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Abstract

This thesis discusses two major computational projects in conformal field
theory (CFT) and the interpretation of their results. The first, concerning the
Virasoro Conformal Blocks of 2-dimensional CFT, uses dynamic programming
and extreme precision arithmetic to prove that information is not lost after it
falls into a black hole in 3-dimensional anti-de Sitter spacetime. The second, a
3-dimensional realization of a generic CFT technique called conformal trunca-
tion, uses a truncated basis of operators to naturally map CFT questions to
finite-dimensional linear algebra problems, then solves them with dynamic
programming and large matrix methods. To demonstrate the correctness of
the program, we use it to show the closure of the mass gap in the 3D Ising

model.
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Chapter1

Introduction

The study of theoretical particle physics has been dominated by relativistic
quantum field theory (QFT) since the middle of the last century [1]. By far the
most well-known outgrowth of QFT is the standard model of particle physics,
which is by many measures the most precise and accurate scientific theory
ever created. QFT is extremely versatile, however: in addition to the scattering
of unimaginably tiny particles inside a collider[2], it can equally be used to
model things as large as a condensed matter experiment on a tabletop[3] or
a black hole more massive than the sun[4]. Accordingly, if we can detach
ourselves from models of particular systems and instead focus on results
about the structure of QFT itself, we can apply that knowledge to very diverse
scenarios and answer questions from unexpected angles. This is essentially

the goal of research into pure conformal field theory.

We will go into more detail about the concrete nature of conformal field
theory in chapter 2, but roughly speaking, conformal field theories are quan-
tum field theories which behave in qualitatively the same way at any length

scale (or, equivalently, energy scale). The standard model is not a CFT: most



particles have mass energy, so if the total energy of a system is below this, it's
not possible for that particle to be created, meaning that physics is qualita-
tively different below and above this threshold. However, many interesting
quantum systems can be modeled as CFTs, particularly in condensed matter,
where the Ising model near its critical point is the most famous example. Ad-
ditionally, even though particle physics models are generally not CFTs overall,
they act like CFTs near fixed points of the renormalization group[5].

Perhaps even more intriguing is the relatively recently-discovered AdS/CFT
correspondence[6]. This is a series of mathematical proofs showing an exact,
one-to-one correspondence between processes in a conformal field theory
with d spacetime dimensions and quantum gravity processes in anti-de Sitter
spacetime with d + 1 dimensions (roughly, the most generic d + 1-dimensional
spacetime having a tendency to collapse in on itself). This correspondence
can be thought of as akin to that between an object in a candlelit room and
its shadow: when one moves, the other must move as well, because they are

really two views of the same thing.

The AdS/CFT correspondence is much stronger than this, however: look-
ing at a shadow, one might easily mistake the head of a duck for a human
prankster s hand, or vice versa, but quantum operators in the “shadow” CFT
contain all of the information in their AdS counterparts, such that it's always
possible in principle to deduce the full situation in AdS by looking solely at
the CFT, and vice versa. In fact, the information parity is so complete that
there is no sense in which one side of the correspondence is more “real” than

the other: they are merely two ways of thinking of the same phenomenon.



The discovery of this correspondence has presented an enormous oppor-
tunity for theoretical physics: any result about a generic CFT can equally
be interpreted through the lens of quantum gravity, and likewise any result
from gravity which holds in a maximally symmetric theory with a negative
cosmological constant can be translated into a statement about generic con-
formal field theories. Furthermore, many questions with no hint of a clear
answer in their own domain can be mapped to a dual question on the other
side, answered there, and then the answer can in turn be mapped back to the
original domain. The first project presented in this thesis, described in chapter
3, is an example of this strategy.

Because generic CFT results can be applied to so many problems in areas
as diverse as particle physics, quantum gravity, and condensed matter, they
are quite eagerly sought by physicists of all stripes. The standard way to
produce these results is by careful mathematical proofs. As in pure math,
however, there are many questions with interesting implications for which
no solid proof is forthcoming. In these cases, one can often find sufficiently
good approximate answers by modelling the problem numerically on a com-
puter. This thesis presents two cases where numerical methods successfully
uncovered new insights into previously unsolved generic CFT problems.

The first case, described in chapter 3, involves the black hole information
paradox. The behavior of objects falling into black holes is a quantum gravity
process, which under the AdS/CFT correspondence can also be viewed as
a process inside a generic CFT. This process is governed by the so-called

Virasoro Conformal Blocks, a class of functions. The blocks are constrained by



conformal symmetry to have a particular form, but this form is known only
obliquely through various unsolved equations. Accordingly, if we can narrow
down the form of these functions, we can inspect them for insights into the
gravitational processes at work around black holes. In this project, we used
a novel algorithm to approximate the Virasoro blocks to a level which was
previously impossible, and thereby extract previously unknown information

about the controversial topic of black hole decay.

The second case, described in chapter 4, concerns the explicit calculation of
a number of observables in some generic CFTs using the method of conformal
truncation. Quantum states in a conformal field theory can be classified by
their eigenvalues under dilatations of spacetime; these eigenvalues, A, are

called the scaling dimensions or conformal weights of the states.

There is a lot to say about scaling dimensions, which will be discussed in
a bit more detail in chapter 2, but two properties are particularly important
for this application: firstly, over relatively long distances, states with lower
scaling dimensions are more important; secondly, there is a minimum scaling
dimension, but no maximum (they continue increasing forever). Therefore,
while there are an infinite number of states in total, we can naturally restrict
this to a finite number by imposing a cutoff and only considering states below
that cutoff. As we will discuss, these states with lower dimension will be more
relevant to low energy (long distance) physics, so when that’s what we're
interested in, we should expect to reproduce important behaviors using this
finite set of states. We were able to show that this is indeed the case in three

spacetime dimensions, and created a program for approximately determining



the elements of this basis and their interactions with each other. This informa-
tion can be used to parley information about CFTs into information about low

energy non-conformal QFT phenomena.



Chapter 2

Conformal Field Theory

2.1 What is CFT?

I'will begin by briefly explaining the relevant aspects of conformal field theory.
As [ mentioned before, conformal field theory is the study of quantum fields
which are broadly stationary under infinitesimal conformal transformations;
in physics, these transformations can be understood as all those with the

following action on the metric g, [5]:

pw — ﬂ{x:}gﬂw (2.1.1)

where ()(x) is a function which can depend on the coordinates in any way,
but crucially is applied to every entry of the metric tensor democratically.
Transformations of this form are angle-preserving, in that all vectors which
are orthogonal on the old metric will also be orthogonal on the new metric,
and vice versa. Indeed, the conformal transformations can be thought of as
being defined as the members of the group of angle-preserving maps, which

will be more familiar to those with a background in mathematics. In fact, in



two dimensions they are quite the same as the conformal maps which are
used extensively in complex analysis. In the context of general relativity, being
angle-preserving means that these transformations also preserve causality, so
they can also be thought of as the most general group of causality-preserving
spacetime symmetries.

It turns out to be quite straightforward to enumerate the conformal group’s
constituent transformations: they are the Poincaré transformations of special
relativity, along with scaling of all coordinates by a constant X — aX (usually
referred to as dilatation), and inversion of spacetime X — x/ x2; both of these
have been centered on ﬁ, but of course they could be performed about any
point. If we want to preserve orientations in addition to angles, then we have
to replace the inversion with a special conformal transformation, which is an
inversion followed by a translation followed by a second inversion to return
to the original orientation; these operations are sufficient to reproduce all

orientation-preserving conformal maps.
If one demands that a ﬂIEDI"‘,.?" respects conformal symmetry, then the
conformal operators O representing its quantum states must behave in a

particular way under infinitesimal conformal transformations, such as the

UIn particle physics parlance, ‘a theory’ means a mathematical model for some system
(possibly the whole universe) which includes an inventory of degrees of freedom (generally
particles) and a prescribed method for calculating their evolution through spacetime. ‘A
[relativistic] quantum field theory” means a theory whose degrees of freedom are quantum
fields which are symmetric under Poincaré transformations; ‘a conformal field theory’ is a
QFT which is symmetric under all conformal transformations. One can think of ‘a CFT as
being a particular instantiation of the more general concept of conformally symmetric models.



infinitesimal dilatation D:

[D, Oa] = (A +x#3,)O4. (2.1.2)

A, the dilatation eigenvalue, is known as the [scaling] dimension of the
operator Oy, and is an inherent feature of the operator which is not changed
by coordinate transformations. This can be exponentiated to produce the

following behavior under full coordinate scaling:

Oplax) = a20, (2.1.3)

which is the origin of the term dimension: in ordinary old-fashioned geom-
etry, when the reference length scale is doubled in every direction, the size of
a 3-dimensional object decreases by a factor of 23, so the scaling dimension of

acubeis A = 3.

2.2 Correlation Functions and the OPE

Naturally, there is much, much more which could be said about CFTs, but
the other concept which is central to this paper is the correlation function.
This is not originally a CFT concept, but due to the restrictions imposed by
conformal symmetry, it takes a central role in the CFT world: since the two
scalar operators Oy and Oy, have definite behavior under dilatations and

their correlation function must be a scalar due to Poincaré invariance, we can



make the following conclusion:
(O (ax)Opi(ax’)) = (rﬂc)ﬁ{x)a—ﬂ’ﬁ}ﬁ,(x’)) (2.2.1)
= f((ax —ax')?) =a*Af((x—x")) (222

so the correlation function of two conformal operators is another conformal
operator whose scaling dimension is the sum of the two constituent ones. In a

non-interacting theory, the new operator is the simplest possible one:

fllx=x)) = % (2.2.3)
where C(A) is some constant number; we can get rid of this as well by redefin-
ing Op — O /+/Ca, which is always done in practice.

This procedure is closely related to that of the operator product expansion,
or OPE, which says that the product of two operators located very near each
other can be represented as a single operator of its own, which can in turn be
represented as an expansion in (i.e. sum over) other operators in the theory
with some constant coefficients A:

0408 = Ocomplicated = )_, A48i Ojsimple- (2.2.4)

i
Note the lack of brackets: this is not a statement about correlation functions of
operators, but rather one about literally expressing the operators themselves
in a new way; (2.2.2) can be recovered by placing brackets around the resulting
expression, causing everything except the identity (2.2.3) to vanish because

conformal symmetry forbids one-point expectation values for operators.

Once we know that it's possible to replace pairs of operators by their OPE,

9



a natural next question is “does this mean that any combination of arbitrarily
many operators can be reduced to a sum over single ones?” The answer is yes,
and it turns out there’s a great deal one can say about these sums. Consider a

4-point correlation function
(01050c0p) = E E JLAE,-JLCDJ- {@fﬂj). (2.2.5)
i

The (©;0;) above are called conformal blocks and are fixed by conformal
symmetry to always be the same for a given OJ; and C?J.-, so if a complete set can
be characterized, they can be used to express correlation functions of any set
of four operators (and, in principle, arbitrarily large correlation functions as
well). In chapter 3 we numerically characterize the 2-dimensional conformal
blocks and then build four-operator states representing black hole dynamics
with them.

2.3 AdS/CFT Holography

In addition to being used to describe systems which are themselves confor-
mally symmetric (or perhaps merely approximately so), conformal field theory
can also be applied to superficially unrelated problems in quantum gravity.
This is due to the AdS/CFT Correspondence, which conjectures that states
in a conformal field theory are exactly dual to states in a theory of quantum
gravity in anti-de Sitter spacetime, the maximally symmetric spacetime with
a negative cosmological constant[6]. The correspondence is such that any
dynamic process on either side must have a dual process on the other side,

which is itself a perfectly natural process in its own domain. Crucially, there is

10



no sense in which one of these processes is ‘real’ and the other is an ‘image’
of it — they are both valid independently, and neither side can intrinsically be
taken to be more fundamental than the other. The two sides are descriptions
of the same thing in two different languages: words, inflection, and even the
structure of the sentences may be totally different, but they‘re still talking
about the same object and are capable in principle of expressing all the same

ideas about it.

There is no generic proof of the AdS/CFT correspondence, but it has
been extensively “tested’ in the sense that it has been used to approach many
complicated problems in ways which have produced reasonable (or known-
true) results[”]. Furthermore, a number of simple quantities can be explicitly
shown to be equivalent — consider AdS;,; in compactified global coordinates,

which looks like a cylinder with the metric

1

ds? = " (—dri + L2dp? + L2 sin? pdn§_1) (23.1)

where t is an infinite temporal coordinate, p is a compact spatial coordinate
running from 0 to 77/2, and L is a constant physical length scale which is a

property of this particular instantiation of AdS.

The reason for using the compactified coordinates is apparent if one consid-
ers the null geodesics of the spacetime: from the metric, we see immediately
that such a geodesic in the +t and +p directions will follow a path given
by p(t) = t/L, and will therefore reach p = 71/2 in finite coordinate time.
Spatial infinity in AdS is thus causally connected to the interior, making it

sensible to compute correlations between so-called ‘bulk’ operators on the

11



d + 1-dimensional interior and ‘boundary’ operators on the d-dimensional
surface at spatial infinity.
As an explicit example of an exact correspondence, consider a free bulk

scalar field ¢ with mass M. We will write this field in so-called Poincaré
coordinates, which cover a wedge-shaped patch of AdS:

ds® = r (—dtz +dz? + df dx-?-) (2.3.2)
-  dx 3.

where z € (0,00) and z — 0 is the wall of the cylinder (z — co is the single
point on the boundary on the far side); the other coordinates are in (—oo, 00},
just like the usual ones for flat spacetime; in particular, at constant z, this is
just Minkowski space with all distances scaled by L/z.

¢ obeys the Klein-Gordon equation; since the metric is Minkowski at
constant z, we can use Minkowski momentum space for all directions except
z. If the momenta in these non-z directions is k¥, the Klein-Gordon equation

becomes
_Mztp — zl+dazz1 —daz';) _ {MZ + kﬂkﬂzz)';} -0 {233)
The solutions to this are Bessel functions, producing mode functions of the

form

P(x,z) = EikFszdf,fy(xz) (2.3.4)

where v = 1,.?%2— + M2
Now, when we bring this field to the boundary at z — 0, the leading z

behavior becomes the power law z%""". If we want to find a conformal operator

corresponding to this field, the natural next question is “if we ignore this z

12



dependence, is the rest of the field conformal?” It turns out that the answer
is yes: because the original field is a scalar under the AdS isometries, if we
take the transformation x,z — ax, az, ¢ remains the same, which means ‘¢
ignoring the z dependence’, i.e. lim. g z‘dz_"’tp{x,z), is rescaled by a v,
This is precisely the required dilatation behavior for a conformal operator,
so by doing this we have produced an Oy with A = % + v. This means that
any free massive field in AdS;, can be placed in exact correspondence with
a particular operator in CFT;, and the converse is also possible by merely

attaching the Bessel function!

Unfortunately, this so-called ‘dictionary” between fields and operators
relies on the free equations of motion holding, so it's not strictly true in
interacting theories, though it holds up to calculable corrections in weakly-
interacting theories[5]. The conjecture of the AdS/CFT correspondence is
substantially stronger than this, though: it is that any state in any AdS;; can
be expressed in terms of operators in a CFT;, and vice versa. While the simple
proof only works for free theories, time and again we find that observables
in general theories (particularly N-point correlation functions) are in exact
correspondence with those of their dual theory, so the vast preponderance
of circumstantial evidence suggests that the more general statement of the
correspondence is also true[7].

Broadly speaking, practical research into AdS/CFT tends to focus on taking
problems which are intractable in either quantum gravity or conformal field
theory, translating them into the other language, answering them there, and

then translating the results back into the terms of the original problem. This

13



is particularly useful in quantum gravity, where extremely few problems are
readily solved, and about which very little is known. The next chapter of this

thesis concerns one such project, and we will now turn to its particulars.

14



Chapter 3

Virasoro Blocks and the Black Hole
Information Paradox

Adapted from a “A Numerical Approach to Virasoro Blocks and the Information
Paradox,” a collaboration with Hongbin Chen, Jared Kaplan, and Daliang Li

3.1 Introduction and Summary

Many of the most challenging conceptual problems in theoretical physics
were only resolved after physicists discovered how to ‘shut up and calculate’
a large variety of observables to high precision. For example, our modern
understanding of quantum field theory was only developed after the physics
community had decades of experience with perturbative calculations. And
it is hard to imagine how decoherence could have been understood without
the temporary crutch provided by the Copenhagen interpretation and its

instrumental approach to the Born rule.

Though we have struggled with the black hole information paradox for
decades, major progress has been possible through the development of AdS/CFT.

15



Resolving the information paradox in AdS/CFT will require a precise under-
standing of bulk reconstruction and its limitations. Although reconstruction
presents thorny conceptual problems, the limitations on reconstruction should
ultimately stem from discrepancies between the predictions of gravitational
effective field theory in AdS and conformal field theory. This means that to
make progress, it will be crucial to be able to directly compare the approximate

correlation functions of bulk EFT and the exact correlators of the CFT.

AdS;/CFT7 may provide the best opportunity for such comparisons. Many
features of quantum gravity in AdSs; can be understood ‘kinematically’ as
a consequence of the structure of the Virasoro algebra. To be specific, the
Virasoro conformal blocks have a semiclassical large central charge limit
that precisely accords with expectations from AdS; gravity, reproducing the
physics of light objects probing BTZ black holes. In the semiclassical approxi-
mation, the Virasoro blocks exhibit information loss in the form of ‘forbidden
singularities’ and exponential decay at late times [9-14]. Moreover, these prob-
lems can be partially addressed by performing explicit analytic calculations
[15]. The blocks can also be computed directly from AdS; [16-23].

