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Abstract

A problem central to many scientific and engineering disciplines is how to

deal with noisy dynamic processes that take place on networks. Examples include

the ebb and flow of biochemical concentrations within cells, the firing patterns of

neurons in the brain, and the spread of disease on social networks. In this thesis, we

present a general formalism capable of representing many such problems by means

of a master equation. Our study begins by synthesizing the literature to provide

a toolkit of known mathematical and computational analysis techniques for dealing

with this equation. Subsequently a novel exact numerical solution technique is de-

veloped, which can be orders of magnitude faster than the state-of-the-art numerical

solver. However, numerical solutions are only applicable to a small subset of processes

on networks. Thus, many approximate solution techniques exist in the literature to

deal with this problem. Unfortunately, no practical tools exist to quantitatively eval-

uate the quality of an approximate solution in a given system. Therefore, a statistical

tool that is capable of evaluating any analytical or Monte Carlo based approximation

to the master equation is developed herein. Finally, we note that larger networks
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ABSTRACT

with more complex dynamical phenomena suffer from the same curse of dimension-

ality as the classical mechanics of a gas. We therefore propose that thermodynamic

analysis techniques, adapted from statistical mechanics, may provide a new way for-

ward in analyzing such systems. The investigation focuses on a behavior known as

avalanching—complex bursting patterns with fractal properties. By developing ther-

modynamic analysis techniques along with a potential energy landscape perspective,

we are able to demonstrate that increasing intrinsic noise causes a phase transition

that results in avalanching. This novel result is utilized to characterize avalanching

in an epidemiological model for the first time and to explain avalanching in biologi-

cal neural networks, in which the cause has been falsely attributed to specific neural

architectures. This thesis contributes to the existing literature by providing a novel

solution technique, enhances existing and future literature by providing a general

method for statistical evaluation of approximative solution techniques, and paves the

way towards a promising approach to the thermodynamic analysis of large complex

processes on networks.

Primary Reader: John Goutsias

Secondary Reader: Andrew Feinberg
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José Moura at Carnegie Mellon University instilled in me the joy of research as an

undergrad. Then, there were those teachers who inspired me early on: Sue Frennesson

showed me the joys of mathematics in middle school, Dr. Michael Greene gave me

the love of physics in high school, and Marcia Mett brought chemistry to life in the

high school laboratory.

Most importantly, my friends and family have made the journey entertaining.

The support of my grandparents Ashford and Carolyn Jenkinson has been invaluable,

and I always look forward to calling them to share the joy of my latest achievement.

Special thanks to my brother and best friend, Gavin, for relocating to Baltimore and

keeping the sometimes mundane life of a graduate student amusing.

vi



Dedication

This thesis is dedicated to my parents who, through their emphasis on quality

education, infected me with an incurable intellectual bug that prepared me for this

career choice. They have taught by example the meaning of hard work and taking

pride in one’s vocation. This lesson is the main reason I was able to persevere and

become the first Dr. Jenkinson in our family. Undoubtedly, the fact that I had an

outstanding childhood has also contributed to my sanity, which most people would

have lost from spending so many hours toiling upwards into the night. Their con-

tinuing support, encouragement and interest in my arcane pursuits make me joyous

beyond words and are causal features of my perpetual smile. Alan and Debbie, I love

you both, and hope you enjoy reading my monolithic tribute to the greatest parents

in the world—although I will understand if you choose to skim some of the details!

vii



Contents

Abstract ii

Acknowledgments iv

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope and organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Markovian Reaction Networks: A Coherent Framework 9

2.1 Reaction networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Chemical systems and reaction networks . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Stochastic dynamics on reaction networks . . . . . . . . . . . . . . . . . . . . 13

2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Biochemical networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Epidemiological networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Solving the master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

viii



CONTENTS

2.3.1 Exact analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Computational methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Exact sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Poisson leaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Gaussian leaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Linear noise approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.5 Macroscopic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Mesoscopic (probabilistic) behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Potential energy landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Macroscopic (thermodynamic) behavior . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.1 Balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.2 Thermodynamic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Numerically Solving the Master Equation: Implicit Euler Method 54

3.1 Motiviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Disease dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Exploiting structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 Numerical solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.4 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Statistical Testing of Master Equation Approximations 73

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 LNA for the population process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



CONTENTS

4.3 Testing the validity of analytical approximations . . . . . . . . . . . . . . . . . . . . 77

4.3.1 The one-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Choosing the significance level and sample size . . . . . . . . . . . . . . . . . 82

4.3.2 Extension to multiple dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Testing the validity of approximative sampling . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 The one-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Choosing the sample size and significance level . . . . . . . . . . . . . . . . . 90

4.4.2 Extension to multiple dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Thermodynamic Analysis of Leaky Markovian Networks 109

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 LMN theory and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Leaky Markovian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.2 LMNs, Markovian reaction networks, and Boolean networks . . . . . . . . . . 116

5.2.3 Coarse graining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.4 Macroscopic equations and LNA . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.5 Thermodynamic stability, robustness, and critical behavior . . . . . . . . . . 120

5.2.6 Noise-induced modes, stochastic transitions and bursting . . . . . . . . . . . 128

5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3.1 An epidemiological model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.2 A neural network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

x



CONTENTS

5.4.1 Thermodynamic analysis reveals critical behavior in LMNs . . . . . . . . . . 140

5.4.2 LNA fails to accurately predict rare large deviation excursions to the active

and inactive states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4.3 Stability of the inactive state is directly linked to the strength of intrinsic noise148

5.4.4 Emergence of the noise-induced mode leads to bursting . . . . . . . . . . . . 149

5.4.5 Avalanche formation becomes a rare event at supercritical network sizes . . . 153

5.4.6 External influences affect bursting . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4.7 Balanced feed-forward structure is not necessary for bursting in NNs . . . . . 156

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 Conclusion and Outlook 159

Appendix A 165

Appendix B 177

Appendix C 191

Appendix D 195

Bibliography 204

Vita 228

xi



List of Tables

3.1 The L2 error and CPU time associated with the four numerical solution methods of
the master equation associated with the SIR model. . . . . . . . . . . . . . . . . . . 66

xii



List of Figures

2.1 A directed, weighted, bipartite graphical representation of the chemical reaction sys-
tem given by Eq. (2.1.2). The molecular species are represented by the white nodes,
whereas, the reactions are represented by the black nodes. Edges emanating from
white nodes and incident to black nodes correspond to the reactants associated with
a particular reaction, whereas, edges emanating from black nodes and incident to
white nodes correspond to the products of that reaction. . . . . . . . . . . . . . . . . 12

2.2 Six methods for solving the master equation. Some methods can be used to approx-
imate the joint probability distributions of the DA and population processes while
other methods can only be used to approximate marginal distributions. Exact analyt-
ical solutions can be obtained only in special cases. Numerical methods are currently
limited to small reaction networks. Large networks require use of a maximum entropy
approximation scheme (not discussed in this thesis) or adoption of the linear noise
approximation method as opposed to a computational method based on Monte Carlo
sampling. For large reaction networks, the macroscopic approximation may be the
only feasible choice. This approximation however can in general be trusted only at
low fluctuation levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 One step of the RIE method for solving the master equation. The upper branch imple-
ments the standard IE method with step-size τ , whereas, the lower branch implements
the IE method with step-size τ/2. “OR” implements Eq. (3.2.5). . . . . . . . . . . . 63

3.2 Joint conditional probability mass function Pr[S(t), I(t)|I(t) > 0] of susceptible and
infected pupils at the end of the 6th day of the influenza epidemic. . . . . . . . . . . 67

3.3 Dynamics of the mean profiles (solid green lines) and the ±1 standard deviation
profiles (dashed red lines) of: (a) susceptible, (b) infected, and (c) recovered pupils.
Monte Carlo estimates of the mean and standard deviation profiles of the infected
pupils are depicted in (d). Blue circles in (b) mark available data. . . . . . . . . . . 68

3.4 (a) Dynamic evolution of the expected number of recovered pupils (solid green line)
and the ±1 standard deviations (dashed red lines), given that at least one pupil is
always infected. (b) The Fano factor (variance/mean) associated with the results
in (a) as a function of time. (c) Dynamic evolution of the probability of extinction
Pr[I(t) = 0], t > 0. (d) The approximation to the steady-state probability mass
function Pr[S(∞), I(∞) = 0], given by the solution at 50 days. . . . . . . . . . . . . 70

xiii



LIST OF FIGURES

4.1 (a) Portion of the decision band Dα(1) of the KS test obtained for the Schlögl model,
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Chapter 1

Introduction

1.1 Motivation

We live in a networked world. We are surrounded by large-scale networks that wield enor-

mous influence over our daily lives; we travel on infrastructure networks, communicate by telecom

networks or the Internet, are governed by the political will of a complex social network, and become

infected by diseases that spread over the network of people who come into physical or sexual con-

tact. We are made of networks; our tissues are perfused by vast supply and drainage networks of

the circulation and lymph systems, and our cells operate through chemical reaction networks that

are so complex they can create an entire human being from a single cell. Our cognition and ability

to understand networks arises from a network; the network of firing neurons in our brain is capable

of computations beyond that of our most powerful supercomputers.

In this thesis, we study processes on networks—quantities that change over time in a way

that is constrained by the network on which it “lives.” An example would be a disease that spreads

over a social network. The process here is the categorization of every person on the social network

with respect to a disease: they are either infected with strep throat or they are healthy and able to

catch strep throat. This process changes with time—we might be healthy today, and sick tomorrow.
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The network constrains this process—if we are in Baltimore, we cannot become infected by our

friends who are sick in Boston. Therefore, although the networks are complex structures, they

actually serve to simplify dynamical processes by constraining the number of possible changes that

can occur at a given time.

In addition to being constrained by an underlying network, the processes that we study

are intrinsically noisy. They are stochastic and cannot be predicted with absolute certainty—when

our sick friends sneeze on us it does not mean we are guaranteed to become sick. The best we can

do is to quantify our certainty with probabilities. Engineers might be tempted to view such noisy

processes as problematic or dysfunctional, since we attempt to design man-made systems to mitigate

the effects of noise. To most engineers, noise is a bad thing. In this thesis, one observation we make

is that nature disagrees with this perspective; instead it has evolved our brains to utilize the intrinsic

noisiness of our neurons to create beautiful, fractal bursting patterns of activity that are thought

to play a crucial role in information processing, storage, and learning. These complex dynamics are

simply not possible in a noise-free environment (see Chapter 5).

As with any rigorous probe into the world around us, our study takes place in the language

of mathematics. Specifically, we study the previous stochastic processes through the mathematical

framework of Markov processes, which has been extensively investigated for more than a century.

The equation of interest here is the forward Kolmogorov equation. What makes our study modern

and interesting is the fact that we focus on processes that are nonlinear and constrained by an

underlying network topology. In particular, chemical physicists have studied a special case of the

forward Kolmogorov equation, known as the chemical master equation, which is capable of describing

nonlinear chemical reactions taking place on large networks [1]. In this work, we present the coherent

framework of Markovian reaction networks that is capable of representing stochastic processes on

networks using a master equation.

The study of the master equation is an area of research that has been evolving for a

long time. Its applicability to many scientific and engineering disciplines has led to parallel and
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often independent developments, which have recently reached a critical mass due to unprecedented

advancements in modern experimental procedures and computational capabilities. By presenting a

rigorous mathematical framework, developments across many fields may be brought together into

a single coherent toolkit. Additional developments presented in this thesis (or in the future) may

serve to simultaneously advance many scientific disciplines. Here, we will focus on computationally

solving the master equation or analyzing the resulting stochastic processes by means of powerful

statistical thermodynamic tools when the solution to the full master equation is intractable.

1.2 Scope and organization of thesis

The tremendous flexibility and generality of Markovian reaction networks make them an

excellent mathematical framework for studying stochastic processes on complex networks. The

coherency of a single framework means that tools and discoveries made in one field may be readily

ported to distant applications. In Chapter 2, we present this rigorous framework, while synthesizing

and reviewing the fractionated literature that deals with problems in this framework.

The literature has shown [2] that the generality of Markovian reaction networks allows even

networks limited to simple components (i.e., mass action propensity functions, see Section 2.2.1) to

perform Turing universal computations with arbitrarily small error that becomes zero at the limit

of infinite system size [3]. This strength also turns out to be one of the most profound weaknesses

of Markovian reaction networks: there will be no single analytical or even computational method

capable of calculating the exact solution of the underlying master equation in complete generality

using finite resources. As a consequence, the development of accurate and computationally feasible

techniques for studying the dynamic behavior of large nonlinear Markovian reaction networks is still

the most important and challenging problem in this field of research. Therefore, while reading this

thesis, one must keep in mind three crucial points:

1. There will never be a “silver bullet” algorithm which can efficiently solve every master equation,

3



CHAPTER 1. INTRODUCTION

so we do not seek one in this work.

2. This thesis does not exist in a bubble, and thus the rich existing literature should be utilized

and enhanced by this work.

3. The full solution to the master equation may not be the most useful tool in the analysis of

these stochastic systems, so we will attempt to develop thermodynamic tools that will prove

useful in these instances.

The way to deal with Point 1 is to focus on specialized structures that may be present in

many reaction networks of interest. By exploiting these structures, we are able to develop rigorous

solution techniques tailored to the specific application at hand. In Chapter 3, we develop such an

approach, which we refer to as the implicit Euler (IE) method. This method numerically calculates

the exact solution to the master equation, up to a desired precision, by exploiting the structure

of the master equation that governs a more informative stochastic process, which has been largely

overlooked in the literature. More specifically, we discuss in Section 2.3.2 how the master equation

on a finite state space can be viewed as a large system of sparse, linear ordinary differential equations

(ODEs). The most successful numerical tool in the literature exploits the linearity and the sparseness

of the problem, resulting in an algorithm that is preferable to other solution methods whenever the

state space is small enough.

In Chapter 3, we observe that the usual Markov process examined in the literature is actu-

ally less informative than a related counting process that has more inherent structure. Specifically,

the probability mass moves monotonically through the state space of a counting process, never mov-

ing backwards towards the origin. We can exploit this by appropriately ordering the state space

(e.g., lexicographically), which adds further structure to the linear system of ODEs. The additional

structure is the fact that the sparse matrix is now also triangular. Therefore, the (usually compu-

tationally expensive) IE method of solving linear ordinary differential equations becomes extremely

efficient, since inversion of the generator matrix (the bottleneck of the IE method) can be calculated
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efficiently via recursive back-substitution. Therefore, the IE method can enjoy a speedup that is

orders of magnitude beyond the state-of-the-art algorithm, while also experiencing many additional

gains, such as numerical stability while ensuring that the solution of the master equation remains a

probability distribution (which is a significant problem in the state-of-the-art algorithm). However,

this added speed and stability is not without limitations. The applicability of the IE method de-

pends on the underlying structure of the reaction network. If the network structure does not satisfy

some well-defined criteria, the IE method should be avoided due to the explosion in the size of the

state space of the counting process. We demonstrate, however, that for a wide class of systems in

epidemiology, the IE method will be superior to the state-of-the-art algorithm.

The are two ways to deal with Point 2. First, as mentioned earlier, we use Chapter 2

to bring together a vast and often non-communicating literature, allowing the open problems in

the field to be more readily identified. One glaring problem we identified is that the large number

of approximate solution techniques are often justified by theoretical limit results which provide

little guidance to a practitioner with a particular network of interest. The practitioner is often left

to blindly use an approximate solution technique, with no way of knowing if egregious errors are

accumulating, leading to papers being published with erroneous results. In fact, a published work

using a common approximation technique (i.e., the linear noise approximation, see Section 2.3.4)

existed in the literature for many years without anyone identifying the large errors caused by the

approximation, until we applied our exact solution technique from Chapter 3 to the same problem

and identified the errors introduced by the approximation method. This experience motivated our

second way to deal with Point 2: we develop a tool in Chapter 4 that provides a statistical algorithm

which is capable of evaluating the accuracy of a given solution technique in a particular system of

interest. This is the first general tool of its kind that is capable of statistically verifying the accuracy

of any approximate solution of the master equation. By utilizing the well-known Kolmogorov-

Smirnov test statistic, we are able to produce confidence bands around the marginal cumulative

distributions that solve the master equation. If an approximation deviates significantly from these
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confidence bands, it should be rejected as an inadequate solution technique; whereas, the confidence

bands also quantify the extent to which a decent approximation technique can be trusted. In this

way, the technique presented in Chapter 4 serves to enhance the rich body of work laid down by

previous research efforts, by allowing a practicing scientist to ignore approximations that provide

erroneous results, and to quantitatively understand the extent to which a given approximation can

be trusted in their system of interest.

Point 3 is well known in the world of statistical mechanics. Consider a gas within a

container. Physicists are clear what the complete description of such a system is (ignoring quantum

or relativistic effects): Hamiltonian dynamics. The state of the gas is given by the position and

momentum of each of its ∼ 1023 molecules, which evolve in time according to Newton’s laws of

motion. For the moment, let us ignore the computational complexity of solving this exceptionally

large system of equations. Let us assume we have a cosmic computer which gives us the answer in

a reasonable time. A mathematician will be surely pleased, having the solution to such a complex

problem; however, as a physicist or engineer trying to understand this system, we will be no more

informed than before having the solution. Understanding the dynamics in such a high-dimensional

state space is simply too complex. This is where statistical mechanics enters the picture, since a few

numbers (calculated through the use of statistical averages), such as temperature, pressure, entropy,

and internal energy, can succinctly describe this enormously complex system in a way that is easily

interpretable.

Likewise, we are aware in this thesis that—analogously to the Hamiltonian equation for

the gas—the master equation and its corresponding solution may not actually be the most practical

description of a large and highly complex process taking place on a network. Thus, we present in

Chapter 5 a special class of Markovian reaction networks, which we call leaky Markovian networks.

These networks have binary state variables, such as a neuron that can be active or quiescent. In

the brain however, knowing the probability for every neuron being active or quiescent would be akin

to knowing the position and momentum of every molecule of gas—information overload, since the
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state space grows exponentially as 2N , where N is the number of nodes in our network. Therefore,

we develop in Chapter 5 statistical mechanical tools for analyzing leaky Markovian networks and

demonstrate that intrinsic noise plays a fundamental and previously unknown role in these systems.

In particular, we demonstrate in Chapter 5 that intrinsic noise induces a phase transition

in leaky Markovian networks leading to avalanching—a complex bursting pattern with fractal prop-

erties. By using the notion of a potential energy landscape, we demonstrate that noise is not only

capable of producing uphill movements on the potential energy landscape, but it is also capable of

warping the landscape itself. In leaky Markovian networks, this warping alters the global stabil-

ity properties of the network, leading to a phase transition that results in avalanching being the

predominant system behavior. As examples of leaky Markovian networks, we study the spread of

Methicillin-resistant Staphylococcus aureus (MRSA) infections and the activity patterns of biological

neural networks. The first example provides the first characterization of avalanching in epidemio-

logical networks. On the other hand, the second example sheds light on the cause of avalanching in

neural networks where the importance of avalanches is an open field of research, but their presence

in real data is often observed [4].

We feel that statistical mechanics tools applied to these networks will pave the way towards

a new paradigm in the study of processes on large networks, where the intractable solution of the

master equation is no longer the central focus of research. Thermodynamic quantities, such as the

potential energy landscape, entropy, internal energy, pressure, and bulk modulus, will become a

primary focus of algorithm development. For example, the original master equation for the spread

of MRSA in a population of 300 individuals is hampered by the fact that the time-evolving prob-

ability distribution “lives” in a state space with 2300 elements. Therefore, if a hypothetical cosmic

computer were to provide the stationary solution to the master equation, one would need to store

(and then analyze) 2300 ' 1090 probability values. Note that there are only ∼ 1080 molecules in the

known universe, so even the cosmic computer is not capable of storing this result. Instead, after

thermodynamic coarse graining of the system, we show how it can be analyzed by (among other
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quantities) an easily computable potential energy landscape that lives in a state space with only

301 elements. We therefore realize in Chapter 5 that the answer most people would think they are

seeking (i.e., the full solution to the original master equation) is not the answer that most people

would want to receive. By shifting focus and effort towards computing thermodynamic summaries

of system properties, we can find greater clarity at reduced cost.

In Chapter 6, we finally provide concluding remarks and discuss future work in the area of

Markov processes on complex networks. For clarity of presentation, we relegate the more involved

mathematical or computational details throughout this thesis to the Appendices.
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Chapter 2

Markovian Reaction Networks:

A Coherent Framework

In this chapter, we provide necessary background on Markovian reaction networks and the

master equation formalism that we will be using throughout this thesis1. The mathematical and

computational framework of Markovian reaction networks encompasses problems at the cutting edge

of a diverse number of scientific fields such as: biochemistry, pharmacokinetics, epidemiology, ecology,

sociology, neurobiology, multi-agent networks, and evolutionary game theory; a more sweeping review

of this framework may be found in [5].

Our main goal is to provide a comprehensive and coherent coverage of recently developed

approaches and methods to model complex nonlinear Markovian reaction networks and analyze their

dynamic behavior. To achieve this, we first review in Section 2.1 a general framework for modeling

Markovian reaction networks and subsequently discuss specific examples within this framework in

Section 2.2. In Section 2.3, we provide a review of the relevant numerical and computational tech-

niques available for estimating or approximating the solution of the master equation. In addition,

1Materials in this chapter are reprinted from “Markovian dynamics on complex reaction networks”, volume 529,
issue 2, by John Goutsias and Garrett Jenkinson, Physics Reports, pp. 199-264, Copyright (2013), with permission
from Elsevier.
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we review in Section 2.4 several mathematical facts pertaining to the mesoscopic (probabilistic)

behavior of the master equation. These facts are well-known from the theory of Markov processes,

but we recast them here in the more specific form dictated by the framework of Markovian reac-

tion networks. In Section 2.5, we discuss a recently developed approach for studying the stationary

behavior of Markovian reaction networks using a potential energy landscape perspective, whereas

we present in Section 2.6 an introduction to the emerging theory of thermodynamic analysis of

Markovian reaction networks.

2.1 Reaction networks

2.1.1 Chemical systems and reaction networks

Networks of chemical reactions are used extensively to model biochemical activity in cells.

It turns out that many physical and man-made systems of interest to science and engineering can be

viewed as special cases of chemical reaction networks when it comes to mathematical and compu-

tational analysis. For this reason, chemical reaction networks can serve as archetypal systems when

studying dynamics on complex networks.

A chemical reaction system is comprised of a (usually) large number of molecular species

and chemical reactions. A group of molecular species, known as reactants, interact through a chem-

ical reaction to create a new set of molecular species, known as products. In general, we can think

of a set of chemical reactions as a system that consists of N molecular species X1, X2, . . . , XN that

interact through M coupled reactions of the form:

∑
n∈N

νnmXn →
∑
n∈N

ν′nmXn, m ∈M, (2.1.1)

where N := {1, 2, . . . , N} andM := {1, 2, . . . ,M}. The quantities νnm ≥ 0 and ν′nm ≥ 0 are known

as the stoichiometric coefficients of the reactants and products, respectively. These coefficients tell

us how many molecules of the n-th species are consumed or produced by the m-th reaction. In
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particular, the notation used in Eq. (2.1.1) implies that occurrence of the m-th reaction changes the

molecular count of species Xn by snm := ν′nm − νnm, where snm is known as the net stoichiometric

coefficient.

The inter-connectivity between components in a chemical reaction system can be graphi-

cally represented as a network [6,7] and, more specifically, by means of a directed, weighted, bipartite

graph. Since molecular species react with each other to produce other molecular species, we can

refer to this network in more general terms as a reaction network.

To illustrate how we can map a chemical reaction system to a network, let us consider the

following reactions that correspond to a quadratic autocatalator with positive feedback [8]:

S → P

D + P → D + 2P

2P → P + Q

P + Q → 2Q

P → ∅

Q → ∅,

(2.1.2)

where the last two reactions indicate the degradation of molecules P and Q. This chemical reaction

system is comprised of N = 4 molecular species and M = 6 reactions. We can (arbitrarily) label the

molecular species as X1 = S, X2 = P, X3 = D, X4 = Q, and the reactions as 1, 2, . . . , 6. We can now

represent the system by the network of interactions depicted in Fig. 2.1. This network consists of

two types of nodes: those representing the molecular species (white circles) and those representing

the reactions (black circles). The directed edges represent interactions between molecular species

and reactions and, naturally, connect only white nodes with black nodes. Edges emanating from

white nodes and incident to black nodes correspond to the reactants associated with a particular

reaction, whereas, edges emanating from black nodes and incident to white nodes correspond to the

products of that reaction. Edges are labeled by their weights, which correspond to the stoichiometric

coefficients associated with the molecular species represented by the white nodes and the reactions
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Figure 2.1: A directed, weighted, bipartite graphical representation of the chemical reaction system
given by Eq. (2.1.2). The molecular species are represented by the white nodes, whereas, the reactions
are represented by the black nodes. Edges emanating from white nodes and incident to black nodes
correspond to the reactants associated with a particular reaction, whereas, edges emanating from
black nodes and incident to white nodes correspond to the products of that reaction.

represented by the corresponding black nodes. For simplicity, an edge is not labeled when the value

of the associated stoichiometric coefficient is one.

An alternative representation of a reaction network is by means of the two N×M stoichio-

metric matrices V and V′ with elements νnm and ν′nm, respectively. These matrices play a similar

role as the adjacency matrix of a simple graph [7]. For the reaction network depicted in Fig. 2.1, we

have that

V =



1 0 0 0 0 0

0 1 2 1 1 0

0 1 0 0 0 0

0 0 0 1 0 1


and V′ =



0 0 0 0 0 0

1 2 1 0 0 0

0 1 0 0 0 0

0 0 1 2 0 0


. (2.1.3)

It is not difficult to see that, given the two stoichiometric matrices V and V′, we can uniquely

construct the chemical reaction system given by Eq. (2.1.2) and, therefore, the network depicted

in Fig. 2.1. Hence, knowledge of the two stoichiometric matrices completely specifies the network
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topology. Note that a quick glance of these matrices may allow us to make some interesting obser-

vations about the chemical reaction system at hand. For example, the fact that all but one of the

elements of the first row of matrix V are zero indicates that the molecular species X1 is a reactant

only in one reaction, whereas, the fact that the first row of matrix V′ is zero indicates that this

species is not produced by any reaction. Moreover, the last two zero columns of matrix V′ indicate

that reactions 5 and 6 do not result in any products (i.e., they act as sink nodes).

Although the mathematical study of the topological structure of a reaction network is an

important topic of research, we will not consider this problem here. Moreover, we will not consider

situations in which the topology of the network varies with time. The reader is referred to [7]

and the references therein for such topological considerations. Instead, our objective is to discuss

mathematical methods and computational techniques for the modeling and analysis of the dynamic

behavior of reaction networks.

2.1.2 Stochastic dynamics on reaction networks

In many reaction networks of interest, the underlying reactions may occur at random times.

If Zm(t) denotes the number of times that the m-th reaction occurs within the time interval [0, t),

then {Zm(t), t ≥ 0} will be a random counting process [9]. By convention, we set Zm(0) = 0 (i.e.,

the reaction never occurs before the initial time t = 0). We can employ the M × 1 random vector

ZZZ(t) with elements Zm(t), m = 1, 2, . . . ,M , to characterize the state of the system at time t > 0.

Zm(t) is usually referred to as the degree of advancement (DA) of the m-th reaction [1]. For this

reason, we refer to the multivariate counting process {ZZZ(t), t > 0} as the DA process.

An alternative way to characterize a reaction network is by using the N × 1 random state

vector

XXX(t) := xxx0 + SZZZ(t), t ≥ 0, (2.1.4)

where S := V′ − V is the net stoichiometric matrix of the reaction network and xxx0 is some known

value of XXX(t) at time t = 0. Usually, the n-th element Xn(t) of XXX(t) represents the population
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number of the n-th species present in the system at time t, although this may not be true in certain

problems. We will be referring to the multivariate stochastic process {XXX(t), t > 0} as the population

process. For a given initial population vector xxx0, Eq. (2.1.4) allows us to uniquely determine the

random population vector XXX(t) from the DAs ZZZ(t), provided that ZZZ(t) is almost sure finite.

A large class of reaction networks can be characterized by Markovian dynamics, in which

case we refer to them as Markovian reaction networks. Markovian reaction networks are based on

the fundamental premise that, for a sufficiently small dt, the probability of one reaction to occur

within the time interval [t, t + dt) is proportional to dt, with proportionality factor that depends

only on the species population present in the system at time t. Specifically, we have that

Pr
[
one reaction m occurs within [t, t+ dt) |XXX(t) = xxx

]
= πm(xxx)dt+ o(dt), (2.1.5)

for some function πm(xxx) of the population, known as the propensity function [10], where o(dt) is a

term that goes to zero faster than dt. Under these assumptions, {Zm(t), t > 0} is a (homogeneous)

Markovian counting process with intensity πm(XXX(t)). In particular, the probability pZZZ(zzz; t) :=

Pr[ZZZ(t) = zzz | ZZZ(0) = 0] associated with this process satisfies the following partial differential

equation (see Appendix A):

∂pZZZ(zzz; t)

∂t
=
∑
m∈M

{
αm(zzz − em)pZZZ(zzz − em; t)− αm(zzz)pZZZ(zzz; t)

}
, t > 0, (2.1.6)

where

αm(zzz) :=


πm(xxx0 + Szzz), if zzz ≥ 0

0, otherwise ,

(2.1.7)

and em is the m-th column of the M ×M identity matrix [11–13]. This equation is initialized by

setting pZZZ(zzz; 0) = ∆(zzz), where ∆(zzz) is the Kronecker delta function [i.e., ∆(0) = 1 and ∆(zzz) = 0,

if zzz 6= 0]. It turns out that the population process {XXX(t), t > 0} is a Markov process as well with

probability pXXX(xxx; t) := Pr[XXX(t) = xxx | XXX(0) = xxx0] that satisfies the following partial differential

equation:

∂pXXX(xxx; t)

∂t
=
∑
m∈M

{
πm(xxx− sm)pXXX(xxx− sm; t)− πm(xxx)pXXX(xxx; t)

}
, t > 0, (2.1.8)
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initialized by pXXX(xxx; 0) = ∆(xxx−xxx0), where sssm is the m-th column of the net stoichiometric matrix S.

For notational simplicity, we hide the dependency of pXXX(xxx; t) on xxx0. Most often, Eq. (2.1.6) and

Eq. (2.1.8) are referred to as master equations although they are both special cases of a differential

form of the Chapman-Kolmogorov equations in the theory of Markov processes (see Appendix A).

Note that the solution qXXX(xxx; t) of Eq. (2.1.8), initialized with an arbitrary probability mass function

q(xxx), is related to the solution pXXX(xxx;xxx0, t) of Eq. (2.1.8), initialized with ∆(xxx − xxx0), by qXXX(xxx; t) =∑
xxx0
pXXX(xxx;xxx0, t)q(xxx0). Therefore, it suffices to only calculate pXXX(xxx;xxx0, t), for every xxx0 such that

q(xxx0) 6= 0. For this reason, we focus our discussion on solving Eq. (2.1.8) initialized with ∆(xxx−xxx0).

The previous master equations provide a suggestive interpretation on how the probabilities

pZZZ(zzz; t) and pXXX(xxx; t) evolve as a function of time. For example, Eq. (2.1.8) implies that the probability

pXXX(xxx; t) of the population process XXX(t) taking value xxx increases during the time interval [t, t+dt) by

an amount dt
∑
m∈M πm(xxx−sm)pXXX(xxx−sm; t) due to possible transitions from states xxx−sssm, m ∈M,

at time t, to state xxx at time t + dt. However, during the same time period the probability pXXX(xxx; t)

also decreases by an amount dt
∑
m∈M πm(xxx)pXXX(xxx; t) due to possible transitions from state xxx at

time t to states xxx+ sssm, m ∈ M, at time t+ dt. Note finally that, in most practical situations, the

elements of xxx are limited to being inside a finite set (e.g., if xn counts the number of individuals,

then it will be non-negative and bounded from above by the total number of allowed individuals).

As a consequence, if an element of xxx takes value outside the allowable range, then the probability

of this state and the propensity to enter this state will both be zero [i.e., pXXX(xxx; t) = 0, for all t, and

πm(xxx− sssm) = 0, for all m ∈M].

Although the DA process uniquely determines the population process via Eq. (2.1.4),

the opposite is not true in general. This is due to the fact that the matrix STS may not be

invertible. Invertibility of STS is only possible when the nullity of S is zero, in which case

ZZZ(t) = (STS)−1ST [XXX(t) − xxx0] and the DA process can be uniquely determined from the popula-

tion process. Therefore, we can consider the DA process to be more informative in general than

the population process. Note that, if the solution pZZZ(zzz; t) of the master equation (2.1.6) is known,
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then we can calculate the probability mass function pXXX(xxx; t) without having to solve the master

equation (2.1.8). Since we are dealing with discrete random variables, we have that

pXXX(xxx; t) =
∑

zzz∈B(xxx)

pZZZ(zzz; t), for t ≥ 0, (2.1.9)

where B(xxx) := {zzz : xxx = xxx0 + Szzz}.

2.2 Examples

We now provide a few examples which clearly demonstrate that the previously discussed

general framework for reaction networks, based on Eq. (2.1.1), is sufficiently general to characterize

Markovian dynamics on many other important networks. Each example is associated with a set of

“species” that affect each other’s population by interacting through well-defined “reactions.” To

determine the DA and population dynamics, we only need to specify the mathematical form of the

underlying propensity functions – from these, the dynamics follow by solving Eq. (2.1.6) for pZZZ(zzz; t)

or Eq. (2.1.8) for pXXX(xxx; t). For a more comprehensive list of examples, see [5].

2.2.1 Biochemical networks

When dealing with biochemical reactions, we usually assume that the system is well-stirred

and in thermal equilibrium at fixed volume. It can be shown in this case that the probability of a

randomly selected combination of reactant molecules at time t to react through the m-th reaction

during the infinitesimally small time interval [t, t+ dt) is proportional to dt, with a proportionality

factor κm known as the specific probability rate constant of the reaction [14]. As a consequence,

Pr
[
one reaction m occurs within [t, t+ dt) |XXX(t) = xxx

]
= κmγm(xxx)dt+ o(dt),

where γm(xxx) is the number of distinct subsets of molecules that can form a reaction complex at

time t, given by

γm(xxx) =
∏
n∈N

(
xn
νnm

)
=
∏
n∈N

[xn ≥ νnm]
xn!

νnm!(xn − νnm)!
, (2.2.1)
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with [a1 ≥ a2] being the Iverson bracket (i.e., [a1 ≥ a2] = 1, if a1 ≥ a2, and 0 otherwise). Note that

the Iverson bracket guarantees that a reaction will proceed only if all reactants are present in the

system. As a consequence, we obtain the following propensity functions:

πm(xxx) = κm
∏
n∈N

(
xn
νnm

)
, for m ∈M, (2.2.2)

which are said to follow the mass-action law. We use the convention 0! = 1, so
(
xn

0

)
= 1, indicating

that the propensity function only depends on the state of the reactants.

We should note here that certain reactions cannot be adequately characterized by propen-

sity functions that follow the mass-action law. For example, let us consider a reaction X1 +X2 → X3

that can occur only when a molecule X1 is bound by at least one molecule X2 at two independent

binding sites with the same affinity θ. It can be shown (e.g., see [15]) that the fraction of molecules X1

bound by X2 is given by θx1/(1 + θx1). This leads to the following hyperbolic propensity function

for the reaction:

π(x1, x2) =
κθx1x2

1 + θx1
, (2.2.3)

where κ is the associated specific probability rate constant. Clearly, the mathematical form of the

propensity function of a given reaction depends on the underlying molecular mechanism.

2.2.2 Epidemiological networks

Epidemiological networks study the spread of infectious diseases or agents through a pop-

ulation of individuals. Although numerous publications can be found on the subject, we refer the

reader to [7] for an elementary introduction. For a mathematical review of deterministic epidemi-

ological models, see [16], whereas, for a stochastic modeling approach to epidemiological modeling,

see [17].

To illustrate the connection between epidemiological networks and Markovian reaction net-

works, we consider the simplest and most widely used model, known as the SIR epidemic model.

In this model, an individual in a population can be in one of three states with respect to a dis-
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ease: susceptible (S), infected (I), or resistant (R). According to this model, there are two types

of interactions that an individual may undergo: (a) if a susceptible individual comes into contact

with an infectious individual, the susceptible person can be infected, and (b) an infected individual

may become resistant if his immune system fights off the infection and confers resistance, or if the

individual dies by the infection. These interactions can be modeled by a reaction network comprised

of N = 3 species (S, I, and R) that interact through the following M = 2 reactions:

X1 +X2 → 2X2

X2 → X3 ,

(2.2.4)

where X1 = S, X2 = I and X3 = R. In this case,

V =


1 0

1 1

0 0

 , V′ =


0 0

2 0

0 1

 , and S =


−1 0

1 −1

0 1

 . (2.2.5)

We can now assume that the probability of a randomly selected susceptible individual at

time t to become infected by a randomly selected infectious individual during an infinitesimally small

time interval [t, t + dt) is proportional to dt, with proportionality factor κ1 that does not depend

on the particular individuals involved. Moreover, we can assume that the probability of a randomly

selected infected individual at time t to recover or die from the disease during [t, t + dt) is also

proportional to dt, with proportionality factor κ2 that does not depend on the particular infected

individual. Then, the previous interactions lead to a Markovian reaction network with mass-action

propensity functions given by [17]

π1(x1, x2, x3) = κ1x1x2 and π2(x1, x2, x3) = κ2x2, (2.2.6)

where x1, x2, x3 are the populations of susceptible, infectious, and resistant individuals, respectively.

We can use the previous 3-species/2-reactions motif, given by Eq. (2.2.4), to construct

more complex Markovian reaction networks that model the spread of an infectious disease in a

population of individuals grouped into classes (e.g., households, work spaces, cities, etc.); see [18].
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We may group, for example, individuals into two classes, those living in Baltimore and Philadelphia,

and give each class its own distinct set of variables, namely X1, X2, X3, for susceptible, infected,

and resistant individuals in Baltimore, as well as X4, X5, X6, for susceptible, infected, and resistant

individuals in Philadelphia. Each class will be characterized by the previous 3-species/2-reactions

motif, resulting in the following four reactions:

X1 +X2 → 2X2

X2 → X3

X4 +X5 → 2X5

X5 → X6 .

(2.2.7)

In this case however there is also a flow (by air, road, or rail) of individuals between the two different

cities, which we can model by using the following six reactions:

X1 → X4

X4 → X1

X2 → X5

X5 → X2

X3 → X6

X6 → X3 .

(2.2.8)

The propensity functions associated with these new reactions will be proportional to the population

of the input species, with the proportionality factor being the specific probability rate constant of

an individual traveling from one city to the other. In this fashion, we can build complex Markovian

reaction network models for epidemiological dynamics that are more realistic and more predictive

than traditional deterministic models.

Likewise, new reactions may be incorporated into the epidemiological network to account

for additional transitions between states. For instance, if we assume that a vaccine is available,

then we must include the reaction X1 → X3 in the formulation. Vital dynamics (i.e., births and
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deaths) may also be included in this fashion. For example, if infants born at a fixed rate are

always susceptible, then the reaction ∅ → X1 must be included in the system. Finally, one may

consider social networks on which epidemiological networks reside. Specifically, age stratification in

the population [16], or the scale-free structure of social/sexual networks [7], may be handled in a

manner similar – albeit not identical – to the aforementioned geographic considerations.

2.2.3 Neural networks

A discussion on reaction networks cannot be complete without mentioning biological neural

networks. With 100 billion or more neurons in the human brain connected by 100-500 trillion

synapses, there is no other reaction network that can compete in size and complexity.

There is a large body of literature surrounding the modeling and analysis of biological

neural networks. As an example, we consider a Markovian reaction model for neural networks

recently proposed in [19] that is intuitive enough for novices in neurobiology to comprehend and yet

rich enough to be a viable candidate for understanding many features of this preeminent reaction

network. The model consists of L neurons, with each neuron being in either a quiescent or an active

state. Let X2l−1 and X2l denote a quiescent or active neuron l, respectively. We can assign the

following two reactions to the l-th neuron in the network:

X2l−1 +
∑
l′ 6= l

νl′lX2l′ → X2l +
∑
l′ 6= l

νl′lX2l′

X2l → X2l−1,

(2.2.9)

where νij measures the synaptic weight between neurons i and j, with a positive value indicating

an excitatory synapsis and a negative value indicating an inhibitory synapsis. Note that the first

reaction models transition of the l-th neuron from the quiescent to the active state, which is assumed

to be influenced by appropriately weighted active neurons X2l′ , l
′ 6= l, in the network [see Eq. (2.2.10)

below] that act as “catalysts.” On the other hand, the second reaction models transition of the

neuron from the active to the quiescent state, which is assumed to occur constitutively. As a

consequence, we obtain a reaction network with N = 2L species and M = 2L reactions.
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We can describe this system by a 2L × 1 state vector xxx with binary-valued 0/1 elements

x2l−1, x2l indicating the state of the l-th neuron (with 0 being quiescent and 1 being active). Due to

the fact that a neuron must be either quiescent or active, the state variables must satisfy the “mass

conservation” relationships x2l−1 +x2l = 1, for l = 1, 2, . . . , L. It has been suggested in [19] that the

probability of the l-th neuron becoming active during an infinitesimally small time interval [t, t+dt),

given that the neuron is quiescent at time t, can be taken to be x2l−1[φl(xxx) > 0] tanh[φl(xxx)]dt+o(dt),

where [a > 0] is the Iverson bracket and φl is the net synaptic input to the l-th neuron, given by

φl(xxx) =
∑
l′ 6= l

νl′lx2l′ + ηl, (2.2.10)

with ηl being an external input to the neuron. The term x2l−1 ensures that the neuron becomes

active within [t, t+ dt) only when it is quiescent at time t. As a consequence, the propensity of the

first reaction in Eq. (2.2.9) will be given by

π2l−1(xxx) = x2l−1[φl(xxx) > 0] tanh[φl(xxx)], (2.2.11)

and therefore depends on the synaptic inputs from neurons connected to the l-th neuron and any

external input to that neuron. On the other hand, if we assume that the l-th neuron decays from

an active to a quiescent state at a constant rate γl, then the propensity of the second reaction will

be given by

π2l(xxx) = γlx2l, (2.2.12)

where the term x2l ensures that the neuron becomes inactive within [t, t+ dt) only when it is active

at time t.

2.3 Solving the master equation

Although the algebraic form of the master equations (2.1.6) and (2.1.8) is simple, solving

these equations [i.e., calculating the probabilities pZZZ(zzz; t) and pXXX(xxx; t) at each time t > 0] is a difficult

task in general. Many methods have been proposed in the literature to address this problem, which

21



CHAPTER 2. MARKOVIAN REACTION NETWORKS

MASTER EQUATION

EXACT
ANALYTICAL

METHODS

NUMERICAL
METHODS

COMPUTATIONAL
(MONTE CARLO)

METHODS

LINEAR NOISE
APPROXIMATION

MACROSCOPIC
APPROXIMATION

IN
C

R
E

A
S

IN
G

 N
E

T
W

O
R

K
  S

IZ
E

JOINT JOINT MARGINAL NO

D
E

C
R

E
A

S
IN

G
 F

L
U

C
T

U
A

T
IO

N
S

DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION

MAXIMUM
ENTROPY

APPROXIMATION

Figure 2.2: Six methods for solving the master equation. Some methods can be used to approximate
the joint probability distributions of the DA and population processes while other methods can
only be used to approximate marginal distributions. Exact analytical solutions can be obtained
only in special cases. Numerical methods are currently limited to small reaction networks. Large
networks require use of a maximum entropy approximation scheme (not discussed in this thesis) or
adoption of the linear noise approximation method as opposed to a computational method based
on Monte Carlo sampling. For large reaction networks, the macroscopic approximation may be the
only feasible choice. This approximation however can in general be trusted only at low fluctuation
levels.

can be grouped into the six general categories depicted in Fig. 2.2. In the following, we discuss the

most prominent techniques available to date. Whether a given method can be applied to a particular

problem depends on the size and complexity of the reaction network at hand.
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2.3.1 Exact analytical methods

Deriving exact analytical solutions for pZZZ(zzz; t) and pXXX(xxx; t) is possible only in simple cases

(e.g., see [20–29]). For example, an analytical solution for the master equation (2.1.8) can be derived

in the case of a linear reaction network (i.e., a network with linear propensity functions). It has been

shown in [25] that, for closed linear reaction networks (i.e., linear reaction networks with fixed net

population), the solution of the master equation (2.1.8) is a multinomial distribution, provided that

the initial joint distribution is also multinomial. Moreover, for open linear reaction networks (i.e.,

linear reaction networks with varying net population), the solution of the master equation (2.1.8) is

a product Poisson distribution, provided that the initial joint distribution is also product Poisson

(see also [27]). These results are special cases of a more general result derived in [28] according to

which the probability distribution pXXX(xxx; t) of the population process in a linear reaction network with

initial state xxx0 can be expressed as the convolution of multinomial and product Poisson distributions

with time-dependent parameters that evolve according to well-defined systems of first-order linear

differential equations (see also [26]).

2.3.2 Numerical methods

Substantial effort has been focused recently on approximately solving the master equa-

tion (2.1.8) using numerical techniques. Although the methods developed so far show promise for

addressing this problem, they are mostly limited to relatively small reaction networks. For this rea-

son, we only provide a brief discussion here. The interested reader can find details in the references.

The master equation (2.1.8) can be expressed as a linear system of coupled first-order

differential equations, given by

dppp(t)

dt
= Pppp(t), t > 0, (2.3.1)

where ppp(t) is a K×1 vector that contains the nonzero probabilities pXXX(xxx; t), xxx ∈ X , of the population

process XXX(t) and P is a large K×K sparse matrix whose structure can be inferred directly from the
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master equation. When the columns of the net stoichiometric matrix S are all different from each

other, the only nonzero elements of the i-th column of P are M off-diagonal elements with values

given by πm(xxxi), and the diagonal element, whose value is given by −
∑M
m=1 πm(xxxi), where M � K

is the number of reactions. If we assume that the cardinality K of the state-space X is finite, then

we can calculate the probabilities pXXX(xxx; t) by solving Eq. (2.3.1), in which case

ppp(t) = exp(tP) ppp(0), for t ≥ 0. (2.3.2)

This simple idea has led to a numerical technique, proposed in [30], for approximately solving the

master equation known as finite state projection (FSP). This method requires an appropriate trunca-

tion of the state-space to determine the smallest possible set X and development of a computationally

feasible algorithm for calculating the matrix exponential in Eq. (2.3.2).

