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ABSTRACT 

Letter identification imposes numerous challenges on the brain's visual system. 

Identification processes must be flexible enough to recognize that ear and EAR refer to 

the same word while being precise enough to recognize that lend me your ear and lend 

me your car have different meanings. At the core of this dissertation is the assumption 

that the flexibility and precision which enables us to effortlessly recognize letters is based 

on our mental representations of letters. The experiments presented focus on two types of 

letter representations: font-invariant allographs and amodal abstract letter identities 

(ALIs). First, a set of behavioral experiments demonstrated that stored, font-invariant 

letter shape (allograph) representations influenced the visually similarity judgments 

participants made to pairs of letters presented in an atypical font. Following this result, an 

fMRI experiment was performed in which the neural response to visually presented 

single letter stimuli was analyzed using Representational Similarity Analysis (RSA). This 

analysis yielded evidence for allograph representations encoded within the left middle 

occipital gyrus and left fusiform gyrus. Finally, MVPA RSA analyses were employed to 

compare the patterns of neural responses to visually presented letter shapes and aurally 

presented letter names. This experiment revealed a region in the left fusiform gyrus that 

represented amodal ALIs (e.g., a, A, and /eI/ access the same amodal ALI). The research 

in this dissertation furthers our understanding of the representations that mediate letter 

identification and the results touch upon fundamental issues about the nature of 

information processing in cognitive science.    
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Chapter 1 - The multiple representations 

of letters in the mind and brain 

 Letter identification is a critical and often underappreciated cognitive process, 

both in terms of its importance for literacy and for the challenges it imposes on the brain's 

visual system. Like many other visual objects, letters are often easily identified despite 

large changes in size, position, and to some degree, orientation on the retina. Given that 

letters that share the same identity can vary in font
1
 (see Figure 1) and case, the stimulus 

shape—even after correcting for changes in size and position—can vary dramatically. At 

the same time, while large changes in the visual shape of a character can be irrelevant 

(ear and Ear), tiny visual changes need to be processed for letters and ultimately words 

to be identified correctly (lend me your ear vs. lend me your car). To deal with this 

need for visual specificity in the face of near infinite variability, many models of reading 

assume a series of increasingly abstract representations stored in memory that minimize 

dimensions of variability that are irrelevant for downstream processing while magnifying 

those features that are highly informative (see Figure 2 for overview) (e.g., Dehaene, 

Cohen, Sigman, & Vinckier, 2005; Grainger, Rey, & Dufau, 2008; Miozzo & Caramazza, 

1998; Schubert & McCloskey, 2014).  

                                                            
1 Classically, a typeface is a named set of letter shapes (e.g. New Times Roman or Comic Sans) and the 

font refers to the particular implementation of a typeface specifying parameters like size, boldness, or 

italics. In this paper, font will be used instead of typeface. 
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At the core of this dissertation is the assumption that the flexibility and precision 

with which we recognize letters is based on our mental representations of letters and the 

processes involved in connecting these stored letter representations together. Therefore, 

determining how we represent letters is critical to furthering our understanding of letter 

processing. Furthermore, understanding the representations, transformations, and 

processes involved in letter recognition could provide more general insights into how the 

mind/brain comes to comprehend the massive variation it regularly encounters in the 

world. This research will investigate both the ways we represent letters and the neural 

substrates encoding these representations by examining both behavioral and neural 

response patterns across variations in font (a, a), shape (a, a, A), and modality (a, /ei/). 

In particular, I will present results from a novel paradigm demonstrating the role of stored 

(font-invariant) letter shape knowledge (allographs) in processing letters presented in an 

Figure 1. What is the nature of the 

internal representation that unifies the 

above forms as font variants of the basic 

shape a? Image from Hofstadter & 

McGraw (1995). 
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atypical font (Chapter 3). Additionally, I will identify the neural substrates of this stored 

letter shape knowledge (Chapter 4). Finally, I will investigate the role of multiple types of 

stored letter representations across visual vs. auditory stimulus presentations, with 

specific interest in localizing substrates that represent letter identity independent of 

sensory modality (Chapter 5).    

1.1 A cognitive architecture for visual letter processing 

 In the following section I present a cognitive architecture for letter processing that 

is adapted from Rothlein and Rapp (2014), and motivated by a number of very similar 

proposed architectures (Brunsdon, Coltheart, & Nickels, 2006; Dehaene et al., 2005; 

Miozzo & Caramazza, 1998; Schubert & McCloskey, 2014). The box-and-arrow diagram 

in Figure 2 schematizes representational transformations from the light of the letter image 

hitting the retina to lexical access (reading), motoric production (writing or copying) and 

letter naming/oral reading. Within each box is a bank of representational features. I will 

describe each of these levels of representation in more detail below.  
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Figure 2. Various different fonts of the letter E and one pseudoletter are initially processed through domain 

general visual features (e.g. Simple and complex cells representing oriented bars). Many models also posit a 

font-specific computed stimulus shape level of representation that computes the shape of the stimulus 

independent of its identity (Caramazza & Hillis, 1990; Dalmás & Dansilio, 2000; Hillis & Caramazza, 1991; 

Rapp & Caramazza, 1989; Schubert & McCloskey, 2014). For example, we can perceive the shape of the 

letter R as well as the shape of a pseudoletter we have never seen before. This level of representation would 

allow us to describe the shape of the letter R as well as the shape of any given pseudoletter but importantly it 

does not encode any information regarding the identity of the shape or even whether the shape is a letter or 

not (e.g., Miozzo & Caramazza, 1998). These computed stimulus shape representations go on to access 

stored font-invariant allograph representations. While the precise format of allograph representations will not 

be specified throughout these studies, it presumably encodes letter shapes in a manner that abstracts away 

from at least certain differences in stimulus font. For example, a and a will activate the same allograph while 

a will activate a different allograph. These representations allow us to recognize that all the shapes in Figure 

1 approximate the same shape—a lowercase a. The allographs in turn activate abstract letter identity (ALI) 

representations that represent the identity of letters in a manner that abstracts away from visual information 

altogether. ALI representations serve as input to lexical and sublexical reading processes and they also serve 

as a conduit to cross-modal letter representations like phonological letter names.  
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1.1.1 Domain general visual features 

At the earliest stages of visual processing, internal representations will be largely 

isomorphic with the pattern of light-energy that the sensory organs transduce. If the 

stimulus is a visual object, these representations encode image properties like intensity 

values assigned to retinotopic positions. Changes to any of the image properties will 

result in changes to these early representations. Image representations of letter stimuli (as 

well as any other objects) could be approximated by pixel configurations.  

 According to many predominant views of visual-spatial processing (see 

Riesenhuber & Poggio, (1999) for review), the low-level retinotopic input will undergo a 

series of transformations in which the stimulus is represented as a set of increasingly 

more complex visual features which often are composed of conjunctions of simpler 

complex representations. For example, at the lowest level, the stimulus may be 

represented as a set of oriented bars, which would serve as input to simple visual feature 

detectors (e.g., right angles, crosses and curves). From these features, the shape of an 

object is computed.  

1.1.2 Computed stimulus shape representations 

 The lines, curves, and angles that compose the low-level, domain general visual 

features are integrated into a unitary shape at the level of computed stimulus shape 

representations. Critically, the shape that is computed may or may not correspond to an 

actual stored alphanumeric form (a.k.a allograph). For example, the rightmost stimulus in 

Figure 2 does not correspond to any real alphanumeric character. So while the shape will 

be represented as a unitary form at this level of representation, the computed shape will 

fail to activate any stored letter representations. Therefore, while information from 
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computed stimulus shape representations will presumably distinguish a coherent and 

unitary character-like form from a random scatter of disconnected lines and dots, 

knowledge of character shape alone is not sufficient to determine if the stimulus is a real 

alphanumeric character or a pseudoletter
2
.  It is important to know that the shapes at this 

level of representation are sensitive to changes in font. For example, information at this 

level would not represent a and a as font variants of the same allograph. Furthermore, our 

ability to perceive the difference between a and a is likely in virtue of the (font-sensitive) 

computed stimulus shape representations.  

1.1.3 Allograph representations 

A character’s basic shape (Herrick, 1974) is a font invariant description of a 

spatial letter-form. Allographs consist of basic shape representations that are learned 

and stored in long-term memory. Under this definition, a and a (as well as all the letter 

tokens in Figure 1) are examples of the same allograph, whereas a, a, and A are 3 

different allographs. A key question for this dissertation is how our prior knowledge of 

letter identities and shapes influences letter identification.    

While allograph representations provide a computational means to reduce the 

variability of stimulus shapes for downstream processes, alternative word recognition 

models without allograph representation are conceivable. For example, exemplar-based 

models propose to account for letter and word recognition without allograph 

representations (Marsolek, 2004). These models rely on large storage capacities that can 

encode memory traces of every instance a letter exemplar is viewed. When a novel letter 

                                                            
2 A letter-like form that does not correspond to an actual symbol 
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stimulus is viewed, it is identified by computing the similarity of the stimulus to each of 

the stored exemplars. The viewed stimulus would be identified by assuming the label of 

the nearest stored exemplar (see Goldinger, (1998) for an exemplar model of spoken 

word recognition). As opposed to abstractionist accounts of cognition, these models are 

consistent with grounded and embodied cognitive theories that rely solely on sensory and 

motor representations (Barsalou, 2008; Tulving, 1983; Wilson, 2002). Accordingly, in an 

exemplar-based letter recognition model, the content and format of the representation of 

letter stimuli undergo minimal transformation in order to be identified so that the 

distinction between sensory processing and higher-level cognition is blurred. Evidence in 

favor of exemplar-based accounts visual word recognition comes largely from font-

specific priming effects (see Tenpenny, (1995) for review, but see Bowers, (2000) for an 

alternative explanation). Therefore, determining whether allograph representations are 

used for letter identification, in addition to furthering our understanding of word 

recognition, contributes to more fundamental debates regarding abstractionist vs. episodic 

views of human cognition.   

 Arguments in favor of allographs generally rely on demonstrating that the letter 

processing system has three properties: (1) shape sensitivity—that the system is sensitive 

to whether a visual form depicts a familiar alphanumeric character or not (e.g., a vs. Ϡ
3
); 

(2) shape specificity—that the system will respond differently to different allographs, 

even if they shares the same abstract letter identity or ALI (e.g., a, a and A); and (3) font-

invariance—that the system will respond identically to different computed stimulus 

shapes depicting the same allograph (e.g., a and a).  

                                                            
3 Assuming the cognitive system is unfamiliar with this version of the Greek character Sampi.  
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Cognitive neuropsychological studies 

To date, evidence for allograph representations comes primarily from single-case 

studies (Brunsdon et al., 2006; Chanoine, Ferreira, Demonet, Nespoulous, & Poncet, 

1998; Dalmás & Dansilio, 2000; Miozzo & Caramazza, 1998; Rapp & Caramazza, 1989; 

Schubert & McCloskey, 2014). For example, GV (Miozzo & Caramazza, 1998), 

following a stroke, had a deficit in letter processing that demonstrated both shape 

sensitivity and specificity. Specifically, GV demonstrated she was sensitive to a letter’s 

shape by performing perfectly in a task where letters and pseudoletters (invented letter 

forms) were presented and GV had to decide whether the shape was a letter or not. In 

order to perform this task, GV had to access stored representations that could differentiate 

real from invented letters. Such a decision could be made by accessing many types of 

stored representations of letters; therefore, in order to identify the specific type of 

representation used in the pseudoletter decision task, Miozzo and Caramazza (1998) had 

GV perform tasks that required accessing a letter’s ALI. They found that GV was 

severely impaired in such a task where she had to correctly match identical cross-case 

letters like a and A (accuracy 63%). On this basis, they reasoned that since GV’s deficit 

impairs access to ALIs, her ability to perform the letter/pseudoletter decision task was 

likely based on intact processing at the level of allograph representations. While font-

invariance was never tested with GV,  ET, who had a developmental reading deficit 

(Brunsdon et al., 2006), and LHD, whose reading difficulties followed a stroke (Schubert 

& McCloskey, 2014) showed patterns similar to GV but were also capable of matching 

letters across differences in font. These results demonstrate font-invariant representations 

in individuals with impairments in forming/accessing ALIs in a normal manner. The 

pattern of results from ET is consistent with a system in which there are allograph 
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representations that can be used to abstract over font variations. It is also worth noting 

that LHD had difficulty matching letters when they changed from print to cursive (see 

also Rapp & Caramazza, 1989) suggesting there are separate cursive and print allographs 

for the same letter.  

Behavioral studies 

 Unlike the patient studies, behavioral evidence from studies with neurotypical 

individuals in support of allograph representations is quite limited. One study found 

evidence for a level of letter representation that is consistent with allographs by 

examining the memory for color-shape conjunctions (Walker & Hinkley, 2003).  Walker 

and Hinkley found that, when articulatory suppression techniques were employed, 

participants were better at remembering color-letter associations when the letter itself was 

colored vs. when the letter was white on a colored background. Crucially, they found that 

this color-letter association would generalize across changes in font but failed to 

generalize across changes in case. This effect was true even when certain changes in font 

were judged to be more visually dissimilar than changes in case demonstrating that this 

effect was not solely based on the degree of visual differences. These results were 

interpreted as showing that the colors were linked to letter representations that were 

abstract enough to survive changes in font but not abstract enough to survive changes in 

case—in other words, the colors were linked to allograph representations. 

Neuroimaging studies 

 Neuroimaging evidence supporting the existence of allograph representations is 

limited as well. Studies have only investigated this possibility by examining either 

priming effects (Gauthier, Tarr, et al., 2000; Qiao et al., 2010) involving single letters or 



10 
 

words presented in different fonts. These studies found different-font priming effects in 

the left fusiform gyrus. The challenge in interpreting these results is pinpointing the type 

of representation that was driving these priming effects. Since single letter stimuli were 

used in the Gauthier et al. (2000) study, priming could have been driven by ALI 

representations or even low-level visual similarity. Word stimuli were used in the Qiao et 

al. (2010) study and while these priming effects could have arisen at the level of 

allograph representations, they also could have arisen at the level of abstract letter 

identity, lexical, semantic, or phonological representations as these are all shared across 

changes in font. These confounded types of representations are rarely distinguished in 

neuroimaging studies of letter and word recognition.  

Rothlein and Rapp (2014) explicitly set out to deal with this issue by examining 

the similarity of multi-voxel patterns of neural responses evoked by viewing single letters 

and examining if there were neural response similarity patterns best explained by ALIs 

and/or visual, motoric, and/or letter name similarity. They found neural substrates 

selectively sensitive to visual similarity in the posterior occipital cortex and abstract letter 

identity left-lateralized along the ventral occipital and temporal cortex. However, with 

regard to visual similarity they did not distinguish between similarity effects due to low-

level visual features, computed stimulus shape representations, or more abstract allograph 

representations. The research in Chapter 4 builds on Rapp & Rothlein (2014) by 

specifically examining if there are distinct neural substrates that are sensitive to computed 

stimulus shapes and/or allograph representations.  
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1.1.4 Abstract letter identity (ALI) representations 

A starting assumption about ALI representations is that they encode a letter’s 

case-invariant identity, regardless of the letter’s surface/perceptual properties (Besner, 

Coltheart, & Davelaar, 1984; Coltheart, 1981; Kinoshita & Kaplan, 2008; McFarland, 

Frey, & Landreth, 1978; Polk & Farah, 1997). This can be unpacked into 2 claims about 

ALI representations: that they are case-invariant and that they are amodal—meaning the 

same representation is accessed whether the letter is seen, heard, or touched. Most 

empirical research has focused on the case-invariant criterion and that will be the primary 

empirical criterion for ALI representation in this paper however in Chapter 5 I will also 

explicitly test the latter claim as well.    

Behavioral studies 

The evidence in support of ALIs is not without its controversies. Behavioral 

studies have shown that participants can be induced to remember the identity of words 

while being unaware of the letter case in which the word was presented (Adams, 1979; 

McClelland, 1976). While this is clearly evidence for case-invariant word 

representations, this is not sufficient evidence for ALIs since both uppercase and 

lowercase versions of a word should activate the same lexical unit, phonological code, 

and semantic network. Given that all of these possible representations support case-

invariant behavior with words, to attribute these findings to ALIs requires further 

experimentation. Studies that have demonstrated cross-case word priming (Bowers, 

Vigliocco, & Haan, 1998; Dehaene et al., 2001) even when controlling for the visual 

similarity of cross-case letter pairs (Dehaene et al., 2004), have the same ambiguity of 

interpretation. Importantly, Kinoshita and Kaplan (2008) showed cross-case priming to 
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single letters which, presumably, was not based on lexical or semantic representations. 

Furthermore, Carreiras et al. (2012) showed cross form priming for single Arabic letters.  

While these studies certainly provide compelling evidence for ALIs, there is still a 

possibility that the letter name code—which is case and form invariant—is driving the 

priming effects in these studies.  In other words, in the word-based experiments, priming 

may have occurred at the level of word or semantic representations and in the letter-based 

experiments, priming effects may have involved letter name representations.  

Cognitive neuropsychological studies 

 The strongest evidence for ALIs comes from individuals with acquired deficits 

who, while unable to name individual letters, were still capable of matching letters across 

case—even when they were visually distinct (Mycroft, Hanley, & Kay, 2002). That they 

were unable to name them largely rules out the possibility that the cross-case matching 

was performed based on shared letter name representations. Furthermore, they could 

understand aurally presented letter names suggesting the deficit was limited to visually 

presented letters. Another individual who provides unique source of evidence for ALI 

representations is LHD (Schubert and McCloskey, 2014). Although her deficit was 

believed to involve difficulty in accessing ALIs from allograph representations, the 

particular letter errors she made provided compelling evidence for the existence of ALIs. 

When reading a list of words, LHD would often substitute letters towards the end of the 

word (e.g., in reading CAR she would have been more likely make an error on the R, 

perhaps reading CAG instead). Particularly relevant was that the incorrect letter 

substitution often appeared in the previous word in the list (letter perseverations). 

Relevant to the issue of ALIs was the finding that when LHD was performing a delayed 
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copy task for mixed-case words (CaR), letter identities from previous word would 

perseverate into later words independently from the case in which they had appeared. For 

example, with a prior word such as C-a-R the identity of R but not the case, might have 

perseverated into the following stimulus m-A-t which LHD might copy as m-A-r. What is 

critical is that the allograph itself did not perseverate otherwise one would predict the 

response m-A-R. Instead the best explanation was the ALI representation perseverated 

independently of the case representation.  

Neuroimaging studies 

 Most of the neuroimaging studies that support the existence of ALIs are subject to 

the same ambiguities as the behavioral studies.  Polk & Farah (2002) showed that the left 

inferior occipitotemporal region became active in response both to mixed-case words as 

well as to uniform-case words (e.g., APpLe vs. APPLE). A similar brain region has also 

been shown to exhibit cross-case word priming while being insensitive to the visual 

similarity of the cross-case pairs (e.g.. red primes RED just as much as cow primes 

COW) (Dehaene et al., 2001, 2004). While these results suggest representations in this 

region are not purely visual, the exact nature of the representations responsible for the 

priming effects remains unclear because while these results are consistent with a region 

that represents the abstract identities of letters, they are also consistent with a region that 

encodes lexical, semantic and/or phonological representations of the word stimuli. 

Dehaene et al. (2004) more directly tested for ALIs by examining the amount of priming 

between anagram pairs that are identical except that the last letter of one word is moved 

to the first letter of the other (e.g. pines/SPINE); the logic was that this paradigm could 

reveal cross-case priming while varying the lexical identity of the prime and target.. 
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Cross-case priming effects were found in the posterior extent of the left occipitotemporal 

region only when the stimuli were aligned so the prime and target cross-case pairs fell on 

the same retinal position (e.g., #pines primes SPINE#), leading the authors to argue for 

ALIs that are specific to retinal position. These priming effects cannot be explained at the 

level of lexical or semantic representations. While this study addressed some of the 

shortcomings of previous studies, it was not clear if the cross-case prime-target pairs 

were controlled for visual similarity. Therefore it could be the case that the priming 

results were driven by visually similar cross-case letter pairs (e.g., p-P, o-O, u,U).  

 Rothlein and Rapp (2014) provided some of the strongest evidence to date for 

ALI representations by identifying neural substrates that were specifically and selectively 

sensitive to cross-case letter identity. They found that the multi-voxel patterns of neural 

responses evoked by single letters were more similar when letters shared the same 

identity than when they did not and, importantly, the same neural responses were not 

sensitive to visual form, letter name, or motoric production feature similarity. Identifying 

selective sensitivity to ALI representations provided evidence that the identity effects 

could not be explained by other confounding letter representations. The neural substrates 

identified as selective to ALI representations were localized along the left ventral 

occipital and temporal cortex. These results are explained in more detail in Chapter 2 and 

replicated in Chapter 5. 
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1.1.5 Other modality-specific representations 

Motoric 

Motoric representations are the stored set of motor codes one uses to produce 

letter forms. Instead of encoding the allograph A in terms of visual features, a motor code 

representation of the allograph is composed of an ordered sequence of actions, such as: 

<vertical-up, vertical-down, horizontal> (Rapp & Caramazza, 1997). The relationship 

between the motoric representations of letters and visual letter expertise has been 

investigated in a number of neuroimaging studies (James & Atwood, 2009; James & 

Gauthier, 2006; Longcamp et al., 2008; Longcamp, Anton, Roth, & Velay, 2003). As 

these studies showed, brain regions involved in the motoric production of letter forms 

(e.g., Exner’s area) were also activated when viewing familiar letter-forms. In fact, the 

learning of alphanumeric symbols resulted in an increase of activation in these brain 

regions (James & Gauthier, 2006). Of course motor features cannot be necessary for 

letter recognition as people often recognize symbols they may have difficulty producing 

(e.g., &). The relationship between motor features and allograph representations are 

explored further in Chapter 3.      

Letter name 

Each letter is associated with a name and that name must be stored such that it can 

be accessed to name visually presented letters. The format of such stored representations 

could be a phonological, or acoustic. The work in this dissertation will remain largely 

noncommittal with regard to these two possibilities but will instead, investigate the 

relationship between letter name representations and abstract identity representations. 

Specifically, do heard letter names access the same letter identity representations as seen 
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visual letter shapes? This question along with an experiment that addresses this question 

will be expanded on in Chapter 5.  

 

1.1.6 Other abstract letter representations 

Letter case 

 

 While ALIs may be case-invariant, information about a letter’s case cannot be 

entirely disregarded by the processes that mediate word (and letter) recognition. This is 

because two words can be composed of the same ALIs but have different meanings based 

on the case of the first letter. For example, the meaning of the sentence I hate all these 

bills changes dramatically if the b in bill is capitalized.  

Evidence for identity-independent case representation comes from LHD 

(McCloskey, Fischer-Baum, & Schubert, 2014; Schubert & McCloskey, 2014), who, as 

previously discussed, perseverated letter identities that would assume the case of the 

letters they were substituting (e.g., if the R in c-A-R perseverated into the word M-a-t it 

Figure 3. A diagram depicting a 

letter processing scheme whereby 

case is represented independently 

from identity.  

 

Allographs: 
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would be copied as M-a-r but had it perseverated into the word M-a-T it would become 

M-a-R). That the identity of the [R] in c-A-R can perseverate independently of case 

suggests case representations that exist independently of identity representations (Figure 

3). We examine this hypothesis more explicitly in Chapter 3. 

Consonant vowel status 

  Each letter identity can be characterized as being either a consonant or a vowel. 

These categories place important constraints on the role the letters play in constructing 

words and the set of possible sounds that are associated with a given letter. While there is 

considerable evidence that a letter’s orthographic consonant/vowel status (c/v status) is 

represented independently of letter identity in spelling (Buchwald & Rapp, 2006), there is 

less such evidence in reading (but see Berent & Van Orden, 2000; Carreiras, Gillon-

Dowens, Vergara, & Perea, 2009; Carreiras & Price, 2008). The most direct evidence in 

spelling comes from individuals with acquired dysgraphia. Some of these individuals 

make letter substitutions errors (“GLOW” misspelled as GLOT) such that the substituted 

letters maintain the orthographic c/v status of the target letters more than would be 

expected if the substitutions occurred by chance (Buchwald & Rapp, 2006; McCloskey, 

Badecker, Goodman-schulman, & Aliminosa, 1994). Therefore, in these letter 

substitutions, the ALI of a letter in a word is lost, but the independent c/v representation 

is maintained. This spared c/v representation is used to constrain the set of possible letters 

that will be produced in substitution errors. The work in this dissertation will examine the 

possibility of the automatic activation of c/v representations in letter recognition. 

Specifically, in chapters 3 and 4 we will investigate the possibility that each letter 

activates a consonant or vowel representation that is shared with other letter stimuli.  
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Alphanumeric symbol category  

 Another issue of interest concerns the level of representation at which the 

distinction between letters and digits occurs. There is limited evidence, largely based on 

neuroimaging studies, that there are different  neural substrates selectively involved in 

letter recognition and digit recognition (Cantlon et al., 2011; Hannagan, Amedi, Cohen, 

Dehaene-lambertz, & Dehaene, 2015; Park, Hebrank, Polk, & Park, 2011; Polk et al., 

2002; Price & Ansari, 2011; Shum et al., 2013). However, there is little agreement as to 

which specific neural substrates are selective for digits vs. letters. Perhaps most 

consistent is the finding that the right mid fusiform tends to be more active for digits and 

the left mid fusiform tends to be more active for letters (Hannagan et al., 2015; Park et 

al., 2011; Polk et al., 2002; Shum et al., 2013). While these studies suggest that letters 

and digits are differentiated at some point, none of these studies investigated the 

representational content at the level at which letters and digits diverge. While it is 

generally agreed letters and digits rely on the same low-level visual mechanisms, and 

letters and digits ultimately serve very different functional purposes (e.g., reading in the 

former case and representing and manipulating quantities in the latter), it is unclear 

whether intermediate representations distinguish between letters and digits. For example, 

would a region that represents ALIs also represent digit identity or would digit identity be 

represented elsewhere? These issues will be explored in Chapters 3 and 4.     

1.2 Letter representation and modality 

So far I have discussed a number of representations that may mediate the journey 

of a letter from a visual stimulus to an abstract orthographic representation. The 

dissertation includes experiments that will attempt to localize these representations to 
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their neural substrates, with the goal of creating a comprehensive neurotopography of 

letter representations. Thus far, the discussion has involved visual letter stimuli. While 

considerable research has dealt with the abstraction of the visual letter stimulus, 

remarkably little research has investigated the representations that mediate recognizing 

and processing spoken letter-names. 

Rothlein and Rapp (2014) identified a cluster in the left posterior STS that was 

sensitive to letter name similarity evoked from the visual presentation of letters. This 

finding was interpreted as evidence for modality-specific phonological letter name 

representations. While it was not explicitly addressed, the presumption is that these 

regions should respond to spoken letter name stimuli in a similar fashion. A more 

important assumption of the framework depicted in Figure 2, is that abstract letter 

identities are a necessary gateway between modality-specific letter representations and 

further orthographic processing. As Figure 2 shows, spoken letter names—like visual 

letters—must access the same ALIs in order to be visualized, written, or used for word 

recognition. While coherent, this view of letter name processing is largely speculative 

because of the dearth of empirical results addressing this topic. 

