iterations is then calculated and represents the performance 

of our QRF model.  

 

4.4. Results and Discussion 

4.4.1 Model performance 

The performance of our QRF model on the satellite-in situ matched dataset was 

evaluated using a Continuous Ranked Probability Score (CRPS), where a score of zero 

indicates perfect model performance because the cumulative distribution functions of the 

predictions and observed outcomes are equal. Over the 100 Monte Carlo iterations, the 

range of CRPS from the QRF model was 1.16 to 2.26 GE/ml with a mean value of 1.59 

GE/ml. This mean CRPS value represents 8.98% of the range of V. parahaemolyticus 

abundances (0.40 to 17.71 GE/ml) in the satellite-in situ dataset. We determine this to be 

an acceptable level of performance for this study. A full evaluation of the Random Forest 

approach upon which the QRF model is an expansion can be found in Chapter 3. 

 

4.4.2 Mean versus quantile predictions 

One advantage of quantile regression techniques is the ability to predict outcomes 

at a specific quantile instead of the mean (Cook & Manning, 2013). While a skewed 

distribution or outlier can influence the mean prediction value, the median (50th quantile) 

prediction value is less susceptible to those effects. To investigate the utility of using a 

mean versus quantile prediction value, we chose one harvesting area from three locations 

in various regions of the Chesapeake Bay where a large percentage of samples in the in 

situ dataset had detected the presence of V. parahaemolyticus (Davis et al., 2017).  
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A time series of predicted bacterial abundance at the three locations, the Chester 

River, Fishing Bay, and the James River, is shown in Figure 4.2. The length of the time 

series for each location depends on the number of weeks in which the bacterium was 

predicted to be present using the binary classification model described previously. The 

Fishing Bay and James River harvesting areas saw predicted bacterial presence in March, 

while the Chester River area did not have predicted presence until late-May. The Chester 

River harvesting sees fewer weeks with predicted presence than either of the other two 

harvesting areas. The increase in the number of weeks of predicted bacterial presence 

between harvesting areas in the Upper Bay (Chester River) and the Mid to Lower Bay 

Chesapeake Bay (Fishing Bay and James River) may be due to the north-south gradient 

of SST in the Chesapeake Bay corresponding with the seasonal cycle of temperature 

conditions in which V. parahaemolyticus thrive.  

In general, the median prediction values are lower than the mean prediction 

values. This is particularly apparent during the summer months of June through 

September, when notable differences between the mean and median prediction values 

occur in the Chester River and Fishing Bay. This difference is also observed to a lesser 

degree in the James River from August to September. Also shown in Figure 4.2 is the 

75th quantile prediction, representing the high end of the prediction distribution from all 

of the trees in the Quantile Regression Forest.  

The 75th quantile predictions illustrate how the mean prediction can be influenced 

by the shape of the prediction distribution throughout the 30-week time series. Where the 

mean prediction values are higher than the median values in summer weeks, the 75th 

quantile prediction values show a larger range of predictions than during weeks where the  
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Figure 4.2 Time series of predicted V. parahaemolyticus abundance (GE/ml) at the Chester 

River, Fishing Bay, and the James River over 30 weeks in 2010 showing mean RF 

prediction values (black circles), 50th quantile or median QRF prediction values (blue 

triangles), and 75th quantile prediction values (red diamonds). The number of data points 

for each location indicates the number of weeks in which the bacterium was predicted to be 

present. 
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mean and median values are more similar. This suggests that the models are producing a 

larger range in predictions, and therefore more uncertainty, during these summer weeks 

than at other times of the year. This could be important to consider when delivering 

abundance predictions to users and decision-makers during this summer period when 

illness cases from V. parahaemolyticus increase (U.S. Centers for Disease Control, 2013). 

Mean predictions could present an abundance value that garners more cautionary action 

for a harvesting area than would a median prediction.  

 

4.4.3 Scenarios based on level of risk 

Quantile predictions provide the ability to communicate the risk of a prediction 

exceeding some user-defined threshold, as described in Section 3.2. The risk levels in the 

following scenarios represent the percentage of the prediction distribution above a 

arbitrary threshold of bacterial abundance (1.5 GE/ml). In Figures 4.3 – 4.5, we examine 

how often shellfish harvesting areas throughout the Chesapeake Bay would be closed 

over the 30-week period in 2010 for three theoretical levels of acceptable risk. For 

example, the percentage of closures in Figure 4.3 indicates the frequency of a harvesting 

area having an abundance prediction distribution in which 40% of the distribution is 

above the 1.5 GE/ml threshold.  

