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ABSTRACT	

Variation	is	omnipresent	in	biological	systems.	Organisms	must	survive	in	

fluctuating	environments,	genetic	diversity	drives	evolution,	and	finite	molecule	

counts	challenge	signal	processing	accuracy.	However,	in	classic	cellular	biology,	

this	variation	is	often	ignored.	While	a	dose-response	curve	may	show	error	bars,	

these	are	often	attributed	to	measurement	error	and	not	assumed	to	be	true	

biological	variation,	or	noise.	Recently,	however,	sufficiently	powerful	technology	

has	been	developed	to	measure	response	of	many	cells	at	the	single-cell	level.	These	

studies	have	raised	significant	questions	in	cellular	and	systems	biology,	requiring	

the	development	of	new	methods	and	revisiting	of	old	models.	

In	this	manuscript,	we	first	develop	a	novel	method	based	on	organism	symmetry	

for	differentiating	between	sources	of	noise.	We	apply	this	method	to	Drosophila	

early	morphogenesis	dorsal-ventral	(D-V)	cell	differentiation.	We	identify	significant	

position-dependent	structure	to	the	noise.	Given	commonality	of	organisms	

exhibiting	bilateral	symmetry,	this	method	can	find	very	wide	applicability.	Further,	

by	leveraging	information,	we	are	able	to	demonstrate	which	components	of	the	

noise	have	a	significant	effect	on	Drosophila	development.	We	then	investigate	noise	

in	the	context	of	a	multicellular	organism	performing	gradient	detection.	In	contrast	

to	previous	studies,	which	have	focused	only	on	noise	outside	of	the	cell,	we	find	

that	noise	inside	the	cell	contributes	significantly	to	gradient	detection	accuracy.	In	

particular,	as	a	cell	grows	however,	internal	communication	noise	is	also	expected	

to	grow,	complicating	comparison	of		concentrations.	We	discover	this	effect	
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through	a	combination	of	using	linear	mathematics,	nonlinear	simulations,	and	in	

vivo	experiments	on	multicellular	organoids,	we	show	that	results	obtained	by	

ignoring	internal	system	variation	are	incomplete.	Finally,	we	consider	noise	in	the	

context	of	a	system	which	must	detect	signal	duration	despite	variation	in	the	signal	

amplitude.	We	show	that	the	Incoherent	Type	1	Feed	Forward	Loop	(I1FFL),	one	of	

the	most	common	network	motifs,	is	capable	of	accurately	performing	this	detection	

function.	Taken	together,	these	contributions	provide	new	analytical	tools,	shed	

additional	light	on	the	importance	of	biological	noise,	and	support	an	increasingly	

wide-held	view	that	variation	is	a	fundamental	aspect	of	biology.	
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Chapter	1 INTRODUCTION	AND	BACKGROUND	

Variation	is	everywhere	in	biological	systems	[1-6].	Organisms	must	survive	in	

fluctuating	environments,	genetic	diversity	drives	evolution,	and	finite	molecule	

counts	challenge	signal	processing	accuracy.	However,	in	classic	cellular	biology,	

this	variation	is	often	ignored.	While	a	dose-response	curve	may	show	error	bars,	

these	are	typically	attributed	to	measurement	error	and	not	assumed	to	be	true	

biological	variation,	or	noise.	However,	differences	in	individual	cells	have	been	

observed	for	nearly	as	long	as	microscopes	have	existed	[7].	Only	recently,	however,	

has	technology	proved	sufficiently	powerful	to	measure	response	of	many	cells	at	

the	single-cell	level.	These	studies	have	raised	significant	questions	in	cellular	

biology,	particularly	when	isogenic	cells	make	different	decisions	to	the	same	

apparent	input,	or	are	able	to	make	similar	decisions	despite	stochastically	varying	

input.	

Clearly,	even	just	from	the	list	mentioned	above,	biological	noise	can	arise	from	

many	sources,	and	may	have	a	positive	or	negative	impact	on	an	organism.	Genetic	

diversity	can	arise	from	copy	errors	or	environmental	factors,	and	while	it	drives	

evolution	it	may	also	drive	disease.	In	gene	expression,	transcription	may	also	

fluctuate	greatly.	As	shown	by	Swain	and	Elowitz,	such	noise	may	have	multiple	

components	which	may	be	decomposed	[8,	9].	In	the	case	of	gene	transcription,	an	

“extrinsic”	component	exists,	which	includes	variable	numbers	of	ribosomes,	as	well	
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as	an	“intrinsic”	component,	which	includes	fluctuations	due	to	stochastic	chemical	

interactions.		

INTRINSIC	AND	EXTRINSIC	NOISE	IN	DROSOPHILA	DEVELOPMENT	

In	this	manuscript,	we	first	develop	a	novel	method	based	on	organism	symmetry	

for	differentiating	between	sources	of	noise.	We	apply	this	method	to	Drosophila	

early	morphogenesis	dorsal-ventral	(D-V)	cell	differentiation.	The	D-V	patterning	in	

Drosophila	is	primarily	driven	by	a	single	morphogen	gradient,	Dorsal,	an	NF-κB	

homologue	[10,	11].	We	identify	significant	position-dependent	structure	to	the	

noise.	Given	commonality	of	organisms	exhibiting	bilateral	symmetry,	this	method	

can	find	very	wide	applicability.	Further,	by	leveraging	information	we	are	able	to	

demonstrate	which	components	of	the	noise	have	a	significant	effect	on	Drosophila	

development.	While	information	theory	has	become	increasingly	popular	in	cellular	

signaling	studies,	we	also	apply	the	concept	of	entropy,	a	measure	of	decision	

uncertainty,	to	understand	the	quantified	information	in	perspective	of	the	

complexity	of	the	information	required.	This	concept	is	currently	underutilized	in	

much	of	systems	biology	literature.		

INTERNAL	AND	EXTERNAL	NOISE	IN	GRADIENT	DETECTION	

Chemoreception	and	gradient	detection	in	particular	are	a	key	biological	process	

which,	when	disregulated,	contribute	to	cancer	metastasis.	Noise	has	been	long	

recognized	as	a	challenge	to	chemoreception	[12].	In	gradient	detection,	cells	must	

distinguish	between	the	value	of	a	gradient	at	opposite	ends	of	their	membranes.	A	
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simple	analysis	of	this	noise	may	suggest	that	larger	cells	can	detect	shallower	

gradients,	since	the	absolute	difference	of	concentrations	at	each	end	of	the	cell	will	

be	larger,	overcoming	the	noise	[13].		

These	works,	however,	have	largely	focused	on	noise	from	small	counts	of	

molecules	outside	of	the	sensing	system,	while	ignoring	the	fact	messages	must	be	

conveyed	inside	the	system	in	order	to	understand	relative	strength.	In	particular,	

as	a	cell	grows	however,	internal	communication	noise	is	also	expected	to	grow,	

complicating	comparison	of		concentrations.	By	using	linear	mathematics,	nonlinear	

simulations,	and	in	vivo	experiments	on	multicellular	organoids,	we	show	that	

results	obtained	by	ignoring	internal	system	variation	are	incomplete.	Indeed,	while	

previous	theory	suggests	that	a	larger	and	larger	system	may	detect	a	gradient	with	

ever-improving	precision,	we	show	that	there	are	sharp	limitations	on	that	benefit	

due	to	the	limits	placed	by	internal	noise.	As	we	conclude	in	the	chapter,	“our	

analysis	provides	a	way	to	assess	the	potential	role	of	inter-cellular	communication	

in	other	settings,	including	invasive	tumor	growth,	pointing	to	the	specific	

parameters	that	can	be	altered	to	disrupt	this	process	or	make	it	less	efficient.”	

AMPLITUDE	NOISE	IN	DURATION	DETECTION	

While	much	work	on	noise	has	focused	on	how	it	adds	to	or	multiplies	a	signal,	it	is	

also	possible	for	random	variation	along	orthogonal	axes	to	affect	signal	detection.	

Recent	work	suggests	that	duration	of	a	signal	may	be	important	in	cell	

differentiation	[14,	15].	The	amplitude	of	a	signal	(such	as	molecular	concentration)	

may	in	this	case	be	considered	orthogonal	to	the	actual	signal	of	interest	(duration).	
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However,	since	the	simplest	detection	circuits	generally	work	as	integrators,	this	

amplitude	will	affect	their	output.		

The	Incoherent	Type	1	Feed	Forward	Loop	(I1FFL)	is	one	of	the	most	common	

network	motifs,	and	has	several	identified	functions	including	pulse	generation,	

response	time	reduction,	and	fold-change	detection	[16-19].	In	this	proposal,	we	will	

demonstrate	a	new	function:	its	ability	to	accurately	decode	signal	duration	in	the	

presence	of	such	extrinsic	noise.	

Despite	results	highlighting	the	importance	of	signal	duration,	little	work	has	been	

done	on	identifying	circuits	which	can	differentiate	signals	based	on	duration.	One	

prime	example	is	the	case	of	T	Cell	differentiation	[15,	20].	While	T	Cell	fate	has	

been	shown	to	be	linked	to	stimulation	duration,	it	is	not	clear	how	this	may	happen	

robustly	in	the	face	of	stimulus	amplitude,	which	may	vary	slowly	relative	to	

detection.	By	identifying	even	one	such	circuit,	we	will	provide	a	plausible	

mechanism	and	will	highlight	duration	detection	as	a	fundamental	line	of	inquiry.	

Most	simple	signaling	networks,	such	as	an	integrator,	respond	both	to	amplitude	

and	duration	of	input.	I	have	explored	how	the	Type	1	incoherent	feed-forward	loop,	

a	common	signaling	network	motif,	may	measure	signal	duration	while	ignoring	

amplitude	variation.	Despite	being	a	well-studied	motif,	this	feature	has	previously	

been	undiscovered,	and	is	only	revealed	by	considering	the	correct	framework	of	

noise.	

INFORMATION-THEORETIC	METRICS	
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Across	multiple	aims	and	experiments	in	this	manuscript,	information-theoretic	

metrics	will	be	used	to	quantify	the	effects	and	limitations	of	noise.	In	particular,	we	

will	use	information	theoretic	entropy	to	measure	the	complexity	of	a	desired	

outcome	and	capacity	to	measure	the	amount	of	information	that	may	be	derived	

from	a	signal	[21,	22].	These	metrics	are	defined	as	

𝐻 = − 𝑝! log𝑝!
!

	

𝐶 = max
!!

𝐼(𝑋;𝑌)	

𝐼 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)
= 𝐻 𝑌 − 𝐻(𝑌|𝑋)

= 𝑝!,! log
𝑝!,!
𝑝!𝑝!!,!

	

While	we	will	be	applying	this	metric	to	new	systems,	capacity	has	been	repeatedly	

shown	to	be	useful	in	biological	contexts.	It	measures	how	much	information	is	

transmitted	through	a	noisy	biochemical	signaling	process	[23,	24]	and	places	limits	

on	how	accurately	a	cell	may	utilize	signaling	outputs	to	discriminate	between	

different	input	signals.	Note	that	this	analysis	is	independent	of	the	mechanisms	

used	by	the	system,	only	on	its	outputs.	Further,	by	maximizing	over	the	possible	

input	probability	distributions,	Capacity	becomes	a	function	solely	of	the	system	

defined	as	P(Y|X),	or	P(output|input).		
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FIGURE	1:	ENTROPY	AND	MUTUAL	INFORMATION	

a)	The	entropy	of	a	Bernoulli	random	variable,	where	the	probability	of	X=1	is	along	
the	horizontal	axis.	Note	that	entropy	increases	as	outcome	uncertainty	increases.	B)	
Samples	drawn	from	two	different	distributions	of	P(Y|X).	On	the	left,	I(X;Y1)	=	3.1	bits.	
On	the	right,	as	the	relationship	is	weekend,	I(X;Y2)	=	2.0	bits.	

NOISE	DECONVOLUTION	IN	A	SYMMETRIC	SYSTEM	

Deconvolution	of	noise,	or	separating	out	its	key	components,	is	a	current	trend	in	

systems	biology	research.	Many	biological	processes,	including	the	development	of	

the	Dorsal	gradient	during	Drosophila	Melanogaster	development,	are	bilaterally	

symmetric	processes.	This	symmetry	provides	us	with	two	measurements	of	the	

same	process.	In	general,	we	can	use	these	dual	measurements	to	separate	the	total	

observed	variability	in	the	output	of	a	process	into	symmetric	and	asymmetric	noise	

components	in	a	manner	analogous	to	the	extrinsic-intrinsic	decomposition	of	gene	

expression	noise	developed	in	[8].	We	consider	L	and	R	to	be	measurements	of	a	

symmetric	process	such	that	

L = 𝑓 + 𝛾! + 𝛾!,!
𝑅 = 𝑓 + 𝛾! + 𝛾!,!

	

We	assume	that	f	is	the	deterministic	part	of	the	signal	on	which	L	and	R	are	based.	

𝛾!	is	a	single	random	value	which	is	added	to	both	L	and	R,	where	𝛾!,!	and	𝛾!,! 	are	

random	values	added	to	the	L	and	R	values	respectively.	We	assume	that	all	three	
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random	values	are	zero	mean,	that	all	three	are	independent	of	each	other,	and	that	

𝛾!,!	and	𝛾!,! 	are	identically	distributed.	Based	on	observations	of	L	and	R,	it	is	then	

straightforward	to	determine	the	variance	of	the	random	values:	

Cov 𝐿,𝑅 = Cov 𝑓 + 𝛾! + 𝛾!,! , 𝑓 + 𝛾! + 𝛾!,!
= Cov 𝛾! + 𝛾!,! , 𝛾! + 𝛾!,!
= Var 𝛾! + Cov 𝛾!, 𝛾!,! + Cov 𝛾!, 𝛾!,! + Cov 𝛾!,! , 𝛾!,!
= Var 𝛾! = 𝜎!!

	

	

Cov 𝐿,𝑅 − 1 2 Var 𝐿 + Var(𝑅) = Var 𝛾! − 1 2 Var 𝐿 + Var(𝑅)

= Var 𝛾! − 1 2
2Var 𝛾! + Var 𝛾!,! + Var 𝛾!,! +

Cov 𝛾!, 𝛾!,! + Cov 𝛾!, 𝛾!,!
= 1

2 Var 𝛾!,! + Var 𝛾!,!
= Var 𝛾!,! = 𝜎!,!! = 𝜎!,!!

	

Symmetric	noise	is	mathematically	analogous	to	extrinsic	noise,	although	in	this	

setting	it	represents	variability	that	causes	the	process	in	one	organism	to	be	

different	than	another.	Asymmetric	noise	is	mathematically	analogous	to	intrinsic	

noise,	although	here	it	affects	one	half	of	the	process	differently	than	the	other	

within	the	same	embryo.	We	can	perform	this	decomposition	at	every	point	of	a	

spatially	dynamic	process	and	examine	how	each	noise	component	scales	as	a	

function	of	position.	
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Chapter	2 HOW	INFORMATION	THEORY	HANDLES	CELL	SIGNALING	

AND	UNCERTAINTY		

AUTHORS	

Matthew	D.	Brennan,	Raymond	Cheong,	Andre	Levchenko		

PERSPECTIVE	

Intracellular	biochemical	networks	have	traditionally	been	studied	by	stimulating	

populations	of	genetically	identical	cells	and	measuring	the	aggregate	response.	

However,	such	population-based	measurements	may	obscure	the	idiosyncrasies	of	

individual	cells	and	therefore	suggest	deceptively	precise	input-output	

relationships.	Consequently,	signaling	pathways	have	been	viewed	as	the	finely	

tuned	circuitry	that	programs	the	cell	to	behave	in	a	predefined	manner	[25].	

Detailed	study	of	cellular	biochemistry	at	the	single-cell	level	now	show	that	cells	

responding	en	masse	have	quite	varied	behaviors	when	examined	individually	[26],	

raising	the	question	of	how	precisely	signaling	pathways	can	control	a	cell’s	actions	

[27].		

It	is	likely	that	under	most	circumstances,	cell	populations	constantly	diversify	their	

states,	which	is	indicative	of	individual	cells’	ability	to	adopt	functionally	distinct	states	

[28].	Thus,	there	is	an	uncertainty	in	signaling	outcomes,	and	responses	of	cells	

randomly	selected	from	a	population	are	unpredictable.	In	this	sense,	the	match	

between	the	environmental	input	and	the	cellular	output	can	no	longer	be	predefined	
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and	stereotypically	precise	[1],	which	hampers	the	ability	of	individual	cells	or	small	

cell	ensembles	to	make	decisions	in	a	fluctuating	environment,	and	leads	to	a	

fundamentally	different	view	toward	analyzing	signaling	systems.	Hence,	rather	than	

defining	and	using	seemingly	robust	and	sensitive	signaling	input-output	dependencies	

to	analyze	networks	and	cell	behavior,	we	should	instead	seek	to	learn	the	limits	to	

how	well	cell	signaling	can	enable	decision	making,	given	a	cell’s	uncertain	response	to	

changes	in	the	environment.	

Variability	in	cell	response	is	referred	to	as	“noise”	and	current	metrics	to	

characterize	noise	report	on	its	magnitude	but	do	not	quantify	how	the	noise	limits	

the	cell’s	decision-making	abilities	[6].	Indeed,	performance	of	a	signaling	network	

depends	on	more	than	just	its	underlying	chemistry.	For	instance,	signaling	may	be	

viewed	as	allowing	a	cell	to	“choose”	one	of	several	distinct	classes	of	behavior—a	type	

of	cellular	bet	hedging—which	can	improve	some	aspects	of	decision-making	but	

with	a	cost	of	increased	variability	[29].	Therefore,	a	new	“language”	may	be	needed	to	

understand	and	quantify	the	impact	of	noise	(variability)	on	a	cell’s	functionality.	

Mathematics	is	an	appropriate	language,	and	provides	theory	to	support	it.	Indeed,	

mathematics	has	already	been	adopted	to	understand	the	workings	of	another	type	of	

“noisy”	signaling	network,	the	nervous	system	[30].	Created	to	analyze	uncertainty	in	

human	communication,	“information	theory”	enables	the	limits	of	decision-making	

fidelity	to	be	rigorously	defined	and	measured	[31].	Conveniently,	its	general	

formulation	permits	analysis	of	many	complex	systems,	including	those	found	in	

biological	signaling	[32].	Within	this	theory	and	in	the	context	of	signaling,	
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information	is	quantified	as	the	uncertainty	in	cell	behavior	that	is	removed	by	

signaling	activity	(this	should	match	the	knowledge	gained	by	a	signaling	system	about	

the	environment).	The	amount	of	information	depends	on	both	the	amount	of	

variability	in	the	environment	(the	initial	level	of	uncertainty)	and	noise	in	the	signaling	

process	itself	(affecting	the	amount	of	uncertainty	remaining).	Extending	this	definition,	

we	can	also	determine	the	information	capacity	of	a	system,	which	is	the	maximum	

information	that	a	signaling	system	can	obtain	about	some	aspect	of	the	environment	

under	ideal	conditions.	This	capacity	is	an	intrinsic	property	of	the	signaling	system,	as	

much	as	the	underlying	chemistry,	in	that	it	is	the	key	determinant	of	achievable	

decision-making	fidelity	[22].	

As	an	example,	consider	a	signaling	pathway	whose	output	measures	the	concentration	

of	an	extracellular	ligand	(i.e.,	a	dose	response).	Signaling	noise	prevents	a	cell	from	

determining	the	precise	ligand	concentration.	However,	does	the	noise	also	prevent	a	

cell	from	resolving	different	concentrations	of	the	ligand,	and	if	so,	how	many	and	how	

accurately?	Information	theory	states	that	it	is	possible	to	use	the	noisy	signaling	

output	to	accurately	discriminate	different	input	doses	[22].	Furthermore,	the	number	

of	resolvable	concentrations	is	limited,	and	is	a	simple	function	of	the	pathway	capacity	

[23].	Alternatively,	if	mistakes	do	occur,	the	capacity	determines	the	minimum	amount	

of	error	that	a	cell	must	tolerate,	with	higher	capacity	unambiguously	allowing	for	

lower	error	[31].	Information	theory	allows	such	categorical	statements	without	

necessarily	requiring	detailed	specifics	of	the	signaling	network	organization	and	
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operation,	and	thus	can	be	used	to	analyze	the	capabilities	of	complex	and	incompletely	

characterized	biological	systems.	

Currently,	we	do	not	understand	the	decision-making	limits	of	the	vast	majority	of	

signaling	systems,	even	those	affected	by	variability.	Consequently,	the	factors	that	

affect	and	regulate	those	limits	are	also	generally	unknown.	Thus,	from	the	standpoint	

of	information	transfer,	it	is	essential	to	determine	the	capacities	of	these	signaling	

pathways	and	networks,	and	the	relationships	between	system	structure	and	capacity.	

For	instance,	information	lost	at	each	step	of	processing	should	prevent	information	

sources	and	destinations	from	being	separated	by	more	than	a	few	intermediates	[4,	

33].	Simultaneously,	it	is	often	necessary	to	integrate	multiple	pieces	of	information	

within	a	cell.	Both	of	these	considerations	drive	the	formation	of	so-called	small	world	

networks	that	are	widespread	in	biological	systems	and	other	networks,	in	which	a	

relatively	short	path	connects	any	two	signaling	nodes	[34].	Such	networks	are	

configured	so	that	multiple	signals	pass	through	central	nodes,	thereby	raising	the	

information	theoretic	question	of	how	the	signals	are	multiplexed	through	the	hub	so	as	

to	minimally	interfere	with	one	another	[35].	

