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Abstract 

 

Background: Active life-expectancies post-retirement have increased, allowing for new 

opportunities for cognitive, social, and physical engagement to mitigate later-life health 

outcomes. The question remains as to how we use information about older adults’ lifestyle 

engagement to predict health outcomes and deploy interventions. Here we characterized 

qualitatively-distinct lifestyle engagement groups of older adults, and examined whether they 

had differential risk for cognitive and physical outcomes. 

 

Method: Data come from the Ginkgo Evaluation of Memory Study (N=3,069). Data collection 

occurred from September 2000 and April 2008. Participants were assessed up to 7.5 years. 

Baseline activities were measured using the Lifestyle Activity Questionnaire. We conducted 

latent class analysis to group individuals by their activity response patterns, and examined their 

risk of dementia using discrete-time proportional hazards modeling. Dementia was screened for 

every six months and clinically-adjudicated. We then examined whether the lifestyle engagement 

groups also had differential changes in domain-specific cognition and physical frailty criteria 

using mixed effects modeling. All models were adjusted for baseline age, sex, race, education, 

study site, treatment group, medical comorbidities, and depressive symptoms. 

 

Results: A 4-class model adequately characterized lifestyle engagement in the current sample. 

The Social Intellectual (22%) and Intellectual (18%) groups had high engagement in intellectual 

activities, whereas the Social Intellectual and Social groups (32%) had high engagement in social 

institutional activities. The Least Active group (28%) had lower engagement in most activities 

and had the highest risk of incident dementia. We found that the Social Intellectual group had 
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higher baseline performance across cognitive domains, as well as attenuated declines in memory. 

Finally, we found that the Social Intellectual group had lower risk of prevalent slow gait 

compared to all groups, and lower risk of prevalent exhaustion compared to the Least Active 

group.  

 

Implications: Older adults who were highly active in intellectual and social institutional 

activities had the lowest risk of poor health outcomes. Behavioral interventions should aim to 

supplement an individual’s current lifestyle to encourage broad engagement in cognitively- and 

socially-enriching activities. Future group-level interventions can specifically target the activity 

types that are meaningful to older adults to facilitate adherence and enjoyment of health-

promoting behaviors. 
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Chapter 1: Introduction and Specific Aims 

1.1. The Problem  

The United States is facing an impending aging crisis. The aging “Baby-Boomer” 

population outnumbers younger demographic groups, resulting in increased prevalence of 

neurocognitive and mobility impairments (Bartels & Naslund, 2013). There were an estimated 

6.08 million individuals in 2017 who had either clinical Alzheimer’s Disease (AD), the most 

common type of dementia, or preclinical mild cognitive impairment (MCI) of AD type in the US 

alone (Brookmeyer et al., 2018). This number is expected to more than double by 2060 

(Brookmeyer et al., 2018). AD is characterized by episodic memory impairments and associated 

with increased risk for functional impairment, mortality, and reduced quality of life (Alzheimer’s 

Association, 2019). Furthermore, 40% of individuals over 65 have trouble carrying out daily 

activities (Fried, Bandeen-Roche, Chaves, & Johnson, 2000), and over a third of adults over 70 

have a gait abnormality that limits mobility (Verghese et al., 2006). Thus, promoting cognitive 

and physical health in later life is an important public health effort that would not only encourage 

functioning and well-being of older adults, but also mitigate the healthcare burden of an aging 

population. 

In the absence of effective pharmaceutical treatments for both aging-related cognitive and 

mobility impairments (Alzheimer’s Association, 2019; Varma, Hausdorff, et al., 2016), 

clinicians currently encourage prevention through engagement in physical exercise, cognitive 

training, and control of vascular risk factors (National Academies of Sciences, Engineering, and 

Medicine, 2017). However, interventions on these factors may sometimes lack of feasibility or 

acceptability within older populations most at risk (National Academies of Sciences, 

Engineering, and Medicine, 2017). For example, given only 20% of older adult meet physical 
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activity guidelines (Varma, Tan, et al., 2016),  it may be difficult to encourage sedentary older 

adults to engage in and sustain novel exercise routines that could further benefit cognitive health 

(Voss et al., 2011, 2014). Thus, there has been substantial interest in how to leverage enriching 

lifestyle activities, everyday activities that older individuals commonly engage in, to improve or 

maintain cognitive health with age (Bennett et al., 2014; Bielak, 2010; Gow et al., 2017; Hertzog 

et al., 2009; Hultsch et al., 1999a; Salthouse, 2006; Schreiber et al., 2016).  

1.2. The Potential of Lifestyle Activities  

“Lifestyle activities” are typically considered those that include varying levels of 

physical, cognitive, and social engagement (Bielak, 2010). For example, playing tennis is a 

lifestyle activity that requires all three components: 1) physical exercise to traverse the court, 2) 

selective attention and cognitive-motor integration to locate and hit the ball, and 3) social 

interaction with your opponent or teammate. In contrast, playing cards is a lifestyle activity that 

involves physical and cognitive engagement, but very little physical activity.  

The use-it-or-lose it (Hultsch et al., 1999a; Salthouse, 2006) and enrichment (Hertzog et 

al., 2009) hypotheses suggest lifestyle activity engagement, even in later life, is neuroprotective. 

There are many potential behavioral and neural mechanisms for this relationship (Figure 1.1). 

Physical (e.g., vascular), cognitive (e.g., behavioral plasticity), social (e.g., social ties and roles), 

and brain structural and functional changes all may link lifestyle activity engagement to 

cognitive and motor outcomes. These relationships are further elaborated later in this 

dissertation. Supporting the use-it-or-lose-it and enrichment hypotheses, inventories measuring 

engagement in a variety of physically, cognitively, and socially enriching activities have been 

found to predict neurocognitive outcomes in later life (Bennett et al., 2014; Carlson et al., 2012; 

Chan et al., 2018; Gow et al., 2017; Moored et al., 2018; Sajeev et al., 2016; Voss et al., 2014). 
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1.3. Current Dissertation  

In this dissertation, we capitalize on a physically and cognitively well-characterized sample of 

community-dwelling older adults to complement existing research examining individual 

activities for neurocognitive benefit by asking the following question: do lifestyle engagement 

groups of older adults, who differ in amount and types of lifestyle activities, have different 

physical and cognitive trajectories, as well as different risks of incident dementia over 

time? 

 

1.4. Relevance  

Increasing active life expectancies post-retirement (Crimmins et al., 2016) offer novel 

chances for lifestyle activity engagement in older adulthood. Yet, later life is also a period of 

substantial variability in cognitive and physical functioning (Bandeen-Roche et al., 2015; Fried 

et al., 1994; Verhaeghen & Salthouse, 1997). Better characterizing and understanding the 

relationship between lifestyle activity and cognitive and physical functioning outcomes in later 

life can help inform achievable and more sustainable interventions to promote and maintain 

health in older adults. 

Given that individuals may differ in both the quantity (e.g., amount) and quality (e.g., 

types/characteristics) of their engagement, one way of incorporating both differences to 

potentially better characterize this heterogeneity in lifestyle engagement may be to examine 

latent groups of individuals who endorse distinct activity response patterns. These latent groups 

are described throughout this dissertation as “lifestyle engagement groups.” Highly engaged 
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lifestyles are thought to place higher demands on physical and cognitive functioning (Carlson & 

Varma, 2015; Hultsch et al., 1999a; Schooler, 1984; Stern, 2002). 

1.4.1. Prior methods used to measure lifestyle engagement. Existing aggregate 

measures (e.g., frequency or variety of activity engagement) derived from activity inventories 

focus on total amount of an individual’s engagement, but do not consider differences in the 

specific activities that make up this individual’s total engagement. For example, for two 

individuals with the same activity count (i.e., activity variety), one may have reported primarily 

“sedentary” activities (e.g., watching TV, listening to radio) while the other may have reported 

more “active” activities (e.g., volunteering, church attendance). While both reported the same 

number of activities, it could be assumed that the second individual’s activities are more 

protective against health declines (Fried et al., 2004; Reese, Thorpe, Bell, Bowie, & LaVeist, 

2012), but this information is lost when a simple count measure is used.  

To better account for differences in activity type (e.g., physical, social, sedentary), 

several prior studies have first grouped activities by type, either using expert consensus (e.g., 

Aartsen et al., 2002); ratings of cognitive intensity (e.g., Carlson et al., 2012), factor analytic 

methods (e.g., Lennartsson & Silverstein, 2001), or occasionally simply by a priori . Aggregate 

frequency and variety measures can then be derived from these groupings and used to examine 

whether specific activity types have different relationships with cognition. These aggregate 

measures and studies incorporating them are reviewed later in this dissertation (see “Measures of 

lifestyle activity engagement”). 

1.4.2. Current approach. The approach taken in the current dissertation extends upon 

these aggregate measures by grouping individuals by their commonly reported activities. We can 

then examine whether these groups report overlapping and non-overlapping activity types (e.g., 
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intellectual, social, physical), and potentially have different trajectories of cognitive and physical 

health outcomes. Examining lifestyle activity engagement in this way may better capture 

qualitative (e.g., characteristics, types) differences in lifestyle at the group-level that are missed 

in aggregate activity measures, and which may be relevant for targeting interventions to specific 

groups of older adults.  

To further illustrate how this approach is useful, Figure 1.2 includes a hypothetical 

example where there are three frequently reported sets of lifestyle activities. Individuals in Group 

1 (“home activities only”) commonly report engaging in two activities, sewing and reading a 

book. Groups 2 and 3 both commonly report engaging in four activities, two of which overlap 

with those commonly reported in Group 1. There is therefore a quantitative difference in activity 

engagement between Group 1 and Groups 2 and 3. However, there are also qualitative 

differences between Group 2 and Group 3 in the remaining two activities that they commonly 

reported.  Individuals in Group 2 (“home + cognitively enriched”) are more likely to report 

taking classes or doing crossword puzzles than individuals in Group 3 (“home + socially 

enriched”), who are more likely to report volunteering and membership in a church or other 

social group.  

These qualitative differences are important for two reasons. First, these activities may 

influence cognitive and physical outcomes through different mechanistic pathways and thus may 

differ in their magnitude of effect on these outcomes. Second, and perhaps more importantly, 

these qualitative differences may suggest that individuals have unique motivations for staying 

active. This provides more information to leverage when targeting interventions to maintain or 

supplement current lifestyle activity engagement with the goal of preventing cognitive and 

physical declines. For example, if Group 3 (i.e., “home + socially enriched”) is shown to have 
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better cognitive and physical trajectories than Group 1 (i.e., “home activities only”), then 

interventions targeting individuals in Group 1 may try to enrich their current lifestyle by offering 

these same activities within a social context, such as providing a book club or sewing group. 

Similarly, interventions targeting individuals in Group 3 (“home + socially enriched”) could 

leverage their motivation to be socially engaged in new ways that may further benefit their 

health. The Experience Corps program is an example of a successful intervention that has taken 

this approach, where older individuals who are motivated by a generative desire to help future 

generations are encouraged to stay active through volunteering in a local school system (Fried et 

al., 2004).  

This dissertation is, in part, a proof-of-concept of this novel method of characterizing 

heterogeneity in lifestyle engagement and examining whether these lifestyle engagement groups 

have different trajectories of cognitive and physical functioning.  

 

The specific aims of this dissertation are (see Figure 1.3): 

 

Aim 1a: Characterize lifestyle engagement groups in a sample of older adults using latent 

class analysis. 

Hypothesis. We hypothesized that older adults group by activity type (e.g., intellectual vs. social) 

or activity setting (e.g., home vs. community). A prior nationally-representative study (Manalel 

et al., 2018) used a similar approach and found groups with different amounts and types of 

engagement, where those with the highest engagement reporting more social activities within the 

community. We hypothesized that those in classes reporting more activities (i.e., quantitative 
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differences) here also report different activity types that suggest different extrinsic and intrinsic 

motivations to be active.  

Aim 1b: Examine whether lifestyle engagement groups (Aim 1a) have differential risk of 

dementia incidence. 

Hypothesis. Groups with quantitative and qualitative differences differ in their risk of incident 

dementia. Lifestyle engagement groups characterized by high overall engagement or high 

engagement specifically in intellectual activities have the lowest risk (Scarmeas et al., 2001).  

Aim 2: Examine longitudinal changes in domain-specific cognitive functioning across 

lifestyle engagement groups (Aim 1a). 

Hypothesis. As predicted by the use-it-or-lose-it (i.e., enrichment) hypothesis (Hertzog et al., 

2009; Hultsch et al., 1999a; Salthouse, 2006), groups with quantitative and qualitative 

differences in activity patterns differ in baseline cognitive outcomes and changes in cognition 

over time. The largest differences are for measures of attention and memory (Bielak, 2010; 

Herzog et al., 2008). Lifestyle engagement groups characterized by high overall engagement or 

high engagement specifically in intellectual activities have the highest baseline levels and 

reduced declines over time in these domains (Bielak, 2010; Carlson et al., 2012; Hultsch et al., 

1999a).  

Aim 3: Examine longitudinal changes in markers of mobility and physical frailty across 

lifestyle engagement groups (Aim 1a). 

Hypothesis. Given that lifestyle activities likely engage neural mechanisms key for maintaining 

mobility and physical functioning (Rosso, Studenski, et al., 2013; Varma, Hausdorff, et al., 

2016), groups with quantitative and qualitative differences in activity patterns differ in baseline 

physical functioning outcomes (e.g., walking speed, self-reported exhaustion) and changes in 
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these outcomes over time. Lifestyle engagement groups characterized by high overall 

engagement or high engagement specifically in social institutional activities within the 

community have lowest baseline risk of physical frailty criteria and mobility limitations, as well 

as attenuated risk trajectories of these outcomes over time (Buchman et al., 2009; Rosso, Taylor, 

et al., 2013). 
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Chapter 2: Background 

2.1. Public Health Significance of Cognitive and Mobility Declines  

Cognitive and mobility changes with age are contributors to decreased functional 

independence and increased mortality (Alzheimer’s Association, 2019; Guralnik et al., 2000). 

Some cognitive and mobility changes occur normally with aging and do not result in functional 

impairments (Glass, 1998; Verhaeghen & Salthouse, 1997). Yet, the prevalence of 

neurodegenerative conditions, such as dementia due to Alzheimer’s Disease (AD), and mobility 

disabilities is expected to increase with the changes in population demographics with the aging 

Baby-Boomer generation (Alzheimer’s Association, 2019; Verghese et al., 2006). For example, 

AD prevalence is expected to more than triple by 2050, from approximately 5 million to 15 

million individuals in the U.S. alone (Brookmeyer et al., 2018).  

Given the public health significance of cognitive and mobility changes in older 

adulthood, yet lack of universally effective pharmacological treatments for these conditions 

(Alzheimer’s Association, 2019; Varma, Hausdorff, et al., 2016), preventive interventions are 

needed that target modifiable risk factors contributing to these conditions. Importantly, aging-

related cognitive and mobility changes are related via common underlying neural mechanisms 

(Rosso, Studenski, et al., 2013), suggesting interventions could potentially improve both 

cognition and mobility simultaneously if they target these shared mechanisms (Varma, 

Hausdorff, et al., 2016). One such modifiable factor may be lifestyle activities, which incorporate 

various degrees of physical, cognitive, and social engagement (Bielak, 2010; Carlson & Varma, 

2015).  
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The sections below further elaborate on: 1) cognitive and mobility changes with aging 

and shared neural systems linking both conditions, and conclude with 2) examining lifestyle 

activities as a potential protective factor against cognitive and mobility changes. For this last 

section, I critically evaluate the literature on lifestyle activities, including current gaps and 

barriers in the field that will be addressed in this dissertation. 

2.2. Cognitive Changes with Aging 

There are both normative and neurodegenerative cognitive changes that can occur with 

aging (Figure 2.1). Normative cognitive changes are those that occur free of significant 

impairment or pathological accumulations. These typically include aging-related decreases in 

fluid cognitive abilities such as in the executive functioning domain (i.e., ability to plan, problem 

solve, shift attention, and have goal-directed behavior) (Verhaeghen & Salthouse, 1997). 

However, not all cognitive abilities decline with aging. Crystalized abilities, such as vocabulary 

knowledge, typically do not show the same magnitude of aging-related declines (Verhaeghen & 

Salthouse, 1997). Thus, most cognitive interventions targeting community-dwelling older adults 

tend to target fluid abilities. 

Further evidence for these normative aging-related cognitive changes comes from the 

Seattle Longitudinal Study, which began in 1956 and is ongoing (Schaie & Willis, 2010). They 

found that while crystallized abilities like verbal comprehension were relatively preserved until 

later life (>65 years old), fluid abilities like verbal memory, executive functioning, and 

processing speed begin declining in mid-life (>40 years old), resulting in lower performance on 

these tasks relative to verbal comprehension in older age (Schaie et al., 2004). Yet, there are also 

important cohort differences to account for when conceptualizing “normative” cognitive change. 
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Those in earlier-born cohorts (born 1883-1913) in the Seattle Longitudinal Study had both lower 

baseline levels and steeper declines in several fluid abilities from ages 50 to 80 compared to 

later-born cohorts (born after 1914). These cohort differences emphasize the importance of either 

adjusting for baseline age or restricting the sample to a single cohort when studying cognitive 

aging. Both approaches are used in the Ginkgo Evaluation of Memory Study, the dataset used in 

this dissertation.  

2.2.1. Brain changes with normative aging. Normative cognitive changes are 

accompanied by aging-related changes in structural brain measures (e.g., regional volume, 

thickness, shape). Older adults typically experience an annual 0.8-2 percent decline in cortical 

volume, with bilateral temporal regions having the largest declines (Jiang et al., 2014). 

Subcortical regions of the medial temporal lobe, including the hippocampus and entorhinal 

cortex, experience increased rates of atrophy with age (Jiang et al., 2014). The hippocampus and 

entorhinal cortices are important for episodic memory function, and are typically heavily 

atrophied in neurocognitive disorders like Alzheimer’s Disease (see following section; Barnes et 

al., 2009; McKhann et al., 2011). These underlying brain changes are important, given their 

potential to influence not only cognitive performance, but also other functional behaviors like 

mobility. Mobility and the neural mechanisms linking cognition and mobility are described more 

in later sections.   

In contrast to normative changes, neurodegenerative cognitive changes are those 

involving significant impairments in one or many cognitive domains that result in declines in 

independent functioning. Mild Cognitive Impairment (MCI), also known as Mild Neurocognitive 

Disorder (American Psychiatric Association, 2013), is often considered an intermediate stage 



 

 12 

between normal cognitive functioning and dementia. Those with MCI may have impairments in 

one or more domains of cognition, but have largely preserved independent functioning except for 

more complex tasks (e.g., managing money) (M. S. Albert et al., 2011). In contrast, dementia, or 

Major Neurocognitive Disorder (American Psychiatric Association, 2013), is characterized by 

impairments in more basic activities of daily living (e.g., bathing, eating). The clinical course of 

dementia is often described as an “insidious onset” of cognitive impairment with “gradual 

progressive declines” (American Psychiatric Association, 2013), and typically involves 

impairments in multiple cognitive domains (McKhann et al., 2011). There are several dementia 

subtypes, with Alzheimer’s Disease (AD) being the most prevalent (Alzheimer’s Association, 

2019). AD is characterized by impaired episodic memory performance and accumulation specific 

brain pathology, including cortical atrophy and accumulation of beta amyloid and tau tangles (M. 

S. Albert et al., 2011). 

Given that many cognitive tests are sensitive to normative aging-related cognitive 

changes, diagnoses of MCI or dementia require knowledge of longitudinal cognitive changes and 

often consider other risk factors, such as family history of dementia or brain biomarkers (e.g., 

amyloid and tau accumulation; cortical atrophy; enlarged ventricles) (Albert et al., 2011; 

McKhann et al., 2011). Finally, it is important to emphasize that normative cognitive changes 

and accumulation of brain pathologies need not lead to neurodegenerative impairments (Stern, 

2002). This suggests that intervention is possible during preclinical stages to potentially modify 

trajectories of cognitive aging, and this has been a focus of extensive preventive research 

(National Academies of Sciences, Engineering, and Medicine, 2017). The current dissertation 

will examine both domain-specific cognitive changes and risk of neurodegenerative impairments 

(i.e., dementia). 
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2.3. Mobility Changes with Aging and their Connections with Cognition 

 Mobility is defined as the ability of an individual to move about their environment 

(Rosso, Studenski, et al., 2013). Mobility declines with age are thought to represent an 

intermediate, preclinical stage of functional disability, preceding inability to perform activities of 

daily living like basic physical tasks, bathing, or toileting (Fried et al., 2000; Harris, Kovar, 

Suzman, Kleinman, & Feldman, 1989). Fried et al. (2000) found that among the 69% of women 

who reported no mobility difficulties at baseline in the Women’s Health and Aging Study 

(WHAS), about 16% and 11% of these women reported difficulties walking 0.5 mile or climbing 

10 steps, respectively, after only 18 months of follow-up. Furthermore, those with preclinical 

indicators of mobility declines, including self-reported task modification due to mobility 

constraints or performance changes on walking speed, had significantly higher odds of reporting 

mobility difficulties at follow-up. Thus, aging-related, preclinical mobility declines provide an 

important target to prevent future functional disability. 

Although mobility is a broad umbrella term, the current dissertation will focus on lower-

extremity mobility, including gait speed. Gait is the pattern of movement of the body during 

locomotion (Rosso, Studenski, et al., 2013). About 35% of adults over 70 have a gait 

abnormality (Verghese et al., 2006), and gait abnormalities can lead to significant mobility 

limitations, increased cognitive impairment (Verghese et al., 2002), reduced quality of life 

(Guralnik et al., 2000), and mortality (Studenski et al., 2011).  

 Mobility and cognition are also intimately related and share similar neural pathways. 

First, domain-specific cognitive abilities, including processing speed and executive functioning, 

are strongly correlated with gait in epidemiologic studies (Rosso, Studenski, et al., 2013). Gait 
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changes or abnormalities have also been predictive of cognitive declines and dementia (Rosso, 

Studenski, et al., 2013). Second, brain imaging studies suggest prefrontal, cingulate, parietal, 

putamen, and the cerebellum regions, as well as the connecting tracts between them, are 

important for maintaining mobility functioning (Holtzer et al., 2014). These regions are also 

active during tasks requiring cognitive-motor integration (e.g., complex walking tasks; Rosso et 

al., 2019). Finally, further evidence for the link between mobility and cognition comes from 

intervention studies. Neurocognitive interventions targeting motor learning and those providing 

electrical stimulation to frontal brain regions have been shown to improve gait in older adults 

(Varma, Hausdorff, et al., 2016).     

 Given the connection between mobility and cognition and their influence on well-being 

in later life, it is important to consider potential protective factors that act on similar etiologic 

pathways. One potential protective factor is lifestyle activity engagement, which may provide 

meaningful roles for older adults that encourage sustained cognitive-motor integration. 

2.4. Mobility Limitations as a Contributor to Physical Frailty 

 Highly related to mobility in later life is the concept of physical frailty. Physical frailty is 

an aging-related clinical state of vulnerability during which an individual is at heightened risk of 

adverse health outcomes (e.g., institutionalization, falls) and mortality (Fried, Tangen, et al., 

2001; Rockwood et al., 1999). Prior to the 2000s, physical frailty was often operationalized 

inconsistently and sometimes considered synonymous with disability or comorbidity (Fried, 

Tangen, et al., 2001). Efforts to standardize the operationalization of physical frailty has led to it 

being conceptualized in two different ways in the literature: 1) as an accumulation of medical, 
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functional, and social deficits (i.e., frailty index; Rockwood et al., 1999), and 2) as a biological 

syndrome (i.e., phenotypic frailty; Fried et al., 2001).  

The frailty index approach was developed by Rockwood and colleagues, and measures an 

individual’s number of deficits out of a broad list of possible deficits (Mitnitski et al., 2001, 

2002; Rockwood et al., 1999). The number of deficits evaluated has varied across studies (i.e., 

20 items in Mininski et al. (2002), vs. 92 items in Mininski et al. (2001)), but often includes a 

range of medical (e.g., history of diabetes, Parkinson’s disease), behavioral (e.g., ADLs, IADLs), 

laboratory (e.g., blood glucose), and functional (e.g., mobility impairment) measures. 

Importantly, the frailty index considers frailty to be deficit-driven, but is agnostic to the types of 

deficits. In other words, the more accumulated deficits, regardless of type, the more likely a 

person is to be frail.  

Parallel to the frailty index, Fried et al. (2001) developed the frailty phenotype, which is 

conceptualized as a syndrome related to age-associated biologic declines in energetics and 

physical reserves. The phenotype consists of five dimensions: 1) shrinking/sarcopenia, 2) 

weakness, 3) poor endurance/exhaustion, 4) slowness, and 5) low activity (Table 2.1). Those 

exhibiting at least 3 of the above criteria are considered frail (i.e., have reached a critical mass of 

the criteria), whereas those with 1 or 2 criteria may be pre-frail (Bandeen-Roche et al., 2006; 

Fried, Tangen, et al., 2001). The frailty phenotype is associated with further disability, falls, and 

other poor health outcomes through decreased physiologic reserves to manage stressors (Xue et 

al., 2019).  

There are strengths and limitations to each of the above physical frailty definitions. First, 

the extensive list of deficits included in the index approach can be easily taken from medical 
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records and interchanged with other measures without substantial loss in predictive ability 

(Rockwood et al., 2007; Walston & Bandeen-Roche, 2015). In contrast, phenotypic frailty relies 

on fewer criteria, and requires specific functional measures (e.g., walking speed) that are not 

always interchangeable nor possible to obtain from medical records. Nevertheless, the frailty 

phenotype is based off a clear conceptual framework related to biological aging, allowing for the 

determination of potential etiologic pathways (Walston & Bandeen-Roche, 2015; Xue, 2011). In 

contrast, the large list of deficits included in frailty indices makes it difficult to pinpoint 

etiological mechanisms and determine whether they measure a biological aging process or a 

chronic disease state. For example, frailty indices often include measures of disability (e.g., ADL 

impairments) and mental health (e.g., depression), which are considered conceptually distinct 

from the underlying loss of energetics and physical reserve that characterizes the frailty 

phenotype (Fried, Tangen, et al., 2001). Yet, understanding the underlying etiology of physical 

frailty is critical, as this information could be used to inform interventions that mitigate onset or 

progression of the syndrome and ultimately prevent its associated poor health outcomes. For this 

reason, the remaining discussion on physical frailty in this dissertation will center around 

phenotypic frailty. 

Mobility is both a key component and behavioral correlate of the frailty phenotype. 

Within the cycle of frailty (Fried, Tangen, et al., 2001; Xue, 2011), mobility limitations are 

characterized as slow walking speed and reduced physical activity resulting from sarcopenia and 

exhaustion. Mobility declines ultimately lead to lower energy expenditure, contributing 

cyclically to further muscle loss. Mobility declines may be detectable earlier in the onset of 

physical frailty than other criteria (Xue, Bandeen-Roche, et al., 2008; Xue, 2011). Xue et al. 

(2008) found that 76% of the women who were non-frail at baseline in WHAS II developed the 
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weakness, slowness, and low activity criteria before exhaustion and weight loss. Mobility 

limitations may therefore help identify individuals of increasing vulnerability in the 

early/intermediate stages of frailty development.    

However, mobility has a complex relationship with physical frailty, given that it is not 

only a measure of physical capacity, but also manifests behaviorally through physical activity. 

These behaviors can be influenced by a variety of psychosocial (e.g., self-efficacy, social 

supports) or environmental (e.g., neighborhood walkability) factors that are conceptually distinct 

from phenotypic frailty (Bandeen-Roche et al., 2019; Rosso et al., 2011; Xue, Fried, et al., 2008). 

These factors may especially influence the “low activity” criterion of phenotypic frailty. 

Bandeen-Roche et al. (2019) hypothesize that several interventions reporting benefits for frailty 

may have been driven primarily by intervention-related behavioral changes in physical activity, 

rather than changes in the physiological underpinnings of frailty. As a result, they argued that 

frailty interventions should target its physiological mechanisms broadly rather than the 

individual criteria, to properly determine whether the intervention successfully prevents frailty or 

just masks its symptoms.  

Nevertheless, the behavioral component of mobility and physical activity is still an 

important modifiable factor in prevention of physical frailty, especially early in its progression. 

Xue et al. (2008) examined the relationship between life-space mobility, defined as an 

individual’s self-reported ability to move freely in their environment, and incident frailty in the 

WHAS I sample. In contrast to WHAS II, WHAS I consisted of the subset of women who were 

the most disabled at baseline. Accounting for frailty-free mortality as a competing risk, they 

found that women who reported leaving their neighborhood less than four times per week had 
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1.7 times the risk of incident frailty compared to those who reported leaving more than four 

times. Furthermore, they found that being confined to the home (i.e., severe life-space 

constriction) predicted frailty-free mortality, but not incident frailty (Xue, Fried, et al., 2008). 

They suggested that this may have been due to the infrequency of frailty assessments and rapid 

acceleration to death in this group, which likely resulted in some of the individuals being 

misclassified as frailty-free before their death occurred.  

Importantly, the authors also emphasized how despite the substantial mobility, IADL, and 

ADL difficulties in WHAS I at baseline; these difficulties were not perfect predictors of lower 

life-space mobility. This suggests that some participants may have been able to compensate for 

these declines in physical capacity using either internal (e.g., using assistive devices) or external 

(e.g., social supports) strategies to maintain their life-space mobility (Xue, Fried, et al., 2008). 

This discrepancy between reported difficulties and reported activities has been found in other 

observational studies of older adults (Glass, 1998) and is described later in this dissertation. This 

discrepancy also likely extends to measures of lifestyle engagement obtained using activity 

inventories. In these inventories, the amount of engagement reported by an individual is likely 

dependent in part on similar external and internal compensatory strategies, making lifestyle 

engagement an important and potentially modifiable risk factor. However, to date there have 

been few studies linking lifestyle engagement with mobility outcomes (see Section 2.6.2). 

Furthermore, to my knowledge there have been no longitudinal studies linking these measures to 

phenotypic frailty criteria. Given how lifestyle engagement may be an important modifiable 

behavioral factor related to frailty risk, this gap is important to investigate further. 
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2.5. Lifestyle Activities as a Protective Factor against Cognitive and Mobility Declines in 

Later Life 

 Research on the connection between lifestyle activities and cognitive functioning and 

cognitive impairments has been of theoretical and empirical interest for several decades 

(Schooler, 1984). Given the scope of the literature, lifestyle activity engagement has been 

defined and measured in a variety of ways. I briefly review these definitions and measures as 

well as provide a definition for lifestyle engagement as presented in the current dissertation.   

2.5.1. Definitions of lifestyle activities. Lifestyle activities have been defined in many ways in 

the literature. Some researchers conceptualize lifestyle activities as including occupation 

(Schooler, 1984), whereas others focus more on those performed outside of work (i.e., leisure 

activities) (Carlson et al., 2012; Wilson et al., 2002). Still others include Activities of Daily 

Living (ADLs) and Instrumental Activities of Daily Living (IADLs; Lawton & Brody, 1969) in 

measures of “self-maintenance” lifestyle activities (Hultsch et al., 1999a). One problem with this 

last approach is that ADLs and IADLs are typically used as markers of functional impairment, so 

including them with leisure activities in aggregate lifestyle activity measures may change the 

conceptual meaning of these measures, given that there is typically very little impairment in 

these activities in community-dwelling versus clinical samples of older adults (Lawton & Brody, 

1969). For this dissertation, I define lifestyle activities as those performed outside of a formal 

occupation, not including ADLs and IADLs, and that place various levels of physical, cognitive, 

and social demands on individuals. This definition narrows the conceptual meaning of lifestyle 

and may provide more variance in resulting lifestyle activity measures for community-dwelling 
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older adults. I will also use this definition later when selecting activities to retain for the latent 

class analysis (Aim 1). 

2.5.2. Measures of lifestyle activity engagement. Lifestyle activities have also been measured 

and operationalized in different ways, which in turn allows study of different aspects of 

engagement. Lifestyle activities are most commonly measured using self-reported inventories. 

The Victoria Longitudinal Study Activity Questionnaire (Hultsch et al., 1993) asks about 

frequency (1=never, 9=daily) of participation in 70 activities over the past two years. These 

activities are grouped into different subdomains, including physical (e.g., jogging, walking), 

social (e.g., visiting friends), self-maintenance (e.g., cooking, shopping), passive information 

processing (e.g., watching a sporting event), novel information processing (e.g., learning a 

language), and integrative information processing (e.g., driving a car). The Florida Cognitive 

Activities Scale (Schinka et al., 2005) is a 25-item scale measuring frequency (1=never, 6=daily) 

of engagement in common activities selected to be primarily “cognitive” (e.g., reading books, 

playing chess). The Lifestyle Activity Questionnaire (Carlson et al., 2012) is 23-item inventory 

that measures frequency of engagement in activities with varying degrees of cognitive, physical, 

and social demands (e.g., gardening outside, volunteering, etc.). This inventory is detailed later 

in the dissertation and in the Appendix. Other studies also use variations of the items included in 

these scales, such as the cognitive activity inventory used in the Rush Memory and Aging Project 

(Wilson et al., 2005), which has overlapping items with the Lifestyle Activity Questionnaire and 

the Florida Cognitive Activities Scale (e.g., reading books, doing crossword puzzles), but also 

assesses activity engagement at various life stages (e.g., childhood, adolescence, adulthood, etc.).  
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The above inventories all measure frequency of engagement in individual activities 

(Bielak, 2017). Participants typically respond indicating how often they perform each activity on 

a Likert scale, ranging from “never” to “every day.” Responses to individual items are then 

summed or averaged to produce a composite frequency score, indicating the amount individuals 

participated in the included lifestyle activities. Some studies have first converted frequency items 

from a Likert scale to a day scale (e.g., from “every day” to “30 days per month”) to make the 

unit change in aggregate frequency interpretable as a 1-day change (Carlson et al., 2012).  

 There have been several variations on frequency measures used in the literature. Many 

studies take a domain-centered perspective on activity frequency, where activities are grouped 

into subdomains (e.g., physical, intellectual, etc.) via either theoretical groupings (e.g., Parisi et 

al., 2012) or empirical factor analytic methods (e.g., Lennartsson & Silverstein, 2001). Other 

studies have examined frequency of activity engagement using daily diary (Bielak et al., 2017) 

and day reconstruction (Smith et al., 2014) methods. These methods are valuable due to their 

mitigation of recall bias, but also can be subject to temporal biases depending on when the 

activity is measured (e.g., weekday vs. weekend). 

 More recently developed measures attempt to capture other aspects of engagement that 

may predict important health outcomes. Carlson et al. (2012) applied a novel measure of activity 

variety, where frequency items are recoded as binary variables indicating whether the individual 

ever does the activity (i.e., yes/no) and then summed to produce a composite. This measure 

suggests that the number of activities reported, regardless of the frequency with which one 

participates in them, may have meaningful implications for health outcomes (Carlson et al., 

2012). Variety of engagement has since been found predictive of several cognitive and brain 
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outcomes in later life (Chan et al., 2018; Moored et al., 2018). Another advantage of examining 

variety compared to frequency measures is that they may be less susceptible to recall bias, as 

they require less detailed knowledge of how often an activity is performed. This may be 

especially important when measuring activity engagement in older adult samples at risk of 

memory impairments (James, Boyle, Buchman, & Bennett, 2011), but it should be noted that 

retrospective recall of even early life activities has had high test-retest reliability (ICC>.80) in 

samples of community-dwelling older adults (Schreiber et al., 2016).  

 Furthermore, Bielak (2017) developed a novel measure of activity characteristics, given 

that it may be the perceived level of cognitive demand of the activity, rather than the activity 

itself, that is protective against cognitive declines. For the Activities Characteristics 

Questionnaire, participants report the frequency with which they complete activities with specific 

traits (e.g., solving a problem on your own, learning a new skill, etc.). For example, a participant 

who reported “taking a class” on the Lifestyle Activities Questionnaire or Florida Cognitive 

Activities Scale would report “actively listening to information” on the Activities Characteristics 

Questionnaire, and other activities with this trait include “listening to talk radio or TV news.” 

Models including this measure along with standard frequency and daily dairy measures of 

activity engagement accounted for the most variance in cognition than each measure alone 

(Bielak, 2017). Surprisingly, activity characteristics measures consistently had a negative 

relationship with cognitive performance. This may suggest that greater reported time doing 

cognitively complex activities may be a proxy measure for everyday cognitive difficulties, as 

individuals who spend more time doing complex cognitive tasks may require more time to do the 

tasks properly. It is also unclear whether participants can accurately categorize their daily 

activities according to specific cognitive traits (e.g., what constitutes “actively” vs. “passively” 
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listening to information), as this is itself an executive functioning task and may be influenced by 

stress or other contextual factors. Nevertheless, Bielak (2017) introduces the importance of 

considering not only quantitative, but also qualitative differences in activities, as these 

characteristics may inform not only how the activities act on health outcomes, but also what 

motivates the individual to remain active.  