In this work we will investigate the discrepancies between semiclassical
gravity and the exact CFT by computing the Virasoro blocks numerically to
very high precision. This is possible via a slightly non-trivial implementation
of the Zamolodchikov recursion relations [24-26]. We discuss the blocks and
the algorithm in detail in section 3.2 and appendix 3. A. For the remainder of
the introduction we will explain the physics questions to be addressed and

summarize the results.
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When is the Semiclassical Approximation Valid?

The Virasoro conformal blocks have a semiclassical limit. CFT; correlators can
be written in a Virasoro block decomposition as
(01(0)02(2)03(1)04(00)) = ¥ BiViune(@Vijc® (3L
hh
the holomorphic Virasoro blocks Vj, ; . depend on the holomorphic dimen-
sions h; of the primary operators O;, on an intermediate primary operator
dimension h, and on the central charge c. A semiclassical limit emerges when

¢ —+ oo with all h; /c and h /¢ fixed; the blocks take the form
_ce(ti b
Y = e & (242) (3.1.2)

It is natural to ask about the range of validity of this approximation — how
does it depend on the kinematic variable z and the ratios h; /c and h/c?

One reason to ask is simultaneously speculative and pragmatic — one
might like to know if it is possible to explore AdS; quantum gravity in the
lab by engineering an appropriate CFT2 (for a concrete idea see [27]). But
gravity will only be a good description if the semiclassical limit provides a
reasonable approximation at accessible values of c. Unfortunately, even in
the semiclassical limit the Virasoro blocks are not known in closed form for
general parameters. But we can partially test the validity of this limit by
computing %% for co = ¢4, as this ratio will be 1 when the semiclassical
limit holds. We plot this ratio in figure 3.7, which shows that the blocks
adhere to the semiclassical form of equation (3.1.2) remarkably well (up to an

important caveat to be discussed later).

17
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Figure 3.1: This figure suggests the analytic continuations necessary to obtain a
heavy-light correlator with increasing (Lorentzian) time separation between the light
operators. We take r < 1 to avoid singularities on the lightcones displayed on the
left; one can also use r as a proxy for a Euclidean time separation between the light
operators.

We would also like to understand if the semiclassical limit breaks down in

specific kinematic regimes associated with quantum gravitational effects in

AdS;. This is what we will explore next.
Information Loss and OPE Convergence in a New Regime

Information loss can be probed using the correlators of light operators in a
black hole background [25], as illustrated in 3.1. When computed in a BTZ
or AdS-Schwarzschild geometry, these correlators decay exponentially as we
increase the time separation ¢ between the light operators, even as we take
t — oo. This behavior represents a violation of unitarity for a theory with
a finite number of local degrees of freedom on a compact space. Thus it is

interesting to see how it is resolved by the exact CFT description.

As a first step, one would like to understand how unitary CFTs are able

18



to mimic bulk gravity, including the appearance of information loss. This
arises from the heavy-light large central charge approximation [13-15] of the
Virasoro blocks. Thus it seems to be very universal, as it is largely independent
of CFT data. The next step is to understand how finite ¢ physics corrects this
approximation, and what CFT data are involved in resolving information loss.

It is useful to think about the Fourier representation of both the correlator

and the individual Virasoro blocks. For the full correlator this is
(O (00)OL(t)OL(0)Oy(—00)) = f-:i.E'JILE(.E'}f:"Er (3.1.3)

where A(E) is the OPE coefficient density and we have takenz = 1 — e~
to study Lorentzian time separations between the light probe operators. At
large t we probe the fine structure of A(E), which means that the least analytic
features of A(E) dominate the late time limit. Practically speaking, this means
that the very late time limit probes the discrete nature of the spectrum, and
we become sensitive to the fact that A%(E) is a sum of delta functions. At early
or intermediate times we only discern the coarse features of A(E).

There are at least five different timescales associated with black holes in
AdS/CFT. The inverse temperature = ]‘E—Lr[ where ag = /1 — MTH sets the
shortest relevant scale, where hy is the holomorphic dimension of Oy. The
scale B log c estimates the time it takes for infalling matter to be scrambled [29,
30]. At times of order the entropy S = T—;, heavy-light correlators cease their
exponential decay; this is also the evaporation timescale for black holes in flat
spacetime. We expect that the typical energy splittings among neighboring

eigenstates to be of order e~ °, which means that at times of order ¢° we will
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be sensitive to the discreteness of the spectrum. Finally, on timescales of order
¢ the phases of the eigenestates can come back into approximate alignment,

leading to recurrences.

As discussed in detail in section 3.3, what we find is that the Virasoro
blocks with h; < 5; < hy behave very differently at early and late times, as

was presaged by analytic results [15]:

* The blocks with intermediate operator dimension h < 5 are well-
described by their semiclassical limit [%, 10, 13] for

t<tp= g (3.14)
L

Whenh > 2% the blocks are also well-described by the semiclassical limit

at early times, but we do not have a precise formula quantifying ‘early’.

* Heavy-light blocks wi g initi w, as was found from a
Heavy-light block thh = h ally gro found fr

semiclassical analysis [13]. We find that they reach a maximum

—5p
C— I°H
V| max = 16"~ (}1) at ey = Ary/ 2h 1 (315
C C

and then subsequently decay. The factor % comes from empirical fits; the
function Ar{,f;) is always order one and is approximately linear in ;..

Other sub-leading behavior is discussed in section 3.3.

¢ Numerical evidence indicates that all heavy-light Virasoro blocks decay

as

V(t> tp)| < t—2 (3.1.6)
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at late times, independent of h and ¢, as long as hy > 5; > h. We
present evidence that this decay persists beyond the exponentially long
timescale ~ ¢°, so we believe that it represents the true asymptotic
behavior of the heavy-light blocks.

From the point of view of the % o Gy expansion, the universal late-time power-
law decay comes from non-perturbative effects. If this behavior persists to
all times, as our empirical evidence indicates, then the late time behavior of
CFT; correlators must come from an infinite sum over Virasoro blocks in the
heavy-light channel.’

From a pure CFT perspective, the late Lorentzian time behavior represents
a new limit in which the bootstrap may be analytically tractable. Most analytic
bootstrap results, including the Cardy formula [31], OPE convergence [32],
and the lightcone OPE limit [33, 34] arise in a similar way. In fact, because the
expansion of CFT7 correlators in the uniformizing g-variable, defined in (3.2.2),
converges everywhere, including in deeply Lorentzian regimes, it affords the

opportunity to explore many new “analytic bootstrap’ limits.
Forbidden Singularities and Bulk Reconstruction

It is interesting to understand when exact CFT correlators differ markedly
from predictions obtained from a semiclassical AdS description. The late time
regime we discussed above provides one example of this phenomenon. As

we discuss here and in section 3.4, there are also Euclidean regimes where the

UIn the @y @; — Oy OPE channel, the late time behavior can be understood from the
discreteness of the spectrum, without including states with energies E = hy. It appears that
in the Oy Op —+ OOy channel one needs to include states of arbitrarily high energy.
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Figure 3.2: This figure shows the Penrose diagram for an energy eigenstate black
hole in AdS, suggesting the role of ingoing and outgoing modes behind the horizon
and their relationship with local CFT operators. Analytic continuation provides a
painfully naive but instrumentally effective method for studying correlators behind
the horizon.

semiclassical approximation to the Virasoro blocks fails completely.

Correlation functions in CFT; must be non-singular away from the OPE
limits where local operators collide [15, 35]. The Virasoro conformal blocks
must have this same property [13]. But in the semiclassical approximation,
the blocks develop additional ‘forbidden singularities’ [15] that represent
a violation of unitarity. These singularities are a signature of semiclassical
black hole physics in AdS;. They arise because thermal correlators exhibit
a Euclidean-time periodicity under t — t +if, and so the OPE singularities
have an infinite sequence of periodic images. The exact Virasoro blocks are
not periodic, but in the semiclassical approximation they develop a periodicity
at the inverse Hawking temperature f — ﬁ associated with a BTZ black hole

in AdSs.

By studying the Virasoro vacuum block in the vicinity of potential forbid-

den singularities, one can show that at finite ¢ the singularities are resolved in
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a universal way [15] via an analytic computation. This method predicts the
kinematic regimes where non-perturbative effects should become important;
it can be extracted from equation 3.4.2 and the results are displayed in figure
3.17. Thus it is interesting to investigate the divergence between the exact
blocks and their semiclassical approximation more generally. We study this

question numerically in section 3.4.

Discrepancies between exact and semiclassical CFT correlators near the
forbidden singularities could have implications for the reconstruction of AdS
dynamics. Bulk reconstruction in black hole backgrounds is rather subtle [36—
39], and perhaps requires some understanding of the analytic continuation of
CFT correlators. But there is also a very simple and physical reason to expect
that the analyic properties of correlators could have something to do with

black hole interiors [36].

As emphasized by Raju and Papadodimas [40, 41], a field operator behind
the horizon consists of both ingoing and outgoing modes, but only the ingoing
modes can be immediately associated with local CFT operators. This issue
is portrayed in figure 2.2. The analytic continuation of local operators by
t— t+ i‘; provides a naive, instrumental source for the outgoing modes.”

Thus it is natural to ask whether the exact and semiclassical correlators differ

This idea has significant problems. Although it may be applied to single-sided black
holes, which are our object of study, it cannot then apply to the case of eternal black holes
involving two different entangled CFTs. But even in the single-sided case, there is a problem
because the ingoing and outgoing modes must commute, yet this property may fail when
we use O(t) and Ot + EZE} for the ingoing and outgoing modes [40, 42]. It can be imposed
by fiat if we take an appropriate linear combination of correlators with different analytic
continuations. But this seems to require a form of state-dependence. We have discussed
this procedure rather than e.g. mirror operators [40, 41] because it is easier to define in an
unambiguous way. We thank Suvrat Raju and Daniel Harlow for correspondence on these
issues.




significantly at ¢ + i‘;—, which is ‘halfway”’ to the first forbidden singularity.

We will observe in section 3.4 that the exact and semiclassical correlators
behave very similarly at these points, though they seem to differ markedly
both very near (within ?1?] and beyond the first forbidden singularity. The
results can be seen in figure 3.15. As previously discussed [15], we expect
that Stokes and anti-Stokes lines emanate from the locations of the forbidden
singlarities, so that different semiclassical saddle points dominate in different
regions of the g-unit disk. It appears that different saddles dominate as we
cross the locations of the forbidden singularities, so that the naive semiclassical
blocks (the saddles that dominate near 4 = 0) are not a good approximation
beyond the first singularity. In fact the semiclassical approximation appears to
break down in a finite kinematic region, as shown in figure 3.17. Furthermore,
the existence of such regions seems to depend in an essential way on the
presence of a black hole, ie a state with energy above the Planck scale (hy > 53),
as semiclassical/exact agreement is excellent when hy; < 57, as we see in figure
3.18.

Perhaps future investigations will uncover bulk observables that are sensi-
tive to Stokes phenomena in the large ¢ expansion of the Virasoro blocks. We
hope that the black hole information paradox can be understood with more
precision and detail through such calculations. This work takes steps in that
direction by identifying new kinematic regimes where the semiclassical limit
breaks down badly and by providing results for the correct non-perturbative

Virasoro blocks.
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3.2 Kinematics, Convergence, and the Semiclassi-
cal Limit

A great deal of information about the behavior of CFT; correlation functions
is encoded in the structure of the Virasoro conformal blocks. We are interested
in 4-pt correlators of primary operators, which can be written as
(01(0)02(2)O03(1) Oy(e0)) = g By i Vi he(2) Vi, 1 o(2) (32.1)
it
where the P, ; are products of OPE coefficients. The Vj, 1,c(z) are the holo-
morphic Virasoro blocks, which will be the main object of study in this work.
The blocks are uniquely fixed by Virasoro symmetry and depend only on the
external dimensions h;, the exchanged primary operator dimension h, and the
central charge c. Often it will convenient to write z = {11—’1}1 so that the full
z-plane lies inside the p unit circle [32]. The Virasoro blocks are not known
in closed form, but they can be computed order-by-order in a series expan-

sion using recursion relations. We provide a brief summary here, leaving the

details to appendix 3.A.

There are two versions of the Zamolodchikov recursion relations (for a nice
review see [43]). The first [24] is based on writing V}, j - as a sum over poles in
the central charge c, plus a remainder term that survives when ¢ — co with
operator dimensions fixed. The second [25], which is more powerful, arises
from expanding the blocks as a sum of poles in the intermediate dimension
h plus a remainder term that survives as h — co. The remainder term can
be computed from the large h limit of the Virasoro blocks [25, 26]. This
large h limit of the blocks takes a simple form when written in terms of the
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uniformizing variable
, _ o Ell-z
g(z) = ™) =¢ s o (3.2.2)
where K(z) is the elliptic function

1 1 dt
K{ZJZEL N )

(3.2.3)

The g-coordinate can be derived from the accessory parameter/monodromy
method in the semiclassical limit [44] or from a quantization of the theory
on the pillow metric [35]. It has the remarkable feature that g(z) covers the
full multisheeted z-plane (the sphere with punctures at 0, 1, c0), as depicted in

figure 3.3. The Virasoro blocks can then be written in the form
Vighye (2) = (16q)"~F 25 1l (1 _z)F ol g, (q)] T 4Tl H (¢,h, Iy, q)
(3.2.4)

where H (c, h, h;, q) can be obtained from the recursion relation:

oo q.manm
H {Crhr hf;‘]') =1+ Z WH (crhm,n +mn, h;, ‘?} {325]
ma=1""_ mn

We note that this recursion relation naturally produces a series expansion in
the variable g. For more details along with the definitions of the quantities
appearing in these equations see appendix 3.A.

In this work, we will be using the recursion relations to obtain the g-
expansion of the Virasoro blocks to very high orders. It appears that most prior

implementations of the Zamolodchikov recursion relations could not reach
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Figure 3.3: The 4(z) map takes the universal cover of the z-plane (the sphere with
punctures at 0, 1,00) to |q| < 1. This figure suggests the relationship between the z
plane, the unit p disk, and the unit 4 disk, with branch cuts indicated with colored

K{l-z)
lines [35]. The relations between these variables are g = e " kD and z = '[l_‘-li-%jf' and

. . _ (a@)\* _ z .
the inverse transformations are z = | 32 7 and p = TvE The Virasoro blocks

converge throughout || < 1, with OPE limits occurring on the g unit circle.

the N ~ 1000 that we will Stud}r.'ﬁ‘ Our improvements are fairly elementary,
and are based on computing and storing the specific coefficients of powers of
qin H(c,hy,, + mn,h;, q), as we describe in more detail in appendix 3.A. The
computational time complexity of our algorithm is roughly O(N3(log N)?),
while it seems that some earlier implementations scaled exponentially with
N. The maximum N is limited by memory consumption, with memory usage
scaling roughly as O (Nﬂ log N ) We have verified our code by comparing to a
number of previous results, including prior implementations, the semiclassical
blocks, blocks computed by brute force from the Virasoro algebra, and the

special case of degenerate external operators.

3Prior implementations such as this code [45] and other similar, modestly improved
versions we are aware of. Perhaps [46] are using roughly the same algorithm we describe. We
have only used laptops; one could perhaps achieve N ~ 10* with more computing power.

27



3.2.1 Kinematics and Convergence of the g-Expansion

Both the correlator and the Virasoro blocks in equation (3.2.1) can have sin-
gularities in the OPE limits, which occur when z — 0, 1, co. Generically we
expect branch cuts in the z-plane running between these three singularities. So
for our purposes, the most remarkable feature of the variable 4(z) is that the
region |g| < 1 covers not only the complex z-plane, but also every sheet of its
cover. The relationship of the z plane and its branch cuts to the region |g| < 1

35] is depicted in figure 3.35. The Zamolodchikov recursion relations provide
an expansion for the Virasoro blocks that converges for all |g| < 1, which
means that they can provide a good approximation to the 4-pt correlator in
any kinematic configuration. In particular, we can use the g-expansion to

study the Lorentzian regime with arbitrary time-orderings for the operators.

The existence of the g-variable implies that in CFT5, there are an infinite
number of distinct regimes where the bootstrap equation may be analytically
tractable. In the case of d > 3, one can study the OPE limit z — 1 using
conformal blocks expanded in the OPE limit of small z, and this implies
various exact results about the properties of large spin operators [33, 34, 47].
However, because the Euclidean OPE in d > 3 does not converge deep in
the Lorentzian region, one cannot study other OPE channels in the same way.
This obstruction disappears in d = 2, where one must be able to reproduce
all of the distinct OPE limits |g| — 1 pictured in figure 3.3 using the small g
expansion. The large Lorentzian time limit that we will discuss in section 3.3

provides a physically motivated example of this idea.

We will be studying numerical approximations to the Virasoro blocks
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Figure 3.4: This figure displays contours of constant |g| inside the p unit circle, which
corresponds to the entire z-plane via z = ﬁ%jf. Since this is only the first sheet
of the z-plane, it corresponds to the region in the g-disk enclosed by the two blue
lines connecting +1 in figure 3.3. The correlator can have singularities in the OPE
limits p —+ —1, 1 and these correspond to § —+ —1,1 as well. Away from these limits
|q] < |p| and the g-expansion converges much more rapidly than the p expansion.

based on a large-order expansion in the g variable. Thus to understand the
convergence properties of our expansion, it may be useful to map out the
regions of constant |g|. For this purpose we can use the coordinate p(z) defined
viaz = ﬁz [32], because the entire z-plane can be easily visualized as the
region |p| < 1. The operators atz = 1 and oo are mapped top = 1 and —1,
respectively. In figure 3.4 we have plotted contours of constant |g| in the p-
coordinate system. In figure 3.5 we present results on the convergence region

of the g-expansion of the Virasoro blocks for various values of the dimensions
and central charge.