Acquiring	information	typically	costs	the	cell	energy,	time,	or	opportunity,	so	a	

signaling	system	that	collects	more	information	than	is	necessary	or	ignores	

information	that	is	easily	obtained	wastes	valuable	resources.	Therefore,	under	

evolutionary	pressure,	it’s	expected	that	signaling	systems	are	optimally	matched	to	

the	sources	of	information	they	have	evolved	to	process.	Indeed,	examples	from	
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neuroscience	and	developmental	biology	show	that	biological	systems	usually	have	a	

capacity	that	is	minimally	sufficient	for	the	information	they	process	[36,	37].	

This	optimality	principle	can	answer	long-standing	questions	that	cannot	currently	be	

addressed	through	models	or	direct	experiments.	One	example	is	determining	which	of	

several	putative	aspects	of	environmental	input	(e.g.,	ligand	dose,	rate	of	dose	change,	

or	duration	of	ligand	presentation)	are	biologically	relevant.	Information-processing	

optimality	suggests	that	the	aspect	of	the	input	associated	with	a	higher	capacity	is	the	

more	pertinent	one.	This	concept	further	implies	that	the	conditions	that	maximally	

utilize	the	information	capacity	of	a	sensory	system	should	reflect	the	natural	

fluctuations	in	the	environment.	These	conditions	can	be	computed	from	controlled	

laboratory	observations,	enabling	a	form	of	“inverse	ecology”	that	is	sometimes	the	

only	feasible	way	to	gain	insight	into	a	cell’s	natural	surroundings	[38]	(Figure	2).		

Similar	arguments	can	be	used	to	infer	which	aspect	of	a	cell’s	response	to	an	

environmental	input	is	most	relevant	to	that	input	[39].		
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ABSTRACT	

In	many	developmental	systems,	multipotent	cells	measure	the	local	concentration	

of	a	morphogen,	convert	that	concentration	into	an	estimate	of	position,	and	thus	

control	differentiation	and	ultimate	cell	fate.	These	decisions	must	be	made	with	

sufficient	precision	for	an	organism	to	develop	properly,	placing	requirements	on	

how	accurately	an	individual	cell	or	nucleus	must	determine	the	local	gradient	

concentration.	Naturally	occurring	stochastic	variation	in	morphogen	gradients	

raises	the	question	of	how	accurately	developing	tissues	can	be	patterned	by	such	

instructive	inputs.	We	quantitatively	evaluated	the	levels	of	nuclear	Dorsal,	a	signal	

which	controls	Dorsal-Ventral	polarity	in	Drosophila	embryos,	in	hundreds	of	

individual	nuclei	and	at	multiple	developmental	time	points.	We	then	developed	a	
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new	method	to	decompose	various	sources	of	variability	in	the	Dorsal	levels	not	

requiring	multiple	reporters	or	detailed	dynamical	information.	This	analysis	

indicated	that	the	Dorsal	gradient	can	be	subject	to	three	distinct	sources	of	

variability,	which	nevertheless	permit	precise	patterning	and,	if	partially	accounted	

for,	may	allow	for	increased	robustness	of	the	developmental	process.		

INTRODUCTION	

Classical	theories	of	morphogenesis	propose	that	concentration	gradients	of	

extracellular	proteins	(known	as	morphogens)	define	spatially	distinct	domains	of	

gene	expression	and	cellular	differentiation	[11,	43-45].	In	Drosophila	development,	

the	Dorsal-Ventral	(D-V)	polarity	is	established	prior	to	gastrulation	by	the	graded	

nuclear	import	of	Dorsal	(Dl),	an	NF-κB	homologue.	During	nuclear	cycle	14,	cellular	

membranes	are	formed	around	nuclei,	isolating	cellular	Dl	content.	Three	primary	

regions	of	gene	expression	have	been	categorized	based	on	the	affinity	of	genes’	

enhancers	for	Dl,	which	roughly	correspond	to	the	dorsal	ectoderm,	the	neurogenic	

ectoderm,	and	the	mesoderm.	Furthermore,	during	this	cycle,	more	specific	regions	

of	gene	expression	arise,	with	at	least	six	distinct	regions	of	gene	expression	

patterns	having	direct	contributions	of	Dl	to	transcriptional	regulation	[11].	Because	

of	the	rarity	of	phenotypic	variation	in	the	fully	developed	organisms,	it	is	widely	

believed	that	embryonic	patterning	is	highly	precise	[44].	However,	this	notion	must	

be	reconciled	with	recent	observations	showing	marked	variability	in	morphogen	

distributions	both	between	individual	embryos	and	within	individual	embryos	[46,	

47,	48].	

To	understand	how	developmental	systems	operate	robustly	when	signaling	

variability	is	a	significant	factor,	it	is	important	to	both	quantify	the	extent	to	which	

variability	may	limit	signal	precision	and	to	identify	the	underlying	factors	which	

contribute	most	to	this	limitation.	One	convenient	way	to	achieve	this	is	to	precisely	

determine	the	information	content	of	the	morphogenic	input	[22],	which	can	help	

quantify	another	classical	concept	in	developmental	biology,	the	positional	
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information	[24,	49].	In	particular,	the	information	capacity	of	the	morphogen	

gradient,	can	quantify	the	maximum	amount	of	positional	information	that	may	be	

conveyed	through	the	mechanisms	which	link	nuclear	position	to	the	local	

concentration	of	transcription	factors	and	hence	to	cell	differentiation	fate.	The	

information	capacity	metric	thus	summarizes	how	the	stochastic	variability	in	the	

morphogen	gradient	ultimately	limits	the	accuracy	of	the	size	and	positioning	of	

different	cell	fate	regions.	As	such,	it	has	previously	been	applied	in	the	

characterization	of	anterior-posterior	patterning	in	Drosophila	embryos	[49].		

While	the	information	capacity	provides	a	useful	metric	to	measure	the	capability	of	

a	morphogen,	it	does	not	reveal	anything	about	the	underlying	sources	of	signal	

variability	or	noise.	Noise	decomposition	methods	are	frequently	used	to	separate	

noise	into	components	that	are	extrinsic	and	intrinsic	to	the	particular	biochemical	

process	[8,	38,	50].	Many	of	these	methods	measure	correlations	between	different	

fluorescent	tags	targeting	the	same	molecule	[51],	which	can	be	cumbersome	in	

intact	developing	systems.	Other	methods	have	sought	to	distinguish	between	

sources	of	noise	by	assuming	a	distribution	for	the	intrinsic	noise	[52].	Such	

assumptions	are	inherently	limiting.	In	this	paper,	we	develop	a	method	of	noise	

decomposition	which	neither	required	the	development	of	multiple	reporters	nor	

placed	assumptions	on	the	structure	of	the	noise.	By	expanding	the	mathematical	

tools	used	in	the	decomposition	of	gene	expression	noise	to	bilaterally	symmetric	

biological	systems,	we	can	investigate	how	the	different	components	impact	

positional	information	and	ultimately	limit	patterning	accuracy.	

We	combined	this	new	noise	decomposition	method	with	information	theoretic	

measures	to	investigate	D-V	polarization	in	Drosophila	embryos.	By	leveraging	

symmetry	in	the	spatial	relationship	between	position	and	Dl,	we	characterized	the	

structure	within	the	variability	of	Dl	distribution,	identifying	at	least	three	distinct	

sources	of	noise.	Using	information	capacity	as	a	metric,	we	evaluated	the	relative	

impact	of	these	different	noise	components	on	patterning	accuracy	gaining	insight	

into	how	Drosophila	embryos	may	cope	with	the	inherent	developmental	noise.	In	
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particular,	we	found	that	the	positional	information	available	in	the	Dl	gradient	is	at	

least	sufficient	and	might	substantially	exceed	the	information	required	for	

unambiguous	cell	fate	determination,	thus	ensuring	robustness	of	the	patterning	

process.	

RESULTS	

HIGH-THROUGHPUT	MEASUREMENT	OF	VARIABILITY	IN	NUCLEAR	DORSAL	

In	Drosophila,	D-V	axis	development	is	regulated	by	nuclear	transport	of	the	

transcription	factor	Dorsal	(Dl),	an	NF-κB	homologue	[53-55].	A	graded	distribution	

of	Toll	receptor	activation	results	in	the	degradation	of	the	Dl	inhibitor	Cactus,	

freeing	Dl	to	form	a	gradient	and	enter	the	nucleus	[48,	56].	Individual	nuclei	

determine	their	position	in	the	embryo	according	to	the	amount	of	nuclear	Dl,	and	

express	genes	that	regulate	differentiation	in	a	manner	ultimately	dependent	on	

nuclear	Dl	concentration	(Figure	3C)	[45,	57,	58].	The	levels	of	nuclear	Dl	define	

three	fate	regions	termed	Types	I,	II,	and	III,	which	roughly	correspond	to	the	future	

mesoderm,	neurogenic	ectoderm,	and	dorsal	ectoderm	regions	[57].	We	sought	to	

explore	whether	and	to	what	degree	the	variability	in	Dl	gradient	would	limit	the	

corresponding	maximal	positional	information	and	thus	compromise	the	patterning	

capability	of	the	Dl	gradient.	To	achieve	this,	we	first	determined	and	characterized	

the	magnitude	and	structure	of	Dl	variability	within	and	across	multiple	Drosophila	

embryos.	
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embryos,	we	observed	differences	in	the	amplitude	and	width	of	the	gradient	

(Figure	4A,B).	Within	individual	embryos,	we	also	examined	variability	of	the	Dl	

profiles	along	symmetric	halves	of	the	sections	examined.	We	found	these	intra-

embryonic	Dl	distributions	to	be	highly	overlapping,	but	we	did	observe	substantial	

local	differences	when	comparing	Dl	concentrations	at	the	same	distance	along	the	

mirror	sides	of	the	Dl	gradient	(Figure	4A).	These	observations	allowed	us	to	

separate	the	total	observed	variability	in	Dl	levels	into	the	“symmetric”	and	

“asymmetric”	noise	components	in	a	manner	analogous	to	extrinsic-intrinsic	

decomposition	of	gene	expression	noise	([8],	SI	Text).	Symmetric	noise	is	

mathematically	analogous	to	extrinsic	noise,	although	in	this	setting	it	represents	

variability	that	equally	affects	the	mirror	sides	of	the	Dl	gradients.	Asymmetric	noise	

is	mathematically	analogous	to	intrinsic	noise,	although	here	it	affects	one	half	of	the	

Dl	gradient	differently	than	the	other	half	within	the	same	embryo.		

We	performed	this	decomposition	at	multiple	positions	around	the	circumference	of	

the	embryo	(Figure	4C)	and	thereby	examined	how	each	noise	component	scaled	as	

a	function	of	Dl	concentration	(Figure	4D).	We	found	that	the	relationships	between	

the	Dl	concentration	and	both	asymmetric	and	symmetric	noise	components	were	

non-linear	and	non-monotonic.	In	particular,	both	total	and	symmetric	noise	

displayed	the	maximum	levels	at	an	intermediate	Dl	concentration,	with	a	minor	

peak	also	found	at	the	maximum	Dl	levels.	On	the	other	hand,	the	asymmetric	noise	

component	displayed	monotonic	scaling	with	the	Dl	levels,	up	to	the	maximal	

concentrations	of	Dl,	where	it	displayed	a	slight	decrease.	Overall,	the	symmetric	

noise	component	was	dominant	across	most	of	the	embryo,	constituting	the	major	

contribution	to	the	total	Dl	variability.		
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the	structure	of	the	symmetric	noise	component.	Indeed,	if	the	position	axis	was	

rescaled	such	that	the	half-maximal	Dl	level	occurred	at	the	same	position	for	each	

embryo	(the	gradient	was	“width-normalized”),	the	second	peak	in	symmetric	noise	

was	eliminated	without	affecting	the	profile	of	asymmetric	noise	(Figure	5B,G,L).	

This	suggests	that	variation	in	gradient	width	(here,	defined	as	the	distance	between	

the	two	points	where	the	gradient	is	reduced	by	half)	is	an	important	source	of	the	

symmetric	(and	total)	noise	(details	on	the	methods	of	normalization	are	provided	

in	Supplemental	Material).		
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(“amplitude-normalized”),	the	second	peak	in	the	symmetric	noise	distribution	

remained	unchanged	(Figure	5C,H,M),	but	the	first	peak	at	the	position	of	the	

maximal	Dl	levels	was	completely	removed	(Figure	5M).	The	first	peak	was	not	

affected	when	the	Dl	distributions	were	width-normalized	(Figure	5L).	

Furthermore,	when	the	gradients	were	simultaneously	amplitude-	and	width-

normalized,	the	symmetric	noise	was	almost	completely	removed,	whereas	

asymmetric	noise	again	was	unaffected	(Figure	5D,I,N).	Overall,	these	results	

suggested	that	the	symmetric	noise	component	is	primarily	defined	by	two	sources	

of	variability:	the	amplitude	and	the	width	of	Dl	gradients	across	different	embryos	

(Figure	5P).	Although	the	sources	of	amplitude	and	width	variability	could	be	

stochastic,	they	could	also	reflect	uncertainty	inherent	in	the	experimental	

measurement,	as	explored	below.	

The	lack	of	effect	of	width	and	amplitude	normalization	on	the	distribution	of	

asymmetric	noise	suggested	that	it	had	a	more	fundamental	nature,	inherent	in	the	

processes	leading	to	the	formation	of	the	Dl	gradient.	To	further	explore	its	nature,	

we	tested	whether	it	would	display	a	stochastic	distribution,	assuming	that	it	may	

be	Gaussian	in	nature.	To	accomplish	this,	we	simulated	embryos	by	randomly	

drawing	Dl	values	from	a	Gaussian	distribution	with	position-specific	mean	taken	

from	experimental	data	(in	Figure	5F)	and	position-specific	variance	equal	to	the	

observed	asymmetric	noise	(in	Figure	5K).	The	resulting	noise	distribution	was	

completely	coincident	with	the	experimentally	observed	asymmetric	noise	(Figure	

5E,J,O),	suggesting	that	it	indeed	had	a	simple	stochastic	nature,	providing	

important	fundamental	limitations	on	the	precision	of	Dl-mediated	D-V	patterning.	

EFFECT	OF	TEMPORAL	DORSAL	DYNAMICS	ON	NOISE	PROFILES	

We	next	explored	potential	sources	of	variability	leading	to	the	symmetric	noise	

component.	One	such	source	can	be	the	dynamics	of	the	Dl	gradient	over	the	course	

of	the	embryo	patterning,	particularly	during	cell	cycle	14,	while	the	embryo	is	

undergoing	significant	changes,	transitioning	most	of	its	nuclei	from	a	syncytium	to	

individual	cells	[10,	60-62].	The	pool	of	the	embryos	we	sampled	for	the	analysis	can	
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be	somewhat	asynchronous,	suggesting	that	an	extra	source	of	information	about	

the	developmental	stage	of	the	individual	embryos	can	help	explain	the	observed	

variability.	To	investigate	how	this	process	affects	the	noise,	we	thus	labeled	

embryos	from	three	new	experiments	with	time	points	based	on	the	length	of	

membrane	invagination	achieved	at	the	point	of	staining	[63].	We	then	divided	

embryos	in	to	three	time	bins,	ensuring	there	were	an	equal	number	of	embryos	in	

each	bin.	Repeating	our	analysis	of	noise	in	the	embryos,	(Figure	6a)	we	found	that	

Dl	levels	indeed	exhibited	temporal	dynamics,	which	were	reflected	in	the	noise	

profiles.	In	particular,	as	developmental	time	progressed,	the	first	peak	of	the	

symmetric	noise	component	(corresponding	to	amplitude	variability)	was	reduced,	

whereas	the	second	peak	(corresponding	to	the	variability	in	the	gradient	width)	

was	apparently	unaffected.	This	was	confirmed	by	decomposition	of	the	symmetric	

noise	into	amplitude	and	width	components,	by	the	normalization	procedures	

described	above.	The	results	suggested	that,	indeed,	the	evolution	of	the	Dl	gradient	

primarily	affects	the	amplitude	but	not	gradient	width	variability.	The	asymmetric	

noise	component	was	also	not	affected	by	the	temporal	dynamics.	In	summary,	

these	results	suggest	that	the	temporal	dynamics	of	Dl	gradient	is	accompanied	by	a	

reduction	in	the	degree	of	variability	of	the	maximum	Dl	level,	but	not	the	variability	

of	the	gradient	width.	
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signaling	pathway	or	transcriptional	network.	Also	known	as	the	information	

capacity,	this	value	determines	number	of	distinguishable	functional	outcomes	

informed	by	the	signaling	event	[21-23].	In	other	words,	the	information	capacity	

places	limits	on	how	accurately	a	biological	entity	(a	cell,	a	nucleus,	a	collection	of	

cells	or	an	organism)	can	discriminate	between	different	input	signals,	and	thus	how	

many	distinct	responses	it	can	achieve	based	on	this	information.	We	therefore	

analyzed	the	information	capacity	of	Dl-mediated	patterning,	by	considering	the	

positional	information	capacity	provided	by	the	nuclear	Dl	concentration.	This	

capacity	quantitatively	evaluates	how	accurately	each	cell	can	use	its	local	Dl	level	to	

determine	its	position	within	the	embryo	in	order	to	adopt	the	spatially	appropriate	

differentiation	fate.	Note	that	this	analysis	is	independent	of	the	mechanism	used	by	

the	cell	(e.g.,	the	enhancers	of	genes	that	are	differentially	sensitive	to	different	Dl	

levels)	to	read	out	the	Dl	concentration.	
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E)	Capacity	of	the	positional	information	of	the	Dl	gradient	calculated	at	the	different	
developmental	timepoints	shown	in	Fig.	4,	calculated	for	C)	non-normalized	Dl	
distributions,	D)	amplitude-normalized	Dl	distributions,	E)	width-normalized	Dl	
distributions.	

	

DORSAL	SIGNAL	WITHOUT	SYMMETRIC	NOISE	COULD	PROVIDE	ADDITIONAL	INFORMATION	

Symmetric	noise	reflects	the	inter-embryo	variability	and,	as	suggested	above,	

might	reflect	experimental	uncertainty	about	the	timing	of	the	measurement	or	the	

exact	D-V	axis	position	of	the	Dl	gradient	plane.	On	the	other	hand,	asymmetric	

noise	component	is	embryo-specific	and	reflects	the	intrinsic	stochasticity	of	Dl	

gradient	formation.	Therefore,	the	asymmetric	noise	component	can	impose	a	

fundamentally	more	restrictive	limitation	on	the	precision	of	Dl-mediated	

patterning.	It	can	thus	be	of	interest	to	consider	how	the	information	content	of	Dl	

signal	may	change	if	symmetric	noise	components	are	individually	or	jointly	

“removed”	from	the	total	noise	affecting	Dl	gradients.	Interestingly,	elimination	of	

the	“amplitude	noise”	component	did	not	have	a	strong	effect	on	the	information	

capacity,	yielding	1.65±0.11	bits	(Figure	8A).	On	the	other	hand,	removal	of	the	

noise	due	to	variability	in	the	gradient	width	resulted	in	a	greater	information	

capacity	of	1.99±0.08	bits.	An	argument	in	favor	of	this	possibility	is	that	this	

component	of	noise	might	be	naturally	corrected	for	is	that	there	is	an	apparent	

tolerance	to	the	variability	in	the	Dl	gradient	width	along	the	anterior-posterior	axis,	

at	this	developmental	stage,	in	spite	of	variable	Dl	gradient	width	[64].		

Removal	of	both	gradient	amplitude	and	width	noise	components	similarly	

increases	the	morphogenic	information	capacity	to	1.99±0.06	bits.	This	is	the	same	

as	the	value	yielded	by	the	removal	of	the	gradient	width	uncertainty	alone,	

consistent	with	no	increase	in	the	information	capacity	following	normalization	of	

the	gradient	amplitude.	We	have	also	considered	complete	elimination	of	(or,	

compensation	for)	the	symmetric	noise	component	(see	above,	and	Figure	5E,J,O).	

Interestingly,	the	information	capacity	was	very	sensitive	to	the	removal	of	the	
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residual	symmetric	noise	not	accounted	for	by	either	gradient	amplitude	or	gradient	

width	variabilities,	reaching	2.45±0.19	bits	(Figure	8A).	Finally,	we	performed	a	

similar	analysis	of	the	information	capacity	between	Dl	and	the	nuclear	positions	at	

three	developmental	time	points	(Figure	8C-E),	finding	that	the	natural	temporal	

variation	of	the	amplitude	noise	made	no	significant	difference	for	the	value	of	the	

information	capacity.	This	result	was	again	in	line	with	the	finding	that	amplitude	

noise	does	not	have	a	substantial	effect	on	information	capacity.	Overall,	our	results	

argue	that	symmetric	noise	does	have	a	considerable	effect	on	the	information	

capacity	of	the	Dl	gradient,	with	the	exception	of	its	amplitude	variability	

component,	whose	effect	is	negligible.		