The experiment in Chapter 5 tests the hypothesis that ALIs mediate letter 

identification regardless of whether the letters are presented visually or aurally. Evidence 

for this would specifically address the issue regarding the amodal nature of ALIs. In 

addition to representing a seen letter in a case-independent manner (as shown in Rothlein 

and Rapp, 2014), this experiment will determine if ALIs are accessed in a modality-

independent manner as well. 
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1.3 Summary and conclusions 

The goal of this dissertation is to investigate both the types of letter 

representations involved in letter processing as well as the neural substrates encoding 

these representations by examining both behavioral and neural patterns in response to 

letters that vary in font (a, a), allograph (a, a, A), and modality (a, /ei/). I have briefly 

reviewed the literature regarding a set of stored letter representations that have been 

proposed to allow both visual tolerance and precision in the identification of visual 

letters. The questions addressed in this dissertation and brief statements of findings are 

listed below: 

1. Do font-invariant allograph representations mediate letter recognition? 

While there is evidence for allographs from patient case-studies, evidence 

from other methodologies is lacking. Furthermore the neural substrates of 

these representations have not been carefully investigated. Findings from 

the experiments carried out in this dissertation will provide behavioral 

evidence (Ch. 3) for the existence of allograph representation and localize 

their neural substrates (Ch. 4). 

2. Are abstract letter identities involved in letter identification? The work 

presented in Ch. 3 and Ch. 5 will replicate and build upon previous 

evidence for font and case-invariant ALI representations.  

3. Are the neural regions that encode case-invariant letter identity amodal as 

well? Specifically, do visual letter stimuli and auditory letter names access 

the same ALI representations? The results reported in Ch. 5 will provide 

novel evidence supporting the existence of amodal ALIs.  
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4. Are task irrelevant sensorimotor representations such as phonological 

letter names or motor production patterns automatically activated during 

visual letter processing? Likewise, do aurally presented letter names 

activate task-irrelevant visual/spatial letter representations? Ch. 3 

addresses the former question while Ch. 5 addresses both questions.    

5. Is a letter’s c/v status or case automatically represented in tasks that do 

not explicitly require this information? These issues are addressed in Ch. 3 

and Ch. 4.  
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Chapter 2: Representational similarity 

analysis 

The methodology employed in the research in this dissertation follows and 

expands upon a growing trend to take advantage of the multivariate (multivoxel) aspect 

of fMRI data. As I will demonstrate in the following sections, harnessing the multivariate 

richness available in fMRI data allows us to investigate the cognitive phenomena 

underlying letter recognition to a degree of precision that not only identifies neural 

networks that are activated during letter recognition, but begins to decipher the 

representational contents of these letter activations. To this end, I use Multi-Voxel Pattern 

Analysis, Representational Similarity Analysis (MVPA-RSA) (Kriegeskorte, Mur, & 

Bandettini, 2008) methods to link theories of representational content to neural and 

behavioral data by measuring the degree of second-order isomorphism between 

predictions about representational content and observed patterns of  brain and behavioral 

responses. 

2.1 First order isomorphism 

   Isomorphism, in the context of cognitive neuroscience, refers to the “extent that 

there is some structural resemblance between an individual internal neurophysiological 

event and the individual external object that it represents” (Shepard, 1975). To illustrate 

this idea, imagine an experiment where a researcher is measuring the neural response 

across 4 neurons in response to an externally presented square. The researcher already 

discovered that each neuron has 4 different firing rates, each indicating a different 

position of an oblique line. In response to visually presented square (Figure 4, left), the 
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researcher records firing rates indicating the presence of each of the different possible 

line orientations across the four neurons (Figure 4, right). That such a mapping exists 

demonstrates a first-order isomorphism between the image and brain space. If you knew 

precisely how the brain space maps on to the image space (i.e. you knew the functions 

that mapped between the two isomorphic spaces), you could reverse engineer any brain 

response to reconstruct the actual picture shown without ambiguity.  

 

 

 

 

A first order isomorphism between cognitive representations and processes and 

brain activation entails that changes in cognitive processes and representations will result 

in functionally equivalent neural changes. A description of this cognition-to-brain 

mapping is a neural encoding theory (see Figure 4, center). A neural encoding theory is 

successful to the extent that it can predict neural behavior resulting from a set of 

cognitive operations (processes and representations) and conversely predict the cognitive 

operations being carried out based on observed neural behavior (decoding) (Kriegeskorte, 

Figure 4. An example of a first order isomorphism between the representation of a 

diamond shape in two systems. The first order isomorphic relationship means that each 

feature in image space has a one-to-one mapping with a feature in “brain space”. The 

formal description of this mapping serves as an encoding model that can translate 

information between the two spaces. At this point, encoding models are quite scarce, 

particularly for brain regions believed to underlie higher-level cognition. 
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2011)
4
. For neural encoding theories to be tested, such theories require a description of: 

(1) the cognitive representations and processes involved in recognizing a given stimulus 

or performing a specific task; (2) the mapping between cognitive representations and 

processes and neural behavior; and (3) a mapping between the neural behavior (e.g., the 

firing rate of neurons) and the measured signal generated from the neural behavior (e.g., 

the BOLD signal from an fMRI scanner). A description of (3) entails properly modeling 

the influences of noise and spatial/temporal resolution specific to the recording device. 

Description (3) is necessary because encoding theories, to be testable, must predict the 

expected measured neural activation using some imperfect imaging device. Only once the 

technology exists that can measure the cognitively relevant signals from the brain—

noise-free and at the perfect resolution—will (3) become unnecessary. Given that I am 

largely interested in identifying the representations that mediate letter recognition, a 

method that can utilize neural data in service of (1) while minimizing the necessary 

assumptions about (2) and (3) is ideal. Representational Similarity Analysis achieves this 

by measuring the second order isomorphism between theoretical representations and 

measured brain activation.  

                                                            
4 Many encoding models can successfully predict patterns of neural activity in response to a given stimulus, 

but these models are not cognitive insofar as they generally rely on the first-order isomorphism between 

neural activity and surface image properties, or even learned stimulus-to-neural response regularities of 

unknown content. Such encoding models are successful in predicting patterns of neural activity in brain 

regions where the internal organization is somewhat understood (e.g., primary sensory areas), but are far 

less successful for regions associated with higher-level cognitive processing. This is likely because primary 

sensory areas represent easily measured surface properties of the stimulus whereas higher-order brain 

regions represent more abstract stimulus properties that cannot be inferred from the stimulus image alone, 

but require assumptions about the content of these internal representations.      
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2.2 Second order isomorphism 

A second order isomorphism between cognitive processes/representations and 

patterns of brain activation entails that the similarity structure predicted by a cognitive 

theory is equivalent to the similarity structure observed from neural behavior (Edelman, 

1998; Shepard & Chipman, 1970). By similarity structure, I am referring to the pairwise 

similarity of every stimulus within a domain of interest at a given level of representation. 

Given a stimulus set, similarity structures are often depicted as 2-D grids that index the 

similarity between each possible stimulus pairing. This grid is referred to as a 

Representational Similarity Matrix (RSM). Representational Similarity Analysis (RSA) 

involves comparing the RSMs derived from two different sources to see the extent to 

which the two RSMs are equivalent. 
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The claim is that analysis of second order isomorphisms can allow us to reach 

detailed cognitive conclusions from fMRI data with few assumptions about how the 

stimulus information is encoded in the neural tissue
5
. Looking at the example in Figure 5, 

we see four stimuli encoded in image space (left) and brain space (right). Instead of 

image space, we can also hypothesize that the image is represented as a set of 4 visual 

                                                            
5RSA, as applied to Multi-voxel pattern analysis (depicted in the example on figure 5), requires that 

information be sufficiently distributed to be detectable in a multi-voxel signal. If RSA fails to reveal that a 

set of voxels encodes a particular representation this could always be due the nature of how the 

representation is encoded (too local) or the nature of the signal (too noisy) as opposed to the null hypothesis 

that the neural tissue does not encode that particular representation.   

Figure 5. A depiction of a second order isomorphism between to representational 
spaces—image or feature space on left and neural response space on right. The top 
image shows how four stimuli S1-S4 are encoded in each space (see text for details).  
The colored blocks (top right) indicate measurements from 4 different neural units in 
response to the 4 stimuli. Each unit (A-D) is known to have 4 different levels of 
activation indicated by the depicted color (green, yellow, blue, or red). The similarity 
structure between each space is computed and shown as RSMs on the bottom of the 
figure. Second order isomorphism is operationalized as the degree of similarity 
between the two RSMs. Even though an encoding model is unavailable, we can still 
be reasonably confident that the neural activity reflects the encoding of the same 
representational content as the image/feature space.  
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features that can exist in 4 positions. Accordingly we would like to know if these features 

are neurally and cognitive represented and if so, where in the brain they are represented. 

Given the response from four voxels to each of the four stimuli (S1-S4), we can 

determine if those four voxels are encoding the stimuli in similar manner as would be 

predicted by this hypothesized feature representation. To do this we create an RSM that 

represents the pairwise similarity of S1-S4. The similarity between two stimuli (in this 

example) is determined by counting the number of identical position-specific features for 

each stimulus pairing. In image/feature space, S1 and S2 share position 3 so the stimulus 

pair is assigned a similarity value of 1 in the RSM while S3 and S4 share positions 1, 3, 

and 4 so they are assigned a similarity value of 3. Since there are only four positions, the 

identity relationship would be a similarity value of 4. The full mapping of all the pairwise 

similarity values for the image space constitutes the predicted RSM (pRSM). Since there 

is no encoding theory we cannot predict how the stimuli should translate to neural 

activation. To get around this limitation we examine the similarity structure of the brain 

space as well. In this example, we have 4 voxels and each color depicts a level of 

activation
6
. The voxel response patterns to each stimulus are compared such that we have 

an RSM depicting the pairwise similarity of the observed activation patterns in response 

to S1-S4 (oRSM). We compute the correlation between the feature-overlap pRSM and 

the neural response oRSM to determine the degree of second order isomorphism that 

exists between these two spaces. If the pRSM is designed to model the similarity of S1-

S4 that a cognitive theory would predict, then a high degree of second order isomorphism 

with neural responses provides evidence in support of this cognitive theory. Additionally, 

                                                            
6 In reality there is not a clean mapping between the number of positions/features in theoretical space and 

the voxel-space of fMRI data. Furthermore, the most relevant set of voxels is generally unknown. A lot of 
effort is spent selecting the best voxels to analyze for second-order isomorphism.   
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the neural substrates of the representations or processes predicted by the cognitive theory 

correspond to the set of voxels that demonstrate the high-degree of second order 

isomorphism.  

2.3 Using second order isomorphism to uncover content in an opaque 

medium 

2.3.1 Rothlein and Rapp (2014)
7
 

Previous neuroimaging work by the present author and Brenda Rapp used MVPA-

RSA to uncover multiple types of letter representations from patterns of brain activity. 

Using this approach we identified patterns of neural activity consistent with 

representations of different modality-specific letter features—specifically, visual-spatial, 

phonological/acoustic, and motor representations—as well as representations of case-

invariant abstract letter identity (ALIs). Abstract letter representations, we posited, should 

represent case-invariant identity to the exclusion of all of the modality-specific features. 

Therefore,  neural activation patterns consistent with ALIs and not consistent with the 

modality-specific representations of letters, would constitute evidence that ALIs are, in 

fact, represented and it would allow us to localize them to a specific neuroanatomical 

location or locations. RSA allowed us to determine the extent to which a given pattern of 

brain activation was consistent with a given representational type by measuring the 

second order isomorphism between the representational similarity structure and the 

neural activation similarity structure evoked by a set of individually presented letters. The 

degree of second order isomorphism was operationalized as the correlation between a 

                                                            
7 Some of the language in the methods is taken from Rothlein and Rapp (2014).  
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theoretically motivated (predicted) similarity structure (pRSM) for each letter stimulus 

and an observed similarity structure (oRSM) derived by taking all possible pairwise 

correlations of letter-stimulus evoked patterns of activation across voxels in some brain 

region. 

While there are many variants, RSA involves 3 basic steps: (1) obtain an oRSM 

by computing (or measuring) the similarity of the neural (or behavioral) responses to 

pairs of stimuli within a stimulus set; (2) operationalize hypotheses of representational 

content by generating one or more representation-specific pRSMs for a set of relevant 

stimuli; and (3) estimate the degree of second order isomorphism between a pRSM and 

oRSM by computing the correlation (or distance) between them. Of course each of these 

steps introduces a number of considerations that I will discuss below in the context of 

Rothlein and Rapp. I discuss this work in considerable detail as the work in this 

dissertation relies heavily on these methods. 

Generating pRSMs 

We selected 24 letter stimuli (Aa, Bb, Dd, Ee, Ff, Hh, Kk, Oo, Pp, Rr, Tt, Uu, 

Arial size 88 font) as a representative sample of the alphabet and created 4 pRSMs that 

characterized letter similarity for visual-spatial, letter-name, motoric, and ALI feature 

dimensions. 

To estimate visual-spatial letter similarity, we used subjective letter similarity 

judgments taken from an experiment in which participants were shown every possible 

letter pair and asked to rank the visual similarity of each letter pair on a scale from 1 

(dissimilar) to 5 (similar) (Boles & Clifford, 1989). It is worth noting that visual 
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similarity judgments, while providing an estimate of the stimulus similarity of the letters, 

may also be biased by non-visual representational similarity like letter identity (e.g., one 

might judge a and A to be more visual similar than they would if they did not know that a 

and A shared the same identity). This issue is examined in detail in Chapter 3 and is used 

to draw a number of conclusions about the representations used in letter processing.  

Letter-name similarity values were also derived experimentally. Letter-name 

confusions were elicited by Hull (1973) asking participants to report spoken letter names 

presented in a noisy environment. The noise increased the likelihood that the letter names 

would be misheard and confused for similar sounding letter names. The number of such 

confusions was used as a metric of letter-name similarity—the logic being that letter 

names that are highly confusable (a, k) are more acoustically/phonologically similar that 

non-confusable pairs (a, z). One could also approximate letter-name similarity 

theoretically by reference to phonemic and phonetic feature overlap, but this involves 

committing to a specific level of representation and for the purposes of this study, we 

wanted a more inclusive metric of letter-name similarity (that could include both acoustic 

and phonological similarity).  

 Motoric similarity was based on a stroke feature metric that was validated 

experimentally on the basis of written letter confusions produced by dysgraphic 

participants (Rapp & Caramazza, 1997). For example, in this pRSM, E and H have 

similar stroke patterns and therefore were similar, whereas B and E, while visually 

similar, were motorically dissimilar.  
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Finally, for the ALI pRSM, case-invariance was used as a proxy for abstract letter 

identity. Therefore, in the ALI pRSM, any letter pairs that shared the same identity, 

regardless of case and letter shape, were identical and all other pairs were assumed to be 

unrelated. For example, in this pRSM, e and E were identical whereas e and B were not.  

 

Generating oRSMs 

 In order to record letter-specific activation patterns, Rothlein and Rapp had 9 

participants view single letter stimuli in an event-related fMRI experiment. Each trial 

consisted of a 200ms fixation dot followed by a 300ms stimulus presentation and a 

3500ms rest period. The stimulus was either one of the 24 letter shapes, a non-letter 

symbol, or a blank screen. Each stimulus was presented 12 times over the course of 6 

runs (2 tokens per run). Participants were instructed to press a button in both hands if the 

stimulus was a non-letter symbol. This simple task ensured that participants were awake 

and processed the content of the stimuli while not directing attention to specific aspects 

of the letter stimuli.  The general linear model approach (Friston et al., 1995) was used to 

Figure 6. The pRSM used 

to model ALI 

representations. Cells 

assigned 1(red) are 

predicted to be similar 

while 0 (blue) are predicted 

to be dissimilar. 
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compute the stimulus-specific activation pattern for each letter stimulus at each voxel. 

There were 26 experimental regressors; one regressor for each of the 24 letter stimuli, 

one for all the fixation timepoints and one for all the trials where a non-letter symbol was 

shown. The experimental regressors were created by convolving a boxcar function of the 

time-course for all the 200ms periods when a fixation was displayed, or the 300ms 

durations when each letter stimulus was shown and finally all the 4000ms trials when a 

non-letter symbol was convolved with a Boynton hemodynamic response function 

(Boynton, Engel, Glover, & Heeger, 1996). The six runs of trials were concatenated so 

that each experimental regressor included the 12 presentations of each letter stimulus 

over all six runs. A number of motion and confound regressors were included as well. 

The output of the GLM analysis is a map of activity estimates (beta-weights) which 

estimate the extent to which the signal from each voxel can be explained by the predicted 

signal associated with each regressor. The beta-maps for each of the 24 letter regressors 

were used as the activation pattern estimates in the Representational Similarity Analysis. 

The resulting participant-specific multi-voxel pattern of activity for each letter stimulus 

was then used to derive the observed RSMs). 

 

Figure 7. A depiction of 

a trial sequence from 

Rothlein and Rapp 

(2014). The example 

shown here is for a letter 

trial. 
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A searchlight analysis (Kriegeskorte, 2006) was used to exhaustively examine 

brain regions throughout a bilaterally symmetric searchspace. This searchspace was 

derived from an Orthographic Network Localizer task that identified brain areas that were 

more responsive to words and consonant strings than a checkerboard stimulus and 

fixation baseline. Spheres were drawn at the peaks of the responsive regions and these 

spheres were reflected across the mid-sagittal plane in order to ensure the space was 

bilaterally symmetric. The voxels contained within the spheres served as the searchspace. 

An oRSM was computed for each searchlight region (a 7 voxel sphere) within the 

searchspace (See step 2 in Figure 8). An oRSM was computed by taking the Pearson 

correlation of the pairwise beta-values across the 7 voxels for each letter pair. This 

correlation was used to estimate the neural representational similarity of a given letter 

pair for the searchlight region. The set of all letter-pair correlations within the searchlight 

region corresponded to the oRSM for that particular searchlight region. An oRSM was 

computed for each searchlight region within the searchspace. The set of oRSMs derived 

in this manner will be referred to as an oRSM-Map.     
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Comparing pRSMs to oRSMs 

 In order to infer the representational content of each searchlight region, each 

oRSM was correlated using a Pearson correlation with each of the four pRSMs. A 

Fisher’s r-to-Z transformation was applied and the resulting Z-score served as a measure 

Figure 8. (Taken from Rothlein and Rapp, 2014). A depiction of the four basic steps of the MVPA-

RSA Searchlight Analysis. BOLD response is measured while participants viewed single (upper and 

lower case) letters during a symbol detection task. The search space for the analysis, depicted in 

purple, was derived from a functionally localized reading network. 
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of representational fit of the observed to predicted RSM (see step 2 in Figure 8). The z-

scores were assigned to the central voxel of the searchlight region for each oRSM in the 

oRSM-Map. The result was 4 maps depicting the degree of second order isomorphism (as 

measured by z-values) between a feature specific pRSM and all the oRSMs from the 

oRSM-map. Each feature-specific map was referred to as a Participant Feature Sensitivity 

Map; each participant had 4 sensitivity maps. 

Sensitivity analysis 

For each feature dimension, we generated group sensitivity maps by first 

smoothing (2 full-width half-mass or FWHM) and normalizing the Participant Feature 

Sensitivity Maps into Talairach space. We then combined the maps across participants by 

performing a one-way t-test (null hypothesis of sample mean = 0) over the participant 

feature sensitivity z-values at each voxel, generating a Group Feature Sensitivity Map. 
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Selectivity analysis 

The goal of this set of analyses was to identify neural regions that were selectively 

responsive to one feature dimension only. We evaluated selectivity with 3 analyses: (1) 

An ANOVA Selectivity Comparison Analysis that identified voxels with greater 

sensitivity to one feature dimension compared to the other three; (2) A Permutation 

Selectivity Analysis that evaluated the number of participants with feature-selective 

responses at each voxel and (3) A Regression Analysis that determined the relative 

contributions of each feature dimension pRSM to the similarity structure of each oRSM. 

As seen in Figure 10, the results of the selectivity analyses revealed a right 

posterior occipital cluster that was selectively responsive to visual-spatial similarity in all 

3 selectivity analyses (TAL: 20, -86,-3). For ALI, there was a region in the left-mid 

fusiform gyrus (TAL: -31, -58, -12) that was consistently selective across all 3 analyses.  

Figure 9. Unthresholded Group Feature Sensitivity Maps depicting brain regions sensitive to each feature 

dimension. Each Group Feature Sensitivity Map was obtained from combining Individual Sensitivity 

maps (after Talairch normalization and Gaussian smoothing at 2 FWHM) and then carrying out a one-

way, two-tailed, t-test at each voxel. These unthresholded t-maps depict the topography of feature-

sensitivity for each of the four feature dimensions. 
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Rothlein and Rapp (2014) demonstrated that a searchlight implementation of 

MVPA-RSA can be used to evaluate the inherently multivariate fMRI data to examine 

the representational content of letters. While the experiments in this dissertation follow 

the logic of RSA analysis, I will use the next section to briefly discuss alternatives to the 

searchlight approach. 

2.3.2 Further considerations 

An important step in using MVPA analyses is identifying the set of voxels to 

include in the analysis. The searchlight approach described above attempts to minimize 

Figure 10. The significant clusters identified in each of the three selectivity analyses. For each of the 

maps, visual-spatial selectivity is depicted in green and abstract letter identity is depicted in red. For the 

ANOVA comparison significant clusters (uncorrected voxelwise threshold p<0.05; corrected cluster size 

threshold p<0.05) are shown in a scale where the darker colors indicate lower f-values and lighted colors 

indicate higher f-values. For the regression analysis significant clusters (uncorrected voxelwise threshold 

p<0.10; corrected cluster size threshold p<0.05) are shown in a scale where the darker colors indicate 

lower t-values and lighted colors indicate higher t-values. For the permutation analysis, selectivity maps 

were thresholded to depict only voxels where all 9 participants showed selective tuning with cluster-size 

correction for multiple comparisons (p<0.05). The letter-name and motoric feature dimension are not 

depicted because significant clusters were not identified for these feature dimensions in these analyses.  
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assumptions regarding selection of voxels used to derive an oRSM by systematically 

sampling groups of voxels from the whole brain or a large searchspace. The advantage of 

this approach is that it paints a fairly complete picture of sensitivity to a specific pRSM 

across much or all of cortex. The downside to searchlight analyses is that they require 

many statistical tests and corresponding corrections for multiple comparisons. 

Furthermore, combining results across participants typically involves linking a set of 

voxels from participant A to a set of voxels in participant B merely on the basis of shared 

Talairach (or other spatially normalized) coordinates. Given that RSA analyses produce 

relatively weak and noisy effects, the “approximate” voxel-to-voxel mapping across 

subjects results in high variance due to spatial uncertainty that may be problematic in 

testing pRSMs against oRSM at the group level. Finally, while searchlight analyses make 

few assumptions about where an effect occurs in the brain, they do require arbitrary 

decisions about the shape and number of voxels that best represent a given feature (Etzel, 

Zacks, & Braver, 2013). For example, we assumed a 7 voxel sphere for a searchlight 

region, but this decision was arbitrary.  

One way to bypass some of the complications associated with a searchlight 

analysis is to select a set of voxels of interest in each individual in an experimentally or 

theoretically motivated manner. The volume-of-interest or VOI approach involves 

carrying out RSA analysis on a set of selected voxels. The two most common ways of 

defining VOIs are by either using anatomical landmarks or functionally relevant regions 

identified from a different experiment (functional localizer). VOI avoids complications 

induced by spatial normalization when combining data across participants. We can then 

perform RSA within each participant’s VOI. While this approach is ideal for combining 



39 
 

data across participants, it is not without its own drawbacks. There may be relevant 

voxels that are not included in the analysis and the size of the VOI is still largely arbitrary 

because it is sensitive to statistical thresholding. Also, the univariate activation magnitude 

comparisons typically used in functional localizers may not be the optimal way to define 

VOIs for MVPA-RSA
8
. Activation magnitude in a functionally identified VOI might be 

only indirectly related to the question at hand and therefore investigating the 

representational content of a VOI identified in this manner could be misleading. 

2.4 Chapter 2 summary 

 In Chapter 2, I discussed how second order isomorphism can be used to test 

hypotheses about the representational content of any brain region using fMRI and 

Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008). RSA compares 

the similarity structure that would be predicted if a brain region encoded a particular type 

of representation with the actual similarity structure of the  multivoxel activation patterns 

from that region. I discussed previous research that successfully used this method to 

identify both modality specific and abstract representations of letters (Rothlein & Rapp, 

2014). This is the primary methodology used in the behavioral studies in chapter 3 and 

fMRI studies in chapters 4 and 5. 

 

                                                            
8 Searchlight RSA could be used to define VOIs based on representational content instead of univariate 
activation. A VOI is defined in this manner in the experiment presented in Ch. 5 of this dissertation.  
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Chapter 3 - The influence of visual and 

non-visual letter representations on 

behavioral measures of visual similarity 

As discussed in the introductory chapter, models of reading often propose a series 

of increasingly abstract representations to deal with the computational challenges that 

stimulus variability imposes on the identification process. Two such proposed levels of 

abstraction are font-invariant stored letter shape representations (allographs) and abstract 

letter identity (ALI) representations. While arguments in support of ALI representations 

come from evidence from multiple methodologies—with varying degrees of success—

evidence for allograph representations in reading is relatively scant. Many models of 

reading gloss over visual recognition processes entirely by assuming simple letter stimuli 

that do not vary in font or position so simple visual features can be used to accurately 

identify letters (e.g., McClelland & Rumelhart, 1981; Plaut & Behrmann, 2011). Other 

models of reading base letter identification processes on models of object recognition and 

assume each letter has a stored structural description that is invariant to certain changes in 

position and orientation (for review see Grainger et al., 2008). The series of 3 behavioral 

experiments that follow explicitly test for the existence of font-invariant allograph, 

abstract letter identity, and other types of stored letter representations (reviewed in Ch. 1) 

by examining the influence, if any, that these representations exert on pairwise visual 

similarity judgments (Experiment 1) and reaction times for physical same-different 

judgments of simultaneously presented letters (Experiment 2). A third experiment 

addresses a possible alternative account for the results from Experiments 1 and 2. 

Determining which types of representations influence visual judgments in these tasks 
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provides a novel source of evidence to evaluate the types of representation that mediate 

letter processing.  

