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Abstract 

Cardiovascular disease (CVD) refers to a complex heterogeneous cluster of diseases of the heart 

and blood vessels that often manifest clinically as outcomes of myocardial infarction and stroke. 

CVD is a major public health burden that affects 85 million people just in the United States. As a 

complex disease of high prevalence, CVD has been poised to benefit from large scale sequencing 

and genotyping studies. Therefore, understanding the underlying pathophysiology of CVD to 

identify biomarkers for diagnosis and drug targets for prevention and treatment are active areas of 

research. We attempt to approach this problem from a genetics perspective. First, we utilize large-

scale genotyping in cohorts of patients with sudden cardiac arrest, a specific form of CVD, to 

carry out the largest genome-wide association study (GWAS) for SCA to date and identify 

genetic loci associated with SCA. Additionally, we used genetic risk score approach to determine 

the effect of traditional SCA risk factors on the genetically attributable risk for SCA, and hence 

identify QT interval and BMI as putative causal risk factors for SCA.  

The second part of this work focuses on inter-individual variation in the number of copies of 

mitochondrial DNA (mtDNA), a measure we refer to as the mtDNA copy number (mtDNA CN). 

We assess the association of mtDNA CN with age and age related phenotypes like frailty and 

mortality, establishing mtDNA CN as significant predictor of all-cause mortality. Finally, we 

focus on determining the relationship between mtDNA CN and CVD and assessing the clinical 

utility of mtDNA CN as a predictor of different forms of cardiovascular disease.  

Advisor: Dan E. Arking, PhD 

Reader: Andrew S. McCallion, PhD 
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Chapter 1 Introduction 

 

1.1 Genetics of cardiovascular disease 

Cardiovascular disease (CVD) is a broad term that encompasses all diseases of the heart and 

blood vessels. Clinically, CVD is often defined by outcomes such as myocardial infarction and 

stroke. From a public health perspective, CVD is a major source of spending that affects over 85 

million people in the United States and has is projected to have healthcare cost of 804 billion US 

dollars in 20201. There are a number of very well established risk factors for CVD events, 

including elevated blood lipid levels, particularly total cholesterol and high density lipoproteins 

(HDL), elevated blood pressure, smoking, and sex, with men at higher risk for CVD events than 

women. Several of these risk factors modulate CVD risk by increasing risk for atherosclerosis, 

the primary pathological substrate for CVD outcomes.  

From a genetics perspective, CVD has been the poster child for classic and modern genetics 

contributing directly to very successful therapies for disease. Seminal work from Goldstein and 

Brown in late 70’s in elucidating the cholesterol synthesis pathway used cultured fibroblasts from 

patients with an autosomal recessive form of familial hypercholesterolemia2–4. More recently, as a 

complex disease of high prevalence, CVD genetic studies have benefitted from advances in 

technology, both microarray as well as next generation sequencing technologies. Genome wide 

association studies (GWAS) became possible as direct result of adaptation of microarray 

technology to genotyping that allowed for genotyping of thousands of SNPs across in the genome 

in a rapid, high throughput manner5. To date, GWAS for coronary artery disease, a subset of 

CVD defined clinically by myocardial infarction event, have identified over 50 loci associated 

with the disease6. These GWAS studies have been supplemented with targeted and whole-exome 

sequencing studies, like those that identified rare variants in PCSK97 directly leading to the 

development of newly approved PCSK9 inhibitors8. 

In this work, we attempt to increase our understanding of CVD in two ways—to use nuclear 

variation to characterize the genetic architecture of a specific form of CVD called sudden cardiac 

arrest (SCA), and to identify novel risk factor for CVD that stems from variation in the 

mitochondrial DNA.  
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1.2 Genetics of sudden cardiac arrest (SCA) 

While significant progress has been made in identifying loci associated with CVD from GWAS, 

identifying genes responsible for sudden cardiac arrest (SCA) has proved to be more challenging. 

SCA is broadly defined as an outcome of sudden unexpected loss of heart function due to 

ventricular arrhythmia that affects about 1% of the US population annually1. In contrast to 

coronary artery disease (CAD) or stroke where the underlying pathology is related to 

atherosclerosis, an SCA event is considered to be caused by underlying electrical instability that 

manifests clinically in the form of different arrhythmias. It is important to note however that 

majority of SCA occurs in people who have existing CAD. The challenge in SCA risk prediction 

arises from the fact that while the risk factors for both diseases are very similar, SCA has a much 

higher rate of mortality with average survival rate of about 10.6% after an SCA event1.  

The evidence for a genetic basis for SCA, first came from Paris Prospective Study in the late 

1990’s, where epidemiological data showed that family history of SCA, was independently 

associated with a two fold increase in SCA risk9. Additionally, patients with Mendelian forms of 

arrhythmias, like long QT Syndrome or Brugada Syndrome, have increased risk of SCA10. 

However, the vast majority of SCA occurs outside of this high risk population. In order to 

interrogate the role of common variants in SCA, we carried out the largest genome-wide 

association study (GWAS) for SCA, to date. This dataset allowed us to examine the role of 

genome-wide nuclear variation in SCA and common variation in candidate arrhythmia genes. 

Additionally, using cross-trait genetic risk score associations (GRSA) we were able to examine 

the contribution of SCA risk factors to the genetically attributable risk for SCA. Our findings 

demonstrate that common genetic variants reflecting multiple pathophysiologic pathways 

contribute to the genetic architecture of SCA. This approach allowed us to contrast and compare 

the genetic profiles for SCA and CAD, and present novel genetic evidence to show that SCA is 

not simply an extension of CAD, and that it might require different therapeutic interventions for 

those at risk. 

1.3 Identifying mtDNA copy number as a novel risk factor for CVD 

In the second part of this work, we explore the association between mitochondrial DNA copy 

number (mtDNA CN) and CVD. In addition to being the primary ATP-producing organelle in the 

eukaryotic cell, mitochondria also have their own mitochondrial DNA which is a 16.7kb 

maternally inherited circular DNA molecule. mtDNA encodes 37 genes that are essential for 

mitochondrial function. However, in contrast to the nuclear genome, where the copy number is 

fixed at two copies, the number of mitochondria per cell and the number of mtDNA molecules 
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per mitochondrion vary from 10 to 1000’s to copies per cell. Several studies have shown that the 

amount of mitochondrial DNA has been shown to be an effective surrogate for mitochondrial 

function11. Given that mitochondrial dysfunction has well established role in atherosclerosis, we 

hypothesized that mtDNA CN, as a surrogate for mitochondrial function, could affect risk for 

several chronic diseases, including CVD. 

To explore the association between mtDNA CN and general health, we use data from three well-

established studies of cardiovascular health—the Atherosclerosis Risk in Communities (ARIC) 

study, Cardiovascular Health Study (CHS), and the Multiethnic Study of Atherosclerosis (MESA) 

study. As part of this work, we have develop a method to determine mtDNA CN from existing 

genotyping arrays that allows us to estimate mtDNA CN in large numbers of samples without 

additional DNA extraction.  
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Chapter 2 A Comprehensive Evaluation of the Genetic Architecture of 

Sudden Cardiac Arrest 

 

2.1 Introduction 

Sudden cardiac arrest (SCA) is a major cause of cardiac mortality, affecting approximately 

300,000 people in the US every year1. Although SCA is the end result of a variety of molecular 

pathways, electrophysiologic characteristics, and pathologic conditions, clinical and autopsy 

studies have demonstrated a predominant, common pathophysiology in Western populations:  the 

most common electrophysiologic mechanism for SCA is ventricular fibrillation (VF) and the 

most common pathologic substrate is coronary artery disease (CAD). Unfortunately, SCA 

survival remains low, and an important way to decrease SCA mortality is through risk 

stratification and prevention. 

Family history of SCA and of myocardial infarction are both associated independently with a 

two–fold increase in SCA risk in the general population, suggesting that genetic variation, 

potentially in multiple pathophysiologic pathways, may influence SCA risk12. While patients with 

inherited Mendelian arrhythmias (e.g. those with mutations in ion channel genes leading to Long 

QT Syndrome) are at increased SCA risk13–15, almost all SCA occurs outside of this high-risk 

population. Whether common variation in ion channel genes or other genomic regions influence 

SCA risk remains largely unknown, leaving physicians uncertain how best to evaluate patients 

with a known family history. 

Genome-wide association studies (GWAS) have been a useful tool for gaining insights into the 

etiology of complex disease processes, such as SCA. In the post-GWAS era, Mendelian 

randomization methods, including multi-SNP cross-trait genetic risk score association (GRSA) 

methods, have emerged as powerful approaches to explore genetic relationships of risk factors 

and complex disease outcome16–18. Contrasting genetic risk score associations with known 

observational associations of risk factors is an effective way to understand the underlying 

pathways and processes that modulate SCA risk. A genetic association analysis that combines an 

agnostic GWAS with use of risk factor GRSAs may help shed light on the genetic architecture of 

SCA.  

We therefore performed a SCA GWAS in 3,939 cases and 25,989 control participants of 

European descent, with replication genotyping in additional samples. We investigated whether 
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common variation in inherited arrhythmia genes were associated with SCA risk in the general 

population. We then evaluated the relationships between risk factors and SCA using multi-SNP 

GRSAs.  

2.2 Methods 

2.2.1 Study Population and Phenotype Definition.  

We conducted a two-stage study, with 9 studies of European-descent individuals comprising the 

GWAS ‘discovery’ stage and 14 studies with individuals of European, African and Asian-descent 

comprising the ‘replication’ stage. Study descriptions, along with study-specific SCA definitions 

and genotyping methods, are detailed in the Supplementary methods.  All studies were approved 

by appropriate institutional review boards.  

2.2.2 GWAS 

Genome-wide genotype data was imputed to HapMap2-CEU reference panel, following study-

level quality control checks (TableS1). Each ‘discovery’ study performed regression analysis 

adjusted for age, sex, and study-specific covariates, and results were meta-analyzed using inverse 

variance meta-analysis implemented in METAL19. The top 25 SNPs were examined in a second 

‘replication’ population. Findings from ‘discovery’ and ‘replication’ stages were then meta-

analyzed (TableS2, Figure 2-5A). GWASs restricted to men; women; age under 65; and cases 

with VF/shockable rhythm, were performed (TableS3, Figure 2-5B-E). 

2.2.3 Candidate genes  

We examined variants in inherited arrhythmia genes using the ‘logistic-minsnp-gene-perm’ 

function in FASTv1.820. This best single-SNP F-statistic within a gene serves as the test statistic 

to compute a permutation based p-value corrected for gene size by performing up to 1 million 

permutations per gene. Gene boundaries were defined by RefSeq gene coordinates on build 

GRCh37 with +/-10kb flank.  

2.2.4 Genetic Risk Score Association (GRSA) 

We calculated an estimate for GRSA for 17 SCA risk factors.  TableS4 details the 17 traits, and 

the source published GWAS study used to construct the GRSAs for these traits. 

To construct the GRSAs for putative SCA risk factors, we first identify SNPs associated with the 

risk trait at five significance cutoffs (alpha=5x10-8, 1x10-5, 0.001, 0.05 and 0.99) following 

stringent LD-pruning. The effects of these SNPs on the risk factors and SCA outcome are used to 

calculate an inverse-variance weighted multi-SNP GRSA as implemented in the R-package 

‘gtx’21.  We used fixed-intercept linear regression with effect of SNPs on SCA (SCA) as the 
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dependent variable and effect of SNPs on the trait (trait) as the independent variable, weighted by 

the standard error of the SCA squared (SESCA
2) (for BMI, see Figure 2-1A). The resultant 

regression coefficient is the GRSA estimate or ‘ahat,’ for the trait on SCA (Supplementary 

Information). To test for heterogeneity in effect estimates between SNPs due to pleiotropy, we 

use Cochran’s Q test22. Using an iterative approach, we excluded SNPs until the P-value for the 

risk score heterogeneity was >0.05.  

We similarly computed risk factor GRSAs on the outcome of CAD. We use a modified two-

sample Welch test to calculate p-value for difference in GRSA estimates between SCA and CAD.  

2.2.5 Sex-specific analyses 

We performed sex-stratified SCA GWAS analyses to construct trait GRSAs separately by sex. 

GRSAs were constructed from the same set of LD-pruned SNPs used for overall GRSA analyses, 

using sex-specific effect-estimates (and corresponding standard-error estimates) for SCA risk. P-

values for difference in GRSAs between sexes were obtained from 1-degree of freedom Wald test 

for difference in regression coefficients of the sex-stratified analyses.   

2.3 Results 

2.3.1 GWAS  

Meta-analysis was performed with results from 9 GWASs of 3,939 European-ancestry cases and 

25,989 controls (TableS1A, Figure 2-5A) with additional genotyping of 26 SNPs in up to 4,918 

cases and 21,879 controls of European, African, and Asian descent (TableS1B). No SNP 

associations passed genome-wide significance (P<5x10-8) (TableS2) in the main analysis or in 

subgroup analyses limited to European-descent individuals, men, women, younger participants 

(<65 years), or cases with documented VF/shockable rhythm (Tables S2 and S3, Figure 2-5B-

E).  

2.3.2 Candidate Gene and Candidate SNP Analyses 

Despite sufficient power to detect relative risks of 1.15 (80% power, allele frequency 0.30, 

alpha=0.05), we did not find common variants in inherited arrhythmia genes associated with SCA 

in the general population (TableS5). Examining SNPs previously associated with SCA in small 

studies, 5/19 were nominally associated with SCA (P<0.05) in our study (TableS6).  

2.3.3 Genetic Risk Scores Associations (GRSAs) 

To explore the underlying genetic architecture of SCA, we examined GRSAs with: (1) CAD and 

traditional CAD risk factors; (2) cardiac electrophysiologic factors; and (3) anthropometric traits. 
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In TableS7, we report the GRSA estimates (ahat) at five significance level cutoffs (alpha=5x10-8, 

1x10-5, 0.001, 0.05 and 0.99) from the risk factor GWAS variants.  

 CAD and CAD risk factors 

Prevalent CAD is an important SCA risk factor with ~80% of male SCA survivors having 

underlying CAD23. As expected, CAD GRSA has a strong affect on SCA risk (Figure 2-2, 

TableS7), suggesting that genetic variants associated with CAD also influence SCA. For 

example, the GRSA with 39 SNPs associated with CAD at a genome-wide significant threshold 

(alpha=5x10-8)6 estimates that 50% increased CAD risk corresponds to 12.2% (95% CI=6.3-

18.5%) increased SCA risk.  

Examining traditional CAD risk factors, we show that while the diabetes GRSA was significantly 

associated with SCA at two of five alpha cutoffs tested, there was no significant association of 

GRSAs for fasting glucose or fasting insulin (Figure 2-2, TableS7), suggesting the effect of 

diabetes variants on SCA risk may not be mediated by a direct effect of beta cell function (fasting 

glucose) or insulin resistance (fasting insulin). For lipid GRSAs, we found LDL, total cholesterol, 

and triglycerides variants that increase lipid levels were positively associated with SCA risk. 

Similarly, diastolic and systolic blood pressure GRSAs show variants that increase blood pressure 

also increase SCA risk (Figure2, TableS7). 

Cardiac electrophysiologic factors 

To explore the influence of cardiac electrophysiologic risk factors on SCA, we examined the 

effect on SCA risk of variants associated with (1) atrial fibrillation (AF)24, (2) QT interval 

(ventricular repolarization)25; (3) QRS interval (ventricular conduction)26; and (4) heart rate27.  

The GRSAs of AF and QT, both risk factors for SCA in the general population28,29, showed 

significant association with SCA (Figure 2-2, TableS7). By contrast, we did not identify a 

significant association of QRS or heart rate GRSAs with SCA (Figure 2-2, TableS7, TableS8). 

In sensitivity analyses, we down-sampled the QT GWAS to reflect the smaller QRS GWAS 

sample size (Supplemental Information), and found similar ahat estimates for the full and 

down-sampled QT dataset (TableS8), suggesting the lack of association for QRS GRSA is not 

simply due to decreased power and precision.  

GRSAs of Anthropometric Measures 

Height-increasing variants have a protective effect against CAD30, and we correspondingly 

observed a negative association between SCA and height GRSA across all alpha cutoffs (Figure 

2-2, TableS7).  Among the quantitative traits examined, the GRSA with 72 BMI variants 

(alpha=5x10-8) had the largest effect on SCA risk, with a 1 standard deviation (4.83 BMI units) 
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increase in BMI corresponding to a 63.2% (95% CI=23.3-115.3%) increase in SCA risk. In 

contrast, no significant association was seen with GRSAs composed of variants associated with 

measures of central/abdominal adiposity, such as waist-to-hip ratio or waist circumference.  

2.3.4 Contrasting SCA and CAD GRSAs 

Comparing the effect of risk factor GRSAs on the outcomes of SCA (Figure 2-2) and CAD 

(FigureS2), we identified processes and risk factors that are common to, and differ between, SCA 

and CAD. While the GRSAs derived from traditional CAD risk factors were associated with both 

outcomes, the estimates of the diabetes and blood pressure GRSAs (Figure 2-3A, TableS7) were 

significantly larger for CAD than SCA. In contrast, GRSAs for electrophysiologic traits of QT 

interval and AF had significantly stronger association with SCA than CAD (Figure 2-3B, 

TableS7).  BMI and height GRSAs were similarly associated with SCA and CAD. By contrast, 

while the waist-to-hip ratio GRSA was associated with CAD, it had no impact on SCA (Figure 2-

3A).  