A kinematic configuration that will be of particular interest represents
z=1-—re " (and z = 1 —re~'" as well) and is depicted in the AdS/CFT
context in figure 3.1. With this setup we can study the correlator of light

operators Op (z)Or (0) at timelike separation in the background created by
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a heavy operators Oy. At large times {, this correlator can be used as a
probe of information loss in pure state black hole backgrounds, as we will
discuss in section 3.3. On the z plane, the late time behavior is obtained by
analytically continuing the conformal block around the branch-cut starting
atz = 1 multiple times. Explicitly, the Lorentzian value of the g variable is

obtained with the following analytic continuation of the elliptic integral:

; I

z—l—¢

J K(e ), (3.2.6)

where the elliptic functions on the right-hand side are evaluated on the princi-
ple sheet with the branch-cut chosen tobe z € [1,00). At large t we have

i 72 _ H4+2H33(r,t) L

(3.2.7)

where

it .
g(r,t) = KE {E_‘Zr)r) 42 r ;:IJ _ % (3.2.8)

with the elliptic function K(z) are taken on their principle sheet, so that g(r, t)
is periodic in t. This means that |g|> =~ 1 — rﬁz(g + g*) + - - - and the real part
Re[g(r,t)] > 0, so that |g| < 1 for all {, as expected. In the limit that r < 1, we

have g(r,t) = %lng %, which leads to the estimate
272 log 1
|:;f'|2 ~1— T’ (3.2.9)
in the limit of r < 1 and t — co. Thus we can translate between convergence
in |g| and t; very roughly, we expect that working to order 4V will allow us to
probe # o VN at large N. We can visualize the trajectory of 4(r, t) for various
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Figure 3.5: These plots display the maximum |q| where the g-expansion converges for
various choices of parameters. Convergence improves when h; and hy move closer to

c¢/24 and when ¢ decreases. The intermediate primary dimension i seems to have little

effect on convergence. These plots define ‘convergence’ as ”-"h—]';“ﬁ(f—} — 1‘ < 1075,

where V) includes an expansion up to order g™,
r in figure 3.6.

3.2.2 Review of Blocks and Adherence to the Semiclassical
Form

Much is known about the Virasoro blocks in various limits. In the limit ¢ — oo
with all dimensions held fixed, the Virasoro blocks simply reduce to global
conformal blocks, which are hypergeometric functions. Corrections to this
result up to order 1/ ¢ are known explicitly [45]. In the heavy-light limit,
where we take ¢ — co with two “heavy’ operator dimensions hy o ¢, and the

two ‘light’ dimensions h; and the intermediate operator dimension h fixed,
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— r=1.3

o= {1.94

e e

Figure 3.6: The function §(r,#) for differentr, where we have writtenz = 1 —re~f and
plotted the lines t € [0, c0). For the blue curve we chose g = 2m, which corresponds
with hy = {5. Note that the wiggles are due to the fact that whent =2m and r = 1,
the coordinate z approaches an OPE singularity. The large time limit of § was given
in equation (3.2.7).

the blocks take the form [10]

apy—1 h—2hy
V=(1—w)"m (ﬁﬂ) oF1 (h, h, 2h, w) (3.2.10)
H

wherew=1—(1—z)* andayg = /1 — MTH Note that when hy > 5, we
have ayy = 2miTy where Ty is the Hawking temperature of a corresponding
BTZ black hole. In the case of the vacuum block, whichis h = 0, the 1/¢
corrections to this limit are also known explicitly [12] for any hy/c. Finally,
in the semiclassical large ¢ limit, where all dimensions h;, h « ¢, there is

overwhelming evidence that the blocks take the form

v = (%42) (3.2.11)
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as though they are derived from a semiclassical path integral (and in fact
they have an sl(2) Chern-Simons path integral representation [22]). The
semiclassical saddle points have been classified [13], and in some kinematic
limits we can determine the behavior of f analytically. In particular, the
large Lorentzian time behavior of f with the kinematics of figure 3.1 and
hy < 77 < hy has been determined [13]. The result is that the leading
semiclassical contribution always decay exponentially at sufficiently large

times" at the rate

c
V(t) = exp [—Elanl (1—ap) Itl] (3.2.12)
where ap = /1 — %‘- and ay = 2miTy with Ty the corresponding Hawk-

ing temperature. As we will review in section 3.3, this demonstrates that
information loss due to black hole physics [25] occurs as a consequence of
the behavior of the individual Virasoro blocks [15, 15]. Finally, some exact
information about the behavior of the Virasoro blocks can be obtained by
studying degenerate states [15].

Most of these approximations hold in the large central charge limit when
the kinematic configuration is held fixed. But the deviations between the exact
and semiclassical Virasoro blocks may depend importantly on the kinematics.
As we will discuss in detail below, the semiclassical blocks have ‘forbidden
singularities’ that are absent from the exact blocks [15]. We also find that
as expected [13, 15], the exact and semiclassical blocks have very different

behavior at large Lorentzian times. More generally, we would like to map out

4 As we increase the intermediate operator dimension this behavior may not set in until
later and later times. Here we are studying late times with all other parameters held fixed.
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the kinematic regimes where non-perturbative corrections to the semiclassical

Virasoro blocks become large.

But at a more basic level, it is interesting to ask how large ¢ must be
before the semiclassical limit of the Virasoro blocks provides a reasonable
approximation to their behavior. This has immediate implications for the
possibility of constructing a 2d CFT and probing quantum gravity in an
experimental lab. A natural way to probe the existence of the semiclassical
limit is by studying the ratio of logarithms of blocks

c2logV(c1,q) 2 1

R = =
c1logV(ea, q)

(3.2.13)

at somewhat different central charges c; and c2. If the semiclassical limit of
equation (3.2.11) is a good approximation, then this quantity will be 1, but
otherwise we expect it to deviate from 1 by effects of order % In figure 3.7
we explore this ratio and find that the semiclassical form V = ecf provides a

remarkably good approximation for very small values of c.

There is an important caveat that we will return to in section 3.4. An
infinite number of distinct semiclassical saddle points can contribute to the
Virasoro blocks in the large c limit [12]. Thus it is possible that }V = ef for
some f, but that due to Stokes phenomena, the dominant saddle f changes as
we move in the g unit disk. So although the semiclassical limit may appear to
describe the blocks well for all g, as indicated by figure 3.7, in fact the saddle
that is leading near q =~ 0 may be sub-leading at general q. Thus the naive
semiclassical blocks may differ greatly from the exact blocks; in fact we will

find this to be the case in section 3.4.
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Figure 3.7: In this figure we plot R = %ﬁ—g} with ¢’ = %n‘: in order to test the

semiclassical limit. As we increase ¢, the semiclassical limit becomes a better approxi-
mation and R — 1, but even for ¢ = 2.1 the blocks are remarkably well approximated
by the semiclassical form. For the larger choices of ¢ the functions have similar shapes
up to an overall rescaling; this suggests that the first 1/c correction is dominating the
discrepancy R — 1. In the OPE limit § — 0 the semiclassical limit always applies. We
find similar results for non-vacuum blocks.

Nevertheless, figure 3.7 suggests that we should be optimistic about prob-
ing semiclassical CFT; correlators in the lab! It would be very interesting to
engineer a CFT; with ¢ > 1 and no conserved currents aside from the stress

tensor [27].

3.3 Late Time Behavior and Information Loss

One sharp signature of information loss in AdS/CFT [25] is the exponential
decay of correlation functions at large time separations in a black hole back-
ground. This can be studied using heavy-light 4-point functions in CFT [Y].
As portrayed in figure 3.1, we can interpret this correlator as the creation and
subsequent measurement of a small perturbation to an initial high-energy
state. In a unitary theory on a compact space with a finite number of local
degrees of freedom, this initial perturbation cannot completely disappear.

But a computation in the black hole background displays eternal exponential

35



decay, capturing the physical effect of the signal falling into the black hole. At
a more technical level, the exponential decay rate can be obtained from the

quasinormal mode spectrum of fields propagating in the black hole geometry.

The simplest way to see that heavy-light correlators cannot decay forever

is to expand in the Oy O — Oy Oy channel, giving
(On(0)OL()OL(0)On(—00)) =Y A(E)e™ (33.1)
E

where A?(E) is a product of OPE coefficients. Because the sum on the right-
hand side is discrete, the correlator must have a finite average absolute value
at late times. When hy 2 -7 > h;, we expect the states contributing in
(3.3.9) to be a chaotic collection of e° blackhole microstates with energy near
that of Oy, and with 5 = %THE. The amplitude will initially decay due to
cancellations between the essentially random phases, but these cancellations
cannot become arbitrarily precise. Roughly speaking, the decay should stop
when the correlator reaches ~ ¢~ and begins to oscillate chaotically. Ata more
detailed level, the time dependence can change qualitatively on timescales of
order S and ¢° as different features of A2(E) come into play [49-52].

In this work, we will not study the OyO; — OyOp channel directly.
Instead we work in the channel where OOy — OpO;, which is related
to the first channel by the bootstrap equation (or by modular invariance in
the case of the partition function [51]). In this channel we are sensitive to
the exchange of states between the heavy and light operators. For example,
pure ‘graviton’ states in AdS;3 correspond to the exchange of the Virasoro

descendants of the vacuum, which are encapsulated by the Virasoro vacuum
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block. Other heavy-light Virasoro blocks include a specific primary state along
with its Virasoro descendants, which one can think of as gravitational dressing.
We are interested in this channel because heavy-light Virasoro blocks encode
many of the most interesting features of semiclassical gravity. We would
like to understand to what extent the exact Virasoro blocks know about the

resolution of information loss.

It is convenient to think of the time dependence of the Virasoro blocks as

coming from a potentially continuous A, (E) associated with each block, via
Va(t) = f dE A2(E)elEt (332)

where h labels the dimension of an intermediate Virasoro primary operator
Oy in both the Oy (x)Oy(0) and O (x)Or(0) OPEs. Roughly speaking, the
late time dependence of Vj(t) will come from the least analytic features of
)L%{E ).

For example, in the leading semiclassical limit, heavy-light Virasoro blocks
decay exponentially at late times at a universal rate given in equation (3.2.12).
This semiclassical behavior comes from a function JL%(E ) that is smooth on
the real axis, but has poles in the complex E-plane. In AdS; these poles can
be interpreted as the quasinormal modes of a BTZ black hole background (at
least for small k). A straightforward contour deformation of equation (3.3.2)

connects these poles to the exponential decay.

At sufficiently late times, the physics of the quasinormal modes will be
subdominant to less analytic features in AZ(E). For example, if A2 (E) exhibits
thresholds of the form (E — E,)P~! with E, real, then V(t) will inherit a
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power-law behavior ¢ 7 at late times. And if AZ(E) receives delta function
type contributions, then V(t) will have a finite average absolute value at late
times. If such features are present in V,(t), then it is natural to investigate
the timescale where V() transitions from exponential decay to some other

late-time behavior.

The full CFT; correlator should not become much smaller than ~ 5.
Since Virasoro blocks associated with light operators initially decay exponen-
tially, one might naively expect that V;,(t) should change qualitatively after a
time of order S. More specifically, for heavy-light correlators dominated by
the vacuum block, we would expect a departure from exponential decay by a
time

c

up to an unknown order one factor. This argument is rather weak, since
the full correlator might not behave like the light-operator Virasoro blocks.
However, the same prediction for tp was derived from an analysis of non-
perturbative effects [15] in the vacuum block. We discuss the equation that

led to that prediction in section 3.4.5.

We will see empirically that Virasoro blocks with small & do undergo a
transition at a timescale remarkably close to {p. Furthermore, at late times
the behavior of the heavy-light Virasoro blocks appears to be a universal
power-law:

_a
Vi e (E3 tp) [ e 72, (3.3.4)

where we require hy > 1,1—4, so that at least one external operator is heavy
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enough to create a blackhole. When the intermediate dimension h 2 hy
the late time power-law behavior remains the same, although the transition
time then also depends on h (and we do not have an analytic prediction
to compare to). This universal behavior suggests a threshold /E —E, in
AZ(E), which seems to correspond with random matrix behavior [50, 53, 54].
Our results indicate that the 3 power-law persists to timescales ~ e°, so

individual heavy-light Virasoro blocks are not sensitive to the discreteness of

the spectrum.

These results show that the time-dependence of the heavy-light Virasoro
blocks has some qualitative similarities with that of the Virasoro vacuum
character after an S transformation and the analytic continuation p — p + it
[51]. Both the heavy-light blocks with small h and the vacuum character
have an initial exponential-type decay, though the precise time-dependence is
rather different. The heavy-light blocks and the vacuum character have the
same power-law decay at late times, though non-vacuum characters decay
with a different late-time power-law [51].

In what follows we will study the heavy-light blocks V), (t) empirically to
establish the robust features of their time-dependence. We also translate the
late-time ¢+ ~*/2 behavior into a statement about the coefficients of 4V in V;(g)
at large orders in the g-expansion, as one might hope to derive this asymptotic
behavior for the coefficients using the Zamolodchikov recursion relations.
One might also compute JL%{E ) directly using the crossing relation [55, 56].
Finally we discuss the implication of our results for the late time behavior of

the correlator.
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Figure 3.8: Heavy-light Virasoro vacuum blocks switch from an initial exponential
decay to a slow, universal power law decay at roughly the time scale t; = tp — b,
where the constant offset b depends on the choice of r inz = 1 — re~'. The vertical
axis is log ||, while the horizontal axis is the Lorentzian time {. The black lines are
full Virasoro vacuum blocks computed to order g'?™. This polynomial truncation
stops converging in the shaded region. The yellow dashed lines are the semiclassical
vacuum blocks using methods of [13]. The red dashed lines are the time scale (3.3.3).

The blue dashed lines are the power law at—* with a properly chosen to match the
full blocks.

3.3.1 Numerical Results and Empirical Findings

3.3.1.1 Vacuum Virasoro Blocks

Using the methods discussed in section 3.2, we compute the vacuum Virasoro
blocks at late times. Figure 3.5 shows the result along with a comparison to the
semiclassical blocks computed using semi-analytic methods [13]. For numeri-
cal convenience we avoid certain rational values of ¢ to prevent singularities

in intermediate steps of the computation.



Using the numerical result of the full Virasoro blocks, we can measure the
departure time {; when the semiclassical block drops below the exact block.
We compare this measured value to the prediction of (3.3.3) in figure 3.9. The
logic leading up to (3.3.3) is only valid parametrically, so it is remarkable
that it agrees with the measured t; up to a small constant shift. Note that we
parameterize the time dependence viaz =1 — re ", and this constant shift

depends on r. We have also checked that {; is primarily controlled by the ratio

h
— and has a very weak dependence on hy and c.

Around the time ¢ p, all vacuum blocks show an obvious change of behavior
from an initial exponential decay to a much slower power law decay. To very
good accuracy, the power of this decay seems to be 3 universally in all of
the parameter space we were able to explore with an external operator with
dimension hy > 113 A few examples are provided in figure 3.5, but we tested
this behavior with hundreds of different parameter choices.
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Figure 3.9: This figure displays the time {; at which the semiclassical vacuum blocks
drop below the exact vacuum blocks. The dashed line is a fit to the analytic prediction
tp = ﬁ% with an empirical offset {; = {p — 2.6; the offset depends on the choice of r

with z = 1 — re~'. Note that the data with smaller values of ¢ is noisy, but the larger

values fit the linear behavior extremely well. The plot includes a variety of choices
hy

fﬂl’ - -
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Figure 3.10: The late time behavior of various non-vacuum Virasoro blocks. The
vertical axis is log |V| and the horizontal axis is the time . The black lines are full
Virasoro blocks computed to order 42, plotted using z = 1 —re™ with r = 0.3. The
polynomial truncation no longer converges in the shaded region. The blue dashed

lines are the power law a t~% with the constant a fitted to the blocks. We refer to the
time and height of the maxima as tmax and |V|mac = 16" F |V|max.

3.3.1.2 General Virasoro Blocks

The non-vacuum blocks also exhibit universal ¢~ late-time decay. The dif-
ference from the vacuum case is that we no longer have a simple estimate
for the time scale of the transition. In particular, we find that generically the
non-vacuum blocks grow at early times, reach a maximum at time ¢,,,, and
then start to decay, finally settling down to the 3 power law behavior. These

features are illustrated by examples in figure 3.10.

From the data plotted in figure 3.11, we see that beyond the blackhole
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Figure 3.11: These plots show a host of data demonstrating that | Vimax| and #max have
simple dependence on % when h 2 hy (recallay, = /1 — %} for a large variety of
different choices of hy. For all of these plots we choose ¢ = 10, but we have found that
the results are robustly c-independent. These plots use by = 55, but by dependence is
mild, as seen in figure 2.12.

threshold h > f;{, the timescale tmax has a simple dependence on parameters.

We can fit it to the ansatz
bmax = Ar|¢h| + btime (3.3.5)

with a, = 1—%

and obtain A; and by, empirically. The parameter A;
is almost a linear function of ]f;, as can be seen in figure 3.12, with virtually
no dependence on other parameters such as hy. It approaches A; =~ Elf; +
. 1 d4 1

constant when hy 2 5. For smaller values of hy; we find 5 > qeiy 2 5 We
cover a larger range of hy in figure 3.22 in the appendix, which displays the
variation in A;.