ADDITIONAL	INFORMATION	MAY	SERVE	AS	AN	ENVIRONMENTAL	BUFFER	

As	shown	above,	the	amount	of	information	conveyed	by	Dl	may	be	considerably	

higher	than	that	required	to	establish	the	three	primary	regions	of	gene	expression,	

particularly	if	subject	only	to	asymmetric	noise.	We	considered	how	this	ostensibly	

excessive	information	might	affect	the	robustness	of	Dl	mediated	gradient	

patterning.	In	certain	scenarios	embryos	may	be	required	to	develop	in	an	

environment	with	factors,	such	as	variable	temperature,	which	may	increase	the	

variability	of	the	patterning	signals,	including	the	graded	distribution	of	nuclear	Dl.	

We	assume	that	the	resulting	variability	would	be	stochastic	in	nature,	and	thus	

primarily	increase	asymmetric	noise.	To	examine	what	level	of	additional	noise	

might	compromise	the	ability	to	induce	appropriate	D-V	patterning,	we	simulated	Dl	

gradients	with	the	noise	profiles	previously	determined	for	each	scenario	(Figure	

5K),	but	with	different	levels	of	additional	asymmetric	noise.	Different	levels	of	

asymmetric	noise	were	added	at	a	constant	level	across	the	simulated	gradients.	We	

then	examined	the	noise	levels	at	which	the	information	capacity	drops	below	the	

threshold	required	to	robustly	induce	three	patterning	zones	(Figure	8B).	We	found	

that,	relative	to	non-normalized	gradients,	there	was	a	significant	resilience	to	the	

added	noise	that	can	be	introduced,	particularly	in	the	case	of	reduced	or	eliminated	

variability	in	the	gradient	width.	This	result	argues	that	intra-embryonic	variability	
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in	Dl	levels	still	permits	substantial	robustness	of	D-V	patterning	to	factors	that	can	

reduce	the	precision	of	the	chemical	gradient	formation.	

DISCUSSION	

Although	much	has	been	done	to	associate	positional	information	with	the	

instructive	effects	of	morphogen	gradients,	only	recently	have	attempts	been	made	

to	analyze	how	noise	in	morphogen	distribution	can	affect	the	amount	of	positional	

information	and	thus	the	fidelity	of	patterning	of	developing	tissues	[24,	49].	Here,	

we	for	the	first	time	addressed	this	question	in	the	context	of	DV	patterning	in	

Drosophila	by	a	well	established	morphogen,	Dorsal.	We	developed	a	new	technique	

allowing	us	to	determine	the	structure	of	variability	in	the	Dl	gradients	within	an	

experimentally	observed	population	of	Drosophila	embryos.	We	found	that	this	

variability	(or	noise)	has	two	major	components:	the	dominant	symmetric	one,	

affecting	both	sides	of	the	Dl	gradient	in	a	similar	way,	and	thus	primarily	stemming	

from	inter-embryonic	differences,	and	the	asymmetric	one,	which	affects	two	sides	

of	the	Dl	gradient	in	the	same	embryo	in	an	uncorrelated	fashion,	and	is	thus	

essentially	intra-embryonic	in	origin.	These	two	components	are	analogous	to	

commonly	used	extrinsic	(corresponding	to	symmetric)	or	intrinsic	(corresponding	

to	asymmetric)	noise	components,	with	respect	to	Dl	gradient	formation	[65].	The	

symmetric	noise	displayed	additional	structure,	containing	identifiable	sub-

components	that	could	be	ascribed	to	variance	in	the	amplitude	and	width	of	Dl	

gradient.	The	presence	of	this	structured	variability	suggests	that	positional	

information	cannot	be	infinitely	precise.	It	may	be	sufficient	to	establish	a	pattern	of	

limited	complexity,	but	it	may	be	too	constrained	by	noise	to	unambiguously	define	

more	refined	patterns	of	gene	expression	in	a	consistent	fashion,	either	across	

embryonic	population	or	on	two	sides	of	a	single	embryo.	Importantly,	our	results	

nevertheless	suggest	that	even	in	the	presence	of	total	(both	symmetric	and	

asymmetric)	noise,	the	positional	information	is	sufficient	for	robustly	defining	

three	zones	of	distinct	fates	usually	assumed	to	be	completely	specified	by	Dl,	i.e.,	

presumptive	mesoderm,	neurogenic	ectoderm,	and	dorsal	ectoderm.	
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The	noise	structure,	revealed	by	our	analysis,	suggests	that	the	information	can	in	

fact	be	higher	than	the	simple	estimate	based	on	the	total	noise,	particularly	if	some	

of	the	components	of	the	symmetric	noise	are	a	part	of	an	experimental	rather	than	

endogenous	variability,	or	can	be	corrected	for	during	embryonic	development.	

Indeed,	we	found	that	one	of	the	components	of	the	symmetric	noise,	the	amplitude	

noise,	can	decrease	over	the	developmental	time,	which	interestingly	coincides	with	

the	reported	increase	in	the	amplitude	of	the	Dl	gradient	[61].	This	finding	suggests	

that	Dl	variability	can	be	dynamically	controlled	and	that	a	precise	“time	tagging”	of	

the	experimental	data	needs	to	be	performed	for	unambiguous	evaluation	of	this	

noise	component.	However,	we	also	found	that	the	amplitude	noise	component	did	

not	strongly	affect	the	positional	information,	mitigating	the	effect	of	its	correction.		

The	other	component	of	the	symmetric	noise	stems	from	the	uncertainty	in	the	

gradient	width.	Our	analysis	reveals	that	this	noise	component	is	independent	of	the	

developmental	time,	again	consistent	with	previously	observed	constancy	of	the	

gradient	width	itself	over	the	same	developmental	period	[61].	However,	the	width	

of	the	Dl	gradient	varies	along	the	anteroposterior	axis,	as	does	the	embryo	

circumference.	We	found	that	this	component	of	asymmetric	noise	had	a	strong	

effect	on	positional	information.	However,	robustness	of	the	developmental	

patterns	to	the	Dl	gradient	variation	along	the	A-P	axis	suggests	that	either	the	

positional	information	is	sufficient	to	overcome	this	component	of	noise	or	that	

there	are	corrective	mechanisms	allowing	embryos	to	not	be	affected	by	it.		

Overall,	our	data	argue	that,	although	the	symmetric	noise	is	indeed	dominant,	it	

may	reflect	inherent	experimental	uncertainty	of	the	embryo	analysis,	as	it	may	be	

hard	to	ensure	the	consistency	of	the	developmental	time	or	A-P	position	across	

multiple	embryos	within	a	large	population.	Conveniently,	our	method	allows	to	

separate	this	(potentially	experimental)	source	of	variability,	and	focus	on	the	

asymmetric	noise,	intrinsic	to	nuclear	Dl	gradient	formation.	This	component	

constitutes	the	most	fundamental	constraint	on	the	precision	of	developmental	

patterning	by	Dl	gradient.		
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The	potential	for	correction	of	the	symmetric	noise	allows	us	to	question	whether	

the	more	fundamental	constraint	of	the	asymmetric	noise	can	still	impose	serious	

limitations	on	the	patterning	precision.	We	found	that	in	this	case,	the	Dl	gradient	

contains	more	information	than	needed	to	define	the	3	primary	fates,	potentially	

required	to	ensure	robust	patterning	under	less	optimal	developmental	conditions.	

Developmental	outcomes	are	known	to	be	robust	to	environmental	variations,	e.g.,	

in	temperature,	and	also	varying	dosages	of	the	morphogen,	Dl	[66,	67].	Such	

environmental,	or	genetic,	variations	may	increase	the	uncertainty	or	noise	in	the	

morphogen	distribution	or	the	downstream	signaling	networks,	requiring	higher	

information	capacity	for	a	robust	outcome.	Here,	we	show	that	asymmetric	noise	

can	indeed	be	substantially	increased	without	compromising	the	necessary	

positional	information,	accounting	for	possible	high	inherent	tolerance	of	the	

developmental	outcomes	to	environmental	perturbations.		

In	summary,	the	method	proposed	in	this	study	allows	one	to	determine	the	

detailed	structure	of	variability	in	the	morphogen	distribution	from	static	snapshots	

of	Drosophila	embryos,	and	to	relate	different	sources	of	the	variability	to	

identifiable	processes	in	the	dynamical	evolution	of	morphogen	distribution.	

Furthermore,	the	information	based	analysis	can	help	interpret	the	role	of	this	

variability	(or	noise)	in	limiting	the	capacity	of	morphogen	gradients	to	establish	

regions	of	differential	gene	expression	and	cell	differentiation.	Given	commonality	

of	organisms	exhibiting	bilateral	symmetry,	this	method	can	find	very	wide	

applicability.	Specifically,	this	analysis	could	be	applied	to	other	examples	of	

morphogenic	control	that	display	left-right	symmetry,	e.g.	the	recent	analysis	of	the	

wing	vein	pattern	in	Drosophila	[68].	Another	attractive	feature	of	the	method	

presented	here	is	its	ability	to	separate	the	aspects	of	variability	potentially	subject	

to	experimental	noise	(incorporated	into	the	symmetric	noise	component)	from	

intrinsic	variability,	based	on	the	relatively	simple	measurement	technique.	Overall,	

this	method	can	help	put	positional	information	on	a	more	quantitative	footing	

through	quantitative	interpretation	of	the	noise	sources,	both	natural	and	
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measurement-related,	and	by	more	precise	determination	of	robustness	of	

morphogen-specified	tissue	pattering	to	environmental	uncertainties.		

MATERIALS	AND	METHODS	

FLY	STRAINS	

OreR	flies	were	used	for	all	experiments.	Flies	were	cultured	and	crossed	on	yeast-

cornmeal-molasses-malt	extract	agar	medium	at	22°C.		

IMMUNOSTAINING	AND	MICROSCOPY	

Mouse	anti-Dl	(1:100	monoclonal	antibody	from	Developmental	Studies	Hybridoma	

Bank)	was	used	as	the	primary	antibody.	DAPI	(4’,6-diamidino-2-phenylindole,	

1:10,000;	Vector	Laboratories)	was	used	to	stain	the	nuclei,	and	Alexa	Fluor	

conjugates	(1:500;	Invitrogen)	were	used	as	secondary	antibodies.	Imaging	was	

performed	with	a	Nikon	A1-RS	confocal	microscope	with	a	Nikon	60x	1.4	Plan-Apo	

oil	objective.	High-resolution	images	(1024x1024	pixels,	12	bit	depth)	were	

obtained.	All	images	were	collected	at	the	focal	plane	~85	um	from	either	the	

anterior	or	posterior	pole.	Embryos	were	imaged	in	90%	glycerol	solution.	

IMAGE	ANALYSIS	

DAPI	image	analysis	to	identify	nuclear	boundaries	was	performed	using	custom	

Matlab	software	adapted	from	[69].	The	perimeter	is	identified	by	thresholding	the	

DAPI	image	channel	and	identifying	the	largest	object	in	the	image.	The	maximum	

value	in	the	DAPI	channel	is	found	along	10,000	line	segments	normal	to	and	equally	

spaced	along	the	embryo	perimeter.	A	moving	average	provides	an	adaptive	

threshold,	and	local	minima	are	initial	guesses	to	nuclei	boundaries.	(Figure	10a).	

These	boundaries	are	superimposed	on	the	DAPI	image	(Figure	10b)	and	a	

watershed	algorithm	is	applied	to	identify	the	outlines	of	individual	nuclei	(Figure	

10c).	Erroneously	identified	nuclei	are	filtered	out	on	the	basis	of	candidate	nuclei	

having	outlier	values	of	width,	height,	width/height	ratio,	and	the	angle	of	candidate	
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nuclei’s	major	axis	relative	to	the	perimeter.	Dl	levels	are	reported	as	average	pixel	

intensity	of	Dl	immunofluorescence	within	each	nucleus,	and	position	along	the	

embryo	circumference	is	determined	by	the	closest	point	along	the	embryo’s	

perimeter	to	the	nuclei’s	centroids	(Figure	10d,e).	Each	embryo’s	profile	was	fit	to	a	

Gaussian	curve,	and	the	center	of	the	fit	was	set	as	the	most	ventral	point	of	the	

embryo	(depicted	as	position	0	in	graphs).	Embryos	where	fewer	than	30	nuclei	

could	be	automatically	identified	were	omitted	from	further	analysis.	

ANALYSIS	OF	THE	NOISE	STRUCTURE	OF	DL	GRADIENTS	

Amplitude	Normalization:	For	each	two-sided	embryo	(positions	ranging	from	-0.5	

to	0.5),	a	moving	average	was	used	to	identify	the	maximum	value	of	Dl	signal	for	

each	embryo.	Dl	values	for	all	embryos	were	multiplied	by	the	mean	of	all	maximum	

values,	and	divided	by	their	respective	maximum	values,	resulting	in	embryos	with	

equal	maximum	Dl	values.	Width	Normalization:	For	each	embryos,	the	two	points	

where	an	embryonic	Dl	distribution	crossed	50%	of	its	maximum	(denoted	as	t),	

were	labeled	Li	and	Ri,	yielding	the	Dl	gradient	width	estimate:	wi	=	Li	–	Ri.	Positions	

of	nuclei	such	thate	Li	≤	pos	≤	Ri	were	multiplied	by	the	value	of	meani(wi)	/	wi.	The	

postions	of	the	nuclei	with	Dl	<	t	and	pos	<	0	were	updated	by	applying	pos	=	(pos	+	

0.5)	*	wi	/	meani(wi)	–	0.5.	The	postions	of	the	nuclei	with	pos	<	Li	were	updated	by	

applying	pos	=	(pos	+	0.5)	*	wi	/	meani(wi)	–	0.5.	The	postions	of	the	nuclei	with	pos	<	

Li	were	updated	by	applying	pos	=	(pos	-	0.5)	*	wi	/	meani(wi)	+	0.5.	This	maintains	

embryos	with	positions	ranging	from	-0.5	to	0.5.	

SUPPLEMENTAL	MATERIAL	

MATHEMATICAL	ANALYSIS	OF	THE	SYMMETRIC	AND	ASYMMETRIC	NOISE	COMPONENTS	

We	consider	L	and	R	to	be	measurements	of	a	spatially	symmetric	signal	

characterizing	a	stochastic	process	such	that	

L = 𝑓 + 𝛾! + 𝛾!,!
𝑅 = 𝑓 + 𝛾! + 𝛾!,!

	



	

36	

We	assume	that	f	is	the	deterministic	part	of	the	underlying	signal	constituting	

symmetrically	identical,	mirror	parts	of	L	and	R.	𝛾!	is	a	single	random	variable	value	

which	affects	both	L	and	R,	and	𝛾!,!	and	𝛾!,! 	are	random	values	specific	to	L	and	R	

values	respectively.	We	assume	that	all	three	random	values	have	zero	mean,	that	

all	three	are	independent	of	each	other,	and	that	𝛾!,!	and	𝛾!,! 	are	identically	

distributed.	Based	on	the	observations	of	L	and	R,	it	is	then	straightforward	to	

determine	the	variance	of	the	random	values:	

Cov 𝐿,𝑅 = Cov 𝑓 + 𝛾! + 𝛾!,! , 𝑓 + 𝛾! + 𝛾!,!
= Cov 𝛾! + 𝛾!,! , 𝛾! + 𝛾!,!
= Var 𝛾! + Cov 𝛾!, 𝛾!,! + Cov 𝛾!, 𝛾!,! + Cov 𝛾!,! , 𝛾!,!
= Var 𝛾! = 𝜎!!

	

Cov 𝐿,𝑅 − 1 2 Var 𝐿 + Var(𝑅) = Var 𝛾! − 1 2 Var 𝐿 + Var(𝑅)

= Var 𝛾! − 1 2
2Var 𝛾! + Var 𝛾!,! + Var 𝛾!,! +

Cov 𝛾!, 𝛾!,! + Cov 𝛾!, 𝛾!,!
= 1

2 Var 𝛾!,! + Var 𝛾!,!
= Var 𝛾!,! = 𝜎!,!! = 𝜎!,!!

	

	

ANALYSIS	OF	NOISE	STRUCTURE	BY	VARIOUS	NORMALIZATION	METHODS	

Operations	are	all	performed	on	two-sided	embryos,	with	nuclear	positions	pre-

normalized	to	range	between	0	and	1,	with	the	peak	Dl	located	at	the	position	0.	See	

below	for	the	details	of	the	nuclear	position	analysis	and	the	normalization	of	this	

position	(section	III).	

Steps	for	amplitude	normalization:	

-		 For	each	embryo	i,	find	the	max	of	a	moving	average	mi	

- For	each	embryo	i,	update	Dl	values	by	multiplying	by	meani	(mi)	/	mi	

Steps	for	width	normalization:	
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- Create	moving	average	using	all	nuclei	

- Identify	threshold	t	as	half	the	max	of	the	moving	average	

- For	each	embryo	i,	find	the	width	wi	

o Find	leftmost	(Lindexi)	and	rightmost	(Rindexi)	nuclei	with	Dl	values	>	

t	

o Use	linear	interpolation	of	3	nuclei	Lindexi-1,	Lindexi	,	Lindexi+1	to	

determine	position	(Li)	where	profile	crosses	t.	Repeat	to	find	Ri	

o Set	wi	=	Li	-	Ri	

- For	each	embryo	i,	update	nuclei	position	values	

o For	nuclei	with	Dl	values	>	t:		

▪ pos	=	(pos	–	0.5)	*	mean(w)	/	wi	+	0.5	

o For	nuclei	on	left	with	Dl	values	<	t:	

▪ pos	=	pos	*	(0.5	–	mean(w)/2)	/	(0.5	–	wi/2)	

o For	nuclei	on	right	with	Dl	values	<	t:	

▪ pos	=	1.0	-	((1.0	–	pos)	*	(0.5	–	mean(w)/2)	/	(0.5	–	wi/2))	

For	amplitude	&	width	normalization,	amplitude	steps	are	performed	first.		

NUCLEAR	POSITION	MEASUREMENTS	

After	assigning	points	on	the	circumference	positions	from	0	to	10,000,	nuclei	were	

assigned	positions	based	on	their	centroid’s	closest	point	on	the	circumference.	To	

ensure	that	there	was	no	effect	from	this	normalized	measurement,	we	reanalyzed	a	

data	set	by	assigning	nuclei	positions	based	on	an	absolute	distance	around	the	

circumference.	For	a	comparable	analysis,	we	then	rescaled	all	embryo	positions	so	

that	the	average	maximum	position	was	10,000.	We	used	normalized	positioning	as	
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a)	

	

b)	 	 c)	 	

d)	 	 e)	 	

FIGURE	10:	QUANTIFICATION	OF	THE	DL	SIGNALS		

a)	The	perimeter	and	raw	measurement	of	DAPI	are	identified	using	custom	Matlab	
software	as	described	in	[69].	An	adaptive	threshold	is	then	applied	to	find	
approximate	nuclei	borders.	B)	These	borders	are	superimposed	on	the	DAPI	image.	C)	
a	watershed	algorithm	is	applied	to	the	modified	DAPI	image	to	identify	the	outlines	of	
nuclei.	D)	After	filtering	erroneously	identified	nuclei	based	on	unusual	width,	height,	
width/height	ratio,	and	angle	relative	to	the	perimeter	using	manually	selected	values.	
E)	Dl	levels	are	reported	as	average	pixel	intensity	within	nuclei,	and	position	is	based	
on	the	point	on	the	perimeter	nearest	the	nuclei’s	centroid.	
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Chapter 4 CELL-CELL	COMMUNICATION	ENHANCES	THE	CAPACITY	OF	

CELL	ENSEMBLES	TO	SENSE	SHALLOW	GRADIENTS	DURING	

MORPHOGENESIS	 
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ABSTRACT	 

Collective	cell	responses	to	exogenous	cues	depend	on	cell-cell	interactions.	In	

principle,	these	can	result	in	enhanced	sensitivity	to	weak	and	noisy	stimuli.	

However,	this	has	not	yet	been	shown	experimentally,	and,	little	is	known	about	

how	multicellular	signal	processing	modulates	single	cell	sensitivity	to	extracellular	

signaling	inputs,	including	those	guiding	complex	changes	in	the	tissue	form	and	

function.	Here	we	explored	if	cell-cell	communication	can	enhance	the	ability	of	cell	

ensembles	to	sense	and	respond	to	weak	gradients	of	chemotactic	cues.	Using	a	
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combination	of	experiments	with	mammary	epithelial	cells	and	mathematical	

modeling,	we	find	that	multicellular	sensing	enables	detection	of	and	response	to	

shallow	Epidermal	Growth	Factor	(EGF)	gradients	that	are	undetectable	by	single	

cells.	However,	the	advantage	of	this	type	of	gradient	sensing	is	limited	by	the	

noisiness	of	the	signaling	relay,	necessary	to	integrate	spatially	distributed	ligand	

concentration	information.	We	calculate	the	fundamental	sensory	limits	imposed	by	

this	communication	noise	and	combine	them	with	the	experimental	data	to	estimate	

the	effective	size	of	multicellular	sensory	groups	involved	in	gradient	sensing.	

Functional	experiments	strongly	implicated	intercellular	communication	through	

gap	junctions	and	calcium	release	from	intracellular	stores	as	mediators	of	

collective	gradient	sensing.	The	resulting	integrative	analysis	provides	a	framework	

for	understanding	the	advantages	and	limitations	of	sensory	information	processing	

by	relays	of	chemically	coupled	cells.	 