2.3.5 Sex differences 

Sex differences in SCA incidence, underlying SCA pathophysiology, and prevalence of certain 

risk factors have been well documented31, yet little is known about the differences by sex of the 

effect of risk factors on SCA. Using sex-stratified GRSAs, we found that diabetes, AF, and QT 

interval have larger effect on SCA among women than men (Figure 2-4, TableS9). The largest 

sex difference was seen with the diabetes GRSA, where the effect among women at alpha=5x10-8 

was ten times larger than among men (ahat=0.24 vs 0.026, respectively); and at alpha=0.99, this 

difference was highly statistically significant (interaction-P=3.62x10-11, TableS9).  

2.4 Discussion 

SCA is a devastating and often fatal problem. A family history of SCA doubles SCA risk, but the 

genetics of SCA in the general population is poorly understood, leaving physicians uncertain how 

best to evaluate patients with a family history. Our large SCA GWAS sheds light on the 

underlying genetic architecture of SCA and is informative in both its negative findings as well as 

its positive ones. Despite adequate power to identify common variants associated with a modest 

increased risk, our study did not find variation in Mendelian arrhythmia genes associated with 

SCA risk in the general population. We do, however, establish that, in aggregate, genetic variants 

associated with SCA risk factors contribute to SCA. Using a GRSA approach, we characterize the 

effect of 17 putative SCA risk factors on SCA genetic risk. Specifically, we show that GRSA of 

CAD and CAD risk factors, electrophysiologic traits of AF and prolonged QT, and 
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anthropometric measures are associated with SCA. Finally, we present evidence supporting a sex-

specific role for variants associated with diabetes, AF, and QT interval in influencing SCA risk in 

women. 

Since underlying electrical instability is an important cause of SCA, prior studies have examined 

inherited arrhythmia genes or variants associated with electrophysiological traits to identify 

genetic variants that influence SCA risk 32–34. While rare private mutations in ion-channel and 

other electrophysiology-related genes increase arrhythmia risk in families, our study suggests that 

common variants in these genes are not associated with SCA (OR>1.15) in the general 

population. This may be due to differing underlying genetics between inherited arrhythmias 

versus SCA in the general population. By contrast, we do find that GRSAs of phenotypes 

associated with electrical instability (AF and QT) are associated with SCA more so than with 

CAD. This confirms our understanding of the pathophysiology of SCA: SCA is not simply fatal 

CAD, but rather, electrical instability also plays a prominent role in mediating SCA risk. 

Intriguingly, not all electrophysiologic phenotypes are genetically significantly associated with 

SCA. QRS interval and heart rate, two traits observationally associated with SCA35,36, did not 

show evidence of a shared genetic basis with SCA. This lack of association may be due to 

inadequate power to identify modest correlations. Alternatively, it may be that the associations 

from observational studies are confounded by other factors, and not causative (Figures 2-1B and 

2-1C). For instance, underlying CAD can lead to both longer QRS interval and increased SCA 

risk, and thus while observational studies show an association between SCA and both traits (CAD 

and QRS interval), a genetic association would not be seen with SCA and QRS-associated SNPs. 

Similarly, the observational association of higher heart rate with SCA risk may be confounded by 

higher adrenergic state due to underlying heart disease and not itself causative. The GRSA 

approach to examining observational risk factors may help differentiate causative factors from 

those that may be confounded.  

CAD is the most common underlying pathologic substrate for SCA. It is reassuring, therefore, 

that we find significant associations with GRSAs constructed from CAD and traditional CAD risk 

factors. That diabetes and blood pressure trait GRSAs had a larger effect on CAD than on SCA 

genetic risk is consistent with the interpretation that these risk factors influence CAD more 

strongly, and that some of the effect on SCA of GRSAs constructed from these traits may be 

mediated through their impact on CAD risk.  

Anthropometric measures appear to share some common genetic basis with SCA. Shorter stature 

is associated with increased SCA risk in observational studies, consistent with our findings that 
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height GRSA is inversely associated with SCA. Observational data on BMI and SCA risk have 

been conflicting, perhaps due to confounding from smoking status and frailty. Previously37, we 

have shown that BMI is associated with increased SCA risk in non-smokers, but not smokers. In 

this study, we find that genetic variants associated with BMI, but not central/abdominal obesity, 

were associated with SCA risk. This finding is especially interesting in the context of recent data 

that imply different biological process underlying BMI and central obesity38,39.  

Finally, we found that diabetes, AF, and QT interval GRSAs had stronger associations among 

women than men. While diabetes and AF are SCA risk factors among both sexes, previous 

observational studies have consistently suggested a stronger, albeit not statistically different, 

effect among women than men40,41. QT interval is longer in women than men after puberty42, and 

women are more susceptible to fatal arrhythmias when using QT-prolonging medications 

(acquired QT prolongation)43, consistent with our findings of a stronger association of QT 

GRSAs with SCA among women than men.  These findings may reflect different underlying 

SCA pathophysiology between men and women. Moreover, the stronger genetic effects in women 

may suggest that men accumulate more environmental risk factors than women (e.g. underlying 

heart disease, tobacco use), therefore diminishing the relative impact of genetic factors.  

Several limitations deserve consideration. Despite being the largest exploration of SCA 

genomics, the sample size of ~4,000 cases limited our ability to find associations of modest effect 

or low frequency. Hence, while our data do not support screening individuals with a family 

history of SCA for common variation in inherited arrhythmia genes, much larger samples sizes 

are needed to address whether rare variation of modest effect in these genes influence SCA risk.  

Second, the validity of the GRSA method as a Mendelian randomization instrument is predicated 

on the effect of the variant on the outcome being mediated only through the risk factor of interest, 

and not via other confounders or directly on the outcome. Although we did not directly exclude 

SNPs associated with multiple risk factors (genetic pleiotropy), we did utilize a goodness-of-fit 

approach to exclude putative “pleiotropic” effects from all GRSATs. Furthermore, while genetic 

pleiotropy can confound these findings and interpretations, this is less likely when using multiple 

SNPs aggregated in a genetic risk score.  

In conclusion, findings from the largest GWAS for SCA show that common genetic variants 

influence SCA risk. This genetic risk is largely not due to common variation in specific inherited 

arrhythmia genes, but rather, we show that common variation throughout the genome influencing 

electrical instability, CAD and its risk factors, and height and BMI all influence SCA risk. While 

SCA is a complex disease with multiple influencing factors, a comprehensive genetic approach 
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can untangle risk factor relationships, enhancing our understanding of SCA pathophysiology. 

Ultimately, genetic studies will lead to improved risk stratification and will enhance efforts to 

prevent SCA in high-risk populations and the general community. 
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2.5 Figures for Chapter2 

 
Figure 2-1 BMI Genetic Risk Score association for SCA 
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A. This figure presents the data used to calculate the BMI-SCA GRSA at an alpha cutoff of 

5x10-8. The points represent the effect of each SNP on BMI (in units of standard 

deviation of BMI) on the x-axis, and the log odds effect on SCA risk (corresponding 95% 

confidence intervals in grey) on the y-axis. The estimate of the genetic risk score 

association (ahat) is the slope of the fixed intercept weighted regression line (solid red 

line in the above figure).  

B. The directed acyl graph represents a scenario in which trait of interest has a causal effect 

on the outcome. If the GRSA comprising of trait-associated variants (e.g., BMI) has a 

significant effect on the outcome (e.g., SCA), it supports a causal role for trait in the 

outcome.  

This figure presents the case where there is an observational association between the trait 

and outcome, but the GRSA comprised of trait-associated variants is not significantly 

associated with the outcome, suggesting that observational association is likely being 

mediated by a confounding variable and the trait does not have a causal impact on the 

outcome.
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Figure 2-2 Genetic Risk Scores Association (GRSA) estimates for Sudden Cardiac Arrest 
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These data points represent the GRSA estimates (ahat) of 17 traits† on sudden cardiac 

arrest (SCA) and their corresponding 95% confidence interval values, from models that include 

SNPs at five different significance cutoffs (alpha=5x10-8, 1x10-5, 0.001, 0.05, or 0.99). The ahat 

values in the left panel for the binary traits are in log odds units. Values in right panel are in SD 

units of the quantitative trait. The significance of the ahat estimates are represented as “*” for 

P<0.05, “**” for P<0.01, and “***” for P<0.001. For details on values of ahat estimates and 

pvalues, see TableS1.  

†CAD denotes coronary artery disease, T2D type 2 diabetes, AF atrial fibrillation, BMI body 

mass index WCadjBMI waist circumference adjusted for BMI, WHRadBMI waist to hip ratio 

adjusted for BMI, DBP diastolic blood pressure, SBP systolic blood pressure, FGadjBMI fasting 

glucose adjusted for BMI, FIadjBMI fasting insulin adjusted for BMI, HR heart rate, QRS QRS 

interval, QT QT interval, HDL high density lipoproteins, LDL low-density lipoproteins, TCH 

total cholesterol, and TG triglyceride  
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Figure 2-3 Comparison of risk scores for SCA and CAD for selected traits 

 

These data represent GRSAs of 6 selected traits† on SCA and CAD. The top panel shows traits 

with larger effect on SCA than CAD risk. Traits in bottom panel have larger effects on CAD risk. 

Ahat estimates of effect of trait on SCA risk and CAD risk, are plotted in orange and purple 

respectively. Bars around the ahat estimates represent the 95% confidence interval for ahat 
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estimates. Ahat values for binary traits (left panels) are in log odds units, and for quantitative 

traits (right panels) are in standard deviation units  

of the quantitative trait. The level of significance for a Welch test of difference in ahat values 

between SCA and CAD is represented “*” for P<0.05, “**” for P<0.01, and “***” for P<0.001.  

†AF denotes atrial fibrillation, QT QT interval, T2D type 2 diabetes, WHRadBMI waist to hip 

ratio adjusted for BMI, DBP diastolic blood pressure, SBP systolic blood pressure.
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Figure 2-4 Sex stratified SCA genetic risk scores for selected risk factors 

 

Points in grey represent genetic risk score estimates (ahat) for SCA risk from overall data 

for select traits†. Ahat estimates of effect of trait on SCA risk in women and men, are plotting in 

pink and blue respectively. Bars around the ahat estimates represent the 95% confidence interval 

for ahat estimates. All Ahat values for binary traits (T2D, and AF) are in log odds units, and for 

QT interval is in SD units. The level of significance for a 1 degree of freedom Wald test of 

difference in ahat values between the sexes is represented “*” for P<0.05, “**” for P<0.01, and 

“***” for P<0.001.  

† T2D=type 2 diabetes, AF=atrial fibrillation, QT=QT interval.
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Figure 2-5 Manhattan plots showing results from GWAS for sudden cardiac arrest 

A. GWAS results from Stage1 Discovery 

 

B. GWAS results from sex stratified analyses, restricted to males 
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C. GWAS results from sex stratified analyses, restricted to females 

 

D. GWAS results from younger participants, restricted to age<=65 
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E. GWAS results from participants with VF/shockable rhythm.   
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Figure 2-6 Genetic Risk Scores Association estimates for CAD 
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These data represent genetic risk scores association (GRSA) estimates of 17 traits† on coronary 

artery disease (CAD). Data points represent the estimates and their corresponding 95% 

confidence interval values from models that include SNPs at five different alpha cutoffs 

(alpha=5x10-8, 1x10-5, 0.001, 0.05, or 0.99). The ahat values in the left panel for the binary traits 

are in log odds units. Values in right panel are in SD units of the quantitative trait. . The 

significance of the ahat estimates are represented as “*” for P<0.05, “**” for P<0.01, and “***” 

for P<0.001. For details on values of ahat estimates and pvalues, see TableS1.   

† T2D denotes type 2 diabetes, AF atrial fibrillation, BMI body mass index WCadjBMI waist 

circumference adjusted for BMI, WHRadBMI jwaist to hip ratio adjusted for BMI, DBP diastolic 

blood pressure, SBP systolic blood pressure, FGadjBMI fasting glucose adjusted for BMI, 

FIadjBMI fasting insulin adjusted for BMI, HR heart rate, QRS QRS interval, QT QT interval, 

HDL high density lipoproteins, LDL low-density lipoproteins, TCH total cholesterol, and TG 

triglycerides
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Figure 2-7 Sex stratified GRSA estimates for SCA 
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Points in grey represent GRSA estimates and corresponding 95% confidence intervals of traits† 

on SCA from overall data. Ahat estimates of effect of trait on SCA risk in women and men, are 

plotting in pink and blue respectively. Ahat values for binary traits (CAD, T2D, and AF) are in 

ln(odds) units, and for all other quantitative traits in SD units. The level of significance for a 1 

degree of freedom test of difference in ahat values between the sexes is represented by “*” for 

P<0.05, “**” for P<0.01, and “***” for P<0.001.  

† CAD denotes coronary artery disease, T2D type 2 diabetes, AF atrial fibrillation, BMI body 

mass index WCadjBMI waist circumference adjusted for BMI, WHRadBMI jwaist to hip ratio 

adjusted for BMI, DBP diastolic blood pressure, SBP systolic blood pressure, FGadjBMI fasting 

glucose adjusted for BMI, FIadjBMI fasting insulin adjusted for BMI, HR heart rate, QRS QRS 

interval, QT QT interval, HDL high density lipoproteins, LDL low-density lipoproteins, TCH 

total cholesterol, and TG triglycerides. 
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Figure 2-8 P-value distributions from 1000 null datasets 

 

1000 dummy GWAS datasets were created using genotypes of 9,533 European participants from 

the ARIC cohort and 1000 randomly generated quantitative phenotypes (mean=0, sd=1). These 

datasets were subsequently used to compute a GRSA estimate for SCA at 5 alpha cutoffs. Each 

panel plots the -log10(p-value) of GRS’s constructed from these datasets at the different alphas, 

and represents the null distribution of GRS pvalues. These null distributions were used to 

determine a permutated P-value in TableS4.  
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2.6 Tables for Chapter2 

Table 2-1 Sample characteristics for discovery cohorts 

Cohort ARIC CABS 
CARTAGEN

E 

CARTAGENE/

KORA F3 
CHS FHS Fingesture Harvard 

Rotterdam 

study 

Stage 
Stage1--

Discovery 

Stage1--

Discovery 

Stage1--

Discovery 

Stage1--

Discovery 

Stage1--

Discovery 

Stage1--

Discovery 

Stage1--

Discovery 

Stage1--

Discovery 

Stage2=Extensi

on 

N, number of cases 

with genotype data 
124 2165 166 169 138 32 340 420 385 

N, number of controls 

with genotype data 
8882 2430 241 338 3157 4358 570 424 5589 

QC criteria, per 

sample 

Sex-check, 

Removed 

duplicates, 

checks for 

cryptic 

relatedness and 

genetic outliers 

from PCA 

Sex-check, 

Removed 

duplicates, 

checks for 

cryptic 

relatedness and 

genetic outliers 

from PCA 

Sex-check, 

Removed 

duplicates, 

checks for 

genetic 

outliers from 

PCA 

Sex-check, 

Removed 

duplicates, 

checks for 

genetic outliers 

from PCA 

Array call rate 

<95%,  sex 

check 

 

Sex-check, 

Removed 

duplicates, 

checks for 

cryptic 

relatedness and 

genetic outliers 

from PCA, 

genotyping call 

rate > 90% 

Checks for 

cryptic 

relatedness and 

genetic outliers 

from PCA, 

genotyping call 

rate > 95% 

Sex-check, 

Removed 

duplicates, 

checks for 

cryptic 

relatedness and 

genetic outliers 

from PCA 

Genotyping platform Affy 6.0 
Affymetrix 

Axiom 

Illumina 

Human660K 

Illumna 

HumanOmniEx

press+HumanO

mni25 

Illumina 

CNV370 

Affymetrix500

K+ 50K 

Human Gene 

Focused Panel 

Affy 6.0 Affy 6.0 
Illumina /   

HumanHap610 

Genotype calling 

algorithm 
Birdseed 

apt-probeset-

genotype 

Illumina 

beadstudio 

Illumina 

Genomestudio 

Illumina 

beadstudio 
BRLMM Birdseed Birdseed 

Beadstudio 

Genecall 
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Cohort ARIC CABS 
CARTAGEN

E 

CARTAGENE/

KORA F3 
CHS FHS Fingesture Harvard 

Rotterdam 

study 

Inclusion criteria--

MAF 
>1% >1% >=1% >=0.1% >=0% > 1% < 1% > 1% >1% 

Inclusion criteria--Call 

Rate per SNP 
>95% >95% >=95% >=98% >=97% > 95% > 95% > 95% >95% 

Inclusion criteria--

pvalue HWE 
> 10 x 10-5 > 1E-5 >=5*10e-6 NA HWE P < 10-5 > 1E-6 > 1E-6 > 1E-6 > 10e-6 

Autosomal SNPs after 

QC 
668,450 522,986 522,537 585,733 306,655  707,418 2,402,071 512349 

Imputation Reference 

Panel 
Hapmap.v2 Hapmap.v2 Hapmap.v2 not imputed Hapmap.v2 Hapmap.v2 Hapmap.v2 Hapmap.v2 Hapmap.v2 

Imputation Software Mach1 Beagle impute v1.0.0 not imputed BimBam Mach Mach Mach Mach 

          

Sex, number of women 

among cases 
4739 496 30 29 70  52 127 203 

Sex, number of women 

among controls 
34 537 50 58 1935  135 134 3344 

Age, mean age at 

baseline among cases 
57.1 67.55 56.2 58 72.34  63.85 64.3 71.7 

Age, age-range at 

baseline among cases 
45-65 20-101 22-77 19-76 64-98  35-92 40.3-91.9 55.2-95.5 

Age, mean age at time 

of SCD among cases 
64.9 66.65 56.6 59.5 74.09  61.22 64.2 69.3 

Age, age-range at time 

of SCD among cases 
50.4-77.2 23-96 28-86 35-84 65-94  28-83 48.1-96.6 54.5-99.5 
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Cohort ARIC CABS 
CARTAGEN

E 

CARTAGENE/

KORA F3 
CHS FHS Fingesture Harvard 

Rotterdam 

study 

Average time to SCD  

(for prospective 

studies) 

7.82    9.17 3.78  7.49 9.2 years 

Mean followup time 

(for prospective 

studies) 

16.24    12.9 5.56 NA 11.02 13.2 years 

Study design Prospective Case-control Case-control Case-control Prospective Prospective Case-control 

Case/control 

from 

prospective 

studies and 

clinical trials 

Prospective, 

Cox PH 

SCD 

definition/Ascertainme

nt 

Sudden, 

pulseless 

condition from 

a cardiac origin 

in a previously 

stable 

individual, 

review of death 

and medical 

records 

Sudden, 

pulseless 

condition from 

a cardiac origin 

in a previously 

stable 

individual, 

review of death 

and medical 

records.  Pt in 

VF or asystole 

(NO PEA) 

Sudden, 

pulseless 

condition from 

a cardiac 

origin in a 

previously 

stable 

individual, 

review of 

death and 

medical 

records. 