On the left of figure 3.11 we plot |1";’m|, which is the maximum of the

absolute value of the block after extracting a universal prefactor via [ Vimax| =

16" | Vinax|. We see that |Viax| also has a simple dependence on ’E’ We can



oy
1 2 a F‘J - A:
- c
os c
my =30
- s
- n4 . ﬁ_=-31§
- s
- —=4/)
| |
o hr
- . £
i3 by
a L
Mt [ * aa LE] as L] ar oa os 1o

Figure 3.12: We have found empirically that the time and height of the maxima of
heavy-light Virasoro blocks have a simple dependence on both h and hy. This figure
shows linear fits used to obtain the parameters g, and A defined in equations
(3.3.6) and (3.3.5). These plots both have ¢ = 10. Each point is obtained from the
slope of w and fmay as linear functions of log % and |ay| respectively (we've
used points with % = % forn =1,2,---,30). We find that both plots are robustly
c-independent for ¢ 2 5, as expected in the semiclassical limit. We see explicitly that
there is little dependence on hy; in the @peig plot the variation with hy is almost
invisible.

perform a similar fit for | V|, and we find that

lﬂ‘gli}maﬂ . hH h
c = @height c lﬂg - + b}flght {3.3.!’3]

Empirically we obtain apeigny = —2.5 from the fit in figure 3.12. The bime
and blfight parameters do not fit a simple pattern; we provide some data
on these parameters in figure 3.21 in the appendix. These fits led to the
result summarized by equation (2.1.5) in the introduction, which neglects
the small offsets from the b-parameters. We expect that | Vx| and tp,, are
controlled by semiclassical physics (for example, see figure 3.20), so it would
be interesting to try to prove these empirical relations using analytic results
[13] on the semiclassical time-dependence. In principle these results could
also be obtained from an AdS calculation involving black holes and deficit

angles.



3.3.1.3 Probing Exponentially Large Timescales

Formally, we are interested in high-energy pure states corresponding to BTZ
black holes, which have a large entropy S = %cTH in the large central charge
limit where AdS gravity provides a reliable description. This suggests that
timescales of order ¢” will be unreachably large. Nevertheless, by considering
either small ¢ or small Ty, we can probe order one 5, and thus reach t ~ e°

within the range of convergence of our numerics.

In fact, the plot on the bottom-right of figure 3.5 is already in this regime.
Due to its low temperature of Ty =~ 0.03 in AdS units, we have 5 = 3.3 so that
times of order e° =~ 27 are within the range of convergence. Thus this plot
already suggests that the 3 power-law decay persists to exponentially large
timescales. In figure 3.13 we have displayed four other choices of parameters
where timescales of order ¢°, and even e , are visible within the range of
convergence. Two examples have order one Ty and small ¢, while two others
have very small Ty and relatively large c. In all cases we see that the =3
late-time decay persists on these exponentially large timescales. This provides
good evidence that the heavy-light Virasoro blocks really do decay in this

way at very late times. This means that these blocks are not sensitive to the

discreteness of the spectrum in other channels.

3.3.2 Power Law Behavior of g-Expansion Coefficients

We have observed an apparently universal late-time power-law behavior in
the heavy-light Virasoro blocks Vj,(t). One might try to derive this behavior

by studying its implications for the g-expansion. In fact, for a large region
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Figure 3.13: These plots show a variety of parameter choices where the behavior of

Virasoro blocks on the timescale &’ (green vertical line), and even & (blue vertical
line), are visible. Yellow lines indicate semiclassical behavior, while the light blue fit

corresponds to t~%. Recall § = %CTH with 2Ty = \/ %ﬂ — 1, so some plots have
relatively large ¢ and small Ty, while others have order one Ty but small ¢. In all cases

we see that the t—7 late-time decay persists on these exponentially long timescales.
These plots all display vacuum blocks, but we have found similar behavior with
h>0.

of parameter space, the 3 decay translates to a power law growth of the
coefficients in the q expansion.
To see this, we note that at late times q approaches 1 with a rate given by
(3.2.7). This implies that 83(q) ~ +/t, which means that the prefactor in (3.2.4)
c—1

behaves like t%(T_SU’HH’L}] at late times. In order to have the entire block

decay as t_‘%, the polynomial part H (c, h, hy, hy, q) must cancel all ¢ and I



dependence in the prefactor. This means:
09 C 5
H(t) = Y cuq(t)?n ~ ¢H(0uth)—55—55) (337)
=0

A power law in the late time behavior of the H can be directly related to the
large order behavior of the g-expansion coefficients c,,. We find that c,, ~ n®
with

s=4 (hH Ry — 1_"; _ %) (3.3.8)
where s is the dominant power of the coefficient growth, and we are assuming
that H(t) does grow at large ¢, which roughly requires hy > 1. Examples of
this behavior are shown in figure 3.14. If H(t) decays at late times, then there
must be cancellations in the sum over 4", and we cannot predict such a simple

power-law.
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Figure 3.14: The behavior of the coefficients of the §*" term in the polynomial H in
(5.2.4) compared to the prediction (3.2.5). The horizontal axis is logn and the vertical
axis is log ¢y, where ¢y, is the coefficient of qz" in H. The red lines are power-laws an®
with the constant a2 determined by the fit.

So in addition to directly computing the late time values of the Virasoro
blocks, we can test whether the blocks follow the 17 decay simply by com-
paring the coefficients of the g-expansion of H to the prediction (3.3.58). This
is actually a more efficient method that allows us to access certain regimes,
such as larger c and hy of the parameter space where the direct Virasoro block

calculation converges poorly.
However, the prediction (2.3.5) is less universal than the t~% behavior.
For example, outside the regime where H(t) grows, the coefficients ¢, can

have alternating signs, so that there are large cancellations between different



terms in the g-expansion. Then the magnitude of the coefficients will no-
longer follow the simple pattern depicted in figure 3.3.5. Empirically, another
example is when "?L is small. In this case the coefficients are pretty small and
show complicated irregular behaviors. Examples can be see in figure 3.23 in

the appendix. Yet in all cases the overall late time behavior of the heavy-light
Virasoro blocks is still the 3 power law.

One would hope to derive the power-law behavior ¢, ~ n® using the
Zamolodchikov recursion relations. Unfortunately, it appears that this behav-
ior arises from a large number of cancellations between much larger terms.

Thus we leave this problem to future work.

3.3.3 Implications for Information Loss and the Bootstrap

In the semiclassical limit, heavy-light Virasoro blocks decay exponentially at
late times. We do not expect that perturbative corrections in Gy = 133 will
alter this conclusion, and to first order this has been demonstrated explicitly
[12]. Thus the late time power-law behavior of the exact blocks represents a
non-perturbative correction that ameliorates information loss (insofar as infor-
mation loss is tantamount to late-time decay). However, since the Virasoro
blocks continue to decay, albeit much more slowly, this effect does not solve
the information loss problem. For this we need an infinite sum over Virasoro

blocks in the @; @; OPE channel.”

Let us examine the correlator as a sum over blocks from the point of view

20Of course we are assuming that we are dealing with a chaotic large ¢ theory, rather
than e.g. a rational CFT. For special values of the external dimensions and ¢, such as those
corresponding to degenerate external operators, the individual Virasoro blocks may not decay
at late times.
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of the bootstrap equation [57-59]. This equation dictates that”

(O () O (t)OL(0)Oy(—x)) = ;AEH(E)EEH =) PuaVh(D)V;(1)(33.9)

hh

Here we have equated a sum over energies in the Oy O OPE channel with
a sum over heavy-light Virasoro blocks in the O; O OPE channel. Ind > 2
dimensions this equation would be meaningless at large ¢, because we would
be well outside the regime of convergence of the OPE expansion on the
right-hand side. Remarkably, as discussed in section 3.2.1, the Virasoro block
decomposition converges for all values of {, so it is possible to try to “solve’
for the coefficients P, j; by equating the large t behavior of both sides. More
generally, one could take the limit |g| — 1 with various phases for g4 and derive
new, potentially analytic regimes for the bootstrap (this is non-trivial because
it could enable a partial analytic treatment without requiring a complete
solution to the bootstrap equation). The only obvious obstruction to this
procedure is that we do not have simple analytic formulas for the Virasoro

blocks in such limits.

As we have already noted, equation (3.3.9) can only be satisfied at late
times if we have an infinite number of Virasoro blocks contributing on the
right-hand side. Such infinite sums are compulsary in order to reproduce
conventional OPE limits [31-34]. But it is easy to see that the Cardy formula
and the asymptotic expectations on P, j; from Euclidean crossing or the light-

cone OPE limit are insufficient to account for the late-time behavior. The

®We are being schematic to emphasize the time dependence. One should define z =
1—e "% and z = 1 — e '~ in the Euclidean region, and then analytically continue t — it,
so that both channels depend on the coordinates t and ¢ pictured in figure 2.1. We are
suppressing these details.




reason is that conventional arguments require the large h,h terms in equation
(3.3.9) to reproduce either the identity (vacuum) or perhaps the contribution
of low dimension or low twist operators in the crossed channel. These would
correspond to the very small E region of Apy(E). But the late time behavior
arises from the collective contributions of ~ e° states with large E ~ hy + hy,

not from the small E states.”

In this regard there is an amusing connection with Maldacena’s original
discussion [25] of the large time behavior. He suggested that in a black hole
background, contributions from the vacuum, corresponding to the E = 0
term in equation (3.3.9), might resolve the information loss problem. But
the vacuum in the Oy O OPE channel just corresponds with the Cardy-type
growth (or more precisely OPE convergence [32] type growth) of Fh,fr' So this
simple OPE convergence growth fails to account for the late time behavior for
the same reason that Maldacena’s suggestion did not resolve the information

loss problem.

In summary, the late-time bootstrap equation (3.2.9) cannot be solved
without providing a more refined asymptotic formula for Fh,fr at large h, h.
However, it does not appear that a discrete spectrum in the Op O channel
is required to obtain the correct late-time behavior. We will not pursue this
in detail since we only have some rough empirical information about the
behavior of Vj,(t), but it might be interesting to study this bootstrap equation

for the case of the partition function [51] where the Virasoro characters are

“Here we are imagining subtracting off the contributions from the expectation values
(Oy|OL|Oy). These are generically expected to be exponentially suppressed [60] in holo-
graphic CFT3.
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known in closed form.

3.4 Euclidean Breakdown of the Semiclassical Ap-
proximation

3.41 Some Philosophy

Eventually, we hope to learn about bulk reconstruction — and its limitations —
by comparing exact CFT correlators to their semiclassical approximations. It is
not clear whether this is possible, even in principle, due to ambiguities in the
reconstruction process associated with bulk gauge redundancies (see e.g. [61]
for a recent discussion). For now we will take a very instrumental approach,
or in other words, we will try to ‘shut up and calculate’ some potentially

interesting observables.

The information paradox pits local bulk effective field theory in the vicinity
of a horizon against quantum mechanical unitarity. But in the strict semiclas-
sical limit, information is lost and the (approximate) CFT correlators agree
precisely with perturbative AdS field theory or string theory. Thus one would
expect that bulk reconstruction should be possible in this approximation, since
we have allowed the local bulk theory to ‘win’ the fight, at the expense of

unitarity.”

5This suggests that solving the reconstruction problem in the strict semiclassical limit
should not have much to do with the information paradox or the existence of firewalls [62],
except insofar as it is a first step towards the problem of bulk reconstruction from the data
and observables of the exact CFT. As an alternative perspective, one might claim that even in
the semiclassical limit reconstructing black hole interiors is impossible because firewalls are
completely generic.
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But even in the semiclassical limit, bulk reconstruction has been controver-
sial [36=39]. On an intuitive level, this is because correlators at infinity must
have exponential sensitivity to ‘observe’ physics near or behind a black hole
horizon. At an instrumental level, this means that there may be obstructions
to the existence of smearing functions mapping boundary to bulk observables.
These issues can be avoided by going to momentum space [40, 41], or perhaps
via an appropriate analytic continuation [36] or cutoff procedure [39].

Another elementary issue with semiclassical bulk reconstruction is pic-
tured in figure 3.2. The problem is that only the ingoing modes behind the
horizon can be reconstructed in an obvious way from the degrees of freedom
of a single CFT [36]. This can be understood by considering the extended
AdS-Schwarzschild spacetime, or simply by studying Rindler space. Field
theory degrees of freedom behind the horizon appear as a linear combination
of modes from the left and right ‘wedges’, but in a single-sided black hole,
only one asymptotic region is present.

If the goal is simply to compute correlators behind the horizon of a single-
sided black hole, then there is a naive, instrumental way to obtain outgoing
modes. One can obtain correlators that behave like those of the other asymp-
totic region by analytically continuing [36] CFT operators O(¢, x) in Euclidean
time to O(t,x) = O (t + %, x). This procedure has an important flaw — op-
erators on opposite sides of the black hole should commute, but @ and O
may not. Nevertheless, we can force O and ® to commute (by definition)
if we choose an appropriate but ad hoc analytic continuation procedure for

correlators involving © and O. Conceptually, this does not seem to be an
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improvement on state-dependent mirror operators [40, £1], which represent a
modification of quantum mechanics. In fact, our procedure implements its
own form of state-dependence, since the analytic continuations will depend
on all of the other local operators inserted into the correlator. However, the
prescription does have the simple advantage of being relatively precise and

unambiguous.

In any case, we are led to a very simple question — do the correlators of
operators like O (t + %ﬁ,x) receive large non-perturbative corrections? Do
the semiclassical Virasoro blocks provide a good approximation to the exact

blocks with these kinematics?

3.4.2 Forbidden Singularities and Thermofield Doubles

The questions raised in the previous section can be explored using the methods
of this paper. They are also closely related to observations about informa-
tion loss [15]. Finite-temperature correlation functions must satisfy the KMS
condition, which for identical operators just means that (O(t, x)O(0)) g must
be periodic in Euclidean time with period . It has been shown that in the
large central charge limit with hy > f:;, heavy-light Virasoro blocks appear
thermal.” Since the 4-point correlator has an OPE singularity

1

(On(0)0L(z)0L(1)On(%)) = F— v

4 (34.1)

“The vacuum block is exactly periodic. The general case in equation (3.2.10) would
be periodic except for the branch cuts of the hypergeometric function, but these do not
obstruct the KMS condition for the full correlator, and are compatible with the Virasoro block
decomposition of correlators obtained from BTZ black hole backgrounds [10].
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Figure 3.15: In this plot, we compare the exact and semiclassical blocks. One can see
that at the positions of the semiclassical forbidden singularities, the exact blocks are
smooth. Fixing hp and hT” as we increase , the exact blocks approach the semiclassical
block in the region between the origin and the first forbidden singularity. However,
beyond the first forbidden singularity the exact blocks deviate greatly as we increase
c. This indicates that we have passed a Stokes line (emanating from the forbidden
singularity ) and some other semiclassical saddle dominates the exact blocks in the

large c limit. The gray line is the position of t = .
as z —+ 1, in the heavy-light semiclassical limit, it will also have singularities
atz, = 1— &"P forall integers n.

While such singularities are permissible for correlators in the canonical
ensemble, they are forbidden [15, 35] from 4-point correlators of local operators
in unitary CFTs. They are also forbidden from individual Virasoro blocks at
finite central charge [13, 15]. Thus exact Virasoro blocks completely disagree
with their semiclassical counterparts atz, = 1 — e"ﬁ, the locations of the
singularities. So to summarize, we know that the exact and semiclassical
blocks match at z = 0, and completely disagree atz = 1 —¢"P for n # 0.
Thus it is natural to wonder whether the semiclassical blocks are a good

approximationatz =1 — e_g_ﬂ, which corresponds to the location of O(t +
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Figure 3.16: In this ﬁgure we compare the semiclassical and exact blocks associated
with @(t) and O(t + - } The plot suggests that the semiclassical approximation

remains va].ld for correlators of f?[t + -E} We implement time dependence via

z = 1 —re ™ and so a shift by + simply corresponds to a different choice of r.
Corresponding trajectories in the unit g disk are pictured in figure 3.6. Apparently

the semiclassical appmimaﬁcrn works well at  + %E

iff} More generally we would like to understand the kinematical regimes

where the (leading) semiclassical approximation breaks down.

We observe from figure 3.15 that as expected, the exact Virasoro blocks
do not have forbidden singularities. Nevertheless one might have expected
to see bumps or local maxima atz, = 1 — E"JE, whereas the exact correlator
simply grows as a function of z € [0, 1). In fact local maxima are prohibited
because the exact blocks are analytic functions of 4 and z away from the true

OPE si_ngularities.'-": Thus the semiclassical approximation breaks down badly

0Moreover it is not too surprising that a finite series expansion of the exact blocks simply
grows in the region where the semiclassical blocks have forbidden singularities. For example,
the finite-order series expansion of a function like W will grow monotonically on
the positive real x-axis; one can only see the correct behavior on x € (1, 2) by summing the
full series and analytically continuing around x = 1.



beyond the first forbidden singularity.

We compare the exact and semiclassical blocks at finite time in figure
3.16. We see that the semiclassical blocks remain a good approximation to
correlators of Ot + 52&) as long as we avoid the long-time region of ¢ o< S that
was discussed in section 3.3. In particular, there is not a significant difference
between the quality of the semiclassical approximation to correlators of O(t +
iff) and O(t). The most naive interpretation of this fact is that non-perturbative
quantum gravitational effects do not obstruct local physics across the horizon
of pure, energy-eigenstate black holes. A qualitatively similar conclusion was
reached for late-time deviations [63] from the semiclassical limit. This result
was also anticipated by the analytic analysis of [15], which only suggested
large non-perturbative corrections within &E of the forbidden singularites.