Although a number of methods are available for computing matrix exponentials (e.g.,

see [31]), we briefly discuss here a popular technique known as Krylov subspace approximation (KSA)

method [32, 33]. For a sufficiently small time step τ > 0, this is the best available method for ap-

proximating the vector ppp(t + τ) = exp(τP) ppp(t), when P is a large and sparse matrix. This is done

by using a polynomial series expansion of the form:

p̂pp(t+ τ) = c0ppp(t) + c1τPppp(t) + · · ·+ cK0−1(τP)K0−1ppp(t), (2.3.3)

where the coefficients c0, c1, . . . , cK0−1 are estimated by minimizing the least-squares er-

ror ||ppp(t+ τ)− p̂pp(t+ τ)||22. It turns out that the optimal K0-th order polynomial ap-

proximation of ppp(t+ τ) is a point in the K0-dimensional Krylov subspace K(t) =

span
{
ppp(t), τPppp(t), . . . , (τP)K0−1ppp(t)

}
. This element can be approximated by

p̂pp(t+ τ) := ||ppp(t)||2V(t) exp{τH(t)} eee1, (2.3.4)

where V(t) is a K ×K0 matrix whose columns form an orthonormal basis for the Krylov subspace

K(t) and H(t) is a K0 ×K0 Hessenberg matrix (upper triangular with an extra subdiagonal), both

computed by the well-known Arnoldi procedure [33]. Finally, eee1 is the first column of the K0 ×K0

identity matrix.
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The KSA method reduces the problem of calculating the exponential of a large and sparse

K × K matrix P to the problem of calculating the exponential of the much smaller and dense

K0 ×K0 matrix H (K0 � K, with K0 = 30–50 being sufficient for many applications). Computa-

tion of the reduced size problem can be done by standard methods, such as a Chebyshev or Padé

approximation [31–33]. Note that we can recursively estimate the solution ppp(t) in Eq. (2.3.2) at

some time tj by

p̂pp(tj) = exp{(tj − tj−1)P} p̂pp(tj−1) = ||p̂pp(tj−1)||2V(tj−1) exp{(tj − tj−1)H(tj−1)}eee1, (2.3.5)

for j = 1, 2, . . ., where p̂pp(0) = ppp(0) and 0 = t0 < t1 < t2 < · · · is an increasing sequence of (not

necessarily uniformly spaced) time points. These points are selected automatically, in conjunction

with an appropriately designed error estimation procedure, to ensure stability and accuracy of the

overall algorithm [32].

Unfortunately, and for most realistic reaction networks, X contains an extremely large

number of states with non-negligible probability, thus making the practical implementation of FSP

difficult. This is a direct consequence of the fact that X contains R1×R2×· · ·×RN distinct elements,

where Rn is an assumed maximum copy number of the n-th species. A number of approaches

have been proposed in the literature to address this problem [34–42]. Although some approaches

perform well, most are limited to small reaction networks. It turns out that the most difficult issue

associated with these methods is solving the resulting system of differential equations, which is

usually prohibitively large.

We should point out here that another numerical approach has been recently proposed in

the literature that also attempts to address the previous problem [43, 44]. The method is based

on representing the probability mass function of the population process by an appropriately cho-

sen wavelet decomposition scheme whose basis elements and the associated wavelet coefficients are

being adaptively updated in time by solving a much smaller system of linear equations. Although

preliminary results indicate that the method works well, it is not clear at this point whether it can
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be efficiently used to evaluate population probabilities in reaction networks containing more than a

few reactions and species.

2.3.3 Computational methods

Numerical approaches for solving the master equation are not practical when the reaction

network contains many reactions and species. In this case, computational techniques, based on

Monte Carlo sampling, can be used to approximately evaluate the statistical behavior of the network.

If, by simulation, we generate L sample trajectories {zzz(l)(t), t > 0}, l = 1, 2, . . . , L, of the DA

process {ZZZ(t), t > 0}, then we can estimate the dynamics of its moments, such as of the means

{µZZZ(m; t) := E[Zm(t)], t > 0} and covariances {cZZZ(m,m′; t) := cov[Zm(t), Zm′(t)], t > 0}, by using

the following Monte Carlo estimators:

µ̂ZZZ(m; t) =
1

L

L∑
l=1

z(l)
m (t), (2.3.6)

ĉZZZ(m,m′; t) =
1

L− 1

L∑
l=1

[
z(l)
m (t)− µ̂ZZZ(m; t)

] [
z

(l)
m′(t)− µ̂ZZZ(m′; t)

]
. (2.3.7)

Moreover, we can estimate the probability distribution pZZZ(zzz; t) by using

p̂ZZZ(zzz; t) =
1

L

L∑
l=1

∆(zzz(l)(t)− zzz), (2.3.8)

where ∆(zzz) is the Kronecker delta function. Due to the simple relationship between the DA and

population processes given by Eq. (2.1.4), we can use similar estimators to approximate the dynamic

evolution of the corresponding population statistics.

Unfortunately, to obtain sufficiently accurate Monte Carlo estimates, we need a large num-

ber of sample trajectories, which is computationally inefficient, especially when estimating high-order

moments or probability distributions. As a matter of fact, when estimating probability distributions,

the issue of efficiently sampling low probability events is crucial and becomes the main bottleneck for

deriving accurate and computationally efficient Monte Carlo estimators. This problem can be ad-

dressed by developing computationally efficient approaches for sampling the master equation (2.1.6).
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In the following, we discuss a number of methods available in the literature.

Exact sampling

The simplest way to draw samples from the master equation (2.1.6) is by using the exact

algorithm of Gillespie [14,45–47]. By using simple probabilistic arguments, it has been shown in [14]

that, given the system state zzz(t) at time t, the probability that the next reaction will occur at time

t+ τ + dt and that this will be the m-th reaction is given by pt(τ,m)dt, where (see Appendix A)

pt(τ,m) = αm(zzz(t)) exp

{
−τ
∑
m∈M

αm(zzz(t))

}
, for τ > 0, m ∈M. (2.3.9)

As a consequence,

pt(τ,m) =
αm(zzz(t))∑

m′∈M
αm′(zzz(t))

[ ∑
m′∈M

αm′(zzz(t))

]
exp

{
−τ
∑
m∈M

αm(zzz(t))

}
= rt(m)et(τ), (2.3.10)

where

rt(m) :=
αm(zzz(t))∑

m′∈M
αm′(zzz(t))

, for m ∈M, (2.3.11)

and

et(τ) :=

{ ∑
m∈M

αm(zzz(t))

}
exp

{
−τ
∑
m∈M

αm(zzz(t))

}
, for τ > 0, (2.3.12)

which is an exponential distribution. This implies that the time of the next reaction and the index of

the next reaction are statistically independent random variables with probability density and mass

functions et(τ) and rt(m), respectively. We can therefore generate a trajectory {zzz(t), t > 0} of the

DA process by following two steps. First, given that the system is at state zzz(t) at time t, the time

t+ τ of the next reaction to occur can be determined by drawing a sample τ from the exponential

distribution et(τ). We can then specify which reaction occurs at time t + τ by drawing a sample

from the probability mass function rt(m) and by increasing the corresponding value of zzz by one.

Unfortunately, the Gillespie algorithm is computationally demanding, especially when ap-

plied to large and highly reactive systems, due to the fact that every single reaction event must be
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faithfully simulated. As a consequence, calculating a typical realization of the DA process often re-

quires a large number of samples to be drawn from the probability distributions given by Eq. (2.3.11)

and Eq. (2.3.12), thus appreciably increasing computational complexity. Attempts in [48–50] to im-

prove the computational efficiency of the Gillespie algorithm have produced sampling methods that

significantly increase computational speed for large reaction networks. We refer the reader to [51–58]

for alternative simulation algorithms designed to accelerate exact sampling of the master equation

under certain conditions. Despite these efforts however, the previous methods are still inefficient,

especially when used in conjunction with Monte Carlo estimation. For this reason, work has focused

on developing approximate sampling techniques that appreciably reduce computational complexity

by trading-off accuracy. We discuss some of these methods next.

Poisson leaping

The Markovian nature of the DA process ZZZ(t) implies that [59, Theorem 5.8]:

Zm(t) = Pm

[∫ t

0

αm(ZZZ(t′)) dt′
]
, for t > 0, m ∈M, (2.3.13)

where Pm, m ∈M, are statistically independent Poisson random variables with unit rate. Moreover,

Zm(t+ τ) = Zm(t) + Pm

[∫ t+τ

t

αm(ZZZ(t′)) dt′
]
, for t > 0, m ∈M, (2.3.14)

for every τ > 0, by virtue of the fact that a Poisson random variable with rate λ1 +λ2 can be written

as the sum of two independent Poisson random variables with rates λ1 and λ2. As a consequence, we

can use Eq. (2.3.14) to construct a technique for approximately sampling the master equation which,

under certain circumstances, turns out to be accurate and computationally efficient. In particular,

we will assume that a time step τ can be found so that, for every j = 0, 1, . . ., the occurrence of

reactions within the time interval [jτ, (j + 1)τ) does not appreciably affect the propensity functions

αm, m ∈M. In this case, Eq. (2.3.14) becomes

Zm((j + 1)τ) ' Zm(jτ) + Pm [αm(ZZZ(jτ))τ ] , for j = 0, 1, . . . , m ∈M, (2.3.15)
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initialized by Zm(0) = 0, for every m ∈M.

We can now use Eq. (2.3.15) to approximately sample the master equation in an iterative

fashion. Starting with zero DA values at time zero, we can approximate the DA process at time τ by

setting ẑm(τ) = p
(0)
m , for every m ∈ M, where p

(0)
m is a sample drawn from the Poisson distribution

with rate αm(0)τ . Then, we can approximate the DA process at time 2τ by setting ẑm(2τ) =

ẑm(τ) + p
(1)
m , for every m ∈ M, where p

(1)
m is a sample drawn from the Poisson distribution with

rate αm(ẑzz(τ))τ , and so on.

By using Eq. (2.3.15), we expect to obtain accurate samples of the DA process, provided

that we can find a time step τ for which the required leap condition

∫ (j+1)τ

jτ

αm(ZZZ(t′)) dt′ ' αm(ZZZ(jτ))τ (2.3.16)

is satisfied. We would like this value to be as large as possible so that the resulting method is

appreciably faster than exact sampling. Practical considerations however dictate that τ must not

be very large, otherwise the method may inaccurately estimate the numbers of reactions occurring

during the time intervals [jτ, (j + 1)τ), which may lead to negative species populations. This may

not be appropriate in certain types of networks, such as biochemical reaction networks.

The problem of determining the largest value of τ so that the leap condition given by

Eq. (2.3.16) is satisfied has been addressed in [47,60–62]. The procedure developed in [62] is accurate,

easy to code, and results in faster implementation than the methods proposed in [60, 61]. To avoid

negative populations, it has been suggested in [63–65] to approximate the Poisson distribution by

a binomial distribution. The main rationale behind this choice is that the maximum number of

occurrences produced by a binomial distribution is always bounded and easily controlled by one

of the two parameters used to specify the distribution. This however is not true for the Poisson

distribution, which can produce an unreasonably large number of occurrences within a small time

interval (a Poisson random variable takes values between 0 and∞) that can falsely result in negative

populations. Some improvements of the original Poisson leaping methods can be found in [66–70].
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It turns out that we can still use a Poisson distribution for the occurrence of reactions and

always guarantee nonnegative populations. This has been recognized in [47,71], in which a sampling

method has been proposed that is easier to implement than binomial leaping and is more accurate

in general than the original Poisson leaping technique. An improved version of this approach, which

employs a post-leap check to improve sampling accuracy, can be found in [72].

Gaussian leaping

In addition to the leap condition given by Eq. (2.3.16), the expected number αm(ZZZ(jτ))τ

of occurrences of the m-th reaction during the time interval [jτ, (j + 1)τ) is almost surely large

compared to one [i.e., αm(ZZZ(jτ))τ � 1 with probability one]. We can then approximate the Poisson

distribution Pm [αm(ZZZ(jτ))τ ] in Eq. (2.3.15) by a normal distribution with mean and variance given

by αm(ZZZ(jτ))τ . In this case, the DA process ZZZ(t) will satisfy the following equations [10,14,45,46]:

Zm((j + 1)τ) ' Zm(jτ) + αm(ZZZ(jτ))τ +
√
αm(ZZZ(jτ))τ G(j)

m , for j = 0, 1, . . ., m ∈M, (2.3.17)

initialized by Zm(0) = 0, for every m ∈ M, where {G(j)
m , j = 0, 1, . . . ,m ∈ M} are mutually

uncorrelated standard normal random variables. We can now use Eq. (2.3.17) to approximately

sample the master equation in an iterative fashion. Starting with zero DA values at time zero,

we can approximate the DA process at time τ by setting ẑm(τ) = αm(0)τ +
√
αm(0)τ g

(0)
m , for

every m ∈ M, where g
(0)
m , m ∈ M, are samples independently drawn from the standard normal

distribution. Then, we can approximate the DA process at time 2τ by setting ẑm(2τ) = ẑm(τ) +

αm(ẑzz(τ))τ+
√
αm(ẑzz(τ))τ g

(1)
m , for every m ∈M, where g

(1)
m , m ∈M, are new samples independently

drawn from the standard normal distribution, and so on.

The previous Gaussian leaping method results in faster sampling of the master equation

since drawing samples from the standard normal distribution is usually more efficient than drawing

samples from the Poisson distribution. Unfortunately, Gaussian leaping may result in crude approx-

imations of the DA and population processes [13]. The main culprit is our difficulty in determining

an appropriate time step τ so that the two required conditions mentioned above are simultaneously
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satisfied. For example, we may try to reduce τ so that the propensity functions do not change

appreciably during any time interval [jτ, (j + 1)τ), thus satisfying the leap condition. However, if

the reaction network contains “slow” reactions (a situation that appears often in practice), these

reactions will occur infrequently during [jτ, (j + 1)τ), and the second condition will be violated.

Note that, in sharp contrast to Poisson leaping that always produces integer-valued DA trajecto-

ries, Gaussian leaping will produce DA trajectories that are real-valued. Moreover, and similarly to

Poisson leaping, Gaussian leaping may produce reaction occurrences within [jτ, (j + 1)τ) that may

result in negative species populations (see also the discussion in pp. 65-71 of [73]).

2.3.4 Linear noise approximation

In certain circumstances, the joint probability distributions of the DA and population

processes can be well approximated by multivariate normal distributions. To see why this is true,

we will assume the existence of a system parameter Ω that measures the relative size of stochastic

fluctuations in a Markovian reaction network, such that fluctuations are small for large Ω. This is

motivated by the fact that, in chemical reaction systems, stochastic fluctuations gradually diminish

as the system approaches the thermodynamic limit at which the population of each species and the

system volume approach infinity in a way that the concentrations remain fixed. In the following, we

denote the thermodynamic limit by Ω→∞ and make explicit the dependance of various quantities

on Ω when necessary.

It is intuitive to expect that the probability of a reaction to occur within an infinitesimally

small time interval [t, t+ dt) depends on the “density” xxx(t; Ω)/Ω of the population process at time t

and that this probability does not change when Ω varies as long as the population densities remain

fixed [1]. This implies that the propensity functions πm must satisfy πm(xxx; Ω) = π̃m(xxx/Ω), where

π̃m does not depend on Ω. To be more general, we may also add a term Ω−1π̃′m(xxx/Ω), in which

case we would like πm(xxx; Ω) = π̃m(xxx/Ω) + Ω−1π̃′m(xxx/Ω). Moreover, we can assume that π̃m( · ) and
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π̃′m( · ) are analytic. Finally, we may allow an arbitrary positive factor f(Ω), such that

πm(xxx; Ω) = f(Ω)
[
π̃m(xxx/Ω) + Ω−1π̃′m(xxx/Ω)

]
. (2.3.18)

This implies the following scaling law for the propensity functions of the DA process:

αm(zzz; Ω) = f(Ω)
[
α̃m(zzz/Ω) + Ω−1α̃′m(zzz/Ω)

]
, for m ∈M, (2.3.19)

where α̃m(zzz/Ω) := π̃m(xxx0/Ω + Szzz/Ω) and α̃′m(zzz/Ω) := π̃′m(xxx0/Ω + Szzz/Ω).

To proceed, we can make the following ansatz :

Z̃m(t; Ω) = ζm(t) +
1√
Ω

Ξm(t), for t > 0, m ∈M, (2.3.20)

where Z̃m(t; Ω) is the “density” Zm(t; Ω)/Ω of the DA process, Ξm(t) is a noise component that

quantifies the fluctuations associated with the DA process, and ζm(t) is a deterministic process that

satisfies:

dζm(t)

dt
= α̃m(ζζζ(t)), t > 0, m ∈M, (2.3.21)

initialized with ζm(0) = 0. For each Ω, Eq. (2.3.20) decomposes the random DA density Z̃m(t; Ω)

into a macroscopic (deterministic) component ζm(t) and an additive noise component Ξm(t) that

do not depend on Ω. Clearly, this equation is based on the premise that the fluctuations diminish

to zero as fast as Ω−1/2. Eq. (2.3.20) must be justified. This can be done by a central limit theorem

for the behavior of the probability density function of the DA density process Z̃ZZ(t; Ω), as Ω → ∞,

similar to that shown in [74,75] for the case of biochemical reaction networks.

By using Eqs. (2.3.19)–(2.3.21) and the Ω-expansion method of van Kampen, it can be

shown (see Appendix A for a proof) that, for a sufficiently large Ω, the dynamic evolution of

the probability density function pΞ(ξξξ; t) of the noise vector ΞΞΞ(t) is approximately governed by the

following linear Fokker-Planck equation [1, 76,77]:

∂pΞ(ξξξ; t)

∂t
=

1

2

∑
m∈M

α̃m(ζζζ(t))
∂2pΞ(ξξξ; t)

∂ξ2
m

−
∑
m∈M

∑
m′∈M

∂α̃m(ζζζ(t))

∂ζm′

∂[ξm′pΞ(ξξξ; t)]

∂ξm
, t > 0, (2.3.22)
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initialized with pΞ(ξξξ; 0) = δ(ξξξ), where δ(·) is the Dirac delta function. In this case, Ξ(t) will

approximately be a normal random vector with zero mean and correlation matrix CΞ(t) that satisfies

the following Lyapunov matrix differential equation:

dCΞ(t)

dt
= A(t) + G(t)CΞ(t) + CΞ(t)GT (t), t > 0, (2.3.23)

initialized with CΞ(0) = O, where O is the null matrix. In this equation, A(t) and G(t) are two

M ×M matrices with elements

am,m′(t) = α̃m(ζζζ(t)) ∆(m−m′) and gm,m′(t) =
∂α̃m(ζζζ(t))

∂ζm′
, (2.3.24)

respectively, where ∆(m) is the Kronecker delta function. As a consequence, and for sufficiently

large Ω, we can approximate the probability distribution pZ̃ZZ(z̃zz; t) of the DA density process by

a multivariate normal probability density function with mean ζζζ(t), predicted by the macroscopic

equations (2.3.21), and covariance matrix CΞ(t)/Ω, predicted by the Lyapunov equation (2.3.23).

Due to Eq. (2.1.4), this also allows us to approximate the probability distribution pX̃XX(x̃xx; t) of the

population density process X̃XX(t; Ω) := XXX(t; Ω)/Ω by a multivariate normal probability density func-

tion with mean xxx0/Ω + Sζζζ(t) and covariance matrix SCΞ(t)ST . Since ZZZ(t; Ω) = ΩZ̃ZZ(t; Ω), we can

also approximate the probability distribution pZZZ(zzz; t) of the DA process with a multivariate nor-

mal distribution, with mean Ωζζζ(t) and covariance matrix ΩCΞ(t), whereas, we can approximate the

probability distribution pXXX(xxx; t) of the population process with a multivariate normal distribution

with mean xxx0 + ΩSζζζ(t) and covariance matrix ΩSCΞ(t)ST .

Because fluctuations in the reaction network are governed by the linear “signal-plus-noise”

model given by Eq. (2.3.20), the previous method is known as linear noise approximation (LNA). Its

use requires specification of an appropriate fluctuation size parameter Ω, such that Eq. (2.3.20) is

satisfied, and a sufficiently large value for this parameter so that the method produces a reasonable

approximation of the true probability distributions pZ̃ZZ(z̃zz; t) and pX̃XX(x̃xx; t). Implementation of the

method requires that we separately solve the system of M first-order differential equations (2.3.21)

and the system of M(M+1)/2 first-order differential equations (2.3.23). The LNA method decouples
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the computation of the means from the computation of the covariances. It turns out that the LNA

method is substantially faster than Monte Carlo estimation and can be used to provide a rapid

assessment of the statistical behavior of some Markovian reaction networks [13]. This method has

already been used to study biochemical reaction networks [78–85], epidemiological networks [17],

ecological networks [86,87], social networks [88], and neural networks [19,89].

2.3.5 Macroscopic approximation

For large nonlinear reaction networks, the LNA method can become computationally in-

tractable, since evaluation of the covariances requires solving a system of O(M2) differential equa-

tions. If that turns out to be the case, then the only option left to characterize the dynamic behavior

of the reaction network is in terms of DA or population densities by using, for example, the macro-

scopic (fluctuation-free) system of M differential equations given by Eq. (2.3.21). As a matter of fact,

Eq. (2.3.20) implies that, for any t > 0, the DA density process Z̃m(t; Ω) converges in distribution

to ζm(t) as Ω→∞.

Similarly to the DA density process, the population density process X̃XX(t; Ω) converges in

distribution, as Ω → ∞, to the deterministic process χχχ(t) that satisfies the following macroscopic

equations:

dχn(t)

dt
=
∑
m∈M

snmπ̃m(χχχ(t)), t > 0, n ∈ N , (2.3.25)

where π̃m(x̃xx) := Ω−1πm(Ωx̃xx), provided that these equations are initialized with the same condition

as the master equation (2.1.8). This is clearly true at finite times. It is also true in the limit

as t → ∞, provided that the macroscopic equations (2.3.25) have a unique asymptotically stable

stationary solution that is independent of the initial state [1, 90].
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2.4 Mesoscopic (probabilistic) behavior

When studying Markovian reaction networks, an important goal is to derive mathematical

properties of the dynamic behavior of the probability distribution of the system state and investigate

the existence, uniqueness, and stability of a stationary solution of the underlying master equation.

This can be done by using a mesoscopic description of the network in terms of the population

probabilities {pXXX(xxx; t),xxx ∈ X}, for t ≥ 0. To avoid mathematical subtleties, which are outside the

scope of this section, we assume that the cardinality of the population state-space X is finite. Most

results however can be extended to the case of countable state-spaces.

To derive a stationary solution of the master equation (2.1.8), we must solve the system

of K linear equations Pppp = 0; recall Eq. (2.3.1). Since the elements of each column of matrix P

add to zero, its rows are linearly dependent and, therefore, the rank of P will be less than K. As a

consequence, the system of equations Pppp = 0 will have at least one nontrivial solution. Unfortunately,

this result does not tell us how many nontrivial solutions exist and which ones are valid probability

distributions; i.e., which solutions satisfy the necessary constraints

0 ≤ pk ≤ 1, for k = 1, 2, . . . ,K, and
K∑
k=1

pk = 1. (2.4.1)

In the following, we first focus our interest on irreducible Markovian reaction networks.

This type of networks are defined by the property that, for any pair (xxx,xxx′) of population states,

there exists at least one sequence of reactions that takes the system from state xxx to state xxx′ – these

states are said to be communicating. By using a simple graph-theoretic analysis and Kirchhoff’s

theorem, it has been shown in [91] that an irreducible Markovian reaction network converges to a

unique probability distribution ppp at steady-state, which does not depend on the initial probability

distribution ppp(0), such that 0 < ppp < 1, where 0 and 1 are vectors whose elements are respectively

all zero or one (see also [1]). As a consequence, in an irreducible Markovian reaction network, the

population process can take any value in X at steady-state with nonzero probability.

On the other hand, the theory of systems of ordinary differential equations with constant
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coefficients implies that, for a given initial probability distribution ppp(0), Eq. (2.3.1) is satisfied by a

unique probability distribution ppp(t), which is analytic for all 0 ≤ t <∞. Since the elements of each

column of matrix P add to zero,

d[1Tppp(t)]

dt
= 1T

dppp(t)

dt
= 1TP ppp(t) = 0. (2.4.2)

This result, together with the fact that 1Tppp(0) = 1, implies 1Tppp(t) = 1, for all t ≥ 0. Unfortunately,

it is not clear whether 0 ≤ ppp(t) ≤ 1, for every t > 0. It turns out however that, for an irreducible

Markovian reaction network, 0 < ppp(t) < 1, for every t > 0 [91].

Eigenanalysis of matrix P can produce an analytical formula for the dynamic behavior of

the unique probability distribution ppp(t). If λk, k = 1, 2, . . . ,K, are the eigenvalues of matrix P, with

corresponding right and left eigenvectors rrrk, lllk, k = 1, 2, . . . ,K, respectively, then the solution to

Eq. (2.3.1) is given by [31]

ppp(t) = exp (Pt)ppp(0) =
K∑
k=1

ck rrrk e
λkt, for 0 ≤ t ≤ ∞, (2.4.3)

where we assume here that the eigenvalues of P have the same algebraic and geometric multiplicity,

an assumption satisfied by many Markovian reaction networks. In this case, the right and left

eigenvectors are biorthogonal (i.e., lllTk rrrk′ = 0, for every k 6= k′), which implies that the constants ck

are given by ck = lllTk ppp(0)/lllTk rrrk. As a consequence, we can use the eigenvalues and eigenvectors of P

to analytically specify the entire mesoscopic behavior of a Markovian reaction network. Note that

Eq. (2.4.3) and the fact that a non-trivial stationary solution always exists imply that at least one

eigenvalue of P must be zero. For an irreducible Markovian reaction network, matrix P has only

one zero eigenvalue, with the remaining K − 1 eigenvalues having negative real parts [91]. If we

therefore assume that λ1 = 0, then Eq. (2.4.3) implies that the stationary distribution will be given

by ppp = rrr1/‖rrr1‖, where rrr1 is the eigenvector corresponding to the zero eigenvalue and ‖rrr‖ is the

`1-norm of vector rrr. See [92, 93] for application of Eq. (2.4.3) to problems in epidemiology and

computational biochemistry. Note however that computing the eigenvalues and eigenvectors of P is

an extremely difficult task in general due to the large size of the underlying state-space.
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Finally, the solution ppp(t), t ≥ 0, of Eq. (2.3.1) turns out to be asymptotically stable with

respect to ppp, in the sense that

lim
t→∞

D[ppp(t), ppp] = 0, (2.4.4)

where

D[ppp,qqq] :=
K∑
k=1

pk ln
pk
qk
≥ 0 (2.4.5)

is the Kullback-Leibler distance between the two probability distributions ppp = {pk, k = 1, 2, . . . ,K}

and qqq = {qk, k = 1, 2, . . . ,K}. As a matter of fact, dD[ppp(t), ppp]/dt ≤ 0, where equality is achieved

only at steady-state.

To summarize, for a given initial probability vector ppp(0), the master equation associated

with an irreducible Markovian reaction network has a unique and strictly positive solution 0 < ppp(t) <

1, 0 < t ≤ ∞. This solution is analytic for all 0 ≤ t < ∞, converges to a stationary distribution

0 < ppp < 1 that does not depend on the initial probability distribution ppp(0), and is asymptotically

stable with respect to ppp.

It is not in general easy to check whether a Markovian reaction network is irreducible.

However, we often assume that a given Markovian reaction network is comprised of only reversible

reactions (reactions which can occur in both directions with nonzero probability). This is a plausible

assumption since, in principle, a transition between two physical states can occur in the reverse

direction as well. In this case, and after appropriately ordering the states, we can cast matrix P into a

block diagonal form with diagonal elements P(1),P(2), . . . ,P(J), for some J , where each submatrix P(j)

is irreducible (when J = 1, matrix P is itself irreducible). The resulting Markovian reaction network

is said to be completely reducible [1]. In this case, the original Markovian reaction network can be

decomposed into J non-interacting subnetworks with non-overlapping state-spaces, which can be

treated independently of each other. Each reaction subnetwork is characterized by unique dynamic

and stationary solutions ppp(j)(t), ppp(j), j = 1, 2, . . . , J , which satisfy the aforementioned properties.

However, the dynamic and stationary solutions of the original master equation are determined by

the initial condition at time t = 0. If the master equation is initialized with a population vector in
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the state-space of the j-th subnetwork, then its dynamic and stationary solution will be given by

0

...

ppp(j)(t)

...

0


and



0

...

ppp(j)

...

0


,

respectively, where ppp(j)(t) depends on the initial condition and ppp(j) does not.

A question that arises at this point is what happens when the Markovian reaction network

contains irreversible reactions and matrix P is not irreducible. To get an idea, let us assume that,

after appropriately ordering the states,

P =


P(1) T(1)

O T

 , (2.4.6)

where O denotes a null matrix, P(1) and T are square matrices, P(1) is irreducible, and at least one

element of each column of T(1) is strictly positive. The associated Markovian reaction network is said

to be incompletely reducible [1]. Note that the nonzero elements of T(1) correspond to nonreversible

reactions. This is due to the fact that, if the propensity function of a forward reaction shows up in

the (i, j) entry of matrix P which is in T(1), then the propensity function of the reverse reaction will

show up in the (j, i) entry of P, which is zero. As a consequence, the reaction will necessarily be

irreversible.

If we denote by ppp(1)(t) and ppp(2)(t) the probability distributions of the state vectors at time t,

determined by the partition of the state-space suggested by the previous matrix P, then the master

equation results in the following two differential equations:

dppp(1)(t)

dt
= P(1)ppp(1)(t) + T(1)ppp(2)(t) (2.4.7)

dppp(2)(t)

dt
= Tppp(2)(t). (2.4.8)
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Clearly, one can solve the second equation independently from the first to obtain

ppp(2)(t) = exp
{
Tt
}
ppp(2)(0). (2.4.9)

On the other hand, the dynamic behavior of ppp(1) is now driven by ppp(2)(t) [unless ppp(2)(0) = 0], in

which case ppp(1)(t) = exp
{
P(1)t

}
ppp(1)(0). Note however that

d[1Tppp(2)(t)]

dt
= 1T

dppp(2)(t)

dt
= 1TTppp(2)(t) = −1TT(1)ppp(2)(t) < 0, (2.4.10)

provided that ppp(2)(t) 6= 0, since the elements of each column of matrix P add to zero and we have

assumed that each column of matrix T(1) contains at least one element that is strictly positive. There-

fore, ppp(2)(t) asymptotically becomes zero as t→∞. As a matter of fact, ppp(2)(t) assigns probability

mass over the transient states of the Markovian reaction network, as opposed to ppp(1)(t) that assigns

probability mass over the persistent states. In this case, and when matrix P(1) is irreducible, the

stationary solution of the master equation governing an incompletely reducible Markovian reaction

network will be unique and given by the probability vector

ppp =


ppp(1)

0

 , (2.4.11)

where ppp(1) is the (unique) solution of the linear system of equations P(1)ppp = 0.

In general, the population states in a Markovian reaction network can be classified into

two distinct groups: transient and persistent. These states can be uniquely partitioned into non-

overlapping sets T and Pj , j = 1, 2, . . . , J , where T contains all transient states and Pj , j = 1, 2, . . . , J ,

are irreducible sets containing persistent states with the additional property that, for every j 6= j′,

each state in Pj does not communicate with any state in Pj′ . By appropriately ordering the states,
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we can write matrix P in the form

P =



P(1) O · · · O T(1)

O P(2) · · · O T(2)

· · · · ·

· · · · ·

· · · · ·

O O · · · P(J) T(J)

O O · · · O T



, (2.4.12)

where P(j) is a square irreducible matrix that characterizes how probability mass is dynamically

distributed among the persistent states in Pj , T(j) is a matrix that tells us how probability mass

is transferred from the transient states in T to persistent states in Pj , T is a square matrix that

characterizes how probability mass is dynamically distributed among the transient states in T , and O

are null matrices. In this case, if the Markovian reaction network is initialized by a persistent state

in Pj , then the stationary solution will be given by the probability vector

gggj =



0

...

ppp(j)

...

0


, (2.4.13)

where ppp(j) is the unique stationary distribution of the j-th irreducible Markovian reaction subnetwork

characterized by matrix P(j). However, if the network is initialized with the i-th transient state in T ,

then the stationary distribution pppi (which now depends on i) will be given by a convex combination

of the stationary distributions gggj above, with mixing coefficients µij ; i.e., we have that

pppi =
J∑
j=1

µijgggj , (2.4.14)
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where

µij ≥ 0 and
J∑
j=1

µij = 1. (2.4.15)

As a matter of fact, Eq. (2.4.14) simply expresses the fact that the probability of a Markovian

reaction network initialized with the i-th transient state in T to reach a persistent population state

xxx in Pj at steady-state equals the probability µij that the system will reach a persistent state in Pj at

steady-state multiplied by the probability that this state will be xxx. It can be shown (see Appendix

A) that

µij = −
∑
i′∈T

∑
j′∈Pj

[T(j)]j′i′ [T−1]i′i, (2.4.16)

where [T(j)]j′i′ is the (j′, i′) element of matrix T(j) and [T−1]i′i is the (i′, i) element of the inverse

of matrix T.

To summarize, a fundamental property of the master equation (2.1.8) associated with a

Markovian reaction network is that, when this equation is initialized with a persistent state, its

solution converges to a unique stationary distribution that assigns positive probability only to the

persistent states that communicate with the initial state. On the other hand, if the Markovian

reaction network is initialized with a transient state, then its stationary distribution will be a con-

vex combination of the distinct stationary distributions obtained by initializing the system with

persistent states chosen from each individual irreducible set.

2.5 Potential energy landscape

To better understand what might happen at steady-state, let us assume that the master

equation (2.1.8) has a unique stationary solution pX(xxx) := limt→∞ pXXX(xxx; t) that is independent of

the initial state. In this case, the probability distribution pX̃XX(x̃xx; t) of the population density process

X̃XX(t; Ω) = XXX(t; Ω)/Ω will be given by pX̃XX(x̃xx; t) = ΩpXXX(Ωx̃xx; t) and will depend on the size parameter

Ω in general. Let us define the function

V (x̃xx; Ω) := − 1

Ω
ln

pX̃XX(x̃xx)

pX̃XX(x̃xx∗)
, (2.5.1)
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where pX̃XX(x̃xx) := limt→∞ pX̃XX(x̃xx; t) = ΩpXXX(Ωx̃xx) is the steady-state distribution of the population density

process and x̃xx∗ is a state at which the stationary probability distribution pX̃XX(x̃xx) attains its maximum

value. Both pX̃XX(x̃xx) and x̃xx∗ depend on Ω but, for notational simplicity, we do not show this dependence.

Note that V (x̃xx; Ω) ≥ 0. Moreover, Eq. (2.5.1) implies that

pX̃XX(x̃xx) =
1

ζ(Ω)
exp

{
− ΩV (x̃xx; Ω)

}
, (2.5.2)

where

ζ(Ω) :=
∑
uuu

exp
{
− ΩV (uuu; Ω)

}
. (2.5.3)

In this case, pX̃XX(x̃xx) is a Gibbs distribution with “potential energy” function V (x̃xx; Ω), “tempera-

ture” 1/Ω, and partition function ζ(Ω). Clearly, V (x̃xx; Ω) assigns minimum (zero) potential to the

states of maximum probability at steady-state and infinite potential to the states of zero probability.

We will now assume that, close to the thermodynamic limit, the potential energy func-

tion V (x̃xx; Ω) is an analytic function of Ω−1. Then, a Taylor series expansion with respect to Ω−1

approximately results in

V (x̃xx; Ω) = V (x̃xx;∞) +
1

Ω

∂V (x̃xx;∞)

∂Ω−1
= V0(x̃xx) +

1

Ω
V1(x̃xx), (2.5.4)

for sufficiently large Ω, where

V0(x̃xx) := V (x̃xx;∞) = − lim
Ω→∞

1

Ω
ln

pX̃XX(x̃xx)

pX̃XX(x̃xx∗)
≥ 0, (2.5.5)

and

V1(x̃xx) :=
∂V (x̃xx;∞)

∂Ω−1
. (2.5.6)

As a consequence, Eqs. (2.5.2)–(2.5.4) approximately imply that

pX̃XX(x̃xx) =
1

ζ(Ω)
exp

{
− ΩV0(x̃xx)− V1(x̃xx)

}
, (2.5.7)

where the partition function is now given by

ζ(Ω) =
∑
uuu

exp
{
− ΩV0(uuu)− V1(uuu)

}
. (2.5.8)
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If χχχ(t) satisfies the macroscopic equations (2.3.25), then we can show (see Appendix A

and [94]) that

dV0(χχχ(t))

dt
=
∑
n∈N

∂V0(χχχ(t))

∂χn(t)

dχn(t)

dt
≤ 0, (2.5.9)

provided that V0(χχχ(t)) < ∞. As a consequence, the solution χχχ(t) of the macroscopic equa-

tions (2.3.25) produces motion that never increases the value of the potential energy function V0.

If χχχ′ is a (strict) local minimum of V0, we have that V0(x̃xx) > V0(χχχ′) ≥ 0, for every x̃xx ∈ W(χχχ′), where

W(χχχ′) is a local neighborhood of χχχ′ that does not contain χχχ′. Then, Eq. (2.5.9) implies that V0 is

a (local) Lyapunov function for the macroscopic system and χχχ′ will be a (locally) stable solution of

the macroscopic equations (2.3.25) in the sense of Lyapunov (i.e., the solution will always remain

near χχχ′, provided that the macroscopic system is initialized by a state that is also near χχχ′) [95].

Moreover, if Eq. (2.5.9) is satisfied with strict inequality, unless χχχ(t) = χχχ′, then χχχ′ will be a (locally)

asymptotically stable solution of the macroscopic equations (i.e., the solution will converge to χχχ′,

provided that the macroscopic system is initialized by a state that is near χχχ′) [95]. Hence, a local

minimum of V0 must be a stable point of the macroscopic equations (2.3.25). It turns out that

the inverse is also true. If χχχ′ is a (Lyapunov or asymptotically) stable equilibrium point of the

macroscopic equations (2.3.25) that is not a local minimum of V0, then the macroscopic equations,

initialized by x̃xx within a sufficiently small neighborhood of χχχ′ such that V0(x̃xx) < V0(χχχ′), will violate

Eq. (2.5.9), since the system will need to increase the value of V0 to get to χχχ′ from x̃xx. Therefore,

there is a one-to-one correspondence between the local minima of V0 and the stable points of the

macroscopic equations (2.3.25). Similar results hold for the more general case when V0 has a regional

minima (i.e., compact sets of states with equal potential energy so that the energy increases as we

move away from these states).

As a consequence of the previous arguments, we can view the multidimensional surface

V0(x̃xx) as a potential energy landscape [96–99] with the stable stationary states of the macroscopic

equations (2.3.25) corresponding to potential wells (basins of attraction) associated with the minima
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of V0, separated by barriers corresponding to hills (unstable states) and saddles (transitional states

– states on the potential energy surface from which stable states are equally accessible). Which

path the macroscopic system takes along the potential energy landscape will depend on the initial

condition. Initial conditions within a basin of attraction guarantee that the macroscopic dynamics

will stay within the basin permanently. If the macroscopic system reaches a minimum of the potential

energy landscape, then this minimum must be a stationary state of the macroscopic system since

uphill motions are not possible. Thus, if the macroscopic system, characterized by Eq. (2.3.25), ever

reaches a minimum of the potential energy landscape, it stays there forever.

We can now show (see Appendix A) that Eq. (2.5.7) and Eq. (2.5.8) imply that

lim
Ω→∞

pX̃XX(x̃xx) =


exp

{
− V1(x̃xx)

}
/
∑
uuu∈G0

exp
{
− V1(uuu)

}
, for x̃xx ∈ G0

0, for x̃xx 6∈ G0

(2.5.10)

with G0 being the set of all ground states (global minima) of the potential energy landscape V0. As

a consequence, for sufficiently large Ω such that V (x̃xx; Ω) ' V0(x̃xx) + Ω−1V1(x̃xx), the probability of a

ground state of V0 is determined by the potential energy function V1. Moreover, only the ground

states of V0 have a non-negligible probability to be observed as Ω becomes large because pX̃XX(x̃xx)

decays to zero as Ω → ∞, for every x̃xx /∈ G0. These results imply that the master equation (2.1.8)

will asymptotically converge, in the thermodynamic limit, almost surely to a ground state of the

potential energy function V0, independently of the initial state. The particular ground state is chosen

with probability determined by the values of the potential energy function V1 over the ground states

of V0. On the other hand, the macroscopic equations (2.3.25) might reach a minimum of V0, which

may or may not be a ground state, depending on the initial condition.

If the macroscopic equations have a unique stable solution at steady-state that is indepen-

dent of the initial condition, then V0 will have only one (global) minimum. In this case, and as

we mentioned before, the master equation (2.1.8) will converge almost surely to the same state in

the thermodynamic limit. However, if V0 contains more than one minimum, then the stationary

solution of the master equation (2.1.8) may be different from the stationary solution predicted by
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the corresponding macroscopic equations (2.3.25). As a consequence,

lim
Ω→∞

lim
t→∞

pX̃XX(x̃xx; t) 6= lim
t→∞

lim
Ω→∞

pX̃XX(x̃xx; t) (2.5.11)

in general. This distinct difference between the stationary behavior of the master equation (left-

hand side of inequality) and of the macroscopic equations (right-hand side of inequality) is known

as Keizer’s paradox [100–102].

At finite but sufficiently large system sizes Ω, the peaks of the stationary probabil-

ity distribution pX̃XX(x̃xx) will correspond to minima of the potential energy landscape V (x̃xx; Ω) '

V0(x̃xx) + Ω−1V1(x̃xx). Moreover, if x̃xx
′

is a (strict) local minimum of V0(x̃xx) + Ω−1V1(x̃xx), then

V0(x̃xx) > V0(x̃xx
′
)

[
1− 1

Ω

V1(x̃xx)− V1(x̃xx′)

V0(x̃xx′)

]
, for every x̃xx ∈ W(x̃xx

′
), (2.5.12)

where W(x̃xx
′
) is a local neighborhood of x̃xx

′
that does not contain x̃xx

′
for which the inequality is

satisfied. However, and for large enough Ω, such that

1

Ω

[
V1(x̃xx)− V1(x̃xx

′
)

V0(x̃xx
′
)

]
' 0, for every x̃xx ∈ W(x̃xx

′
), (2.5.13)

we approximately have V0(x̃xx
′
) < V0(x̃xx), for every x̃xx ∈ W(x̃xx

′
), and therefore x̃xx

′
will approximately

be a (strict) local minimum of the potential energy landscape V0. Likewise, if x̃xx
′

is a (strict) local

minimum of V0, then it will also be a (strict) local minimum of V0(x̃xx) + Ω−1V1(x̃xx), provided that

Eq. (2.5.13) is satisfied. Hence, the minima of the potential energy landscape V0(x̃xx) + Ω−1V1(x̃xx)

will correspond in this case to the stable stationary states of the macroscopic equations (2.3.25).

As a consequence, the peaks of the stationary probability distribution pX̃XX(x̃xx) will correspond to

stable stationary states of the macroscopic equations. For this reason, we refer to the peaks in

pX̃(x̃xx) as macroscopic modes. Note however that there might be stable stationary states of the

macroscopic equations that do not introduce peaks in the stationary probability distribution. To

see this, recall that, in the thermodynamic limit as Ω → ∞, the peaks present in the stationary

probability distribution are the ones associated only with the global minima of V0.

At smaller values of Ω, the stationary probability distribution pX̃XX(x̃xx) will be given by

Eqs. (2.5.2) and (2.5.3). The modes will now depend on the fluctuation size parameter Ω and
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will be determined by the minima of the potential energy landscape V (x̃xx; Ω). However, a state

that minimizes the potential energy function V may not necessarily minimize V0, in which case at

least some modes of the probability distribution pX̃XX(x̃xx) will not be predicted by the corresponding

macroscopic equations. These modes are referred to as noise-induced modes, since they show up

at small system sizes in which appreciable stochastic fluctuations may be present in the system

due to “intrinsic noise.” Recent literature has documented the presence of noise-induced modes in

biochemical reaction networks and their importance in modeling system behavior not accounted for

by their macroscopic counterparts [102–107].

Note finally that, if a Markovian reaction network is at a stable state x̃xx
s
1 at time t0,

then it may switch to another stable state x̃xx
s
2 at time t0 < t < ∞ with probability

Pr[X̃XX(t) = x̃xx
s
2 | X̃XX(t0) = x̃xx

s
1 ]. However, limΩ→∞ Pr[X̃XX(t) = x̃xx

s
2 | X̃XX(t0) = x̃xx

s
1 ] = δ(x̃xx

s
2− χχχ(t)), where

δ(·) is the Dirac delta function and χχχ(t) is the solution of the macroscopic equations (2.3.25), initial-

ized with x̃xx
s
1 . Since x̃xx

s
1 is a minimum of the potential energy function V0, the macroscopic system

will be in state χχχ(t) = x̃xx
s
1 at time t. Hence, limΩ→∞ Pr[X̃XX(t) = x̃xx

s
2 | X̃XX(t0) = x̃xx

s
1 ] = 0. As a con-

sequence, the probability of switching from a stable state to another stable state tends (in general

exponentially) to zero as the system size increases to infinity. At finite system sizes Ω, switching

among stable stationary states becomes possible, but the probability of switching is very small for

large Ω; i.e., switching among stable stationary states are rare events [98,107]. As a matter of fact,

the waiting time for switching can be approximated by an exponential distribution [108] with rate

parameter that tends to zero in the thermodynamic limit as Ω→∞. Therefore, efficient switching

between modes requires small system sizes and thus appreciable intrinsic noise.

2.6 Macroscopic (thermodynamic) behavior

We can view a Markovian reaction network as a thermodynamic system that absorbs energy,

produces entropy, and dissipates heat [91, 102, 109–123]. This perspective can provide important
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insights into functional properties of the network, such as robustness and stability, and can lead to

a better understanding of the relationship between its mesoscopic (unobservable) and macroscopic

(observable) behavior [93,102,112,115,117,121,124,125].

In this section, we consider an irreducible Markovian reaction network comprised of M/2

pairs of reversible reactions (2m−1, 2m), m = 1, 2, . . . ,M/2, where 2m−1 is the forward reaction and

2m is the corresponding reverse reaction. This does not forbid us to consider irreversible reactions,

since an irreversible reaction can be thought of as being reversible with negligible propensity in

the reverse direction. As we mentioned in Section 2.4, the reaction network is characterized by a

unique population probability distribution pXXX(xxx; t) that is analytic for all t ≥ 0 and converges to

a stationary distribution pXXX(xxx), which does not depend on the initial state xxx(0). By following our

discussion in Section 2.5, we can define the energy of state xxx by

E(xxx) := − 1

Ω
ln pXXX(xxx), for xxx ∈ X , (2.6.1)

where Ω > 0 is an appropriately chosen size parameter.

Our discussion in the following is purely mathematical in nature and can be applied to

any physical or nonphysical Markovian reaction network. However, direct connection to thermody-

namics can be made in certain physical systems, such as biochemical reaction networks, which may

exchange matter, work, and heat through a well-defined boundary that separates the system from

its surroundings [15]. In this case, we must take the size parameter Ω to be the inverse of kBT ,

where kB is the Boltzmann constant and T is the system temperature. Since the exact value of Ω

is not important here, we set Ω = 1 for simplicity.