Sudden, 

pulseless 

condition from a 

cardiac origin in 

a previously 

stable 

individual, 

review of death 

and medical 

records. 

Sudden 

pulseless 

condition 

presumed due 

to a cardiac 

arrhythmia, 

without 

evidence for a 

non-cardiac 

condition as a 

cause of the 

arrest, in an 

otherwise 

stable patient, 

after review of 

events 

Coronary heart 

disease death 

within one hour 

of onset of 

symptoms 

adjudiated by 

panel of 

physicians. 

Sudden, 

pulseless 

condition from 

a cardiac origin 

in a previously 

stable 

individual, 

review of death 

and medical 

records. 

a cardiac death 

is considered a 

definite SCD if 

the death or 

cardiac arrest 

that 

precipitated 

death occurred 

within one hour 

of symptom 

onset as 

documented by 

medical records 

or next-of-kin 

reports or had 

an autopsy 

Death <1 hour 

of 

cardiovascular 

symptoms or 

found dead and 

seen  <24 

hours earliers 

in stable 

medical 

condition. 

Based on 

review of 

medical 

records. 
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Cohort ARIC CABS 
CARTAGEN

E 

CARTAGENE/

KORA F3 
CHS FHS Fingesture Harvard 

Rotterdam 

study 

surrounding 

arrest / death 

and medical 

records. 

consistent with 

SCD (i.e. acute 

coronary 

thrombosis or 

severe coronary 

artery disease 

without 

myocardial 

necrosis or 

other 

pathologic 

findings to 

explain death) 

Control definition 
Population 

based 

Population 

based 

French 

registry of 

Acute ST 

elevation or 

non-ST-

elevation 

Myocardial 

Infarction 

(FastMI) 

Population 

based 

Population 

based 
 MI survivors 

Controls from 

population 

studies and 

clinical trials 

matched on on 

study cohort, 

sex, age (+/−1 

year), ethnicity, 

smoking status 

(current, never, 

past), time and 

date of 

blood 

sampling, 

Population 

based 
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Cohort ARIC CABS 
CARTAGEN

E 

CARTAGENE/

KORA F3 
CHS FHS Fingesture Harvard 

Rotterdam 

study 

fasting status, 

and presence or 

absence of 

cardiovascular 

disease (MI, 

angina, CABG, 

or stroke) prior  

to death. 

Software used for 

GWAS statistical 

analysis 

ProbABEL R snptest v2.1.1 PLINK v1.07 R  Mach2dat 
Plink/Eigenstra

t 
ProbABEL 

Model with covariates 

Cox 

proportional 

hazards, with 

age, sex, and 

PCs as 

covariates 

age, sex age, sex age, sex, PCs age, sex, clinic age,sex age, sex, 10 PC 20 PCs, cohort age, sex, PCs 
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Table 2-2 Sample Characteristics for replication cohorts 

Cohort AGNES 
ARRE

ST 
CHS Fingesture FINRISK GEVAMI Mayo SMART UMEA OCME 

CABS-

African 

Americans 

CABS-Asian 

Americans 

Stage 
Stage2--

Extension 

Stage2-

-

Extensi

on 

Stage2=Ext

ension 

Stage2=Ext

ension 

Stage2=Ext

ension 

Stage2=Ext

ension 

Stage2=Ext

ension 

Stage2=Ext

ension 

Stage2=Ext

ension 

Stage2=Ext

ension 

Stage2-

Replication 

Stage2-

Replication 

N, number of 

cases with 

genotype data 

672 1409 78 559 209 533 124 368 470 119 152 225 

N, number of 

controls with 

genotype data 

761 1659 813 490 7976 265 139 8086 931 378 176 199 

             

QC criteria, per 

sample 

sex check, 

principle 

componen

t analysis, 

removing 

of 

outliers, 

Sex-

check, 

Remov

ed 

duplicat

es, 

checks 

for 

cryptic 

relatedn

ess and 

genetic 

outliers 

genotyping 

call rate > 

50% 

genotyping 

call rate > 

90% 

Genotyping 

call rate 

>98% / 

>95% / >95 

% 

 

genotyping 

call rate > 

50% 

Sex-check, 

Removed 

duplicates, 

checks for 

cryptic 

relatedness 

and genetic 

outliers 

from PCA 

NA 

genotyping 

call rate > 

50% 

Sex-check, 

Removed 

duplicates, 

checks for 

cryptic 

relatedness 

and genetic 

outliers from 

PCA 

Sex-check, 

Removed 

duplicates, 

checks for 

cryptic 

relatedness 

and genetic 

outliers from 

PCA 
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Cohort AGNES 
ARRE

ST 
CHS Fingesture FINRISK GEVAMI Mayo SMART UMEA OCME 

CABS-

African 

Americans 

CABS-Asian 

Americans 

from 

PCA 

Genotyping 

platform 

Illumina 

Human61

0- Quad 

& 

Illumina 

HumanO

mni2.5 

 Sequenom Sequenom 

Illumina, 

subsets 

done by 

HumanCore

Exome / 

610K /  

Omni 

Express 

Taqman Sequenom  NA Sequenom   

Genotype 

calling 

algorithm 

BeadStudi

o &  

GenomeS

tudio 

 Sequenom Sequenom 
Illumina 

Bead Studio 
 Sequenom  NA Sequenom 

apt-probeset-

genotype 

apt-probeset-

genotype 

Inclusion 

criteria--MAF 
>0.001 >1% N/A N/A 

MAC<2 / 

>0.01 / 

>0.01 

NA N/A >1% NA N/A 
dose variance 

> .01 

dose variance 

> .01 

Inclusion 

criteria--Call 

Rate per SNP 

>95% >95% >50% >90% > 95% NA >50% >95% NA >50% >95% >95% 

Inclusion 

criteria--pvalue 

HWE 

> 1E-4 > 1E-5 N/A N/A > 10e-6 NA N/A > 1E-3 NA N/A > 1E-5 > 1E-5 
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Cohort AGNES 
ARRE

ST 
CHS Fingesture FINRISK GEVAMI Mayo SMART UMEA OCME 

CABS-

African 

Americans 

CABS-Asian 

Americans 

Autosomal 

SNPs after QC 

507,436 

for 

Illumina 

Human61

0- Quad 

& 

2,209,801 

for 

Illumina 

HumanO

mni2.5 

23 26 25 

Asked to 

replicate 

just 1. 

1 26 17 NA 26 8,573,931 16,820,556 

Imputation 

Reference 

Panel 

Hapmap.v

3 
NA N/A N/A 

1,000 

Genomes 

haplotypes -

- Phase I 

integrated 

NA N/A - NA N/A 
1000G 

PhaseIv3 

1000G 

PhaseIv3 

Imputation 

Software 

Mach & 

minimac 
NA N/A N/A 

SHAPEIT2 

(pre-

phasing) 

and 

IMPUTE2 

NA N/A - NA N/A minimac minimac 

             

Sex, number of 

women among 

cases 

135 301 23 100 45 34 41 69 121 25 43 70 
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Cohort AGNES 
ARRE

ST 
CHS Fingesture FINRISK GEVAMI Mayo SMART UMEA OCME 

CABS-

African 

Americans 

CABS-Asian 

Americans 

Sex, number of 

women among 

controls 

156 355 363 261 3983 131 29 2674 247 96 90 91 

Age, mean age 

at baseline 

among cases 

56.70 64.10 72.40 64.82 59.83 59.38 52.81 63.00 56.01 48.87 64.95 63.44 

Age, age-range 

at baseline 

among cases 

30-84 0 - 95 65-84 28-91 27-74 
52.65-

66.81 
3-83 31-82 30-71 21-83 25-95 20-102 

Age, mean age 

at baseline 

among controls 

58.30 58.44 73.7 51.14 48.15 60.61 33.25 56 55.57 74 61.02 61.59 

Age, age-range 

at baseline 

among controls 

32-83 32 - 82 63-100 40-62 24-74 
52.26-

66.81 
1-82 17-81 30-74 64-92 39-86 32-89 

             

Average time to 

SCD  (for 

prospective 

studies) 

NA NA 6.4 NA 6.78 NA NA NA 7.24 NA NA NA 

Mean followup 

time (for 

prospective 

studies) 

NA NA 9.8  10.5 NA NA NA NA NA NA NA 
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Cohort AGNES 
ARRE

ST 
CHS Fingesture FINRISK GEVAMI Mayo SMART UMEA OCME 

CABS-

African 

Americans 

CABS-Asian 

Americans 

Study design 
Case-

control 

Case-

control 

Prospective 

cohort 

Case-

control 

Prospective 

cohort 

Case-

control 

Case-

control 

Case-

control 

Nested 

case-

control 

Case only 

(analysed 

with CHS 

controls) 

Case-control Case-control 

SCD 

definition/Asce

rtainment 

ECG-

registered 

VF that 

occurred 

within 24 

hours 

after the 

onset of 

symptoms 

and 

before 

reperfusio

n therapy 

in the 

setting of 

an acute 

and first 

ST-

segment 

elevation 

MI. 

out-of-

hospital 

cardiac 

arrest 

with 

VT/VF 

docume

nted by 

emerge

ncy 

medical 

services 

during 

resuscit

ation 

attempt 

Sudden 

pulseless 

condition 

presumed 

due to a 

cardiac 

arrhythmia, 

without 

evidence 

for a non-

cardiac 

condition 

as a cause 

of the 

arrest, in an 

otherwise 

stable 

patient, 

after 

review of 

events 

surroundin

Sudden, 

pulseless 

condition 
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Table 2-3 Results from GWAS analysis 
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Table 2-4 Results from subgroup analysis 
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Table 2-5 Details of GWAS that were used for GRSA analyses 

Trait Consortium Title 

Reference 

in main 

manuscript 

Sample 

Size 

CAD  CARDIOGRAM+C4D 

Large-scale association analysis identifies new risk 

loci for coronary artery disease (Deloukas et al., 2012) 16 194,427 

T2D DIAGRAM 

Large-scale association analysis provides insights into 

the genetic architecture and pathophysiology of type 2 

diabetes (Morris et al, 2012)  17 149,821 

AF CHARGE AF 

Meta-analysis identifies six new susceptibility loci for 

atrial fibrillation (Ellinor et al., 2012) 23 59,133 

BMI GIANT 

Genetic studies of body mass index yield new insights 

for obesity biology (Locke et al., 2015) 30 339,224 

HEIGHT GIANT 

Defining the role of common variation in the genomic 

and biological architecture of adult human height 

(Wood et al., 2014) 29 253,288 

WCADJBMI GIANT 

New genetic loci link adipose and insulin biology to 

body fat distribution (Shungin et al., 2015) 31 224,459 

WHRADJBMI GIANT 

New genetic loci link adipose and insulin biology to 

body fat distribution (Shungin et al., 2015) 31 142,762 

DBP ICBP 

Genetic variants in novel pathways influence blood 

pressure and cardiovascular disease risk (Ehret et al., 

2011) 20 69,395 

SBP ICBP 

Genetic variants in novel pathways influence blood 

pressure and cardiovascular disease risk (Ehret et al., 

2011) 20 69,395 

FGADJBMI DIAGRAM 

A genome-wide approach accounting for body mass 

index identifies genetic variants influencing fasting 

glycemic traits and insulin resistance (Manning et al., 

2012) 18 58,074 

FIADJBMI DIAGRAM 

A genome-wide approach accounting for body mass 

index identifies genetic variants influencing fasting 

glycemic traits and insulin resistance (Manning et al., 

2012) 18 51,750 

HR CHARGE HR 

Identification of heart rate-associated loci and their 

effects on cardiac conduction and rhythm disorders 

(den Hoed et al., 2013) 26 88,823 

QRS CHARGE QRS 

Common variants in 22 loci are associated with QRS 

duration and cardiac ventricular conduction 

(Sotoodehnia et al., 2010) 25 40,407 

QT QT-IGC 

Genetic association study of QT interval highlights 

role for calcium signaling pathways in myocardial 

repolarization (Arking et al., 2014) 24 76,061 
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HDL 

Global Lipids Genetics 

Consortium 

Discovery and refinement of loci associated with lipid 

levels (Willer et al., 2013) 19 188,577 

LDL 

Global Lipids Genetics 

Consortium 

Discovery and refinement of loci associated with lipid 

levels (Willer et al., 2013) 19 188,577 

TCH 

Global Lipids Genetics 

Consortium 

Discovery and refinement of loci associated with lipid 

levels (Willer et al., 2013) 19 188,577 

TG 

Global Lipids Genetics 

Consortium 

Discovery and refinement of loci associated with lipid 

levels (Willer et al., 2013) 19 188,577 
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Table 2-6 Results from lookup of genes associated with Mendelian forms of arrhythmias 

 

 

*Disease abbreviations 

ARVC: Arrhythmogenic right ventricular dysplasia 

BS: Brugada Syndrome 

CPVT: Catecholaminergic polymorphic ventricular tachycardia 
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DCM: Dilated cardiomyopathy 

DCM-CCD: DCM with cardiac conduction disorder 

HCM: Hypertrophic cardiomyopathy 

LQTS: Long QT Syndrome 

LVN: Left ventricular noncompaction-1 

PCCD: Progressive cardiac conduction defect 

RCM: Restrictive cardiomyopathy 

SQTS: Short QT Syndrome 

SUD/SIDS: Sudden Unexpected Death/Sudden Infant Death Syndrome 

 

These data are results from a gene-based test that tests for enrichment of common variants 

associated with SCD implemented by the 'logisitic-minsnp-gene-perm' function in FASTv1.810. 

This best single-SNP F-statistic within a gene serves as the test statistic to compute a permutation 

based p-value corrected for gene size by performing up to 1 million permutations per gene. Gene 

boundaries were defined by RefSeq gene coordinates on build GRCh37 with +/-10kb flank. The 

gene list consisted of genes associated with a variety of inherited arrythmias (details below table). 

None of the genes show significant association with SCA following multiple testing correction 

(significance threshold=9x10-4,alpha 0.05 corrected for 54 genes). 
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Table 2-7 Results from GWAS for previously published candidate loci for SCA 
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Table 2-8 GRSA estimates for traits on SCA and CAD 
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Table 2-9 Comparison of QT and QRS interval GRSAs for SCA 
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Chapter 3 Association of Mitochondrial DNA levels with Frailty and 

All-Cause Mortality 

 

3.1 Introduction 

Age-related declines in mitochondrial function have long been hypothesized to underlie multiple 

biological changes that increase vulnerability to multiple disease states, functional and cognitive 

decline, and ultimately, mortality44–46. The mechanisms contributing to age-related mitochondrial 

functional change encompass multiple domains, including declines in energy (ATP) 

production/energy reserves47,48, increased free radical production49, altered rates of apoptosis and 

mitophagy, and altered fusion/fission50. Alterations in these crucial intracellular processes lead to 

dysfunctional cells, altered tissues, and increased risk of disease 51–53. The link between age-

related changes in mitochondrial function and altered phenotypes and disease states is bolstered 

by the observation that mice with deficiency of the proofreading mechanism of the mitochondrial 

polymerase display a premature aging phenotype54,55 and that mitochondrial dysfunction is a core 

component of several neurodegenerative disorders in humans56–58.  