In the next section we will discuss that analysis and compare it with our

numerical results.

3.4.3 Fate of the Semiclassical Approximation from Analytics
and Numerics

We do not have to rely entirely on numerics to explore the regime of validity of
the semiclassical limit. It has been shown that the vacuum block’s forbidden
singularities have a universal resolution due to non-perturbative effects in
central charge. Specifically, the heavy-light vacuum block (with h; and J—’(’:‘L
held fixed at large c) should obey an approximate differential equation [15]

V(1) B V(1)
v L = Oy

h1gu(T) (3.4.2)
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Figure 3.17: The figure on the left shows a contour plot of the function |EH}5;| from
equation (3.4.2) in the p unit disk with iy = 1 and hy = ;. The figure on the right is
the deviation of the exact and semiclassical Virasoro vacuum blocks with the same
parameters and ¢ = 60. The positions of the forbidden singularities are indicated
with black dots. The plot on the left can be viewed as a kind of analytic prediction for
the deviation plotted on the right.

where T = —log(1 — z) is a Euclidean time variable, and this equation neglects
terms of order 1/¢% and higher as well as effects that are less singular near the
forbidden singularities. We provide the functions gy and Ly in appendix 3.5.1.
This differential equation also predicts [15] that the semiclassical vacuum block
will receive large non-perturbative corrections after a Lorentzian time of order

h—iﬂ]% o ﬁ That prediction was corroborated in section 3.3.

Neglecting the term proportional to % on the right-hand side, equation
(3.4.2) is solved by the semiclassical heavy-light vacuum block. But when
the right-hand side of this equation becomes large, non-perturbative effects
come into play, resolving the forbidden singularities. We plot contours of
the function [Zy¥5| for iy = 1 in figure 3.17. We see that this function
becomes large and makes important contributions in the immediate vicinity
of the forbidden singularities, though at sufficiently large c the right-hand
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side of equation (3.4.2) will remain small a finite distance away from these
singularities. At a more detailed level, the function |EH%;| can be compared
directly to the deviation of the numerical and semiclassical vacuum block. We
plot contours of the ratio of the exact and semiclassical blocks in the p unit
disk, corresponding to the entire Euclidean z-plane in figure 3.17 (recall that

we compared various kinematic variables in figures 3.3 and 3.4).

Our numerical results demonstrate that the semiclassical approximation
breaks down in a finite region enclosing the forbidden singularities. We
believe this phenomenon occurs because Stokes and anti-Stokes lines (for
review see e.g. [64]) emanate from the forbidden singularities, as has been
demonstrated for the correlators of degenerate operators [15]. As we cross
Stokes lines, the coefficients of semiclassical saddles change by discrete jumps.

Across anti-Stokes lines saddles exchange dominance.

Near the OPE configuration z o< p o< g = 0 where the light operators collide,
a special ‘original’ semiclassical saddle dominates the large c limit [15] of the
Virasoro blocks. But in a finite region near the forbidden singularities, different
semiclassical saddles [13] can come to dominate, and the original saddle may
become sub-leading. In other words, analytic continuation in the kinematic
variables does not commute with the large c limit. Non-perturbative effects
can dramatically alter the behavior of CFT; correlation functions with these
kinematics, supplanting the naive semiclassical limit and the perturbation

expansion around it.

It would be fascinating if the black hole interior depends in some way on

the behavior of CFT correlation functions in these regimes. Note that when
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Figure 3.18: The figure on the left shows a contour plot of the function |EH]1’;—T| from
equation (3.4.2) in the p unit disk with h; = 1 and hy = 5. In this case hy < o,
so the heavy-light block does not include a black hole — instead it corresponds to
a light probe interacting with a deficit angle in AdS;. Thus there are no forbidden
singularities, and the semiclasssical approximation is reliable in a much larger region
as compared to figure 3.17 (note the difference in scales). The figure on the right is
the deviation of the exact and semiclassical Virasoro vacuum blocks with the same
parameters and ¢ = 60. The plot on the left can be viewed as a kind of analytic

Predicl:inn for the deviation plcrtted on the right.



hy < ﬁ, so that the heavy background state does not correspond to a black
hole, the original semiclassical approximation remains good throughout the
Euclidean region. We demonstrate this explicitly in figure 3.15. So the break-
down of the semiclassical limit exhibited in figure 3.17 really does depend on
the presence of a black hole, and is not a general feature of all Virasoro blocks
at large central charge.

3.5 Discussion

We would eventually like to resolve the black hole information paradox by
doing the right calculation. In the context of AdS/CFT, this means discerning

under what circumstances, if any, bulk reconstruction is possible near and

behind black hole horizons.

If firewalls [62] are completely generic, or if bulk reconstruction is suffi-
ciently ambiguous, then this could be a fools errand. But even in this case, one
can still hope for a more constructive argument rather than various reductio
ad absurdums [42]. For example, one would like to reconstruct the ‘experience’
of a collapsing spherical shell, and explicitly compute the timescale beyond
which subsequent infallers will not see a smooth (or well-defined) geometry.

But let us imagine that the strict semiclassical limit is not misleading and
black holes often have smooth interiors. In this case, violations of bulk locality
should arise from the difference between computations in the semiclassical
limit and the exact CFT observables (or perhaps meta-observables). This sort
of approach has already been successfully pursued in the context of local
bulk scattering [35]. We have identified gross differences between exact and
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semiclassical CFT correlators in both the late Lorentzian time and the Eu-
clidean regime. These do not seem to affect a certain naive bulk reconstruction
algorithm, but perhaps they do afflict more sophisticated methods yet to be
developed. Hopefully we have done some of the right calculations but do not
yet know how to give them the right interpretation. In the case of quantum

mechanics and QFT, we were in that sort of boat for decades.
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Appendix

3.A Details of Recursion Relations and Our Algo-
rithm

In this appendix we will present more details about Zamolodchikov’s recur-

sion relations and the algorithm we used to compute with them.

3.A.1 Zamolodchikov’s Recursion Relations

There are actually two Zamolodchikov recursion relations, based on viewing
the Virasoro blocks as either a sum over poles in the central charge c or the
intermediate state dimension k. The latter is more powerful and will be our
focus.

The Virasoro block of the four-point function (O7(0)O3(z)O3(1)O4(00))
with central charge ¢, external dimensions h; and intermediate dimension h

takes the following form

Vi e(z) = (169)"~F 25 ~ha (1 — z) " 2 [y ()] T4 550 H (¢, Iy, h, ),
(3.A.1)

where

(3.A.2)



and the inverse transformations is

2= (%)4. (3.A3)

If we parametrize the central charge c, the external operator dimensions h;

and the degenerate operator dimensions hy,, as follows

2 ] 1 1?2 1 1\? .,
c=13+6 +F r hl:a b+g _‘}Lff hmﬂ:i E]+E _‘}Lm,n!

(3.A.4)
with

Amn = % (% +nb), (3.A.5)

then the function H (b, h;, h, ) can be calculated using the following recursion
realtion

"R
Hb i hg) =1+ ¥ T (b by byt mn,g),  (3A6)
m,n

where R,, , is given by

:,_Hm ()'"1 +Az — ‘}LM') (;'"1 — A2 — AF»}) (;'"3 + Ay - ‘}LPﬂi‘) (;'"3 —Ag— Am)

|- S——
e [T Ak,

(3.A.7)
and the ranges of p, g, k, and [ are:

p=-m+1,-m+3,---,m—3m-—1,
g=-n+1,-n+3---,n—-3n-1,
k=-m+1,-m+2,---,m,
l=-—mn+1,-—n+2,---,n
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The prime on the product in the denominator means that (k,I) = (0,0) and
(k,1) = (m,n) are excluded. Note that our definition of A, ; differs by a factor
of —% from the original paper.

In each iteration of the recursion relation 3.A.6, the only thing that changes
is the value of the intermediate state dimension h — hmn + mn, which only
depends on the values of m and n. For simplicity we'll omit the arguments and
denote H(b, h;, h, q) as H and H(b, hy,, + mn,h;, q) as Hy, , in the following
discussion.

This recursion relation was derived by viewing the Virasoro block V}, as a
function of the intermediate dimension h, so it can be written as a remainder
term that survives when h — co plus a sum over poles at h = h,,, ,,, where h,,, ,,
are the dimensions of the degenerate operators. The prefactor in front of H
in 3.A.1 is the h — oo limit of V), as can be derived from [24-26]. The reason
that Vj, has poles at h = hy , is because of the existence of the null-operator
(whose norm is zero) at level mn of the descendants of O, n? which usually
will make V), diverge whenh — hm,,,.” The residue of the pole at hy, , will
be proportional to the block Vj, . ., with intermediate operator being the
null-operator with dimension hm» + mn. Thus, these residues will have high
powers of q, which accounts for the 4™" factor in front of Hy » and naturally

makes the Virasoro block V), a series expansion in g.

The numerator of the factor Ry, ,, is constructed such that it vanishes when

01 (or O3) belongs to the set of operators allowed by the fusion rule of ﬂzﬂhm

1This is easy to see by writing V, as a sum over contributions from the states in the Verma
Meodule of @), In this sum, we need to orthogonalize the states, but the zero norm of the
null-state will appear as a denominator in this process, which causes the divergence.
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(or @4@;&"'“}. The denominator of Ry, comes from the norm of the null-state
when h — hy, , (factoring out h — h,, ,,); as far as we know, although it has

passed numerous checks, it's never been derived from first principles.

3.A.2 Algorithm

In this paper, we only consider the case that hy = hy = hy and hy = hy =
hy. Under this circumstance, Ry, , becomes directly proportional to JL% qr SO
Ry,n = 0 whenever (m, n) are both odd, because (p,q) can then be (0, 0). This
means that every Hpy,n with odd mn is also zero, as every term contributing
to it contains at least one Ry, ,», with odd mn;. As a consequence of this, only
even powers of g ever appear, and there’s no need to compute anything with
odd mn. This provides some simplification for the calculation, but it's easy to

generalize the following discussion to the case that all k;s are different.

Now we turn to the algorithm we used to compute the recursion relation.
The main idea is to sort every contribution to the functions H and Hy,,» by its
order in q. By doing this from the beginning of the computation, we are able
to use lower-level terms as partial sums for the higher-level terms, saving a
great deal of computation.

Denote the coefficient of qk in any function f as f (k). Then the recursion

relation for the coefficients of qk in the function H is

k div(i) Runy (ki)
—1I
HO =3 Y, 5= Hun (3-A.8)
i=2 I=1 MMy
m;n;:i

where in the first sum i runs over even integers (odd terms will always be

zero, as explained at the beginning of this section) and the second sum counts
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Figure 3.19: This figure shows a half-completed computation with max order q'%;
each cell H;[k:' represents 2 to 4 distinct terms I—I.’J.'E:ﬁ.,J with myn; = i. The cyan row,
order g%, is currently being computed, and the red diagonal contains the terms which
are being used in the computation of the cyan row. The purple cells have already
been computed and are being stored for future use, and the white cells have not been
computed yet or have been deleted to save RAM. The row with k = 0 (which would

be at the bottom) contains the seed terms H (@) — H,';ﬁ}'., = 1 and is not shown.

the ways to write i as the product of two integers m; and n;, so I runs from 1
to the number of divisors of i, which we denote as div(i). For large i, div(i) is
roughly of order ~ logi. Similarly, for the coefficients H,':,:?n of r:f in Hy », we
have

R Y,
iy HYD, (3.A.9)

Notice that in the above two equations, H (k) and H,E.:f L only depend on
lower order terms H,E:L_n? for which (k — i) + mym; = k. As illustrated in Figure
3.19, we can perform the calculation from lower rows (small k) to upper
rows (large k). In this way, when calculating H,Eﬂ, all the H,th_n?s are known
already (and they are in the diagonal positions, which suggests to store them
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in diagonals), and there are only ~ klogk such terms, so the time complexity
is only roughly O (N3(log N)?). This is better than the literal implementation
of the recursion relation (getting the coefficients H (k) by directly recursing

down to H,':,E:L,I ), which seems to have a complexity of O(eV).

There are several other tricks that one can do to even speed up the cal-
culation. For example, one can precompute all of the residue prefactors
Irm+—lf:r:—!rﬁ = Cu,n,p,q in 3.A.9. There are only O(N (lﬂgN)z) of these, so we
can save time by computing them in advance and reusing them. Although
precomputation dramatically improves performance, it also doubles memory
consumption; but since we store the H,':,f?,, in diagonals, this can be ameliorated

by deleting them after they're used, as shown in 3.19.

Precomputing Gy, ,, p,q can only improve overall speed if each of its terms
can be computed in constant time. This is potentially problematic, since Ry 4
contains two products of O(pq) complexity, but it can be solved by filling R 5
recursively — R, ; can be computed in O(p) time from R, », and there are
only O(Nlog N) of them, so the computational complexity of filling all R, ; is
just O(N?log N). These can be further sped up by pairing up terms to rewrite
all of the defining equations in terms of b? and A2, n instead of b and Ap,». In
addition to the reduced number of multiplications, this also allows the entire
computation to be done using real numbers when ¢ > 25, which is generally
an order of magnitude faster. When ¢ < 25, b? becomes complex, and even
though the final coefficients must be real by unitarity, this only occurs at the
very last step in the form of a b? <+ F1~’ = (b%)* symmetry.

We have implemented this algorithm in both Mathematica and C++(with
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Mathematica integration). The Mathematica notebook is included as a com-
panion to this paper, while the C++ implementation is maintained at https:
//github.com/chussong/virasoro. The C++ implementation is about one or-
der of magnitude faster, and the coefficients used in this paper were obtained
using it. The C++ implementation has used the GMP [65], MPER [66], MPC
[67], and MPER C++ [68] numerical libraries. On standard personal comput-
ers we were able to compute the H () to k = 1000 in around two minutes or
k = 2000 in about 22 minutes (for ¢ > 25 so that b is real); the main barrier to
going higher is memory consumption, which grows roughly as N3 log N: we
need to remember O(N? log N) numbers and they need to be kept at O(N)
bits of precision due to the increasingly large cancellations between different

Hy, n, which often reach into the thousands of binary orders of magnitude.

Using a cluster with 128 GB of RAM, we estimate that we could reach
order of 6000 in a few hours. We also find that the coefficients of qf approach a
power law in i well before the limits of our desktop computation, and expect
that a numerical fit for this power law would be good enough to get higher

order coefficients.

At the end of this section, we want to mention an issue about the recursion
relation if b? is a rational number. Notice that the denominator in 3.A.9 and

the denominator of R,, , in 3.A.7 can be zero:

B 2  m+4m m—m
hmn +mn —hmn =0 = b= pr— or nrm (3.A.10)

Ag=0 = EJE:—';E (3.A.11)
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Both of these will eventually occur for any rational choice of b2. This would
appear to preclude numerical computation entirely (since for numerical calcu-
lation, b provided to the computer will always be rational), but actually for
almost all rational numbers they will not appear until very high orders in the
computation, so they can be ignored as long as the numerator or denominator
of b? (as a irreducible fraction) is very large. In this paper, we've chose +/c
to be irrational (and set b to be a very high-precision number) to avoid this
problem.

3.B Technical Details and Extra Plots

3.B.1 A Non-Perturbative Differential Equation for the Vac-
uum Block

Here we describe the functions appearing in the differential equation (3.4.2).
Note that although the equation itself is perturbative, its solution includes
non-perturbative corrections to the heavy-light vacuum Virasoro block. The
equation was derived [15] by studying the general differential equations satis-
fied by degenerate operators and then analytically continuing these equations
in the integer index r labeling the degenerate operators. We should also note
that although equation (3.4.2) only includes some of the first 1/¢ corrections,
if one zooms in on the vicinity of the forbidden singularities by holding
ve(z — zn) fixed at large c, then the equation incorporates all of the leading
effects at large c. As discussed in [15], there are both general arguments and

consistency checks on the validity of equation (3.4.2).

We identify the parameter r = 2miTy = /1 — 2"’;”* , so that Ty is the
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Figure 3.20: This figure corresponds to the top-right plot of figure 3.10, but includes a
match to the semiclassical blocks obtained using the methods of [13], which allow
for h, hy o< c. The poorly fitted dashed line is the approximation of equation (3.2.10),
which assumes h,h; < ¢, and clearly provides a much less reliable fit for these
parameter values.

Hawking temperature associated with the heavy operator. We also are using
a Euclidean time variable T = — log(1 — z). Then the functions included in

equation (3.4.2) are gy = go7,, With

T

g (1) = coth(3) —rcoth (5) (3.B.1)

and £y = X, + £_, where we define

1

L (t) = —m (e_%B,(T) +eTB,(—1) — 2cosh (%) B,(U:B)E.?.]

Finally, we have introduced the function B, (t) which can be represented as

eToF(1,r,14r,€")

’ (3.B.3)

B,(t) = —log(l—¢€")—

For derivations and more complete descriptions see [15].
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Figure 3.21: We have found empirically that the time and height of the maxima of
heavy-light Virasoro blocks have a simple dependence on both h and hy. This figure
shows data on the parameters bpeignt and Dtme defined in equations (2.3.6) and (3.3.5).
These plots both have ¢ = 10. Each point is obtained from linear fitting of data points
at% ="forn=12---,30. We see explicitly that there is very little dependence on
hy, especially at large values of hy.