INTRODUCTION	 

Responses	of	isogenic	cells	to	identical	cues	can	display	considerable	variability.	For	

instance,	a	population	of	cells	will	typically	exhibit	substantial	variation	in	gradient	

sensitivity	and	migration	trajectories	within	the	same	gradient	of	a	diffusible	

guidance	signal	[71].	The	variation	in	response	could	arise	from	the	inherent	

diversity	of	cell	responsiveness	[8,	23,	72,	73],	but	it	can	be	further	exacerbated	if	

the	gradients	of	extracellular	signals	are	shallow	and	noisy	[27,	31,	74-77].	In	fact,	

sensing	shallow	gradients	can	approach	fundamental	physical	limits	that	define	

whether	diffusive	graded	cues	can	bias	cell	migration	[78,	79].	However,	the	
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spatially	biased	response	can	improve	and	its	uncertainty	can	be	substantially	

reduced	if	individual	cells	are	coupled	while	responding	to	molecular	gradients	[23,	

80-87].		Strong	cell-cell	coupling	might	reduce	the	response	noise	by	averaging	

individual	responses	of	multiple	cells	[88-93].	It	can	also	alleviate	sensory	noise	by	

extending	the	spatial	range	of	the	sensing,	thus	increasing	the	potential	for	more	

precise	detection	of	weak	and	noisy	spatially	graded	inputs.	Importantly,	however,	

cell-cell	communication	involved	in	such	collective	sensing	may	be	itself	subject	to	

noise,	reducing	the	precision	of	the	communicated	signals	and	therefore	the	

advantage	gained	from	an	augmented	size	of	the	sensory	and	the	response	units.	

The	interplay	between	the	increasing	signal	and	accumulating	communication	noise	

associated	with	the	multicellular	sensing,	and	thus	the	limits	of	this	multicellular	

sensing	strategy,	remain	incompletely	understood.	 

An	example	of	collective	cellular	response	is	branching	morphogenesis	of	the	

epithelial	tissue	in	mammary	glands	[94-96].	The	dynamic	processes,	whose	

coordinate	regulation	leads	to	formation,	growth,	and	overall	organization	of	

branched	epithelial	structures,	are	still	actively	investigated	[95].	Conveniently,	the	

morphogenesis	of	mammary	glands	is	recapitulated	in	organotypic	mammary	

culture	(organoids)	[97-99],	extensively	used	to	model	and	explore	various	features	

of	self-	organization	and	development	of	epithelial	tissues	[100].	Epidermal	Growth	

Factor	(EGF)	is	an	essential	regulator	of	branching	morphogenesis	in	mammary	

glands	[101,	102].	It	has	also	been	identified	as	a	critical	chemo-attractant	guiding	

the	migration	of	breast	epithelial	cells	in	invasive	cancer	growth	[103].	This	

property	of	EGF	raises	the	possibility	that	it	can	serve	as	an	endogenous	chemo-
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attractant	guiding	formation	and	extension	of	mammary	epithelial	branches,	a	

possibility	that	has	not	yet	been	experimentally	addressed.	 

Our	data	reveal	that	the	capacity	of	mammary	organoids	embedded	in	collagen	I	to	

respond	to	shallow	EGF	gradients	requires	collective	gradient	sensing,	mediated	by	

intercellular	chemical	coupling	though	gap	junctions.	Surprisingly,	the	advantage	of	

multicellular	sensing	is	limited	and	is	substantially	lower	than	the	theoretical	

predictions	stemming	from	gradient	sensing	models	that	do	not	account	for	

communication	noise	[74].	We	build	a	theory	of	the	multicellular	sensing	process,	

equivalent	to	the	information-theoretic	relay	channel,	which	correctly	predicts	the	

accuracy	of	sensing	as	a	function	of	the	gradient	magnitude,	organoid	size,	and	the	

background	ligand	concentration.	The	theory	and	the	corresponding	stochastic	

computational	model	trace	the	reduced	sensing	improvement	to	the	unavoidable	

noise	in	the	information	relay	used	by	cells	to	transmit	their	local	sensory	

measurements	to	each	other.	This	analysis	allowed	us	to	determine	the	approximate	

size	of	a	collective,	multicellular	sensing	unit	enabling	chemotropic	branch	

formation	and	growth.	 

RESULTS	 

To	study	the	response	of	multicellular	mammary	organoids	to	defined	growth	factor	

gradients,	we	developed	and	used	mesoscopic	fluidic	devices.	These	devices	

permitted	generation	of	highly	controlled	gradients	of	EGF,	that	were	stable	for	a	

few	days,	within	small	slabs	of	collagen	gels	housing	expanding	organoids	(see	

Figure	11A,	Methods,	and	Supplementary	Information).	We	found	that	organoids	of	
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In	spite	of	the	very	shallow	EGF	gradient,	it	was	still	possible	that	the	spatial	bias	in	

branching	was	a	consequence	of	the	gradient	sensing	by	individual	cells	within	the	

tips	of	the	branches.	To	examine	the	sensitivity	of	single	cells	to	these	shallow	

gradients	in	the	3D	geometry	of	collagen	gels,	we	analyzed	organoids	derived	from	

P-Cadherin	knock	out	mice	[104].	Consistent	with	our	previous	findings	[105],	the	

luminal	epithelial	core	of	the	organoids	derived	from	P-cadherin	null	mice	remain	

intact	within	collagen	I	gels,	but	individual	and	small	groups	of	myoepithelial	cells	

disseminate	into	the	surrounding	gel,	since	P-cadherin	is	a	specific	mediator	of	

myoepithelial	cell-cell	adhesion.	These	individual	dissociated	cells	displayed	

extensive	migration	through	the	collagen	matrix.	Although	in	these	experiments	the	

organoids	continued	to	display	EGF	gradient-guided	directional	branching	

responses	similar	to	those	of	WT	organoids,	the	dissociated	cells	migrated	in	a	

completely	unbiased	manner	(Figure	11E,	F;	Figure	18B;	Figure	19;	see	also	SI).	Cell	

motility	and	the	distance	traveled	by	single	cells	within	the	gels	generally	were	the	

same	as	those	observed	in	similar	experiments	performed	in	spatially	homogenous	

2.5	nM	EGF	distributions	(data	not	shown).	These	results	were	corroborated	by	

experiments	in	which	dissociated	single	mammary	epithelial	cells	isolated	from	WT	

mice	or	MTLn3-B1	cells	were	embedded	in	the	same	devices	and	subjected	to	the	

same	experimental	inputs	(Figure	20).	The	results	of	these	experiments	suggested	

that,	in	spite	of	considerable	motility,	there	was	no	evidence	of	chemotaxis	by	these	

cells,	in	response	to	EGF	gradients	that	were	capable	of	triggering	biased	

chemotropic	response	in	organoids.	Overall,	our	results	reveal	that	cell-cell	coupling	

within	organoids	permits	sensing	of	EGF	gradients	not	detectable	by	single	cells.		
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FIGURE	12:	ORGANOIDS	BRANCHING	IS	SIGNIFICANTLY	BIASED,	REGARDLESS	
OF	THE	CHOICE	OF	THE	BIAS	MEASURE.		

(A)	Six	bias	measures	are	shown,	as	described	in	the	table	in	panel	(B)	(the	gradient	
points	in	the	θ	=	0	direction,	such	that	‘right’	means	the	up-gradient	half	of	the	plane	
cos	θ	>	0,	“east”	means	the	up-gradient	quarter	of	the	plane	cos	θ	>	cos	π/4,	and	“west”	
means	the	down-	gradient	quarter	of	the	plane	cos	θ	<	cos	3π/4).	The	table	lists	the	
null	(unbiased)	values	for	each	measure,	as	well	as	the	measured	values	from	the	data,	
averaged	across	all	organoids,	and	with	uncertainty	given	by	the	standard	error	(SE).	
All	measured	values	are	at	least	4	standard	errors	above	their	respective	null	values.	
See	Supplementary	Materials	for	further	analysis.	Note	that,	visually,	measure	B,	used	
throughout	the	text,	seems	less	biased	than	the	histograms	in	Figure	11;	this	is	because	
the	histograms	only	count	the	number	of	branches	in	specific	directions,	while	the	
measure	B	additionally	weighs	each	branch	by	its	length		

 

Can	enhanced	collective	gradient	sensing	by	multiple	cells	be	explained	by	a	

quantitative	theory,	permitting	experimental	validation?	The	classic	Berg-Purcell	

(BP)	theory	of	concentration	[106]	and	gradient	[74,	78]	detection	can	explain	why	

a	larger	detector	(in	this	case,	an	organoid)	has	a	better	sensitivity	than	a	smaller	

one	(a	cell).	Briefly,	the	mean	number	of	ligand	molecules	in	the	volume	of	a	

detector	of	a	linear	size	A is	 ,	where	c is	the	concentration	being	determined,	

and	overbar	represents	averaging.	This	number	is	Poisson	distributed,	so	that	the	

relative	error	in	counting	is	 .	This	bound	can	be	
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modified	to	include	temporal	integration	of	the	ligand	diffusing	in	and	out	of	the	

receptor	vicinity	[107].	However,	the	organoids	show	steady	branching	and	no	

improved	directional	sensitivity	over	the	three	days	of	experiments	(Figure	21),	so	

the	sensing	can	be	assumed	to	occur	on	time	scales	much	shorter	than	the	overall	

branching	response,	without	long-time	integration.	Estimation	of	spatial	gradients	

by	a	cell	or	a	multicellular	ensemble	involves	inference	of	the	difference	between	(or	

comparison	of)	concentrations	measured	by	different	compartments	of	the	detector	

[74,	75,	78]	(branches	grow	too	slowly	for	a	temporal	comparison	strategy	to	be	

useful	[108]).	For	a	detector	consisting	of	two	such	compartments,	each	of	size	

,	the	mean	concentration	in	each	compartment	is	 ,	where	 	is	the	

concentration	at	the	center	of	the	detector,	and	g is	the	concentration	gradient.	For	

each	of	the	compartments,	the	BP	bound	gives	 .	Subtracting	the	

two	independently	measured	concentrations	estimates	the	gradient,	 ,	

which	results	in	the	signal-to-	noise	ratio	(SNR,	or	inverse	of	the	error):	 

	 	 [1] 

Thus	the	sensing	precision	should	improve	without	bound	with	the	span	of	the	

gradient	being	measured	(A),	with	the	gradient	strength	(g),	and	with	the	volume	

over	which	molecules	are	counted	( ).	However,	the	precision	should	decrease	with	

the	background	concentration	( )	because	it	is	hard	to	measure	small	changes	in	a	

signaling	molecule	against	a	large	background	concentration	of	this	molecule.1 Note	

that	Eq.	[1]	seems	to	predict	an	infinitely	precise	measurement	when	 ,	and	
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there	are	no	ligand	molecules.	This	paradox	is	resolved	by	the	simple	observation	

that	the	background	concentration	of	the	signaling	molecule	and	the	organoid	size	

are	not	independent:	in	a	linear	gradient,	 is	limited	from	below	by	 ,	and,	

generally,	small	  is	only	possible	for	a	small	organoid	if	the	gradient	is	nonzero.	

In	this	low	concentration	limit	of	the	BP	theory,	which	is	often	the	subject	of	analysis	

[74,	78],	 .	Then	Eq.	[1]	transforms	to	 ,	and	the	SNR	increases	

with	 .	Overall,	this	interplay	between	the	size	and	the	concentration	depends	on	

,	which	may	take	different	forms	depending	on	where	organoids	of	different	

sizes	are	in	the	experimental	device.	Typically,	the	SNR	has	an	inverted	U-shape:	it	

first	grows	with	 because	the	span	of	the	organoid	increases,	and	then	it	drops	

because	small	differences	of	large	concentrations	must	be	estimated	by	a	cell	or	a	

cell	ensemble	(Figure	22;	also	see	SI).	Interestingly,	this	decrease	in	gradient	

sensitivity	does	not	require	receptor	saturation,	as	is	commonly	assumed	[109].	

Calculations	that	account	for	true	receptor	geometries	of	the	sensor	give	results	

similar	to	Eq.	[1]	[74].	A	critical	prediction	of	this	theory	is	that	precision	of	gradient	

sensing	(expressed	as	SNR)	always	increases	with	the	organoid	size	A.	We	next	

contrasted	this	prediction	with	experimental	data.	 

To	examine	whether	the	precision	of	gradient	sensing	increases	with	the	organoid	

size,	we	examined	the	bias	of	response	of	differently	sized	organoids	naturally	

formed	in	our	assays.	(Figure	13).	To	enable	the	comparison,	we	computed	the	

fraction	of	organoids	with	 ,	where	 is	the	sum	of	branch	lengths	

(projected	in	the	gradient	direction)	pointing	up	(down)	the	gradient	(measure	B	in	

c̄1/2 Ag/2

c̄1/2

Ag ⇠ c̄1/2 SNR ⇠ c̄1/2a
3

c̄1/2

c̄1/2(A)

c̄1/2

LU > LD LU (LD)



	

50	

Figure	12).	The	corresponding	theoretical	prediction	can	be	inferred	from	the	

analysis	of	a	one-	dimensional	array	of	N coupled	cells	subjected	to	a	ligand	

gradient.	In	particular	the	experimentally	determined	difference	between	“up” and	

“down” pointing	branch	numbers	can	be	compared	with	the	theoretically	predicted	

probability	that	the	measured	number	of	ligand	molecules	in	the	N’th	cell	is	larger	

than	in	the	first	cell	in	the	array,	 .	We	take	  as	Gaussian-distributed	with	

mean	  and	variance	 ,	where	the	first	term	accounts	for	the	Poisson	

nature	of	the	molecular	counts,	and	  represents	the	additional	noise	downstream	

of	sensing,	which	can	dominate	the	sensory	noise,	but	is	assumed	to	be	unbiased	

(multiplicative	noise	was	also	considered,	with	similar	effects,	see	Figure	23	and	SI).	

We	set	the	value	of	  by	equating	the	experimental	and	theoretical	bias	

probabilities	averaged	over	all	organoid	sizes	and	background	concentrations	

observed	in	the	experiments.	Figure	13A	demonstrates	that	bias	increases	roughly	

linearly	with	the	gradient	strength	in	both	the	experiments	and	the	BP	model.	

However,	Figure	13B	shows	that	the	experimental	bias	saturates	with	organoid	size,	

while	the	BP	theory	would	predict	an	increase	without	bounds.	Further,	Figure	13C	

shows	that	the	experimental	bias	is	generally	weaker	than	that	predicted	by	the	BP	

theory.	These	disagreements	with	experimental	results	suggest	that	a	new	theory	of	

multicellular	gradient	detection	is	required.		

⌫N > ⌫1 ⌫n

c̄na
3 c̄na
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We	chose	a	minimal	adaptive	model	allowing	for	chemical	diffusive	communication,	

based	on	the	principle	of	local	excitation	and	global	inhibition	(LEGI)	[110-112].	In	

the	nth	cell,	both	a	local	and	a	global	molecular	messenger	species	are	assumed	to	be	

produced	in	proportion	to	the	local	external	EGF	concentration	cn at	a	rate	β,	and	are	

degraded	at	a	rate	μ.	Whereas	the	local	messenger	species	is	confined	to	each	cell,	

the	global	messenger	species	is	exchanged	between	neighboring	cells	at	a	rate	γ,	

which	provides	an	intrinsically	noisy	communication.	The	local	messenger	then	

excites	a	downstream	species,	while	the	global	messenger	inhibits	it.	In	the	limit	of	

shallow	gradients,	the	excitation	level	reports	the	difference	Δn	between	local	and	

global	species	concentrations	(see	SI).	The	difference	ΔN,1 in	the	edge	cells	provide	

the	sensory	readout:	positive/negative	Δ shows	that	the	local	concentration	at	the	

edge	is	above/below	the	average,	and	hence	the	cell	is	up/down	the	gradient.	Note	

that	an	individual	cell	within	this	multi-cellular	version	of	the	LEGI	model	cannot	

detect	a	gradient,	as	the	readout	will	always	be	zero	within	statistical	fluctuations.	 

In	our	analysis,	we	again	note	the	absence	of	temporal	integration	of	EGF	gradients	

(Figure	21;	see	also	the	extension	of	our	analysis	to	the	temporal	integration	case	in	

Ref.	[107]).	Further,	since	there	is	no	evidence	for	receptor	saturation	at	high	

concentration	(Figure	13C),	we	confine	ourselves	to	the	linear	response	regime	for	

theoretical	studies.	These	assumptions	allow	us	to	calculate	the	limit	of	the	sensory	

precision	of	the	gradient	detection,	as	a	function	of	organoid	size	N and	the	

background	concentration	(see	SI	and	Figure	22).	We	find	that	precision	initially	

grows	with	N,	then	saturates	at	a	maximal	value	(Figure	22C).	This	is	in	contrast	to	
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the	BP	estimate,	Eq.	[1],	which	predicts	that	precision	grows	indefinitely	with	N.	In	

our	model	we	expect	precision	to	be	the	highest	in	the	limits	of	a	large	organoid	(

),	fast	cell-to-cell	communication	( ),	and	large	local	and	global	

messenger	species	concentrations	( ).	In	these	limits	the	saturating	value	of	

the	sensory	error	takes	the	simplified	form	(Eq.	[46]	in	SI):	

   [2] 

where	 .	Comparing	Eq.	[2]	to	the	BP	estimate,	Eq.	[1],	we	see	that	even	

when	communication	noise	is	accounted	for,	the	organoid	can	achieve	the	noise-free	

bound,	but	with	an	effective	size	of	 instead	of	the	actual	size	 .	Thus	 ,	

which	grows	with	the	communication	rate	γ,	sets	the	length	scale	of	the	effective	

sensory	unit	within	the	organoid:	it	is	the	number	of	neighbors	with	which	a	cell	can	

reliably	communicate	before	the	information	becomes	degraded	by	the	noise.	

Beyond	 ,	a	larger	organoid	is	predicted	to	achieve	no	further	benefit	to	its	

sensory	precision.	Additionally,	because	of	this	finite	communication	length	scale,	

the	sensory	precision	is	predicted	to	depend	on	the	concentration	at	the	edge	cell(s),	

rather	than	in	the	middle	of	the	organoid.	Thus	the	interplay	between	the	

concentration	and	the	organoid	size	is	also	very	different	compared	to	the	

predictions	of	the	standard	BP	theory.	 

We	first	tested	the	new	theory	that	accounts	for	communication	by	simulating	the	

multi-cellular,	LEGI-	based	sensing	with	a	spatially	extended	Gillespie	algorithm	(see	

SI	for	details).	This	analysis	allowed	us	to	explore	the	non-linear	(Michaelis-Menten	
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type)	biochemical	reaction	regime.	We	verified	that	our	theoretical	predictions	were	

fully	consistent	with	this	stochastic	model	in	the	linear	regime,	and	were	still	

qualitatively	valid	when	the	dependence	of	the	local	and	the	global	signaling	

reactions	on	the	input	was	allowed	to	gradually	saturate	(Figure	14).	In	particular,	

under	all	assumptions,	the	advantage	of	increasing	detector	rapidly	reached	a	

maximum	value.	This	maximum	SNR	value,	however,	gradually	decreased	with	

increasing	saturation,	suggesting	predominant	effects	of	decreasing	sensitivity	of	

saturating	chemical	reactions	to	the	differences	in	the	input	values.		

We	then	compared	the	predictions	of	our	new	theory	of	multicellular	gradient	

sensing	to	the	experimental	measurements.	To	do	that,	we	calculated	the	probability	

that	the	gradient	indeed	biases	the	branching	response,	i.e.,	that	 ,	where	 	

was	assumed	in	the	theory	to	be	a	Gaussian-	distributed	variable	with	the	mean	  

and	variance	 	(the	case	of	the	multiplicative	noise	is	treated	in	the	SI	and	

Figure	23).	The	first	term	in	the	variance	is	calculated	in	the	SI,	and	the	second	

reflects	the	added	noise	downstream	of	gradient	sensing,	set	by	the	average	

organoid	bias,	identical	to	the	one	found	in	the	BP	theory	above.	Figure	13A-C	

demonstrates	the	excellent	agreement	between	experiment	and	theory	that	

accounts	for	the	communication	noise,	suggesting	that	the	new	theory	is	a	much	

better	explanation	of	the	data	than	the	BP	analysis.		
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peptides)	allow	for	a	larger	,	which,	in	turn,	increases	the	size	of	the	effective	

sensory	unit	n0	and	improves	the	sensing	accuracy.	 