 

2.6. Evidence for Lifestyle Activities as a Protective Factor.  

Below I review the literature on lifestyle activities, mobility, and cognition. I also 

highlight studies with findings that informed the conceptual framework and methodology used in 

the current proposal. 

2.6.1. Cognition. There have been numerous cross-sectional and some longitudinal studies that 

have examined the relationship between lifestyle activity engagement and cognitive outcomes, 

including performance on cognitive tasks and risk of dementia. Studies examining late-life 

activity engagement and cognitive performance simultaneously (Hill, Wahlin, Winblad, & 

Bäckman, 1995; Hultsch et al., 1993; Parisi et al., 2012; Wilson et al., 1999) suggest that 

individuals with greater frequency of engagement in lifestyle activities also have better cognitive 

functioning. However, cross-sectional studies are unable to determine the temporal relationship 

between lifestyle engagement and cognition, and are limited by the potential for reverse 

causation. In other words, individuals of higher cognitive ability are also likely to be healthy 

enough to be involved in more lifestyle activities. Prospective longitudinal studies can better 

establish the temporal relationship between current activity engagement and future cognitive 

changes (Salthouse, 2006). 
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Longitudinal studies have provided mixed evidence for the relationship between activity 

engagement and cognitive aging, potentially due to differences in measurement and design. The 

Victoria Longitudinal Study (VLS) examined the relationship between engagement in 64 

lifestyle activities that were classified into six domains (Hultsch et al., 1999a). Using latent 

change models, they found that lifestyle activities requiring “novel information processing” 

predicted changes in cognition, mediated through changes in working memory performance. 

However, there were no relationships between social or physical activities and cognition, 

potentially because the amount of activities included in these groups was much smaller (i.e., 4 

and 7 activities, respectively) than those in the novel processing domain. A cross-sectional study 

in a socio-demographic risk sample from the Baltimore Experience Corps Trial found similar 

relationships (Parisi et al., 2012). Intellectual, but not physical, activities were associated with 

better cognitive functioning at baseline, yet this study also had only 4 activities included in the 

physical domain. Taken together with the extensive literature on the benefits of physical activity 

and cognition in older adulthood (Carlson & Varma, 2015; Erickson et al., 2011; Voss et al., 

2014), these results may suggest that a greater variety of activities is needed to reliably measure 

the “physical” activity domain. These findings also suggest that using a domain-agnostic, person-

centered approach to examining activity patterns in this proposal may forgo issues in 

measurement precision due to categorizing a limited number of activities into smaller groups.  

Using a domain-agnostic approach to quantifying activity variety, Carlson et al. (2012) 

found that increased activity variety was associated with an 8-11% reduced risk of verbal 

memory and global cognitive impairments across 9.5 years of follow-up in the WHAS II. 

Importantly, when variety, frequency, and level of cognitive challenge of the activities were 

included in the same model, variety appeared to be the best predictor of cognitive outcomes. This 
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suggests that it may be the diversity of activities, rather than the intensity of participation, that 

may be most beneficial to cognitive aging.  

A recent study in the Lothian Birth Cohort examined activity engagement at different 

periods of the lifespan that was reported retrospectively in later life (Gow et al., 2017). They 

found that more leisure activities in midlife were associated with greater cognitive ability level in 

later life, and more physical activities in later life were associated with less cognitive declines. 

This study highlights the importance of taking a lifespan approach to examining lifestyle activity 

and suggests that lifespan involvement in activates that encourage a mix of physical, cognitive, 

and social enrichment may best promote cognitive health.  

Other longitudinal studies confirm these findings (Bennett et al., 2014), but some offer 

mixed results (e.g., Bielak, Gerstorf, Anstey, & Luszcz, 2014). For example, Fratiglioni et al. 

(2004) performed a comprehensive review of the literature that included physical, cognitive, and 

social lifestyle factors. Five of seven studies of social networks, and six of seven studies of non-

physical cognitive activities, found that these lifestyle factors were associated with better 

cognitive performance and lower cognitive declines.  

2.6.1.1. Dementia. Several longitudinal studies have examined the link between lifestyle 

activities and risk of incident dementia. Early studies have focused on broadly-defined leisure 

activities (e.g., knitting or other hobbies, socializing with friends, etc.) (Scarmeas et al., 2001; 

Verghese et al., 2003a). Scarmeas et al. (2001) found that those with high leisure activity had a 

38% reduced risk of AD, after adjusting for covariates. Verghese et al. (2003) found that a one-

point increase in cognitive activity scores was associated with 7% reduced risk of dementia, but 

physical activity scores were not related to risk of dementia. 
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The Rush Memory and Aging Project (MAP) and Religious Orders Study (ROS) both 

examined whether cognitive activities, defined as activities requiring information processing but 

minimal physical and social engagement, were predictive of incident MCI or AD. They found 

that both past and current cognitive activities predicted incident MCI and AD in separate models, 

but that the effect of past activity was attenuated when including both past and current activity in 

the same models (Bennett et al., 2014; Wilson, Scherr, Schneider, Tang, & Bennett, 2007).  

 Social activities and social integration have also been linked to lower risk for dementia 

(Bennett et al., 2014; Fratiglioni et al., 2004). Fratiglioni et al. (2004) found that three of six 

studies included reported a positive association between larger social networks and reduced risk 

of dementia. Furthermore, a study in MAP found that while there was no main effect of social 

networks on cognition or brain pathology (i.e., amyloid load and tangle density), social networks 

moderated the relationship between pathology and cognition where presence of pathology had 

little effect on cognition for those with larger networks (Bennett et al., 2006).  

 Importantly, researchers highlight the concern for potential reverse causation in these 

findings, where prodromal dementia symptoms may influence activity participation (Fratiglioni 

et al., 2004). This suggests that studies should examine lagged effects of activity engagement on 

dementia risk, as is done in the current dissertation.  

2.6.2. Mobility. In contrast to research involving cognitive outcomes, there has been less work 

on how lifestyle activities, as defined above, may relate to mobility trajectories. Many studies 

show a cross-sectional link between having better mobility function and higher activity 

engagement (Everard et al., 2000; Mendes de Leon et al., 2003; Rosso, Taylor, et al., 2013). As 

with cross-sectional studies of lifestyle activities and cognitive outcomes, a major limitation is 
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the potential for reverse causation, where those of higher mobility are also likely to be involved 

in more lifestyle activities.  

 There have been few longitudinal studies investigating the association between baseline 

lifestyle activity engagement and mobility over time. As with dementia, a majority of these 

analyses come from the same cohorts (e.g., MAP, Buchman et al., 2009; James et al., 2011), and 

to my knowledge only one study has examined objectively-measured, lower-extremity mobility 

(Buchman et al., 2009). In the MAP sample, Buchman et al. (2009) studied global motor 

function, as measured by 9 objective muscle strength tests (e.g., arm abduction and flexion) and 

9 objective motor tasks (e.g., time to walk 2.4 meters), in 906 individuals with an average of 4.8 

years of follow-up. They found that decreased frequency of social activity was associated with 

more rapid rates of decline in global motor functioning, and this effect was equal to that of being 

about 5 years older at baseline (Buchman et al., 2009). They also found that this relationship 

remained after controlling for relevant confounders, including physical and cognitive activity, 

depressive symptoms, and demographics. This suggests that late-life lifestyle activities that are 

social in nature may have an independent association with motor trajectories.  

 Another longitudinal study in the MAP examined the relationship between frequency of 

social activities and self-rated ADL disability and mobility (James, Boyle, Buchman, & Bennett, 

2011). More frequent social activity was associated with reduced hazard of developing an ADL 

or motor disability. Unfortunately, as the authors acknowledge, the self-reported mobility 

measures may be subject to recall bias or same-source bias. Given the lack of longitudinal 

studies examining the relationship between lifestyle activities and objectively-measured motor 
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trajectories, more studies in well-characterized cohorts with extensive follow-up are needed to 

replicate these findings.  

 The lifestyle activity literature on mobility outcomes is further complicated by how 

researchers conceptualize “mobility.” As discussed earlier, mobility in the current proposal is 

defined as objectively-measured (i.e., “performance-based”) mobility function. Yet, some 

researchers use lifestyle activity engagement as a proxy measure for mobility functioning (e.g., 

Gagliardi et al., 2007). This may conflate two different types of functioning: 1) experimental 

functioning (i.e., “could do”), what older adults are capable of doing in highly controlled 

settings, and 2) enacted functioning (i.e., “do do”), what older adults actually report doing in 

everyday life (Glass, 1998). A key distinction between these two types of functioning is the 

context in which they occur, as some experimental tasks restrict use of compensatory strategies 

(e.g., mobility aids and external supports) that may be used to complete activities in daily life. 

While objectively-measured mobility likely represents experimental functioning, self-reported 

lifestyle activities more likely measure enacted functioning. Furthermore, objective mobility 

measures have been predictive of important health outcomes, such as ability to perform ADLs 

and mortality (Guralnik et al., 1994, 2000). Thus, given their conceptual differences and the 

importance of objectively-measured mobility for future health outcomes, whether self-reported 

lifestyle activity engagement predicts objectively-measured mobility remains an important 

research gap. 
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2.6.3. Mechanisms. Several primary (i.e., cognitive and social engagement) and secondary (i.e., 

structural and functional brain plasticity) mechanisms link lifestyle activity patterns to beneficial 

cognitive outcomes in later life (Figure 1.1).  

2.6.3.1. Cognitive mechanisms. Schooler’s (1984) environmental complexity hypothesis posits 

that the complexity of an individual’s environment is determined by the magnitude of stimulus 

and overall demand it places on cognition. Complex environments expose the individual to 

diverse stimuli and novel experiences, as well as require more frequent complex decision making 

(Schooler, 1984). Thus, those who have a more complex environment that tasks their cognitive 

abilities may exhibit greater improvement or maintenance of these abilities than those exposed to 

less complex environments. Lifestyle activity patterns characterized by higher variety of 

activities may therefore buffer against cognitive aging through requiring individuals to navigate a 

complex environment (Carlson et al., 2012).   

Relatedly, the “use-it-or-lose-it” hypothesis (Hertzog et al., 2009; Hultsch et al., 1999a; 

Salthouse, 2016) posits that engagement in activities may moderate aging-related declines in 

cognitive abilities through maintenance or enhancement of cognitive abilities (Ericsson & 

Chamess, 1994) or through provision of compensatory mechanisms (e.g., strategies; Dixon & 

Bäckman, 1995). This hypothesis is supported by the literature on cognitive training. Unlike 

lifestyle activities as defined in this proposal, cognitive training targets specific cognitive 

domains (e.g., memory, processing speed, etc.) by encouraging repeated practice on tasks that 

challenge these abilities (e.g., Kliegl, Smith, & Baltes, 1989) or through provision of strategies to 

mitigate declines in these abilities (e.g., Rebok et al., 2014). Cognitive training can also be 

performed in highly controlled settings using experimental study designs (e.g., randomized 
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controlled trials), which makes them well-suited for examining the mechanistic pathways by 

which cognitive engagement influences cognitive performance trajectories with aging.  

Cognitive training studies (Baltes, 1987; Karbach & Verhaeghen, 2014; Kliegl et al., 

1989) have shown that while older adults generally reach a performance asymptote earlier than 

younger adults, there is variability in this asymptote and older adults can still improve in 

performance after several training sessions. In other words, while older adults may have a 

reduced reserve capacity, their ability for behavioral plasticity is at least partially maintained 

(Kliegl et al., 1989). Thus, engagement in a variety of cognitively-challenging lifestyle activities, 

even beginning later in life, may similarly contribute to plasticity in cognitive abilities despite a 

reduced capacity for change. 

Few experimental cognitive training studies link training-related changes to everyday 

functional outcomes, including those relating to mobility. The Advanced Cognitive Training for 

Independent and Vital Elderly (ACTIVE) study is one of few cognitive training studies to 

examine how cognitive training may influence self-maintenance functioning (i.e., IADLs) (Jobe 

et al., 2001). Participants were randomized to a processing speed, memory, or reasoning training 

intervention, and examined 10 years after enrollment (Rebok et al., 2014). Those in the 

processing speed and reasoning groups maintained their training effects, and all intervention 

groups had better IADL functioning than the control group. Importantly, those receiving booster 

training sessions demonstrated additional improvements in performance for the processing speed 

and reasoning groups (Rebok et al., 2014).  

Despite the key differences between lifestyle engagement and cognitive training, findings 

from ACTIVE and other training studies suggest that engagement in cognitively-demanding 
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activities may benefit both cognitive and functional trajectories in later life. Lifestyle activities 

performed outside of experimental settings (e.g., attending classes) may elicit similar plasticity in 

cognitive performance with aging, although this likely depends heavily on the level of cognitive 

demand of the activities, which may further vary depending on individual differences (Bielak, 

2010). Accounting for individual differences necessitates longitudinal examination of within-

person changes in cognitive and mobility outcomes (Salthouse, 2006), as is done in this 

dissertation. 

2.6.3.2. Social mechanisms. Participation in lifestyle activities may increase social ties and 

reinforce meaningful social roles (Berkman et al., 2000). Social ties and meaningful social roles 

in later life may buffer against cognitive and mobility declines by reducing loneliness and 

depressive symptoms (Glass et al., 2006). Increased social ties may also provide more 

opportunities for social interaction, which places additional demands on cognitive functioning 

(Carlson, 2011). Finally, social engagement that reinforces meaningful social roles may provide 

purpose in life (Boyle et al., 2010) that in turn promotes sustained activity engagement. For 

example, the Baltimore Experience Corps Trial (BECT) was an intensive volunteering 

intervention that placed older adults in meaningful roles within the Baltimore City schools (Fried 

et al., 2004). This intervention leveraged older adults’ desires to give back to future generations 

(i.e., generativity) to encourage sustained activity. In summary, social pathways linking lifestyle 

engagement to cognitive and mobility outcomes may further serve as important motivational 

factors for remaining active.  

2.6.3.3. Physical mechanisms. Participation in lifestyle activities provides opportunities for 

aerobic (e.g., increased walking) and anaerobic (e.g., resistance; muscle strength) exercise, both 
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of which are protective against cognitive (Carlson & Varma, 2015; Voss et al., 2014) and 

mobility (Pahor et al., 2014) declines in older age. Although physical exercise may act on health 

outcomes via improvements in cardiovascular fitness, increasing evidence suggests that other 

physical pathways likely mediate this relationship, as well (Carlson & Varma, 2015). Cerebral 

blood flow may be one mechanism, as reduced cerebral blood flow in older age is associated 

with increased risk of hypertension and AD pathology. Exercise also promotes freely available 

Brain Derived Neurotrophic Factor (BDNF), which binds to prefrontal and hippocampal brain 

regions and promotes neurogenesis and synaptogenesis.   

2.6.3.4. Neural mechanisms. Ultimately, the different pathways listed above likely influence 

behavioral and clinical outcomes through altering brain structure and function (Figure 1). 

Lifestyle activities may buffer against accumulation of brain pathology (e.g., beta amyloid and 

tau deposition) through promotion of brain and cognitive reserve (Stern, 2009). Brain reserve 

(i.e., passive reserve) consists of changes to brain structure that allow individuals to better cope 

with pathology, such as larger brain size, more neurons, and improved synaptic connections. 

Cognitive reserve (i.e., active reserve) refers to changes in brain function, such as increased 

neural efficiency or compensatory activity that allow individuals to complete tasks despite 

increasing pathology.  

In agreement with this hypothesis, participating in complex activities has been shown to 

have benefits for brain structure (Carlson et al., 2015; Draganski et al., 2004; Moored et al., 

2018; Stern, 2009) and function (Carlson, Erickson, et al., 2009; McDonough et al., 2015; Stern, 

2009). Yet, cognitive and social activity also likely influence cognitive and brain health through 
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independent pathways, as several studies have found significant associations between these types 

of engagement and cognitive functioning, regardless of level of pathology (Bennett et al., 2014). 

2.7. Sex and Other Individual Differences in Activity and Risk of Cognitive and Mobility 

Impairments 

 Recently the National Institutes on Aging introduced a new framework to research and 

combat health disparities with aging (Hill, Pérez-Stable, Anderson, & Bernard, 2015). Impetus 

for this framework comes from a rich literature on population-level differences in health by 

fundamental factors, including age, sex, race, socioeconomic status, and others. Below I briefly 

review how these factors are likely associated with lifestyle activity engagement as well as 

increased risk for cognitive and mobility impairments in later life.  

2.7.1. Sex. Women are at higher risk of cognitive and mobility impairments in later life 

than men (Fried et al., 2000; Fried, Kasper, Guralnik, & Simonsick, 1995; Wu et al., 2017). For 

example, Wu et al. (2017) compared several nationally-representative samples and found that 

although prevalence estimates of dementia generally decreased for men between the 1990s and 

2000s, prevalence estimates for dementia in women remained stable. One potential explanation 

for this is that women have a higher average life expectancy than men, and they are thus more 

likely to develop dementia, since the risk of dementia increases with age (Alzheimer’s 

Association, 2019). However, older women are also more likely to have lower educational 

attainment, to have not had a formal occupation, and are less likely to be physically active during 

leisure time (Azevedo et al., 2007). Each of these may increase risk of cognitive and mobility 

impairments in women via the mechanistic pathways (e.g., cognitive reserve, cardiovascular 

fitness) included above. 
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2.7.2. Race. African-Americans are at higher risk of dementia (Mayeda et al., 2016), 

potentially due to increased psychosocial risk factors (Zahodne et al., 2017). Women of racial 

and ethnic minorities are at higher risk of cardiovascular issues and mortality than white women 

(King et al., 2000; Parra-Medina et al., 2010). 

There are also racial differences in lifestyle activity engagement. Wilson et al. (1999) 

found that African-Americans in MAP reported less frequent engagement in cognitive activities 

than white adults. Furthermore, Barnes et al. (2004) found that older African-Americans in the 

Chicago Health and Aging Project tended to report less social engagement than white older 

adults. This racial difference was stable over time, but it was attenuated for women after 

accounting for socioeconomic status (Barnes, Mendes de Leon, Bienias, & Evans, 2004). Further 

analyses revealed that activities associated with higher socioeconomic status, such as visiting a 

museum, were reported less by African-Americans in this sample.  

Other research has shown that racial differences in social engagement may be attributable 

in part to differences in cultural context. For example, participation in church activities has been 

reported more frequently among African-Americans (Kim & McKenry, 1998), especially among 

older African-American women (Bowie et al., 2017). In contrast, white older adults are more 

likely to report involvement in formal organizations or volunteering (Kincade et al., 1996). Aside 

from increasing social ties, church participation has been associated with reduced depressive 

symptoms (Reese et al., 2012) among African-Americans, which may further protect against 

declines in cognition and mobility in later life. 

2.7.3. Other socieodemographic differences. Age has been found to be related to 

amount (Buchman et al., 2014) and types (Verbrugge et al., 1996) of activities engaged in later 
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life. Education and other socioeconomic factors have been shown to be related to cognitive 

activity engagement (Chan et al., 2018; Wilson et al., 1999) and access to activities (King et al., 

2000), specifically for older women of color. 

2.7.4. Health differences. Chronic physical conditions like stroke, heart disease, 

diabetes, and other cardiovascular illnesses have been linked to limited activity engagement 

(Saunders et al., 2016) and increased risk for poor cognitive and mobility outcomes (Snyder et 

al., 2015). Furthermore, depressive symptoms in older adulthood increase risk of functional 

disabilities on activities of daily living (Gallo et al., 2003; Griffiths et al., 1987). This increased 

risk may be mediated in part by decreased cognitive performance on memory and problem-

solving tasks (Gallo et al., 2003), as well as reduced social activity that may increase sedentary 

behavior (Glass et al., 2006). 

 Ultimately, since these individual differences relate to both lifestyle activity and the 

health outcomes included in this dissertation, they will be examined as potential confounders of 

the relationship between lifestyle activity patterns and health outcomes. A confounder is a 

variable associated with both an exposure and an outcome that, when not adjusted for, distorts 

the observed relationship between the exposure and the outcome (Porta, 2008). However, it is 

important to emphasize that these individual difference factors are more than just covariates to 

adjust for in models to isolate a mechanistic pathway, but that they also carry meaningful 

information about an individual’s life context. Furthermore, research examining differences in 

activity engagement and health outcomes in groups most vulnerable, such as African-American 

women of low socioeconomic backgrounds, is much needed. A vast majority of epidemiologic 
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and intervention studies of older adults include samples that are mostly white and of higher 

education (Hill et al., 2015; Tzuang, Owusu, Spira, Albert, & Rebok, 2018).  

2.8. Current Gaps in the Literature 

 Despite ongoing research on the relationship between late-life lifestyle activities and 

cognition and mobility, there remain several gaps in the literature that are addressed by this 

proposal. This proposal addresses these gaps within the conceptual framework developed in the 

prior section, and the aims are represented schematically in Figure 3. 

2.8.1. Lack of data-driven approaches that integrate both amount and types of activity 

engagement. Frequency and variety measures have certain limitations that may be addressed by 

instead examining data-driven activity patterns. First, if we assume that the subset of activities 

included in activity inventories measure a construct of overall lifestyle engagement, these 

measures do not account for measurement error in that latent construct. Second, sum or average 

measures assume that lifestyle engagement is a purely dimensional construct, where groups of 

individuals are distinguished by the amount of activities they report.1 This ignores the possibility 

that groups may report qualitatively different response patterns of activities. For example, a 

study in the Health and Retirement Study found that a latent group of older adults who endorsed 

more “diverse” activities (i.e., a larger amount), also endorsed more social activities performed 

outside the home (i.e., different response patterns) than those in the “restricted” class (Manalel et 

 
1 On the surface, this approach appears to parallel the Rockwood frailty index (Section 2.4), where frailty is 

conceptualized as the number of total deficits, regardless of the types of deficits. Yet, in their establishment of the 

concept of activity variety, Carlson et al. (2012) also accounted for differences in cognitive demand of specific types 

of activities by using weighted counts. The current latent class approach is similar, but instead groups individuals by 

the activities they have in common (i.e., person-centered approach), rather than grouping activities by level of 

cognitive demand (i.e., item-centered approach).  
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al., 2018). Using a latent class approach to grouping individuals with different patterns of 

activities can therefore incorporate both information related to amount of engagement indicated 

by frequency and variety measures, as well as provide additional context (e.g., shared 

characteristics; Bielak, 2017) about what constitutes and what may commonly motivate their 

activity. This information could be leveraged when tailoring interventions to promote sustained 

activity in different groups of older adults by promoting purpose in life (Boyle et al., 2010), an 

approach used by prior successful interventions (Fried et al., 2004; Parisi et al., 2007).  

2.8.2. Lack of longitudinal studies of lifestyle engagement, characterized by activity 

response patterns, and the “use-it-or-lose-it” hypothesis. Although several longitudinal 

studies suggest aggregate lifestyle activity measures may buffer against cognitive declines, very 

few studies examine how groups grouped by amount and types of lifestyle activity engagement 

may experience different cognitive trajectories. Given that different activity measures have been 

shown to be predictive of different cognitive outcomes (Bielak, 2017), activity measures that 

capture multiple aspects of engagement may also be better suited to predict cognitive trajectories 

over time. To my knowledge, Manalel et al. (2018) is the only study to examine this relationship 

using a person-centered, latent class analysis, and they found that the classes differed only in 

intercept, but not slope, of memory performance over time. Thus, it remains unknown whether 

similar results would be found for measures of executive functioning or attention, two cognitive 

domains that are more sensitive to aging-related declines among community-dwelling older 

adults (Buckner, 2004) and sensitive to differences in activity engagement (Bielak, 2010).  

Furthermore, there are limited prospective cohort studies available that have examined 

the temporal relationship between lifestyle activities and cognitive outcomes. Despite being well-
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characterized with extensive follow-up, the MAP and ROS are limited by possible selection bias 

due to being enriched with individuals with a family history of dementia (Bennett et al., 2014). 

Therefore, replication of results found in these studies in other well-characterized samples 

remains an important future direction. Data in this proposal will draw from the Ginkgo 

Evaluation of Memory Study (Chapter 3), a randomized clinical trial examining the efficacy of 

ginkgo biloba supplements for preventing incident dementia in participants over the age of 75 

(DeKosky et al., 2006). Given how the sample had to meet a relatively high level of baseline 

functioning to be included (Section 3.1.2), replicating results in this sample may provide 

important evidence for the value of lifestyle activity engagement among older adults during 

preclinical stages of disability.  

2.8.3. Lack of longitudinal studies investigating lifestyle engagement and mobility and 

physical frailty outcomes. As previously mentioned, the scope of studies examining whether 

lifestyle engagement predicts objective mobility changes and physical frailty is limited. To my 

knowledge, this would be the first study to examine the relationship between lifestyle 

engagement, characterized using activity response patterns, and objective and perceived markers 

of physical frailty. Three points are worth reiterating for why this is an important gap in the 

literature. First, objective mobility performance and physical frailty are important preclinical 

outcomes, given they have been predictive of later independent functioning and mortality in 

older adults (Bandeen-Roche et al., 2006; Fried, Tangen, et al., 2001; Guralnik et al., 1994, 

2000). If lifestyle engagement predicts objective mobility performance and markers of physical 

frailty, then this may provide additional evidence for how lifestyle activity may impact not only 

cognition, but also the well-being of older adults more broadly. Furthermore, answering this 

question may provide initial evidence for the role of mobility and physical frailty as mediators 



 

 39 

between lifestyle engagement and incident disability, further elucidating the etiologic pathways 

by which lifestyle engagement impacts health in later life.  

 Second, examining how lifestyle engagement is associated with physical functioning 

trajectories is a natural extension upon the literature on lifestyle engagement and cognition. To 

reiterate, mobility and cognition share common neural pathways, and cognition plays an 

important role in executing proper movements (Rosso, Studenski, et al., 2013). Thus, lifestyle 

activity may also influence mobility in older adulthood through some of these shared pathways 

or through maintenance of cognitive functioning. 

Finally, examining physical and cognitive outcomes simultaneously can be informative 

about the cognitive and physical demands of specific activity patterns. For example, given that 

lifestyle activities require varying degrees of physical and cognitive engagement, finding that 

certain groups with distinct activity patterns experience differential benefits of activity 

engagement on cognitive versus mobility trajectories would be informative about which activity 

groups are most protective for which outcomes. This may have implications for interventions, 

where groups with specific lifestyle activity patterns can be targeted with interventions aimed to 

supplement their current lifestyle. 
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3. Chapter 3: The Ginkgo Evaluation of Memory Study 

 All three aims of this dissertation use data from the Ginkgo Evaluation of Memory Study 

(GEM). GEM was a randomized-controlled trial conducted with community-dwelling older 

adults to examine the efficacy of ginkgo biloba supplements in preventing incident dementia 

(primary outcome), as well as cognitive declines and cardiovascular events (secondary outcomes 

; DeKosky et al., 2006). Details about participant recruitment and the measures used in this 

dissertation are included in the sections below. Given that there was no effect of the ginkgo 

biloba treatment in the main trial and that the treatment intervention was not a primary focus of 

this dissertation, details regarding the administration and adherence to the supplement protocol 

are not included here, but can be found elsewhere (DeKosky et al., 2006, 2008). All studies were 

approved by their respective study site Institutional Review Boards. The secondary data analyses 

in this dissertation were approved by the Johns Hopkins Bloomberg School of Public Health 

Institutional Review Board. 

3.1. Participants 

3.1.1. Recruitment. Initially, GEM aimed to recruit participants from the Cardiovascular 

Health Study (CHS; Fried et al., 1991), an existing prospective, population-based cohort study of 

community-dwelling older adults (Fitzpatrick et al., 2006). However, two-thirds of the eligible 

CHS participants refused to enroll after initial telephone screening, and CHS participants made 

up only about 10% of the final GEM sample. Therefore, most of the participants were newly 

recruited for GEM.  

Recruitment occurred between September 2000 and June 2002 at four study sites: 

Hagerstown, Maryland (Johns Hopkins University); Pittsburgh, Pennsylvania (University of 

Pittsburgh); Winston-Salem and Greensboro, North Carolina (Wake Forest University), and 



 

 41 

Sacramento, California (University of California –Davis). Methods of recruitment varied across 

study sites (Fitzpatrick et al., 2006), but the most effective approaches included mailing lists 

(e.g., voter registration, America List), on-site visits (e.g., retirement centers, community 

functions), and media advertisements (e.g., newspaper, television, radio). 

3.1.2. Inclusion and exclusion criteria. Given that GEM was a clinical trial, there were 

numerous inclusion and exclusion criteria for enrollment. Eligible participants had no prevalent 

dementia, were at least 75 years of age, had English as their primary language, and could identify 

a proxy contact. The age criterion was relaxed for a small group of African American CHS 

participants who were between 71-75 years old. The proxy contact was critical due to concerns 

with anosoagnosia (i.e., lack of awareness of one’s own cognitive deficits), and given that many 

functional or cognitive deficits are often noticed by a family member or friend before being 

reported by the participant (DeKosky et al., 2006). Proxy contacts were replaced if they were no 

longer willing to participate. 

The complete list of exclusion criteria is included in Table 3 of DeKosky et al. (2006). 

These included taking medication contraindicated with use of Ginkgo Biloba supplements (e.g., 

warfarin, antipsychotics, tricyclic antidepressants, donepezil or similar medications for cognitive 

problems), extensive use of Vitamin E supplements (>400 IU/day), and refusal to stop use of 

over-the-counter Ginkgo Biloba supplements. Participants were also excluded if they had a 

history of bleeding disorders, Parkinson’s Disease or taking dopaminergic receptor agonists, 

cancer within the past 5 years if it would inhibit their ability to participate, congestive heart 

failures with disability, or hospitalization for depression within the last year or Electroconvulsive 

Therapy (ECT) within the last ten years. There were also various exclusion criteria using a lab 

blood test (e.g., blood creatinine >2.0 mg/dL, B12 levels ≤210 pg/mL, etc.). Finally, participants 
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were excluded if they were currently participating in another prevention or treatment trial, 

currently participating in a clinical trial that could affect GEM outcomes, or if they had any 

condition that would inhibit full participation in GEM, at the discretion of the clinical study staff 

(DeKosky et al., 2006). 

3.1.3. Study sample. There were 7,709 individuals screened for eligibility. There were 

4,637 participants who were excluded, 2,149 for not meeting inclusion criteria and 2,488 for 

refusing to participate. There were 3,072 participants randomized into the two treatment arms 

(Ginkgo Biloba vs. placebo), but 3 participants in the placebo group were found to be ineligible 

after randomization due to prevalent dementia or Parkinson’s Disease. The final study sample 

consisted of 3,069 participants, 1,545 in the intervention and 1,524 in the placebo group. 

Relatively few participants were lost to follow-up (97 in the intervention, 98 in the placebo 

group). For this dissertation, the final analytic sample included data from all 3,068 participants 

enrolled at baseline. One individual was removed due to lack of available Lifestyle Activity 

Questionnaire data (see below).  

3.2. Study Procedure 

 The procedure for GEM is outlined in Figure 3.1. Participants were prescreened using the 

Telephone Interview for Cognitive Status (TICS) and those who passed and met the other above 

eligibility criteria were scheduled for a screening visit. During screening, participants were 

consented and were adjudicated for dementia according to the procedure described below in 

Section 3.3.2. Participants determined to have dementia were excluded. Participants who had 

normal cognition or Mild Cognitive Impairment proceeded to have a blood test, ADL/IADL 

assessment, depression screen, and an assessment of current medications and medical history. 

These participants were then scheduled for a baseline visit, which occurred at a median of 33 
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days after screening (IQR: 22-46). During the baseline visit, participants completed a physical 

assessment, neurological examination, functional assessment, health habits questionnaire, and 

were randomized to either the ginkgo biloba treatment or placebo control group. Participants 

returned approximately every 6 months to complete dementia screening, depression screening, 

updated medications and medical history, and ADL/IADL assessment (Figure 3.2). During 

annual assessments only, participants also had a functional assessment, which included 

measuring usual walking speed.   

 

3.3. Measures 

 3.3.1. Lifestyle Activity Questionnaire (LAQ). As part of the health habits 

questionnaire, participants were asked the frequency with which they participated in 23 everyday 

activities (e.g., cooking, reading, gardening, etc.) over the past year on a 6-point Likert scale (0 = 

never/less than once a month, 5 = every day). Items were then re-coded as a binary (yes/no) 

variable indicating whether or not participants engaged in each activity at least once per month 

during the past year. This  1) mitigated potential problems with rarely endorsed response options 

resulting in sparseness in certain response patterns (Collins & Lanza, 2010), 2) made it easier to 

interpret resulting latent classes, and 3) mitigated potential recall bias by lessening cognitive 

demands required to recall precise frequency of activity engagement. The complete list of the 23 

activities is included in Appendix 1.  

3.3.2. Adjudication of Dementia and Mild Cognitive Impairment. Dementia was 

adjudicated by expert clinicians using the DSM-IV criteria (American Psychiatric Association, 

2000), informed by results from a standardized GEM Study Neuropsychological Test Battery 
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(NTB), neurological exam, and a magnetic resonance imaging (MRI) scan (DeKosky et al., 

2006).  

Screening for incident dementia took place every 6 months for up to 8 years (Figure 3.3). 

Participants were administered the full NTB at that visit if they had a decrease in score on at least 

2 of the 3 following tests: Modified Mini-Mental State Examination (3MSE; Teng & Chui, 

1987), CDR (Morris, 1993), or the cognitive subscale of the Alzheimer's Disease Assessment 

Scale -Cognitive Subscale (ADAS-Cog; Mohs, 1996). Participants also received the full NTB at 

that visit if 1) they or their proxy reported a new memory or other cognitive problem, 2) 

dementia was diagnosed since the prior visit by their personal physician, or 3) they were 

prescribed a dementia-related medication (e.g., cholinesterase inhibitor).  

Table 1 lists the tests included in the full NTB. These included the California Verbal 

Learning Test (CVLT) immediate and delayed recall (Delis et al., 1987), Modified Rey-

Osterrieth Complex Figure copy and recall tasks (Becker et al., 1987; Osterrieth, 1944), 

Wechsler Adult Intelligence Scale – Revised (WAIS-R) Block Design (Wechsler, 1981), Boston 

Naming Test (Judith Saxton et al., 2000), Semantic Verbal Fluency (animals; Spreen & Strauss, 

1998), Trail Making Test Parts A and B (Reitan, 1958), WAIS-R Digit Span Forwards and 

Backwards (Wechsler, 1981), Stroop Color-Word Test (Trenerry et al., 1989), the American 

National Adult Reading Test (AMNART; Nelson, 1982), and Raven’s Colored Progressive 

Matrices (Raven, 1956). 

Participants were sent for full adjudication if they had either: 1) abnormal scores on ≥5 

tests, at least one being a memory test, and there were a higher number of impaired tests than at 

baseline, 2) abnormal scores on four tests, at least one being a memory test, there were a higher 

number of impaired tests than at baseline, and at least one test was incomplete, or 3) two 
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abnormal domain scores, with one being memory. Cut-points for “abnormal” scores were at 1.5 

standard deviations below age- and education-stratified norms that were previously derived from 

the Cardiovascular Health Cognition Study (CHCS; Lopez et al., 2003). Pending cases were also 

identified and referred to the CDC neuropsychologist for review if the participants had either: 1) 

abnormal scores on three tests, at least one was in memory, and two or more tests were 

incomplete despite being successfully completed at baseline, or 2) abnormal scores on ≥5 tests, 

none were in memory and there were a higher number of impaired tests than at baseline 

(DeKosky et al., 2006). Review of pending case by the expert neuropsychologist allowed for 

better understanding of whether declines in test performance were due to cognitive impairment 

or other non-cognitive factors (e.g., sensory loss; DeKosky et al., 2006). The pending cases were 

then referred to the CDC for adjudication or returned for continued follow-up.  

Full adjudication was performed by expert clinicians using data from the NTB, 

neurological exam, and MRI. The expert panel was blinded to treatment condition and consisted 

of two neurologists with expertise in dementia diagnosis, two neuropsychologists with expertise 

in cognitive assessment of dementia, and a psychometrician with expertise in scoring the CDR. 

Individuals classified as dementia cases by the NTB received a full neurological exam and MRI 

to confirm the participant met the clinical criteria. A final review of cases was performed by the 

GEM adjudication panel, which was also blinded to study condition and further included two 

certified radiologists to analyze the MRI according to a standard protocol. Ratings were made for 

cortical atrophy, white matter lesions, ventricular size, and number and size of brain infarcts.  