The experiments that follow include the use of pairwise letter similarity matrices 

in order to draw inferences about the cognitive representations involved in visual letter 

processing. Similarity matrices for letters consist of matrices where the value in each cell 

reflects some empirical measure of similarity for a pair of letters. In the literature, 

similarity measures have often been derived by either tallying confusions in a letter 

naming task where a visual letter was presented in degraded conditions—for example 

short stimulus duration (e.g., Fisher, Monty, & Glucksberg, 1969; Gilmore, Hersh, 

Caramazza, & Griffin, 1979; Tinker, 1928; van Der Heijden, Malhas, & van Den 

Roovaart, 1984), low light or contrast (e.g., Geyer & Dewald, 1973; Gupta, Geyer, & 

Maalouf, 1983; Watson & Fitzhugh, 1989), or peripheral presentation (e.g., Dockeray, 

1910; Reich & Bedell, 2000)—by measuring the reaction time involved in judging 

whether two letters are visually identical or not (Courrieu, Farioli, & Grainger, 2004; 

Podgorny & Garner, 1979), or by having participants explicitly judge the visual similarity 

of presented letter pairs (Boles & Clifford, 1989; Podgorny & Garner, 1979; Simpson, 

Mousikou, Montoya, & Defior, 2012). While the use of visual similarity matrices to 

make inferences about the cognitive processing of letters is not new (for review see 

Mueller & Weidemann, 2012), such inferences have often been used for identifying a set 

of visual features that mediate letter identification. Wide-spread acceptance of such 

feature sets has remained elusive largely due to methodological issues; namely that 

similarity values were sensitive to both the stimulus font used and the experimental task 

employed (Fisher et al., 1969; Gupta et al., 1983; Mueller & Weidemann, 2012). 
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Therefore, different feature sets could be and often were derived for each font and each 

similarity measure used. Nonetheless, much can still be inferred about the representations 

involved in letter processing from the information represented in similarity matrices. To 

expand, it is reasonable to assume that one reason both task type and font influences 

similarity values is because any given empirical similarity metric could be based on or 

influenced by similarity at multiple levels of representation. In fact, evidence that 

conceptual (or non-visual) information influences measures of visual perception (like 

visual similarity) comes from many sources (for review see Lupyan, 2012; Wiley, Wilson 

& Rapp, under review). In general, these findings reveal that category labels can warp 

similarity judgments so that items that share the same category label are judged to be 

more similar than items that cross a category barrier, even if the physical difference of the 

within category and across category boundaries is matched (Goldstone, 1994; Panis, 

Vangeneugden, & Wagemans, 2008). A number of studies have investigated category 

effects on vision with letters by presenting pairs of letter stimuli and asking participants 

to decide whether or not the letter pairs were visually identical or not. The underlying 

assumption was that similar letter-pairs required more cognitive effort to differentiate and 

therefore would take longer to elicit a “different” response than did dissimilar letter-pairs. 

These studies revealed that reaction times were longer for “different” responses when the 

two letter stimuli shared the same ALI, even if the cross-case pairs were visually distinct 

(Carrasco, Kinchla, & Figueroa, 1988; Lupyan, Thompson-Schill, & Swingley, 2010; 

Wiley, Wilson & Rapp, under review). 

A recent study by Lupyan et al. (2010) demonstrated significantly slower 

response times in a visual same-different task when the two letters were case variants of 
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the same identity than when they were different identities although the pairs were 

matched for visual similarity (see also Chen & Proctor, 2012).  Lupyan argued that the 

letter identity information dynamically altered the visual representation of  cross-case 

identity pairs (e.g., B and b) via feedback rendering their visual representations more 

similar than B/p, Others have argued that later decision-based processes like response 

competition could explain these results without the need for conceptual penetration of 

visual processing (Chen & Proctor, 2012). Regardless of whether the mechanism is 

response competition or feedback, the finding that response interference occurs at all is 

evidence for the level of representation that best explains the interference. The 

experiments that follow made use of this effect to see which representations, beyond 

computed stimulus shape representations, influenced pairwise visual similarity judgments 

and visual same-different decision errors and RTs.  

Isolating the unique contribution of a given letter representation to measures of 

visual similarity presents a number of challenges. Most apparent is separating the 

influence of stored visual and nonvisual letter representation from the influence of 

computed font-specific stimulus shape representations on a given response. For example, 

if participants judge d and D to be more visually similar than f and H, would this be due 

to an identity similarity bias in the judgment of the former pair? Alternatively, perhaps 

identity has no influence and the computed stimulus shapes for d and D are actually more 

similar than the stimulus shapes for f and H. To get around this issue, Lupyan et al. 

(2010) only compared the difference between B-b and B-p, the logic being that the 

stimulus shape similarity between B-p and B-b is matched since p and b differ only by a 

horizontal reflection so any difference in RT should be attributable to the influence of 
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identity. While this approach is sound, it severely limits the number of letter pairs that 

can be used. The more diverse the stimulus set, the larger the set of interference patterns 

that can be tested. So while B-b and B-p, worked for testing identity interference, other 

interference patterns such as the similarity of the letter’s name, whether a letter is a 

consonant or vowel, or whether a character is a letter or a digit requires a larger stimulus 

set. One approach also comes from Lupyan et al (2010) who found that the influence of 

identity disappears entirely when stimuli were presented at a 90° rotation. In other words, 

responding “different” to the rotated B and b took equally long as to the rotated B and p. 

Lupyan et al. assumed that rotating the letters sufficiently disrupted the processing of 

letter identity to eliminate any influence identity may have had on the visual same-

different task
9
 (see also Egeth & Blecker, 1971). According to this logic, one could 

estimate the pairwise stimulus shape similarity of a large set of alphanumeric stimuli by 

performing the same rigid transformation (e.g. rotation or reflection) on each stimulus 

forming a pixelwise matched, rotated stimulus set. This transformation would reduce and 

ideally eliminate any contributions from stored letter representations while maintaining 

the stimulus shape similarity. What follows from this logic is that any differences in the 

similarity structure of responses to the normal, “upright” set of alphanumeric characters 

compared to responses to the visually matched and difficult-to-recognize “rotated” 

stimulus set could be attributed to one or more types of stored letter representations that 

were accessed when the characters were identified (in the upright presentation).  

                                                            
9 It is worth noting that the rotated forms of p and b may be particularly difficult to differentiate as 

orientation information alone distinguishes these letters. Because of this, a rotated p is not an ideal visual 

control as it may activate both b and p equally (instead of activating neither). Therefore, the finding that the 

“different” responses to the rotated B and b pair and the rotated B and p pair took equally long could be 

explained by the fact that the rotated b and p both were identified as b and therefore lead to the same 

amount of interference.   
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Representational Similarity Analysis (Kriegeskorte et al., 2008) for behavioral 

data (e.g., RTs and accuracies) can be implemented to quantify the influence of stored 

representations over a large stimulus set by generating the predicted similarity structure 

(referred to as predicted Representational Similarity Matrices or pRSMs) for different 

types of stored letter representations and then correlating these pRSMs with an observed 

set of similarity measures (observed RSMs or oRSMs). Crucially, to isolate the influence 

of stored representations, a correlation between the oRSM obtained from the rotated letter 

pairs and the pRSMs can serve as a baseline correlation for computed stimulus shape 

similarity. The same correlations can be computed with the upright set of characters and 

then the degree of influence for each type of representation can be quantified as the 

change in the correlation between the rotated oRSM and the pRSM and the correlation 

between the upright oRSM and the pRSM.        

A challenge arises specifically when separating the contributions of allographs 

from the font-specific computed stimulus shapes. Specifically, it is possible that 

allograph representations make a unique contribution to measures of pairwise visual 

similarity, but separating their contribution from similarity effects arising from lower-

level visual features is difficult because the similarity structure at the different levels of 

representations are likely to be highly similar. For example, it could be that the visual 

similarity for the stimuli e and E is the same at the level of computed stimulus shape 

representations and at the allograph level of representation, even if the features that 

compose the representations are simple oriented lines for the computed stimulus shapes 

and more complex curves and angles for the allographs. One way to ensure that the 

representational similarity structure is different for the font-specific computed stimulus 
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shapes and the font-invariant allographs is to use a stimulus font that is both atypical and 

novel so that the stimulus shape is substantially different from the allograph 

representation. Therefore, if one were to compare similarity measures derived from a 

typical font and an atypical font, and if allograph representations exist and “bias” 

similarity judgments, then the observed similarity structure of the typical font will be 

more similar to the similarity structure of the upright atypical font than to the similarity 

structure of the rotated atypical font (Figure 11). I will posit that a greater degree of 

similarity of the upright atypical font to the upright typical font than would be predicted 

by stimulus shape alone is due to the influence of font-invariant allograph 

representations. In order to reach this conclusion one must assume that the visual 

similarity of the typical font constitutes a good proxy of the similarity structure of 

allograph representations. This is a reasonable assumption because allograph 

representations would likely be tuned to the most typical and frequent letter forms in 

order to maximize efficiency while reading. The logic for inferring allograph 

representations from similarity judgments is spelled out in more detail in Figure 11. 
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One issue that should be discussed is whether the existence of allograph 

representations is actually controversial. For example, one could argue that all the 

evidence that is needed to support the existence of allograph representations is the fact 

that we know what typical letter shapes look like and we can easily conjure up mental 

Figure 11. (a) Participants made visual similarity judgments to alphanumeric shapes presented in an 

atypical gridfont (a. middle), a rotated gridfont (a. top) that, while maintaining the same pixelwise image 

similarity as the upright gridfont, was difficult to recognize. Similarity judgments of the rotated gridfont 

served as a proxy for visual similarity of the upright gridfont at the level of computed stimulus shapes 

because the visual judgments would reflect visually matched shapes that would not be influenced by 

stored letter representations. A typical font (a. bottom) was also presented as a proxy for the visual 

similarity at the level of allograph representations. (b) Visual similarity judgments for the letter pair (a 

and G) were depicted on a horizontal scale where positions on the left indicate visual dissimilarity and 

positions on the right indicate visual similarity. Participants judged the rotated gridfont (a and G) to be 

similar suggesting the stimulus shape was visually similar while the same letters presented in a typical 

font were judged to be visually dissimilar. If allograph representations have no effect, when the visual 

similarity judgments were made on the upright gridfont, the judgment should be identical to the rotated 

gridfont judgment because the upright and rotated stimuli were visually matched. Instead if allograph 

representations were accessed and influence the similarity judgment, the judgment for the upright gridfont 

should be “pulled” towards the judgment of the typical font pair, in this case being judged as less visually 

similar than the rotated gridfont letters. (c) Following a similar logic described in (b), if ALI 

representations were accessed and influence the visual similarity judgment of the letter pair (a and A), 

than the upright gridfont pair should be judged as more similar than the rotated gridfont pair because the 

identity relationship (recognized in the upright gridfont pair) would bias the participant to view the letter-

pair as being more similar than the same stimulus shapes without the identity relationship (estimated by 

the rotated gridfont). 
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images of typical letter shapes. There are a number of objections to this line of argument 

but perhaps most relevant is the fact that the claim in this paper is not just that we have 

stored allographs, but that these stored letter shapes mediate letter recognition. That we 

can easily imagine what typical letter forms looks like in no way suggests that the same 

representations that guide our mental imagery are used in letter recognition or lexical 

access. For example, many can conjure up an image of a fancy calligraphic typeface but 

this does not mean that the stored knowledge that allows us to do so is utilized by letter 

recognition processes under normal
10

 circumstances.  

In order to test for the influence of stored letter representations on behavioral 

measures of pairwise letter and digit similarity, nine pRSMs were constructed that 

represent predicted similarity structures for the following representational types: 

allographs, ALIs, upper/lower case, c/v status, letter/digit status, motoric production 

features, and letter name similarity. Across 2 experiments I obtained oRSMs for pairs of 

novel atypical gridfont alphanumeric stimuli presented in either upright or rotated 

versions. I also obtained an oRSM for the same alphanumeric characters presented in a 

more typical font (upright presentation). Three oRSMs were developed based on three 

types of data: explicit visual similarity judgments, reaction times for visual same or 

different decisions, and counts of erroneous “same” responses in the same-different 

paradigm.  

                                                            
10 There is a strong case to be made that the visual similarity judgments and same-different decision tasks 
do not rely on normal letter recognition processes as reading presumably does not utilize the level of 
visual analysis that similarity judgments and same-different decisions require. It is worth noting, however, 
that accessing any type of stored letter representation is not necessary and in fact detrimental to the 
“accuracy” of responses in these tasks. Therefore, one is forced to ask—why are these stored letter 
representations accessed in a task that does not require them? My explanation is that viewing letters 
reflexively activates the representations involved in normal letter processing (i.e., reading) in addition to 
the visual processes necessary for the task at hand. Under this interpretation, the normal letter 
recognition processes are what interfere with the abnormal, task-specific representations and processes.   
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3.1 Experiment 1 – Pairwise visual similarity judgments of letters 

and digits  
 

 Experiment 1 examined the proposal that visual similarity judgments of pairs of 

letters are driven by multiple levels of representation—from low level visual features to 

stored font-invariant allographs to conceptual properties of letters like abstract identity or 

consonant/vowel status. Influence from these different levels of representations on visual 

similarity judgments would indicate that these representations are accessed automatically 

during letter recognition.  

 Visual similarity judgments from three groups of participants were collected in 

this experiment. For the first group of participants, similarity judgments were obtained 

for pairs of letters presented in a novel and atypical gridfont (Figure 12). The set of these 

similarity judgments served as the observed Representational Similarity Matrix (Upright 

oRSM) and were analyzed for the influence of different types of stored letter/digit 

representations. In order to differentiate the influence on similarity judgments of stored 

letter representations from the visual similarity of the stimuli, a second group of 

participants made visual similarity judgments on the same gridfont, but with the stimuli 

rotated in a manner than rendered them difficult to recognize while maintaining the same 

pairwise pixelwise similarity as the upright gridfont letters (Rotated oRSM). These 

judgments provided an estimate of the font-specific visual similarity of the gridfont at the 

level of computed stimulus shape representations without any interference from stored 

letter representations. Finally, in order to provide an estimate of the visual similarity at 

the level of allograph representations, a third group of participants made visual similarity 

judgments for letter stimuli presented in a typical upright font (Allograph pRSM). 
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Additional pRSMs were constructed to detect the influence of ALIs, case-markers, c/v 

markers, motoric production codes, and letter name representations. The degree of 

influence for each type of stored letter representations was quantified in two ways: (1) the 

correlation difference value (rdiff) between the correlation r of a given pRSM with the 

Upright oRSM (rupright) minus the correlation between that pRSM with the Rotated oRSM 

(rdiff = rupright -rrotated); and (2) the standardized beta-weight corresponding to each pRSM 

in a regression analysis where the Rotated oRSM and a set of pRSMs serve as regressors 

for the Upright oRSM.  

3.1.1 Methods 

 Each experiment was run on Amazon’s Mechanical Turk (AMT) and coded using 

HTML and JavaScript code. JavaScript code made use of the jquery1.8.3 

(https://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js) and TimTurkTools 

(Tim Brady - https://timbrady.org/turk/TimTurkTools.js) packages. 

Participants 

153 participants were recruited from Amazon’s Mechanical Turk (AMT). 

Workers (participants from AMT) were instructed not to participate in any experiment if 

they had a history of reading or spelling disabilities. Furthermore, workers were 

instructed not to participate if they were literate in any other written script besides the 

Roman alphabet although there was no way to independently verify this. Workers were 

only recruited from the US. Participants were paid $1.00 for their participation.  

The 153 participants were divided into 3 groups based on the stimuli used: the 

Upright Gridfont, the Rotated Gridfont, and the Typical Font Groups. For the Upright 

Gridfont Group, 54 participants were recruited. Participants had to have participated in at 
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least 100 HITs (tasks on AMT) with an approval rating of at least 95%. For the Rotated 

Gridfont Group, 50 participants were recruited. Participants had to have participated in at 

least 1000 HITs with an approval rating of at least 90%. For the Typical Font Group, 49 

participants were recruited. Participants had to have participated in at least 1000 HITs 

(tasks on AMT) with an approval rating of at least 90%. 

Stimuli and design    

Upright Gridfont Group 

 The stimuli shown above (Figure 12, left) were the alphanumeric symbols used in 

this experiment. The stimuli consisted of 28 letters (7 different identities) and 5 digits. In 

order to control for visual cues like size and curvature, all stimuli were constructed from 

a limited feature-set of straight lines and were matched to be the same size (see Figure 11 

for more details). The limited feature set was used to ensure that features like stimulus 

orientation (e.g. r, r) and line thickness would not serve as cues indicating different 

shapes. Furthermore, since stimuli were matched in height and width, stimulus size could 

not serve as a cue to letter case or identity.   

 

Figure 12. A depiction of the square, 100 X 100 pixel grid with all 

of the possible features in black. Each stimulus was required to 

touch all 4 sides. This ensured the height and width of each stimulus 

were matched.   
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Experimental stimuli were displayed within a 500px (width) by 600px (height) 

frame with a black border and were centered within a 100px by 100px stimulus space. 

During the stimulus familiarization portion of the Experiment, 1 stimulus within the 

stimulus space was centered within the display frame. The written feedback displaying 

the correct response was centered as well. During the similarity judgment portion of the 

experiment, 2 letter stimuli were displayed side by side (each within a stimulus space) 

and each stimulus space was centered vertically within the display frame. The center of 

each stimulus space was 150px away from a fixation dot that was centered both vertically 

and horizontally within the display frame.  

 The stimulus familiarization portion consisted of 66 trials, displaying each of the 

Upright Gridfont stimuli twice. The similarity judgment portion consisted of 22 practice 

Figure 13. Left: The novel, atypical and upright gridfont alphanumeric characters used as stimuli in 

Experiment 1 and 2. The red lines indicate stimuli that, while included in the experiment, responses 

involving these stimuli were excluded from analyses due to the fact that the data analysis indicated that 

they were difficult to recognize. Right: the rotated gridfont stimuli used in Experiments 1 and 2. These 

stimuli were created by flipping the upright characters about their vertical axis and then rotating them 

90°ccw.  The rotation intended to render them difficult to identify. The rotated oRSM provided an 

estimate of the representational similarity of the upright gridfont stimuli at the level of font-specific 

computed stimulus shape representations. 
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trials and 528 experimental trials. The 528 experimental trials consisted of 1 trial for each 

possible different-stimulus pairs for the set of 33 stimuli. The 22 practice trials were 

randomly selected from the set of possible different-stimulus pairs. Stimulus position (left 

or right) was randomized for each trial and trial order was randomized for each worker.  

Rotated Gridfont Group 

 Experimental stimuli and design were identical to the Upright Gridfont Group 

except for three variations. First and most importantly, in order to make the letter and 

digit stimuli difficult to recognize, each character stimulus was flipped around its vertical 

axis and rotated 90°ccw
11

. Next, there was no familiarization portion of the experiment 

and the stimuli were referred to as shapes instead of letters and digits. Finally, at the end 

of the experiment, a survey was presented asking if any of the shapes were recognized 

and if so to provide a few examples.    

 Like the Upright Gridfont Group, the similarity judgment portion consisted of 22 

practice trials and 528 experimental trials. The 528 experimental trials consisted of every 

possible different-stimulus pair from the set of 33 rotated stimuli. The 22 practice trials 

were randomly selected from the set of possible different-stimulus pairs. Stimulus 

position (left or right) was randomized for each trial and trial order was randomized for 

each worker.  

Typical Font Group 

 Experimental design was identical to the Rotated Gridfont Group except for the 

stimulus set used (Figure 13). The characters were presented upright in the monospaced 

typeface Consolas.  

                                                            
11 For simplicity I will refer to these stimuli as rotated characters.  



54 
 

 

 The similarity judgment portion consisted of 22 practice trials and 255 

experimental trials. The 255 experimental trials consisted of every possible different-

stimulus pair within the set of 23 stimuli. The 22 practice trials were randomly selected 

from the set of possible different-stimulus pairs. Stimulus position (left or right) was 

randomized for each trial and trial order was randomized for each worker.  

Procedure 

Upright Gridfont Group 

 Qualified workers on AMT found the experiment by clicking on a link found on 

the AMT website titled “Visual Judgements about Letters”. Workers were not allowed to 

view or begin the experimental tasks until they both agreed to the consent form and 

accepted the HIT. This experiment consisted of two tasks.  

 The first task both familiarized the workers with, and tested the legibility of each 

stimulus. Workers were instructed to indicate the identity of the character by pressing the 

appropriate key on their keyboard. They were also told responses were not case-sensitive. 

A stimulus character would appear within the display frame. Once a response was given 

(correct or incorrect), the correct answer appeared on the screen in Arial font (e.g., 

Figure 14. Font used in the Typical 

Font Group. The font is Consalas 

which is a variant of Calibri where the 

width of each character is matched. 
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“lower-case g”). Workers began the next trial by pressing spacebar. Each stimulus 

appeared twice. Responses and reaction times were recorded but only responses were 

analyzed further.  

 In the second task, participants were instructed to indicate how visually similar 

the two character stimuli were on a scale of 1 through 5 by pressing 1, 2, 3, 4, or 5 on 

their keyboard. Furthermore they were instructed that pressing 1 indicates the pair is less 

similar and increasing numbers indicate increasing similarity up to 5 which is more 

similar. A reminder of this scale remained visible throughout the task as well as a 

countdown of the number of remaining trials. Once the task began, a character pair was 

shown. A keyboard response immediately triggered the appearance of the next stimulus 

pair. Similarity judgments and reaction times were recorded but only judgments were 

analyzed further.      

Rotated Gridfont Group 

 The procedure was identical to Upright Gridfont Group except there was no 

familiarization portion and there was a survey added on at the end that asked participants 

whether any of the Rotated Gridfont stimuli were recognizable. Additionally, qualified 

workers on AMT found the experiment by clicking on a link found on the AMT website 

titled “Visual Judgements about Shapes”.  

Typical Font Group 

Participants were instructed to indicate how visually similar the two character 

stimuli were on a scale of 1 through 5. A keyboard response immediately triggered the 

appearance of the next stimulus pair. Responses and reaction times were recorded but 

only responses were analyzed further.      
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3.1.2 Experiment 1 Analysis 

Group oRSM formation 

Upright Gridfont Group 

 For the similarity judgment portion of the experiment, visual judgment oRSMs for 

each participant (participant oRSMs) and 1 group oRSM were constructed. The raw 

participant oRSMs each consisted of a matrix where each cell contained the similarity 

judgment for a given stimulus pair. The values in each participant oRSM were reflected 

across the matrix diagonal
12

 and only the upper triangle of the similarity matrix was 

analyzed. The diagonal had no values since similarity judgments were only made for 

pairs where the two stimuli were different. Finally, to minimize any influence of different 

similarity standards across participants, only relative similarity was analyzed by z-

normalizing each of the 54 participant oRSMs.  

 The following procedure was employed to remove outliers: first, for each 

participant oRSM, a similarity-to-sample value was computed by correlating a given 

participant’s oRSM with each of the other 53 participants’ oRSMs, resulting in 53 r
 

values. The similarity-to-sample value consisted of the mean of these 53 r values. This 

was computed for each participant resulting 54 similarity-to-sample values.  Finally, 

outliers were defined as participants whose similarity-to-sample values fell 1.5 standard 

deviations below the mean similarity-to-sample value (0.3032). Eight participant oRSMs 

                                                            
12 The y dimension indexes stimuli that appeared to the left of fixation and the x dimension indexes stimuli 

that appeared to the right. Since only one configuration of a stimulus pair (either <i,j> or <j,i>) was shown 

to a given participant, the resulting participant oRSM was incomplete. By reflecting across the diagonal 

(the response in cellij is placed in cellji as well), the resulting oRSM has a single value in each cell (except 

the diagonal). The assumption in performing this operation is that the left /right configuration of the stimuli 

makes no difference to the visual similarity judgments. Further experimentation would be necessary to 

verify this assumption. 
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were found to be outliers in this manner and removed from further analysis. The mean 

similarity to sample was increased to 0.3926 after it was recomputed with the remaining 

46 participant oRSM.   

The group oRSM was computed by taking, for each stimulus pair, the mean of the 

46 participant similarity z values and placing the mean value in the appropriate cell in the 

group oRSM. The group oRSM was then z normalized. In further analyses it will be 

referred to as the Upright oRSM. 

Rotated Gridfont Group 

 For the similarity judgment portion of the experiment, 50 participant oRSMs and 

1 group oRSM were constructed in the identical manner to the Upright Gridfont Group. 

Seven outlier participants were identified and removed following the same procedure 

described above, increasing the mean similarity to sample value from 0.32 to 0.42. The 

group oRSM formed will be referred to as the Rotated oRSM.  

 Typical Font Group 

 For the similarity judgment portion of the experiment, 49 participant oRSMs and 

1 group oRSM were constructed following the aforementioned procedure. Four outlier 

participants were identified and removed increasing the mean similarity to sample value 

from 0.23 to 0.27. Because the similarity judgments from the typical font served as a 

proxy for the predicted representational similarity of allographs, the group oRSM formed 

from the typical font will subsequently be referred to as the Allograph pRSM  
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Measuring representational influence 

Correlation and regression analyses were employed to determine the types of 

letter representations that were activated in the processing of visually presented letters. 

Of particular interest was determining if allograph representations were activated. Two 

analysis stages were employed. The first stage was a correlation analysis used to identify 

stored letter representations (e.g., allographs, abstract letter identity, letter name) that 

influenced visual similarity judgments in a manner that could not be explained by 

stimulus shape similarity. The second stage was a regression analysis in which the feature 

dimensions determined to be significant in the correlation analysis were evaluated for 

their unique contribution to the similarity judgments.      

Correlation analysis 

 The correlation analysis used an observed representational similarity matrix 

(oRSM) which consisted of pairwise visual similarity judgments from letter stimuli 

presented in an atypical grid typeface (the Upright oRSM). The grid typeface was 

intended to have a computed stimulus shape similarity structure (see Figure 2) that was 

substantially different from more typical typefaces in order to maximize the detectability 

of any bias from allograph representations. Additionally, there was a control oRSM 

which consisted of visual similarity judgments of the stimuli from the rotated grid 

typeface (the Rotated oRSM). These similarity judgments provided an empirical 

estimate of the visuo-perceptual similarity of the grid typeface uninfluenced by letter 

representations accessed by virtue of identifying the letter stimuli. 

In addition to the upright and rotated oRSMs, a set of 9 predicted representational 

similarity matrices (pRSMs) were constructed so that each pRSM represented the 
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predicted similarity structure of the upright grid letter stimuli for a given feature 

dimension (See Appendix 1, Figures 1-10 for sample pRSMs). Most important among 

these were 2 pRSMs. First was the Allograph pRSM, which estimated the 

representational similarity of allograph representations. This pRSM consisted of the 

visual similarity judgments of upright letters presented in a typical font. The assumption 

here is that the visual similarity of a typical font is a better proxy of the internal 

representation of stored letter shapes than upright grid font. Second, the ALI pRSM 

predicts the similarity structure at the level of abstract letter identities; specifically, it 

assigns 1 to all letter pairs with the same identity (e.g., a, A) and 0 to all other letter pairs. 