DISCUSSION	 

Morphogenesis	and	growth	of	complex	tissues	is	orchestrated	by	diverse	chemical	

and	mechanical	cues.	These	cues	not	only	specify	patterning	of	developing	tissues	

but	also	direct	tissue	growth	and	expansion.	However,	we	still	lack	details	of	how	

these	collective,	multi-cellular	processes	are	controlled	by	spatial	gradients	of	

extracellular	ligand	molecules.	Here	we	used	mathematical	modeling,	computational	

simulations,	and	experimentation	in	a	novel	gradient	generating	device	to	study	the	

directional	guidance	of	branch	formation	and	extension	in	a	model	of	mammary	

tissue	morphogenesis.	Our	data	revealed	that	multicellular	constructs	undergo	

directionally	biased	migration	in	shallow	gradients	of	EGF	that	are	undetectable	to	

single	cells.	Further,	our	analysis	suggests	that	cell-cell	communication	through	gap	

junctions	underlies	the	increased	gradient	sensitivity,	allowing	the	cell	ensembles	to	

expand	the	range	of	EGF	concentrations	they	can	sense	within	the	gradient,	and	thus	

enhance	the	overall	guidance	signal.	Increasing	evidence	suggests	that	collective	

sensing	of	environmental	signals,	particularly	if	accompanied	by	secretion	of	a	

common	signal	that	enables	averaging	of	variable	and	noisy	signaling	in	individual	

cells,	can	help	improve	reliability	of	signaling,	cell	fate	choices,	and	behavioral	

actions.	Examples	are	abundant	in	coordinated	pathogen	actions	or	immune	

responses	[75,	103-108,	116].	Similarly,	individual	sensing	and	collective	decision-

making	in	morphogenesis	and	animal	group	behaviors	have	been	shown	to	amplify	
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weak	signals	observed	by	individual	agents	and	to	develop	coherent,	long-range	

patterns	[90,	91,	117,	118].	In	contrast	to	'all-to-all'	signaling	or	response	

communication	cases,	here	we	focused	on	the	case	of	sequential	communication	of	a	

signal	between	the	sensing	units,	in	a	relay	fashion,	which	can	enhance	the	sensing	

precision	by	enhancing	the	effective	input	itself.	Critically,	this	communication	

mechanism,	mediated	by	diffusive	coupling	through	gap	junctions,	can	be	seen	as	an	

information-theoretic	relay	channel	[22,	119],	see	Figure	16.	The	theoretical	

analysis	we	present	here	is	thus	one	of	the	first	departures	from	the	simple	point-to-

point	information-processing	paradigm	in	systems	biology.	In	fact,	our	calculations	

of	reliability	of	multicellular	signaling,	presented	in	this	paper	and	in	[107],	are	

equivalent	to	calculating	channel	capacities	of	various	Gaussian	relay	channels.		

 

FIGURE	16:	MULTICELLULAR	GRADIENT	SENSING	IS	AN	EXAMPLE	OF	A	RELAY	
CHANNEL.		

(A)	A	diagram	of	an	information-theoretic	relay	channel.	Differently	scrambled	
versions	of	the	input	signal	are	communicated	to	the	output,	but	also	to	the	
intermediate	relay	units.	In	their	turn,	the	intermediate	units	relay	the	information	
further	along	the	chain,	and	ultimately	to	the	output	unit.	(B)	Interpretation	of	
gradient	sensing	as	a	relay	channel.	The	local	concentration,	which	is	a	biased	and	
noisy	version	of	the	background	concentration,	is	measured	by	every	cell,	and	then	
relayed	to	the	edge	cell	using	the	diffusive	messenger	to	produce	an	estimate	of	the	
background	concentration. 
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The	key	consequence	of	the	relay	communication	mechanism	is	that	it	is	subject	to	a	

gradual	buildup	of	communication	noise,	mitigating	the	gain	from	the	signal	

increase,	and	providing	a	fundamental	limit	on	effectiveness	of	such	collective	

sensing	responses.	This	result	runs	counter	to	the	prevailing	intuition	that	sensing	

accuracy	should	increase	without	bound	with	the	system	size	[12],	for	multicellular	

systems	in	development	[93]	and	also	for	other	multi-agent	sensory	systems.	These	

intuitive	expectations	are	flawed	precisely	because	they	fail	to	take	into	account	the	

importance	of	communication	uncertainty,	which	provides	fundamental	limits	on	

the	gains	resulting	from	multicellular	sensing.	Our	integrated	analysis	reveals	that	

this	multicellular	sensing	strategy	in	growing	mammary	branches	is	indeed	limited	

by	the	noisy	cell-cell	communication.	Importantly,	we	were	able	to	combine	theory	

and	experiments	to	estimate	these	limits	for	EGF	gradient	response	of	mammary	

branching	and	found	them	to	be	much	tighter	than	those	that	assume	that	all	of	the	

spatially	distributed	information	is	immediately	actionable:	growth	of	the	branch	

beyond	the	size	of	the	maximum	effective	multicellular	sensing	unit	does	not	

improve	the	sensing	accuracy.	We	estimate	that	the	sensing	unit	is	approximately	3-

4	cell	lengths,	a	size	that	is	consistent	with	the	number	of	cell	layers	in	small	end	

buds	of	a	growing	mammary	duct	[120]	(see	also	Supp.	Movie	1).	Some	large	end	

buds	in	vivo	contain	significantly	more	cell	layers	and	our	analysis	suggests	that	

these	additional	cells	may	be	primarily	involved	in	other	functions,	such	as	

proliferation	and	differentiation,	and	not	gradient	sensing.	The	narrow	bounds	on	

the	number	of	interacting	cells	also	suggest	that	the	“actuation” noise	downstream	

of	sensing	is	minimal,	paralleling	related	findings	in	the	nervous	system	[121].	
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Interestingly,	the	theoretical	analysis	predicted	that	the	sensory	unit	size	is	

specified	by	a	simple	formula	describing	the	typical	distance	traveled	by	a	diffusing	

messenger	molecule	before	it	degrades	or	is	inactivated,	consistent	with	simpler	

estimates	of	the	molecular	communication	reach	[122].	Our	analysis	also	provided	a	

new	way	to	interpret	the	dependence	between	the	background	ligand	concentration	

and	gradient	sensing	– saturation	of	receptors	is	not	needed	to	explain	the	often-

observed	decrease	in	the	sensory	precision	at	high	concentration	[78,	79,	109].	

Rather,	the	loss	of	precision	is	ascribed	to	increasing	noise	to	signal	ratio,	stemming	

from	the	need	to	compare	large,	noisy	concentrations.	Similar	limits	might	exist	in	

any	biological	systems	with	spatially	distributed	sensing	of	spatially	graded	signals,	

including	single	cells	or	multi-nuclear	syncytia.	 

Our	results	suggest	that	the	intercellular	communication	underlying	multicellular	

sensing	in	growing	mammary	tissue	is	mediated	by	calcium	signaling	events,	as	

depletion	of	internal	stores	by	a	SERCA	inhibitor	both	enhanced	the	branch	

formation	and	inhibited	gradient	detection.	Thus	release	of	calcium	from	internal	

stores	is	consistent	with	a	negative	or	limiting	effect	on	the	local	branch	formation	

or	extension.	The	release	can	be	controlled	by	either	IP3	or	calcium	itself,	both	of	

which	can	diffuse	through	gap	junctions.	Therefore,	the	inhibitory	diffusive	signal	

postulated	by	the	LEGI	models	of	gradient	sensing	may	rely	on	the	ultimate	release	

of	calcium	from	internal	stories,	as	also	suggested	by	our	imaging	of	calcium	with	

the	genetically	encoded	probe.	This	role	of	calcium	is	consistent	with	its	

enhancement	of	retraction	of	the	leading	front	in	migrating	cells	[123].	Consistent	
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with	the	LEGI	model,	gradient	sensing	was	persistent	in	time	and	exhibited	very	low	

sensitivity	to	the	local	background	EGF	concentration.	The	use	of	the	LEGI	model	in	

our	analysis,	both	in	mathematical	modeling	and	in	spatially	distributed	Gillespie	

simulations,	also	showed	results	quantitatively	consistent	with	the	experiments,	

suggesting	that	this	model	was	appropriate	for	describing	the	diffusively	coupled	

collective	EGF	sensing.	 

Overall,	we	conclude	that	collective	gradient	sensing	suggested	for	many	natural	

developmental	processes	[124],	as	well	as	for	pathological	invasive	tissue	expansion	

[103],	is	an	effective	strategy,	which,	though	subject	to	important	limitations,	can	

help	explain	the	observed	differences	in	the	single	cell	and	multicellular	chemotactic	

responses.	Importantly,	the	experimentally	validated	theory	proposed	in	our	

analysis	provides	a	way	to	assess	the	potential	role	of	inter-cellular	communication	

in	other	settings,	including	invasive	tumor	growth,	pointing	to	the	specific	

parameters	that	can	be	altered	to	disrupt	this	process	or	make	it	less	efficient.	 

MATERIALS	AND	METHODS	 

EXPERIMENTAL	DEVICE.		

Custom	PDMS	devices	were	developed	using	stereolithography,	yielding	culture	

area	approximately	5mm	wide,	10mm	long	and	1mm	tall	(see	Figure	11B).	The	sides	

of	the	device	are	open	wells	that	allow	the	use	of	standard	pipettes	to	change	media	

and	six	replicates	of	the	entire	device	is	contained	within	a	standard	six-well	plate.	

Before	use,	the	center	cell	culture	area	is	filled.	This	action	is	assisted	by	the	

hexagonal	pillars,	which	are	used	to	trap	the	liquid	3D	ECM	and	organoid	mixture	
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within	the	cell	culture	area	before	the	3D	ECM	can	harden	[125].	Once	the	3D	ECM	

matrix	of	choice	has	hardened,	the	open	wells	can	be	filled	as	previously	mentioned.	

Both	in	silico	and	in	vivo	(see	SI	and	Figure	26)	tests	demonstrate	a	stable	linear	EGF	

gradient	across	the	cell	culture	area	for	approximately	three	days,	after	which	the	

media	can	be	replenished	as	needed.	Various	compounds	were	added	to	collagen	gel	

at	final	concentrations,	as	indicated,	along	with	the	organoids.	 

STEREOLITHOGRAPHY	&	PDMS	CASTING.		

Using	the	3D	rendering	software	SolidWorks	(Dassault	Systems),	we	drew	the	final	

mold	for	the	PDMS	devices.	The	design	was	electronically	transmitted	to	FineLine	

Prototyping	(Raleigh,	NC)	where	it	was	rendered	using	high-resolution	ProtoTherm	

12120	as	the	material	with	a	natural	finish.	Proprietary	settings	were	used	to	

accurately	render	the	pillars.	In	two	to	three	days	the	mold	was	shipped	and	after	its	

arrival	we	mixed	PDMS	monomer	to	curing	agent	in	a	10:1	ratio	(Momentive	

RTV615).	After	mixing,	the	liquid	PDMS	was	poured	into	the	mold	and	a	homemade	

press	was	used	to	keep	the	top	surface	flat.	This	press	from	bottom	to	top	consisted	

of	a	steel	plate,	paper	towel,	piece	of	a	clear	transparency	film,	the	mold	with	PDMS,	

another	piece	of	a	transparency,	paper	towel,	piece	of	rubber,	and	an	another	steel	

plate.	The	entire	assembly	was	placed	in	the	oven	at	80°C	and	baked	overnight.	The	

devices	were	then	washed,	cut,	and	placed	on	top	of	22x22mm	coverslips	(72204-

01,	Electron	Microscopy	Sciences).	Six	devices	where	then	placed	inside	an	

autoclave	bag	and	sterilized.	When	needed,	the	bag	was	opened	in	a	sterile	

environment	and	the	devices	were	filled	and	placed	inside	a	6-well	plate.	 
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the	displacement	vector,	from	where	the	cell	broke	away	from	the	organoid,	to	

where	the	cell	is	observed	in	the	image.	The	breakaway	point	is	taken	to	be	the	

nearest	branch	tip.	Data	contained	in	the	angular	histograms	are	reduced	to	a	single	

bias	measure	in	one	of	six	ways,	as	described	in	Figure	12.	Measure	B	is	also	shown	

in	Figure	11,	Figure	13,	and	Figure	14.	See	SI	for	comparison	of	the	bias	measures.		

SUPPLEMENTARY	INFORMATION		

1.	MEASURING	BIAS	IN	ORGANOID	BRANCHING	

To	ensure	that	our	determination	of	response	bias	is	robust	to	our	analysis	

technique,	we	measured	bias	in	several	different	ways	(Figure	17),	using	data	for	

wild-type	organoids	in	the	presence	of	an	EGF	gradient	(Figure	11D).	Figure	17A	

shows	a	histogram	of	the	angles	of	all	branches,	irrespective	of	which	organoid	the	

branch	comes	from.	Figure	17B	shows	a	histogram	of	all	organoid	angles,	where	

organoid	angle	is	defined	as	the	angle	of	the	vector	sum	of	all	branches	coming	from	

a	given	organoid.	Thus	Figure	17A	is	a	branch-based	histogram,	whereas	Figure	17B	

is	an	organoid-based	histogram.	Figure	17A	and	B	demonstrate	that	both	a	branch-

based	and	an	organoid-based	analysis	indicate	that	the	response	of	wild-type	

organoids	is	significantly	biased	in	the	gradient	direction.	Figure	17C	shows	the	six	

different	bias	measures	defined	in	Figure	12,	applied	to	both	the	branch-based	and	

the	organoid-based	data.	In	all	cases,	the	response	is	significantly	biased	with	

respect	to	the	null	value.	This	demonstrates	that	the	determination	of	bias	is	robust	

to	the	choice	of	bias	measure.		
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FIGURE	17:	BIAS	DETERMINATION	IS	ROBUST	TO	CHOICE	OF	MEASURE. 

All	bias	measures	used	in	this	study	are	shown,	here	for	wild-type	organoids	in	a	0.5	
nM/mm	EGF	gradient.	(A)	Histogram	of	branch	angles,	irrespective	of	which	organoid	
the	branch	comes	from.	(B)	Histogram	of	organoid	angles,	defined	as	the	angle	of	the	
vector	sum	of	all	branches	coming	from	a	given	organoid.	(C)	Six	bias	measures,	
defined	in	Figure	12.	Measure	B	is	shown	underneath	panels	A	and	B.	In	all	panels	A-C,	
the	response	is	significantly	biased	with	respect	to	its	standard	error	(SE).	
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FIGURE	18:	ROBUSTNESS	TO	BIAS	MEASURE	PERSISTS	IN	DIFFERENT	
EXPERIMENTAL	CONDITIONS.	

The	six	bias	measures	are	shown	for	(A)	wild-type	organoids	in	a	uniform	2.5	nM	EGF	
background	concentration,	(B)	organoids	with	P-cadherin	knockout	in	a	0.5	nM/mm	
EGF	gradient,	(C)	organoids	exposed	to	Endothelin-1	in	a	0.5	nM/mm	gradient,	and	
(D)	organoids	with	SERCA	inhibitor	in	a	0.5	nM/mm	EGF	gradient	(Figs.	1C	and	F	and	
4A	and	B	of	the	main	text).	In	all	cases,	the	response	is	either	significantly	biased	(B),	
or	not	significantly	biased	(A,	C,	D),	irrespective	of	choice	of	bias	measure.	

In	general,	we	find	that	it	does	not	matter	whether	we	use	a	branch-	or	organoid-

based	measure	to	determine	bias.	Therefore,	we	focus	on	organoid-based	measures	

for	most	of	the	study,	since	this	metric	retains	the	information	about	the	organoids	

producing	the	branches,	rather	than	considering	branches	as	completely	

independent	entities.	Moreover,	in	general	we	also	find	that	the	determination	of	

bias	is	robust	to	the	choice	of	bias	measure	(see	Figure	18	and	Figure	19	below).	

Therefore	we	focus	on	measure	B	for	most	of	the	study,	since	it	is	easy	to	interpret	
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and	to	compare	with	the	theory:	it	is	the	probability	that	the	vector	sum	of	an	

organoid’s	branches	points	up	the	gradient,	not	down	the	gradient.	

Figure	18	shows	the	six	bias	measures	for	each	of	the	other	experimental	conditions	

considered	in	the	main	text.	We	see	in	all	cases	that	the	presence	or	absence	of	bias	

is	robust	to	the	choice	of	measure.	

2.	MEASURING	BIAS	IN	SINGLE-CELL	MOVEMENT	

To	ensure	that	our	determination	of	bias	in	single-cell	movement	is	also	robust	to	

the	analysis	technique,	we	subject	the	single-cell	data	to	a	similar	multitude	of	bias	

measures.	For	single	cells,	the	analog	of	a	“branch”	is	the	distance	the	cell	migrates	

over	time.	Therefore,	if	more	cells	migrate	to	the	right	than	to	the	left,	then	the	cells	

exhibit	a	biased	response.	Figure	19	shows	the	same	bias	measures	computed	for	

organoid	branching,	but	now	for	single	cell	migration	distances,	for	the	experiment	

in	which	the	P-cadherin	mutation	promotes	shedding	of	single	cells	from	the	

organoid.	We	compute	the	bias	measures	both	(i)	averaged	over	all	cells,	

irrespective	of	the	organoid	from	which	cells	are	shed	(Figure	19A,	analogous	to	the	

“branch-based”	measures	in	Figure	17C)	and	(ii)	averaged	per	organoid,	by	

accounting	for	the	organoid	from	which	the	cells	are	shed	(Figure	19B,	analogous	to	

the	“organoid-based”	measures	in	Figure	11C).	In	both	cases,	we	see	that	the	single-

cell	movement	is	not	significantly	biased,	and	that	the	absence	of	bias	is	robust	to	
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the	choice	of	measure. 

	

FIGURE	19:	SINGLE-CELL	MOVEMENT	IS	UNBIASED	BY	ALL	MEASURES. 

The	six	bias	measures	are	shown	for	single-cell	movement	in	a	gradient	of	0.5	nM/mm	
EGF	(Figure	11E	of	the	main	text),	taking	as	the	fundamental	unit	(A)	a	single	cell	
(analogous	to	Figure	17A)	or	(B)	the	net	displacement	of	all	single	cells	originating	
from	a	single	organoid	(analogous	to	Figure	17B).	In	both	cases,	the	response	is	not	
significantly	biased,	and	the	absence	of	bias	is	robust	to	the	choice	of	measure	

3.	MECHANISTIC	MODEL	OF	COMMUNICATING	CELLS	

Here	we	present	the	stochastic	model	of	gradient	sensing	by	communicating	cells.		

We	consider	a	one-dimensional	chain	of	 cells	parallel	to	the	gradient	direction.		As	

in	the	experiments,	the	mean	EGF	signal	concentration	varies	linearly	along	the	

direction	of	the	chain	as	

	 ,	 (1)	

where	 	is	the	local	concentration	near	the	 th	cell,	 	is	the	cell	diameter,	 	is	the	

concentration	gradient,	and	 	is	the	maximal	concentration	at	the	 th	cell.		The	

observed	independence	of	bias	on	background	concentration	(Figure	13C)	supports	

an	adaptive	model	of	sensing.		We	therefore	choose	a	minimal	adaptive	model	based	
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on	the	principle	of	local	excitation	and	global	inhibition	(LEGI)	[112].	In	the	 th	cell,	

both	a	local	and	a	global	molecular	species	are	degraded	at	a	rate	 	and	produced	at	

a	rate	 	in	proportion	to	the	number	of	signal	molecules	in	the	vicinity,	which	is	

roughly	 .		Whereas	the	local	species	is	confined	to	each	cell,	the	global	species	is	

exchanged	between	neighboring	cells	at	a	rate	 ,	which	provides	the	

communication.		Because	there	is	no	experimental	evidence	for	receptor	saturation	

(Figure	13C	of	the	main	text),	we	confine	ourselves	to	the	linear	response	regime,	in	

which	the	dynamics	of	the	local	and	global	species	satisfy	the	stochastic	equations	

	 	 (2)	

	 	 (3)	

where	

	 	 (4)	

is	the	tridiagonal	matrix	governing	degradation	and	exchange.		Here	 	and	 	are	

the	molecule	numbers	of	the	local	and	global	species,	respectively,	and	the	terms	 	

and	 	are	the	intrinsic	Langevin	noise	terms	with	zero	mean	and	covariances	

	 	 (5)	

	 	 (6)	
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Equation	5	and	the	first	line	of	Eq.	6	contain	the	Poisson	noise	corresponding	to	

each	reaction,	while	the	second	line	of	Eq.	6	contains	the	anti-correlations	between	

neighboring	cells	introduced	by	the	exchange.		Equations	4	and	6	are	modified	at	the	

edges	 	to	include	exchange	with	just	one	neighboring	cell.	

In	the	LEGI	framework,	the	local	species	excites	a	downstream	species,	while	the	

global	species	inhibits	it.		In	the	limit	of	shallow	gradients,	the	relative	noise	in	the	

excitation	level	of	this	downstream	species	is	equivalent	to	that	in	the	difference	

	between	local	and	global	species’	molecule	numbers.		To	see	this,	we	

recall	from	Ref.	[112]	that,	in	the	LEGI	model,	the	excitation	level	 	depends	on	the	

ratio	of	activator	 	to	inhibitor	 	as	

	 	 (7)	

	

FIGURE	20:	ABSENCE	OF	DIRECTIONAL	SENSITIVITY	IN	INDIVIDUAL	CELLS	IS	
NOT	A	BYPRODUCT	OF	P-CADHERIN	KNOCKOUT. 

Motile	MTLn3	single	cells	(A)	and	single	cells	from	dispersed	WT	organoids	(B)	were	
deposited	in	the	0.5	nM/mm	EGF	gradient	and	2.5	nM	uniform	EGF	distribution	for	3	
days.	No	statistically	significant	accumulation	of	cells	in	different	sections	of	the	device	
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was	noted,	indicating	absence	of	directional	sensitivity,	just	like	for	the	P-cadherin	
knockouts	(Figure	11E).	

where	 	is	a	constant.		At	equal	activation	and	inhibition,	 ,	the	excitation	level	is	

.		Defining	 	as	the	deviation	from	this	level,	Eq.	7	can	be	written	

in	terms	of	 	and	 	as	

	 	 (8)	

where,	for	shallow	gradients,	we	have	assumed	that	the	quantity	 	is	small.		Small	

fluctuations	among	 ,	 ,	and	 	are	therefore	related	as	

	 	 (9)	

or	equivalently,	

	 	 (10)	

 
where	the	last	step	once	again	assumes	 	is	small.		Thus	we	see	that	relative	

fluctuations	in	 	are	equivalent	to	those	in	 .		We	therefore	take	 	as	our	readout	

variable,	focusing	in	particular	on	 ,	the	molecule	number	difference	in	the	cell	

furthest	up	the	gradient,	since	this	cell	initiates	the	morphological	branching	

observed	in	the	experiment.	