When the risk level is held at 40% (Figure 4.3), all but one of the harvesting areas 

in the Bay are closed more than 60% of the 30-week period. This 40% risk level scenario 

is the most conservative of the three scenarios indicating that either harvesting area 

closures or stricter post-harvesting measures would be implemented often throughout the 

Bay. 
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Figure 4.3 Map of the frequently that shellfish harvesting areas throughout the Chesapeake 

Bay would be affected by a 40% level of acceptable risk, where at least 40% of the QRF 

prediction distribution is above a 1.5 GE/ml threshold, over a 30-week period in 2010. 

 

A similar mapping of the frequency of harvesting areas closures using a 50% risk 

level is shown in Figure 4.4. Here, at least half of the prediction distribution must be 

above the bacterial abundance threshold in order to implement harvesting areas closures 
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or strict post-harvesting measures. A 50% risk level shows more variation in how often 

harvesting areas are subject to action than did a 40% risk level. There are several areas 

that are affected more than 60% of the 30-week time period, located primarily in Fishing 

Bay and the James River. Many other areas exceed the 50% risk level for 30-40% of the 

time period, while several areas along the western shore of the Mainstem do not exceed 

this level more than 5% of the time period. 

Fishing Bay

James R.

% Weeks Exceeded 
50% Risk Level

0 20 40 60+

Chester R.
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Figure 4.4 Map of the frequently that shellfish harvesting areas throughout the Chesapeake 

Bay would be affected by a 50% level of acceptable risk, where at least 50% of the QRF 

prediction distribution is above a 1.5 GE/ml threshold, over a 30-week period in 2010. 

 

 The highest percent risk level explored in this study (60%), representing the 

highest risk tolerance and greatest willingness to keep harvesting areas active, is shown in 

Figure 4.5. In this scenario, most of the harvesting areas exceed the risk level less than 

30% of the time period. The several harvesting areas that exceed the risk level more often 

are located in the James River, Fishing Bay, and the York River.  

We then zoomed in to the three harvesting sites evaluated in Section 4.1 to 

examine how the frequency of weeks that exceed the risk level changes across the entire 

range of risk levels for different sections of the Chesapeake Bay (0% to 100%) (Figure 

4.6). Here, a 0% risk level indicates that a harvesting area would be closed if any portion, 

or none, of the quantile prediction distribution is above the V. parahaemolyticus 

abundance threshold of 1.5 GE/ml. A 100% risk indicates that a harvesting area would be 

affected only if the entire quantile prediction distribution is above the V. 

parahaemolyticus threshold. These values are shown in Figure 4.6 for completeness, but 

are excluded from the analysis below. 

The Chester River harvesting site located in the Upper Bay is affected most 

frequently from risk level levels of 10% to 30%, where the frequency of weeks that 

exceed the risk level remains constant at 57%. The frequency then gradually slopes 

downward as the percent risk level increases to 80%. The following 90% risk level would 

not close Chester River harvesting area during any weeks in the period. Fishing Bay and 
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the James River are more frequently affected (87% and 97% of the time period, 

respectively) at low risk levels than is Chester River. The frequency of closures begins 

decreasing at the 30% risk level at the James River site, whereas the frequency begins to 

decrease at 40% risk at the Fishing Bay site. The frequency gradually decreases until an 

80% risk level at Fishing Bay and 90% risk level at James River, where both harvesting 

areas not closed for any portion of the time period.   
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Figure 4.5 Map of the frequently that shellfish harvesting areas throughout the Chesapeake 

Bay would be affected by a 60% level of acceptable risk, where at least 60% of the QRF 

prediction distribution is above a 1.5 GE/ml threshold, over a 30-week period in 2010. 

 

The previous figures show that the frequency of a harvesting area exceeding some 

percent risk level can vary by the enforced percent risk level decided upon and can also 

vary through space in different regions of the domain. This variation could affect whether 

decisions about an acceptable level of risk are made Chesapeake Bay-wide, regionally, or 

more locally for each harvesting area. We then removed the factor of spatial variation and 

examined how many of the harvesting areas would be closed or affected by different 

percent risk levels chosen throughout the 30-week period (Figure 4.7). 
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Figure 4.6 Frequency of shellfish harvesting areas at Chester River (turquoise triangles), 

Fishing Bay (orange diamonds), and James River (purple circles) affected by a range of 

risk levels from 0% to 100%. The risk level indicates the percentage of the QRF 

prediction distribution that is above a 1.5 GE/ml abundance threshold.  