Final diagnoses were assigned based on criteria from the 1) National Institute of 

Neurological and Communication Disorders and Stroke Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA; McKhann et al., 1984), 2) Alzheimer’s Disease 
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Diagnostic and Treatment Centers (ADDTC; Chui et al., 2000), and 3) National Institute of 

Neurological Disorders and Stroke-Association Internationale pour la Recherche et 

l’Enseignement en Neurosciences (NINDS-AIREN; Erkinjuntti, 1994; Rockwood et al., 1994). 

Participants were assigned to the following categories: 1) dementia of Alzheimer’s type, 2) 

mixed Alzheimer’s/vascular dementia (i.e., meeting both NINCDS and ADRDA criteria for AD 

and ADDTC criteria for possible/probable vascular dementia), 3) vascular dementia only, or 4) 

dementia, other etiology (e.g., Lewy-body dementia, etc.). Given the very low prevalence of 

vascular dementia (5%) in this sample, we did not use the dementia subtypes and instead used 

all-cause dementia as the main endpoint in subsequent analyses.   

3.3.2.1. Mild Cognitive Impairment (MCI). MCI was adjudicated using a similar 

procedure as above, with some key differences. MCI was defined as meeting two criteria (Snitz, 

Saxton, et al., 2009): 1) a CDR global score of 0.5, and 2) scoring 10th percentile on at least 2 of 

10 neuropsychological test scores in memory, language, visuospatial abilities, attention, and 

executive function domains. Like the 1.5 standard deviation (~7th percentile) cutoff used in the 

original dementia adjudication, the 10th percentile cutoffs were based on normative data from the 

Cardiovascular Health Study (Lopez et al., 2003; Snitz, Saxton, et al., 2009). The 10th percentile 

cutoffs were used instead to 1) account for how some cognitive tests were not normally 

distributed, making percentile rank cut-offs more appropriate, and 2) to provide a more sensitive 

cutoff for clinically-meaningful cognitive impairment (Snitz, Saxton, et al., 2009). Furthermore, 

the criterion for having a CDR score of 0.5 was crucial, as using the NTB criteria alone resulted 

in substantial overestimation the number of MCI cases at baseline (Snitz, Saxton, et al., 2009). 

3.3.3. GEM Neuropsychological Test Battery (NTB) 
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 The full GEM NTB included several standardized neuropsychological tests spanning 

multiple cognitive domains: memory, construction, language, attention/psychomotor speed, 

executive functioning, and intelligence (Table 1). Intelligence tests (i.e., National Adult Reading 

Test and Raven’s Progressive Matrices) were administered during the baseline screening session 

only.  

All remaining tests in the NTB were administered throughout the study in two scenarios: 

1) diagnostic or 2) regular/non-diagnostic. First, the diagnostic NTB was administered if 

participants tripped the dementia screening algorithm during a six-month follow-up session as 

described in the dementia adjudication procedures (Section 3.3.2). Second, non-diagnostic NTB 

were administered to all participants regardless of whether they tripped the dementia screening 

algorithm starting in around 2004, the 6th year of data collection (3-4 years of study time for 

participants). Non-diagnostic NTB were then administered annually to all remaining participants 

without prevalent dementia. Details of each neuropsychological test are included in the following 

sections separated by domain. 

 3.3.3.1. Construction. The GEM NTB included two tests measuring visual perception 

and organization, as well as visual-motor coordination.  

 Block design. For the Wechsler Adult Intelligence Scale-Revised (WAIS-R) block design 

subtest, administrators present participants with a block pattern that they then need to replicate 

using blocks with one-color and two-color sides within a specific time-limit (Wechsler, 1981). 

Visuospatial construction scores on this task were the number of patterns that were correctly 

replicated within the time-limit (range: 0-24).  

  Rey-Osterrieth complex figure (copy condition). In this paper-pencil task, administrators 

present participants with an abstract, complex figure that they then need to replicate (Becker et 
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al., 1987; Osterrieth, 1944). The task is untimed and the stimulus image is not taken away until 

the task is ended. Visuospatial construction scores on this task were the total number of correct 

figure elements (e.g., specific lines with correct orientations), with partial credit given for 

distorted but properly placed elements, or vice versa (range: 0-24).  

3.3.3.2. Memory. Two tests measuring verbal and visual episodic memory are included in 

the GEM NTB. 

 California Verbal Learning Test (CVLT). The CVLT is a word list learning task where 

participants are told sixteen common nouns over a series of five immediate recall trials (List A, 

Delis et al., 1987). The listed words belong to one of four semantic categories (i.e., spices/herbs, 

fruits, tools, clothing). After each trial, participants are asked to recall the words in any order. 

Participants are then given an interference list of sixteen words (List B), half of which belong to 

two of the same semantic categories from the original list (fruits and spices/herbs) and the other 

half belonging to two new categories (fish and kitchen utensils). Participants are then asked to 

freely recall the original list (List A) immediately after (i.e., short delayed recall) and after a 20-

minute delay (i.e., long delayed recall). Verbal recognition is also tested after the short and long 

delay trials by first cuing participants with the four semantic categories.  

Verbal learning is measured by summing the number of words recalled over the five 

immediate recall trials (range: 0-80). Verbal episodic memory is measured using the number of 

words recalled after the long delay (range: 0-16). Strategy use (e.g., semantic and serial 

clustering) during word learning has also been examined using this task (Stricker et al., 2002) 

and other list-learning tasks (Gross & Rebok, 2011), although is not a focus here. 

Rey-Osterrieth complex figure (delayed recall). Participants are asked to replicate the 

same complex figure they were previously asked to copy after a 20-minute delay, during which 
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they do not see the stimulus image (Becker et al., 1987; Osterrieth, 1944). Visual memory scores 

on this task were the total number of correct figure elements (e.g., specific lines with correct 

orientations), with partial credit given for distorted but properly placed elements, or vice versa 

(range: 0-24). 

3.3.3.3. Language. The GEM NTB included two tests measuring word retrieval and 

semantic verbal fluency.  

Boston Naming Test. Participants were presented with 30 images that they then needed to 

verbally name (Judith Saxton et al., 2000). If the participant could not freely provide the correct 

name, a semantic cue was provided, followed by a phonemic cue if needed. Word retrieval 

scores consisted of the number of names correctly freely recalled (range: 0-30). 

Controlled Ordered Word Association Test (COWAT). Participants were given a 

specified letter (e.g., “F”) and asked to name as many words that started with that letter within 

one minute, excluding proper nouns, numbers, or words that end in a different suffix (Spreen & 

Strauss, 1998). Phonemic verbal fluency scores were the number of correct, non-duplicated 

words provided within the time limit.  

In a follow-up task, participants were given a category (e.g., animals) and asked to name 

as many words that belonged in the category as they could within one minute (Spreen & Strauss, 

1998). Semantic verbal fluency scores were the number of correct, non-duplicated words 

provided within the time limit. 

3.3.3.4. Attention/psychomotor speed. One task was used to measure attention and 

psychomotor speed. 

Trail-Making test (Part A). The Trail-Making Task Part A (TMT-A) asks participants to 

connect a sequence of randomly scattered numbers in order without lifting their pencil (Army 
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International Test Battery, 1944; Reitan, 1958). Participants were timed and given a maximum of 

3 minutes to complete the task. Time to complete the TMT-A was used as a measure of 

psychomotor speed. 

Digit span forwards. The Wechsler Digit Span forwards task (DSF) is a measure of 

attention (Wechsler, 1987). The participant is read aloud a list of numbers that they must repeat 

in the same order. The task stops after the participant makes errors on two consecutive lists of the 

same size. Attention scores were the number of correct trials (range: 0-14). 

3.3.3.5. Executive functioning. Three subdomains of executive functioning were 

included in the GEM NTB due to their high sensitivity to aging-related changes in older adults 

(Buckner, 2004): 1) task-switching, 2) working memory, and 3) inhibition.  

Trail-Making Test (Part B). Part B of the TMT (TMT-B) asks participants to connect a 

randomly scattered sequence of numbers and letters in ascending order (i.e., 1, A, 2, B, etc.) 

without lifting their pencil (Army International Test Battery, 1944; Reitan, 1958). Participants 

were timed and given a maximum of 6 minutes to complete the task. Time to complete TMT-B, 

adjusting for time to complete TMT-A, was used as a measure of task-switching.  

Digit span backwards. The Wechsler Digit Span backwards task (DSB) is a measure of 

working memory span (Wechsler, 1987), and directly follows the DSF task. The participant is 

read aloud a list of numbers that they must repeat in backwards order. The task stops after the 

participant makes errors on two consecutive lists of the same size. Working memory scores were 

the number of correct trials (range: 0-14). 

Stroop color-word task. Participants were presented sequentially with two stimulus cards 

containing the names of colors (e.g., blue) that were printed in ink of a different color 

(incongruent, e.g., “blue” printed in red ink; Trenerry et al., 1989). For the first card, participants 
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were asked to say the names of each printed word as fast and as accurately as they could in two 

minutes (e.g., without mistakenly saying the ink color instead of the printed word on incongruent 

trials). For the second card, participants had to say the name of the color ink as fast and 

accurately as they could in two minutes. The number of correct colors named on the second trial 

was used as a measure of inhibitory ability (i.e., the Stroop effect). 

3.3.3.6. Intelligence. Two tests were included at baseline to measure premorbid word 

knowledge and fluid intelligence. 

National Adult Reading Test – American version (AMNART). For the AMNART, 

participants read aloud a list of 45 words that cannot be phonetically pronounced (Nelson, 1982). 

Correct pronunciation is thought to correspond with prior knowledge of the word, capturing an 

individual’s vocabulary knowledge. Vocabulary scores consisted of the number of incorrect 

words.  

Raven’s progressive matrices. Participants were presented with an 3x3 matrix of abstract 

geometric patterns with a missing section (Raven, 1956).  They are then asked to determine from 

a list of options which piece of the image was missing. The task was completed in three sets of 

12 matrices (i.e., “A,” “AB,” and “B”), with the matrices becoming progressively more 

challenging as the set went on. Set A tested primarily pattern completion and the remaining sets 

included more complex analogy problems. Total score across the sets (range: 0-36) was used as a 

measure of fluid intelligence.  

 

3.3.4. Mobility and physical frailty outcomes (Aim 3). The following mobility 

outcomes were included to capture various domains of physical frailty. Some measures were 

consistent with the original CHS operationalization of the frailty phenotype (e.g., exhaustion, 
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slow walking), while others were derived from the available GEM data (e.g., weakness). 

Furthermore, given that only select criteria were measured longitudinally, we examined 

trajectories of the individual frailty criteria over time, rather than the phenotype.   

 3.3.4.1. Slow Walking Speed. Participants were asked to walk for 15 feet on a 

standardized, straight course at their usual pace. They could use a cane or any necessary walking 

aids during the task. Their time (sec.) to walk the course was recorded at 3 feet and 15 feet 

markers. Sex- and height-specific cutoffs were used to identify individuals with slow gait (Fried, 

Tangen, et al., 2001). These cutoffs were originally used to identify those at or below the 20th 

percentile of usual gait speed in CHS. Individuals with slow gait included: 1) men with height 

≤173 cm and time ≥7 seconds, 2) men with height >173 cm and time ≥6 seconds, 3) women with 

height ≤159 cm and time ≥7 seconds, 4) women with height >159 cm and time ≥6 seconds.  

 3.3.4.2. Exhaustion. Two self-reported measures of perceived physical exhaustion were 

used in this study. The first was derived from the Fried et al. (2001) frailty criteria for exhaustion 

using two items from the Center for Epidemiologic Studies Depression Scale (CES-D; Radloff, 

1977). These items included “I felt that everything I did was an effort” and “I could not get 

going.” Individuals who reported experiencing either of these symptoms at least a “moderate 

amount of time” during the past week were categorized as having exhaustion.  

We also derived a second measure of exhaustion using used four items from the 

Maastricht Vital Exhaustion Questionnaire (Appels et al., 1987). The full questionnaire was 

originally developed to identify those at risk for myocardial infarction (Appels & Mulder, 1988), 

and has been shown to also predict other cardiovascular outcomes, including coronary artery 

disease (Kopp et al., 1998) and novel cardiac events after surgery (Kop et al., 1994). Participants 

were asked whether they recently experienced any of the following: “often feel tired,” “ever 
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wake up with a feeling of exhaustion or fatigue,” “feel weak all over,” and “have the feeling that 

you could not cope with everyday problems as well as you used to.” Participants reporting at 

least two of the four items were categorized as having exhaustion. Prevalence of CES-D 

exhaustion and Maastricht Vital Exhaustion were used as separate outcomes in Aim 3. 

3.3.4.3. Weakness. There were no longitudinal measurements of grip strength available in 

GEM. Therefore, we adapted a measure of self-reported difficulties with gripping, which had 

been shown to be a valid proxy for objectively-measured grip strength (Liu et al., submitted). 

Participants were asked: “Do you have any difficulty gripping with your hands?” Those 

responding “yes” were categorized as having grip weakness, and prevalence of grip weakness 

was used as an outcome measure in Aim 3.   

3.3.5. Covariates. 

 Several covariates were adjusted for in analyses given their potential confounding of the 

relationship between lifestyle engagement and cognitive, physical, and dementia outcomes.  

 3.3.5.1. Demographics. Baseline age (years), race (white/non-white), and education 

(years) wereincluded as demographic covariates. Age has been found to be related to amount 

(Buchman et al., 2014) and types (Verbrugge et al., 1996) of activities engaged in later life. 

Furthermore, African-Americans are at higher risk of dementia (Mayeda et al., 2016), potentially 

due to increased psychosocial risk factors (Zahodne et al., 2017). Women of racial and ethnic 

minorities are at higher risk of cardiovascular issues and mortality than white women (King et 

al., 2000; Parra-Medina et al., 2010) and less likely to be involved in cognitively challenging 

activities (Wilson et al., 1999). Finally, education and other socioeconomic factors have been 

shown to be related to cognitive activity engagement (Chan et al., 2018; Wilson et al., 1999) and 

access to activities (King et al., 2000), specifically for older women of color. 
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3.3.5.2. Medical comorbidities. Total number of medical comorbidities at baseline was 

also included as a covariate, given that these conditions may limit activity engagement (Saunders 

et al., 2016) and increase risk for poor cognitive and mobility outcomes (Snyder et al., 2015). 

The self-reported comorbidities included hypertension, current/former smoking, diabetes, acute 

myocardial infarction, heart failure, atrial fibrillation, stroke, and transient ischemic attack.  

3.3.5.3. Depressive symptoms. A modified 10-item CES-D was used to measure baseline 

depressive symptoms (Appendix 2). Items were measured on a 4-point Likert scale (0 = 

rarely/none of the time, 1 = some/little of the time, 2 = moderate amount of time, 3 = most of the 

time). Responses were summed to produce a composite depressive symptom score, and scores 

10 were identified as potential clinical depression (Björgvinsson et al., 2013). Depressive 

symptoms in older adults have been linked to reduced social activity (Glass et al., 2006) and 

increased risk for poor cognitive and mobility outcomes (Gallo et al., 2003; Griffiths et al., 

1987). 
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Chapter 4: Risk of Dementia Differs across Lifestyle Engagement Groups: A Latent Class 

and Time to Event Analysis in Community-Dwelling Older Adults 

 With increasing active life expectancies post-retirement (Crimmins et al., 2016), older 

adulthood brings about novel chances for lifestyle activity engagement. This potential for new or 

renewed engagement in everyday physical, cognitive, and social activities has been suggested as 

one way to prevent cognitive declines and impairments in later life (National Academies of 

Sciences, Engineering, and Medicine, 2017). To that end, several studies have found that self-

reported lifestyle activities are protective against incident dementia (Bennett et al., 2014; 

Scarmeas et al., 2001; Verghese et al., 2003b; Wilson et al., 2007). Yet, it remains unclear which 

aspects of activities (e.g., amount or type) are most predictive, how to best measure these factors, 

and how to use them to inform interventions. The current study uses both established and novel 

approaches to characterize lifestyle engagement groups that may be relevant for future 

interventions, and examined their risk for dementia incidence over a median of 6 years.  

4.1 Quantifying Activity Variety to Capture Lifestyle Engagement 

 Engagement in a larger array of enriching activities in later life, also called activity 

variety, is thought to be directly related to complexity of one’s lifestyle (Carlson et al., 2012).  

Activity variety is typically operationalized as a count (Chan et al., 2018; Moored et al., 2018; 

Scarmeas et al., 2001) or weighted-count (e.g., weighted by level of cognitive demand; Carlson 

et al., 2012) of self-reported activities done during a specific period (e.g., past year). The 

conceptual basis for the benefits of activity variety draws from the environmental complexity 

(Schooler, 1984), enrichment (Hertzog et al., 2009), and cognitive reserve hypotheses (Stern, 

2002), which together posit that more enriched environment engagement (i.e., higher number of 

activities) may promote structural and functional neurocognitive changes to maintain cognitive 
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functioning with age and protect against dementia-related pathology (e.g., amyloid plaques and 

neurofibrillary tangles).  

 Research using variety measures has found that the number of activities endorsed, 

regardless of the frequency with which one participates in them, may have meaningful 

implications for mitigating neurocognitive impairments in later life (Carlson et al., 2012; Chan et 

al., 2018; Moored et al., 2018; Podewils et al., 2005; Scarmeas et al., 2001). Scarmeas et al. 

(2001) measured self-reported counts of 13 leisure activities (e.g., going to classes), and found 

that there was an 11% reduction in risk of dementia for each additional leisure activity reported. 

Notably, this inventory also included activities commonly considered to be “passive” and less 

cognitively-enriching (Parisi et al., 2012), such as watching TV and listening to the radio. 

Furthermore, Carlson et al. (2012) used a count score weighted by the cognitive intensity of the 

activities to capture activity variety, and found that increased variety was associated with an 8-

11% reduction in risk of verbal memory and global cognitive impairments across 9.5 years of 

follow-up.  

We sought to expand upon these findings in a novel sample well-powered for examining 

risk factors for incident dementia (DeKosky et al., 2006), focusing on engagement in a larger 

range of specifically cognitively-, socially-, and physically-demanding (i.e., “active”) activities. 

We hypothesized that those with a higher variety of these activities have reduced risk of 

dementia over time, independently of several demographic and health confounders. 

4.2 Activity Subtypes Differentially Predict Dementia Risk 

To study the benefits of activities that draw on specific functions (e.g., social, cognitive, 

etc.), researchers typically categorize activities into domains, either using a priori classification 

(e.g., Hultsch, Hertzog, Small, & Dixon, 1999), cognitive intensity weighting (e.g., Carlson et 
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al., 2012) or factor analytic (e.g., Lennartsson & Silverstein, 2001) methods. These approaches 

are important for identifying specific activity types that are most protective against cognitive 

declines and neurocognitive impairments.  

Specifically, activities categorized as physically- (e.g., moderate exercise), cognitively- 

(e.g., taking courses), or socially-demanding (e.g., volunteering) have been shown to be 

associated with reduced risk for dementia (Bennett et al., 2014; Fratiglioni et al., 2004). For 

example, Hultsch et al. (1999) classified the 64 activities included in the Victoria Longitudinal 

Study of Aging into six domains, and found that only activities requiring “novel information 

processing” predicted changes in cognition, mediated through changes in working memory 

performance. Other studies have also found that specifically cognitively-demanding activities 

have the largest benefit for maintenance of cognitive function or prevention of cognitive 

impairments with aging (Bielak et al., 2014; Carlson et al., 2012; Scarmeas et al., 2001; 

Verghese et al., 2003; Wilson et al., 2007).  

4.3 Linking Number and Types of Activities to Capture Lifestyle Engagement: A Latent 

Class Approach 

 Expanding upon the prior literature, the current study employs a novel latent class 

approach to characterize lifestyle engagement groups using both number and type of activities. 

Latent class analysis (LCA) is a person-centered approach where individuals are partitioned into 

unobserved groups, which are inferred based on persons’ response patterns to a series of 

indicators (Collins & Lanza, 2010). Importantly, by grouping individuals by their response 

patterns, rather than activity count, LCA may better characterize lifestyle engagement variation 

by specifying which types, rather than just number, of activities are endorsed by individuals who 

have different levels of lifestyle engagement. We hypothesized that individuals would group by 
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specific activity types as defined by the prior literature (e.g., intellectual vs. social activities; 

Carlson et al., 2012; Hultsch et al., 1999; Parisi et al., 2012). Sociodemographic, health, and 

psychosocial factors also contribute to later-life differences in life-space mobility (Allman et al., 

2006; Baker et al., 2003), defined as the spatial area in which individuals move in daily life (e.g., 

home, neighborhood, town, etc.), which could in turn dictate the settings in which they are 

active. Thus, we also hypothesized that individuals would group by activity setting, such as 

home-based (e.g., playing cards) versus community-based activities (e.g., volunteering).  

 An LCA approach may be especially relevant for intervention research, as it could 

suggest common motivations and settings in which individuals are active. These factors have 

been previously leveraged in prior intervention studies seeking to reduce cognitive declines and 

impairments with age (Fried et al., 2013; Parisi et al., 2007). For example, the Baltimore 

Experience Corps trial was an intergenerational volunteering program where older adults 

performed various supportive roles in local schools (Fried et al., 2013). This study recruited 

individuals motivated by a desire to volunteer and give back to prior generations (i.e., 

generativity) to encourage physical and cognitive engagement in later life. The current approach 

may reveal similar groups of individuals active in specific settings or activities relevant for 

further health-promoting interventions.  

Current Study 

The purpose of this study was twofold. First, we examined whether activity variety (i.e., 

activity count) predicted dementia risk after adjusting for relevant confounders. Confounders 

included variables hypothesized to be related to both activity engagement and dementia risk; and 

included age (Buchman et al., 2014; Verbrugge et al., 1996), sex (Azevedo et al., 2007; Wu et 

al., 2017), race (Mayeda et al., 2016; Zahodne et al., 2017), education (Chan et al., 2018; King et 
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al., 2000; Wilson et al., 1999), medical comorbidities (Saunders et al., 2016; Snyder et al., 2015), 

and depressive symptoms (Glass et al., 2006; Griffiths et al., 1987). We also examined potential 

effect modification by prevalent Mild Cognitive Impairment. 

Second, we examined whether using a data-driven, LCA approach similarly predicted 

dementia risk and provided additional benefit in terms of understanding qualitative differences in 

activity patterns without sacrificing model fit. Better understanding the types of activities driving 

group differences in engagement may inform about which settings are relevant for intervention 

and in what ways individuals are motivated to be active. 

 

4.4 Methods 

 

Participants 

Participants were volunteers from the Ginkgo Evaluation of Memory (GEM) study, a 

randomized clinical trial testing the efficacy of Ginkgo biloba supplements for preventing all-

cause dementia (DeKosky et al., 2006, 2008). Recruitment occurred between September 2000 

and June 2002 at four study sites: Hagerstown, Maryland (Johns Hopkins University); 

Pittsburgh, Pennsylvania (University of Pittsburgh); Winston-Salem and Greensboro, North 

Carolina (Wake Forest University), and Sacramento, California (University of California –

Davis).  

To be eligible, participants had to identify a proxy willing to be interviewed at each 6-

month study visit. Individuals were excluded if they met either of the following criteria for 

prevalent dementia: 1) a diagnosis of dementia in the Diagnostic and Statistical Manual for 

Mental Disorders IV (DSM-IV) (American Psychiatric Association, 2000), or 2) a score >0.5 on 

the Clinical Dementia Rating scale (Morris, 1993). However, individuals with mild cognitive 

impairment (MCI) were included (Snitz et al., 2009).  
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Finally, those taking certain medications (e.g., warfarin, cholinesterase inhibitors), 

supplements (e.g., >400-IU vitamin E), or with a history of certain medical conditions (e.g., 

Parkinson’s disease) were also excluded. Details regarding the eligibility requirements, 

recruitment procedures, and intervention (e.g., Ginkgo Biloba formulation) are found elsewhere 

(DeKosky et al., 2006). Data collection ended in April 2008. There were 3,069 individuals who 

met eligibility requirements and were assessed at baseline. One individual was missing responses 

for all items of the Lifestyle Activity Questionnaire, so 3,068 individuals were included in the 

analysis.  

Measures 

 Before randomization into the original intervention or control group, eligible participants 

completed an extensive survey battery and functional assessment at baseline measuring their 

demographic and health characteristics.   

Lifestyle Activity Questionnaire (LAQ). Participants were asked the frequency with which 

they participated in 26 everyday activities (e.g., cooking, reading, gardening, etc.) over the past 

year on a 6-point Likert scale (0 = never/less than once a month, 5 = every day). Items were re-

coded as a binary (yes/no) variable indicating whether or not participants engaged in each 

activity at least once per month during the past year. This was done both to capture variety of 

activities (Carlson et al., 2012), rather than frequency, and to reduce sparseness of response 

patterns due to multiple response options. 

Activity measures. Lifestyle activity was operationalized in two ways. First, we summed 

the number of endorsed activities into a count score, which has previously been used to quantify 

activity variety (Carlson et al., 2012). Second, we used a latent class analysis (LCA) approach to 

group individuals by both quantity and types of activity engagement. For the second approach, 
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using binary (yes/no) activity items versus the original frequency scale 1) mitigates potential 

problems with rarely endorsed response options resulting in sparseness in certain response 

patterns (Collins & Lanza, 2010), 2) makes it easier to interpret resulting latent classes, and 3) 

mitigates potential recall bias by lessening cognitive demands required to recall precise 

frequency of activity engagement.  

Selecting activities. A potential concern with conducting an LCA with an activity 

inventory is that including many indicators may contribute to sparseness of response patterns. 

make model estimation difficult, and make unreliable adjudication of the number of classes 

(Collins & Lanza, 2010). To mitigate this, we used several criteria to select activities a priori to 

include in the final model: 1) empirical: removing activities endorsed by more than 90% or less 

than 10% of the sample, as these activities do not provide substantial variance for model 

estimation, and 2) theoretical: removing ADLs and IADLs (e.g., cooking) and activities 

previously identified as “passive” (e.g., listening to the radio; Parisi et al., 2015) to generate 

latent classes that conceptually capture differences in leisure activities requiring active 

engagement. This resulted in a final group of 18 activities (Table 1), which included activities 

from the remaining “physical,” “intellectual/creative,” and “social” domains. We conducted 

sensitivity analyses including the “passive” activities, and the results are reported in 

supplemental tables. 

Dementia adjudication. Details regarding the adjudication of incident dementia diagnoses has 

been described in Chapter 3.3.2 of this dissertation and elsewhere (DeKosky et al., 2006, 2008). 

In brief, screening for dementia occurred every six months and adjudication was performed if 

participants had either: 1) abnormal scores on ≥5 tests on the GEM Study Neuropsychological 

Test Battery (NTB; Table 3.1), at least one being a memory test, and there were a higher number 
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of impaired tests than at baseline, 2) abnormal scores on four tests, at least one being a memory 

test, there were a higher number of impaired tests than at baseline, and at least one test was 

incomplete, or 3) two abnormal domain scores, with one being memory. Cut-points for abnormal 

test scores were derived from normative data from the Cardiovascular Health Study (CHS; 

Lopez et al., 2003). Adjudication was performed by a panel of expert clinicians using the DSM-

IV criteria for dementia (American Psychiatric Association, 2000), informed by results from the 

GEM Study NTB, neurological exam, and an magnetic resonance imaging (MRI) scan (DeKosky 

et al., 2006).   

Descriptive Covariates. Several measures were used to explore demographic and health 

differences between the activity classes. 

Demographics. Baseline demographic variables included age (years), race (white/non-

white), education (years), and study site (Hagerstown, Pittsburgh, Sacramento, Winston-

Salem/Greensboro).  

Medical Comorbidities. Participants reported their current medical comorbidities and risk 

factors. These included self-reported hypertension, current/former smoking, diabetes, acute 

myocardial infarction, heart failure, atrial fibrillation, stroke, and transient ischemic attack. A 

sum count of each binary (yes/no) response to these variables was generated to measure total 

medical comorbidities.  

Mental health.  

Depressive symptoms. A modified 10-item Center for Epidemiologic Studies Depression 

Scale (CES-D; Radloff, 1977) was used to measure depressive symptoms (Appendix 2). Items 

were measured on a 4-point Likert scale (0 = rarely/none of the time, 3 = most of the time). 

Responses were summed to produce a composite depressive symptom score, and scores 10 
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were identified as potential clinical depression (Björgvinsson et al., 2013). For participants 

where at least one item was refused or missing, person-mean imputation was conducted where 

missing/refused items were replaced with the mean score on the completed items before 

computing the final score (Downey & King, 1998). This technique does not artificially reduce 

variability between individuals like item-mean imputation and provides adequate reliability 

estimates when the number of participants with missing responses in the sample is small 

(Downey & King, 1998). Imputation was only used for the 2.0% (n=60) of participants with 

missing CES-D responses. 

Mild Cognitive Impairment (MCI). As stated previously, individuals with MCI were 

included in the current sample. MCI was defined as meeting two criteria (Snitz, Saxton, et al., 

2009): 1) a CDR global score of 0.5, and 2) scoring 10th percentile on at least 2 of 10 

neuropsychological test scores in memory, language, visuospatial abilities, attention, and 

executive function domains. The 10th percentile cutoffs were based on normative data from the 

Cardiovascular Health Study (Lopez et al., 2003; Snitz, Saxton, et al., 2009). 

Analytic Strategy 

 Tabulations and summary statistics (e.g., means, standard deviations) were generated to 

compare covariates across activity variety sum scores and activity classes. Both activity variety 

and activity classes were included as predictors in separate hierarchical time to dementia 

analyses (see Step 3 below). For the LCA, a multistep approach was used to enumerate (Step 1) 

and assign (Step 2) individuals to the classes before conducting the time to dementia analyses 

(Step 3).  

 Step 1: Latent class enumeration. Class enumeration was determined by fitting a series 

of models of increasing number of classes. To account for the large number of indicators 
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included, and to assess the degree to which the enumeration process was sensitive to the specific 

activities included, we first conducted repeated latent class analyses using 10 semi-random 

subsets of 9 of the 18 activities (4 intellectual, 1 physical, 4 social). Model fit was evaluated 

using the lowest Bayesian Information Criterion (BIC) and a significant Bootstrapped Likelihood 

Ratio Test (BLRT). The BLRT test compares the improvement in fit between a k class model 

and a k-1 class model, and the BIC and BLRT tend to perform better than other model-selection 

criteria in simulation studies (e.g., Akaike’s Information Criteria, Lo-Mendell-Rubin test) 

(Nylund et al., 2007). The criterion for a significant BLRT test was set to =.001, given the 

potential for overfitting due to the high number of indicators included given our sample size 

(Dziak et al., 2014). Using a lower BIC and significant BLRT as the selection criteria (Nylund et 

al., 2007), a 3- to 5-class solution was generally the best fit across these subsets of activities. 

Notably, for some activity subsets, the 5-class models had did not converge due to sparse 

response patterns, in which case a 4-class model was chosen (see Supplemental materials, 

Appendix 3).   

After evaluating the fit of the models with activity subsets, we fit a full model using all 

18 activities and examined the theoretical interpretability of the 3-, 4-, and 5-class solutions 

(Collins & Lanza, 2010). A model with fewer classes that captured distinct activity groupings 

(e.g., social vs. intellectual; home-based vs. community-based) that adhered to our a priori 

hypotheses was favored over a model with more classes that had significant overlap with existing 

classes or appeared to be distinguished almost entirely by engagement in a single activity.  

 Step 2: Class assignment. After class enumeration, class assignment was done using two 

methods: 1) modal class assignment, where individuals are assigned to the class with the highest 

posterior probability, and 2) using the Vermunt (2010) 3-step approach. The former method has 
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been found to have less downward-bias of the associations between latent class and the outcome 

when compared to other posterior-probability based assignment methods (e.g., pseudo-class 

assignment; Lanza et al., 2013). The Vermunt (2010) method is a modification of the approach 

by Bolck, Croon, and Hagenaars et al. (2004), where weights for individual participants are used 

as training variables to assign them to latent classes. This approach is thought to better account 

for potential error due to misclassification and may produce estimates with less downward-bias 

compared to posterior-probability-based approaches (Lanza, Tan, et al., 2013; Vermunt, 2010).  

Step 3: Time to dementia analysis. We then used activity variety and class assignment 

as predictors in separate hierarchical discrete time proportional hazards analyses of time to 

dementia onset. Complementary log-log regressions were used to estimate the hazard ratios for 

each predictor. The baseline evaluation session was used as the study entry time. Study exit 

occurred at either the time of dementia onset, time of death, or the time of last contact for the 

study. Time was included as discrete indicators (visits 1-15). The proportional hazards 

assumption was explored using time-specific (i.e., predictor*time) terms for each predictor 

(Royston & Lambert, 2011), and any predictors in violation were examined in stratified analyses. 

Model 1 included only the activity variety score or activity class indicators. Model 2 was 

adjusted for demographic and health variables, including treatment group (intervention vs. 

control), study site, baseline age, sex, race, education category, depression (CES-D10), and 

medical comorbidities. To flexibly model the association between baseline age and incident 

dementia, we included spline terms for each 5-year interval of baseline age (i.e., >80, >85, >90) 

to allow for a nonlinear relationship. Importantly, we hypothesized that individuals with 

prevalent MCI may have attenuated associations between activity class and dementia compared 
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to those with normal cognition at baseline. Thus, Model 3 further stratified by MCI status, to 

examine whether association between activity class and dementia risk differed by MCI status. 

To compare the predictive utility of the activity variety sum score versus the lifestyle 

engagement groups, we generated Receiver Operating Characteristic (ROC) curves for each 

model and compared their respective Area Under the Curves (AUCs; Zweig & Campbell, 1993). 

AUCs indicate the extent to which the included variables discriminate between those who did 

and did not have incident dementia, with a higher AUC representing better discrimination.  

Sensitivity analyses. Occasionally latent class analyses can yield classes where certain 

covariate ranges are not observed (i.e., “non-positivity”), rendering simple covariate adjustment 

insufficient (Collins & Lanza, 2010). We therefore generated propensity scores using a 

multinomial logistic regressions of modal class assignment on the covariates to further examine 

the covariate spread across classes (Lanza, Coffman, et al., 2013).  

 

4.5 Results 

 

Sample Characteristics 

 

 Descriptive statistics for the current sample are presented in Table 4.2. The sample had an 

average baseline age of 78.5 (SD=3.3), was mostly white (95%), and had an approximately even 

sex distribution (53% male). Most participants were highly educated, with only 36% having a 

high school degree or less. About half of participants rated their health as “very good” or 

“excellent,” few had significant depressive symptoms (7%), and most had few medical 

comorbidities (M=1.4, SD=1.1). Participants reported about 9 activities, on average (SD=3.0, 

range: [0,18]). “Reading books” was the most frequently reported (83%), while “drawing and 

painting” was the least reported (11%; Table 4.1).   
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Latent Class Analysis 

 Class enumeration. To account for the large number of indicators used and to assess the 

degree to which the enumeration process was sensitive to the specific activities included, we 

conducted latent class analyses using 10 semi-random subsets of 9 of the 18 activities (4 

intellectual, 1 physical, 4 social). Using a lower BIC and significant BLRT as the selection 

criteria, a 3- to 5-class solution was generally the best fit across these subsets of activities. 

Notably, for some activity subsets, the 5-class models had convergence issues due to sparse 

response patterns, in which case a 4-class model was chosen (see Supplemental materials, 

Appendix 3).  Table 4.3 presents the class enumeration results (step 1) for 2-, 3-, 4-, 5-, and 6-

class models for the full set of 18 items. A 4-class model was chosen based on the two criteria 

mentioned previously. The 4-class model has a significant BLRT (p<.001) and lower BIC than 

the 2- and 3-class solutions, suggesting that the 4-class model fit better than those models. While 

the 5-class model had improved fit statistics (significant BLRT, lower BIC) compared to the 4-

class model, there was little gain in theoretical interpretability by including a fifth class (see 

“Class structure” below). Table 4.3 should be interpreted cautiously in light of the potential for 

overfitting with the full set of items and our sample size, hence our emphasis on interpretability 

taken together with adjudication of formal criteria in activity subsets as described above.   

 Class structure. Figure 4.1 is a plot of the item-response probabilities of activity 

engagement by latent class for the 4-class model. Importantly, there were not only differences in 

amount of activities by class, but also differences in types of activities chosen across classes. 