4.	ABSENCE	OF	DIRECTIONAL	SENSITIVITY	IN	SINGLE	CELLS	

While	Figure	11E	showed	the	absence	of	directional	sensitivity	in	individual	cells,	it	

remains	possible	that	this	insensitivity	is	a	result	of	the	P-cadherin	knockout.	To	
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alleviate	this	possibility,	we	deposited	individual	cells	from	the	MTLn3	mammary	

epithelial	cell	line	[88],	as	well	as	individual	cells	from	dispersed	WT	organoids	into	

the	experimental	device	for	3	days.	Over	this	time,	the	cells	can	move	over	distances	

comparable	to	those	determined	organoid	experiments.	Directionally	biased	

motility	would	result	in	enrichment	of	cells	in	different	device	zones	(source	of	EGF,	

middle	of	the	device,	and	sink	of	EGF).	As	seen	in	Figure	21,	no	enrichment	is	

observed,	indicating	that	the	absence	of	directional	sensitivity	in	individual	cells	is	

not	a	byproduct	of	the	P-cadherin	knockout.	

5.	INSTANTANEOUS	VS.	TEMPORALLY-INTEGRATED	GRADIENT	SENSING	

Since	the	foundational	publication	of	Berg	and	Purcell	[12],	most	work	on	molecular	

sensing	has	considered	the	setup	where	a	sensor	integrates	the	signal	over	a	certain	

time	 ,	much	larger	than	the	typical	turnover	time	of	the	ligand	molecules,	which	is	

controlled	by	diffusion.	As	the	diffusion	brings	new	molecules	to	the	vicinity	of	the	

sensor,	fluctuations	are	averaged	out,	resulting	in	a	typical	 	decrease	of	the	

sensory	error.	Analyses	of	gradient	sensing	not	considering	[127]	and	considering	

communication	[107]	among	the	neighboring	cells	have	also	revealed	similar	time	

dependence	due	to	temporal	integration.		In	contrast,	Figure	20	shows	the	

organoids	do	not	exhibit	an	increase	in	sensory	precision	with	time	between	1	and	3	

days	of	the	experiment	duration.	This	suggests	that	the	integration	(or	memory)	

time	in	this	system	is	smaller	than	the	typical	diffusive	turnover	time.	As	a	

consistency	check,	we	point	out	that	the	diffusion	coefficient	of	EGF	in	extracellular	

space	is	about	50	um2/s	[128].	Thus	a	typical	diffusion	time	across	a	300	um	

t

⇠ 1/
p
t
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organoid	would	be	(300	um)2/(50	um2/s)	=	30	min,	so	many	biochemical	signaling	

reactions	–	and	integration	scales	defined	by	them	–	are	faster	(see	[107]	for	a	more	

careful	analysis	of	time	scales	relevant	for	collective	gradient	sensing).	Therefore,	in	

what	follows,	we	consider	that	 ,	an	instantaneous	steady-state,	rather	than	time-

averaged,	difference	of	the	local	and	the	global	messenger	species,	is	the	readout	of	

our	model	most	relevant	for	the	experiments.	At	the	same	time,	we	refer	the	reader	

to	the	companion	article,	Ref.	[107],	where	a	full	analysis	with	temporal	integration	

is	presented.	The	integration	does	not	change	the	qualitative	picture	developed	here	

(existence	of	a	finite	gradient	sensing	unit),	but	provides	somewhat	different	values	

for	the	dependence	of	the	sensory	limits	on	the	system	parameters.	

	

FIGURE	21:	TEMPORAL	STABILITY	OF	GRADIENT	SENSING		

Angular	histograms	of	branch	directions	for	new	branches	appearing	during	(A)	day	1	
(total	145	branches),	(B)	day	2	(total	157	branches),	and	(C)	day	3	(total	132	
branches)	of	continual	exposure	of	organoids	to	a	0.5	nM/mm	EGF	gradient.	Branch	
angles	are	plotted	irrespective	of	the	organoid	from	which	each	branch	originates.	The	
gradient	of	EGF	is	in	the	0°	direction.	Plots	are	non-cumulative,	in	that	B	shows	only	
branches	that	form	during	day	2	(and	not	day	1),	and	C	shows	only	branches	that	form	
during	day	3	(and	not	days	1	and	2).	The	number	of	branches	changes	since	the	
organoids	change	their	morphology	with	time,	but	there	is	clearly	no	evidence	of	an	
improving	accuracy	of	branch	formation	angle,	and	hence	no	evidence	of	temporal	
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integration.		Bias	is	measured	by	measure	B	from	Figure	12	(but	for	individual	
branches,	as	in	Figure	17).	

6.	MEAN	AND	VARIANCE	OF	THE	READOUT	VARIABLE	

The	mean	and	variance	of	the	readout	variable	are	

	 ,	 (11)	

	 ,	 (12)	

where	 	is	the	covariance.		These	expressions	in	turn	

depend	on	the	mean	and	variance	of	 	and	 ,	which	we	now	calculate	from	Eqs.	2	

and	3	in	steady	state.		The	mean	of	 	follows	straightforwardly	from	Eq.	2,	

	 ,	 (13)	

where	the	term	 	describes	the	factor	by	which	the	number	of	local	species	

molecules	is	amplified	beyond	the	number	of	detected	signal	molecules.		Similarly,	

the	mean	of	 	follows	from	Eq.	3,	

	 ,	 (14)	

where	 .		We	see	that,	due	to	the	communication,	the	global	species	

number	in	the	edge	cell	is	a	weighted	sum	of	the	signal	measurements	made	by	all	

the	other	cells.		The	weighting	is	determined	by	 ,	which	we	call	the	

communication	kernel	and	discuss	in	detail	in	the	next	section.	

The	variance	of	 	is	easiest	to	derive	in	Fourier	space.		We	first	consider	the	

fluctuations	 	and	 ,	in	terms	of	which	Eq.	2	reads	

�̄N = x̄N � ȳN
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	 .	 (15)	

Fourier	transforming	and	rearranging	obtains	

	 .	 (16)	

Since	we	are	interested	in	the	instantaneous	readouts	only,	the	variance	is	then	the	

integral	over	all	frequencies	of	the	power	spectrum	 ,	

	 ,	 (17)	

where	the	cross	terms	vanish	because	signal	fluctuations	are	not	cross-correlated	

with	local	species	fluctuations.		The	noise	spectrum	follows	from	Eq.	5,	

,	upon	which	the	second	term	in	Eq.	17	integrates	to	 .		

The	first	term	in	Eq.	17	depends	on	the	power	spectrum	of	signal	fluctuations,	which	

for	a	Poisson	process	with	timescale	 	reads	 .	We	are	

considering	instantaneous	readouts,	which	is	equivalent	to	the	diffusion	of	EGF	

being	slow,	i.e.,	 	and	 .	This	is	the	same	as	assuming	that	

the	number	of	signal	molecules	is	Poisson-distributed	but	fixed	in	time.		Thus	Eq.	17	

becomes	

	 .	 (18)	

The	first	term	is	the	extrinsic	noise.		It	arises	from	fluctuations	in	the	signal	

molecule	number.		Since	these	fluctuations	are	Poissonian,	the	variance	of	the	signal	

molecule	number	equals	its	mean	 .		Then,	as	these	fluctuations	are	propagated	
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to	the	local	species,	they	are	amplified	by	the	gain	 .		The	second	term	is	the	

intrinsic	noise.		The	intrinsic	noise	arises	from	fluctuations	in	the	local	species	

number	itself.		These	fluctuations	are	also	Poissonian,	and	thus	the	variance	equals	

the	mean	 .	

We	follow	the	same	procedure	to	find	the	variance	of	 .		The	result	is	

	 	 (19)	

The	extrinsic	noise	(first	term)	once	again	scales	with	the	gain	 .		It	depends	on	the	

same	kernel	 	that	determines	the	mean,	which	reflects	the	fact	that,	as	seen	in	Eq.	

15,	upstream	fluctuations	propagate	through	linear	systems	in	the	same	way	as	the	

signals	themselves	[129].		The	intrinsic	noise	(second	term)	is	once	again	equal	to	

the	mean	 ,	which	is	a	necessary	consequence	of	the	fact	that	Eq.	3	is	an	open	

system	whose	reaction	rates	are	linear	in	the	species	numbers	[130].	

Finally,	we	apply	the	same	technique	to	find	the	covariance,	which	is	the	integral	

over	all	frequencies	of	the	cross-spectrum	 .		The	result	is	

	 .	 (20)	

This	expression	has	a	straightforward	interpretation:	it	is	the	product	of	two	

extrinsic	standard	deviations.		The	first	is	the	square	root	of	the	extrinsic	noise	in	

the	local	species,	 .		The	second	is	the	square	root	of	the	extrinsic	noise	

in	the	global	species,	but	only	the	component	affecting	the	 th	cell,	 .		

The	reason	that	only	extrinsic	noise	enters	is	because	 	and	 	only	co-vary	due	to	

G2

x̄N

yN

(�yN )2 = G2
N�1X

n=0

K2
nc̄N�na

3 + ȳN .
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ȳN

h�̃x⇤
N �̃yN i

cov(xN , yN ) = G

2
K0c̄Na

3

�
x

⌘
p
G2c̄

N

a3

N �y ⌘
p

G2K2
0 c̄Na3

xN yN



	

82	

fluctuations	in	the	extrinsic	signal.		The	reason	that	only	the	 th	component	of	the	

global	noise	contributes	is	because	the	local	species	is	not	communicated,	and		thus	

any	effect	on	 	due	to	other	cells	cannot	co-vary	with	 .		Finally,	the	reason	that	

the	covariance	takes	the	form	of	a	product	of	standard	deviations	is	because	 	and	

	depend	identically	on	the	signal	(Eqs.	2	and	3),	and	therefore	the	correlation	

coefficient	corresponding	to	extrinsic	fluctuations	 	is	equal	

to	one.	

From	the	mean,	variance,	and	covariance	of	 	and	 ,	the	mean	and	variance	of	the	

readout	variable	follow	via	Eqs.	11	and	12.	The	only	thing	that	remains	is	to	solve	

for	the	communication	kernel	 ,	which	we	describe	next.	

7.	COMMUNICATION	KERNEL	

The	communication	kernel	 	is	found	by	inverting	the	tridiagonal	matrix	

.		First	we	derive	the	inverse,	and	then	we	present	an	approximation	of	 	in	the	

limit	of	strong	communication	and	many	cells.	

Defining	 ,	the	diagonal	( ),	superdiagonal	( ),	and	subdiagonal	( )	terms	of	

	(Eq.	4)	are	

	 	 (21)	

The	inverse	of	any	tridiagonal	matrix	can	be	calculated	by	recursion	[131,	132],	
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	 	 (22)	

where	 	and	 	satisfy	

	 	 (23)	

Since	both	 	and	 	are	constant	and	equal	to	 ,	Eq.	22	simplifies	to		

	 	 (24)	

From	Eq.	24	we	can	also	deduce	that	the	inverse	is	symmetric.		We	write	the	first	

few	terms	of	 	and	notice	the	pattern,	

	 	 (25)	

The	last	term	 	does	not	conform	to	the	pattern	because	 	is	different	from	its	

previous	terms,	so	we	calculate	 	explicitly	from	 	and	 	and	simplify,	

	 	 (26)	

Then,	since	 	and	 	are	constants	and	 ,	we	notice	from	Eq.	23	that	

	 	 (27)	
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Inserting	Eqs.	25-27	into	Eq.	24	and	simplifying,	and	recalling	that	the	inverse	is	

symmetric,	we	arrive	at	the	expression	

	 	 (28)	

for	the	inverse.		The	communication	kernel	is	a	particular	case,	

	 .	 (29)	

The	communication	kernel	is	normalized,	 ,	which	is	consistent	with	its	

interpretation	as	a	weighting	function.	

Now	we	show	that	in	the	limit	of	strong	communication	and	a	large	number	of	cells,	

the	communication	kernel	can	be	approximated	by	an	exponential	distribution.	

Since	all	dependence	on	 	occurs	in	the	numerator	of	Eq.	29,	we	approximate	the	

numerator	only,	and	then	we	set	the	denominator	using	the	fact	that	 	is	

normalized.	The	approximation	of	the	numerator	follows	two	steps.	First,	the	

factorials	in	the	choose	function	are	written	using	the	Stirling	approximation.	

Second,	the	sum	is	simplified	using	the	saddle	point	approximation.	

We	expect	 	to	have	the	strongest	support	at	the	edge	cell	and	nearby	cells,	i.e.	for	

small	values	of	 .		Therefore,	applying	the	Stirling	approximation	to	the	numerator	

of	Eq.	29	is	valid	in	the	limit	

	 ,	 (30)	
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where	 	is	the	value	at	which	the	summand	peaks.		We	will	see	below	that	this	

condition	is	satisfied	in	the	limit	of	strong	communication	and	many	cells.	

Ignoring	the	denominator,	we	write	the	exchange	kernel	as	 ,	where	

	 	 (31)	

Applying	the	Stirling	approximation	 	yields	

	 	 (32)	

We	now	apply	the	saddle	point	approximation,	which	means	we	approximate	 	as	

continuous	and	expand	 	to	second	order	around	its	minimum	value,	permitting	the	

evaluation	of	a	Gaussian	integral,	

	 	 (33)	

Here	 	is	the	value	at	which	the	minimum	 	occurs	and	at	which	the	second	

derivative	 	is	evaluated.		It	is	found	by	setting	to	zero	the	first	derivative	of	Eq.	32,	

	 	 (34)	

Ignoring	the	last	three	terms	because	their	denominators	are	precisely	the	three	

quantities	we	have	assumed	are	large,	we	solve	 	to	find	
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	 	 (35)	

where	 .		Eq.	35	shows	that	 ,	which	means	Eq.	30	can	be	written	

	 .	 (36)	

The	left	condition	in	Eq.	36	requires	that	 	is	small.		This	is	satisfied	in	the	strong	

communication	limit	 ,	since	then	 .		The	right	condition	in	

Eq.	36	requires	that	 	is	large	(there	are	many	cells),	such	that	the	kernel	falls	to	

nearly	zero	still	within	the	organoid.	

Inserting	Eq.	35	value	into	Eq.	32	yields	

	 	 (37)	

Then	differentiating	Eq.	34,	once	again	ignoring	the	last	three	terms,	

	 	 (38)	

and	inserting	Eq.	35	yields	

	 	 (39)	

Now	we	evaluate	the	saddle	point	result	(Eq.	33),	

	 	 (40)	
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where	in	the	second	step	we	drop	all	 -independent	prefactors	and	define	

.		We	recover	the	proper	prefactor	by	enforcing	

normalization,	 ,	

	 ,	 (41)	

and	we	see	that	the	kernel	falls	off	exponentially	with	the	number	of	cells	 	from	the	

edge	cell.	

The	kernel	length	scale	 	can	be	simplified	in	the	strong	communication	limit,	in	

which	 	is	small,	

	 	 (42)	

We	see	that	the	length	scale	is	the	square	root	of	the	ratio	of	a	diffusion	term	( )	to	a	

degradation	term	( ).		This	is	the	same	form	as	the	length	scale	of	morphogen	

profiles	that	are	set	up	by	diffusion	and	degradation,	which,	like	the	communication	

kernel,	are	exponential	in	shape	[133].	

8.	FUNDAMENTAL	LIMIT	TO	THE	PRECISION	OF	INSTANTANEOUS	GRADIENT	SENSING	WITH	

COMMUNICATION	

We	now	complete	our	calculation	of	the	relative	noise	in	the	readout	variable	 .		In	

the	strong	communication	and	many	cells	limit,	the	sums	in	Eqs.	14	and	19	can	be	

approximated	as	integrals	over	all	positive	 	that	are	then	easily	evaluated	using	the	

exponential	form	of	the	kernel	(Eq.	41)	due	to	the	linearity	of	 	in	 	(Eq.	1).		We	

insert	the	results,	along	with	Eqs.	13,	18,	and	20,	into	Eqs.	11	and	12	to	obtain	
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	 ,	 (43)	

	 ,	 (44)	

From Eqs. 43 and 44 we obtain the relative noise 

	 .	 (45)	

Eq.	45	gives	the	relative	uncertainty	in	the	system’s	estimate	of	the	gradient	via	its	

readout	 ,	in	the	limit	of	many	cells.		In	the	brackets,	the	first	term	in	parentheses	

arises	due	to	the	extrinsic	noise.		The	second	term	in	parentheses	arises	due	to	the	

intrinsic	noise.		The	extrinsic	and	intrinsic	terms	have	a	similar	structure,	and	in	

general	as	a	function	of	 	they	will	have	a	similar	shape,	because	they	both	arise	

from	the	same	kernel	(Eq.	29).		The	intrinsic	term	reflects	the	counting	noise	from	

the	finite	number	of	internal	communicating	molecules.		The	extrinsic	noise	reflects	

the	imperfect	averaging	performed	by	the	global	molecular	species,	since	it	has	a	

finite	communication	length	scale.	

In	principle,	the	intrinsic	noise	can	be	made	arbitrarily	small	by	producing	more	

local	and	global	species	molecules,	which	is	equivalent	to	increasing	the	gain	 .		

Moreover,	we	observe	that	in	the	extrinsic	noise,	the	second	and	third	terms	are	

smaller	than	the	first	term	by	a	factor	of	 .		This	is	because	these	terms,	which	

involve	the	global	species,	benefit	from	measurements	of	the	external	signal	across	

roughly	 	cells	due	to	the	communication.		These	terms	are	therefore	small	relative	

to	the	first	in	the	strong	communication	limit.		We	are	then	left	with	
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	 	 (46)	

This	is	the	central	result	of	this	section.		Eq.	46	is	the	fundamental	limit	to	the	

precision	of	instantaneous	(not	temporally	averaged)	gradient	sensing	via	a	LEGI-

style	adaptive,	communicating	system.	Unlike	for	a	system	with	temporal	

integration	[107],	Eq.	46	does	not	depend	on	the	measurement	time	and	depends	on	

the	spatial	averaging	scale	as	 .	

Figure	22	shows	the	values	of	 ,	from	Eqs.	11,	12	with	the	

limiting	values,	or	the	fundamental	limits,	given	by	Eq.	45.	In	particular,	Figure	22D	

and	E	are	the	analogs	of	Figure	13B	and	C,	except	that	Figure	13	plots	the	estimate	

of	the	organoid	bias,	 ,	which	is	easily	obtained	from	 .	Note	that	in	

Figure	22D,	 	decreases	at	large	 	because	large	organoids	push	the	 th	cell	to	

higher	concentrations,	where	gradient	sensing	is	less	precise.	In	contrast,	in	Figure	

13B,	the	bias	 	saturates,	for	two	reasons:	(i)	bias	derives	from	the	both	

	and	 ,	which	are	pushed	to	opposite	concentration	regimes	for	large	

organoids,	and	(ii)	Figure	13	also	includes	additive	downstream	noise,	which	is	

independent	of	both	size	and	concentration,	and	thus	tends	to	flatten	out	
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dependencies. 

	

FIGURE	22:	PRECISION	OF	GRADIENT	SENSING	IN	A	MODEL	ACCOUNTING	FOR	
CELL-TO-CELL	COMMUNICATION.	

Signal-to-noise	ratio	(SNR)	vs.	(A)	organoid	size	 	and	(B)	background	concentration.		
For	reference	we	show	the	concentration	referenced	at	both	the	edge	cell	 	(A)	and	
the	midpoint	cell	 	(B).	The	fact	that	the	largest	organoids	must	be	centered	within	
the	device,	and	therefore	have	maximal	 	and	median	 ,	gives	rise	to	the	
geometrically	excluded	regions	in	A	and	B.	(C)	SNR	vs.	size	at	constant	 	(see	slice	in	
A),	and	the	corresponding	estimate	based	on	the	work	of	Berg	and	Purcell	(BP)	and	
others	[12,	74,	76,	78]	(Eq.	1	in	the	main	text).		Whereas	SNR	for	BP	increases	
indefinitely	with	size,	SNR	in	our	theory	saturates	due	to	the	finite	length	of	cell	
communication.	(D)	SNR	vs.	size,	averaged	over	all	geometrically	allowed	
concentrations,	and	organoid	sizes	between	10	and	1000	μm.	SNR	now	decreases	at	
large	size,	since	the	largest	organoids	have	the	largest	 	values,	and	gradient	sensing	
is	less	precise	on	a	large	background	concentration.	Note	that	whereas	SNR	decreases	
with	size	here,	bias	still	saturates	with	size	in	Figure	13B,	for	reasons	explained	in	the	
text	here.	(E)	SNR	vs.	concentration	 ,	averaged	over	all	geometrically	allowed	sizes.	
Parameters	are	 	=	10	μm,	 	=	0.5	nM/mm,	 	=	10,	and	 	=	5.	
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9.	SPATIALLY	RESOLVED	GILLESPIE	STOCHASTIC	SIMULATIONS	TO	EXPLORE	MODIFICATION	OF	

FUNDAMENTAL	LIMITS	TO	THE	PRECISION	OF	INSTANTANEOUS	GRADIENT	SENSING	UNDER	

VIOLATION	OF	LINEARITY	ASSUMPTIONS	

Reaction Rate 

	 5e-2 

	 5e-4 

	 1e-3 

	 5e-2 

	 5e-4 

	 1e-3 

	 5e-2 

	 5e-4 

	 1e-3 

	 1e-4 

	 5e-2 

	 5e-4 

	 1e-3 

	 1e-4 

 1e-2 
	 1e-2 
	 1e-2 

 1e-2 

TABLE	1:	SIMULATION	PARAMETERS	USED	IN	THE	SPATIALLY-EXTENDED	
GILLESPIE	SIMULATIONS	WITH	LOW	SATURATION.	