 

The percentage of closed harvesting areas increases during the summer months of 

June through September, when an increase in V. parahaemolyticus concentrations have 

also been observed. Over 90% of the harvesting locations would be closed during August 

when using up to a 42% risk level. As the risk level increases past 50% in the summer 

period, the number of closed sites gradually decreases until the 80% risk level when there 

would be zero sites are closed. A majority (> 50%) of the harvesting areas would be 

closed during the 30-week time period for any risk level below 50%. 
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Figure 4.7 Contours showing the proportion of Chesapeake Bay shellfish harvesting areas 

affected by a range of risk levels over the 30-week period in 2010. The risk level indicates 

the percentage of the QRF prediction distribution that is above a 1.5 GE/ml abundance 

threshold. 

  

  4.4.4 Scenarios varying abundance threshold and level of risk 

Finally, we examine scenarios where both the level of risk and V. 

parahaemolyticus abundance threshold could be chosen to determine how often 

harvesting areas would be closed or affected by variations in those decisions. Figure 4.8 

shows this analysis for the three harvesting area sites used previously: Chester River, 

Fishing Bay, and James River. At the James River site, there is a distinct relationship 

between the shellfish manager’s two decisions. As the bacterial abundance threshold and 

percent risk level decrease, the harvesting area is closed less frequently. Fishing Bay 

shows a similar relationship up to an abundance threshold of about 3.5 GE/ml, when the 

frequency of closure at each risk level appears to plateau. The Chester River harvesting 

area is closed less frequently than the other two sites at all percent risk levels above 10%. 

At low abundance thresholds (< 2.0 GE/ml), the Chester River site is closed up to 60% of 

the time period at risk levels up to 70%. At higher abundance thresholds, the Chester 

River harvesting area is closed 40% of the period at risk levels below 20%. Similar to the 

Fishing Bay site, frequency of closures at the Chester River site appears to plateau at risk 

levels less than 40% with increasing abundance thresholds. Prior to implementing any 

policy based on V. parahaemolyticus abundance, then, decision makers would need to 

consider these two dimensions of risk: what concentration of bacteria is considered to be 
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dangerous, and what risk of realizing that concentration is acceptable before a harvesting 

area needs to be closed. 

 

Figure 4.8 Contours showing the frequency of shellfish harvesting areas at Chester River, 

Fishing Bay, and James River affected by a range of risk levels from 0% to 100% and a 

range of abundance thresholds from 0.5 GE/ml to 7 GE/ml over the 30-week period in 2010. 

The risk level indicates the percentage of the QRF prediction distribution that is above the 

abundance threshold. 

 

4.5 Conclusions 

This study examines a method for communicating environmental model predictions to 

users and decision-makers using a Quantile Regression Forest. A Quantile Regression Forest 

model provides information about the distribution of each prediction made by the ensemble 

of decision trees in the Random Forest. While a Random Forest model only provides the 

mean prediction from these trees, a Quantile Regression Forest is able to provide predictions 
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from the median or another specific quantile from the distribution that is less likely to be 

affected by outliers. A point estimate can be a valuable prediction for some applications, but 

another potential use of this method is to provide a degree of uncertainty to the user or 

decision-makers. These end-users may require information about the likelihood of the 

model’s prediction exceeding some biological or public health-based threshold, which can be 

determined by the proportion of the prediction distribution from the Random Forest ensemble 

that is above their threshold.  

We applied the Quantile Regression Forest method to a case study in the Chesapeake 

Bay, where the abundance of Vibrio parahaemolyticus at shellfish harvesting areas poses a 

public health concern. The QRF model output showed acceptable performance on a dataset 

with known V. parahaemolyticus abundances using a Continuous Ranked Probability Score. 

The median (50th quantile) predictions of V. parahaemolyticus abundance were generally 

lower than the mean predictions for a satellite-derived dataset matched to known harvesting 

area locations. This indicates that the mean prediction values, those produced by a Random 

Forest model, are likely influenced by outliers at the high end of the prediction distribution. 

This was a particularly important difference in predictions during summer months, when the 

bacterium’s concentration and associated illness cases increase. 