Class 1 (Social Intellectual; n=662, 22%) had high probabilities of engagement broadly across 

intellectual and social activities. Class 2 (Intellectual; n=514, 18%) had high likelihood of 

engagement in most intellectual (e.g., viewing art, computer use) and some social activities (e.g., 
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movies), but less so in social institutional activities (e.g., volunteering, social clubs, church). In 

contrast, Class 3 (Social; n=1,036, 32%) had high probabilities of engagement in social 

institutional activities, but was less likely to report intellectual activities. Finally, Class 4 (Least 

Active; n=856, 28%) had lower probabilities of engagement in most intellectual and social 

activities compared to the other classes. Yet, their probabilities of engagement in some home-

based activities, such as doing crossword puzzles or playing cards, were comparable to Class 3, 

suggesting that the main difference between these two classes may be their engagement in social 

institutional activities. There were little differences across classes in the two physical activities 

included (i.e., “gardening,” “walking”). 

 Comparison to 3- and 5-class structures. Figure 4.2 includes plots of the item-response 

probabilities of activity engagement by latent class for the 3- and 5-class models. The 3-class 

model was highly similar in structure to Classes 1 (Social Intellectual), 3 (Social), and 4 (Least 

Active) in the 4-class model. The primary difference between the 3- and 4-class models was the 

addition of Class 2 (Intellectual), which primarily split off from Class 1 (Social Intellectual). 

Comparing Class 1 in both models, the addition of Class 2 led to slight increases in item-

response probabilities for social institutional activities (e.g., volunteering, church) in Class 1. 

This further supports the characterization of Class 2 as a less social but intellectually-active 

group. 

 The 5-class model had an additional group (Class 5) that was similar in structure to the 

Intellectual (Class 2) and Social (Class 3) groups in the 4-class model, but was less likely to 

report social institutional activities. The differences in intellectual activities between these 

classes were inconsistent. For example, Class 5 had a higher likelihood of engagement in 

“drawing” and “sewing” compared to Class 2 (Intellectual), but less likelihood for “taking 
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courses,” “viewing art,” and “using computers.” We did not have any a priori hypotheses 

suggesting groups would differ on these specific activities. Furthermore, the large overlap in the 

confidence intervals for the item-response probabilities between this class and others in the 5-

class model made it difficult to discern whether these estimates were meaningfully different and 

whether Class 5 was a truly distinct group. Therefore, we selected the 4-class model for 

subsequent analyses.   

Time to Dementia Analyses 

 Tables 4.4 and 4.5 present unadjusted and adjusted discrete time proportional hazards 

models for activity variety and lifestyle engagement classes on time to dementia diagnosis from 

study entry. There was a median of 6.0 years of follow up (IQR: [4.9, 6.5]). Only MCI status was 

in violation of the proportional hazards assumption, so we included models stratifying by MCI 

status (Model 3).  

Activity variety predicting dementia risk. Each additional activity reported was 

associated with 8.4% reduced hazards of dementia (Table 4, Model 1). This association was 

slightly attenuated but still significant (HR=.933, 95% CI:[.91,.96],  p<.001), after adjusting for 

demographic and health covariates. Stratifying by MCI (Model 3) revealed that lower activity 

variety was significantly associated with higher dementia risk for those without MCI (HR=.936, 

CI:[.91,.96], p=.001), but not those with MCI (HR=1.01, CI:[.96,1.06], p=.808).  

Lifestyle engagement groups predicting dementia risk. Compared to individuals in the 

Social Intellectual group (Class 1), individuals in the Social group had a 33% increased hazards 

(95% CI:[1.04,1.70], p=.024) and individuals in the Least Active group (Class 3) had a 66% 

increased hazards (95% CI:[1.29,2.41], p<.001) of dementia over time (Table 5, Model 1; Figure 

2). Only the association for the Least Active group was still significant (HR=1.55, CI:[1.2,2.1], 
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p=.001) after adjusting for demographic and health covariates. Stratifying by MCI status (Model 

5) revealed that the Least Active group had a higher dementia risk compared to the Social 

Intellectual group for those without MCI (HR=1.49, CI:[1.08,2.08], p=.017), but not those with 

MCI (HR=1.04, CI:[.67,1.61], p=.862). There was no difference in hazards of dementia between 

the Social Intellectual and Intellectual groups in any model (p’s>.05). 

Comparing model fit indices. The AUCs comparing the adjusted models of activity 

variety count (AUC=.741) and lifestyle engagement groups (AUC=.742) suggested that both 

variables provided relatively the same discrimination of dementia status (Supplemental Figure 

4.1). This implies that using our data-driven LCA approach did not add to the predictive utility of 

using a simpler count measure of activity engagement. However, it suggests that the LCA 

approach also did not result in a substantial loss of model fit when compared to the established 

sum score approach.  

Sensitivity analyses.  

Using the Vermunt (2010) approach yielded similar results to using modal class 

assignment (Supplemental Table 2). The Social group no longer had a significant difference in 

hazards of dementia compared to the Social Intellectual group in the unadjusted model 

(HR=1.40, 95% CI:[.98,2.01], p=.066). The Least Active group (Class 4) had a higher risk of 

incident dementia compared to the Social Intellectual group in both the unadjusted (HR=1.82, 

CI:[1.33,2.50], p<.001) and adjusted models (HR=1.73, CI:[1.23,2.44], p=.002). Stratifying the 

analysis by MCI status revealed that this association was maintained for those without baseline 

MCI only (HR=1.64, CI:[1.07,2.53], p=.024).  

Examining the propensity scores for each class revealed some variation in covariate 

ranges for the Social Intellectual (Class 1), Social (Class 3), and Least Active groups (Class 4). 
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We therefore conducted a sensitivity analysis eliminating individuals with scores outside the 

range that was consistent across classes (Supplemental Figure 4.2). Individuals with Class 1 

propensity scores >.52 or <.04, Class 3 scores <.16, or Class 4 scores >.60 were removed (n=59, 

13 dementia cases). Removing these individuals did not change the prior findings (Supplemental 

Table 4.2).  

4.6 Discussion 

 To our knowledge, this study is among the first to combine the use of traditional activity 

variety metrics with a latent class approach to characterize qualitative (e.g., type) differences in 

lifestyle engagement. Using the traditional count score, we found that lower activity variety was 

associated with higher risk of incident dementia over the seven-year study period, for those 

without baseline MCI. This association remained significant after adjusting for several relevant 

confounders. These findings agree with prior work suggesting that higher activity variety, 

especially for intellectual activities, is protective against aging-related cognitive impairments 

(Carlson et al., 2012; Scarmeas et al., 2001).  

 Several potential mechanisms may explain the relationship between activity variety and 

dementia risk. Engagement in a higher variety of activities may buffer against cognitive 

impairments through requiring individuals to navigate a complex environment, leading to greater 

utilization and maintenance of cognitive abilities (Schooler, 1984). Similarly, the enrichment 

hypothesis (Hertzog et al., 2009) posits that engagement in diverse activities may moderate 

neurocognitive impairments through maintenance or enhancement of cognitive abilities or 

through provision of compensatory mechanisms. Although research to date has found limited 

evidence for a direct relationship between activity engagement and dementia-related biomarkers 

(e.g., amyloid plagues and tau tangles; Bennett et al., 2014; Wilson & Bennett, 2003), higher 
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activity variety may also buffer against accumulated pathologies through structural (e.g., grey 

matter volume) and functional (e.g., functional connectivity) brain changes (Stern, 2002). To 

better clarify whether activity engagement may influence dementia risk through maintaining 

cognitive functioning with age, aim 2 of this dissertation examines the relationship between the 

current lifestyle engagement groups and domain-specific cognitive performance. 

We found that a 4-class model adequately represented group differences in activity 

response patterns. As hypothesized, these patterns were distinguished by differences in amount, 

types (e.g., intellectual vs. social), and settings (e.g., home-based vs. community-based) of 

engagement. The Social Intellectual group (Class 1) had high likelihood of participation broadly 

in intellectual and social activities. The Intellectual group (Class 2) had higher probability of 

reporting most intellectual and some social leisure activities (e.g., movies) compared to the 

Social (Class 3) and Least Active (Class 4) groups. The Social group had high likelihood of 

participation in community-based social institutional activities (e.g., attending church, 

volunteering). Finally, the Least Active group had relatively less likelihood of engagement in 

intellectual and social activities overall, but still demonstrated high engagement in certain 

independent activities (e.g., reading books).  

Findings using the LCA approach to predict dementia risk largely paralleled those from 

using activity variety, where individuals belonging to the Least Active group had the highest risk 

of incident dementia. This relationship remained for those without prevalent MCI after adjusting 

for several confounders. Those groups with high intellectual engagement (Social Intellectual and 

Intellectual) had the lowest risk of incident dementia, suggesting that those engaged in 

intellectual activities into later life are likely the best equipped to mitigate incident cognitive 

impairment. This agrees with the enrichment hypothesis (Hertzog et al., 2009), which suggests 
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that high intellectual engagement in later-life is not only associated with greater existing brain 

and cognitive reserves (Stern, 2002) that could delay impairment, but also actively attenuates 

future declines. Other studies have also found that high intellectual engagement is particularly 

protective against dementia (Scarmeas et al., 2001). 

Both the activity variety and lifestyle engagement group predictors had similar AUCs and 

thus demonstrated similar performance in discriminating future dementia cases. This suggests 

that the quantitative difference in amount of activities may be primarily driving the protective 

relationship between lifestyle engagement and dementia risk, and that using a sum score to 

capture variety of engagement may be the simplest method to use when developing predictive 

models of dementia incidence. Importantly, however, using the LCA approach did not result in a 

loss of predictive utility when compared to a simpler sum score, even despite potential losses in 

statistical power from categorizing individuals into only four groups. 

Furthermore, the LCA approach provided additional information to characterize lifestyle 

engagement and which group-specific activities may be driving the association between variety 

and dementia risk. For instance, we found two groups of individuals that were more likely to 

participate in intellectual activities (i.e., Social Intellectual and Intellectual). These groups 

differed in their level of social institutional engagement, but had a similar risk of incident 

dementia. In agreement with the enrichment hypothesis (Hertzog et al., 2009), this may suggest 

that engagement in specifically cognitively-demanding activities may be especially protective 

against dementia. Other studies have found that more frequent engagement in specifically 

intellectual or cognitively-demanding activities appears to have the greatest protective benefit 

compared to other activity types (Hultsch et al., 1999b; Scarmeas et al., 2001). 
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Our person-centered LCA approach also did not rely on a priori specification of activity 

domains. This was especially important for revealing the qualitative differences in social 

institutional engagement between the groups, where those in Social Intellectual group had a high 

likelihood of participating in most social activities, but those in Social group had a high 

likelihood of engaging primarily in social institutional activities (e.g., church). This splitting of 

social activities into leisure and institutional subdomains is not typically done in research using 

activity frequency or variety measures (Hultsch et al., 1999b; Parisi et al., 2012; Scarmeas et al., 

2001).  

However, this difference between social leisure and social institutional activities is 

important, as it could suggest important contextual differences in social engagement between the 

groups that are relevant to preventing cognitive impairments. Given that the Social Intellectual 

and Intellectual groups were more likely to endorse going to movies, concerts, or plays; they 

may be of higher socioeconomic status (SES) compared to the other groups. Supporting this, the 

Social Intellectual and Intellectual groups were also more likely to be better educated than those 

in the Social and Least Active groups. Individuals with higher SES may have the necessary 

resources to maintain an active lifestyle that buffers against dementia-related pathology (Stern, 

2002). Alternatively, additional social leisure activities may be associated with having a larger 

social network (Fratiglioni et al., 2004), expanded life space (James, Boyle, Buchman, Barnes, et 

al., 2011), increased physical activity (Najar et al., 2019; Ströhle et al., 2015; Voss et al., 2014), 

or additional cognitive stimulation related to novel environmental experiences (e.g., attending 

new concerts and encountering new individuals). Nevertheless, while we adjusted for education 

as a proxy of SES, future research using additional SES measures (e.g., wealth) with a similar 

LCA approach would help determine whether SES or social activity patterns is driving this 
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protective association with dementia. Past research adjusting for additional lifetime SES 

measures has found that activity engagement is independently associated with dementia risk 

(Chan et al., 2018; Wilson et al., 2007).  

Finally, the lifestyle engagement groups presented here may also be useful for planning 

future interventions. While differences in number of activities may be important for determining 

an individual’s lifestyle engagement (Carlson et al., 2012), further information on the qualitative 

differences in types of engagement may help pinpoint novel settings and behaviors to target. The 

Intellectual group, for example, may be more motivated to participate in a cognitively-intensive 

intervention, such as the Senior Odyssey, where participants work together to solve complex 

problems involving critical thinking and creativity (Parisi et al., 2007). In contrast, the Social 

group may be more motivated to participate in an intervention tied to social engagement or 

nested within a social institution, such as their church or social club. Supporting this, the Social 

Intellectual and Social groups shared similar a similar activity profile to BECT participants, who 

generally had high volunteerism and church participation and thus were likely more motivated to 

participate in the BECT intervention (Parisi et al., 2012). Integrating new interventions into 

existing activity contexts may ultimately promote more sustainable behavioral changes relevant 

to dementia prevention, by directly linking the intervention with engagement that already gives 

individuals purpose in life (Boyle et al., 2010).  

There are limitations to the current study. First, we used a retrospective, self-reported 

inventory to measure activity engagement, which may result in recall bias. We attempted to 

mitigate recall bias by only using dichotomous (yes/no) activity responses that did not require 

recall of precise frequencies of engagement. Second, the activities included here are not 

exhaustive, and we did not include all of the LAQ items in a single LCA model to prevent issues 
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with model estimability (Collins & Lanza, 2010). Yet, we removed activities based on a clear 

empirical and theoretical rationale, and sensitivity analyses that included additional activities did 

not differ substantially in item-response probability patterns for the 4-class model. Finally, our 

sample was mostly white participants in a clinical trial, and the current findings warrant further 

replication and measurement invariance testing in more diverse samples. 

 The current study also had several strengths. We used a well-characterized sample of 

adults at higher age-related risk of cognitive impairment. Our sample had a median follow-up of 

6 years, and was well-powered to detect differences in time-to-dementia analyses (DeKosky et 

al., 2006). Dementia was also adjudicated by expert clinicians using converging evidence from 

neuropsychological testing, neurological exams, and MRI (DeKosky, 2008; Snitz, Saxton, et al., 

2009). Finally, our novel application of a person-centered LCA approach demonstrated that 

individuals group naturally by both amount and types of activities, and revealed qualitative 

differences in engagement that could imply potential motivational differences for staying active 

in later life. Our study is the first, to our knowledge, to use this approach to predict dementia 

incidence.  

4.7 Conclusion 

 Increasing active life expectancies after retirement provide novel opportunities for 

encouraging lifestyle engagement in later life. The question remains as to how to quantify 

lifestyle engagement in a way that is useful both for predicting relevant health outcomes and for 

deploying health-related interventions. The current findings suggest that participating in a variety 

of activities in later life, regardless of frequency, appears to protect against incident dementia. 

We further found that individuals group naturally by both quantitative and qualitative differences 

in activity engagement, and these groups have differential risk of incident dementia. The 
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qualitative differences presented here indicate that individuals have different intrinsic or extrinsic 

motivations to remain active in later life. These motivational differences may provide one 

pathway for designing sustainable interventions that can be integrated into an individual’s 

existing activity context to promote neurocognitive health in later life. 
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Chapter 5: Higher Lifestyle Engagement Predicts Higher Baseline and Attenuated Declines 

in Global and Domain-Specific Cognition (Aim 2) 

 Increasing active life expectancy post-retirement (Crimmins et al., 2016) offers novel 

chances for lifestyle activity engagement in older adulthood. This potential for new or renewed 

engagement in everyday physical, cognitive, and social activities has been suggested as one way 

to prevent later-life cognitive impairments (National Academies of Sciences, Engineering, and 

Medicine, 2017). Aim 1 of this dissertation found that risk of dementia differs across lifestyle 

engagement groups that differ in quantity and type of self-reported activities. Yet, even in the 

absence of clinical impairments, lifestyle engagement may have important benefits for later-life 

cognitive functioning. Furthermore, examining specific cognitive domains may provide 

additional insight into the mechanistic pathways by which lifestyle engagement prevents 

cognitive impairment in later life. The current study uses the novel application of a person-

centered, latent class approach introduced in Aim 1 to characterize lifestyle engagement groups 

that may be relevant for future interventions, and examines differences in global and domain-

specific cognitive trajectories over approximately 4 years of follow-up.  

5.1 Lifestyle Engagement and Cognition: A Reciprocal Relationship  

 Lifestyle engagement is often operationalized as the total count or weighted-count of self-

reported activities (i.e., activity variety; Carlson et al., 2012; Chan et al., 2018). Greater lifestyle 

engagement is thought to expose individuals to a more cognitively-demanding environment 

(Hertzog et al., 2009; Schooler, 1984). This may potentially protect against cognitive declines by 

promoting structural and functional brain changes or mitigating brain pathology (e.g., amyloid 

plaques and neurofibrillary tangles; Stern, 2002).  
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Important to the notion that lifestyle engagement may be neuroprotective is the need to 

account for the reciprocal relationship cross-sectionally between activity engagement and 

cognition (Bielak et al., 2012; Salthouse, 2006). This has been a concern in studies of clinical 

impairments (e.g., MCI, dementia) with limited follow-up (e.g., 1-3 years) (Salthouse, 2006; 

Verghese et al., 2003b). Reduced participation in activities at baseline among those with incident 

dementia may be attributable in part to preclinical cognitive declines, which occur gradually 

before onset of clinical impairments (Verghese et al., 2003b).  In contrast, if the neurocognitive 

enrichment from activity engagement contributes to maintenance of cognitive functioning with 

age, then there should be differences in the rate of cognitive change over time by level of activity 

engagement (Salthouse, 2006). Testing these hypotheses requires a longitudinal design with 

sufficient follow-up time in the life course to rule out reverse causation driven by cross-sectional 

associations. The current study leverages over seven years of cognitive data from the Ginkgo 

Evaluation of Memory Trial (GEM), providing adequate follow-up time to test whether activity 

engagement is associated with rate of change in cognition.  

Several prospective studies using self-reported activity measures have found differences 

in cognition at baseline but not in rate of cognitive change (Bielak et al., 2012; Gow et al., 2014, 

2017; Hultsch et al., 1999b). Bielak and colleagues (2012) reported that neither between-person 

nor within-person variance in engagement in 16 activities were associated with changes in 

memory, executive functioning, perceptual speed, or vocabulary. Similarly, Gow and colleagues 

(2014) reported that leisure activity was associated with level of cognitive performance, but not 

with 10-year changes in cognition in the Glostrup 1914 Cohort. A study of the Lothian Birth 

Cohort reported that midlife social and intellectual engagement was associated with baseline 

cognition in older adulthood, but not with change over time (Gow et al., 2017). 
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Yet, other studies have reported the amount of activity reported during later adulthood 

may attenuate concurrent cognitive decline (Bielak et al., 2007; Carlson et al., 2012; Gow et al., 

2017; Hultsch et al., 1999; Verghese et al., 2003; Wilson et al., 2002). Carlson and colleagues 

(2012) reported that increased variety in lifestyle activities during later life is associated with an 

8-11% reduction in risk of verbal memory and global cognitive impairments across 9.5 years of 

follow-up in older women. Verghese and colleagues (2003) reported that individuals with more 

cognitive activities at baseline had reduced rates of decline in episodic memory. Notably, these 

studies included adults who were mostly over 70 years of age. In another study, Bielak and 

colleagues (2007) reported that the associations between activity engagement and 6-year changes 

in perceptual speed are higher for those over 75 than for those under 75 years. Taken together, 

these data suggest activity engagement may be especially beneficial for the oldest-old in the 

memory and attention/perceptual speed domains, potentially because the cognitive or social 

demands of the activity shift with increasing age (Bielak, 2010). We sought to expand upon these 

findings in a novel prospective cohort with an older age range that was well-powered for 

examining risk factors for later-life cognitive decline (Snitz, O’Meara, et al., 2009).  

 

5.2 Activity Subtypes Differentially Predict Specific Cognitive Domains 

One contributor to the mixed evidence for a prospective relationship between activity 

engagement and cognitive change may be the variability in the cognitive tests and activities that 

are measured (Bielak, 2017). Many studies include a limited set of cognitive tests that include 

only specific subdomains (e.g., verbal, visuospatial) or response modalities (e.g., oral, written). 

Failure to evaluate a range of domains and modalities could lead to a lack of precision in 
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estimation of the association between activity engagement and later-life cognition or the 

incorrect conclusion that there is no association at all (Small et al., 2013).  

Variation in activity measures is also important to consider, because research suggests 

that different types of activities place different levels of physical, cognitive, and social demands 

on individuals that may differentially impact their cognition. For example, the exercise literature 

suggests that highly aerobic activities may be especially protective against memory and 

executive functioning decline (Erickson et al., 2011; Kramer & Colcombe, 2018; Prakash et al., 

2015). Studies including self-reported activity inventories typically find that leisure social and 

intellectual activities are associated with primarily memory, attention, and perceptual speed 

(Bielak, 2010; Verghese et al., 2003; Wilson et al., 2002), presumably because this domain 

declines gradually throughout the lifespan and is sensitive to environmental enrichment 

(Ghisletta et al., 2006).  

Further, lack of knowledge regarding how people with different levels of lifestyle 

engagement vary qualitatively in the types of activities they report prevents further opportunities 

for intervention. Knowing whether there are distinct groups of individuals that endorse specific 

types of activities may provide attentional contextual detail, above and beyond just the number 

of endorsed activities, that could inform where and how to intervene. Information regarding the 

settings and types of activities that interest people may suggest different motivations for being 

active within different groups of older adults. Such information has been leveraged previously in 

other successful nonpharmacological interventions to promote healthy aging (e.g., generativity in 

the Baltimore Experience Corps sample; Fried et al., 2004). 

 We implemented the latent class approach introduced in Aim 1 to characterize lifestyle 

engagement groups which leveraged both amount and types of activities (Collins & Lanza, 
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2010). Importantly, by grouping individuals by their types of activities, LCA may better 

characterize lifestyle engagement groups by specifying which types of activities are reported by 

individuals who have different levels of lifestyle engagement. We previously reported that those 

with a higher quantity of activity were also more likely to endorse more intellectual activities 

than those with lower lifestyle engagement (Chapter 4).  

Current Study 

The purpose of this study was to examine whether groups defined by lifestyle 

engagement differentially predict global and domain-specific cognitive level and change after 

adjusting for relevant confounders. Confounders are variables hypothesized to be related to both 

activity engagement and cognition. They included age (Buchman et al., 2014; Verbrugge et al., 

1996), sex (Azevedo et al., 2007; Wu et al., 2017), race (Zahodne et al., 2017), education (Chan 

et al., 2018; King et al., 2000; Wilson et al., 1999), medical comorbidities (Saunders et al., 2016; 

Snyder et al., 2015), and depressive symptoms (Glass et al., 2006; Griffiths et al., 1987).  

A key goal of this work is to leverage LCA, a data-driven approach, to understand the 

domain-specific cognitive changes by which differences in activity patterns may protect against 

the clinical impairments observed in Aim 1. We hypothesized that higher lifestyle engagement, 

characterized by broader engagement in intellectual activities, is associated with reduced global 

cognitive declines over time. We further hypothesized that these associations pertain specifically 

within the memory and attention/perceptual speed domains. We examined this using an 

extensive neuropsychological battery including tests spanning multiple cognitive domains, 

subdomains, and response modalities. Better understanding how cognitive trajectories differ 

across qualitatively-different groups may inform where and for whom researchers should deploy 

future nonpharmacological interventions. 
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5.3 Methods 

 

Participants 

As in Aim 1, participants were volunteers from the Ginkgo Evaluation of Memory 

(GEM) study, a randomized clinical trial testing the efficacy of Ginkgo biloba supplements for 

preventing all-cause dementia (DeKosky et al., 2006; Fitzpatrick et al., 2006). Recruitment and 

eligibility criteria have been covered previously (Chapter 3.1). Briefly, participants were 

community-dwelling older adults from four study sites: Hagerstown, Maryland (Johns Hopkins 

University); Pittsburgh, Pennsylvania (University of Pittsburgh); Winston-Salem and 

Greensboro, North Carolina (Wake Forest University), and Sacramento, California (University 

of California –Davis). Eligibility criteria included: being free of prevalent dementia and other 

neurocognitive diseases (e.g., Parkinson’s) at baseline, not currently taking certain medications 

(e.g., warfarin, cholinesterase inhibitors), and identifying a proxy willing to be interviewed at 

each 6-month visit (DeKosky et al., 2006). Data collection began in September 2000 and ended 

April 2008. 

Measures 

 Before randomization into the intervention or control group, eligible participants 

completed an extensive survey battery and functional assessment at baseline measuring their 

demographic and health characteristics.   

Lifestyle Activity Questionnaire (LAQ). The selection of measured activities and 

operationalization into variety and latent class indicators was identical to the first manuscript 

(Chapter 4.4). Briefly, participants were asked the frequency with which they participated in 26 

everyday activities (e.g., cooking, reading, gardening, etc.) over the past year on a 6-point Likert 

scale (0 = never/less than once a month, 5 = every day). Items were re-coded as a binary (yes/no) 
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variable indicating whether participants ever engaged in each activity during the past year. We 

used a latent class analysis (LCA) approach to group individuals by both quantity and type of 

activity engagement (Chapter 4.4).   

 Cognitive functioning. Several standardized neuropsychological measures were 

administered as part of the GEM Study Neuropsychological Test Battery (NTB; Table 3.1). 

Memory tests included the California Verbal Learning Test (CVLT) immediate and delayed 

recall (Delis et al., 1987) and Modified Rey-Osterrieth Complex Figure delayed recall tasks 

(Becker et al., 1987; Osterrieth, 1944). Tests of visuospatial construction included the Wechsler 

Adult Intelligence Scale – Revised (WAIS-R) Block Design (Wechsler, 1981) and Modified 

Rey-Osterrieth Complex Figure copy task. Language tests included the Boston Naming Test 

(Judith Saxton et al., 2000) and semantic Controlled Oral Word Association Test (COWAT, i.e., 

animal naming; Spreen & Strauss, 1998). Attention/psychomotor speed tests included the Trail 

Making Test Part A (TMT-A; Reitan, 1958) and WAIS-R Digit Span Forwards (Wechsler, 

1981). Finally, tests of executive functioning included the Stroop Color-Word Test (Trenerry et 

al., 1989), WAIS-R Digit Span Backwards, and Trail Making Test Part B (TMT-B, adjusted for 

TMT-A). 

 All scores on the cognitive tests were standardized based on the mean and standard 

deviation at baseline. Domain-specific scores (i.e., memory, attention, etc.) were then derived by 

taking the average of the z-scores on the tests within the domain. For executive functioning, task-

switching ability was isolated by first regressing TMT-B on TMT-A to derive an adjusted TMT-

B score. Similarly, inhibitory ability (i.e., the Stroop effect) was captured by regressing the 

Stroop color ink-naming score on the word naming score to produce an adjusted ink-naming 

score. Histograms by study visit were used to explore distributions of cognitive scores, and 
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TMT-A and TMT-B scores were log-transformed to correct for negative skew. A global 

cognition score was derived by averaging across domain-specific z-scores. 

Prevalent Mild Cognitive Impairment was also measured in GEM using normative 

cutoffs on the neuropsychological battery (Snitz, Saxton, et al., 2009). Yet, it was not adjusted 

for in longitudinal models due to concerns that it may induce collider bias and result in residual 

confounding with cognitive change over time (Glymour et al., 2005). We did evaluate effect 

modification by excluding those with MCI in sensitivity analyses.  

Descriptive Covariates. Several measures were used to explore demographic and health 

differences between the activity classes. 

Demographics. Baseline demographic variables included age (years), race (white/non-

white), education (years), and indicators for study site (Hagerstown, Pittsburgh, Sacramento, 

Winston-Salem/Greensboro).  

Medical Comorbidities. Participants reported their current medical comorbidities and risk 

factors. These included self-reported hypertension, current/former smoking, diabetes, acute 

myocardial infarction, heart failure, atrial fibrillation, stroke, and transient ischemic attack. A 

sum count of each binary (yes/no) response to these variables was generated to measure medical 

comorbidities.  

Depressive symptoms. A modified 10-item Center for Epidemiologic Studies Depression 

Scale (CES-D; Radloff, 1977) was used to measure depressive symptoms (Appendix 2). Items 

were measured on a 4-point Likert scale (0 = rarely/none of the time, 3 = most of the time). 

Responses were summed to produce a composite depressive symptom score, and scores 10 

were identified as potential clinical depression (Björgvinsson et al., 2013). For participants 

where at least one item was refused or missing, prorating was implemented wherein 
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missing/refused items were replaced with the mean score among the completed items before 

computing the final score (Downey & King, 1998). Imputation was only used for the 2.0% 

(n=60) of participants with missing item-level CES-D responses. 

Analytic Strategy 

 Tabulations and summary statistics (e.g., mean, standard deviations) were generated to 

compare covariates across activity classes. Spaghetti plots stratified by class were used to 

examine trends and variance in cognitive performance trajectories over time. Activity class 

indicators were identical to those derived from Analytical Steps 1 and 2 in the first manuscript 

(Chapter 4.4). The final analytic sample consisted of 3,068 individuals who had at least one 

NTB. Participants were followed up for up to 7.5 years (M=5.0, SD=2.4).    

Cognitive performance analyses. Linear mixed effects models with random intercepts 

and slopes were used to model cognitive performance over time (Laird & Ware, 1982). Two 

advantages of mixed effects modeling are that they use all available observed data and can 

produce valid estimates under the assumption that data are missing at random, conditional on 

variables in the model (i.e., MAR; Hogan et al., 2004). Variances were estimated using restricted 

maximum likelihood estimation (REML) to account for the inclusion of numerous fixed effects 

(Kenward & Roger, 1997). Time was included as years from study entry to current visit date.  

Fixed mean baseline differences and change from baseline across classes were modeled 

by including class indicators and class by time interactions, respectively. All covariates were 

measured at baseline and thus included as time-invariant, fixed effects. We estimated a series of 

nested models. Model 1 included only activity class indicators, time (years), and class by time 

interactions. Model 2 was adjusted for demographic and health variables, including treatment 

group (intervention vs. control), indicators for study site, age, sex, race, education (i.e., high 
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school or less, some college, college graduate, professional/graduate), depression (CES-D10), 

medical comorbidities, and baseline MCI status. Model 2 was also adjusted for interactions of 

age by time, sex by time, and study site by time. We did this because these were hypothesized to 

be strong demographic predictors of cognitive functioning over time.  

Sensitivity analyses. To account for potential nonlinear changes in cognitive domain 

scores over time and across baseline age, sensitivity analyses were performed including spline 

terms: 1) at study year 3 and 2) for five-year intervals of baseline age (i.e., >80, >85, >90). 

Model fits were evaluated using Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC), where lower values indicated better fit (Burnham & Anderson, 2004). The 

additional model fit provided by the spline terms was evaluated using likelihood ratio tests of 

nested models, where significant tests indicated that the model with additional spline terms fit 

better than the original model (Glover & Dixon, 2004). 

5.4 Results 

 

Sample Characteristics 

 

 Descriptive statistics for the current analytic sample (n=3,068) are presented in Table 5.1. 

The sample had an average age of 78.5 years (SD=3.3, range: 72-96), and was mostly white 

(95%) and male (54%). Most participants were highly educated, with only 36% having a high 

school degree or less. About half of participants rated their health as “very good” or “excellent,” 

few had significant depressive symptoms (7%), and most had few medical comorbidities 

(Median=1, IQR: 1-2). Most participants were assigned to the Social group (Class 3; n=1,036, 

32%), followed by the Least Active (Class 4; n=856, 28%), Social Intellectual (Class 1; n=662, 

22%), and Intellectual groups (Class 2; n=514, 18%). 

Class Enumeration and Structure 
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 Table 4.3 from Aim 1 of this dissertation presents the class enumeration results (step 1) 

for 2- through 6-class models. A 4-class model was chosen based on the criteria mentioned 

previously (Chapter 4.4), although supplemental analyses for a more parsimonious 3-class model 

were also conducted. Figure 4.1 from Aim 1 is a plot of the item-response probabilities of 

activity engagement by latent class for the 4-class model. Importantly, there were not only 

differences in amount of engagement by class, but also differences in types of activities reported 

across classes. Class 1 (Social Intellectual) had high probabilities of engagement broadly across 

intellectual and social activities. Class 2 (Intellectual) was likely to engage in specific intellectual 

(e.g., viewing art, computer use) and some social activities (e.g., movies), but less so in social 

institutional activities (e.g., volunteering, social clubs, church). In contrast, Class 3 (Social) had 

high probabilities of engagement in social institutional activities, but was less likely to report 

intellectual activities. Finally, Class 4 (Least Active) had lower probabilities of engagement in 

most intellectual and social activities compared to the other classes. Yet, their probabilities of 

engagement in some home-based activities, such as doing crossword puzzles or playing cards, 

were comparable to Class 3, suggesting that the main difference between these two classes may 

be their engagement in social institutional activities. 

 Supplemental 3-class structure. The 3-class model (Aim 1, Figure 4.2) was highly 

similar in structure to Classes 1 (Social Intellectual), 3 (Social), and 4 (Least Active) in the 4-

class model. The primary difference between the 3- and 4-class models was the addition of Class 

2 (Intellectual), which primarily split off from Class 1 (Social Intellectual). Comparing Class 1 in 

both models, the addition of Class 2 led to slight increases in item-response probabilities for 

social institutional activities (e.g., volunteering, church) in Class 1. This further supports the 

characterization of Class 2 as a less social but intellectually-active group. 
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Cognitive Performance Analyses 

 Tables 5.2 and 5.3 present unadjusted and adjusted linear mixed effects models for 

activity classes on global (Table 5.2) and domain-specific (Table 5.3) cognitive performance.  

Activity class predicting global cognition. Compared to the Social Intellectual group 

(Class 1), baseline global cognitive performance was 0.39 SD lower (SE=.049, p<.001) for the 

Social group (Class 3) and 0.47 SD lower (SE=.051, p<.001) for the Least Active group (Class 

4) in the unadjusted model (Table 2, Model 1). These baseline differences were attenuated but 

remained significant in the adjusted model (Social: B=-.210, SE=.044, p<.001; Least Active: -

.281, SE=.046, p<.001). There were no significant differences in baseline global cognitive 

performance comparing the Intellectual group (Class 2) to the Social Intellectual group (Class 1). 

Compared to the Social Intellectual group (Class 1), the Intellectual group (Class 2) had a 

.017 SD greater annual decline (SE=.008, p=.045) and the Least Active group (Class 4) had a 

.025 SD greater annual decline (SE=.008, p=.001) in the unadjusted model. In the adjusted 

model, only the longitudinal difference for the Least Active group remained significant (B=-

.019, SE=.008, p=.012).  

Activity class predicting domain-specific cognition.  

Memory. Compared to the Social Intellectual group (Class 1), baseline memory 

performance was 0.28 SD lower (SE=.049, p<.001) for the Social group (Class 3) and 0.39 SD 

lower (SE=.051, p<.001) for the Least Active group (Class 4) in the unadjusted model (Table 2, 

Model 1). These baseline differences were attenuated but remained significant in the adjusted 

model (Social: B=-.146, SE=.047, p=.002; Least Active: -.252, SE=.049, p<.001).  

Compared to the Social Intellectual group (Class 1), the Least Active group (Class 4) had 

a .026 SD greater annual decline (SE=.010, p=.007) in the unadjusted model. This longitudinal 
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difference remained significant in the adjusted model (B=-.020, SE=.009, p=.035).  There were 

no significant differences in baseline or annual change in memory comparing the Intellectual 

group (Class 2) to the Social Intellectual group (Class 1). 

Executive functioning. Compared to the Social Intellectual group (Class 1), baseline 

executive functioning was 0.34 SD lower (SE=.048, p<.001) for the Social group (Class 3) and 

0.43 SD lower (SE=.050, p<.001) for the Least Active group (Class 4) in the unadjusted model 

(Table 2, Model 1). These baseline differences were attenuated but remained significant in the 

adjusted model (Social: B=-.189, SE=.047, p<.001; Least Active: -.240, SE=.050, p<.001). 

There were no significant differences in annual change in executive functioning comparing each 

group to the Social Intellectual group (p’s>.05). 

Attention. Compared to the Social Intellectual group (Class 1), baseline attention was 

0.21 SD lower (SE=.048, p<.001) for the Social group (Class 3) and 0.28 SD lower (SE=.050, 

p<.001) for the Least Active group (Class 4) in the unadjusted model (Table 2, Model 1). These 

baseline differences were attenuated but remained significant in the adjusted model (Social: B=-

.093, SE=.047, p=.049; Least Active: -.143, SE=.050, p=.004).  

