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Abstract 

 

Biological noise is generally defined as the non-genetic variability that arises in 

populations.  For instance, identical twins, although very similar in appearance, will 

commonly display slightly different phenotypes.  Likewise, daughter cells sharing the 

same genetic material may differentiate along divergent paths.  In the past decade, there 

have been considerable advances in understanding the genetic mechanisms underpinning 

this variability; however, there still remain unanswered questions surrounding how 

signaling networks contribute to biological noise and how this noise sets limitations on 

intracellular information transmission.  In the first half of this thesis, we demonstrate that 

a linear relationship between signal transduction responses allows one to quantify and 

map the propagation of noise along different parts of a signaling network, even if the 

network is complex and partially defined.  We discover that the JNK pathway generates 

higher noise than the NF-κB pathway while the activation of c-Jun adds a greater amount 

of noise than the activation of ATF-2.  In addition, by analyzing the negative feedback 

mechanisms mediated by the protein A20, we find that A20 can suppress noise in the 

activation of ATF-2 by separately inhibiting the tumor necrosis factor (TNF) receptor 

complex and JNK pathway.  In the second half of this thesis, we will describe an 

integrative theoretical and experimental framework, based on the formalism of 

information theory, to quantitatively predict and measure the amount of 

information transduced by molecular and cellular networks. Analyzing TNF 

signaling, we find that individual TNF signaling pathways transduce information 

only sufficient for accurate binary decisions, and an upstream bottleneck limits the 
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information gained via multiple integrated pathways.  In this dissertation, we 

demonstrate that the application of engineering concepts proves to be of great 

utility in uncovering novel characteristics of biological noise.  We anticipate that 

these contributions will help move biology closer towards a more predictable and 

rule‐based engineering discipline allowing us to design de novo biological solutions 

to pressing issues. 
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Chapter 1.  Introduction and background 

1.1  Biological noise 

 

What makes a biological organism unique?  Typically, genetic material will 

account for the majority of differences present in two unrelated individuals.  However, 

organisms that have identical origins, such as clones or identical twins, will necessarily 

share the same genetic material but may still exhibit significant differences in 

phenotype1.  Therefore, there exist non-genetic factors that contribute significantly to 

biological diversity, commonly known as biological noise.  To understand the origins of 

this variability, it is helpful to re-assess some of our intuitions of the world.   

We often think of the physical laws of our day-to-day lives as being foreseeable 

and deterministic.  A clock's pendulum will swing with a predictable cadence, or gravity's 

pull on an apple will allow us to anticipate its trajectory.  However, nature at the 

microscopic level is subject to an entirely different set of non-deterministic phenomena.  

At this scale, Brownian motion and molecular vibrations instead of Newtonian physics 

are the predominant forces governing the behavior of small molecules.  Typically, most 

intracellular molecules exist in sufficient abundance such that these stochastic properties 

are masked; the behavior of molecules in large quantities can be predicted by known 

chemical kinetics.  However, since cells often have very limited quantities of certain 

critical molecules, stochastic behavior will predominate under these circumstances. 
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For example, genes that are present as one or few copies per cell will often lead to 

stochastic transcription factor binding and unbinding events that lead to a series of 

subsequent repercussions that may influence cellular decision making.   In the following 

sections, we will detail how cellular noise has been characterized in the past decade and 

the phenotypic consequences  

 

1.2  Sources of Biological Noise 

 

Evidence of cell-to-cell variability is not new.  Over half a century ago, 

researchers reported that the production of beta-galactosidase in individual Escherichia 

coli cells exhibited an “all-or-none” phenomenon, either fully induced or not expressed at 

all2.  In the following decades, there were additional breakthroughs in the mathematical 

modeling of stochastic chemical kinetics3-8
.  However, further investigations into 

biological noise were halted by a lack of available technology with single cell resolution. 

More recently, an explosion of interest in the field was ignited after Elowitz et al. 

pioneered the equivalent dual-reporter method of gene expression in Escherichia coli9,10. 

This method involves the simultaneous expression of two distinguishable fluorescent 

reporter proteins in individual cells under statistically equivalent conditions (e.g. identical 

promoters, equivalent integration sites, etc.)9-11.  The observed difference between 

reporter expression within a cell is thought to result from stochastic chemical kinetics that 

randomly and independently affect both reporters, and is referred to as intrinsic noise.  

The remaining reporter variability originates from the factors that simultaneously affect 

both reporters equally within an individual cell but vary from cell to cell, and is referred 
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to as extrinsic noise.  The extrinsic factors can include the expression levels of RNA 

polymerase, ribosome number, cell size, or cell cycle stage, all thought to affect the 

reporters in a similar manner within a cell. 

 

 

Figure 1.1: Dual reporter method for noise decomposition.  (A) Schematic of the equivalent dual reporter 
method.  Two genes that encode for two distinguishable and statistically equivalent fluorescent reporters (ࢄ 
and ࢅ) can conceptually be reformulated as a 4-node branch motif.  ࡿ can represent the cellular genetic 
background, ࡸ can represent the overall activity of the gene expression machinery in a given cell, and ࢄ 
and ࢅ can represent the expression levels of the reporters.  Thus, extrinsic noise is introduced in the 
segment ࡿ ՜  intrinsic noise is ,ࡸ and intrinsic noise is introduced in the segments downstream of ,ࡸ
acquired.  (B) Simulated results for the reporters given in A.  Each point corresponds to the expression level 
of the preorters in a single cell. Extrinsic noise causes points to spread out along the diagonal ࢅ ൌ  while ࢄ
intrinsic noise causes the points to spread out in the direction orthogonal to this line. 

 

Because the two reporters are equivalent, the dissimilarity between the expression 

of the reporters in a given cell can be ascribed to stochasticity or intrinsic noise.  As a 

result, the variance of this difference can further be shown to be proportional to the 

intrinsic noise (see section 2.2.1).  For these reasons, we can understand why extrinsic 

noise is typically depicted to be in the direction of the line ܻ ൌ ܺ, and the intrinsic noise 

is orthogonal to this line (Fig. 1.1B).  In the following sections, we will detail recent 

studies characterizing these two classes of noise. 
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1.2.1  Intrinsic Noise 

 

An early theoretical model of the intrinsic noise of a single gene suggested that 

intrinsic noise originated from low transcription and high translation rates12.  Few mRNA 

molecules would be created in a single cell, but each transcript would be directly 

responsible for large bursts of protein.  Over long periods of time, this behavior would be 

predicted to cause significant cell-to-cell variability.  To investigate this hypothesis, 

Ozbudak et al. sought to characterize the dependence of noise strength, as represented by 

the fano factor 
ఙమ

ఓ
, on transcriptional and translational activity by creating a prokaryotic 

model with a chromosomally incorporated GFP reporter gene13.  The transcriptional and 

translational rates were independently varied by increasing the activity of an inducible 

promoter upstream of the reporter gene and introducing point mutations in the mRNA 

ribosomal binding sites respectively.  They found that the noise strength was largely 

independent of the rate of transcription but strongly dependent on the rate of translation, 

which provided confirmation that translational efficiency was the primary driving 

mechanism behind intrinsic noise.   

 Subsequent studies found additional evidence to validate this hypothesis.  

Normally, there is considerable difficulty in imaging protein production at the single 

molecule level.  However, Yu et al. engineered a YFP molecule to localize at the 

membrane of E. coli cells where it could be detected with single molecule resolution14.  

They found that protein production occurs in bursts, each burst originating from a 

stochastically produced mRNA molecule.  Similar results were found in a separate set of 



5 

 

experiments by Cai et al. who found single cell bursts of beta-galactosidase by E. coli 

cells15.   

In contrast with prokaryotic cells, intrinsic noise in eukaryotic cells was found to 

have a stronger dependence on stochastic transcriptional events.  Blake et al., in a similar 

experiment to that undertaken by Ozbudak et al., constructed a genetic network within 

isogenic yeast cells that was under the control of both native and artificial transcriptional 

regulation16.  By manipulating the induction of the promoters and swapping codon 

variants, they were able to determine that transcriptional activity contributed significantly 

more than translational activity to cell-to-cell variability in yeast cells.  Direct evidence of 

this transcriptional dependence in eukaryotes was finally found after Chubb et al. were 

able to visualize transcriptional bursting in Dictyostelium discoideum with the use of the 

ms2 mRNA reporter system17.  One hypothesis for the eukaryotic noise dependence on 

transcriptional activity was chromatin remodeling.  Normally inaccessible to transcription 

factors, DNA condensed around histones would become available to transcriptional 

machinery only after nucleosome architecture was altered to expose regions of DNA.  

Indirect evidence for this hypothesis was provided by Raser et al11.  They identified that 

gene expression noise is promoter specific in yeast cells and that some promoters are well 

described by a stable promoter state with infrequent transitions.  This behavior matches 

well with a model where the promoter is activated and deactivated by slow chromatin 

remodeling kinetics. 

 In higher eukaryotic systems, evidence was found of similar behavior.  Raj et al. 

demonstrated that mammalian cells have considerable cell-to-cell variability in both 

reporter and native gene transcripts, well described by a model with random gene 
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activation/inactivation events.  They also found that genes that were proximally co-

located displayed correlated bursting behavior, whereas distal genes did not18.  Although 

there is still some controversy over this phenomenon19, such behavior would be 

anticipated if cellular transcription machinery had only localized DNA access, fitting well 

with a chromatin remodeling theory.  Notably, they found that randomness generated by 

biomolecular fluctuations played an insignificant role in transcriptional noise.   

 Overall, the above experimental findings have shed considerable insight into the 

nature of biological noise that originates from short-term stochastic fluctuations of 

critical molecules.  In the following section, we will outline current knowledge of the 

sources of extrinsic noise. 

 

1.2.2  Extrinsic Noise 

 

 Although much progress has been made in understanding the nature of intrinsic 

noise, the origins and impact of extrinsic noise are less clearly understood.  One problem 

characterizing extrinsic noise is that by definition, any factor that causes two molecules to 

covary can be ascribed to extrinsic noise.  Depending on how the system is defined, 

extrinsic noise can be defined to encompass pathway specific noise or cell-wide factors 

such as translation efficiency.  Thus, the scope of the interpretation is broad and ill-

framed, unlike intrinsic noise.  Yet despite this limitation, several groups have 

characterized the contributions of cell size11,19,20, cell cycle stage21 , chromosomal 

location22, and environmental microfluctuations23,24 to cell-cell variability. 
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Another major hypothesized source of extrinsic noise is the variable cell-to-cell 

concentration of gene expression machinery (metabolites, ribosomes, polymerases)9,10.  

The stochastic production of such essential proteins would likely contribute to the 

observed heterogeneous population-level distribution, but others have suggested that 

another factor, the random asymmetric partitioning by means of cell division, could play 

a significant role.  Researchers have hypothesized that during cell division, the mother 

cell will partition its cell materials according to a random binomial distribution resulting 

in an uneven allocation of cell materials within the daughter cells25-27.  Thus, a single 

founding cell, over many cell divisions, would generate a population of cells with an 

uneven distribution of gene expression machinery.  A later experimental study by 

Rosenfeld et al. sought to experimentally assess this theory by examining how a series of 

cellular divisions affected the dilution of fluorescent proteins in E. coli21.  They 

confirmed that partitioning of the fluorescent proteins followed a binomial distribution 

and found that although autocorrelations for intrinsic noise decayed rapidly, 

autocorrelations for total noise lasted approximately one cell cycle.  In higher eukaryotes, 

Sigal et al. reported a longer cellular partition memory28.  By tagging many proteins with 

YFP, they were able to demonstrate that human cells had a persistent memory of several 

cell cycles of any initial unequal distribution of proteins.  Consequently, it would require 

several generations for a high expressing cell to become a low expressing cell 
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1.3  Consequences of biological noise 

  

At first glance, biological noise appears to be a maladaptive trait.  The 

biochemical noise underpinning intracellular signaling invariably subjects cells to the 

forces of randomness; thus, handicapping their ability to make accurate decisions from 

environmental information21,29,30.  However, investigations in the past decade have shown 

that although noise could be considered deleterious at the single cell level, the 

heterogeneity may be beneficial at the population level.  For example, evidence has 

shown that biological noise is under positive selection pressure22, facilitates adaptive 

evolution31, and provides a mechanism for cellular diversity32.  Here in the following 

sections we describe specific consequences of biological noise in a variety of model 

organisms. 

  

1.3.1  Stochastic state switching 

    

 One population-level benefit of stochastic gene expression noise is that it can 

serve as an engine to increase phenotypic heterogeneity within a group of cells.  This 

diversity can increase the odds that at a fraction of the cells will persist in the face of 

negative selection pressure and replenish the population in the future.  An illustrative 

example of this behavior can be found in the transient bacterial state of competence.  In 

the competent state, from its immediate surroundings, an individual bacterial cell takes in 

DNA through its membrane and incorporates it into its genome through recombination.  
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However, only a random portion of the entire bacterial population will be in the 

competent state at any given time.  Clearly, this 'bet-hedging' strategy ensures that some 

fraction of bacteria will acquire beneficial or harmful DNA present in the local 

microenvironment.  If the DNA is deleterious, the damage is limited; only a fraction of 

the population will suffer.  Otherwise, if the DNA is beneficial, a fraction of the cells will 

benefit from this conferred fitness advantage increasing the odds that the population will 

continue to persist in the face of future selection pressures.  Therefore, although 

individual cells may occasionally fare poorly under this mechanism, the population will 

prosper as a whole.  Guel et al. studied this phenomenon in B. Subtilis33.  The genetic 

network underlying differentiation into the competent state has been well characterized to 

rely on the protein ComK, a key regulator that affects hundreds of genes33-36.  By 

monitoring genes that are critically involved in determining competence, Guel et al. 

found that small stochastic perturbations in ComK could quickly escalate allowing the 

cell to temporarily exit the stable vegetative state and transiently enter into competence.   

 Similar network mechanisms were found in mouse embryonic stem (ES) cells.  

The transcription factors Nanog and Oct4 are two of several transcription factors in ES 

cells that determine pluripotency.  Typically, ES cells exist in a stable non-pluripotent 

state; however, Kalmar et al. showed that stochastic fluctuations in the transcripts of both 

Nanog and Oct4 allow individual cells to excitably exit the stable state and transiently 

acquire pluripotency37.  This mechanism of transient state switching would permit a 

fraction of the cellular population to be continuously primed for differentiation, a tactic 

beneficial to the population in environmental situations that require rapid decision-

making and adaptation. 
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1.3.2  Heterogeneous cellular responses    

 

 As previously demonstrated, although biological noise can have a substantial 

impact on cellular decision making at short time scales, cellular decision making is also 

dependent on the state of thousands of proteins at any given time19,38-40.  These protein 

levels can vary significantly from cell-to-cell causing individual cells to exhibit 

heterogeneous behavior in response to uniform physiological stimuli30,41-44.  Spencer et 

al. examined this phenomenon by investigating how TNF-related apoptosis-inducing 

ligand (TRAIL), a potent initiator of apoptosis in human cells, initiated fractional cell 

death in a population of cells45.  By quantifying caspase activation, an early predictor of 

cell death, after exposure to TRAIL, they found that the time between TRAIL exposure 

and caspase activation was highly variable within a clonal population and could largely 

be ascribed to existing apoptotic protein concentrations prior to TRAIL exposure.  These 

protein states could be inherited but rapid protein synthesis would inevitably cause a 

rapid divergence in sister cells such that they would be no more alike than a pair of 

randomly selected cells.   

 A similar study was conducted by Cohen et al46.  In a tour-de-force undertaking, 

they created over 1200 human lung carcinoma cell lines, each with a unique protein 

tagged with YFP.  They then subjected these cells to a drug that caused DNA strand 

breaks, transcription inhibition, and ultimately cell death to determine how cell survival 

was dependent on protein concentrations.  They found that 20 to 30 hours after the 

addition of the drug, the protein dynamics of individual cells began to diverge 

dramatically.  Although most proteins displayed little to no change in abundance, the 
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cellular concentration of 24 proteins progressed to a bimodal distribution in a fashion that 

occasionally corresponded to cellular outcomes.  The concentrations of two proteins in 

particular, a RNA helicase and a DNA replication factor, were found to be highly 

correlated with cell fate: an upregulation correlated with cell survival while a 

downregulation was correlated with cell death.  Knocking down the RNA helicase with 

RNA interference accelerated cell death, suggesting a causal mechanism between protein 

concentration and cell fate.  Thus, they concluded that the survival of individual cells was 

dependent on the concentrations of specific proteins.   

 We have seen that biological noise can be directly responsible for cellular 

phenotypic heterogeneity through a variety of mechanisms: stochastic fluctuations in the 

transcriptional and translational machinery or the variable abundance of cellular proteins.  

In the following section, we will briefly describe the model pathway chosen for 

investigation. 
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1.4  The tumor necrosis factor signaling pathway 

 

Figure 1.2: The TNF signaling pathway. A schematic of the TNF signaling pathway. Briefly, TNF 
activates the TNF receptor which then activates both the NF-κB pathway and the JNK mediated pathway 
causing the nuclear translocation of NF-κB and the AP-1 family of transcription factors including c-Jun, 
and ATF-2.  The single cell nuclear concentrations of the transcription factors can then be quantified via 
immunofluorescence.  Taken from47 

 

The model intracellular signal transduction system in which we chose to 

investigate biological noise is the tumor necrosis factor (TNF) signaling pathway.  TNF 

was first noted for initiating apoptosis in tumor cells, and since then, it has been 

identified to play a critical role in a wide range of pathologies including sepsis, apoptosis, 

diabetes, cancer, and autoimmune diseases.  This pathway is well suited for 

investigations into cell-to-cell variability as it has been well-studied and is a model 

system for understanding heterogeneity in mammalian cells48-53.  Herein, we will briefly 
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describe the general mechanisms underpinning the activation of this pathway (Fig. 1.2).  