By viewing a Markovian reaction network as a thermodynamic system, we can define three

fundamental quantities: the internal energy, entropy, and Helmholtz free energy. The internal energy

U(t) is the average energy of the system at time t over all states, given by

U(t) :=
∑
xxx∈X

E(xxx)pXXX(xxx; t), for t ≥ 0, (2.6.2)
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whereas, the entropy is defined by

S(t) := −
∑
xxx∈X

pXXX(xxx; t) ln pXXX(xxx; t), for t ≥ 0. (2.6.3)

Moreover, the Helmholtz free energy is given by

F (t) := U(t)− S(t) =
∑
xxx∈X

pXXX(xxx; t) ln
pXXX(xxx; t)

pXXX(xxx)
, for t ≥ 0. (2.6.4)

The Helmholtz free energy measures the energy available in a thermodynamic system to do work

under constant temperature and volume. Note that F (t) coincides with the Kullback-Leibler distance

of the probability distribution pXXX(xxx; t) from the steady-state probability distribution pXXX(xxx) [recall

Eq. (2.4.5)]. Therefore, the Helmholtz free energy provides a measure of how far a Markovian

reaction network is from steady-state at time t. It turns out that F (t) ≥ 0 and dF (t)/dt ≤ 0, for

every t ≥ 0, with equality only at steady-state [91,117,126].

2.6.1 Balance equations

From Eq. (2.1.8) and Eq. (2.6.3), we can show (see Appendix A) the following entropy

balance equation:

dS(t)

dt
= σ(t)− h(t), for t > 0, (2.6.5)

where

σ(t) =
1

2

M/2∑
m=1

∑
xxx∈X

[
ρ+
m(xxx; t)A+

m(xxx; t) + ρ−m(xxx; t)A−m(xxx; t)
]
, (2.6.6)

and

h(t) =
1

2

M/2∑
m=1

∑
xxx∈X

{
ρ+
m(xxx; t) ln

[
π2m−1(xxx− sss2m−1)

π2m(xxx)

]
+ ρ−m(xxx; t) ln

[
π2m(xxx+ sss2m−1)

π2m−1(xxx)

]}
. (2.6.7)

In these equations, ρ+
m(xxx; t) is the net flux of the m-th pair of reversible reactions reaching state xxx

from state xxx − sss2m−1, given by ρ+
m(xxx; t) = π2m−1(xxx − sss2m−1)pXXX(xxx − sss2m−1; t) − π2m(xxx)pXXX(xxx; t),

whereas, ρ−m(xxx; t) is the net flux of the same pair of reactions reaching state xxx from state xxx − sss2m,

given by ρ−m(xxx; t) = π2m(xxx+ sss2m−1)pXXX(xxx+ sss2m−1; t)− π2m−1(xxx)pXXX(xxx; t) [note that sss2m = −sss2m−1].

48



CHAPTER 2. MARKOVIAN REACTION NETWORKS

Moreover,

A+
m(xxx; t) := ln

[
π2m−1(xxx− sss2m−1)pXXX(xxx− sss2m−1; t)

π2m(xxx)pXXX(xxx; t)

]

A−m(xxx; t) := ln

[
π2m(xxx+ sss2m−1)pXXX(xxx+ sss2m−1; t)

π2m−1(xxx)pXXX(xxx; t)

] (2.6.8)

are the affinities corresponding to the net fluxes ρ+
m(xxx; t) and ρ−m(xxx; t), respectively. Note that

ρ−m(xxx; t) = −ρ+
m(xxx+ sss2m−1; t) and A−m(xxx; t) = −A+

m(xxx+ sss2m−1; t), whereas,

∂pXXX(xxx; t)

∂t
=

M/2∑
m=1

[
ρ+
m(xxx; t) + ρ−m(xxx; t)

]
, t > 0. (2.6.9)

Therefore, [ρ+
m(xxx; t) + ρ−m(xxx; t)]dt quantifies the change [increase, when ρ+

m(xxx; t) + ρ−m(xxx; t) > 0, or

decrease, when ρ+
m(xxx; t) + ρ−m(xxx; t) < 0] in the probability mass of the population process within

the infinitesimally small time interval [t, t+ dt) due to the m-th pair of reversible reactions. These

changes are driven by the affinities A+
m(t) and A−m(t), which can be viewed as thermodynamic forces

that move a Markovian reaction network away from the state of thermodynamic equilibrium (see

Section 2.6.2), in which all net fluxes are zero.

Equation (2.6.5) provides an expression for the rate of entropy change in a Markovian

reaction network. The term σ(t) quantifies the rate of entropy production, whereas, the term h(t)

quantifies the rate of entropy loss due to heat dissipation. For this reason, σ(t) and h(t) are called the

entropy production rate and the heat dissipation rate, respectively. On the other hand, Eq. (2.6.6)

shows that σ(t) is a sum of terms 1/2
∑
xxx∈X

[
ρ+
m(xxx; t)A+

m(xxx; t) + ρ−m(xxx; t)A−m(xxx; t)
]
, each quantifying

the contribution of a pair of reversible reactions to the net rate of entropy production. Similarly,

Eq. (2.6.7) shows that h(t) is a sum of terms 1/2
∑
xxx∈X

{
ρ+
m(xxx; t) ln[π2m−1(xxx − sss2m−1)/π2m(xxx)] +

ρ−m(xxx; t) ln[π2m(xxx + sss2m−1)/π2m−1(xxx)]
}

, each quantifying the contribution of a pair of reversible

reactions to the net rate of heat dissipation. Therefore, a reaction with non-zero net flux must

produce entropy and dissipate heat.

By differentiating Eq. (2.6.4) with respect to t and by using Eq. (2.1.8), Eq. (2.6.6) and

Eq. (2.6.8), we can derive (see Appendix A) the following balance equations for the Helmholtz free
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energy and internal energy:

dF (t)

dt
= f(t)− σ(t), for t > 0, (2.6.10)

and

dU(t)

dt
= f(t)− h(t), for t > 0, (2.6.11)

where

f(t) :=
1

2

M/2∑
m=1

∑
xxx∈X

[
ρ+
m(xxx; t)Ā+

m(xxx) + ρ−m(xxx; t)Ā−m(xxx)
]
, (2.6.12)

with Ā+
m(xxx) and Ā−m(xxx) being the affinities of them-th pair of reversible reactions at steady-state; i.e.,

Ā+
m(xxx) := limt→∞A+

m(xxx; t) and Ā−m(xxx) := limt→∞A−m(xxx; t). Equation (2.6.10) quantifies the change

in Helmholtz free energy due to the Markovian reaction network being away from thermodynamic

equilibrium at steady-state [quantified by the first term on the right-hand-side of Eq. (2.6.10)] or

reduction in Helmholtz free energy due to entropy production [quantified by the second term on the

right-hand-side of Eq. (2.6.10)]. The term f(t) quantifies the rate of energy (i.e., power) supplied

to the Markovian reaction network in order to keep it away from thermodynamic equilibrium. For

this reason, we refer to f(t) as the “motive” power. This quantity is also known in the literature

as the rate of “housekeeping” heat [110, 114, 116, 118, 120]. However, we prefer to call f(t) the

“motive” power, since it represents the energy flow per unit time required to keep the Markovian

reaction network away from thermodynamic equilibrium. It turns out that 0 ≤ f(t) ≤ σ(t), for

every t ≥ 0. We can show the first inequality by using the fact that the right-hand side of the

master equation (2.1.8) is zero at steady-state and that lnx ≤ x − 1, for x > 0 (see [116]). The

second inequality is due to Eq. (2.6.10) and the fact that dF (t)/dt ≤ 0. Note that f(t) is a sum

of terms 1/2
∑
xxx∈X

[
ρ+
m(xxx; t)Ā+

m(xxx) + ρ−m(xxx; t)Ā−m(xxx)
]
, each term quantifying the contribution of a

pair of reversible reactions to the net “motive” power. Therefore, a reaction with non-zero (forward

or reverse) flux and corresponding non-zero affinity at steady-state will supply motive power to the

Markovian reaction network.

Equation (2.6.10) shows that reactions in a Markovian reaction network can increase the
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Helmholtz free energy by adding “motive” energy to the system, whereas, they can reduce the

Helmholtz free energy due to entropy production. Moreover,

σ(t) = f(t) +

∣∣∣∣dF (t)

dt

∣∣∣∣ , for t > 0, (2.6.13)

which implies that entropy production comes from two sources: from supplying motive power f(t)

to sustain the reaction network away from thermodynamic equilibrium and from a spontaneous

change |dF (t)/dt| in Helmholtz free energy due to relaxation towards the steady-state [127]. On the

other hand, Eq. (2.6.11) expresses the first-law of thermodynamics (energy conservation): a change

∆U(t) = U(t+dt)−U(t) in internal energy within an infinitesimal time interval [t, t+dt) must equal

the amount of motive energy f(t)dt added to the system minus the dissipated heat h(t)dt. From

Eq. (2.6.6), note that σ(t) ≥ 0, for every t ≥ 0, with equality if and only if A+
m(t) = A−m(t) = 0, for

every m = 1, 2, . . . ,M/2, which is a direct consequence of the fact that (x1 − x2) ln(x1/x2) ≥ 0, for

any values of x1 and x2, with equality if and only if x1 = x2. This result is in agreement with the

second law of thermodynamics, which postulates that the rate of entropy production must always

be nonnegative. Finally, Eq. (2.6.5) and Eq. (2.6.10) imply that

0 ≤ σ = h = f, (2.6.14)

where σ := limt→∞ σ(t), and similarly for h and f . This result implies that, at steady-state, the

amount of motive power supplied to the system must be equal to the rate of heat dissipation, in

agreement with the first law of thermodynamics. Moreover, the rate of heat dissipation must be

equal to the rate of entropy production. It also implies that the steady-state entropy production,

heat dissipation and motive power must all be nonnegative, in agreement with the second law of

thermodynamics.

2.6.2 Thermodynamic equilibrium

A Markovian reaction network reaches thermodynamic equilibrium at steady-state if and

only if Ā+
m = Ā−m = 0, for every m = 1, 2, . . . ,M/2, which is equivalent to the following detailed
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balance equations:

π2m−1(xxx− sss2m−1)pXXX(xxx− sss2m−1) = π2m(xxx)pXXX(xxx) (2.6.15)

π2m(xxx+ sss2m−1)pXXX(xxx+ sss2m−1) = π2m−1(xxx)pXXX(xxx), (2.6.16)

for every m = 1, 2, . . . ,M/2, xxx ∈ X . In this case, f(t) = 0, for every t ≥ 0, which implies that

dU(t)

dt
= −h(t) and

dF (t)

dt
= −σ(t), for t > 0. (2.6.17)

Moreover, Eq. (2.6.14) results in σ = h = f = 0, which shows that a Markovian reaction network

that reaches thermodynamic equilibrium at steady-state will not produce entropy or dissipate heat.

It turns out that a Markovian reaction network must be reversible at thermodynamic equilibrium,

which means that the stationary behavior of the population process will be indistinguishable if the

direction of time is reversed. This behavior may not be desirable, since many Markovian reaction

systems (e.g., biochemical reaction networks) are irreversible with respect to time. As a matter of

fact, entropy production, heat dissipation, and irreversibility with respect to time are three properties

necessary for the formation of order in physical systems [109]. As a consequence, a useful Markovian

reaction network must not reach thermodynamic equilibrium in most cases of interest. We can make

sure that this is the case by including nonreversible reactions that transfer mass between the system

and its surroundings, thus breaking detailed balance.

Despite the aforementioned drawbacks, Markovian reaction networks that reach thermo-

dynamic equilibrium have been extensively used to model population dynamics. For this type of

networks we can use (at least in principle) a simple iterative procedure to calculate the steady-state

probability distribution. This is possible because any state xxx ∈ X can be reached from a given state

xxx0 ∈ X through at least one ordered chain of reactions (m1,m2, . . . ,mL). In this case, detailed

balance implies that [128]

pXXX(xxx) = pXXX(xxx0)
L∏
l=1

πml
(xxx0 +

∑l−1
l′=1 sssml′ )

πm∗l (xxx0 +
∑l
l′=1 sssml′ )

, (2.6.18)
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for every xxx 6= xxx0, where m∗l is the index of the opposite reaction to reaction ml (i.e., m∗l = 2m, if

ml = 2m − 1, and m∗l = 2m − 1, if ml = 2m). After this procedure is completed for all xxx ∈ X , we

can calculate pXXX(xxx0) in Eq. (2.6.18) by setting the sum of all probabilities pXXX(xxx) equal to 1−pXXX(xxx0).
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Chapter 3

Numerically Solving the Master

Equation: Implicit Euler Method

In the following1, we present a novel numerical algorithm for solving the master equation.

We demonstrate that this algorithm is particularly useful in a wide class of processes on networks

studied by epidemiologists.

The processes by which disease spreads in a population of individuals are inherently stochas-

tic. The master equation has proven to be a useful tool for modeling such processes. Unfortunately,

as we mentioned in the previous chapter, solving the master equation analytically is possible only in

limited cases (e.g., when the model is linear), and thus numerical procedures or approximation meth-

ods must be employed. Available techniques, such as the LNA method, may fail to provide reliable

solutions, whereas current numerical routines can induce unreasonable computational burden.

In this chapter, we propose a new numerical technique for solving the master equation. Our

method is based on a more informative stochastic process than the population process commonly

used in the literature. By exploiting the structure of the master equation governing this process, we

1The material in this chapter is reprinted with permission from “Numerical Integration of the Master Equation
in Some Models of Stochastic Epidemiology”, by Garrett Jenkinson and John Goutsias, PLoS One, vol. 7 issue 5,
number e36160. Copyright 2012, Jenkinson & Goutsias.
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develop a novel technique for calculating the exact solution—up to desired computational precision—

of the master equation in certain models with inherent structure that is common in stochastic

epidemiology. We demonstrate the potential of our method by solving the master equation associated

with the stochastic SIR epidemic model.

3.1 Motiviation

Stochasticity can play an important role when studying a disease that spreads through a

population of individuals [17,92,129]. A common approach to modeling this problem is by means of

a Markov process, whose probability distribution satisfies a master equation. Solving this equation

analytically however is not in general possible and Monte Carlo sampling, based on the Gillespie

algorithm [45], is often used to accomplish this goal. Unfortunately, accurate evaluation of the

probability distribution of a Markov process requires a prohibitively large number of Monte Carlo

samples for most systems of interest. As a consequence, Monte Carlo sampling is mostly used to

estimate statistical summaries of the underlying stochastic population dynamics, such as means and

variances.

To evaluate the solution of the master equation, a number of approximation techniques

have been proposed in the literature, such as the LNA method [130]. While this approximation may

work well in certain circumstances, it often fails when the underlying assumptions are not satisfied.

The LNA method can only produce a normal approximation to the solution of the master equation.

Therefore, if the probability distribution of the population process is bimodal, then this method will

produce erroneous results.

Some effort has recently shifted away from Monte Carlo sampling and approximation tech-

niques and has focused on exploiting the linear structure of the master equation associated with

the population process. This results in a numerical solution to the master equation through matrix

exponentiation; e.g., see [30,32,33,92,131]. A popular technique along these lines employs a Krylov
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subspace approximation (KSA) method [32, 33] that dramatically reduces the size of matrix expo-

nentiation and results in an attractive iterative algorithm for solving the master equation. However,

the KSA technique is based on several approximations, whose cumulative effect may appreciably

affect the method’s accuracy, numerical stability, and computational efficiency.

There are two main issues that can affect performance of the KSA method. One is choosing

the dimension of the approximating Krylov subspace used. If the dimension is chosen too small,

the method may produce an inaccurate solution to the master equation, whereas, a value that is

too large can result in an appreciable decrease of computational efficiency. Unfortunately, there is

no rigorous way to optimally determine an appropriate value for this parameter, which is chosen

manually, even in advanced implementations such as Expokit [32]. Another issue is the fact that, at

each step, the KSA method may not necessarily produce a probability vector (i.e., a vector composed

of nonnegative elements that sum to one). This problem can be addressed by using a sufficiently

small step-size, but this may seriously affect the method’s computational efficiency. In practice, the

KSA method is equipped with a heuristic step that zeros-out all negative values and re-normalizes

the positive values so that they sum to one. This step however introduces its own errors, which may

affect the quality of the approximation in an manner that is not easy to predict.

Instead of using the population process, we can describe the stochastic spread of a disease

by a more informative stochastic process known as the degree-of-advancement (DA). Exploiting the

structure of the master equation governing this process results in a novel numerical algorithm for

calculating the exact solution of the master equation, which we refer to as the implicit Euler (IE)

method. This technique enjoys several advantages over the KSA method: its global error is of

first-order with respect to the step-size, it is numerically stable regardless of the step-size used, and

always produces a solution whose elements are nonnegative and sum to one. As we will discuss in this

chapter, the IE method shows great promise for solving certain problems in stochastic epidemiology

in which the state-space associated with the DA process is reasonably sized. It is not however meant

to replace the KSA method, which is still the best numerical method available for solving the master
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equation in problems where implementation of the IE method is not computationally attractive or

possible. To illustrate the potential of the proposed IE method, we calculate the exact solution

of the master equation associated with the stochastic SIR epidemic model and use this solution to

study some important properties of this model.

3.2 Methods

3.2.1 Disease dynamics

As discussed in Section 2.2.2, the classical SIR epidemic model (without births, deaths,

or imports of disease) is one of the simplest models in epidemiology. Here, each individual in a

population is either susceptible to a disease, infected, or recovered. If we denote by S, I, and R

the susceptible, infected and recovered individuals, respectively, and by S(t), I(t) and R(t) their

corresponding (and possibly random) population numbers, we can characterize the state of the SIR

model at time t by using the 3× 1 vector [S(t) I(t) R(t)]T , where T denotes vector transpose. The

state depends on time due to the (possibly random) occurrences of the following two reactions:

S + I→ 2I and I→ R, (3.2.1)

which model infection of a susceptible individual (first reaction) as well as recovery of an infected

individual (second reaction).

We can model a complex epidemiological system in more general terms by using the general

reaction form given by Eq. (2.1.1). This model congregates individuals into N different groups,

X1, X2, . . . , XN , which interact through M coupled reactions. For example, in the aforementioned

SIR model, we may set X1 = S, X2 = I, X3 = R, resulting in ν11 = ν21 = ν22 = ν′32 = 1, ν′21 = 2,

with the remaining coefficients being zero.

The usual way to characterize an epidemiological system is by means of the N × 1 random

vector XXX(t) with elements Xn(t), n ∈ N , where Xn(t) denotes the population of the n-th group of
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individuals present in the system at time t ≥ 0. By convention, we set XXX(0) = xxx(0), for some known

value xxx(0) (i.e., we assume that we know the initial population numbers at time t = 0). We refer to

the multivariate stochastic process {XXX(t), t > 0} as the population process.

Let Zm(t) be the (possibly random) number of times that the m-th reaction occurs dur-

ing the time interval [0, t). Then, {Zm(t), t > 0} is a counting process, known as the degree of

advancement (DA) of the m-th reaction [1]. We set Zm(0) := 0 and refer to the multivariate

stochastic process {ZZZ(t), t ≥ 0} as the DA process. Note that according to Eq. (2.1.4) we have

XXX(t) = xxx(0)+SZZZ(t). Thus, given an initial population vector xxx(0), Eq. (2.1.4) allows us to uniquely

determine the population process XXX(t) from the DA process ZZZ(t). However, we cannot in general

determine the DA process from the population process. This can only be done when the nullity

of S is zero, in which case ZZZ(t) = (STS)−1ST [XXX(t) − xxx(0)]. As a consequence, the DA process is

more informative than the population process. The DA process’ probability mass function pZZZ(zzz; t)

is governed by the master equation (2.1.6). We can use the solution pZZZ(zzz; t) of the previous master

equation to calculate the probability mass function pXXX(xxx; t) of the population process according to

Eq. (2.1.9)

3.2.2 Exploiting structure

Most available algorithms for solving the master equation focus on the population process

instead of the DA process. It turns out that, by using the DA process, we may reap some benefits

that can lead to a simple numerical solver for the general master equation (2.1.6).

In the following, we assume that statistical analysis of an epidemiological model of interest

is limited within a finite time interval T := [0, tmax], where the maximum time tmax is such that the

the DA process is almost surely contained within Z, which is an M -dimensional discrete and finite

sample space, i.e. ∑
zzz∈Z

pZZZ(zzz; t) = 1, for every t ∈ T . (3.2.2)

We index the elements in Z by zzzk, k = 1, 2, . . . ,K, where K is the cardinality of Z (i.e., the total
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number of elements in Z). We can then define the K×1 vector qqq(t) with elements qk(t) = pZZZ(zzzk; t),

for k = 1, 2, . . . ,K. Clearly, qqq(t) specifies the probability mass function pZZZ(zzz; t). It can be seen

from Eq. (2.1.6) that qqq(t) can be calculated by solving the following system of K linear ordinary

differential equations (ODEs):

dqqq(t)

dt
= Qqqq(t), t ∈ T , (3.2.3)

where Q is a K × K matrix that can be directly constructed from the master equation. In the

theory of Markov processes, Q is known as the generator matrix. Note that the k-th column of Q

contains zeros in most places except for the k-th element that takes value −
∑
m∈M αm(zzzk) ≤ 0

and M off-diagonal elements that take values αm(zzzk) ≥ 0, m ∈M. Therefore, the elements of each

column of Q add to zero; see Appendix B for an example. Finally, Eq. (3.2.3) is initialized by a

vector qqq(0) whose first element equals 1 (assuming that zzz1 = 0), whereas, the remaining elements

are all zero.

The main advantage of using the DA process ZZZ(t) is that, under an appropriate ordering

of the elements in Z, the generator matrix Q will be lower triangular, a result that is not true

when employing the population process XXX(t). We will shortly demonstrate that this can result in

substantial simplification of the numerical algorithm used to solve Eq. (3.2.3).

To obtain a matrix Q that is lower triangular, we must order the points zzzk in the sample

space Z lexicographically, such that zzzk ≺ zzzk+1, for k = 1, 2, . . . ,K − 1, where ≺ denotes that one

variable is lexicographically smaller than another [e.g., (z1, z2) ≺ (z′1, z
′
2) if and only if z1 < z′1 or

z1 = z′1 and z2 < z′2]. Because a reaction can only increase (by one) the value of a single element

of zzz, it is not possible for probability mass to be transferred from zzzk′ to zzzk when zzzk ≺ zzzk′ . Such

monotonic transfer of probability does not generally occur when the population processXXX(t) is used.

Therefore, when the points zzzk, k = 1, 2, . . . ,K, in Z are ordered lexicographically, the (k, k′) element

of matrix Q will be zero when k′ > k and, therefore, Q will be lower triangular. See Appendix B for

an illustration.
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3.2.3 Numerical solver

We now proceed by exploiting the three key structural characteristics of matrix Q: its

stability, triangularity, and sparsity. We have noted that the diagonal elements of Q are non-

positive. However, since Q is triangular, its diagonal elements will be the eigenvalues of Q. Thus,

the linear constant coefficient system of ODEs given by Eq. (3.2.3) is stable, ensuring the efficacy

of implicit ODE solvers [132]. As a consequence, we can use the implicit Euler method to estimate

qqq(t) at discrete time points tj := jτ , j = 1, 2, . . ., for a given time step τ . Then, given an estimate

q̂qq(tj−1) of qqq(tj−1), we can obtain an estimate q̂qq(tj) of qqq(tj) by solving the following system of linear

equations:

(I− τQ) q̂qq(tj) = q̂qq(tj−1), (3.2.4)

where I is the K × K identity matrix. In Appendix B, we show that solving the previous system

is always possible, for any τ > 0, due to the invertibility of matrix I − τQ. By initializing the

computation with q̂qq(0) = qqq(0), we can recursively calculate the values of the probability mass

function pZZZ(zzz; t) of the DA process at the discrete time points tj , j = 1, 2, . . .. We also show in

Appendix B that the previous procedure always returns a probability vector for any step-size τ ≥ 0.

Moreover, we demonstrate that the resulting method is a first-order solver, since the global error

||qqq(tj)− q̂qq(tj)||1 is of O(τ) (i.e., the global error is proportional to the step-size τ). Finally, since the

implicit Euler method is always stable for any choice of τ [132], the errors from previous iterations

will not be amplified in later stages, regardless of the step-size used. Therefore, a desired error can

be achieved by simply reducing the value of the step-size τ . We refer to the resulting technique for

solving the master equation based on Eq. (3.2.4) as the implicit Euler (IE) method.

In general, solving Eq. (3.2.4) would require O(K3) computations, where K is the cardi-

nality of the sample space Z, which will be prohibitive. However, since Q is a triangular matrix,

we can use forward substitution whose cost is usually of O(K2). But since Q is a sparse matrix,

with each column having only M + 1 non-zero elements, forward substitution can be done at a cost
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of O(MK) [133], where M is the number of reactions. In addition, calculating the probability mass

function at time tj requires storage of O(MK) nonzero numbers. In particular, we need to store

MK nonzero elements of matrix I − τQ as well as 2(K − 1) elements of vectors q̂qq(tj) and q̂qq(tj−1)

[note that the elements of each column of matrix I− τQ and the elements of each of the two vectors

q̂qq(tj) and q̂qq(tj−1) sum to one]. Since K � M , the computational and memory requirements of the

IE method will be O(K), which grow linearly in terms of K.

3.2.4 Practical considerations

In general, the computational and memory requirements of matrix exponentiation grow

quadratically in terms of the cardinality L of the sample space X , and can quickly become prohibitive

for large values of L. The KSA method however can greatly reduce this expense to O(L0(M+L0)L)

computations and O((M+L0)L) memory locations, where L0 is the dimension of the approximating

Krylov subspace used and M is the number of reactions (see Appendix B). Thus, the relative

efficiency of the IE method, which requires O(MK) computation and storage cost, to the KSA

approach will depend on the relative values of the cardinalities K and L of the sample spaces Z

and X , respectively.

As we mentioned before, if the nullity of the net stoichiometry matrix S is zero, then there

is a one-to-one correspondence between xxx = xxx(0) + Szzz and zzz. As a consequence of Eq. (2.1.9), the

cardinalities of X and Z will be the same, in which case K = L. Under these circumstances, the

IE method will outperform the KSA method. This is a consequence of the fact that MK = ML <

L0(M + L0)L and MK = ML < (M + L0)L in this case. We can easily verify that, for the simple

SI model (S + I → 2I), the SIR epidemic model characterized by Eq. (3.2.1), and the SEIR model

(S + I → E + I, E → I, I → R, where E denotes a group of individuals exposed to disease but not

yet infectious), the nullity of S is indeed zero and, therefore, the IE method will be superior to the

KSA method.

In general, the IE method will be computationally superior to the KSA method, provided
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that the cardinality of the sample space Z is not appreciably larger than L0(M + L0)/M times the

cardinality of the sample space X [or not much larger than (M + L0)/M times the cardinality of

the sample space X , if we also consider memory requirements]. Of course, in situations where the

nullity of S is large, the sample space Z can become appreciably larger than X , in which case the

KSA method will be more preferable. Note that there are cases in which Z and X can become

infinite (e.g., suppose an influx of people at some constant rate ∅ → Xn, in which case both sample

spaces will be unbounded). In these situations, the use of a finite state projection approach [30] is

required to reduce the sample spaces, and the relative efficiency of the two methods will depend on

the sizes of the resulting subspaces.

For a given step-size τ , the IE method described so far generates a sequence of probability

vectors q̂qq(tj), j = 1, 2, . . .. Assuming that the true solution qqq(tj−1) is known at time tj−1, we

can show (see Appendix B) that the local error ‖qqq(tj) − q̂qq(tj | tj−1)‖1 is of O(τ2), where q̂qq(tj |

tj−1) is the approximation of qqq(tj) obtained by the IE method for a given value of qqq(tj−1). We

can further improve this result by employing a powerful computational tool known as Richardson

extrapolation [134].

We show in Appendix B that, if q̂qqτ (tj | tj−1) and q̂qqτ/2(tj | tj−1) are the approximations

of qqq(tj) obtained from qqq(tj−1) by the IE method with step-sizes τ and τ/2, respectively, then

q̂qq∗(tj | tj−1) := 2q̂qqτ/2(tj | tj−1) − q̂qqτ (tj | tj−1) also approximates qqq(tj), but with a local error of

O(τ3). We therefore expect that q̂qq∗(tj | tj−1) is a better approximation to qqq(tj) than q̂qqτ (tj | tj−1)

[or even q̂qqτ/2(tj | tj−1); see Appendix B] for a sufficiently small step-size τ . This suggests a valuable

modification to the IE method that can be used to approximate the solution of the master equation

better than the original technique. The modification combines two runs of the IE method, with time

steps τ and τ/2, and produces a solution q̂qq∗(tj), given by

q̂qq∗(tj) =


2q̂qqτ/2(tj)− q̂qqτ (tj), if [2q̂qqτ/2(tj)− q̂qqτ (tj)]min ≥ 0

q̂qqτ/2(tj), otherwise,

(3.2.5)

where [xxx]min denotes the minimum value of the elements of vector xxx. In this case, q̂qq∗(tj) is given
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Figure 3.1: One step of the RIE method for solving the master equation. The upper branch im-
plements the standard IE method with step-size τ , whereas, the lower branch implements the IE
method with step-size τ/2. “OR” implements Eq. (3.2.5).

by the “improved” vector 2q̂qqτ/2(tj)− q̂qqτ (tj) only when all elements of that vector are nonnegative.

Otherwise, q̂qq∗(tj) is given by the vector q̂qqτ/2(tj) calculated by the IE method with the smaller

step-size τ/2. This assures that q̂qq∗(tj) is always a probability vector. We will be referring to the

resulting technique as the Richardson-based implicit Euler (RIE) method. We illustrate one step of

this method in Fig. 3.1.

Many ODE solvers, including the KSA method, adjust the step-size at each iteration to

assure that the local error ERR is less than a pre-specified error tolerance TOL while minimizing

the computational effort required to accomplish this goal. We can also modify the RIE method to

accommodate variable step-sizes. By following our analysis in Appendix B, we can approximately

calculate the local error ERRj at step j by

ERRj = 1.1× ‖q̂qqτ/2(tj)− q̂qqτ (tj)‖1, (3.2.6)

where we use a factor of 1.1 to compensate for the possibility that the true (but unknown) local

error is larger (by 10%) than the actual error calculated by ‖q̂qqτ/2(tj) − q̂qqτ (tj)‖1. If ERRj < TOL,

then we consider the step successful and increase the step-size from τ to τ∗, where

τ∗ = τ

√
TOL

ERRj
= 0.95 τ

√
TOL

‖q̂qqτ/2(tj)− q̂qqτ (tj)‖1
. (3.2.7)
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However, if ERRj > TOL, then the step is unsuccessful. In this case, we decrease the step-size from

τ to τ∗ by using Eq. (3.2.7) and redo the RIE step.

Finally, we note that some users might be concerned with precision loss in the forward

substitution step of the IE and RIE methods. The standard numerical technique of iterative im-

provement could be employed to protect against such precision loss [132], with moderate additional

computational burden. However, we show in Appendix B that the matrix being inverted (I− τQ) is

never singular, and it is readily apparent that for small τ this matrix is far from being singular. We

thus suggest that reducing τ may be a preferable method of combating precision loss, since the step

size also tightly regulates the global error as shown in Appendix B. In the following example, we

did not perform iterative improvement and the results indicate that any precision loss was negligible

despite the large dynamic range of probabilities involved in the solution.

3.3 Results

To demonstrate the efficacy of our method, we tackle the problem of modeling a well-

documented 1978 influenza epidemic in an English boarding school [135]. A deterministic SIR

model was originally developed to analyze these data [136]. Subsequently, the model was extended

to the stochastic case and approximately solved using the LNA method [17]. In the following, we

compute the exact solution of the underlying master equation. To the best of our knowledge, it is

the first time an exact algorithm has been employed for this problem.

There are three classes of individuals, S, I and R, representing Q = 763 susceptible, infected

and recovered pupils. Spreading of the epidemic is governed by the reactions in Eq. (3.2.1) with

propensity functions

π1(S(t), I(t), R(t)) = k1S(t)I(t) and π2(S(t), I(t), R(t)) = k2I(t), (3.3.8)

where k1 = 0.00218/day and k2 = 0.44036/day are the rate constants of infection and recovery,
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respectively [17]. The initial conditions are given by

S(0) = 762, I(0) = 1, R(0) = 0, (3.3.9)

reflecting the fact that only one pupil is infected at the start of the epidemic. We take the sample

space Z to be the rectangular region in the zzz plane that begins at (0, 0) and extends to include the

maximal point (762, 763). This is due to the fact that the first reaction can occur at most 762 times,

after which all pupils will have been infected, whereas, the second reaction can occur at most 763

times, after which all pupils will have recovered from the infection. As a consequence, the sample

space Z contains K = 763× 764 = 582,932 points.

Numerically solving the master equation over a period of 25 days by means of the KSA

method using Expokit [32] took 72 minutes of CPU time on a 2.20 GHz Intel Mobile Core 2 Duo

T7500 processor running Matlab 7.7. The resulting solution produces an L2 error ||ppp(25)−p̂pp(25)||2 =

1.48×10−3, where ppp is a solution of the master equation obtained by a stringent run of Expokit (see

Appendix B for more details about the parameter values used in Expokit), which we consider to be

the “true” solution.2 On the other hand, using Eq. (3.2.4) with τ = 0.01 days, the IE method took

a mere 53 seconds of CPU time, achieving a smaller (by a factor of 2.8) final L2 error of 5.35×10−4.

We can achieve a further reduction of the L2 error by using the RIE method with fixed step-size.

This is clear from the results summarized in Table 3.1. We can achieve this performance however at

the expense of increasing the CPU time required to calculate the solution. Note that we may be able

to decrease the CPU time by using the RIE method with variable step-size (see Table 3.1). This

method however results in a noticeable decrease of accuracy (at least for the example considered

here), with an L2 error that is 2.8 times larger than the one obtained with the KSA method.

Since R(t) = Q − S(t) − I(t), it suffices to focus on the joint probability mass function

Pr[S(t), I(t)] of susceptible and infected pupils. It turns out however that the epidemic-free state

occurs with high probability Pr[S(t), I(t) = 0], a situation that visually obscures the values of

2To be compatible with Expokit, we report here the L2 error. Note however that the error analysis of our method,
provided in Appendix B, is based on the L1 error.
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Table 3.1: The L2 error and CPU time associated with the four numerical solution methods of the
master equation associated with the SIR model.

Numerical Method L2 Error CPU Time

KSA 1.48× 10−3 4328 seconds

IE 5.35× 10−4 52 seconds

RIE (fixed step-size) 1.11× 10−4 189 seconds

RIE (variable step-size) 4.06× 10−3 124 seconds

Pr[S(t), I(t)]. For this reason, instead of Pr[S(t), I(t)], we depict in Fig. 3.2 a snapshot of the

calculated joint conditional probability mass function Pr[S(t), I(t) | I(t) > 0] of the susceptible and

infected pupils at the end of the 6th day, given that at least one pupil is infected. We have obtained

this and all subsequent results by exclusively using the basic IE method.

In Fig. 3.3, we depict the dynamic profiles of the mean numbers of susceptible, infected and

recovered pupils (solid green lines) as well as the the dynamic profiles of the ±1 standard deviations

(dashed red lines), computed directly from the joint probability mass function Pr[S(t), I(t), R(t)].

We also depict the observed data (blue circles) obtained from the literature [135]. These results are

identical to the results obtained by Monte Carlo estimation based on 1,000 trajectories sampled from

the master equation using the Gillespie algorithm (only data related to the infected pupils are shown),

and assures that the IE method produces the correct results. Unfortunately, we cannot employ the

Gillespie algorithm to accurately estimate the joint probability mass function Pr[S(t), I(t), R(t)] in

a reasonable time, due to the prohibitively large number of samples required by this method.

The bimodal nature of the probability mass function depicted in Fig. 3.2 clearly demon-

strates that the LNA method used previously [17] is not appropriate for this model, since the

method leads to a unimodal Gaussian approximation. As a matter of fact, the exact results de-

picted in Fig. 3.3 are different than the mean and standard deviation profiles depicted in Figures 3-4

66



CHAPTER 3. IMPLICIT EULER METHOD

Figure 3.2: Joint conditional probability mass function Pr[S(t), I(t)|I(t) > 0] of susceptible and
infected pupils at the end of the 6th day of the influenza epidemic.

in [17]. Because of the Gaussian nature of the LNA method, the previously reported results [17]

over-estimate the means and under-estimate the standard deviations, since this technique is blind

to the bimodal nature of the probability distribution. As a matter of fact, using the means and

standard deviations to characterize the stochastic properties of individual classes in the SIR model

is not appropriate. This is also evident by the fact that the ±1 standard deviations can take negative

values as well as values greater than 763. In Fig. 3.3, we have truncated these misleading values.

We can use the calculated joint probability mass functions Pr[S(t), I(t), R(t)] to study a

number of dynamic properties of the SIR model in a stochastic setting. In Fig. 3.4(a), for example,

we depict the evolution of the expected number of recovered pupils (solid green line), as well as the

±1 standard deviations (dashed red lines), given that at least one pupil is always infected. During

the first few days, few infections occur, and the expected number of recovered pupils will almost be
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Figure 3.3: Dynamics of the mean profiles (solid green lines) and the ±1 standard deviation profiles
(dashed red lines) of: (a) susceptible, (b) infected, and (c) recovered pupils. Monte Carlo estimates
of the mean and standard deviation profiles of the infected pupils are depicted in (d). Blue circles
in (b) mark available data.

zero. Subsequently, this number increases monotonically to 763, following a near sigmoidal curve.

The ±1 standard deviation curves and the evolution of the Fano factor (variance/mean) depicted in

Fig. 3.4(b), indicate that there is appreciable fluctuation in the number of recovered pupils during

days 3–10, after which most pupils recover from the infection. According to the results depicted in

Fig. 3.4(b), the maximum fluctuation in the number of recovered pupils occurs during the 6th day.

In Fig. 3.4(c), we depict the dynamic evolution of the calculated probability of extinction

Pr[I(t) = 0], t > 0, during a period of 50 days. This evolution is characterized by four phases. During

phase I (days 1–4), the probability of extinction increases rapidly from 0% to about 26%, due to the
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small number of infectious pupils. During phase II (days 5–17), the probability remains relatively

constant to about 26%. During this period of time, the epidemic takes its natural course, increasingly

infecting susceptible individuals, who eventually recover from the disease. As a consequence, we do

not expect the probability of extinction to increase during this phase. On the other hand, during

phase III (days 18–40), the number of infected pupils monotonically decreases to zero. It is therefore

expected that, during this phase, the probability of extinction will monotonically increase to its

maximum value of one. Finally, during phase IV (days 40–50), there is no infectious pupils present.

As a result, the influenza virus cannot be transmitted to the remaining susceptible pupils and the

epidemic ceases to exist.

When studying an epidemic model with extinction, a task of practical interest is to cal-

culate the number of individuals that escape infection. This is usually done by evaluating the

expected number e of individuals that escape infection (or the average number of susceptible indi-

viduals that remain after extinction) as the mean value of the steady-state probability mass function

Pr[S(∞), I(∞) = 0] [92]. The steady-state probability Pr[S(∞), I(∞) = 0] associated with our prob-

lem is depicted in Fig. 3.4(d). It turns out that e = 546.55 in our case. Note however that, due

to the bimodal nature of Pr[S(∞), I(∞) = 0], calculating e is misleading. However, by using the

result depicted in Fig. 3.4(d), we can confirm that there is a 73.35% chance that 40 pupils or less,

and a 26.53% chance that 753 pupils or more, escape infection. Clearly, these “confidence intervals”

provide a more accurate statistical assessment of the number of individuals that escape infection

than e. Interestingly, there is only 0.12% chance that the number of pupils escaping infection is

within the range [41, 752], which includes the value of e.

3.4 Discussion

Modeling the stochastic dynamics of a disease that spreads through a small and well-mixed

population of individuals is an increasingly important subject of modern epidemiology. Unfortu-
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Figure 3.4: (a) Dynamic evolution of the expected number of recovered pupils (solid green line) and
the±1 standard deviations (dashed red lines), given that at least one pupil is always infected. (b) The
Fano factor (variance/mean) associated with the results in (a) as a function of time. (c) Dynamic
evolution of the probability of extinction Pr[I(t) = 0], t > 0. (d) The approximation to the steady-
state probability mass function Pr[S(∞), I(∞) = 0], given by the solution at 50 days.

nately, even for the simplest model, calculating the underlying probability distribution is a daunting

task.

In an effort to address this problem, we have introduced in this chapter a new approach to

numerically compute the probability mass function of a Markovian population process governed by

the master equation. Implementation of this approach is feasible when the number of possible states

is not prohibitively large. In this case, the proposed method can lead to exact statistical analysis of

certain Markov models of interest, such as the SIR epidemic model.

The method introduced in this chapter is linear – both in terms of memory and compu-
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tational requirements – with respect to the cardinality K of the sample space Z of the degrees of

advancement of the underlying reactions. As a consequence, the method is feasible anytime Z is

relatively small. In general, however, the cardinality of Z may grow arbitrarily large, making im-

plementation of the method impossible without an appropriate FSP approximation [30]. Thus, the

proposed technique is only applicable to models that constrain the number of reaction events, such

as the SIR epidemic model considered in this chapter, or models for which the number of reaction

events is sufficiently small during a time period of interest (i.e., models without “fast” reactions).

Moreover, due to the well-known problem of the “curse of dimensionality,” K grows exponentially

with respect to the number of reactions M . Hence, models with many reactions cannot be solved

by the proposed method.

An effort is currently underway to reduce the size of the sample space Z, without com-

promising accuracy. A plausible way to accomplish this goal is to reduce the number of reactions

involved by removing “fast” reactions using a multi-scale approximation technique, such as one of

the techniques introduced for biochemical reaction systems [11,12,137], and to adaptively update Z

at each time point t by confining it to the smallest possible subspace Z(t) of Z. Because of the

lower-triangular and sparse nature of matrix Q in Eq. (3.2.4), it is also plausible that we employ

optimized algorithms developed for solving sparse triangular systems of linear equations on parallel

and distributed memory computer architectures [138], indicating that future efforts towards solving

the master equation could potentially focus on using high-performance computing systems.

Finally, we note that an earlier work [139] in the mathematics literature has shown how a

general Markov process on a countable state-space may be mapped to another stochastic process on

an augmented state-space such that the generator matrix of this augmented process is triangular.

This result is more general than our use of the DA process, but for the reactive processes considered

in this chapter that are governed by Eq. (2.1.1) the DA process is preferable, as discussed in Appendix

B. Although this earlier work identified and exploited the triangularity of the new stochastic process,

it used a recursive solution technique [140, 141] which turns out to be inferior to the IE method
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developed in this chapter, as discussed in Appendix B. Intuitively, the IE method is superior because

these earlier works exploit only the triangularity and not the sparseness of systems governed by

Eq. (2.1.1). Future developments on the IE method should thus maintain a focus on both the

triangularity and the sparsity of the underlying DA process.
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Chapter 4

Statistical Testing of Master

Equation Approximations

Due to the nonlinear nature of most reactions and the large size of the underlying state-

spaces, computing the exact solution of the master equation is intractable in general. For this reason,

a number of approximation techniques have been proposed in the literature to deal with this problem.

Unfortunately, it is not easy to check whether a given approximation technique produces acceptable

results. As a consequence, approximating the solution of the master equation may lead to significant

errors without any prior warning. Being aware of this serious problem, we would like to investigate

whether a particular technique produces an acceptable approximation to the solution of the master

equation and act accordingly. If our prior investigation leads to the conclusion that the method

is acceptable with some level of confidence, then we can proceed using it with possibly substantial

computational savings. If not, then we may try to develop a more appropriate approximation method

or commit substantial computational resources to obtain exact results if possible.

In this chapter1, we propose a hypothesis testing framework that allows us to reject an

1Materials in this chapter are reprinted with permission from “Statistically testing the validity of analytical and
computational approximations to the chemical master equation”, by Garrett Jenkinson and John Goutsias, Journal
of Chemical Physics, vol. 138, issue 20, number 204108, Copyright 2013, AIP Publishing LLC.
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approximation technique when it is not valid, or determine that it is safe to use with a predefined

level of confidence. By drawing a moderate number of samples from the master equation, the

proposed methods employ the well-known Kolmogorov-Smirnov statistic to test the validity of a

given approximation technique. If we cannot reject the approximation, then our methods provide

a quantitative measure of the extent to which we can trust it. Our approach is general enough to

deal with any master equation and can be used to test the validity of any analytical approximation

method or any approximative sampling technique of interest.

4.1 Motivation

As we mentioned before, a popular analytical approximation to the solution of the master

equation is obtained by the LNA method, which turns out to be accurate in systems of sufficiently

large volume at small enough times [1]. Unfortunately, there are no quantitative guidelines for

determining whether the LNA method produces a valid approximation to the solution of the master

equation for a given system volume and time. The only available guidelines are for master equations

with linear propensity functions, [142] for which the exact solution can be easily computed [28].

Despite this uncertainty, the LNA method has been extensively and sometimes incorrectly used to

study the behavior of chemical reaction systems, as well as epidemiological, ecological, social, and

neural networks [5].

When sufficiently accurate analytical approximations to the solution of the master equation

are not possible, one may employ computational techniques to sample the master equation and use

the resulting samples to compute Monte Carlo estimates of various moments and joint probability

distributions. Although exact sampling of the master equation is possible by means of the Gillespie

algorithm, [14,45,46] this method can be computationally very demanding, especially when estimat-

ing high-order statistical summaries or joint probability distributions. As a consequence, one must

rely on techniques that draw approximative samples from the master equation in a computationally
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efficient way. It turns out that there is no shortage of approximative sampling methods, [5] with

each method having its own advantages and disadvantages as well as its own parameters which must

be appropriately tuned to obtain acceptable estimation performance. The main problem here is not

lack of approximative sampling methods, but lack of confidence in using these methods. Again, it

is not in general possible to check whether a particular scheme produces legitimate samples and,

currently, there is no effective methodology to address this problem.

We should note here that a method has been proposed in the literature for measuring

the accuracy of approximative methods for sampling the master equation using the Kolmogorov-

Smirnov distance between two cumulative probability distributions [143]. Although a brief mention

to hypothesis testing is made in that publication (mainly to justify the use of the Kolmogorov-

Smirnov distance), the authors fall short of developing a statistically rigorous method for checking the

validity of a given approximation method. Instead, they focus their interest on using the Kolmogorov-

Smirnov distance to study sensitivity properties of stochastic chemical reaction systems [144], as

well as to measure convergence properties of Poisson leaping [145], a popular algorithm for drawing

approximative samples from the master equation. On the other hand, the work presented in this

chapter is based on using the Kolmogorov-Smirnov distance to develop rigorous hypothesis testing

approaches for rejecting or accepting analytical approximation methods or approximative sampling

techniques by making statistical decisions about the validity of a given scheme. More details related

to the material presented in this chapter can be found in [146].