The role of mitochondrial DNA (mtDNA) in aging and late life decline has also been studied, 

with evidence that mtDNA variants modulate risk of several age-associated diseases53,56,59–62. We 

have previously implicated a specific mitochondrial genetic variant in frailty63, a clinical 

syndrome prevalent in older individuals characterized by broad decline in resilience and increased 

risk for disability and all-cause mortality64. The variant was located in the control region (D-

loop), which plays a key role in mitochondrial replication, and suggests the possibility of 

affecting the levels of mitochondrial DNA.  We therefore hypothesized that mtDNA copy 

number, which is a marker of mitochondrial replication and cellular energy reserves, with low 

levels of mtDNA copy number likely reflecting mitochondrial depletion, is likely to play an 

important role in the aging process. While the role of mitochondrial depletion in severe disorders, 

such as MDS (mtDNA depletion syndrome) is well established, its effect on aging and mortality 

in the general population is less understood. Several studies have examined the correlation 

between age and mtDNA copy number with often ambiguous and conflicting results65–68,11. To 

address this gap in the literature, we examined mtDNA copy number in two large multi-center 

prospective studies—the Cardiovascular Health Study (CHS) and the Atherosclerosis Risk in 

Communities (ARIC) study—in a total of 16,401 samples of European and African descent.  
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3.2 Methods  

3.2.1 Ethics  

The ARIC and CHS studies have been approved by the Institutional Review Boards (IRB) of all 

participating institutions, including the IRBs of the University of Minnesota, Johns Hopkins 

University, University of North Carolina, University of Mississippi Medical Center, Wake Forest 

University, University of Pittsburgh, and University of California Davis, and all participants 

provided written informed consent. 

3.2.2 Participants 

CHS is a prospective multi-center study comprising of 5,888 older individuals aged 65 years and 

above (15.69% African American, 42.37% female), drawn from 4 US communities69,70 with 

initial enrollment in 1989-90, and follow-up recruitment of a minority cohort comprising 687 

participants in 1992-93. Participants were followed by annual telephone interviews and clinic 

visits through 1998-99 and semi-annual telephone interviews subsequently. Mortality information 

was obtained via contact with next of kin, death certificates, autopsy and coroner’s reports. DNA 

was extracted by salt precipitation following proteinase K digestion of the buffy coat from whole 

blood. Only participants self-identifying as white or black were included in this analysis. 

Participants were included only if they consented to use of their DNA for studies of 

cardiovascular disease outcomes. DNA used for qPCR assay (see below) came from the first visit 

the participant entered the study.  

ARIC is a prospective study of 15,792 individuals, 45-65 years of age, from 4 different US 

communities71. The first visit was carried out in 1987-89, with four subsequent in-person visits 

and annual telephone interviews after initial visit. DNA was isolated from whole blood using the 

Gentra Puregene Blood Kit (Qiagen)72. Mortality was tracked via telephone follow-ups, 

hospitalization records, state records, and the National Death Index. Cause of death was 

determined using cause of death on the death certificate (ICD-9 code). Only samples with a self-

reported race of white or black were included in this analysis. DNA used for array-based 

genotyping was isolated at different visits, with majority of the samples coming from visit2 

(1990-92) (detailed breakdown in Table 3-4).  

3.2.3 Frailty and SF-12 metrics 

We operationalized frailty in CHS participants as detailed previously by Fried et al.64. Briefly, 

participants were scored on a 0-1 scale (1 being at risk and 0 being not at risk for frailty) for 5 
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characteristics—slowness, exhaustion, shrinking, weakness, and low activity, and classified as 

robust (0 characteristics), pre-frail (1 or 2 characteristics), or frail (>=3 characteristics).  

Frailty was not measured in ARIC. However the SF12v2 questionnaire, one of the most 

commonly used measures of general health, was administered at visit 5 (2011-13). The SF12 

physical and mental component scores (PCS and MCS respectively) are determined from self-

reported answers on physical issues, pain, energy levels, and mental wellness73. The scores are on 

a 0-100 scale with higher scores corresponding to higher physical or mental wellness.   

3.2.4 MtDNA Copy Number qPCR Assay  

mtDNA copy number in the CHS samples was determined using a multiplexed real time 

quantitative polymerase chain reaction (qPCR) utilizing ABI TaqMan chemistry (Applied 

Biosystems). Each well consisted of a VIC labeled, primer-limited assay specific to a 

mitochondrial target (ND1) (Assay ID Hs02596873_s1), and a FAM labeled assay specific to a 

region of the nuclear genome selected for being non-repetitive with no known alternative splicing 

events (RPPH1) (Assay ID Hs03297761_s1). Each sample was run in triplicate on a 384 well 

plate in a 10µL reaction containing 20ng of DNA. The cycle threshold (Ct) value was determined 

from the amplification curve for each target by the ABI Viia7 software. A Ct value was 

computed for each well as the difference between the Ct for the RPPH1 target and the Ct for the 

ND1 target, as a measure of mtDNA copy number relative to nuclear DNA copy number. For 

samples with standard deviation of Ct values of the three replicates > 0.5, an outlier replicate 

was detected and excluded from analysis. If sample Ct standard deviation remained >0.5 post 

replicate exclusion, the sample was excluded completely from further analyses. Replicates with 

values of Ct for ND1 >28, Ct for RPPH1 >5 standard deviations from the mean, or Ct value >3 

standard deviations from the mean, were removed from each plate. Additionally, we observed a 

linear increase in Ct value by order in which the replicate was pipetted onto the plate. This 

effect was adjusted for using a linear regression, and Ct values corrected for pipetting order 

were used for all subsequent analyses.  

3.2.5 MtDNA Copy Number from Microarray Intensities 

13,444 ARIC samples were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. 

Genotypes were called using Birdseed (version 2) as implemented in the Affymetrix Power Tools 

software74. In addition to determining genotype calls, the software was used to compute probe 

intensities for each of the two alleles at every SNP (A and B alleles).  
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To determine mtDNA copy number, data for 119 mitochondrial SNPs were collected across all 

samples. For mitochondrial SNPs, the software assumes haploidy and hence all genotype calls are 

homozygous. At a SNP with genotype call AA, probe intensity corresponding to the A allele is 

considered the true signal, and probe intensity for B allele is considered background. At each 

SNP, the overall signal intensity was calculated as the absolute difference of the probe intensities 

of the two alleles (|A-B|). The median probe intensity difference across all mitochondrial SNPs 

was taken as a measure of the relative mtDNA copy number for each sample.  

Additionally, we generated principal components (PC) on probe intensities for both alleles of a 

randomly chosen subset of 1,000 autosomal SNPs. PCs generated from these data allow for 

correction of both technical artifacts (plate and batch effects) and population substructure. The 

mtDNA copy number was adjusted for the first 20 PCs, age, sex, and collection site using a linear 

model. Standardized residuals generated from this model were used for all subsequent analyses.  

3.2.6 Statistical Analysis 

All statistical analyses were performed using R version 3.0.1. For the qPCR based assay, across 

plate normalization was performed using quantile normalization as implemented in the R package 

‘qpcrNorm’75. Plate layouts used were non-random with respect to race, requiring all analyses 

post-normalization and post-removal of plate effects to be stratified by race. Mean ΔCt value was 

calculated per sample and adjusted for age, sex and collection site using a linear regression 

model. Standardized residuals were used as the measure of mtDNA copy number. Effect 

estimates are expressed in terms of standard deviation units (sd) of mtDNA copy number. In 

CHS, this corresponds to ~0.82 ΔCt units following across plate normalization (sd for 

whites=0.82 [mean=6.64]; sd for blacks=0.83 [mean=6.63]). In ARIC, the raw probe intensities 

obtained from the array-based method used to determine copy number, cannot be interpreted 

without adjusting for PCs accounting for plate and batch artifacts.  

All analyses were conducted initially in CHS and validated in ARIC.  The frailty characteristics 

were treated as binary variables and overall frailty was treated as an ordered variable (0, 1, 2). 

The association with mtDNA copy number was determined using a logistic regression model for 

the individual frailty characteristics, and a proportional odds model for overall frailty. Prevalence 

ratios for the individual frailty components were estimated using marginal standardization of the 

logistic models as implemented by the ‘prLogisticBootMarg’ function in R package ‘prLogistic’ 

v1.276.   
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To assess the association of mtDNA copy number with mortality, a Cox proportional-hazards 

model was used, adjusting for age, sex, and collection site, as the baseline model. A secondary 

multivariate mortality analysis was run including age, sex, collection site, body mass index 

(BMI), high-density lipoprotein (HDL), total cholesterol, prevalent hypertension (defined by 

elevated systolic or diastolic blood pressure, or hypertension medication intake), and smoking 

status as covariates, and excluding participants with prevalent coronary heart disease (CHD), 

diabetes, or history of myocardial infarction (MI). 

For our analyses, baseline was defined as time at which the blood sample that was used to 

determine mtDNA copy number was collected. Age, follow-up time, and other variables were 

adjusted accordingly. Samples for which time of DNA extraction was unavailable were excluded.  

Quintiles were calculated using residuals from age, sex, collection site (for both cohorts), and PCs 

(for ARIC) adjusted mtDNA copy number. The hazard ratios from both cohorts were pooled 

using a random effects, inverse-variance weighted meta-analysis, as implemented by the 

‘metagen’ function in R package ‘meta’ (version 3.1-2).  

3.2.7 Sample Exclusions 

In CHS, a total of 996 samples were excluded from the final analysis, primarily due to 

insufficient amount of DNA to run the assay (442 samples) and concerns about data quality (554 

samples). In ARIC, array genotyping data was available on 13,444 of the 15,792 total 

participants. Further, sample exclusions based on sample quality and relatedness have been 

previously described77. Additionally, samples not self-identifying as either black or white, in 

either cohort were excluded (39 participants in CHS and 48 in ARIC).  Differences between 

included and excluded participants are available in Table 3-5. 

3.3 Results  

3.3.1 Sample characteristics 

The baseline characteristics of the 4,892 participants (4108 whites, 784 blacks) from the CHS 

cohort included in the current analysis after sample exclusions and stratified by age-,sex- and 

collection site- adjusted quintiles, are detailed in Table 3-1 (Also see Table 3-3 for unadjusted 

quintiles). We observed an inverse association between mtDNA copy number and age at time of 

DNA collection in both racial groups—a reduction of 0.14 (95% CI, 0.08-0.19, P<0.001) and 

0.19 (95% CI, 0.06-0.31, P=0.002) sd over 10 years in whites and blacks, respectively. 

Additionally, we noted a higher mtDNA copy number in women relative to men, (OR=1.21 for 

women relative to men, 95% CI, 1.14-1.28, P<0.001) in whites, with a consistent, but not 
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statistically significant effect in blacks (OR=1.14 for women relative to men, 95% CI, 0.99-1.31, 

P=0.08).  

We used 11,509 samples (9,025 whites, 2,484 blacks) from ARIC to validate our initial findings 

from CHS (Table 3-1 and 3-3). As in CHS, we observed an inverse association of mtDNA copy 

number with baseline age with a reduction of 0.11 sd (95% CI, 0.07-0.14, P<0.001) in whites and 

0.11 sd (95% CI, 0.04-0.17, P=0.001) in blacks, over a 10 year period, and a significantly higher 

mtDNA copy number in women relative to men (whites OR=1.52 for women relative to men, 

95% CI 1.46-1.59, P<0.001; blacks OR=1.42 for women relative to men, 95% CI 1.31-1.54, 

P<0.001). 

3.3.2 Frailty  

In a race-stratified analysis of samples from CHS, we observed a statistically significant 

association between lower mtDNA copy number and frailty, adjusted for age and sex, in whites 

(OR 0.91, 95% CI, 0.85-0.97, P=0.005). Furthermore, this association was not driven by any 

single component of the frailty phenotype, with three out of five frailty characteristics showing 

statistically significant association with lower mtDNA copy number in whites (Figure 3-1), and a 

similar trend of association for the remaining characteristics. While we observed this association 

in whites, we see no association of mtDNA copy number on any of the frailty characteristics in 

CHS blacks.   

While frailty characteristics were not measured in ARIC participants, the latest visit (2011-2013) 

included the SF12v2 mental component score (MCS) and physical component score PCS. Of the 

ARIC participants included in our study 4,961 (4,046 whites and 915 blacks) participants were 

interviewed at visit 5 with a mean MCS of 46.35 in whites and 43.94 in blacks. In white 

participants from ARIC we observe a significant association between higher PCS, adjusted for 

age at visit 5, sex, and collection site, and mtDNA copy number, with an increase of 0.51 PCS 

units per sd unit increase in mtDNA copy number (95% CI, 0.17-0.84, P=0.003). The same model 

in blacks showed a similar association with an increase of 0.76 PCS units per sd unit increase in 

mtDNA copy number (95% CI, 0.02-1.50, P=0.04). Secondary analyses adjusting for additional 

covariates--prevalent diabetes, CHD or hypertension at time of DNA collection—showed the 

same trend of association between high PCS score and mtDNA copy number with effect 

estimates of 0.42 PCS units in whites (95% CI, 0.09-0.75, P=0.01), and 0.83 PCS units in blacks 

(95% CI, 0.11-1.56, P=0.02).  
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3.3.3 Mortality 

A total of 2,961 deaths (60.4% samples) were observed in the CHS participants during 26,770 

person-years of follow-up. In an age, sex, and collection site adjusted, race-stratified analysis, we 

observed a statistically significant association between lower mtDNA copy number and mortality, 

with overall hazard ratio of 1.39 (95% CI, 1.23-1.58, P<0.001) for the lowest quintile of copy 

number relative to the highest quintile in whites (Figure 3-2; Model 1 from Table 3-2). A more 

stringent multivariate model adjusted for age, sex, collection center, BMI, HDL, total cholesterol, 

prevalent hypertension, and smoking status, and excluding all samples with prevalent CHD, 

diabetes or previous history of MI, yielded a hazard ratio of 1.33 (95% CI, 1.13-1.56, P<0.001) 

(Model 2 from Table 3-2). When stratified by sex, we observed no significant difference in the 

inverse association between mtDNA copy number and mortality in men and women (P for 

interaction=0.80). As in frailty, we fail to observe a statistically significant association between 

mtDNA copy number and risk for mortality in CHS blacks. (Table 3-2). 

We observed a similar inverse association of mtDNA copy number with mortality in ARIC 

(3,362 deaths, 188,377 person-years of follow-up), as seen in CHS, with a hazard ratio of 1.63 

(95% CI, 1.44-1.84, P<0.001) for the lowest quintile of mtDNA copy number relative to the 

highest quintile, in whites in an age, sex, and center adjusted analysis (Table 3-2). We also 

observed a significantly higher risk of mortality in blacks with hazard ratio of 1.47 (95% CI, 

1.19-1.81, P<0.001) for the lowest quintile of copy number relative to the highest quintile. In the 

subsequent multivariate analyses, low copy number remained strongly associated with increased 

risk for mortality in whites (hazard ratio=1.38, 95% CI, 1.19-1.61, P<0.001). We observe a 

similar, albeit not statistically significant, inverse association in blacks (hazard ratio=1.25, 95% 

CI 0.95-1.66, P=0.056).  

An inverse-variance weighted meta-analysis of race-stratified results from both cohorts for the 

age, sex and collection site adjusted effect of the lowest quintile relative to the highest quintile on 

mortality, yielded an overall hazard ratio of 1.47 (95% CI, 1.33-1.62, P<0.001), with no 

significant heterogeneity between the subgroups (P=0.26) (Model1 from Figure 3-3). A 

subsequent meta-analysis of the results from a more stringent multivariate model, gave a meta-

analyzed hazard ratio of 1.32 (95% CI, 1.19-1.46, P<0.001) (Model2 from Figure 3-3). 

Additionally, we evaluated the associations of mtDNA copy number with cause-specific 

mortality, and observed a consistent association of low mtDNA copy number in death due to 

diseases of the circulatory system, respiratory system or neoplasms (Figure 3-4). Heterogeneity 
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between effect estimates from cause of death subgroups was determined to be non-significant 

(P=0.21) using a random-effects model.  

3.4 Discussion 

We demonstrate that low mtDNA copy number is strongly associated with age, sex, and frailty, 

and an independent predictor of mortality in 16,401 samples from two large multi-ethnic cohorts, 

even after adjustment for traditional mortality risk factors and exclusion of prevalent disease 

states associated with high risk of mortality. The secondary analyses excluding participants with 

prevalent disease states at baseline allows us to eliminate the concern that these conditions lead to 

altered mtDNA copy number and hence drive the association with mortality (i.e. reverse 

causation).  Furthermore, the fact that we see consistent effect estimates from both cohorts using 

independent methods of ascertaining the mtDNA copy number demonstrates the robustness of our 

findings. While the qPCR-based metric is well established in the literature, we believe that the 

measure derived from >100 mitochondrial markers on the genotyping array is likely to be a more 

accurate measure of copy number. Also given that majority of modern large-scale genotyping 

arrays include mitochondrial markers, this measure can be easily generated from other large 

cohorts with genotyping data.   

Our results demonstrating a strong inverse association between age and mtDNA copy number are 

in line with previous studies that have shown decreased mtDNA copy number with age in 

different tissue types67,11. Recently, Mengel-From and colleagues report a marginal association 

between high mtDNA copy number, and better health and survival in 1,067 Danish samples78. In 

a much larger sample size from two independent cohorts, we replicate their findings on the 

protective effect of high mtDNA copy number with respect to survival and increased energy 

reserves. Additionally, our data indicating a higher mtDNA copy number in women relative to 

men across all the subgroups might suggest that a mito-protective effect may account for the 

disparity in life expectancy between men and women.  

Frailty has been previously shown to be predictive of both incident disability and mortality64. 