We refer the reader to published reviews for further detail54-56. 

Soluble TNF primarily signals through the TNFR1 receptor which then, upon 

activation, recruits several adapter proteins.  In the c-Jun N-terminal kinase (JNK) 

pathway, these activated adapter proteins will recruit and activate apoptosis-stimulated 

kinase 1 (ASK1), a mitogen-activated kinase kinase kinase (MAPKKK).  This enzyme 

will then initiate a cascade of kinases including JNK that will ultimately result in the 

activation of several downstream transcription factors including c-Jun and ATF-2.   

Highly regulated, NF-κB has been shown to play a pivotal role in many 

pathologies including inflammation57 and cancer58,59.  Thus, under normal conditions, 

NFκB is bound and sequestered in the cytoplasm by the three IκB isoforms (α,β,γ) 

preventing association with DNA in the nucleus.  In a pathway parallel to JNK, as part of 

the TNF receptor complex, active adapter proteins will recruit and activate IκB kinase 

(IKK) which will which then mark the isoforms of IκB for degradation allowing free NF-

κB to enter the nucleus and initiate transcription.  In the nucleus, NF-κB immediately 

upregulates the expression of a number of genes including two proteins that mediate 

negative feedback: IκBα and A20.  After IκBα is rapidly synthesized, it binds to and 

escorts NF-κB out of the nucleus completing a negative feedback loop while A20 

destabilizes the TNF receptor complex, hindering prolonged TNF signaling. 
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1.5  Aims and significance of this research 

  

The sections above have described how, in the past decade, innovation in 

experimental and mathematical methodologies have considerably advanced our 

knowledge of the fundamental characteristics of biological noise.  We have shown that 

there is a deep understanding of the stochastic mechanisms that cells employ at the 

molecular level to generate diversity and substantial knowledge on how differential cell-

to-cell protein abundance affects cellular behavior.  Yet despite these advances, there still 

remain outstanding questions on how biological noise propagates through cellular signal 

transduction networks and how this noise impedes cellular processing of environmental 

information.  To answer these two questions, we will organize this thesis along two major 

lines. 

 

Specific Aim 1 – Develop mathematical and experimental methodologies to 

decompose noise within intracellular signaling networks (Chapter 2). 

 

 We will first describe a novel mathematical and experimental framework 

developed as a natural extension of the equivalent dual reporter methodology pioneered 

by Elowitz et al.9.  We then use this framework to decompose the noise propagation in 

the TNF signaling pathway and establish that this method can easily scale to aid in the 

deconvolution of larger more complicated signaling networks.  Finally, we will 

demonstrate that this framework can be robust and yield useful and even predictive 

information in the presence of negative feedback loops. 
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Specific Aim 2 – Quantify the amount of information that can be maximally 

transmitted through the TNF signaling pathway and assess cellular mechanisms to 

increase information transmission (Chapter 3). 

 

 Utilizing principles grounded in information theory, we will develop a novel 

mathematical framework to quantify the total amount of information that can be passed 

through the TNF signaling pathway.  We will investigate how utilizing multiple branches 

can facilitate the transfer of additional information, and address, through the inclusion of 

multiple reporter branches, the effectiveness of time-averaging as a mechanism to 

average stochastic NF-κB fluctuations and increase information throughput. 
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Chapter 2:  Decomposing noise in the TNF 

Pathway 

2.1  Introduction 

 

The great advantage of the equivalent dual reporter method is the separation of 

intrinsic noise from extrinsic noise in an experimentally measurable way.  This method 

has been extended to analyze signaling networks; however, it requires simultaneous 

measurement of two reporters per signaling node of interest60 which can quickly become 

experimentally intractable as the size of the system increases. 

Expanding on the success of the equivalent dual reporter method, non-equivalent 

dual reporters have been utilized to great effect in characterizing sources of cell-to-cell 

variability.  For instance, by comparing a reporter for a signaling pathway of interest to a 

reporter of a constitutively expressed gene, one can separate pathway-specific from 

general gene expression noise61,62.  Alternatively, multiple reporters placed within a serial 

gene expression network can facilitate a comprehensive decomposition of the noise 

propagation23.  However, these methods utilize designed networks whose structure is 

known a priori, facilitating the construction of a specific mathematical framework that 

then enables such a thorough decomposition.  In addition, although equivalent and non-

equivalent reporter methods have proven to yield important scientific insights, both 

methods require reporter genes to be inserted into cells which can hamper efforts to 

rapidly assess biological noise in a variety of signaling networks.  Furthermore, both 
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reporter methods are limited to the analysis of biological noise at the gene expression 

level.  Thus, despite substantial advances in the characterization of genetic noise, we lack 

tools needed to understand noise in intracellular signaling.  

Here, we present a mathematical generalization of the equivalent dual reporter 

method that enables meaningful decomposition of signaling network noise using non-

equivalent dual reporters.  These reporters do not need to be genetically encoded, thus 

dramatically increasing the scope of systems that can be analyzed.  Using this framework, 

we were able to quantify the relative noisiness of both the downstream mitogen activated 

protein kinase (MAPK) and NF-κB signaling pathways.  We also show that this 

methodology can be used to identify previously unappreciated feedback mechanisms 

affecting both MAPK and NF-κB pathways.  Overall, this new methodology is revealing 

and experimentally facile to implement in a system where detailed knowledge of the 

relevant biochemical mechanisms is unavailable. 

 

2.2  Results 

2.2.1  Derivation of noise decomposition framework from equivalent 

reporter framework 

 

The method for noise decomposition proposed here can be understood as a 

generalization of the well-known extrinsic/intrinsic noise decomposition pioneered by 

Elowitz et al.9.  To demonstrate the relationship between the methods, we note that by 

conceptualizing the propagation of additive noise through the equivalent dual reporter 
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system, a 4-node branch motif naturally emerges (Fig. 1.1A).  The input node ܵ 

represents an external factor that modulates the activity of the entire motif.  The 

intermediate node ܮ represents the noisy intracellular representation of ܵ.  In turn, ܮ 

modulates the activity of ܺ and ܻ.  For an equivalent reporter system, ܵ can represent the 

cellular genetic background, ܮ can represent the overall activity of the gene expression 

machinery in a given cell, and ܺ and ܻ are the expression levels of the reporter genes.  In 

this case, extrinsic noise is introduced between ܵ and ܮ, and intrinsic noise is introduced 

downstream of ܮ.  The mathematical expressions defining total, extrinsic, and intrinsic 

noise given by Elowitz et al. are shown in non-normalized form in Eq. 2.2.1-3. 

 

௧௢௧ଶߪ  ൌ భ
మ
ሺܺۃଶ ൅ ܻଶۄ െ ሻۄܻۃۄܺۃ2 ൌ భ

మ
ሺݎܽݒሺܺሻ ൅  ሺܻሻሻ  (2.2.1)ݎܽݒ

௘௫௧ଶߪ  ൌ ۄܻܺۃ െ ۄܻۃۄܺۃ ൌ ,ሺܺݒ݋ܿ ܻሻ  (2.2.2) 

௜௡௧ߪ 
ଶ ൌ భ

మ
ሺܺۃ െ ܻሻଶۄ ൌ ௧௢௧ଶߪ െ ௘௫௧ଶߪ ൌ భ

మ
ሺܺݎܽݒ െ ܻሻ.  (2.2.3) 

 

As illustrated in Section 2.5.2, the total noise is identical to the average variance of the 

reporters (Eq. 2.2.1), a sensible result when the reporters are equivalent.   The collection 

of factors within a single cell that causes the two reporters to change in synchrony is 

defined as the extrinsic noise and is mathematically defined as the covariance between 

the reporters (Eq. 2.2.2), also a sensible result.  Thus, the remaining noise is the 

difference between the total and extrinsic noise and is defined as the intrinsic noise (Eq. 

2.2.3).  Because the two reporters are equivalent, the dissimilarity between the expression 

of the reporters in a given cell can be ascribed to stochasticity or intrinsic noise.  As a 

result, the variance of this difference can further be shown to be proportional to the 
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intrinsic noise (Eq. 2.5.9).  For these reasons, we can understand why extrinsic noise is 

typically depicted to be in the direction of the line ܻ ൌ ܺ, and the intrinsic noise is 

orthogonal to this line (Fig. 1.1B). 

In the more general case in which ܺ and ܻ are non-equivalent reporters, the 

assumptions supporting Eqs 2.2.1-3 are no longer valid, and the framework must be 

reformulated for the more general non-equivalent case.  We will demonstrate later on that 

the equations describing the equivalent reporter method are a special subset of our more 

general non-equivalent reporter framework.   

 

 

Figure 2.1:  Non-equivalent reporters for noise decomposition.  (A) A region of interest (ROI) for 
decomposition is selected from a larger complex intracellular signaling system.  The components within the 
ROI can then be further simplified to a 4-node motif comprised of a ligand, ࡿ, that binds to its native 
receptor which sends a signal to a signaling intermediary, the receptor complex ࡸ.   The signal from ࡿ then 
propagates down two parallel branches to the readouts ࢄ and ࢅ.  We denote the variability that causes 
coordinated fluctuations in the reporters ࢄ and ࢅ as the trunk noise while the noise uniquely contributed by 
each branch is termed the branch noise.  (B) Simulated results for individual cells expressing the readouts 
 given in panel A under 5 input levels as denoted by the distinct colors.  The means of the readout (ࢅ and ࢄ)
for each input level are indicated by the circles and fitted by regression to form a basis for decomposition.  
The observed variability in the ࢄ െ  plane is a function of both the trunk and branch noises.  The trunk ࢅ
noise adds noise along the basis, and hence each branch noise will add noise parallel to its corresponding 
axis while orthogonal to the other branch noise axis. 
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For non-equivalent reporters, ܵ can represent an external stimulus (e.g. ligand 

concentration), ܮ can represent a signaling intermediate, and ܺ and ܻ can represent non-

equivalent downstream signaling outputs (Fig. 2.1A).  In this case, we refer to trunk noise 

as the noise introduced upstream of ܮ and branch noise as the noise introduced by a 

specific branch downstream of ܮ.  The biochemical properties (e.g. molecule number 

variation, stochastic chemical kinetics, etc.) underlying the trunk and branch noise 

contributions will depend on the specific network being analyzed; thus, the magnitude of 

noise within the two branches may be unequal.  In the instance in which the trunk and 

branch noise are independent, additive, have zero mean, and ܺ and ܻ are linearly related 

to one another (but not necessarily along the line ܻ ൌ ܺሻ, we can show that the noise 

values are given by the following: 

 

ఎಽߪ 
ଶ ൌ ,ሺܺݒ݋ܿ ܻሻ  (2.2.4) 

ఎ೉ߪ 
ଶ ൌ ሺܺሻݎܽݒ െ

ఙആಽ
మ

௥
  (2.2.5) 

ఎೊߪ 
ଶ ൌ ሺܻሻݎܽݒ െ ݎ · ఎಽߪ

ଶ  (2.2.6) 

 

where ݎ represents the slope of the average relationship of ܻ versus ܺ (see Section 2.5).   

Eq. 2.2.4 reveals that the trunk noise ߪఎಽ
ଶ  is proportional to the covariance term, thus it is 

mathematically analogous to extrinsic noise.  Similar to the definition of intrinsic noise, 

the branch noise can then be calculated as the difference between the total noise specific 

to the branch and the trunk noise (Eq. 2.2.5-6).  Additionally, these equations show that 
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the three noise components can be extracted from joint measurements of ܺ and ܻ without 

knowledge of ܮ, which may be experimentally inaccessible.   

Graphically, this system can be depicted in ܺ-ܻ space as follows (Fig. 2.1B).  In 

the total absence of noise, for a given input ܵ, the activity of ܺ and ܻ in all cells would be 

identical and map to a single point as shown (Fig. 2.1B).  Experimentally, we can 

estimate this point by exposing many cells to the same stimulus ܵ and computing the 

average value of ܺ and ܻ.  If ܵ were allowed to vary, then the locus of points would trace 

out a line defined by the changing input signal.  We refer to this line parameterized by ܵ 

as the geometrical basis for the noise decomposition and experimentally estimate it via 

reduced major axis regression.   

 

For a given ܵ, by introducing only the trunk noise, the spread of ሺܺ, ܻሻ activity of 

individual cells will lie along the basis line, as trunk noise is equivalent to noisy cellular 

interpretation of the value of the stimulus ܵ.  Given that the noise in the two branches are 

mutually independent, each branch will contribute noise parallel to its respective axis and 

orthogonal to the noise associated with the other branch.  Experimentally, we observe this 

effect as a two-dimensional distribution for ܺ and ܻ whose orientation depends on the 

direction of the basis and the relative magnitude of the trunk and branch noise terms.   

Finally, we observe that for a given level of ܵ, the graphical depiction in Fig. 2.1B 

simplifies to the case in Fig. 1.1B if the reporters are equivalent.  In particular, ݎ ൌ 1 for 

equivalent reporters so that the basis becomes ܻ ൌ ܺ and the trunk noise along this line 

becomes the extrinsic noise.  Furthermore, we note that if we average the branch noise 

values, we will arrive at the definition of intrinsic noise as expected:  



22 

 

భ
మ
ሺߪ௑

ଶ ൅ ௒ߪ
ଶሻ ൌ భ

మ
൫ݎܽݒሺݔሻ ൅ ሻ൯ݕሺݎܽݒ െ ௧௥௨௡௞ߪ

ଶ ൌ ௧௢௧ଶߪ െ ௘௫௧ଶߪ ൌ ௜௡௧ߪ
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Thus, the equivalent reporter framework is a special case of the more general non-

equivalent reporter framework.  Next, we will show that these equations can be applied to 

a biological system which can provide insights into the nature of biological noise in 

signaling networks. 

 

2.2.2  Pathway-specific noise in the TNF signaling network 

 

Using the above generalized noise decomposition framework, we sought to 

quantify the noise contributed by the c-Jun and NF-κB pathways when activated by 

tumor necrosis factor (TNF), a model system for understanding signaling heterogeneity in 

mammalian cells48-53,63 to create a detailed understanding of noise propagation through 

this signaling network.  We exposed mouse embryonic fibroblast cells to a wide range of 

TNF concentrations to elicit the full dynamic response of the transcription factors.  For 

each TNF concentration, we measured the nuclear concentrations of the transcription 

factors in hundreds of individual cells using quantitative immunocytochemistry (Fig 

2.2B).  We examined the responses at the 30 min. time point, because the translocation of 

both transcription factors reach their maximum values at this time indicating similar 

operational timescales64. 
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Figure 2.2: Decomposition of the TNF–NF-κB–p-c-Jun signaling pathway.  (A) A schematic of the 
TNF–NF-κB–JNK signaling pathway.  Briefly, TNF activates the TNF receptor which then activates both 
the NF-κB pathway and the JNK mediated pathway causing the nuclear translocation of the transcription 
factors NF-κB, p-c-Jun, and p-ATF-2.  The single cell nuclear concentrations of the transcription factors 
can then be quantified via immunofluorescence.  (B) Distributions of NF-κB and p-c-Jun nuclear 
concentrations in response to TNF.  The coordinated single cell nuclear localization of NF-κB and p-c-Jun 
were measured for their response to a 30-min exposure of TNF and used in calculations to decompose 
pathway noise.  (C) Scatter plot of the data given in panel B.  Individual points are representative of single 
cells and each color represents a unique TNF concentration as listed in panel B.  Means at each TNF 
concentration are denoted by the circles and fit with linear regression to form a basis for noise 
decomposition.  (D) The noise decomposition of the TNF–NF-κB–JNK pathway of the data given in panel 
B (top) and the corresponding mean nuclear concentration of both transcription factors (bottom).  This 
figure is shown again as Figure 2.3C. 
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In response to a stimulus, parallel signaling branches can have different dose 

dependencies leading to complex overall response characteristics, including biphasic ones 

resulting in complex and highly non-linear behavior65-67.  However, surprisingly, we find 

that NF-B and p-c-Jun levels are proportional to each other over 4 orders of magnitude 

(Fig. 2.7A).  Thus, even though the average NF-B and p-c-Jun levels are nonlinear 

functions of TNF (Fig. 2.2D), they are linearly related (Fig. 2.2C).   

 

To better understand the factors contributing to the overall observed variability, 

we applied Eq. 2.4-6 to decompose the observed noise into a common trunk noise and 

branch noises specific the NF-B and JNK pathways (Fig. 2.2D).  We observed that for 

the NF-B pathway, the trunk noise was slightly greater than NF-B branch noise.  

Whereas for the JNK pathway, the c-Jun branch noise was greater than the trunk noise.  

Therefore, although both responses are subject to the noise resulting from common 

upstream signaling components, the NF-B pathway introduces less noise to the 

signaling output in comparison to the JNK pathway.  We find that the inflection point in 

the dose response of the trunk and c-Jun branch noise roughly mirrors the inflection point 

found in the dose response of the p-c-Jun and NF-B mean nuclear concentration.  The 

notable similarity in the dose response is likely due to a general correlation found 

between the scaling of noise and mean protein abundance68.   
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2.2.3  Noise decomposition of the TNF network 

 

 

Figure 2.3: Disaggregation of the TNF pathway into 3 4-node motifs.  A schematic illustrating the 
reduction of the TNF–NF-κB–JNK signaling pathway into a 6-node network which is then partitioned into 
three experimentally tractable 4-node motifs covering all possible transcription factor pairings.  Each 4-
node motif consists of a TNF input, a signaling intermediary (either the TNF receptor complex or JNK) and 
two readouts of transcription factor activity. 
 