4.2 LNA for the population process

In many cases of interest, we can find a parameter Ω that measures the relative size of

stochastic fluctuations, such that fluctuations become increasingly smaller as Ω becomes larger. For

example, in chemical reaction systems, Ω is often taken to be the system volume. In such sys-

tems, stochastic fluctuations gradually diminish as the system approaches the thermodynamic limit
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(denoted by Ω → ∞) for which Ω increases to infinity in a manner that keeps the concentrations

of the underlying chemical species fixed. In this case, it is intuitive to expect that the probabil-

ity of a reaction to occur within an infinitesimally small time interval [t, t + dt) depends on the

“concentration”

X̃XX(t) :=
XXX(t)

Ω
(4.2.1)

of the population process at time t and that this probability does not change when Ω varies as long

as the concentrations remain fixed [1]. This implies that the propensity functions πm(xxx) must only

depend on the concentrations xxx/Ω. It is commonly assumed that

πm(xxx) = f(Ω)
[
π̃m(xxx/Ω) + Ω−1π̃′m(xxx/Ω) + · · ·

]
, (4.2.2)

for some nonnegative functions f , π̃m, π̃′m, . . . which do not depend on Ω [1].

Under the previous assumptions, the law of large numbers implies that X̃XX(t) converges, as

Ω→∞, to the solution µµµ(t) of the standard reaction rate (macroscopic) equations [74]

dµn(t)

dt
=
∑
m∈M

snmπ̃m(µµµ(t)), for n ∈ N , (4.2.3)

initialized by µµµ(0) = xxx0/Ω, with µn(t) being the n-th element of vector µµµ(t). Moreover, and for

sufficiently large Ω, the concentration process can be approximated by using the following ansatz :

X̃n(t) = µn(t) +
1√
Ω

Ξn(t), for t > 0, n ∈ N , (4.2.4)

where Ξn(t) is a noise component that quantifies the fluctuations associated with the molecular

concentrations. For each Ω, Eq. (4.2.4) decomposes the random variable X̃n(t) into a macroscopic

(deterministic) component µn(t) and an additive noise component Ξn(t) that is independent of Ω.

This ansatz is based on the premise that fluctuations decrease at a rate proportional to Ω−1/2.

Many justifications have been offered in the literature to explain the accuracy of this assumption

for systems close to the thermodynamic limit [1, 74,75,147].

It can be shown that, for sufficiently large Ω, the dynamic evolution of the probability

density function of the N × 1 noise vector ΞΞΞ(t) is approximately governed by a linear Fokker-Planck
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equation [1]. By solving this equation, one finds that ΞΞΞ(t) is a zero mean Gaussian process, whose

covariances cnn′(t) := E[Ξn(t)Ξ′n(t)] solve the following Lyapunov equations:

dcnn′(t)

dt
=
∑
k∈N

(∑
m∈M

snmgmk(t)
)
ckn′(t) +

∑
k∈N

(∑
m∈M

sn′mgmk(t)
)
ckn(t) +

∑
m∈M

snmsn′mπ̃m(µµµ(t)),

(4.2.5)

for t > 0, n, n′ ∈ N , initialized by cnn′(0) = 0, where gnn′(t) := [∂π̃n(yyy)/∂yn′ ]yyy=µµµ(t) are the deriva-

tives of the propensity functions π̃ evaluated at the solution of the macroscopic equations (4.2.3).

These covariances can be stored into a covariance matrix C(t).

Finally, by multiplying both sides of Eq. (4.2.4) with Ω, one finds that the solution to the

master equation pXXX(xxx; t) can be approximated by the multivariate Gaussian distribution

P̂ (xxx; t) =
1√

(2π)NΩ|C(t)|
exp

{
− 1

2Ω

[
xxx− Ωµµµ(t)

]TC−1(t)
[
xxx− Ωµµµ(t)

]}
, (4.2.6)

with mean vector Ωµµµ(t) and covariance matrix ΩC(t), where µµµ(t) solves the macroscopic equa-

tion (4.2.3) and C(t) solves the Lyapunov equation (4.2.5). In Eq. (4.2.6), |A| denotes the determi-

nant of matrix A.

Note that computation of the LNA P̂ (xxx; t) requires that we first solve the N macroscopic

equations (4.2.3) and then solve the N(N + 1)/2 Lyapunov equations (4.2.5). The main drawback

of this approximation however is the absence of a technique that allows us to determine, with some

level of statistical confidence, whether P̂ (xxx; t) is indeed an acceptable approximation to the true

solution pXXX(xxx; t) of the master equation for a given system size Ω. We propose such a method next.

4.3 Testing the validity of analytical approximations

Given an analytical approximation P̂ (xxx; t) to the solution pXXX(xxx; t) of the master equation

(such as the one obtained by the LNA method), we would like to investigate, in a statistically

rigorous manner, whether this approximation is valid in some useful sense. In this section, we

propose a simple procedure to address this problem based on hypothesis testing.
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The main idea behind our method is to sample the master equation using exact sampling

in order to produce a moderate amount of population data drawn from the (unknown) probability

distribution pXXX(xxx; t) that solves the master equation. We subsequently use this data, in an appro-

priately designed statistical test, to reject the approximation, if the test decides that the data have

not been sampled from P̂ (xxx; t), or accept P̂ (xxx; t) as being a valid approximation to the solution

of the master equation in some sense, if the test fails to reject the possibility that the data have

not been drawn from P̂ (xxx; t). In the latter case, we quantify our trust in P̂ (xxx; t) being a good

approximation to the solution of the master equation by using appropriately constructed confidence

regions. To simplify our discussion, we begin by focusing on the case when the master equation is

one-dimensional. We then extend our method to the case of multiple dimensions.

4.3.1 The one-dimensional case

Hypothesis testing

Let us denote by {x1(t), x2(t), . . . , xL(t)} statistically independent samples of the one-

dimensional population process X(t) drawn at time t from the master equation using the exact

Gillespie algorithm. Based on these samples, we can calculate the empirical cumulative distribution

function (CDF) G(x; t), given by

G(x; t) =
1

L

L∑
l=1

[xl(t) ≤ x], (4.3.7)

where [ ] is the Iverson bracket.2 This CDF provides an approximation to the CDF F (x; t) that

corresponds to the true but unknown solution pXXX(x; t) of the master equation. On the other hand,

let F̂ (x; t) be the CDF that corresponds to the analytical approximation P̂ (x; t) of the solution of

the master equation. To measure how good the analytical approximation is, we may calculate the

following “distance”

S(t) = max
x

∣∣G(x; t)− F̂ (x; t)
∣∣ (4.3.8)

2[a ≤ b] equals 1, if a ≤ b, and 0 otherwise.
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between the two CDFs, known as the Kolmogorov-Smirnov (KS) statistic [148, 149]. This statis-

tic computes the largest absolute difference between the CDF F̂ (x; t) produced by the analytical

approximation and the empirical CDF G(x; t) observed when sampling the master equation using

Gillespie’s exact method. It is known that, as the number of samples L increases to infinity, the

empirical CDF G(x; t) will converge almost surely to the true CDF F (x; t), for every x. Therefore,

and for sufficiently large L, the KS statistic can provide an effective way of evaluating the accuracy

of the analytical approximation. In particular, “small” values of S(t) below a threshold s0 may

indicate that there is little difference observed between the approximating analytical and empirical

distributions, in which case, we may claim that the analytical approximation method provides an

acceptable approximation to the solution of the master equation. On the other hand, values of S(t)

above s0 may indicate that there is significant discrepancy between the observed samples and the

prediction of the analytical approximation method, in which case, we may reject the probability

distribution obtained by the analytical approximation.

To implement the previous approach in a statistically rigorous manner, we must formulate

it as a hypothesis testing problem that deals with the following null and alternative hypotheses:

H0: P = P̂

HA: P 6= P̂ ,

where we use the shorthand P for the solution pXXX(x; t) of the master equation at time t and denote

by P̂ the corresponding probability distribution P̂ (x; t) suggested by the analytical approximation

method at hand. This means that the set PA = {Q : Q 6= P̂} of all probability distributions that

satisfy the alternative hypothesis contains an infinite number of elements, whereas, the corresponding

set P0 = {P̂} for the null hypothesis has only one element. We refer to a probability distribution

Q in PA as an alternative distribution and call P̂ the null distribution. Note that the data samples

{xl(t), l = 1, 2, . . . , L} used to determine the empirical CDF G(x; t), given by Eq. (4.3.7), are drawn

implicitly from the true distribution P .

79



CHAPTER 4. TESTING MASTER EQUATION APPROXIMATIONS

We can use the KS statistic to implement the previous hypothesis testing problem, with the

null hypothesis assuming that the data {xl(t), l = 1, 2, . . . , L} are drawn from the null distribution

P̂ (x; t) specified by the analytical approximation method. If we could reject this hypothesis with a

small p-value then, we could conclude that the analytical approximation method does not produce

an acceptable approximation to the solution of the master equation at time t. The KS statistic

has been extensively studied in the literature and most statistical software packages provide the

p-value for a given value of S. If the resulting p-value is less than a chosen significance level α, then

we reject the null hypothesis; i.e., we reject the validity of the analytical approximation method.

Otherwise, we conclude that the data are not sufficiently persuasive to lead us to the conclusion

that the analytical approximation is not valid.

It turns out that the null hypothesis is rejected when the KS statistic S(t) is larger than

a critical value s0(α) that depends on the chosen significance level α. This implies that Dα(t) :=

{Dα(x; t),−∞ < x <∞} is the decision band of the test, where

Dα(x; t) =
(

max{0, F̂ (x; t)− s0(α)},min{1, F̂ (x; t) + s0(α)}
)
, (4.3.9)

so the test will reject the analytical approximation when values of the empirical distribution G(x; t)

lie outside of Dα(t) for at least one x. However, when all values of G(x; t) fall entirely within Dα(t),

then we may claim with (1 − α)% confidence that the CDF obtained by analytical approximation

is close to the true CDF, in a sense quantified by the “width”3 2s0(α) of the confidence band

Cα(t) := {Cα(x; t),−∞ < x < ∞}, where Cα(x; t) is the (1 − α)% confidence interval for the true

CDF value F (x; t),4 given by (this is a direct consequence of Example 4.4.6 in Ref. [149])

Cα(x; t) =
(

max{0, G(x; t)− s0(α)},min{1, G(x; t) + s0(α)}
)
. (4.3.10)

We say in this case that we are at least (1−α)% certain that the analytical approximation provides

an acceptable solution to the master equation. It can be shown that, when F̂ (x; t) is a continuous

3Note that the actual widths of the decision and confidence bands are both less than or equal to 2s0(α).
4This means that, with probability at least 1− α, one may claim that the true (but unknown) CDF value F (x; t)

of the solution to the master equation at population x and time t is contained within the confidence interval Cα(x; t).
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function of x (which is the case when considering the LNA method), the critical value s0(α) can be

well approximated by [150]

s0(α) =

√
| ln(α/2)/2|√

L+ 0.12 + 0.11/
√
L
. (4.3.11)

When F̂ (x; t) is not a continuous function of x (e.g., when the analytical approximation

to the master equation is a discrete distribution), the critical value of the KS test is always smaller

than the critical value given by Eq. (4.3.11) [148, 151, 152]. In this case, hypothesis testing will be

conservative, in the sense that the probability of the Type I error (i.e., the error incurred by rejecting

the validity of the analytical approximation method when the solution of the master equation is given

by the probability distribution derived by this method) is guaranteed to be less than or equal to the

significance level α, but the test may be characterized by a larger probability of Type II error (i.e.,

the error of failing to reject the analytical approximation when this approximation does not solve

the master equation) and thus have lower power.5 However, if this turns out to be a problem, one

can estimate the true critical value by Monte Carlo simulation using the simple procedure described

in Appendix C.

We should point out here that we cannot use the previous hypothesis testing procedure to

plainly accept the null hypothesis (i.e., to claim that the approximation method provides a valid

solution to the master equation). In fact, hypothesis testing can only lead to rejecting the null

hypothesis or to failing to reject the null hypothesis. On the other hand, computing a confidence

band allows us to accept the validity of an approximation to the solution of the master equation with

(1 − α)% confidence. Although a confidence band cannot be used to justify acceptance of the null

hypothesis, it can provide strong evidence that an approximation technique is sufficiently accurate

for all practical purposes. This is a direct consequence of the fact that the true CDF is necessarily

within the confidence band. Therefore, if the width of the confidence band is sufficiently small, then

we can claim with (1 − α)% confidence that the approximating CDF is close to the true CDF and

accept the approximation with that level of confidence.

5The power of a statistical test equals 1 minus the probability of the Type II error.
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We should finally note here that [see Eq. (4.1.3) in Ref. [149]]

S(t) = max
l=1,...,L

{
max

{ l
L
− F̂ (x[l](t); t), F̂ (x[l](t); t)−

l − 1

L

}}
, (4.3.12)

where x[1](t) ≤ x[2](t) ≤ · · · ≤ x[L](t) is the ordered observed sample. Moreover,

F̂ (x; t) = Φ

(
x− Ωµ1(t)√

Ωc11(t)

)
(4.3.13)

for the LNA method, where Φ is the CDF of the standard normal distribution and µ1(t) is found

by solving the one-dimensional version of Eq. (4.2.3) while c11(t) is found according to the one-

dimensional version of Eq. (4.2.5). As a consequence, the KS statistic for the LNA method is given

by

S(t) = max
l=1,...,L

{
max

{ l
L
− Φ

(x[l](t)− Ωµ1(t)√
Ωc11(t)

)
,Φ
(x[l](t)− Ωµ1(t)√

Ωc11(t)

)
− l − 1

L

}}
. (4.3.14)

Equation (4.3.12) and Eq. (4.3.14) provide formulas for the efficient implementation of the KS test

statistic in the general and LNA cases, respectively.

Choosing the significance level and sample size

The previous KS hypothesis testing approach requires two parameters to be specified: the

significance level α and the sample size L. These parameters affect the performance of the test, both

in terms of error rates and computational efficiency, and their values must be chosen carefully. In

the following, we discuss possible strategies for determining appropriate values for these parameters

in three different scenarios of interest.

Scenario 1: When sufficient resources are available to perform exact sampling, we must focus on

choosing values for α and L so that the hypothesis test meets specified performance criteria. For

example, we may limit the probability of the Type I error to some allowable value and set α equal

to that value, since the probability of the Type I error is never larger than α. Moreover, we may

constrain the width 2s0(α) of the confidence band Cα(t) to be at most as large as a desirable size
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w0, in which case we approximately obtain, by virtue of Eq. (4.3.11), that

L ≥
⌈2| ln(α/2)|

w2
0

⌉
, (4.3.15)

where dxe is the ceiling function. To improve computational efficiency, we may accept the lower

bound and set L = d2| ln(α/2)|/w2
0e.

In this case, if the KS test fails to reject the analytical approximation, we can conclude with

(1 − α)% confidence that, for every x, the CDF F̂ (x; t) suggested by the analytical approximation

is within a band of width w0 from the true CDF F (x; t). As a consequence, we may conclude that

the analytical approximation method provides an acceptable approximation to the solution of the

master equation.

Scenario 2: In large or stiff chemical reaction networks, sampling the master equation using the

exact Gillespie algorithm can be computationally demanding. In this case, the value of L will be

limited, by available computational resources, to a rather small maximum acceptable value. On the

other hand, to control the probability of the Type I error, we may specify a maximum allowable

value for this probability as before and set the significance level α equal to that value.

If L is small and the KS test fails to reject the analytical approximation, the decision band

Dα(t) may be unacceptably wide [note that s0(α) ∝ L−1/2]. This indicates that we must draw more

data samples from the master equation to improve testing performance and our confidence about the

validity of the analytical approximation. In this case, and without additional samples, nothing more

can be said about the accuracy of the method, and we conclude that the analytical approximation

must be used with caution.

Scenario 3: In the previous two scenarios, the value of the significance level is chosen so that the

probability of the Type I error is small. On the other hand, we would also like the probability of

the Type II error to be small as well. This is equivalent to requiring that the power of the test

against the alternative distribution is large. Therefore, we may attempt to determine values for

α and L so that the KS hypothesis testing procedure results in a large power over all alternative
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probability distributions in PA. This however is not possible, since we cannot specify every single

probability distribution in PA. Instead, we may address the previous problem over a parametric

subclass QA = {Qr, 0 ≤ r ≤ 1} ⊂ PA of known alternative probability distributions, such that

Qr ' P̂ , for large r, and Qr 6' P̂ , for small r. In this case, we would like the power of the KS test

against an alternative distribution Qr to be sufficiently small for large values of r and sufficiently

large for small values of r.

An example that illustrates this case is when the macroscopic system described by

Eq. (4.2.3) is bistable, indicating that, for sufficiently large system sizes Ω, the solution of the

master equation will be bimodal at steady-state, with the two modes located at Ωµ∗ and Ωµ∗∗,

where µ∗, µ∗∗ are the stable fixed points of the macroscopic equation [153]. If the system is initial-

ized within the basin of attraction of one of these stable fixed points, say Ωµ∗, then the resulting

dynamics may be well characterized, during at least some initial period of time, by a Gaussian

distribution that moves towards Ωµ∗ as time progresses. For sufficiently large Ω, this distribution

will place appreciable probability mass in the vicinity of Ωµ∗ and negligible probability mass around

Ωµ∗∗, since the probability of moving towards Ωµ∗∗ exponentially diminishes to zero as the system

approaches the thermodynamic limit [153]. We may therefore assume that the solution of the master

equation is approximately given by

Qr(x; t) = rP̂ ∗(x; t) + (1− r)P̂ ∗∗(x; t), 0 ≤ r ≤ 1, (4.3.16)

where r is the probability of initializing the master equation within the basin of attraction of Ωµ∗,

1 − r is the probability of initializing the master equation within the basin of attraction of Ωµ∗∗,

and P̂ ∗(x; t), P̂ ∗∗(x; t) are the LNA distributions obtained by initializing the master equation within

the basins of attraction of Ωµ∗ and Ωµ∗∗, respectively. It is now desirable to determine appropriate

values for α and L so that the KS test almost always fails to reject the LNA approximation P̂ ∗(x; t)

when the solution of the master equation is approximately given by Qr(x; t) = P̂ ∗(x; t), whereas, it

almost always rejects the LNA approximation P̂ ∗(x; t) when the solution of the master equation is
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approximately given by Qr(x; t) = P̂ ∗∗(x; t). We propose a method to do so in Appendix C.

4.3.2 Extension to multiple dimensions

Extending the previous method to the case of multiple dimensions is conceptually straight-

forward but mathematically more demanding. Unfortunately, the KS test does not directly generalize

to random variables in more than one dimension, and there is no statistical test in a multivariate

setting that stands out [154]. For the multivariate Gaussian setting, which is implied by the LNA

method, a number of tests have been proposed in the literature [155], including extensions of the

KS test to more than one dimension [156–158].

Here, we focus on the simplest multivariate extension of KS testing wherein the univariate

test considered above is independently applied on each of the N one-dimensional marginal distribu-

tions. We justify this route by considering the fact that, in practice, we are most often interested in

one-dimensional marginal distributions and statistical summaries of individual species populations.

In addition, an approximation to the solution of the master equation, such as the one provided by the

LNA method, is usually justified based on some theoretical argument (e.g., that the LNA method

is valid for large systems). In such cases, if hypothesis testing demonstrates that the approximation

produces marginal distributions that are close to the true distributions, then this combination of

theoretical and empirical evidence allows us to accept the validity of the approximation method,

even though hypothesis testing alone does not support such a decision.

An important advantage of the approach discussed in this subsection is the existence of

confidence bands around the marginal distributions, which may not be available when other hy-

pothesis tests are used. Decision and confidence regions around each marginal distribution can be

constructed as in the univariate case, but care must be taken when combining the results from each

marginal distribution into a single decision about the multidimensional goodness-of-fit of the ana-

lytical approximation method due to concerns associated with multiple-testing. We have decided to

handle this issue by combining results using Tippett’s method [159]. This method incorporates the
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p-values from each of the N independent tests into a single p-value and leads to a global hypothesis

testing procedure that deals with the following null and alternative hypotheses:

H0: Pn = P̂n, for every n ∈ N

HA: Pn 6= P̂n, for at least one n ∈ N .

Here, we use the shorthand Pn for the marginal distribution Pn(xn; t) of the multivariate solution

pXXX(xxx; t) of the master equation at time t and denote by P̂n the corresponding marginal probability

distribution P̂n(xn; t) implied by the analytical approximation method. This approach allows us to

avoid complex issues associated with multiple testing. We provide details next.

For each n = 1, 2, . . . , N , we first use the exact Gillespie algorithm to draw L independent

vector samples {xxxl(t), l = 1, 2, . . . , L} from the master equation (2.1.8). We then use these samples

to calculate the marginal empirical CDF

Gn(x; t) =
1

L

L∑
l=1

[xl,n(t) ≤ x], (4.3.17)

where xl,n(t) is the n-th element of vector xxxl(t). Subsequently, we compute the KS statistic

Sn(t) = maxx |Gn(x; t) − F̂n(x; t)| associated with the n-th marginal distribution of the popula-

tion process XXX(t) at time t. For the LNA method, this statistic is given by

Sn(t) = max
l=1,...,L

{
max

{ l
L
− Φ

(x[l],n − Ωµn(t)√
Ωcnn(t)

)
,Φ
(x[l],n − Ωµn(t)√

Ωcnn(t)

)
− l − 1

L

}}
, (4.3.18)

where x[1],n ≤ x[2],n ≤ · · · ≤ x[L],n is the ordered observed sample in the n-th dimension. Note that

the µn’s solve Eq. (4.2.3), whereas, the cnn’s are found by solving Eq. (4.2.5). We finally use the

KS hypothesis testing procedure to compute the p-value pn(t) of the observed value of Sn(t).

After computing all p-values {pn(t), n ∈ N}, we combine them into one p-value p(t) using

Tippett’s method, in which case,

p(t) = 1−
(
1− min

n∈N
{pn(t)}

)N
. (4.3.19)
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We then reject the multivariate analytical approximation at time t with significance level α whenever

p(t) < α or (equivalently) whenever

min
n∈N
{pn(t)} < α0 := 1− N

√
1− a. (4.3.20)

If desired, we can calculate the decision and confidence intervals

Dnα0
(x; t) =

(
max{0, F̂n(x; t)− s0(α0)},min{1, F̂n(x; t) + s0(α0)}

)
Cnα(x; t) =

(
max{0, Gn(x; t)− s0(α)},min{1, Gn(x; t) + s0(α)}

)
,

(4.3.21)

for n = 1, 2, . . . , N , where F̂n(x; t) is the n-th marginal CDF of the analytical approximation and

s0 is given by Eq. (4.3.11).6 In this case, the test will reject the analytical approximation when, for

at least one n, values of the empirical distribution Gn(x; t) lie outside of the decision band Dnα0
(t).

However, when this is not true, we may claim with (1−α)% confidence that, for each n = 1, 2, . . . , N ,

the marginal CDF F̂n(x; t) obtained by the analytical approximation is close to the true marginal

CDF Fn(x; t), in a sense quantified by the width 2s0(α) of the confidence band Cnα(t).

4.4 Testing the validity of approximative sampling

Before we use an approximative sampling technique for a particular Monte Carlo estimation

task, we should statistically test whether the technique provides a valid approximation to exact

sampling. By drawing a number of exact and approximate samples from the master equation, we

can gain statistical confidence for the accuracy of approximative sampling in a given setting. If the

resulting confidence is high, we can utilize the sampling method in computationally more demanding

tasks. Moreover, we can safely pool together the exact and approximate samples and reuse them in

the Monte Carlo estimation problem at hand.

We address this problem by employing a two-sample version of the previously discussed

KS hypothesis testing procedure, which we refer to as TSKS test [160, 161]. This is despite the

6In the multidimensional case, the decision band is computed using the significance level α0, given by Eq. (4.3.20),
and not the significance level α.
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fact that more powerful multivariate statistical tests exist to deal with this task [162–164]. The

main reason for our choice is the fact that the TSKS test provides confidence intervals around the

marginal CDFs, whereas the more complex multivariate tests lack this capability. Moreover, the

TSKS test is simpler to implement (it is a standard tool in most statistical software) and easier to

understand, since it is a natural extension of the previously discussed KS test. As a consequence, we

focus here on the case when only one-dimensional marginal distributions and statistical summaries

of individual species populations are of interest. As before, we first discuss the one-dimensional case

and then extend our discussion to multiple dimensions.

4.4.1 The one-dimensional case

Hypothesis testing

Let us denote by {x1(t), x2(t), . . . , xL(t)} statistically independent samples drawn from the

master equation at time t using exact sampling, whereas, let {x̃1(t), x̃2(t), . . . , x̃L(t)} be another

set of statistically independent samples drawn from the master equation using some approximative

sampling technique (e.g., Gaussian or Poisson leaping). In statistics, two-sample testing refers to a

hypothesis testing problem that deals with the following null and alternative hypotheses:

H0: P = P̃

HA: P 6= P̃ ,

where P denotes the (unknown) solution pXXX(x; t) of the master equation at time t from which the

exact samples {x1(t), x2(t), . . . , xL(t)} are drawn, whereas, P̃ denotes the (unknown) distribution

P̃ (x; t) from which the approximate samples {x̃1(t), x̃2(t), . . . , x̃L(t)} are drawn. The TSKS test

computes the two-sample Kolmogorov-Smirnov statistic:

S(t) = max
x

∣∣G(x; t)− G̃(x; t)
∣∣, (4.4.22)
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where G and G̃ are the two empirical CDFs

G(x; t) =
1

L

L∑
l=1

[xl(t) ≤ x] and G̃(x; t) =
1

L

L∑
l=1

[x̃l(t) ≤ x]. (4.4.23)

It is clear that the TSKS statistic is obtained from the KS statistic by replacing the CDF F̂

corresponding to the analytical approximation method with the empirical CDF G̃ calculated from

the data drawn from the master equation using the approximative sampling technique. Using an

existing statistical software package, we can calculate a p-value for a given value of S. If this p-

value is less than a chosen significance level α, then we can reject the validity of the approximate

samples. This is due to the fact that, in this case, the difference between the empirical CDF of the

approximate samples and the empirical CDF of the exact samples will be statistically significant.

As a matter of fact, the p-value is less than α if and only if the TSKS statistic S is larger than a

critical value s0(α).

Similarly to KS testing, the (1− α)% confidence interval for the true CDF F (x; t) is given

by (this is a consequence of Example 4.4.6 in Ref. [149] and Theorem 4 in Ref. [151])

Cα(x; t) =
(

max{0, G(x; t)− s0(α)},min{1, G(x; t) + s0(α)}
)
. (4.4.24)

In this case, if the empirical CDF G̃(x; t) is not entirely within the confidence band Cα(t) :=

{Cα(x; t),−∞ < x < ∞}, then this approximation must be rejected, since S(t) > s0(α) in this

case. On the other hand, if G̃(x; t) lies entirely within Cα(t), then we can claim with (1 − α)%

confidence that the empirical CDF obtained by approximative sampling is close to the true CDF,

in a sense quantified by the width 2s0(α) of the confidence band. We say in this case that we are at

least (1− α)% certain that the approximate samples provide an acceptable alternative to the exact

samples. Note that we cannot derive a meaningful decision band in this case, since we do not know

the exact probability distribution P̃ .

Unfortunately, it is not easy to determine the critical value of the TSKS test, due to

the fact that the probability distribution P̃ from which the approximative samples are drawn is

discrete. However, this value is always smaller than the critical value obtained by assuming that P̃
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is continuous, given by [compare with Eq. (4.3.11)] [151]

s0(α) =

√
| ln(α/2)/2|√

L/2 + 0.12 + 0.11/
√
L/2

. (4.4.25)

In this case, the maximum probability of the Type I error associated with the test that uses the

critical value s0 given by Eq. (4.4.25) will be no more than the maximum probability of the Type I

error of the test that uses the true critical value.7 However, the power of the test that uses critical

value s0 will be smaller than the power of the test that uses the true critical value, in which case we

are dealing with a larger probability for the Type II error (i.e., a more conservative test). This is also

reflected by the fact that the confidence band Cα(t) will be wider when using s0. Note however that

s0 ∼ (L)−1/2. As a consequence, we can reduce the width 2s0 of the confidence band and increase

the power of the test by increasing the sample size L when this is possible.

Choosing the sample size and significance level

The problem of choosing values for L and α when testing the validity of an approximative

sampling technique is similar to the problem of choosing these values when testing for the validity

of an analytical approximation. However, only the two Scenarios 1 & 2, discussed in Section 4.3.1

are relevant here, since we no longer have analytical knowledge of the approximating probability

distribution. TSKS testing requires twice as many samples as KS testing in order to obtain the same

size confidence bands for the same level of significance. When sufficient computational resources are

available, we can increase the power of the TSKS test if necessary by increasing the number of samples

acquired by exact and approximative sampling. However, the fact that an investigator is considering

approximative sampling may indicate that exact sampling is computationally demanding, perhaps

due to a large and stiff chemical reaction system at hand. In this case, increasing the power of TSKS

by increasing L may not be feasible, and the investigator may decide to use more powerful two-sample

multivariate testing procedures at the expense of loosing the ability to compute confidence bands.

7This is a consequence of the fact that, since the true critical value is smaller than the critical value s0, the
significance level of the test (which equals the maximum probability of the Type I error) that uses the true critical
value will be larger than the significance level of the test that uses s0.
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As we will demonstrate in Section 4.5, confidence bands can provide a wealth of useful information

about the validity of an analytical approximation or an approximative sampling technique.

4.4.2 Extension to multiple dimensions

We can extend the TSKS test to multiple dimensions by using a similar procedure to the

one discussed in Section 4.3.2. In particular, for each n = 1, 2, . . . , N , we draw L independent vector

samples {xxxl(t), l = 1, 2, . . . , L} from the master equation using exact sampling and L independent

vector samples {x̃xxl(t), l = 1, 2, . . . , L} using approximative sampling. We then compute the empirical

marginal CDFs

Gn(x; t) =
1

L

L∑
l=1

[xl,n(t) ≤ x] and G̃n(x; t) =
1

L

L∑
l=1

[x̃l,n(t) ≤ x], (4.4.26)

and the two-sample KS statistic Sn(t) = maxx |Gn(x; t)− G̃n(x; t)|. Subsequently, we use the TSKS

hypothesis testing procedure to compute the p-value pn(t) and the confidence interval

Cnα(x; t) =
(

max{0, Gn(x; t)− s0(α)},min{1, Gn(x; t) + s0(α)}
)
, (4.4.27)

where s0(α) is given by Eq. (4.4.25). After this process is complete, we combine the resulting p-values

into one p-value p(t), using Eq. (4.3.19), and reject the approximate samples obtained at time t with

significance level α, whenever p(t) < α.

4.5 Results

In this section, we illustrate the previous methods using two simple reaction models: the

Schlögl model of chemistry and the SIR model of epidemiology, which can be used to model an

autocatalytic reaction (e.g., autophosphorylation) coupled with an isomerization reaction. Although

we could consider more complex systems, the two models discussed in this section are simple enough

to allow numerical computation of the true solution of the master equation, while they are complex

enough to provide a clear illustration of various concepts associated with our methods.
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Example 1: The LNA method in the Schlögl model

It is a well-known fact that the Schlögl model [165] is a bistable chemical reaction system

that can be described using a one-dimensional master equation [93]. It is also known that the LNA

method can break down in a bistable system, producing variance estimates that can even diverge to

infinity [5]. Therefore, the common advice regarding the LNA method is to avoid this approximation

in systems whose underlying macroscopic equations have more than one stable fixed point. We

demonstrate in this example that we may be able to use the LNA method to provide a useful

analytical approximation to the solution of the master equation, even in bistable systems. Moreover,

we show that the uncertainty regarding the validity of this approximation can be quantified.

The Schlögl model consists of the following four reactions:

2X1 +X2 → 3X1

3X1 → 2X1 +X2

X1 → X3

X3 → X1,

(4.5.28)

where the concentrations of X2 and X3 are held constant at levels γ2 and γ3, respectively. These

reactions occur with mass-action propensity functions, given by

π1(x1) =
k1

V
γ2 x1(x1 − 1)

π2(x1) =
k2

V 2
x1(x1 − 1)(x1 − 2)

π3(x1) = k3 x1

π4(x1) = k4V γ3,

(4.5.29)

where x1 denotes the population number of X1, k1, k2, k3, k4 are rate constants of the corresponding

reactions, and V is the system volume.

By setting Ω = V , we find that X̃1(t) := X1(t)/Ω is the concentration of the chemical

species X1 in the system at time t. In this case, by examining Eq. (4.2.2) and the previous propensity

functions, we find that f(Ω) = Ω, whereas π̃1(y1) ' k1γ2y
2
1 , π̃2(y1) ' k2y

3
1 , π̃3(y1) = k3y1, and
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π̃4(y1) = k4γ3, for large enough V . Therefore, the macroscopic equation (4.2.3) is given by

dµ1(t)

dt
= k1γ2µ

2
1(t)− k2µ

3
1(t)− k3µ1(t) + k4γ3, (4.5.30)

with initial condition µ1(0) = x0,1/V , where µ1(t) = E[X̃1(t)]. Moreover, the Lyapunov equa-

tion (4.2.5) is given by

dc11(t)

dt
= k1γ2µ

2
1(t) + k2µ

3
1(t) + k3µ1(t) + k4γ3 + 2c11(t)

[
2k1γ2µ1(t)− 3k2µ

2
1(t)− k3

]
, (4.5.31)

with initial condition c11(0) = 0.

We consider the following parameter values: x0,1 = 600 molecules, γ2 = 1 molecule fl−1,

γ3 = 2 molecules fl−1, V = 80 fl, k1 = 3 fl2molecules−3hr−1, k2 = 0.6 fl2molecules−3hr−1, k3 =

2.95molecules−1hr−1, and k4 = 0.25molecules−1hr−1. These values are known to produce a bistable

macroscopic system with stable fixed points at µ∗ = 299.7827 and µ∗∗ = 17.1295 [93]. We are

interested in the following question:

We are running the Schlögl model for one hour. Will the LNA method accurately describe
the solution to the underlying master equation at the end of this run?

To answer this question, we begin by solving Eq. (4.5.30) using the “ode23s” numerical

solver of MATLABr and find that the LNA method predicts that the mean value of the population

process X1(1) at the one hour mark equals 300.0157 molecules, when the system is initialized with

x0,1 = 600molecules, which is in the basin of attraction of Ωµ∗. We subsequently solve the Lyapunov

equation (4.5.31) numerically and find that the standard deviation of the population process X1(1)

equals 24.3197 molecules. Therefore, the LNA method predicts that the solution of the master

equation at the one hour mark is given by

P̂ ∗(x; 1) = 0.0164 exp
{
− (x− 300.0157)2

1182.8934

}
. (4.5.32)

Our goal is to statistically verify the validity of the LNA method when the system is initialized with

x0,1 = 600 molecules, using KS testing.
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As we have discussed earlier, KS testing requires specification of the sample size L and

significance level α. Note that this system fits well with our discussion pertaining to Scenario 3 in

Section 4.3.1. We therefore proceed by using the algorithm discussed in Appendix C.

To find appropriate values for L and α, we focus on satisfying the following two require-

ments. When we are at least 99% certain that the master equation is initialized within the basin of

attraction of the first stable fixed point Ωµ∗, we can accept a test with less than 5% power. More-

over, when we are at most 90% certain that the master equation is initialized within the basin of

attraction of the second stable fixed point Ωµ∗∗, we must accept a test with at least 95% power. This

implies the following values for the parameters associated with the algorithm discussed in Appendix

C: r0 = 0.9, r1 = 0.99, b0 = 0.95, and b1 = 0.05. We must also find the probability distribution P̂ ∗∗,

which describes the behavior of the LNA method within the basin of attraction of Ωµ∗∗. In this

case, the LNA method predicts that the mean tends towards Ωµ∗∗ = 17.1295, whereas, the standard

deviation tends toward 17.1295 molecules. Therefore, we set

P̂ ∗∗(x; 1) = 0.0739 exp
{
− (x− 17.1295)2

58.3632

}
, (4.5.33)

which fully specifies all information needed by the algorithm discussed in Appendix C. This algorithm

results in L = 350 and α = 0.025, from which we obtain s0(α) = 0.0786 by means of Eq. (4.3.11).

In Fig. 4.1(a), we depict a portion of the decision boundaries of the resulting decision band

Dα(1) (red lines), whose width is 2s0(α) = 0.1572, together with the CDF F̂ (x; 1) obtained by the

LNA method (blue line). If we are satisfied with this decision band, we can proceed to perform

KS testing. After drawing L = 350 samples from the master equation using exact sampling and

after computing the empirical CDF G(x; 1) (gray line), we find that the test fails to reject the LNA

method, since the value of the KS statistic is S(1) = 0.0759, which is less than the critical value

s0(α) = 0.0786. This is also true since all values of the empirical CDF G(x; 1), depicted by the

gray line in Fig. 4.1(a), lie inside Dα(1). In Fig. 4.1(b), we depict a portion of the boundaries of

the (1−α)% = 97.5% confidence band Cα(1) produced by the KS test (orange lines), together with
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Figure 4.1: (a) Portion of the decision band Dα(1) of the KS test obtained for the Schlögl model,
with L = 350 and α = 0.025. The red lines depict the decision boundaries, whereas, the blue line
depicts the CDF F̂ (x; 1) of X1(1) obtained by the LNA method. The values of the empirical CDF
G(x; 1), depicted by the gray line, computed from L samples drawn from the master equation by
exact sampling, lie inside Dα(1). Therefore, KS hypothesis testing fails to reject the LNA method.
(b) Portion of the corresponding 97.5% confidence band Cα(1). The orange lines depict the confidence

boundaries, whereas, the blue line depicts the CDF F̂ (x; 1) of X1(1) obtained by the LNA method.
The black line depicts the true CDF F (x; 1) numerically obtained with the KSA method.

the LNA CDF F̂ (x; 1) (blue line). The confidence band predicts (with 97.5% certainty) that the

true CDF F (x; 1) (black line) will be contained entirely within Cα(1) (orange lines), and Fig. 4.1(b)

demonstrates the accuracy of this prediction.

Note that the LNA CDF is closer to the lower boundary of the confidence region than the

upper boundary. This tells us that the probability Pr[X1(1) ≤ x] predicted by the LNA method

is very likely to underestimate the true probability. This does not come as a surprise, since we

understand that the LNA method is ignoring the existence of the second stable fixed point at Ωµ∗∗

and thus the probability mass assigned to the vicinity of that point. It is interesting to note that

the confidence band depicted in Fig. 4.1(b) could have warned an unsuspecting user of the LNA

method of this possibility.

The previous results clearly indicate that the LNA method provides an acceptable analyt-

ical approximation to the master equation at the one hour mark. Moreover, Fig. 4.1(b) provides a

quantitative assessment of the quality of the approximation, which helps us decide whether we can
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trust this approximation. To confirm these results, we solved the master equation numerically using

the KSA method.8 The true CDF, depicted by the black line in Fig. 4.1(b), falls right in the middle

of the confidence region and closely agrees with the LNA CDF (blue line). To measure the differ-

ence between the corresponding probability density functions, we computed the Kullback-Leibler

distance [126]. This produced a value of 0.0072 bits, which indicates that there is almost no loss of

information when characterizing the true solution of the master equation using the approximation

obtained by the LNA method.

As a final note, we should point out another advantage of calculating and using confidence

bands. As indicated in Fig. 4.1(b), the exact solution to the master equation does differ slightly

from the solution obtained by the LNA method. For large enough L, these differences will be picked

up by the test, which will reject the approximate solution obtained by the LNA method. Indeed, the

p-value obtained in the current example (which equals 0.0337) was slightly above the significance

level α = 0.025, indicating that the test almost rejected the LNA method due to its proximity

to the lower boundary of the confidence band. As L → ∞, the confidence boundaries will move

towards the center of the confidence band. In this case, the test will become increasingly more

certain of what the true solution is and it will start rejecting the LNA method. This however is

not a problem in practice, since we can quantitatively observe how the LNA CDF strays from the

confidence boundaries and make a decision, with a certain level of confidence, as to whether or not

the LNA method produces an acceptable approximation to the solution of the master equation. This

discussion demonstrates the fact that the raw outcome of the test (i.e., reject or fail to reject the

LNA method) is less informative than the confidence bands produced by the test.

Example 2: The LNA method in the SIR model

The SIR model of epidemiology consists of the following two reactions:

X1 +X2 → 2X2

X2 → X3.

(4.5.34)

8After applying a finite projection step to reduce the size of the underlying state-space [30].
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The first reaction models infection of an individual X1, who is susceptible to a disease (such as the

flu), by an infected individual X2, whereas, the second reaction models the recovery of an infected

individual X2. These reactions occur with mass-action propensity functions, given by

π1(x1, x2) =
k1

I
x1x2

π2(x1, x2) = k2x2,

(4.5.35)

where x1, x2 denote the numbers of X1 and X2 individuals, respectively, k1, k2 are the rate constants

of the corresponding reactions, and I denotes the total number of individuals in the system. Although

the SIR model appears to be three-dimensional, the constraint X1(t) + X2(t) + X3(t) = I means

that the system is in fact two-dimensional.

By setting Ω = I, we find that X̃1(t) := X1(t)/Ω, X̃2(t) := X2(t)/Ω are respectively the

fractions of the susceptible and infected individuals X1 and X2 in the system at time t. In this case,

by examining Eq. (4.2.2) and the previous propensity functions, we find that f(Ω) = Ω, whereas

π̃1(y1, y2) = k1y1y2 and π̃2(y1, y2) = k2y2. Therefore, the macroscopic equations (4.2.3) are given

by

dµ1(t)

dt
= −k1µ1(t)µ2(t)

dµ2(t)

dt
= k1µ1(t)µ2(t)− k2µ2(t),

(4.5.36)

initialized by µ1(0) = x0,1/I and µ2(0) = x0,2/I, where µ1(t) = E[X̃1(t)] and µ2(t) = E[X̃2(t)].

Moreover, the Lyapunov equations (4.2.5) are given by

dc11(t)

dt
= −2k1µ2(t)c11(t)− 2k1µ1(t)c12(t) + k1µ1(t)µ2(t)

dc12(t)

dt
= −k1µ1(t)c22(t) + k1µ2(t)c11(t) +

[
k1µ1(t)− k2 − k1µ2(t)

]
c12(t)− k1µ1(t)µ2(t)

dc22(t)

dt
= 2k1µ2(t)c12(t) + 2

[
k1µ1(t)− k2

]
c22(t) + k1µ1(t)µ2(t) + k2µ2(t),

(4.5.37)

with initial condition c11(0) = c12(0) = c22(0) = 0.

We consider the following parameter values: I = 763, x0,1 = 762, x0,2 = 1, k1 =

1.6633 individuals−1day−1, and k2 = 0.44036 individuals−1day−1. These values have been esti-
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mated based on real data obtained from a 1978 flu outbreak in an English boarding school [135,136].

Similarly to the previous example, we are interested in the following question:

We are running the SIR model for six days. Will the LNA method accurately describe
the solution to the underlying master equation at the end of this run?

We chose to simulate the model for six days since the peak infection occurs at the six day mark

according to the available data [135].

To answer the previous question, we begin by solving the system of macroscopic equa-

tions (4.5.36) using the “ode23s” numerical solver of MATLABr and find that the LNA method

predicts mean values 253.1923 and 287.5587 for the population processes X1(6) and X2(6), respec-

tively, at the six day mark. We subsequently solve the Lyapunov equations (4.5.37) numerically and

find that c11(6) = 40.4421, c12(6) = −9.2960, and c22(6) = 2.5231. These values fully specify the

Gaussian approximation to the master equation associated with the SIR model derived by the LNA

method. Our goal is to statistically verify the validity of this approximation using KS testing.

To specify the required sample size L and significance level α of the KS test, we follow

Scenario 1 in Section 4.3.1. We limit the probability of Type I error to 1% and the width 2s0(α) of

the confidence band to size w0 = 0.1. In this case, α = 0.01, whereas L = 1,060 by taking the lowest

possible value suggested by Eq. (4.3.15). Moreover, Tippett’s method results in α0 = 0.005.

In Fig. 4.2(a), we depict the decision boundaries of the resulting decision bands D1
α0

(6)

and D2
α0

(6) (red lines) together with the marginal CDFs F̂1(x; 6) and F̂2(x; 6), obtained by the LNA

method (blue lines). The width of these decision bands is 2s0(α0) = 0.1058. To perform KS testing,

we draw two independent sets of L = 1,060 samples from the master equation using exact sampling

and use these samples to compute the empirical marginal CDFs G1(x; 6) and G2(x; 6) (gray lines).

We find that KS hypothesis testing based on Tippett’s method rejects the LNA method. This is also

clear from Fig. 4.2(a), since the computed empirical marginal CDFs fall outside the corresponding

decision regions. In Fig. 4.2(b), we depict the boundaries of the (1− α)% = 99% confidence bands

C1
α(6) and C2

α(6) produced by the KS test (orange lines), together with the marginal LNA CDFs
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Figure 4.2: (a) The decision bands D1
α0

(6) and D2
α0

(6) of the KS test obtained for the SIR model,
with L = 1,060 and α = 0.01. The red lines depict the decision boundaries, whereas, the blue
lines depict the CDFs F̂1(x; 6) and F̂2(x; 6) of X1(6) and X2(6), respectively, obtained by the LNA
method. Note that the empirical marginal CDFs G1(x; 6) and G2(x; 6), depicted by the gray lines,
computed from 2L samples drawn from the master equation by exact sampling, lie outside the
corresponding decision bands. Therefore, KS hypothesis testing rejects the LNA method. (b) The
99% confidence bands C1

α(6) and C2
α(6) of the KS test obtained for the SIR model. The orange

lines depict the confidence boundaries, whereas, the blue lines depict the CDFs F̂1(x; 6) and F̂2(x; 6)
of X1(6) and X2(6), respectively, obtained by the LNA method. The black lines depict the true
marginal CDFs F1(x; 6) and F2(x; 6), numerically obtained with the IE method.

F̂1(x; 6) and F̂2(x; 6) (blue lines). The width of these bands is 2s0(α) = 0.0996. We expect the

true marginal CDFs F1(x; 6) and F2(x; 6) (black lines) to be inside the corresponding confidence

bands with 99% probability.

Clearly, the marginal CDFs obtained by the LNA method lie outside the confidence bands,

indicating that this method provides a poor approximation to the solution of the master equation.

This is in direct contrast to a relatively recent attempt to approximately solve the SIR model pre-
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sented here using the LNA method [17]. In fact, the KS test produces extraordinarily small p-values,

p1(6) = 5.0962×10−87 and p2(6) = 5.7225×10−138, which lead to a combined p-value of zero (within

numerical precision). Therefore, the KS test will reject the LNA method at any level of significance.

It turns out that the Kullback-Leibler distance between the probability distributions obtained by

the IE and LNA methods equals 27.5953 bits. This indicates that there is significant information

loss when using the approximation obtained by the LNA method, confirming the importance of the

test’s decision to reject the approximation.