Our	theory	above	made	two	linearity	assumptions.	First,	we	assumed	that	receptors	

are	not	saturated	at	high	ligand	concentrations,	allowing	us	to	treat	the	production	

rate	of	messenger	molecules	as	a	linear	function	of	the	position.	Second,	we	

assumed	that	the	readout	is	the	difference	of	the	local	and	the	diffusive	messenger.	

In	more	conventional	analysis	of	LEGI	models,	the	readout	is	the	concentration	a	
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response	molecule	R,	positively	modified	by	the	activator	A	and	negatively	modified	

by	the	inhibitor,	I	[75,	111,	112].	To	verify	how	our	findings	for	the	fundamental	

limits	of	collective	gradient	sensing	are	affected	by	these	assumptions,	we	set	up	

numerical	stochastic	and	spatially-extended	simulations	of	the	system.	Organoids	

were	simulated	using	the	HSim	rule-based	modeling	program	[134],	version	

released	4/27/2015.	For	parameter	exploration,	a	Python	script	generated	model	

files	with	appropriate	parameters	and	called	HSIM	with	random	seeds.	Simulations	

were	run	on	IBM	NeXtScale	nodes	with	Intel	Xeon	E5-2660	V2	and	V3	processors.		

Simulations	were	run	for	model	organoids	represented	as	coupled	linear	chains	

with	the	following	numbers	of	cells:	3,	6,	10,	12,	15,	20,	25,	and	50.	For	each	

simulated	cell	n,	a	set	of	molecules	( )	was	initiated	which	interacted	only	

with	each	other	(Table	S1).	In	the	LEGI	model,	 	(the	signal	molecule)	activates	 	

and	 .	The	activated	 	was	allowed	to	activate	 ,	and	the	activated	 	was	

allowed	to	deactivate	it.	 	was	also	allowed	to	diffuse	to	become	 .	Each	

interaction	was	modeled	as	a	Michaelis-Menten	reaction.	 	and	 	were	both	

allowed	to	deactivate	with	equal	rates.	Spherical	cells	with	diameter	10	micron	were	

initialized	with	 ,	 ,	 ,	and	 	molecules.	 	was	

initialized	to	1000	in	each	simulation’s	final	cell,	with	the	gradient	of	5	molecules	

per	cell.	All	kinetic	parameters	present	in	both	the	theory	and	the	simulations	were	

selected	to	match	(see	Figure	14	of	the	main	text	and	Table	S1).	To	investigate	the	

effects	of	saturation,	deactivation	rates	of	 	and	 	were	scaled	by	1/4	and	1/10	for	

partial	and	full	saturation,	respectively.	High	saturation	of	 	and	 	was	confirmed	

Sn, An, In, Rn

Sn An

In An Rn In

In In±1

An In

An = 1000 In = 1000 Rn = 500 R⇤
n = 500 SN

An In
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by	removing	reactions	with	 	and	observing	nonlinear	response	to	varying	 .	The	

diffusion	rate	of	 	was	scaled	accordingly	to	maintain	a	communication	strength	

	cells.	Supplementary	Table	S1	shows	the	values	of	all	kinetic	rates	

used	in	the	low	saturation	simulations.		

	

FIGURE	23:	COMPARISON	OF	DATA	WITH	THEORY,	WITH	MULTIPLICATIVE	
INSTEAD	OF	ADDITIVE	NOISE.	

Identical	to	Figure	13	of	the	main	text,	except	that	in	the	theory	the	downstream	noise	
is	multiplicative,	instead	of	additive,	as	described	in	the	text	here.	Importantly,	the	
conclusions,	namely	that	the	data	support	our	theory	with	communication	over	BP	
theory	(B	and	C),	and	our	estimate	for	 		(here	between	2.9	and	3.5)	(D),	are	robust	to	
the	treatment	of	downstream	noise.	

	

For	each	scenario	(low,	medium,	and	high	saturation)	and	each	number	of	cells,	

16,384	simulations	were	run	for	a	total	of	393,216	runs.	Simulations	were	ran	
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sufficiently	long	(10,000	sec)	so	that	the	SNR	had	reached	the	steady	state.	SNR	is	

reported	as	the	squared	mean	over	the	variance	of		

	

in	the	final	cell	at	the	end	of	simulations.	Error	bars	are	determined	by	bootstrap	

sampling,	reporting	variance	of	100	re-samples	of	size	16,384	taken	from	the	

original	data	with	replacement.		

10.	LIMITS	ON	THE	SIZE	OF	THE	MULTICELLULAR	SENSORY	UNIT	WITH	MULTIPLICATIVE	

DOWNSTREAM	NOISE	

In	the	main	text,	Figure	13,	we	compared	theoretical	predictions	of	the	BP	model,	as	

well	as	the	model	accounting	for	the	communication	noise,	with	the	experimental	

data	under	the	assumption	that	the	noise	in	initiation	of	the	phenotypic	response,	

downstream	of	the	gradient	sensing,	is	additive.	Here	we	consider	a	multiplicative	

noise	model.	For	the	BP	theory,	we	again	calculate	the	probability	that	the	measured	

number	of	ligand	molecules	in	the	N’th	cell	is	larger	than	in	the	first,	 .	

However,	now	we	take	 	as	Gaussian-distributed	with	mean	 	and	variance	

,	where	 	represents	the	multiplicative	increase	due	to	downstream	noise.	

Similarly,	for	our	theory	with	diffusive	communication,	we	calculate	the	probability	

that	 ,	where	 	is	Gaussian-distributed	with	mean	 ,	and	variance	 ,	

where	both	 	and	 	are	calculated	earlier	in	this	Supplementary	Information.	

Figure	23	is	the	multiplicative	noise	analog	of	Figure	13.	Importantly,	Figure	23	

demonstrates	that	our	results	depend	only	weakly	on	the	assumed	properties	of	the	
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downstream	noise.	In	particular,	with	either	additive	or	multiplicative	noise,	the	

data	support	our	theory	with	communication	over	BP	theory	(Figure	13B	and	C,	and	

Figure	23B	and	C),	and	we	obtain	similar	estimates	of	the	multicellular	sensory	unit	

given	by	 	(Figure	13D	and	Figure	23D).		

	

FIGURE	24:	GAP-JUNCTION	BLOCKING	DRUGS	REMOVE	BIASED	RESPONSE	OF	
ORGANOIDS	

Directional	histograms	of	organoids	in	0.5	nM/mm	EGF	gradient	after	treatment	with	
(A)	50	μM	Carbenoxolone	(2	biological	replicates,	3	experimental	replicates,	total	59	
organoids,	total	206	branches),	(B)	50	μM	Flufenamic	acid	(2	biological	replicates,	3	
experimental	replicates,	total	49	organoids,	total	173	branches),	and	(C)	0.5	mM	
Octanol	(2	biological	replicates,	3	experimental	replicates,	total	64	organoids,	total	
222	branches).	In	all	cases,	as	well	with	Endothelin-1	(Fig.	5A	in	the	main	text),	the	
treatment	removes	the	directional	response	seen	in	wild	type	organoids	(Figure	11D	in	
the	main	text).	

 
11.	TREATMENTS	WITH	GAP	JUNCTION-BLOCKING	DRUGS	REMOVE	ORGANOID	RESPONSE	TO	

EGF	GRADIENTS	

In	addition	to	Endothelin-1,	Figure	24	confirms	that	other	other	gap-junction	

blocking	drugs	also	remove	the	directional	response	of	the	organoids.	

12.	CALCIUM	SIGNALING	IS	COORDINATED	IN	NEARBY	CELLS	
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To	test	the	hypothesis	that	the	global,	diffusive	inhibitory	messenger	in	the	

organoids	is	related	to	calcium	signaling	(such	as	IP3	or	calcium	itself)	we	manually	

tracked	5	cells	in	the	area	at	the	front	of	a	growing	branch	in	an	organoid	derived	

from	a	transgenic	mouse	expressing	genetically	encoded	Ca	reporter	GCaMP4,	

under	the	control	of	the	CAG	promoter	[115],	see	Figure	25.	Calcium	spikes	in	these	

cells	are	highly	synchronized,	indicating	communication	by	calcium	spikes	inducing	

messengers.		Note	also	that	the	size	of	the	tip	is	consistent	with	our	estimate	of	the	

gradient	sensing	unit	(about	4	cells) 

	

FIGURE	25:	CALCIUM	SIGNALING	IN	GROWING	ORGANOID	BRANCHES	

(A)	Five	cells	are	tracked	in	the	growing	tip	of	an	organoid	for	500	min	(see	Supp.	
Movie	1	for	the	movie	of	the	first	two	hours	of	the	growth).	(B)	Calcium	signal	from	
each	of	the	five	cells,	color-coded	as	in	(A).	Each	frame	is	10	min.	Notice	multiple	cells	
firing	nearly	synchronously	at	frames	3,	9,	14,	and	19,	indicating	coupling	among	the	
adjacent	cells.		

13.	GRADIENT	ESTABLISHMENT	IN	THE	DEVICE	

Numerical	simulations	show	that	a	linear	gradient	of	EGF,	a	6.4	kDa	protein,	is	

established	in	our	device	in	less	than	24	hrs.	We	verify	this	by	flowing	an	easily	

B A 
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observable	10	kDa	fluorescent	protein	(Dextran, Cascade Blue, Life Technologies)	

through	the	system	and	imaging	it	a	day	after	the	initition	of	the	experiment.	Figure	

26,	indeed,	shows	a	nearly	linear	gradient.		EGF	is	smaller,	has	a	higher	diffusion	

coefficient,	and	will	establish	a	stable	gradient	even	faster.		

	

FIGURE	26:	GRADIENT	ESTABLISHMENT	IN	THE	EXPERIMENTAL	DEVICE.		

(A)	Image	of	the	device	with	the	0.5	nM/mm	gradient	of	10	kDa	Dextran	Blue	used	to	
visualize	diffusion	of	EGF.	Area	over	which	the	concentration	is	averaged	is	shown	by	a	
blue	square.	(B)	Average	gradient	within	the	blue	square	as	a	function	of	the	distance	
from	the	left	edge	of	the	device,	23.5	hours	after	the	start	of	the	experiment.	A	nearly	
linear	profile	is	visible.		
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Chapter	5 ROBUST	DETECTION	OF	SIGNAL	DURATION	IN	GENETIC	

AND	SIGNALING	NETWORKS	

BACKGROUND	

It	has	recently	been	discovered	that	a	number	of	cell	signaling	systems	are	

responsive	to	the	duration	of	a	signal	[15,	135-138].	If	one	were	to	imagine	what	

circuit	is	behind	that	detection,	the	simplest	that	could	come	to	mind	is	an	

integrator.	Its	peak	signal	would	correspond	to	the	amount	of	time	that	a	signal	was	

present	for.	Integration,	however	is	naturally	affected	not	only	by	the	duration	of	a	

signal,	but	also	by	its	amplitude.	In	the	context	of	this	detection	problem,	variations	

in	amplitude	would	be	a	confounding	“noise”	to	the	detection	circuit.	

While	fast,	intrinsic	fluctuations	in	signal	strength	could	be	smoothed	by	integration,	

extrinsic	fluctuations	tend	to	occur	on	larger	time	scales.	Extrinsic	noise	has	been	

repeatedly	shown	to	be	a	dominant	source	of	noise	in	biochemical	signaling	

networks	[8,	139].	In	genetic	networks,	this	noise	can	come	from	transcriptional	

bursts	and	variations	in	transcription	factor	or	ribosome	copy	numbers.	In	

chemosensory	networks,	this	noise	can	come	from	both	fluctuations	of	the	actual	

signal	or	variation	in	number	of	receptors.	Any	of	these	effects	may	occur	on	time	

scales	slower	than	signal	detection	time,	thus	presenting	a	serious	challenge	to	an	

integrating	circuit	attempting	to	detect	duration.	

Given	these	challenges,	it	is	of	interest	to	identify	somewhat	more	complex	circuits	

which	are	capable	of	detecting	signal	duration	in	the	face	of	amplitude	noise.	By	
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identifying	basic	motifs	which	are	capable	of	performing	this	task,	we	may	

accomplish	multiple	goals.	First,	when	biological	systems	have	been	found	to	detect	

signal	duration,	we	will	give	researchers	a	motif	to	focus	on,	narrowing	their	search	

for	specific	mechanisms.	Secondly,	when	such	a	motif	has	been	found	in	a	biological	

system,	researchers	will	know	to	attempt	experiments	with	inputs	of	duration	

besides	simply	varying	input	strength.	Finally,	we	will	provide	a	design	pattern	

which	synthetic	biologists	may	use	in	applications	for	which	signal	duration	may	be	

of	interest.	

In	the	following	sections,	we	will	explore	the	Incoherent	Type	1	Feed	Forward	Loop	

(I1FFL)	motif.	As	one	of	the	most	common	network	motifs,	and	has	several	

identified	functions	including	pulse	generation,	response	time	reduction,	and	fold-

change	detection	[16-19,	140].	Here,	we	demonstrate	a	new	function:	its	ability	to	

accurately	decode	signal	duration	in	the	presence	of	amplitude	noise.	While	many	

features	of	the	I1FFL	have	been	described	in	literature,	the	circuit	has	not	

previously	been	analyzed	in	the	context	of	this	dynamic	signal.	In	this	chapter,	we	

will	demonstrate	the	circuit’s	basic	ability,	understand	how	its	may	be	explained	by	

basic	equations	describing	the	circuit,	and	explore	how	broadly	(in	terms	of	circuit	

parameter	variation)	the	circuit	may	perform	this	task.	
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FIGURE	27:	COMPARISON	OF	A	SIMPLE	INTEGRATOR	AND	A	FEED	FORWARD	
LOOP	

A)	Schematics	of	a	simple	integrator	network	and	an	Incoherent	Type-1	Feed	Forward	
Loop.	B)	Two	inputs	(X)	of	duration	1	and	different	amplitudes	are	plotted,	along	with	
the	integrator	and	I1FFL	networks’	responses	to	each.	For	inputs	of	the	same	duration,	
the	peak	integrator	response	to	one	signal	is	100%	larger	than	to	the	other,	while	the	
peaks	of	the	I1FFL	response	differ	by	only	4%.	C)	Two	inputs	(X)	of	duration	2	and	
different	amplitudes	are	plotted.	Again,	the	integrator	response	is	100%	different	for	
these	inputs	while	the	I1FFL	response	shows	only	6%	difference.	Notice	that	between	
figures	B	and	C,	the	maximum	value	of	the	FFL	grows	with	the	duration,	while	the	
maximum	value	of	the	integrator	corresponds	to	the	combination	of	the	duration	
times	the	amplitude.	Simulation	parameters	for	the	integrator	are	B=1,	a3=1/10.	
Simulation	parameters	for	the	I1-FFL	are	B0=20,	a1=10,	B1=15,	K1=1,	K2=1/10,	K3=1000,	
a2=1/3.	

THE	I1FFL	CAN	DECODE	SIGNAL	DURATION	

The	feed	forward	loop	motif	consists	of	an	input	node	(X),	an	intermediate	node	(Z)	

which	is	affected	by	X,	and	a	final	output	node	(YFFL)	which	is	affected	both	by	X	

and	Z.	In	the	Incoherent	Type	1	Feed	Forward	Loop	(I1FFL),	the	direction	of	these	

effects	is	as	shown	in	Figure	27A	and	described	in	the	equations	below:	
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(1)	

(2)	

We	first	consider	some	specific	examples	of	how	the	I1FFL	may	behave	differently	

than	an	integrating	circuit	(Figure	27,	Table	2).		We	perform	simple	ODE	

calculations	of	the	equations	describing	the	I1FFL	and	the	integrator	in	Matlab,	and	

present	each	circuit	with	four	inputs.	When	presented	with	inputs	of	equal	duration	

but	differing	amplitudes,	the	maximum	output	of	the	integrator	doubles	with	the	

doubled	amplitude,	while	the	maximum	output	of	the	I1FFL	changes	by	only	4-6%.	

It	is	also	notable	that	the	maximum	response	of	the	integrator	to	inputs	labeled	1	

and	2	is	nearly	identical	between	Figure	27	panels	B	&	C.	This	is	caused	by	the	

inputs	having	the	same	value	of	their	amplitude	times	duration	(or,	area	under	the	

signal),	as	you	would	expect	for	an	integrator.	The	I1FFL	does	not	share	this	

behavior,	maintaining	similar	maximum	outputs	only	for	similar	duration	signals.	

X	
Dur	

X	
Amp	 max(YINT)	

%	Diff	
YINT	 max(YFFL)	

%	Diff	
YFFL	

1	 2	 0.95	 100%	 0.80	 4%	1	 1	 1.9	 0.83	
2	 1	 0.9	

100%	
1.3	

6%	2	 0.5	 1.8	 1.4	
TABLE	2:	MAXIMUM	RESPONSE	OF	INTEGRATOR	AND	FFL	TO	INPUTS	

Table	of	inputs	and	maximum	responses	to	signals,	corresponding	to	plots	and	
simulation	parameters	in	Figure	27B,C.	While	YINT	(integrator	response)	doubles	when	
amplitude	doubles,	YFFL	(I1FFL	response)	changes	by	6%	or	less.	

To	understand	how	the	I1FFL	performs	this	task,	we	can	observe	that	Z	is	a	

repressive	element	that	mirrors	the	strength	of	X	(Figure	27A).	When	YFFL	is	



	

102	

repressed	by	Z	in	proportion	to	the	amount	it	is	activated	by	X,	then	we	would	

expect	the	level	of	both	cancel	out	and	only	the	amount	of	time	that	the	signal	is	

activated	to	affect	its	output.	

To	evaluate	this	intuitive	understanding	more	rigorously,	we	consider	a	system	

where	Z	achieves	steady-state	much	faster	than	YFFL.		At	steady	state,	this	gives	

𝑍 =  𝑋 𝛽! 𝛼!.	If	we	assume	𝑋 𝐾! +
𝑍
𝐾!  ≫  1+ 𝑋𝑍 𝐾!𝐾!𝐾!,	then	equation	2	

reduces	to		

𝑑𝑌!!"
𝑑𝑡

= 𝛽!
𝑋
𝐾!

𝑋
𝐾! +

𝑋𝛽!
𝛼!𝐾!

− 𝛼!𝑌!!"

= 𝐶 − 𝛼!𝑌!!"

	

where		

𝐶 = 𝛽!
𝐾!𝛼!

𝐾!𝛼! + 𝐾!𝛽!
	

is	not	a	function	of	X.	This	approximation	of	course	requires	X>0,	however	the	

degradation	term	already	requires	that	X	be	above	a	certain	threshold	in	order	to	

affect	YFFL.	Thus,	we	have	shown	how,	under	a	few	assumptions,	the	I1FFL	circuit,	in	

the	presence	of	any	signal,	may	increase	at	a	rate	which	is	not	determined	by	the	

amplitude	of	the	input	signal.	

COOPERATIVITY,	Z	KD	AND	GAIN	ARE	KEY	PARAMETERS	

So	far,	in	order	to	demonstrate	the	plausibility	of	the	I1FFL’s	detection	capability,	

we	have	considered	circuits	with	specific	example	parameters	or	assumed	
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constraints	on	parameter	values.	In	order	to	understand	whether	this	capability	of	

signal	detection	in	the	presence	of	amplitude	noise	extends	broadly	to	I1FFL	circuits	

without	hand-selected	parameters,	we	must	determine	which	parameters	are	the	

most	important	to	the	circuit’s	performance.	

In	order	to	quantify	the	performance	of	a	circuit	with	a	given	set	of	parameters,	we	

must	consider	its	response	to	a	range	of	signal	durations	as	well	as	a	distribution	of	

random	amplitudes.	By	running	many	simulations	of	each	circuit	for	a	set	of	signal	

durations	(Xdur),	taking	a	random	value	for	signal	amplitudes	(Xamp)	we	may	build	up	

the	circuit’s	probabilistic	response	P(YFFL|Xdur).	For	simplicity,	we	will	continue	to	

refer	to	YFFL	as	a	single	value,	max(YFFL(t)),	of	the	system’s	dynamic	output.	

Next,	we	must	reduce	this	joint	distribution	for	a	given	set	of	parameters	to	a	single	

performance	metric,	indicating	how	responsive	YFFL	is	to	Xdur.	To	do	this,	we	will	

utilize	the	information-theoretic	concept	of	capacity.	Capacity	measures	the	

maximum	amount	of	information	shared	between	two	random,	but	related,	

variables.	In	this	case,	we	consider	the	variables	to	be	Xdur	and	YFFL,	and	capacity	is	

computed	as	

	

where	

C = max

P (Xdur)
I(Xdur;YFFL)
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Therefore,	I(Xdur;	YFFL)	can	be	seen	as	a	function	of	P(Xdur)	and	P(YFFL|Xdur).	Since	

capacity	is	maximized	over	P(Xdur),	it	is	reduced	to	be	a	function	of	only	P(YFFL	|	Xdur),	

the	distribution	which	we	have	already	described	how	to	obtain.	