Next, we sought to demonstrate how our method can be extended to analyze 

larger, more complex signaling networks.  We observed that many signaling networks, 

including that of TNF, consist of multiple levels of branching raising the question of how 

much noise each part of the network contributes to the downstream responses.  For 

instance, the TNF network branches into the NF-B and JNK pathways, and the JNK 

pathway subsequently branches to activate two transcription factors: ATF-2 and c-Jun.  
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To decompose the noise in this 6-node system, we considered multiple 4-node branch 

motifs embedded within the network (Fig. 2.3).  We can decompose the noise of each 

motif in isolation, but since the three motifs have overlapping portions, we can assemble 

a more detailed noise decomposition map of the original network.  To perform this 

decomposition, we measured, in parallel experiments, the joint pair-wise TNF responses 

of NF-B and p-ATF-2, NF-B and p-c-Jun, and p-ATF-2 and p-c-Jun.   

 

 

 

Figure 2.4: Noise Decomposition of the TNF–NF-κB–JNK motifs.  (A-C) The noise decomposition of 
the 4-node motifs given in Fig. 2.2 (top) and the corresponding mean nuclear concentration of both 
transcription factors (bottom).  The JNK branch specific noise is higher than both the NF-κB branch 
specific noise and the TNF–TNFR trunk noise.  Within the JNK pathway the c-Jun branch noise is greater 
than the ATF-2 branch noise at higher TNF concentrations. 
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First, we found that the results for the NF-B/p-ATF-2 pair (Fig. 2.4A) were similar to 

that of the NF-B/p-c-Jun pair analyzed earlier (Fig. 2.4B).  Further quantitative analysis 

revealed that of the noise in the fully activated TNF-NF-B pathway, ~90% can be 

ascribed to the trunk portion shared with the TNF–JNK pathway, and the remaining 

~10% can be ascribed to the NF-B specific branch.  In comparison, in the TNF-ATF-2 

pathway, only approximately 30% of the noise in the ATF-2 pathway originates from the 

trunk, and the remaining ~70% of the noise arises from the remaining JNK pathway.  

Next, examining the results for the NF-B/p-c-Jun pair, (Fig. 2.4B) we observe that 

~80% of the p-c-Jun noise originates from the c-Jun-specific branch, suggesting that 

there may be slightly greater noise in the TNFR-c-Jun pathway than in the TNFR-ATF-2 

pathway.  Indeed, when we directly decomposed the p-ATF-2/p-c-Jun pair, we observed 

greater noise specific to the c-Jun pathway than compared to the ATF-2 pathway at the 

higher concentrations of TNF (Fig. 2.4B).   

The pair-wise analysis can be used to assign relative noise contributions to each 

part of the TNF signaling network (Fig. 2.5A).  For instance, if as a reference we assign a 

noise value of 1 to the initial TNF-TNFR segment, then the noise value in the TNFR-NF-

B segment is ~0.1 (See Section 2.5.5), in order to be consistent with our observation 

above that the signaling segment upstream of the NF-B and JNK branch point 

contributes 90% of the total noise in the TNF- NF-B pathway and the downstream NF-

κB noise contributes the remaining ~10%.  Similar calculations can be used to compute 

the relative noise contributions from the remaining segments.  Due to the overlapping 

portions of the multiple 4-node motifs, certain segments, such as the TNFR-NF-B 
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segment, will have multiple noise decomposition estimates.  In this situation, the 

estimates were averaged (See Section 2.5.5).  This analysis yields the relative noise 

values shown in Fig. 2.5A.  Interestingly, the total noise of the TNF-NF-B pathway is 

approximately 30% of the noise present in TNF-ATF-2 pathway and 20% of the noise in 

TNF-c-Jun pathway, indicating an asymmetry of pathway specific noise between the JNK 

and NF-B branches in TNF signal processing.  This result provides an explanation for 

our prior results which demonstrated that the information carrying capacity of the NF-B 

pathway is greater than that of the JNK pathway, with the capacity of both pathways 

influenced by a common TNF receptor-level bottleneck48.   

 

 

 
Figure 2.5: Noise decomposition of larger networks.  (A) Noise decomposition map normalized to the 
noise that is contributed by the common TNF-TNFR segment, based upon the data in panels B-D. The map 
demonstrates asymmetry in the amount of noise contributed by the NF-B and JNK pathways, and shows 
that the majority of noise in the JNK pathway is contributed downstream of the TNF receptor complex.  (B) 
Illustration of noise decomposition of a larger network.  Given a hypothetical signaling network of 6 nodes 
and two readouts (C and E), only 3 noise values can be ascertained.  With the addition of two new readouts 
(F and G), a more comprehensive noise decomposition map can be constructed that can guide further 
investigations. 
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Because of the inherent scalability, this noise decomposition methodology can be 

easily expanded to analyze the noise propagation through larger signaling networks.  For 

example, given a hypothetical signaling network (Fig. 2.5B) and the two downstream 

readouts, ܥ and ܧ, we can provide only limited noise mapping:  the noise contribution of 

the ܣ ՜ ܣ andܥ ՜ ܵ pathway segments in addition to the ܧ ՜  ,trunk noise.  However ܣ

with the addition of two more readouts (ܨ and ܩ), we can in principle resolve seven noise 

values and reconstruct a detailed noise decomposition of the entire network.  Such a 

network noise map would allow one to prioritize further investigations into the physical 

basis of the noise and identify the portions of the network in which one may expect to 

find molecular mechanisms that regulate variability. 
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2.2.4  The impact of feedback on transcription factor variability 

 

 

Figure 2.6: A20 functions as a late-acting negative feedback loop.  (A) Schematic of the A20 feedback 
loop.  At 4 hours, after upregulation, A20 interferes with the functionality of the TNF receptor complex 
(solid) and inhibits the JNK pathway (dotted).  (B) Dose response curves for the mean nuclear 
concentration of NF-κB and p-ATF-2 in response to TNF in both WT and A20-/- cells at 30 min. and 4 
hours. 

Negative feedback is a well-known mechanism that cells can use to modulate 

biochemical noise.  To quantitatively demonstrate the effect of negative feedback on 

noise in TNF signaling, we performed a noise decomposition in wildtype cells and cells 

lacking A20, an enzyme well-known to inhibit TNF-induced NF-B activity by 

destabilizing the TNF receptor complex69-72 (Fig. 2.6A).  Destabilization of the receptor 

complex has been reported to further mitigate downstream JNK activation73; however, 

this mechanism is still controversial74,75. 

 We also compared the noise decompositions at the 30 min. and 4 hr. timepoint in 

these cells (Fig. 2.6B), as induced expression of A20 is negligible at the earlier timepoint 

but maximal by the latter timepoint63,76.  Importantly, we note that there exists a 
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consistent linear relationship between NF-B and p-ATF-2 across two timepoints and 

across both wildtype and A20-/- cells, enabling direct comparison of the noise 

decomposition results among all four conditions (Fig. 2.7B).   

 

 

 

 

 

Figure 2.7:  Response pairs are linearly related.  (A) Means of the data given in Fig. 2.4A-C are shown. 
Each circle represents the mean response to a distinct concentration of TNF.  The best fit regression lines 
are shown and used as the basis for noise decomposition.  (B)  Data given in Fig. 2.7B were combined, 
centered about the origin, and plotted.  The slope of the linear relationship between NF-κB and p-ATF-2 is 
the same at both the 30 min. and 4 hr. time point for both WT and A20-/- cells. 
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At the 30 min. timepoint, we observed that the trunk noise was, on average, slightly 

greater in A20-/- cells than wildtype cells, corroborating the ability of A20 to regulate 

both NF-B and JNK pathways at the receptor complex level, whereas there was no 

difference in NF-B-specific noise (Fig. 2.8).  The difference in trunk noise was greater 

at the 4 hr. timepoint, likely reflecting the difference between the effects of lower basally 

expressed A20 versus that of highly induced A20.  Unexpectedly, we also observed 

markedly larger ATF-2 branch-specific noise in A20-/- cells compared to wildtype cells 

with the difference between the cell types being greater at the 4 hr. timepoint than at the 

30 min. timepoint.  This result indicated that A20 can repress the JNK pathway in a 

manner independent from its effects on the TNF receptor complex.  At the time that this 

prediction was made there was no known direct inhibition of the JNK pathway by A20, 

but a later study by Won et al. verified that A20 directly binds to and represses ASK1, a 

kinase in the JNK pathway that has no known direct effects on the NF-B pathway74.  

We note that although negative feedback could potentially violate our assumption that the 

trunk and branch noise levels are independent, this experiment demonstrates that on a 

practical basis, our noise decomposition framework can yield sensible and even 

predictive results regarding the effects of negative feedback on signaling noise. 
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Figure 2.8: Noise decomposition of the WT and A20-/- data.  Noise decomposition of the TNF–NF-κB–
ATF-2 signaling pathway in WT and A20-/- cells at 30 min. and 4 hours for the dataset shown in panel B.  
Absence of the A20 protein does not affect the noise in the NF-κB branch but causes an increase in the 
amount of noise in the trunk and ATF-2 branch at both 30 min. and 4 hours.  This observation corroborates 
known information about the mechanisms of A20 regulation. 

 

2.3  Discussion 

 

By utilizing the linear relationships between downstream effectors of the TNF 

pathway, we developed a mathematical and experimental framework that enables noise 

decomposition in intracellular signal transduction.  This method distinguishes trunk from 

branch noise and can be derived as a natural extension of extrinsic/intrinsic noise 

analysis.  Corroborating previous results, we showed that there is a greater amount of 

noise present in the JNK branch than the NF-B branch and that both branches are 

subject to a sizable contribution of noise from the TNF receptor complex.  More detailed 

noise mapping of the JNK pathway revealed that within the JNK sub-network, p-c-Jun is 

subject to greater noise than p-ATF-2. 
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Examining the impact of negative feedback on noise expression, we found further 

evidence that A20 is able to suppress variability at the level of the TNF receptor.  We 

also unexpectedly discovered an additional mechanism of JNK noise suppression 

consistent with a recent observation of the direct inhibition of ASK1 by A20.  Although 

negative feedback can theoretically complicate the mathematical decomposition by 

allowing interactions between noise parameters, we nonetheless observed that the 

nonequivalent dual reporter method can be robust to its presence and can provide a useful 

first approximation.  Furthermore, at a minimum, the noise analysis presented here can be 

used to characterize the noise and provide a basis for quantitative comparison against 

predictions generated by computational models incorporating details of biochemical 

feedbacks. 

Although this method requires a linear relationship between the reporters, we 

believe it does not tightly constrain the general applicability.  In most biological signaling 

systems, nonlinear signal-dose responses align to allow for optimal information transfer 

which results in responses that are approximately linearly related77.  Furthermore, we 

expect that in the case of nonlinear relationships, this method can be easily extended by 

replacing the slope parameter ݎ with the local slope ܻ݀/݀ܺ.  Indeed, the basis used for 

decomposition, which is presented here as a line, could be a curve, a 2-dimensional 

surface, or higher dimensional manifold depending on the number of responses of interest 

and their interrelationships.   

We envision that this method and such further generalizations could enable better 

measurements of noise which will open avenues into understanding its molecular 
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underpinnings and usher in a deep understanding of the nature of variability in the TNF 

pathway and even more complex signaling systems.   

 

2.4  Materials and methods 

2.4.1  Cell culture   

 

Wildtype and A20-/-  3T3-immortalized mouse embryonic fibroblasts (kind gift 

from A. Hoffmann, Univ. of California, San Diego) were maintained in low glucose 

Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 10% calf bovine 

serum (American Type Culture Collection) and 10 U/mL each of penicillin and 

streptomycin (Invitrogen).  P65–GFP cells (kind gift from M. Covert, Stanford) were 

maintained in high glucose Dulbecco’s modified Eagle’s medium (Invitrogen) 

supplemented with 10% fetal bovine serum (American Type Culture Collection) and 10 

U/mL each of penicillin and streptomycin (Invitrogen).  Cells were seeded at a density of 

approximately 150 cells/mm2 onto 15mm diameter circular coverslips (Fisher Scientific) 

coated with 0.1% gelatin (Sigma), placed in 6 well plates, and then serum starved in 

medium with reduced serum concentration (0.1%) overnight before experimentation. 

 

2.4.2  Immunocytochemistry 

 

After exposure to murine TNF (Roche) at the specified concentrations and 

duration, the cells were washed 3 times with ice-cold phosphate buffered saline (PBS, 
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Invitrogen) and fixed in 4% paraformaldehyde (Electron Microscopy Sciences) for 20 

minutes.  The cells were then permeabilized in 0.1% triton X-100 (Sigma) for 5 minutes 

and blocked in 10% goat serum (Invitrogen) for 60 minutes.  Next, the cells were 

incubated in primary antibody solution.  Primary antibody concentrations used were 

1:100 rabbit anti-p65 antibody (Santa Cruz), 1:100 mouse anti-phospho-ATF-2 antibody 

(Santa Cruz), 1:100 mouse anti-phospho-c-Jun (Santa Cruz), 1:100 rabbit anti-phospho-c-

Jun (Cell Signaling).   

Finally, the cells were incubated in a secondary antibody solution consisting of 

1:200 Alexa Fluor 488-conjugated goat anti-rabbit and 1:200 Alexa Fluor 594-conjugated 

goat anti-mouse antibodies (Invitrogen) for 60 minutes, and 2 µg/mL Hoechst-33258 

(Sigma) for 60 minutes.  All solutions were made in 10% goat serum (Invitrogen) in PBS, 

and cells were washed with PBS in between each step.  To minimize experimentally-

induced variability and to enable quantitative comparisons across conditions, all 

concentrations of TNF and all cell lines were assayed at the same time using common 

reagents.  Finally, the stained coverslips were mounted on glass microscope slides and 

imaged on an Axiovert 200M inverted epifluorescence microscope (Zeiss) equipped with 

Slidebook 4.2 (Intelligent Imaging Innovations).  On average, over 350 cells were imaged 

per experimental condition.   

 

2.4.3  Image and data analysis 

 

Image processing and data analysis were performed using Matlab R2009a 

(MathWorks).  Background correction, nucleus segmentation, and quantification of 
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nuclear concentrations of NF-κB, phospho-ATF-2, and phospho-c-Jun were performed as 

described previously48.  Programs are available upon request.  Top and bottom 2nd 

percentiles of data were discarded to reduce the influence of outliers on the estimates of 

variance. 

 

2.5  Linear noise decomposition 

2.5.1  Derivation of the trunk and branch noise values 

 

 

Figure 2.9:  Model of 4-node 

network. 
 

 

 Here, we derive the noise decomposition equations shown in Eqs. 2.2.4-6 in the 

main text.  We begin by examining the top portion of the four node motif shown in Fig. 

2.9 where a discrete signal ܵ is transmitted to an intermediary node ܮ.  The intermediary 

 ,௅ߟ can then be described as a function of the signal ܵ and a stochastic noise term ܮ

defined as the trunk noise: 

 

ܮ  ൌ ݂ሺܵሻ ൅  ௅. (2.5.1)ߟ

  

 Downstream, the signal bifurcates along two separate pathways to the readouts ܺ 

and ܻ.  Since ܺ and ܻ are both affected by ܮ, they can be represented as distinct linear 
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functions of ܮ (or of some transformation of ܮ) plus a corresponding stochastic noise 

term ߟ௑ or ߟ௒, defined as the branch noise.  This is represented as follows, where ݉ and 

ܾ are the linear coefficients,   

 

 ܺ ൌ ݉௑ · ܮ ൅ ܾ௑ ൅  ௑ (2.5.2)ߟ

 ܻ ൌ ݉௒ · ܮ ൅ ܾ௒ ൅  .௒ߟ

 

 We assume the above noise terms are independent, additive, and with zero mean.  

By taking the variance of Eq. 2.5.1, we find that the magnitude of the trunk noise is equal 

to ݎܽݒሺܮሻ.  Since the noise terms are independent, they have zero pairwise covariance; 

thus, by taking the covariance of ܺ and ܻ and rearranging we obtain  

 

 
௖௢௩ሺ௑,௒ሻ

௠೉௠ೊ
ൌ ሻܮሺݎܽݒ  ൌ ఎಽߪ

ଶ . 