The previous example clearly demonstrates the practical value of the proposed hypothesis

testing approach. Without this technique, we are left to decide whether or not to use the LNA

method based on limiting arguments (as Ω→∞), which are of little or no help in practice. KS hy-

pothesis testing is an effective way to deal with this problem and can be used to provide useful

information on when and why the LNA method breaks down. For example, the confidence band

C1
α(6) depicted in Fig. 4.2(b) indicates, with 99% certainty, a significant probability that no suscep-

tible individual will get infected during a six day period [the probability of X1(6) = 762 is between

0.1 and 0.2]. This for example may happen if the flu virus, after infecting one individual, dies before

infecting anybody else. Moreover, the confidence band C2
α(6) depicted in Fig. 4.2(b) indicates, with

99% certainty, a significant probability that there will be no infected individuals at day 6 [the prob-

ability of X2(6) = 0 is between 0.2 and 0.3], which can happen for example if all infected individuals

recover by day 6. Note however that both of these facts are not predicted by the approximation

obtained using the LNA method, which wrongly assigns zero probability to having 762 susceptible

and 0 infected individuals at day 6.

Example 3: Gaussian leaping in the SIR model

Since we found that the LNA method provides an unacceptable approximation to the

solution of the master equation associated with the SIR model, we may decide to study marginal

statistical properties of the model using Monte Carlo analysis based on approximative sampling. We

first start with Gaussian leaping, due to its computational efficiency. As with many approximation
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Figure 4.3: The 99% confidence bands C1
α(6) and C2

α(6) of the TSKS test obtained for the SIR model,
with L = 2,120 and α = 0.01. The orange lines depict the confidence boundaries, whereas, the blue
lines depict the empirical CDFs G̃1(x; 6) and G̃2(x; 6) of X1(6) and X2(6), respectively, obtained
by approximative sampling using Gaussian leaping. The black lines depict the true marginal CDFs
F1(x; 6) and F2(x; 6), numerically obtained with the IE method. The marginal empirical CDFs
obtained by Gaussian leaping remain within the confidence bands, except at values close to the left
and right boundaries of the state-space (insets). TSKS hypothesis testing rejects the validity of the
approximative samples in this case.

algorithms, the validity of Gaussian leaping depends on the choice of the leaping parameter τ , which

must meet certain criteria that are often difficult or impossible to verify. We are thus interested in

the following question:

We are running the SIR model for six days. Will Gaussian leaping with τ = 0.05 produce
population samples at day 6 that can safely replace, in a Monte Carlo study of marginal
statistics, samples obtained by exact sampling?

To answer this question using hypothesis testing, we begin by limiting as before the prob-

ability of Type I error to 1% and the width 2s0(α) of the confidence band to size w0 = 0.1. In this

case, α = 0.01, whereas, Eq. (4.3.15) and Eq. (4.4.25) imply that L = 2,120. Subsequently, we

independently draw two sets of L samples from the master equation by employing exact sampling

and Gaussian leaping with τ = 0.05 days, we use these samples to calculate the marginal empiri-

cal CDFs G1(x; 6), G2(x; 6) and G̃1(x; 6), G̃2(x; 6), and we finally proceed with hypothesis testing.

It turns out that TSKS hypothesis testing based on Tippett’s method rejects the samples obtained

by Gaussian leaping with zero p-value.
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In Fig. 4.3, we depict the boundaries of the resulting (1 − α)% = 99% confidence bands

C1
α(6) and C2

α(6) (orange lines) together with the marginal empirical CDFs G̃1(x; 6) and G̃2(x; 6)

computed from the approximative samples obtained by Gaussian leaping (blue lines). The width of

these confidence bands is 2s0(α) = 0.0996. We expect the true marginal CDFs F1(x; 6) and F2(x; 6)

(black lines) to be inside the corresponding confidence bands with 99% probability.

These results clearly indicate that Gaussian leaping provides a fairly acceptable approxi-

mation to the CDFs over most values of x. However, they also point out exactly where and how

Gaussian leaping breaks down. It is clear from the insets depicted in Fig. 4.3 that Gaussian leaping

produces an empirical CDF G̃1(x; 6) whose values at population levels close to 762 may lie outside

the confidence band C1
α(6). Although this confidence band suggests, with 99% certainty, that there

is very small probability [at most s0(α) = 0.0498] to have more than 762 susceptible individuals at

day 6, the empirical CDF G̃1(x; 6) predicts significant probability for this impossible event.9 Like-

wise, Gaussian leaping produces an empirical CDF G̃2(x; 6) whose values at population levels below

0 may lie outside the confidence band C2
α(6). Although this confidence band suggests, with 99%

certainty, that there is very small probability [at most s0(α) = 0.0498] to have less than 0 infected

individuals at day 6, the empirical CDF G̃2(x; 6) wrongly predicts significant probability for this

impossible event (clearly negative populations are meaningless). The TSKS test picks up these flaws

returning extremely small p-values p1(6) = 5.0669 × 10−46 and p2(6) = 1.0445 × 10−84. As a con-

sequence, Tippett’s method produces a combined p-value that (within numerical precision) equals

zero. This results in rejecting the samples obtained by Gaussian leaping at any level of significance.

Example 4: Poisson leaping in the SIR model

Given that Gaussian leaping is an unacceptable sampling scheme for the SIR model, we

would now like to investigate whether the more accurate Poisson leaping algorithm with the same

value of τ can produce statistically acceptable samples for Monte Carlo analysis. We are therefore

interested in the following question:

9The initial number of susceptible individuals is 762, Hence, it is not possible to have more than 762 susceptible
individuals in the system.
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Figure 4.4: The 99% confidence bands C1
α(6) and C2

α(6) of the TSKS test obtained for the SIR model,
with L = 2,120 and α = 0.01. The orange lines depict the confidence boundaries, whereas, the blue
lines depict the empirical CDFs G̃1(x; 6) and G̃2(x; 6) of X1(6) and X2(6), respectively, obtained
by approximative sampling using Poisson leaping with τ = 0.05. The black lines depict the true
marginal CDFs F1(x; 6) and F2(x; 6), numerically obtained with the IE method. TSKS hypothesis
testing fails to reject the validity of the approximative samples in this case. Since the marginal
empirical CDFs obtained by Poisson leaping remain within the (1− α)% confidence bands, we can
accept the approximative samples with 99% confidence.

We are running the SIR model for six days. Will Poisson leaping with τ = 0.05 produce
population samples at day 6 that can safely replace, in a Monte Carlo study of marginal
statistics, samples obtained by exact sampling?

To answer this question using hypothesis testing, we begin by limiting as before the prob-

ability of Type I error to 1% and the width 2s0(α) of the confidence band to size w0 = 0.1. In

this case, α = 0.01, whereas, Eq. (4.3.15) and Eq. (4.4.25) imply that L = 2,120. Subsequently, we

independently draw two sets of L samples from the master equation by employing exact sampling

and Poisson leaping with τ = 0.05 days, we use these samples to calculate the marginal empirical

CDFs G1(x; 6), G2(x; 6) and G̃1(x; 6), G̃2(x; 6), and finally we proceed with hypothesis testing. It

turns out that, in this case, TSKS hypothesis testing based on Tippett’s method fails to reject the

samples obtained by Poisson leaping.

In Fig. 4.4, we depict the boundaries of the resulting (1 − α)% = 99% confidence bands

C1
α(6) and C2

α(6) (orange lines) together with the marginal empirical CDFs G̃1(x; 6) and G̃2(x; 6)

computed from the approximative samples obtained by Poisson leaping (blue lines). The width of
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Figure 4.5: The 99% confidence bands C1
α(6) and C2

α(6) of the TSKS test obtained for the SIR model,
with L = 2,120 and α = 0.01. The orange lines depict the confidence boundaries, whereas, the blue
lines depict the empirical CDFs G̃1(x; 6) and G̃2(x; 6) of X1(6) and X2(6), respectively, obtained
by approximative sampling using Poisson leaping with τ = 0.08. The black lines depict the true
marginal CDFs F1(x; 6) and F2(x; 6), numerically obtained with the IE method. TSKS hypothesis
testing rejects the validity of the approximative samples obtained in this case.

these confidence bands is again 2s0(α) = 0.0996 and we expect the true marginal CDFs F1(x; 6),

F2(x; 6) (black lines) to be inside the corresponding confidence bands with 99% probability. Note

that both marginal empirical CDFs are within the corresponding confidence bands and do not

experience the same boundary issues identified in the case of Gaussian leaping. Therefore, we may

accept the samples obtained by Poisson leaping with 99% confidence. As a matter of fact, the TSKS

test returned p-values p1(6) = 0.0645 and p2(6) = 0.5415, whereas, Tippett’s method produced

a combined p-value p(6) = 0.1249, which is larger than the significance level α = 0.01. As a

consequence, when τ = 0.05 days, hypothesis testing fails to reject the samples obtained by Poisson

leaping at 1% level of significance.

On the other hand, we might have asked the slightly different question:

We are running the SIR model for six days. Will Poisson leaping with τ = 0.08 produce
population samples at day 6 that can safely replace, in a Monte Carlo study of marginal
statistics, samples obtained by exact sampling?

We depict in Fig. 4.5 the boundaries of the resulting 99% confidence bands C1
α(6) and C2

α(6) (orange

lines) together with the marginal empirical CDFs G̃1(x; 6) and G̃2(x; 6) computed from approxi-

mative samples obtained by Poisson leaping with the larger τ = 0.08 leaping value (blue lines).
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Although the marginal empirical CDF G̃2(x; 6) associated with the infected individuals is within

the corresponding confidence band, values of the marginal empirical CDF G̃1(x; 6), associated with

the susceptible individuals, fail to satisfy this property. As a matter of fact, for many values of x,

G̃1(x; 6) is very close or below the lower confidence boundary of C1
α(6), which indicates that it un-

derestimates the true CDF values. This is due to the fact that the required leaping condition – all

propensity functions must be constant during any time interval [jτ, (j + 1)τ) – is not satisfied in

this case. Although it is not in general possible to check whether or not the leaping condition is

satisfied, the TSKS hypothesis test is capable of detecting that something is wrong and reject the

approximative samples. In our case, the TSKS test returned p-values p1(6) = 1.6338 × 10−5 and

p2(6) = 0.0426, whereas, Tippett’s method produced a combined p-value p(6) = 3.2674×10−5, which

is appreciably smaller than the significance level α = 0.01. As a consequence, when τ = 0.08 days,

hypothesis testing rejects the samples obtained by Poisson leaping.

4.6 Discussion

The hypothesis testing framework proposed in this chapter provides a rigorous quantitative

methodology for checking the validity of an approximation technique for solving the master equation.

We can use KS hypothesis testing to reject or accept (with a certain level of confidence) the validity

of an analytical approximation to the solution of the master equation or use TSKS testing to reject

or accept (with a certain level of confidence) the validity of samples drawn from the master equation

using an approximative sampling technique. Although substantial computational effort may be nec-

essary to draw the samples required to implement the proposed methods, we believe that this effort

is worthwhile. If hypothesis testing rejects the validity of a given approximation technique, then we

may try to use or develop an alternative approximation method, instead of proceeding with analysis

that might lead to erroneous results. On the other hand, if we can accept an approximation tech-

nique with a high level of confidence, then we can use it to replace exact sampling with appreciable
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computational savings.

The proposed method requires that we draw exact samples from the master equation.

However, we expect that the number of samples required for meaningful hypothesis testing to be

appreciably less than the number of samples required for estimating the solution of the master

equation via Monte Carlo. For instance, the state-space of the example considered in Section 4.5,

which involves two “independent” species, includes 762 × 763 = 581,406 elements. Estimating the

solution of the master equation over such a large state space using Monte Carlo would require a very

large number of exact Monte Carlo samples. On the other hand, by drawing only 2× 1,060 = 2,120

exact samples, we were able to decisively reject the LNA method.

In general, it is well-known that the “curse of dimensionality” demands an exponential

increase in the number of samples required for sufficiently estimating the solution of the master

equation via Monte Carlo. However, the number of samples required by the proposed hypothesis

testing procedure increases only linearly with respect to the number of “independent” species in the

reaction system. Therefore, we expect that the method can be effectively used in practice, provided

that sufficient computational power is available.

An issue that deserves special attention is extension of the basic ideas presented in this

chapter to a multivariate setting. To preserve the simplicity of KS hypothesis testing and the ability

to compute decision and confidence bands, we decided to focus our effort on developing statistical

testing methods applied on marginal distributions. If the marginal approach to hypothesis testing

rejects the null hypothesis, this result immediately applies to the joint multivariate setting (e.g., since

rejecting a marginal distribution forces us to reject the entire multivariate distribution). However,

if the test fails to reject a marginal distribution, this does not allow us to reach a strong statistical

conclusion about the validity of approximation methods when a multivariate statistical analysis

of the master equation is of interest. As a consequence, it is important to develop a multivariate

hypothesis testing approach that can address the problems discussed in this chapter in those practical

situations that require multivariate statistical analysis of the master equation.
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Although the methods discussed in this chapter are not capable of providing exact as-

surances for the validity of an approximation technique in a multivariate setting, from a practical

perspective they do provide some additional empirical evidence, in conjunction to existing theoret-

ical justifications, that the approximation can produce reasonable results. Knowledge of marginal

distributions does not determine the multivariate distribution, but it appreciably reduces the space

of all possible distributions. We believe that until effective multivariate hypothesis testing techniques

become available, the current marginal techniques could be utilized even in a joint setting, if only

to rule out approximations that produce poor results.

Our discussion in this chapter has been limited to the “static” problem of statistically

checking the validity of an approximation method when a parameter of interest, such as time,

system size, or the τ parameter in Gaussian or Poisson leaping, takes a specific value. We addressed

this problem by employing a single hypothesis testing approach. An equally important problem

however is checking the validity of an approximation method as a function of changing parameter

values. For example, we may want to determine the minimum value of the system size Ω at which

the LNA method fails to provide an acceptable solution to the master equation or adjudicate the

maximum τ value for which Poisson leaping produces acceptable approximative sampling.

A näıve solution to the previous “dynamic” problem is to discretize the parameter of interest

into Q values, independently apply KS or TSKS hypothesis testing for each value, and determine

the extreme value at which the test rejects the approximative method. By doing so however we may

end up with a test whose probability of Type I error (falsely rejecting the approximative method)

within the batch of individual tests rapidly increases with Q, thus producing misleading results. For

example, if Q = 15 and α = 0.05 for each individual test, then the probability of observing at least

one Type I error in a batch of Q tests is 1− (1−α)Q ' 0.54, indicating that we are more likely than

not to observe an error in this “dynamic” testing scenario.

On the other hand, we can develop a rigorous approach to the “dynamic” problem based

on a multiple hypothesis testing procedure that is appropriately designed to control the probability
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of one or more false rejections, known as family-wise error rate [148], or the expected proportion of

falsely rejected hypotheses, known as false discovery rate [166]. If sufficient computational power

is available, we can adapt the techniques proposed in this chapter to multiple hypothesis testing

in a rather straightforward manner. For example, we can independently apply KS testing for each

parameter value, compute the resulting p-values pq, q = 1, 2, . . . , Q, and order them in an increasing

order p[1] ≤ p[2] ≤ · · · ≤ p[Q]. If H
[q]
0 is the null hypothesis of rejecting the approximative technique

at parameter value [q], we may reject all null hypotheses H
[q]
0 , for q = 1, 2, . . . , q∗, where q∗ is the

largest q for which p[q] ≤ (q/Q)α, with α being the significance level of each individual test. We

may then be able from this result to determine the extreme value of q at which the test rejects the

approximative method.

While the previous method, known as Bonferroni multiple-testing procedure, is straight-

forward, it can be computationally demanding. Moreover, it may turn out that this technique is

not the most appropriate multiple hypothesis testing method for our current framework. Therefore,

more research must be done on developing an effective and computationally efficient method for

statistically testing the validity of an approximative technique for solving the master equation in a

“dynamic” fashion.

108



Chapter 5

Thermodynamic Analysis of Leaky

Markovian Networks

Up to this point, we have focused on (approximately or exactly) solving the master equation

of Markov processes on networks. In this chapter, we take a different approach which focuses instead

on thermodynamic potentials and averages that provide a far more compact system description. To

demonstrate the power of the proposed approach, we consider the complex dynamical phenomenon

of avalanching.

In this chapter, we specifically study the role intrinsic statistical fluctuations play in creat-

ing avalanches – patterns of complex bursting activity with scale-free properties – in leaky Markovian

networks, which are special cases of Markovian reaction networks. Using this class of models, we

develop a probabilistic approach that employs a potential energy landscape perspective coupled with

a macroscopic description based on statistical thermodynamics. We identify six important thermo-

dynamic quantities essential for characterizing system behavior as a function of network size Ω: the

internal potential energy, entropy, free potential energy, internal pressure, pressure, and bulk mod-

ulus. In agreement with classical phase transitions, these quantities evolve smoothly as a function
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of Ω until a critical network size Ωc is reached. At Ωc, a discontinuity in pressure is observed that

leads to a spike in the bulk modulus demarcating loss of thermodynamic robustness. We attribute

this novel result to a reallocation of the ground states (global minima) of the system’s stationary

potential energy landscape to a noise-induced deformation of its topographic surface. Further anal-

ysis demonstrates that avalanching is a complex mode of operation that dominates system dynamics

at near-critical or subcritical network sizes caused by appreciable levels of intrinsic noise. Illustra-

tive examples are provided using an epidemiological model of bacteria infection, where avalanching

has never been characterized, and a previously studied model of computational neuroscience, where

avalanching was erroneously attributed to specific neural architectures. The general methods devel-

oped here can be used to study the emergence of bursting (and other complex phenomena) in many

biological, physical and man-made interaction networks.

5.1 Motivation

An important problem in many scientific disciplines is understanding how extrinsic and

intrinsic factors enable a complex physical system to exhibit a bursting behavior that leads to

avalanching [167,168]. Avalanching is a form of spontaneous comportment characterized by irregular

and isolated bursts of activity that follow a scale-free distribution typical to systems near criticality.

In the brain, this mode of operation is thought to play a crucial role in information processing,

storage, and learning [168,169].

Although avalanche dynamics have been extensively studied in vitro and in vivo for corti-

cal neural networks [168], it is not clear which are the underlying causes of this behavior. A recent

in silico attempt to address this issue [19] was based on approximating the dynamics of a Marko-

vian model of nonlinear interactions between noisy excitatory and inhibitory neurons by Gaussian

fluctuations around the macroscopic (mean) system behavior using the linear noise approximation

(LNA) method of van Kampen [1]. This led to the conclusion that the cause of neural avalanches
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is a balanced feed-forward (BFF) network structure. We argue in this chapter that the Gaussian

approximation used to arrive at this conclusion is not appropriate for studying avalanching, thus

leading to deficient results. As a consequence, understanding the underlying causes of avalanching

in silico is still an open problem.

To address this challenge, we introduce a theoretical framework that allows us to examine

the role of intrinsic noise in inducing critical behavior that leads to avalanching. We focus on a

special set of Markovian reaction models, which we term leaky Markovian network (LMN), with

binary-valued (0,1) state dynamics. These dynamics are described by a time-dependent probability

distribution that evolves according to a well-defined master equation [5]. It turns out that a LMN

is a continuous-time stochastic Boolean network model with a state-dependent asynchronous node

updating scheme. LMNs can model a number of natural and man-made systems of interacting

species, such as gene networks, neural networks, epidemiological networks, and social networks.

Recent work has clearly demonstrated the importance of modeling physical systems stochas-

tically using Markovian networks, since the intrinsic noise produced by these networks may induce

behavior not accounted for by deterministic models [106, 170, 171]. Examples of such behavior in-

clude the emergence of noise-induced modes, stochastic transitions between different operational

states, and “stabilization” of existing modes.

By using a LMN model, we study the effect of intrinsic noise on bursting. We do so by

employing the notion of potential energy landscape [5, 96, 172] and by establishing a connection

between statistical thermodynamics and the kinetics of bursting. We quantify the landscape by

calculating logarithms of the ratios between the stationary probabilities of individual states and the

stationary probability of the most probable state (details in Section 5.2). To reduce computational

complexity, we follow a coarse graining approach that transforms the original LMN model into

another (non-binary) LMN model with appreciably smaller state-space. To accomplish this task,

we partition the nodes of the LMN into a number of homogeneous subpopulations and use the

dynamic evolution of the fraction of the active nodes (nodes with value 1) in each subpopulation
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to characterize system behavior. Moreover, we parameterize the LMN in terms of the network size

Ω = N/N0, where N is the net number of nodes in the network and N0 � 1 is a normalizing constant

such that Ω can be approximately considered to be continuous-valued.

The behavior of the fractional activity process is fundamentally affected by Ω. In general,

the strength of stochastic fluctuations (intrinsic noise) in the activity process may be thought of

as the probability of moving uphill on a fixed potential energy surface, and this probability decays

exponentially with increasing Ω. At sufficiently large network sizes Ω, the LMN operates around

a ground state of the potential surface located at a fixed point µµµ∗ predicted by the macroscopic

equations associated with the LNA method. However, as the network size decreases, a new mode of

operation is introduced in the system in the form of a potential well in the topographic surface of the

energy landscape, located at the inactive state 0. This is a “noise-induced” mode, since it appears

at small network sizes at which the fractional activity process is subject to appreciable intrinsic

fluctuations.

We show that noise-induced deformation of the stationary potential energy landscape is

the underlying cause of bursting in LMNs. For sufficiently large network sizes, the potential energy

landscape can be approximated by a quadratic surface centered at µµµ∗. In this case, the LMN operates

within the potential well associated with this mode, except for rare and brief random excursions

away from that mode. As a consequence, the fractional activity process will fluctuate in a Gaussian-

like manner around the macroscopic mode. At smaller network sizes, the fractional activity process

is characterized by a bistable behavior between the macroscopic and noise-induced modes, spending

most time within the potential well associated with the macroscopic mode, at which the potential

energy surface attains its global minimum, while occasionally jumping inside the potential well

associated with the noise-induced mode at 0. As a consequence, the fractional activity dynamics take

on a bursting behavior characterized by long periods of appreciable activity followed by short periods

of minimal (almost zero) activity. When the network size decreases further, the noise-induced mode

becomes the main stable operating point (i.e., the point at which the potential energy surface attains
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its global minimum), whereas the macroscopic mode becomes shallower and eventually disappears.

In this case, the system is trapped within the potential well associated with the noise-induced mode,

except for random and brief excursions away from that mode. As a consequence, the fractional

activity process will still exhibit bursting, but now characterized by long periods of minimal (almost

zero) activity followed by short bursts of appreciable activity.

Thermodynamic analysis reveals critical behavior in LMNs (details in Section 5.2). By

employing a number of statistical thermodynamic quantities, such as internal and free potential

energies, entropy, internal pressure, pressure and bulk modulus (inverse compressibility), we effec-

tively summarize the stochastic behavior of a LMN as its size Ω decreases to zero. We also use these

summaries to quantify network robustness and the stability of a given state. In agreement with the

classical theory of phase transitions, the previous thermodynamic quantities evolve smoothly as a

function of Ω until a critical network size Ωc is reached. At this size, a discontinuity is observed

in the system pressure, which produces a spike in the bulk modulus demarcating loss of thermody-

namic robustness. Critical behavior is caused by reallocation of the ground states (global minima)

of the potential energy landscape due to noise-induced deformation of its topographic surface. In

particular, observed critical behavior produces two distinct phases: one in which the fixed point µµµ∗

predicted by the macroscopic equations associated with the LNA method constitutes the ground

state of the potential energy landscape and one in which the ground state is reallocated to the noise-

induced mode at 0. We conclude that avalanching is a complex mode of operation that dominates

system dynamics at near-critical and subcritical network sizes due to deformations of the potential

energy landscape as the network size decreases to zero, caused by appreciable levels of intrinsic noise.
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5.2 LMN theory and analysis

5.2.1 Leaky Markovian networks

We consider a directed weighted network G with N nodes from a set N = {1, 2, . . . , N},

characterized by an N × N adjacency matrix A. The element ann′ of this matrix assigns a value

to the edge leaving the n′-th node and entering the n-th node whose importance will become clear

shortly. Each node represents a species (e.g., an individual or neuron) which, in some well-defined

sense, can be active or inactive at time t with some probability. We use Xn(t) to denote the state

of the n-th node of the network at time t, taking value 1 if the node is active and 0 if the node

is inactive. Then, we represent the state dynamics of the network by an N -dimensional random

process {XXX(t), t ≥ 0} whose n-th element Xn(t) takes binary 0-1 values. We refer to {XXX(t), t ≥ 0}

as the activity process.

We assume that, within an infinitesimally small time interval [t, t + dt), the state of the

n-th node is influenced by the net input rn(xxx) to the node, where xxx is the state of the network G at

time t and rn is a real-valued scalar function. In particular, we assume that the probability of the

n-th node to transition from the inactive to the active state within [t, t + dt) is proportional to dt,

given by p+
n (xxx)dt+ o(dt), where p+

n (xxx) is known as the propensity function and o(dt) is a term that

goes to zero faster than dt. We set

p+
n (xxx) = (1− xn)[`+n + fn(rn(xxx))], (5.2.1)

for some nonnegative parameter `+n and a nonnegative function fn(r). The term (1 − xn) ensures

that transition to the active state is possible only when the n-th node is inactive (i.e., when xn = 0),

whereas the function fn(r) describes how the net input affects the probability of transition. On the

other hand, when `+n > 0, the parameter `+n forces the node to be “leaky,” in the sense that it has

a fixed propensity to transition from the inactive to the active state, even when the net input is

zero. “Leakiness” is a property observed in many applications, including the ones discussed in this

chapter.
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We also assume that the probability of the n-th node to transition from the active to the

inactive state within [t, t + dt) is given by p−n (xxx)dt + o(dt), where the propensity function p−n (xxx) is

given by

p−n (xxx) = xn[`−n + gn(rn(xxx))] (5.2.2)

for some nonnegative parameter `−n and a nonnegative function gn(r). The term xn ensures that

transition to the inactive state is possible only when the n-th node is active (i.e., when xn = 1),

whereas the function gn(r) describes how the net input affects the probability of transition. On the

other hand, when `−n > 0, the parameter `−n forces the node to be “leaky,” in the sense that it has a

fixed propensity to transition from the active to the inactive state even when the net input is zero.

In general, the weights ann′ are used to determine the net input rn(xxx) to node n. As a

matter of fact, rn(xxx) must not depend on xn′ when ann′ = 0. In particular, we set ann = 0, for

every n ∈ N , which implies that the nodes are not self-regulating. In some applications (such as the

ones considered in this chapter), we can set

rn(xxx) = hn + aaaTnxxx, (5.2.3)

where aaaTn is the n-th row of the adjacency matrix A and hn is a constant. In this case, hn may

represent the influence of external sources on the node (which we assume for simplicity to be fixed

and known), whereas aaaTnxxx represents the influence of all active nodes in the network on the state of

the n-th node.

The process {XXX(t), t ≥ 0} is Markovian. By assuming that all nodes in the net-

work are initially inactive at time t = 0, we can show that the probability distribution

P (xxx; t) := Pr[XXX(t) = xxx |XXX(0) = 000] satisfies the master equation

∂P (xxx; t)

∂t
=

N∑
n=1

{p+
n (xxx−eeen)P (xxx−eeen; t) + p−n (xxx+eeen)P (xxx+eeen; t)− [p+

n (xxx) + p−n (xxx)]P (xxx; t)}, (5.2.4)

for xxx ∈ X := {0, 1}N , initialized with the Kronecker delta function ∆(xxx) [i.e., P (xxx; 0) = ∆(xxx)],

where eeen is the n-th column of the N ×N identity matrix. The model described by this equation is

a continuous Boolean network model with state-dependent asynchronous node updating (details in
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the next section). Unfortunately, solving this equation is a notoriously difficult task, especially when

the number N of nodes in the network is large. This is due to the fact that we need to calculate the

probabilities P (xxx; t), for t > 0, at every point xxx in the state space X , whose cardinality |X | grows

exponentially as a function of N , since |X | = 2N .

5.2.2 LMNs, Markovian reaction networks, and Boolean networks

LMNs are simply a special case of Markovian reaction networks. In particular, we note

that the following reactions characterize every LMN,

∑
n′ 6=n

ann′Xn′ � Xn +
∑
n′ 6=n

ann′Xn′ , (5.2.5)

for all n ∈ N , with propensity functions p+
n (xxx) and p−n (xxx), respectively for the forward and reverse

reaction.

Boolean networks were introduced by S. Kauffman more than 40 years ago as models of gene

regulation [173,174]. Since then, they have been extensively used as simple models for the dynamics

of complex networks. A Boolean network is typically formulated as a directed graph with N nodes

in a set N = {1, 2, . . . , N}, whose state of the n-th node is characterized by a (deterministic) binary

variable xn(t) taking 0-1 values. The status of each node is influenced by an input function bn(xxx),

which is a Boolean function over a subset of the binary state variables x1, x2, . . . , xN . Given a fixed

time step ∆t, the state of the Boolean network at time (m + 1)∆t is determined by synchronously

updating the states of all nodes in the network at time m∆t using the deterministic rule

xn((m+ 1)∆t) = bn(xxx(m∆t)), for every n ∈ N , (5.2.6)

or more general probabilistic updating rules [175,176].

The vast majority of complex networks of interest do not update their states in a syn-

chronous manner. As a consequence, Boolean networks tend to oversimplify the dynamics of many

real networks. To address this problem, a number of investigators have focused their effort on

116



CHAPTER 5. LEAKY MARKOVIAN NETWORKS

an asynchronous stochastic updating scheme that leads to stochastic asynchronous Boolean net-

works [177–179]. According to this scheme, the state of a Boolean network at time (m + 1)∆t is

determined by randomly selecting a node in the network (usually uniformly among all nodes), by

updating the state of this node using the associated Boolean function, and by leaving the states of

the remaining nodes unchanged. In this case,

xn((m+ 1)∆t) =


bn∗(xxx(m∆t)), for n = n∗

xn(m∆t), for n 6= n∗,

(5.2.7)

where n∗ is the node selected to be updated at time (m+ 1)∆t.

Although the previous modification results in a model than may be more realistic than

the classical Boolean model, it does not take into account major features of real complex networks.

In particular, the model does not account for the facts that state updating can occur at any time t

(not necessarily at discrete times m∆t) and that the time of next updating as well as the node

to be updated can be influenced by the current state of the network. To address these issues, a

number of models have been proposed in the literature [180–186]. It turns out that the LMN model

discussed in this chapter effectively addresses these problems and provides a natural alternative to

the stochastic Boolean network models studied in the literature; see [186]. As a matter of fact, if

the network is at state xxx(t) at time t, then the time t+ τ∗ at which the state of the network will be

next updated can be determined by drawing a sample τ∗ from the exponential distribution

et(τ) =
{∑
n∈N

αn(xxx(t))
}

exp
{
− τ

∑
n∈N

αn(xxx(t))
}
, τ > 0, (5.2.8)

where

αn(xxx) = (1− xn)[`+n + fn(rn(xxx))] + xn[`−n + gn(rn(xxx))]. (5.2.9)

Moreover, the node to be updated can be specified by drawing a sample n∗ from the probability

distribution

ut(n) =
αn(xxx(t))∑

n′∈N αn′(xxx(t))
, n ∈ N . (5.2.10)
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In this case [compare with Eq. (5.2.7)]

xn(t+ τ∗) =


1− xn∗(t), for n = n∗

xn(t), for n 6= n∗.

(5.2.11)

This implies that the LMN model is a continuous-time Boolean network model with state-dependent

asynchronous node updating and Boolean functions bn(xxx) = 1− xn assigned at each node n ∈ N .

5.2.3 Coarse graining

We can address the previously mentioned problem of exponential growth of the state space

by employing a “coarse graining” procedure which allows us to appreciably reduce the size of the

state space while retaining key properties of the system under consideration. We assume that we can

partition the population N = {1, 2, . . . , N} of all species in the network G into K homogenous sub-

populations Nk, k = 1, 2, . . . ,K, where K � N . Due to the homogeneity of each sub-population, it

may not be of particular interest to track the states of individual species in a given sub-population

Nk. Instead, it may be sufficient to track the fraction Yk(t) of active species in Nk, defined by

Yk(t) :=
1

Nk

∑
n∈Nk

Xn(t), (5.2.12)

where Nk := |Nk|. In this case, we may replace the original network with a smaller directed weighted

network G0 comprised of K nodes from the set K = {1, 2, . . . ,K} that represent the homogeneous

sub-populations. We assume that, for every k ∈ K, there exists a function ρk such that rn(xxx) = ρk(yyy),

for all n ∈ Nk, where yyy is a K× 1 vector whose k-th element yk is given by yk = N−1
k

∑
n∈Nk

xn. In

this case, the stochastic process {YYY (t), t ≥ 0} is also Markovian, governed by the following master

equation (details in Appendix D)

∂P (yyy; t)

∂t
=
∑
k∈K

{π+
k (yyy− ẽeek)P (yyy− ẽeek; t) +π−k (yyy+ ẽeek)P (yyy+ ẽeek; t)− [π+

k (yyy) +π−k (yyy)]P (yyy; t)}, (5.2.13)

initialized with the Kronecker delta function ∆(yyy) [i.e., P (yyy; 0) = ∆(yyy)], where P (yyy; t) := Pr[YYY (t) =

yyy | YYY (0) = 0] and ẽeek is the k-th column of the K ×K identity matrix multiplied by N−1
k . The new
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propensity functions are given by

π+
k (yyy) = Nk(1− yk)[λ+

k + φk(ρk(yyy))] (5.2.14)

π−k (yyy) = Nkyk[λ−k + γk(ρk(yyy))], (5.2.15)

where φk, γk, λ+
k , and λ−k are such that, for every k ∈ K, fn = φk, gn = γk, `

+
n = λ+

k , and `−n = λ−k ,

for n ∈ Nk. We refer to {YYY (t), t ≥ 0} as the fractional activity process.

When the input to a node n of the network is given by rn(xxx) = hn + aaaTnxxx, there is indeed

a function ρk(yyy) so that rn(xxx) = ρk(yyy), for every n ∈ Nk. This function is given by ρk(yyy) =

ηk +
∑
k′∈K wkk′yk′ , where ηk and wkk′ are such that hn = ηk, for every n ∈ Nk, and ann′ =

wkk′/Nk′ , for every n ∈ Nk, n′ ∈ Nk′ (details in Appendix D). Note also that Yk(t) takes values

in Yk := {0, 1/Nk, . . . , 1}. Therefore, the fractional activity process {YYY (t), t ≥ 0} takes values in

Y = Y1 × Y2 × · · · × YK . As a result, the state-space Y will be appreciably smaller than X , since

|Y| =
∏K
k=1(1 +Nk) � 2N = |X |, and solving the master equation of the fractional activity process

will be easier than solving the master equation of the activity process.

5.2.4 Macroscopic equations and LNA

We define the fractional “size” of the k-th sub-population as ζk := Nk/N . The thermo-

dynamic limit is obtained by taking Nk → ∞, for every k ∈ K, such that all ζk’s remain fixed.

In this case, YYY (t) becomes a continuous random variable in the K-dimensional closed unit hyper-

cube [0, 1]K . Furthermore, since Nk →∞, for every k ∈ K, one might expect that the intrinsic noise

at each node of the coarse network G0 will be averaged out due to coarse graining. As a matter of

fact, it can be shown that YYY (t) converges in distribution to the deterministic solution µµµ(t) of the

macroscopic differential equations

dµk(t)

dt
= [1− µk(t)][λ+

k + φk(ρk(µµµ(t)))]− µk(t)[λ−k + γk(ρk(µµµ(t)))], (5.2.16)

t > 0, k ∈ K, initialized by µµµ(0) = 0. For simplicity of notation, we denote the thermodynamic limit

by N →∞.
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If the macroscopic equations have a unique and stable fixed point µµµ∗ in the interior of the

unit hypercube [0, 1]K , then for large enough but finite N , the LNA method allows us to approximate

the fractional activity process YYY (t) by adding correlated Gaussian noise WWW (t) to the macroscopic

solution µµµ(t). In this case,

Yk(t) ' µk(t) +
Wk(t)√
Nk

, t > 0, k ∈ K, (5.2.17)

where, for each t,Wk(t), k ∈ K, are zero-mean correlated Gaussian random variables with cor-

relations rkk′(t) = E[Wk(t)Wk′(t)] that satisfy a system of Lyapunov equations (details in Ap-

pendix D). As a consequence, YYY (t) is approximated by a multivariate Gaussian random vector with

mean µµµ(t) and covariance matrix C(t) = NR(t)NT , where N is a diagonal matrix with elements

1/
√
N1, 1/

√
N2, . . . , 1/

√
NK , and R(t) is the correlation matrix of random vector WWW (t).

5.2.5 Thermodynamic stability, robustness, and critical behavior

We consider the probability distribution PΩ(yyy; t) of the fractional activity process YYY (t) at

time t, where we explicitly denote the dependence of this distribution on the network size Ω. Let

yyy∗Ω(t) be a state in Y at which PΩ(yyy; t) attains its (global) maximum value at time t and define the

function

VΩ(yyy; t) := − 1

Ω
ln

PΩ(yyy; t)

PΩ(yyy∗Ω(t); t)
(5.2.18)

Note that VΩ(yyy; t) ≥ 0 with equality if and only if yyy is a state at which PΩ(yyy; t) attains its (global)

maximum value, known as a ground state. Moreover,

PΩ(yyy; t) =
1

ZΩ(t)
e−ΩVΩ(yyy;t), (5.2.19)

for yyy ∈ Y, t ≥ 0, where

ZΩ(t) :=
∑
yyy∈Y

e−ΩVΩ(yyy;t) (5.2.20)

In this case, PΩ(yyy; t) is a Boltzmann-Gibbs distribution with potential energy function VΩ(yyy; t) and

partition function ZΩ(t). The (local or global) minima of VΩ(yyy; t) are associated with “potential
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wells” (basins of attraction) in the energy surface, which correspond to peaks in the probability

distribution PΩ(yyy; t). We may therefore view the fractional activity dynamics as fluctuations on

a time-evolving potential energy landscape VΩ(yyy; t) in the multidimensional state-space Y, where

downhill motions (towards the bottom of a potential well) are preferred with high probability, but

random uphill motions can also occur with increasing probability as the population size decreases.

We are interested in the stationary potential energy V Ω(yyy) := limt→∞ VΩ(yyy; t), since its

landscape remains fixed once the stochastic dynamics reach this point. At steady-state, the fractional

activity dynamics simply perform a random walk on V Ω(yyy). To compute VΩ(yyy; t) and V Ω(yyy), we

solve the master equation of the fractional activity process numerically.

Based on the partition function, we can define a number of quantities that can be used to

characterize the behavior of the LMN [and, as a matter of fact, of any Markovian network [5]], when

nodes are removed from the network. We adopt these quantities from classical thermodynamics

where they are used to describe the behavior of a physical system as its volume contracts or ex-

pands [15,115,187,188]. In particular, we can define the internal energy, entropy, and Helmholtz free

energy, and subsequently introduce the concepts of internal potential energy, free potential energy,

internal pressure, pressure, and bulk modulus. In the following, we denote by A the stationary limit

of a time-varying parameter A(t); i.e., A = limt→∞A(t).

The internal energy at time t is defined by

UΩ(t) := ΩEt[UΩ(YYY )], for t ≥ 0, (5.2.21)

where

UΩ(yyy) := − 1

Ω
lnPΩ(yyy) (5.2.22)

is the energy of state yyy ∈ Y and Et[·] denotes expectation with respect to the probability distribution

PΩ(yyy; t). On the other hand, the Helmholtz free energy FΩ(t) at time t is defined by

FΩ(t) := UΩ(t)− SΩ(t), (5.2.23)
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where SΩ(t) is the entropy at time t, given by

SΩ(t) := −Et[lnPΩ(YYY ; t)]. (5.2.24)

In thermodynamic terms, the Helmholtz free energy measures the energy available in the LMN to

do work when the number of nodes is kept fixed. Note that UΩ(t) ≥ 0 and 0 ≤ SΩ(t) ≤ ln |Y|, for

every Ω and t ≥ 0, where |Y| is the cardinality of the state-space Y. It also turns out that FΩ(t) ≥ 0

and dFΩ(t)/dt ≤ 0, for every Ω and t ≥ 0, with equality only at steady-state [5, 117,126].

From Eq. (5.2.18), Eq. (5.2.21), and Eq. (5.2.22), we can show that

UΩ(t) = VΩ(t) + ΩUΩ(yyy∗Ω), (5.2.25)

where

VΩ(t) := ΩEt[V Ω(YYY )], for t ≥ 0, (5.2.26)

is the internal potential energy of the LMN. Moreover,

FΩ(t) := AΩ(t) + ΩUΩ(yyy∗Ω), (5.2.27)

by virtue of Eq. (5.2.23) and Eq. (5.2.25), where

AΩ(t) := VΩ(t)− SΩ(t). (5.2.28)

Note that AΩ(t) is the portion of the Helmholtz free energy due to the internal potential energy of

the LMN. For this reason, we refer to AΩ(t) as the free potential energy. In thermodynamic terms,

the free potential energy measures the portion of the energy, not accounted for by the energy of the

most likely state, available in the LMN to do work when the number of nodes is kept fixed.

The quantities

P0
Ω(t) :=

∂VΩ(t)

∂Ω
(5.2.29)

PΩ(t) := −∂AΩ(t)

∂Ω
(5.2.30)

BΩ(t) := −Ω
∂PΩ(t)

∂Ω
(5.2.31)
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define the internal pressure, pressure, and bulk modulus of the LMN, repsctively. The internal

pressure quantifies the rate of change in internal potential energy with respect to a change in

the number of nodes, whereas the pressure quantifies the rate of change in free potential energy.

Moreover, the bulk modulus measures the network’s resistance to changing pressure. Note that

PΩ(t) = QΩ(t)− P0
Ω(t), where

QΩ(t) :=
∂SΩ(t)

∂Ω
(5.2.32)

is the rate of entropy change with respect to a change in the number of nodes. Moreover, a network

with near zero bulk modulus experiences negligible changes in pressure under changes in the number

of nodes. The inverse bulk modulus is known as compressibility.

In the following, we focus our interest on the stationary behavior of a LMN. Due to the

irreducibility properties of LMNs, all stationary thermodynamic quantities are unique and charac-

teristic to the particular network under consideration. From Eq. (5.2.18) and Eq. (5.2.26), note

that

VΩ = E[− lnPΩ(YYY )]− [− lnPΩ(yyy∗N)]

= E[IΩ(YYY )]− IΩ(yyy∗Ω) ≥ 0, (5.2.33)

where E[·] denotes expectation with respect to the stationary probability distribution PΩ(yyy) and

IΩ(yyy) := − lnPΩ(yyy) = ΩUΩ(yyy). (5.2.34)

IΩ(yyy) quantifies the amount of information associated with the occurrence of state yyy at steady-state,

known as the self-information of state yyy. Therefore, and from an information-theoretic perspective,

the internal potential energy measures how far the self-information of the most likely state at steady-

state is from the expected self-information of all network states (which is the entropy). Note that

zero internal potential energy implies zero self-information for the most likely state. In this case, the

network will be at the most likely state with probability one. As a consequence, we may consider

the internal potential energy as a thermodynamic measure of the “stability” of a particular ground
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state of the stationary potential energy landscape V Ω(yyy) with smaller values indicating increasing

stability of that state.

From Eq. (5.2.19), Eq. (5.2.24), Eq. (5.2.26), Eq. (5.2.28), and Eq. (5.2.34), we also have

that

AΩ =
∑
yyy∈Y

ΩV Ω(yyy)PΩ(yyy) +
∑
yyy∈Y

[
lnPΩ(yyy)

]
PΩ(yyy)

=
∑
yyy∈Y

ΩV Ω(yyy)PΩ(yyy)−
∑
yyy∈Y

ΩV Ω(yyy)PΩ(yyy)− lnZΩ

= − lnZΩ

= lnPΩ(yyy∗Ω)

= −IΩ(yyy∗Ω) ≤ 0. (5.2.35)

Therefore, the negative of the free potential energy is the self-information of the most likely state

at steady-state. Note that the internal potential energy of an LMN with equally probable states

at steady-state is zero, whereas its free potential energy equals − ln |Y|. On the other hand, the

internal potential energy of an LMN with “crystalized” behavior around a unique ground state is

also zero, and the same is true for the free potential energy. Note also that

PΩ =
∂IΩ(yyy∗Ω)

∂Ω
, (5.2.36)

by virtue of Eq. (5.2.30) and Eq. (5.2.35), whereas

BΩ = −Ω
∂2IΩ(yyy∗Ω)

∂Ω2
, (5.2.37)

by virtue of Eq. (5.2.31) and Eq. (5.2.36). Therefore, the pressure gives the slope of the support

curve

σ∗(Ω) := IΩ(yyy∗Ω), Ω > 0, (5.2.38)

of the self-information of the most likely state at steady-state, whereas the bulk modulus is propor-

tional to the “curvature” of this curve.
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In general,

lim
Ω→∞

VΩ = v∞ , (5.2.39)

where v∞ is a constant, given by

v∞ = − lim
Ω→∞

E

[
ln
PΩ(YYY )

PΩ(yyy∗Ω)

]
, (5.2.40)

whereas

lim
Ω→∞

P0

Ω = lim
Ω→∞

PΩ = lim
Ω→∞

BΩ = 0 . (5.2.41)

Indeed, Eq. (5.2.39) and Eq. (5.2.40) are a direct consequence of Eq. (5.2.18) and Eq. (5.2.26). On

the other hand, Eq. (5.2.39) implies that limΩ→∞ P
0

Ω = 0 by virtue of Eq. (5.2.29). Note also that

PΩ =
∂ lnZΩ

∂Ω
=

∂

∂Ω
ln
[∑
yyy∈Y

exp{−ΩVΩ(yyy)}
]
, (5.2.42)

by virtue of Eq. (5.2.20), Eq. (5.2.35), and Eq. (5.2.36). This implies

lim
Ω→∞

PΩ =
∂ ln(1)

∂Ω
= 0, (5.2.43)

where we have used the fact that

lim
Ω→∞

exp{−ΩVΩ(yyy)} =


1, if yyy = yyy∗Ω

0, otherwise .

(5.2.44)

Clearly, the fact that limΩ→∞ PΩ = 0 implies that limΩ→∞ BΩ = 0, by virtue of Eq. (5.2.37).

The function

V∞(yyy; t) := lim
Ω→∞

VΩ(yyy; t) (5.2.45)

is known as large deviation rate function [189] and characterizes, as Ω → ∞, the decay rate of

the probability distribution PΩ(yyy; t) away from the ground states. Moreover, its steady-state value

V∞(yyy) = limt→∞ V∞(yyy; t) acts as a Lyapunov function for the macroscopic equations (5.2.16) [5,98].