Compared to the Social Intellectual group (Class 1), the Least Active group (Class 4) had 

a .022 SD greater annual decline (SE=.008, p=.008) in the unadjusted model. This longitudinal 

difference remained significant in the adjusted model (B=-.019, SE=.008, p=.023).  There were 

no significant differences in annual change in attention comparing the Intellectual (Class 2) or 

Social group (Class 3) to the Social Intellectual group (Class 1). 

Language. Compared to the Social Intellectual group (Class 1), baseline language was 

0.32 SD lower (SE=.048, p<.001) for the Social group (Class 3) and 0.30 SD lower (SE=.050, 

p<.001) for the Least Active group (Class 4) in the unadjusted model (Table 2, Model 1). These 



 

 91 

baseline differences were attenuated but remained significant in the adjusted model (Social: B=-

.186, SE=.045, p<.001; Least Active: -.174, SE=.048, p<.001). There were no significant 

differences in annual change in language comparing each group to the Social Intellectual group 

(p’s>.05). 

Visuospatial construction. Compared to the Social Intellectual group (Class 1), baseline 

visuospatial construction performance was 0.23 SD lower (SE=.050, p<.001) for the Social 

group (Class 3) and 0.23 SD lower (SE=.052, p<.001) for the Least Active group (Class 4) in the 

unadjusted model (Table 2, Model 1). These baseline differences were attenuated but remained 

significant in the adjusted model (Social: B=-.110, SE=.044, p=.012; Least Active: -.152, 

SE=.046, p=.001). There were no significant differences in baseline global cognitive 

performance comparing the Intellectual group (Class 2) to the Social Intellectual group (Class 1). 

Compared to the Social Intellectual group (Class 1), the Intellectual group (Class 2) had a 

.034 SD greater annual decline (SE=.009, p<.001) and the Least Active group (Class 4) had a 

.024 SD greater annual decline (SE=.008, p=.004) in the unadjusted model. In the adjusted 

model, only the longitudinal difference for the Intellectual group remained significant (B=-.021, 

SE=.009, p=.021).  

Sensitivity analyses.  

Results and fit statistics from sensitivity analyses including spline terms to account for 

potential nonlinear relationships are included in Supplemental Tables 5.1-5.6. Including a spline 

term at year 3 resulted in better fit compared to the models including continuous time (i.e., years 

from study baseline) only (p’s<.001 for likelihood ratio tests comparing original and Year 3 

spline models). Including spline terms for baseline age did not consistently improve model fit 

across cognitive domains.  
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Early versus later longitudinal differences. Overall, the Year 3 spline models suggested 

that the differences in annual change observed in the original models occurred primarily after 3 

years in the study. For memory (Supplemental Table 5.2, Model D), the difference in change 

between the Social Intellectual and Least Active groups changed from .007 SD per year before 

year 3 (SE=.017, p=.690) to -.045 SD after year 3 (SE=.017, p=.010). The difference in change 

between the Social Intellectual and Least Active groups for attention was no longer significant in 

the spline model (p’s>.05; Supplemental Table 5.5, Model B). The difference in change between 

Social Intellectual and the Intellectual groups for visuospatial construction was also attenuated 

past statistical significance, but there was still a trending relationship for change past year 3 (B=-

.034, SE=.019, p=.076), suggesting that this difference may be related to loss of statistical power 

and increased variance from estimating additional spline terms. 

Effect modification by MCI. We found a similar pattern of results for most domains after 

excluding those individuals with prevalent MCI (Supplemental Table 5.7). For visuospatial 

construction, we no longer observed baseline differences (p’s>.05) compared to the Social 

Intellectual group. Yet, there were significant longitudinal differences between Intellectual (B=-

.022, SE=.009, p=.015) and Least Active (B=-.021, SE=.008, p=.014) groups compared to the 

Social Intellectual group. This suggests that the baseline differences in visuospatial construction 

observed in the overall sample (Table 5.3) were likely driven by prevalent MCI cases, but the 

Social Intellectual group still had reduced annual declines even after limiting the sample to 

individuals without MCI. 

5.5 Discussion 

 To our knowledge, this study is among the first to examine how lifestyle engagement 

groups that differed in amount and types of self-reported activities also differed in domain-
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specific cognitive trajectories. We found that the Social Intellectual group had better baseline 

global cognition, as well as better baseline performance across every domain compared to the 

Social and Least Active groups. The Social Intellectual group also had reduced declines in global 

cognition, memory, and visuospatial construction compared to the Least Active group. These 

associations remained significant after adjusting for several relevant confounders. These findings 

are consistent with prior work suggesting that higher activity variety, especially for intellectual 

activities, may attenuate aging-related cognitive declines (Bielak et al., 2007; Carlson et al., 

2012; Hultsch et al., 1999).  

 Several potential mechanisms may explain the relationship between lifestyle engagement 

and cognitive decline. Engagement in a higher variety of activities may buffer against cognitive 

declines through requiring individuals to navigate a complex environment, leading to greater 

utilization and maintenance of cognitive abilities (Schooler, 1984). Similarly, the enrichment 

hypothesis (Hertzog et al., 2009) posits that engagement in diverse activities may moderate 

neurocognitive impairments through maintenance or enhancement of cognitive abilities or 

through provision of compensatory mechanisms. Higher activity variety may also buffer against 

accumulated pathologies through structural (e.g., grey matter volume) and functional (e.g., 

functional connectivity) brain changes (Stern, 2002).  

The current results suggest that promoting high lifestyle engagement in later life may be  

key to preventing loss of memory abilities necessary for maintaining daily functioning and well-

being. We found the largest longitudinal differences between the Social Intellectual and Least 

Active groups for memory performance. These findings expand upon Aim 1 of this dissertation 

by suggesting that higher later-life lifestyle engagement may protect against clinical impairments 

by preserving memory performance. Memory declines are the hallmark behavioral marker of 
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Alzheimer’s Disease, the most prevalent form of dementia (American Psychiatric Association, 

2013). Memory declines also contribute significantly to difficulties completing activities of daily 

living in older adulthood (Farias et al., 2009).  

There were no baseline differences between Social Intellectual and Intellectual groups, 

but the Intellectual group had a higher annual decrease in visuospatial construction over time. 

These groups were primarily distinguished by their level of social institutional engagement. 

Higher community engagement within the Social Intellectual group may place increased 

demands on visuospatial skills by requiring older adults to navigate a complex environment 

(Carlson & Varma, 2015; Schooler, 1984). Given that these groups began at the same baseline 

level of visuospatial construction, the additional cognitive enrichment offered by social 

institutional engagement may be important to preserving visuospatial skills throughout later life.  

We also found differences between the Social Intellectual and Least Active groups in 

baseline performance across all domains, but particularly for memory, attention, and executive 

functioning. Yet, there were not consistent group differences in trajectories of attention and 

executive functioning over time. Some studies have also reported that aging-related declines in 

attention and executive functioning abilities may precede declines in global cognition and 

memory (Carlson et al., 2009; Clark et al., 2012). It is therefore unsurprising that lifestyle 

engagement measured in later life may be a proxy for existing baseline reserves in these 

domains. Yet, other studies have found that episodic memory declines before executive 

functioning, especially in clinical samples (Albert et al., 2007; Saxton et al., 2004).  

Interpreting the current findings within the existing literature, lifestyle engagement at 

certain points in the lifespan may be most protective for the specific cognitive abilities that are 

most sensitive to normative changes during that life stage (Bielak et al., 2014). Later life (i.e., 
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>70 years) may be an important period to remain active to protect against future memory 

declines. While it is important to acknowledge potential survivorship bias (i.e., healthy survivor 

effect) with all older-aged samples (Hernán et al., 2004), this finding is still important given 

recent increases in active life-expectancy post-retirement (Crimmins et al., 2016). With older 

adults living longer, there are opportunities for new or renewed activity engagement that could 

be leveraged to benefit their future memory performance. 

One advantage of the current LCA approach is that we did not rely on a priori 

specification of activity domains or aggregate all activities into a single variety metric. This was 

especially important for revealing the qualitative difference in social engagement between the 

groups, where the Social Intellectual group (Class 1) had a high likelihood of participating in 

most social activities, but those in the Social group (Class 3) had a high likelihood of engaging in 

only social institutional activities (e.g., church). This splitting of social activities into leisure and 

institutional subdomains is not typically done in research using activity frequency, or variety 

measures (Bielak, 2017; Hultsch et al., 1999b; Parisi et al., 2012).  

Despite having high institutional social engagement, we found that the Social group had 

poorer baseline global and domain-specific cognitive performance than the Social Intellectual 

and Intellectual groups. This may be due to differences in socioeconomic status (SES) between 

the two groups, as the Social Intellectual and Intellectual groups were more likely to endorse 

going to movies, concerts, or plays. The Social Intellectual and Intellectual groups were also 

more likely to be higher educated (Aim 1, Table 4.2). Individuals with higher SES may have 

enhanced brain reserve (Stern, 2002), expanded social networks (Fratiglioni et al., 2004), 

expanded life space (James, Boyle, Buchman, Barnes, et al., 2011), increased physical activity 

(Najar et al., 2019; Ströhle et al., 2015; Voss et al., 2014), or additional cognitive stimulation 
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related to novel environmental experiences (e.g., attending new concerts more frequently). 

Unfortunately, additional SES measures (e.g., wealth, income) were unavailable in the current 

dataset, but other studies have found an independent relationship between activity engagement 

and cognitive outcomes after adjusting for these measures (Bennett et al., 2014; Wilson et al., 

2007).  

Alternatively, the Social Intellectual and Intellectual groups also had maintained 

engagement in intellectual activities in later life (e.g., taking courses), and intellectual 

engagement in particular has been found to be especially predictive of cognitive functioning 

(Bielak, 2010; Hultsch et al., 1999b). Interestingly, there were no differences in annual rate of 

change in cognitive performance between the Social Intellectual and Social groups in any 

domain. This suggests that the social connections and engagement in the Social group may 

provide some protection against future cognitive declines, despite this class starting at a lower 

baseline level of cognition than the Social Intellectual group.  

Ultimately, the lifestyle engagement groups presented here may be useful for planning 

future interventions. While differences in number of activities may be important for determining 

an individual’s activity variety (Carlson et al., 2012), further information on qualitative 

differences in types of engagement may help pinpoint novel settings and behaviors to target. The 

Intellectual group (Class 2), for example, may be more motivated to participate in a cognitively-

intensive intervention, such as the Senior Odyssey, where participants work together to solve 

complex problems involving critical thinking and creativity (Parisi et al., 2007). In contrast, the 

Social group (Class 3) may be more motivated to participate in an intervention tied to social 

engagement or nested within a social institution, such as their church or social club. Given that 

they had worse memory trajectories, those the Social group may also benefit from an 
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intervention focused on improving memory (e.g., memory training; Gross et al., 2012). 

Integrating new interventions into existing activity contexts may ultimately promote more 

sustainable behavioral changes relevant to prevention of cognitive declines, by directly linking 

the intervention with engagement that already gives individuals purpose in life (Boyle et al., 

2010).  

There are limitations to the current study. As reported in Aim 1 (Chapter 4.6), we used a 

retrospective, self-reported inventory to measure activity engagement, which may result in recall 

bias. We attempted to mitigate recall bias by only using dichotomous (yes/no) activity responses 

that did not require recall of precise frequencies of engagement. Second, our sample was mostly 

white participants in a clinical trial, and the current findings warrant further replication and 

measurement invariance testing in more diverse samples.  

 The current study also had several strengths. We used a well-characterized sample of 

adults at higher age-related risk of cognitive declines. Our sample was well-powered to detect 

differences in both baseline and longitudinal cognitive performance (Snitz, O’Meara, et al., 

2009). We also measured each cognitive domain using at least two tests that spanned different 

subdomains and response modalities, ideally providing more precise estimates of these cognitive 

domains. Finally, our novel application of a person-centered LCA approach demonstrated that 

individuals group naturally by both amount and types of activities, and revealed qualitative 

differences in engagement that could imply potential motivational differences for staying active 

in later life. Our study is the first, to our knowledge, to show that these lifestyle engagement 

groups also differed in global and domain-specific cognitive trajectories over time.  

5.6 Conclusion 
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 Increasing active life expectancies after retirement provide novel opportunities for 

encouraging lifestyle engagement in later life. The question remains as to how to quantify 

lifestyle engagement in a way that is useful both for predicting relevant health outcomes and for 

deploying health-related interventions. The current findings suggest that individuals group 

naturally by both quantitative and qualitative differences in activity engagement, where those 

with the highest lifestyle engagement also engage broadly in intellectual and social activities. 

Building upon Aim 1 of this dissertation, the current findings suggest that high lifestyle 

engagement may protect against clinical neurocognitive impairments by providing greater 

baseline global cognitive resources while also mitigating against declines in specific domains 

(e.g., memory, visuospatial construction) highly related to independent functioning in later life.  
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Chapter 6: Higher Lifestyle Engagement Predicts Reduced Risk of Prevalent Frailty 

Criteria but Not Attenuated Risk over Time (Aim 3) 

 Older adults often experience reduced physical activity in later life (Varma et al., 2014), 

which can contribute to incident mobility declines (Rosso, Studenski, et al., 2013) and physical 

frailty (Fried, Tangen, et al., 2001). Nevertheless, later life also provides an opportunity for 

continued engagement in fulfilling activities that encourage daily physical exercise. Activities 

that are cognitively- (e.g., taking courses) and socially-enriching (e.g., attending church) may 

provide additional purpose in life (Boyle et al., 2010) that could contribute to sustained 

engagement over time. Better understanding how individuals group together based on their self-

reported lifestyle activities, here termed “lifestyle engagement groups,” may provide insight into 

motivational and contextual factors that may be relevant to designing future, sustainable 

interventions. Furthermore, it is currently unknown whether such lifestyle engagement groups, 

characterized by differences in social or cognitive engagement, may differ in existing or future 

risk of physical impairments. The current work expands upon the first two aims of this 

dissertation by examining whether the protective association of lifestyle engagement extends to 

physical outcomes, including mobility and physical frailty criteria.  

6.1 Physical Frailty and Mobility: Connections with Lifestyle Engagement 

Physical frailty is a clinical state of increased vulnerability to adverse health outcomes 

(e.g., disability, falls, mortality). The physical frailty phenotype consists of five criteria: 1) 

unintentional weight loss, 2) low strength, 3) exhaustion, 4) slow walking, and 5) low physical 

activity (Fried, Tangen, et al., 2001). Physical frailty is not uncommon, and it is estimated that 

15% of community-dwelling older adults in the United States are frail (≥3 criteria) while 45% 

are prefrail (1-2 criteria) (Bandeen-Roche et al., 2015). Physical frailty is also strongly associated 
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with incident disability and injury. Of those in the US considered frail, 42% were hospitalized 

and about 55% had a fall in the previous year (Bandeen-Roche et al., 2015).  

Mobility, the ability of an individual to move about their environment (Rosso, Studenski, 

et al., 2013), is highly related to both physical frailty (Fried, Tangen, et al., 2001) and lifestyle 

engagement (Baker et al., 2003). An individual’s mobility contributes to their gait speed and 

physical activity, two criteria of the frailty phenotype. Furthermore, mobility is a key component 

to an actively-engaged lifestyle in later life, even beyond just physical exercise (Baker et al., 

2003). Certain social (e.g., volunteering, social clubs) activities require either sufficient inherent 

mobility or additional support mechanisms (e.g., assistive devices, transportation assistance) to 

maintain meaningful engagement (Xue, Fried, et al., 2008). 

Physical frailty may also be linked to lifestyle engagement through the body’s stress 

response. Dysregulated energetics from declining physiologic systems are thought to lead to 

chronic activation of stress systems (Ferrucci & Fabbri, 2018; Xue et al., 2019). Lifestyle 

engagement may ultimately build physiologic and neural reserves that buffer against stress 

through increased cognitive engagement (Hertzog et al., 2009; Stern, 2002; Xue et al., 2019).  

Given that lifestyle engagement and physical frailty may be linked through mobility or 

stress pathways, it is plausible that lifestyle engagement may be protective against future frailty 

through maintenance of physical reserves (Fried, Tangen, et al., 2001; Varma, Hausdorff, et al., 

2016; Xue, Fried, et al., 2008; Xue et al., 2019). On the other hand, an individual’s lifestyle 

engagement in later life is likely also limited by their existing frailty criteria. Unsurprisingly, 

those with more severe life-space constriction (e.g., unable to leave home) have been found to 

have more prevalent mobility difficulties (e.g., walking ¼ mile; Xue et al., 2008). Dissociating 

the cross-sectional and longitudinal associations between late-life lifestyle engagement and 
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physical frailty is therefore an important first step to determining how to intervene on lifestyle to 

improve physical functioning in later life. 

6.2 Lifestyle Engagement as a Potential Protective Factor Against Physical Frailty 

Only a few studies have examined the longitudinal relationship between engagement in 

self-reported cognitively- and socially-demanding lifestyle activities and physical functioning. 

Buchman et al. (2009) examined whether self-reported social engagement predicted changes in 

objectively-measured mobility over time in the Rush Memory and Aging Project (MAP). The 

study used a global mobility composite of 18 measures capturing whole-body motion (e.g., 

walking speed, finger tapping, elbow flexion). They found that lower frequency of social 

engagement was associated with larger annual declines in mobility, which were in turn 

associated with a higher risk of death and disability (Buchman et al., 2009). The association 

remained significant after adjusting for frequency of cognitive and physical activity, suggesting 

that social engagement had an independent protective association with mobility functioning in 

later life. 

There have been relatively more studies examining the link between lifestyle engagement 

and incident self-reported functional disability (Avlund et al., 2004; James, Boyle, Buchman, & 

Bennett, 2011; Mendes de Leon et al., 2003; Unger et al., 1997). Functional disability includes 

difficulties completing instrumental activities of daily living (IADLs, e.g., shopping) or activities 

of daily living (ADLs, e.g., bathing) that are important to maintaining independence and quality 

of life in older adulthood (Branch et al., 1984). In the New Haven Established Populations for 

Epidemiologic Studies of the Elderly (EPESE), Mendes de Leon et al. (2003) found that while 

higher social engagement was associated with reduced disability at baseline, this protective 

association diminished over time. In contrast, others have found that more frequent social 
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engagement was associated with reduced incidence of first-time ADL, IADL, and mobility 

difficulties (Avlund et al., 2004; James, Boyle, Buchman, & Bennett, 2011) and buffered against 

declines in these abilities over time (Unger et al., 1997).  

Current Study 

Given that physical frailty may manifest after initial declines in global mobility but 

before incident disability with IADLs and ADLs (Xue, Bandeen-Roche, et al., 2008), we 

hypothesized that higher lifestyle engagement in our study would be associated with lower risk 

of prevalent frailty criteria, especially mobility limitations (i.e., slow gait), and potentially 

reduced risk of incident frailty criteria over time. We examined this relationship using a novel 

application of latent class analysis to characterize lifestyle engagement (Chapter 4.4) that groups 

individuals based on their self-reported variety of social, intellectual, and physical activities. This 

approach further expands on the current literature by investigating whether differences in variety 

of activities (Carlson et al., 2012), rather than frequency, may protect against incident physical 

frailty criteria.  

Finally, we adjusted models for relevant covariates to isolate the independent associations 

between lifestyle engagement and physical frailty criteria. These covariates included age 

(Bandeen-Roche et al., 2015; Buchman et al., 2014), sex (Azevedo et al., 2007; Fried, Tangen, et 

al., 2001), race (Bandeen-Roche et al., 2015; Chan et al., 2018), education (Bandeen-Roche et 

al., 2015; King et al., 2000), number of medical comorbidities (Fried, Tangen, et al., 2001; 

Saunders et al., 2016), and depressive symptoms (Glass et al., 2006; Griffiths et al., 1987).  
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6.3 Methods 

 

Participants 

As in Aims 1 and 2, participants were volunteers from the Ginkgo Evaluation of Memory 

(GEM) study, a randomized clinical trial testing the efficacy of Ginkgo biloba supplements for 

preventing all-cause dementia (DeKosky et al., 2006; Fitzpatrick et al., 2006). Briefly, 

participants were community-dwelling older adults from four study sites: Hagerstown, Maryland 

(Johns Hopkins University); Pittsburgh, Pennsylvania (University of Pittsburgh); Winston-Salem 

and Greensboro, North Carolina (Wake Forest University), and Sacramento, California 

(University of California –Davis). Eligibility criteria included: being free of prevalent dementia 

and other neurocognitive diseases (e.g., Parkinson’s) at baseline, not currently taking certain 

medications (e.g., warfarin, cholinesterase inhibitors), and identifying a proxy willing to be 

interviewed at each 6-month visit (DeKosky et al., 2006). Data collection began in September 

2000 and ended April 2008. 

Measures 

 Before randomization into the original intervention or control group, eligible participants 

completed an extensive survey battery and functional assessment at baseline measuring their 

demographic and health characteristics. Participants also completed vital exhaustion measures 

every six-months after randomization, as well as a usual walking test during annual visits.  

Lifestyle Activity Questionnaire (LAQ). The selection of measured activities and 

operationalization into latent class indicators was identical to the first manuscript (Chapter 4.4). 

Briefly, participants were asked the frequency with which they participated in 26 everyday 

activities (e.g., cooking, reading, gardening, etc.) over the past year on a 6-point Likert scale (0 = 

never/less than once a month, 5 = every day). Items were re-coded as a binary (yes/no) variable 
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indicating whether or not participants ever engaged in each activity during the past year. We 

used a latent class analysis (LCA) approach to group individuals by both quantity and types of 

activity engagement (Chapter 4.4).   

 Usual gait speed. Participants were asked to walk for 15 feet on a standardized, straight 

course at their usual pace. They could use a cane or any necessary walking aids during the task. 

Their time (sec.) to walk the course was recorded at 3 feet and 15 feet markers. Sex- and height-

specific cutoffs were used to identify individuals with slow gait (Fried, Tangen, et al., 2001). 

Individuals with slow gait included: 1) men with height ≤173 cm and time ≥7 seconds, 2) men 

with height >173 cm and time ≥6 seconds, 3) women with height ≤159 cm and time ≥7 seconds, 

4) women with height >159 cm and time ≥6 seconds. 

 Exhaustion. Two self-reported measures of perceived physical exhaustion were used in 

this study. The first was derived from the Fried et al. (2001) frailty criteria for exhaustion using 

two items from the Center for Epidemiologic Studies Depression Scale (CES-D; Radloff, 1977). 

These items included “I felt that everything I did was an effort” and “I could not get going.” 

Individuals who reported experiencing either of these symptoms at least a “moderate amount of 

time” during the past week were categorized as having exhaustion.  

 We also derived a second measure of exhaustion using four items from the Maastricht 

Vital Exhaustion Questionnaire (Appels et al., 1987). Participants were asked whether they 

recently experienced any of the following: “often feel tired,” “ever wake up with a feeling of 

exhaustion or fatigue,” “feel weak all over,” and “have the feeling that you could not cope with 

everyday problems as well as you used to.” Participants reporting at least two of the four items 

were categorized as having exhaustion.  
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Weakness. Given that there were no objective grip strength measures available in GEM, 

we adapted a measure of self-reported difficulties with gripping, which had been shown to be a 

valid proxy for objectively-measured grip strength (Liu et al., submitted). Participants were 

asked: “Do you have any difficulty gripping with your hands?” Those responding “yes” were 

categorized as having grip weakness, and prevalence of grip weakness was used as an outcome 

measure in Aim 3.   

The four indicators of physical frailty included above (i.e., slow gait, CES-D exhaustion, 

Maastricht exhaustion, weakness) were analyzed separately rather than in a composite frailty 

indicator. This was done both to elucidate potential mechanisms by which lifestyle activity may 

act on frailty, and to account for the relatively low prevalence of participants meeting the cutoff 

for frailty (>=3 criteria) at baseline (Liu et al., submitted).  

Descriptive Covariates. Several measures were used to explore and adjust for demographic and 

health differences between the activity classes at baseline. 

Demographics. Baseline demographic variables included age (years), race (white/non-

white), education (years), GEM treatment group, and study site (Hagerstown, Pittsburgh, 

Sacramento, Winston-Salem/Greensboro).  

Medical Comorbidities. Participants reported their current medical comorbidities and risk 

factors. These included self-reported hypertension, current/former smoking, diabetes, acute 

myocardial infarction, heart failure, atrial fibrillation, stroke, and transient ischemic attack. A 

sum count of each binary (yes/no) response to these variables was generated to measure total 

medical comorbidities.  

Depressive symptoms. A modified 10-item Center for Epidemiologic Studies Depression 

Scale (CES-D; (Radloff, 1977) was used to measure baseline depressive symptoms (Appendix 
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2). Items were measured on a 4-point Likert scale (0 = rarely/none of the time, 1 = some/little of 

the time, 2 = moderate amount of time, 3 = most of the time). Responses were summed to 

produce a composite depressive symptom score, and scores 10 were identified as potential 

clinical depression (Björgvinsson et al., 2013).  

Analytic Strategy 

 Tabulations and summary statistics (e.g., mean, standard deviations) were generated to 

compare covariates across activity classes. Spaghetti plots stratified by class were used to 

examine average trends and variance in gait speed trajectories over time. Lowess plots stratified 

by class were used to examine average trends in binary outcomes over time. Activity class 

indicators were identical to those derived from Analytical Steps 1 and 2 in the first manuscript 

(Chapter 4.4). The final analytic sample consisted of 3,068 individuals who had at least one 

assessment of each physical outcome. All physical outcomes were assessed for up to 7.5 years 

after baseline (Gait speed: M=4.9, SD=2.0; Exhaustion/weakness: M=5.5, SD=1.8).  

Mixed effects logistic regressions with random intercepts and slopes were used to model 

the physical functioning outcomes over time (Breslow & Clayton, 1993; Pinheiro & Chao, 

2006). Three advantages of mixed effects modeling are that it uses all available observed data, 

better accounts for uneven follow-up time between visits in GEM compared to generalized 

estimating equations, and provides valid estimates under the assumption that data are missing at 

random conditional on the variables in the model (i.e., MAR; Breslow & Clayton, 1993). Models 

were fit using adaptive Gauss-Hermite quadrature (Pinheiro & Chao, 2006). Time was included 

as years from study entry to current visit date. Fixed effects for mean baseline differences and 

change from baseline across classes were modeled by including class indicators and class by 

time interactions, respectively. All covariates were measured at baseline and thus included as 
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time-invariant, fixed effects. Model 1 included only activity class indicators, time (years), and 

class by time interactions. Model 2 was adjusted for demographic and health variables, including 

treatment group (intervention vs. control), study site, age, sex, race, education, depression (CES-

D10), and number of medical comorbidities. Model 2 was also adjusted for interactions of age 

by time, sex by time, and study site by time. These variables were hypothesized to be strong 

demographic predictors of physical functioning over time. 

Sensitivity analyses. Exploratory analyses revealed potential nonlinear changes in 

physical outcomes across classes over time, and thus sensitivity analyses were performed where 

linear spline terms for each year were included and significant spline terms were preserved. 

Model fits were then evaluated using the Akaike’s Information Criterion and the Bayesian 

Information Criterion, where lower values indicated better fit (Burnham & Anderson, 2004). 

Sensitivity of parameter estimates to estimation procedure was also examined by varying the 

number of integration points (i.e., 7, 15, 30) used to fit the model (Pinheiro & Chao, 2006). 

Finally, we also conducted a sensitivity analysis adjusting for prevalent MCI as adjudicated 

using the GEM Neuropsychological Test Battery and CDR scale (Snitz, Saxton, et al., 2009), 

given that existing cognitive impairments have been associated with higher incidence of physical 

frailty (Gross et al., 2016; Raji et al., 2010).  

6.4 Results 

 

Sample Characteristics 

 

 Descriptive statistics for the current analytic sample (n=3,068) are presented in Table 6.1. 

The sample had an average age of 78.5 (SD=3.3, range: 72-96), and was mostly white (95%) and 

male (54%). Most participants were highly educated, with only 36% having a high school degree 

or less. About half of participants rated their health as “very good” or “excellent,” few had 
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significant depressive symptoms (7%), and most had few medical comorbidities (M=1.4, 

SD=1.1). Participants were approximately evenly distributed across activity classes. 

Class Enumeration and Structure 

 Table 4.3 from Aim 1 of this dissertation presents the class enumeration results (step 1) 

for 2-, 3-, 4-, and 5-class models. A 4-class model was chosen based on the procedure mentioned 

previously (Chapter 4.5), although supplemental analyses for a more parsimonious 3-class model 

were also conducted. Figure 4.1 from Aim 1 is a plot of the item-response probabilities of 

activity engagement by latent class for the 4-class model. Importantly, there were not only 

differences in amount of engagement by class, but also differences in types of activities chosen 

across classes. Class 1 (Social Intellectual) had higher probabilities of engagement in intellectual 

activities (e.g., viewing art) than Classes 3 (Social) and 4 (Least Active). Class 2 (Intellectual) 

was likely to engage in specific intellectual (e.g., viewing art, computer use) and some social 

activities (e.g., movies), but less so in social institutional activities (e.g., volunteering, social 

clubs, church). Both Class 1 (Social Intellectual) and Class 3 (Social) had high engagement in 

social institutional activities (e.g., church) compared to Classes 2 (Intellectual) and 4 (Least 

Active). Finally, Class 4 (Least Active) had lower probabilities of engagement in most 

intellectual and social activities compared to the other classes. Yet, their probabilities of 

engagement in some home-based intellectual activities, such as doing crossword puzzles or 

playing cards, were comparable to Class 3 (Social), suggesting that the main difference between 

these two classes may be their engagement in social intuitional activities.  

Physical Frailty Analyses 

 Table 6.2 presents the unadjusted and adjusted mixed effects logistic models for activity 

classes on physical frailty criteria over time. Odds ratios are conditional on the random effects, 
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and are therefore interpreted as the difference in risk of the symptom for an “average” individual 

(i.e., random intercept and slope are 0). Figure 6.1 presents the average and subject-specific 

marginal predicted probabilities for each frailty outcome based on the adjusted models. The 

predicted probabilities are marginalized according to the subject-level random effects, and the 

average marginal predicted probabilities represent population-level risk over time.  

Activity class predicting slow gait. Compared to those the Social Intellectual group 

(Class 1), baseline odds of slow gait were 2.91 times higher (95% CI:[1.44, 5.90], p=.003) for the 

Intellectual group (Class 2), 2.72 times higher (95% CI:[1.47, 5.04], p=.002) for the Social 

group (Class 3), and 7.06 times higher (95% CI:[3.79, 13.13], p<.001) for the Least Active group 

(Class 4) in the unadjusted model (Table 2, Model 1). These baseline differences were attenuated 

but remained significant in the adjusted model (Class 2 vs. 1: OR=2.89, 95% CI:[1.45, 5.74], 

p=.002; Class 3 vs. 1: OR=2.04, 95% CI:[1.11, 3.74], p=.021; Class 4 vs. 1: OR=4.24, 95% 

CI:[2.30, 7.81], p<.001). 

The odds of slow gait in the Social Intellectual group increased by 74% annually in the 

unadjusted model (95% CI:[1.53, 1.97], p<.001) and 34% annually in the adjusted model (95% 

CI:[1.13, 1.60], p=.001). The Intellectual group (Class 2) had a significant 15% annual reduction 

in odds ratio compared to the Social Intellectual group (Class 1) (95% CI:[0.73, 1.00], p=.048) in 

the adjusted model only. There were no significant differences in annual change in odds of slow 

gait between the Social Intellectual group (Class 1) and the Social (Class 3) or Least Active 

(Class 4) groups (p’s>.05). After 6.5 years in the study, the average marginal predicted 

probability for the Least Active group was about 40%, compared to about 27% for the Social 

Intellectual group (Figure 6.1).   

Activity class predicting exhaustion. 
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CES-D Exhaustion. Compared to the Social Intellectual group (Class 1), baseline odds 

of CES-D exhaustion were 2.31 times higher (95% CI:[1.70, 3.15], p<.001) for the Least Active 

group (Class 4) in the unadjusted model (Table 2, Model 1). This baseline difference remained 

significant in the adjusted model (Least Active: OR=1.85, 95% CI:[1.38, 2.48], p<.001). There 

were no baseline differences in odds of exhaustion comparing the Social Intellectual group with 

the Intellectual (Class 2) or Social (Class 3) groups.  

The odds of CES-D exhaustion for the Social Intellectual group increased by 17% 

annually in the unadjusted model (95% CI:[1.11, 1.23], p<.001) and 13% annually in the adjusted 

model (95% CI:[1.04, 1.21], p=.002). The Least Active group (Class 4) had a significant 7% 

annual reduction in odds ratio compared to the Social Intellectual group in both the unadjusted 

(95% CI:[0.87, .99], p=.027) and adjusted models (95% CI:[0.87, .99], p=.035). There were no 

significant differences in annual change in odds of CES-D exhaustion between the Social 

Intellectual group and the Intellectual or Social groups (p’s>.05). After 6.5 years in the study, the 

average marginal predicted probability for the Least Active group was about 25%, compared to 

about 23% for the Social Intellectual group (Figure 6.1). 

Maastricht Vital Exhaustion. Compared to the Social Intellectual group (Class 1), 

baseline odds of Maastricht vital exhaustion were 2.13 times higher (95% CI:[1.51, 3.01], 

p<.001) for the Least Active group (Class 4) in the unadjusted model (Table 2, Model 1). This 

baseline difference remained significant in the adjusted model (Least Active: OR=1.69, 95% 

CI:[1.21, 2.37], p=.002). There were no baseline differences in odds of exhaustion comparing 

the Social Intellectual group with the Intellectual (Class 2) and Social (Class 3) groups. 

The odds of Maastricht vital exhaustion for the Social Intellectual group increased by 

22% annually in the unadjusted model (95% CI:[1.15, 1.29], p<.001) and 14% annually in the 
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adjusted model (95% CI:[1.06, 1.23], p<.001). There were no significant differences in annual 

change in odds ratios of Maastricht vital exhaustion between any of the lifestyle engagement 

groups (p’s>.05).  

Activity class predicting grip weakness. Compared to the Social Intellectual group 

(Class 1), there were no significant differences in odds of grip weakness at baseline between 

groups (p’s>.05). The odds of grip weakness for the Social Intellectual groupremained stable 

over time in both unadjusted (OR=1.00, 95% CI:[.91, 1.10], p=.958) and adjusted (OR=.92, 

95% CI:[.80, 1.05], p=.215) models, and there were no significant differences over time between 

groups (p’s>.05). 

Sensitivity analyses. Estimates from sensitivity analyses using the 3-class model are 

included in Supplemental Table 6.1. Overall, there were few differences between the 4- and 3-

class estimates. Notably, there was a significant increase in risk of grip weakness over time for 

the Social group (Class 2) compared to the Social Intellectual group (Class 1; OR=1.13, 95% CI: 

[1.02, 1.26], p=.023) in the 3-class model that was not maintained when including the 4-class 

indicators. 

In general, including a spline terms for time resulted in comparable or worse AIC and 

BIC compared to the models including continuous time (i.e., years from study baseline) only. 

Estimates also did not change substantially when varying the number of integration points. 

Prevalent MCI was associated with increased baseline odds of slow gait (OR=2.84, 95% 

CI: [1.93, 4.18], p<.001; Supplemental Table 6.2) and exhaustion (CES-D: OR=1.74, 95% CI: 

[1.38, 2.18], p<.001, Maastricht: OR=1.62, 95% CI: [1.24, 2.12], p<.001), but not weakness 

(OR=1.05, 95% CI: [0.77, 1.43], p=.755). Further adjusting for prevalent MCI did not 

substantially change the baseline estimates of class differences from the original models 
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(Supplemental Table 6.2, Model 1). The interaction between prevalent MCI and time was only 

significant for the model of CES-D exhaustion (OR=0.93, 95% CI: [0.87, 1.00], p=.041, 

Supplemental Table 6.2, Model 2), and including this term slightly attenuated the longitudinal 

difference in odds of exhaustion between the Social Intellectual and Least Active groups 

(OR=0.94, 95% CI: [0.88, 1.00], p=.058). 

6.5 Discussion 

 To our knowledge, this study is the first to examine how individuals who grouped by 

patterns of social and cognitive lifestyle activities also differed in risk of physical frailty criteria. 

We found that those highly engaged in both intellectual and social activities had lowest risk of 

slow gait and exhaustion at baseline compared to the less active groups. These associations 

remained significant after adjusting for several relevant confounders. Yet, there were few 

differences between lifestyle engagement groups in changes in risk over time. These findings 

agree with prior research suggesting that a high lifestyle engagement, characterized by a variety 

of intellectual and social activities in later life, is highly related to existing physical functioning 

but may not necessarily modify the trajectory of future declines (Mendes de Leon et al., 2003). 