Practically, it predicts that similarity judgments for letters that share the same identity 

will be greater than the judgments of letter pairs that do not. Other pRSMs include a 

Pixel-Overlap pRSM that measures low-level (pixel-based) image similarity of pairs of 

letter stimuli to capture low level visual similarity that is not represented in the Allograph 

pRSM. As described above, each letter stimulus was composed of a black font on a white 

background and was constructed, cropped, and centered such that both the background 

size and the topmost, bottommost, leftmost and rightmost points of each letter were 

matched. Each pixel in the stimulus image was assigned 1 (black) or 0 (white). Each 

stimulus image matrix was then subtracted from one another and sum of the absolute 

value was taken of the difference matrix was computed. This was the sum of pixels where 

the two images did not share the same value (misses). Pixel Overlap was computed by the 

following formula: Overlap=1-(misses / total number of pixels in an image). Following 

Rothlein and Rapp (2014), there were 3 pRSMs that measured similarity based on 

similarity in the auditory and motor modalities. The auditory Letter-Name pRSM 
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represents auditory similarity on the basis of an empirically derived letter name 

confusability matrix (Hull, 1973). The experimental task used by Hull involved 

participants identifying aurally presented letter and digit names. Confusions were elicited 

by presenting the names in a noisy background. The more confusable two names were, 

the more similar the name representations. A second Phonetic Feature pRSM was 

created based on the set of phonetic features corresponding to each letter name (features 

taken from an IPA phonetic feature chart). Phonetic feature overlap was computed by 

summing the features from each letter name that overlap with the features from the other 

letter name and dividing that sum by the total number of features across the pair of letter 

names. The Motoric pRSM was derived from a stroke-feature similarity metric (Rapp & 

Caramazza, 1997) that was validated against written letter confusions produced by 

individuals with acquired dysgraphia. Finally, there were 3 pRSMs that predicted the 

similarity structure of the orthographic and semantic properties of alphanumeric symbols. 

The Case pRSM tested the hypothesis that case was represented independently of letter 

identity. Specifically, all letters that shared the same case shared the same case marker 

representation (see Figure 5). Accordingly, the Case pRSM predicted that all letters that 

shared the same case (e.g., A and B) should be more similar to one another (and were 

assigned a 1) as compared to letters that did not (e.g., A and b which was assigned a 0). 

To reduce the possibility of an interaction with letters that share the same ALI, only letter 

pairs with different identities were included in this analysis. The Consonant/Vowel (c/v) 

pRSM tested for identity-independent consonant or vowel representation shared across 

letters. For example, the letters a and e shared the same vowel representation and were 

assigned a 1 whereas a and c was be assigned a 0. Following this, the c/v pRSM 
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predicted that all consonants should be more similar to other consonants (that do not 

share the same ALI) than with vowels and all vowels should be more similar with other 

vowels (that do not share the same ALI) than with consonants. Finally the Alphanumeric 

pRSM predicted that all letters should be more similar to each other than to digits and 

digits should be more similar to other digits than to letters. Only letter pairs with different 

identities were included in this pRSM to account for the fact that there were no font or 

shape variants of the same digit identity.  

The goal of the correlation analysis was to identify representations that influenced 

the visual similarity judgments of the upright gridfont in a manner that could not be 

explained by the visual similarity of the stimuli. To this end the analysis involved the 

following four steps: (1) each of the 9 pRSMs was correlated with the Rotated oRSM.  

Because the pixelwise similarity was matched between the rotated and upright gridfonts 

and because the stimuli in the rotated gridfont were hard to identify, these correlations 

served as a control condition to estimate the baseline correlations between the visual 

similarity of the stimulus shapes and the pRSMs without the contribution of letter 

recognition. (2) Each pRSM was also correlated with the Upright oRSM. (3) The 

difference between the correlations of each pRSM with the Upright oRSM and the 

Rotated oRSM was interpreted as reflecting the influence of the stored letter type 

represented by that particular pRSM.  In other words, the degree of influence for each 

type of stored letter representation was quantified as the correlation difference value (rdiff) 

between the correlation r of that stored letter representation’s pRSM with the Upright 

oRSM (rupright) minus the correlation between that pRSM and the Rotated oRSM (rdiff = 

rupright -rrotated). (4) Significance for the aforementioned correlation difference (rdiff) was 
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established using a label-scramble permutation Monte-Carlo analysis. This analysis was 

carried out by creating 10000 Upright and Rotated Pseudo-oRSMs in the following 

manner: the rows and columns of the original Upright oRSM and the Rotated oRSM were 

scrambled forming Upright and Rotated Pseudo-oRSMs. Importantly, the rows and the 

columns were scrambled identically (e.g., if the a column swapped places with the d 

column, then the a row would swap places with the d row). This ensured that the Pseudo-

oRSMs properly estimated the null-distribution based on scrambled label permutations. 

Each Upright Pseudo-oRSM was matched with a Rotated Pseudo-oRSM insofar as the 

scrambled row and column assignments for the Upright and Rotated Pseudo-oRSM pair 

were identical. For each pRSM a distribution of 10000 random correlation differences 

were computed by taking the correlation of the Upright Pseudo-oRSM and a pRSM and 

subtracting the correlation between that same pRSM and the matched Rotated Pseudo-

oRSM. If the actual difference between the pRSM correlated with the upright oRSM and 

the pRSM correlated with the rotated oRSM fell within the top 5% of correlation 

difference values, the correlation difference was labeled significant. Reported one-tailed 

p values were computed by subtracting the percentile rank of the rdiff value from 1. 

Regression analysis                     

 While showing that a given pRSM had a significant rdiff is consistent with the 

hypothesis that the stored letter representation quantified by a particular pRSM was 

influencing visual similarity judgments, it is possible that the pRSM only appeared to be 

influential by virtue of its correlation with a pRSM that actually is influential. For 

example, the Allograph pRSM is highly correlated with the ALI pRSM (r=0.66). 

Therefore, if both are shown to be influential, both could be genuinely influential or 
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possibly only allograph representations are influential and ALI representations merely 

appear to be so based on their high correlation with the Allograph pRSM. To account for 

this possibility, a multiple linear regression analysis was employed where Y=the Upright 

oRSM and all of the pRSMs that had significant rdiff values were included as regressors 

along with the Rotated oRSM. The logic is that the beta values for each pRSM would 

indicate the relative contribution of the pRSM in the context of the other significant rdiff 

pRSMs while controlling for the stimulus shape (via inclusion of the Rotated oRSM). 

The values in the Upright oRSM were z-normalized as were the values for each of the 

regressors in order to ensure the beta-values reflected relative fit and were directly 

comparable. 

3.1.3 Experiment 1 - Results 

Letter familiarization task 

 While overall accuracy on the familiarization task was quite high (mean = 92%), 

four stimuli had accuracies below 70% (shown crossed with red lines in Figure 13). The 

distribution of accuracies reveals the vast majority of stimuli were highly recognizable 

with accuracies greater than 90%. The four stimuli that fell below 70% were removed 

from further analyses due to concerns that they may be either unrecognized or 

misidentified. It is important to note that, besides the four outlier stimuli, the novel grid 

font was highly recognizable. 

Survey results 

 Participants were asked if the rotated character stimuli looked familiar and if so, 

to give examples of what they were. Of the 44 participants, only 7 identified them as 
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being multiple alphabetic letters
13

. Three additional participants recognized the letter T 

and failed to correctly identify anything else. A majority of responses were statements 

indicating that the rotated stimuli were not familiar (23 participants) and the remaining 11 

participants provided non-alphanumeric examples (e.g., pencil, house, fish). These results 

demonstrate that rotating the gridfont rendered the stimuli unrecognizable for a majority 

of participants.  

Correlation analysis results 

 Nine pRSMs were correlated with the group Upright oRSM. The correlations are 

shown on the graph below (a. in Figure 15). Significance was evaluated by a permutation 

analysis involving 10,000 iterations. The actual correlation for each pRSM was ranked 

against the null distribution of pseudo-correlations constructed for each pRSM. Of the 9 

pRSMs tested, the Allograph (r=0.67), Pixel-Overlap (r=0.65), Letter Identity (r=0.59), 

Motor Feature Overlap (r=0.27), and Letter Case Identity (r=0.21) were determined to be 

significant (i.e., the actual correlation was in the top 5 percent of the Monte-Carlo 

distribution) and for 4 of those 5 pRSMs the actual correlation was the top ranked 

correlation in the null distribution (indicated in Figure 15 with a double asterisk). The 

Alphanumeric (r=0.09), Letter Name Confusability (r= -0.05), Phonetic Feature Overlap 

(r= -0.13) and C/V Identity (r= -0.18) pRSMs failed to reach the 5% significance 

threshold.   

 The 5 pRSMs that were significantly correlated with the Upright oRSM were then 

correlated with the Rotated oRSM. The correlations with the Rotated oRSM served as an 

                                                            
13 The data from these 7 will be included the main analyses but will be evaluated in an additional analysis 

directed at comparing the similarity structures of participants who recognized the rotated gridfont with 

those who did not. Furthermore, all of the analyses were run removing these 7 participants and the results 

were substantively the same (i.e., no insignificant results became significant or vice versa). 
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estimate of the correlation between the visual similarities of the stimulus shapes without 

the contribution of letter recognition. Therefore, any influence that recognition had on 

visual similarity judgments would be revealed by a difference in a pRSM’s correlation 

with theU versus Rotated oRSM. The bar graph in Figure 15 (b) shows the correlation for 

the Upright and the Rotated oRSM and the difference (rdiff = upright r – rotated r) was 

evaluated for significance using the label-scramble permutation analysis described in the 

method section. Of the 5 pRSMs tested, significant rdiff values were obtained for:  

Allograph (rdiff = 0.28; prank=0.001), Letter Identity (rdiff = 0.29; prank=0.001), Letter Case 

Identity (rdiff = 0.19; prank=0.001), and Motor-Feature Overlap (rdiff = 0.06; prank=0.047). 

Only the Pixel Overlap pRSM difference score was not significant (rdiff = 0.02; 

prank=0.33).  
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The regression analysis provided a strong test of the unique contribution of each 

of the representational types. Results from the regression analysis revealed that the 

overall model is significant (adjusted R
2 
= 0.79; f(235, 5) = 219.9; p<0.0001). Regressors 

whose betas were significant in a one-tailed t-test were the Rotated oRSM (β = 0.35; 

t(285) = 19.1; p<0.0001) and the Allograph pRSM (β = 0.26; t(285) = 7.5; p<0.0001). 

The other regressors failed to reach significance (see Figure 15, c). 

Figure 15. Bar graphs depicting results from Experiment 1. In all graphs, * indicates significance at a 

prank<0.5 while ** indicates a top ranked value. (a) Depicts the r values from correlations between 9 

pRSMs and the upright similarity judgment oRSM. (b) Depicts correlation comparisons between the 5 

significant pRSMs from (a) with the upright oRSM (in blue) and with the rotated oRSM (in red). (c) 

Depicts the beta weights from a regression analysis where the significant pRSMs from (b) acted as 

predictors of the Upright oRSM. The Rotated oRSM was included as well under the label Rotated Gridfont. 
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3.1.4 Experiment 1 Discussion 

 In Experiment 1, I obtained visual similarity judgments for pairs alphanumeric 

characters presented in 3 fonts: an atypical gridfont, the atypical gridfont rotated, and a 

typical font which served as a proxy for the representational similarity of allograph 

representations. Predicted similarity values (pRSMs) for ALI, allograph, letter-case, and 

motoric production code representations were significantly more correlated with the 

upright gridfont similarity judgments the those of the rotated gridfont letters suggesting 

that while keeping low-level visual similarity constant, correctly identifying the letters in 

the upright condition introduced a similarity bias from these four types of letter 

representations. An additional regression analysis demonstrated that of these four 

pRSMs, only the Allograph pRSM uniquely accounted for the variance when the 

stimulus shape similarity is accounted for with the inclusion of the Rotated oRSM. This 

result provides strong evidence for the influence of the visual similarity of allograph 

representations on similarity judgments of the upright gridfont letters/digits.  

3.2 Experiment 2 - Physical same-different judgments of upright and 

rotated letters and digits presented in an atypical gridfont. 

That stored allographs both were accessed and influenced visual similarity 

judgments was quite apparent from the results in Experiment 1 though what was less 

clear was the nature of this influence. For example, instead of an unconscious bias on 

these visual judgments, it could be that participants misread the instructions indicating 

that the similarity judgments were to be based strictly on visual criterion. If they just 

judged letter similarity more generally, it would be less surprising that stored letter 
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knowledge would make a contribution. Furthermore, since visual similarity was never 

explained to the participants, different participants could be using different criteria when 

mentally computing visual similarity. In the experiment that follows, I collected reaction 

times of same-different judgments to various letter pairs. In this experiment, two letter-

images were shown and the participant decided whether the two stimulus-images were 

visually identical or not. The amount of time it took to make this same-different decision 

was recorded for each letter pair. The set of all such RTs for the different responses was 

used to calculate an RT based oRSM. Since the same-different decisions were based on 

the visual identity, if a participant misunderstood the directions, it would be easy to spot 

since they would systematically respond incorrectly when the letter pair consists of font 

or case variants of the same letter identity. Additionally, since the finding of allograph 

bias was a novel result from a novel method, convergence across multiple types of tasks 

would serve to strengthen confidence in the result.   

3.2.1 Methods 

Participants 

100 participants were recruited from Amazon’s Mechanical Turk (AMT). 

Workers (participants from AMT) were instructed not to participate in any experiment if 

they had a history of reading or spelling disabilities. Furthermore, workers were 

instructed not to participate if they were literate in any other written script besides the 

Roman alphabet. Neither of these conditions was verified. Workers were only recruited 

from the US and had to have participated in at least 1000 HITs (tasks on AMT) with an 

approval rating of at least 95%. The participants were split into two groups based on the 

type of stimuli shown. 50 participants were shown the upright gridfont and were paid 
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$1.00 for their participation. The other 50 participants were shown the rotated gridfont 

and paid $0.80 for their participation.   

Stimuli and design   

Upright Gridfont Group  

 Experimental stimuli were composed of a subset of the upright grid font stimuli 

used in Experiment 1 (Figure 13). The stimulus familiarization portion consisted of 38 

trials, displaying each stimulus twice. The visual same-different decision portion 

consisted of 15 practice trials and 285 experimental trials. The 285 experimental trials 

consisted of every possible different-stimulus pair within the set of 19 stimuli (171 trials 

or 60% of total) and 6 repetitions of each of the 19 possible same pairs (114 trials or 40% 

of total). The 15 practice trials were randomly selected from the set of possible 

experimental trials. Stimulus position (left or right) was randomized for each trial and 

trial order was randomized for each worker. 

Rotated Gridfont Group 

 Experimental stimuli and design were identical to the Upright Gridfont Group 

except for three variations. Like the Rotated Gridfont Group in Experiment 1, each letter 

stimulus was flipped around its vertical axis and rotated 90°ccw in order to make it 

difficult to recognize. Next, there was no familiarization portion of the experiment and 

the stimuli were referred to as shapes instead of letters. Finally, at the end of the 

experiment, a survey was presented asking if any of the shapes were recognized and if so 

provide a few examples as to what they were.    
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 Like the Upright Gridfont Group, the experiment consisted of 15 practice trials 

and 285 experimental trials (40% same, 60% different). The different trials consisted of 

every possible different-stimulus pair within the set of 19 rotated stimuli (171 trials) and 

the same trials consisted of 6 repetitions of each of the 19 same pairs (114 trials). The 15 

practice trials were randomly selected from the set of possible experimental trials. 

Stimulus position (left or right) was randomized for each trial and trial order was 

randomized for each worker.  

Procedure 

 Qualified workers on AMT found the experiment by clicking on a link found on 

the AMT website titled “Visual Letter Same-or-Different Judgments (May be completed only 

once per worker)”. Workers were not allowed to view or begin the experimental tasks until 

they both agreed to the consent form and accepted the HIT. This experiment consisted of 

two tasks.  

 The first task both familiarized the workers with, and tested the legibility of, each 

stimulus. Workers were instructed to indicate the identity of the character by pressing the 

appropriate key on their keyboard. They were also told responses were not case-sensitive. 

A stimulus character would appear within the display frame. Once a response was given 

(correct or incorrect), the correct answer appeared on the screen in Arial font (e.g., 

“lower-case g”). Workers began the next trial by pressing spacebar. Each character 

stimulus appeared twice. Responses and reaction times were recorded but only responses 

were analyzed further.  
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 The second task gathered visual same or different judgments for simultaneously 

presented letter stimuli. Participants were told through written instruction that they would 

see two letter shapes and a dot on the center of the screen and to decide whether the two 

letter shapes are visually identical or not. Pressing s on the keyboard indicated a “same” 

response and d indicated a “different” response. They were instructed to respond with 

their first impression as quickly as possible. A countdown of the number of remaining 

trials remained visible throughout the task. Once a trial began, a fixation dot appeared in 

isolation for either 400ms or 800ms (143 and 142 trials respectively, randomly assigned) 

followed by a pair of stimuli. The keyboard response triggered a hyperlink to appear 

which was clicked to begin the next trial, allowing for self-pacing. Responses and 

reaction times (from stimulus onset to keyboard response) were recorded.  

 The procedure was identical for the Upright Gridfont Group and the Rotated 

Gridfont Group except for the Rotated Gridfont Group there was no familiarization 

portion of the experiment and there was a survey added on at the end.  

 

 

Figure 16. The time course of a trial in the same-different decision paradigm. 
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3.2.2 Experiment 2 Analyses and results 

Letter familiarization task 

 Overall accuracy on the familiarization task was very high (mean = 98%). All of 

the letter stimuli used in this experiment were highly recognizable with accuracies greater 

than 90% (Range: 91%-100%).  

Visual same-different decision task - Upright Gridfont Group 

 For the same-different judgment portion of the experiment, 50 participant 

Reaction Time Similarity Matrices (participant oRSMs) and 1 group reaction time 

Similarity Matrix (group oRSM) were constructed out of the reaction times to Different 

trials. The values in each participant oRSM were reflected across the matrix diagonal
 
and 

only the upper triangle of the similarity matrix was analyzed. The diagonal consisted of 

the RTs for the “same” responses and were removed. Finally, to remove outliers and to 

normalize across participant specific reaction times, each participant’s RTs were z-

normalized and RTs that fell outside 2.5 standard deviations (above or below) were 

removed. Response times from incorrect responses were also removed. 

 Outlier participants were removed using the same Similarity-to-Sample procedure 

described in Experiment 1. The 50 similarity to sample values were considerably lower 

than the similarity judgment experiments suggesting greater cross-participant variability 

in this task. Outliers were defined as participants whose similarity to sample value fell 1.5 

standard deviations below the mean similarity to sample value (0.0658). Four participant 

oRSMs were found to be outliers in this manner and removed from further analysis. The 
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mean similarity to sample was increased to 0.08 after it was recomputed with the 

remaining 46 participant oRSMs.  

 The group oRSM was computed by taking, for each stimulus pair, the mean of the 

46 participant z values and placing the mean value in the corresponding cell in the group 

oRSM. The group oRSM was then z normalized. In further analyses it will be referred to 

as the Upright oRSM. 

 

Visual same-different decision task - Rotated Gridfont Group 

 50 participant oRSMs and 1 group oRSM (rotated oRSM) were constructed in the 

identical manner to the Upright Gridfont Group. 3 outlier participants were identified and 

removed increasing the mean similarity to sample value from 0.0645 to 0.0728. 

 Like the Upright Gridfont Group, an oRSM for the Rotated Gridfont Group was 

computed by taking, for each stimulus pair, the mean of the remaining 47 participant 

similarity z values and placing the mean value in the corresponding cell in the oRSM. 

The Rotated oRSM was then z normalized. 

Survey results 

 Participants were asked if the rotated character stimuli looked familiar and if so, 

to give examples. Of the 47 participants, only 13 identified them as being multiple 

alphabetic letters
14

. Three additional participants recognized the letter T and failed to 

correctly identify anything else. A majority of responses were statements indicating that 

                                                            
14 Like Experiment 1, participants who could identify the rotated gridfont stimuli were not removed 
before forming the Rotated oRSM although they were analyzed in a separate analysis reported below in 
this chapter. Furthermore, the analyses in this experiment were rerun after removing these participants 
and the results were not substantively different. 
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the rotated stimuli were not familiar (20 participants) and the remaining 11 participants 

provided non-alphanumeric examples (e.g. cross, angles, house). These results 

demonstrate that rotating the gridfont used in 2.a. rendered the stimuli unrecognizable for 

a majority of participants.  

Correlation and regression results 

 Analyses were identical to those in Experiment 1 with the only differences being 

that, instead of visual similarity judgments, similarity measures consisted of both reaction 

times and number of erroneous responses for different letter pairs. The logic is that more 

similar stimuli will require more time to correctly respond “different” and will more 

likely generate errors. The same pRSMs examined in Experiment 1 were tested in this 

experiment with the exception of the letter-digit pRSMs as the stimulus set in this 

experiment only consisted of letters. The remaining pRSMs tested were those used in 

Experiment 1:  Allograph, Pixel-Overlap, Letter Identity, Letter-Case, Consonant or 

Vowel Status, Motor Feature Overlap, Phonetic Feature Overlap, and Letter-Name 

Confusability.  
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 First, each of the pRSMs was correlated with the Upright oRSM for both the RTs 

and Errors. Significance of the correlations was assessed using the permutation analysis 

described and used in Experiment 1. The analysis indicated that the following pRSMs 

were significantly correlated with both the RT-based and Error-Based oRSMs: Pixel-

overlap (RT: r = 0.54; p=0.0001, Error: r = 0.30; p = 0.0007), Allograph (RT: r = 0.56; 

p=0.0001, Error: r = 0.47; p = 0.0001), Letter Identity (RT: r = 0.59; p=0.0001, Error: r = 

0.53; p = 0.0001) and Motor-Feature Overlap (RT: r = 0.46; p = 0.0001, Error: r = 0.43; p 

Figure 17. Bar graphs depicting results from the RT analysis in Experiment 2. In all graphs, * 

indicates significance at a prank<0.5 while ** indicates a top ranked value. (a) Depicts the r values 

from correlations between 9 pRSMs and the upright similarity judgment oRSM. (b) Depicts 

correlation comparisons between the 5 significant pRSMs from (a) with the upright oRSM (in blue) 

and with the rotated oRSM (in red). (c) Depicts the beta weights from a regression analysis where 

the significant pRSMs from (b) acted as predictors of the Upright oRSM. The Rotated oRSM was 

included as well under the label Rotated Gridfont. 
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= 0.0001). None of the other pRSMs reached significance when correlated with either the 

RT-based or the Error-based oRSMs. 

 To determine whether the above significant correlations could be fully explained 

by the visual similarity of the character shapes, the significant pRSMs were correlated 

with both the RT-based and Error-based oRSMs generated from the rotated gridfont 

stimuli from Experiment 1). As a reminder, the rotated gridfont stimuli were completely 

matched in terms of pixelwise similarity to the upright gridfont stimuli but the rotation 

rendered them much more difficult to recognize. Like Experiment 1, the difference 

between the pRSM correlations with the Upright and Rotated oRSMs was interpreted as a 

value measuring the bias introduced in virtue of recognition (rdiff = rupright – rrotated). 

Significance of the difference value was assessed via a permutation analysis described in 

Experiment 1. Of the four tested pRSMs, 3 were significant for both the RT-based and 

Error-based oRSMs. They were Allograph (RT: rdiff = 0.15; p=0.044, Error: rdiff = 0.30; p 

= 0.0053), Letter Identity (RT: rdiff = 0.38; p=0.0001, Error: rdiff = 0.37; p = 0.0002) and 

Motor-Feature Overlap (RT: rdiff = 0.26; p = 0.0011, Error: rdiff = 0.28; p = 0.0067). The 

difference value for Pixel-Overlap failed to reach significance for both the RT-based and 

Error-based oRSMs (RT: rdiff = -0.04; p = 0.69, Error: rdiff = 0.15; p = 0.11). 
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 Finally, the 3 pRSMs with significant difference values were entered into 2 

regression analyses. In one regression analysis the Y value consisted of the RT-based 

oRSM from the upright gridfont letters. The regressors consisted of the RT-based oRSM 

from the rotated gridfont letters, the Letter Identity, Allograph, and Motor-Feature 

Overlap pRSMs and a constant. The other regression was identical except the oRSM 

consisted of error counts instead of RTs. Results from the RT regression analysis 

revealed that the overall model was significant (adjusted R
2 
= 0.54; f(159, 4) = 48.3; 

Figure 18. Bar graphs depicting results from the error analysis in Experiment 2. In all graphs, * indicates 

significance at a prank<0.5 while ** indicates a top ranked value. (a) Depicts the r values from 

correlations between 9 pRSMs and the upright similarity judgment oRSM. (b) Depicts correlation 

comparisons between the 5 significant pRSMs from (a) with the upright oRSM (in blue) and with the 

rotated oRSM (in red). (c) Depicts the beta weights from a regression analysis where the significant 

pRSMs from (b) acted as predictors of the Upright oRSM. The Rotated oRSM was included as well 

under the label Rotated Gridfont. 
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p<0.0001). Regressors whose betas were significant in a one-tailed t-test were the 

Rotated RT-based oRSM (β = 0.095; t(159) = 8.84; p<0.0001), the Allograph pRSM (β = 

0.026; t(159) = 1.67; p<0.05) and Letter Identity (β = 0.031; t(159) = 2.49; p<0.01).  

Results from the Error-based regression analysis reveal that the overall model is 

significant (adjusted R
2 
= 0.26; f(159, 4) = 13.7; p<0.0001). Regressors whose betas were 

significant in a one-tailed t-test were the Allograph pRSM (β = 0.30; t(159) = 2.49; 

p<0.01) and the Motoric Feature pRSM (β = 0.16; t(159) = 1.67; p<0.05). The beta 

values for both the Rotated error-based oRSM and the Letter Identity pRSM were 

marginally nonsignificant (p=0.065 in both instances).  

3.2.3 Experiment 2 discussion 

Experiment 2 was designed to provide converging evidence regarding the results 

from Experiment 1 while addressing some concerns about the open-endedness of visual 

similarity judgments as a similarity metric. Therefore, using a subset of the stimuli from 

Experiment 1 and the same logic and design, we obtained similarity measures by using 

the reaction times and errors in a task where participants were presented with two stimuli 

and asked to judge if they were physically identical or not. Since the task was well 

defined (stimuli were either physically identical or not) and considerations about stimulus 

similarity were not explicitly brought to the attention of the participant, interference 

effects from stored letter representations could be thought to arise less consciously and 

more automatically. 

Results were remarkably similar across Experiments 1 and 2, with Allograph, 

Letter Identity, and Motor Feature Overlap significantly influencing similarity judgments, 

RTs, and errors. The only major difference between the two experiments was the fact that 
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the Letter-Case pRSM significantly influenced visual similarity judgments but not RTs or 

errors from the same-different decision task. One possibility is that Letter-Case results 

from the same-different decision experiment were not sensitive enough to reveal this 

effect; another is that it is related to task differences. Previous research has found that 

split-half reliability measures were considerably higher for letter similarity judgment 

values than “different” response RTs in a same-different decision task (Podgorny & 

Garner, 1979). Consistent with this, mean Similarity-to-Sample values, which measured 

how consistent each participant’s responses were to one another, were much higher in the 

similarity judgment experiment (Upright: 0.39; Rotated 0.42) vs. the RTs in the same-

different decision experiment (Upright: 0.08; Rotated 0.07). One drawback to this 

explanation is that if noise was the issue, the effect size should best predict whether a 

result will replicate and while the rdiff for the Letter-Case pRSM was larger than the rdiff 

for the Motor Feature Overlap pRSM in Experiment 1, the effect from the Motor Feature 

Overlap replicated across experiments while the Letter-Case result did not.  