While there has been considerable debate about what drives the onset of frailty, our findings add 

to the evidence of a role for mitochondria in this process. Given that energy utilization forms a 

core feature of the phenotype, and low copy number is associated with overall frailty and several 

of its components, it is not surprising that mtDNA levels might form part of the biological 

component of the phenotype. While we were unable to assess the frailty phenotype in both 

cohorts, in ARIC we show a striking association between the physical component score of the SF-

12 metric, and mtDNA copy number measured 15-20 years prior. Interestingly, several groups 



 56 

have published a link between mtDNA and cognitive function in the elderly78–80, however we do 

not observe any association between mtDNA copy number and the cognitive component of the 

SF-12 (P for both race groups > 0.4) in ARIC participants.   

Several limitations to the study should be noted. First, the mtDNA copy number used in this 

study is derived from a single time-point, and thus does not take into account the dynamic nature 

of mtDNA copy number during the life of an individual. Second, while mtDNA copy number has 

been associated with ATP production rate11, it is an indirect measure, and further, does not 

account for acquired mutational burden-a mechanism that forms a critical part of the 

mitochondrial theory of aging. Third, while we are able to comment on differences between men 

and women with respect to mtDNA copy number, we cannot do so for race due to technical 

limitations of study design (see Methods Statistical analysis). This is an important issue, given the 

significant disparities in health outcomes in the U.S. between whites and blacks81.  Finally, we 

were measuring mtDNA copy number in DNA derived from whole blood, which is not 

necessarily the relevant tissue with respect to many aging-related diseases.  

In conclusion, while mitochondria have a central role in energy production, and thus the 

biological hypothesis for involvement in aging related decline (with energy utilization serving as 

a core feature of the phenotype) is readily apparent, this has been a neglected area of research 

with respect to general health outcomes.  With recent changes in technology, including the ability 

to readily assess mtDNA copy number from existing genotyping array data, this is likely to 

become a rapidly emerging area of research. We highlight that a single, easily implemented, 

measure of mtDNA copy number, isolated from whole blood decades before the event of interest 

(death), is predictive of physical function later in life and all-cause mortality.  
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3.5 Figures for Chapter 3 

Figure 3-1 Frailty components in CHS 

 

Association between age, sex and collection site adjusted mitochondrial copy number and frailty 

components in white samples (top panel) and black samples (bottom panel) from CHS. MtDNA 

copy number is expressed in terms of standard deviation units. Participants were scored as being 

at risk (1) or not at risk (0) for each characteristic of frailty. Overall frailty was scored in terms of 

number of characteristics that each participant was at risk for—robust 0 characteristics, pre-frail 

1-2 characteristics and frail >2 characteristics. Effect size estimates are reported as prevalence 

ratios (details in Methods).
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Figure 3-2 Kaplan-Meier survival curves by quintiles of mtDNA copy number 

 

 

Kaplan-Meier estimates for all-cause mortality by quintile of mtDNA copy number were 

calculated for both race groups in CHS and ARIC. Table indicates the total number of people in 

the model at each time point.
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Figure 3-3 Meta-analysis of effects mtDNA copy number on mortality 

 

Effects of highest copy quintile of copy number relative to lowest quintile from race stratified 

analyses in each cohort were meta-analyzed using an inverse-variance weighted approach.   

Model 1 was the baseline model adjusted for age, sex and collection site.  Model 2 was more 

stringent model that included age, sex, collection site, BMI, HDL, total cholesterol, hypertension, 

and smoking status as covariates, and excluded samples with prevalent CHD, diabetes or previous 

history of MI.
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Figure 3-4 Effects of mtDNA copy number on cause-specific mortality 

 

Hazards ratio reflect effect of lowest quintile of mtDNA relative to highest quintile on survival. 

Baseline models were adjusted for age, sex, and collection site. Heterogeneity between estimates 

of HR for subgroups of cause of death was evaluated using a random effects model. Diseases of 

the circulatory system were defined by ICD9 codes 390-459, neoplasms by 140-239 and diseases 

of the respiratory system by 460-519. 
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3.6 Tables for Chapter 3 

Table 3-1 Sample characteristics stratified by age-, sex-, and collection site-adjusted quintiles 

 

Data are presented as Mean±SD. Quintiles were calculated from age, sex, collection site adjusted 

mtDNA copy number (details in Methods). ‘Pval for trend’ is the pvalue for effect of trait on age, 

sex, collection site standardized mtDNA copy number as a continuous variable.  

 CHS-Whites 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Pval  

No. of samples 821 822 821 822 822   

Age (in yrs) 72.4 ± 5.4 72.9 ± 5.6 72.3 ± 5.3 72.6 ± 5.6 72.3 ± 5.4   

Number of males--no (%) 351 (42.7) 380 (46.2) 382 (46.5) 356 (43.3) 347 (42.2)   

Follow up time (in yrs) 11.6 ±4.66 11.7 ± 4.78 12.06 ± 4.99 12.41 ± 4.93 12.67 ± 5.04 <0.001 

No. of deaths--no (%) 551 (67.1) 539 (65.6) 492 (60.0) 491 (59.7) 458 (55.7) <0.001 

Mean age at death (in yrs) 82.85 ± 5.39 83.59 ± 5.42 83.04 ± 5.50 83.88 ± 5.48 83.69 ± 5.72 0.002 

       

 CHS-Blacks 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Pval  

No. of samples 156 157 156 157 157   

Age (in yrs) 73.1 ± 6.1 73.0 ± 5.3 72.6 ± 5.6 72.6 ± 6.0 73.1 ± 5.8   

Number of males--no (%) 68 (43.6) 59 (37.6) 48 (30.8) 59 (37.6) 68 (43.3)   

Follow up time (in yrs) 9.853 ± 4.46 10.59 ± 4.28 10.2 ± 4.43 10.81 ± 4.26 10.41 ± 4.39 0.3 

No. of deaths--no (%) 96 (61.5) 79 (50.3) 88 (56.4) 81 (51.6) 85 (54.1) 0.47 

Mean age at death (in yrs) 81.97 ± 6.02 82.13 ± 5.84 81.81 ± 5.79 81.86 ± 6.21 82.08 ± 6.12 0.87 

       

 ARIC-Whites 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Pval 

No. of samples 1804 1804 1805 1804 1805   

Age (in yrs) 58.4 ± 6.0 58.0 ± 5.9 58.1 ± 5.9 58.2 ± 6.0 58.1 ± 6.1   

Number of males--no (%) 863 (47.8) 844 (46.8) 837 (46.4) 829 (46) 869 (48.1)   

Follow up time (in yrs) 15.82 ± 4.50 16.69 ± 4.46 16.59 ± 4.84 17 ± 4.83 16.95 ± 5.62  <0.001 

No. of deaths--no (%) 628 (34.8) 468 (25.9) 496 (27.5) 423 (23.4) 419 (23.2) <0.001 

Mean age at death (in yrs) 71.71 ± 6.54 72.44 ± 6.54 72.95 ± 6.47 72.32 ± 6.64 72.78 ± 7.05 0.01 

       

 ARIC-Blacks 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Pval 

No. of samples 496 496 497 496 497   

Age (in yrs) 57.5 ± 5.9 57.2 ± 6.0 57.2 ± 5.8 57.7 ± 6.0 57.2 ± 6.1   

Number of males--no (%) 182 (36.7) 181 (36.5) 191 (38.4) 190 (38.3) 177 (35.6)   

Follow up time (in yrs) 14.67 ± 5.16 15.46 ± 5.22 15.66 ± 5.43 15.84 ± 5.63 16.12 ± 6.15 <0.001 

No. of deaths--no (%) 213 (42.9) 193 (38.9) 188 (37.8) 174 (35.1) 158 (31.8) <0.001 

Mean age at death (in yrs) 68.87 ± 6.48 69.64 ± 6.82 70.37 ± 6.30 70.54 ± 6.66 70.35 ± 7.45 0.1 
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Table 3-2 Lower mtDNA copy number is associated with increased risk for all-cause mortality 

  Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5  Overall Pval for trend 

CHS                

Whites Model1 821(551) 822(539) 821(492) 822(491) 822(458) 4109(2532)  

  
1.39 

(1.23-1.58) 

1.29  

(1.14-1.46) 

1.17  

(1.03-1.33) 

1.09  

(0.96-1.23) 
1 

0.89  

(0.85-0.92) 
<0.001 

 Model2 509(302) 590(359) 586(314) 624(339) 610(301) 2902(1607)   

  
1.33  

(1.13-1.56) 

1.38  

(1.18-1.61) 

1.17  

(1-1.37) 

1.09  

(0.93-1.27) 
1 

0.89  

(0.85-0.94) 
<0.001 

Blacks Model1 156(96) 157(79) 156(88) 157(81) 157(85) 784(429)   

  
1.25  

(0.93-1.68) 

0.92  

(0.68-1.26) 

1.21  

(0.9-1.63) 

0.94  

(0.7-1.28) 
1 

0.96  

(0.87-1.05) 
0.35 

 Model2 84(41) 100(48) 99(47) 102(49) 89(44) 469(227)   

  
0.98  

(0.63-1.51) 

0.88  

(0.58-1.33) 

1.16  

(0.76-1.79) 

0.88  

(0.58-1.34) 
1 

1.03  

(0.9-1.19) 
0.65 

ARIC                

Whites Model1 1800(629) 1801(467) 1800(496) 1801(423) 1801(416) 9004(2431)   

  
1.63  

(1.44-1.84) 

1.18  

(1.03-1.34) 

1.28  

(1.13-1.46) 

1.02  

(0.89-1.17) 
1 

0.84  

(0.81-0.88) 
<0.001 

 Model2 1356(365) 1441(294) 1504(342) 1534(309) 1526(296) 7352(1603)   

  
1.38  

(1.19-1.61) 

1.07  

(0.91-1.25) 

1.23  

(1.05-1.44) 

1.03  

(0.87-1.2) 
1 

0.89  

(0.85-0.94) 
<0.001 

Blacks Model1 495(213) 495(195) 495(189) 495(173) 495(156) 2476(926)   

  
1.47  

(1.19-1.81) 

1.36  

(1.1-1.67) 

1.28  

(1.03-1.58) 

1.08  

(0.87-1.34) 
1 

0.86  

(0.8-0.91) 
<0.001 

 Model2 313(101) 334(102) 348(102) 339(93) 360(95) 1678(485)   

  
1.25  

(0.95-1.66) 

1.15  

(0.87-1.52) 

1.09  

(0.82-1.44) 

0.98  

(0.74-1.31) 
1 

0.91  

(0.83-1) 
0.04 

Numbers of events are presented as total number of subjects, followed by number of events in parentheses, for each quintile. Effect estimates are 

reported as hazards ratio for each quintile, followed by 95% confidence interval for the estimate of hazards ratio in parentheses.  
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Model 1 was the baseline model adjusted for age, sex and collection site.  

Model 2 was more stringent model that included age, sex, collection site, BMI, HDL, total cholesterol, prevalent hypertension, and smoking status 

as covariates, and excluded samples with prevalent CHD, diabetes or previous history of MI. 
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Table 3-3 Sample characteristics stratified by collection site-adjusted quintiles 
  CHS-Whites 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Pval  

No. of samples 819 822 821 822 822   

Age (in yrs) 73.0 +/- 0.2 72.8 +/- 0.2 72.5 +/- 0.2 72.2 +/- 0.2 71.9 +/- 0.2 <0.001 

Number of males--no (%) 407 (49.7) 409 (49.7) 368 (44.8) 328 (39.9) 302 (36.7) <0.001 

Follow up time (in yrs) 11.09 +/- 0.18 11.7 +/- 0.17 12.27 +/- 0.17 12.4 +/- 0.17 12.99 +/- 0.16 <0.001 

No. of deaths--no (%) 580 ( 70.8 ) 539 ( 65.7 ) 494 ( 60.2 ) 487 ( 59.3 ) 430 ( 52.3 ) <0.001 

Mean age at death (in yrs) 83.15 +/- 0.27 83.4 +/- 0.26 83.7 +/- 0.28 83.26 +/- 0.27 83.49 +/- 0.3 0.42 

       

 CHS-Blacks 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Pval  

No. of samples 156 157 156 157 157   

Age (in yrs) 74.0 +/- 0.5 73.1 +/- 0.5 72.8 +/- 0.5 72.5 +/- 0.4 72.2 +/- 0.4 0.002 

Number of males--no (%) 74 (47.44) 53 (33.76) 52 (33.33) 62 (39.49) 61 (38.85) 0.18 

Follow up time (in yrs) 9.86 +/- 0.34 10.19 +/- 0.36 10.15 +/- 0.35 10.98 +/- 0.34 10.67 +/- 0.35 0.03 

No. of deaths--no (%) 94 ( 0.6026 ) 87 ( 0.5541 ) 92 ( 0.5897 ) 73 ( 0.465 ) 83 ( 0.5287 ) 0.07 

Mean age at death (in yrs) 82.77 +/- 0.73 82.18 +/- 0.71 81.72 +/- 0.74 81.86 +/- 0.77 81.2 +/- 0.67 0.09 

       

 ARIC-Whites 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Pval  

No. of samples 1804 1805 1805 1805 1805 NA 

Age (in yrs) 58.85 +/- 0.14 58.23 +/- 0.14 58.13 +/- 0.14 57.84 +/- 0.14 57.56 +/- 0.14 <0.001 

Number of males--no (%) 896 (49.7) 853 (47.3) 845 (46.8) 814 (45.1) 835 (46.3) 0.002 

Follow up time (in yrs) 15.77+/-0.13 16.66+/-0.12 16.58+/-0.11 17.14+/-0.1 17.03+/-0.11 <0.001 

No. of deaths--no (%) 638 (35.4) 497 (27.5) 501 (27.8) 399 (22.1) 400 (22.2) <0.001 

Mean age at death (in yrs) 72.05 +/- 0.31 72.7 +/- 0.34 72.97 +/- 0.32 71.91 +/- 0.38 72.26 +/- 0.38 0.68 

       

 ARIC-Blacks 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Pval  

No. of samples 496 497 496 497 497 NA 

Age (in yrs) 57.99 +/- 0.28 

57.28 +/- 

0.27 57.3 +/- 0.27 57.18 +/- 0.27 56.64 +/- 0.26 0.002 

Number of males--no (%) 188 (37.9) 178 (35.8) 193 (38.9) 185 (37.2) 177 (35.6) 0.68 

Follow up time (in yrs) 14.5+/-0.28 15.44+/-0.25 15.77+/-0.24 15.87+/-0.23 16.32+/-0.23 <0.001 

No. of deaths--no (%) 225 (45.4) 195 (39.2) 185 (37.3) 172 (34.6) 150 (30.2) <0.001 

Mean age at death (in yrs) 69.43 +/- 0.53 

69.99 +/- 

0.54 70.21 +/- 0.52 70.09 +/- 0.61 69.89 +/- 0.63 0.8 
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Table 3-4 Detailed breakdown of time of DNA collection by cohort 

 

 

Table 3-5 Sample characteristics stratified by whether participants were included in the study. 

 

Data are presented as Mean +/- standard deviation.

	

	

 

 

 

 
 

 

 

 

 
 

CHS DNA was isolated at baseline (BL) for majority of the white participants, and at a 

subsequent visit 3 years following baseline for majority of the black participants.  

ARIC visits were carried out 2-3 years apart—visit1 (1987-89), visit2 (1990-92), visit3 (1993-

95), and visit4 (1996-98).  

	 	

CHS      

Whites BL BL + 3   

 4,104 4   

Blacks BL BL + 3   

 194 578   

ARIC     

Whites visit1 visit2 visit3 visit4 

 367 7,201 1,395 32 

Blacks visit1 visit2 visit3 visit4 

 117 1,922 398 35 

	

CHS   

 Included Excluded 

No. of samples 4,892 995 

Age at visit1 (in yrs) 72.6 +/- 5.5 74.3 +/- 6.0 

Number of males--no (%) 2,118 ( 43.3 ) 377 ( 37.9 ) 

Follow up time from visit1 (in yrs) 11.8 +/- 4.9 10.8 +/- 4.9 

No. of deaths--no (%) 2,960 ( 60.5 ) 726 ( 72.9 ) 

Prevalent CHD at visit1--no (%) 917 ( 18.7 ) 237 ( 23.8 ) 

Prevalent diabetes at visit1--no (%) 763 ( 15.6 ) 190 (19.1 ) 

Prevalent hypertension at visit1--no (%) 2,858 ( 58.4 ) 599 ( 60.2 ) 

   

ARIC   

 Included Excluded 

No. of samples 11,509 4,283 

Age at baseline (in yrs) 54.0 +/- 5.7 54.4 +/- 5.9 

Number of males--no (%) 5,166 ( 44.9 ) 1,916 ( 44.7 ) 

Follow up time from baseline (in yrs) 19.7 +/- 5.1 18.1 +/- 6.6 

No. of deaths--no (%) 3,362 ( 29.2 ) 1,548 ( 36.1 ) 

Prevalent CHD at baseline--no (%) 566 ( 5.0 ) 200 ( 4.8 ) 

Prevalent diabetes at baseline--no (%) 1,267 ( 11.1 ) 603 (14.3 ) 

Prevalent hypertension at baseline--no 
(%) 3,832 ( 33.5 ) 1,672 ( 39.3 ) 
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Chapter 4 Mitochondrial DNA copy number is a predictor of cardiovascular 

disease 

 

4.1 Introduction 

Mitochondria play a critical role in energy homeostasis as the primary site of ATP production. 