 

  This choice defines the trunk noise in the units of ܮ, whereas dividing or 

multiplying by ݎ, as defined below, can convert the trunk noise into units of ܺ or ܻ, 

respectively.  Furthermore, by taking the variance of Eq. 2.5.2 we obtain  

 

ሺܺሻݎܽݒ  ൌ ݉௑
ଶ · ሻܮሺݎܽݒ ൅ ఎ೉ߪ

ଶ  (2.5.3)  

ሺܻሻݎܽݒ  ൌ ݉௒
ଶ · ሻܮሺݎܽݒ ൅ ఎೊߪ

ଶ , 
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where the branch noise terms ߪఎ೉
ଶ  and ߪఎೊ

ଶ  denote the variance of ߟ௑ and ߟ௒.  We can 

therefore see that 

 

ఎಽߪ 
ଶ ൌ ,ሺܺݒ݋ܿ ܻሻ  (2.5.4) 

ఎ೉ߪ 
ଶ ൌ ሺܺሻݎܽݒ െ

ఙആಽ
మ

௥
  (2.5.5) 

ఎೊߪ 
ଶ ൌ ሺܻሻݎܽݒ െ ݎ · ఎಽߪ

ଶ , (2.5.6) 

 

where ݎ ൌ ௠ೊ

௠೉
.  Importantly, ݎ is the slope of the line of ܻ versus ܺ in the absence of 

noise.  This line is parameterized directly by ܮ and indirectly by ܵ.  Thus, the line can be 

obtained by calculating the regression of the average of ܻ versus the average of ܺ at 

various levels of ܵ, allowing ݎ to be experimentally estimated (Fig. 2.7).  Since the 

variances of ܺ and ܻ and their covariance are experimentally measurable, Eqs. 2.5.4-6 

allow for direct estimation of the branch and trunk noises. 

 

2.5.2  Relation to the method of Elowitz et al. 

  

 In this section, we will demonstrate that the trunk/branch decomposition is a more 

generalized formulation of the methods pioneered by Elowitz et al.9,10.  To begin, we note 

the non-normalized definitions of the intrinsic and extrinsic noise: 

 

௜௡௧ߟ 
ଶ ൌ ଵ

ଶ
ሺܺۃ െ ܻሻଶߟ     ;ۄ௘௫௧ଶ ൌ ۄܻܺۃ െ  (2.5.7) .ۄܻۃۄܺۃ
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 From this definition, we can immediately see that the extrinsic noise is equivalent 

to the previously defined trunk noise (Eq. 2.5.4).  In the case of equivalent dual reporters, 

ܺ and ܻ are statistically equivalent, hence ۄܺۃ ൌ ݎ and ۄܻۃ ൌ 1.  By taking advantage of 

these properties, we can then enumerate several parallels between the trunk/branch and 

the intrinsic/extrinsic methodologies.   

 To begin, by taking the average of the branch noises from Eqs. 2.5.5-6, we obtain 

the expression for intrinsic noise: 

1
2
൫ߪఎ೉

ଶ ൅ ఎೊߪ
ଶ ൯ ൌ

1
2
ሺݎܽݒሺܺሻ ൅ ሺܻሻݎܽݒ  െ ,ሺܺݒ݋2ܿ ܻሻሻ 

ൌ
1
2
ሺܺۃଶۄ െ ଶۄܺۃ ൅ ۄଶܻۃ െ ଶۄܻۃ െ ۄܻܺۃ2 ൅  ሻۄܻۃۄܺۃ2

ൌ
1
2
ሺܺۃଶۄ ൅ ۄଶܻۃ െ  ሻۄܻܺۃ2

ൌ
1
2
ሺܺۃ െ ܻሻଶۄ. 

   (2.5.8) 

 

Using the above relationships, we can also easily prove statements made in the main text 

about extrinsic and intrinsic noise.  First, using Eq. 2.5.8, we can show that intrinsic noise 

is proportional to the variance of the difference in reporter expression: 

 

1
2
ሺܺۃ െ ܻሻଶۄ ൌ

1
2
൫ݎܽݒሺܺሻ ൅ ሺܻሻݎܽݒ  െ ,ሺܺݒ݋2ܿ ܻሻ൯ 

ൌ
1
2
ሺܺݎܽݒ െ ܻሻ. 

  (2.5.9) 
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Lastly, since total noise is defined as the sum of the intrinsic and extrinsic noise values, 

we sum the contributions and find that the total noise can be rewritten as the average 

variance of the reporters:  

 

௧௢௧ଶߪ ൌ ௜௡௧ߪ
ଶ ൅ ௘௫௧ଶߪ ൌ

1
2
൫ߪఎ೉

ଶ ൅ ఎೊߪ
ଶ ൯ ൅ ,ሺܺݒ݋ܿ ܻሻ 

ൌ
1
2
൫ݎܽݒሺܺሻ ൅  .ሺܻሻ൯ݎܽݒ 

  (2.5.10) 

 

2.5.5  Noise decomposition of larger networks 

 

 To decompose a larger system such as the 6-node TNF–NF-B–JNK network, we 

first note that it has three embedded 4-node motifs (Fig. 2.3).  By decomposing each 

motif, we find that although we can obtain a single noise estimate for each segment of the 

larger network, for one portion of the network, we obtain two redundant estimates.  For 

this particular segment, we average these two estimates to obtain a final estimate.   

For example, by decomposing the noise in the NF-B/p-c-Jun pairing, we find that 76% 

of the noise in p-c-Jun can be ascribed to the TNFR to p-c-Jun segment, while the 

remaining 24% is due to noise at the TNF-TNFR level.  In a similar fashion, from the p-

ATF-2/p-c-Jun pair we find that 63% of the noise in p-c-Jun can be ascribed to the JNK 

to p-c-Jun segment.  Thus, the signaling segment connecting TNFR to JNK must 

contribute 76% – 63% = 13% to the variance in p-c-Jun.  To assign relative noise 

contributions to each part of the TNF signaling network, as described in the main text, we 
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normalize all values to the TNF to TNFR segment.  Thus, the TNF to TNFR segment 

becomes 1, the JNK to p-c-Jun segment becomes 
଺ଷ%

ଶସ%
~2.6,  and we arrive with a 

normalized estimate of 
ଵଷ%

ଶସ%
~0.5 for the TNFR to JNK segment.  We conduct the same 

analysis by utilizing the noise decomposition from the NF-B/p-ATF-2 and p-ATF-2/p-c-

Jun pairings and arrive at an estimate of 1.3 for the TNFR to JNK segment.  We then 

average the two figures to arrive at a final noise estimate of 0.9 for the TNFR to JNK 

segment (Fig. 2.5A). 

 

2.6  Experimental considerations 

2.6.1  Experimental noise compensation 

  

 In order to properly measure true biological noise in cellular signaling systems, 

the experimental error needs to be quantified and removed from the total measured 

variability.  In our previous work, using the correlation between direct GFP fluorescence 

and the indirect anti-GFP immunofluorescent signal, we estimated that immunostaining 

accounts for less than ~12% of the measured variance in the anti-GFP signal48.   

To further validate this estimate, we obtained p65-knockout MEF cells that were 

reconstituted with a p65 – GFP fusion protein50.  The cells were stimulated with a range 

of TNF concentrations, fixed, and then immunostained.  We observed a strong linear 

correlation between the direct and stained p65 measurements, on average 0.94 ~ ߩ (Fig. 

2.10). 
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 As previously shown48, if we assume that the immunostained p65 measurement is 

proportional to the p65 concentration and all distributions are Gaussian, we can estimate 

that 1 െ 0.94ଶ~12% of the observed variance is contributed by experimental noise 

which is supported by previous reports48,78.  Therefore, to correct for the experimental 

noise, we reduced all variance quantities by 12%.  We find that this does not significantly 

alter any conclusions. 

 

 

 
 
Figure 2.10:  Experimental noise associated with NF-κB immunofluorescence.  p65-knockout cells 
stably expressing a p65–GFP fusion protein were exposed to a range of TNF concentrations, fixed, and 
immunostained for p65.  The correlation between the direct and immunostained p65 measurements was 
used to estimate the amount of error that arises from immunostaining. 
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2.6.2  Numerical estimation of branch and trunk noise 

 

We observe that at low expression levels, our noise decomposition methodology 

will often give unreliable estimates.  This is likely due to experimental noise 

overwhelming the true signal when the target protein expression level is low or absent.  

Therefore, to estimate the percent branch or trunk noise for a given pathway, we calculate 

the percent branch or trunk noise for all TNF concentrations at which the protein of 

interest is fully expressed (> 0.1ng/mL) and then average these calculations to arrive at a 

final estimate for the pathway. 

We also note that due to the sensitive nature of covariances and variances to 

experimental error, the noise decomposition will occasionally yield slightly negative 

noise for branches that contribute relatively little noise to the total variability.  In such 

cases, we interpret the results to indicate negligible noise, rather than the reduction of the 

total amount of noise.   
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Chapter 3.  Quantifying information in the TNF 

pathway 

3.1  Introduction79 

 

Figure 3.1:  (A) Noise can limit the amount of information a cell can obtain about a stimulus.  The 
magnitude of noise is evidenced in the breadth of the probability distribution of the response to a given 
stimulus.  For sufficiently large noise, a cell which can encounter strong or weak stimuli cannot use its 
response to discern which stimulus was encountered with absolute precision.  Consequently, from the cell’s 
perspective, noise leads to a loss of information about the input.  The amount of mutual information 
between the stimulus and cellular response also suffers such that the greater the overlap between 
distributions, the less mutual information is communicated.  (B) Entropy can be understood as a 
measure of dispersion.  A wider probability distribution corresponds to an increase in the uncertainty of 
the cellular response and consequently, entropy. 
 

In their in vivo environment, cells are constantly awash in a sea of hormones, 

cytokines, morphogens, and other receptor ligands released by other cells.  Each of these 

molecular signals can be thought of as being sent with the intent of communicating a 

specific message or action for the receiving cell to perform.  Within the recipient cell, the 

information contained within the chemical messages must be captured and processed by 

the cell’s biochemical circuitry, which typically involves feedback loops, crosstalk, and 

delays.  These control functions are commonly executed by dedicated sets of kinases and 

transcription factors to ensure that the appropriate cellular response is activated.  Since 
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the mechanisms behind this complex function are biochemical in nature, molecular noise 

can greatly hamper the propagation of signals21,29,30.  As a result, the message can get 

distorted and cells may not be able to acquire a precise perception of their surroundings. 

Biological noise can perhaps more adequately described as stochastic cell-cell variability 

and can be experimentally observed by sampling the distribution of responses by a group 

of genetically identical cells exposed to the same stimulus.  If, for example, the 

distribution of responses elicited by a weak stimulus overlaps with the distribution 

elicited by a strong stimulus, a cell whose response value falls within the overlap will not 

be able to discern with absolute certainty which stimulus was present (Fig. 3.1A).  This 

inability to resolve distinct stimuli represents a loss of information about the input.  

Traditional metrics for noise related to the standard deviation or variance primarily 

quantify the magnitude of noise and do not directly indicate the degree to which noise 

hampers the discrimination of different inputs.  Likewise, both deterministic and 

stochastic mathematical models, although able to capture dynamic trends, require a priori 

knowledge or assumptions of the underlying molecular mechanisms and ultimately fail to 

describe how signaling fidelity is affected by variability.  In order to quantify the degree 

to which noise affects the fidelity of the message, or specifically to determine what a 

biological signaling system can or cannot communicate accurately, it is useful to turn to 

information theory. 

Originally developed by Claude Shannon for the purpose of data compression and 

the analysis of man-made communication systems, information theory provides a 

mathematical framework to quantify the amount of information that can be transmitted 

through a noisy communication channel.  A differentiating strength of this type of 
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analysis, especially pertinent in cell signaling, is that only input and output measurements 

are required, thereby obviating the need for a detailed understanding of the signaling 

system.  With information theory, any complex system can be reduced to a black box 

communications channel and analyzed.  When details of the underlying system are 

available, they can be included as part of the analysis, leading to an even deeper 

understanding.  Some examples of biological systems that have benefitted from such an 

analysis include neural networks80 and, more recently, gene regulation networks81,82, 

particularly in developmental biology83, and signal transduction networks48.  

 

3.2  Applications of information theory in biology 

 

A major advantage of the information theoretic framework described above is that 

it can be easily implemented in a wide range of scenarios absent of any knowledge of the 

internal mechanisms or complexity of the system.  The key to conducting such an 

analysis is to identify the boundaries of the communication channel and thus specify its 

input and output.  As such, many applications of information theory to biology have been 

to characterize the information transmission capacity of specific signaling systems or 

network structures.  One early example can be found in the application of information 

theory to the neural coding problem in neuroscience84-86.  To acquire information about 

the outside world, a sensation is processed by a sensory organ into a stream of electrical 

impulses, called action potentials, which travel along a highway of neurons to the brain.  

The brain receives the neural signals and then proceeds to decode the information to 

recreate the original sensation.  However, what is not immediately evident is how 
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neurons encode such vivid depictions of the environment into a simple series of electrical 

pulses that can be decoded with remarkable fidelity. 

One simple way to represent sensory information is to encode it into the rate of 

neuronal firing, which can be easily measured by counting the number of spikes within a 

timeframe and then averaging over time.  Alternatively, information might be represented 

in the relative position of the spikes, referred to as a temporal coding scheme.  

Experimentally measuring such a temporal code involves discretizing a time interval into 

bins and then assessing if a spike is present in each bin, designating a 1 to represent a full 

bin or 0 to indicate an empty one to generate a fixed length series of binary digits (Fig. 

3.2A).  This block of binary digits would then represent a code that a neuron would send.  

The capacity provides a way to evaluate rate coding, temporal coding, or any other 

hypothesized information coding mechanism based upon the ability to carry information.  

For example, information theory was used in the early analysis of neural codes to 

determine that temporal codes offer a greater potential to transmit information than 

simple rate codes87. 

Similar analyses can be used to evaluate how neural information transfer evolves 

over time.  Since neural networks have the ability to learn, it may be possible for them to 

adapt to different sources of information.  For example, the infomax principle88, when 

applied to neurological sensing, posits that the brain can dynamically adjust to different 

inputs in order to maximize the amount of information provided by a sensory organ.  

Indeed, it has been shown that neural spikes display neural codes that adapt as the 

stimulus to the sensory organ changes to ensure that the amount of information 

transmitted is maximized89,90. 
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Figure 3.2:  Information theory in biological contexts.  (A) Quantifying a neural spike train as a 
scalar or vector.  Neural activity consists of intermittent spikes known as action potentials.  A series of 
spikes is known as a neural spike train.  data spike train can be quantified as the total number of spikes over 
a given time period giving a scalar output.  Alternatively, time can be divided into small time intervals such 
that the number of spikes occurring in each time interval is 1 or 0, enabling the spike train to be quantified 
as a binary vector output.  As the total time frame is made longer, the vector becomes longer, and it 
becomes increasingly harder to adequately sample all possibilities in the entire vector space.  (B) Bicoid 
and hunchback gradient in the Drosophila melanogaster embryo.  In the developing embryo of 
Drosophila melanogaster, pre-deposited bicoid maternal mRNA is translated into a bicoid protein gradient 
along the anterior-posterior axis.  Because bicoid is a cooperative transcriptional activator of hunchback, 
the smooth bicoid gradient leads to expression of hunchback in a much sharper concentration gradient 
which delineates the anterior and posterior halves of the embryo. 
 

Another example of the importance of the fidelity of information transfer is found 

in the development of the embryo of the fruit fly, Drosphila melanogaster.  In early 

developmental stages, the embryo consists of an undifferentiated collection of nuclei 

embedded in the common cytoplasm forming a so-called syncytium.  Each nucleus must 

accurately determine its physical position within the embryo in order to adopt the 

appropriate developmental fate.  To communicate information about position, a 

morphogen, a biochemical signal with a spatially graded distribution, typically encodes 

positional information via concentration.  Any error in this process can lead to a fruit fly 

with body parts in the wrong locations or of the wrong sizes, which is often lethal.   
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Accuracy in the systems that communicate between the morphogen and fate 

decision processes is of paramount importance, thus we would expect to see sufficient 

information communicated from the morphogen to the molecular mechanisms involved 

in cell-decision making.  For instance, a morphogen essential in patterning the anterior-

posterior (A-P) embryonic axis is the bicoid transcription factor.  Bicoid, in turn, induces 

expression of hunchback protein in a concentration dependent manner.  Interestingly, 

bicoid concentration decreases steadily from the anterior to the posterior end of the 

embryo, whereas hunchback concentration falls off sharply in the middle of the embryo 

in a “switch-like” fashion (Fig. 3.2B).  This observation has led to the hypothesis that 

bicoid concentration encodes positional information that is transmitted to hunchback, 

thereby enabling a cell to determine whether it is located in the anterior or posterior half 

of the embryo.  Until recently however, it was unclear whether this long-standing 

hypothesis could withstand quantitative scrutiny, as gene expression in individual cells is 

an inherently noisy process9, which along with other sources of cell-to-cell or embryo-to-

embryo variability could interfere with transmission of the positional information.  To 

examine the capacity of the bicoid-hunchback communication channel in the presence of 

such noise, Tkacik et al.83 used data collected by Gregor et al.91 that simultaneously 

quantified bicoid and hunchback concentrations throughout many embryos, yielding a 

sample of their joint distribution.  From this data, Tkacik et al. estimated that the mutual 

information between bicoid and hunchback and found experimentally that there was 1.5 ± 

0.2 bits of positional information transmitted.  Because 1 bit is the minimum needed to 

perfectly specify the A-P boundary (a binary outcome), it was concluded that the capacity 

of the bicoid-hunchback channel was sufficient for each cell to accurately determine 
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whether they are located in the front or back half of the embryo.  These measurements 

have been recently extended to show that multiple morphogens in combination are 

sufficient for each cell to uniquely determine its location along the A-P axis92. 

A common theme throughout the prior examples is that information can be 

thought of as a distinct quantity that cellular systems necessarily require for survival.  

The examined studies provide support for the premise that cells seek to acquire 

information sufficient only to ensure continued existence and that any additional capacity 

can be acquired but presumably at a higher energetic cost to the cell.  By placing physical 

upper limits to the transfer of information in biological systems, information theory can 

direct a novel line of inquiry in well-established systems.  For example, in the fruit fly D. 

melanogaster, we can quantify to what degree each molecular mechanism contributes to 

create such complex patterns of morphogen gradients that ultimately lead to the 

differentiation of the adult fruit fly. 