3.B.2 Some Extra Plots

In this section we have included some extra plots for readers who might like
to some more details and examples. These include the semiclassical fit to our
numerical results for h, by o c using [13] (figure 3.20), the behavior of the by
and bheight parameters from equations (3.3.6) and (3.2.5) (figure 3.21) and a
version of figure 3.12 zoomed in on the large hy / ¢ region (figure 3.22), which
is rather compressed in that figure.

We also show some plots of the more complicated coefficient behavior
which was alluded to in section 3.3.2, with the sign of the coefficients corre-
sponding to the color of plotted points. Figure 3.23 illustrates a very common
scenario where the coefficients are chaotic at low ¢, but as c increases they
coalesce into distinct positive and negative lines. A spike-shaped feature then
appears at low order and moves upward, turning the coefficients that it passes
positive, until all (visible) coefficients have become positive. The two lines

then gradually merge into a single power law similar to those shown in figure
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Figure 3.22: This is a version of figure .12 where we have zoomed out to show the
small ﬂl_fl region. The zoomed-out points with ;- = (30, 35, 40) more closely fit slopes
(0.221, 0.233, 0.242), which are shown as solid lines; the (0.521, 0.515, 0.509) fits for
large %F are shown as dotted lines.
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Figure 3.23: This figure shows the coefficients ¢, of the g expansion of H. We plot
|cy| as a function of n, with both n and ¢, on log scales, for increasing ¢ with i and

ﬁf held constant. The sign of the c, are illustrated by the color of the points, with
blue for positive coefficients and red for negative coefficients.
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Chapter 4

RG Flow from ¢* Theory to the 3D
Ising Model

Adapted from a paper currently in preparation in collaboration with Nikhil Anand,
Emanuel Katz, Zithair Khandker, and Matthew Walters

4.1 Introduction and Summary
4.2 Introduction

Quantum field theory, while an excellent framework for conceptualizing
many of the pressing problems in modern physics, provides little guidance
in actually calculating phenomena outside of the so-called ‘weakly-coupled’
physical regime, in which particles are taken to be approximately free and
interactions are approximated via Taylor series[6Y]. The terms in this Taylor
series are usually represented by Feynman diagrams and grow exponentially
more numerous as orders are added in the interaction parameter; they also

become more difficult to calculate. Accordingly, the ‘summing diagrams’
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approach to QFT is only really useful when the interactions are weak enough
that the series converges nicely in the first two or three orders. This is the
case for many interesting processes, including the electroweak interactions
in particle physics, but it is also not true of many others, such as quantum

chromodynamics (QCD), which models the strong interaction.

The traditional way to investigate strongly-coupled quantum field theories
like QCD is to quantize spacetime on a lattice, thereby reducing the infinite-
dimensional problem to a finite-dimensional one which can be simulated on
a computer[70]. This method changes the objects of study from continuum
quantum fields to a discrete set of sites — the field can be reconstructed from
the sites, but any variations taking place on a smaller length scale than the
lattice spacing a become invisible. In the language of QFT, this effectively

places an energy cutoff at 1/a, above which all physics is lost.

In recent years, a competing procedure for studying strongly-coupled
theories has emerged, called Hamiltonian truncation[71]. The idea is that,
rather than discretizing the individual modes of field excitations as a lattice
does, one will instead discretize the space of possible modes which can be
included, and then impose some natural cutoff to make this space finite. The
modes themselves are still treated as exact continuum objects, so this provides

a line of inquiry which is in some sense orthogonal to that of the lattice.

If one is to attempt truncation, the first and paramount question is which
full basis to begin with (and subsequently truncate). Recent approaches have
tended to start with high-energy CFTs due to their orderly behavior, then

add relevant operators to the Hamiltonian and renormalize the theory to
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low energy[72]. Because the spectrum of CFT operators is naturally discrete
and bounded below in dimension A, we can produce a finite basis by simply
removing all operators having A > Aj for some cutoff Ag. If the CFT is
placed on a sphere, this dimension cutoff corresponds to an energy cutoff,
so by performing it we are including low-energy operators and excluding
high-energy ones. If we then flow the theory to low energy, we expect that
these low energy modes will be the most relevant, and therefore low energy
phenomena ought to be represented reasonably well by them[73].

This technique has been successfully used to study QFTs in two dimensions
[74], but a 3D formulation has not yet materialized. In this chapter, we present
a complete accounting of the theory necessary to prepare a ¢* theory for
conformal truncation in 3D, along with a numerical implementation of this
truncation, which we then use to study the 3D Ising model as a proof of
concept. We are able to observe the closing of the mass gap as the coupling
strength is increased and correctly reproduce the spectral density of the low

energy theory.

4.3 Conformal Truncation and Scalar Field Theory
4.3.1 Review of Conformal Truncation

Conformal truncation is a method for using CFT data to numerically study
the IR dynamics of more general QFTs. This method can be applied to any
theory that can be described as an RG flow originating from some UV CFT
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deformed by one or more relevant operators,
S = Scpr — A f dix O (x). 43.1)

Following the approach presented in [73], a useful basis for the Hilbert space of

this theory consists of UV eigenstates of the quadratic Casimir of the conformal

group,

iC, B, ) = f dix e~ PO (x)|0), 4.32)

where juz = P2. These basis states are created by primary Dperaturs1 in the
original CFT, and are characterized by their Casimir eigenvalue, spatial mo-
mentum, and invariant mass (suppressing other possible quantum numbers
like the spin £).

The strategy of conformal truncation is to restrict the Hilbert space to
the subspace spanned by states with Casimir eigenvalue C < Cmax. The full
Hamiltonian (CFT + deformation), when restricted to this subspace, can be
diagonalized numerically, yielding an approximation to the true spectrum of
the IR QFT.

To define the Hamiltonian, we first need to choose a quantization scheme.
As discussed in [73], we work in lightcone quantization, with the Hilbert space

defined on slices of constant lightcone “time” x* = 12(t + x). We thus need

UIn this work, “primary” refers to any operator which is primary with respect to the
global conformal group 50(d, 2) and thus annihilated by the specal conformal generators
([Ky, ©(0)] = 0). In 2D, this includes operators which are often referred to as “quasi-primary”
or "global primary” in the literature.
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to compute matrix elements for the associated lightcone Hamiltonian
P, =P 42 f di-1% O (x* = 0, 7). (4.3.3)

By construction, our basis is built from eigenstates of the CFT Hamiltonian,
so we only need to compute matrix elements associated with the relevant
deformation. These matrix elements are simply Fourier transforms of three-

point functions in the original UV CFT,
(C,P, ulsPy|C", P, ') = A [ dix @415 4z (PP 2 (O (x) O (y) O’ (z)(-3.4)

We thus only need data from the UV fixed point to study the full RG flow:
the spectrum of local operators gives us a complete basis, while the OPE

coefficients give us the Hamiltonian matrix elements.

4.3.2 3D Scalar Field Theory

Our starting point is a UV CFT of a free scalar field ¢ with the Lagrangian

Lopr = % 1 9,99 9 -, (4.3.5)

where the notation : O : indicates that the operator should be normal-ordered.
We will work in 2 + 1 dimensions in lightcone coordinates, which are defined
+ - 1

by x* = —5(t + x), as well as the tranverse direction x1. The coordinate xt is

treated as the “time” direction and the metric is given by

ds® = 2dxtdx~ — dx*2. (4.3.6)
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The associated momenta are given by p, = idy, from which we can determine

the Lorentz invariant quantity

P’ =2pip-—pi. (43.7)

Our goal will be to determine the IR spectrum and eigenstates by diagonal-
izing the invariant mass-squared operator in a frame with total momentum P.

In terms of the momentum generators, this means diagonalizing
M?=2P,P_ —P}. (4.3.8)

We will diagonalize this operator on a basis of Casimir eigenstates associated
with the UV free scalar. The free scalar field can be expanded in terms of its

mode functions

dz —ip-x [p-x
$(x) = f ﬁ(e Prg, 4 € u;), (4.3.9)

where
[ap,a;] = (27)%(p — q). (4.3.10)

This expansion for ¢(x) leads to an expression for the lightcone Hamiltonian
P, (as well as the other lightcone momenta) in terms of oscillator modes,
as we will see momentarily. We will then diagonalize the mass-squared
operator by similarly expressing our complete basis states in terms of mode
functions, truncating at some maximum Casimir eigenvalue to obtain a finite-

dimensional matrix.



After expanding in oscillator modes, the CFT Hamiltonian takes the form

1

2
(cFr) _ [ 4P+ 43.11
Py _f(E?T)EHFHFEF_' ( )

The deformations to the UV CFT that we will study are the mass term and a

quartic interaction, given by
12 1, .4
oL = —-m?p? — —A¢*. (4.3.12)

This results in the following corrections to the lightcone Hamiltonian, respec-

tively:
2 2
(m) _ [ dp + m
P = [ G, (43.13)
and
) _ A [ dpdqdk My L GG,
T4 eneyBpgk- \V2(p-+q-+k) T V2p-+q-—k))

(4.3.14)

4.3.3 Conformal Basis for 3D Scalar Fields

The conformal truncation prescription amounts to diagonalizing M?on a
basis of Casimir eigenstates. In this section, we will explain how to construct
these eigenstates and how the basis is modified in the presence of the mass
deformation.

Ouwr starting point in the UV is the free massless scalar field, and so our
basis is comprised of primary (and descendant) operators of the free scalar. In

order to construct these operators, we have the following building blocks

{Pr a-l—';}r d_ {Pr dy . (4.3. 15)
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The equations of motion imply that 9, ¢ = %ﬁi—{p, so we can focus on only the
d_¢ and d , ¢ building blocks.

The idea is to construct a basis of Casimir eigenstates from these building
blocks. In previous work, we started with the “all-minus” subset of the
basis, comprised of operators built only from ¢ and d— derivatives. Then,
we obtained the other states by acting on the all-minus states with the Pauli-

Lubanski operator.

Our approach in this work will be more pedestrian. We will simply start
with the building blocks eq. (£.3.15) and construct the linear combinations

that are primary with a brute-force algorithm. These operators take the form

O(x) = ) CQ, 19™M¢(x)a"¢(x) - - - "™ (), (4.3.16)
{mn}
for some yet-to-be-determined coefficients Cﬁﬂn}. We can express these opera-

tors in momentum space by inserting a complete set of states:

_ 1 dpq - --d%p, ~
|O; P, i) :—f( P1 P (P, - PnlO: P ) p1s oo o) )

nlJ (2m)22py_---2p,_
_ 1 dzfﬁ "'dzpn 3.3
_Ef(zﬂ)znzp1_zpn_(2?r) 5 EPI_P PG{F}IP].I"'IPH}I

(4.3.17)
where the wavefunction Fo(p)|p1,.. ., Pa) is just given by the overlap of the

operator with a Fock space state

Fo(p) =(O0)p1, -, pa) = Y CQ P - PR (4.3.18)
}

{mpy

We can therefore focus on determining these polynomials, which are simply
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the Fourier transforms of local operators.

In order to determine these wavefunctions, we must find the operators that
are annihilated by the special conformal transformations K,,. As differential

operators acting on a generic monomial P? P? P ¢, they take the form

»? 2 ) 2
K- =2Py— +2P ——— +2A +P =,
apP2 oP,0P, ?aP, aP?
92 92 2 ) 2
K, =—2P,_% 2P —P —2Ay= 2P T
= P oP, 9P_dP, " 9P? *ap, = ‘tap.op_’
»? 2 ) 2
K,=2P_.2_42pP 2A P,
" apZ T TLaPap, | PaP. T tam?

(4.3.19)
We could determine the primary operators by then finding the null space
of these operators acting on the space of monomials. However, this basis of

primary operators is actually not the final basis we are after.

To explain why, we first note that we are interested in deforming the CFT
Hamiltonian by a mass term (and interaction terms), as given in eq. (4.3.13).
As reviewed in Appendix 4. A, the presence of this mass term results in a
divergence in the mass matrix elements. Regulating this divergence with an e
prescription, we find some eigenstates that are lifted out of the spectrum and
those that remain finite as € — 0. The eigenstates corresponding to the finite
matrix elements are a reshuffling of the original primary basis, such that these
states satisfy Dirichlet boundary conditions. Explicitly, this means operators
which have at least one factor of P— on each particle insertion to cancel against

the Lorentz invariant measure of the mass deformation. In momentum space,



this corresponds to wavefunctions of the type

P1-p2— Pn—(-"")» (4.3.20)

where the second set of ellipses indicates a generic function of p;_, p; 1, and
pi+. We will therefore introduce the following notation to specify a Dirichlet

basis state:

By L dpy - - dpy 343
IQJPIF} _Ef(EH)Z"Em_---Ep"_(zH) d gPE—P

(4.3.21)

= PI_PE— e pﬂ—Pﬂ{p”plr e IPH}I
where Fp(p) indicates the Dirichlet wavefunction.

One might be tempted to create a basis for the Dirichlet states by taking a
list of all primary operators and throwing out the non-Dirichlet ones. Unfortu-
nately, this would be incomplete, because acting with P— can cause an operator
to become Dirichlet when it wasn't before. Therefore, we need to include both
the Dirichlet primaries and the non-primary Dirichlet operators for which
acting with K produces non-Dirichlet states. But these, too, are not in general
orthonormal, and lacking a good systematic way to identify an orthonormal
subset of them, we opted to abandon the primaries altogether, instead writing
all possible below-cutoff Dirichlet states and finding an orthonormal subset
using the Gram-Schmidt process. Details of our implementation can be found

in Appendices 4.A and 4.C.

Finally, to complete the discussion on our basis states, we must note that u
as it appears in (4.3.17) is still a continuous parameter. It denotes the kinetic

energy of the state i.e. its eigenvalue under P2, In order to obtain a complete,
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discrete basis, we must introduce some prescription to discretize over this
parameter. A general way to do this is to integrate u weighted by functions

that carry some index k € Z~q:

* 2p, ...
0:Bk) = [ dif (1)86() / {z;;zfﬁm_f?;pn_ (2m)’s (Z pi—F )

X p1-p2- - pn-Fo(p)lp1, - -, pn)s (4.3.22)

where f(u) is a measure that we have freedom to choose. The region of
integration for y is supposed to be taken from [0, oo). The reason that it is
non-negative is that there is a Wightman prescription for the 2-pt. function of
these operators that ensures positivity of the lightcone momenta. However,
the integral will diverge and must be regulated. For this reason, we have to
introduce a UV cutoff A. Cutting off the integral and rescaling the region of

integration to [0, 1] we find that our final states are given by

1 1 dp?
(0P V2P A IA TR AL o Jﬁ"—z_éﬂhlgk{y) ( )
l dEF‘l e dzf-’n (2 )353 Z _p (4.3 24)
T (2m)22py_ - - - 2py & - Pi o
x p1—p2---- pn-Fo(p)lp1,--- , pn),

where we have defined the dimensionless ji = & and [A_ | | count the number

of — and | derivatives in Fy(p), respectively. In this paper, we discretize u

into linearly spaced bins:
—_;H—Z_—Z _H—Z_—E
(i) = —=—= [ (7" —m1) —0(m juk)]f (4.3.25)
P — B



where @ is the Heaviside step function. The purpose of the above equation
is to the set the region of integration in ji to be in a bin between fi;_1 and fi;.
Truncating at some k5, we can obtain a discrete, finite-dimensional basis of
Dirichlet states. The normalization of these weight functions is chosen such

that
1
[} arg(m)ge (1) = b (4.3.26)

This completes our discussion of computing the Dirichlet basis. To sum-
marize: we tabulate all possible monomials P? P? P{ ¢ that satisfy Dirichlet
boundary conditions and obtain the orthonormal linear combinations through
a Gram-5Schmidt procedure. We discretize in u using the weight functions in
eq. (£.3.25) and truncate at some Cp,ax, kmax Obtain our final discrete, truncated

basis.

4.3.4 Review of Spectral Densities

After we have truncated the basis to some Cp,,, and computed the associated

Hamiltonian matrix elements, we can construct the invariant mass operator
M?=2P.P_. (4.3.27)

Because our basis consists of P— eigenstates, diagonalizing this Lorentz invari-
ant operator is actually equivalent to diagonalizing the lightcone Hamiltonian
P,.

The mass eigenvalues that result from diagonalizing M? are an approxima-
tion to the spectrum of the IR QFT. However, in addition to the eigenvalues,

we also obtain the associated eigenstates |y;), which we can use to compute
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dynamical IR observables. One natural and important observable for us to

study is the spectral density of any local operator O(x),

po(u) =3 [{OO) ) * 6(p* — ). (43.28)

As shown in eq. (4.4.1), spectral densities encode the same information as
real-time, infinite-volume correlation functions. For presenting results, it will
be more convenient to show the integrated spectral density,
u2
lo(w) = [ 4 *po(i) = pCOI (4.3.29)

which contains the same dynamical information as the spectral density.

4.4 Sanity Checks

In this section, we perform consistency checks in the free massive theory
where A = 0. We then compare with theoretical predictions, which gives us a

nontrivial check of the Dirichlet basis.

In section £.4.1, we first explain how to compute the theoretical predictions
for the spectral density associated with a generic local operator O, ,,(x).
We then compare these analytic answers to the numerical results obtained
from conformal truncation. We will primarily focus on comparisons involving

the energ}r—mﬂmentu_m tensor.

4.4.1 Spectral Densities in Free Field Theory

Let’s briefly review some details about spectral densities of operators in free

massive theory. The spectral density is the decomposition of the two-point
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correlation function in terms of mass eigenstates:

dzp —iP-x

(0x)00) = [dpo() [ romre

4.4.1)

Forbrevity, we have omitted any tensor structure, but the operators appearing
on theLHS could, for example, be various components of spinning operators.