 Finally, the pattern of results so far has consistently revealed that for multiple 

measures of visual similarity, characters presented in the atypical gridfont were 

influenced by the visual similarity of the characters in a more typical font—providing 

support for the role of allographic representations. One possible issue arises from the 

assumption that the similarity measures of the upright and rotated gridfont characters 

were completely matched at the level of the computed stimulus shape representations. It 

is possible that the rotation of the stimuli changes the visual similarity of the computed 

shapes and therefore, the Rotated oRSM is not a perfect control. Furthermore, since the 

typical font similarity judgments were obtained from upright letters, the concern arises 
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that the allograph effect was driven by the fact that both the upright gridfont and the 

upright typical font share the same orientation. I examined this possibility in two ways. 

First, I took advantage of the fact that some participants were able to correctly identify 

the letters presented in the rotated grid font. I was then able to correlate the Allograph 

pRSM with the Rotated oRSMs from the participants who recognized the letters and 

compare it with the oRSMs from the participants who did not recognize the letters. Since 

both the participants who recognized the rotated letters and those who did not saw the 

exact same stimuli, any differences would be in virtue of accessing the stored letter 

representations and not orientation effects. Next, I ran a third experiment that directly 

compared the influence of rotating a set of pseudo-letters on visual similarity judgments. 

Both of these are explained in more detail below. 

3.3 Recognizers vs. Nonrecognizers for the rotated characters 

 Participants in the Rotated Gridfont groups in Experiments 1 and 2 provided 

visual similarity judgments or made visual same-different decisions—respectively—for 

pairs of difficult-to-recognize rotated characters. After each experiment, a survey was 

presented to determine which participants correctly recognized (at least some of) the 

rotated characters. Participants were classified into three groups based on their survey 

responses: nonrecognizers, recognizers, and ambiguous
15

. One potential avenue of 

evidence comes from comparing the oRSM-pRSM correlations of the recognizers to 

those of the nonrecognizers. Since the visual stimuli for both groups were the same pairs 

of rotated characters (i.e. completely visually matched), the most apparent source for any 

                                                            
15 While these groups reflect the explicit degree of recognition for each participant, the rotated stimuli 

could have been identified implicitly. 
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differences in correlation values would be biases introduced when the rotated characters 

were recognized. In other words, recognizers may have activated and engaged 

recognition-dependent representations like Allographs and ALIs that the nonrecognizers 

did not and therefore these letter representations may have influenced the errors, RTs, or 

visual similarity judgments of the Recognizers to a greater extent than the 

Nonrecognizers. 

 For each of the pRSMs, a Recognizer Bias Value (RBV) was computed in the 

following manner: z-scored participant oRSMs were classified as Recognizers, 

Nonrecognizers, or Ambiguous based on survey responses (Ambiguous oRSMs were 

discarded).  Group Recognizer and Nonrecognizer oRSMs were formed by computing the 

mean z-values (or sum for error counts) for each letter-pair for the Recognizers and 

Nonrecognizers separately. The oRSMs from each of these groups were then correlated 

(Pearson) with each pRSM. The change in r from the Recognizer oRSM-pRSM 

correlation to the Nonrecognizer oRSM-pRSM correlation (Recognizer r - Nonrecognizer 

r) was the Recognizer Bias Value. 

 Significance was assessed via a permutation analysis wherein the participant 

oRSMs (not including the Ambiguous oRSMs) were randomly assigned as either 

Recognizers or Nonrecognizers, keeping the ratio of participants in each category the 

same. For example, in Experiment 1 there were 7 Recognizers and 34 Nonrecognizers 

and the random participant reassignment kept this ratio constant. Pseudo-Group oRSMs 

were formed for each group by either taking the mean or sum (for error counts) across 

participants and Pseudo-Recognition Bias Values were computed for each pRSM by 

correlating the Pseudo-Group oRSMs with each pRSMs and subtracting the Pseudo-
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Nonrecognizer r from the Pseudo-Recognizer r. A distribution of 10,000 Pseudo-

Recognition Bias Values was formed for each oRSM type (similarity judgments, same-

different RTs, and same-different Errors) by performing 10,000 random reassignments. 

The p-value was computed by taking the percentile of the real Recognition Bias Value 

within the permutation distribution and subtracting that percentile from 1 and p-values 

less than 0.05 were considered significant.   

 The Recognition Bias Values for the 9 pRSMs derived from the Visual Similarity 

Judgment experiment revealed a pattern of results that was remarkably consistent with 

the results from previous analyses. Specifically, in the Visually Similarity Judgment 

experiment, Recognizers had significant greater correlations than Nonrecognizers for the 

following pRSMs: Allograph (RBV = 0.03; p=0.024), Motor Feature Overlap (RBV = 

0.07; p=0.015), and Letter Case Identity (RBV = 0.08; p=0.039). The Letter Identity 

pRSM was marginally significant (RBV = 0.03; p=0.065). None of the other pRSMs 

reached significance. When examining the RBV values from the RTs and errors from 

same-different decision experiment, the pattern was much less consistent with previous 

analyses. The only pRSM to reach significance was the Letter Case Identity pRSM (RBV 

= 0.11; p=0.043).  

 For the visual similarity judgments at least, the fact that the Allograph pRSM was 

more correlated with the oRSMs derived from the Recognizers than the Nonrecognizers 

suggests that accessing allograph representations influenced the visual similarity 

judgments for the rotated gridfont characters. This influence could not be explained by 

orientation effects because both the Recognizers and Nonrecognizers viewed the rotated 

grid-font letters.             
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3.4 Experiment 3: The visual similarity of upright and rotated 

pseudoletters  

Experiment 3 specifically tested an alternative interpretation of the finding that 

the visual similarity judgments for the stimuli presented in a typical font was more 

correlated with the Upright oRSM than the Rotated oRSM. While the explanation put 

forward was that this difference was due to the influence of stored allograph 

representations on the similarity measures, an alternative interpretation of these results 

was that it occurred because both the typical font and the upright gridfont were upright 

letters and, the rotated gridfont letters—even though the pixel-wise similarity is 

comparable to the upright gridfont letters—nonetheless had a different visual similarity 

structure. It should be noted that in order for this explanation to account for the observed 

representational interference effects, the visual change from rotating the stimuli must be 

large enough to completely account for the observed differences in correlation between 

the rotated upright grid-font letters. While comparing Recognizers with Nonrecognizers 

provided evidence for the influence of stored letter representations using behavioral 

measures of similarity that were not explainable by this alternative account, the effect 

sizes in this analysis were quite small and the significant results were inconsistent across 

task (similarity judgments vs. same-different decision RTs and accuracies). Therefore, 

Experiment 3 directly tests this possibility by examining if/how much rotation influences 

the similarity judgments of pixel-wise matched shapes.   

To test this possibility, similarity judgments from a set of pseudoletters, along 

with judgments from the same pseudoletters rotated were obtained. Since the stimuli 

were meaningless in both orientations, and since the stimulus pairs were pixel-wise 



84 
 

matched across changes in orientation, any differences in visual similarity should be due 

to the rotation itself.        

3.4.1 Methods 

Participants 

40 participants were recruited from AMT. Workers were only recruited from the 

US and had to have participated in at least 1000 HITs (tasks on AMT) with an approval 

rating of at least 95%. Participants were paid $0.35 for their participation.   

Stimuli and design    

 Experimental stimuli and design was similar to Experiment 1. The major 

difference was the stimulus set used (see Figure 19). Specifically, the stimuli were 

constructed using the same gridfont constraints as the upright gridfont (see description of 

gridfont stimuli in Exp. 1, Figure 12). However, unlike the upright gridfont from Exp.1, 

the shapes created were not real alphanumeric characters. Six “upright” pseudoletters 

were created and then six “rotated” pseudoletters were created by flipping the “upright” 

pseudoletters about the vertical axis and rotating them 90°ccw. 

 

Figure 19. The 6 “Upright” 

pseudoletter shapes used in experiment 

3 along with their rotated counter 

parts. The rotated pseudoletters were 

flipped about the vertical axis and 

rotated 90°ccw. 
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 The similarity judgment portion consisted of 6 practice trials and 2 runs of 30 

experimental trials. Each run consisted of every possible different pairing within the 6 

“upright” stimuli (15 trials) and the 6 “rotated” stimuli (15 trials). There were no pairs 

containing a mix of “upright” and “rotated” pseudoletters. Once the first run ended, the 

second run began without the participants’ knowledge. The 6 practice trials were 

randomly selected from the set of possible different-stimulus pairs. Stimulus position (left 

or right) was randomized for each trial and the trial order was randomized for each run. 

Ultimately, each stimulus pair had two similarity judgments per participant—one from 

each run. 

Procedure 

 The procedure was identical to experiment 1 except there was no familiarization 

portion. Briefly, participants were instructed to indicate how visually similar the two 

pseudoletter stimuli were on a scale of 1 through 5. Once the task began, a pair consisting 

of the pseudoletter stimuli was shown. A keyboard response immediately triggered the 

appearance of the next stimulus pair. Responses and reaction times were recorded but 

only responses were analyzed further.      

3.4.2 Experiment 3 - Analysis and results 

Visual Similarity Judgment Task 

 For the similarity judgment portion of the experiment, 40 participant oRSMs and 

1 group oRSM were constructed in the identical manner to Experiment 1. Additionally, 2 

outlier participants were identified and removed following the same procedure described 

in Experiment 1 increasing the mean similarity to sample value from 0.48 to 0.54. 
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 The group oRSM was then split twice; first by run and then by pseudoletter 

orientation—whether the judgments were for “upright” or “rotated” pseudoletters—

forming 4 oRSMs. As figure 20 shows, the oRSMs from run 1 were combined and 

correlated with the combined oRSMs from run 2 so that judgments of the “upright” 

pseudoletters in run 1 were correlated with judgments of the “upright” pseudoletters in 

run 2, and likewise for the “rotated” pseudoletters. This correlation measured the 

reliability of the judgments. In the second correlation, the “upright” pseudoletters in run 1 

were correlated with the matched “rotated” pseudoletters in run 2 and vice versa. The 

difference between the former reliability correlation and the latter orientation-switch 

correlation was interpreted as the size of the orientation effect. Significance of the 

difference was assessed by forming a distribution of 10,000 r difference values by 

randomly permuting the “upright” and “rotated” labels in run 2 and recomputing both the 

reliability r and the switch r values using the permuted labels, and then taking the 

difference of these correlation values. The p value was computed by obtaining the 

percentile of the real r difference within the random distribution and subtracting that 

percentile decimal from 1. A p value less the 0.05 was considered significant. 
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 As Figure 20 shows, the reliability correlation, where “upright” pseudoletter 

judgment values from run 1 were correlated with the “upright” values from run 2 and 

likewise for the “rotated” pseudoletters, was r = 0.9848. The switch correlation, where 

the “upright” judgments from run 1 were correlated with the “rotated” judgments from 

run 2 and vice versa the “rotated” judgments from run 1, was r = 0.9669.  The correlation 

difference value was 0.0179 which was significant (p < 0.05).  

3.4.3 Experiment 3 - Discussion     

In experiment 3 we tested an alternative explanation to the finding that the 

allograph pRSM was more correlated with the Upright oRSM than with the Rotated 

oRSM. The alternative explanation posited that the larger correlation between the 

Allograph pRSM and the Upright oRSM occurred by virtue of the fact that the letter 

stimuli were upright when generating both RSMs unlike the Rotated oRSM. We set out 

to quantify the effect of orientation on visual similarity judgments and found that it led to 

a significant difference of rdiff = 0.0179. While this difference was significant, compared 

Figure 20. The logic and results from experiment 3. The left most figure depicts the reliability 

correlation where the similarity judgments from run 1 were correlated with the similarity 

judgments of the same letter pairs in run 2. The switch correlation (right) involved correlating 

the similarity judgments from run 1 with the matched pairs at a different orientation in run 2. 
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to the size of correlation difference for the Allograph pRSM observed in experiment 1, 

(rdiff = 0.29), this minor rotation effect would not come close to explaining the difference 

by itself. This experiment, along with the results from the Recognizer vs. Nonrecognizer 

analyses presents a strong case that the upright and rotated r differences were due to the 

influence of stored letter representations, particularly allographs, and not an artifact of 

using rotated stimuli as the visual control.     

3.5 General discussion 

3.5.1 Stored allographs 

 The most consistent result across multiple experiments and analyses was that, 

across multiple empirical measures of visual similarity, the behavioral measures of visual 

similarity of an atypical gridfont were biased towards the visual similarity of a more 

typical font. This effect, I propose, is best explained by referring to models of letter 

processing that posit font-invariant stored allograph representations. Specifically, this  

account proposes that when two letters a represented in an atypical gridfont, the stored 

allographs are accessed and—whether it be via feedback to lower-level stimulus shape 

representations (Lupyan et al., 2010) or via downstream response competition (Chen & 

Proctor, 2012)—the allograph representations biased the similarity judgments to be closer 

to the similarity of the stored allograph representations. 
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3.5.2 Motoric production codes 

 Along with allograph representations, a pRSM derived from a set of motoric 

production stroke features consistently influenced the RTs and errors in the physical 

same-different decision task presented in Experiment 2. Specifically, stimulus pairs that 

had highly overlapping motoric production features were slower to respond different and 

more error prone than stimulus pairs that had a smaller degree of motoric feature overlap. 

This effect held even after accounting for visual similarity in a regression analysis. These 

results suggest that motor production codes were accessed regardless of whether they will 

be used or not and this access influences the similarity measures. 

Figure 21. A summary of the results for each pRSM tested and for each analysis employed, 

from the set of experiments presented in this chapter. X indicates that the difference in r values 

(upright – rotated or Recognizors – Nonrecognizors) were significant for that pRSM. XX 

indicates that the regression beta value for that pRSM was significant in a regression analysis. 

The Recognizors vs. Nonrecognizors analysis did not include a regression so XX is impossible.   
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3.5.3 Abstract letter identities 

 In these experiments, we add to previous evidence of ALIs by demonstrating that 

letter identity appears to influence multiple behavioral measures of visual similarity. 

Specifically, when letters share the same identity, similarity measures were also increased 

relative to a visually matched control. While this has previously been demonstrated using 

visual same-different letter decisions (Carrasco et al., 1988; Chen & Proctor, 2012; 

Lupyan et al., 2010; Wiley et al., submitted ), this is the first experiment that has also 

examined explicit visual similarity judgments. Furthermore, while other experiments 

have controlled for pairwise visual similarity (Lupyan et al., 2010; Chen & Procter, 

2012), this is one of the first to do it with a large set of alphanumeric stimuli (see also 

Wiley et al., submitted). Finally, this is one of very few studies to also attempt to account 

for many types of letter representations within the same experiment and with the same 

participants (see also Rothlein & Rapp, 2014; Wiley et al., submitted ).  

 It is worth noting that the regression analysis in the similarity judgment task did 

not reveal a significant effect of ALIs. This suggests that the significant ALI result from 

the correlation analysis may be confounded by the other pRSMs—namely the Stimulus 

Shape and the Allograph pRSMs. While this finding complicates the relationship between 

ALI representations and their influence on similarity judgments, the larger question 

regarding the existence of ALI representations should not be called into question. Even if 

ALIs do not influence similarity judgments, we provided evidence that they influence 

same-different decision RTs and accuracies. The same-different task results in 

conjunction with the wealth of converging evidence from other experiments suggests that 

the lack of ALI influence on similarity judgments is, at most, task specific.  



91 
 

3.5.4 Identity independent case markers 

 While less consistent than the aforementioned letter representations, the result 

from the visual similarity judgment experiment suggests that identity independent case-

markers may additionally contribute to visual similarity judgments. It should be noted 

that overall size of the uppercase letters and lowercase letters were matched in the 

gridfont so any case effects would be based on the stored letter representations, rather 

than stimulus size differences. An alternative interpretation for this effect was that it is 

nonetheless a relative size effect and that the stored allograph representations contain 

relative size information. Specifically, it could be that even though the presented gridfont 

characters were matched in size across case, the size information was reintroduced at the 

level of allograph representations and that this size information was contributing to visual 

similarity judgments. One would need to compare upper and lower case letters that were 

typically matched in size in order to rule out this possibility (e.g., t  and T). However, a 

more parsimonious account is that abstract case markers were automatically activated and 

that these case markers influenced visual similarity judgments.  

3.5.5 Other letter representations 

 While this research revealed a number of letter representations that influenced 

measures of visual similarity, a number of tested possible representations failed to 

produce any influence. Specifically, whether the character was a consonant or vowel, or 

letter or digit did not appear to influence visual similarity responses. Additionally, two 

measures of letter name similarity that were used to assess the influence of phonological 

letter name on visual similarity judgments failed to reveal any influence. There is some 

evidence that letter names are activated when letters are visually presented, even in 

contexts where the letter names are not required for the task at hand (Rothlein & Rapp, 
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2014) but perhaps these letter representations were activated too late to influence 

response times and similarity judgments. 

 An important consequence of the failure to find influence of letter name 

representations using this methodology is that they cannot be used to explain the 

influences of other proposed letter representations. Specifically, because letter name 

representations are also case-invariant letter representations name codes have been used 

to explain letter identity effects (Miller & Vaknin, 2012; Posner, Boies, Eichelman, & 

Taylor, 1969). In other words, both ALI representations and letter name representations 

predict interference for cross-case identity-matched letter pairs (e.g., b and B) since the 

both share the same name and the same identity. The finding that letter names do not 

influence similarity judgments or RTs and errors, argues against this alternative 

explanation for the ALI effects.   

3.6 Conclusions 

 The research in this chapter has provided strong evidence in favor of models of 

letter processing that include allograph and abstract letter identity representations. 

Furthermore, motoric production features and letter case influence visual similarity 

judgments as well. The neural correlates of these various representational types, with a 

particular focus on allograph representations, will be explored in the following chapter.     
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Chapter 4 - Letter representations along 

the ventral visual stream: Form and 

identity 

 Frequently viewed visual stimuli, like faces and scenes, are widely believed to 

have category-selective neural circuits within the ventral visual stream (see Kanwisher, 

McDermott, & Chun, 1997 for faces; Epstein & Kanwisher, 1998 for scenes; Downing, 

Jiang, Shuman, & Kanwisher, 2001 for body parts; for alternative accounts see Behrmann 

& Plaut, 2013; Gauthier, Skudlarski, Gore, & Anderson, 2000; Gauthier, Tarr, et al., 

2000). Embedded within this cortical milieu are neural substrates that are preferentially 

responsive to words and letterstrings (Cohen et al., 2000; Dehaene & Cohen, 2011) as 

well as isolated letters (Flowers et al., 2004; James, James, Jobard, Wong, & Gauthier, 

2005; Pernet, Celsis, & Démonet, 2005; Turkeltaub, Flowers, Lyon, & Eden, 2008). 

While there is currently some debate about the evolutionary origins of the neural 

selectivity of these face and scene regions (e.g., Behrmann & Plaut, 2013; Gauthier, Tarr, 

Anderson, Skudlarski, & Gore, 1999), there is little doubt that letters and words, being a 

recent cultural invention and learned relatively late in development, must co-opt neural 

circuitry that was not specifically designated by evolution for letter and word processing. 

Despite its learned origins, the fact that words and letters are preferentially processed in 

the same neural regions so consistently across the literate population suggests these 

regions have intrinsic properties that make them particularly suited for letter and word 

recognition—though what these properties are remains an open question. Determining 

how the representational content of letters is transformed as the orthographic information 

is processed along the ventral stream will both serve to evaluate current models of visual 
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letter recognition and potentially provide a clue to the nature of the organization of the 

ventral stream that leads to these apparent specializations. 

 One of the major challenges of single letter identification is dealing with the large 

degree of shape variability in letters of different fonts. These are challenges faced by both 

letter and object recognition more generally. Accordingly, neurally grounded models of 

letter recognition are largely inspired by models of visual object processing (Grainger et 

al., 2008; Riesenhuber & Poggio, 1999). According to these models of object recognition, 

object shapes are computed via the conjunction of increasingly complex visual features 

that are stored in progressively anterior and lateral retinotopic regions within the ventral 

stream (Connor, Brincat, & Pasupathy, 2007)—from lines and bars in V1, to T-junctions 

and crosses in V2v and V3v to entire shapes in V4. Furthermore, as the features get more 

complex, they become increasingly invariant to spatial properties like retinotopic 

position, size and orientation (Connor et al., 2007; Dicarlo, Zoccolan, & Rust, 2012). 

Based largely on this literature, proposals like the Local Combination Detector or LCD 

model (Dehaene et al., 2005) specify the representational content of brain areas 

responsible for processing letters in a posterior to anterior gradient along the ventral 

stream. The most posterior regions store simple visual features and shape complexity and 

invariance to position and size increase the more anteriorly the representation is encoded 

(see also Purcell, Shea, & Rapp, 2014) culminating in abstract graphemic representations 

of multiple letters and short words. These representations correspond, more or less, to 

those posited in the cognitive model of letter processing presented in Figure 2. 

Specifically, bilateral V1 is thought to represent low-level lines and bars, veridically 

representing the retinotopic image and bilateral V2 is thought to represent local contours. 
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These low-level domain-general visual features (involved in visual processing of all 

objects, not only letters) go on to activate letter shapes in V4. What is unclear, in the 

LCD model at least, is if these shape representations correspond to font-specific 

computed stimulus shape representations or stored, font invariant, allograph 

representations. 

 Outside of the domain of letter processing, a number of studies have investigated 

how the representation of object shape changes across different regions along the ventro-

temporal cortex (Kriegeskorte et al., 2008; Op de Beeck, Torfs, & Wagemans, 2008). Op 

de Beeck et al., (2008) found that the representation of visually presented novel shapes 

was sensitive to the shape’s envelope in retinotopic cortex (V1-V4) while regions lateral 

(LO) and ventral and anterior (pF) were more sensitive to the subjective visually 

similarity of the shapes. Similarly, Kriegeskorte et al., (2008) presented a large set of 

different visual objects, body parts, and faces and found that early visual cortex was 

highly sensitive to the pixel-wise similarity of the images whereas LO and pF were more 

sensitive to semantic information like object animacy. Following a similar logic, the 

experiment presented in this chapter investigated the letter representations encoded in 

early, retinotopic visual cortex and compared these representations to those encoded in 

lateral/anterior ventral visual regions.    

 Whereas the intent of the experiments in the previous chapter was to provide 

evidence for the existence of stored letter representations in visual letter processing (e.g., 

allographs, ALIs, letter names C/V status etc.), the goal of this experiment was to localize 

their neural substrates. To do this, Representational Similarity Analysis (RSA) 

(Kriegeskorte et al., 2008) was used to interpret the multi-voxel neural signal evoked by 
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single letter stimuli. As discussed in Chapter 2, RSA involves testing the pairwise 

similarity structure of a multi-voxel pattern in response to a set of stimuli. In Experiment 

4 reported in this Chapter, we presented a set of letter and digit stimuli and obtained the 

multi-voxel similarity structure for the retinotopic regions: V1, V2v, V3v, and V4 as well 

as other cortical regions that were active in response to letter and digit stimuli. Crucially, 

we wanted to identify the transition from font-specific stimulus shape representations to 

font-invariant allograph representations. In order to reduce the correlation in predicted 

similarity structure between these two types of letter representations, the novel gridfont 

from the Experiments 1 and 2 in Chapter 3 was used. The logic of the experiment 

reported in this chapter is as follows: If a neural region encodes allograph representations, 

we would predict that the neural response patterns to viewing the upright gridfont 

would be correlated with the visual similarity of the unseen typical font (the Allograph 

pRSM). This is because while the neural substrates encoding the font-specific computed 

stimulus-shape representation would capture the specific visual patterns of the upright 

gridfont (estimated without the influence of stored letter representations by using the 

rotated gridfont similarity judgments) the neural substrates encoding allographs would 

abstract away from those specific patterns and be more strongly correlated with visual 

similarity judgments from a more visually typical font. In the experiment that follows, the 

observed representational similarity matrices (oRSMs) derived from retinotopic and other 

ventral visual areas obtained by viewing single upright gridfont letters and digits were 

compared against predicted similarity matrices (pRSMs) for stimulus shape and allograph 

letter representations (amongst others). To preview the results: we found that retinotopic 

cortex, particularly in the right hemisphere, encoded font-specific stimulus shape 
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representations while regions anterior and lateral to the retinotopic cortex in the left 

middle occipital gyrus and the left fusiform gyrus encoded font-invariant allograph 

representations. 

4.1 Methods 

Participants 

12 participants (6 women) were recruited from the Johns Hopkins University 

student population. Participants were right handed, had no history reading or learning 

disabilities, and were reporting only being able to read letters from the Roman alphabet. 

Each participant provided written consent and was compensated in accordance with the 

requirements of The Johns Hopkins Institutional Review Board. One participant was 

excluded from all analyses due to excessive head motion.  

Procedures 

Participants performed two experimental tasks within a 2 hour scan session. The 

first task was a symbol detection task (Rothlein & Rapp, 2014) and the second was a 

passive viewing Retinotopic Localizer. Both tasks were presented and responses were 

recorded using E-Prime 2.0 Software (Psychology Software Tools, Pittsburgh, PA). 

Symbol detection task  

In the symbol detection task, participants viewed 37 alphanumeric characters 

presented in isolation. Importantly, the alphanumeric characters were presented in the 

novel and atypical gridfont from Experiment 1 (see Figure 13). Of the 37 characters, 28 

were font and case variants of 6 letter identities, 5 were digits and 4 were non-letter, non-



98 
 

digit alphanumeric symbols. Participants were asked to press two buttons—one in each 

hand—whenever they observed a non-letter symbol. The experimental procedure 

consisted of 3 trial types: (1) Letter/digit trials, which were comprised of a 200ms 

fixation dot, 300ms letter stimulus, and 3500ms of a blank white screen; (2) Symbol 

trials, which was the same as letter trials except a non-letter symbol was shown instead of 

a letter stimulus and participants were expected to respond; (3) Blank trials, which 

consisted of a 200ms fixation and 3700ms of a blank white screen. Each trial lasted 

4000ms. The trials were grouped into blocks that contained 33 letter trials (one for each 

letter or digit stimulus), 4 symbol (response) trials, and 10 blank trials (~20% of trials). 

Runs contained 2 blocks and the entire experiment consisted of 6 runs resulting in each 

letter and digit stimulus being shown 12 times (total run time approx. 40min). Trial order 

was randomized within each block. 

Retinotopic localizer: meridian mapping  

In the retinotopic localizer scan, participants passively viewed a shape composed 

of two wedges aligned so their apices met at a fixation dot in the center of the display. 

The shape was filled in with a checkerboard texture. The black and white squares in the 

checkerboard texture alternated at a frequency of 4 Hz, creating a flickering effect. There 

were 3 conditions presented in a block design: (1) a vertical block where the two wedges 

were oriented along the vertical axis; (2) a horizontal block where the two wedges were 

oriented along the horizontal axis and (3) a fixation block where only a fixation dot was 

shown.  A run consisted of 21 blocks and each block was 12 seconds long making for a 

scan that was 4 minutes and 15 seconds. Of the 21 blocks, 11 were fixation blocks, 5 
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were vertical blocks and 5 were horizontal blocks. The presentation order alternated 

between vertical and horizontal blocks with fixation blocks separating them. 