Here, in the following sections, we extend information theory concepts to 

analyzing biochemical signaling networks, whose information transfer capacities were 

previously generally unknown.  We develop a general integrative theoretical and 

experimental framework to predict and measure the mutual information transduced by 

one or more signaling pathways.  Applying this framework to analyze a 4-dimensional 

compendium of single cell responses to tumor necrosis factor (Fig. 3.3A), an 

inflammatory cytokine that initiates stochastic signaling at physiologic concentrations 

spanning ~4 orders of magnitude51,52,93-97, shows that signaling via a network rather than 

a single pathway can abate the information lost to noise.  Furthermore, we find that an 

information bottleneck can restrict the maximum information a network can capture. 
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3.3  Results 

 

Figure 3.3: Experimental portion of information theoretic analysis of cell signaling fidelity.  (A) 
Experimental flowchart for sampling the conditional response distribution at single cell resolution using 
immunocytochemistry, and resulting 4-dimensional compendium of multiple responses in cells of multiple 
genetic backgrounds to multiple TNF concentrations, at multiple time points.  The data was collected in a 
single experiment, allowing controlled, quantitative comparisons along each dimension.  (B) Distributions 
of noisy NF-B nuclear translocation responses to 30 min. TNF (examples shown at top) used to compute 
the channel capacity of the TNF-NF-B pathway.  (Scale bars, 20 m) 
 

 The mutual information, I(R;S), measured in bits, is the binary logarithm of the 

maximum number of input signal values (S), such as ligand concentrations, a signaling 

system can perfectly resolve on the basis of its noisy output responses (R)98.  One bit of 

information can resolve two different signal values, two bits resolves four values, etc.  

More generally, 
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The joint distribution P(R,S) determines the marginal distributions P(R) and P(S) and 

hence also the mutual information, and can be decomposed as P(R,S) = P(S) P(R|S).  The 

response distribution, P(R|S), is experimentally accessible by sampling responses of 

individual isogenic cells to various signal levels (Fig. 3.3B) and its spread reflects the 

noise magnitude given any specific input.  The signal distribution, P(S), reflects 

potentially context-specific frequencies at which a cell experiences different signal 

values.  Although the amount of information might thus vary from case to case, one can 

also determine the maximal amount of transducible information, given the observed noise 

(see Section 3.6).  This quantity, known as the channel capacity98, is a general 

characteristic of the signaling system and the signal-response pair of interest, and can 

thereby be experimentally measured without making assumptions about the (possibly 

nonlinear) relationship between R and S, signal power, or noise properties. 

 Using immunocytochemistry, we assayed nuclear concentrations of the 

transcription factor NF-B in thousands of individual mouse fibroblasts 30 min. after 

exposure to various TNF concentrations (Fig. 3.3A), choosing this time point because 

NF-B translocation peaks at 30 min. regardless of the concentration used, initiating 

expression of early response inflammatory genes51,52,97,99.  The NF-B response value in 

a single cell could yield at most 0.92  0.01 bits of information which is equivalent to 

resolving 20.92 = 1.9, or about 2, concentrations of the TNF signal, thus essentially only 

reliably indicating whether TNF is present or not (See Sections 3.6.2 and 3.7, regarding 

the low experimental uncertainty.)  A bimodal input signal distribution, P(S), with peaks 

at low and high TNF concentrations maximizes the information (Fig. 3.4), supporting the 
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notion of essentially binary (digital) sensing capabilities of this pathway96, although we 

did not observe bimodal output responses, P(R|S). 

 

 

 

 
Figure 3.4: Maximum mutual information about TNF concentration. (A) The top graph shows the 
maximum mutual information between TNF concentration and nuclear NF-κB concentration at 30 min. 
under a unimodal constraint (sorted in order of the 13 possible locations of the mode), bimodal constraint 
(testing all 286 possible locations of the two modes and the intervening minimum, sorted in increasing 
order of mutual information), and no constraint (optimal). The bottom heat maps show the signal 
distributions that yield the maximum mutual information under the various constraints. Each column in the 
heat map represents a signal distribution (a set of probabilities that sum to 1), each row corresponds to a 
specific signal value (TNF concentration), and the color indicates the probability associated with that signal 
value. The optimal value is approached by multiple bimodal distributions in which only very high and very 
low TNF concentrations are represented. (B) Same as panel A except the response analyzed is nuclear 
phospho-ATF-2. 
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Noise also limits other canonical pathways, including signaling by platelet derived 

growth factor (PDGF), epidermal growth factor100, and G-protein coupled receptors101 to 

~1 bit (Fig. 3.5A-C, Table 3.1).  Even the most reliable system we examined, morphogen 

gradient signaling through the receptor Torso in Drosophila embryos102, was limited to 

1.61 bits (Fig. 3.5D, Table 3.1), corresponding to just ~3 distinguishable signal levels. 

 

 

Table 3.1: Experimentally measured channel capacity of various signaling pathways 
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Figure 3.5: Response distributions for various signaling systems.  The data shown here were used to 
compute some of the channel capacity values reported in Table S1. (A) nuclear phospho-ATF-2 
concentrations in mouse fibroblasts following 30 min. exposure to TNF at the indicated concentrations, as 
measured by immunofluorescence. (B) Fold-change in extracellular signal regulated kinase 2 (ERK2) 
nucleus to cytoplasm ratio in human lung cancer cells in response to 10 min. epidermal growth factor 
(EGF) exposure, as measured in single live cells (see Section 3.5.5). (C) Peak calcium concentration (left) 
and time-integrated calcium dynamics (right, integrated over 120 sec) in RAW264.7 macrophages 
following exposure to uridine diphosphate (UDP), a stimulus for the P2Y family of G protein-coupled 
receptors. Data was obtained courtesy of M. Simon (California Institute of Technology), see101. (D) 
Concentrations of doubly phosphorylated Erk along the perimeter of wildtype Drosophila melanogaster 
embryos between nuclear cycles 10 and 14, as determined by immunofluorescence. Each curve is fitted to 
an individual embryo and normalized so that peak Erk activities occur at the anterior and posterior poles. 
Data was obtained courtesy of S.  Shvartsman 
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The pathways examined above are examples of individual biochemical 

communication channels that capture relatively low amounts of information about signal 

intensity, which would allow only limited reliable decision making by a cell.  However, 

information in biological systems is typically processed by networks comprising multiple 

communication channels, each transducing information about the signal.  For instance, a 

transcription factor often regulates many genes, a receptor many transcription factors, and 

a diffusible ligand many cells.  The outputs of such multiple channels together can 

provide more information about the signal than the output of any one channel (see 

Section 3.8).  Subsequently, downstream signaling processes that converge to co-regulate 

common effectors, biological processes, or physiologic functions can provide the point 

needed to integrate the multiple outputs to realize the benefit of increased aggregate 

information (Fig. 3.6).  To provide a unified framework for analyzing such various 

networks, we first theoretically investigated information gained by network signaling in 

general, then experimentally tested the predictions made by the theory when applied to a 

specific system. 

 

Figure 3.6: Information flow through multiple communication channels that diverge then converge. 
Signaling through multiple communication channels to the responses R1, R2, …, Rn can increase the amount 
of information transduced about the input signal, S, as compared to the information transferred by an 
individual channel. This information can be aggregated through downstream convergence at a common 
effector, E. 
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 We considered two information theoretic models, similar to models of population 

coding in neural systems103-105, for transmitting a signal S through multiple channels to 

the responses R1, R2, …, Rn, under the assumption of Gaussian variables (see Section 

3.9).  The bush model utilizes independent channels (topologically resembling an upside 

down shrub) (Fig. 3.7A), whereas the tree model signals through a common channel 

(“trunk”) to the intermediate, C, before diverging into independent branches (Fig. 3.7B).  

The information resulting from the bush model is  
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where 2
S  is the variance of the signal distribution, and 2

S R   is the noise (variance) 

introduced in each branch.  Thus, the information can grow logarithmically with the 

number of branches without an upper bound.  In contrast, the information resulting from 

the tree model is  
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where 2
S C   and 2

C R   are the trunk and branch noises, respectively (see Section 3.9).  

As the number of branches increases, the information asymptotically approaches an upper 

limit equal to the mutual information between the input signal and the common 

intermediate, thus the information lost to noise in the trunk determines the maximum 

throughput of a tree network. 

 The key difference between bush and tree networks is the absence or presence of 

this trunk-based information bottleneck.  The biochemical structure of a network can 

resemble a tree, but if the trunk presents little information limitation, the bush model 
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lacking a bottleneck might best estimate the capacity of the network.  Additionally, the 

bush and tree models make various semi-quantitative predictions (see Section 3.10), such 

as the information captured by a network based on the capacities of its component 

pathways.  For example, for a bush network comprising two pathways each with 1 bit 

responses, Eq. 3.3.2 implies 2 2/ 3S S R     and that together they should yield 

1
22 log (1 2(3)) 1.4 bits. 

 

 

Figure 3.7: Information gained by signaling through a network comprising multiple communication 
channels.  (A) Schematic of a bush network with independent channels lacking an information bottleneck.  
(B) Schematic of a tree network with channels sharing a common trunk that forms an information 
bottleneck.  (C) Comparison of bush and tree model predictions for the capacity of the TNF network to 
experimental values.  At 30 min., the NF-B and ATF-2 pathways together capture more information about 
TNF concentration than either pathway alone (bars 1-3), and the tree rather than bush model accurately 
predicts this increase (bars 3-5).  The tree model further predicts a receptor level bottleneck of 1.26  0.13 
bits (bar 6).  In all panels, circles represent noise introduced in the indicated portions of the signaling 
network; see text for definition of symbols.  (D) Joint distribution of NF-B and ATF-2 responses to 30 
min. stimulation of TNF.  Each datapoint represents a single cell, and each concentration of TNF examined 
is shown using a distinct color. 
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TNF activates the NF-B and c-Jun N-terminal kinase (JNK) pathways, stimulating 

nuclear localization of NF-B and phosphorylated activating transcription factor-2 (ATF-

2) (Fig. 3.8A), respectively106.  To determine if the TNF signaling network contains a 

significant upstream information bottleneck limiting the information captured by these 

pathways, we examined whether the bush (bottleneck absent) or tree (bottleneck present) 

network model better approximates the network (Fig. 3.6).  The models are applicable 

because the NF-B (Fig. 3.3B) and ATF-2 (Fig. 3.8B) response distributions are 

approximately Gaussian at all TNF concentrations.   

 

 

Figure 3.8: Bush and tree representations of the TNF signaling network. (A) Schematics of 
information flow through the TNF signaling network highlighting the experimentally testable hypotheses of 
whether the network lacks (bush model, left) or contains (tree model, right) an information bottleneck due 
to the steps of receptor complex activation common to multiple TNF signaling pathways. (B) Distribution 
of ATF‐2 activity in response to TNF. Histograms showing the distribution of nuclear phospho-ATF-2 
concentrations in mouse fibroblasts in response to 30 min. TNF exposure at the indicated concentrations. 
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We found that NF-B alone yielded at most 0.92 bits of information about TNF 

concentration, and ATF-2 alone yielded at most 0.85  0.02 bits (Fig. 3.4B, Table 3.1).  

Together, the bush model predicts that these pathways jointly yield 1.27  0.01 bits (Fig. 

3.7C) and a similar model assuming independent pathway responses that are not 

necessarily Gaussian likewise predicts an increase to 1.13  0.01 bits.  The actual 

information determined by dual staining immunocytochemistry (Fig. 3.7D) was 1.05  

0.02 bits, much lower than both predictions (Fig. 3.7C), demonstrating that the bush 

model does not approximate the TNF network well.  In contrast, the tree model predicts 

1.03  0.01 bits, matching the experimental value within error (Fig. 3.7C), and also 

correctly predicts the statistical dependency between the responses given the signal (Fig. 

3.9). 

 

Figure 3.9: Statistical dependence between NF­κB and ATF­2 responses to TNF. Plot shows the 
experimentally measured statistical dependence between the NF-κB and ATF-2 responses, as quantified by 
the mean value of I(NF-κB; ATF-2 | TNF) (see Sections 3.6.3 and 3.10.3), compared to values predicted by 
the bush and tree network models. The bush model predicts conditional independence between the 
responses and hence zero mutual information, but the tree model predicts conditional dependence resulting 
from the common trunk with mutual information of 0.22 ± 0.01 bits, which corresponds exactly with the 
experimentally observed value of 0.22 ± 0.03 bits. Conditional dependence between the responses may also 
arise from crosstalk between the pathways, but there is likely insufficient time for substantial crosstalk to 
occur following 30 min. TNF exposure. 
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 The correspondence between the tree model predictions and experimental 

measurements strongly indicates that the network contains an information bottleneck.  

The tree model predicts the maximum information that can pass through the bottleneck is 

1.26  0.13 bits (Fig. 3.7C), corresponding to just 21.26 = 2.3 distinguishable TNF 

concentrations.  The known biochemistry of TNF signaling implies the bottleneck (trunk) 

comprises the steps of TNF receptor complex activation common to both pathways, 

including ligand binding, receptor trimerization, and complex formation and activation.  

Since all TNF signaling passes through the receptor complex, multiple pathways in the 

TNF signaling network, activated at the 30 min. time point, only modestly increase the 

information about TNF concentration regardless of the number of pathways or their 

fidelity. 

We next considered whether networks comprising multiple target genes can 

capture substantial amounts of information through time integration.  If the target gene 

product lifetime is long compared to its transcription and translation time scales, the 

accumulated protein concentration is approximately proportional to the time integral of 

signaling activity, thereby averaging out temporal fluctuations107,108.  However, the 

biochemical readout of protein synthesis can introduce extra noise confounding 

determination of the information contained in the time integral.  Fortunately, the 

maximum information captured by a tree network, in which the time integral of 

transcription factor activity is the intermediate signal activating multiple independent 

target genes (Fig. 3.10A, inset), is determined by the trunk (time integration) rather than 

branch noise (readout mechanism).  We measured the information captured by such tree 

networks in cells stably transfected with different copy numbers of a gene for a stable 
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green fluorescent protein (GFP)109 reporting on NF-B activity (Fig. 3.10B).  Using the 

tree model to extrapolate the extent of the bottleneck, under the assumption that ~10 hrs 

TNF exposure induces similar expression level and noise for each gene, indicates that 

1.64  0.36 bits is the maximum information that integrating NF-B activity over the 

experimental time period can yield about TNF concentration (Fig. 3.10A), regardless of 

the readout mechanism. 

 To understand why information was only moderately higher compared to a single 

time point (1.64 versus 0.92 bits), we monitored GFP expression in individual cells, 

finding that, for any given cell, GFP accumulated linearly in time in a nearly 

deterministic fashion, although its onset and accumulation rate varied from cell to cell 

(Fig. 3.10C).  This is consistent with observations made using live cell probes51,52,96 

showing NF-B dynamics to be essentially deterministic over the experimental time scale 

within each cell, but distinct across cells.  We thus conclude that the ability of time 

integration to increase the information about TNF concentration is limited by the lack of 

rapid temporal fluctuations that would otherwise be suppressed by integration over the 10 

hour response. 
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Figure 3.10: Information gained by signaling through a network of multiple genes.  Information 
gained by signaling through networks of multiple genes.  (A)  Plot shows the unique curve (solid black) 
determined by the tree model (inset), passing through the experimentally determined values (circles), for 
information as a function of the number of copies of a NF-B reporter gene.  The upper limit, 
corresponding to the maximum information captured by integrating NF-B activity over time, is 1.64  
0.36 bits (blue dashed line).  (B) Expression level distributions of clonal cell lines containing different 
numbers of copies of an NF-B reporter gene in response to ~10 hrs of TNF.  (C) Time courses 
corresponding to individual cells showing cell-to-cell differences in the onset and rate of NF-B reporter 
gene expression (left).  In each cell, expression is nearly linear and deterministic in time, as quantified by 
the correlation coefficient (right) of the time course following onset of expression (shown schematically in 
inset on left). 
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3.4  Discussion 

 

By treating biochemical signaling systems as information theoretic 

communication channels, we have rigorously and quantitatively shown that in a single 

cell noise can substantially restrict the amount of information transduced about input 

intensity, particularly within individual signaling pathways.  The bush and tree network 

models, which provide a unified theoretical framework for analyzing branched motifs 

widespread in natural and synthetic signaling networks, further demonstrated that 

signaling networks can be more effective in information transfer, although bottlenecks 

can also severely limit the information gained.  Receptor level bottlenecks restrict the 

TNF and also PDGF signaling networks and may be prevalent in other signaling 

systems48. 

 We explored several strategies that a cell might employ to overcome restrictions 

due to noise.  We found that negative feedback can suppress bottleneck noise, which can 

be offset by concomitantly reduced dynamic range of the response.  Time integration can 

increase the information transferred, to the extent that the response undergoes substantial 

dynamic fluctuations in a single cell over the physiologically relevant time course.  The 

advantage of collective cell responses can also be substantial, but limited by the number 

of cells exposed to the same signal or by the information present in the initiating signal 

itself. 