Several potential mechanisms may explain the relationship between lifestyle engagement 

and physical frailty. Mobility is highly related to both the frailty phenotype (Fried, Tangen, et al., 

2001) as well as maintaining an active lifestyle (Baker et al., 2003). Certain social (e.g., 

volunteering, social clubs) activities require either sufficient inherent mobility (e.g., life-space; 

Xue, Fried, et al., 2008) or additional support mechanisms (e.g., assistive devices, transportation 

assistance) to maintain meaningful engagement. Physical frailty may also be linked to lifestyle 

engagement through the body’s stress response. Dysregulated energetics from declining 

physiologic systems are thought to lead to chronic activation of stress systems, including the 
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innate immune system, hypothalamic-pituitary-adrenal (HPA) axis, and the sympathetic nervous 

system (Ferrucci & Fabbri, 2018; Xue et al., 2019). These systems are also implicated in aging-

related cognitive declines (Franceschi et al., 2006; Robertson et al., 2013). Lifestyle engagement 

may ultimately be associated with physiologic and neural reserves that buffer against stress 

through increased cognitive engagement (Hertzog et al., 2009; Stern, 2002; Xue et al., 2019). 

 Examining the frailty criteria separately enabled us to pinpoint which mechanistic 

pathways within the frailty cycle are likely the most related to maintaining a complex, active 

lifestyle in older adulthood. Baseline probabilities of slow gait appeared to follow an 

approximate dose-response relationship with degree of lifestyle engagement. The highly active 

Social Intellectual group had the lowest risk of slow gait at baseline, followed by the Intellectual 

and Social groups, who had relatively similar odds. Furthermore, compared to the Least Active 

group, the Social Intellectual group had less risk of self-reported exhaustion at baseline on both 

the CES-D and Maastricht Questionnaire measures. In contrast, there were no differences 

between groups in self-reported grip weakness. Together, these findings suggest that lifestyle 

engagement, as measured by the current activities, may primarily be related to existing 

physiologic reserves through demands on lower-extremity mobility, rather than upper-extremity 

strength. This agrees with other research that has found large baseline associations between 

social activity engagement and both global mobility (Buchman et al., 2009) and disability 

measures (Avlund et al., 2004; James, Boyle, Buchman, & Bennett, 2011; Mendes de Leon et al., 

2003) that capture lower-extremity functioning.  

This finding is ultimately important, because it suggests that lifestyle engagement may be 

modifiable in the face of declines in strength. Although physical frailty may manifest from 

insults at any stage of the cycle, declines in muscle strength often begin in midlife and presage 
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other frailty criteria (Xue, Bandeen-Roche, et al., 2008). In contrast, exhaustion is thought to 

manifest later in the frailty cycle, and signals more severe declines in energetics. The current 

findings suggest that those able to maintain high intellectual and social activity in later life had 

likely built up sufficient physiologic reserves to buffer against the transition towards more severe 

criteria of physical frailty (i.e., exhaustion). 

We also found that, for the most part, late-life lifestyle engagement did not modify risk 

trajectories of frailty criteria over time. The main exceptions were for the slow gait and CES-D 

exhaustion measures, where the benefits of being in the Social Intellectual group declined over 

time. For slow gait, the risk trajectories for the Social Intellectual and Intellectual groups 

converged over time, and they had approximately the same average marginal predicted 

probabilities of slow gait after about 6.5 years. For exhaustion, the risk trajectories between the 

Social Intellectual and Least Active groups converged over time. Yet, this differential change 

was small relative to the large baseline difference in exhaustion between these groups. The 

average marginal predicted probability of exhaustion was still slightly higher in the least active 

class compared to the most active class even up to 6.5 years later. Mendes de Leon et al. (2003) 

reported similar findings, where those with the highest social engagement declined faster in 

functional ability over time, but still had higher functioning throughout the study compared to 

those with less social engagement.  

The lack of longitudinal associations between lifestyle engagement and physical frailty 

criteria offers several interpretations. First, given the older age-range of our participants, later-

life lifestyle engagement may be a proxy for lasting differences in physiologic reserves (i.e., 

reverse causation). Having sufficient existing physiologic reserves or compensatory mechanisms 

(e.g., assistive devices, social support) are needed to maintain an intellectually- and socially-
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active lifestyle later in the lifespan. Second, later-life lifestyle engagement may help maintain 

physical functioning, but may do so by delaying, rather than slowing, the etiologic progression of 

frailty, which is consistent with a reserve perspective (Jack et al., 2013; Xue et al., 2019). This 

may explain why others have found significant relationships between social engagement and 

reduced declines in mobility (Buchman et al., 2009) and incident functional disability (Avlund et 

al., 2004; James, Boyle, Buchman, & Bennett, 2011). Given that physical frailty is considered a 

preclinical state of vulnerability to future disability (Fried, Tangen, et al., 2001), it is also 

possible that lifestyle engagement may influence future disability via alternative pathways (e.g., 

provision of meaningful social roles, social support; Berkman et al., 2000) that encourage 

maintenance of health without directly acting on the etiology of frailty.  

Ultimately, the use of a latent class approach to derive activity groups, presented here 

may be useful for planning future interventions (Figure 7.1). While differences in number of 

activities may be important for determining an individual’s lifestyle engagement (Carlson et al., 

2012), further information on the qualitative differences in types of engagement may help 

pinpoint novel settings and behaviors to target. Given that there were no differences in risk 

trajectories over time between lifestyle groups, interventions could focus on supplementing an 

individual’s current lifestyle to specifically target the etiology of physical frailty (Bandeen-

Roche et al., 2019). For example, those highly active in social institutional activities (Classes 1 

and 2) may be more motivated to participate in a frailty intervention tied to social engagement or 

nested within a social institution, such as their church or social club. Integrating new 

interventions into existing activity contexts may ultimately promote more sustainable behavioral 

changes relevant to prevention of cognitive declines, by directly linking the intervention with 
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engagement that already gives individuals purpose in life (e.g., Parisi et al., 2015; Varma, Tan, et 

al., 2016).  

There are limitations to the current study. As reported in Aim 1 (Chapter 4.6), we used a 

retrospective, self-reported inventory to measure activity engagement, which may result in recall 

bias. We attempted to mitigate recall bias by only using dichotomous (yes/no) activity responses 

that did not require recall of precise frequencies of engagement. Second, our sample was mostly 

white participants in a clinical trial, and the current findings warrant further replication and 

measurement invariance testing in more diverse samples. Third, grip weakness was self-reported 

in the current study and may be influenced by reporting biases (e.g., recall, social desirability; 

Gabriel et al., 2012). Yet, such measures have been shown to be valid indicators of physical 

limitations (Fried, Young, et al., 2001), and may better capture the degree to which weakness has 

impacted daily tasks (i.e., “enacted” functioning; Glass, 1998). Future research should attempt to 

replicate our findings with repeated, objective measures of grip strength. 

 The current study also had several strengths. We used a well-characterized sample of 

adults at higher age-related risk of cognitive declines. Our sample had strong retention and was 

well-powered to detect differences in both baseline and longitudinal physical functioning 

(DeKosky et al., 2006). We also examined physical frailty criteria independently, allowing us to 

pinpoint potential mechanistic pathways in the relationship between lifestyle engagement and the 

frailty process. Finally, our novel application of a person-centered LCA approach demonstrated 

that individuals group naturally by both amount and types of social and cognitive activities, and 

revealed qualitative differences in engagement that could imply potential motivational 

differences for staying active in later life. Our study is the first, to our knowledge, to show that 

these lifestyle engagement groups also differed in risk of baseline frailty criteria.  
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6.6 Conclusion 

 Later life provides novel chances for renewed engagement in complex lifestyle activities. 

The question remains as to whether an engaged lifestyle may help mitigate risk of aging-related 

physical limitations. Building upon the first two aims of this dissertation, the current findings 

suggest that higher lifestyle engagement is associated with lower risk of existing physical frailty 

criteria, but not reduced risk trajectories over time. Nevertheless, lifestyle engagement may still 

delay incident disability through existing physiologic reserves or through alternative pathways 

(e.g., purpose in life) that can be explored in future studies. The lifestyle groups included here 

also provide additional characterization of group-level differences in engagement that are 

relevant for deploying sustainable interventions to specifically target the frailty process.  
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Chapter 7: General Discussion and Conclusions 

 

7.1 Summary of Findings 

 This dissertation examined broad health outcomes associated with distinct lifestyle 

engagement groups of community-dwelling older adults (Table 1). In Aim 1, we found that a 3- 

or 4-class model adequately characterized lifestyle engagement in the current sample. We 

compared these latent class measures to a sum score of activity variety, and found that both 

predicted risk of incident dementia. Both measures were derived from self-reported inventories 

of complex later-life activities. The “complexity” of these activities comes from the demands 

they placed on cognition (including multiple domains), social, and physical functioning broadly, 

versus specific functional processes (e.g., gait, memory) as in highly controlled behavioral 

interventions (see Section 2.5). 

While the latent classes did not provide additional predictive utility above and beyond the 

sum score, we found that a latent class approach identified important qualitative differences in 

types of activity reported between groups. The highly active group (Class 1: Social Intellectual) 

engaged broadly in intellectual and social activities. Class 2 (Intellectual) was active in specific 

intellectual (e.g., viewing art, computer use) and social leisure activities (e.g., movies, concerts). 

Class 3 (Social) was highly active in social institutional activities (e.g., volunteering, church), but 

less active in intellectual activities. Finally, Class 4 (Least Active) was less active in social and 

intellectual activities, but still had high likelihood of engagement in certain home-based activities 

(e.g., reading, gardening). The groups with the highest engagement in intellectual activities 

(Classes 1 and 2) appeared to have the lowest risk of incident dementia. 
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 Aim 2 extended upon Aim 1 by examining domain-specific cognitive trajectories across 

the lifestyle engagement groups. We found that groups with higher engagement in intellectual 

activities (Classes 1 and 2) had greater existing cognitive functioning across domains. 

Furthermore, compared to the Social Intellectual group (Class 1), the Least Active group (Class 

3) had greater annual declines in memory and attention. The Intellectual group (Class 4) had 

greater declines in visuospatial construction over time compared to the Social Intellectual group 

(Class 1), despite having equivalent baseline performance in this domain. This aim expanded 

upon the results of Aim 1 by suggesting that the Social Intellectual and Intellectual groups had 

reduced risk of incident dementia likely in part through preserved memory performance over 

time. This aim also revealed additional cognitive benefits of membership in the Social 

Intellectual group, namely reduced annual declines in memory and attention compared to the 

Least Active group, and visuospatial construction compared to the Intellectual group.  

 Aim 3 added to the previous aims by examining whether the benefits of a highly engaged 

lifestyle extended to certain physical frailty criteria, including slow gait, exhaustion, and grip 

weakness. The Social Intellectual group (Class 1) had reduced baseline odds of slow gait 

compared to all other groups, including the Intellectual group (Class 2), for which there were no 

baseline cognitive differences in Aim 2. Gait speed is an important predictor of mortality 

(Studenski et al., 2011) and key component of physical frailty (Fried, Tangen, et al., 2001), likely 

manifesting earlier in the progression of the syndrome (Xue, Bandeen-Roche, et al., 2008). The 

Social Intellectual group also had reduced odds of exhaustion, but not grip weakness, compared 

to the Least Active group (Class 4). There were few longitudinal differences between lifestyle 

groups in the change in risk over time for the physical outcomes. Longitudinal differences for 

slow gait and CES-D exhaustion were significant. The risk trajectories of slow gait for the Social 
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Intellectual and Intellectual groups converged over time, whereas for CES-D exhaustion the 

trajectories for the Social Intellectual and Least Active groups converged over time. Together, 

this evidence suggested that high lifestyle engagement is likely associated with existing physical 

reserves through preserved lower-extremity mobility. Yet, high lifestyle engagement was not 

associated with attenuated risk of physical frailty outcomes over time, suggesting that later-life 

lifestyle engagement may not act directly on the etiology of physical frailty.  

 

7.2 General Discussion and Connections 

When interpreted together, the findings from the three aims of this dissertation provide 

important insights into how high lifestyle engagement may contribute to better health in older 

adulthood and which components of that engagement seem to drive the relationships. 

Furthermore, these findings have implications for specific group-level interventions aimed to 

complement existing lifestyle contexts. These interventions could ideally provide targeted 

benefits while also encouraging sustained participation through linkage to activities that older 

adults already engage in. 

 7.2.1 Intellectual activity and cognitive health. One challenge of using lifestyle activity 

inventories is classifying activities into specific subdomains (i.e., intellectual, social, etc.), 

because these activities are complex and incorporate a mix of motor, cognitive, and social 

engagement. Classification is often done a priori, but here we used a latent class approach to 

categorize the individuals themselves rather than the activities, given that individuals are likely 

to have activities in common across subdomains. This complementary approach led us to find 

that those reporting a high quantity of activities are also more likely to report more intellectual 

activities (e.g., taking courses, viewing art). This agrees with the observed data, as the 
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intellectual activities were some of the least frequently reported activities in this sample. Yet, the 

latent class approach also revealed an intermediate class (Class 2: Intellectual) with high 

engagement in only specific intellectual activities (e.g., viewing art, computer use) and less 

relative engagement in social institutional activities (e.g., volunteering), suggesting that high 

social or community engagement is not a prerequisite for intellectual engagement.  

 Ultimately, there was almost no difference in risk of incident dementia, as well as 

baseline and annual changes of domain-specific cognitive performance between the Social 

Intellectual and Intellectual groups, both of which had higher intellectual engagement. In 

contrast, the groups with high social engagement only (Class 3: Social) and lower overall 

engagement (Class 4: Least active) had higher risk and higher declines in these outcomes. This 

suggests that those engaged in intellectual activities into later life are likely the best equipped to 

mitigate age-related cognitive declines and incident cognitive impairment. This agrees with the 

enrichment hypothesis (Hertzog et al., 2009), which suggests that high intellectual engagement 

in later-life is not only associated with greater existing brain and cognitive reserves (Stern, 2002) 

that could delay impairment, but also actively attenuates future declines. Other studies have also 

found that high intellectual engagement is particularly protective against dementia (Scarmeas et 

al., 2001) and cognitive declines (Bielak, 2010; Carlson et al., 2012; Gow et al., 2014). 

 7.2.2 Social activity and physical health. In contrast to the findings for cognitive 

outcomes (Aims 1 and 2), social activity appeared to play an important role in existing physical 

health for the current sample (Aim 3). The primary difference between the groups with the most 

intellectual activity was their level of social engagement. The Social Intellectual group (Class 1) 

was more likely to report participation in social institutional activities, as well as intellectual 

activities with a social component (e.g., singing, courses), than the Intellectual group (Class 2).  
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 In Aim 3, we found that the Social Intellectual group had reduced risk of existing slow 

gait compared to all other groups. We further found that the Social group (Class 3) had relative 

odds of slow gait and exhaustion at baseline that were comparable to the Intellectual group 

(Class 2), suggesting minimal differences between these groups in existing physical 

impairments. Together, these findings suggest that the addition of social institutional activities to 

an intellectually-active lifestyle is an important correlate of higher physical reserves in later life. 

This relationship may be mediated in part by life-space mobility, where higher community 

engagement encourages expanded physical activity within one’s environment (Rosso, Taylor, et 

al., 2013). Again, because we found minimal longitudinal differences across groups, reverse 

causation could also play a role here, where those with high existing physical reserves have the 

capacity to be more intellectually and socially active in later life. 

 7.2.3 Social institutions as a setting for universal interventions. One advantage of the 

current approach is that it identified a group with high social institutional engagement (Class 3: 

Social) despite having relatively poorer physical and cognitive health. This suggests that a 

certain level of “real-world” functioning that contributes to an individual’s quality of life is 

preserved despite prevalent physical and cognitive limitations. Discrepancy between lab-

measured, “experimental” functioning and daily-life, “enacted” functioning has also been found 

in other studies of activity engagement (Glass, 1998). 

The identification of the Social group has important implications for prevention, because 

it suggests that the social institutions measured here may be important settings to deploy 

universal interventions. Unlike selective and indicated interventions, universal interventions are 

delivered to individuals regardless of their risk level, and focus on the institutions broadly 

relevant to individuals of various levels of functioning (Gordon, 1983). From this study, settings 
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for group-level universal interventions could include churches, social clubs, and volunteer 

groups; where some older adults with relatively poorer physical and cognitive health outcomes 

spend their time. Provided it is feasible and non-stigmatizing, a nested approach could also be 

used (Haggerty & Mrazek, 1994), where individuals are first screened, and those of higher risk 

are offered more targeted interventions. A broader framework and content of potential 

interventions is included in Table 7.1 and in the “Future Directions” section below.  

 7.2.4 Mechanism and timing for the lifestyle-health relationship. Although no causal 

conclusions can be drawn from the current associational findings, they provide insight into 

potential mechanistic pathways and timing by which lifestyle engagement may act on cognitive 

and physical health. We found significant longitudinal benefits for cognitive, but not physical 

outcomes. Thus, it may be that late-life lifestyle engagement protects against cognitive 

impairment through brain (i.e., passive) and cognitive (i.e., active) reserve pathways (Bennett et 

al., 2014; Stern, 2002), rather than by directly mitigating inflammation or other shared pathology 

between cognitive impairment and physical frailty (Xue et al., 2019). This agrees with prior 

research that found that most indicators of an engaged lifestyle, such as social activity, were 

associated with better cognitive functioning, but not through reductions in brain pathology (e.g., 

beta amyloid accumulation; Bennett et al., 2014).  

Furthermore, lifestyle is a complicated behavioral construct that includes not only leisure 

activity, but also other general health behaviors that can influence health in later life (e.g., 

smoking, diet). The strongest observational evidence for an association between lifestyle and 

physical frailty has been through diet and physical exercise (Ferrucci & Fabbri, 2018). These 

behaviors are thought to directly attenuate inflammation and accumulation of oxidative stress 

(Xue et al., 2019). Given that our lifestyle engagement measure included mostly intellectual and 



 

 124 

social activities with less emphasis on physical activity and diet, it may ultimately not be 

surprising that we found no longitudinal benefits of late-life lifestyle engagement on physical 

frailty criteria if inflammation is an important etiological component.    

However, timing is another important consideration. We measured lifestyle engagement 

in later-life, where participants were about 78 years old, on average. Other studies have reported 

that leisure activity in later life had less of a protective association than leisure activity in mid- or 

early-life (Gow et al., 2017). Lifestyle engagement measured in later life may just represent 

existing physiologic reserves, whereas lifestyle engagement in midlife or earlier in older 

adulthood could actively mitigate future physical declines (see “Future Directions”), especially 

considering that early indicators of physical frailty may start appearing in midlife (Xue, 

Bandeen-Roche, et al., 2008). However, that is not to say that lifestyle engagement in later life is 

not an important protective factor, as evidenced by our findings for dementia and domain-

specific cognition. Even well into older adulthood, leading an intellectually- and socially-

complex lifestyle appears to attenuate declines in memory, attention, and visuospatial abilities 

essential to living independently and maintaining a high quality of life (Berkman et al., 1993; 

Rowe & Kahn, 1997; Zahodne et al., 2013). 

 

7.3 Limitations  

7.3.1 Limitations with latent class analysis. Sample size and sparseness of response 

patterns can limit the estimability of latent class models (Collins & Lanza, 2010). The relatively 

large number of indicators available in the Lifestyle Activity Questionnaire (LAQ) in the current 

study led to sparse response patterns and required us to choose a subset of 18 activities to include 

in the model.  



 

 125 

Yet, we approached this using both an empirical and theoretical rationale, removing 

activities with very high (e.g., watching TV) or low (e.g., hunting) frequencies in the current 

sample, and those that were considered “passive” (e.g., radio listening) or confounded with 

IADL or ADL measures (e.g., shopping). We also recoded the activity measures as binary 

(yes/no) responses, both to capture activity variety (Carlson et al., 2012) and reduce sparseness 

in response patterns from using the frequency measures. Finally, we further examined the 

sensitivity of class enumeration to specific activities by repeating the LCA with subsets of nine 

activities chosen semi-randomly (i.e., 4 intellectual, 1 physical, 4 social). Doing so revealed 

variation in the class number across subsets, but suggested that a 3- or 4-class model generally fit 

best and without convergence errors.  

 7.3.2 Retrospective self-reported activity measure. Despite being designed to measure 

easily-recalled, common lifestyle activities, the retrospective nature of the LAQ may lead to 

recall bias. A major concern is the accuracy with which individuals can report precise 

frequencies of activity engagement (Bielak, 2017). This concern is mitigated for three reasons. 

First, as mentioned above, frequency items were recoded such that participants only had to 

indicate whether or not they had participated in that activity at least once per month during the 

year. Furthermore, retrospective recall can be very accurate even for adults over 50 years old 

(Berney & Blane, 1997). Finally, retrospectively reported activities have been shown to have 

high test-retest reliability (ICC>.8) in a prior study of older adults (Schreiber et al., 2016).  

A further limitation of the LAQ and most self-reported activity questionnaires is that they 

cannot capture the intensity or quality with which individuals do activities. For example, 

someone who reports doing crossword puzzles does not necessarily do them well, and someone 

who reports attending church may go for just the service, without significant social engagement 
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or integration within the congregation. The intensity with which individuals are active can be 

difficult to capture in self-reported measures, due to individual differences in what constitutes 

“intense” or effortful engagement, although some have tried to measure it (e.g., activity 

characteristic measures; Bielak, 2017).  

Wearable devices or smart phones that measure daily activity with more ecological 

validity may offer one solution to the above limitations. Accelerometer- and GPS-enabled 

devices are increasingly being used to objectively measure physical activity and life-space 

mobility, even within older adult populations (Heesch et al., 2018; Kerr et al., 2013; Varma et 

al., 2014). Smart phones are also being used for ecological momentary assessments (EMA) of 

cognition (Sliwinski et al., 2018), as well as stress, mood, and other psychological constructs that 

are especially vulnerable to recall bias (Shiffman et al., 2008; Steptoe & Wardle, 2011). One 

important future direction may be to integrate these data collection sources to better measure the 

physical (via accelerometry), social (via GPS), and cognitive/psychological (via EMA) 

components of daily activities to provide insight into the intensity or quality of engagement in 

later-life.  

 7.3.3 Generalizability of the GEM sample. The GEM sample was composed of 

primarily white older adults who met the level of functioning necessary to be eligible for a 

rigorous clinical trial. This included being dementia-free at baseline, having a specific medical 

history, and being able to participate in an extensive neuropsychological battery and repeated 

assessments.  

Yet, specific steps were taken by the original investigators to improve generalizability. 

Most importantly, they did not exclude individuals with prevalent MCI, allowing for more 

variability in the level of baseline cognitive performance in this sample (DeKosky et al., 2006). 
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Nevertheless, future studies should replicate these results in more representative cohorts, as 

detailed in the “Future Directions” section. 

7.4 Strengths 

7.4.1 GEM study design. GEM participants were well-characterized at baseline and of 

an older mean age, making it an appropriate sample to investigate later-life activity engagement. 

GEM was also well-powered to detect longitudinal changes in cognitive and physical outcomes 

given its relatively large sample size. Median follow-up was about six years for cognitive and 

physical outcomes, with dementia screening occurring relatively frequently at six-month 

intervals. Furthermore, dementia was clinically-adjudicated using gold-standard diagnostic 

criteria derived from standardized neuropsychological testing, MRI, and a clinical neurological 

examination.    

7.4.2 Analytical approach. We used a rigorous analytical approach to examine each 

study aim. For the cognitive and physical outcomes, we employed longitudinal mixed effects 

modeling approaches that utilized all the available observed data and were robust to data missing 

at random. In aim 2, we derived domain-specific cognitive measures from several 

neuropsychological tests that provided more precise estimates of these domains than if just a 

single test was used. In aim 3, we included both objective and perceived measures of physical 

frailty criteria, and examining these criteria individually allowed us to determine how lifestyle 

may influence specific components of the frailty phenotype. Finally, we used a novel, latent class 

approach to examine how older adults may group based on quantitative and qualitative 

differences in lifestyle engagement. Group differences in types of activities may be especially 

important for designing group-level activity interventions that motivate individuals to stay active 

(see “Future Directions” below). 
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7.4.3 Addressed gaps in the literature. Finally, all three aims of this dissertation added 

to the existing literature in unique ways. To our knowledge, Aim 1 was the first study that 

compared the predictive utility of a simple sum score of activity variety with a more complex 

latent class approach. Ultimately, both approaches predicted incident dementia, but both may 

fulfill a unique role depending on the study objective (i.e., sum score for prediction models, 

latent class indicator for additional lifestyle characterization). Aim 2 also was among the first 

studies to explore how latent groups of lifestyle engagement predicted domain-specific cognitive 

outcomes, and found differences in both baseline and trajectories of performance for select 

domains. Finally, aim 3 is among the first studies to explore how engagement in broad lifestyle 

activities may be related to various components of the physical frailty cycle. Together, findings 

from these latter two aims suggest that later-life lifestyle engagement is associated more so with 

cognitive than physical functioning trajectories. Yet, high activity appears to be associated with 

both high existing cognitive and physical performance. 

 

7.5 Future Directions 

 The collective work in this dissertation offers several avenues for future study. I focus on 

three potential future directions below. 

 7.5.1 Generalizability of the construct. Future studies can attempt to validate the latent 

classes characterized here within other studies with diverse samples. Variation in measurement 

of lifestyle engagement groups could occur at the construct-level (i.e., measurement invariance; 

is the 4-class model sufficient in novel samples?) or at the item-level (i.e., differential item 

functioning; do items perform differently for certain subpopulations, independent of their latent 

class membership?; Collins & Lanza, 2010). For example, some have found that African 
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Americans and those of lower socioeconomic status (SES) report visiting museums less than 

white or higher income individuals, suggesting that this activity may not adequately capture 

lifestyle engagement in these groups (Schinka et al., 2005). “Viewing art” was likely the closest 

analog to “visiting museums” in our study, but was intended to be interpreted broadly rather than 

only as viewing art at a museum. Nevertheless, teasing apart these issues of measurement would 

help clarify the degree of heterogeneity in lifestyle engagement between populations, and 

whether there are specific activity selections in subpopulations that are relevant for prevention 

efforts. 

 7.5.2 Lifespan perspective. Early life activity has been found to be an independent 

predictor of both future activity and neurocognitive functioning in older adulthood (Chan et al., 

2018; Gow et al., 2017; Moored et al., 2018). Given this, it would be beneficial for future work 

to explore how lifestyle engagement manifests in younger age groups, potentially using a similar 

latent class approach as used here. It is currently unknown whether younger individuals group by 

similar patterns of intellectual and social engagement as do older individuals.  

Furthermore, it is crucial to understand modifiable lifespan predictors of later-life 

lifestyle engagement, given that there were large baseline differences in cognitive and physical 

functioning between the lifestyle groups in the current study. Exploration of psychosocial (e.g., 

purpose in life, social supports) and behavioral (e.g., health maintenance) predictors could 

inform how older adults remain active into later life to build these physical and cognitive 

reserves, and provide early prevention targets to sustain complex activity throughout the lifespan. 

 7.5.3 Later-life interventions. Finally, our characterization of lifestyle engagement 

groups and findings for how these groups differ in current and future health have implications for 

intervention. Interventions could focus either on maintaining or supplementing existing lifestyle 
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activity (Figure 7.1). Given that those in the Social Intellectual group had higher baseline 

cognitive and physical functioning, as well as better cognitive functioning over time, 

interventions within this group could focus on maintaining current activity levels by providing 

intrinsic (e.g., assistive devices) or extrinsic (e.g., social supports/assistance) compensatory 

mechanisms (Xue, Fried, et al., 2008).  

Yet, we also observed that the intermediate groups (e.g., Class 3: Social) were at higher 

risk for existing and future health declines compared to the most active group. These groups may 

benefit from a supplemental approach, where interventions that encourage additional health-

promoting activity can be nested within their existing lifestyle context. For example, those in the 

Social group (Class 3) may benefit from an intervention like Experience Corps, which was 

nested within a highly social context (i.e., volunteering at schools in the Baltimore community). 

In contrast, those in the Least Active class who were less social (Class 4) may benefit from a 

home-based intervention encouraging both physical and cognitive engagement. Bandit the 

Dolphin is one such intervention currently being tested within a retirement community in 

Catonsville, MD (Carlson et al., in preparation). This intervention encourages cognitive-motor 

integration through a fun, motion-tracking video game. Although it may not appeal to everyone, 

its portability provides opportunities to deploy as a home-based platform for those who are not 

heavily active in their community.   

While the above supplemental approach aims matches specific interventions to lifestyle 

groups, the current findings may also inform how to improve adherence in more general-purpose 

interventions. For example, the FINGER trail was a large-scale intervention that targeted the 

three key prevention areas for cognitive decline detailed earlier in this dissertation: physical 

exercise, cognitive training, and nutritional monitoring (Ngandu et al., 2015). The study found 
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modest post-intervention benefits for select cognitive domains in intention-to-treat analyses. Yet, 

low adherence potentially influenced these findings. For cognitive training, 33% of participants 

attended only up to half of the 144 individual sessions, and 37% attended none (Supplemental 

Table 6). Furthermore, about a quarter of participants did not record any gym training sessions 

over the 2-year study period. Like the Least Active group in the current study, these individuals 

may have benefitted from additional resources (e.g., case manager, home-based alternatives) that 

may have provided the scaffolding necessary to modify their health behaviors. Building the self-

efficacy to complete such activities in a safe, supportive environment may have encouraged these 

individuals to maintain engagement and build up to attempting these activities in the community 

settings where they were originally administered (Booth et al., 2000). 

Ultimately, the extent to which this approach of triaging individuals or designing 

behavioral interventions based existing lifestyle profiles warrants testing in future studies. Doing 

so could provide a novel framework for group-level intervention design and deployment that 

could maximally benefit public health stakeholders and older adults themselves. Maintaining an 

active lifestyle is one key to living well in later life (National Academies of Sciences, 

Engineering, and Medicine, 2017). It is therefore crucial that we provide older adults with 

accessible, sustainable, and engaging opportunities that may ultimately have enriching effects on 

their health for years to come.     
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Figure 1.1: Theoretical framework for how lifestyle activity patterns relate to cognitive and 

mobility outcomes 
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Figure 1.2: Hypothetical example illustrating potential qualitative and quantitative differences 

contributing to underlying heterogeneity in lifestyle engagement 

Note: Activities commonly reported within each latent group are indicated by an “X.” Total 

number of activities commonly reported by each group are displayed in the right-most column. 

All groups report doing common activities at home (e.g., sewing/mending, reading books). 

Groups 2 and 3 both have four activities that they report with high probability. Individuals in 

Group 2 more commonly report taking classes or doing crossword puzzles (i.e., “cognitive” 

activities), while individuals in Group 3 more commonly report volunteering and membership in 

a church/social group (i.e., “social” activities). In contrast, individuals in Group 1 commonly 

report a fewer number of activities, and they are more restricted to the home environment.  
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Figure 1.3: Simplified theoretical framework including current aims  
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Table 2.1: Operationalization of the frailty phenotype in the Cardiovascular Health Study 

Frailty Characteristic Observed Measure indicating Frailty 

Weight loss Unintentional weight loss of at least 5% of previous year’s body weight 

Exhaustion Two items of the CES-D. Reported feeling that “everything they did was an 

effort” or “I could not get going” at least moderate amount of time during the 

past week. 

Low physical activity Minnesota Leisure Time Activity Questionnaire (short form) using 

standardized algorithm for calculating Kcals of activity per week and 

stratifying by sex. 

Men: <383 Kcals per week 

Women: <270 Kcals per week 

Slow walking time Time to walk 15 feet at usual pace, stratified by sex and height: 

Men: 

Height ≤ 173 cm, walking time ≥ 7 sec. 

Height > 173 cm, walking time ≥ 6 sec. 

Women: 

Height ≤ 159 cm, walking time ≥ 7 sec. 

Height > 159 cm, walking time ≥ 6 sec. 

Weakness Grip strength stratified by sex and body mass index: 

Men: 

BMI ≤ 24, grip strength ≤ 29 

BMI 24.1–26, grip strength ≤ 30 

BMI 26.1–28, grip strength ≤ 30 

BMI > 28, grip strength ≤ 32 

Women: 

BMI ≤ 23, grip strength ≤ 17 

BMI 23.1–26, grip strength ≤ 17.3 
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BMI 26.1–29, grip strength ≤ 18 

BMI > 29, grip strength ≤ 21 
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Figure 2.1: Progression from “normal” aging to major neurocognitive disorder 

 

Adapted from Institute for Memory Impairments and Neurological Disorders, University of 

California Irvine [http://www.mind.uci.edu/dementia/mild-cognitive-impairment/ 
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Table 3.1: Ginkgo Evaluation of Memory Study Neuropsychological Test Battery (GEM NTB) 

for adjudication of cognitive impairments 

Domain Subdomain Observed Measure 

Memory Verbal Learning  California Verbal Learning Test (Immediate Free 

Recall) a 

Verbal Episodic 

Memory 

California Verbal Learning Test (Long Delayed 

Free Recall) 

Visual Episodic 

Memory  

Rey-Osterrieth Complex Figure (Delayed Recall) 

Visuospatial 

Construction 

 Rey-Osterrieth Complex Figure (Copy Condition) 

Wechsler Adult Intelligence Scale-Revised (WAIS-

R) Block Design 

Language  Boston Naming Test 

Animal Fluency 

Attention/ 

Psychomotor Speed 

 
Trail Making Test Part A (time in seconds) 

WAIS-R digit span forwards (total score) 

Executive Functioning Task-switching Trail Making Test Part B (adjusting for Part A) 

Inhibition Stroop Color/Word Test (Interference condition, 

number of colors named) 

Working Memory  WAIS-R digit span backwards (total score) a 

Intelligence  Crystalized  National Adult Reading Test – American version b 

Fluid  Raven’s Progressive Matrices (colored) b 

Note. a administered but not used in adjudication of cognitive impairments 
b administered at baseline only 
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Figure 3.1: GEM screening and baseline procedures (from DeKosky et al., 2006) 

 

Note. CHS = Cardiovascular Health Study, 3MSE = Modified Mini-Mental State Exam, MCI = 

Mild Cognitive Impairment, WAIS-R = Wechsler Adult Intelligence Scale – Revised, CBC = 

complete blood count, B12 = Vitamin B12, TSH = Thyroid Stimulating Hormone, LFTs = liver 

function tests, CES-D = Centers for Epidemiologic Studies Depression Scale, ADL = activity of 
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daily living, IADL = instrumental activity of daily living, ADAS-Cog = Alzheimer's Disease 

Assessment Scale - Cognitive Subscale, ECG = electrocardiogram, ABI = ankle brachial indices  
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Figure 3.2: GEM six-month and annual visits (from DeKosky et al., 2006) 

 

Note. 3MSE = Modified Mini-Mental State Exam, CDR = Clinical Dementia Rating Scale, 

ADAS-Cog = Alzheimer's Disease Assessment Scale - Cognitive Subscale, CES-D = Centers for 

Epidemiologic Studies Depression Scale, ADL = activity of daily living, IADL = instrumental 

activity of daily living, PQCODE = Proxy Questionnaire for Cognitive Decline in the Elderly 
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Figure 3.3: GEM Dementia Adjudication Procedure (from DeKosky et al., 2006) 

  

Note. NP visit = neuropsychological test visit, 3MSE = Modified Mini-Mental State Exam, CDR 

= Clinical Dementia Rating Scale, ADAS-Cog = Alzheimer's Disease Assessment Scale - 

Cognitive Subscale, NPB = GEM Neuropsychological Test Battery   
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Table 4.1: Frequency of self-reported Lifestyle Activity Questionnaire activities over the past 

year 

   

 

Parisi et al. 