 Imaging parameters  

 MRI data were acquired using a 3.0-T Phillips Intera Scanner. Whole-brain T2-

weighted gradient-echo EPIs were acquired with a 32 channel SENSE (Invivio) parallel 

imaging head coil in ascending 3 x 3 mm slices with 1mm gap. TR = 2 s for the Symbol 

Detection Task and Retinotopic Localizer. Echo time = 30ms, flip angle = 65º, field of 

view = 240 x 240mm, matrix = 128 x 128mm. Structural images were acquired using an 

MR-Rage T1-weighted sequence yielding images with 1mm isotropic voxels (repetition 

time = 8.036ms, echo time = 3.8ms, flip angle = 8º. 

4.1.1 fMRI data processing 

Data from both the symbol detection task and the retinotopic localizer were 

preprocessed identically using Brain Voyager Q.X. software (Maastricht, Netherlands).  

Functional images were corrected for slice time (ascending) and motion (trilinear 3D 

motion correction with sinc interpolation. Additionally, a temporal high-pass filter 

removed components occurring fewer than three cycles per run (high-pass GLM-Fourier 

3 Cosines) and linear trend removal for correcting scanner drift. Images were resampled 

to 3mm
3 

voxels.   

The data from the symbol detection task was analyzed in an MVPA-RSA design 

that was VOI based.  This required the following:  (1) generating the participant and 

stimulus-specific activation patterns used to generate oRSMs within the VOIs, (2) 

identifying the relevant VOIs and (3) generating the oRSMs and pRSMs for the analysis.   
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(1) Activation patterns for the VOI analysis   

For each participant, a GLM analysis was carried out based on data from the 

event-related design using 37 experimental regressors: one for each letter or digit 

stimulus (33) and one for each symbol (4). Additionally, 1 linear trend regressor, 6 head-

motion parameter time-course regressors, 6 fourier-based non-linear trend regressors (up 

to three cycles per run for sine and cosine) and 1 confound regressor representing run 

number were included. The experimental regressors were created by convolving a boxcar 

function corresponding to the 200ms duration of appearance of each experimental 

condition with a Boynton hemodynamic response function. The duration of the boxcar 

function for the 4 symbol regressors lasted the entire 4000ms trial duration to ensure 

inclusion of the expected motor response. For the experimental trials, the 200ms 

corresponding to the fixation appearance and the 3500ms of blank screen following the 

stimulus disappearance were not modelled along with the entire 4000ms duration of 

blank trials. These time periods served as the implicit baseline. Each regressor (both 

experimental and confound) was z-normalized and then fit against the fMRI time-course 

signal expressed as percent signal change. The resulting beta-maps were converted to t-

maps—one map for each of the 33 experimental conditions (letter or digit stimuli). These 

participant-specific t-maps (in native ACPC space) were used as the activation values for 

the MVPA-RSA. MVPA-RSA was carried out using in house code run in MATLAB 

(Math Works) and NeuroElf (http://NeuroElf.net/) was used to integrate Brain Voyager 

and MATLAB.  

http://neuroelf.net/


101 
 

(2) Identification of functionally-localized Alphanumeric VOIs (see Figure 22)  

VOIs were generated from both the symbol detection and the retinotopic mapping 

experiments. For the symbol detection experiment, a group univariate activation map was 

created in order to identify Alphanumeric VOIs that corresponded to comparable 

functional neural regions across participants. fMRI data from the symbol detection task 

was smoothed 6mm FWHM and normalized to Talairach space. A GLM was then 

constructed in a similar manner as for the MVPA-RSA GLM with the only difference 

being that the GLM was a group GLM containing data from each participant.  

Participants were treated as random variables in a RFX GLM. The results of a contrast 

consisting of all letters and digits > baseline was thresholded at an uncorrected p<0.05 

with a cluster-size threshold of 30 voxels. The surviving clusters were then expanded by 

5mm in each direction and converted back to native ACPC space for each participant.  

Data from the Retinotopic Localizer were analyzed in native ACPC space in order 

to localize V1, V2v, V3v, and V4 for each participant. A GLM analysis was carried out 

using 2 experimental regressors: one for vertical and one for horizontal flashing 

checkerboards. Additionally, 1 linear trend regressor, 6 head-motion parameter time-

course regressors, 6 Fourier-based non-linear trend regressors (up to three cycles per run 

for sine and cosine) and 1 confound regressor representing run number were included. 

The experimental regressors were created by convolving a boxcar function corresponding 

to duration of appearance of each experimental condition with a 2-gamma hemodynamic 

response function. Periods where only the fixation dot was present were not modeled and 

served as the implicit baseline. Each regressor (both experimental and confound) was z-

normalized and then fit against the fMRI time-course signal expressed as percent signal 
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change. The contrast of Vertical Checkerboards > Horizontal Checkerboards was run for 

each participant creating a Meridian Map. The participant’s anatomical MP-RAGE scan 

was then inflated using Brain Voyager’s built in software and the Meridian Map was 

overlaid on the inflated brain. Retinotopic VOIs were created manually by drawing in 

regions that correspond to retinotopic functional subdivisions (Brain Voyager QX, 

Maastricht, Netherlands). These drawn maps were created for each participant except one 

who did not have well defined retinotopic regions. This participant’s data were not used 

in the RSA analysis of the Retinotopic VOIs but was used in the Alphanumeric VOIs. 

The Retinotopic VOIs were converted to uninflated ACPC space for further analyses. 

Specifically, 5 VOIs were created where 4 corresponded to bilateral V1, V2v, V3v and 

V4 and 1corresponded to Bilateral Retinotopic Cortex that was defined for each 

individual by combining the voxels from each from the retinotopically defined areas (V1-

V4). 

(3)  Generation of oRSMs and pRSMs.   

An oRSM was constructed for each VOI in the following manner. Within a VOI, 

a vector of t-values was created for each letter or digit by taking the t-values associated 

with each letter or digit stimuli and vectorizing them. In other words, for a given stimulus 

type (e.g. H), a vector was created were each value in the vector corresponded to the 

activation t-value at a given voxel in response to H. The set of t-values in the vector 

correspond to the set of voxels within a VOI. For each VOI, these vectors were created 

for each stimulus type. An oRSM was constructed by computing a pairwise (Pearson) 

correlation for each possible vector pairing and placing the r value in the corresponding 

cell within a matrix. The matrix contained a row and column dedicated to each stimulus 
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and each cell corresponded to the correlation of the t-values from the set of voxels for the 

row stimulus and the t-values from the same voxels for the column stimulus. Each matrix 

was triangular (due to symmetry across the diagonal) and the cells in the diagonal were 

excluded. To prevent including duplicated values in the analyses (which would 

artificially inflate the degrees of freedom), only the values in the upper triangle were 

analyzed. 

 A group oRSM was constructed for each VOI in the following manner. First, the 

values from each participant’s oRSM were z normalized to have a mean of 0 and a 

standard deviation of 1. The group oRSM was composed of the mean z value across 

participants within each cell. The group oRSMs was then z-normalized to have a mean of 

0 and a standard deviation of 1. This group oRSM served as the estimate of the 

representational similarity structure within any give VOI.     

 Ten pRSMs were constructed to test if the similarity structure for a given oRSM 

was consistent with a predicted (idealized) RSM for a particular type of representation. 

Three pRSMs were particularly important for this study. They were the Stimulus Shape 

pRSM which predicted the similarity structure at the level the font-specific stimulus 

shape representation. The similarity values consisted of pairwise visual similarity 

judgments for the gridfont letters rotated so they were difficult to recognize while 

maintaining the same pixelwise image similarity structure (see chapter 3 for more detail). 

The Allograph pRSM consisted of pairwise visual similarity judgments for letters 

presented in a typical Calibri-based font. These similarity judgments served as an 

estimate of the similarity structure at the level of Allograph representations. It is 

important to note that the typical font was never shown to participants in the scanner but 
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instead they only saw a visually distinct atypical gridfont. Finally, an ALI pRSM was 

constructed by assigning a value of 1 to any letter pairs that share the same identity and a 

value of 0 to any character pairs that do not. In addition to these three pRSMs, other 

pRSMs estimated motoric feature representations, letter-name representations (estimated 

via phonetic feature overlap and letter name confusability matrix, case marker 

representations, consonant-vowel marker representations, and letter or digit identity 

representations. All of the pRSMs only included predictions for the letter stimuli 

(excluding digits) except for the letter or digit identity pRSM which necessarily included 

letters and digits. 

4.1.2 Sensitivity, selectivity, and feature comparison analyses 

 The RSA –VOI-based analyses consisted of three phases:  sensitivity, selectivity, 

and feature comparison analyses.  

Sensitivity analysis 

The goal of the sensitivity analysis was to determine, for a given VOI, whether 

the observed similarity structure was consisted with one or more of the similarity 

structures predicted for various types of representations. For each VOI, the sensitivity 

consisted of a Pearson correlation between the oRSM derived from that VOI and each of 

the 10 pRSMs.   

Significance for each of the aforementioned correlations was established using a 

permutation Monte-Carlo analysis. This analysis was carried out by creating 10000 

Pseudo-oRSMs in the following manner: the rows and columns of the original oRSM 

were scrambled forming Pseudo-oRSMs. Importantly, the rows and the columns were 
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scrambled identically (e.g., if the a column swaps places with the d column, then the a 

row would swap places with the d row). For each pRSM a distribution of 10000 random 

correlations were computed by taking the correlation of the Pseudo-oRSM and a pRSM. 

If the actual correlation between the pRSM and oRSM fell within the top 5% of 

correlation values, the correlation was labeled significant. Reported one-tailed p values 

were computed by subtracting the percentile rank of the r value from 1. 

Selectivity analysis                  

 The goal of the selectivity analysis was to determine the relative contribution of 

each pRSM in accounting for the similarity structure (oRSM) from a given VOI.  For 

each VOI, the group oRSM was evaluated in a regression analysis that contained 3 

regressors corresponding to the Stimulus Shape, Allograph, and Letter Identity 

pRSMs as well as a constant. The other pRSMs were excluded because the results of the 

Sensitivity Analysis did not find any of them to be significant in any of the VOIs. In 

order to compute standardized regression coefficients, each of the group oRSMs and the 

pRSMs was z normalized to a mean of 0 and a standard deviation of 1. The regression 

analysis was carried out using MATLAB’s REGSTAT function. A t-value was computed 

for each β coefficient and was evaluated for statistical significance assuming a two-tailed 

p value.  

Feature comparison analysis 

Following on the findings that show differences in the content of visual 

representations from early retinotopic cortex to pF and LO along the ventral stream 

(Kriegeskorte et al., 2008; Op de Beeck et al., 2008), we examined how letter 

representations changed from early, retinotopic cortex to Alphanumeric VOIs located in 
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regions similar to LO and pF. In order to test for a difference between stimulus shape and 

allograph representations across two VOIs, two-way ANOVA analyses were performed 

with representation (stimulus shape or allograph) and VOI as factors. To do this a 

regression analysis was run for each participant predicting oRSM from the bilateral 

Retinotopic VOI and each of the left hemisphere Alphanumeric VOIs. Each regression 

model included the Allograph, Stimulus Shape and ALI pRSMs as regressors. The 

dependent variable consisted of participant-specific β coefficients for the Allograph 

pRSM regressor and the Stimulus Shape pRSM regressor in a model that also included an 

ALI pRSM regressor and a constant. Participant specific oRSMs were obtained for each 

VOI and the participant specific β coefficients were obtained by using the 

aforementioned regressors to predict each participant specific oRSM in multiple 

regression models (one for each participant for each VOI). The resulting set of β 

coefficients for the Stimulus Shape and the Allograph pRSMs where entered into the 

two-way ANOVA analysis. The interaction term indicated a difference in the 

representational content across the two VOIs. 

4.2 Results 

VOIs 

The Group RFX GLM identifying Alphanumeric VOIs yielded three clusters (for 

coordinates of the peak voxels as well as statistics and cluster sizes, see table 1): a cluster 

in the left middle occipital gyrus, a cluster in the left fusiform gyrus bordering the 

occipito-temporal sulcus, and a cluster in the right fusiform gyrus encompassing regions 

in the right middle occipital gyrus as well. To generate the Alphanumeric VOIs, each of 
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these clusters was inflated 5mm in all directions and the coordinates of each of the voxels 

within the cluster were transformed into each participant’s ACPC space. Table 2 below 

provides a summary of the both the Alphanumeric VOIs and the Retinotopic VOIs.  

 

 

 

 

 

 

Anatomical Label Peak X Peak Y Peak Z T(10) p 
# of 

voxels 

Left Middle Occipital Gyrus -42 -73 -7 7.14 <0.00005 173 

Left Mid. Fusiform Gyrus -41 -63 -19 4.47 <0.005 20 

Right Fusiform Gyrus 31 -79 -16 8.31 <0.00001 130 

       

 

  

# of voxels: 

average 

# of voxels: 

min 

# of voxels: 

max 

Center of mass 

(TAL: X, Y, Z) 

Alphanumeric 

VOIs 

Left Middle Occipital 

Gyrus 
717 445 882 (-35, -81, -10) 

Left Mid. Fusiform 326 218 376 (-44, -64, -18) 

Right Fusiform 1241 1062 1313 (36, -65, -16) 

      
Retinotopic 

VOIs 

Bilateral Retinotopic 

Cortex 
1516 1245 1721 (-2, -84, -12) 

 
V1 596 470 689 (-2, -90, -8) 

 
V2v 326 266 393 (-1, -86, -16) 

 
V3v 294 251 341 (-3, -82,-16) 

 
V4 224 159 266 (-2, -78, -18) 

Table 1. Clusters used for alphanumeric VOIs. Peak voxel coordinates, statistics and cluster sizes from the 

group activation map comparing letter and digit stimuli greater than implicit baseline. The results reported 

below are in Talairach space and are reported prior to the 5mm expansion for the participant VOIs. 

Table 2. Properties of the VOIs used to generate the oRSMs. The Alphanumeric VOIs were derived 

from the clusters reported in Table 1 by inflating each of these clusters by 5mm in all directions and 

converting the cluster coordinates to each participants ACPC space. For each VOI, the average number 

of functional (3x3x3mm) voxels across participants along with the range. Additionally the average 

center of mass for each VOI is reported. 



108 
 

Sensitivity analysis 

 For each VOI, each of the 10 pRSMs was correlated (Pearson) with the VOI’s 

oRSMs (one from each VOI). The magnitude of the correlation was a measure of how 

consistent the similarity structure of a VOI’s neural responses was with the similarity 

structure of the type of representation a given pRSM is estimating. Complete results from 

the sensitivity analysis can be seen on Table 3. The only pRSMs with significant results 

were those estimating the representational similarity of Stimulus Shape, Allograph, and 

Letter Identity representations. None of the other 7 pRSMs had any significant results so 

they will not be discussed further.  

 

 

 

  
Stimulus Shape Allograph Letter Identity 

Alphanumeric VOIs 

Left Middle Occipital Gyrus 0.073 0.194* 0.07 

Left Mid. Fusiform 0.079 0.205** 0.095* 

Right Fusiform 0.049 0.129* 0.081* 

     

Retinotopic VOIs 

Bilateral Retinotopic Cortex 0.183* 0.169* 0.099* 

V1 0.147* 0.19* 0.111* 

V2v 0.144* 0.122* 0.058 

V3v 0.221** 0.087 0.061 

V4 0.108 0.139* 0.087* 

 

Stimulus Shape pRSM 

As can be seen on Table 3, all of the Retinotopic VOIs except V4 were 

significantly sensitive to the Stimulus Shape pRSM while none of the Alphanumeric 

Table 3. Results from the sensitivity analysis. Reported values are correlation r values. * indicates p<0.05 

and ** indicates p<0.001. 
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VOIs were significantly sensitive to the Stimulus Shape pRSM. The largest correlation 

with the Stimulus Shape pRSM was localized to V3v (r = 0.221, p<0.001). It is worth 

noting that the bilateral retinotopic cortex as a whole was sensitive to the Stimulus Shape 

pRSM (r = 0.183, p<0.05).     

Allograph pRSM 

 Unlike the Stimulus Shape pRSM, all of the Alphanumeric VOIs were sensitive to 

the Allograph pRSM. Specifically the left middle occipital gyrus (r = 0.194, p<0.05), the 

left mid. fusiform gyrus (r = 0.205, p<0.001) and the right fusiform gyrus (r = 0.129, 

p<0.05). Additionally, most of the Retinotopic VOIs were sensitive to the Allograph 

pRSM as well. This included the bilateral retinotopic cortex as a whole (r = 0.169, 

p<0.05). The only non-significant VOI was V3v. 

Abstract Letter Identity pRSM 

 Bilateral retinotopic cortex as a whole was sensitive to the Letter Identity pRSM 

(r = 0.099, p<0.05). Within the Retinotopic VOIs, both V1 and V4 were sensitive to 

Letter Identity (r = 0.111, p<0.05; r = 0.087, p<0.05 respectively). For the Alphanumeric 

VOIs, both the left and right fusiform VOIs were sensitive to the Letter Identity pRSM (r 

= 0.089, p<0.05; r = 0.081, p<0.05 respectively) while the left middle occipital gyrus was 

not.  
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Selectivity analysis 

 Selectivity was measured by running multiple linear regression analyses, one for 

each VOI, in order to determine the unique contribution of the Stimulus Shape, Allograph 

and ALI pRSM regressors at each VOI. As Table 4 shows, the regression model was not 

significant for 2 of the 8 VOIs—namely, V4 and the right fusiform VOI.  

Two VOIs had significant β coefficients for the Stimulus Shape pRSM. These 

were specifically the bilateral retinotopic cortex VOI (β = 0.075, p<0.05) and V3v (β = 

0.112, p<0.05). Likewise, only two VOIs had significant β coefficients for the Allograph 

pRSM. Notably, both Left Alphanumeric VOIs—the left middle occipital gyrus and the 

left mid. fusiform gyrus—had significant Allograph β coefficients (β = 0.138, p<0.001; β 

= 0.128, p<0.05 respectively).  

  
Regression model statistics β coefficients 

  

R² 

(Adj.) 
F(287, 3) p 

Stimulus 

Shape 
Allograph 

Letter 

Identity 

Alphanumeric 

VOIs 

Left Middle Occipital 

Gyrus 
0.037 4.74 0.003* -0.019 0.138** -0.068 

Left Mid. Fusiform 0.04 5.01 0.002* -0.011 0.128* -0.038 

Right Fusiform 0.004 1.39 0.247 0.003 0.044 0.002 

        

Retinotopic VOIs 

Bilateral Retinotopic 

Cortex 
0.035 4.54 0.004* 0.075* 0.046 0.009 

V1 0.033 4.31 0.005* 0.061 0.063 0.028 

V2v 0.019 2.83 0.039* 0.067 0.078 -0.041 

V3v 0.031 4.11 0.007* 0.112* 0 -0.005 

V4 0.011 2.07 0.104 0.03 0.053 0.003 

Table 4. Results from the regression analysis across multiple VOIs. β coefficients are standardized beta-

weights.  * indicates p<0.05 and ** indicates p<0.001. 
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Feature comparison analysis 

Three two-way ANOVAs were run to test the differences in β coefficients for the 

Stimulus Shape pRSM and the Allograph pRSM across two VOIs. Of particular interest 

was the interaction between VOI and pRSM. This interaction term was interpreted as a 

transition of neural encoding of one type of representation (e.g., font-specific stimulus 

shape) to another (e.g., font-invariant allograph). The first two ANOVAs compared the β 

coefficients from bilateral retinotopic cortex with those from (1) the left middle occipital 

Figure 22. Bar graphs depicting the mean β coefficients across participants for a regression model 

that included Stimulus Shape, Allograph and Letter Identity pRSMs as regressors. Top left shows 

the mean β coefficients from the regression analysis at 3 VOIs. The interaction between the 

Stimulus Shape and Allograph pRSM and VOI for bilateral retinotopic cortex and the left MOG as 

well as left mid. fus. were significant. Bottom Left is a bar graph depicting the results from the 

regression analysis comparing the left and right retinotopic cortex. The interaction is marginal at 

p<0.1.  * indicates p<0.05. Top Right depicts the retinotopic VOI (green), the left MOG (red) and 

the left fusiform VOI (yellow).  
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gyrus and (2) the left mid. fusiform gyrus. A third ANOVA (3) compared the β 

coefficients from the left retinotopic cortex with those from the right retinotopic cortex. 

 The ANOVA analyses (1) and (2) compared the β coefficients for the Stimulus 

Shape and Allograph pRSMs across bilateral retinotopic cortex and (1) left MOG and (2) 

left fusiform.  While there was no significant main effects for VOI (f(41, 1) = 0.03, p = 

0.857; f(41, 1) = 0, p = 0.996 respectively) or pRSM (f(41, 1) = 3.82, p = 0.058; f(41, 1) 

= 2.44, p = 0.126 respectively), the interaction between VOI and pRSM was significant 

for both (f(41, 1) =  7.37, p < 0.01; f(41, 1) = 5.57, p < 0.05 respectively). ANOVA (3) 

comparing the same pRSMs across the left and right retinotopic cortex had no significant 

main effects (VOI: f(41, 1) =  0.55, p = 0.464; pRSM: f(41, 1) = 0, p = 0.998)  or 

interaction (f(41, 1) =  2.96, p = 0.094) although this interaction could be considered 

marginally significant.         

4.3 Discussion 

The results from the experiments in Chapter 3 provided strong evidence that even 

when participants viewed letters and digits presented in a visually atypical gridfont, 

behavioral responses—such as pairwise visual similarity judgments or physical same-

different RTs and errors—were strongly influenced by font-invariant allograph 

representations. A major goal of this experiment was to identify the neural substrates that 

encode font-invariant allograph representations as opposed to the computed, font-

specific, stimulus shape representation. To this end, Representational Similarity Analysis 

was used to investigate the representational content of letter stimuli presented in an 

atypical gridfont across a set of Retinotopic VOIs as well as a set of Alphanumeric VOIs. 
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Of particular interest was the finding that the similarity structure of the neural responses 

to the presented atypical gridfont indicated the encoding of stimulus shape 

representations in retinotopic cortex and the encoding the stored (not-presented) font-

invariant allograph shape representations in lateral and anterior ventral visual clusters—

specifically in the left hemisphere.          

4.3.1 Stimulus shape vs. allograph representations  

 The RSA sensitivity analysis revealed that, with a few exceptions, Retinotopic 

VOIs were sensitive to both Stimulus Shape and Allograph pRSMs. Alphanumeric VOIs, 

on the other hand, were only sensitive to allograph representations. A regression analysis 

revealed that the Stimulus Shape pRSM best explained the oRSM from the bilateral 

retinotopic cortex VOI while the Allograph pRSM best explained the oRSMs from 

Alphanumeric VOIs in the left middle occipital gyrus and the left mid. fusiform gyrus. 

Significant interactions from 2 two-way ANOVAs between the bilateral retinotopic 

cortex and each of the two left hemisphere Alphanumeric VOIs demonstrated a change 

between the representations of the atypical gridfont’s stimulus shapes in retinotopic 

cortex to the representatiosn of font-invariant allographs in the left middle occiptal gyrus 

and left mid. fusiform gyrus. While previous research has already identified neural 

substrates that encode abstract letter identities (e.g., Rothlein & Rapp, 2014), no fMRI 

study has specifically sought out to uncover neural regions that encode allograph 

representations as being distinct from either stimulus letter shape representations or ALI 

representations. For example, researchers have used priming and MVPA to investigate 

font-invariance before (Gauthier, Tarr, et al., 2000; Qiao et al., 2010), but these 

researchers did not ensure that the priming or MVPA effects were not being driven by the 
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fact that two fonts of lower case a also share the same ALI. Therefore, to my knowledge, 

this is the first study that localized neural substrates of allograph representations. It is 

worth noting that the position of the left MOG VOI (TAL: -35, -81, -10) that ostensibly 

encodes allographs is quite close to the Left LO which is a neural region thought to be 

important for representing object shapes more generally (Kim, Biederman, Lescroart, & 

Hayworth, 2009; Kourtzi & Connor, 2011) and reflects perceived similarity instead of the 

physical similarity of viewed objects (Drucker & Aguirre, 2009; Kourtzi & Kanwisher, 

2001; Op de Beeck, Torfs, & Wagemans, 2008).  

 Another interesting finding was the tendency of the right hemisphere retinotopic 

VOIs to represent the font-specific stimulus shape and the left retinotopic VOIs to 

represent allographs. When collapsing across V1, V2v, V3v, and V4, an ANOVA 

analysis comparing the Stimulus Shape and Allograph pRSMs across right and left 

retinotopic VOIs revealed a marginally significant interaction term, suggesting a possible 

bias towards font-specific stimulus shape representations in the right retinotopic cortex 

and font-invariant allograph representations in left retinotopic cortex. This is consistent 

with theories that posit that visual processing in the right hemisphere is more exemplar-

based with the goal of faithfully representing the visuospatial features of the stimulus 

being viewed while left hemisphere visual processing is more abstract and categorical 

with the goal of rapid identification (Marsolek, 1995; Marsolek, 1999).       

4.3.2 Stored letter representations in V1 and V2 

 One unanticipated result was finding evidence for both stored allograph and letter 

identity representational content within V1. While unexpected, there are previous 

findings showing letter and word-specific brain activation in V1 and V2. In one study by 
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Szwed et al., (2011) visually degraded word stimuli were compared with gestalt matched 

pseudo-words, line drawings of objects, and scrambled versions of these line drawings. In 

left V1, the overall activity was greatest for the word stimuli. This was not the case in 

right V1. Furthermore in a later study (Szwed et al., 2014) this effect was replicated and 

compared with Chinese literates viewing the more complex Chinese characters. Szwed et 

al. (2014) found this character specific activation in left V1 for French, while Chinese 

emerged around V3a and V4. Importantly this effect was not found in V3v-V4 for the 

French reader.  

 Our results build upon Szwed et al. (2011 & 2014) by clarifying the nature of the 

activation in V1 and V2. Specifically, these regions appear to be representing both 

allographs and ALIs. One possible interpretation of these findings is that frequent 

exposure to letter and word stimuli caused the neural pathways to develop special letter 

specific features in early visual cortex. An alternative view is that these activation 

patterns are a consequence of feedback from higher level processing regions to early 

visual cortex. It should be noted that both Szwed et al. (2011) and the present study used 

letter stimuli that were somewhat atypical. This could necessitate stronger than normal 

feedback in order to maximize the accuracy with which the signal is interpreted. This 

interpretation helps deal with the fact that researchers who used typical font stimuli failed 

to find such an effect (e.g., Vinckier et al., 2007). If letter identity information is fed back 

to early visual areas, a paradox emerges: if regions receiving input from V1 expect visual 

or shape information, how could identity information benefit processing of the signal? 

While this research does not answer this question, it does offer clues by revealing the 

representational content of the low-level visual activations. 
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4.4 Conclusions 

 The experiment presented in this Chapter set out to map representations involved 

in letter processing from the font-specific stimulus shape of an atypical gridfont letter to 

that letter’s font-invariant allograph representation. Using Representational Similarity 

Analysis to uncover the representational content of VOIs within retinotopic cortex and 

Alphanumeric VOIs in the left and right ventral occipital and temporal lobes, the results 

provided evidence that Retinotopic cortex, particularly in the right hemisphere, encoded 

computed stimulus shape representations of letters and the Alphanumeric VOIs and 

certain left hemisphere retinotopic regions encoded stored font-invariant allograph 

representation. This is the first fMRI study to specifically investigate the transition from 

font-specific to font-invariant spatial representations of letters and furthermore, it is one 

of the first studies that used the similarity structure of typical exemplars to explain the 

neural signal evoked by atypical exemplars in order to reach conclusions about stored 

shape representations. The methods and logic used in this experiment could be applied to 

many different categories of objects. 