 Responses incorporating the signaling history of the cell might also increase the 

information110,111.  For instance, responses relative to the basal state (fold-change 

response) might be less susceptible to noise arising from diverse initial states100, although 
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this does not necessarily translate into large amounts of transferred information (Table 

3.1).  Similarly, for the reporter gene system described here, ~0.5 bits of additional 

information can be obtained if a cell can determine expression levels at both early and 

late time points.  However, noise in the biochemical networks a cell uses to record earlier 

output levels and to later compute the final response may nullify the information gain 

potentially provided by this strategy.  Overall, we anticipate that the information theory 

paradigm can extend to the analysis of noise mitigation strategies and information 

transfer mechanisms beyond those explored here, in order to determine what specific 

signaling systems can do reliably despite noise. 

 

3.5  Materials and methods 

3.5.1  Cell culture 

  

Wildtype and A20-/- 3T3-immortalized mouse embryonic fibroblasts (kind gift 

from A. Hoffmann, Univ. of California, San Diego) were maintained in low glucose 

Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 10% calf bovine 

serum (American Type Culture Collection) and 10 U/mL each of penicillin and 

streptomycin (Invitrogen).  Cells were seeded at a density of approximately 150 

cells/mm2 onto 15mm diameter circular coverslips (Fisher Scientific) coated with 0.1% 

gelatin (Sigma) placed in a 35mm diameter dish, then serum starved in medium with 

reduced serum concentration (0.1%) overnight before experimentation. 
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3.5.2  Immunocytochemistry 

  

After exposure to murine TNF (Roche) or murine PDGF-BB (Sigma) at the 

specified dose and duration, the cells were washed 3 times with ice-cold phosphate 

buffered saline (PBS, Invitrogen), and fixed in 4% paraformaldehyde (Electron 

Microscopy Sciences) for 20 minutes.  The cells were then permeabilized in 0.1% triton 

X-100 (Sigma) for 5 minutes, and blocked in 10% goat serum (Invitrogen) for 60 

minutes.  Next, the cells were incubated in primary antibody solution consisting of 1:100 

rabbit anti-p65 antibody (Santa Cruz), 1:100 mouse anti-phospho-ATF-2 antibody (Santa 

Cruz), and 2 g/mL Hoechst-33258 (Sigma) for 60 minutes.  Finally, the cells were 

incubated in secondary antibody solution consisting of 1:200 Alexa Fluor 488-conjugated 

goat anti-rabbit and 1:200 Alexa Fluor 594-conjugated goat anti-mouse antibodies 

(Invitrogen) for 60 minutes.  All solutions were made in PBS, and cells were washed with 

PBS in between each step.  To minimize experimentally-induced variability and to enable 

quantitative comparisons across conditions, all doses of TNF and all cell lines were 

assayed at the same time using common reagents.  Finally, the stained coverslips were 

mounted on glass microscope slides and imaged on an Axiovert 200M inverted 

epifluorescence microscope (Zeiss) equipped with Slidebook 4.2 (Intelligent Imaging 

Innovations).  On average, 350 cells were imaged per experimental condition. 

 In Fig. 3.13, immortalized human umbilical vein endothelial cells (kind gift from 

the late J. Folkman, Harvard) expressing GFP112, were stained with 1:100 mouse anti-

GFP antibody (Roche) paired with 1:200 Alexa Fluor 594-conjugated goat anti-mouse 

antibodies. 
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3.5.3  NF-B reporter gene 

  

Wildtype 3T3 mouse embryonic fibroblasts were infected with lentiviruses 

containing a gene for Turbo GFP whose promoter was under the control of NF-B 

(Cignal lenti NF-B reporter, from SA Biosciences).  Lentiviral transfection was 

performed according to the manufacturer’s recommendation using a multiplicity of 

infection of ~200 in the presence of 1 g/mL polybrene (Sigma), followed by selection in 

6 g/mL puromycin (Sigma).  After two rounds of infection, cells were clonally seeded 

in a 48-well plate and tested for response to TNF.  Cells that displayed high levels of GFP 

fluorescence were individually selected and cultured to create clonal lines of cells.  GFP 

expression was monitored in live cells on a Zeiss Axiovert 200M microscope, or 

measured in cells that were fixed by exposure to 4% paraformaldehyde for 20 minutes. 

 

3.5.4  Image and data analysis 

  

Image processing, data analysis, and information theoretic calculations were 

performed using Matlab R2006a (MathWorks).  Background correction, nucleus 

segmentation, and quantification of nuclear concentrations of NF-B and phospho-ATF-2 

were performed as described previously64. 
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3.5.5  ERK2 translocation 

 

Nuclear translocation of ERK2 was measured using ERK2-YFP clone C7, which 

is a H1299 human non-small cell lung cancer cell line clone expressing YFP-tagged 

ERK2 and mCherry-tagged CBX5 (chromobox 5), a protein with persistent nuclear 

localization and unconnected to ERK2 signaling100 (generous gift from Drs. C. Cohen-

Saidon and U. Alon, Weizmann Institute).  The cell line was maintained as described 

in100.  Prior to experimentation, the cells were seeded into a 4-well LabTek optical 

chamber coated with fibronectin (Sigma) and allowed to attach in serum starved 

conditions for 5 hours.  Within the LabTek well, the cells were maintained in transparent 

medium consisting of a riboflavin- and phenol red-free formulation of the RPMI medium 

(Athena Enzyme Systems custom medium) supplemented with 10 U/mL each of 

penicillin and streptomycin.  ERK2 and CBX5 expression was monitored in live cells on 

a Zeiss Axiovert 200M microscope.  Measurements were made for 5 minutes to establish 

a baseline (zero dose) and for 40 minutes following the addition of EGF (Peprotech) in 

transparent medium to the well via syringe pump.  Information theoretic calculations 

were performed for individual cell responses at 10 minutes EGF exposure, the time at 

which ERK2 nuclear translocation peaked. 
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3.6  Numerical computations of mutual information 

3.6.1  Bias correction and error estimate 

  

Mutual information between two variables can be computed from discretized data 

using the standard formula98: 
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where H is the entropy functional, the marginal distribution of the response is given by 

 

 ( ) ( ) ( | )j i j i
i

P R r P S s P R r S s      (3.6.2) 

where the values of R (i.e., rj) are discretized into NR bins and the values of S (i.e. Si) are 

discretized into NS bins.  In the case that the response R is, for example, a two-

dimensional vector then each element of R is discretized into NR bins for 2
RN  bins in 

total.  The formula for mutual information, written in the form shown in Eq. 3.6.1, 

highlights the dependence on P(R|S) which is given by the single cell response data, and 

P(S) which is chosen or assumed. 

 In the limit of infinitely small bins but infinitely many datapoints per bin, the 

discrete mutual information computed using Eq. 3.6.1 converges to the true continuous 
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value.  However, given finite (limited) data, direct estimates of mutual information using 

Eq. 3.6.1 are biased113.  Bias likewise contaminates estimates of the maximum mutual 

information, also known as the channel capacity98.  Since we are able to obtain large 

samples, typically consisting of ~300 single cell responses per signal value, we are far 

away from the severely undersampled regime110,114, and the bias resulting from finite 

sample size can be corrected by adapting universal estimators described in111,115. 

 

 In particular, we consider the series expansion of the mutual information in terms 

of inverse powers of sample size: 

 

 1 2
biased 2

a a
I I

N N    (3.6.3) 

 

where Ibiased is the biased estimate of the mutual information, I is the unbiased estimate 

of the mutual information, N is the total number of samples, and the ai are coefficients 

that depend on underlying distribution of the signal and the response.  The quantity I, 

which we wish to estimate, may be the value of the mutual information under a specific 

distribution of the signal, or the maximum value under all possible distributions of the 

signal.  When N is sufficiently large, as in our case, terms of second order or larger are 

negligible in comparison to the first order term ~1/N, and the estimated mutual 

information is a linear function of inverse sample size. 

 We used jackknife sampling to estimate this linear function.  In particular, we 

sampled fractions of the data, ranging from ~60% to 100%, without replacement and 
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computed the discretized mutual information, Ibiased.  Notably, when computing the 

discretized mutual information, the boundaries of the bins were chosen so that each bin of 

the marginal distribution P(R) has approximately equal density (under the assumption 

that P(S) is uniformly distributed), as in116.  Then, we plotted the mutual information with 

respect to inverse sample size, and extrapolated to infinite sample size, i.e. 1/N  0, to 

obtain I (Fig. 3.11). 

 

 

Figure 3.11: Determination of unbiased mutual information.  A, Linear extrapolation to infinite sample 
size to determine I (see Eq. 2.1.3).  B, I plateaus for those numbers of bins for which I computed for 
randomized data is slightly negative.  The estimate and error for the unbiased mutual information are taken 
as the mean and standard deviation, respectively, of the I values within the plateau.  The data shown in 
this figure illustrate the computation I(NF-B;ATF-2|TNF=50ng/mL). 
 

 The extrapolation procedure was performed for different numbers of response 

bins.  When the number of bins is small, I is an underestimate because differential 

responses are not distinguished by the coarse discretization.  For a moderate number of 

bins, I is constant, indicating that the unbiased mutual information is captured.  The 

range of bin numbers for which this occurs is also known as the “plateau” region115.  For 

a large number of bins, I increases because the sample size is not large enough to 

support very fine discretization, and the linear approximation breaks down.  Other 
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popular approaches for selection of the appropriate coarseness of the data116,117 are 

conceptually very similar. 

 When computing the channel capacity (see Section 3.6.2) for a single response 

(scalar), e.g. the maximum value of I(NF-B;TNF), we observed that the plateau region 

extended to at least 50 bins, a result of the large sample size (~350 cells per TNF dose).  

The mutual information and its error was estimated as the average and standard deviation, 

respectively, of the values of I obtained from 10 to 50 bins, inclusive.  When computing 

the maximum channel capacity for two responses (vector), e.g. the maximum value of 

I(NF-B,ATF-2;TNF), the plateau region was typically between 4 and 15 bins (Fig. 

3.11).  The plateau region was smaller due to the larger ratio between response space and 

the number of datapoints for two responses which scales as the square of the number of 

bins, compared to that for a single response which scales linearly in the number of bins.  

Furthermore, for the channel capacity of either scalar or vector responses, for some bin 

numbers the value of I computed on data randomized by shuffling pairings of signals 

and responses can be negative, though not statistically significantly different than zero118.  

Empirically, we found that these bin numbers reliably indicated the plateau region.  The 

value and error of the mutual information was likewise taken as the average and standard 

deviation, respectively, of the values of I computed on the non-randomized data in the 

plateau (Fig. 3.11). 
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3.6.2  Computing the channel capacity given P(R|S) 

  

In this section, we describe the methods used to determine the channel capacity of 

the signaling unit, C(R;S), that is, the maximum value of I(R;S) under all possible input 

distributions P(S), given the experimental conditional response data P(R|S).  Formally, 

this can be stated as an optimization problem: 
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The constraints ensure that the probability associated with each signal bin is between 0 

and 1 inclusive, and the total probability sums to 1.  Importantly, since I(R;S) is a 

concave function of P(S), and the constraints are also concave (linear) functions of P(S), 

there is a single global maximum for I(R;S)98. 

 

 The concavity of I(R;S) enables easy identification of its maximum value and the 

corresponding P(S) by a variety of algorithms.  One fast and simple method to maximize 

the mutual information is the well-known Blahut-Arimoto algorithm98, which by 

iteratively optimizing the mutual information over the marginal and conditional 

distributions of the input, converges on the input distribution that yields the maximum 

mutual information.  The solution identified by the algorithm was checked using the 

Karush-Kuhn-Tucker conditions, which for this problem were both necessary and 

sufficient conditions satisfied by the optimal solution119.  The Blahut-Arimoto algorithm 
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can further be run on jackknife samples as described above in Sec. 3.6.1, in order to 

obtain unbiased estimates of the maximum mutual information. 

 

  

Figure 3.12: Schematic representation of unimodal and bimodal constraints.  A, Unimodal probability 
distribution for the signal where the peak occurs at signal value Sk.  B, Bimodal probability distribution for 
the signal where the peaks occur at Sk and Sm, with a local minimum at Sl.  The corresponding heatmap 
representations are shown for comparison to Fig. 3.15. 
 

It is well-known that the P(S) that yields the global maximum may be highly 

spiky or discontinuous, which may not represent a physically reasonable distribution.  

Hence, it is prudent to consider the maximum information that can be achieved when 

P(S) is constrained to be “smooth” in some sense.  Smoothness constraints are 

cumbersome to implement and not guaranteed to yield optimal solutions using a modified 

Blahut-Arimoto algorithm120, but these difficulties can be surmounted using a gradient 

ascent method.  In particular, in order to enforce additional constraints on P(S), we 

utilized a gradient ascent method, specifically Matlab’s fmincon function.  (Technically, 

fmincon minimizes a function, but by using –I(R;S) as the objective function, the 
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maximum value of I(R;S) is identified.)  In the absence of additional constraints, fmincon 

and the Blahut-Arimoto algorithm yielded identical results. 

 

 We point out that the signals that are produced from multiple sources, as in the 

case of inflammatory signaling, should exhibit a unimodal (normal-like) shape, or they 

can be bimodal (e.g. inflammation that is either absent or present), with each of the 

modes having a similar shape for the same reason.  This suggests using a definition of 

“smoothness” that is somewhat different from traditional constraints on derivatives of the 

distribution (see, e.g.,121).  Namely, we insist that the distribution P(S) that attains the 

channel capacity is either unimodal or bimodal. 

 

 First, we explored the information capacity that could be obtained if P(S) was 

constrained to be a unimodal distribution.  The corresponding optimization problem was 

written as: 
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for 1  k  NS.  The additional constraints ensured that the single peak of the input 

distribution is at P(Sk) (Fig. 3.12).  The maximization was then performed for each of the 
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NS possible positions of the peak.  For the TNF dose response experiments, the value of 

NS was 13. 

 

 Second, we explored the mutual information that could be obtained if P(S) was 

constrained to be a bimodal distribution.  The corresponding optimization problem was: 
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for 1  k < l < m  NS.  These constraints ensured that the two peaks of the input 

distributions occur at P(Sk) and P(Sm) and the intervening local minimum occurred at 

P(Sl) (Fig. 3.12).  The maximization was then performed for the  3
S

N  possibilities for the 

locations of the two peaks and the local minimum.  For the TNF dose response 

experiments, all    13
33

286S
N    possibilities were tested. 

 

 For both the unimodal and bimodal constrained optimizations, we note that the 

added constraints are concave (linear) functions of P(Si).  As a result, the Karush-Kuhn-

Tucker conditions again guarantee existence of a unique global optimum and enable it to 

be verified119. 
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 To enable fair comparison of the maximum mutual information under no, 

unimodal, or bimodal constraints (as shown in Fig. 3.5), we performed all calculations 

using NR = 10 response bins without performing bias corrections.  Due to the large 

sample size, we estimate that the bias is less than 0.017 bits (using the formulas of122), 

and thus does not affect the conclusions drawn.  In all other figures and text, the 

maximum mutual information is reported without unimodal or bimodal constraints and is 

corrected for bias using the method described above in Sec. 3.6.1. 

 

3.6.3  Computing I(R1;R2|S) given P(R1,R2|S) 

  

In this section, we describe the method used to compute directly from the data the 

mutual information between two responses resulting from a specific signal value.  The 

corresponding formula is: 

 

 
1 2

1 2
1 2 1 2 2

, 1 2

( , | )
( ; | ) ( , | ) log

( | ) ( | )R R

P R R S
I R R S P R R S

P R S P R S
   (3.6.7) 

 

Notably, in comparison to the procedures used to maximize mutual information (Sec. 

3.6.2), computing I(R1;R2|S) can be performed solely with the conditional response data 

P(R1,R2|S) and does not require any assumptions about other distributions.  In particular, 

one does not need to assume the distribution P(S).  Nonetheless, bias correction must still 

be performed to yield reliable estimates of the mutual information. 

 



79 

 

 The bias correction is performed similarly to the method described above (Sec. 

3.6.1).  The data is binned into NR bins along the first response R1 and NR bins along the 

second response R2, with the bin boundaries chosen so that the marginal distributions are 

equally partitioned into the bins.  Jackknife samples are used to extrapolate to the mutual 

information I that would be obtained with infinite sample size, as 1/N  0.  Then I is 

plotted versus the number of bins, NR, and the plateau region is identified as the bin 

numbers for which I computed on randomized data is slightly negative.  The unbiased 

estimate of the mutual information and its error are taken as the average and standard 

deviation of I values within the plateau (as in Fig. 3.11). 

 

3.6.4  Computing I(R1,R2;S) assuming conditionally independent 

responses given the signal 

  

The key assumption of the bush network model (see Sec. 3.8.2) is that the 

responses are conditionally independent given the signal.  For the case of two responses, 

R1 and R2, this implies that 

 

 bush 1 2 1 2( , | ) ( | ) ( | )P R R S P R S P R S  (3.6.8) 

 

The joint conditional distribution, constructed in this way from the marginals, can be 

used to estimate the channel capacity that could be obtained if the responses were the 

result of signaling via a bush network.  The computation is performed by maximizing the 
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mutual information yielded by Pbush(R1,R2|S) over all possible P(S) using the algorithms 

described in Sec. 3.6.2 to yield unbiased estimates of the maximum mutual information. 