This means that the solution µµµ(t) of the macroscopic equations produces a downhill motion in the

value of the potential energy landscape V∞(yyy) until it asymptotically reaches a stable stationary

state.
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Analytical derivation of V∞(yyy; t) is not possible in general. However, when the macroscopic

equations are monostable, the system size expansion of van Kampen implies that

V∞(yyy; t) = lim
Ω→∞

1

2Ω

(
yyy −µµµ(t)

)TC−1(t)
(
yyy −µµµ(t)

)
= lim

Ω→∞

1

2Ω

(
yyy −µµµ(t)

)T
[NR(t)N]−1

(
yyy −µµµ(t)

)
= lim
N→∞

N0

2

(
yyy −µµµ(t)

)TZR−1(t)Z
(
yyy −µµµ(t)

)
=
N0

2
(yyy −µµµ(t))TZR−1(t)Z(yyy −µµµ(t)). (5.2.46)

In these equations, µµµ(t) solves the macroscopic equations (5.2.16), the covariance matrix C(t) equals

NR(t)N, where N is a diagonal matrix with elements 1/
√
N1, 1/

√
N2, . . . , 1/

√
NK and R(t) is the

correlation matrix of the random vector WWW (t) whose elements solve the Lyapunov equations

drkk′(t)

dt
= Dk(µµµ(t))∆(k − k′) +

∑
k′′∈K

√
ζk
ζk′′

Akk′′(µµµ(t)) rk′′k′(t) +
∑
k′′∈K

√
ζk′

ζk′′
Ak′k′′(µµµ(t)) rkk′′(t),

(5.2.47)

for t > 0 and k, k′ ∈ K, initialized with rkk′(0) = 0, for every k, k′ ∈ K, where ∆ is the Kronecker

delta function (see Appendix D), and Z is a diagonal matrix with elements ζ1, ζ2, . . . , ζK , where

ζk = Nk/N . Clearly, V∞(yyy; t) is hyper-quadratic in this case around the macroscopic solution µµµ(t),

which is now the unique ground state. Moreover, the shapes of the equipotential surfaces centered

at µµµ(t) are ellipsoidal, determined by R−1(t) and, therefore, by the Lyapunov equations (5.2.47).

If the stationary solution of the master equation can be well-approximated by the LNA

method, then

VΩ '
K

2
, (5.2.48)

for those values of Ω at which this is true, where K is the dimension of the state-space Y. Indeed,
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from Eq. (5.2.26) and Eq. (5.2.46), we have that

VΩ '
1

2
E
[
(YYY −µµµ)TC

−1
(YYY −µµµ)

]
=

1

2
tr
[
E
[
(YYY −µµµ)TC

−1
(YYY −µµµ)

]]
= −1

2
E
[
tr
[
(YYY −µµµ)TC

−1
(YYY −µµµ)

]]
=

1

2
E
[
tr
[
C
−1

(YYY −µµµ)(YYY −µµµ)T
]]

=
1

2
tr
[
C
−1

E
[
(YYY −µµµ)(YYY −µµµ)T

]]
' 1

2
tr
[
C
−1
C
]

=
K

2
, (5.2.49)

where tr[A] denotes the trace of a matrix A. To obtain the previous result, we used three well-known

properties of the trace: the trace of a scalar is itself, the trace is a linear operator (and therefore

it commutes with expectation), and the trace is invariant under cyclic permutations. Moreover, we

used the fact that E
[
(YYY −µµµ)(YYY −µµµ)T

]
' C when the LNA method provides a sufficiently accurate

solution to the master equation at steady-state.

We can use the pressure as a measure of (thermodynamic) robustness of the LMN with

respect to the network size Ω. We say that the LMN is robust against variations in network size if

there is no appreciable change in pressure when adding or removing nodes. Therefore, the LMN is

robust if the derivative ∂PΩ/∂Ω of the pressure is small. As a consequence of Eq. (5.2.37), the LMN

is robust if the bulk modulus is small (especially at small network sizes). This implies that a robust

LMN must significantly resist changes in pressure. On the other hand, Eq. (5.2.37) and Eq. (5.2.38)

reveal that the LMN is robust if the network is characterized by a “blunt” self-information curve

σ∗(Ω) with small curvature. Note that, if Ω is sufficiently large, then Eq. (5.2.41) implies that the

pressure and bulk modulus will approximately be zero and the network will be robust to changes in

size. This also implies that the slope of the self-information support curve σ∗(Ω) will approximately

be zero and the same will be true for its curvature.

It is important to emphasize here that we can use the bulk modulus BΩ to detect network

sizes at which the LMN exhibits critical behavior. As a matter of fact, it is well-known that an
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intensive thermodynamic quantity, such as the pressure, may experience a sharp discontinuity when

another thermodynamic variable, such as the network size, varies past a critical value. If the pres-

sure PΩ of the LMN experiences such a discontinuity as the network size Ω varies past a critical

value Ωc, then BΩ will effectively capture this discontinuity by a delta function located at Ωc, thus

indicating that the network experiences phase transition at Ωc.

As a consequence of the previous discussion, if the LNA method is valid for large values of Ω,

then BΩ ' 0 at these network sizes. Moreover, if the thermodynamic behavior of the LMN changes

abruptly when Ω is decreased past a critical value Ωc, then BΩ will produce a sharp spike at this

value. A critical network size can demarcate a discontinuous transition of potential wells associated

with the ground states. This is a direct consequence of the fact that spike-like behavior in the bulk

modulus indicates an abrupt change in the slope of the self-information support curve σ∗(Ω) of the

most likely state at steady-state, as predicted by Eq. (5.2.37).

5.2.6 Noise-induced modes, stochastic transitions and bursting

To explain why a noise-induced mode may appear at the origin of the state-space Y at low

population sizes, let Te(yyy) be the mean escape time from a state yyy ∈ Y, defined as the average time

required for the LMN to move from state yyy to any other state in Y. Since the fractional activity

process is Markovian, governed by the master equation (5.2.13), the time it spends at state yyy is an

exponential random variable with rate parameter
∑
k∈K[π+

k (yyy) + π−k (yyy)], which implies that

Te(yyy) =
1∑

k∈K
[
π+
k (yyy) + π−k (yyy)

] . (5.2.50)

Clearly, if Te(yyy) =∞, then the state yyy is absorbing. This means that, once the network reaches yyy, it

can never leave that state. As a consequence, we can use Te(yyy
∗) to assess the “stability” of a ground

state yyy∗ of the potential energy landscape of the LMN, with higher values of Te(yyy
∗) indicating that

the state yyy∗ is more stable. From Eq. (5.2.50) as well as Eq. (D.4) and Eq. (D.5) in Appendix D,
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we have that

[Te(yyy)]−1 =
∑
k∈K

[
Nk(1− yk)λ+

k +Nk(1− yk)φk(ρk(yyy))

+Nkykλ
−
k +Nkykγk(ρk(yyy))

]
= N

∑
k∈K

[
ζk(1− yk)λ+

k + ζk(1− yk)φk(ρk(yyy))

+ ζkykλ
−
k + ζkykγk(ρk(yyy))

]
= N

∑
k∈K

ζk(1− yk)λ+
k + ζkykλ

−
k ≥ 0. (5.2.51)

As a consequence, when λ+
k = 0 and λ−k > 0, for every k ∈ K,1 then Te(yyy) = ∞ only when yyy = 0.

If Te(0) = ∞, then the master equation (5.2.13) will have a trivial solution PΩ(yyy; t) = ∆(yyy), since

the network is initialized at 0 and it will never move to another state. In this case, the resulting

potential energy landscape VΩ(yyy; t) will have a unique global minimum at 0 [as a matter of fact,

VΩ(0; t) = 0, whereas VΩ(yyy; t) =∞, for every yyy 6= 0].

Since real-world networks must be characterized by non-trivial dynamics, we must have

Te(0) <∞. The fact that, when Te(0) =∞, the probability distribution PΩ(yyy; t) is concentrated at

the origin suggests that a very large but finite Te(0) may be indicative of a probability distribution

that assigns high probability to the zero state, creating a noise-induced mode at the origin of Y.

As a matter of fact, we expect that the stationary probability distribution PΩ(yyy) to have a peak

around yyy = 0 whenever the mean escape time of the fractional activity dynamics from the zero state

is sufficiently large and the average time it takes for these dynamics to return to the zero state is

small [see pages 100 & 101 in [190]].

In general, Eq. (5.2.51) implies that

[Te(0)]−1 = N
∑
k∈K

ζk
[
λ+
k + φk(ρk(0))

]
, (5.2.52)

where ζk = Nk/N . Clearly, reducing the net population size N increases Te(0). It moreover

decreases the size of the state-space Y, in which case, there will be fewer states for the network to

1This means that a node is leak-free when moving from the inactive to the active state but leaky when moving
from the active to the inactive state.
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visit, improving the likelihood of visiting the zero state and thus reducing the average return time

to that state. The confluence of these two effects may contribute to the creation of a noise-induced

mode at the state of zero fractional activity.

Equation (5.2.52) shows that, in addition to the net population size N , other system-specific

parameters may also influence the mean escape time from the origin. For example, reducing the

value of λ+
k + φk(ρk(0)), for every k ∈ K, will increase the mean time spent at the origin when the

LMN reaches complete inactivity.

We should note here that similar arguments can be made to show that, under appropriate

conditions, reducing the net population size and tuning system-specific parameters can result in a

noise-induced mode at the state 1 of maximum fractional activity. Indeed, from Eq. (5.2.51), we

have

[Te(1)]−1 = N
∑
k∈K

ζk
[
λ−k + γk(ρk(1))

]
. (5.2.53)

This implies that, by reducing N and λ−k +γk(ρk(1)), for every k ∈ K, we can increase the mean time

spent at 1 while improving the likelihood of visiting 1 and thus reducing the average return time to

this state. As a consequence, the confluence of these two effects may contribute to the creation of a

noise-induced mode at the state of maximum fractional activity.

Let us now define a parameter

b :=
∑
k∈K

ζk[λ+
k + φk(ρk(0))] ≥ 0 (5.2.54)

and assume that the macroscopic equations (5.2.16) have only one stable fixed point µµµ∗. Note

that, when b = 0, the macroscopic equations (5.2.16) imply that the origin of the state-space Y is

also a fixed point (albeit an unstable one) for the macroscopic equations. Thus b is a bifurcation

parameter, since the macroscopic equations predict that bifurcation takes place at b = 0. Regardless

how close the LMN is at the bifurcation point, the macroscopic equations predict that there will be

no stable fixed point at the origin, with the dynamics moving away from 0 and towards the stable

fixed-point µµµ∗.
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On the other hand, our previous discussion implies that, at sufficiently small population

sizes, the LMN may behave as if there is a stable fixed point at the origin, in the sense that the

network will be operating close to 0 with non-negligible probability. This is also true for small

nonzero values of the bifurcation parameter b, since Eq. (5.2.52) implies that the mean escape time

from the origin is given by Te(0) = (Nb)−1. This clearly demonstrates that, intrinsic noise present

in the network at small population sizes is capable of blurring the bifurcation point from being a

single point at b = 0 to a small nonnegative neighborhood of 0 while “stabilizing” the unstable fixed

point of the macroscopic equations located at the origin of the state-space Y.

Another way to see how intrinsic noise contributes to the creation and stability of a noise-

induced mode is by means of the LNA method. For sufficiently large network sizes Ω, the LNA

method predicts that the stationary probability distribution PΩ(yyy) can be sufficiently characterized

by a multivariate Gaussian distribution tightly centered around µµµ∗ with most probability mass

being assigned over the state-space Y which, for all practical purposes, can be thought of as being

continuous.2 As a consequence, the net probability mass assigned by this distribution over the

state-space Y will approximately equal to 1, as expected. However, as the network size Ω decreases,

the Gaussian distribution becomes wider around µµµ∗ and may appreciably extend beyond the state-

space Y, which will be discrete for small enough Ω. In this case, the net probability mass assigned

at values outside the state-space Y will not be negligible, and the net probability mass assigned

over Y will be smaller than one. As we explained above, and under appropriate conditions, the

Gaussian approximation will begin to break down by placing significant probability mass outside

of Y. This may force the stationary distribution PΩ(yyy) to undergo a qualitative change where the

lost probability mass may be thought of as being absorbed at the origin, creating a mode in PΩ(yyy)

at 0.

From a potential energy landscape perspective, the width of the potential well associated

with the peak of the stationary probability distribution at µµµ∗ will increase as Ω decreases, whereas

2Recall that Y = Y1 × Y2 × · · · × YK , where Yk := {0, 1/Nk, . . . , 1}.
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its depth will decrease. This behavior is also influenced by other system-specific parameters that

control the steady-state solution C of the Lyapunov equations (5.2.47). On the other hand, the width

and depth of the potential well associated with the peak of the stationary probability distribution

at 0 will both increase as Ω decreases. If the network parameters are such that the potential well

at µµµ∗ is sufficiently wide and shallow, then a state within this potential well will eventually move

towards the potential well at 0 with high probability and stay there for an appreciable amount of

time before exiting.

The previous discussion provides a clear explanation of the fact that intrinsic noise is an

important factor for bursting. In addition to Ω (or N) and C, this behavior also depends on how

far µµµ∗ is from the origin 0, since bursting is clearly better pronounced when µµµ∗ is further away from

the origin. In general however this requires a wider potential well at µµµ∗. Hence, the network size Ω

and any other system-specific parameter that affects the steady-state solution µµµ∗ of the macroscopic

equations

dµk(t)

dt
= [1− µk(t)]

[
λ+
k + φk(ρk(µµµ(t)))

]
− µk(t)

[
λ−k + γk(ρk(µµµ(t)))

]
, t > 0, k ∈ K, (5.2.55)

initialized by µµµ(0) = 0 (see Appendix D), and the steady-state solution C of the Lyapunov equa-

tions (5.2.47) will also affect bursting. This allows the LMN to control bursting by employing

alternative strategies.

5.3 Examples

We explored our methods by considering two examples: a stochastic version of a one-

dimensional SISa model of Methicillin resistant staphylococcus aureus (MRSA) infection [191, 192],

with one homogenous population of N individuals, and a two-dimensional stochastic neural net-

work (NN) model with two homogeneous populations of an equal number N/2 of excitatory and

inhibitory neurons [19]. We were able with the first example to demonstrate for the first time that

avalanching can also occur in epidemiology, even when simple models are used. In the second ex-
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ample, we show that the LNA method is not an appropriate tool for explaining the emergence of

bursting and avalanching in neural network models. Despite a difference in dimensionality and their

functional form, the two examples produce surprisingly similar results.

5.3.1 An epidemiological model

In epidemiology, a common model of disease spreading is the SIS model [7]. According

to this model, the n-th individual in a directed weighted network G of N interacting individuals is

assumed to be in one of two states with respect to a disease at time t: susceptible (S) and infected (I).

In this case, the state of the epidemiological system at time t is characterized by a random vectorXXX(t)

whose n-th element Xn(t) takes value 1, if the n-th individual is infected, and 0, if she is susceptible.

It is assumed that recovery from infection does not confer resistance to the disease with infected

individuals becoming susceptible after recovery. For example, bacterial infection is modeled well by

the SIS model, since an individual who recovers (e.g., through the use of antibiotics) is susceptible

to re-infection.

In the classical SIS model, infection can only be transmitted from an infected to a suscep-

tible individual. Note however that some infections can be acquired from other sources, such as the

environment, animals, terror attacks, or self-infection. For example, individuals may be colonized

by bacteria and be healthy for long periods of time until the bacteria suddenly seize the opportunity

to pathogenically infect the individual. As a consequence, we choose here to discuss a slightly more

general version of the SIS model known as the SISa model [193,194].

Although the SISa model is general enough to describe a variety of infections (e.g., due

to illnesses, computer viruses, or social contagions), we focused on a matter of pressing concern

to public health: infections due to methicillin resistant staphylococcus aureus (MRSA). We use the

SISa model as a simple model of MRSA outbreaks in which bacterial infections, due to self-infection,

are possible and the number of individuals spreading MRSA infection can be small, in which case

stochastic modeling is necessary [195]. MRSA has been studied in confined swine populations, where
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more invasive and comprehensive data collection is feasible [192].

We assume that the propensity by which the n-th individual transitions from the susceptible

to the infected state depends on a net input rn(xxx) = hn + aaaTnxxx, where hn ≥ 0 is the propensity of

the individual to become infected regardless of her social contacts and aaaTn is the n-th row of the

adjacency matrix A of the underlying network of infectious social contacts. The element ann′ of

the adjacency matrix provides the rate at which the n-th susceptible individual will be infected by

the n′-th infected individual and, as such, it is assumed to be nonnegative; i.e., ann′ ≥ 0, for every

n, n′ ∈ N , with ann = 0, for every n ∈ N . Clearly, rn(xxx) represents the total infectious influence

to the n-th individual. As a consequence, we set p+
n (xxx) = (1 − xn)rn(xxx). On the other hand, we

assume that the propensity of the n-th infected individual to recover is constant, given by `−n , which

implies that p−n (xxx) = `−n xn.

To simplify the previous model, we assume one homogeneous population of individuals and

study the fraction Y (t) of the population that is infected at time t, given by

Y (t) =
1

N

∑
n∈N

Xn(t). (5.3.56)

In this case, one finds that ann′ = w/N , for every n, n′ ∈ N such that n 6= n′, whereas hn = η,

`+n = 0, and `−n = λ, for every n ∈ N . This implies an all-to-all connectivity, which can be justified

by considering the fact that, in small populations, it is always possible for any two individuals to

come in contact with each other.

The fractional activity process {Y (t), t ≥ 0} is Markovian, governed by the following master

equation:

∂P (y; t)

∂t
= π+(y−1/N)P (y−1/N ; t)+π−(y+1/N)P (y+1/N ; t)−

[
π+(y) + π−(y)

]
P (y; t), (5.3.57)

initialized with P (y; 0) = ∆(y), where P (y; t) := Pr[Y (t) = y | Y (0) = 0] and

π+(y) = N(1− y)(η + wy) (5.3.58)

π−(y) = Nλy. (5.3.59)
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Moreover, the macroscopic equation (5.2.55) is given by

dµ(t)

dt
=
[
1− µ(t)

][
η + wµ(t)

]
− λµ(t), (5.3.60)

with initial condition µ(0) = 0, whereas the Lyapunov equation (5.2.47) for the noise variance in

the LNA method is given by

dr(t)

dt
=
[
1− µ(t)

][
η + wµ(t)

]
+ λµ(t) + 2

{
w
[
1− µ(t)

]
−
[
η + wµ(t)

]
− λ
}
r(t), (5.3.61)

initialized by r(0) = 0. This equation is driven by µ(t) that solves Eq. (5.3.60). Finally, note from

Eq. (5.3.58) that π+(y) > 0, when η > 0, y < 1. Therefore, 0 → 1 and Proposition 2 in Appendix

D implies that Y (t) is irreducible.

Using data from a Danish swine herd, the parameters w and λ have been estimated to

take values w = 0.108 days−1 and λ = 0.0571 days−1 [192]. However, the parameter η could not

be reliably estimated from these data. To illustrate the case when infections are rarely contracted

(i.e., the case when the environment is relatively clean but not completely free of MRSA), we set

η = 10−4 days−1. From Eq. (5.3.58), note that π+(y) > 0, when η > 0, y < 1. Therefore, 0 → 1

and Proposition 2 implies that Y (t) is irreducible .

Because the system is one-dimensional, its state space is reasonably sized. It was therefore

possible to numerically solve the master equation (5.3.57) for PΩ(y; t) using the Krylov subspace

approximation (KSA) method implemented by the Expokit software package [32]. To do so, we used

a tight tolerance parameter of 10−6 and a value K0 = 30 for the dimension of the Krylov subspace.

We then employed Eq. (5.2.18) to evaluate the potential energy landscape VΩ(y; t) and used the

solution to the master equation after 30 years as an approximation to the stationary probability

distribution PΩ(y). From this distribution, we numerically evaluated the internal potential energy

VΩ and entropy SΩ at steady-state. We then calculated the stationary free potential energy according

to AΩ = VΩ − SΩ. We set N0 = 200, in which case, Ω = N/200. By evaluating AΩ for Ω =

0.005, 0.01, . . . , 1, we computed the stationary pressure PΩ using Eq. (5.2.30) and subsequently

the bulk modulus BΩ using Eq. (5.2.31). We approximated all derivatives with respect to Ω using
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backward differences with ∆Ω = 0.005. When required, we drew sample trajectories from the master

equation using the exact Gillespie algorithm [14,46]. Finally, we numerically solved the macroscopic

equation (5.3.60) and the Lyapunov equation (5.3.61) using the stiff ‘ode23s’ solver in MATLABr

with the default parameters. This resulted in a macroscopic stationary steady state of µ∗ = 0.4719.

5.3.2 A neural network model

A model that fits well within our framework has been put forth in the literature to explain

biological neural networks [19]. This model is based on an interconnected directed weighted network

G of N neurons in a set N = {1, 2, . . . , N} that can exist in one of two distinct states: an active state,

during which a neuron fires an action potential,3 and a quiescent state, during which a neuron is at

rest. In this case, the state of the neural system at time t is characterized by a random vector XXX(t)

whose n-th element Xn(t) takes value 1, if the n-th neuron is active at time t, and 0 otherwise.

Here, we study the stochastic behavior of a group of interacting neurons embedded within

a larger neural network [196]. We assume that, when the n-the neuron is inactive, it is driven to

become active by a net input rn(xxx) = hn + aaaTnxxx, where hn > 0 is the external input to the neuron

that quantifies the influence of surrounding neurons and external environmental factors, and aaaTn is

the n-th row of the adjacency matrix A of the network. If no external input is present, hn may be

chosen to account for the (small) rate at which a neuron might spontaneously fire independently

of the incoming synaptic input. The element ann′ of the adjacency matrix A provides the synaptic

weight from the n′-th to the n-th neuron. If ann′ > 0, then the n′-th neuron excites the n-th neuron

making it more likely to spike, whereas, if ann′ < 0, then the n′-th neuron inhibits the n-th neuron

making it less likely to spike. Finally, ann′ = 0 indicates that the n-th neuron has no synaptic input

from the n′-th neuron. It is assumed that a neuron does not regulate itself, in which case ann = 0,

for n ∈ N .

The propensity by which the n-th neuron transitions from the quiescent to the active state

3The active state includes the accompanying refractory period wherein the neuron is hyperpolarized.
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is assumed to monotonically depend on the total synaptic input rn(xxx) to the neuron by means of a

function fn(r) = 〈r > 0〉 tanh(r), where 〈r > 0〉 is the Iverson bracket, taking value 1, if r > 0, and 0

otherwise. In this case, p+
n (xxx) = (1 − xn)〈rn(xxx) > 0〉 tanh(rn(xxx)), where we take `+n = 0. On the

other hand, the propensity of the n-th neuron to transition from the active to the quiescent state is

assumed to be a constant `−n , regardless of the system state, which implies that p−n (xxx) = `−n xn.

We simplify the previous model by assuming that the neural network under consideration

consists of two homogeneous populations N1 and N2 of excitatory and inhibitory neurons, respec-

tively. The fractional activity process YYY (t) is now two-dimensional, with elements Y1(t) and Y2(t)

given by

Y1(t) =
1

N1

∑
n∈N1

Xn(t), Y2(t) =
1

N2

∑
n∈N2

Xn(t). (5.3.62)

Due to homogeneity, we find that ann′ = w11/N1, for every n, n′ ∈ N1 such that n 6= n′, ann′ =

w22/N2, for every n, n′ ∈ N2 such that n 6= n′, ann′ = w12/N2, for every n ∈ N1, n′ ∈ N2, and

ann′ = w21/N1, for every n ∈ N2, n′ ∈ N1. Moreover, hn = η1, for every n ∈ N1, hn = η2, for every

n ∈ N2, `+n = 0, `−n = λ1, for every n ∈ N1, and `+n = 0, `−n = λ2, for every n ∈ N2. Note that the

implied all-to-all connectivity is a common assumption in the neuroscience literature [19, 197]. It is

usually justified by noting that some regions of the brain are comprised of neurons that are highly

interconnected among themselves.

To simplify matters further, we set N1 = N2 = N/2, w11 = w21 = we > 0, w12 = w22 =

wi < 0, λ1 = λ2 = λ, η1 = η2 = η, and φ1(ρ) = φ2(ρ) = φ(ρ) = 〈ρ > 0〉 tanh(ρ). This implies that

ρ1(yyy) = ρ2(yyy) = ρ(yyy) = wey1 +wiy2 + η. In this case, the fractional activity process {YYY (t), t ≥ 0} is
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Markovian, governed by the master equation (5.2.13) with propensity functions

π+
1 (y1, y2) =

N

2
(1− y1)〈η + wey1 + wiy2 > 0〉 tanh(η + wey1 + wiy2) (5.3.63)

π+
2 (y1, y2) =

N

2
(1− y2)〈η + wey1 + wiy2 > 0〉 tanh(η + wey1 + wiy2) (5.3.64)

π−1 (y1, y2) =
N

2
λy1 (5.3.65)

π−2 (y1, y2) =
N

2
λy2. (5.3.66)

Moreover, the macroscopic equations (5.2.16) are found to be

dµ1(t)

dt
=
[
1− µ1(t)

]
〈weµ1(t) + wiµ2(t) + η > 0〉 tanh(weµ1(t) + wiµ2(t) + η)− λµ1(t) (5.3.67)

dµ2(t)

dt
=
[
1− µ2(t)

]
〈weµ1(t) + wiµ2(t) + η > 0〉 tanh(weµ1(t) + wiµ2(t) + η)− λµ2(t), (5.3.68)

initialized by µ1(0) = µ2(0) = 0. Finally, the Lyapunov equations (5.2.47) for the noise correlations

in the LNA method can be determined by specifying the diffusion terms as

D1(µ1, µ2) = (1− µ1)〈weµ1 + wiµ2 + η > 0〉 tanh(weµ1 + wiµ2 + η) + λµ1 (5.3.69)

D2(µ1, µ2) = (1− µ2)〈weµ1 + wiµ2 + η > 0〉 tanh(weµ1 + wiµ2 + η) + λµ2, (5.3.70)

and the derivatives of the drift terms as

A11(µ1, µ2) = −λ+ 〈weµ1 + wiµ2 + η > 0〉
{
we(1− µ1)

[
1− tanh2(weµ1 + wiµ2 + η)

]
− tanh(weµ1 + wiµ2 + η)

}
(5.3.71)

A12(µ1, µ2) = 〈weµ1 + wiµ2 + η > 0〉 wi(1− µ1)
[
1− tanh2(weµ1 + wiµ2 + η)

]
(5.3.72)

A21(µ1, µ2) = 〈weµ1 + wiµ2 + η > 0〉 we(1− µ2)
[
1− tanh2(weµ1 + wiµ2 + η)

]
(5.3.73)

A22(µ1, µ2) = −λ+ 〈weµ1 + wiµ2 + η > 0〉
{
wi(1− µ2)

[
1− tanh2(weµ1 + wiµ2 + η)

]
− tanh(weµ1 + wiµ2 + η)

}
. (5.3.74)

Note finally that, when η + we + wi > 0, we have that 0 → 1 by following a sequence of state

transitions whereby all excitatory neurons become active one-by-one and all inhibitory neurons
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become active one-by-one. As a consequence, Proposition 2 in Appendix D implies that YYY (t) is

irreducible.

By following [19], we set λ = 0.1 ms−1 and η = 0.001. We also defined two new parameters

ws and wd, given by

ws := we + wi and wd := we − wi. (5.3.75)

Note that ws < wd, since wi < 0. Moreover, for ws > −η, YYY (t) is irreducible. It turns out that

the steady-state solution of the macroscopic equations (5.3.67) and (5.3.68) depends only on ws,

whereas bursting is controlled by the value of wd. By following [19], we set ws = 0.2 and study the

behavior of the neural network for various values of wd. We will start with wd = 0.3, in which case

the network is not balanced (i.e., ws 6� wd), and will proceed to examine the effects of wd.

To do so, we numerically solved the corresponding master equation for the joint probability

distribution PΩ(y1, y2; t) using the KSA method with tolerance parameter of 10−30 and a value

K0 = 50 for the dimension of the Krylov subspace. We took the value of the tolerance parameter

to be appreciably smaller than in the case of the SISa model in order to effectively deal with the

increased dimensionality of the state-space Y. Moreover, we took the value of K0 to be larger than

the one used in the case of the SISa model in order to effectively deal with the increased cardinality

of Y. Similarly to the case of the SISa model, we employed Eq. (5.2.18) to evaluate the stationary

potential energy landscape V Ω(y1, y2). We set N0 = 200, in which case, Ω = N/200, and used

the solution to the master equation at 2,000 ms as an approximation to the stationary probability

distribution PΩ(y1, y2), since we noticed that the neural network is approximately at steady-state

after that time. By using this distribution, we numerically evaluated the internal potential energy VΩ

and entropy SΩ at steady-state. We then calculated the stationary free potential energy according to

AΩ = VΩ−SΩ. By evaluating AΩ for Ω = 0.01, 0.02, . . . , 1, we computed the stationary pressure PΩ

using Eq. (5.2.30) and subsequently the bulk modulus BΩ using Eqs. (5.2.31). We approximated

all derivatives with respect of Ω using backward differences with ∆Ω = 0.01.4 When required, we

4Since we are interested in the behavior of a LMN en route to the thermodynamic limit, we must take ∆Ω to be the
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drew sample trajectories from the master equation using the exact Gillespie algorithm. Finally, we

numerically solved the macroscopic equations (5.3.67) and (5.3.68) and the corresponding Lyapunov

equations using the stiff ‘ode23s’ solver in MATLABr with the default parameters, which resulted

in a macroscopic stationary steady state of µµµ∗ = (µ∗1, µ
∗
2)T = (0.5032, 0.5032)T .

5.4 Results

5.4.1 Thermodynamic analysis reveals critical behavior in LMNs

For each of the models discussed in the previous section, we computed the probability

distribution PΩ(yyy; t) and the potential energy landscape VΩ(yyy; t) = −(1/Ω) ln[PΩ(yyy; t)/PΩ(yyy∗Ω(t); t)],

parameterized by the network size Ω, where yyy∗Ω(t) is a state at which PΩ(yyy; t) attains its (global)

maximum. Figures 5.1–5.4 depict movies of the dynamic evolutions of the stationary potential

energy landscapes and probability distributions with respect to decreasing Ω. Moreover, Fig. 5.5

and Fig. 5.6 depict four computed thermodynamic quantities as a function of Ω. The results for

the two models are qualitatively identical, despite the fact that the dimensionality of their state

spaces are different. Note that the internal and free potential energy plots exhibit a deflection

point at network size Ωc = 0.175 (population size Nc = 35), for the SISa model, and at Ωc = 0.49

(Nc = 98), for the NN model, revealing critical behavior. This is also evident from the pressure,

which experiences a discontinuity at Ωc and produces a spike in the bulk modulus. On the other

hand, the values of the bulk modulus are very close to zero at all other network sizes. For this

reason, we can conclude that the SISa and NN models are robust with respect to network size (and

hence to variations in the strength of intrinsic noise) away from the critical value Ωc.

minimum allowable change in network size such that ∆Nζk = N0∆Ωζk is integer valued, for all k = 1, 2, . . . ,K, where
ζk := Nk/N is fixed. Since K = 2 and N1 = N2 = N/2, we have ζ1 = ζ2 = 1/2 and, therefore, we set ∆Ω = 0.01.
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Figure 5.1: Still image from a movie [this archived PDF/A document only contains the still
image, see the supplemental PDF document for full movie] of the dynamic evolution, with respect
to decreasing network size Ω, of the stationary potential energy landscape of the SISa model (blue
solid curve). The red dashed curve represents the potential energy landscape predicted by the LNA
method. The double headed arrow indicates the region of 99.8% probability predicted by the LNA
method.

141



CHAPTER 5. LEAKY MARKOVIAN NETWORKS

Figure 5.2: Still image from a movie [this archived PDF/A document only contains the still
image, see the supplemental PDF document for full movie] of the dynamic evolution, with respect
to decreasing network size Ω, of the stationary probability distribution of the SISa model with (blue
solid curve). The red dashed curve represents the probability distribution predicted by the LNA
method.
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Figure 5.3: Still image from a movie [this archived PDF/A document only contains the still
image, see the supplemental PDF document for full movie] of the dynamic evolution, with respect
to decreasing network size Ω, of the stationary potential energy landscape of the NN model.

143



CHAPTER 5. LEAKY MARKOVIAN NETWORKS

Figure 5.4: Still image from a movie [this archived PDF/A document only contains the still
image, see the supplemental PDF document for full movie] of the dynamic evolution, with respect
to decreasing network size Ω, of the stationary probability distribution of the NN model.
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Figure 5.5: Computed thermodynamic quantities for the SISa model as a function of network
size Ω. The red dashed lines mark the critical network size Ωc = 0.175.
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Figure 5.6: Computed thermodynamic quantities for the NN model as a function of network size Ω.
The red dashed lines mark the critical network size Ωc = 0.49.
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Figure 5.7: (A) Change in the ground state of the potential energy landscape of the SISa model.
The red curve depicts VΩ(0) as a function of Ω, whereas the blue curve depicts VΩ(0.4719). The two
curves intersect at the critical network size Ωc = 0.175. (B) The inverse mean escape time [Te(y)]−1

from a state y of the SISa model as a function of y, when Ω = 0.25 (N = 50), superimposed on the
stationary potential energy landscape V0.25(y). The red dashed curve depicts the potential energy
landscape predicted by the LNA method.

What is the underlying cause of this critical behavior? The previous results suggest that

the slope of the self-information support curve σ∗(Ω) := − lnPΩ(yyy∗Ω(∞);∞) will experience a dis-

continuity at the critical size Ωc and a large curvature at that size. This is a consequence of the fact

that σ∗(Ω) equals the pressure. Hence, loss of network robustness near Ωc indicates that there is

a change in the ground state (global minimum) of the stationary potential energy landscape at Ωc.

The movies depicted in Fig. 5.1 and Fig. 5.3 corroborate the validity of this point. In particular,

Fig. 5.1 confirms that, in the SISa model, critical behavior is caused by the ground state of the

potential energy landscape changing from the fixed point 0.4719 of the macroscopic equation to the

origin 0 of the state-space as the network size decreases past the critical value Ωc = 0.175; see also

Fig. 5.7A. Likewise, Fig. 5.3 confirms that, in the MM model, critical behavior is caused by the

ground state changing from (0.5032, 0.5032) to (0, 0) at Ωc = 0.49.
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5.4.2 LNA fails to accurately predict rare large deviation excursions to

the active and inactive states

Figure 5.2 demonstrates that, for large Ω, the LNA method provides a reasonable approx-

imation to the stationary probability distribution of the SISa model. This observation however

becomes questionable upon closer examination of the potential energy landscape dynamics depicted

in Fig. 5.1. Although the LNA potential energy landscape approximates well the true energy land-

scape over an appreciable region around the macroscopic ground state µ∗ = 0.4719, which accounts

for about 99.8% of probability mass, there are substantial differences at the left and right tails of

the landscape. These tails characterize rare large deviations from the macroscopic ground state and

do not conform to the parabolic shape predicted by LNA. As a matter of fact, state values smaller

than µ∗ reside over a lower and flatter landscape than the one predicted by LNA, whereas state

values larger than µ∗ reside over a higher and steeper landscape. As a consequence, if the fractional

activity process moves to a state at the left end tail of the potential energy landscape (i.e., close

to the inactive state y = 0), it may stay there for an appreciable amount of time before returning

back to the macroscopic ground state. On the other hand, if the fractional activity process moves

to a state at the right end tail (i.e., close to the active state y = 1), it may quickly return back to

the macroscopic ground state. This behavior, which is not well-predicted by LNA, is corroborated

by Fig. 5.7B, which shows the inverse mean escape time [Te(y)]−1 from a state y, as a function of y

when Ω = 0.25 (N = 50). Similar remarks hold for the NN model.

5.4.3 Stability of the inactive state is directly linked to the strength of

intrinsic noise

As the network size Ω decreases towards the critical value Ωc, the approximation produced

by the LNA method begins to break down, due to the emergence of a second well in the potential

energy landscape located at the inactive state 0; see Fig. 5.1 and Fig. 5.3). This potential well
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becomes increasingly dominant, as compared to the well located at µµµ∗. Since the ground state of

the potential energy landscape transitions from µµµ∗ to 0 at the critical size Ωc and remains at 0 for

all Ω < Ωc, we expect the inactive state to be the most stable state at subcritical network sizes.

The internal potential energy remains fixed at supercritical network sizes; see Fig. 5.5 and

Fig. 5.6. This is predicted by Eq. (5.2.49) and the fact that the LNA method provides a good

approximation to the solution of the master equation at supercritical sizes (note that K = 1 for the

SISa model and 2 for the NN model). At subcritical sizes, the internal potential energy monotonically

increases initially to a maximum value at some network size Ω0 (Ω0 = 0.12 for the SISa model and

0.24 for the NN model) and subsequently monotonically decreases to zero. As a consequence, the

internal pressure (which is the derivative of the internal potential energy with respect to Ω) is

negative for Ω0 < Ω < Ωc and positive for 0 < Ω < Ω0. Positive internal pressure (decreasing

internal potential energy) signifies the fact that removing nodes (individuals or neurons) from the

network results in decreasing the distance between the self-information of the most likely state (i.e.,

the amount of information associated with the occurrence of the inactive state) from the average

self-information of all states and thus increasing the stability of this state. As a consequence, and

for network sizes below Ω0, increasing levels of intrinsic noise result in increasing the stability of the

inactive state

5.4.4 Emergence of the noise-induced mode leads to bursting

To investigate the emergence of bursting in the SISa model, we depict in the first column

of Fig. 5.8 realizations of the fractional activity process (red lines) and the macroscopic dynamics

(blue lines), superimposed over the potential energy landscape, for three network sizes, namely

Ω = 0.25 > Ωc (N = 50), in A, Ω = Ωc = 0.175 (N = 35), in B, and Ω = 0.1 < Ωc (N = 20), in C.

Moreover, we depict in the second column of Fig. 5.8 the corresponding stationary potential energy

landscapes.
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Figure 5.8: Simulations of the SISa model corresponding to: (A) Ω = 0.25 > Ωc = 0.175 (N = 50),
(B) Ω = Ωc = 0.175 (N = 35), and (C) Ω = 0.1 < Ωc = 0.175 (N = 20). The left column depicts a
single stochastic trajectory of the activity process (in red) along with the corresponding macroscopic
solution (in blue), superimposed on the potential energy landscape. The right column depicts the
corresponding stationary potential energy landscapes.

150



CHAPTER 5. LEAKY MARKOVIAN NETWORKS

The stationary energy landscape depicted in Fig. 5.8A-2 exhibits two potential wells.

A shallow and narrow well W0 located at 0 and a relatively deep and wide well W∗ located at

the stable fixed point µ∗ = 0.4719 of the macroscopic equation. Transitions from W∗ into W0 are

dubious, since such transitions require appreciable stochastic deviations, which are not likely. On the

other hand, transitions from W0 to W∗ are easier, requiring smaller stochastic fluctuations (mean

escape time from 0 is 200 days). In this case, the fraction of infected individuals will fluctuate in

a Gaussian-like manner around µ∗, although it may sometimes become zero for a relatively short

period of time; see Fig. 5.8A-1.

Figure 5.8B-2 and Fig. 5.8C-2 indicate that, as the network size decreases, the first potential

well W0 becomes deeper and wider, whereas the second well W∗ becomes shallower and eventually

disappears; see also Fig. 5.1. When Ω = Ωc = 0.175, the two potential wells achieve the same

depth. In this case, the fractional activity processes may remain inside W0 longer than before, since

transitions from W0 into W∗ become more difficult (mean escape time from 0 is now 286 days). As

a consequence, the fraction of infected individuals will fluctuate in a Gaussian-like manner around

µ∗ as before, although it may now become zero for a longer period of time; see Fig. 5.8B-1.

On the other hand, Fig. 5.8C-2 indicates that, when Ω = 0.1, the potential wellW∗ becomes

extremely shallow. In this case, the fractional activity process will spend most time within W0 with

infrequent and very short excursions outside this well (mean escape time from 0 is 500 days). As

a consequence, the fraction of infected individuals will mostly be zero with occasional and brief

switching to nonzero values. This bursting behavior is clear from Fig. 5.8C-1 and is expected in

the SISa model since, in a hospital setting or in a swine herd, one often speaks of unpredictable

“outbreaks” of an infection, such as MRSA. The deterministic SISa model is fundamentally incapable

of predicting such complex behavior. Similar remarks apply for the NN model; see Fig. 5.9.

One may be curious about the rather long time scales involved in Fig. 5.8. The infection

dynamics occur on the order of months (e.g., an infected individual requires an average time of

1/λ = 17.5 days to recover). However, the long-term infection trends (i.e., outbreaks of infections
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Figure 5.9: Stationary potential energy landscape of the NN model with network size: (A) Ω = 0.9
(N = 180); (B) Ω = Ωc = 0.49 (N = 98), and (C) Ω = 0.1 (N = 20).

that eventually die out, only for another outbreak to occur) take place on the time span of multiple

years. Recall that the system is initialized with all individuals susceptible and none infected, and

therefore nothing happens in the model until an infection is acquired from the environment. This

process is captured by the parameter η which is very small, indicating that we are modeling a

system where the environment (e.g., the pig pen) is kept relatively clean. Quantitatively, one sees

from Eq. (5.3.58) that π+(0) = Nη, and thus the start of a new outbreak is a rare-event for small

N and η. Therefore, over a time frame of many years, one may observe multiple outbreaks of

MRSA infections.
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Figure 5.10: Log-log plots of estimated probability distributions of the fractional avalanche size in the
SISa model for various network sizes Ω. The cases corresponding to subcritical network sizes below
0.175 exhibit high rates of avalanching with fractional avalanche size distributions characterized by
scale-free behavior for sizes smaller than 1. The cases corresponding to supercritical network sizes
exhibit increasingly lower rates of avalanching and gradual break-down of scale-free behavior.

5.4.5 Avalanche formation becomes a rare event at supercritical net-

work sizes

Because bursting occurs primarily at steady-state (see Fig. 5.8), we computed avalanche

statistics from a single trajectory of the fractional activity process obtained from a long sample

of this process (refer to Appendix D to find how we define avalanches). This helped us reduce the

computational effort required when calculating avalanche statistics from multiple runs. We simulated

the SISa model using the Gillespie algorithm for a period of 300,000 years and used an avalanching

threshold ε = 0.01 to compute the presence of an avalanche. This allowed us to characterize the SISa

model as being active if at least 1 out of 100 individuals was infected. In Fig. 5.10, we depict log-log

plots of the estimated probability distributions of the fractional avalanche size, for sizes between 0.01

and 10 and for various choices of Ω. We also depict the rate of avalanche formation for each case,

calculated as the number of avalanches that occurred per day. For the three subcritical network
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Figure 5.11: Adjusted R2 values (solid blue curve) of the goodness of fit of a linear regression of
a portion (below 1) of the log-log probability distribution of fractional avalanche size for the SISa
model computed at discrete network sizes Ω. R2 values close to one indicate scale-free (linear)
behavior. Standard 4-th order polynomial fit of the computed R2 values produced a smoother curve
(dotted blue line). The scale-free property of avalanching is characteristic to network sizes close or
below the critical size Ωc = 0.175 (dotted black curve) and disappears gradually as Ω increases away
from the critical size, as indicated by the decreasing R2 values.

sizes below 0.175, the distributions exhibit scale-free behavior (i.e., the log-log plots are linear)

for fractional avalanche sizes below 1 (i.e., when the number of infections that occur during an

avalanche is at most N); see also Fig. 5.11. On the other hand, for the three supercritical network

sizes above 0.175, we observe increasingly lower rates of avalanching, indicating that avalanche

formation becomes eventually a rare event as Ω increases. Moreover, this is accompanied with a loss

of the scale-free behavior of the size distribution; see Fig. 5.11. We obtained similar results for the

NN model; see Fig. 5.12.

5.4.6 External influences affect bursting

The previous results for the SISa model are based on setting η = 10−4 days−1. This

parameter quantifies the influence of extrinsic factors (other than direct transmission from other
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Figure 5.12: (A) Log-log plots of estimated probability distributions of the fractional avalanche size
in the NN model for various network sizes Ω. The cases corresponding to subcritical network sizes
below Ωc = 0.49 exhibit high rates of avalanching with fractional avalanche size distributions char-
acterized by scale-free behavior for sizes smaller than 1. The case corresponding to the supercritical
network size exhibits a low rate of avalanching and a break-down of the scale-free behavior. (B) Ad-
justed R2 values (solid blue curve) of the goodness of fit of a linear regression of a portion (below 1)
of the log-log probability distribution of fractional avalanche size for the NN model computed at
discrete network sizes Ω. R2 values close to one indicate scale-free (linear) behavior. Standard 4-th
order polynomial fit of the computed R2 values produced a smoother curve (dotted blue line). The
scale-free property of avalanching is characteristic to network sizes close or below the critical size
Ωc = 0.49 (dotted black curve) and disappears gradually as Ω increases away from the critical size,
as indicated by the decreasing R2 values.

infected individuals) on the rate of infection. We therefore investigated the effect of η on bursting.

The mean escape time from the inactive state depends inversely proportional on the network

size Ω and parameter η. This implies that, for a fixed value of η, the stability of the inactive state

increases for decreasing Ω, in agreement with our previous discussion.

For fixed Ω, Te(0) → ∞, as η → 0, and moving away from the inactive state becomes

increasingly difficult. When η = 0, the SISa model reduces to the standard SIS model of epidemiol-

ogy, which enjoys far simpler dynamics: infections will always die out and never appear again, since

Te(0) = ∞. As a consequence, the stationary probability distribution of the SIS model assigns all

probability mass to the inactive state. On the other hand, Te(0) → 0, as η → ∞, which implies

that, for sufficiently large η, the SISa model will be moving away from the inactive state almost

instantaneously.
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Figure 5.13: (A) Critical network size Ωc of the SISa model as a function of the external influence
parameter η. (B) Critical network size Ωc of the NN model as a function of parameter wd.

Figure 5.13A depicts a plot of the critical network size Ωc as a function of η, for 10−5 ≤

η ≤ 10−2. Clearly, decreasing η increases the value of Ωc. In particular, Ωc → ∞, as η → 0.

As a consequence, and for sufficiently small values of η, the ground state of the potential energy

landscape of the SISa model will be at zero no matter how large Ω is. On the other hand, increasing η

decreases Ωc. In particular, Ωc → 0, as η →∞. This implies that, for sufficiently large values of η,

the ground state of the potential energy landscape of the SISa model will be at the state µ∗ predicted

by the macroscopic equation no matter how small Ω is. In this case, bursting will never occur. This

is because spontaneous infection from sources other than infected individuals is so prevalent that

the state of zero infective individuals has low probability. However, and for the small values of η

encountered in practice, the state at 0 will be the ground state for all subcritical network sizes, and

bursting behavior will be prevalent. Similar results have been obtained for the NN model.

5.4.7 Balanced feed-forward structure is not necessary for burst-

ing in NNs

In a previous work [19], analysis of the NN model using the LNA method led to the

conclusion that for a NN to exhibit bursting it is required that ws � wd, where ws, wd are two

appropriately defined parameters. When ws � wd, the neural network is balanced, in the sense that
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Figure 5.14: (A) The true stationary probability of the fractional activity process in the NN model
considered in [Benayoun M, Cowan JD, van Drongelen W, Wallace E (2010) PLoS Comput Biol 6:
e1000846], with N = 1, 600, η = 0.001, λ = 0.1, ws = 0.2, and wd = 13.8. (B) The approximating
stationary probability distribution obtained by the LNA method. Clearly, the LNA method provides
a poor approximation to the actual probability distribution in this case. In particular, the true
distribution depicted in A predicts a probability of 0.45 for the network to be at a state close to the
inactive state 0 and a probability of 10−3 for the network to be at a state within a small neighborhood
around the macroscopic mode µµµ∗. On the other hand, the corresponding probabilities predicted by
the sampled Gaussian distribution depicted in B are 1.6× 10−3 and 4× 10−3.

excitation is very close to inhibition. Moreover, it has been shown that, when the LNA method is

valid, fluctuations in the average difference [Y1(t)−Y2(t)]/2 of the fractional activity processes of the

excitatory and inhibitory neurons feed-forward into the evolution of the average sum [Y1(t)+Y2(t)]/2.