(2012) 

Domain 

Category 

Proportion 

Participating At Least 

Once a Month 

Reason(s) removed  N Percent 

Selected Activities 

Reading a book Intellectual 2,545 82.9  

Walking Physical 2,526 82.3  

Gardening Physical 2,262 73.7  

Assist family Social 2,250 73.3  

Attend church/religious service Social 2,248 73.2  

Clubs/organizations Social 2,241 73.0  

Sewing, mending, fixing things Creative 2,220 72.3  

Volunteering Social 1,749 57.0  

Playing cards or games Social 1,535 50.0  

Using computer Intellectual 1,247 40.6  

View art Creative 1,167 38.0  

Crossword puzzles Intellectual 1,141 37.2  

Going to plays/concerts Social 1,127 36.7  

Singing, playing instrument Creative 1,023 33.3  

Babysitting Social 943 30.7  

Movies Social 867 28.2  

Taking courses Social 521 17.0  

Drawing or painting Creative 344 11.2  

Removed Activities 

Watching TV Passive 3,021 98.4 High frequency, passive 

Shopping Physical 3,004 97.9 High frequency, IADL 

Reading a newspaper Intellectual 2,984 97.2 High frequency 

Discussing local or national 

issues 
Social 2,881 93.8 High frequency 

Visiting others Social 2,844 92.6 High frequency 

Listening to radio (music) Passive 2,787 90.8 High frequency, passive 

Balancing checkbook Intellectual 2,423 78.9 IADL 

Listening to radio (not music) Passive 2,416 78.7 Passive 

Cooking/preparing food Creative 2,313 75.3 IADL 

Hunting/camping Physical 274 8.9 Low frequency 

Note.  IADL = instrumental activity of daily living 
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Table 4.2: Sample characteristics (N=3,068) 

 

 

 Overall 
Class 1: Social Intellectual 
(n=662) 

Class 2: Intellectual 
(n=514) 

Class 3: Social 
(n=1,036) 

Class 4: Least Active 
(n=856)  

 N (or M) % (or SD) Range N (or M) % (or SD) N (or M) % (or SD) N (or M) % (or SD) N (or M) % (or SD) P-value 

Site             
  Wake Forest 732 24  194 29 89 17 284 27 165 19 <.001 

  UC Davis 914 30  188 28 192 37 259 25 275 32  
  Johns Hopkins 456 15  81 12 36 7 189 18 150 18  
  Pittsburgh 966 31  199 30 197 38 304 29 266 31  

             

Age 78.5 3.3 72-96 78.1 3.1 78.2 3.0 78.7 3.2 78.9 3.6 <.001 
 
Sex (male) 1,649 54  294 44 273 53 567 55 515 60 <.001 
 
Race (white) 2,929 95  637 96 500 97 985 95 807 94 0.047 
 

Education             
 <=HS 1,103 36  137 21 97 19 461 45 408 48 <.001 

 some college 775 25  180 27 138 27 244 24 213 25  
 college grad 480 16  107 16 114 22 138 13 121 14  
 professional/grad 710 23  238 36 165 32 193 19 114 13  

             
Mild Cognitive 
Impairment 481 16  78 11.78 50 9.73 171 16.51 182 21 <.001 
 
Medical 
Comorbidities  1.4 1.1 0-7 1.3 1.0 1.4 1.0 1.3 1.0 1.6 1.1 <.001 
 

Depressive 
Symptoms  
(CES-D) 3.6 3.5 0-6 3.2 3.0 3.7 3.7 3.5 3.5 4.0 3.7 <.001 

Note. P-values are for ANOVAs (continuous variables) and chi-square tests (categorical variables) of differences between lifestyle 

groups. 
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Table 4.3: Fit statistics for class enumeration 

 

 No. of classes 

 2 3 4 5 6 

      

No. of parameters 37 56 75 94 113 

      

Log-likelihood -30256 -29994 -29811 -29681 -29621 

AIC 60587 60099 59773 59550 59468 

BIC 60810 60437 60225 60117 60149 

N-adjusted BIC 60692 60259 59987 59818 59790 

      

LMR/BLRT null hypothesis 1 vs. 2 2 vs. 3 3 vs. 4 4 vs. 5 5 vs. 6 

LMR p-value <.001 <.001 0.061 0.399 0.351 

BLRT p-value <.001 <.001 <.001 <.001 <.001 

      

Entropy 0.637 0.626 0.621 0.625 0.605 

Note. No. = number, AIC = Akaike Information Criterion, BIC = Bayesian Information 

Criterion, LMR = Lo-Mendell-Rubin test, Prop. = proportion. The LMR and BLRT null 

hypothesis is that a model of k classes does not fit significantly better than a model of k-1 

classes.   
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Table 4.4: Unadjusted and adjusted discrete-time proportional hazards models for activity variety predicting time to dementia  

 

 Model 1 (Unadjusted) Model 2 (Adjusted) Model 3 (stratified by MCI) 

       Non-MCI (n=2,587) MCI (n=481) 

 HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value 

Activity variety (count) 0.916 (.89,.94) <.001*** 0.933 (.91,.96) <.001*** 0.936 (.90,.97) 0.001** 1.006 (.96,1.06) 0.808 

             
Age    1.208 (1.14,1.28) <.001*** 1.198 (1.12,1.29) <.001*** 1.168 (1.06,1.29) 0.003** 

Age >80     0.927 (.83,1.03) 0.177 0.927 (.80,1.07) 0.291 0.901 (.75,1.08) 0.264 

Age >85    0.849 (.70,1.03) 0.092 0.816 (.62,1.07) 0.135 1.037 (.79,1.36) 0.791 

Age >90    1.483 (.97,2.26) 0.066 1.809 (.99,3.29) 0.053 0.928 (.52,1.65) 0.801 

             
Sex (male)    0.819 (.68,.98) 0.030* 0.813 (.65,1.02) 0.074 0.885 (.65,1.21) 0.440 

Race (non-white)    1.484 (1.03,2.14) 0.034* 1.055 (.57,1.94) 0.863 0.952 (.59,1.53) 0.838 

             
Education (ref: <=HS)             
Some college    0.930 (.74,1.17) 0.535 0.953 (.71,1.28) 0.751 0.632 (.43,.93) 0.019* 

College graduate    0.960 (.73,1.26) 0.772 1.026 (.73,1.43) 0.879 1.067 (.65,1.76) 0.800 

Professional/Graduate Degree    1.219 (.96,1.54) 0.099 1.237 (.91,1.68) 0.170 0.750 (.51,1.11) 0.149 

             
Study Site (ref: Wake Forest)             
UC Davis    0.887 (.70,1.12) 0.316 1.020 (.75,1.39) 0.901 1.135 (.78,1.65) 0.508 

Johns Hopkins    1.067 (.81,1.40) 0.637 1.203 (.85,1.71) 0.302 1.153 (.74,1.79) 0.528 

Pittsburgh    0.672 (.52,.86) 0.002** 0.742 (.54,1.03) 0.074 0.738 (.50,1.09) 0.128 

             
Treatment group     1.107 (.93,1.32) 0.249 1.031 (.83,1.28) 0.786 1.096 (.82,1.46) 0.533 

Medical comorbidities    1.102 (1.02,1.19) 0.014* 1.161 (1.05,1.28) 0.003** 1.017 (.89,1.16) 0.800 

Depressive symptoms  

(CES-D>=10)    1.735 (1.32,2.29) <.001*** 1.936 (1.36,2.76) <.001*** 1.019 (.65,1.60) 0.933 

             
Model AUC   0.6878   0.7414       

Note: p<.05*, p<.01**, p<.001***. MCI = Mild Cognitive Impairment, HS = high school. Model 1 is unadjusted for covariates. 

Model 2 is adjusted for demographic and health covariates. Model 3 is stratified by MCI status.  
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Table 4.5: Unadjusted and adjusted discrete-time proportional hazards models for lifestyle classes predicting time to dementia  
 

 Model 1 (Unadjusted) Model 2 (Adjusted) Model 3 (stratified by MCI) 

       Non-MCI (n=2,587) MCI (n=481) 

 HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value 

Lifestyle engagement group 
(Ref: Class 1: Social Intellectual)             

Class 2: Intellectual 0.906 (.66,1.24) 0.540 0.959 (.69,1.32) 0.800 0.964 (.65,1.41) 0.851 1.070 (.59,1.92) 0.820 

Class 3: Social 1.329 (1.04,1.70) 0.024* 1.254 (.97,1.62) 0.080 1.166 (.85,1.60) 0.341 1.267 (.82,1.95) 0.281 

Class 4: Least Active 1.663 (1.29,2.14) <.001*** 1.551 (1.19,2.01) 0.001** 1.494 (1.08,2.08) 0.017* 1.040 (.67,1.61) 0.862 

             

Age    1.214 (1.15,1.29) <.001*** 1.205 (1.12,1.29) <.001*** 1.173 (1.06,1.30) 0.002** 

Age >80     0.924 (.83,1.03) 0.158 0.922 (.80,1.06) 0.259 0.892 (.74,1.07) 0.224 

Age >85    0.848 (.70,1.03) 0.093 0.816 (.62,1.07) 0.137 1.063 (.81,1.39) 0.661 

Age >90    1.515 (.99,2.31) 0.054 1.878 (1.03,3.42) 0.040* 0.902 (.50,1.61) 0.729 

             

Sex (male)    0.825 (.69,.99) 0.037* 0.823 (.66,1.03) 0.092 0.874 (.64,1.19) 0.400 

Race (non-white)    1.500 (1.04,2.16) 0.030* 1.090 (.59,2.01) 0.783 0.940 (.58,1.52) 0.800 

             
Education (ref: <=HS)             
Some college    0.927 (.74,1.17) 0.522 0.947 (.70,1.28) 0.720 0.650 (.44,.95) 0.028* 

College graduate    0.970 (.74,1.28) 0.827 1.028 (.73,1.44) 0.872 1.083 (.66,1.79) 0.755 

Professional/Graduate Degree    1.200 (.95,1.52) 0.131 1.206 (.89,1.64) 0.230 0.764 (.52,1.13) 0.174 

             
Study Site (ref: Wake Forest)             
UC Davis    0.895 (.71,1.13) 0.358 1.023 (.75,1.40) 0.885 1.149 (.79,1.67) 0.469 

Johns Hopkins    1.073 (.82,1.41) 0.610 1.205 (.85,1.71) 0.299 1.176 (.76,1.83) 0.473 

Pittsburgh    0.682 (.53,.88) 0.003** 0.750 (.54,1.04) 0.088 0.737 (.50,1.09) 0.126 

             
Treatment group     1.103 (.93,1.31) 0.267 1.032 (.83,1.28) 0.778 1.106 (.83,1.48) 0.497 

Medical comorbidities    1.108 (1.02,1.20) 0.010* 1.166 (1.06,1.29) 0.002** 1.015 (.89,1.16) 0.829 
Depressive symptoms  

(CES-D>=10)    1.782 (1.35,2.35) <.001*** 1.957 (1.37,2.79) <.001*** 0.990 (.63,1.55) 0.963 

             
Model AUC   0.684   0.742       

Note: p<.05*, p<.01**, p<.001***. MCI = Mild Cognitive Impairment, HS = high school. Model 1 is unadjusted for covariates. Model 2 is 

adjusted for demographic and health covariates. Model 3 is stratified by MCI status.  
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Figure 4.1: Probabilities of engagement in each activity by latent class for the 4-class model 

 

 
Note. CW = crossword. Error bars represent 95% confidence intervals for item-response probability estimates. 
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Figure 4.2: Probabilities of engagement in each activity by latent class for the 3- and 5-class 

models 

 
A. 3-Class Model 

 
 
B. 5-Class Model 

 
Note. CW = crossword. Error bars represent 95% confidence intervals for item-response 

probability estimates. 
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Figure 4.3: Cumulative incidence curves of time to dementia onset stratified by lifestyle 

engagement class 

 

 
Note. Study entry (visit 0) was at date of baseline session. Visits occurred at approximately 6-

month intervals.   
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Supplemental Table 4.1: Unadjusted and adjusted discrete-time proportional hazards models for lifestyle engagement classes 

predicting time to dementia diagnosis using the Vermunt (2010) approach 

 

 Model 1 (Unadjusted) Model 2 (Adjusted) Model 3 (stratified by MCI) 

       Non-MCI (n=2,587) MCI (n=481) 

 HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value 

Lifestyle engagement group 
(Ref: Class 1: Social Intellectual)             

Class 2: Intellectual 0.787 (0.47, 1.33) 0.370 0.858 (0.50, 1.47) 0.579 0.888 (0.47, 1.66) 0.709 1.073 (0.33, 3.44) 0.907 

Class 3: Social 1.401 (0.98, 2.01) 0.066 1.383 (0.94, 2.03) 0.097 1.250 (0.77, 2.02) 0.360 1.476 (0.75, 2.90) 0.261 

Class 4: Least Active 1.822 (1.33, 2.50) <.001*** 1.733 (1.23, 2.44) 0.002** 1.644 (1.07, 2.53) 0.024* 1.141 (0.64, 2.04) 0.656 

Note: p<.05*, p<.01**, p<.001*** 

 

Model 1 is unadjusted for covariates. Model 2 is adjusted for demographic (age, race, education category, treatment group, study site) 

and health covariates (medical comorbidities and depressive symptoms). Model 3 is stratified by MCI status. 
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Supplemental Table 4.2: Unadjusted and adjusted discrete-time proportional hazards models excluding those with extreme propensity 

scores 

 

 Model 1 (Unadjusted) Model 2 (Adjusted) Model 3 (stratified by MCI) 

       Non-MCI (n=2,587) MCI (n=481) 

 HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value 

Lifestyle engagement group 

(Ref: Class 1: Social Intellectual)             

Class 2: Intellectual 0.903 (.66,1.24) 0.534 0.958 (.69,1.32) 0.796 0.973 (.66,1.44) 0.891 1.068 (.60,1.91) 0.826 

Class 3: Social 1.314 (1.02,1.69) 0.032* 1.233 (.95,1.59) 0.109 1.149 (.83,1.59) 0.397 1.244 (.81,1.91) 0.321 

Class 4: Least Active 1.653 (1.28,2.13) <.001*** 1.553 (1.19,2.02) 0.001** 1.518 (1.09,2.12) 0.014* 1.046 (.67,1.62) 0.840 

Note: p<.05*, p<.01**, p<.001*** 

 

Model 1 is unadjusted for covariates. Model 2 is adjusted for demographic (age, race, education category, treatment group, study site) 

and health covariates (medical comorbidities and depressive symptoms). Model 3 is stratified by MCI status. 
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Supplemental Table 4.3: Frequency of Best Fitting Models by Bayesian Information Criterion and Bootstrapped Likelihood Ratio 

Tests for Ten Semi-Random Subsets of Activities 

 

Classes 

Enumerated BIC BLRT 

2-class 0 0 

3-class 5 0 

4-class 4 3 

5-class 1 7 

>=6-class 0 0 

Note. For models where convergence was not achieved or that had more than 3 parameters assigned to extreme boundary values, the 

n-1 class model was chosen as the best fitting model for that criteria. BIC = Bayesian Information Criteria, BLRT = Bootstrapped 

Likelihood Ratio Test.  
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Supplemental Figure 4.1: Receiver Operating Characteristic curves for the adjusted models of 

activity variety and lifestyle engagement groups 

 
A. Lifestyle Engagement Groups (Table 4.5, Model 2) 

  
 
B. Activity Variety Count (Table 4.4, Model 2) 
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Supplemental Figure 4.2: Boxplots of propensity scores stratified by assigned lifestyle 

engagement group 

 

 
Note. PS = propensity score  

Propensity scores generated using multinomial logistic regression of modal class assignment on 

baseline age (modeled flexibly using 5-year splines, i.e., >80, >85, >90), sex, race, education, 

study site, treatment group (intervention vs. control), number of comorbidities, significant 

depressive symptoms (CES-D>=10). MCI status was not included as a covariate. Differences in 

range of propensity scores across classes suggest differences in covariate coverage. 
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PS Class 3 

PS Class 2 

PS Class 4 
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Table 5.1: Sample characteristics (N=3,068) 

 

 N (or M) % (or SD) Range  

Study Site     
   Wake Forest 732 23.85   
   UC Davis 914 29.78   
   Johns Hopkins 456 14.86   
   Pittsburgh 966 31.48   

     
Age 78.5 3.3 72 96 

Sex (male) 1,649 53.73   
Race (white) 2,929 95.44   
Education     
   <=HS 1,103 35.95   
   some college 775 25.26   
   college grad 480 15.65   
   professional/grad 710 23.14   

     
Mild Cognitive Impairment 481 15.68   
Significant Depressive Symptoms (CES-D10) 215 7.01   

     
Self-rated Health     
   Fair/Poor 210 6.84   
   Good 1,315 42.85   
   Very Good 1,237 40.31   
   Excellent 291 9.48   

     
Medical Comorbidities  1.4 1.1 0 7 

     

Lifestyle Engagement Group     

   Class 1 (Social Intellectual) 662 21.58   

   Class 2 (Intellectual) 514 16.75   

   Class 3 (Social) 1,036 33.77   

   Class 4 (Least Active) 856 27.90   
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 Table 5.2: Baseline and longitudinal differences in global cognition by activity class 

 

Global Cognition (z-score) Model 1 (Unadjusted)  Model 2 (Adjusted)  

 B SE p-value  B SE p-value 

(ref: Class 1: Social Intellectual)       
Class 2: Intellectual 0.070 0.057 0.225  -0.006 0.051 0.913 

Class 3: Social -0.394 0.049 <.001***  -0.210 0.044 <.001*** 

Class 4: Least Active -0.474 0.051 <.001***  -0.281 0.046 <.001*** 

        

Time (years) -0.055 0.005 <.001***  0.075 0.010 <.001*** 

Class 2 X Time (years) -0.017 0.008 0.045*  -0.011 0.008 0.184 

Class 3 X Time (years) -0.007 0.007 0.295  -0.006 0.007 0.364 

Class 4 X Time (years) -0.025 0.008 0.001**  -0.019 0.008 0.012* 

        
AIC 23492    22665   
BIC 23580    22879   

 

Note: N=3,068; p<.05*, p<.01**, p<.001*** 

 

Class 1 = High Intellectual/Social activity, Class 2 = High Social/Less Intellectual activity, Class 

3 = Less Intellectual/Social activity, SE = standard error 

 

Beta coefficients for class indicators (e.g., “Class 2: Social”) represent standard deviation 

differences in global cognitive performance at baseline (reference: Class 1). 

 

Beta coefficients for class by time interactions (e.g., “Class 2 X Time”) represent differences in 

annual standard deviation change from baseline in global cognitive performance (reference: 

Class 1). 

 

Model 1 is unadjusted for covariates. Model 2 is adjusted for treatment group, age, age by time 

interaction, sex, sex by time interaction, study site, study site by time interaction, race, education, 

significant depressive symptoms (CES-D10), and number of medical comorbidities. 
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Table 5.3. Baseline and longitudinal differences in domain-specific cognitive performance by 

activity class 

 Model 1 (Unadjusted)    Model 2 (Adjusted)  
Cognitive Domain (z-scores) B SE p-value  B SE p-value 

Memory        
(ref: Class 1: Social Intellectual)        
Class 2: Intellectual -0.024 0.058 0.679  -0.051 0.054 0.346 

Class 3: Social -0.277 0.049 <.001***  -0.146 0.047 0.002** 

Class 4: Least Active -0.392 0.051 <.001***  -0.252 0.049 <.001*** 
        

Time (years) -0.013 0.007 0.069  0.123 0.012 <.001*** 

Class 2 X Time (years) -0.020 0.011 0.056  -0.017 0.010 0.095 

Class 3 X Time (years) -0.013 0.009 0.161  -0.010 0.009 0.246 

Class 4 X Time (years) -0.026 0.010 0.007**  -0.020 0.009 0.035* 
        

AIC 28726    28221   
BIC 28815    28436   
Executive Functioning        
(ref: Class 1: Social Intellectual)        
Class 2: Intellectual 0.054 0.057 0.341  0.047 0.055 0.396 

Class 3: Social -0.337 0.048 <.001***  -0.189 0.047 <.001*** 

Class 4: Least Active -0.434 0.050 <.001***  -0.240 0.050 <.001*** 

        
Time (years) -0.078 0.006 <.001***  -0.009 0.010 0.337 

Class 2 X Time (years) -0.001 0.009 0.936  0.003 0.009 0.748 

Class 3 X Time (years) 0.006 0.007 0.381  0.006 0.007 0.379 

Class 4 X Time (years) -0.002 0.008 0.799  -0.001 0.008 0.852 
        

AIC 27601    27341   
BIC 27690    27555   
Attention        
(ref: Class 1: Social Intellectual)        
Class 2: Intellectual 0.104 0.057 0.068  0.076 0.055 0.169 

Class 3: Social -0.205 0.048 <.001***  -0.093 0.047 0.049* 

Class 4: Least Active -0.283 0.050 <.001***  -0.143 0.050 0.004** 

        

Time (years) -0.043 0.006 <.001***  0.030 0.011 0.004** 

Class 2 X Time (years) -0.007 0.009 0.431  -0.008 0.009 0.363 
Class 3 X Time (years) -0.012 0.008 0.118  -0.010 0.008 0.212 

Class 4 X Time (years) -0.022 0.008 0.008**  -0.019 0.008 0.023* 
        

AIC 28613    28345   
BIC 28702    28559   
Language        
(ref: Class 1: Social Intellectual)        
Class 2: Intellectual 0.020 0.057 0.728  -0.034 0.053 0.522 

Class 3: Social -0.315 0.048 <.001***  -0.186 0.045 <.001*** 

Class 4: Least Active -0.299 0.050 <.001***  -0.174 0.048 <.001*** 
        

Time (years) -0.029 0.006 <.001***  0.053 0.010 <.001*** 

Class 2 X Time (years) -0.002 0.009 0.785  -0.004 0.008 0.658 

Class 3 X Time (years) 0.009 0.007 0.202  0.010 0.007 0.171 

Class 4 X Time (years) -0.003 0.008 0.718  -0.003 0.008 0.741 
        

AIC 26380    25780   
BIC 26468    25994   
Construction        
(ref: Class 1: Social Intellectual)        
Class 2: Intellectual 0.087 0.059 0.141  -0.052 0.051 0.309 
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Class 3: Social -0.230 0.050 <.001***  -0.110 0.044 0.012* 

Class 4: Least Active -0.230 0.052 <.001***  -0.152 0.046 0.001** 

        

Time (years) 0.002 0.006 0.695  0.133 0.010 <.001*** 

Class 2 X Time (years) -0.034 0.009 <.001***  -0.021 0.009 0.021* 
Class 3 X Time (years) -0.010 0.008 0.216  -0.008 0.008 0.282 

Class 4 X Time (years) -0.024 0.008 0.004**  -0.015 0.008 0.063 
        

AIC 28649    27647   
BIC 28737    27862   

Note: n=3,068; p<.05*, p<.01**, p<.001*** 
 

SE = standard error 

 

Beta coefficients for class indicators (e.g., “Class 2: Social”) represent standard deviation differences in 

domain-specific cognitive performance at baseline (reference: Class 1). 

 

Beta coefficients for class by time interactions (e.g., “Class 2 X Time”) represent differences in annual 

standard deviation change from baseline in domain-specific cognitive performance (reference: Class 1). 

 

Model 1 is unadjusted for covariates. Model 2 is adjusted for treatment group, age, age by time interaction, 

sex, sex by time interaction, study site, study site by time interaction, race, education, significant depressive 

symptoms (CES-D10), and number of medical comorbidities. 
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Supplemental Table 5.1: Baseline and longitudinal differences in global cognitive performance by activity class with spline terms 

 

 Model A (Original) Model B (Year 3 Spline) Model C (Age Splines) Model D (All Splines) 

Global Cognition (z-scores) B SE p-value B SE p-value B SE p-value B SE p-value 

(ref: Class 1: Social 
Intellectual)             
Class 2: Intellectual -0.005 0.050 0.919 -0.018 0.051 0.731 -0.011 0.051 0.828 -0.020 0.051 0.698 

Class 3: Social -0.211 0.043 <.001*** -0.217 0.044 <.001*** -0.218 0.044 <.001*** -0.218 0.044 <.001*** 

Class 4: Least Active -0.281 0.046 <.001*** -0.301 0.047 <.001*** -0.283 0.046 <.001*** -0.303 0.047 <.001*** 

             
Annual Change (no spline)             
Class 2 X Time (years) -0.011 0.008 0.183    -0.010 0.008 0.207    
Class 3 X Time (years) -0.006 0.007 0.424    -0.004 0.007 0.604    
Class 4 X Time (years) -0.019 0.007 0.012    -0.018 0.007 0.018    

             
Annual Change (spline)             
< 3 years             
Class 2 X Time (years)    0.003 0.014 0.828    0.003 0.014 0.808 

Class 3 X Time (years)    0.001 0.012 0.941    0.001 0.012 0.913 

Class 4 X Time (years)    0.004 0.012 0.727    0.004 0.012 0.723 

>= 3 years             
Class 2 X Time (years)    -0.024 0.014 0.090    -0.024 0.014 0.094 

Class 3 X Time (years)    -0.005 0.012 0.657    -0.005 0.012 0.703 

Class 4 X Time (years)    -0.035 0.013 0.007    -0.036 0.013 0.005 

             
AIC 22503   22402   22467   22399   
BIC 22718   22646   22726   22687   

             
LR Test Chi df p-value          
   A vs. B 109.51 4 <.001          
   A vs. C 47.88 6 <.001          
   B vs. D 14.63 6 0.023          

Note. n=3,068; p<.05*, p<.01**, p<.001***, SE = standard error 
Beta coefficients for class indicators (e.g., “Class 2: Social”) represent standard deviation differences in cognitive performance at baseline (reference: Class 1). Beta 

coefficients for class by time interactions (e.g., “Class 2 X Time”) represent differences in annual standard deviation change from baseline cognitive performance 
(reference: Class 1). All models used Maximum Likelihood estimation to allow for likelihood ratio tests (estimates in Model A will differ slightly from Model 2 in Table 

1). Model A is the original fully adjusted model (Table 1, Model 2). Model B further adjusts for a spline term at year 3, and the year 3 spline by class interaction (4 

additional parameters). Model C has additional spline terms for each 5-year age interval (i.e., 80, 85, 90) and their interactions with time (6 additional parameters). 
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Supplemental Table 5.2: Baseline and longitudinal differences in memory performance by activity class with spline terms 

 

 Model A (Original)  Model B (Year 3 Spline)  Model C (Age Splines)  Model D (All Splines) 

Memory (z-scores) B SE p-value  B SE p-value  B SE p-value  B SE p-value 

(ref: Class 1: Social 
Intellectual)                
Class 2: Intellectual -0.051 0.054 0.345  -0.059 0.055 0.287  -0.057 0.054 0.294  -0.062 0.055 0.261 

Class 3: Social -0.146 0.047 0.002  -0.147 0.048 0.002  -0.152 0.047 0.001  -0.149 0.048 0.002 

Class 4: Least Active -0.252 0.049 <.001  -0.274 0.050 <.001  -0.255 0.049 <.001  -0.275 0.050 <.001 

                
Annual Change (no spline)                
Class 2 X Time (years) -0.017 0.010 0.094      -0.017 0.010 0.105     
Class 3 X Time (years) -0.010 0.009 0.246      -0.008 0.009 0.329     
Class 4 X Time (years) -0.020 0.009 0.035      -0.019 0.009 0.039     

                
Annual Change (spline)                
< 3 years                
Class 2 X Time (years)     -0.009 0.019 0.632      -0.009 0.019 0.630 

Class 3 X Time (years)     -0.011 0.016 0.493      -0.011 0.016 0.491 

Class 4 X Time (years)     0.007 0.017 0.676      0.007 0.017 0.690 

>= 3 years                
Class 2 X Time (years)     -0.025 0.019 0.186      -0.024 0.019 0.201 

Class 3 X Time (years)     -0.006 0.016 0.724      -0.004 0.016 0.802 

Class 4 X Time (years)     -0.044 0.017 0.012      -0.045 0.017 0.010 

                
AIC 28065    28047    28051    28043   
BIC 28279    28291    28310    28331   

                
LR Test Chi df p-value             
   A vs. B 25.61 4 <.001             
   A vs. C 25.98 6 <.001             
   B vs. D 16.42 6 0.012             

Note. n=3,068; p<.05*, p<.01**, p<.001***, SE = standard error. All models used Maximum Likelihood estimation to allow for likelihood ratio tests (estimates in 
Model A will differ slightly from Model 2 in Table 1). Model A is the original fully adjusted model (Table 1, Model 2). Model B further adjusts for a spline term at year 

3, and the year 3 spline by class interaction (4 additional parameters). Model C has additional spline terms for each 5-year age interval (i.e., 80, 85, 90) and their 
interactions with time (6 additional parameters). 
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Supplemental Table 5.3: Baseline and longitudinal differences in executive functioning by activity class with spline terms 

 

 Model A (Original)  Model B (Year 3 Spline)  Model C (Age Splines)  Model D (All Splines) 

Executive Functioning  
(z-scores) B SE p-value  B SE 

p-
value  B SE p-value  B SE p-value 

(ref: Class 1: Social 
Intellectual)                
Class 2: Intellectual 0.047 0.055 0.395  0.036 0.056 0.523  0.045 0.055 0.413  0.037 0.056 0.504 

Class 3: Social -0.189 0.047 <.001  -0.187 0.048 <.001  -0.191 0.047 <.001  -0.185 0.048 <.001 

Class 4: Least Active -0.240 0.050 <.001  -0.242 0.051 <.001  -0.241 0.050 <.001  -0.243 0.051 <.001 

                
Annual Change (no spline)                
Class 2 X Time (years) 0.003 0.009 0.748      0.003 0.009 0.744     
Class 3 X Time (years) 0.006 0.007 0.377      0.007 0.007 0.334     
Class 4 X Time (years) -0.001 0.008 0.852      -0.001 0.008 0.849     

                
Annual Change (spline)                
< 3 years                
Class 2 X Time (years)     0.015 0.018 0.402      0.014 0.018 0.429 

Class 3 X Time (years)     0.000 0.015 0.988      0.000 0.015 0.981 

Class 4 X Time (years)     -0.008 0.016 0.629      -0.007 0.016 0.644 

>= 3 years                
Class 2 X Time (years)     -0.009 0.018 0.627      -0.008 0.018 0.649 

Class 3 X Time (years)     0.017 0.015 0.270      0.017 0.015 0.266 

Class 4 X Time (years)     0.010 0.016 0.532      0.008 0.016 0.607 

                
AIC 27179    27150    27180    27150   
BIC 27394    27394    27439    27438   

                
LR Test Chi df p-value             
   A vs. B 37.12 4 <.001             
   A vs. C 11.41 6 0.077             
   B vs. D 12.42 6 0.053             

Note. n=3,068; p<.05*, p<.01**, p<.001***, SE = standard error. All models used Maximum Likelihood estimation to allow for likelihood ratio tests (estimates in 
Model A will differ slightly from Model 2 in Table 1). Model A is the original fully adjusted model (Table 1, Model 2). Model B further adjusts for a spline term at year 

3, and the year 3 spline by class interaction (4 additional parameters). Model C has additional spline terms for each 5-year age interval (i.e., 80, 85, 90) and their 
interactions with time (6 additional parameters). 
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Supplemental Table 5.4: Baseline and longitudinal differences in language by activity class with spline terms 

 

 Model A (Original)  Model B (Year 3 Spline)  Model C (Age Splines)  Model D (All Splines) 

Language  
(z-scores) B SE p-value  B SE p-value  B SE p-value  B SE p-value 

(ref: Class 1: Social 
Intellectual)                
Class 2: Intellectual -0.034 0.053 0.521  -0.046 0.054 0.391  -0.038 0.053 0.471  -0.049 0.054 0.366 

Class 3: Social -0.186 0.045 <.001  -0.202 0.046 <.001  -0.192 0.045 <.001  -0.204 0.046 <.001 

Class 4: Least Active -0.174 0.048 <.001  -0.196 0.049 <.001  -0.176 0.048 <.001  -0.197 0.049 <.001 

                
Annual Change (no spline)                
Class 2 X Time (years) -0.004 0.008 0.657      -0.003 0.008 0.702     
Class 3 X Time (years) 0.010 0.007 0.170      0.011 0.007 0.127     
Class 4 X Time (years) -0.003 0.008 0.741      -0.002 0.008 0.837     

                
Annual Change (spline)                
< 3 years                
Class 2 X Time (years)     0.010 0.017 0.531      0.011 0.017 0.498 

Class 3 X Time (years)     0.026 0.014 0.057      0.027 0.014 0.050 

Class 4 X Time (years)     0.022 0.015 0.133      0.022 0.015 0.131 

>= 3 years                
Class 2 X Time (years)     -0.017 0.017 0.305      -0.017 0.017 0.300 

Class 3 X Time (years)     -0.004 0.014 0.768      -0.004 0.014 0.764 

Class 4 X Time (years)     -0.024 0.015 0.116      -0.024 0.015 0.114 

                
AIC 25618    25599    25616    25607   
BIC 25832    25843    25875    25895   

                
LR Test Chi df p-value             
   A vs. B 26.75 4 <.001             
   A vs. C 13.81 6 0.032             
   B vs. D 3.91 6 0.689             

Note. n=3,068; p<.05*, p<.01**, p<.001***, SE = standard error. All models used Maximum Likelihood estimation to allow for likelihood ratio tests (estimates in 
Model A will differ slightly from Model 2 in Table 1). Model A is the original fully adjusted model (Table 1, Model 2). Model B further adjusts for a spline term at year 

3, and the year 3 spline by class interaction (4 additional parameters). Model C has additional spline terms for each 5-year age interval (i.e., 80, 85, 90) and their 
interactions with time (6 additional parameters). 
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Supplemental Table 5.5: Baseline and longitudinal differences in attention by activity class with spline terms 

 

 Model A (Original)  Model B (Year 3 Spline)  Model C (Age Splines)  Model D (All Splines) 
Attention  

(z-scores) B SE p-value  B SE p-value  B SE p-value  B SE p-value 

(ref: Class 1: Social 

Intellectual)                
Class 2: Intellectual 0.076 0.055 0.168  0.073 0.056 0.193  0.070 0.055 0.204  0.070 0.056 0.211 

Class 3: Social -0.093 0.047 0.049  -0.097 0.048 0.045  -0.100 0.047 0.034  -0.099 0.048 0.041 

Class 4: Least Active -0.143 0.050 0.004  -0.156 0.051 0.002  -0.147 0.050 0.003  -0.158 0.051 0.002 

                
Annual Change (no spline)                
Class 2 X Time (years) -0.008 0.009 0.360      -0.008 0.009 0.394     
Class 3 X Time (years) -0.010 0.008 0.212      -0.008 0.008 0.285     
Class 4 X Time (years) -0.019 0.008 0.023      -0.017 0.008 0.036     

                
Annual Change (spline)                
< 3 years                
Class 2 X Time (years)     -0.009 0.019 0.645      -0.008 0.019 0.677 

Class 3 X Time (years)     -0.010 0.016 0.543      -0.009 0.016 0.573 

Class 4 X Time (years)     -0.010 0.017 0.554      -0.010 0.017 0.549 

>= 3 years                
Class 2 X Time (years)     -0.007 0.019 0.716      -0.007 0.019 0.705 

Class 3 X Time (years)     -0.005 0.016 0.758      -0.005 0.016 0.765 

Class 4 X Time (years)     -0.022 0.017 0.207      -0.021 0.017 0.222 

                
AIC 28185    28142    28177    28043   
BIC 28400    28386    28436    28331   

                
LR Test Chi df p-value             
   A vs. B 51.28 4 <.001             
   A vs. C 20.19 6 0.003             
   B vs. D 4.71 6 0.582             

Note. n=3,068; p<.05*, p<.01**, p<.001***, SE = standard error. All models used Maximum Likelihood estimation to allow for likelihood ratio tests (estimates in 
Model A will differ slightly from Model 2 in Table 1). Model A is the original fully adjusted model (Table 1, Model 2). Model B further adjusts for a spline term at year 

3, and the year 3 spline by class interaction (4 additional parameters). Model C has additional spline terms for each 5-year age interval (i.e., 80, 85, 90) and their 
interactions with time (6 additional parameters). 
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Supplemental Table 5.6: Baseline and longitudinal differences in visuospatial construction by activity class with spline terms 

 

 Model A (Original)  Model B (Year 3 Spline)  Model C (Age Splines)  Model D (All Splines) 

Construction  
(z-scores) B SE p-value  B SE p-value  B SE p-value  B SE p-value 

(ref: Class 1: Social 

Intellectual)                
Class 2: Intellectual -0.052 0.051 0.307  -0.065 0.052 0.214  -0.055 0.051 0.278  -0.065 0.052 0.214 

Class 3: Social -0.110 0.043 0.011  -0.118 0.045 0.008  -0.114 0.044 0.009  -0.117 0.045 0.009 

Class 4: Least Active -0.152 0.046 0.001  -0.172 0.047 <.001  -0.154 0.046 0.001  -0.172 0.047 <.001 

                
Annual Change (no spline)                
Class 2 X Time (years) -0.021 0.009 0.021      -0.020 0.009 0.024     
Class 3 X Time (years) -0.008 0.008 0.282      -0.007 0.008 0.346     
Class 4 X Time (years) -0.015 0.008 0.063      -0.015 0.008 0.068     

                
Annual Change (spline)                
< 3 years                
Class 2 X Time (years)     -0.007 0.019 0.723      -0.007 0.019 0.722 

Class 3 X Time (years)     -0.003 0.016 0.861      -0.003 0.016 0.852 

Class 4 X Time (years)     0.002 0.017 0.886      0.003 0.017 0.868 

>= 3 years                
Class 2 X Time (years)     -0.034 0.019 0.076      -0.033 0.019 0.079 