 

3.7  Effect of experimental noise on mutual information 

 

 In this section, we determine the amount of observed cell-to-cell variability that 

can be ascribed to true biological variability versus experimental noise, in order to 

evaluate the degree to which estimates of mutual information are affected by 

experimental noise.  With respect to the experimental noise, we are primarily concerned 

with the accuracy with which concentrations of cellular species, particularly nuclear NF-

B, can be determined by immunofluorescence.  Analogous to the method used to 

separate total noise into extrinsic and intrinsic noise123, the total observed variability can 

be partitioned into true biological variability and immunochemical noise by simultaneous 

co-measurement of the species of interest. 
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Figure 3.13: Experimental variability associated with immunofluorescence.  Cells stably expressing 
GFP in the nucleus were fixed and immunostained for GFP.  In each cell, nuclear GFP concentration was 
determined by measuring direct fluorescence from GFP and by GFP immunofluorescence.  The graph 
shows the GFP measurements obtained for 1,096 cells.  There is a tight linear relationship between direct 
fluorescence (proportional to GFP concentration) and immunofluorescence, with a correlation coefficient 
of 0.940. 
  

 First, we determined the level of experimental noise that can be generally ascribed 

to immunofluorescence.  Using cells stably expressing GFP, we measured nuclear 

concentrations of GFP by direct measurement of GFP fluorescence and by 

immunofluorescence using GFP-specific antibodies.  We observed an excellent linear 

correspondence between the direct and stained GFP measurements, with a correlation 

coefficient of  = 0.940 (Fig. 3.13).  Now, if we take the direct GFP measurement to be 

(proportional to) the true GFP concentration, then it is reasonable to define the 

experimental noise as the variance of the stained GFP measurement given the true value 

determined by direct fluorescence.  Likewise, the total variability is given by the variance 

of the stained GFP measurement.  Then, under Gaussian assumptions (cf. Eq. 3.9.4), the 

portion of the total variability resulting from experimental noise is 
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2

2var(stained GFP | true GFP) (1 ) var(stained GFP)
1

var(stained GFP) var(stained GFP)

 
    (3.7.1) 

 

Thus, about 12% (1 – 0.9402 = 0.116) of the total observed variance resulted from 

immunofluorescence noise.  In reality, the direct GFP fluorescence is a slightly noisy 

(due to shot noise, etc.) measurement of the true GFP concentration.  This extra source of 

noise implies that 12% is a slight over-estimate of the actual portion of the total variance 

that results from immunofluorescence. 

 

Figure 3.14: Experimental variability associated with NF-B immunofluorescence.  A, Wildtype 
fibroblasts exposed to 8.0 ng/mL TNF for 30 minutes were stained with two different antibodies specific to 
NF-B applied individually (single stain) or simultaneously (dual stain).  The average NF-B 
immunofluorescence was similar for single and dual staining, indicating minimal interference between the 
two antibodies.  B, Wildtype fibroblasts were exposed to the indicated doses of TNF for 30 minutes, then 
dual stained for NF-B.  At all doses, there was a tight linear relationship between the immunofluorescence 
of the two antibodies with correlation coefficient of ~0.90.  C, Variability in the dual staining experiment 
can be analyzed as a tree network.  The trunk of the network transduces TNF dose into the true NF-B 
concentration, and the branches transduce the true NF-B concentration into the concentration measured by 
the antibodies (Ab1, Ab2) by immunofluorescence.  The variability associated with the trunk represents the 
true biological variability, and the variability associated with the branches represents experimental noise. 
 



83 

 

 To confirm this result specifically for immunofluorescence measurements of NF-

B, we performed another experiment in which the p65 subunit of NF-B was 

simultaneously stained by two distinct antibodies.  The antibodies were chosen to be 

specific to different termini of p65 to minimize interference with one another.  We 

confirmed that dual staining did not substantially affect the measurements yielded by the 

individual antibodies (Fig. 3.14).  We found that, across a wide range of TNF doses, there 

was a linear correspondence between the two stained NF-B measurements with a 

correlation coefficient of   0.90 (Fig. 3.15).  Since both stained measurements are 

affected by experimental noise, neither measurement should be taken to represent the true 

NF-B concentration, and Eq. 3.7.1 does not apply.  Instead, we note that, under 

Gaussian assumptions, the correlation between the joint measurements is the product of 

the correlations between each measurement and the true value: 

 

 
1 2 1 2

2 2 2
, | , | , |R R S C R S C R S    (3.7.2) 

 

where R1 and R2 are the measured levels of NF-B and C is the actual level of NF-B.  

(This expression can be obtained, for example, by considering a Gaussian tree network in 

which the trunk represents biological variability and the branches represent experimental 

noise (Fig. 3.14).)  Since, in this experiment, the measurement noises both result from 

immunofluorescence, we expect that their contributions to the total variability are similar, 

i.e. 
1 2

2 2
, | , |C R S C R S  .  Under this assumption, then, the proportion of the observed variance 

that can be ascribed to measurement noise is 



84 

 

 

 1

1 2

2

, |
1

1
var( | )

C R
R R SR S


    (3.7.3) 

 

In our experiment, this shows that ~10% (1 – 0.90) of the total observed variance is due 

to experimental noise and the rest is true biological variability.  This result is consistent 

with the conservative estimate of 12% obtained from the GFP experiment above. 

 

 Next, we estimate the effect of this level of experimental noise on the measured 

amount of mutual information.  We note that the mutual information is determined by the 

signal-to-noise ratio of the pathway, , as in Eq. 3.10.1: 

 

 
2 2

2 2 2
2 2 2

1
( ; ) log 1     2 1

2
IS S

S R S R

I R S m m
 
  

 
      

 
 (3.7.4) 

 

For the TNF-NF-B pathway, whose maximum mutual information is I(NF-B;TNF) = 

0.916 bits, the corresponding signal-to-noise ratio is  = 2.56.  The above experiments 

show that approximately 10% of the denominator of  is due to experimental noise.  

Thus, continuing the Gaussian assumption, the true value could be as high as 2.56/0.90 = 

2.84.  Plugging into Eq. 3.7.4, this implies that the true maximum mutual information 

may be 0.971 bits.  Stated another way, the mutual information between the true p65 

concentration and the antibody measurement is not smaller than 1
22~ log (1 0.9) 1.66 

bits, which is substantially larger than the measured channel capacity of about 0.92 bits 
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between the TNF signal and the antibody measurement.  Hence the measurement itself is 

not a bottleneck that substantially decreases the apparent value of the mutual information, 

whether the TNF-NF-B relation is Gaussian or not. 

 

 Finally, we note that in the TNF-NF-B pathway, accounting for experimental 

noise as an additive Gaussian process led to correcting the channel capacity by about 

0.055 bits.  For other signal-response pairs (e.g. Table 3.1) in which the initial estimate 

for mutual information is lower than that of the TNF-NF-B pathway, accounting for 

experimental noise will lead to a smaller increase due to the monotonic relationship 

between mutual information and .  Thus, in this study, 0.055 bits is the largest and most 

conservative value for the extent to which mutual information is underestimated due to 

experimental noise. 

 

3.8  Information captured by multiple versus individual 

responses 

 

 In this section, we show that the responses of multiple communication channels 

can obtain more information about a signal than the response of the individual channels.  

In particular, we explore the values for the mutual information resulting from two 

responses, I(R1,R2;S), can attain relative to the mutual information resulting from the 

individual responses, I(R1;S) and I(R2;S).  First, we prove that I(R1,R2;S) is at least as 

large as the greater of I(R1;S) and I(R2;S).  Then, we prove that if the responses result 



86 

 

from independent signaling processes, then I(R1,R2;S) is necessarily larger than I(R1;S) 

and I(R2;S).  Finally, we show that I(R1,R2;S) has no upper bound and can take on large 

values, for example, if the noise in the two responses is negatively correlated.  The reader 

should consider exploring124 for discussion of relations among mutual informations in 

more general multivariate dependencies models. 

 

3.8.1  The lower bound of I(R1,R2;S) is the greater of I(R1;S) and I(R2;S) 

 The chain rule for mutual information gives the following relation: 

 

 1 2 1 2 1( , ; ) ( ; ) ( ; | )I R R S I R S I R S R   (3.8.1)  

 

Since mutual information is always non-negative, 2 1( ; | ) 0I R S R  .  Thus 

1 2 1( , ; ) ( ; )I R R S I R S .  By instead applying the chain rule conditioned on R2, we can 

likewise show that 1 2 2( , ; ) ( ; )I R R S I R S .  The combination of these inequalities 

demonstrates that a lower bound for the information that two responses provide about a 

signal is 

 

 1 2 1 2( , ; ) max( ( ; ), ( ; ))I R R S I R S I R S  (3.8.2) 

 

This lower bound is achieved when either I(R2;S|R1) or I(R1;S|R2) equals zero, that is 

when one response is conditionally independent of the signal given the other response, 

implying no improvement in information using the two responses together.  In other 
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words, the information provided by the two responses together is not smaller than the 

information provided by the more informative individual response. 

 Notably, the proof of this lower bound does not depend on whether R1 or R2 are 

scalars or vectors, a fact that will be utilized in Section 3.8.2. 

 

3.8.2  I(R1,R2;S) is strictly greater than the lower bound for 

conditionally independent responses 

  

 In this section, we consider the case in which responses R1 and R2 are 

conditionally independent given the signal, corresponding to the scenario in which the 

responses are generated by signaling processes that do not interact, other than sharing a 

common signal.  Below, we prove that conditional independence necessarily implies that 

the mutual information of the responses together is strictly greater than the lower bound, 

implying a gain of information compared to either response alone.  The proof of this 

statement does not depend on whether R1 and R2 are scalars or vectors.  Applying the 

proof to the case in which R1 and R2 are scalars implies that the responses of two 

signaling pathways considered together, one which yields output R1 and the other which 

yields output R2, is more informative than either pathway alone.  If instead R1 is a vector 

representing a set of outputs from some (arbitrarily complicated) signaling system then 

the proof implies that adding the conditionally independent response R2, representing 

either a scalar output of a separate pathway or a vector output of a separate signaling 

system, also increases the information about the signal. 
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Theorem:  If I(R1;S) > 0, I(R2;S) > 0, and R1 and R2 are conditionally 

independent given S, then I(R1,R2;S) > max(I(R1;S), I(R2;S)) (strictly 

greater than the lower bound). 

 

Proof:  Suppose without loss of generality that R1 is the most informative 

response, i.e. I(R1;S)  I(R2;S) > 0.  The chain rule for mutual information 

allows us to write 

 

 1 2 1 2 1( , ; ) ( ; ) ( ; | )I R R S I R S I R S R   (3.8.3) 

 

To prove that I(R1,R2;S) is strictly greater than the lower bound, I(R1;S), 

we must prove that I(R2;S|R1) > 0.  This can be proven by contradiction. 

 

Mutual information cannot be negative, so assume that I(R2;S|R1) = 0.  

This implies that R2 and S are conditionally independent given R1, which 

implies that for any given values of R1, R2, and S, the following holds: 

 

 

2 1 2 1 1

1 2 1
2 1

1 1

1 2 2 1 1

2 2 1

( , ) ( ) ( )

( , , ) ( , )
( )

( ) ( )

( , ) ( ) ( ) ( ) ( )

( ) ( )

P R S R P R R P S R

P R R S P R S
P R R

P R P R

P R R S P S P R R P R S P S

P R S P R R









 (3.8.4) 
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where in the last line we used the conditional independence of R1 and R2 

given S.  Since this holds for all values, we can sum the equation over all 

possible values of R1, yielding 

 

 

1 1

1

1 2 1 2 1

2 1 2

2 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

R R

R

P R P R S P R P R R

P R S P R P R

P R S P R







 

             

 (3.8.5) 

Finally, this implies that 

 

 2 2 2( , ) ( ) ( ) ( ) ( )P R S P R S P S P R P S   (3.8.6) 

 

This shows that a necessary condition for I(R1,R2;S) to equal the lower 

bound is that R2 and S are unconditionally independent.  However, this 

would imply that R2 is not informative about S, contradicting the 

assumption that I(R2;S) > 0.  Therefore, the conditions of the claim imply 

that I(R1,R2;S) is strictly greater than I(R1;S) and also strictly greater than 

I(R2;S).   
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3.8.3  The upper bound of I(R1,R2;S) is infinity 

  

In this section we show that I(R1,R2;S) has an infinite upper bound, by considering 

a simple example.  Consider the case in which the responses are scalars given by the 

equations 

 

 1 1

2 2

R S

R S




 
 

 (3.8.7) 

 

where 1 and 2 are noise terms independent of S.  If the noise terms have non-zero 

variance, then the information provided by each individual response, I(R1;S) and I(R2;S), 

is finite. 

 

 Now, suppose further that the noise terms are correlated.  In the extreme, suppose 

that they are exactly negatively correlated such that 1 = –2.  Biologically, this situation 

might be approached if the there is strong mutually repressive crosstalk between the two 

pathway branches, or when both branches are competing for the same signaling molecule 

to activate them.  Then, given knowledge of R1 and R2, their average yields: 

 

 
1 1

1 2 1 22 2( ) ( )R R S

S

    


 (3.8.8) 
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Hence, knowledge of R1 and R2 allows the noiseless recovery of the exact value of S.  If S 

is a continuous variable, which requires an infinite number of bits to specify exactly, then 

1 2( , ; )I R R S  . 

 

 More rigorously, using the methods of Sec. 3.9, one can show that the mutual 

information of the system described by Eq. 3.8.7 is 

2

1 2 2 2

1 1
( , ; ) log 1 2

2 1
S

S R

I R R S

 

 
   

 if S is a normally distributed stochastic variable 

with variance 2
S  , and 1 and 2 are normally distributed each with variance 2

S  and 

correlation .  (See also125.)  As 1   , it is easy to see that 1 2( , ; )I R R S  .  From 

this example, we conclude that 1 2( , ; )I R R S  is unbounded from above. 

 

3.9  Information theoretic analysis of bush and tree networks 

3.9.1  Preliminaries 

  

In this section, we consider signaling networks that take a single signal S and 

broadcast the signal out to n communication channels yielding the responses R1, R2, …, 

Rn.  We are interested in the amount of information that the responses jointly yield about 

the signal, i.e. I(R1,…,Rn;S).  To gain semiquantitative insight into such pathways, we 

assume that (R1, R2, …, Rn, S) is a multivariate normal distribution of dimension n + 1, as 

detailed in the sections below.  The Gaussian assumption enables the mutual information 
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to be solved analytically.  The resulting formulas allow us to understand the relative 

influences of the various sources of noise on the information gathering ability of the 

signaling network and to predict the value of the mutual information.  In order to provide 

a self-contained description of the theoretical framework that is accessible to both 

specialists and non-specialists alike, we here provide a complete and detailed derivation 

of the formulas.  However, we caution the reader that the formulas will not hold, in 

general, for non-Gaussian distributions of the variables. 

 

 First, we establish some mathematical formulas which will be used in the 

derivation of the mutual information for specific network structures.  First, a well-known 

result in information theory is that a multivariate normal distribution of dimension n has 

an entropy of 

 

   2

1
log 2

2
n

H e   (3.9.1) 

 

where || is the determinant of the covariance matrix of the distribution98.  Since the 

marginal and conditional distributions of a multivariate normal distribution are 

themselves normal, it is easy to see that 
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 





  (3.9.2) 

 

where R
   and 

|R S
   are the determinants of the covariance matrix of the responses and 

the responses given the signal, respectively. 

 If we consider just one response, R, then the determinants are given by  

 

 var( )R R  ,  (3.9.3) 

 2
| var( | ) (1 ) var( )R S R S R    ,  (3.9.4) 

 

yielding 

 

 2
2

1
( ; ) log (1 )

2
I R S      (3.9.5)  

As expected intuitively, when there is zero correlation between R and S, their mutual 

information is zero.  In comparison, the information increases as the correlation 

approaches +1 or –1.  If the correlation is perfect (exactly +1 or –1), the information is 

infinite.  Note that this deterministic relation between the information and the correlation 

is a direct consequence of Gaussian assumption about the involved variables.  In general, 
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mutual information among two variables is not smaller than the value calculated using 

the Gaussian assumption. 

 

 Finally, we establish the following lemma, which enables us to compute the 

determinants for multiple responses resulting from either bush or tree signaling networks: 

 

Lemma:  The determinant of the n  n matrix Q whose entries are given 

by ij i j ij iq mm a b   is 21i i
ii i

a
b m

b

  
  

   
 .  Here, the Kronecker delta 

notation (ij = 1 if i = j, and is zero otherwise) indicates that bi terms only 

appear in the diagonal elements of Q. 

 

Proof:  A basic property of the matrix determinant is that it is invariant to 

elementary row addition and subtraction (also known as Gaussian 

elimination).  That is, adding or subtracting a multiple of one row to/from 

another row does not change the determinant.  Therefore, the determinant 

does not change if we subtract 
1

i

i

m
m 

 times row i – 1 from row i, for each of 

the rows i = n, n – 1, …, 2.  These operations yield: 
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 (3.9.6) 

 

Next, we reduce row 2 by adding 
2

1 1

2
1 1

m
m b

m a b
 times row 1 to row 2, yielding: 
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2
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 (3.9.7) 

 

where we have introduced the notation 2

11

( ) 1
n n

i i
ii i

a
d n b m

b

  
   
   

 .  

Now, we claim that after reduction of subsequent rows, that the diagonal 

element of row k  2 equals 
( )

( 1)

d k

d k 
, and the elements of row k to the 

right in columns h = k + 1, …, n equal 

1

1

( 1)

k

k h i
i

m m a b

d k








. 
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The claim can be proven by induction.  Clearly the claim holds for row 2.  