Consequently, age-dependent mitochondrial dysfunction that disrupts energy homeostasis is a hallmark of 

aging process and forms a core component of several chronic conditions, including cardiovascular disease 

(CVD). This process of energy regulation is dependent on proteins that are translated from genes in the 

mitochondrial DNA (mtDNA), a 16.7kb circular DNA molecule. mtDNA copy number (mtDNA CN) is a 

measure of the levels of mtDNA per cell that has been shown to be correlated with mitochondrial enzyme 

activities and ATP production82, establishing it as an indirect measure of mitochondrial function. From a 

practical perspective, mtDNA CN is measured using a low-cost, scalable assay and allows for rapid 

determination of mitochondrial function in large number of samples. Accordingly we and others, have 

shown a decline in mtDNA CN with age78, and have shown mtDNA CN to be a significant predictor of 

all-cause mortality83, and chronic kidney disease84 in data from longitudinal studies.  

In addition to the essential role of mitochondria in ATP production, there is increasing evidence to 

support a role for mitochondria in the initiation and progression of atherosclerotic processes. 

Atherosclerosis is the primary pathological lesion underlying cardiovascular disease and is initiated by an 

inflammatory response to damage in the endothelium. There are several lines of evidence supporting an 

pro-inflammatory role of damaged mtDNA in atherosclerosis. Circulating mtDNA molecules are known 

to activate an innate immune response following injury85. In ApoE knockout mouse models of 

hyperlipidemia, mtDNA damage has been demonstrated early in the atherosclerotic process before plaque 

formation with significant correlation between levels of mtDNA damage and extent of atherosclerosis86. 

In humans, white blood cell (WBC) mtDNA damage has been associated with high risk atherosclerotic 

plaques86. Therefore, measuring mtDNA CN in blood cells can capture important information about the 

atherosclerotic process and the development of CHD.  Here, we used two methods to determine mtDNA 

CN in DNA derived from whole blood in 20,137 individuals from the Atherosclerosis Risk in 

Communities (ARIC) study, Cardiovascular Health Study (CHS), and the Multiethnic Study of 

Atherosclerosis (MESA) study. We used these data to explore the association of mtDNA CN with 

prevalent and incident hard CVD events, and its potential utility as a novel clinical biomarker of CVD.  
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4.2 Methods 

4.2.1 Study Populations 

The Atherosclerosis Risk in Communities (ARIC) study is a prospective cohort of 15,792 individuals 

from 4 US communities71. Participants were between 45-65 years of age when at the time of recruitment 

during the first visit in 1987-89, with three subsequent visits every four years. The final visit was 

conducted in 2011-13. In addition to study visits, information on hospitalization and health outcomes was 

collected by annual telephone interviews. For this analysis, baseline was considered time at DNA, and all 

other variables were adjusted accordingly.  

The Cardiovascular Health Study (CHS) is a multicenter prospective study that focuses on studying 

cardiovascular health in older individuals, aged 65 years and above at baseline69. Following the first visit 

in 1989-90, a second round of recruitment was carried out in 1992-93 to increase minority enrolment in 

the study. Annual site visits were carried out till 1998-99 alternated with phone interviews every 6 

months. Following the last site visit, biannual telephone interviews were used to monitor general health 

and hospitalization.  

The Multiethnic Study of Atherosclerosis (MESA) study consists of 6,814 individuals in the 46-85 year 

age range who are free of prevalent cardiovascular disease at baseline (Exam1 in 2000-01)87. All 

participants are from one of four racial groups (self-identifying as White Caucasian, Black African 

American, Chinese-American or Hispanic) and were recruited from 6 centers across the US. There have 

been five in-clinic Exams, with the latest Exam in 2010-11. Additionally, participants are followed up by 

telephone interviews every 12months.   

4.2.2 CVD risk factors 

Traditional CVD risk factors were measured across all three cohorts at the baseline visit. Details for 

measurements of total cholesterol, high density lipoprotein (HDL), and blood pressure, and hypertension 

medication use for all three cohorts have been previously described. Diabetes was defined as fasting 

glucose level >=126mg/dl in accordance with the 2003 ADA Guidelines88. Smoking status was assessed 

by self-report across all three studies.  

4.2.3 Measurement of mtDNA CN 

mtDNA CN was measured using multiplexed Taqman-based qPCR assay in DNA isolated from whole 

blood from participants of the CHS study as previously described83. In participants from the ARIC and 

MESA cohorts, mtDNA CN was calculated from probe intensities of mitochondrial SNPs on the 

Affymetrix Genome-Wide Human SNP Array 6.084 using the GENVISIS software (www.genvisis.org). 

Briefly, this method uses median mitochondrial probe intensity of 25 high quality mitochondrial probes as 

a raw measure of mtDNA-CN. Data decomposition techniques (surrogate variable analysis in ARIC and 
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principal component analysis in MESA) were applied to probe intensities of 43,316 autosomal SNPs to 

adjust for technical artifacts.  

For both methods, we used a linear regression model to adjust the effect of age, sex, site, and principal 

components/surrogate variables (for array-based metric only) on raw mtDNA-CN. Studentized residuals 

from this model were used as the mtDNA-CN metric for all analyses.  

4.2.4 Outcome definition  

Analyses for prevalent disease were limited to ARIC and CHS cohorts. In our analyses, we defined 

prevalent CHD as self- or physician-reported history of MI, or history cardiac procedures (coronary artery 

bypass grafting [CABG] or coronary artery angioplasty). Prevalent stroke was defined as self- or 

physician-reported stroke at the baseline visit.  

For incident analyses across all three studies, we define coronary heart disease (CHD) as a MI or fatal 

CHD event. Incident stroke included definite/probable fatal and nonfatal outcomes following event 

adjudication. Incident CVD events included both incident CHD and stroke.  

The event adjudication process in CHS89, ARIC90, and MESA87 has been previously published, and 

broadly consisted of an expert committee review of hospital records, telephone interviews, and the 

National Death Registry. 

4.2.5 Statistical Analyses 

All statistical analyses were performed using R version 3.2.2. A multivariable logistic model was used to 

model the effect of mtDNA CN on prevalent outcomes (CHD, stroke, and CVD). To assess the effect of 

mtDNA CN on incident disease (incident and fatal CHD, stroke and CVD) we used Cox regression, 

excluded participants with prevalent disease at time of DNA collection. The baseline models for both 

prevalent and incident disease included age, sex, center, total cholesterol levels, HDL cholesterol levels, 

systolic blood pressure, hypertension medication use, current smoking and diabetes status as covariates. 

Secondary analyses for incident outcomes were conducted excluding all participants with prevalent CVD, 

AF and heart failure. 

10 year CVD risk was calculated using the Pooled Cohort Equations (PCE) from the 2013 AHA/ACC 

Guideline on Assessment of Cardiovascular Risk91. To incorporate mtDNA CN in the risk score, we used 

Cox regression to compute race and sex stratified survival curves in participants from ARIC with the 

mtDNA CN and other covariates included in the PCE. Discriminative ability of the risk scores was 

compared using the Harrell’s C statistic. P-value for difference in the C-statistics was obtained by 

bootstrapping as implemented by the function ‘censboot’ in the R package ‘boot’92.  
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4.3 Results  

4.3.1 Sample characteristics 

The baseline characteristics of the 20,137 participants from the three participating studies--Cardiovascular 

Health Study (CHS), the Atherosclerosis Risk in Communities (ARIC) and the Multi-Ethnic Study of 

Atherosclerosis (MESA), are detailed in Table S1 stratified by age, sex, and collection adjusted quintiles 

of mtDNA CN. The mean age of participants (55.2% female) across the studies was 62.4 years, with 

1,707 participants in CHS and ARIC diagnosed with CVD at baseline. 7,636 participants were on 

hypertension medication, 2,830 participants had diabetes, and 3,750 participants identified as current 

smokers at baseline across the three studies. Over a mean follow-up time (±SD) of 13.7(±5.9) years, 

3,572 participants had hard CVD events (MI, fatal CHD, and nonfatal and fatal stroke) (2,493 CAD and 

1,737 stroke).  

4.3.2 Prevalent disease 

We examine the association of mtDNA CN with prevalent disease in race-stratified analyses adjusting for 

age, sex, collection site and traditional CVD risk factors—total cholesterol levels, HDL levels, systolic 

blood pressure, current smoking status, hypertension medication use, and prevalent diabetes. In data from 

self-identified white and black participants from ARIC and CHS, mtDNA CN is associated with prevalent 

CHD in 3 of 4 sub-groups (meta-analysis OR [95% CI]=0.85 [0.79-0.89], P<0.001) (Figure 4-1, Table 4-

1). Focusing on prevalent stroke, lower mtDNA is significantly associated with the outcome in the CHS 

whites (OR [95% CI]=0.76 [0.64-0.90], P=0.002), with a consistent, albeit not statistically significant, 

direction of effect across the three other subgroups. Combining these phenotypes to examine the effect of 

mtDNA-CN on prevalent CVD, low mtDNA CN is associated with prevalent CVD (meta-analysis OR 

[95% CI]=0.87 [0.80-0.89], P<0.001). We also note that in analyses comparing the effect estimates of 

mtDNA CN on prevalent CVD in white participants from CHS and ARIC, CN has a significantly larger 

effect on prevalent CVD in CHS compared to ARIC (OR in CHS=0.73 vs ARIC=0.89, P for 

difference=0.03).  

4.3.3 Incident disease 

Baseline levels of mtDNA CN are associated with significantly increased risk of CHD and CVD events in 

participants from the ARIC cohort (Figure 4-2, 4-3). In contrast to the effect of mtDNA CN on prevalent 

disease in CHS, mtDNA CN is not a significant predictor of CHD in white participants (HR [95% 

CI]=0.95 [0.90-1.01], P=0.12), but has a significant effect in black participants (HR [95% CI]=0.85 [0.74-

0.97], P=0.02) (Figure 4-3).  

We then examine the effect of mtDNA CN on incident stroke in these data. While there is a nominal 

association between mtDNA CN and stroke in the ARIC whites (HR [95% CI]=0.84[0.77-0.92], 

P<0.001), this effect is not significant in any of the other subgroups tested.   
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From overall metaanalysis of 18,200 participants without prevalent analysis at baseline, we estimate that 

participants in the lowest quintile of mtDNA CN have 44% increased risk for CVD relative to participants 

in the highest quintile of copy number (Figure 4-5). 

4.3.4 Age mediated effect of mtDNA CN on CVD 

There are significant differences between the estimates of mtDNA CN obtained from ARIC and CHS 

whites, for both prevalent and incident disease. Given that the difference in the age distribution between 

the cohorts (mean [range] for ARIC =57.9 years [44.9-74.1] versus CHS=72.6 years [65.0-100.0]) is a 

major source of variation between the studies, we hypothesize that the effect of CN on disease is 

attenuated by age. The MESA cohort (mean age [range] =62.8 years [44-84]) includes participants that 

span the age distribution of both cohorts, and provides an ideal population to test our hypothesis. Since 

the MESA study design excludes participants with prevalent CVD at baseline, we limit our analysis to 

incident disease with two subgroups—young (participants younger than 65 years at baseline), and old 

(participant 65 years or older). While there is no statistical difference in effect estimates from both the 

subgroups, in both race groups across the three incident outcomes (CHD, stroke and CVD), there is a 

consistent trend of mtDNA CN having a larger effect in the young subgroup versus the older subgroup 

(Figure 4-4).  

4.3.5 mtDNA CN improves risk discrimination and reclassification in ARIC  

The recently released 2013 AHA/ACC Guidelines on the Assessment of Cardiovascular Risk provide 

coefficients for calculation of 10-year atherosclerotic CVD (ASCVD) risk in white and black participants. 

To evaluate the potential of mtDNA CN as a clinically informative predictor of CVD, we incorporate 

mtDNA CN in the 2013 AHA/ACC Pooled Cohort Equations (PCE) and generate a corresponding 

mtDNA CN+PCE CVD risk score. The effect of mtDNA CN on risk discrimination was evaluated by 

comparing the area under the receiver operating curves for the PCE, and mtDNA CN + PCE risk scores. 

In white participants from the ARIC cohort, adding mtDNA CN improved risk discrimination for CVD 

events, as measured by a change in Harrell’s C statistic, by 0.014 units (95% CI from 

bootstrapping=0.0064-0.018).  

Additionally, we assess the effect of the mtDNA CN on risk classification by the two metrics in ARIC 

participants who meet the risk evaluation criteria (participants free of type 2 diabetes, heart failure or 

angina at baseline, no previous TIA or CVD history, LDL levels >70mg/dl and <=190mg/dl). In the 

overall population, adding mtDNA CN to the PCE improves risk reclassification for CVD events, 

measured by continuous net reclassification index (NRI), by 21.2% (95% CI=10.92-31.52%, P<0.001) 

(Table 4-4). The guidelines specify 5% and 7.5% as two actionable risk cutoffs for therapy. Accordingly, 

a categorical NRI that quantifies reclassification across the 0-5%, 5-7.5% and >7.5% risk score categories 

in this population is 4.02% (95% CI=0.19-7.86%, P=0.04). When we stratify the outcomes as CHD or 
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stroke events, the reclassification effect for CHD (continuous NRI [95% CI]=26.36% [13.88-38.84%], 

P<0.001) is significant and larger than the effect on stroke (continuous NRI [95% CI]=11.91% [-4.46-

28.19%], P=0.15).  

4.4 Discussion  

We explore the role of mtDNA CN in cardiovascular disease in 20,137 self-identified white and black 

participants from the ARIC, CHS and MESA studies. We show that mtDNA CN is inversely associated 

with prevalent CVD in 15,093 participants from the ARIC and CHS cohorts. We establish mtDNA CN as 

a predictor of incident CVD in ARIC cohort and in metaanalysis of data from 18,200 participants, without 

prevalent CVD, from the three studies. Finally, we demonstrate potential for mtDNA CN as a clinical 

useful predictor of CHD in improving risk prediction and risk reclassification according to the 2013 

AHA/ACC Guidelines for ASCVD risk prediction. 

While an association between prevalent CHD and mtDNA CN has been previously reported in a study 

with smaller size93, to our knowledge this is the first time that mtDNA CN has been shown to be a 

predictor of incident CVD. Comparing the extremes of our study population, participants in the lowest 

quintile of copy number have a 44% increased risk of CVD compared to participants in the highest 

quintile of mtDNA CN. In analyses stratifying the events as CHD or stroke, we observe that the effect of 

mtDNA CN on incident CHD is larger than the effect on incident stroke (HR for Q1 relative to Q5 for 

CHD=1.51; HR for stroke=1.28). Biologically, there are two major categories of stroke events, ischemic 

and hemorrhagic stroke, that have different underlying pathologies that are required to precipitate the 

event leading to more heterogeneity in the stroke phenotype.  

While this study is not designed to answer questions about the mechanism by which levels of mtDNA 

could affect CVD risk, our results are in line with evidence supporting a role of mitochondria in 

cardiovascular disease. Whether mtDNA CN directly modulates cardiovascular disease risk or is a 

biomarker for another CVD risk factor remains to be seen. However, given that all our analyses include 

traditional CVD risk factors—sex, blood lipids, blood pressure, smoking status, and hypertension 

medication use—as covariates, supports mtDNA as an independent risk factor for CVD.   

Finally, we show that mtDNA CN improves risk discrimination and risk reclassification for CVD 

outcomes in the ARIC cohort. Risk reclassification are measured by categorical NRI is heavily dependent 

on the choice of risk categories. To provide an unbiased view of the data, we present the categorical, as 

well as continuous NRI. Indeed, mtDNA CN shows much higher rate of reclassification with the 

continuous NRI as compared to the categorical NRI. While the 2013 AHA/ACC Guidelines on the 

Assessment of Cardiovascular Risk define 5% and 7.5% as two actionable risk cutoffs, these data, taken 

together with issues of risk overestimation by the Pooled Cohort Equations, might suggest that the risk 

cutoffs warrant further evaluation.    
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This study has several strengths and limitations. We use data from three well-characterized prospective 

studies with a total sample size of 20,137 participants with a mean follow up time of 13.7 years to assess 

the role of mtDNA CN in cardiovascular disease. However, the marked difference in age distributions 

between the studies limits our power to detect an association between mtDNA CN and incident CHD in 

the CHS and MESA studies. The result in ARIC supporting mtDNA CN as a predictor of incident CHD 

requires replication in another cohort with sufficient sample size of middle-aged adults. 