Class 3 X Time (years)     -0.009 0.016 0.564      -0.008 0.016 0.593 

Class 4 X Time (years)     -0.027 0.017 0.114      -0.029 0.017 0.091 

                
AIC 27484    27448    27478    27449   
BIC 27698    27691    27737    27738   

                
LR Test Chi df p-value             
   A vs. B 44.60 4 <.001             
   A vs. C 17.98 6 0.006             
   B vs. D 10.12 6 0.120             

Note. n=3,068; p<.05*, p<.01**, p<.001***, SE = standard error. All models used Maximum Likelihood estimation to allow for likelihood ratio tests (estimates in 
Model A will differ slightly from Model 2 in Table 1). Model A is the original fully adjusted model (Table 1, Model 2). Model B further adjusts for a spline term at year 

3, and the year 3 spline by class interaction (4 additional parameters). Model C has additional spline terms for each 5-year age interval (i.e., 80, 85, 90) and their 
interactions with time (6 additional parameters).
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Supplemental Table 5.7. Baseline and longitudinal differences in domain-specific cognitive 

performance by activity class, excluding individuals with prevalent Mild Cognitive Impairment 

 Model 1 (Unadjusted)    Model 2 (Adjusted)  

Cognitive Domain (z-scores) B SE p-value  B SE p-value 

Global Cognition        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual 0.039 0.056 0.487  -0.035 0.049 0.481 

Class 3: Social -0.350 0.048 <.001***  -0.156 0.043 <.001*** 

Class 4: Least Active -0.340 0.051 <.001***  -0.163 0.046 <.001*** 

        

Time (years) -0.054 0.006 <.001***  0.067 0.010 <.001*** 

Class 2 X Time (years) -0.015 0.009 0.090  -0.008 0.009 0.325 

Class 3 X Time (years) -0.007 0.007 0.344  -0.005 0.007 0.512 

Class 4 X Time (years) -0.031 0.008 <.001***  -0.025 0.008 <.001*** 

        

AIC 19885    19223   

BIC 19972    19434   

Memory        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual -0.044 0.057 0.436  -0.072 0.053 0.174 

Class 3: Social -0.237 0.049 <.001***  -0.096 0.047 0.038* 

Class 4: Least Active -0.269 0.052 <.001***  -0.139 0.050 0.005** 

        

Time (years) -0.013 0.007 0.060  0.116 0.012 <.001*** 

Class 2 X Time (years) -0.020 0.011 0.139  -0.013 0.011 0.236 

Class 3 X Time (years) -0.013 0.009 0.285  -0.007 0.009 0.472 

Class 4 X Time (years) -0.026 0.010 0.002**  -0.024 0.010 0.015* 

        

AIC 24643    24222   

BIC 24730    24432   

Executive Functioning        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual 0.012 0.058 0.836  0.003 0.056 0.956 

Class 3: Social -0.300 0.050 <.001***  -0.145 0.049 0.003** 

Class 4: Least Active -0.366 0.053 <.001***  -0.183 0.053 <.001*** 

        

Time (years) -0.081 0.006 <.001***  -0.017 0.010 0.106 

Class 2 X Time (years) 0.004 0.009 0.673  0.007 0.009 0.436 

Class 3 X Time (years) 0.008 0.008 0.286  0.008 0.008 0.303 

Class 4 X Time (years) -0.005 0.008 0.582  -0.004 0.008 0.653 

        

AIC 23866    23669   

BIC 23953    23880   

Attention        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual 0.082 0.058 0.154  0.056 0.056 0.315 

Class 3: Social -0.182 0.050 <.001***  -0.066 0.049 0.178 
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Class 4: Least Active -0.211 0.053 <.001***  -0.083 0.052 0.115 

        

Time (years) -0.042 0.006 <.001***  0.027 0.011 0.013* 

Class 2 X Time (years) -0.009 0.009 0.321  -0.011 0.009 0.230 

Class 3 X Time (years) -0.014 0.008 0.078  -0.011 0.008 0.157 

Class 4 X Time (years) -0.030 0.009 <.001***  -0.027 0.009 0.002** 

        

AIC 24644    24448   

BIC 24732    24658   

Language        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual -0.005 0.058 0.930  -0.044 0.054 0.413 

Class 3: Social -0.301 0.050 <.001***  -0.161 0.047 0.001** 

Class 4: Least Active -0.223 0.053 <.001***  -0.102 0.050 0.043* 

        

Time (years) -0.031 0.006 <.001***  0.045 0.010 <.001*** 

Class 2 X Time (years) 0.001 0.009 0.947  -0.001 0.009 0.910 

Class 3 X Time (years) 0.008 0.008 0.304  0.009 0.007 0.245 

Class 4 X Time (years) -0.007 0.008 0.424  -0.007 0.008 0.419 

        

AIC 22884    22420   

BIC 22971    22631   

Construction        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual 0.094 0.059 0.109  -0.057 0.050 0.259 

Class 3: Social -0.187 0.050 <.001***  -0.062 0.044 0.156 

Class 4: Least Active -0.104 0.053 0.051  -0.050 0.047 0.288 

        

Time (years) 0.002 0.006 0.788  0.129 0.010 <.001*** 

Class 2 X Time (years) -0.037 0.010 <.001***  -0.022 0.009 0.015* 

Class 3 X Time (years) -0.015 0.008 0.061  -0.014 0.008 0.071 

Class 4 X Time (years) -0.031 0.009 <.001***  -0.021 0.008 0.014* 

        

AIC 24536    27647   

BIC 24624    27862   
Note: n=2,587; p<.05*, p<.01**, p<.001*** 
SE = standard error 

 

Beta coefficients for class indicators (e.g., “Class 2: Social”) represent standard deviation differences in 

domain-specific cognitive performance at baseline (reference: Class 1). 

 

Beta coefficients for class by time interactions (e.g., “Class 2 X Time”) represent differences in annual 

standard deviation change from baseline in domain-specific cognitive performance (reference: Class 1). 

 

Model 1 is unadjusted for covariates. Model 2 is adjusted for treatment group, age, age by time interaction, 

sex, sex by time interaction, study site, study site by time interaction, race, education, significant depressive 

symptoms (CES-D10), and number of medical comorbidities. 
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Table 6.1: Sample characteristics (N=3,068) 

 

 N (or M) % (or SD) Range  

Study Site     
   Wake Forest 732 23.85   
   UC Davis 914 29.78   
   Johns Hopkins 456 14.86   
   Pittsburgh 966 31.48   

     
Age 78.5 3.3 72 96 

Sex (male) 1,649 53.73   
Race (white) 2,929 95.44   
Education     
   <=HS 1,103 35.95   
   some college 775 25.26   
   college grad 480 15.65   
   professional/grad 710 23.14   

     
Mild Cognitive Impairment 481 15.68   
Significant Depressive Symptoms (CES-D10) 215 7.01   

     
Self-rated Health     
   Fair/Poor 210 6.84   
   Good 1,315 42.85   
   Very Good 1,237 40.31   
   Excellent 291 9.48   

     
Medical Comorbidities  1.4 1.1 0 7 

     

Lifestyle Engagement Group     

   Class 1 (Social Intellectual) 662 21.58   

   Class 2 (Intellectual) 514 16.75   

   Class 3 (Social) 1,036 33.77   

   Class 4 (Least Active) 856 27.90   
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Table 6.2: Baseline and longitudinal differences in physical frailty criteria by activity class 

 

 Model 1 (Unadjusted)  Model 2 (Adjusted)  

Physical Frailty Criteria OR 95% CI p-value  OR 95% CI p-value 

Slow Gait (>=7 sec)        

Baseline Differences        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual 2.91 (1.44, 5.90) 0.003**  2.89 (1.45, 5.74) 0.002** 

Class 3: Social 2.72 (1.47, 5.04) 0.002**  2.04 (1.11, 3.74) 0.021* 

Class 4: Least Active 7.06 (3.79, 13.13) <.001***  4.24 (2.30, 7.81) <.001*** 

        

Time (years) 1.74 (1.53, 1.97) <.001***  1.34 (1.13, 1.6) 0.001** 

        

Longitudinal Differences        

Class 2 X Time (years) 0.87 (0.74, 1.03) 0.097  0.85 (0.73, 1.00) 0.048* 

Class 3 X Time (years) 0.93 (0.80, 1.07) 0.291  0.92 (0.80, 1.06) 0.243 

Class 4 X Time (years) 0.93 (0.81, 1.08) 0.333  0.93 (0.81, 1.07) 0.315 

Exhaustion (Fried et al., 2001)        

Baseline Differences        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual 1.22 (0.85, 1.75) 0.279  1.10 (0.79, 1.54) 0.563 

Class 3: Social 1.28 (0.94, 1.73) 0.117  1.16 (0.87, 1.54) 0.315 

Class 4: Least Active 2.31 (1.7, 3.15) <.001***  1.85 (1.38, 2.48) <.001*** 

        

Time (years) 1.17 (1.11, 1.23) <.001***  1.13 (1.04, 1.21) 0.002** 

        

Longitudinal Differences        

Class 2 X Time (years) 0.94 (0.87, 1.02) 0.132  0.96 (0.89, 1.04) 0.326 

Class 3 X Time (years) 0.98 (0.92, 1.05) 0.621  0.98 (0.92, 1.05) 0.578 

Class 4 X Time (years) 0.93 (0.87, 0.99) 0.027*  0.93 (0.87, 0.99) 0.035* 

Exhaustion (Maastricht)        

Baseline Differences        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual 1.22 (0.83, 1.82) 0.313  1.20 (0.82, 1.75) 0.345 

Class 3: Social 1.38 (0.99, 1.92) 0.06  1.24 (0.90, 1.71) 0.195 

Class 4: Least Active 2.13 (1.51, 3.01) <.001***  1.69 (1.21, 2.37) 0.002** 

        

Time (years) 1.22 (1.15, 1.29) <.001***  1.14 (1.06, 1.23) <.001*** 

        

Longitudinal Differences        

Class 2 X Time (years) 0.99 (0.91, 1.06) 0.703  0.99 (0.92, 1.07) 0.789 

Class 3 X Time (years) 0.95 (0.89, 1.02) 0.151  0.94 (0.88, 1.01) 0.078 
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Class 4 X Time (years) 0.96 (0.90, 1.03) 0.236  0.95 (0.89, 1.02) 0.140 

Weakness        

Baseline Differences        

(ref: Class 1: Social Intellectual)        

Class 2: Intellectual 0.92 (0.59, 1.42) 0.699  1.08 (0.70, 1.66) 0.718 

Class 3: Social 0.81 (0.56, 1.17) 0.271  0.90 (0.63, 1.31) 0.591 

Class 4: Least Active 0.74 (0.50, 1.08) 0.121  0.86 (0.58, 1.28) 0.456 

        

Time (years) 1.00 (0.91, 1.10) 0.958  0.92 (0.80, 1.05) 0.215 

        

Longitudinal Differences        

Class 2 X Time (years) 0.95 (0.83, 1.09) 0.485  0.94 (0.82, 1.08) 0.359 

Class 3 X Time (years) 1.07 (0.96, 1.20) 0.223  1.07 (0.96, 1.21) 0.226 

Class 4 X Time (years) 1.09 (0.96, 1.23) 0.179  1.07 (0.94, 1.21) 0.307 

Note: n=3,068; p<.05*, p<.01**, p<.001*** 

 

Odds ratios for class indicators (e.g., “Class 2”) represent difference in odds of the frailty 

symptom between that class and Class 1 at baseline for an “average” participant (random 

intercept is 0). 

 

Odds ratios for class by time indicators (e.g., “Class 2 X Time (years)”) represent change in odds 

ratios of the frailty symptom between that class and Class 1 per year in study for an “average” 

participant (random intercept and slope is 0). 

 

Model 1 is unadjusted for covariates. Model 2 is adjusted for age, age by time interaction, sex, 

sex by time interaction, study site, study site by time interaction, race, education, treatment 

group, significant depressive symptoms (CES-D10), and number of medical comorbidities. 
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Figure 6.1: Average and subject-specific marginal predicted probabilities of frailty criteria across 

lifestyle engagement classes 

 
Note. The top plots for each symptom are of average marginal predicted probabilities by class. 

The bottom plots are of average and subject-specific marginal predicted probabilities indicated 

by thick and thin lines, respectively, stratified by class.  

 

Red = Social Intellectual (Class 1), green = Intellectual (Class 2), teal = Social (Class 3), purple 

= Least Active (Class 4). 
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Supplemental Table 6.1: Baseline and longitudinal differences in physical frailty criteria by 

activity class for the 3-class model 

 

 Model 1 (Unadjusted)   Model 2 (Adjusted)  
Physical Frailty Criteria OR 95% CI p-value  OR 95% CI p-value 

Slow Gait (>=7 sec)        
        

Baseline Differences        
(ref: Class 1)        
Class 2 2.08 (1.23, 3.52) 0.006**  1.55 (0.92, 2.61) 0.097 
Class 3 5.67 (3.42, 9.38) <.001***  3.60 (2.19, 5.90) <.001*** 

        
Time (years) 1.68 (1.52, 1.86) <.001***  1.30 (1.10, 1.52) 0.002** 

        
Longitudinal Differences        
Class 2 X Time (years) 0.95 (0.84, 1.07) 0.384  0.95 (0.84, 1.07) 0.380 

Class 3 X Time (years) 0.94 (0.84, 1.06) 0.325  0.95 (0.84, 1.06) 0.351 

Exhaustion (CES-D)        
        

Baseline Differences        
(ref: Class 1)        
Class 2 1.34 (1.02, 1.76) 0.034*  1.26 (0.97, 1.63) 0.077 

Class 3 2.41 (1.85, 3.14) <.001***  2.03 (1.58, 2.61) <.001*** 
        

Time (years) 1.16 (1.11, 1.21) <.001***  1.13 (1.05, 1.21) 0.001** 
        

Longitudinal Differences        
Class 2 X Time (years) 0.99 (0.93, 1.05) 0.679  0.98 (0.92, 1.04) 0.494 

Class 3 X Time (years) 0.93 (0.88, 0.98) 0.010*  0.93 (0.88, 0.98) 0.010* 

Exhaustion (Maastricht)        
        

Baseline Differences        
(ref: Class 1)        
Class 2 1.28 (0.95, 1.72) 0.102  1.17 (0.87, 1.56) 0.300 

Class 3 1.99 (1.49, 2.67) <.001***  1.65 (1.24, 2.20) 0.001** 
        

Time (years) 1.20 (1.14, 1.25) <.001***  1.13 (1.05, 1.21) 0.001** 
        

Longitudinal Differences        
Class 2 X Time (years) 0.98 (0.92, 1.03) 0.391  0.96 (0.91, 1.02) 0.222 

Class 3 X Time (years) 0.99 (0.93, 1.05) 0.747  0.98 (0.93, 1.04) 0.519 

Grip Weakness        
        

Baseline Differences        
(ref: Class 1)        
Class 2 0.86 (0.62, 1.20) 0.387  0.86 (0.62, 1.20) 0.365 

Class 3 0.96 (0.69, 1.34) 0.804  0.97 (0.69, 1.36) 0.864 
        

Time (years) 0.96 (0.88, 1.05) 0.398  0.88 (0.77, 1.01) 0.076 
        

Longitudinal Differences        
Class 2 X Time (years) 1.13 (1.01, 1.25) 0.026*  1.13 (1.02, 1.26) 0.023* 
Class 3 X Time (years) 1.06 (0.95, 1.18) 0.291  1.05 (0.94, 1.17) 0.370 

Note: n=3,068; p<.05*, p<.01**, p<.001*** 
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Class 1 = High Intellectual/Social activity, Class 2 = High Social/Less Intellectual activity, Class 

3 = Less Intellectual/Social activity, OR = odds ratio, CI = confidence interval, CES-D = Center 

for Epidemiologic Studies Depression Scale 

 

Odds ratios for class indicators (e.g., “Class 2”) represent difference in odds of the frailty 

symptom between that class and Class 1 at baseline for an “average” participant (random 

intercept is 0). 

 

Odds ratios for class by time indicators (e.g., “Class 2 X Time (years)”) represent change in odds 

ratios of the frailty symptom between that class and Class 1 per year in study for an “average” 

participant (random intercept and slope is 0). 

 

Model 1 is unadjusted for covariates. Model 2 is adjusted for age, age by time interaction, sex, 

sex by time interaction, study site, study site by time interaction, race, education, treatment 

group, significant depressive symptoms (CES-D10), and number of medical comorbidities. 
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Supplemental Table 6.2: Baseline and longitudinal differences in physical frailty criteria by 

activity class, adjusted for prevalent Mild Cognitive Impairment 

 

 Model 1 (Baseline MCI) Model 2 (Baseline MCI & MCI by Time) 

Physical Frailty Criteria OR 95% CI p-value OR 95% CI p-value 

Slow Gait (>=7 sec)       
Baseline Differences       
(ref: Class 1)       
Class 2 2.90 (1.46, 5.75) 0.002** 2.90 (1.46, 5.76) 0.002** 

Class 3 1.93 (1.05, 3.53) 0.034* 1.92 (1.05, 3.52) 0.034* 

Class 4 3.78 (2.05, 6.95) <.001*** 3.75 (2.03, 6.90) <.001*** 

       
Time (years) 1.35 (1.13, 1.60) 0.001** 1.36 (1.14, 1.62) 0.001** 

       
Longitudinal Differences       
Class 2 X Time (years) 0.85 (0.73, 1.00) 0.049* 0.85 (0.73, 1.00) 0.048* 

Class 3 X Time (years) 0.92 (0.81, 1.06) 0.257 0.92 (0.81, 1.06) 0.262 

Class 4 X Time (years) 0.93 (0.81, 1.07) 0.331 0.94 (0.81, 1.08) 0.352 

       
Prevalent MCI 2.84 (1.93, 4.18) <.001*** 3.07 (1.87, 5.05) <.001*** 
Prev. MCI X Time (years)    0.97 (0.85, 1.10) 0.611 

Exhaustion (Fried et al., 

2001)       
Baseline Differences       
(ref: Class 1)       
Class 2 1.11 (0.79, 1.55) 0.542 1.11 (0.80, 1.56) 0.527 

Class 3 1.12 (0.85, 1.49) 0.421 1.12 (0.84, 1.49) 0.436 

Class 4 1.74 (1.30, 2.33) <.001*** 1.72 (1.28, 2.31) <.001*** 

       
Time (years) 1.12 (1.04, 1.21) 0.002** 1.14 (1.06, 1.23) 0.001** 

       
Longitudinal Differences       
Class 2 X Time (years) 0.96 (0.89, 1.04) 0.331 0.96 (0.89, 1.04) 0.305 

Class 3 X Time (years) 0.98 (0.92, 1.05) 0.613 0.98 (0.92, 1.05) 0.631 

Class 4 X Time (years) 0.93 (0.87, 1.00) 0.042* 0.94 (0.88, 1.00) 0.058 

       
Prevalent MCI 1.74 (1.38, 2.18) <.001*** 2.00 (1.53, 2.61) <.001*** 

Prev. MCI X Time (years)    0.93 (0.87, 1.00) 0.041* 

Exhaustion (Maastricht)       
Baseline Differences       
(ref: Class 1)       
Class 2 1.21 (0.83, 1.76) 0.329 1.21 (0.83, 1.76) 0.325 
Class 3 1.21 (0.88, 1.67) 0.249 1.21 (0.87, 1.67) 0.253 

Class 4 1.61 (1.15, 2.27) 0.006** 1.60 (1.14, 2.25) 0.006** 

       
Time (years) 1.14 (1.06, 1.23) <.001*** 1.15 (1.07, 1.24) <.001*** 

       
Longitudinal Differences       
Class 2 X Time (years) 0.94 (0.88, 1.01) 0.078 0.99 (0.92, 1.07) 0.776 

Class 3 X Time (years) 0.95 (0.89, 1.02) 0.140 0.94 (0.89, 1.01) 0.086 

Class 4 X Time (years) 0.99 (0.92, 1.07) 0.789 0.95 (0.89, 1.02) 0.168 

       
Prevalent MCI 1.62 (1.24, 2.12) <.001*** 1.75 (1.28, 2.40) <.001*** 

Prev. MCI X Time (years)    0.97 (0.90, 1.04) 0.347 

Weakness       
Baseline Differences       
(ref: Class 1)       
Class 2 1.08 (0.70, 1.66) 0.718 1.08 (0.70, 1.66) 0.720 
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Class 3 0.90 (0.62, 1.30) 0.580 0.90 (0.63, 1.31) 0.592 

Class 4 0.86 (0.58, 1.27) 0.442 0.86 (0.58, 1.28) 0.457 

       
Time (years) 0.92 (0.80, 1.05) 0.215 0.91 (0.80, 1.05) 0.189 

       
Longitudinal Differences       
Class 2 X Time (years) 0.94 (0.82, 1.08) 0.360 0.94 (0.82, 1.08) 0.364 

Class 3 X Time (years) 1.07 (0.96, 1.21) 0.225 1.07 (0.96, 1.20) 0.236 

Class 4 X Time (years) 1.07 (0.94, 1.21) 0.305 1.06 (0.94, 1.20) 0.322 

       
Prevalent MCI 1.05 (0.77, 1.43) 0.755 0.98 (0.67, 1.43) 0.911 

Prev. MCI X Time (years)    1.04 (0.92, 1.19) 0.521 

Note: n=3,068; p<.05*, p<.01**, p<.001*** 

 

Class 1 = High Intellectual/Social activity, Class 2 = High Social/Less Intellectual activity, Class 

3 = Less Intellectual/Social activity, OR = odds ratio, CI = confidence interval, CES-D = Center 

for Epidemiologic Studies Depression Scale 

 

Odds ratios for class indicators (e.g., “Class 2”) represent difference in odds of the frailty 

symptom between that class and Class 1 at baseline for an “average” participant (random 

intercept is 0). 

 

Odds ratios for class by time indicators (e.g., “Class 2 X Time (years)”) represent change in odds 

ratios of the frailty symptom between that class and Class 1 per year in study for an “average” 

participant (random intercept and slope is 0). 

 

Model 1 is adjusted for age, age by time interaction, sex, sex by time interaction, study site, 

study site by time interaction, race, education, treatment group, significant depressive symptoms 

(CES-D10), number of medical comorbidities, and prevalent Mild Cognitive Impairment at 

baseline. Model 2 is further adjusted for the interaction between prevalent MCI at baseline and 

time. 
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Table 7.1: Summary of activity characteristics, health outcomes, and relevant interventions for 

lifestyle engagement groups 

 
Lifestyle 

Engagement 

Group 

Activity 

Characteristics 
Health Outcomes  Relevant Interventions 

Class 1: 

Social 

Intellectual 

High engagement 

broadly in intellectual 

and social activities 

(Reference) Intrinsic/extrinsic supports 

to maintain activity (relevant 

for each class) 

Class 2: 
Intellectual 

High engagement in 
select intellectual 

activities (e.g., viewing 

art, computer) 
 

Low engagement in 

social institutional 

activities (e.g., church) 
 

1. No difference in risk for 
dementia  

2. No difference in baseline 

cognitive functioning  
3. Higher annual declines in 

visuospatial construction 

4. Higher risk of baseline 

slow gait 
5. Risk trajectory for slow 

gait converged over time 

Socially-demanding 
intervention nested within 

an intellectual context  

 
Example: Senior Odyssey 

(Stine-Morrow et al., 2007)  

Class 3: 
Social 

High engagement in 
social institutional 

activities (e.g., church, 

volunteering) 

 
Low engagement in 

intellectual activities 

1. Higher risk for dementia  
2. Lower baseline cognitive 

performance in every 

domain   

3. No difference in annual 
declines in cognition 

4. Higher risk of baseline 

slow gait 
5. No differences in risk 

trajectories for physical 

frailty criteria 

Cognitively-demanding 
intervention nested within a 

community context 

 

Example: Experience Corps 
(Fried et al., 2004) 

Class 4: 
Least Active 

Low engagement 
broadly in intellectual 

and social activities 

 
Like other classes, high 

engagement in certain 

home-based activities 

(e.g., reading) 

1. Highest risk for dementia  
2. Lowest baseline 

cognitive performance in 

every domain   
3. Higher annual declines in 

memory, attention, and 

visuospatial construction 

4. Highest risk of baseline 
slow gait and exhaustion 

5. Risk trajectory for 

exhaustion converged 
over time 

Cognitively-demanding 
intervention nested within a 

home environment  

 
Example: Bandit the 

Dolphin (Carlson et al., in 

preparation) 
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Figure 7.1: Framework for encouraging later-life activity through maintenance and supplemental 

interventions 

 

 
 

Note. Figure above illustrates possible changes in activity from early to later late-adulthood, 

where individuals can transition into more or less active groups over time (Classes 1 and 2 

combined for simplicity). Maintenance interventions can be used to sustain current activity 

engagement by supporting life-space mobility. Supplemental interventions can be used to 

provide additional engagement that can provide a more cognitively- or socially-enriched 

lifestyle. Membership in lifestyle groups in later life is associated with risk of cognitive and 

physical health outcomes. 
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Appendices 

Appendix 1: Lifestyle Activity Questionnaire 

In the past year, have you spent your time (5=Everyday 4=A few times a week 3=Once a week 2=2 to 3 times a mo. 
1=Once a month 0=< 1/mo. or never): 

Item Abbreviation 

Parisi et al. 

(2014) Domain 

Category 

1 Doing things like sewing, mending, decorating, fixing things, or building? Sewing Creative 

2 Cooking, baking or barbecuing? Cooking Creative 

3 Singing or playing a musical instrument? Sing/Instrument Creative 

4 Drawing or painting? Drawing Creative 

5 Looking at paintings or other art? View Art Creative 

6 Reading a newspaper? Newspaper Intellectual 

7 Reading a book? Books Intellectual 

8 Talking about local or national problems or issues? Issues Intellectual 

9 Doing crossword puzzles? CW Puzzles Intellectual 

10 Balancing your checkbook? Checkbook Intellectual 

11 Taking courses or classes (credit or non-credit)? Courses Intellectual 

12 Using a computer for word processing or for email/internet access? Computer Intellectual 

13 Listening to music? Radio (Music) Passive 

14 Listening to the radio (other than to music)? 
Radio (not 

music) 
Passive 

15 Watching TV? TV Passive 

16 Working in your garden, as permitted by the weather? Gardening Physical 

17 Hunting, Fishing, Camping Hunt/Camp Physical 

18 Shopping (grocery store, hardware store, mall outlets)? Shopping Physical 

19 Going to the movies? Movies Social 

20 Going to plays or concerts? Concerts Social 

21 Attending church or other religious services? Church Social 

22 Participating in a church, social or civic club or organization? Social club Social 

23 Having people visit at your home, or visiting at someone else's home? Visiting Social 

24 
Assisting family members or family on regular basis? (ex. caring for them or 

doing errands) 
Assist family Social 

25 Playing cards or games with others? Playing cards Social 

26 Doing volunteer work? Volunteering Social 
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Appendix 2: Modified Center for Epidemiologic Studies Depression Scale (CES-D) 

How often have you felt the following during the past week?  

(0 = rarely/none of the time (less than 1 day), 1 = some or a little of the time (1 to 2 days), 2 = a 

moderate amount of time (2 to 4 days), 3 = most of the time, 9 = refused/don’t know)  

 
1. I was bothered by things that usually don’t bother me. 
2. I had trouble keeping my mind on what I was doing. 

3. I felt everything I did was an effort. 

4. I felt depressed. 
5. I felt hopeful about the future. 

6. I felt fearful. 

7. My sleep was restless. 

8. I was happy. 
9. I felt lonely. 

10. I could not get going. 
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Appendix 3: Ten semi-random samples for repeated latent class analyses. 

 

 Semi-random Sample 

Type One Two Three Four Five  

Intellectual (4) Drawing CW Puzzles View Art Drawing Sing/Paint 

 Sing/Paint View Art Computer Courses CW Puzzles 

 Sewing Computer Sewing View Art View Art 

 Books Sewing Books Sewing Computer 

Physical (1) Gardening Gardening Walking Gardening Walking 

Social (4) Movies Movies Babysitting Movies Babysitting 

 Babysitting Babysitting Social clubs Playing Cards Concerts 

 Playing Cards Concerts Attend church Social clubs Playing Cards 

 Volunteering Assist family Assist family Attend church Attend church 

  
Type Six Seven Eight Nine Ten 

Intellectual (4) Sing/Paint Courses Drawing Courses Sing/Paint 

 CW Puzzles View Art Courses CW Puzzles View Art 

 View Art Sewing CW Puzzles Computer Sewing 

 Computer Books Books Books Books 

Physical (1) Walking Walking Gardening Walking Gardening 

Social (4) Volunteering Movies Movies Concerts Babysitting 

 Social clubs Babysitting Babysitting Playing Cards Concerts 

 Attend church Social clubs Concerts Volunteering Playing Cards 

 Assist family Assist family Attend church Social clubs Volunteering 

Note. Four intellectual, one physical, and four social activities chosen at random for each set. 

CW = crossword 
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Katherine Cooke at annual meeting of the Dallas Aging and Cognition Conference, Dallas, 

TX. 

 

Cooke K. A., Katz, B., Moored K. D., Buschkuehl, M., Jaeggi S. M., Peltier S. J., Polk T. 

A., Jonides J., & Reuter-Lorenz P. A. (2015). Practice based malleability of verbal working 

memory performance. Poster presented by Katherine Cooke at annual meeting of the 

Psychonomics Society, Chicago, IL. 

 

Invited Talks 

 

Crane, B., Moored, K. D. (2020). 21st Century Tools for Cognitive Assessment and Game-

Based Interventions in Older Populations. Served as co-facilitator and co-presenter for 

interactive session for Department of Mental Health Seminar Series.   

 

Moored, K. D. (2020). Defining Lifestyle Activity Engagement in Later Life: Frequency, 

Variety, Types, or All of the Above? Served as facilitator and presenter for February meeting 

of the “Issue is…” Seminar Series at the Johns Hopkins School of Nursing.   

 

Moored, K. D. (2019). Brain Plasticity and Interventions to Prevent Dementia. Guest 

lecture for the course “Brain and Behavior in Mental Disorders” in the Department of 

Mental Health.   

 

Moored, K. D. (2018). What to do? Treatment and Prevention Strategies for Mental Health 

Disorders. Guest lecture for the course “Public Mental Health” in the Department of Mental 

Health. 

 

Moored, K. D. (2018). Brain Plasticity and Interventions to Prevent Dementia. Guest 

lecture for the course “Brain and Behavior in Mental Disorders” in the Department of 

Mental Health.   

 

Moored, K. D. (2017). Early engagement is associated with later life brain volumes. Talk 

for Department of Mental Health Seminar Series.   

 

 

TEACHING/MENTORING EXPERIENCE 
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10/2019 – 01/2020 Teaching Assistant, Department of Mental Health, Johns Hopkins 

Bloomberg School of Public Health, Baltimore, MD 

 

Course Title: “Psychiatric Epidemiology” 

Developed course syllabus and reading list in conjunction with 

instructors and co-TA, graded and provided individualized feedback on 

assignments and final exam, communicated with students. Mentored 

doctoral students on their independent public data analysis project. 

Received 71% “excellent” and 29% “good” ratings from students (0% 

fair/poor).   

 

03/2019 – 05/2019 Teaching Assistant, Department of Mental Health, Johns Hopkins 

Bloomberg School of Public Health, Baltimore, MD 

 

Course Title: “Brain and Behavior in Mental Disorders” 

Developed course syllabus and reading list in conjunction with 

instructor, graded and provided individualized feedback on assignments 

and projects, proctored final exam, communicated with students. 

Developed rubrics for thought paper and presentation assignments based 

on feedback from students in the course last year. Received 96% 

“excellent” and 4% “good” ratings from students (0% fair/poor).   

 

09/2018 – 11/2018 

 

Teaching Assistant, Department of Mental Health, Johns Hopkins 

Bloomberg School of Public Health, Baltimore, MD 

 

Course Title: “Public Mental Health” 

Developed course syllabus, reading list, and lecture slides in 

conjunction with instructor, graded and provided individualized 

feedback on assignments and projects, communicated with students. 

Received 84% “excellent” and 14% “good” ratings from students. 

  

03/2018 – 05/2018 Teaching Assistant, Department of Mental Health, Johns Hopkins 

Bloomberg School of Public Health, Baltimore, MD 

 

Course Title: “Brain and Behavior in Mental Disorders” 

Developed course syllabus and reading list in conjunction with 

instructor, graded and provided individualized feedback on assignments 

and projects, proctored final exam, communicated with students. 

Received 91% “excellent” and 9% “good” ratings from students (0% 

fair/poor).   

  

09/2017 – Present Peer Mentor, Department of Mental Health, Johns Hopkins 

Bloomberg School of Public Health, Baltimore, MD 

 

Advised eight Master’s students on courses and program requirements; 

acted as liaison between mentees and department faculty and staff. 

 

PROFESSIONAL ACTIVITIES 
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JHSPH Wellness and Quality of Life Committee, Student Representative 

Mental Health Student Group, President 

Gerontological Society of America, Member 

Brain Health Study Working Group 

Latent Variable Modeling Working Group 

Epidemiology of Aging Journal Club 

 

EDITORIAL ACTIVITIES 

Neurobiology of Aging (student reviewer, primary reviewer: Dr. Michelle Carlson)  

Journal of Gerontology Series A: Medical Sciences (student reviewer, primary reviewer: Dr. 

Michelle Carlson) 

Journal of Gerontology Series B: Psychological Sciences (student reviewer, primary 

reviewer: Dr. Michelle Carlson) 

International Journal of Environmental Research and Public Health (primary reviewer) 

 

PROFESSIONAL AND COMMUNITY SERVICE 

08/2016 – Present  Graduate Student Researcher, “Stimulation with Intricate 

Movements” (SWIM) Pilot Study, Department of Mental Health, Johns 

Hopkins Bloomberg School of Public Health, Baltimore, MD 

 

Developed study recruitment and assessment protocol for a motion-

based, immersive video game intervention. Co-developed tablet-based 

cognitive testing battery for baseline and follow-up evaluations. 

Facilitated integration of the intervention within BrightView 

Retirement Community in Catonsville, MD. Communicated with and 

administered study protocol to participants. Developed an active 

control group intervention (i.e., arm bike protocol) for future use in a 

randomized trial. 

  

06/2019 – Present  Student Representative, Johns Hopkins Bloomberg School of Public 

Health Wellness and Quality of Life Committee 

 

Served as student-group liaison to connect the committee with existing 

student intiatives. Served on “Destress” subcommittee creating 

wellness promotion materials and recruiting wellness event facilitators 

for the kickoff event and ongoing destress initiatives (e.g., mindfulness 

and yoga exercises). 

 

08/2018 – 08/2019  President, Mental Health Student Group, Department of Mental 

Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, 

MD 

 

Recruited and managed core team of five students to plan professional 

development, networking, and wellness events for students in the 

Department. Managed the annual budget (~$2000). Organized and 

facilitated student-led seminar talks during the Department’s 

Wednesday noon seminar series.  
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10/2018 – 12/2018  Seminar Series Leader, Department of Mental Health, Johns Hopkins 

Bloomberg School of Public Health, Baltimore, MD 

 

Seminar Series Title: “Cognitive Aging” 

Initiated and co-organized a three-session departmental seminar series 

that included student-led and guest faculty lectures spanning diverse 

topics within cognitive aging (e.g., prevention, health disparities, etc.). 

Developed a core planning team including both students and faculty, 

drafted invitation letters for guest faculty speakers, and facilitated 

seminars and post-session networking periods.   

 

05/2017 – 06/2018 Volunteer Scribe, Center for Innovative Care in Aging Summer 

Research Institute on Behavioral Interventions  

 

Volunteered starting for the 2017 workshop. Invited to return as 

volunteer in 2018. Transcribed dialogue from group workshops, 

including attendee descriptions of their proposed interventions and 

methodological advice provided by workshop directors. Synthesized 

transcribed material and provided summaries of key points to workshop 

attendees.  

    

09/2013 – 05/2014 Tutor, American Reads, University of Michigan Ginsburg Center  

 

Tutored several first-grade students on reading and language skills. 

Planned and administered individualized lesson plans and activities for 

each session.    

  

09/2013 – 05/2014 Volunteer Recreation Staff, Glacier Hills Retirement Community, 

Ann Arbor, MI 

 

Facilitated group activities for residents that promoted physical and 

mental wellness.    

 

              

TECHNICAL SKILLS 

Proficient in E-Prime   

Proficient in Qualtrics survey application 

Proficient in MPlus, STATA and SPSS 

Proficient with administering and scoring standardized neuropsychological batteries  

Experience with R 

Experience with SPM8, FSL, FreeSurfer, and MATLAB 

Experience with Python 

 