We also explored the application of QRF models to a subjective, user-defined V. 

parahaemolyticus abundance threshold and the associated level of risk. The spatial and 

temporal variation of harvesting areas affected by the abundance threshold changed as the 

acceptable level of risk, or percentage of the prediction distribution that is above the 

abundance threshold, was varied. At three specific harvesting areas chosen to represent 

different regions of the Chesapeake Bay, the frequency of those sites being closed or targeted 
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for strict post-harvesting measures risk decreased as the acceptable level of risk increased. 

These three sites also showed an increase in the frequency of being affected as the bacterial 

abundance threshold and percent risk level decreased. 

The results of this study are not meant to suggest a bacterial abundance threshold or risk 

level for either this case study’s application to V. parahaemolyticus or other environmental 

health applications. Indeed, in the specific case of V. parahaemolyticus it is not clear that 

water column abundance is even the optimal variable for informing harvesting decisions. 

Rather, our study aims to provide an example for how such results can be presented to those 

who will ultimately be making these decisions in real-world operations. The economic 

impact and cost-benefit analysis of quantile-based decisions could also be accounted for in 

future studies that move closer toward using these types of methods operationally. In 

summary, this study shows how Quantile Regression Forests can be used to make complex 

modeling output more transparent to users and encourage better-informed decisions.  
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5. CHAPTER 5: CONCLUSIONS 

The Chesapeake Bay has a decades-long history of continuous in situ water quality 

measurements. In situ sampling is crucial for monitoring the Bay’s water quality, ecological 

processes, and environmental health, but it can lack the temporal and spatial resolution necessary 

for dynamic estuaries and environmental management applications. Satellite remote sensing can 

address these limitations by providing continuous, near-daily coverage for the entire Chesapeake 

Bay estuary. Remotely sensed data can also provide data in near-real time, whereas many in situ 

water quality measurements can be delayed due to the time involved with laboratory 

measurements. The goal of this dissertation is present methodology and insights for satellite 

remote sensing to be used as an additional tool for water quality monitoring and the prediction of 

Vibrio parahaemolyticus bacteria in the Chesapeake Bay. Water quality variables like total 

suspended solids are important to monitor in the Chesapeake Bay because high concentrations 

can affect submerged aquatic vegetation, pathogen abundance, and habitats for other aquatic life. 

Water quality parameters are also important for the prediction of Vibrio bacteria, which has 

become increasingly important as the rate of illnesses attributed to these taxa has increased over 

the last few decades (U.S. Centers for Disease Control and Prevention, 2019). 

 

In Chapter 2, I used 14-years of MODIS coverage of the Chesapeake Bay to validate and 

potentially improve satellite retrieval algorithms for total suspended solids concentration. I 

investigated whether unexploited spectral information, combined with advanced statistical and 

machine learning models, could improve MODIS-derived total suspended solids (TSS) 

concentration retrieval. Compared to a conventional algorithm that used only red reflectance 

band information and polynomial regression, I found that the additional of other MODIS spectral 
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bands in a Random Forest model could improve the accuracy of TSS retrievals in more turbid 

waters. For applications where turbid waters provide a biological or ecological importance, such 

as the modeling of Vibrio bacteria, this result could significantly improve predictions. However, 

the multi-band model showed little improvement over the conventional single-band algorithm in 

less turbid waters. I found that the machine learning method alone provided some of the 

improvement over the polynomial algorithm, but the additional of multispectral information 

further improved the model’s performance. The study also showed that both the multispectral 

and single-band algorithms were similarly generalizable throughout various partitions of the 

Chesapeake Bay and times of year. Multispectral sensors are expensive to build and fly aboard 

large spacecraft relative to sensors with few bands that can fly aboard small spacecraft. 

Therefore, it is important to understand if and how the addition of spectral bands contributes to 

environmental monitoring of TSS and other parameters in optically complex waters like those in 

the Chesapeake Bay. 

 

Chapter 3 investigated whether remotely sensed water quality variables in addition to 

SST could improve prediction and forecasting models for V. parahaemolyticus concentration in 

Chesapeake Bay surface waters. To do this I used satellite-derived ocean color (sea surface 

salinity, the improved total suspended solids algorithm from Chapter 2, and chlorophyll-a) and 

SST products, including remote sensing reflectances, as inputs to four statistical or machine 

learning models. Several versions of these models, using multiple structures of input predictors, 

were tested for their ability to perform classification and regression, predicting bacterial presence 

and abundance, respectively. Remote sensing data from the week prior to the in situ 

measurements were input to the models to evaluate whether V. parahaemolyticus concentration 
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could be forecasted, which tests the feasibility of an operational early warning system in the 

future. The additional ocean color products improved the prediction performance of the 

classification and regression models. The models using remote sensing reflectances as input 

predictors, thereby bypassing the need to transform reflectances into ocean color products using 

knowingly imperfect algorithms, also showed potential for use in these models. The ability of 

remote sensing data to aid in the prediction of V. parahaemolyticus and the improvement in 

predictions shown by the inclusion of multiple water quality variables are valuable information 

for future development of operational models that environmental managers and shellfish 

harvesters can use to reduce the risk of Vibrio-related illness. 