 While the experiment in this chapter primarily focused on representations of the 

shape of the letter, the sensitivity analyses revealed neural regions sensitive to case-

invariant Letter Identity representations in retinotopic cortex and along the left and right 

ventral stream. The experiment in the next chapter explores the neural representation 

Letter Identity even further by determining how the sensory modality of stimulus 

presentation (visual or auditory) relates to neural representation.        
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Chapter 5 - Are abstract letter identity 

representations amodal as well?  

 Information about the world is constantly arriving via our various sensory organs. 

The brain must process and integrate this information across the multiple sensory 

modalities in order properly interact with the local environment. Investigating and 

theorizing how the brain integrates this information requires us to make fundamental 

assumptions about how the brain works. On one view, sensory modalities and motor 

control circuits are the organizing structures of the brain (Stein & Meredith, 1993). Brain 

regions can be easily divided into being visual, auditory, olfactory, motor, somatosensory 

and so on. Processing in these regions is modality specific and multisensory integration 

occurs at multi-modal association areas. These association areas directly map 

representations from one modality to another. For example, in the task of orally naming a 

viewed letter, the visual letter’s form is processed and recognized in visual cortex and 

then that visual representation is linked to the phonological/articulatory representations in 

auditory/motor cortex used for orally naming the viewed letter. An alternative view posits 

that the brain is organized by the representational content of objects and the types of 

processing they require (Pascual-Leone & Hamilton, 2001). For example, the ventral 

visual stream might not be specific to processing visual information but the neural 

circuitry might be innately tuned to represent shape information, regardless of whether 

the stimulus comes from visual, tactile, or even auditory modalities (e.g., Pascual-Leone 

& Hamilton, 2001; Striem-Amit, Cohen, Dehaene, & Amedi, 2012). In this view, letters 

are processed in the ventral stream because rapid shape processing for identification is 

essential to reading and the neural circuits in the ventral stream are designed to represent 
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shape information—even for braille readers who decipher shape through touch (Büchel, 

Price, & Friston, 1998). The experiment in this study investigated how the 

representations involved in processing visually and aurally presented letters (letter 

names) interacted by identifying neural substrates that were activated by visually or 

aurally presented letter names. RSA-MVPA was then used to investigate the 

representational content of these letter-responsive regions. Of particular interest was 

investigating amodal identity representations. 

 Saying that a particular mental representation is modality specific, cross-modal or 

amodal requires further clarification. Because the term modality can refer to subtly 

different phenomenon, I have highlighted three common usages: input modality, content 

modality, and cortical modality. Most straightforwardly, input modality refers to the 

sensory organ that initially transduces the stimulus. For example, if a letter is presented 

visually, then any neural representation of that letter is also visual. Another use, which I 

will refer to as content modality, refers to the representational content of a stimulus 

within a brain region. For example, while both visual and auditory inputs can activate the 

representation of /eI/, phonological information is generally associated with auditory and 

motor modalities while visual information is generally associated with visuospatial 

features. Modality also refers to cortical regions affiliated with a particular sensory 

modality. I will refer to this usage as cortical modality. For example, the calcarine 

sulcus is thought to primarily process visual input and Heschl’s gyrus is thought to 

process auditory input.  

 The terms cross-modal and multi-modal refer to the relationship between the 

input modality of a stimulus and the internal (neural) representations of that stimulus. A 
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neural representation can be multi-modal in the sense that multiple input modalities can 

access the same representation. For example, the neural representation of the letter name 

/eI/ could be multi-modal in this sense if both hearing the letter name /eI/ and seeing a 

visually presented stimulus A accesses the same phonological name representation /eI/. In 

this paper, cross-modal simply refers to particular multi-modal effects. In this example, 

the multi-modal representation /eI/ will demonstrate cross-modal activation in that it is 

activated in response to visually and aurally presented letters. In this experiment, we 

compared the similarity of cross-modal activation patterns (the similarity of activation 

patterns across visual and auditory presentations) to determine whether a neural 

representation was multi-modal and importantly, the content of that representation.  

The question of whether a representation is multi-modal or not is orthogonal to 

the question of the content modality of that representation. Representational content can 

be modality specific or abstract. A representation is modality specific if the 

information represented is highly associated with one or more sensorimotor modality. In 

the example of the letter name representation /eI/ described above, while the 

representation is multi-modal because it demonstrates cross-modal activation, the content 

of the representation /eI/ is associated with the auditory, sensory and articulatory motor 

systems so the content modality is modality specific. A representation is generally 

thought to be abstract if the content of the representation is not associated with any 

modality. Letter identity representations are thought to be abstract because even though 

the input modality may often be visual, the same representation can be activated despite 

large visuospatial changes to the stimulus (e.g., r and R activate the same ALI 

representation). I wish to further define amodal representations as abstract 
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representations (meaning the representational content is not associated with any 

modality) that are also multi-modal (meaning multiple input modalities activate the same 

abstract representation). For example, ALI representation would be amodal if the same 

representation is activated in response, not only to lower and upper case letters that share 

the same identity, but the letter name associated with that identity as well (e.g., a, A, and 

/eI/ would activate the same amodal ALI representation).      

 As can be seen in Figure 2, the representations in the domain of letter processing 

are multi-modal. A seen letter can go on to trigger knowledge of the motor codes used to 

produce that letter or it could go on to trigger the name of the letter or the sound that is 

commonly associated with the letter. That all this information is accessible from a visual 

stimulus is not surprising. Understanding how these modality specific representations 

connect with one another, on the other hand, is an active domain of study. The framework 

we present in Figure 2 hypothesizes that the ALI representations not only abstract away 

from visual information, but they represent a letter’s identity regardless of the modality of 

presentation or production as well—rendering ALIs amodal. Furthermore, it is these 

amodal ALI representations that serve as a conduit between all the modality-specific 

representations in addition to lexical processes. On this view, seeing the letters a and A 

and hearing /eI/ should activate the same amodal ALI representation. Furthermore, in 

order to produce the name /eI/ from viewing the shape a, the ALI representation [A] must 

mediate the connection.  

 Previous neuroimaging research has investigated the neural response to letters 

presented to different modalities. In one study, researchers presented participants with 

single letters visually and aurally while recording the resulting neural activity in a MEG 



121 
 

scanner (Raij, Uutela, & Hari, 2000). They identified regions activated for just visual 

letters in occipital and ventral occipito-temporal cortex while the regions sensitive to 

aurally presented letters were in the anterior superior temporal sulcus (STS). The 

researchers then identified neural substrates activated by both visually and aurally 

presented letters in the left and right posterior STS (pSTS). To determine if the visual and 

auditory letter signals were multimodal (i.e., activated the same neural representation) 

they found that the neural signals were not additive when visual and aural letters were 

presented simultaneously. Raij et al. (2000) interpreted this nonlinearity as demonstrating 

that visual and aurally presented letters accessed shared representations in the left and 

right posterior STS (although the interaction in the left was 70ms earlier than  in the 

right). These findings were replicated in an fMRI study that also suggested multi-modal 

effects can even be seen in primary sensory areas (van Atteveldt, Formisano, Goebel, & 

Blomert, 2004). While both of these studies suggest neural signals from different input 

modalities interact at multimodal convergence zones in the pSTS (also referred to as 

heteromodal convergence zones or association areas), these results do not determine the 

content of the representations at the point of these interactions. In other words, what is 

the content of the representation these modalities share? Do letters from both input 

modality activate the same phonological letter name representation? Do they activate the 

same abstract identity representation? MVPA-RSA can be used to investigate the content 

of these representations.  

MVPA has been used to more directly test the nature of multimodal interactions 

in other contexts. For example, a study by Man et al. (2012) trained a classifier on the 

multi-voxel patterns of neural responses to visual and auditory clips of the same event. 
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They found that the activation patterns in pSTS trained in one modality could classify the 

patterns of the same events presented to the other modality regardless of whether it was 

visual to auditory or vice-versa. While this study directly demonstrated that visually and 

aurally presented stimuli share the same representational content in pSTS, it does not 

elucidate the nature of the shared representational content. Other studies have used 

MVPA RSA to determine that semantic/conceptual properties of the stimuli that appear 

to be driving the interactions, at least in terms of broad object categories (e.g. clothes, 

mammals, and tools) (Bonner, Peelle, Cook, & Grossman, 2013; Fairhall & Caramazza, 

2013). For example, Fairhall & Caramazza (2013) identified a set of brain regions whose 

responses to visually presented objects and corresponding aurally presented object names 

were similar to one another. This was evidence for multi-modal representations within 

these brain regions. Importantly, they determined that the similarity structures within two 

of these brain regions (specifically the posterior middle temporal gyrus and posterior 

cingulate) were consistent with representing abstract semantic category information of 

the stimuli regardless of the input modality. Fairhall and Caramazza concluded that these 

two neural regions represented the semantic category of the presented stimuli in an 

abstract and amodal manner. Following a similar logic, we used MVPA-RSA with letters 

to localize cortical regions that represented the amodal identity of letters consistent with 

the ALI representation in the letter processing model presented in Chapter 1. Furthermore 

we set out to investigate the representational content of modality specific and cross-

modal activation patterns.             
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5.1 Methods 

Participants (identical to Experiment 4 in Chapter 4)  

12 participants (6 female) were recruited from the Johns Hopkins University 

student population. Participants were right handed, had no history reading or learning 

disabilities, and were only able to read letters from the Roman alphabet. Each participant 

provided written consent and was compensated in accordance with The Johns Hopkins 

Institutional Review Board. One participant was excluded from all analyses due to 

excessive head motion.  

Procedures 

Participants performed three experimental tasks within a 2 hour scan session. The 

first was an auditory name detection task, the second was a visual symbol detection task 

and the third was a passive viewing Retinotopic Localizer (the data from the latter two 

tasks were also analyzed in Chapter 4). All tasks were presented and responses were 

recorded using E-Prime 2.0 Software (Psychology Software Tools, Pittsburgh, PA). 

Auditory name detection task:   

 Stimuli consisted of 7 spoken letter-names (a, d, e, g, h, r, t) and 5 digit names (2, 

4, 5, 7, 8) recorded by a female speaker. Additionally, two single syllable male names 

served as targets (“Dave” and “Jim”). The letter and number names corresponded to the 7 

letter and 5 digit identities of the gridfont stimuli from Chapters 3 and 4. Additionally, 

Iterated Ripple Noise or “Ripples” (Yost, 1996) were presented as a baseline. 

Appropriately calibrated ripple noise has been used successfully to simulate appropriate 
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“spectro-temporal response fields” of speech in humans without producing any 

perceptible speech sounds (Ley et al., 2012).  

Participants listened to 7 letter names and 5 number names resulting in 12 total 

names. Additionally, 2 target monosyllabic male-names were presented. Participants 

were asked to press two buttons—one in each hand—whenever they heard the male 

name. The experimental procedure consisted of 3 trial types: (1) Name trials, which were 

comprised of a 300ms fixation dot, and up to 3700ms for the auditory presentation of a 

letter or digit name while the monitor displayed a blank white screen; (2) male-name 

trials, which were the same as name trials except a male name was presented instead of a 

letter or digit name and participants were expected to respond; (3) Ripple trials, which 

consisted of a fixation dot and then a brief ripple noise and the remainder of the trial 

which was a blank white screen. The ripple durations were matched against the length of 

the letter, digit, and male name durations. Each trial lasted 4000ms. In sum, there were 12 

name trials, 2 male name trials, and 3 ripple trials per block for a total of 17 trials per 

block. Each run consisted of 4 blocks and there were 3 runs in total making for 12 

repetitions of each condition.  

The Visual Symbol Detection task and the Retinotopic Localizer data was the 

same data that was analyzed in Experiment 4 (see Chapter 4 a description of the task).  

5.1.2 Imaging parameters (identical to Experiment 4 in Chapter 4) 

 MRI data were acquired using a 3.0-T Phillips Intera Scanner. Whole-brain T2-

weighted gradient-echo EPIs were acquired with a 32 channel SENSE (Invivio) parallel 

imaging head coil in 30 ascending 3 x 3 mm slices with 1 mm gap. TR = 2 s for the 
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Symbol Detection Task and Retinotopic Localizer. Echo time = 30ms, flip angle = 65º, 

field of view = 240 x 240mm, matrix = 128 x 128mm. Structural images were acquired 

using an MR-Rage T1-weighted sequence yielding images with 1mm isotropic voxels 

(repetition time = 8.036ms, echo time = 3.8ms, flip angle = 8 º 

5.1.3 fMRI data processing 

Data from the Auditory Name Detection task, the Symbol Detection task and the 

Retinotopic Localizer were preprocessed identically using Brain Voyager Q.X. software 

(Maastricht, Netherlands).  Functional images were corrected for slice time (ascending) 

and motion (trilinear 3D motion correction with sinc interpolation. Additionally, a 

temporal high-pass filter removed components occurring fewer than three cycles per run 

(high-pass GLM-Fourier 3 Cosines) and linear trend removal for correcting scanner drift. 

Images were resampled to 3mm
3 
voxels.   

The data from the auditory name and symbol detection tasks were analyzed in an 

MVPA-RSA design that was VOI based.  This required the following: (1) generating the 

participant and stimulus-specific activation patterns used to generate oRSMs within the 

VOIs, (2) identifying the relevant VOIs and (3) generating the oRSMs and pRSMs for the 

analysis. 

(1) Activation patterns for the VOI analysis.   

Two event-related GLMs were carried out: one included 37 experimental 

regressors for the visual symbol detection task and the other included 15 regressors for 

the auditory name detection task. The regressor set for the visual symbol detection task 

included one for each letter or digit stimulus (33) and one for each symbol (4) while the 
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auditory name detection task had one for each letter or digit name (12), one for the ripple 

noise and 1 for each male name (2). Additionally, both GLMs had 1 linear trend 

regressor, 6 head-motion parameter time-course regressors, 6 fourier-based non-linear 

trend regressors (up to three cycles per run for sine and cosine) and 1 confound regressor 

representing run number. The experimental regressors were created by convolving a 

boxcar function corresponding to the duration of appearance of each experimental 

condition with a Boynton hemodynamic response function. The duration of the boxcar 

function for the 4 symbol regressors from the visual symbol detection task and the 2 male 

name regressors from the auditory name detection task lasted the entire 4000ms trial 

duration to ensure inclusion of the expected motor response. For the experimental trials, 

the 200ms corresponding to the fixation appearance and the 3500ms of blank screen 

following the stimulus disappearance were not modelled. The entire 4000ms duration of 

blank trials was not modelled as well. These time periods served as the implicit baseline. 

Each regressor (both experimental and confound) was z-normalized and then fit against 

the fMRI time-course signal expressed as percent signal change. The resulting beta-maps 

were converted to t-maps—one map for each of the 33 experimental conditions (letter or 

digit stimuli) for the symbol detection task and one map for each of the 12 letter and digit 

name stimuli. These t-maps (in native ACPC space) were used as the activation estimates 

for the MVPA-RSA analyses. MVPA-RSA was carried out using in house code run in 

MATLAB (Math Works). NeuroElf (http://NeuroElf.net/) was used to integrate Brain 

Voyager and MATLAB.  

http://neuroelf.net/
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(2) Identification of functionally-based VOIs 

VOIs were constructed for both the Symbol and Spoken Name Detection tasks in 

order to identify Visual Alphanumeric VOIs from the former task and Auditory 

Alphanumeric Name VOIs. The Visual Alphanumeric VOIs were the same 

Alphanumeric VOIs analyzed in Chapter 4.  

Prior to running the group RFX GLM analysis, fMRI data from the symbol and 

spoken name detection tasks were smoothed 6mm FWHM and normalized to Talairach 

space. Two GLMs were then constructed in a similar manner as described in analysis (1). 

The only distinction was that the GLMs were group GLMs containing data from each 

participant. Participants were treated as random variables in these RFX GLMs and a 

contrast of activation levels for letter and digits > baseline for the symbol detection task 

and all letter and digit names > ripple sound for the spoken name detection task were 

carried out with results thresholded at an uncorrected p<0.05 with a clustersize threshold 

of 30 voxels (clusters reported in Table 5). The surviving clusters were then expanded by 

5mm in each direction and converted back to native ACPC space for each participant 

(Table 6).  

 Data and analysis from the Retinotopic Meridian Map Localizer corresponded to 

the data analysis reported in Chapter 4 

(3)  Generation of oRSMs and pRSMs   

 An oRSM was constructed for each VOI in the same manner as described in 

Chapter 4. For each VOI, three types of oRSMs were created. (1) Visual oRSMs 

corresponded to the activation patterns generated in response to the visually presented 
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letters and digits from the Symbol Detection Task. (2) Auditory oRSMs corresponded to 

the pairwise correlation of activation patterns in response to the aurally presented letter 

and digit names from the Auditory Name Detection Task. (3) Cross-modal oRSMs were 

oRSMs created by taking the activation pattern evoked by a visually presented letter or 

digit and correlating that pattern with the pattern evoked by an aurally presented letter or 

digit name. The correlation value reflects the similarity of the multi-voxel patterns in 

response to a visual stimulus and an auditory stimulus.  

 Three group oRSMs were constructed for each VOI in the following manner. 

First, the values from each participant’s oRSMs were z normalized to have a mean of 0 

and a standard deviation of 1. The group oRSMs corresponded to the mean z value across 

participants within each cell. Like the participant oRSMs, the group oRSMs were z-

normalized to have a mean of 0 and a standard deviation of 1. These group oRSMs 

served as the estimate of the representational similarity structure within any give VOI for 

the Visual and Auditory stimuli and for the Cross-modal similarity between the two. 

Digit stimuli were excluded from the Visual oRSMs but were included in the Auditory 

and Cross-modal oRSMs because these oRSMs were composed of considerably fewer 

stimuli and removing digits would have greatly reduced the power (number of data 

points) for the correlation and regression analyses.  

 Multiple pRSMs were constructed to test if the similarity structure for a given 

oRSM was consistent with a predicted (idealized) RSM for that particular type of 

representation (see Appendix 1 for examples of each pRSM). Four sets of pRSMs were 

constructed corresponding to the content-modality of the representation that the pRSM 

was predicting. When possible, multiple versions of each pRSM were constructed for 
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each content modality—one that predicts the similarity structure from the visual input 

modality, one that predicts the similarity structure from the auditory input modality, and 

one tests for multi-modal representations but comparing the cross-modal similarity 

between stimuli presented to the visual and auditory input modalities.  

Visual content pRSMs  

The Pixel-overlap pRSM and a Stimulus Shape pRSMs (both described in 

Chapters 3 and 4) were constructed for testing the Visual oRSMs. Because these pRSMs 

represent font-specific visual information that is unlikely to be represented by the 

auditory stimuli, Auditory or Cross-modal oRSMs were not constructed for the Pixel-

overlap or Stimulus Shape pRSMs. The Allograph pRSM, composed of pairwise visual 

similarity judgments for letters presented in a typical Calibri-based font, was constructed 

for testing the Visual, Auditory, and Cross-modal oRSMs. The Visual Allograph pRSM 

was described in Chapter 4. The Auditory Allograph pRSMs consisted of 2 pRSMs also 

based on the typical font similarity matrix. Since letter names do not have case, 2 

separate visual pRSMs were created—one for each case. For example, the Lowercase 

Auditory Allograph pRSM placed the lower case visual similarity for a and e in the cell 

that predicted the response to the names /eI/ and /i:/ while the uppercase Auditory 

Allograph pRSM placed the visual similarity for A and E in that cell. Similarly, 2 Cross-

modal Allograph pRSMs were constructed: one assuming the heard letter names 

activated uppercase allographs and another assuming the names activated lowercase 

allographs. 
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Motor content pRSMs  

A pRSM which estimated motoric production representations by measuring the 

overlap of a proposed set of motor features (Rapp & Caramazza, 1997) was constructed 

(see Chapter 3 for more details.) This pRSM was adapted to the Auditory and Cross-

modal oRSMs in the same manner as the Allograph pRSM—namely, two pRSMs were 

constructed for both the Auditory and the Cross-modal oRSMs. One pRSM assumed the 

auditory name activated a lowercase motor code and the other assumed the name 

activated an uppercase motor code. 

Auditory content pRSMs  

 There were pRSMs used for representing the similarity of letter names. The 

Phonetic Feature Overlap pRSM involved estimating name similarity by computing the 

amount of phonetic feature overlap of each alphanumeric name with every other name 

(see Chapter 3 for more details). The Letter Name Confusability pRSM consisted of an 

empirically derived alphanumeric-name confusability matrix (Hull, 1973). Both of these 

pRSMs were straightforwardly adapted to the Visual, Auditory and Cross-modal oRSMs  

Identity content pRSMs  

 A letter identity pRSM was constructed for the Visual oRSMs by assigning a 

value of 1 to any letter pairs that shared the same identity and a value of 0 to any letter 

pairs that did not. A Letter and Digit Identity pRSM was adapted to fit the Cross-modal 

oRSM. It predicted that the pattern of activation between a seen letter and heard letter 

name should be more similar if they corresponded to the same identity than if they did 

not (see figure 23).        
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5.1.4 ALI localizer and Selectivity analyses 

Searchlight ALI localizer 

 In order to identify amodal letter identity representations, neural substrates of ALI 

representations were identified in a searchlight analysis. These neural substrates could 

then be tested for cross-modal identity representations. A replication of the regression-

based searchlight analysis reported in Rothlein and Rapp (2014) was performed on the 

MVPA-RSA data from the visual symbol detection task in this experiment. Described in 

Chapter 2, the searchlight analysis was carried out within the same searchspace from 

Rothlein and Rapp. A 7 voxel sphere generated an oRSM for each searchlight region in 

the searchspace. Each of the searchlight oRSMs were fit to a regression model where 4 

pRSMs served as regressors: an Abstract Letter Identity pRSM, a Visual Similarity 

pRSM which was identical to the Stimulus Shape pRSM, a Letter Name pRSM which 

was derived from the Letter Name Confusability pRSM. Finally a Motor Feature Overlap 

pRSM was adapted from the Motor Feature Overlap pRSM described in Chapter 3 was 

included as a regressor. Both the Letter Name and the Motoric pRSM were binarized so 

the only values in the pRSMs were 0 and 1. This was done by computing the average 

Figure 23. An Amodal ALI 

pRSM. This pRSM predicts 

that the patterns of activation 

for visually presented letters 

and aurally presented letter 

names will be more similar 

if they share the same 

identity. 
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value within each pRSM and assigning all cells with values greater than the average 

value a 1 and all other cells a 0. The searchlight analysis yielded 4 beta-maps where the 

beta values associated with each pRSM were assigned to the central voxels in the 

searchlight. These participant beta-maps were spatially smoothed (6mm or 2 FWHM) and 

then normalized to Talairached space. A t-test was then run at each voxel testing to see if 

the beta values across the 11 participants associated with each pRSM were greater than 0. 

This generated 4 Group Feature Regression Maps which were thresholded by applying a 

voxelwise uncorrected threshold of p<0.10.  

Selectivity analysis 

 For each VOI, each type of oRSM was evaluated in a regression analysis for a 

total of 3 regression analyses per VOI. The Visual oRSM regression model contained the 

following 5 regressors: the Stimulus Shape, Allograph, Identity, Motoric and Phonetic 

Feature Overlap pRSMs. The Auditory oRSM regression model contained the following 

6 regressors: Uppercase Visual Similarity, Lowercase Visual Similarity, Uppercase 

Motoric Similarity, Lowercase Motoric Similarity, Phonetic Feature Overlap and Letter 

Name Confusability pRSMs. The Cross-modal oRSM regression model contained the 

following 6 regressors: Amodal Identity, Phonetic Feature Overlap, Uppercase Visual 

Similarity, Lowercase Visual Similarity, Uppercase Motoric Similarity, and Lowercase 

Motoric Similarity pRSMs.  In order to compute standardized regression coefficients, 

each of the group oRSMs and the pRSMs were z normalized to have a mean of 0 and a 

standard deviation of 1. The regression analysis was carried out using MATLAB’s 

REGSTAT function. A t-value was computed for each β coefficient and was evaluated 

for statistical significance assuming a two-tailed p value. 
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5.2 Results 

VOIs 

Eight clusters—3 from the Visual Alphanumeric contrast and 3 from the Auditory 

Alphanumeric Name contrast (aurally presented names > ripple noise baseline)—were 

identified (for coordinates and other details see Table 5 and Table 6): for the visual 

contrast, a cluster in the Left Middle Occipital Gyrus, a cluster in the Left Fusiform 

Gyrus bordering the Occipito-temporal Sulcus, and a cluster in the Right Posterior 

Fusiform Gyrus. For the auditory contrast, clusters in both the right and left Superior 

Temporal Sulcus (STS) were identified along with a cluster in the Left Anterior STS 

region. Additionally, clusters in the anterior cingulate and the right central sulcus were 

identified in the Alphanumeric Name contrast. These 8 clusters were then enlarged by 

5mm in all directions and converted in to each participant’s native space to demarcate 

functionally relevant VOIs. In addition, Retinotopic cortex was defined using meridian 

mapping. An overview of these VOIs consisting of voxels can be found on Table 6 and 

Figure 24.  

 

 

 Anatomical Label Peak  
X 

Peak  
Y 

Pea
k Z 

T(10) p # of 
voxels 

Visual 
(Letters + Digits) > 
Fixation Baseline 

Left Middle Occipital Gyrus -42 -73 -7 7.14 <0.00005 173 

Left Fusiform Gyrus -41 -63 -19 4.47 <0.005 20 

Right Fusiform Gyrus 31 -79 -16 8.31 <0.00001 130 

Auditory 
(Letters + Digits) > 

Ripple 

Left Superior Temporal Sulcus -60 -25 4 5.61 p<0.0005 113 

Bilateral Anterior Cingulate 6 -7 58 6.71 p<0.0001 210 

Right Superior Temporal 
Sulcus 

49 1 2 8.18 p<0.0000
1 

221 

Table 5. Properties of the clusters that were expanded to become the VOIs. 
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VOI analysis: Visual oRSMs (Table 5) 

Multiple pRSMs were tested against oRSMs generated from correlating the 

activation patterns generated from visually presented letters and digits. Within the 

retinotopic cortex, the regression analysis—with all the visual pRSMs as regressors—

revealed that only the beta value of the Stimulus Shape pRSM was significant (β = 0.066; 

p<0.05). 