Assume the claim holds for row k.  Then, the reduction of row k + 1 is 

performed by multiplying row k by 
 

1

( ) / 1

k

k

m
km b

d k d k




 and adding it to row k 

+ 1.  For the diagonal element of row k + 1, this yields 
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 (3.9.8) 

 

and for the element in column h > k + 1 to the right of the diagonal, the 

row reduction yields 
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This proves the claim also holds for row k + 1, completing the induction. 
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Since the determinant of the fully row reduced (upper triangular) matrix is 

the product of its diagonal elements, the desired determinant telescopes to 
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as claimed.  

 

3.9.2  Information captured by a Gaussian bush network 

  

 In this section, we derive formulas for the mutual information, under Gaussian 

conditions, between a signal and multiple linear responses activated by a “bush” network.  

The key feature of a bush network is that the network branches into multiple signaling 

pathways at the level of the signal, so that each response is conditionally independent 

given the signal. 

 

 

Figure 3.15: Model of a bush signaling network.  Each pathway branch transduces the signal into a linear 
response Ri, with gain mi, bias bi, and noise i. 
 

 The formal formulation of this model is as follows (Fig. 3.15).  The signal S is a 

normally distributed stochastic variable with variance 2
S .  Each pathway i = 1, 2, …, n 
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yields a linear response i i i iR m S b     where mi and bi are the slope (gain) and 

intercept (bias) respectively between Ri and S in the absence of cellular variability, and i  

is a stochastic variable representing cellular variability in the response Ri.  We assume 

that i  is normally distributed from cell-to-cell with variance 2

iS R   and that the i  terms 

are independent of each other.  As a result, each of the Ri is normally distributed because 

each is the sum of two normally distributed variables, and the Ri are conditionally 

independent given the signal S.  Note that in this general formulation that each pathway 

can have different values for the slope, intercept, and magnitude of noise. 

 

 Since the variance of independent variables add, the variance of each response is 

2 2 2var( )
ii i S S RR m     .  Similarly, the covariance between any two responses is 

2cov( , )i j i j SR R m m   (for all i  j).  Thus, using the lemma in Sec. 3.9, the determinant 

of the response covariance matrix is: 
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When S is given, the variance and covariance terms reduce to 2var( | )
ii S RR S    and 

cov( , | ) 0i jR R S  .  Then, again using the lemma, the corresponding determinant 

evaluates to 
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 Finally, using Eq. 3.9.2, the mutual information between the responses together 

and the signal is 
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The ratio 2 2/
iS S R    can be considered to be a signal-to-noise ratio 98, where 2

S  

represents the signal power and 2

iS R  is the noise (variability) in transmitting from S to 

Ri.  The slope mi can be considered to be a factor that normalizes 2

iS R  , or more 

specifically, allows the individual 2

iS R   to be compared in similar units.  Thus, the 

mutual information of the n responses together can be obtained by summing the signal-

to-noise ratios of the n pathways, when those ratios are given in comparable units.  The 

formula also enables determination of which pathways dominate the mutual information 

obtained by integrating multiple responses together. 

 

 When the n pathways are equivalent the formula simplifies to Eq. 3.3.2.  In 

particular, if all the mi = 1 and the magnitude of the pathway variability is the same 

2 2

iS R S R    for each pathway i = 1, …, n, then the mutual information is: 
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As expected intuitively, the formula reveals that the information increases as the noise 

introduced by each branch ( 2
S R  ) decreases with respect to the spread in the input ( 2

S ).  

Furthermore, the information grows logarithmically with the number of responses 

measuring the signal, in an unbounded fashion. 

 

3.9.3  Information captured by a Gaussian tree network 

  

In this section, we derive formulas for the mutual information, under Gaussian 

conditions, between a signal and multiple linear responses activated by a “tree” network.  

The key feature of a tree network is that the signal activates a common “trunk” before 

branching into the individual pathways.  The trunk terminates at the point of branching 

denoted as C, i.e. the last common intermediate shared by the pathways.  Thus, the 

responses are conditionally independent given C, but not conditionally independent given 

the signal.  In comparison, responses of bush network are conditionally independent 

given the signal. 
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Figure 3.16: Model of a tree signaling network.  The common trunk of the network transduces the signal 
into the intermediate linear response C with gain mC, bias bC, and noise C.  Each downstream pathway 
branch then transduces C into the linear response Ri with gain mi, bias bi, and noise i. 
 

 The formal formulation of the tree network model (Fig. 3.16) is similar to that of 

bush network model.  The signal S is a normally distributed stochastic variable with 

variance 2
S .  C is the last common intermediate in the pathways measuring the signal, 

with C C CC m S b    , where mC and bC are the slope (gain) and intercept (bias) 

respectively between S and C in the absence of cellular variability, and C  is a stochastic 

variable representing cellular variability in the common trunk.  In particular, we assume 

that C  is normally distributed from cell-to-cell with variance 2
S C  . 

 

 Each downstream pathway yields a response i i i iR mC b     where, similarly, 

mi and bi are the slope (gain) and intercept (bias) respectively between Ri and C in the 

absence of cellular variability, and i  is a stochastic variable representing cellular 

variability in the branch from C to Ri.  We assume that i  is normally distributed from 

cell-to-cell with variance 2
S R  .  All of the noise terms i  and C  are independent of 

each other and independent of S. 



102 

 

 Substituting the definition for Ri into the definition of C reveals that Ri is normally 

distributed, and on average a linear function of S with slope (gain) mCmi and intercept 

(bias) mibC + bi: 

 

 ( )i C i i C i i C iR m m S mb b m       (3.9.15) 

 

From this formula, it is easy to see that the variance of each response is 

2 2 2 2 2 2var( )
ii C i S i S C C RR m m m       and that the covariance between any two responses 

is 2 2 2cov( , )i j C i j S i j S CR R m m m m m     (for all i  j).  Thus, using the lemma in Sec. 

3.9.1, the determinant of the response covariance matrix is: 
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When S is given, the variance and covariance terms reduce to 

2 2 2var( | )
ii i S C C RR S m      and 2cov( , | )i j i j S CR R S m m    (for all i  j).  Then, again 

using the lemma, the determinant is: 
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 Finally, using Eq. 3.9.2, the mutual information between the responses together 

and the signal is 
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 (3.9.18) 

 

Similar to the bush network, the information obtained from a tree network depends on 

signal-to-noise ratios.  The information depends on two key ratios: (1) 2 2/
iS C R   , the 

signal power versus the noise in the downstream branches, and (2) 2 2/
iS C C R   , the 

noise in the trunk versus the noise in the downstream branches.  The slope mi can again 

be considered to be a factor that normalizes the noise in the downstream branch, 2

iC R  , 

enabling the noises to be compared in equivalent units.  Likewise, the slope mC 

normalizes the signal power 2
S .  Again, the formula enables determination of which 

sources of variability dominate the mutual information obtained by integrating multiple 

responses together. 

 

 Notably, the tree network contains a bush network embedded within, i.e. the 

network consisting of C and the downstream branches.  The results for bush-type 
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networks show that as the number of branches in the network grows, the information that 

the responses together yield about C grows without bound.  However, the information 

that those responses yield about the signal S approaches a limit: 
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The equivalence to I(C;S) can be seen by considering a bush network (Eq. 3.9.13) with a 

single branch from S to C with slope (gain) mC and cellular variability magnitude 2
S C  .  

(The data processing inequality98 yields the same upper limit, i.e. if S  C  (R1, …, Rn) 

form a Markov chain, then I(R1,…,Rn;S)  I(C;S), but Eq. 3.9.19 shows that the limit is 

actually approached through the use of many pathway branches.)  Thus, many 

downstream branches allow a very accurate and informative estimate of C, but the 

information that these branches can obtain about S is limited by the bottleneck resulting 

from noise in the trunk portion of the pathway from S to C. 

 

 Finally, when the n downstream branches are equivalent the formula simplifies to 

Eq. 3.3.3 in the main text.  In particular, if all the mi = 1 and the magnitude of the 

variability in the branches is the same 2 2

iC R C R    for i = 1, …, n, and we further 

assume for simplicity that mC = 1, then the mutual information becomes: 
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 (3.9.20) 
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Again, the simplified formula highlights the dependence of the information on the two 

key signal-to-noise ratios and the number of downstream branches. 

 

3.10  Predictions made by the bush and tree network models 

  

 The Gaussian, linear response models for tree and bush networks described in 

Sec. 3.8 and 3.9 make specific quantitative predictions for mutual information.  Both 

models make predictions for the information that multiple responses yield about the 

signal, based on the amount of information that the individual responses yield about the 

signal.  The models also predict the mutual information between the responses.  For the 

tree model, one can further predict the information capacity of the trunk.  In this section, 

we derive formulas that enable such predictions.  We illustrate the methods given 

experimental data for n = 2 responses, although they generalize to larger n. 

 

3.10.1  Predicting I(R1,R2;S) for the Gaussian bush network 

  

 Eq. 3.9.13 shows that the information captured by multiple responses emanating 

from a bush network depends on the sum of the signal-to-noise ratios for the individual 

branches.  Reversing the relations, these ratios can be obtained from the information 

captured by the individual responses.  In particular, we may compute 1, the signal-to-

noise ratio for branch #1, as follows: 
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Likewise, for branch #2, 22
2 2 1I   .  Then, Eq. 3.9.13 predicts that the mutual 

information captured by the two responses together is simply: 
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3.10.2  Predicting I(R1,R2;S) for the Gaussian tree network 

  

 Eq. 3.9.18 shows that the information captured by multiple responses emanating 

from a tree network depends on the sums of two signal-to-noise ratios, namely 2 2/
iS C R    

and 2 2/
iS C C R   , whose values are normalized by the slopes (gains) mi and mC.  For 

each branch, the latter ratio 2 2 2
, /

iC i i S C C Rm     can be obtained by rearranging 

expressions given in Sec. 3.9 for the overall conditional variance and covariance of the 

responses: 
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The variance and covariance terms can be measured directly from the experimental data.  

The ratio of the slopes (gains) m2/m1 (or its inverse) can also be determined 

experimentally as the slope of the best fit line through the average values of R2 plotted 

against the average values of R1 that are induced by various levels of the signal S. 

 

 The other key ratio, 2 2 2 2
, 1 /

iS i C S C Rm m    , can be obtained from Eq. 3.9.18 using 

C,i.  For branch #1, this is done as follows 
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 (3.10.4) 

 

Likewise, for branch #2, we have 22
,2 ,2(2 1)(1 )I

S C    .  Together, Eq. 3.9.18 then 

predicts that the mutual information captured by the two responses together is simply: 
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3.10.3  Predicting I(R1;R2|S) for the Gaussian bush and tree networks 

  

 The quantity I(R1;R2|S) measures the amount of information one can obtain about 

a response R1 with knowledge of the other response R2, or vice versa, given the signal.  It 

can be measured experimentally, e.g. by performing the computations of Sec. 3.6.1 on 

data obtained from single cells co-stained for multiple responses.  These experimental 

measurements can then be compared to the values predicted from the bush and tree 

models. 

 

 The key assumption in the bush model is that the responses are conditionally 

independent given the signal.  Therefore, the bush model predicts Ibush(R1;R2|S) = 0. 

 

 On the other hand, the tree model assumes that the responses are not conditionally 

independent, and hence I(R1;R2|S) is greater than zero.  Since R1 and R2 are assumed to be 

jointly normally distributed, the mutual information can be predicted by considering the 

correlation between the responses (Eq. 3.9.5).  In this case, the correlation is: 
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 (3.10.6) 

 

where we used the  notation of Sec. 3.10.2.  The values of C,1 and C,2 can be obtained 

experimentally using the methods also described in Sec. 3.10.2.  Then, plugging into Eq. 

3.9.5 yields the predicted information: 
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 (3.10.7) 

 

3.10.4  Predicting I(C;S) for the Gaussian tree network 

  

 In a tree network, the common trunk from S to C sets a limit on the information 

about the signal that can be transmitted to the downstream branches, and this limit is 

given by I(C;S).  Eq. 3.9.19 shows that for a Gaussian tree network, I(C;S) depends solely 

on the ratio 2 2 2/C S S Cm    .  By examining the definitions of S,1 and C,1 from Sec. 3.10.2 

it can be easily seen that 2 2 2
,1 ,1/ /C S S C S Cm      .  Thus, the predicted value of I(C;S) is 
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I(C;S) can also be predicted from ,2 ,2/S C   if a second response was measured (and so on 

for three or more responses), and the predicted values can be averaged together to yield a 

final prediction. 

 

3.10.5  Predicting I(R1,…,Rn;S) for the Gaussian tree network for an 

arbitrary number of identical branches 

  

 The mutual information for a tree network whose branches have identical levels 

of noise is given by Eq. 3.9.20 
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 (3.10.9) 

 

where the values of mC and mi have been subsumed into 2
S  and 2

S C  , respectively.  

This formula shows that the information essentially depends on just three parameters: n, 

2 2/S C R   , and 2 2/S C C R   .  Here, we show how to fit this equation to experimental 

data.  To simplify the algebra, we will denote the noise ratios as 2 2/S S C R     and 
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2 2/C S C C R    .  Furthermore, we define n to be a function of the mutual information 

resulting from n responses as: 
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 Suppose that the mutual information has been experimentally measured for two 

different values of n (i.e., n1 and n2) and the ratio n1/n2 is also known.  First, we will show 

how to extrapolate to n  .  To do this we solve Eq. 3.10.10 for n, yielding 
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Then, by writing Eq. 3.10.11 for n1 and n2, dividing, and rearranging we obtain 
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Thus, the ratio S/C depends only on experimentally accessible quantities.  Examination 

of Eqs. 3.9.19 and 3.10.8 shows that this ratio allows us to directly compute the mutual 

information resulting from an infinite number of branches as: 
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 Next, suppose that we wish to compute the mutual information for some other 

value of n (or, at least for some other value of n/n2 if the exact value of n2 is not known).  

Then, replacing n1 with an arbitrary value n > 0 in Eq. 3.10.12 and solving for n gives 
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which is a quantity consisting of all known values except n (or n/n2).  Thus, inverting the 

definition of n gives the desired mutual information as a function of n (or n/n2): 
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Chapter 4.  Conclusions  

In this dissertation we have developed new mathematical and experimental 

methodologies to characterize how both noise and information propagate through 

intracellular signaling in further detail.   

 

4.1  Summary of results 

  

In chapter 2, we find that the linear correlation of the average dose responses for 

reporter pairs allows us to develop a mathematical and experimental framework to 

decompose noise in intracellular signal transduction networks.  By applying this natural 

extension of the dual reporter method to the TNF signaling  network, we found that the 

JNK branch contributes more noise than the NF-κB branch.  Further detailed noise 

mapping revealed that within the JNK branch, that the c-Jun branch contributes more 

noise than the ATF-2 branch.  We then considered the effects of negative feedback on 

noise propagation by examining the effects of negative regulation by A20.  By applying 

this framework to wildtype and A20 knockout cell lines, we determined that A20 can 

suppress noise both at the TNF receptor and at the ATF-2 branch level.  Although 

negative feedback could possibly violate the assumptions of independent noise terms, we 

find that this method provides, at minimum, a useful and even predictive first 

approximation of noise propagation within signaling networks.  In addition, because of 

the inherent scalability, this methodology can readily decompose larger networks. 
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In chapter 3, we used principles of information theory to develop a mathematical 

model to quantify the amount of information transduced by biochemical signaling 

pathways.  We found that the TNF pathway was, at best, able to transfer 1 bit of 

information, which is only sufficient for accurate binary decisions.  We then evaluated 

the incorporation of additional pathways to allow for increased information transfer.  We 

found that the addition of an extra pathway, at minimum, adds no additional information 

but at best, can provide a limitless bound of information that can be transferred.  With 

this understanding, we then developed the bush and tree network models.  We found that 

the TNF signaling pathway is best modeled as a tree network; thus, the receptor level 

creates an information bottleneck.  We then investigated the use of multiple pathways to 

aid in information transfer in the context of time averaging.  We found that time 

averaging does not significantly add additional information because NF-κB activity 

behaves deterministically. 

 

4.2  Future outlook and directions 

  

In the past, gene expression systems in isolation, as reviewed in this dissertation, 

have undergone a very thorough characterization to reveal how biological noise is shaped 

by genetic networks.  However, more recently, we have seen a transition towards 

examining components upstream of gene expression to understand how noise can 

propagate through these signal transduction networks.  In the future, we envision that 

with the advent of novel technologies to aid in the rapid characterization of signaling 

pathways we will be able to achieve a deeper understanding of how signaling pathways 
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can shape the propagation of noise at the same level of detail as our current 

understanding of genetic networks.  This capability will allow us to create a more 

comprehensive picture of the limitations of biochemical signaling and aid us in 

understanding the population level benefits of signaling motifs.  In parallel, we find that 

information theory has steadily advanced into the biological lexicon.  Initially used for 

the spike decoding of individual neurons, it is starting to find application in the modeling 

of chemotaxis, embryonic drosophila patterning, and signal transduction. We imagine 

that in the future, this mathematical framework can help trace the information flow 

through signaling networks which will help us understand what biochemical mechanisms 

are directly responsible for the impedance and propagation of information. 

 Holistically, these incremental gains in knowledge will advance us towards 

developing more general mathematical principles and engineering heuristics to draw 

biology closer to a more rule-based predictive science.  Similar to the historical 

progression of electronics, we believe that once these biological principles are discovered 

and established, the engineering ethos will allow us to create whole cell models which 

will allow us to develop novel de novo solutions to pressing biological problems and 

uncover critical insights into existing cellular organisms. 
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