It was then argued that a balanced feed-forward (BFF) structure is necessary for avalanching in

relatively large NNs and that this is achieved through amplification of low levels of intrinsic noise.

Our thermodynamic analysis demonstrates that bursting is actually a noise-induced phe-

nomenon that cannot be characterized by the LNA method. This is due to the fact that, at su-

percritical network sizes, the LNA method may not sufficiently approximate the potential energy

landscape in a neighborhood of the inactive state, whereas the method breaks down completely at

subcritical network sizes. As a matter of fact, Fig. 5.14 shows that LNA produces a poor approx-

imation to the potential energy landscape close to 0 for the model considered in [19]. This is not

surprising, since the LNA method always predicts negligible probability for the activity process to

reach the inactive state 0 [89]. It turns out that the BFF condition is not necessary for bursting in
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NNs. Instead, we have argued that bursting is due to the gradual formation of the noise-induced

mode at 0 with decreasing network size.

To further confirm this point, note that BFF behavior is controlled by wd when ws is held

fixed [19]. With ws = 0.2, the analysis in [19] implies that the NN model will exhibit bursting only

when wd � 0.2. However, our results show that this is also true when wd = 0.3; see Fig. 5.12. In

Fig. 5.13B, we depict the computed critical system size Ωc for a fixed value ws = 0.2 as a function

of wd > 0.2. This result demonstrates that, increasing the value of wd increases the critical network

size. Therefore, for a NN with large Ω to exhibit bursting it is required that the value of wd be

sufficiently larger than the value of ws. This implies that the NN must be balanced. Although the

feed-forward condition is not necessary for bursting, it ensures that, in large NNs, the noise induced

mode at 0 remains stable.

5.5 Discussion

Energy landscape theory, combined with thermodynamic analysis, leads to a powerful

methodology for the analysis of Markovian networks. By introducing leaky Markovian networks,

we developed in this chapter an in silico approach for understanding the origins of bursting. We

have quantified topographic deformations of the energy landscape as a function of network size and

showed that bursting is a complex behavior caused by the emergence of noise-induced modes and

reallocation of ground states. This led to a novel view of avalanching as a complex behavior that

dominates system dynamics at near-critical or subcritical network sizes caused by appreciable levels

of intrinsic noise. Future improvements in computer hardware and software will allow our methods

to be used in more complicated problems than the ones considered here in an effort to theoretically

understand and experimentally evaluate bursting as well as other complex phenomena.
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Chapter 6

Conclusion and Outlook

In this thesis, we presented a coherent view of Markovian processes on networks, which

would prove useful to scientists across many disciplines. The master equation framework for charac-

terizing such processes is general and powerful, but this comes at a serious cost: the computational

burden of simulating and analyzing Markovian processes on networks is usually enormous. There-

fore, new solution techniques and analysis methods must be developed in the future, and those which

are less general and more tailored to the structure of a specific problem at hand will likely prove

most useful in practice.

In this vein, the numerical solution technique developed in Chapter 3 will prove most useful

in certain networked systems, such as those encountered in epidemiology, in which the DA process is

bounded and lives in a state space that is not much larger than the state space of the corresponding

population process. Accordingly, many approximation techniques available in the literature take

advantage of structure that is common to many important problems. The LNA method provides

a good example of an approximation technique that exploits the monostability and large size of

many systems encountered in practice. Therefore, the statistical testing methodology developed in

Chapter 4 (or refinements thereof) will prove useful to practicing scientists well into the future. We

lastly believe that the work presented in Chapter 5 has successfully demonstrated the practical value
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of developing thermodynamic tools for the analysis of Markov processes on networks. Undoubtedly,

there is vast untapped potential for advancement in this fledgling field.

As one might expect, there are numerous problems we did not address in this thesis. One

important problem is how to deal with systems whose reactions occur on multiple timescales. Such

stiff systems pose a major challenge when solving the master equation. For a comprehensive review

of methods dealing with stiff systems see [5].

Likewise, we focused only on Markovian dynamics. In these systems, the waiting times

between occurrences of successive reactions are exponentially distributed. As a consequence, we did

not deal with systems in which the waiting reaction times do not follow an exponential distribution.

Stochastic processes on such systems fall under the more general purview of semi-Markov processes.

Generalization of the present body of work to deal with these type of processes will serve to bring

our current developments to an even wider range of scientific disciplines, such as computer science,

where non-Markovian Petri nets are commonly used for these purposes [198].

Another important problem which we did not address in this thesis is dealing with random

processes on networks with evolving topologies. The present framework may be thought of as de-

scribing such processes over a timescale on which the network topology is fixed. Note, however, that

the generality of the present framework allows for (perhaps inelegant) accommodation of a changing

topology. Suppose that there are K reaction networks with differing topologies. We may intro-

duce an artificial species XN+1, which accounts for the different topologies, that takes K values,

1, 2, . . . ,K, indicating which network topology is presently in use. This is possible to do mathe-

matically by multiplying all propensities of the k-th reaction network by [XN+1 = k], where [·] is

the Iverson bracket. The multiplication ensures that the reactions can only take place when the

“topology” species indicates that those reactions are currently in use. Of course, it is also necessary

to include reactions (and the corresponding propensity functions) that modify XN+1, to indicate

how the topology changes with time. Although this approach is general enough to accommodate

most cases of interest, it comes at the cost of great computational complexity. The system now is
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governed by a DA process whose dimensionality grows multiplicatively (i.e., if the k-th network has

Mk reactions, then the full network requires
∏K
k=1Mk reactions to represent all possible topologies,

along with a reaction for each possible transition between the K topologies).

Recently, several articles have appeared in the literature introducing adaptive networks that

explicitly take into account the interplay between network topology and dynamics [199–206]. These

preliminary works clearly demonstrate that a number of intriguing properties emerge, not previously

observed in nonadaptive networks: formation of complex topologies, spontaneous emergence of

modular organization, more complex dynamics than the ones observed in nonadaptive models, and

self-organization towards a highly robust critical behavior characterized by power-law distributions.

Another important problem we did not address is sensitivity analysis. Often, the main focus

of analysis of the dynamic behavior of a reaction network is a response function that encapsulates

some important system characteristics. In epidemiology, for example, one may not care so much

about the specific details of the population dynamics, but would rather focus on the total number

of individuals infected by a disease over a given period of time. Another example would be the

case of cell signaling, where the detailed interactions of a signaling pathway are not as important

as the total amount of a protein produced at the “output” of the pathway. Sensitivity analysis is a

quantitative approach designed to investigate how variations in the parameters of a reaction network

(e.g., in the specific probability rate constants associated with the propensity functions of a mass

action system) affect a response function of interest [207–210].

Many physical and man-made reaction networks are designed to be robust to random

fluctuations (or even failures) in system components. Although robustness is a highly desirable

property, it results in a small number of parameters having a disproportionately large influence

on the system response. As a consequence, a robust reaction network can be quite vulnerable to

targeted attacks on influential components, which can be a blessing or a curse, depending on the

particular situation at hand. For example, development of new drugs may greatly benefit from this

property since, to reduce or even eliminate the effects of a disease caused by misregulation of key
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system responses, it may be sufficient to design a drug that only inhibits influential reactions that

shape these responses. On the other hand, targeted attacks on national infrastructure by hackers or

terrorists may produce large scale disruptions with devastating results.

The objective of sensitivity analysis is to determine those factors in a reaction network

that produce no noticeable variations in system response and identify those factors that are most

influential in shaping that response. Although this is a powerful analysis technique with important

practical consequences, it comes with a large computational cost, even in the case of reaction net-

works with deterministic dynamics [211–213]. For this reason, the development of practical methods

for sensitivity analysis of Markovian reaction networks is still in their infancy [144,214–223].

In the stochastic context, sensitivity analysis involves computing the solution of the master

equation using different parameter values. As a consequence, developing efficient solution methods

which can be implemented on parallel computer architectures, paired with novel sensitivity estima-

tors, will ensure the feasibility of this type of analysis. Finally, it has been recently demonstrated

in [211, 213] that, at least for the case of physical reaction networks with deterministic dynamics,

sensitivity analysis methods must be in agreement with underlying thermodynamic constraints. As a

consequence, developing accurate, computationally efficient, and thermodynamically consistent sen-

sitivity analysis methods for Markovian reaction networks is an important research activity with

significant benefits.

Another fundamental problem for future investigation is finding an appropriate model for a

given system by means of statistical inference. In general, there are two fundamentally different types

of parameters associated with a Markovian reaction network model: the stoichiometric coefficients

νnm and ν′nm that determine the structure of the network, and the kinetic parameters that determine

the non-structural portion of the propensity functions. Some parameter values can be deduced

experimentally or by means of appropriate theoretical and sometimes heuristic arguments. Most

parameters however must be estimated from available data using statistical inference techniques.

Since the predictive power of a given model is fundamentally constrained by the accuracy of its
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parameterization, inferring the unknown parameter values in a Markovian reaction network is a

problem of paramount interest and practical importance. Although this problem has been extensively

studied for reaction networks with deterministic dynamics [224–226], the statistical inference of

Markovian reaction networks is largely an open research problem. This problem has been recently

investigated in [227–234], but the resulting algorithms do not adequately address important issues,

such as curse of dimensionality, thermodynamic consistency, and computational efficiency. These

methods have been primarily designed for biochemical reaction networks, but can be easily adopted

in other applications with little or no effort.

In most approaches to statistical inference, it is quite common to assume known structural

parameters and proceed with estimating the kinetic parameters using noisy and sparse measurements

of system dynamics. This problem, known as model calibration, is much easier than the problem of

estimating the structural parameters, which is often referred to as model selection.

The two most difficult issues associated with model calibration is the curse of dimensionality

and the use of non-convex cost functions which complicate numerical optimization. The curse of

dimensionality refers to the fast (exponential) growth of the volume of the parameter space as

the number of unknown parameters to be estimated increases. As a consequence, the problem of

finding the “best” parameter values becomes difficult when the number of unknown parameters

becomes large. This is further exacerbated by the non-convex optimization problem of finding these

values, which is computationally difficult to solve in most cases of interest [235]. Therefore, the

development of statistical techniques for accurate and computationally efficient model calibration

of Markovian reaction networks is an extremely challenging problem. Possible ways to attack this

problem are to effectively reduce the number of parameters that must be estimated by incorporating

appropriate constraints (e.g., constraints imposed by the fundamental laws of thermodynamics [236–

240]) and to identify a smaller set of “influential” parameters whose values must be estimated with

sufficient precision (e.g., by employing a sensitivity analysis approach [239]). This reduction in

dimensionality must be combined with fast algorithms for solving the master equation, with efficient
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optimization methods, and appropriately designed experimental protocols for collecting data with

high information content about the values of the unknown parameters [241].

In general, model selection is a more difficult problem. Solving this problem will require

development of novel hypothesis testing approaches for comparing between two competing network

models (e.g., an originally proposed signaling network and another network obtained by adding new

reactions) in a rigorous statistical fashion. This approach however requires that both models are

calibrated before compared to each other (e.g., by a likelihood ratio test), which substantially adds

to the difficulty of the problem. Another major issue is that more complex models are expected to

be more capable of closely matching experimental data, but these models may result in undesirable

overfitting. It is therefore necessary to develop methods that appropriately penalize model com-

plexity so that the chosen “optimal” model is the most parsimonious model capable of adequately

explaining available data. Finally, all of this must be done while taking into account possible con-

straints imposed on the structural and kinetic parameters of the network (e.g., by prior knowledge

on feasible structural parameter values and by the fundamental laws of thermodynamics).

We hope it is clear that much rewarding work remains to be done in the field of Markovian

dynamics on reaction networks. In particular, we feel that future work on solution techniques,

thermodynamic analysis, stiffness, evolving topologies, sensitivity analysis, and model estimation,

will be at least as rewarding and exciting as the work that has been completed thus far.
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Derivation of the master equation

The transition probabilities of a Markov process {ZZZ(t), t ≥ 0} are constrained by the well-

known Chapman-Kolmogorov equations [1]:

Pr[ZZZ(tq+1)=zzzq+1|ZZZ(tq−1)=zzzq−1] =
∑
zzzq

Pr[ZZZ(tq+1)=zzzq+1|ZZZ(tq)=zzzq] Pr[ZZZ(tq)=zzzq|ZZZ(tq−1)=zzzq−1],

(A.1)

for every triplet (tq−1, tq, tq+1) of distinct time points tq−1 < tq < tq+1. Given that ZZZ(t) = zzz′,

let T (zzz | zzz′)dt be the probability that the (homogeneous) Markov process ZZZ(t) moves only once

during the infinitesimally small time interval [t, t+ dt) to a new state zzz 6= zzz′. By convention, we set

T (zzz′ | zzz′) = 0, for every zzz′. Moreover, let T0(zzz′)dt be the probability that no change of state takes

place during [t, t+ dt). Then,

Pr[ZZZ(t+ dt) = zzz | ZZZ(t) = zzz′] =
[
T0(zzz′)dt

]
∆(zzz − zzz′) + T (zzz | zzz′)dt, (A.2)

where ∆(zzz) is the Kronecker delta function and

T0(zzz′)dt = 1−
∑
zzz

T (zzz | zzz′)dt. (A.3)
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If we set tq−1 = 0, tq = t, and tq+1 = t+ dt, then from Eqs. (A.1)–(A.3) we obtain (by also setting

zzzq−1 = 0, zzzq = zzz′, and zzzq+1 = zzz)

Pr[ZZZ(t+ dt) = zzz | ZZZ(0) = 0] =
∑
zzz′

[
1−

∑
zzz

T (zzz | zzz′)dt
]
∆(zzz − zzz′) Pr[ZZZ(t) = zzz′ | ZZZ(0) = 0]

+
∑
zzz′

T (zzz | zzz′) Pr[ZZZ(t) = zzz′ | ZZZ(0) = 0]dt

= Pr[ZZZ(t) = zzz | ZZZ(0) = 0] −
∑
zzz′

T (zzz′ | zzz) Pr[ZZZ(t) = zzz | ZZZ(0) = 0]dt

+
∑
zzz′

T (zzz | zzz′) Pr[ZZZ(t) = zzz′ | ZZZ(0) = 0]dt,

or

Pr[ZZZ(t+ dt) = zzz | ZZZ(0) = 0]− Pr[ZZZ(t) = zzz | ZZZ(0) = 0]

dt

=
∑
zzz′

{
T (zzz | zzz′) Pr[ZZZ(t) = zzz′ | ZZZ(0) = 0]− T (zzz′ | zzz) Pr[ZZZ(t) = zzz | ZZZ(0) = 0]

}
,

which, in the limit as dt→ 0+, leads to

∂pZZZ(zzz; t)

∂t
=
∑
zzz′

{
T (zzz | zzz′)pZZZ(zzz′; t)− T (zzz′ | zzz)pZZZ(zzz; t)

}
, (A.4)

where pZZZ(zzz; t) := Pr[ZZZ(t) = zzz | ZZZ(0) = 0]. This is a differential form of the Chapman-Kolmogorov

equation that is commonly known as the master equation [1].

In the case of Markovian reaction networks, the DA process ZZZ(t) can only be updated

based upon the firing of reactions. When the m-th reaction fires within [t, t+ dt), the state updates

instantaneously according to

zzz(t+ dt) = zzz(t) + eeem, (A.5)

where eeem is the m-th column of the M ×M identity matrix. Therefore,

T (zzz | zzz′) =


αm(zzz′)dt, if zzz = zzz′ + eeem

0, otherwise.

(A.6)

The master equation (2.1.6) is now a direct consequence of Eqs. (A.4)–(A.6). Finally, we can derive

the master equation (2.1.8) by differentiating Eq. (2.1.9) and by using the master equation (2.1.6).
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Probability of next reaction

The probability of next reaction equals the probability p0
t (τ) that no reaction takes place

during the time interval [t, t + τ) multiplied by the conditional probability that the m-th reaction

occurs during [t+ τ, t+ τ + dt) given that no reaction occurs within [t, t+ τ). The latter conditional

probability is given by αm(zzz(t))dt, due to the fact that ZZZ(t + τ) = ZZZ(t) = zzz(t), since no reaction

takes place within [t, t+ τ). Therefore,

pt(τ,m) = p0
t (τ)αm(zzz(t)). (A.7)

We can divide the time interval [t, t + τ) into L subintervals of length τ/L, in which case p0
t (τ) =

[p0
t (τ/L)]L. Moreover, and in the limit of large L, p0

t (τ/L) = 1−
∑
m∈M αm(zzz(t))τ/L, since p0

t (τ/L)

is the probability that no reaction will occur during an infinitesimally small time interval of length

τ/L. Therefore,

p0
t (τ) = lim

L→∞

[
p0
t (τ/L)

]L
= lim
L→∞

[
1− τ

∑
m∈M

αm(zzz(t))/L

]L
= exp

{
−τ
∑
m∈M

αm(zzz(t))

}
, (A.8)

where the last equality comes from the definition of the exponential function. Eq. (2.3.9) is now a

direct consequence of Eq. (A.7) and Eq. (A.8).

Ω-expansion of the master equation

Let us take z̃zz = ζζζ + Ω−1/2ξξξ and assume that, for all practical purposes, Ω is large enough

so that z̃zz := zzz/Ω is continuous-valued. Then, the probability density function pZ̃(z̃zz; t) of Z̃ZZ(t; Ω)

satisfies (this density function depends on Ω; however, we do not show this dependance for notational

simplicity)

pZ̃(z̃zz; t) = pZ̃(ζζζ + Ω−1/2ξξξ; t) = pΞ(ξξξ; t),
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where pΞ(ξξξ; t) is the probability density function of the noise component ΞΞΞ(t). Moreover,

pZ̃(z̃zz − ẽeem; t) = pZ̃(ζζζ + Ω−1/2ξξξ − ẽeem; t)

= pZ̃(ζζζ + Ω−1/2(ξξξ − Ω1/2ẽeem); t)

= pΞ(ξξξ − Ω1/2ẽeem; t),

where ẽeem := eeem/Ω. As a consequence, we have that

∂pΞ(ξξξ; t)

∂ξm
=
∂pZ̃(ζζζ(t) + Ω−1/2ξξξ; t)

∂ξm
= Ω−1/2 ∂pZ̃(ζζζ(t) + Ω−1/2ξξξ; t)

∂z̃m
,

which implies

∂pΞ(ξξξ; t)

∂t
=
∂pZ̃(ζζζ(t) + Ω−1/2ξξξ; t)

∂t
+
∑
m∈M

dζm(t)

dt

∂pZ̃(ζζζ(t) + Ω−1/2ξξξ; t)

∂z̃m

=
∂pZ̃(ζζζ(t) + Ω−1/2ξξξ; t)

∂t
+ Ω1/2

∑
m∈M

dζm(t)

dt

∂pΞ(ξξξ; t)

∂ξm
. (A.9)

From the master equation (2.1.6), we have that

∂pZ̃(z̃zz; t)

∂t
=
∑
m∈M

αm(Ω(z̃zz − ẽeem); Ω)pZ̃(z̃zz − ẽeem; t)− αm(Ωz̃zz; Ω)pZ̃(z̃zz; t),

since zzz = Ωz̃zz, in which case pZ(zzz; t) = Ω−1pZ̃(zzz/Ω; t) = Ω−1pZ̃(z̃zz; t). This equation, together with

Eq. (2.3.19), results in

∂pZ̃(ζζζ + Ω−1/2ξξξ; t)

∂t
=∑

m∈M
αm(Ω(ζζζ + Ω−1/2ξξξ − ẽeem); Ω)pZ̃(ζζζ + Ω−1/2ξξξ − ẽeem; t)− αm(Ω(ζζζ + Ω−1/2ξξξ); Ω)pZ̃(ζζζ + Ω−1/2ξξξ; t)

=
∑
m∈M

αm(Ω(ζζζ + Ω−1/2(ξξξ − Ω1/2ẽeem)); Ω)pΞ(ξξξ − Ω1/2ẽeem; t)− αm(Ω(ζζζ + Ω−1/2ξξξ); Ω)pΞ(ξξξ; t)

= f(Ω)
∑
m∈M

α̃m(ζζζ + Ω−1/2(ξξξ − Ω1/2ẽeem))pΞ(ξξξ − Ω1/2ẽeem; t)− α̃m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)

+f(Ω) Ω−1
∑
m∈M

α̃′m(ζζζ + Ω−1/2(ξξξ − Ω1/2ẽeem))pΞ(ξξξ − Ω1/2ẽeem; t)− α̃′m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)

= f(Ω)
∑
m∈M

α̃m(ζζζ + Ω−1/2(ξξξ − Ω−1/2eeem))pΞ(ξξξ − Ω−1/2eeem; t)− α̃m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)

+f(Ω) Ω−1
∑
m∈M

α̃′m(ζζζ + Ω−1/2(ξξξ − Ω−1/2eeem))pΞ(ξξξ − Ω−1/2eeem; t)− α̃′m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t).

(A.10)
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Now, by using the Taylor series expansion of α̃m(ζζζ+Ω−1/2(ξξξ−Ω−1/2eeem))pΞ(ξξξ−Ω−1/2eeem; t) around ξξξ,

given by

α̃m(ζζζ + Ω−1/2(ξξξ − Ω−1/2eeem))pΞ(ξξξ − Ω−1/2eeem; t) =

α̃m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)− Ω−1/2 ∂[α̃m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξm

+ Ω−1 1

2

∂2[α̃m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξ2
m

− Ω−3/2 1

6

∂3[α̃m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξ3
m

+ Ω−2 1

24

∂4[α̃m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξ4
m

+ O(Ω−5/2),

and likewise for α̃′m, we have that

∂pΞ(ξξξ; t)

∂t
−Ω1/2

∑
m∈M

dζm(t)

dt

∂pΞ(ξξξ; t)

∂ξm
= − Ω−1/2f(Ω)

∑
m∈M

∂[α̃m(ζζζ(t) + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξm

+
1

2
Ω−1f(Ω)

∑
m∈M

∂2[α̃m(ζζζ(t) + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξ2
m

− 1

6
Ω−3/2f(Ω)

∑
m∈M

∂3[α̃m(ζζζ(t) + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξ3
m

+
1

24
Ω−2f(Ω)

∑
m∈M

∂4[α̃m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξ4
m

− Ω−3/2f(Ω)
∑
m∈M

∂[α̃′m(ζζζ(t) + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξm

+
1

2
Ω−2f(Ω)

∑
m∈M

∂2[α̃′m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξ2
m

+O(Ω−5/2), (A.11)

by virtue of Eq. (A.9) and Eq. (A.10). Then, by setting τ = Ω−1f(Ω)t in Eq. (A.11), we obtain

∂pΞ(ξξξ; τ)

∂τ
= Ω

1
2

∑
m∈M

dζm(τ)

dτ

∂pΞ(ξξξ; τ)

∂ξm
− Ω

1
2

∑
m∈M

∂[α̃m(ζζζ(τ) + Ω−
1
2ξξξ)pΞ(ξξξ; τ)]

∂ξm

+
1

2

∑
m∈M

∂2[α̃m(ζζζ(τ) + Ω−1/2ξξξ)pΞ(ξξξ; τ)]

∂ξ2
m

− Ω−
1
2

6

∑
m∈M

∂3[α̃m(ζζζ(τ) + Ω−1/2ξξξ)pΞ(ξξξ; τ)]

∂ξ3
m

+
Ω−1

24

∑
m∈M

∂4[α̃m(ζζζ + Ω−1/2ξξξ)pΞ(ξξξ; t)]

∂ξ4
m

− Ω−
1
2

∑
m∈M

∂[α̃′m(ζζζ(τ) + Ω−1/2ξξξ)pΞ(ξξξ; τ)]

∂ξm

+
1

2
Ω−1

∑
m∈M

∂2[α̃′m(ζζζ + Ω−
1
2ξξξ)pΞ(ξξξ; t)]

∂ξ2
m

+O(Ω−3/2).
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Moreover, by using the Taylor series expansion of α̃m(ζζζ + Ω−1/2ξξξ) around ζζζ, given by

α̃m(ζζζ + Ω−1/2ξξξ) = α̃m(ζζζ) + Ω−1/2
∑
m′∈M

ξm′
∂α̃m(ζζζ)

∂ζm′
+ Ω−1 1

2

∑
m′∈M

∑
m′′∈M

ξm′ξm′′
∂2α̃m(ζζζ)

∂ζm′∂ζm′′

+ Ω−3/2 1

6

∑
m′∈M

∑
m′′∈M

∑
m′′′∈M

ξm′ξm′′ξm′′′
∂3α̃m(ζζζ)

∂ζm′∂ζm′′∂ζm′′′
+O(Ω−2),

and likewise for α̃′m, we obtain

∂pΞ(ξξξ; τ)

∂τ
=

1

2

∑
m∈M

α̃m(ζζζ(τ))
∂2pΞ(ξξξ; τ)

∂ξ2
m

−
∑
m∈M

∑
m′∈M

∂α̃m(ζζζ(τ))

∂ζm′

∂[ξm′pΞ(ξξξ; τ)]

∂ξm

+ Ω−1/2 1

2

[ ∑
m∈M

∑
m′∈M

∂α̃m(ζζζ(τ))

∂ζm′

∂2[ξm′pΞ(ξξξ; τ)]

∂ξ2
m

−
∑
m∈M

∑
m′∈M

∑
m′′∈M

∂2α̃m(ζζζ(τ))

∂ζm′∂ζm′′

∂[ξm′ξm′′pΞ(ξξξ; τ)]

∂ξm

− 1

3

∑
m∈M

α̃m(ζζζ(τ))
∂3pΞ(ξξξ; τ)

∂ξ3
m

− 2
∑
m∈M

α̃′m(ζζζ(τ))
∂pΞ(ξξξ; τ)

∂ξm

]

− Ω−1

[
1

6

∑
m∈M

∑
m′∈M

∑
m′′∈M

∑
m′′′∈M

∂3α̃m(ζζζ(τ))

∂ζm′∂ζm′′∂ζm′′′

∂[ξm′ξm′′ξm′′′pΞ(ξξξ; τ)]

∂ξm

− 1

4

∑
m∈M

∑
m′∈M

∑
m′′∈M

∂2α̃m(ζζζ(τ))

∂ζm′∂ζm′′

∂2[ξm′ξm′′pΞ(ξξξ; τ)]

∂ξ2
m

+
1

6

∑
m∈M

∑
m′∈M

∂α̃m(ζζζ(τ))

∂ζm′

∂3[ξm′pΞ(ξξξ; τ)]

∂ξ3
m

− 1

24

∑
m∈M

α̃m(ζζζ(τ))
∂4pΞ(ξξξ; τ)

∂ξ4
m

+
∑
m∈M

∑
m′∈M

∂α̃′m(ζζζ(τ))

∂ζm′

∂[ξm′pΞ(ξξξ; τ)]

∂ξm
− 1

2

∑
m∈M

α̃′m(ζζζ(τ))
∂2pΞ(ξξξ; τ)

∂ξ2
m

]
+O(Ω−3/2), (A.12)

by virtue of Eq. (2.3.21). By assuming that all terms on the right-hand-side of Eq. (A.12) are

negligible for sufficiently large Ω, we obtain the linear Fokker-Planck equation (2.3.22).
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Mixing coefficients of the stationary master equation solution

Since µij is the probability that a Markovian reaction network initialized by the i-th tran-

sient state in T will reach a persistent state in Pj at steady-state, we have that

µij =
∑
j′∈Pj

pi,j′ =
∑
j′∈Pj

pi,j′(∞),

where pi,j is the j-th element of the steady-state vector pppi, given by Eq. (2.4.14). In this case, we

have that

µij =
∑
j′∈Pj

pi,j′(∞)

=
∑
j′∈Pj

∫ ∞
0

dpi,j′(τ)

dt
dτ

=

∫ ∞
0

∑
j′∈Pj

 ∑
j′′∈Pj

[P(j)]j′j′′pi,j′′(τ) +
∑
i′∈T

[T(j)]j′i′pi,i′(τ)

 dτ

=

∫ ∞
0

 ∑
j′′∈Pj

∑
j′∈Pj

[P(j)]j′j′′

 pi,j′′(τ) +
∑
j′∈Pj

∑
i′∈T

[T(j)]j′i′pi,i′(τ)

 dτ

=

∫ ∞
0

 ∑
j′′∈Pj

∑
j′∈Pj

[P(j)]j′j′′

 pi,j′′(τ) +
∑
j′∈Pj

∑
i′∈T

[T(j)]j′i′pi,i′(τ)

 dτ

=

∫ ∞
0

∑
j′∈Pj

∑
i′∈T

[T(j)]j′i′pi,i′(τ) dτ

=
∑
j′∈Pj

∑
i′∈T

[T(j)]j′i′

∫ ∞
0

[exp(Tτ)]i′i dτ

=
∑
j′∈Pj

∑
i′∈T

[T(j)]j′i′ [−T−1]i′i

= −
∑
i′∈T

∑
j′∈Pj

[T(j)]j′i′ [T−1]i′i ,

where in the second equality we have used the fact that pi,j′(0) = 0, for every j′ ∈ Pj , and in the fifth

equality we have used the fact that the columns of matrix P(j) add to zero. This shows Eq. (2.4.16).
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Proof of Eq. (2.5.9)

From Eq. (2.1.8) and Eq. (2.3.18), the fact that pX̃XX(x̃xx; t) = ΩpXXX(Ωx̃xx; t), and the Taylor

series expansion of π̃m(x̃xx− Ω−1sm)pX̃XX(x̃xx− Ω−1sm) around x̃xx, we have that

∑
rrr

(∏
n∈N

1

rn!

)(
− 1

Ω

)∑
n∈N rn ∂

∑
n∈N rn

∂x̃ r1
1 · · · ∂x̃ rN

N

[ ∑
m∈M

(∏
n∈N

srnnm

)
π̃m(x̃xx)pX̃XX(x̃xx)

]
= 0,

where rrr is an N × 1 vector with elements rn that take non-negative integer values. To obtain this

equation, we consider large enough Ω so that Ω−1π̃′m(xxx/Ω) in Eq. (2.3.18) is negligible. The previous

result, together with Eq. (2.5.2) and Eq. (2.5.4), approximately implies that

∑
m∈M

∑
rrr

(∏
n∈N

srnnm

)(∏
n∈N

1

rn!

)
∂
∑

n∈N rn

∂x̃ r1
1 · · · ∂x̃ rN

N

[(
− 1

Ω

)∑
n∈N rn

π̃m(x̃xx) exp
{
− ΩV0(x̃xx)

}]
= 0.

(A.13)

By evaluating the derivatives in Eq. (A.13) and by keeping only the terms of O(Ω0), we find

exp
{
− ΩV0(x̃xx)

} ∑
m∈M

π̃m(x̃xx)
∑
rrr

∏
n∈N

1

rn!

[
snm

∂V0(x̃xx)

∂x̃n

]rn
= 0,

which implies ∑
m∈M

π̃m(x̃xx)

[
exp

{∑
n∈N

snm
∂V0(x̃xx)

∂x̃n

}
− 1

]
= 0, (A.14)

for every state x̃xx such that V0(x̃xx) < ∞ [i.e., for every state x̃xx of nonzero probability]. Finally,

Eq. (A.14) implies that ∑
n∈N

∂V0(x̃xx)

∂x̃n

∑
m∈M

snmπ̃m(x̃xx) ≤ 0, (A.15)

for every state x̃xx such that V0(x̃xx) <∞, by virtue of the fact that exp
{
xxxTyyy

}
−1 ≥ xxxTyyy, for any vectors

xxx and yyy. Equation (A.15), together with the macroscopic equations (2.3.25), shows Eq. (2.5.9).

Proof of Eq. (2.5.10)

From Eq. (2.5.7) and Eq. (2.5.8), we have that

pX̃XX(x̃xx) =
exp

{
− ΩV0(x̃xx)

}
exp

{
− V1(x̃xx)

}
∑
uuu exp

{
− ΩV0(ũuu)

}
exp

{
− V1(ũuu)

} . (A.16)
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If x̃xx ∈ G0, then V0(x̃xx) = 0 and Eq. (A.16) results in

lim
Ω→∞

pX̃XX(x̃xx) =
1× exp

{
− V1(x̃xx)

}
∑
uuu∈G0

1× exp
{
− V1(ũuu)

}
+
∑
uuu 6∈G0

0× exp
{
− V1(ũuu)

} =
exp

{
− V1(x̃xx)

}
∑
uuu∈G0

exp
{
− V1(ũuu)

} ,
by virtue of the fact that, when x̃xx 6∈ G0, V0(x̃xx) > 0, in which case limΩ→∞ exp

{
−ΩV0(x̃xx)

}
= 0. This

shows the first part of Eq. (2.5.10).

On the other hand, if x̃xx 6∈ G0, then Eq. (A.16) implies that

lim
Ω→∞

pX̃XX(x̃xx) =
0× exp

{
− V1(x̃xx)

}
∑
uuu∈G0

1× exp
{
− V1(ũuu)

}
+
∑
uuu6∈G0

0× exp
{
− V1(ũuu)

} = 0 ,

which shows the second part of Eq. (2.5.10).

Derivation of thermodynamic balance equations

To derive the balance equations discussed in Section 2.6.1, recall first that we consider

a Markovian reaction network comprised of M/2 pairs of reversible reactions (2m − 1, 2m), m =

1, 2, . . . ,M/2. In this case, the master equation (2.1.8) can be written in the following form:

∂pXXX(xxx; t)

∂t
=

M/2∑
m=1

[
ρ+
m(xxx; t) + ρ−m(xxx; t)

]
, t > 0, (A.17)

where ρ+
m(xxx; t) = π2m−1(xxx− sss2m−1)pXXX(xxx− sss2m−1; t)− π2m(xxx)pXXX(xxx; t) is the net flux of the forward

reaction 2m− 1, whereas, ρ−m(xxx; t) = π2m(xxx+ sss2m−1)pXXX(xxx+ sss2m−1; t)− π2m−1(xxx)pXXX(xxx; t) is the net

flux of the reverse reaction 2m. Note also that

ρ+
m(xxx; t) = −ρ−m(xxx− sss2m−1; t), for m = 1, 2, . . . ,M/2, (A.18)

whereas,

sss2m = −sss2m−1, for m = 1, 2, . . . ,M/2, (A.19)

due to the reversibility of the reactions.

From Eq. (2.6.3), Eq. (A.17), Eq. (A.18), and the fact that
∑
xxx∈X pXXX(xxx; t) = 1, we now
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have that

dS(t)

dt
= −

∑
xxx∈X

∂pXXX(xxx; t)

∂t
ln pXXX(xxx; t)−

∑
xxx∈X

pXXX(xxx; t)
∂

∂t
ln pXXX(xxx; t)

= −
∑
xxx∈X

M/2∑
m=1

[
ρ+
m(xxx; t) + ρ−m(xxx; t)

]
ln pXXX(xxx; t)

= −1

2

M/2∑
m=1

∑
xxx∈X

[
ρ+
m(xxx; t) + ρ−m(xxx; t)

]
ln pXXX(xxx; t)

−1

2

M/2∑
m=1

∑
xxx∈X

[
ρ+
m(xxx; t) + ρ−m(xxx; t)

]
ln pXXX(xxx; t)

= −1

2

M/2∑
m=1

∑
xxx∈X

ρ+
m(xxx; t) ln pXXX(xxx; t)− 1

2

M/2∑
m=1

∑
xxx∈X

ρ−m(xxx; t) ln pXXX(xxx; t)

+
1

2

M/2∑
m=1

∑
xxx∈X

ρ−m(xxx− sss2m−1; t) ln
1

pXXX(xxx− sss2m−1; t)

+
1

2

M/2∑
m=1

∑
xxx∈X

ρ+
m(xxx+ sss2m−1; t) ln

1

pXXX(xxx+ sss2m−1; t)

= −1

2

M/2∑
m=1

∑
xxx∈X

ρ+
m(xxx; t) ln

pXXX(xxx; t)

pXXX(xxx− sss2m−1; t)
− 1

2

M/2∑
m=1

∑
xxx∈X

ρ−m(xxx; t) ln
pXXX(xxx; t)

pXXX(xxx+ sss2m−1; t)

=
1

2

M/2∑
m=1

∑
xxx∈X

ρ−m(xxx; t) ln
pXXX(xxx+ sss2m−1; t)

pXXX(xxx; t)
+

1

2

M/2∑
m=1

∑
xxx∈X

ρ+
m(xxx; t) ln

pXXX(xxx− sss2m−1; t)

pXXX(xxx; t)

=
1

2

M/2∑
m=1

∑
xxx∈X

ρ−m(xxx; t) ln
pXXX(xxx+ sss2m−1; t)π2m−1(xxx)π2m(xxx+ sss2m−1)

pXXX(xxx; t)π2m−1(xxx)π2m(xxx+ sss2m−1)

+
1

2

M/2∑
m=1

∑
xxx∈X

ρ+
m(xxx; t) ln

pXXX(xxx− sss2m−1; t)π2m(xxx)π2m−1(xxx− sss2m−1)

pXXX(xxx; t)π2m(xxx)π2m−1(xxx− sss2m−1)

=
1

2

M/2∑
m=1

∑
xxx∈X

[
ρ+
m(xxx; t) ln

π2m−1(xxx− sss2m−1)pXXX(xxx− sss2m−1; t)

π2m(xxx)pXXX(xxx; t)

+ρ−m(xxx; t) ln
π2m(xxx+ sss2m−1)pXXX(xxx+ sss2m−1; t)

π2m−1(xxx)pXXX(xxx; t)

]

− 1

2

M/2∑
m=1

∑
xxx∈X

[
ρ+
m(xxx; t) ln

π2m−1(xxx− sss2m−1)

π2m(xxx)
+ ρ−m(xxx; t) ln

π2m(xxx+ sss2m−1)

π2m−1(xxx)

]
. (A.20)

The entropy balance equation (2.6.5) is now a direct consequence of Eq. (A.20) and Eqs. (2.6.6)–

(2.6.8).

Likewise, from Eq. (2.1.8), Eq. (2.6.4), Eq. (A.19), and the fact that
∑
xxx∈X pXXX(xxx; t) = 1,
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we now have that

dF (t)

dt
=

∑
xxx∈X

∂pXXX(xxx; t)

∂t
ln
pXXX(xxx; t)

pXXX(xxx)
+
∑
xxx∈X

pXXX(xxx; t)
∂

∂t
ln
pXXX(xxx; t)

pXXX(xxx)

=
∑
xxx∈X

∂pXXX(xxx; t)

∂t
ln
pXXX(xxx; t)

pXXX(xxx)

=
∑
m∈M

∑
xxx∈X

[πm(xxx− sssm)pXXX(xxx− sssm; t)− πm(xxx)pXXX(xxx; t)] ln
pXXX(xxx; t)

pXXX(xxx)

=
∑
m∈M

∑
xxx∈X

πm(xxx)pXXX(xxx; t) ln
pXXX(xxx+ sssm; t)

pXXX(xxx+ sssm)
+
∑
m∈M

∑
xxx∈X

πm(xxx)pXXX(xxx; t) ln
pXXX(xxx)

pXXX(xxx; t)

=
∑
m∈M

∑
xxx∈X

πm(xxx)pXXX(xxx; t) ln
pXXX(xxx+ sssm; t)pXXX(xxx)

pXXX(xxx+ sssm)pXXX(xxx; t)

=
1

2

∑
m∈M

∑
xxx∈X

πm(xxx)pXXX(xxx; t) ln
pXXX(xxx+ sssm; t)pXXX(xxx)

pXXX(xxx+ sssm)pXXX(xxx; t)

+
1

2

∑
m∈M

∑
xxx∈X

πm(xxx)pXXX(xxx; t) ln
pXXX(xxx+ sssm; t)pXXX(xxx)

pXXX(xxx+ sssm)pXXX(xxx; t)

=
1

2

M/2∑
m=1

∑
xxx∈X

[
π2m−1(xxx)pXXX(xxx; t) ln

pXXX(xxx+ sss2m−1; t)pXXX(xxx)

pXXX(xxx+ sss2m−1)pXXX(xxx; t)

+π2m(xxx)pXXX(xxx; t) ln
pXXX(xxx+ sss2m; t)pXXX(xxx)

pXXX(xxx+ sss2m)pXXX(xxx; t)

]

= +
1

2

M/2∑
m=1

∑
xxx∈X

[
π2m−1(xxx)pXXX(xxx; t) ln

pXXX(xxx+ sss2m−1; t)pXXX(xxx)

pXXX(xxx+ sss2m−1)pXXX(xxx; t)

+π2m(xxx)pXXX(xxx; t) ln
pXXX(xxx+ sss2m; t)pXXX(xxx)

pXXX(xxx+ sss2m)pXXX(xxx; t)

]

=
1

2

M/2∑
m=1

∑
xxx∈X

π2m−1(xxx− sss2m−1)pXXX(xxx− sss2m−1; t) ln
pXXX(xxx; t)pXXX(xxx− sss2m−1)

pXXX(xxx)pXXX(xxx− sss2m−1; t)

−1

2

M/2∑
m=1

∑
xxx∈X

π2m(xxx)pXXX(xxx; t) ln
pXXX(xxx− sss2m−1)pXXX(xxx; t)

pXXX(xxx− sss2m−1; t)pXXX(xxx)

+
1

2

M/2∑
m=1

∑
xxx∈X

π2m(xxx+ sss2m−1)pXXX(xxx+ sss2m−1; t) ln
pXXX(xxx; t)pXXX(xxx+ sss2m−1)

pXXX(xxx)pXXX(xxx+ sss2m−1; t)

−1

2

M/2∑
m=1

∑
xxx∈X

π2m−1(xxx)pXXX(xxx; t) ln
pXXX(xxx+ sss2m−1)pXXX(xxx; t)

pXXX(xxx+ sss2m−1; t)pXXX(xxx)

=
1

2

M/2∑
m=1

∑
xxx∈X

ρ+
m(xxx; t) ln

pXXX(xxx; t)pXXX(xxx− sss2m−1)

pXXX(xxx)pXXX(xxx− sss2m−1; t)

+
1

2

M/2∑
m=1

∑
xxx∈X

ρ−m(xxx; t) ln
pXXX(xxx; t)pXXX(xxx+ sss2m−1)

pXXX(xxx)pXXX(xxx+ sss2m−1; t)
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=
1

2

M/2∑
m=1

∑
xxx∈X

ρ+
m(xxx; t) ln

pXXX(xxx− sss2m−1)pXXX(xxx; t)π2m−1(xxx− sss2m−1)π2m(xxx)

pXXX(xxx)pXXX(xxx− sss2m−1; t)π2m−1(xxx− sss2m−1)π2m(xxx)

+
1

2

M/2∑
m=1

∑
xxx∈X

ρ−m(xxx; t) ln
pXXX(xxx+ sss2m−1)pXXX(xxx; t)π2m(xxx+ sss2m−1)π2m−1(xxx)

pXXX(xxx)pXXX(xxx+ sss2m−1; t)π2m(xxx+ sss2m−1)π2m−1(xxx)

=
1

2

M/2∑
m=1

∑
xxx∈X

[
ρ+
m(xxx; t) ln

π2m−1(xxx− sss2m−1)pXXX(xxx− sss2m−1)

π2m(xxx)pXXX(xxx)

+ρ−m(xxx; t) ln
π2m(xxx+ sss2m−1)pXXX(xxx+ sss2m−1)

π2m−1(xxx)pXXX(xxx)

]

−1

2

M/2∑
m=1

∑
xxx∈X

[
ρ+
m(xxx; t) ln

π2m−1(xxx− sss2m−1)pXXX(xxx− sss2m−1; t)

π2m(xxx)pXXX(xxx; t)

+ρ−m(xxx; t) ln
π2m(xxx+ sss2m−1)pXXX(xxx+ sss2m−1; t)

π2m−1(xxx)pXXX(xxx; t)

]
.

(A.21)

The balance equation (2.6.10) for the Helmholtz free energy is now a direct consequence of Eq. (A.21)

and Eq. (2.6.6), Eq. (2.6.8) and Eq. (2.6.12).

Finally, the balance equation (2.6.11) for the internal energy can be easily derived from

Eq. (2.6.4), Eq. (2.6.5), and Eq. (2.6.10).
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An example of lexicographic ordering

In this section, We use a simple example to illustrate why lexicographic ordering of the

elements of the sample space Z leads to a lower triangular generator matrix Q in Eq. (3.2.3).

Let us consider the SIR model and denote by Z1, Z2 the DAs of the two reactions S+I→ 2I

and I → R, respectively. We will assume that, initially, there are two susceptible individuals, one

infected individual, and no recovered individuals; i.e., we will assume that x1(0) = 2, x2(0) = 1, and

x3(0) = 0. This implies that 0 ≤ Z1(t) ≤ 2 and 0 ≤ Z2(t) ≤ 3, at any time t > 0, which is due to the

fact that the first reaction will occur at most two times, after which all individuals will be infected,

whereas, the second reaction can occur at most three times, after which all individuals will recover

from the infection. In this case, lexicographic ordering of the elements of the two-dimensional sample

space Z results in the following twelve points:

zzz1 = (0, 0)

zzz2 = (0, 1)

zzz3 = (0, 2)

zzz4 = (0, 3)

zzz5 = (1, 0)

zzz6 = (1, 1)

zzz7 = (1, 2)
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zzz8 = (1, 3)

zzz9 = (2, 0)

zzz10 = (2, 1)

zzz11 = (2, 2)

zzz12 = (2, 3).

As a consequence, the probability vector qqq(t) in Eq. (3.2.3) is given by

qqq(t) =



Pr[Z1(t) = 0, Z2(t) = 0]

Pr[Z1(t) = 0, Z2(t) = 1]

Pr[Z1(t) = 0, Z2(t) = 2]

Pr[Z1(t) = 0, Z2(t) = 3]

Pr[Z1(t) = 1, Z2(t) = 0]

Pr[Z1(t) = 1, Z2(t) = 1]

Pr[Z1(t) = 1, Z2(t) = 2]

Pr[Z1(t) = 1, Z2(t) = 3]

Pr[Z1(t) = 2, Z2(t) = 0]

Pr[Z1(t) = 2, Z2(t) = 1]

Pr[Z1(t) = 2, Z2(t) = 2]

Pr[Z1(t) = 2, Z2(t) = 3]



. (B.1)

Let us now assume that the propensity functions of the two SIR reactions are given by

π1(x1, x2, x3) = k1x1x2

π2(x1, x2, x3) = k2x2,

where k1 and k2 are two rate constants and x1, x2, and x3 denote the number of susceptible, infected,

and recovered individuals, respectively. Since x1(0) = 2 and x2(0) = 1, Eq. (2.1.4) implies that

X1(t) = 2− Z1(t)

X2(t) = 1 + Z1(t)− Z2(t),
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which, together with Eq. (2.1.7), results in

α1(z1, z2) = k1(2− z1)(1 + z1 − z2)

α2(z1, z2) = k2(1 + z1 − z2), (B.2)

for 0 ≤ z1 ≤ 2 and z2 ≤ 1 + z1, whereas, α1(z1, z2) = α2(z1, z2) = 0, otherwise. As a consequence of

Eq. (3.2.3), Eq. (B.1), and Eq. (B.2), the generator matrix Q is given by

−(2k1 + k2) 0 0 0 0 0 0 0 0 0 0 0

k2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

2k1 0 0 0 −2(k1 + k2) 0 0 0 0 0 0 0

0 0 0 0 2k2 −(k1 + k2) 0 0 0 0 0 0

0 0 0 0 0 k2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2k1 0 0 0 −3k2 0 0 0

0 0 0 0 0 k1 0 0 3k2 −2k2 0 0

0 0 0 0 0 0 0 0 0 2k2 −k2 0

0 0 0 0 0 0 0 0 0 0 k2 0



,

which is indeed sparse and lower triangular. Note that states which cannot occur are assigned zero

propensities. These states correspond to the zero rows in Q [e.g., this is true for state (0, 2), which is

associated with the third row of Q and would result in a negative number of −1 infected individuals].