  # of 
voxels: 
average 

# of 
voxels: 

min 

# of 
voxels: 

max 

Center of mass 
(TAL: X, Y, Z) 

      

Retinotopic Cortex Bilateral Ventral V1-
V4 

1147 991 1251 (-2, -84, -12) 

      

Visual 
Alphanumeric 

VOIs 

Left Middle Occipital 
Gyrus (L. MOG) 

732 445 889 (-36, -82, -11) 

Left Fusiform Gyrus 330 218 376 (-46, -66, -19) 

Right Fusiform Gyrus 1244 1062 1313 (35, -66, -17) 

      

Auditory 
Alphanumeric 

Name VOIs 

Left Superior 
Temporal Sulcus 

794 662 862 (-57, -25, 2) 

Left Anterior 
Superior Temporal 

Sulcus 

338 253 402 (-50, 5, -4) 

Bilateral Cingulate 1310 1229 1396 (-2, -3, 45) 

Right Superior 
Temporal Sulcus 

1508 1259 1601 (50, -14, -1) 

Right Central Sulcus 697 632 736 (41, -20, 42) 

Table 6. Properties of the VOIs used to generate the oRSMs. For each VOI, the average number of 

functional (3x3x3mm) voxels across participants along with the range. Additionally the average center 

of mass for each VOI is reported. 
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Within Visual Alphanumeric VOIs defined by brain regions more active for 

visual letters and digits than a fixation baseline, the regression analysis revealed that only 

the Allograph pRSM was significant in the left MOG and the left fusiform (β = 0.149, 

p<0.05; β = 0.124, p<0.05 respectively). 

The last set of VOIs was defined as regions that were sensitive to aurally 

presented letter and digit names compared to a Ripple noise. In the context of other 

pRSMs in a regression analysis, the beta value of the Stimulus Shape pRSM was 

significant in the left STS (β = 0.061, p<0.05). Additionally, the Letter Identity pRSM 

was significant in the bilateral cingulate VOI (β = 0.077; p<0.05). Finally, the regression 

revealed the Motor Feature Overlap pRSM to be significant in the right central sulcus (β 

= 0.049, p<0.05).               

 

 

Figure 24. Image depicting the neurotopgraphy of the VOIs. Both red and yellow indicate VOIs that 

were responsive to visually presented letters and digits. Both light and dark blue VOIs indicate 

Auditory Alphanumeric Name VOIs. The different colors allow the cluster boundaries to be visible 

when the two clusters are touching. For the same reason, both red and yellow VOIs indicate Visual 

Alphanumeric VOIs.   
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  Visual oRSMs  

  Regression model statistics β weights 

  R² F(285, 5) p Stimulu
s Shape 

Allograp
h 

Letter 
Identity 

Motor 
Feature 
Overlap 

Phonetic 
Feature 
Overlap 

 

Retinotopic 
Cortex 

Bilateral 
Ventral V1-V4 

0.042 3.573 0.004 0.066* 0.09 -0.028 -0.042 0.039  

           

Visual 
Alphanumeric 

VOIs 

Left Middle 
Occipital 
Gyrus (L. 

MOG) 

0.036 3.157 0.009 -0.021 0.149* -0.091 -0.002 0.032  

Left Fusiform 
Gyrus 

0.035 3.115 0.009 -0.004 0.124* -0.048 0.009 0.017  

Right Fusiform 
Gyrus 

0.007 1.429 0.214 0.01 0.042 -0.004 0.021 0.019  

          

Auditory 
Alphanumeric 

Name VOIs 

Left Superior 
Temporal 

Sulcus 

0.006 1.357 0.24 0.061* -0.063 0.059 0.009 0.017  

Left Anterior 
Superior 
Temporal 

Sulcus 

-0.004 0.78 0.565 0.008 0.037 -0.03 0.028 0.034  

Bilateral 
Cingulate 

0.016 1.967 0.084 0.015 -0.055 0.077* -0.001 0.012  

Right Superior 
Temporal 

Sulcus 

-0.003 0.854 0.513 0.011 0.007 0.008 0.01 0.033  

Right Central 
Sulcus 

0.001 1.048 0.39 0.002 -0.038 0.046 0.049* -0.007  

 

Auditory oRSMs 

Auditory oRSMs were generated from correlating the activation patterns in 

response to aurally presented letter and digit names. None of the beta values from the 

regression analyses in which all the auditory pRSMs served as regressors for the auditory 

oRSM were significant. Within Alphanumeric VOIs, the β coefficient for the Lowercase 

Motoric Feature pRSM in the regression analysis in the left fusiform was significant (β = 

0.1, p<0.05).  

From the Auditory Alphanumeric Name VOIs, the regression analysis revealed 

that the L. STS had significant beta values for the Phonetic pRSM (β = 0.214, p<0.001), 

Table 7. Results from the regression analyses for the oRSMs derived from visually presented letters and 

digits. Reported values are correlation r values. * indicates p<0.05 and ** indicates p<0.001. 
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the Uppercase Visual pRSM (β = 0.185, p<0.05), as well as the Lowercase Motoric 

pRSM (β = 0.146, p<0.05). The anterior left STS VOI was only significant for the 

Lowercase Motoric pRSM (β = 0.232, p<0.001). In the bilateral cingulate, the Lowercase 

Visual pRSM was significant in the regression analysis (β = 0.112, p<0.05). The right 

STS VOI had significant beta values for the Uppercase Visual Similarity pRSM (β = 

0.169, p<0.05) and the Lowercase Motoric pRSM (β = 0.126, p<0.05).  Finally the 

central sulcus VOI had significant beta values for the Lowercase Motoric Similarity 

pRSM (β = 0.095, p<0.05). 

 

  
Auditory oRSMs 

  
Regression model statistics β weights 

  
R² F(59,6) p 

Phonetic 
Feature 
Overlap 

Letter 
Name 

Similarity 

Visual 
Similarity: 
Uppercase 

Visual 
Similarity 

Lowercase 

Motor 
Similarity 

Uppercase 

Motor 
Similarity 

Lowercase 

Retinotopic 
Cortex 

Bilateral 
Ventral 
V1-V4 

0.065 1.756 0.124 0.041 -0.001 -0.008 0.076 -0.022 0.066 

           

Visual 
Alphanumeric 

VOIs 

Left 
Middle 

Occipital 
Gyrus (L. 

MOG) 

-0.01 0.865 0.526 -0.019 0.009 0.033 0 0.019 0.057 

Left 
Fusiform 

Gyrus 
0.028 1.313 0.266 0.047 -0.011 0.056 -0.045 -0.008 0.1* 

Right 
Fusiform 

Gyrus 
-0.03 0.686 0.662 -0.007 -0.013 0.017 0.023 -0.003 0.019 

          

Auditory 
Alphanume

ric Name 
VOIs 

Left Superior 
Temporal 

Sulcus 
0.412 8.584 <0.001 0.214** 0.018 0.185* 0.012 -0.109 0.146* 

Left Anterior 
Superior 
Temporal 

Sulcus 

0.296 5.559 <0.001 -0.022 -0.003 0.12 0.071 -0.055 0.232** 

Bilateral 
Cingulate 

0.301 5.674 <0.001 0.018 0.028 0.042 0.112* -0.029 0.044 

Right 
Superior 
Temporal 

Sulcus 

0.242 4.465 0.001 0.096 0.029 0.169* -0.02 -0.014 0.126* 

Right Central 
Sulcus 

0.115 2.414 0.037 -0.093 -0.031 0.001 -0.043 -0.012 0.095* 

 

Table 8. Results from the regression analysis for the oRSMs derived from aurally presented letter and 

digit names. Reported values are correlation r values. * indicates p<0.05 and ** indicates p<0.001. 
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Cross-modal oRSMs 

Cross-modal oRSMs were generated by correlating the activation patterns in 

response to aurally presented letter names with the patterns in response to seen letters. 

Cross-modal oRSM-pRSM regression analyses tested if the representational content at a 

particular VOI was the same regardless of the sensory modality of the stimulus. 

Regression analyses revealed the Retinotopic and the left fusiform VOIs to be significant 

for Identity (β = 0.058; p<0.05) and (β = 0.058; p<0.05) respectively. Additionally, the 

left anterior STS was significant for Lowercase Visual Similarity (β = 0.058; p<0.05).  

 

  
Cross-modal oRSMs 

  
Regression model statistics β weights 

 
 

R² 
F(341,

6) 
p Identity 

Phonetic 

Feature 

Overlap 

Visual 

Similarity: 

Uppercase 

Visual 

Similarity 

Lowercase 

Motor 

Similarity 

Uppercase 

Motor 

Similarity 

Lowercase 

Retinotopic 

Cortex 

Bilateral 

Ventral V1-

V4 

0.027 2.608 0.017 0.058* -0.062 -0.059 0.018 -0.044 0.017 

           

Visual 

Alphnumeric 

VOIs 

Left Middle 

Occipital 

Gyrus (L. 

MOG) 

0.009 1.517 0.171 0.029 -0.03 -0.035 -0.009 -0.026 0.028 

Left 

Fusiform 

Gyrus 

-0.001 0.921 0.48 0.058* -0.018 -0.032 0.004 -0.026 -0.01 

Right 

Fusiform 

Gyrus 

-0.005 0.705 0.646 -0.002 -0.012 -0.001 0.013 -0.022 0.017 

          

Auditory 

Alphanume

ric Name 

VOIs 

Left Superior 

Temporal 

Sulcus 

-0.009 0.495 0.812 0.003 0.027 -0.007 0.016 -0.01 -0.001 

Left Anterior 

Superior 

Temporal 

Sulcus 

0.017 2.019 0.063 0.019 -0.007 0.016 0.058* -0.072 -0.006 

Bilateral 

Cingulate 
-0.004 0.76 0.602 -0.021 -0.007 0.03 0.018 0.012 0.004 

Right 

Superior 

Temporal 

Sulcus 

-0.01 0.405 0.876 -0.01 0 0.016 -0.021 0.01 0.011 

Right Central 

Sulcus 
0.008 1.483 0.183 0.001 0.007 -0.03 -0.036 0.011 0.008 

Table 9. Results from the regression analysis for the oRSMs derived from the activation patterns in 

response to aurally presented letter and digit names correlated with the activation patterns in response 

to visually presented letters and digits. Reported values are correlation r values. * indicates p<0.05 and 

** indicates p<0.001. 
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ALI VOI Analysis
16

  

 A regression searchlight was run in order to identify voxels that selectively 

represent ALIs. The group ALI t-map was thresholded at an uncorrected voxelwise 

threshold of p<0.10 (identical to Rothlein and Rapp, 2014). This revealed an insignificant 

cluster largely overlapping with the regression ALI searchlight cluster reported in 

Rothlein and Rapp (2014) (Figure 25 in orange; peak voxel TAL: -32, -59, -13.) The 

cluster from the present experiment was 89 voxels with a peak at TAL: -29, -67, -7 (t(10) 

=6.5). This peak voxel was significant after applying an FDR familywise correction for 

multiple comparisons of q <0.05 (depicted as yellow voxels in Figure 25).  

 

                                                            
16 An additional, more precise, replication of Rothlein and Rapp (2014) was performed. Like Rothlein and 

Rapp (2014), the stimulus activation values consisted of beta-weights instead of t-values generated from the 

beta values. Additionally, like Rothlein and Rapp (2014) the activation values were mean normalized so 

that at each voxel the mean beta value computed over all the alphanumeric stimuli in that voxel is 

subtracted from each voxel to ensure that every mean-normalized voxel has a mean of 0. Of the four 

pRSMs tested—ALI, Visual Similarity, Letter Name Similarity, and Motoric Similarity—only the ALI 

pRSM had a significant cluster  after applying an uncorrected voxelwise threshold of p<0.10 and a 

clustersize corrected threshold of p<0.05. This cluster consisted of 505 voxels with a center of gravity at 

TAL: -12, -76, -13. The statistical peak voxel of this cluster was located at TAL: -26, -65, -6 (t(10) = 5.87) 

which was quite close to the peak of the ALI cluster reported in Rothlein and Rapp (TAL: -32, -59, -13). 
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This ALI cluster was used as a VOI to generate a Cross-modal oRSM which was 

tested with the cross-modal regression analysis. This revealed a significant model with an 

Adjusted R
2
 = 0.021 (f(341, 6) = 2.22, p<0.05). Importantly, the identity pRSM was 

marginally significant (β = 0.061, p=0.057). The β coefficients for the other pRSMs are 

displayed in Figure 25 although none approached significance. 

 

 

Figure 25. (a) Results from searchlight analysis replicating the Rothlein and Rapp (2014) ALI 

cluster using the regression searchlight analysis. The orange voxels indicate the voxels from the 

significant ALI cluster reported in Rothlein and Rapp (2014). The blue voxels indicate the ALI 

VOI identified in the present experiment. The yellow voxels indicate the FDR corrected (q<0.05) 

significant voxels from the ALI VOI. (b) The β coefficients for each of the cross-modal pRSM 

regressors in a regression analysis predicting the cross-modal oRSM derived from the ALI 

searchlight cluster (light blue in (a)). Evidence for amodal letter identity representations comes 

from the marginally significant (p = 0.057) cross-modal identity pRSM.   
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5.3 Discussion 

 This chapter set out to investigate the relationship between ALI representations 

and stimulus modality—specifically, whether case-invariant ALI representations are 

amodal as well. Amodal means that the same ALI representation was accessed regardless 

of whether the letter stimulus was presented visually or aurally. More broadly, we set out 

to investigate how the input modality of the letter stimulus interacts with every type of 

letter representation. 

5.3.1 Expected modality-specific results 

 Expected modality specific results consist of instances where the modality-

specific representational content is aligned with both the cortical modality as well as the 

input modality. In Chapter 4, we found that the activation patterns in response to visually 

presented letters in the visual cortical region bilateral retinotopic cortex (ventral V1-V4), 

were sensitive and selective to the Visual pRSMs (stimulus shape and allograph). This 

result is consistent with countless studies that have used RSA with visually presented 

stimuli to uncover visuospatial representations in low-level visual cortex (Connolly et al., 

2012; Kriegeskorte et al., 2008; Mur et al., 2013; Op de Beeck et al., 2008).  

Within the Auditory Alphanumeric Name VOIs, the Auditory oRSMs derived 

from aurally presented letter names were sensitive to pRSMs representing 

auditory/articulatory content—specifically, the Phonetic Overlap pRSM in the left STS. 

These results were expected served as confirmation that the pRSMs were capable of 

picking up on the representational content of the visual and aurally presented 

alphanumeric stimuli.    
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5.3.2 Cross-modal results 

 The results of this experiment have demonstrated that, even without instruction, 

presenting a letter or digit in one input modality can activate representations often 

associated with other modalities. For example, the activation pattern for visually 

presented letters in left STS reflected letter name similarity and not visual similarity. This 

suggests that the neural from the visual input modality goes on to activate phonological 

letter name representations in left STS. This is consistent with the finding from Rothlein 

and Rapp (2014) that showed the left posterior STS was sensitive to letter name 

similarity. Additionally, the oRSMs formed from aurally presented letter names in 

retinotopic cortex were sensitive to visual pRSMs suggesting the representational content 

of the auditory signal activates visuospatial representations when travelling from left STS 

to retinotopic cortex. Interestingly and unexpectedly, many Auditory VOIs were sensitive 

to visual and motor representational content, even when the stimuli were aurally 

presented letter-names. To my knowledge this finding has little precedent and merits 

further investigation. These results could possibly be explained as feedback processes 

from visual and motoric cortical areas.  
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5.3.3 Amodal letter identity representations 

 I proposed that a brain area encodes amodal ALI representations if it meets two 

criteria. First, the brain area must represent abstract letter identities (and therefore 

abstract representational content); and second, these ALI representations must be 

multimodal (i.e., similar patterns of activation are produced for letters that share the same 

identity despite being presented in different modalities). For example, a brain area that 

encodes amodal ALIs would produce a similar pattern of activation a, A and /ei/ while 

the patterns for E and /di/ would be different.  

The experiment presented in this chapter sought out amodal ALIs within VOIs 

defined as either Retinotopic, responsive to Visual Alphanumeric stimuli, responsive to 

Auditory Alphanumeric Name stimuli, and selective to ALI representations.  Three VOIs 

 

Regression Analysis Representational Content 

  Visual Motor Auditory Identity 

Retinotopic Ventral V1-V4 V   CM 

Visual 
Cortex 

Left MOG V    

Left Fusiform V A  CM 

Right Fusiform     

Auditory 
Cortex 

Left STS V + A A A  

Left Ant. STS CM A   

Bilat. Cing. A   V 

Right STS A A   

Right Central Sulc.  V + A   

Figure 26. Summary of all the significant results from the regression analyses. The VOIs are divided 

by whether they were derived from retinotopic meridian mapping (green), univariate activation in 

response to visual letters and digits (red) and univariate activation in response to auditory letters and 

digits (blue). Each of these VOIs was tested with pRSMs which examine if the similarity structure of 

a particular VOI is consistent with that VOI encoding the representational content the pRSM was 

based on. Visual content included the pixel-overlap, rotated gridfont and typical font similarity 

judgments as well as either upper or lowercase visual similarity for auditory and cross-modal pRSMs. 

Within each cell, a V indicates that oRSM-pRSM beta value, derived from the visually presented 

letters and digits, was significant. The A indicated the same thing as the V except the oRSM and 

pRSM were based on the aurally presented letter and digit names instead. The CM indicates the 

oRSM and pRSM based on how similar the activations were between aurally and visually presented 

letters and digits. 
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were shown to respond similarly to alphanumeric stimuli that share the same identity 

across visually and auditory input modalities. Crucially, the ALI localizer VOI, which 

was selected in virtue of selectively representing the abstract letter identity of visually 

presented letters, was shown to represent ALIs amodally. The two other VOIs were the 

Bilateral Retinotopic VOI and the Visual Alphanumeric VOI in the left fusiform gyrus.  

Consistent with previous research, the left ventral temporal and occipital cortex 

appears to represent letter stimuli from different input modalities. This region has been 

shown to be active in response to braille reading (Büchel et al., 1998) and even auditory 

information that conveys shape information (Striem-Amit et al., 2012). The present 

findings suggest that this ventral occipital region may not only represent shape 

information multi-modally, but may represent ALI information multi-modally (amodal 

ALI representations).  

5.4 Conclusions 

 In the experiment described in this chapter, visually and aurally alphanumeric 

stimuli were presented to participants in an fMRI scanner to see the effect of different 

input modalities on the representational content of alphanumeric representations. Of 

particular interest was determining whether ALI representations (previously defined as 

case-invariant letter representations) were invariant to input modality as well. While 

previous research has found that neural signals evoked by auditory and visual stimuli that 

share the same identity are similar (Man et al., 2012), the representational content that 

drives this similarity has rarely been investigated (but see Fairhall & Caramazza, 2013). 

Results from this experiment found an ALI cluster within the left medial ventral visual 
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cortex that represented ALIs amodally. The finding from this cortical region supports the 

notion that ALI representations are amodal as well, acting as an intermediary between the 

various modality specific representations. 
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Chapter 6 – Summary and conclusions 

The research in this dissertation used novel behavioral experimental tasks and 

integrated them with fMRI data in order to further examine the set of representations that 

are involved in letter identification and processing. Additionally, fMRI studies helped to 

lay out the neurotopography of these representations. Two of the most important 

contributions were novel behavioral and neuroimaging evidence for font-invariant 

allograph representations and neuroimaging evidence for amodal as well as case-invariant 

ALI representations.  

The behavioral experiments examined visual similarity judgments as well as RTs 

and errors from a same-different decision task with visually presented pairs of letters. 

These experiments took advantage of the fact that both the visual similarity judgments 

and same-different decision RTs and errors were influenced by multiple types of letter 

representations above and beyond font-specific computed stimulus shape representations. 

By using a difficult-to-recognize rotated gridfont stimuli as a baseline, I found that when 

participants judged the visual similarity of identifiable upright gridfont stimuli (or made 

physical same-different decisions about them), their responses were biased towards the 

similarity structure of stored, font-invariant allographs (estimated by the visual similarity 

of a more typical font) as well as by abstract letter identity, case similarity and motor 

production feature similarity. This was interpreted as providing evidence that these stored 

letter representations were accessed in behavioral tasks that did not require them for 

accurate performance. While evidence for ALIs has previously come from multiple 

methodologies, evidence for stored allographs has been largely limited to cognitive 

neuropsychological case studies of individuals with developmental or acquired dyslexia 
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(Brunsdon et al., 2006; Schubert & McCloskey, 2014). Therefore, demonstrating the 

influence of stored allograph representations in behavioral measures with neurotypical 

individuals provided a novel source of evidence for allograph representations (see also 

Walker & Hinkley, 2003).    

In addition to the behavioral evidence, neural evidence of stored allographs was 

obtained by presenting the upright gridfont in an fMRI scanner and computing the pair-

wise similarity of the multi-voxel activation patterns triggered by each gridfont 

letter/digit stimulus. By examining the neural/observed representational similarity 

structures derived from retinotopically defined cortical regions as well as regions that 

were generally responsive to alphanumeric stimuli, I found that the retinotopic regions, 

particularly in the right hemisphere, were selective to the font-specific computed stimulus 

shape similarity (as estimated by the similarity judgments of the rotated gridfont) while 

the left Alphanumeric VOIs were selective to the font-invariant allograph representations 

(estimated by the similarity judgments to the typical letter font). This finding both 

provides a novel source of evidence for allograph representations and identifies the neural 

substrates of allograph representations and, in doing so, furthers our understanding of 

how letters and words are processed in the brain. 

A final experiment set out to expand upon the work by Rothlein and Rapp (2014) 

concerning the identification of neural substrates that selectively encode ALI 

representations. Specifically the question addressed was: In addition to abstracting away 

from visual form entirely, do ALI representation also abstract away from input modality 

as well? (Are ALI representations amodal?) This question was investigated by examining 

if visually and aurally presented alphanumeric stimuli that share the same identity 
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activate the same identity representation. By identifying voxels involved in ALI 

representation (replicating the findings from Rothlein and Rapp, 2014) and comparing the 

multi-voxel pattern of visually and aurally presented stimuli within the ALI cluster, I 

found evidence that ALI representations identified in that posterior left fusiform cluster 

were also amodal. 

While elucidating the representations that mediate letter identification and 

multimodal letter processing is an important endeavor, the methods and experimental 

logic described in this experiment can be applied to domains beyond letter and word 

processing. For example, I presented evidence for allograph representations by 

demonstrating that the similarity of atypical exemplars is influenced by the visual 

similarity of typical exemplars. Do other categories of objects like chairs or birds have 

allograph-like stored shapes representations as well? Could their neural substrates be 

identified by presenting a set of atypical stimuli (e.g., chairs, birds, cars) to participants in 

an fMRI scanner and, applying RSA analyses, see if there are regions where the 

similarity structure of neural responses to these atypical stimuli reflects of the visual 

similarity of the typical versions of the presented stimuli? Using RSA to localizing stored 

shape information would allow researchers to analyze neural responses in these regions to 

learn more about the content and format of these stored shape representations.   

Within the domain of letter processing, while the experiment in Ch. 5 explored 

the neural responses to letters presented across different input modalities, comparing the 

representation in identification vs. production would be very interesting. Are the 

allograph representations that mediate recognition also involved in motoric letter 

production? Are the phonological letter name representations that mediate auditory letter 
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recognition also involved in letter naming tasks? Exploring this efferent/afferent 

relationship by examining the representational content of activation patterns involved in 

these tasks could provide a new source of evidence in understanding the relationship 

between sensory and motor representations.  

In sum, the findings in the set of experiments described in this dissertation support 

the cognitive architecture of letter and word processes presented in Figure 2. Specifically, 

this model posits increasingly abstract representations that serve as a conduit between 

modality specific representations and lexical / orthographic processing. This 

abstractionist account is inconsistent with grounded / episodic views of cognition that 

posit cognitive tasks like reading do not use abstract representations  (Barsalou, 2010; 

Tulving, 1985). Our results demonstrate a clear progression from sensory representations 

that encode font-specific information to spatial representations that encode font-invariant 

stored shape information (allographs) to amodal identity representations that encode 

abstract identity regardless of the input modality.  
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APPENDIX 

 

 

 

 

 

Appendix Figure 1. A sample of the Pixel-overlap pRSM for 15 of the 29 

alphanumeric stimuli. Blacked-out cells were not included in the analysis. 

 

Appendix Figure 2. A sample of the Stimulus Shape Similarity pRSM for 15 of the 

29 alphanumeric stimuli. Blacked-out cells were not included in the analysis. The 

values in this pRSM are standardized z-scores. 
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Appendix Figure 3. A sample of the Allograph Similarity pRSM for 15 of the 29 

alphanumeric stimuli. Blacked-out cells were not included in the analysis. The 

values in this pRSM are standardized z-scores. 

 

Appendix Figure 4. A sample of the Abstract Letter Identity pRSM for 15 of the 29 

alphanumeric stimuli. Blacked-out cells were not included in the analysis. 
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Appendix Figure 5. A sample of the Case pRSM for 15 of the 29 alphanumeric 

stimuli. Blacked-out cells were not included in the analysis. 

 

Appendix Figure 6. A sample of the Consonant/Vowel pRSM for 15 of the 29 

alphanumeric stimuli. Blacked-out cells were not included in the analysis. 
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Appendix Figure 7. A sample of the Motor Feature Overlap pRSM for 15 of the 29 

alphanumeric stimuli. Blacked-out cells were not included in the analysis. 

 

Appendix Figure 8. A sample of the Letter Name Confusability pRSM for 15 of the 

29 alphanumeric stimuli. Blacked-out cells were not included in the analysis. 
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Appendix Figure 9. A sample of the Phonetic Feature Overlap pRSM for 15 of the 

29 alphanumeric stimuli. This pRSM was used in the Sensitivity and Correlation 

Analyses. Blacked-out cells were not included in the analysis. 

 

Appendix Figure 10. A sample of the Phonetic Feature Overlap pRSM for 15 of the 

29 alphanumeric stimuli. This pRSM was used in the Selectivity and Regression 

Analyses. Blacked-out cells were not included in the analysis. 
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Appendix Figure 11. The image on the left depicts a sample of the Cross-modal 

Letter Identity pRSM. The image on the right depicts the Cross-modal Phonetic 

Feature Overlap pRSM for 15visual letter shapes and 4 letter names. 

 

Appendix Figure 12. The image on the left depicts a sample of the Cross-modal 

pRSM for Visually Similarity assuming the letter names activate uppercase letters. 

The image on the right is the same but assuming the names activate lowercase 

letters. The values in each pRSM are standardized z-scores. 
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Appendix Figure 13. The image on the left depicts a sample of the Cross-modal 

pRSM for Motor Feature Overlap assuming the letter names activate uppercase 

letters. The image on the right is the same but assuming the names activate 

lowercase letters. 

\ 

 

Appendix Figure 14. The image on the left depicts a sample of the Auditory pRSM 

for Phonetic Feature Overlap. The image on the right depicts a sample of the 

Auditory pRSM for Letter Name Confusability.   
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Appendix Figure 15. The image on the left depicts a sample of the Auditory pRSM 

for Visually Similarity assuming the letter names activate uppercase letters. The 

image on the right is the same but assuming the names activate lowercase letters. 

The values in each pRSM are standardized z-scores. 

 

 

 

 

 

 

 

 

Appendix Figure 16. The image on the left depicts a sample of the Auditory pRSM 

for Motor Feature Overlap assuming the letter names activate uppercase letters. The 

image on the right is the same but assuming the names activate lowercase letters. 

 

 

 

 

 

 

 

 
Appendix Figure 17. The similarity matrix formed by cross correlating all of the 

pRSMs from the sensitivity analysis in Experiment 4.  
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