 

Finally, Chapter 4 proposed a new method of quantifying prediction uncertainty using 

Quantile Regression Forests, employing remotely sensed V. parahaemolyticus predictions in the 

Chesapeake Bay as a case study. Instead of outputting a point prediction for bacterial 

concentration for a given data point, Quantile Regression Forests output a prediction interval. 

These prediction intervals can provide quantile predictions, such as the median (50th quantile) 

prediction, instead of the mean prediction provided by a conventional Random Forest. The 

prediction interval can also be used to communicate the probability of a prediction crossing a 

threshold, in this case study a subjective bacterial abundance threshold, for each data point. 

Using this, environmental management decisions could be better informed and based on a degree 

of uncertainty in the delivered model prediction or forecast. The study provides an example of 

how environmental modeling output can be presented to end-users and decision-makers who use 

the predictions for real-world operations in a way that allows them to visualize how model 

statistics and thresholds impact decision outcomes. 
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5.1 Future Directions 

The work in this dissertation provides a useful foundation for using remote 

sensing approaches to develop future operational models for the Chesapeake Bay and 

beyond. In this dissertation, I used remote sensing data from MODIS-Aqua, a sensor that 

is currently operating well beyond its designed lifetime but has provided over a decade of 

continuous moderate resolution coverage of Chesapeake Bay waters. The MODIS-Aqua 

sensor is quickly becoming outdated by the recent launch of several new sensors aboard 

polar-orbiting satellite platforms that are designed for ocean color studies. Newer sensors 

can provide improved spatial resolution over the 1-km resolution used in this work, 

which could provide additional coverage of the Chesapeake Bay in smaller tributaries and 

near-shore regions. Temporal resolution would be improved because several of these new 

sensors are a part of a fleet, where multiple versions of the same sensor fly aboard more 

than one satellite. This allows for two or more times the coverage that is currently 

possible with the MODIS-Aqua sensor. Geostationary satellites that have orbits designed 

to keep them positioned over a particular region, providing sub-hourly data, have also 

been suggested for ocean color remote sensing work in dynamic water systems like the 

Chesapeake Bay estuary. Improving spectral resolution through the development of 

hyperspectral sensors is also an active area of research and engineering that has the 

potential ability to improve retrievals of optically interactive water quality parameters, 

such as TSS and colored dissolved organic matter (CDOM), and enable the distinction of 

different species of plankton.  

Future modeling efforts could incorporate a combination of in situ data and 

remotely sensed data, along with hydrodynamic model output. The incorporation of these 
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different data types is known as data assimilation, which is an active area of research in 

the hydrology and weather forecasting fields (Ghil & Malanotte-Rizzoli, 1991; Hannart et 

al., 2016; Pathiraja et al., 2016; Li et al., 2018). The combined efforts of various model 

types have the potential to improve the spatial and temporal resolution of output. The 

accuracy of predictions can also be improved from the incorporation of “ground-truth” in 

situ measurements. Geostatistical kriging, where data points closer to each other are 

assumed to be more similar, is also able to provide model estimates in higher spatial and 

temporal resolutions than in situ or remote sensing data are able to on their own. Kriging 

can address the spatial inconsistencies in in situ data and remotely sensed data blocked by 

cloud cover, and it can be used to estimate the output for gaps in time between satellite 

overpasses.  

Vibrio parahaemolyticus models would benefit largely from the availability of 

more in situ measurements that can be incorporated into model development. While the 

in situ Vibrio parahaemolyticus dataset used here is one of the most comprehensive for 

the Chesapeake Bay, a majority of the samples had bacterial concentrations below the 

limit of detection of the instrument. Newer instrumentation and updated procedures may 

also increase the number of bacterial measurements from surface water samples.  