Note also that the non-zero diagonal elements of this matrix are all negative, with the remaining

nonzero elements being positive. Finally, each column of Q sums to zero.
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Invertibility of I− τQ

We will show that matrix B := I−τQ is invertible, for any τ > 0. Indeed, for each column k

of B, the element bkk is strictly greater than the sum of the absolute values of the remaining elements

bk′k, k′ 6= k, since

bkk = 1− τqkk = 1 + τ
∑
m∈M

αm(zzzk) > τ
∑
m∈M

αm(zzzk) = τ
∑
k′ 6= k

qk′k =
∑
k′ 6= k

|bk′k|,

for τ 6= 0, by virtue of the fact that qkk = −
∑
m∈Mαm(zzzk) and qk′k = αm(zzzk). Thus, B is invertible

according to Theorem 6.1.10 in [242].

The IE method preserves probability vectors

We will now show that, at each iteration j, the IE method produces a probability vector

q̂qq(tj) for any step-size τ [i.e., all elements of q̂qq(tj) are nonnegative and sum to one]. Since the initial

vector q̂qq(0) is taken to be a probability vector, we must only show that, if q̂qq(tj−1) is a probability

vector, then q̂qq(tj) is a probability vector as well.

We will first show that

q̂k(tj−1) ≥ 0 =⇒ q̂k(tj) ≥ 0, for every k = 1, 2, . . . ,K, (B.3)

where q̂k(tj−1) and q̂k(tj) are the k-th elements of q̂qq(tj−1) and q̂qq(tj), respectively. Note that the

off-diagonal elements of matrix B := I− τQ are nonpositive, since bk′k = −τqk′k = −ταm(zzzk) ≤ 0,

for k′ 6= k. Furthermore, using the same argument as before, we can show that B+ tI is non-singular

for every t ≥ 0. According to Theorem 2.5.3 in [243], all elements of matrix B−1 are nonnegative.

Since q̂qq(tj) = B−1q̂qq(tj−1), we obtain Eq. (B.3).

We will now show that

1T q̂qq(tj−1) = 1 =⇒ 1T q̂qq(tj) = 1,
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where the elements of vector 1 are all equal to one. Indeed, we have that

1 = 1T q̂qq(tj−1)

= 1T (I− τQ) q̂qq(tj)

= 1T q̂qq(tj)− τ1TQq̂qq(tj)

= 1T q̂qq(tj)− τ0T q̂qq(tj)

= 1T q̂qq(tj), (B.4)

where the elements of vector 0 are all equal to zero. The second equality in Eq. (B.4) comes from

Eq. (3.2.4), whereas, the fourth equality comes from the fact that the elements of each column of

matrix Q sum to zero.

Note that the previous arguments do not depend on the particular value of the step-size τ .

Hence, q̂qq(tj) is a probability vector for any value of τ .

Global error of the IE method

In this section, we show that the global error ||qqq(tj)−q̂qq(tj)||1 associated with the IE method,

where tj := jτ , is of O(τ).

Note that qqq(tj) = exp(τQ)qqq(tj−1) and (I− τQ)q̂qq(tj) = q̂qq(tj−1). Thus,

qqq(tj) = exp(τQ)qqq(tj−1) = · · · = exp(jτQ)qqq(0)

q̂qq(tj) = (I− τQ)−1q̂qq(tj−1) = · · · = (I− τQ)−jq̂qq(0).

As a result,

exp(−jτQ)qqq(tj) = (I− τQ)jq̂qq(tj), (B.5)

since q̂qq(0) = qqq(0). However,

exp(−τQ) = I− τQ +O(τ2). (B.6)
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From Eq. (B.5) and Eq. (B.6), we have that

exp(−jτQ)qqq(tj) =
[
exp(−τQ)−O(τ2)

]j
q̂qq(tj) =

[
exp(−jτQ)− jO(τ2)

]
q̂qq(tj).

Consequently,

exp(−jτQ)[qqq(tj)− q̂qq(tj)] = −jO(τ2)q̂qq(tj) ⇐⇒ qqq(tj)− q̂qq(tj) = −jO(τ2) exp(jτQ)q̂qq(tj),

which implies that

||qqq(tj)− q̂qq(tj)||1 = ||jO(τ2) exp(jτQ)q̂qq(tj)||1

≤ jO(τ2) || exp(jτQ)||1||q̂qq(tj)||1

= jO(τ2)

=
tj
τ
O(τ2)

≤ tmax

τ
O(τ2), (B.7)

where tmax is the maximum simulation time. To obtain Eq. (B.7), we have used the fact that

|| exp(jτQ)||1 = 1, since Q is the generator matrix of a Markov process, and ||q̂qq(tj)||1 = 1. As a

result, we finally obtain ||qqq(tj)− q̂qq(tj)||1 ≤ tmaxO(τ), which implies that ||qqq(tj)− q̂qq(tj)||1 = O(τ).

Computational cost of the KSA method

The Arnoldi procedure performed at each step of the KSA method requires L0 matrix-vector

multiplications between matrix P and the probability distribution ppp, resulting in a cost of O(L0L
2)

computations in general. However, the sparsity of P [matrix P has (M + 1)L non-zero elements

instead of L2] reduces this cost to O(L0(M + 1)L). Additionally, the orthonormalization step in

the Arnoldi procedure requires O(L2
0L) operations due to inner product computations. Finally, the

Krylov subspace approximation step requires that matrix V is multiplied with the first column of

the matrix exponential exp(τH), at a cost of O(L0L). By summing these costs, we can see that the

total computational cost of the KSA method is of O(L0(M +L0)L). On the other hand, the storage

182



APPENDIX B

requirements are of O((M + L0)L), where O(ML) memory locations are required for storing P and

O(L0L) locations are required for storing matrix V, which is multiplied with the first column of the

matrix exponential exp(τH).

Error of the Richardson extrapolation procedure

To justify the Richardson extrapolation procedure used to improve the accuracy of the IE

method, let us assume that the solution qqq(tj−1) of Eq. (3.2.3) is known at time tj−1. Then, the

approximate solution q̂qq(tj | tj−1) obtained by the IE method at time tj satisfies

q̂qq(tj | tj−1) = qqq(tj−1) + τQq̂qq(tj | tj−1), (B.8)

by virtue of Eq. (3.2.4). We now have that

qqq(tj)− q̂qq(tj | tj−1) = qqq(tj)− qqq(tj−1)− τQq̂qq(tj | tj−1)

= qqq(tj)− qqq(tj−1)− τQqqq(tj−1)− τ2Q2q̂qq(tj | tj−1)

= qqq(tj)− qqq(tj−1)− τQqqq(tj−1)− τ2Q2qqq(tj−1) +O(τ3), (B.9)

where we have used Eq. (B.8) twice. A Taylor series expansion of qqq(tj−1 + τ) around tj−1 gives

qqq(tj) = qqq(tj−1 + τ)

= qqq(tj−1) + τ
dqqq(tj−1)

dt
+

1

2
τ2 d

2qqq(tj−1)

dt2
+O(τ3)

= qqq(tj−1) + τQqqq(tj−1) +
1

2
τ2Q2qqq(tj−1) +O(τ3), (B.10)

by virtue of Eq. (3.2.3), which, together with Eq. (B.9), results in

qqq(tj) = q̂qqτ (tj | tj−1)− 1

2
τ2Q2qqq(tj−1) +O(τ3), (B.11)

where we now use q̂qqτ (tj | tj−1) to denote the fact that the approximate solution q̂qq(tj | tj−1) is

obtained with step-size τ .
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Let us now denote by q̂qqτ/2(tj | tj−1) the approximate solution obtained by the IE method

at time tj when the step-size is τ/2. Note that q̂qqτ/2(tj−1 + τ/2 | tj−1) = (I − τQ/2)−1qqq(tj−1)

and q̂qqτ/2(tj | tj−1) = (I − τQ/2)−1q̂qqτ/2(tj−1 + τ/2 | tj−1), by virtue of Eq. (3.2.4). Therefore,

q̂qqτ/2(tj | tj−1) = (I− τQ/2)−2qqq(tj−1), or [compare with Eq. (B.8)]

q̂qqτ/2(tj | tj−1) = qqq(tj−1) + τQq̂qqτ/2(tj | tj−1)− τ2

4
Q2q̂qqτ/2(tj | tj−1). (B.12)

We now have that

qqq(tj)− q̂qqτ/2(tj | tj−1) = qqq(tj)− qqq(tj−1)− τQq̂qqτ/2(tj | tj−1) +
τ2

4
Q2q̂qqτ/2(tj | tj−1)

= qqq(tj)− qqq(tj−1)− τQqqq(tj−1) +
τ2

4
Q2qqq(tj−1)− τ2Q2q̂qqτ/2(tj | tj−1) +O(τ3)

= qqq(tj)− qqq(tj−1)− τQqqq(tj−1)− 3

4
τ2Q2qqq(tj−1) +O(τ3), (B.13)

where we have used Eq. (B.12) twice. From the Taylor series expansion Eq. (B.10) and Eq. (B.13),

we finally obtain

qqq(tj) = q̂qqτ/2(tj | tj−1)− 1

4
τ2Q2qqq(tj−1) +O(τ3). (B.14)

Now, from Eq. (B.11) and Eq. (B.14), we have

qqq(tj) = 2q̂qqτ/2(tj | tj−1)− q̂qqτ (tj | tj−1) +O(τ3). (B.15)

This result shows that

q̂qq∗(tj | tj−1) := 2q̂qqτ/2(tj | tj−1)− q̂qqτ (tj | tj−1)

may produce a better approximation to qqq(tj) than either q̂qqτ (tj | tj−1) or q̂qqτ/2(tj | tj−1), since it results

in a third-order approximation (in terms of the local error) of qqq(tj), as compared to q̂qqτ (tj | tj−1) or

q̂qqτ/2(tj | tj−1) which result in second-order approximations.

We can also use q̂qqτ (tj | tj−1) and q̂qqτ/2(tj | tj−1) to determine an appropriate step-size τ∗

that guarantees a local error within a pre-specified tolerance TOL. Indeed, if we define the local

error ERR := ‖qqq(tj)− q̂qqτ/2(tj | tj−1)‖1, then from Eq. (B.15), we approximately have that

ERR = ‖q̂qqτ/2(tj | tj−1)− q̂qqτ (tj | tj−1)‖1, (B.16)
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which provides a way to calculate the error for a sufficiently small step-size τ . If now ERR 6=

TOL, then we need to change the step-size to a new value τ∗, such that qqq(tj)− q̂qqτ∗/2(tj | tj−1)

= qqq(tj) − q̂qqτ/2(tj | tj−1), which will imply that TOL := ‖qqq(tj) − q̂qqτ∗/2(tj | tj−1)‖1 =

‖qqq(tj)− q̂qqτ/2(tj | tj−1)‖1 = ERR. From Eq. (B.14), we have that

qqq(tj)− q̂qqτ/2(tj | tj−1) ' −1

4
τ2Q2qqq(tj−1)

qqq(tj)− q̂qqτ∗/2(tj | tj−1) ' −1

4
τ2
∗Q2qqq(tj−1),

from which we obtain

τ2
∗
τ2
'
‖qqq(tj)− q̂qqτ∗/2(tj | tj−1)‖1
‖qqq(tj)− q̂qqτ/2(tj | tj−1)‖1

=
TOL

ERR
.

As a consequence, the desired step-size value will approximately be given by

τ∗ = τ

√
TOL

ERR
. (B.17)

Expokit parameter values

The required TOL value (used to determine a desired error tolerance for the KSA method

and the RIE method with variable step-size) was set to 1× 10−3. We obtained the Expokit solution

by using a Krylov subspace approximation with dimension L0 = 65. This value was obtained by

starting with the default value of L0 = 30 and successively increasing it by 5 until the resulting

Expokit error estimate was less than TOL = 1 × 10−3. The reported L2 errors were calculated

using a solution obtained by a computationally more expensive Expokit run with L0 = 70 and

TOL = 1 × 10−4, which we consider it to be the ‘true’ solution. This is based on the premise that

Expokit will produce the true solution for sufficiently large L0 and small TOL.

Comparison of IE to an augmented state space

Here we discuss how the previously published results in [139] apply to the present framework

of N species Xn, n ∈ N , governed by the reactions of Eq. (2.1.1) with corresponding propensities
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πm(xxx), m ∈M. The idea is to define an ordering on an augmented state space such that a reaction

can only take the state from a lesser value to a greater value with respect to this ordering. Then by

arranging the states from this augmented state space in the probability vector pppa(t) in increasing

order, one ensures the resulting generator matrix Pa will be lower triangular.

To define this ordering, we augment the state space with an additional “counting” species,

XN+1, whose value monotonically increases in a way that guarantees the resulting augmented pop-

ulation (AP) process can always be well ordered. The new system has species X̃1, . . . , X̃N , X̃N+1

which have a well ordered state space according to the rule x̃xx < x̃xx
′

whenever

1)
∑N+1
n=1 x̃n <

∑N+1
n=1 x̃

′
n, or

2)
∑N+1
n=1 x̃n =

∑N+1
n=1 x̃

′
n, and x̃N+1 < x̃′N+1, or

3)
∑N+1
n=1 x̃n =

∑N+1
n=1 x̃

′
n, and x̃N+1 = x̃′N+1, and x̃N < x̃′N , or

...

N+1)
∑N+1
n=1 x̃n =

∑N+1
n=1 x̃

′
n, and x̃N+1 = x̃′N+1,. . . , and x̃2 < x̃′2.

These new species are governed by the following M reactions

N∑
n=1

νnmX̃n → ν′N+1,mX̃N+1 +
N∑
n=1

ν′nmX̃n, m ∈M,

with corresponding propensities π̃m(x̃1, . . . , x̃N+1) = πm(x̃1, . . . , x̃N ),m ∈ M that are equal to the

original propensities, whereas ν′N+1,m is chosen such that the reactions always move the state from

a lower value to a higher value with respect to the ordering. Note that this means the dynamics

of Z̃1, . . . , Z̃M remain identical to Z1, . . . , ZM , and thus the marginal distribution of X̃1, . . . , X̃N

remains equivalent to the original joint distribution on X1, . . . , XN .

In order to chose ν′N+1,m, note that there are three types of reactions in the original

system (2.1.1): (i) those such that
∑N
n=1 snm > 0, (ii) those such that

∑N
n=1 snm = 0, and (iii)

those such that
∑N
n=1 snm < 0. If reaction m is of type (i), then ν′N+1,m can be set equal to zero
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and this reaction will result in the state variable increasing according to rule 1). If reaction m is

of type (ii), then ν′N+1,m can be set equal to one and this reaction will result in the state variable

increasing according to rule 2). If reaction m is of type (iii), then ν′N+1,m can be set equal to

−
∑N
n=1 snm and this reaction will result in the state variable increasing according to rule 2). These

conclusions lead us to choose the stoichiometry of the counting variable

ν′N+1,m :=

[
N∑
n=1

snm < 0

](
−

N∑
n=1

snm

)
+

[
N∑
n=1

snm = 0

]
,

where [·] is the Iverson bracket that takes value one when its argument is true and zero otherwise.

As noted earlier, the marginal distribution of X̃1, . . . , X̃N remains unchanged from the

distribution of the original system (2.1.1). Thus, after the joint probabilities over X̃1, . . . , X̃N+1

are computed in this augmented state space it is necessary to marginalize the distribution over the

counting variable X̃N+1 to find the joint probability distribution of the original system.

Example: Let us consider a simple example along these lines. Suppose the reactions that govern

X1, X2 are given by

X1 → X1 +X2 (B.18)

X2 → X1 (B.19)

2X1 → ∅, (B.20)

with propensities given by π1(xxx) = k1x1, π2(xxx) = k2x2, π3(xxx) = k3x
2
1. Now we wish to augment

this state space with a counting variable X3 to ensure that the resulting system is triangular. Here

reaction (B.18) has
∑2
n=1 sn1 = 1 which means that it always increases the state with respect to

the ordering according to rule 1), so the count variable need not increase when this reaction occurs.

Thus ν3,1 = 0. On the other hand reaction (B.19) has
∑2
n=1 sn2 = 0 and thus we set ν3,2 = 1

to ensure that this reaction results in the state increasing its order according to rule 1). Finally,

reaction (B.20) has
∑2
n=1 sn2 = −2 and thus we set ν3,2 = 2 to ensure that this reaction results in

the state increasing its order according to rule 2). This results in the augmented system being given
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by

X̃1 → X̃1 + X̃2

X̃2 → X̃1 + X̃3

2X̃1 → 2X̃3,

with propensities given by π̃1(x̃xx) = k1x̃1, π̃2(x̃xx) = k2x̃2, π̃3(x̃xx) = k3x̃
2
1. It is easily verified that for any

chosen value of x̃xx, each reaction will the system move to a new state x̃xx
′

such that x̃xx < x̃xx
′

according

to the aforementioned ordering. ♠

The aforementioned method is intimately related to the DA process. Intuitively, the reason

this augmentation method works is that it leaves the DA dynamics undisturbed, and then simply

adds a new row to the stoichiometry matrix (which maps the DA process to the population process).

Thus the DA process is more fundamental than the AP process, and this new row of the stoichiometry

matrix is designed to “capture” the monotonicity of the DA process in the augmented state space.

The major disadvantage of the DA process is the fact that it may become unbounded in some systems,

but unfortunately, the AP process will be unbounded whenever the DA process is unbounded. The

contrapositive of this statement is that if the AP process is finite, then so too is the DA process.

Thus, the AP process provides no obvious advantage over the DA process, but the simple and

fundamental nature of the DA process (in particular the lexicographical ordering which has the

advantage of arising from nested for-loops in computer algorithms) leads us to conclude that the

DA process is more appropriate for use with the IE method.

Proof : We will prove the statement “If the DA process is unbounded, so too is the augmented

state space process.” It is clear that Zm being unbounded for any reaction which has νN+1,m > 0

will cause the AP process to become unbounded since the counting variable XN+1 can never be

decremented. Thus, we must only show that Zm being infinite over at least one of the reactions

with νN+1,m = 0 results in the AP process being unbounded.

Suppose by way of contradiction that there exists a Zm which is unbounded for a reaction
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with νN+1,m = 0 and that the AP process remains bounded. If νN+1,m = 0, then
∑N
n=1 snm > 0.

Thus, the unbounded reaction m increments the value
∑N
n=1Xn an unbounded number of times.

Since the AP process is assumed to be bounded, this means that at least one reaction m′ must

decrement the value
∑N
n=1Xn an unbounded number of times. As a consequence, there exists an

unbounded reaction Zm′ that has
∑N
n=1 snm′ < 0 or, equivalently, νN+1,m′ = −

∑N
n=1 snm′ > 0,

which implies that XN+1 is unbounded. This contradicts our initial assumptions and concludes the

proof. ♠

Severo provided a recursive procedure for computing the solution of a triangular system of

differential equations [140] that could be used instead of the IE computations considered here. In

particular, Severo showed that the solution to the equation dqqq(t)
dt = Qqqq(t) is given by qqq(t) = C(t)d(t).

Here C(t) is a lower triangular K × K matrix, whose elements are
(
K+1

2

)
polynomials in t with

coefficients that can be computed recursively, while d(t) is found by evaluating dk(t) = exp(qkkt) for

k = 1, . . . ,K [141]. In the specific case of the SIR model with a special initial condition, a simpler

recursive procedure than Severo’s general recursion has been found for computing the coefficients

of the polynomials in C(t) [244]. Even with the C(t) matrix and the d(t) vector computed off-line,

evaluating their product is significantly more costly than performing the IE iterations because the

matrix C(t) looses much of the sparse structure present in the Q matrix. In particular, a sufficient

condition for the C(t) matrix to have an element equal to zero, e.g., ckk′(t) = 0, is for the states zzzk′

and zzzk to be non-communicating in the Markov chain [141]. Comparatively, a sufficient condition

for the Q matrix to have an element equal to zero, e.g., akk′ = 0, is that zzzk′ is not adjacent to zzzk

in the Markov chain. Thus, a single matrix vector multiplication C(t)d(t) will in general require

O(K2) operations, as compared to the O(K) operations of the entire IE method.

This massive added overhead of recursively computing the coefficients of C(t), evaluating

the
(
K+1

2

)
polynomials in C(t) for each time point of interest, and then evaluating the K exponentials

at each time point of interest to find d(t), only add to the advantage of the IE method. Furthermore,

the storage requirements of a particular C(t) and the coefficients of its polynomials rapidly exceed
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the requirements of storing the Q matrix. Severo’s procedure is thus impractical for the large values

of K considered in this thesis. Its main utility remains in finding analytical solutions in systems

with very small K or proving a particular functional form of a solution to a specific system. This

procedure has been used in the literature [139–141,244] for small values of K much before the current

computing power became available.
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Estimating the true critical value in KS testing

Given the null hypothesis, the solution of the master equation is assumed to be given by

the analytical approximation. Keeping this in mind, for each k = 1, 2, . . . ,K, we can independently

draw L samples {x̂(k)
1 (t), x̂

(k)
2 (t), . . . , x̂

(k)
L (t)} from the analytical approximation P̂ (x; t) and use these

samples to compute K independent samples

G(k)(x; t) =
1

L

L∑
l=1

[x̂
(k)
l (t) ≤ x], k = 1, 2, . . . ,K, (C.1)

of the empirical CDF and, subsequently, K independent samples

S(k)(t) = max
x

∣∣G(k)(x; t)− F̂ (x; t)
∣∣, k = 1, 2, . . . ,K, (C.2)

of the KS statistic. We can then order the latter samples in an increasing order S[1](t) ≤ S[2](t) ≤

· · · ≤ S[K](t), and approximate the critical value by (see pp. 219 & 221 in Ref. [149])

s0(α; t) ' S[(K+1)(1−α)+1](t), (C.3)

where K is taken to be a value that ensures (K + 1)(1− α) + 1 is an integer.

Choosing the significance level and sample size in Scenario 3

We here discuss a method for determining appropriate values for the significance level α

and the sample size L of the proposed KS hypothesis testing procedure so that the probability of
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the Type I error and the power of the test are contained within allowable values. We focus our

discussion here on testing the validity of the LNA method.

The power of a test against an alternative distribution Q ∈ PA is the probability of re-

jecting the null hypothesis when the true distribution is given by Q. The test may have a different

power against different alternative distributions. One may think of the power of a test against Q as

quantifying how easily the test can tell that this distribution is not the null distribution. An alter-

native distribution with low power looks like the null distribution to the test, whereas an alternative

distribution with higher power can be distinguished easier by the test from the null distribution.

We will denote the power of the proposed KS test against Q by βα,L[Q], where the subscripts remind

us that this quantity depends on the significance level α and the sample size L.

Ideally, whenever the LNA method provides a poor approximation to an alternative dis-

tribution Q, we would like βα,L[Q] = 1, so that the test would always reject the validity of this

approximation method. However, we do not want the power to be always one, since there might

be some alternative distribution for which the LNA method provides a good enough approximation.

In such a case, we would like βα,L[Q] = 0 (i.e., we would like not to reject the validity of the LNA

method with probability one).

Let us consider the alternative (mixture) distributions given by Eq. (4.3.16) and assume

that the system is initialized within the basin of attraction of the stable fixed point Ωµ∗. For

sufficiently large r, Qr will be almost identical to the Gaussian distribution P̂ ∗ predicted by the

LNA method. In this case, we would like the power to be zero. For sufficiently small r however

the LNA method produces a poor approximation, since most probability mass of Qr will now be

concentrated at the second stable fixed point Ωµ∗∗ and we would like the power to be one in this

case. Of course, it is not possible to design a hypothesis test with such an ideal power. For this

reason, we must focus our attention on designing a test based on more realistic criteria.

To proceed, we will first examine the behavior of the power βα,L[Qr] as a function of

L, r, and α. It turns out that the KS test satisfies limL→∞ βα,L[Q] = 1, for any Q ∈ PA [148].
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We thus expect βα,L[Qr] to be a monotonically increasing function of L, since the test obtains

more discriminatory power with each additional sample. We also expect βα,L[Qr] to monotonically

increase as r → 0, sinceQr becomes increasingly different than P̂ ∗ for smaller values of r. As a matter

of fact, we expect that limr→0 βα,L[Qr] = 1 for large enough L. Note finally that limr→1 βα,L[Qr] =

α, since r = 1 corresponds to the null hypothesis which will be rejected with probability α. Finally,

βα1,L[Qr] ≤ βα2,L[Qr], when α1 < α2, since increasing the significance level increases the probability

of rejecting the null hypothesis and thus increases the power.

We can verify the previously described behavior by estimating the power βα,L[Qr] of the

KS test, for any values of r, α and L, using Monte Carlo sampling. Since the power βα,L[Qr] is the

probability that the test rejects the null hypothesis when the true distribution is Qr, we can perform

the level-α KS hypothesis test numerous times using L samples drawn independently from Qr and

estimate βα,L[Qr] as the fraction of times this procedure rejects the null hypothesis. We depict the

results of this estimation in Fig. C.1.

Now that we have characterized the behavior of the power, we can partition the values of r

into three regions, a rejection, an acceptance and an indifference region, and specify the desired level

of power within each region. The rejection region [0, r0] consists of all r values for which we would

like the test to reject the null hypothesis (i.e., the region in which the LNA method produces a poor

approximation). Although the power of the test should ideally be one in this region, in practice, we

should specify a minimum allowable power 0� b0 < 1, in which case we will have b0 ≤ βα,L[Qr] ≤ 1,

for all 0 ≤ r ≤ r0. Likewise, the acceptance region [r1, 1] consists of all r values for which we want

not to reject the null hypothesis (i.e., the region in which the LNA method is considered to be

valid). Ideally, the test should have zero power in this region. In practice however we must specify

a maximum allowable power 0 < b1 � 1, in which case we will have 0 ≤ βα,L[Qr] ≤ b1, for all

r1 ≤ r ≤ 1. In the remaining region (r0, r1), known as the indifference region, the power of the test

transitions from high to low values. We are not much interested in this region because the LNA

method produces neither a good nor a bad approximation to the true probability distribution.
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Figure C.1: The power βα,L[Qr] of the KS test estimated by Monte Carlo sampling, plotted as a

function of r and for various values of α and L. The distribution P̂ ∗ used here is a normal distribution
with mean 0.5 and standard deviation 0.05, whereas, the distribution P̂ ∗∗ is a normal distribution
with mean 0.8 and standard deviation 0.02; see Eq. (4.3.16). Each value of βα,L[Qr] was computed
using 4,000 Monte Carlo samples.

It is clear from Fig. C.1 that we can design a test that meets the previous criteria by

choosing a small enough significance level α, to ensure that the power is small in the acceptance

region, and a large enough sample size L, to ensure that the power is large in the rejection region.

We can do this by the following very simple iterative procedure:

1. We start with an initial value for L and set the value of α to be the maximum allowable

probability of the Type I error.

2. While keeping the value of L fixed, we decrease the value of α until the estimated power

satisfies the desired criterion (i.e., it is smaller than b1) in the acceptance region.

3. While keeping the value of α fixed, we increase the value of L until the estimated power satisfies

the desired criterion (i.e., it is larger than b0) in the rejection region.

4. If the estimated power in step 3 also satisfies the criterion in the acceptance region, we stop;

otherwise we go to step 2 and repeat the procedure.
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Markovianity of fractional activity process in LMNs

Because the activity process {XXX(t), t ≥ 0} is a Markov process, only a single transition

from XXX(t) to XXX(t) + eeen∗ or XXX(t)− eeen∗ , for some n∗ ∈ N , can occur within the infinitesimally small

time interval [t, t+ dt), where eeen∗ is the n∗-th column of the N ×N identity matrix. Since

Yk(t) :=
1

Nk

∑
n∈Nk

Xn(t), for every k ∈ K, (D.1)

where K = {1, 2, . . . ,K}, with K being the number of homogeneous sub-populations Nk, and Nk =

|Nk| (i.e., the cardinality of Nk), this also means that the fractional activity process {YYY (t), t ≥ 0}

can transition only once within [t, t+ dt) from YYY (t) to YYY (t) + ẽeek or YYY (t)− ẽeek. Here, ẽeek is the k-th

column of the K × K identity matrix multiplied by N−1
k and k ∈ K is such that n∗ ∈ Nk. As a

matter of fact, the transition probabilities are given by

Pr
[
YYY (t)→ YYY (t) + ẽeek within [t, t+ dt) |XXX(t) = xxx

]
=
∑
n∈Nk

p+
n (xxx)dt

=
∑
n∈Nk

(1− xn)
[
`+n + fn(rn(xxx))

]
dt

=
∑
n∈Nk

(1− xn)
[
λ+
k + φk(ρk(yyy))

]
dt

=
(
Nk −

∑
n∈Nk

xn

)[
λ+
k + φk(ρk(yyy))

]
dt

= Nk(1− yk)
[
λ+
k + φk(ρk(yyy))

]
dt, (D.2)
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where p+
n (xxx) is the propensity function of activation of the n-th node of the LMN and the k-th

element yk of yyy is given by N−1
k

∑
n∈Nk

xn. Moreover, φk and λ+
k are such that, for every k ∈ K,

fn = φk and `+n = λ+
k , for all n ∈ Nk, and we have ignored terms that go to zero faster than dt.

Finally, we have used the assumption that there exists a function ρk such that rn(xxx) = ρk(yyy), for

every n ∈ Nk. Likewise, we have that

Pr
[
YYY (t)→ YYY (t)− ẽeek within [t, t+ dt) |XXX(t) = xxx

]
=
∑
n∈Nk

p−n (xxx)dt

=
∑
n∈Nk

xn[`−n + gn(rn(xxx))]dt

=
∑
n∈Nk

xn[λ−k + γk(ρk(yyy))]dt

= Nkyk[λ−k + γk(ρk(yyy))]dt, (D.3)

where p−n (xxx) is the propensity function of inactivation of the n-th node of the LMN, whereas γk and

λ−k are such that, for every k ∈ K, gn = γk and `−n = λ−k , for all n ∈ Nk.

The previous discussion shows that the fractional activity process {YYY (t), t ≥ 0} is Marko-

vian with propensity functions given by

π+
k (yyy) = Nk(1− yk)[λ+

k + φk(ρk(yyy))] (D.4)

π−k (yyy) = Nkyk[λ−k + γk(ρk(yyy))]. (D.5)

As a consequence, the probability distribution P (yyy; t) satisfies the master equation 5.2.13. Finally, it

is important to note that, when the net input to a node n in the LMN is given by rn(xxx) = hn+aaaTnxxx,

we can find a function ρk such that rn(xxx) = ρk(yyy), for every n ∈ Nk. Indeed, if hn = ηk, for every
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n ∈ Nk, and ann′ = wkk′/Nk′ , for every n ∈ Nk, n′ ∈ Nk′ , then, for every n ∈ Nk, we have that

rn(xxx) = hn +
∑
n′∈N

ann′xn′

= hn +
∑
k′∈K

∑
n′∈Nk′

ann′xn′

= ηk +
∑
k′∈K

∑
n′∈Nk′

wkk′

Nk′
xn′

= ηk +
∑
k′∈K

wkk′
1

Nk′

∑
n′∈Nk′

xn′

= ηk +
∑
k′∈K

wkk′yk′ , (D.6)

which shows that ρk(yyy) = ηk +
∑
k′∈K wkk′yk′ .

Linear Noise Approximation in LMNs

By following [1] (see also [19]), we define the shift operators Σ−k and Σ+
k by

Σ−k ϕ(y1, . . . , yk−1, yk, yk+1, . . . , yK) := ϕ(y1, . . . , yk−1, yk −N−1
k , yk+1, . . . , yK) (D.7)

Σ+
k ϕ(y1, . . . , yk−1, yk, yk+1, . . . , yK) := ϕ(y1, . . . , yk−1, yk +N−1

k , yk+1, . . . , yK), (D.8)

for k ∈ K and any function ϕ(yyy). By using a Taylor series expansion, we have that

Σ−k ϕ(yyy) = ϕ(yyy)−N−1
k

∂ϕ(yyy)

∂yk
+
N−2
k

2

∂2ϕ(yyy)

∂y2
k

−
N−3
k

3!

∂3ϕ(yyy)

∂y3
k

+ · · · (D.9)

Σ+
k ϕ(yyy) = ϕ(yyy) +N−1

k

∂ϕ(yyy)

∂yk
+
N−2
k

2

∂2ϕ(yyy)

∂y2
k

+
N−3
k

3!

∂3ϕ(yyy)

∂y3
k

+ · · · (D.10)

In this case, we can write the master equation (5.2.13) as

∂P (yyy; t)

∂t
=

∑
k∈K

{(
Σ−k − 1

)
π+
k (yyy)P (yyy; t) +

(
Σ+
k − 1

)
π−k (yyy)P (yyy; t)

}
=

∑
k∈K

{(
−N−1

k

∂

∂yk
+
N−2
k

2

∂2

∂y2
k

−
N−3
k

3!

∂3

∂y3
k

+ · · ·
)
× π+

k (yyy)P (yyy; t)

+
(
N−1
k

∂

∂yk
+
N−2
k

2

∂2

∂y2
k

+
N−3
k

3!

∂3

∂y3
k

+ · · ·
)
× π−k (yyy)P (yyy; t)

}
. (D.11)
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If we now define the drift and diffusion functions by

Ak(yyy) :=
π+
k (yyy)− π−k (yyy)

Nk
(D.12)

Dk(yyy) :=
π+
k (yyy) + π−k (yyy)

Nk
, (D.13)

respectively, then

∂P (yyy; t)

∂t
=−

∑
k∈K

{∂[Ak(yyy)P (yyy; t)]

∂yk
−
N−1
k

2

∂2[Dk(yyy)P (yyy; t)]

∂y2
k

+
N−2
k

3!

∂3[Ak(yyy)P (yyy; t)]

∂y3
k

+ · · ·
}
. (D.14)

This equation, together with the ansatz

Yk(t) = µk(t) +
1√
Nk

Wk(t), t > 0, k ∈ K, (D.15)

yields

∂P (yyy; t)

∂t
=−

∑
k∈K

{
N

1/2
k

∂[Ak(yyy)P (yyy; t)]

∂wk
− 1

2

∂2[Dk(yyy)P (yyy; t)]

∂w2
k

+
N
−1/2
k

3!

∂3[Ak(yyy)P (yyy; t)]

∂w3
k

+ · · ·
}
.

(D.16)

In Eq. (D.15), µµµ(t) solves the macroscopic differential equations:

dµk(t)

dt
= [1− µk(t)]

[
λ+
k + φk(ρk(µµµ(t)))

]
− µk(t)

[
λ−k + γk(ρk(µµµ(t)))

]
, t > 0, k ∈ K, (D.17)

initialized by µµµ(0) = 0, whereas, for each t, Wk(t), k ∈ K, are zero-mean correlated Gaussian random

variables. We can now use a Taylor expansion of the drift and diffusion functions to obtain:

Ak(yyy) = Ak

(
µ1 +

1√
N1

w1, . . . , µK +
1√
NK

wK

)
= Ak(µµµ) +

∑
k′∈K

N
−1/2
k′ wk′Akk′(µµµ) +

∑
k′∈K

∑
k′′∈K

N
−1/2
k′ N

−1/2
k′′ wk′wk′′Akk′k′′(µµµ) + · · · , (D.18)

for k ∈ K, where Akk′(yyy) := ∂Ak(yyy)/∂yk′ and Akk′k′′(yyy) := ∂2Ak(yyy)/∂yk′∂yk′′ , and likewise for the

diffusion functions. In this case, Eq. (D.16) becomes

∂P (yyy; t)

∂t
= −

∑
k∈K

N
1/2
k

∂[Ak(µµµ)P (yyy; t)]

∂wk
−
∑
k∈K

N
1/2
k

∑
k′∈K

N
−1/2
k′

∂[wk′Akk′(µµµ)P (yyy; t)]

∂wk

+
1

2

∑
k∈K

∂2[Dk(µµµ)P (yyy; t)]

∂w2
k

+O(N
−1/2
k ). (D.19)
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We can now replace the probability distribution P (yyy; t) of the fractional activity process with the

probability distribution P ′(www; t) of the noise process, in which case we obtain

∂P ′(www; t)

∂t
=

∑
k∈K

N
1/2
k

[
dµk(t)

dt
−Ak(µµµ(t))

]
∂P ′(www; t)

∂wk

−
∑
k∈K

N
1/2
k

∑
k′∈K

N
−1/2
k′ Akk′(µµµ(t))

∂[wk′P
′(www; t)]

∂wk

+
1

2

∑
k∈K

Dk(µµµ(t))
∂2P ′(www; t)

∂w2
k

+O(N
−1/2
k ), (D.20)

by virtue of the fact that

∂P (yyy; t)

∂t
=
∂P ′(www; t)

∂t
+
∑
k∈K

dwk(t)

dt

∂P ′(www; t)

∂wk

=
∂P ′(www; t)

∂t
−
∑
k∈K

N
1/2
k

dµk(t)

dt

∂P ′(www; t)

∂wk
, (D.21)

where the second equality is a consequence of the fact that dYk(t)/dt = 0 (except at time points

on a set of measure zero at which the derivative is infinite). This implies that dwk(t)/dt =

−N1/2
k dµk(t)/dt, by virtue of Eq. (D.15).

Note now that µµµ(t) satisfies the macroscopic equations dµk(t)/dt = Ak(µµµ(t)). As a con-

sequence, and by virtue of Eq. (D.20), the noise probability distribution P ′(www; t) is approximately

governed by the linear Fokker-Planck equation

∂P ′(www; t)

∂t
= −

∑
k∈K

∑
k′∈K

√
ζk
ζk′

Akk′(µµµ(t))
∂[wk′P

′(www; t)]

∂wk
+

1

2

∑
k∈K

Dk(µµµ(t))
∂2P ′(www; t)

∂w2
k

, (D.22)

where ζk = Nk/N and we ignore the terms of O(N
−1/2
k ). Note that this equation does not depend

on N , since we have used the relation Nk/Nk′ = ζk/ζk′ , which is true at any point en route to the

thermodynamic limit. The solution to this equation is a multivariate Gaussian density with zero

mean and correlation matrix R(t) with elements rkk′(t) = E[Wk(t)Wk′(t)] that satisfy the following

system of Lyapunov equations (5.2.47), initialized with rkk′(0) = 0, for every k, k′ ∈ K.

We note here that there are two approximation steps involved with the LNA method.

The first step is the ansatz given by Eq. (D.15), whereas the second step is ignoring all terms of
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O(N
−1/2
k ) in Eq. (D.20). Theoretically speaking, justification of the second step is simple – we can

take N to be large so that 1/
√
Nk is small enough that any term in the expansion multiplied by

1/
√
Nk is negligible. This requirement however is not useful in practice, since we cannot determine

the appropriate value of N that satisfies the required condition. On the other hand, assuming that

N is large enough for the previous approximation to be valid, Eq. (D.15) can be justified only for

monostable systems [1].

Leakiness and Irreducibility

In the theory of Markov processes, the state yyy is said to be accessible from another state yyy′

if there is a non-zero probability to transition (possibly through intermediate states) from yyy′ to yyy.

We denote this by yyy′ → yyy. The states yyy and yyy′ are said to be communicating whenever yyy → yyy′

and yyy′ → yyy. In this case, we write yyy � yyy′. If all states yyy ∈ Y are communicating, then there is a

non-zero probability to transition from any state to any other state, and the Markov process is said

to be irreducible. An irreducible Markov process has a unique, strictly positive, and asymptotically

stable stationary probability distribution that is independent of the initial condition.

It is often difficult to prove that a Markov processes is irreducible. The following results

allow us to determine when the fractional activity process YYY (t) in a LMN is irreducible. It turns

out that leakiness is intimately related to irreducibility.

Proposition 1. If λ+
k > 0, for every k ∈ K, then 0 → yyy′ → 1 for all yyy′ ∈ Y, where 0 is the state

of zero fractional inactivity and 1 is the state of maximum fractional activity.

Proof. For every yyy ∈ Y such that yk ≤ 1− 1/Nk, for some k ∈ K, we have π+
k (yyy) = Nk(1− yk)[λ+

k +

φk(ρk(yyy))] ≥ λ+
k + φk(ρk(yyy)) > 0, where the second inequality is due to the fact that λ+

k > 0 and

φk(ρk(yyy)) ≥ 0. Therefore, yyy → yyy + ẽeek, where ẽeek is the k-th column of the K ×K identity matrix

multiplied by N−1
k . Thus, for any state yyy ∈ Y such that yyy + ẽeek ∈ Y, we have that yyy → yyy + ẽeek. Let

yyy′ = (n1/N1, n2/N2, . . . , nK/NK)T , for some n1, n2, . . . , nK . A non-zero probability path from 0 to yyy′
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is then given by the following sequence: n1 transitions taking yyy → yyy+ ẽee1, followed by n2 transitions

taking yyy → yyy+ ẽee2,..., followed by nK transitions taking yyy → yyy+ ẽeeK . Likewise, a non-zero probability

path from yyy′ to 1 is given by the following sequence: N1−n1 transitions taking yyy → yyy+ ẽee1, followed

by N2 − n2 transitions taking yyy → yyy + ẽee2,..., followed by NK − nK transitions taking yyy → yyy + ẽeeK .

Hence, 0→ yyy′ → 1, for all yyy′ ∈ Y.

Corollary 1. If λ+
k > 0, for every k ∈ K, and 1→ 0, then YYY (t) is irreducible.

Proof. From Proposition 1, and for any yyy′, yyy′′ ∈ Y, we have that yyy′ → 1 and 0→ yyy′′. Since, 1→ 0,

this implies yyy′ → 1→ 0→ yyy′′ and thus YYY (t) is irreducible.

Proposition 2. If λ−k > 0, for every k ∈ K, then 1→ yyy′ → 0 for all yyy′ ∈ Y.

Proof. For every yyy ∈ Y such that yk ≥ 1/Nk, for some k ∈ K, we have π−k (yyy) = Nkyk[λ−k +

γk(ρk(yyy))] ≥ λ−k + γk(ρk(yyy)) > 0, where the second inequality is due to the fact that λ−k > 0 and

γk(ρk(yyy)) ≥ 0. Therefore, yyy → yyy − ẽeek. Thus, for any state yyy ∈ Y such that yyy − ẽeek ∈ Y, we

have that yyy → yyy − ẽeek. Let yyy′ = (n1/N1, n2/N2, . . . , nK/NK)T , for some n1, n2, . . . , nK . A non-zero

probability path from 1 to yyy′ is then given by the following sequence: N1 − n1 transitions taking

yyy → yyy − ẽee1, followed by N2 − n2 transitions taking yyy → yyy − ẽee2,..., followed by NK − nK transitions

taking yyy → yyy − ẽeeK . On the other hand, a non-zero probability path from yyy′ to 0 is given by the

following sequence: n1 transitions taking yyy → yyy− ẽee1, followed by n2 transitions taking yyy → yyy− ẽee2,...,

followed by nK transitions taking yyy → yyy − ẽeeK . Hence, 1→ yyy′ → 0, for all yyy′ ∈ Y.

Corollary 2. If λ−k > 0, for every k ∈ K, and 0→ 1, then YYY (t) is irreducible.

Proof. From Proposition 2, and for any yyy′, yyy′′ ∈ Y, we have that yyy′ → 0 and 1→ yyy′′. Since, 0→ 1,

this implies yyy′ → 0→ 1→ yyy′′ and thus YYY (t) is irreducible.

By combining the previous results, we obtain the following theorem:

Theorem 1. If λ−k , λ
+
k > 0, for every k ∈ K, then YYY (t) is irreducible.
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Defining Avalanches

A common way to define avalanches has originated from work on neural networks, since

the emergence of avalanches is a fundamental property of such networks [4, 168]. This definition is

based on partitioning time into bins Ti = [i∆t, (i+ 1)∆t), i = 0, 1, . . ., of equal duration ∆t > 0 and

associating to each bin Ti a frame Fi, defined as the portion {XXX(t), t ∈ Ti} of the activity process

during Ti. The frame Fi is said to be blank if the activity process XXX(t) is zero within Ti; otherwise,

the frame Fi is said to be active. Then, an avalanche is defined to be a sequence of consecutively

active frames that is preceded and ended by a blank frame [168]. Note that, if

W(t) :=
1

N

∑
n∈N

Xn(t) =
∑
k∈K

ζkYk(t) (D.23)

is the net fractional activity of the activity process XXX(t) at time t, where ζk = Nk/N , then Fi is

blank if maxt∈Ti{W(t)} ≤ ε, whereas Fi is active if maxt∈Ti{W(t)} > ε. Here, ε ≥ 0 is a small

threshold that dictates the minimum percentage of nodes that can be active in the network in order

for the network to be deemed active.

Unfortunately, the previous definition depends on the choice of ∆t. Moreover, the definition

is sensitive to arbitrary shifts of the time axis. For this reason, we provide here an alternative

definition for an avalanche that is not influenced by the previous factors. In particular, we say that

an avalanche occurs within a time window [t, t + τ), whenever the following three conditions are

satisfied: (i) There exist some small dt > 0 such that W(t′) ≤ ε, for all t′ ∈ [t − dt, t); i.e., the

network is inactive immediately before time t. (ii) W(t′) > ε, for all t′ ∈ [t, t+ τ); i.e., the network

is active during the time interval [t, t+ τ). (iii) W(t+ τ) ≤ ε; i.e., the network becomes inactive at

time t+ τ .

It is common to characterize an avalanche by two parameters: its duration and size. The

duration da of an avalanche has been defined to be the number of consecutively active frames

multiplied by ∆t. On the other hand, its size sa is simply the number of times within the duration

that an element of the activity process XXX(t) becomes active (switches from 0 to 1). Using our
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definition of an avalanche, it is not difficult to see that da = τ , whereas sa is the number of times

during [t, t + τ) that an element of the activity process XXX(t) becomes active (switches from 0 to

1). Note that a given element of the activity process may transition from 0 to 1 multiple times

throughout the duration. As a consequence, the size of an avalanche is not limited by N . To

account for the effect of population size, it is common to consider the fractional avalanche size

sa/N [4].
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