In conclusion, we examined the association between mtDNA CN and cardiovascular disease in 20, 137 

participants from three well-characterized longitudinal studies. We show an association between mtDNA 

CN and prevalent CVD, and establish mtDNA CN as a predictor of incident CVD, that improves risk 

discrimination and reclassification in participants from the ARIC cohort.  
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4.5 Figures for Chapter4 

Figure 4-1 Lower levels of mtDNA CN are associated with prevalent cardiovascular disease in ARIC 

and CHS 
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Figure 4-2 Lower mtDNA-CN is associated with higher risk of CVD in the ARIC cohort 
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Figure 4-3 Effect of mtDNA CN on incident disease outcomes in ARIC, CHS and MESA cohorts 
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Figure 4-4 Effect of mtDNA CN on incident disease outcomes in MESA cohort stratified by age 
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Figure 4-5 Effect of lowest quintile of mtDNA CN (Q1) relative to highest quintile (Q5) for incident 

disease outcomes 
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4.6 Tables for Chapter 4 

Table 4-1 The effect of mtDNA CN on prevalent disease outcomes in the ARIC and CHS cohorts 

 
  

Q1 Q2 Q3 Q4 Q5 (Ref) Continuous

Prevalent CHD

ARIC Whites

OR (95% CI) 1.67 (1.26-2.21) 1.36 (1.02-1.82) 1.53 (1.15-2.05) 1.17 (0.868-1.59) 1 0.848 (0.781-0.92)

N (Nevents) 1755 (185) 1754 (147) 1754 (143) 1754 (110) 1755 (93) 8772 (678)

ARIC Blacks

OR (95% CI) 1.83 (1.09-3.14) 1.24 (0.715-2.19) 1.2 (0.688-2.12) 1.22 (0.695-2.16) 1 0.849 (0.731-0.991)

N (Nevents) 477 (46) 476 (33) 476 (31) 476 (30) 476 (24) 2381 (164)

CHS Whites

OR (95% CI) 2.13 (1.55-2.96) 1.42 (1.01-1.99) 1.57 (1.13-2.21) 0.958 (0.661-1.39) 1 0.764 (0.688-0.848)

N (Nevents) 816 (137) 815 (98) 816 (104) 815 (64) 816 (70) 4078 (473)

CHS Blacks

OR (95% CI) 0.918 (0.433-1.94) 0.471 (0.184-1.12) 0.858 (0.391-1.86) 0.757 (0.346-1.63) 1 1.08 (0.842-1.4)

N (Nevents) 151 (16) 150 (8) 151 (14) 150 (14) 151 (17) 753 (69)

Prevalent Stroke

ARIC Whites

OR (95% CI) 1.7 (1.02-2.91) 1.1 (0.623-1.95) 1.31 (0.754-2.31) 0.877 (0.471-1.62) 1 0.855 (0.736-0.998)

N (Nevents) 1755 (48) 1754 (29) 1754 (31) 1754 (20) 1755 (22) 8772 (150)

ARIC Blacks

OR (95% CI) 1.09 (0.575-2.1) 0.618 (0.293-1.28) 0.932 (0.474-1.84) 0.59 (0.27-1.25) 1 0.948 (0.773-1.18)

N (Nevents) 477 (24) 476 (14) 476 (19) 476 (12) 476 (18) 2381 (87)

CHS Whites

OR (95% CI) 2.12 (1.18-3.99) 2.48 (1.4-4.62) 2.19 (1.22-4.12) 1.8 (0.972-3.44) 1 0.763 (0.644-0.901)

N (Nevents) 816 (35) 815 (41) 816 (35) 815 (28) 816 (16) 4078 (155)

CHS Blacks

OR (95% CI) 1.37 (0.573-3.39) 0.947 (0.344-2.53) 0.934 (0.339-2.51) 1.09 (0.424-2.81) 1 0.943 (0.704-1.26)

N (Nevents) 151 (13) 150 (8) 151 (8) 150 (10) 151 (10) 753 (49)

Prevalent CVD

ARIC Whites

OR (95% CI) 1.64 (1.27-2.13) 1.27 (0.973-1.67) 1.44 (1.1-1.89) 1.1 (0.83-1.46) 1 0.849 (0.786-0.918)

N (Nevents) 1755 (214) 1754 (164) 1754 (161) 1754 (124) 1755 (111) 8772 (774)

ARIC Blacks

OR (95% CI) 1.43 (0.923-2.24) 1.03 (0.65-1.65) 1.03 (0.648-1.65) 0.968 (0.602-1.56) 1 0.899 (0.787-1.03)

N (Nevents) 477 (60) 476 (46) 476 (44) 476 (40) 476 (39) 2381 (229)

CHS Whites

OR (95% CI) 2.35 (1.74-3.19) 1.72 (1.26-2.36) 1.75 (1.28-2.39) 1.06 (0.757-1.49) 1 0.727 (0.66-0.8)

N (Nevents) 816 (167) 815 (132) 816 (130) 815 (82) 816 (81) 4078 (592)

CHS Blacks

OR (95% CI) 0.939 (0.508-1.73) 0.595 (0.295-1.17) 0.767 (0.397-1.47) 0.831 (0.44-1.56) 1 1.07 (0.871-1.31)

N (Nevents) 151 (26) 150 (16) 151 (20) 150 (23) 151 (27) 753 (112)



 79 

Table 4-2 The effect of mtDNA CN on incident disease outcomes in the ARIC and CHS cohorts 

  

Q1 Q2 Q3 Q4 Q5 (Ref) Continuous

Incident CHD

ARIC Whites

OR (95% CI) 2.02 (1.62-2.54) 1.25 (0.975-1.59) 1.07 (0.824-1.38) 1.09 (0.848-1.41) 1 0.76 (0.713-0.81)

N (Nevents) 1619 (241) 1619 (145) 1618 (118) 1619 (123) 1619 (115) 8094 (742)

ARIC Blacks

OR (95% CI) 2.34 (1.6-3.43) 1.54 (1.03-2.31) 1.16 (0.756-1.78) 1.05 (0.677-1.61) 1 0.736 (0.665-0.814)

N (Nevents) 444 (90) 443 (63) 443 (46) 443 (43) 444 (39) 2217 (281)

CHS Whites

OR (95% CI) 1.11 (0.915-1.36) 1.23 (1.01-1.48) 1.08 (0.893-1.32) 1.14 (0.944-1.38) 1 0.953 (0.897-1.01)

N (Nevents) 721 (199) 721 (226) 721 (207) 721 (222) 721 (203) 3605 (1057)

CHS Blacks

OR (95% CI) 1.56 (1.01-2.42) 1.54 (0.995-2.39) 1.47 (0.924-2.32) 0.842 (0.505-1.4) 1 0.851 (0.742-0.976)

N (Nevents) 137 (48) 137 (49) 136 (40) 137 (26) 137 (35) 684 (198)

Incident Stroke

ARIC Whites

OR (95% CI) 1.71 (1.29-2.28) 0.947 (0.688-1.3) 1.26 (0.934-1.71) 1.14 (0.833-1.55) 1 0.843 (0.772-0.919)

N (Nevents) 1725 (137) 1724 (77) 1724 (96) 1724 (85) 1725 (75) 8622 (470)

ARIC Blacks

OR (95% CI) 1.41 (0.941-2.1) 1.22 (0.811-1.84) 1.07 (0.701-1.64) 1.03 (0.672-1.56) 1 0.928 (0.826-1.04)

N (Nevents) 459 (60) 459 (53) 458 (45) 459 (46) 459 (41) 2294 (245)

CHS Whites

OR (95% CI) 1.08 (0.856-1.35) 1.04 (0.828-1.31) 1.13 (0.903-1.41) 1.14 (0.913-1.42) 1 1 (0.934-1.08)

N (Nevents) 785 (148) 784 (145) 785 (160) 784 (166) 785 (147) 3923 (766)

CHS Blacks

OR (95% CI) 0.945 (0.554-1.61) 0.675 (0.389-1.17) 0.91 (0.532-1.55) 0.766 (0.444-1.32) 1 1.06 (0.888-1.27)

N (Nevents) 141 (26) 141 (23) 140 (26) 141 (24) 141 (29) 704 (128)

Incident CVD

ARIC Whites

OR (95% CI) 1.8 (1.49-2.17) 1.11 (0.901-1.36) 1.14 (0.926-1.4) 1.1 (0.893-1.35) 1 0.801 (0.757-0.848)

N (Nevents) 1600 (315) 1599 (197) 1600 (190) 1599 (185) 1600 (172) 7998 (1059)

ARIC Blacks

OR (95% CI) 1.94 (1.44-2.62) 1.52 (1.12-2.07) 1.17 (0.844-1.62) 0.939 (0.668-1.32) 1 0.782 (0.719-0.85)

N (Nevents) 431 (125) 430 (103) 430 (79) 430 (67) 431 (67) 2152 (441)

CHS Whites

OR (95% CI) 1.07 (0.912-1.27) 1.11 (0.947-1.31) 1.05 (0.896-1.24) 1.08 (0.917-1.27) 1 0.982 (0.932-1.03)

N (Nevents) 698 (285) 697 (298) 697 (296) 697 (303) 697 (292) 3486 (1474)

CHS Blacks

OR (95% CI) 1.34 (0.926-1.95) 1.08 (0.739-1.57) 1.2 (0.819-1.77) 0.776 (0.512-1.18) 1 0.902 (0.798-1.02)

N (Nevents) 129 (64) 128 (59) 128 (55) 128 (40) 128 (52) 641 (270)
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Table 4-3 Change in C statistic with mtDNA CN over base model 

 
Base model includes age, sex, collection center, total cholesterol, HDL, systolic blood pressure, current 

smoking status, hypertension medication use, and diabetes status as covariates. 

Base Model Base Model + mtDNA CN

All

Cstatistic (95% CI) 0.756 ( 0.732-0.774 ) 0.768 ( 0.745-0.785 )

DeltaC statistic (95% CI) 0.0123 ( 0.00639-0.0177 )

Whites

Cstatistic (95% CI) 0.748 ( 0.725-0.768 ) 0.762 ( 0.738-0.782 )

DeltaC statistic (95% CI) 0.0142 ( 0.00508-0.0209 )

Blacks

Cstatistic (95% CI) 0.743 ( 0.716-0.771 ) 0.754 ( 0.724-0.778 )

DeltaC statistic (95% CI) 0.0108 ( -0.00419-0.0197 )
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Table 4-4 Net reclassification index (NRI) in ARIC participants comparing risk score with and without mtDNA CN 

 
Model1: NRI with 7.5% risk cutoff 

Model2: NRI with 5% and 7.5% risk cutoff

CHD STR CVD
All

NRI(Categorical) [95% CI], Model1  0.0529 [ 0.0168 - 0.0891 ] ; p-value: 0.00412  -0.0344 [ -0.0873 - 0.0185 ] ; p-value: 0.20255  0.0212 [ -0.01 - 0.0525 ] ; p-value: 0.18257 

NRI(Categorical) [95% CI], Model2  0.073 [ 0.028 - 0.1179 ] ; p-value: 0.00146  -0.0188 [ -0.0811 - 0.0436 ] ; p-value: 0.55541  0.0402 [ 0.0019 - 0.0786 ] ; p-value: 0.03967 

NRI(Continuous) [95% CI]  0.2636 [ 0.1388 - 0.3884 ] ; p-value: 3e-05  0.1191 [ -0.0436 - 0.2819 ] ; p-value: 0.15142  0.2122 [ 0.1092 - 0.3152 ] ; p-value: 5e-05 

IDI [95% CI]  0.0158 [ 0.0099 - 0.0217 ] ; p-value: 0  0.0046 [ -8e-04 - 0.01 ] ; p-value: 0.09267  0.0121 [ 0.0077 - 0.0165 ] ; p-value: 0 

Whites

NRI(Categorical) [95% CI], Model1  0.0568 [ 0.0141 - 0.0995 ] ; p-value: 0.00917  -0.0333 [ -0.101 - 0.0345 ] ; p-value: 0.33545  0.0267 [ -0.0107 - 0.0641 ] ; p-value: 0.16201 

NRI(Categorical) [95% CI], Model2  0.064 [ 0.0107 - 0.1174 ] ; p-value: 0.01859  -0.0208 [ -0.0993 - 0.0578 ] ; p-value: 0.60445  0.0358 [ -0.01 - 0.0816 ] ; p-value: 0.12549 

NRI(Continuous) [95% CI]  0.2776 [ 0.135 - 0.4201 ] ; p-value: 0.00014  0.1865 [ -0.0102 - 0.3832 ] ; p-value: 0.06315  0.2397 [ 0.12 - 0.3593 ] ; p-value: 9e-05 

IDI [95% CI]  0.0152 [ 0.0098 - 0.0205 ] ; p-value: 0  0.0056 [ -3e-04 - 0.0115 ] ; p-value: 0.06389  0.0119 [ 0.0077 - 0.0162 ] ; p-value: 0 

Blacks

NRI(Categorical) [95% CI], Model1  0.0402 [ -0.0267 - 0.1071 ] ; p-value: 0.23879  -0.0383 [ -0.1207 - 0.0442 ] ; p-value: 0.36318  0.0053 [ -0.0516 - 0.0623 ] ; p-value: 0.85392 

NRI(Categorical) [95% CI], Model2  0.1062 [ 0.0248 - 0.1876 ] ; p-value: 0.01058  -0.0077 [ -0.1095 - 0.0942 ] ; p-value: 0.88288  0.0588 [ -0.0115 - 0.1292 ] ; p-value: 0.10121 

NRI(Continuous) [95% CI]  0.2306 [ -0.0275 - 0.4887 ] ; p-value: 0.07997  -0.006 [ -0.2923 - 0.2804 ] ; p-value: 0.9675  0.1515 [ -0.051 - 0.354 ] ; p-value: 0.14254 

IDI [95% CI]  0.0176 [ -3e-04 - 0.0355 ] ; p-value: 0.05459  0.002 [ -0.0092 - 0.0132 ] ; p-value: 0.72997  0.0123 [ 5e-04 - 0.0241 ] ; p-value: 0.0406 
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Table 4-5 Sample characteristics for particpants from ARIC, CHS and MESA studies 

 

 

Q1 Q2 Q3 Q4 Q5 P trend Q1 Q2 Q3 Q4 Q5 Pval

n 1788 1788 1788 1788 1788 n 486 486 485 486 486

Age, mean(SD) 58.2 (0.1) 58.1 (0.1) 58.1 (0.1) 58 (0.1) 58.2 (0.1) 0.96 Age, mean(SD) 57.3 (0.3) 57.5 (0.3) 57.5 (0.3) 56.9 (0.3) 57.3 (0.3) 0.99

Sex,male, n(%) 825 (46.1) 861 (48.2) 832 (46.5) 834 (46.6) 841 (47) 0.93 Sex,male, n(%) 174 (35.8) 191 (39.3) 175 (36.1) 187 (38.5) 167 (34.4) 0.97

Follow up time, mean(SD) 15.96 (0.13) 16.54 (0.12) 16.62 (0.11) 16.91 (0.11) 17.22 (0.1) <0.001 Follow up time, mean(SD) 14.71 (0.27) 15.54 (0.25) 15.31 (0.25) 16.22 (0.24) 16.26 (0.24) <0.001

CVD Risk factors CVD Risk factors

Prevalent diabetes, n(%) 300 (16.8) 250 (14) 181 (10.1) 170 (9.51) 160 (8.95) <0.001 Prevalent diabetes, n(%) 142 (29.2) 128 (26.3) 142 (29.3) 138 (28.4) 98 (20.2) 0.004

Systolic blood pressure, mean(SD) 121.1 (0.44) 120.6 (0.43) 120.7 (0.43) 120 (0.41) 119.9 (0.42) 0.02 Systolic blood pressure, mean(SD)131.1 (1.1) 129.9 (1) 127.5 (0.95) 128.7 (0.94) 127.6 (0.93) 0.002

Hypertension medication, n(%) 603 (33.7) 549 (30.7) 507 (28.4) 473 (26.5) 449 (25.1) <0.001 Hypertension medication, n(%) 256 (52.7) 256 (52.7) 243 (50.1) 240 (49.4) 236 (48.6) 0.14

Current smoker, n(%) 573 (32) 432 (24.2) 350 (19.6) 338 (18.9) 277 (15.5) <0.001 Current smoker, n(%) 171 (35.2) 135 (27.8) 132 (27.2) 109 (22.4) 106 (21.8) <0.001

HDL, mean(SD) 47.07 (0.38) 48.63 (0.41) 49.74 (0.4) 49.88 (0.4) 50.75 (0.41) <0.001 HDL, mean(SD) 53.07 (0.77) 54.03 (0.8) 52.42 (0.77) 52.63 (0.77) 54.95 (0.83) 0.31

Total cholesterol, mean(SD) 208.7 (0.96) 209.3 (0.9) 208.6 (0.93) 209.8 (0.88) 211.1 (0.95) 0.18 Total cholesterol, mean(SD) 209.7 (2) 208.7 (1.8) 210.1 (1.9) 212.3 (1.9) 214.4 (1.9) 0.08

CHD CHD

Prevalent CHD, n(%) 186 (10.4) 146 (8.17) 144 (8.05) 111 (6.21) 93 (5.2) <0.001 Prevalent CHD, n(%) 46 (9.47) 35 (7.2) 30 (6.19) 32 (6.58) 24 (4.94) 0.01

Incident CHD, n(%) 240 (13.4) 149 (8.33) 119 (6.66) 128 (7.16) 122 (6.82) <0.001 Incident CHD, n(%) 90 (18.5) 64 (13.2) 49 (10.1) 44 (9.05) 39 (8.02) <0.001

10-year incident CHD, n(%) 140 (7.83) 79 (4.42) 61 (3.41) 52 (2.91) 47 (2.63) <0.001 10-year incident CHD, n(%) 55 (11.3) 34 (7) 30 (6.19) 24 (4.94) 21 (4.32) <0.001

Stroke Stroke

Prevalent Stroke, n(%) 48 (2.68) 29 (1.62) 32 (1.79) 21 (1.17) 22 (1.23) <0.001 Prevalent Stroke, n(%) 24 (4.94) 15 (3.09) 19 (3.92) 12 (2.47) 20 (4.12) 0.39