In a freetheory, we can expand the correlator on the LHS in terms of Fock

space modes:

(Ox)00) = 74 f %H(zn)ﬂpf—mﬂummnm, ., pu) eGP

i

2 By ...d?
- 451 [ S (Temst -n) e (P~ Tn)

i

OO lpy - pa)f x [ b eiP
r rFH (EH)EEPD r
(4.4.2)
where we inserted a complete set of states and used the fact that d*P = d;:zdzp .
Equating this to eq. (4.4.1), we can therefore obtain an explicit equation for the

spectral density associated with any local operator O:

3
2;::1! f - F(lzn Fr (H{zﬂ)ﬁ P - 2}) (21’6 (P~ Y- p) (O(O)lpy, - ..., pu) 2

(4.4.3)

po(p) =

This formula also holds for operators with spin, so that we can compare
theoretical predictions for spectral densities of various components of spinning
operators. The simplest way to apply eq. (4.4.3) is to compute the overlap
[{O(0)|p1,. .., pn)l|, evaluate the integrals in the total momentum frame P =

(u,0), pi = (E;, B;), and then perform a boost to the lightcone frame. Let’s see



how this works for a few examples.

Consider the spectral density associated with the simplest two-particle
operator {pz. The overlap of this operator with the two-particle Fock space
state is simply

(¢(0)[p1, p2) =2. (4.4.4)

Plugging this into eq. (4.4.3), and evaluating in the frame

P= {jura)r 1= {Eh ﬁl}r Pz = (Eir _ﬁZ)r {445]

we find
1
P2 (1) = mﬂ{jﬂ — 2m). (4.4.6)

Note that the step function signifies that the two-particle spectral density
starts at the two-particle threshold, as expected. There is no need to boost
this answer to the lightcone frame as this spectral density is associated with
the scalar two-point function (¢?¢?). We can repeat this analysis for any ¢"
operator which gives the spectral density

n!(u —nm)"—2
Per(W) = 7, —(};}!(4@)"—12;:'

(447

Now let’s consider a more nontrival example of the stress-energy tensor. It

is given by
> 1 1 1 2 2
Tyw = 79u99vd — 71wdo$d"P — 749udvd + M uvg™ (4.4.8)

Let’s start with the all minus component T__. The overlap is given by
1
(T-—(0)|p1, P2} = — (ﬁm-pz- —-pi— P%_) : (449
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We can evaluate the integrals in eq. (£.4.3) by noting that

1
1+ = —=(E1 £ p1x), 2+ = —=(E2 £ pas), (4.4.10)
pe=—(EEp P = (E2£py

2

which gives
B - ;14 — 8]14:21'1'12 + 48m*
pr_(1) = 20880

where the tilde indicates that we still need to boost to the lightcone frame.

(4.4.11)

We have computed the spectral density associated with T__ in the frame

(Py,P_,P,) = (?F'!E’ T':“":_!’ (}) while the lightcone frame is given by (P, P_,P, ) =
2

(:5';:, P_, (}). In lightcone coordinates, a boost which sends a vector Vi — TV

takes V_ — 7 1V_ to preserve the lightcone inner product. We therefore need

_ H I . . T .
T = J5p SO that pr = T pr__, since there are four minus indices in

(T__T__). We therefore get

P4 (u* — 8u’m? + 48m*)
pr__(k) = 512mpus

(4.4.12)

We can apply this procedure to generate the spectral densities for the

remaining components. Note that

1
(T_1(0)|p1, p2) = —1{3P1—Pu +3p11p2- —pP1-p1L — p2-p21), (44.13)

which gives

_ P2(p* —4m?)?

(4.4.14)

Finally, we have

1

(TL1(0)|p1, p2) = —(4p11paL +2p1ep2— +2p1-pay —Pi, —Pa) — My 1L,
4

(4.4.15)



which gives

— 8m?u® + 88m*
pr. . (K) = b 51;1_}‘ . (4.4.16)

Now that we have theoretical predictions for these spectral densities, we
can compare them to those obtained from conformal truncation. In order to
do this, we will need the overlaps of the UV operators with our eigenstates
in order to compute the cumulative overlap in eq. (£.3.29). That is to say,
in order to compute eq. (£.3.29), we can insert a resolution of the identity
corresponding to our basis

Io(p) = Y Y KO(0)|O) (O}~ (4.4.17)

i &

The second piece (O|u;) merely picks out that operator of our eigenvector.
Meanwhile, the overlaps (O (0)|O) are given by

Pd ﬁn—l 1 n+1-£2d'l n+‘1-:i!-1dj_
Ay PATTTEL 2 Hy — M '
(00)|0) = ( ) x Tinmer,

o !
2 7 tdL v i — Miq

d_ | count the number of minus and perp derivatives in O. And Ig'g" is the

(4.4.18)

inner product between O and O as defined in eq. (4. A.21)".

In Fig. 4.1, we show the spectral densities of the operators ¢? through ¢°.
We see that the numerical results agree with the theoretical prediction for the

spectral density for a wide range of u. Our IR cutoff is set by kmax, where

Ayv

AR ~ (4.4.19)

max

INote that the wavefunction corresponding to @ isn’t necessarily one that satisfies the
Dirichlet boundary conditions which we introduce in later sections.

91



ﬂ.1ﬂ-lIIIIIIIIIIIIIIIIIIIIIIIIIIII

J nonaf
ooaf4gf " ]
1 n.om
oos|
= 1 noozf
‘F ot ]
E ]
2wl 1 nom}
B
iu.mu . J o.000
oA
g oooonfof w ] 1w105]
# . :
:‘3:' n.noooaf1- ] awra? 10
= ] [
= ] ]
= ([.00006} . . . . { EwilT} -
= ] L 25 30 35 ap 45 50 55

n.oo004f ] awi|

Amax = 10 [ Amax =11
0.00002 | gy = 100 :lu'lﬂ": Kex = 100

Al jm? = 100] A% m® =100
e T E T T

p/m

Figure 4.1: Integrated spectral densities for ¢* (upper left), ¢ (upper right), ¢* (lower
left), and (PS (lower right) in massive free field theory (A = 0), both the raw value
(main plot) and normalized by the theoretical prediction (inset). The conformal
truncation results (blue dots) for each plot are computed using the Ana shown, with
the corresponding number of n-particle basis states, and compared to the theoretical
prediction (black curve).

and at k. = 100, we see that the IR cutoff is small enough that the spectral
density is within a few percent of the theoretical prediction even for y > m. In
Figs. 4.2 and 4.3, we show the spectral densities for T__, T_ |, which similarly
agree with the analytic predictions. Similar plots exist for the remaining

components and also agree closely with the theoretical result.
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Figure 4.2: Integrated spectral densities for the stress tensor component T__ in
massive free field theory (A = (), both the raw value (main plot) and normalized
by the theoretical prediction (inset). The conformal truncation results (blue dots) for
each plot are computed using the Apax shown, with the corresponding number of
n-particle basis states, and compared to the theoretical prediction (black curve).

4.5 Discussion

This project is still in the final debugging stages, but we believe it to be
numerically correct and are working on producing illustrative plots now.
Figure 4.4 gives a visualization of the Hamiltonian created by the truncation

methods of this chapter.

In order to demonstrate the correctness of our truncation method, we can
look at the closing of the Ising model’s mass gap as the strength of the defor-
mation’s coupling A is increased. This can be seen by finding the eigenvalues
of the Hamiltonian and taking the lowest one — this will be the mass of the
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Figure 4.3: Integrated spectral densities for T_; in massive free field theory (A = 0),
both the raw value (main plot) and normalized by the theoretical prediction (inset).
The conformal truncation results (blue dots) for each plot are computed using the
Amax shown, with the corresponding number of n-particle basis states, and compared
to the theoretical prediction (black curve).

1-particle state, which starts at a finite value and drops to 0 (along with the
other states) as the mass gap closes. This is shown in figure 4.5, and the ob-
served behavior seems consistent with that seen in 2D and less comprehensive

studies of 3D.
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Figure 4.4: This is the P, -even Hamiltonian produced with Apa = 11, kmax = 100,
and m* = A = A = 1. Warm colors are positive entries and cool colors are negative
entries, with saturation indicating the magnitude. The n — # + 2 entries outside of
the diagonal blocks are jagged because these interactions are kinematically prohibited
when the low-n state has more energy than the high-n state, which is the half of the
block closer to the diagonal.
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Figure 4.5: This shows the effective mass of the single-particle state as a function of
the interaction coupling A. Each of these is at Apax = 8,m = 1, A = 20, but kmax 15

varied between 20 and 200, appearing to approach an asymptotic ‘correct’ value as
Kemax — eo.



Appendix

4.A Constructing the Basis of Dirichlet States

By definition, the original basis of Casimir eigenstates consists of eigenstates
of the CFT Hamiltonian. However, once we introduce a relevant mass defor-
mation to the Hamiltonian

- dEF m2
5P — f TR T (4.A1)

there are IR divergences associated with the mass matrix whenever any in-
dividual lightcone momentum of an n-particle eigenstate go to zero. If we
regulate these divergences by introducing a small parameter €, the resultant
mass spectrum contains two types of eigenstates: those that divergease — 0
and those that remain finite. The states that diverge in this limit are lifted
out of the spectrum, such that we can focus on the low-lying sector. The
states that remain finite can be seen as a specific linear combination of Casimir
eigenstates, a reshuffling of the original UV basis such that their eigenvalues
are finite in the limit € — 0. In practice, this reshuffling gives rise to a “Dirich-
let” wavefunction fg‘ }( p) that is schematically the product of the lightcone
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momenta times a wavefunction which we denote _g' ) (p):

S (p) = ES(p) ~ propa—- - pn-ES (). (4.A2)

We will drop the (n) superscript for brevity.

It is important to note that the size of the Dirichlet basis is smaller than
that of the original Casimir basis. While every Dirichlet state has this overall
factor of p;_ - - - pn—, we cannot obtain it from starting with the UV basis and
simply tacking on the product of momenta. These states consist of specific
linear combinations of UV primaries that are orthogonal with respect to an
inner product, and in the following section we outline how to numerically

compute them.

4.A.1 Two-Particle Example

Before we move onto the general case, we briefly review how the Dirichlet
basis arises in a simple two-particle example. We will show how the addition
of a mass deformation to the Hamiltonian reshuffles the basis, resulting in a
divergent piece that is lifted out of the IR spectrum and a finite piece that is a
physical state.

To see this, consider a truncated 2-particle basis consisting of the operators

qﬁz and T——, where T__ is given b}rg

T__ = ¢’ ¢—3(a_¢)~ (4.A.3)

In momentum space, we can express the wavefunction associated with T__

3Up to a normalization constant that we will ignore as it is not important for this discussion.
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as

fd3x e* P (a2 ¢(x) —3(3_¢)*(x)|p1, p2) = [6p1-P2- — (PT +P3)] X 6(P—p1—p2),
(4.A.4)
Let’s first start with the simple example of the mass term matrix element

between {pz. We find

a2k, d2k,

(2?T)42k1_2k2_ {2H}353(k1 +ky — P'}

(¢% P'|2P_6P'™|¢%, P) =2P_m? f

« (278 (ks +— P) [ + ).
ki- koo
(4.A.5)
Already, we can see how the divergence will arise. We see that when any
of the k;_ — 0, the integral above will exhibit a divergence which will need
to be regulated. In fact, the delta functions cause the two integrals above to
collapse to a single integral and introducing an € regulator and performing

that integral using the coordinate transformations in Appendix 4.A.2, we find

(¢% P'|2P_6P\™ |¢%, P) = 2P_(2)25(P — P")m?2 (v/% + ﬂ(e)) , (4.A6)

where P2 = juz. As expected, this matrix element diverges as 1/ V€. Now,

performing the same exercise for the other operator T__, we find

/2
m?z (P?; + Ole) | -

(T__; P'[2P_sP\™|T__; P) = 2P_(27)%6%(P — P') NG
€
(4.A.7)
We can also similarly compute the matrix element between T__ and {pz. Ignor-

ing overall numerical factors and the i dependence, we find that the divergent



part of the matrix elements looks like

1 —-1/2 /2
M~ T (P;;i p ;’%{2) (4.A8)

This matrix has two eigenvalues: 0 and one that diverges as € — 0, which is
o~ ?1; If we look at the eigenvector corresponding to the former, we find that

it is just a linear combination

(P2 1) =-P¢*+T _ = —(p1+p2)*¢* +T__ = —¢po°¢p— (0_¢)* + T__.

(4.A.9)
We see that the ¢a* ¢ cancels against the same term in T__, leaving just a
term proportional to (9—¢)2. The effect of the Dirichlet boundary condition
is to therefore to reshuffle the basis and remove the problematic piece in T— .
The reduced Dirichlet basis, which in this case consists of the single eigen-
state corresponding to the operator (9_¢)?, is the finite eigenstate, while the
divergent piece is lifted out of the spectrum. In effect, the Dirichlet basis
consists of reshuffling of the original basis such that the operators that remain
have a product of momenta py_ps_ - - - pn— necessary to cancel against the IR

divergence.

The purpose of this example was to show how the Dirichlet basis arises
from the standard conformal primary basis once we deform by a mass term.
We see that the size of the Dirichlet basis is smaller than that of the original
basis (and this behavior will persist as we increase the size of the basis). In
practice, one could construct the Dirichlet states by finding the finite linear
combinations of eigenstates, which amounts to determining the kernel of the

divergent part of the mass matrix. However, our approach will simply be to
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construct these states by demanding that every Dirichlet state has a product
of momenta p1_pa_ - - - p,— and using their associated inner product. We will

describe this in the next section.

4.A.2 General Case

While the above method for constructing the Dirichlet basis can be generalized,
in this work we will explicitly construct the basis of Dirichlet states from their
associated inner product. This basis is identical to what is obtained by starting
with Casimir eigenstates and demanding that they satisfy Dirichlet boundary
conditions, but it is computationally more efficient to implement. We leave
the details of our numerical algorithm to section 4.C; below we will derive the
Dirichlet inner product and explain the symmetrization procedure to obtain

our final basis states.

Our Dirichlet states take the form as in eq. (4.B.5), which we reproduce
here:

1 _
\/—Pn+|l |ﬁ—2—+|ll|./4; F—g—+|li|gk(ju)

1 &p; - - dp, - (4.A.10)
XEI(EH)E"EPF--'EPH— (anfe* (Lpi—P

|0; B,k) =

X p1-p2—--- pn-Fo(p)lp1,- -+, pn),

where we have substituted in the Dirichlet wavefunction in eq. (4. A.2). The
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inner product then takes the form

2P_(27)%5%(P — P) 1

;P K|O; B k) =
{ | ) 2nn! 2?IPE"+|J"—|+|""'rj_|ﬂn—5+|lj_|+|l’_|

— ;:THM' — =t ()5 () 25— )

d? d? _
< | g 2n)s (Z pi— ) p1- - pn-Fo(p)For(p)-
(4.A.11)
Using the equations of motion and the choice of our reference frame of P; =0,

the set of delta functions can be recast as

o) (5 ) 5 )

(4.A.12)
Here, it is useful to define dimensionless variables
o F;_{_‘, yi= %, (4.A.13)
so that the wavefunctions have a scaling set by
Fo(p) = prIP" P -ley o x, Fo (x,y), (4.A.14)

where |A | | counts the number of P, derivatives while |A _| counts the number
of P_ derivatives in Fp(p). These scaling factors cancel against the factors
coming from the j integration measure. Since our weight functions are defined
to be orthonormal when integrated over juz with unit measure, the inner

product factorizes into an orthogonal piece with respect to k and k'and a piece
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that depends on © and O":
(0; P K|O; P k) = 2P_(2m)%6*(P — P Lo (4.A.15)

To determine 7 s, we can choose integration variables defined by

= (1 —Zl)(l — Zg){l —23) s I{] — Z"_'l),

Xy = z1(1—z2)(1 —z3)--- (1 —zp_1),
X3 = z2(1 —z3)--- (1 —zp—1), (4.A.16)
Xn = Zn—1s

where the z; range from [0, 1], and

vi=—(n+tyst---+yn)

yz :FIJZI(]'_ZI)”'{I_ZH—]) —zl(y‘a_i_ +y.");

¥z = fn/?—z(l —22)--- (1 =2zp—1) —22(ya + - - + Yu), (4.A.17)

Yn = Fn—l Jzn—l{l _zn—l)-

In these variables, the original set of delta functions we had simply reduce to

8 (Z p; — F) — %5 (f 7> — 1) . (4.A.18)

Introducing angular variables for the remaining ij variables to implement this
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constraint
Fl — Siﬁﬂl sin ﬂz e Si.[‘lﬂn_z,

2 = cosbysinfy - - -sinb, 7,

i3 = cosbysinfy - - -sinf, 7, (4.A.19)

¥n—1 = cOS On—2,

where 6; € [0, ] fori =1,...,n —3and 8,_, € [0, 27], we find that the inner
product becomes

(0P K|0; B, k) = 2P_(27m)26%(P — P')owTere, (4.A.20)

with

1 3 5'_1

x f de, - -de, , (Hsmf—l Hj) Fol(z,0)Eor(z, 0).

!

(4.A.21)

To obtain our final Dirichlet states, we tabulate a list of Dirichlet mono-
mials at and below a given maximum Casimir eigenvalue Cp,.,. This set of
monomials will be overcomplete, so in order to determine the complete or-

thonormal basis, we compute the Gram matrix using eq. (4 /.21) between
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different monomials. We then determine the final basis by performing a QR
decomposition on the Gram matrix, the details of which we leave to Appendix
4.C.