Another factor to consider for V. parahaemolyticus predictions is that the primary 

purpose for modeling this particular species of Vibrio is to prevent the incidence of 

gastrointestinal illness from the consumption of raw shellfish. While our models predict 

the abundance of the bacterium in surface waters, the abundance in the shellfish is what 

determines the risk of illness after ingestion. Oysters accumulate the bacterium through 

filtering these waters, but it is still unclear whether there is a relationship between the 
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concentrations in the two mediums (Nelisson et al., 2019). Additionally, the oyster-to-

oyster variation in V. parahaemolyticus concentrations due to differences in physiology, 

immune response, and other individual functions has not yet been well studied. 

Therefore, organisms in the same harvesting area could have vastly different 

concentrations of the bacterium even if surface water abundance predictions are correct. 

However, the prediction of bacterial abundance in surface waters would certainly apply 

to other Vibrio species, such as Vibrio vulnificus, where a main mode of infection is 

through contact with open wounds (Klontz et al., 1988).   

While the models presented in this dissertation were not intended to be suitable 

for immediate operational use, the findings from each chapter could aid in the 

development of future operational modeling efforts that incorporate satellite remote 

sensing data. A summary of recommendations for future models is as follows: 1) 

multispectral information and machine learning should be considered for water parameter 

retrievals, particularly in optically complex water like those found in the Chesapeake 

Bay, 2) water quality variables in addition to SST can improve remotely sensed Vibrio 

predictions, 3) environmental models using remote sensing reflectances can bypass the 

need to develop algorithms for future sensors and avoid the introduction of additional 

error, and 4) models that provide prediction intervals, such as Quantile Regression 

Forests, can provide the uncertainty information necessary for better informed 

environmental management decisions. Not only are the conclusions and suggestions from 

this dissertation applicable to the Chesapeake Bay, but I also anticipate that they would 

be helpful for modeling efforts in other water bodies with optically complex waters and 

environmental health concerns. 
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forecast models for Chesapeake Bay. International Ocean Colour Science Meeting, Busan, 
Republic of Korea, April 2019. 

DeLuca NM, et al. Can multispectral information improve remotely sensed estimates of total 
suspended solids? A statistical study in the Chesapeake Bay. American Geophysical Union 
Fall Meeting, Washington, DC, USA December 2018. 

*DeLuca NM, et al. Can multispectral information improve remotely sensed estimates of total 
suspended solids? A statistical study in the Chesapeake Bay. Chesapeake Research & 
Modeling Symposium, Linthicum, MD, USA June 2018. 

*DeLuca NM, et al. Trends and variability of water quality in Lake Tana, Ethiopia using 
MODIS-Aqua. American Geophysical Union Annual Meeting, New Orleans, LA, USA 
December 2017. 

DeLuca NM, et al. Spatial and temporal variation in the isotopic composition of Ethiopian 
rainfall. American Geophysical Union Annual Meeting, San Francisco, CA, USA 
December 2016. 
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*DeLuca NM, et al. American Chemical Society student delegates’ outreach at the United 
Nations Framework Convention on Climate Change. American Chemical Society Fall 
National Meeting, San Francisco, CA, USA, August 2014. 

DeLuca NM, et al. An improved atmospheric lifetime of nitrous oxide based on measurement 
and constrained models. American Geophysical Union Fall Meeting, San Francisco, CA, 
USA, December 2013. 

*DeLuca NM, Peterman KE. Climate change: The physical science and public policy disconnect. 
Uptown York Rotary Club Meeting, York, PA, USA, February 2013. 

*DeLuca NM, et al. Saving the planet by increasing undergraduate climate science literacy. 
Downtown York Rotary Club Meeting, York, PA, USA, February 2013. 

 
 
WORKSHOPS 
 
NASA Interagency Workshop on Societal Applications of Satellite Data for the Chesapeake Bay. 

Laurel, MD, USA, August 2018. 
 
 
JOURNAL REVIEWER 
 
Remote Sensing of Environment 
Remote Sensing 
 
 
PROFESSIONAL MEMBERSHIPS 
 
American Geophysical Union 
Earth Science Woman’s Network 
 
 
COMPUTATION AND VISUALIZATION SKILLS 
 

− Machine Learning, Data Analytics, Statistical Analysis, Predictive Modeling 
− Programming experience in R (advanced), MATLAB, Python, Linux  
− ArcMap GIS, QGIS 
− SeaDAS, BEAM ocean color remote sensing processing software 
− Microsoft Office suite 
− Adobe Illustrator 

 
 