Incident Stroke, n(%) 138 (7.72) 79 (4.42) 93 (5.2) 88 (4.92) 78 (4.36) <0.001 Incident Stroke, n(%) 59 (12.1) 54 (11.1) 48 (9.9) 47 (9.67) 41 (8.44) 0.07

10-year incident Stroke, n(%) 71 (3.97) 40 (2.24) 42 (2.35) 43 (2.4) 28 (1.57) <0.001 10-year incident Stroke, n(%) 40 (8.23) 33 (6.79) 28 (5.77) 26 (5.35) 21 (4.32) 0.03

CVD CVD

Prevalent CVD, n(%) 215 (12) 163 (9.12) 161 (9) 124 (6.94) 111 (6.21) <0.001 Prevalent CVD, n(%) 60 (12.3) 47 (9.67) 42 (8.66) 41 (8.44) 39 (8.02) 0.03

Incident CVD, n(%) 312 (17.4) 202 (11.3) 188 (10.5) 194 (10.9) 184 (10.3) <0.001 Incident CVD, n(%) 124 (25.5) 103 (21.2) 83 (17.1) 69 (14.2) 67 (13.8) <0.001

10-year incident CVD, n(%) 182 (10.2) 110 (6.15) 87 (4.87) 86 (4.81) 70 (3.91) <0.001 10-year incident CVD, n(%) 83 (17.1) 57 (11.7) 50 (10.3) 41 (8.44) 36 (7.41) <0.001

ARIC--whites ARIC--blacks

Q1 Q2 Q3 Q4 Q5 Pval Q1 Q2 Q3 Q4 Q5 Pval

n 816 815 816 815 816 n 151 150 151 150 151

Age, mean(SD) 72.4 (0.2) 72.9 (0.2) 72.3 (0.2) 72.6 (0.2) 72.3 (0.2) Age, mean(SD) 72.9 (0.4) 72.8 (0.5) 72.6 (0.4) 72.5 (0.4) 73 (0.5)

Sex,male, n(%) 350 (42.9) 379 (46.5) 380 (46.6) 352 (43.2) 345 (42.3) Sex,male, n(%) 66 (43.7) 57 (38) 46 (30.5) 54 (36) 66 (43.7)

Follow up time, mean(SD) 12.86 (0.23) 13.04 (0.23) 13.71 (0.23) 13.98 (0.23) 14.47 (0.22) <0.001 Follow up time, mean(SD) 11.32 (0.49) 12.98 (0.51) 11.85 (0.5) 12.97 (0.51) 12.31 (0.51) 0.31

CVD Risk factors CVD Risk factors

Prevalent diabetes, n(%) 152 (18.6) 101 (12.4) 97 (11.9) 115 (14.1) 110 (13.5) 0.02 Prevalent diabetes, n(%) 44 (29.1) 34 (22.7) 31 (20.5) 37 (24.7) 39 (25.8) 0.80

Systolic blood pressure, mean(SD) 135 (0.78) 136 (0.74) 135.4 (0.75) 135 (0.72) 134.8 (0.75) 0.52 Systolic blood pressure, mean(SD)141.4 (1.8) 141.7 (1.9) 144.4 (1.9) 140.7 (1.9) 140.7 (1.8) 0.57

Hypertension medication, n(%) 384 (47.1) 372 (45.6) 370 (45.3) 323 (39.6) 340 (41.7) 0.002 Hypertension medication, n(%) 94 (62.3) 90 (60) 102 (67.5) 95 (63.3) 88 (58.3) 0.46

Current smoker, n(%) 99 (12.1) 84 (10.3) 102 (12.5) 91 (11.2) 77 (9.44) 0.25 Current smoker, n(%) 24 (15.9) 25 (16.7) 26 (17.2) 23 (15.3) 23 (15.2) 0.89

HDL, mean(SD) 52.59 (0.55) 53.65 (0.55) 53.76 (0.57) 53.92 (0.53) 54.14 (0.55) 0.28 HDL, mean(SD) 57.32 (1.2) 58.44 (1.3) 57.42 (1.2) 57.58 (1.2) 57.53 (1.3) 0.93

Total cholesterol, mean(SD) 209.9 (1.4) 211.6 (1.3) 212.7 (1.4) 211.6 (1.3) 214.4 (1.3) 0.10 Total cholesterol, mean(SD) 211 (3.1) 211.3 (3.4) 208.1 (3.2) 206 (3) 209.4 (3.3) 0.37

CHD CHD

Prevalent CHD, n(%) 137 (16.8) 98 (12) 104 (12.7) 64 (7.85) 70 (8.58) <0.001 Prevalent CHD, n(%) 16 (10.6) 8 (5.33) 14 (9.27) 14 (9.33) 17 (11.3) 0.53

Incident CHD, n(%) 186 (22.8) 221 (27.1) 210 (25.7) 229 (28.1) 211 (25.9) 0.95 Incident CHD, n(%) 47 (31.1) 50 (33.3) 40 (26.5) 28 (18.7) 33 (21.9) 0.01

10-year incident CHD, n(%) 90 (11) 112 (13.7) 116 (14.2) 118 (14.5) 101 (12.4) 0.86 10-year incident CHD, n(%) 24 (15.9) 33 (22) 24 (15.9) 16 (10.7) 16 (10.6) 0.06

Stroke Stroke

Prevalent Stroke, n(%) 35 (4.29) 41 (5.03) 35 (4.29) 28 (3.44) 16 (1.96) <0.001 Prevalent Stroke, n(%) 13 (8.61) 8 (5.33) 8 (5.3) 10 (6.67) 10 (6.62) 0.80

Incident Stroke, n(%) 147 (18) 141 (17.3) 161 (19.7) 167 (20.5) 150 (18.4) 0.40 Incident Stroke, n(%) 26 (17.2) 22 (14.7) 27 (17.9) 24 (16) 29 (19.2) 0.50

10-year incident Stroke, n(%) 83 (10.2) 88 (10.8) 96 (11.8) 100 (12.3) 83 (10.2) 0.58 10-year incident Stroke, n(%) 16 (10.6) 13 (8.67) 17 (11.3) 18 (12) 19 (12.6) 0.62

CVD CVD

Prevalent CVD, n(%) 167 (20.5) 132 (16.2) 130 (15.9) 82 (10.1) 81 (9.93) <0.001 Prevalent CVD, n(%) 26 (17.2) 16 (10.7) 20 (13.2) 23 (15.3) 27 (17.9) 0.52

Incident CVD, n(%) 265 (32.5) 287 (35.2) 295 (36.2) 318 (39) 309 (37.9) 0.50 Incident CVD, n(%) 63 (41.7) 60 (40) 58 (38.4) 39 (26) 50 (33.1) 0.04

10-year incident CVD, n(%) 134 (16.4) 160 (19.6) 169 (20.7) 179 (22) 152 (18.6) 0.86 10-year incident CVD, n(%) 32 (21.2) 39 (26) 35 (23.2) 24 (16) 29 (19.2) 0.28

CHS--whites CHS--blacks
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Q1 Q2 Q3 Q4 Q5 Pval Q1 Q2 Q3 Q4 Q5 Pval

n 503 502 503 502 503 n 285 285 284 285 285

Age, mean(SD) 63.2 (0.5) 62.8 (0.5) 62.2 (0.4) 62.5 (0.4) 63.2 (0.5) Age, mean(SD) 62.7 (0.6) 63.5 (0.6) 62.3 (0.6) 63.2 (0.6) 62.3 (0.6)

Sex,male, n(%) 240 (47.7) 245 (48.8) 240 (47.7) 225 (44.8) 245 (48.7) Sex,male, n(%) 124 (43.5) 141 (49.5) 125 (44) 125 (43.9) 130 (45.6)

Follow up time, mean(SD) 10.38 (0.11) 10.58 (0.11) 10.77 (0.1) 10.93 (0.089) 10.8 (0.096) 0.001 Follow up time, mean(SD) 3484 (68) 3577 (60) 3451 (73) 3701 (58) 3708 (61) 0.01

CVD Risk factors CVD Risk factors

Prevalent diabetes, n(%) 26 (5.17) 25 (4.98) 24 (4.77) 26 (5.18) 32 (6.36) 0.19 Prevalent diabetes, n(%) 53 (18.6) 44 (15.4) 43 (15.1) 48 (16.8) 40 (14) 0.49

Systolic blood pressure, mean(SD) 125.1 (0.88) 124.1 (0.9) 123.9 (0.92) 122.4 (0.92) 123 (0.96) 0.10 Systolic blood pressure, mean(SD)131.9 (1.3) 132.2 (1.3) 134.3 (1.3) 131.7 (1.3) 132.4 (1.4) 0.95

Hypertension medication, n(%) 174 (34.6) 177 (35.3) 178 (35.4) 161 (32.1) 149 (29.6) 0.07 Hypertension medication, n(%) 149 (52.3) 155 (54.4) 145 (51.1) 141 (49.5) 137 (48.1) 0.09

Current smoker, n(%) 68 (13.5) 52 (10.4) 57 (11.3) 61 (12.2) 51 (10.1) 0.52 Current smoker, n(%) 62 (21.8) 52 (18.2) 45 (15.8) 58 (20.4) 47 (16.5) 0.07

HDL, mean(SD) 52.19 (0.7) 50.59 (0.68) 51.49 (0.68) 53.64 (0.73) 54.48 (0.72) 0.003 HDL, mean(SD) 52.11 (0.86) 50.8 (0.87) 52.07 (0.89) 53.92 (1) 53.32 (0.91) 0.30

Total cholesterol, mean(SD) 195.2 (1.6) 197 (1.6) 194.8 (1.6) 197.2 (1.5) 196.3 (1.5) 0.52 Total cholesterol, mean(SD) 188 (2.2) 190.6 (2) 188.9 (2.4) 190.8 (2.2) 188.5 (2.1) 0.94

CHD CHD

Incident CHD, n(%) 27 (5.37) 27 (5.38) 34 (6.76) 22 (4.38) 23 (4.57) 0.32 Incident CHD, n(%) 12 (4.21) 15 (5.26) 11 (3.87) 9 (3.16) 14 (4.91) 0.63

10-year incident CHD, n(%) 22 (4.37) 22 (4.38) 30 (5.96) 16 (3.19) 18 (3.58) 0.19 10-year incident CHD, n(%) 12 (4.21) 15 (5.26) 9 (3.17) 9 (3.16) 11 (3.86) 0.35

Stroke Stroke

Incident Stroke, n(%) 16 (3.18) 14 (2.79) 11 (2.19) 20 (3.98) 11 (2.19) 0.99 Incident Stroke, n(%) 10 (3.51) 13 (4.56) 9 (3.17) 9 (3.16) 5 (1.75) 0.29

10-year incident Stroke, n(%) 15 (2.98) 12 (2.39) 10 (1.99) 17 (3.39) 10 (1.99) 0.91 10-year incident Stroke, n(%) 9 (3.16) 12 (4.21) 9 (3.17) 9 (3.16) 4 (1.4) 0.29

CVD CVD

Incident CVD, n(%) 42 (8.35) 38 (7.57) 44 (8.75) 40 (7.97) 34 (6.76) 0.50 Incident CVD, n(%) 22 (7.72) 28 (9.82) 19 (6.69) 17 (5.96) 18 (6.32) 0.21

10-year incident CVD, n(%) 36 (7.16) 32 (6.37) 39 (7.75) 31 (6.18) 28 (5.57) 0.30 10-year incident CVD, n(%) 21 (7.37) 27 (9.47) 17 (5.99) 17 (5.96) 14 (4.91) 0.11

MESA--whites MESA--blacks
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Table 4-6 Sensitivity analysis examining the effect of mtDNA CN on incident disease outcomes in the 

ARIC and CHS cohorts, after excluding participants with heart failure, TIA or angina at baseline 

  

Q1 Q2 Q3 Q4 Q5 Continuous

Incident CHD

ARIC Whites

OR (95% CI) 1.99 (1.57-2.52) 1.18 (0.907-1.52) 1.01 (0.772-1.33) 1.11 (0.855-1.45) 1 0.771 (0.72-0.825)

N (Nevents) 1513 (216) 1513 (127) 1512 (103) 1513 (113) 1513 (105) 7564 (664)

ARIC Blacks

OR (95% CI) 2.88 (1.88-4.41) 1.86 (1.18-2.93) 1.39 (0.863-2.25) 1.3 (0.805-2.11) 1 0.718 (0.646-0.798)

N (Nevents) 396 (81) 395 (55) 395 (40) 395 (39) 395 (29) 1976 (244)

CHS Whites

OR (95% CI) 1.07 (0.842-1.35) 1.18 (0.944-1.48) 1 (0.796-1.27) 1.17 (0.939-1.47) 1 0.967 (0.899-1.04)

N (Nevents) 527 (138) 526 (162) 526 (139) 526 (164) 527 (145) 2632 (748)

CHS Blacks

OR (95% CI) 1.81 (1.03-3.18) 1.69 (0.97-2.96) 1.29 (0.697-2.38) 0.721 (0.365-1.43) 1 0.765 (0.637-0.92)

N (Nevents) 92 (33) 92 (35) 91 (23) 92 (15) 92 (20) 459 (126)

Incident Stroke

ARIC Whites

OR (95% CI) 1.68 (1.22-2.31) 0.91 (0.635-1.3) 1.28 (0.917-1.8) 1.15 (0.812-1.62) 1 0.841 (0.762-0.927)

N (Nevents) 1513 (109) 1513 (59) 1512 (77) 1513 (68) 1513 (61) 7564 (374)

ARIC Blacks

OR (95% CI) 1.38 (0.882-2.15) 1.31 (0.834-2.06) 1.06 (0.656-1.7) 1.03 (0.645-1.65) 1 0.932 (0.821-1.06)

N (Nevents) 396 (49) 395 (45) 395 (36) 395 (37) 395 (33) 1976 (200)

CHS Whites

OR (95% CI) 0.993 (0.749-1.32) 0.912 (0.684-1.22) 1.08 (0.822-1.42) 1.04 (0.787-1.36) 1 1.04 (0.949-1.13)

N (Nevents) 527 (97) 526 (89) 526 (106) 526 (105) 527 (99) 2632 (496)

CHS Blacks

OR (95% CI) 0.866 (0.414-1.81) 0.895 (0.445-1.8) 1.1 (0.531-2.29) 0.988 (0.479-2.04) 1 1.11 (0.875-1.41)

N (Nevents) 92 (14) 92 (17) 91 (15) 92 (16) 92 (15) 459 (77)

Incident CVD

ARIC Whites

OR (95% CI) 1.82 (1.5-2.22) 1.04 (0.841-1.3) 1.12 (0.905-1.39) 1.14 (0.917-1.41) 1 0.804 (0.758-0.852)

N (Nevents) 1513 (294) 1513 (173) 1512 (173) 1513 (174) 1513 (159) 7564 (973)

ARIC Blacks

OR (95% CI) 2.26 (1.64-3.13) 1.74 (1.24-2.44) 1.28 (0.898-1.84) 1.08 (0.749-1.56) 1 0.762 (0.699-0.832)

N (Nevents) 396 (118) 395 (93) 395 (69) 395 (61) 395 (54) 1976 (395)

CHS Whites

OR (95% CI) 1.04 (0.861-1.26) 1.06 (0.882-1.28) 0.997 (0.825-1.2) 1.05 (0.873-1.27) 1 0.989 (0.93-1.05)

N (Nevents) 527 (210) 526 (222) 526 (214) 526 (228) 527 (218) 2632 (1092)

CHS Blacks

OR (95% CI) 1.37 (0.869-2.14) 1.22 (0.776-1.91) 1.12 (0.69-1.83) 0.77 (0.46-1.29) 1 0.883 (0.759-1.03)

N (Nevents) 92 (45) 92 (45) 91 (34) 92 (27) 92 (34) 459 (185)
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Table 4-7 Change in C statistic with mtDNA CN over base model in sex stratified analyses 

 

Base Model Base Model + mtDNA CN

All

Men

Cstatistic (95% CI) 0.717 ( 0.69-0.737 ) 0.734 ( 0.714-0.753 )

DeltaC statistic (95% CI) 0.0179 ( 0.00118-0.0293 )

Women

Cstatistic (95% CI) 0.78 ( 0.755-0.808 ) 0.789 ( 0.764-0.815 )

DeltaC statistic (95% CI) 0.00895 ( -0.000555-0.0164 )

Whites

Men

Cstatistic (95% CI) 0.706 ( 0.671-0.728 ) 0.728 ( 0.697-0.75 )

DeltaC statistic (95% CI) 0.0221 ( 0.00505-0.039 )

Women

Cstatistic (95% CI) 0.766 ( 0.723-0.792 ) 0.779 ( 0.737-0.807 )

DeltaC statistic (95% CI) 0.0125 ( 0.00114-0.0242 )

Blacks

Men

Cstatistic (95% CI) 0.714 ( 0.658-0.764 ) 0.725 ( 0.664-0.774 )

DeltaC statistic (95% CI) 0.0113 ( -0.0228-0.0235 )

Women

Cstatistic (95% CI) 0.759 ( 0.706-0.794 ) 0.768 ( 0.714-0.803 )

DeltaC statistic (95% CI) 0.0095 ( -0.01-0.0188 )
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