4.B Matrix Elements and Operator Overlaps

In this section, we compute the matrix elements between the invariant mass
M? and the Dircichlet basis states. The mass operator can be written in terms

of momentum generators as
M? =2pP,P_ — P (4.B.1)

However, since the Hamiltonian deformations we will study do not break
translational invariance, we can choose a reference frame where P_ is fixed

and P; = 0. We can therefore compute the simpler matrix elements
(O; P, K|M2|O; P, k) = 2P_{O"; P, k'|P+|O; P, k). (4.B.2)
These matrix elements take the form
(O'; P, K'|M?|O; B, k) = 2P_(27)%8%(P — P)Mo,or 1 i- (4.B.3)

We will suppress the overall kinematic factor and focus on the matrix elements

Me o iy for the remainder of this section.
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4.B.1 Kinetic Term

We begin by computing the M2 matrix elements in the original CFT. The CFT

Hamiltonian can be expressed in terms of raising and lowering operators as

(CFT) _ il
p{cFD — f (zn)z ahap (4BA4)

Note that this term preserves particle number, so that we consider sectors
with differing particle number separately. As discussed in section 4. A, our
Dirichlet states take the form

1 2
JaaP A A o 7 +|A 3x(7)

1 &p; - -dpy - (4.B5)
"l (2m)22py_ - - 2pp— (27)°5 ;P! -F

|0; B, k) =

X p1—p2— - - - pn—Fo(p)|p1, - - . pn)-
Inserting eq. (4.5.4) in between two states and using the coordinate transfor-
mations in egs. (4.A.16), (4. A.17), and (4£.A.19) we find that

24,2
CFT My + My
MLH%@ = A? ( k - k 1) SexZo,or- (4.B.6)

4.B.2 Mass Term

The first deformation we consider to the UV Hamiltonian is the mass term,
which results in a correction

2
sp™ f o Za gy (4.B7)
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Like the kinetic term, this term preserves particle number. We can use the
same coordinate transformations as in the inner product and kinetic terms to

arrive at

o m 7 51
Moo = (n—1)12n(2m)2 3 fdzl cedzg ([ ]2 (1-2)2

i

x( ! ) f 6, ---de, , (Hsinf_lﬂj) Fo(z,0)Ee (2, 0).

Zn-1 i

(4.B.8)

4.B.3 Quartic Interaction

We now move onto the more nontrivial deformation of a quartic interaction to

the Hamiltonian, which gives rise to a Hamiltonian correction of the form

spA) — A dzpdzqdzk 4ﬂ;ﬂ;ﬂlﬂp+?+k 4 he 4+ ﬁﬂ;ﬂ;ﬂkﬂpﬂ;—k .
T 24) (am)s/Bp_qk— \ V2(p— +g-+k-) V2(p-+q- k)

(4.B.9)
This deformation contains two types of terms, one that changes particle num-
ber and one that preserves it. We will refer to the former, which corresponds to
the first two terms in eq. (4.5.9), as the n-to-n + 2 interaction since it changes
particle number by two. We will call the latter type of term in eq. (4.5.9) the

n-to-n interaction.

Unlike the kinetic and mass terms, the interaction terms give rise to ma-

trix elements that depend separately on both i and p'. In other words, the
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discretization integrals over u and u’ do not collapse into one simple integral,

but instead depend on yu and ju’ through the ratio

3
£ (4.B.10
v )

For this reason, we will introduce the useful notation

(O; P, K|6M?|O; B, k) = 2P_(2m)*6*(P — P')

AA 1 ! dlﬁz ! dlﬁ =2 —12
“n PE"+|J“|+|"rl|m—5+lhl+lr_|f T Jo gt AL 8k(7)ge () Moo ().

(4.B.11)
The computation of M pe¢(a) for the interaction terms will be the main focus

of the following two sections.

4B.3.1 n-to-n + 2 Interaction

Let’s first consider the n-to-n + 2 interaction, which gives rise to the following

matrix element between an n particle state and an n + 2 particle state:

n-to-n+2) A d21___d2n -
MES™ ) = g | g @) (Z,Ff_F ) pi----pn-tolp)

dﬂpl .. dip:i , ’ r ) ) r
4 f (zﬁ)zn+-:2p,i_ . ;—:IJ' o (2?’[’)353 (Z pi—P ) P Pn+2—FD’(F )

x 2p2—(27)%6%(p2 — Ph) - - - 2Pn— (27)%6% (pn — Phy2)-
(4.B.12)

It is useful to switch to the dimensionless variables defined in eq. (£.A.13)

separately for the both the primed and unprimed variables. That is, we take
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eq. (4.A.16)-(4.A.17) for the unprimed variables and

x=1-z7)1-2)1-z) - (1-2,)

xy = 21(1-2)(1 —z3) - (1 — 2p41),
x3 = 2(1—z3) - (1 —zppa),
Xpyg = Zn41

(4.B.13)

for the primed coordinates and analogously for eq. (4. A.17). We then find

(n—tg—n+2 _ .;'I.ﬂ“/ H+ ]. {ﬂ- + 2) :I‘I —3

f_)gr { ) 2477 fdzl n—ldyl t

(1:!7'% I!H) (Zyn 1_1)1:0(7-;?)

fdzldzzd.ﬁdyzﬁ —ZU%ZEEU —z)?

n—1
5 (g’% +i5+ar Y i - 1) For(2', 3, 7).
i=1

'dyn—l

(4.B.14)

The first delta function constrains the n — 1 §'s, which correspond to the

variables of the “spectator” particles, to a sphere of radius 1. The other delta

function for the interacting particles constrains §f' to a sphere of radius 1 — a2,

which constrains & < 1. Physically, this is due to the fact that the n-to-n + 2

interactions can only increase the kinetic energy due to the creation of two

additional particles. Parameterizing these two spheres with angular variables

109



for the spectators and interacting particles we obtain

(n-to-n+2) _ 1 1 na
Moo~ (#) = Gy g™ *

n—1

3 . 1 1
X fdzI - odzy_1dzydzy ( z7(1 —z,-)g“"l) z13(1— zi)%zai{l —z5)?

i=1

x f 0, ---de,_,de’ (Hsmf—l Hj) Fo(z,0)Eo(2, 0,6, a).
j

(4.B.15)

4.B.3.2 n-to-n Interaction

Finally, we turn to the n-to-n part of the quartic interaction. It takes the form

(n—to-n), \ An(n—1) 1 d’py - - - d*p, 353 o
Moo~ a) = 1 n!f{er}z"Em_”-Epn_(zn) & ;P: P

apy---dp,
T2py - 2p

XpP1—--- PH—FD(F) f (2

x (27)°8° (Z pi—P ) i pu_Fo(p')

x 2p3_(27)*6%(p3 — pa) - - - 2pn—(270)%8% (pn — P})-
(4.B.16)
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Performing the coordinate transforms in eqs. (4.A.16)-(4 A.17) for both the

primed and unprimed coordinates, we find

n—l}n}i—g

167y’

H—I0—H -;L P F gt ! r
M(DD,t }(nt) = a fdzIdyldz1dy1¢z1(l —z1)zi(1—2zf)

x 8 (;3}’%—1) 8 (g?ﬂz!;g;?-q)

x fdzg---dz"_ldgz---dgn_1 (Hz§{1—z,-)i:?—3)

i=1

x Fo(z, §)Fo(z’, i)
(4.B.17)

We can use the delta functions to perform the integration over the ij coordinates

of the interacting particles. Note that they impose the constraints

h=+v1-r3 i =+V1—a??, (4.B.18)

where

P=i -k - (4.B.19)
Note that when a = 1, the two constraints coincide, and the range of in-
tegration r is taken to be between [0, 1]. Similarly, when & < 1, the reality
condition on jj; requires r € [0, 1], which automatically satisfies the constraint
on ;. However, when a > 1, the reality condition on i; provides a stronger

constraint and requires r € [0, 2],
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Defining spherical coordinates for the remaining spectators

2 =rsinfy sinfy - - -sinb,_3,
i3 =rcosbysinfy---sinf,_3,

s =rcosthsinby---sinf,_3, (4.B.20)

WYn—1 = rcosfy—3,

and defining

For =Fp(ih = £V1-12), Forr =For(ih = £V 1—a??),

(4.B.21)
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the matrix element can be summarized as

1
(n — 2)Ig2n—13n+2

(n-to-n)
ao’

xfdz1-~dzn

MO (@) = T

f

1
M

i1

_ldzi\/zﬂ[l—zI )z3(1 —2z)) (Hz

3
_z!

?'"_3

min(1°) .
xj; drfdﬂ1---dﬂn_3 (l;lsmf 19j) —

X (ng(z,r,ﬂ)) (ng;(z,ar,ﬂ)).
+ +

1—r2)(1— a2r?)

(4.B.22)

4.C Details of Code and Algorithms

Broadly speaking, the goal of the program is to reduce as many computations
as possible to pure linear algebra operations. This allows us both to avoid a

great deal of repeated work and to take advantage of established libraries for

linear algebra. So in order to do this, we need a basis for

and we need to express the quantities of interest as vectors and matrices on
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this basis.

Our computation begins with a naive list of all Dirichlet monomials having
total scaling dimension below some cutoff A. We intend to use this as a basis
for all states below the cutoff, but since it's vastly overcomplete, we must first
eliminate all of the redundant monomials, the first step of which is to compute
the Gram matrix containing the inner products of all of the monomials in
the naive list with all of the others. Before computing the Gram matrix, we
normalize the input monomials so that it's easier to distinguish floating point
epsilons from inner products which just happen to be small, and we also
separate the states with an even number of P, derivatives from those with an
odd number: the former are always orthogonal to the latter, and their matrix
elements with each other are always zero, so we can treat both cases separately.
Since matrix algorithms generally have complexity of roughly O(N?), any
simplification which breaks the overall matrix up into invariant subspaces is

tremendously advantageous.

With the Gram matrix in hand, there are a number of ways to produce
an orthogonal basis from the overcomplete one, the simplest of them being
a QR decomposition. However, the QR decomposition of a rank-deficient
matrix is not unique, and the Gram matrix is rank-deficient due to the basis
being overcomplete. This is a mixed blessing: while it means that off-the-shelf
QR decomposition functions will often yield a correct but non-useful basis,
it also means that we have a lot of freedom to arrange to produce the most

convenient basis possible.

Our implementation uses the Modified Gram-Schmidt Algorithm [75],
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feeding in monomials one at a time starting with the monomials with the most
evenly distributed powers of P_ and P,. This produces a basis where the
fewest possible monomials are used, which is desirable because it's O(N?)
easier to compute matrix elements between single monomials than between
arbitrary superpositions of them. The evenly distributed exponents on the
monomials means that each individual monomial will have fewer unique

permutations, again simplifying the computation of the matrix elements.

Note that the Gram-Schmidt process produces exponentially compounding
roundoff errors in the coefficients of the output vectors because each coefficient
depends on all of the ones before it. Because of this problem, we found that
we had to use 128-bit precision floating point numbers to keep epsilons from
growing to sizes comparable to the actual answers; if one were to increase
total scaling dimension beyond what we attempted, one would likely need
to increase the precision further, which could quickly create performance

bottlenecks.

Having finished Gram-Schmidt and obtained a basis of orthonormal states,
the next step is to actually compute the matrix elements between these states.
All of the matrix elements are bilinear in the two states’ reduced wavefunctions
F, which themselves are sums of permutations of ordered monomials. This
suggests a second layer of linear algebra structure: we can represent the
orthonormal basis states as vectors on the (non-orthonormal) space of ordered

monomials which appear in them.

We refer to this latter space as the ‘minimal basis’ and write the orthonor-

mal polynomial basis as a matrix P whose columns each represent one of
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the polynomials, with entry (i, j) giving the contribution of minimal basis
monomial i to orthonormal polynomial j. Now, to produce matrix elements
between the orthonormal basis polynomials, we can simply compute the ma-
trix elements M;; between minimal basis monomials and transform them to
PTMP, producing exactly the desired matrix. Note that M and P are precisely
the same size in our implementation, thanks to our choice of orthogonalization
of the naive basis — if we had not deliberately selected one which used as few

individual monomials as possible, M could have been several times larger.

The matrix M is properly a 4th-order tensor relating the kth juz partition of
monomial m to the k'th juz partition of monomial m’, i.e. we're computing the
entries M,,;,,v. For computation simplicity, however, we actually treat this
as a matrix: if there are N,,; minimal basis monomials and N, juz partitions,
then M is an N,, N}, x N, N} matrix where each pair of monomials has its own

Nk * Nk block.

We compute M block by block, first getting an overall factor a by doing
all of the integrals not involving juz, then computing a discretization matrix
D and multiplying it by a. The entry D;; contains the integral of all u? factors
across the appropriate window:

(i+1)/ N 5 (j+1)/Ng
Djj = dy
if Ni 7/ Ni

duf (%, 1) (4C1
For the kinetic and mass matrices, f(p?, u'?) is just proportional to &(u? — u'?),
while for the interaction matrices it's close to a polynomial in pz,f y"z. We
memoized each discretization matrix in a hash table keyed by f(u?, u'?), soa

matrix element calculation can be represented with the following pseudocode:
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for each unique permutation of m and m':
do integrals to get {numerical factor a} and {list of which f appear}
for each f which appears:
answer += a * D(f)

return answer * degeneracy

where the degeneracy is the number of permutations which are indistinguish-
able from a given unique permutation; which is of course the same for every
unique permutation so it becomes an overall factor. Note that if the integrals
in (4.C.1) can be done analytically, it's possible to program in the answers as
a function of a given set of input exponents. This is fantastically faster and
more precise than a numerical integration, being able to quickly get 10 or 15

decimal digits of precision while the latter struggles to get 5.

Once all of the minimal basis matrices M have been computed, everything
else is just standard matrix algebra. In particular, the Hamiltonian is just

Y PTM;P, (4.C.2)
i

summed over the kinetic, mass, and interaction terms. Interesting quantities
like eigenvalues can then be computed using ordinary matrix libraries; one
might think that some special care is required to take advantage of various
properties of the matrix, for instance the fact that it is “block sparse” in that the
block of n-particle states is coupled only to itself and the blocks of n — 2- and
n + 2-particle states. However, because the bulk of the states lie in the middle
of the particle number range, this actually includes quite a large proportion

of the possible pairs, and in fact upon inspection one sees that the matrix
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is about half full at Apax = 10. If Anax were increased further, the matrix
would become increasingly sparse (technically block sparse), but we do not

expect that it would be worth considering sparse methods such as the Lanczos
algorithm until A, = 15 or higher.

Using the double linear algebra formulation and aggressive memoization
of all the repeated work we could find, we were able to produce finished
matrices up to Apax = 10,kpac = 100 on an ordinary desktop computer in
around two minutes. We believe that we will be able to solve everything
up to around Amax = 15 before the resulting matrices become too large to
deal with; this is our main obstacle, since kmax must be kept high to maintain
good convergence. If k., is kept at 100, the final matrices become unwieldy
once more than about 100 orthogonal states are introduced, which happens at

around A, = 15.
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Chapter 5

Discussion and Conclusion

The analyses in both of the preceding chapters represent ways of using nu-
merical computation to attack problems from unexpected angles. Whereas
quantum field theory is most often solved using perturbation theory in weak
interaction, these projects present entirely orthogonal solutions. In chapter 3,
the power series found by the program is the exact correct answer up to the
given power in ¢ (floating point errors notwithstanding) — accuracy of the pre-
dictions is guaranteed within a given coordinate range, entirely irrespective
of the mass of the objects or the strength of the gravitational interaction. In
chapter 4, the program creates a Hamiltonian for the system which is exactly
correct for all of the states included — the approximation is in ignoring the
higher energy states rather than making any assumptions about the strength

of the interactions.

Accordingly, numerical methods can answer problems which are essen-
tially intractable in traditional analytic, proof-based particle physics. The best
known analytic treatment of the AdS; black hole system remains the semiclas-

sical approximation to which we compare our results — as we demonstrated,
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this approximation completely fails to capture the resolution of the paradox.
The behavior could only be found using numerical methods grounded in a

carefully chosen angle of attack.

Similarly, while the comparisons in chapter 4 are grounded in the relatively
well understood 3d Ising model, many aspects of this model remain unknown,
and the conformal truncation method we use can easily be adapted to study
any low energy effective theory which can be thought of as a CFT deformed by
some relevant operator. This is a very broad class of theories, and we expect
that conformal truncation will yield many otherwise inaccessible results when

applied to systems from particle theory and particularly condensed matter.

We would also like to point out that neither of these projects would have
been possible without a cross-disciplinary understanding of various efficiency-
related topics in computer science. Both make extensive use of dynamic pro-
gramming, and both use a number of data structures and algorithms which
were carefully selected to minimize repeated work and maximize paralleliz-
ability without explicit synchronization. We believe that many outstanding
problems in theoretical physics would be amenable to resolution by a com-
bined approach using both physics and computer science, and would encour-
age any physicists interested in computation to improve their understanding
of algorithm design by working through short CS problems like those at
Project Euler.

Ultimately, since the problems of theoretical physics are becoming more
mathematically complex while computers are becoming more powerful, we

expect that the application of cross-disciplinary numerical methods like those
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https://projecteuler.net

used in this thesis will grow increasingly common. When combined with
novel mathematical approaches like AdS/CFT holography, we believe that
computation represents a compelling forefront for particle physics research,

and we are glad to have had the opportunity to contribute to it.
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