Now	that	we	have	a	metric	describing	the	performance	of	the	circuit,	we	can	use	a	

sensitivity	analysis	to	explore	which	parameters	affect	it	the	most.	We	choose	to	use	

the	FAST	sensitivity	analysis	method,	primarily	due	to	its	ability	to	handle	non-

linear	and	non-monotonic	functions	[141].	The	output	of	the	FAST	analysis	is	a	

metric	which	determines,	over	all	parameter	sets	explored,	what	percent	of	variance	

in	the	performance	was	determined	by	variance	in	each	parameter.	We	evaluated	

1000	parameter	sets	per	parameter,	for	a	total	of	7000	sets.	Most	parameters	were	

allowed	to	vary	from	1e-4	to	1.	The	exception	to	this	was	parameter	K3,	the	

cooperativity	parameter.	Since	values	of	K3	less	than	1	indicate	cooperative	binding,	

while	values	of	K3	greater	than	1	indicate	competitive	binding,	K3	was	allowed	to	

vary	from	1e-4	to	10.	For	each	parameter	set,	20	durations	were	evaluated.	10,000	

simulations	were	run	for	each	duration,	for	a	total	of	1.4	billion	simulations.	

Simulations	were	run	in	Python	2.7.6	[142]	leveraging	the	NumPy	Library	[143].	

FAST	analysis	was	performed	in	R	[144]	using	the	sensitivity	package	[145].	We	

found	that	the	most	significant	parameters,	measured	either	by	first	order	effect	or	

I(Xdur;YFFL) =

X

Xdur,YFFL

P(Xdur, YFFL) log2
P(Xdur, YFFL)

P(Xdur)P(YFFL)

=

X

Xdur,YFFL

P(YFFL|Xdur)P(Xdur) log2
P(YFFL|Xdur)P(Xdur)

P(Xdur)P(YFFL)

=

X

Xdur,YFFL

P(YFFL|Xdur)P(Xdur) log2
P(YFFL|Xdur)P

Xdur
P(YFFL|Xdur)P(Xdur)
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total	effect,	were	K3	(cooperativity),	K2	(the	KD	of	Z),	and	B1	(the	gain	of	YFFL	from	X,	

relative	to	its	decay).	

Parameter	
Variance	

contribution	
K3	 36%	
K2	 32%	
B1	 28%	
𝛼!	 2%	
K1	 1%	
𝛼!	 0%	
B0	 0%	

TABLE	3:	FAST	PARAMETER	SENSITIVITY	ANALYSIS	

Summary	of	the	results	of	the	FAST	parameter	sensitivity	analysis.	Evaluating	7,000	
different	parameter	sets,	each	parameter	is	sorted	by	the	percent	of	variance	in	the	
circuit’s	capacity	that	was	attributable	to	variation	of	that	parameter.	This	variance	
contribution	and	ranking	give	us	an	indication	of	how	important	a	parameter	is	to	the	
I1FFL’s	ability	to	detect	signal	duration	in	the	presence	of	amplitude	noise.	

	

I1FFL	DETECTS	DURATION	BETTER	THAN	AMPLITUDE	OVER	A	WIDE	RANGE	OF	

PARAMETERS	

Now	that	key	parameters	have	been	identified,	we	are	able	to	determine	consider	

whether	the	circuit	does	indeed	behave	as	a	duration	detector	over	a	reasonable	

range	of	parameters.	While	any	positive	value	of	capacity	is	sufficient	to	show	that	

the	circuit	is	capable	of	conveying	information	about	signal	duration,	we	would	like	

to	show	that	it	may	be	more	likely	intended	to	convey	information	about	duration	

than	other	signal	properties,	such	as	amplitude.		

In	order	to	determine	this,	we	consider	Cdur	/	Camp.	Cdur	=	C(Xdur;	YFFL)	is	the	metric	

used	in	the	previous	section,	the	capacity	between	signal	duration	and	YFFL.	We	will	
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calculate	it	in	the	same	manner	as	before,	picking	a	parameter	set	and	a	range	of	

durations,	and	running	many	simulations	with	random	signal	amplitudes.	To	

measure	Camp	=	C(Xamp;	YFFL),	we	will	perform	similar	experiments.	For	the	same	set	

of	parameters,	we	will	choose	a	set	of	amplitudes,	and	run	many	simulations	with	

random	signal	durations.	

Based	on	our	previous	results,	we	are	primarily	interested	in	the	circuits	

performance	when	varying	the	three	parameters	B1,	K2,	and	K3.	We	run	three	sets	of	

analyses,	each	time	varying	two	of	the	three	parameters,	fixing	all	others	(Figure	

28).	We	see	that	over	a	wide	range	of	the	three	parameters,	the	circuit	provides	

better	response	to	signal	duration	than	it	does	to	signal	amplitude.	This	suggests	

that	not	only	is	the	I1FFL	capable	of	transducing	information	about	signal	duration,	

it	is	indeed	the	most	likely	output	for	I1FFL	circuits	with	a	significant	range	of	

parameters.	
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B1 vs K2 B1 vs K3 K2 vs K3 

FIGURE	28:	RELATIVE	RESPONSE	OF	I1-FFL	TO	AMPLITUDE	VS	DURATION	
ACROSS	PARAMETERS	

Plots	of	Cdur/Camp,	the	relative	ability	of	the	I1FFL	to	convey	information	about	
duration	vs	amplitude,	over	a	range	of	parameters.	Values	greater	than	1	imply	that	
the	circuit	carries	more	information	about	signal	duration	than	it	does	about	signal	
amplitude.	Top	charts	display	the	exact	value	of	Cdur/Camp.	Bottom	charts	are	black	
where	Cdur/Camp	is	greater	than	1.	We	ran	simulations	of	fixed	durations	with	random	
amplitudes	to	calculate	Cdur,	and	simulations	of	fixed	amplitudes	with	random	
durations	to	calculate	Camp.	We	vary	combinations	of	two	parameters	at	a	time,	
limited	to	the	three	parameters	determined	to	be	most	influential	to	the	I1FFLs	
amplitude	detection	capability	in	the	above	sensitivity	analysis.	

RESPONSE	OF	CIRCUIT	TO	SPECIFIC	SCENARIOS	

Finally,	we	consider	some	additional	variations	of	parameters	and	inputs.	While	all	

inputs	given	to	the	system	so	far	have	been	pulse	inputs,	we	consider	that	many	

signals	may	take	a	different	shape,	or	that	a	sharp	pulse	may	be	distorted	by	the	

time	it	is	transduced	by	other	elements	of	a	signaling	network.	We	evaluated	the	

circuits	basic	response	to	a	linear	ramp	input,	and	find	that	it	does	still	reliably	

respond	to	signal	duration	rather	than	signal	amplitude	(Figure	29A).	



	

108	

Next,	we	consider	that	a	circuit	which	is	able	to	detect	“duration”	of	a	signal	could	be	

misled	if	the	“off”	level	of	a	signal	is	non-zero,	since	we	may	expect	that	it	could	be	

driven	by	the	duration	of	the	non-zero	“off”	signal.	We	simulated	a	circuits	which	

were	exposed	to	1%	of	the	signal	amplitude	long	enough	to	reach	steady	state,	and	

then	presented	them	with	a	full-strength	fixed-duration	response	(Figure	29B).	We	

find	that	the	circuit	is	still	capable	of	responding	to	the	full	strength	signal,	and	that	

its	maximum	amplitude	is	still	predictive	of	the	signal	duration	and	not	the	signal	

amplitude.	Its	reactions	to	signals	of	different	durations	is,	however,	somewhat	

compressed	relative	to	a	circuit	which	was	not	exposed	to	a	background	signal.	

Finally,	we	consider	that	signal	durations	of	interest	may	be	longer	than	the	

adaptation	time	of	the	sensing	circuit	(Figure	29C).	Indeed,	if	B1	and	g2	are	greatly	

increased,	the	circuit	response	is	very	fast,	and	YFFL	reaches	a	maximum	which	is	

driven	by	the	input	signal’s	amplitude,	not	its	duration.	
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A B C 

FIGURE	29:	RESPONSE	OF	CIRCUIT	TO	VARIOUS	CHALLENGES	

Response	of	I1FFL	(YFFL)	and	simple	integrator	(YINT)	to	changes	in	input	and	
parameters.	A)	A	linear	ramp	input.	Performance	is	equivalent	to	a	pulse	input,	with	
the	YINT	response	changing	by	100%	in	response	to	different	amplitudes	and	the	YFFL	
response	changing	by	<11%.	B)	The	presence	of	a	continuous	signal	of	0.01	(1%	of	or	
0.5%	of	considered	amplitudes	of	1	and	2,	respectively).	Performance	is	equivalent,	
though	it	is	clear	that	the	variation	of	YFFL	responses	to	signals	of	different	durations	is	
compressed.	C)	Consideration	of	a	fast	FFL	circuit.	We	set	B1=500	and	g2=50,	and	
observe	that	the	circuit	is	not	capable	of	detecting	durations	on	the	same	order	as	
before,	as	its	maximum	value	is	reached	while	the	signal	is	still	present.	

DISCUSSION	

In	this	chapter,	we	have	shown	the	superior	ability	of	the	I1FFL	circuit	to	detect	the	

duration	of	a	signal.	We	have	shown	that	it	may	do	this	robustly	under	a	wide	range	

of	parameters	and	multiple	input	signal	shapes.	We	have	laid	the	groundwork	for	

future	explorations	of	circuits	where	signal	duration	is	of	interest	(such	as	T-Cells).	

Further,	as	the	I1-FFL	is	one	of	the	most	common	signaling	motifs,	we	expect	that	

analysis	of	some	of	the	dynamic	response	of	these	circuits	may	reveal	other	

biological	systems	where	signal	duration	is	a	driving	factor.	
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While	the	I1FFL	circuit	has	been	extensively	researched	in	the	past,	it	has	most	

often	been	analyzed	in	the	context	of	its	steady-state	responses.	Here,	we	

considered	not	only	the	dynamic	response	of	the	circuit	but	also	what	“noise,”	or	

challenges	to	detection,	exist	in	such	a	system.	These	considerations	revealed	this	

circuit’s	duration	detection	ability.		
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Chapter	6 DISCUSSION	

SUMMARY	OF	RESULTS	

In	this	dissertation,	we	have	explored	multiple	facets	of	how	noise	affects	biological	

systems.	In	order	to	do	so,	we	have	brought	to	bear	techniques	from	engineering	

and	math	to	improve	our	understanding	of	biology.	We	have	introduced	new	

techniques	for	analyzing	noise,	and	demonstrated	how	including	noise	in	analysis	

changes	our	understanding	of	how	systems	perform.	In	Chapter	2,	we	emphasized	

this	by	considering	the	ways	in	which	Information	Theory	can	be	a	revealing	tool	in	

biological	research.	

In	Chapter	3,	we	investigated	an	important	development	pathway	in	the	model	

organism	Drosophila.	We	developed	original	software	to	rapidly	and	accurately	

measure	the	nuclearized	Dorsal	based	on	confocal	microscope	images.	This	both	

increased	the	number	of	nuclei	we	were	able	to	analyze	in	a	short	amount	of	time,	

necessary	for	performing	solid	statistical	analysis,	and	reduced	levels	of	

experimental	noise.		

We	then	developed	a	novel	technique	of	noise	deconvolution,	separating	out	

symmetric	and	asymmetric	components	of	noise	in	the	Dorsal	profile.	This	

technique	produces	results	analogous	to	the	frequently-used	intrinsic/extrinsic	

noise	paradigm	[8,	73]	and	expands	the	growing	field	of	techniques	for	noise	

deconvolution	[6,	50,	146-148].	Using	this	technique	and	additional	experiments	
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with	multiple	developmental	timepoints,	we	show	that	width	noise	is	a	dominant	

source	of	embryo-to-embryo	variation	in	the	Dorsal	profile.	

In	Chapter	4,	we	developed	experimentally-grounded	theoretical	and	computer	

simulation	models	to	evaluate	gradient	detection	in	multi-cellular	organoids.	In	

contrast	to	previous	results,	we	show	that	it	is	not	ideal	for	an	organism	attempting	

to	sense	a	gradient	to	grow	indefinitely.	Experimental	data	was	collected	on	mouse	

mammary	epithelial	organoids,	a	model	for	breast	cancer,	in	collagen	to	closely	

simulate	their	in	vivo	environment	[103,	105].	We	develop	a	three-dimensional	

computer	simulation	model	to	evaluate	the	performance	of	LEGI,	a	commonly-

considered	paradigm	in	gradient	sensing	[112].	By	considering	the	noisy	internal	

communication	required	to	transfer	information	about	the	concentration	of	a	

chemical	in	multiple	points	to	a	single	point	insides	of	the	cell,	we	show	that	the	

marginal	benefit	of	organism	size	rapidly	goes	to	zero.	Our	theoretical	and	computer	

simulations	agree	with	evidence	from	our	experimental	data.	

Finally,	in	Chapter	5,	we	considered	the	implications	for	a	system	for	which	the	

detection	of	signal	duration	is	important	but	signal	amplitude	may	be	variable.	We	

show	that	while	sensing	by	a	simple	integrating	circuit	is	confounded	by	amplitude	

variation,	a	common	signaling	system	motif,	the	type	1	incoherent	feed-forward	

loop,	is	able	to	detect	the	duration	of	a	signal.	While	many	capabilities	of	the	I1-FFL	

have	been	evaluated	before,	we	discover	this	new	ability	by	focusing	on	the	system’s	

dynamic	response	as	well	as	reconsidering	what	aspects	of	a	signal	may	be	

considered	noise.	
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RESEARCH	IMPLICATIONS	

This	dissertation	has	repeatedly	provided	evidence	that	the	consideration	of	noise	is	

critical	to	understanding	biological	systems.	We	showed	that	detailed	analysis	and	

separation	of	noise	sources	point	to	critical	aspects	of	biological	system	design.	

Consideration	of	multiple	sources	of	noise	(ie,	internal	and	external)	affected	

fundamental	changes	in	our	understanding	of	a	common	biological	system	(gradient	

sensing).	In	the	case	of	duration	detection,	we	showed	that	noise	places	new	

constraints	on	the	design	of	biological	systems.	

We	expect	that	these	results,	combined	with	the	expanding	base	of	research	on	

biological	noise,	will	continue	to	drive	biologists	towards	large	single-cell	studies.	

While	previously	it	has	been	sufficient	to	provide	bounds	on	a	system’s	mean	

response,	we	expect	that	it	will	become	increasingly	commonplace	for	scientists	to	

desire	bounds	on	second-order	statistics	[46].	Biological	noise	may	come	from	many	

sources.	Certainly,	some	noise	measured	by	scientists	will	be	due	to	experimental	

error.	Some	variation	which	may	initially	appear	as	random	noise	may	be	attributed	

to	predictable	sources,	such	as	cell	cycle	or	developmental	timepoint.	Indeed,	by	

investigation	of	the	noise,	we	may	discover	that	some	biological	systems	are	even	

more	precise	than	originally	believed.	Regardless,	without	precisely	measuring	and	

understanding	the	noise,	we	cannot	fully	understand	a	biological	system.	

This	dissertation	has	also	reiterated	the	value	of	information-theoretic	techniques	in	

measuring	the	capabilities	of	a	variable	system.	While	previous	applications	in	

systems	biology	have	often	compared	the	amount	of	information	in	a	signal	to	the	
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entropy	required	to	make	decisions	of	uniform	probability	(H=log2[num.	decisions]),	

we	have	proposed	that	an	organism	may	have	encoded	information	already	

(ultimately	stored	in	its	genome)	which	can	reduce	the	uncertainty	it	has	about	a	

decision	prior	to	making	it.	This,	in	turn,	reduces	the	entropy	of	the	decision,	and	the	

amount	of	information	required	to	make	it.	We	expect	that	future	studies	will	not	

only	increasingly	use	information	theory	as	a	performance	metric	when	analyzing	

biological	systems,	but	also	take	careful	consideration	of	the	complexity	of	the	

decision	a	system	when	evaluating	the	amount	of	information	available.	

FUTURE	DIRECTIONS	

While	we	chose	to	apply	the	method	of	symmetric	noise	deconvolution	to	

Drosophila	morphogenesis,	it	was	developed	sufficiently	broadly	to	be	applicable	to	

many	other	systems	which	display	bilateral	symmetry.	An	obvious	next	application	

could	be	to	Sonic	Hedgehog	signaling,	which	controls	vertebrate	neural	tube	

patterning	in	a	symmetric	manner	[149].	More	distantly,	the	same	essential	

technique	could	be	applied	to	fully	developed	bilateral	organisms.	Could	variation	in	

blood	pressure	in	humans	left	and	right	femoral	arteries	be	used	to	identify	

blockage	in	the	upstream	descending	aorta?	

Our	work	found	that	there	were	two	possible	explanations	for	the	amount	of	

information	available	in	the	Drosophila	morphogen.	Because	there	was	more	

information	than	you	would	expect	for	patterning	three	regions	of	gene	expression,	

we	explored	the	possibility	that	this	additional	information	may	provide	

environmental	robustness.	Experiments	which	measure	the	amount	of	information	
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available	in	the	Dorsal	morphogen	when	the	development	is	challenged	by	its	

environment,	such	as	high	temperatures,	would	provide	additional	evidence	for	this	

theory.	Secondly,	we	showed	that	given	the	strength	of	width	noise,	the	amount	of	

information	available	to	nuclei	may	be	significantly	increased	if	the	organism	is	able	

to	cope	with	that	noise	in	some	way.	While	some	research	has	shown	that	there	are	

plausible	mechanisms	for	Drosophila	to	handle	width	variation	later	in	development	

[64],	more	research	is	needed	to	confirm	this	possibility.	

Our	analysis	of	gradient	detection	was	based	on	a	multi-cellular	organoid,	providing	

a	clear	exchange	of	diffusive	communicating	molecules	between	discrete	cells.	

Single	cells,	however,	frequently	are	required	to	detect	gradients	on	their	own.	

Expansion	of	our	work	to	the	single	cell	domain	will	include	extending	the	

theoretical	model	to	a	continuous	domain,	as	well	as	performing	computer	

simulations	where	molecules	are	explicitly	placed	around	the	cell.	We	explicitly	

chose	HSIM	in	our	computer	model	development	for	its	ability	to	be	expanded	to	

such	a	domain,	including	the	possible	inclusion	of	membrane-bound	molecules.	We	

expect	that	the	development	of	such	work	would	only	reinforce	the	importance	of	

considering	internal	communication	noise	to	gradient	detection	models	and	

biological	systems.	

The	work	we	performed	on	analysis	of	duration	detection	circuits	is	just	the	tip	of	

the	iceberg,	with	many	possible	future	avenues	of	exploration.	While	the	I1-FFL	

circuit	is	shown	to	be	very	good	at	duration	detection,	a	comprehensive	analysis	of	

all	multi-node	networks	may	reveal	other	circuits	which	may	perform	as	well	or	



	

116	

better.	In	general,	this	analysis	of	circuit	dynamics	may	also	extend	beyond	

detection	of	duration.	We	have	also	left	it	to	future	work	to	directly	evaluate	an	I1-

FFL	circuit	detection	duration	in	a	biological	system.	While	T-cell	differentiation	has	

already	been	identified	as	a	system	that	responds	to	duration,	we	expect	that	given	

the	prevalence	of	I1-FFL	circuits,	many	others	may	exist.	

Besides	naturally	occurring	examples,	we	also	expect	this	analysis	of	I1-FFL	circuits	

to	be	leveraged	in	synthetic	biology	circuit	designs.	As	in	nature,	noise	poses	a	

significant	challenge	in	synthetic	biology	circuits	[150].	Circuit	designs	which	are	

robust	to	various	types	of	noise	may	be	leveraged	by	synthetic	biology	circuits	to	

increase	their	robustness.	

FINAL	THOUGHTS	

When	 I	decided	 to	 return	 to	graduate	studies,	 I	was	disinclined	 to	continue	 in	 the	

field	of	wireless	communications	theory,	having	left	with	a	feeling	that	many	of	the	

fields’	fundamental	problems	had	been	solved	(don’t	tell	my	former	advisor).	In	the	

years	I	spent	between	programs,	my	exposure	to	biology	quickly	revealed	both	how	

many	 fundamental	 problems	 still	 exist,	 and	 how	 mathematical	 and	 engineering	

training	could	be	brought	to	bear	on	those	problems.	Biological	variation	is	one	such	

problem.	Without	understanding,	and	dissecting,	biological	variation,	we	are	unable	

to	 fully	 model	 the	 systems	 we	 study	 and	 understand	 the	 underlying	 causes	 of	

variation	in	atypical	individuals.	Further,	we	will	be	challenged	in	accurately	dosing	

interventions	 in	 variable	 diseases,	 or	 miss	 the	 modulation	 of	 variation	 as	 a	

therapeutic	 target.	 It	 is	 my	 hope	 that,	 taken	 together,	 my	 contributions	 have	
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provided	 new	 analytical	 tools	 for	 studying	 biomedical	 problems,	 have	 shed	

additional	 light	 on	 the	 importance	 of	 biological	 noise,	 and	 will	 help	 drive	 an	

increasingly	wide-held	view	that	variation	is	a	fundamental	aspect	of	biology.	
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