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ABSTRACT 
 

The Leydig cells, localized in the interstitial compartment of the mammalian testis, produce 

testosterone (T) in response to luteinizing hormone (LH) released from the anterior pituitary. As 

most men age, serum T levels decrease, which is clinically referred to as hypogonadism. Fatigue, 

erectile dysfunction, and reduced bone density and muscle mass are some of the symptoms 

linked to these declining T levels.  Age-related decline in T also occurs in aging Brown Norway 

rats. Previous studies reported that with aging, LH levels do not change, but Leydig cells become 

less responsive to LH, resulting in reduced T production.  Currently, the only readily available 

treatment for hypogonadism is T replacement therapy (TRT). However, exogenous T 

administration has been shown to suppress LH release and thus Leydig cell T production. This 

results in reduced intratesticular T levels and therefore in suppressive effects on spermatogenesis 

to the point of azoospermia. Thus, TRT is an inadequate therapy for men who wish to father 

children. 

We wished to develop a method by which to elevate serum T levels without affecting 

intratesticular T levels.  To accomplish this, we used the current understanding of the T 

biosynthetic pathway to pharmacologically stimulate a key protein in this pathway called 

Translocator Protein (18-kDa TSPO) using a TSPO-specific drug ligand. We compared the 

effects on serum and intratesticular T levels of administering the TSPO-specific ligand with 

administering exogenous T. Old (18-24 mo) rats have significantly reduced serum T levels 

compared to young (3-6 mo) rats. We administered the TSPO drug ligand, N,N-dihexyl-2-(4-

fluorophenyl)indole-3-acetamide (FGIN-1-27), via daily ip injection to aged rats at a 

concentration of 1 mg/kg body weight over the course of 10 days. Control rats received vehicle 

for the same time period. Another group of aged rats were given exogenous T via T-containing 
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Silastic implants. Serum T levels were significantly lower in old control rats than in young 

control rats. When administering FGIN-1-27, serum T levels in old rats rose significantly, and 

administering exogenous T rose to the level of young rats. Administering exogenous T to old rats 

reduced intratesticular T levels significantly from control levels.  In striking contrast, 

administering FGIN-1-27 to old rats resulted in a significant increase in intratesticular T levels. 

Taken together, these results show that administering FGIN-1-27 can increase serum T in 

hypogonadal old rats, as can administering exogenous T.  However, in contrast to exogenous T, 

administering FGIN-1-27 can do so without reducing intratesticular T levels, suggesting that this 

approach would not suppress spermatogenesis and might even enhance this process.  
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LITERATURE REVIEW 

Background 

Whether or not to classify aging as a disease has been controversial. Nevertheless, it is a 

naturally occurring phenomenon, which is evident from the whole organism down to the cellular 

level. There are a number of diseases and conditions that are characterized by senescence such as 

heart disease, high blood pressure, cancer, arthritis, dementia, osteoporosis, diabetes, and 

Alzheimer's disease among others (“Aging: Associated Diseases & Information”, 2016). It is 

clear just from this list that aging affects all organ systems whether symptoms are immediately 

present or not.  

The male reproductive system is a prime example of a bodily system that progressively 

shows signs of aging. The Leydig cells, which reside in the interstitial compartment of the testis, 

produce testosterone (T) in response to luteinizing hormone (LH) released from the anterior 

pituitary. With aging, these cells produce less T resulting in a condition that is clinically referred 

to as hypogonadism. It is a syndrome characterized by a significantly reduced serum T levels 

(Basaria, 2014). Low sperm production isn’t usually thought of as indicative of hypogonadism, 

though there are a lot of infertile males who have low T. Insufficient production of androgen is 

accompanied by many uncomfortable symptoms that include but are not limited to: decreased 

muscle mass, increased weight gain, and low bone density, cognitive changes, erectile 

dysfunction, increased fatigue, and low libido (Kumar et al., 2010; Ullah et al., 2014) 

T is a cholesterol-derived steroid hormone produced by Leydig cells and has an effect on a 

number of cell types throughout the body. Being the principal sex hormone produced by males, it 

has significant masculinizing capabilities. This is supported by research that has been done on 

transgender patients. Cross sex hormone therapy is often employed by transgender men (who are 
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biologically female) to induce virilization in effort to promote development of masculinizing 

characteristics while suppressing feminizing ones (Unger, 2016). Studying normal male 

development in utero through puberty and into adulthood further supports T’s role as the primary 

male sex hormone. As in the male rat, humans have two populations of Leydig cells that 

develop. In utero, there is a population of “fetal” Leydig cells that produce T independent of LH 

stimulation to elicit the development of the male reproductive tract (Chen et al., 2009). After 

birth, a population of adult Leydig cells, which requires LH in order to produce T, eventually 

replaces the population of fetal Leydig cells.  T and its derivatives are responsible for the 

secondary sex characteristics (deepening of the voice, facial and pubic hair, increased muscle 

mass/strength etc.) and external genitalia development, which notably occurs during pubescent 

years (Chen et al., 2009). T is produced indefinitely throughout a man’s life after puberty. 

Despite this, many men experience a decline in T production (which is shown by the serum and 

intratesticular concentrations) noticeably starting in the fourth or fifth decade of life. Although 

many of these low T men are older (40-50+), there are low T men that are young heightening the 

clinical relevance of this condition (Yin & Swerdloff, 2010). 

Despite the declining serum T levels that accompany aging, LH levels either rise slightly or 

remain unchanged (Surampudi et al., 2012). These age-related changes occur due to problems 

with LH signaling. With reductions in LH signaling and inadequate levels of enzymatic and non-

enzymatic antioxidants to combat reactive oxygen species (ROS), oxidative stress is thought to 

be at least partially responsible for the decline of T levels. Steroidogenesis is known to be highly 

reliant on ATP and its production is accompanied by production of ROS (Midzak, Chen et al., 

2011). Such oxidative stress is presumably exacerbated by ROS that is given off by cytochrome 

P450 enzymes that catalyze steroid hydroxylations (Hanukoglu, 2006; Midzak, Chen et al., 
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2011). Research has also shown that exposure to pollutants can result in intracellular deficits 

ultimately leading to hypofunctional Leydig cells.  Thus, external exposures combined with ROS 

accumulation over time can lead to defects in Leydig cells’ ability to produce T. 

Hypothalamus-Pituitary Gonadal Axis 

T production occurs throughout the life of a typical male, but there are two notable events 

that occur with its synthesis. It is first synthesized in utero to stimulate development of the male 

reproductive system (Chen et al., 2009). Fetal Leydig cells produce T independent of LH 

stimulation and are exclusively found in the male fetus. These cells decline after birth and are 

eventually replaced by adult Leydig cells at puberty (Griswold & Behringer, 2009; Hardy et al., 

2009). Genetic and environmental factors contribute to the onset of puberty, but it is at this time 

that T is synthesized in very large quantities. The onset of puberty is marked by an influx of 

neuroendocrine hormones, which acts on the hypothalamus to initiate signaling by the 

hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin has been identified as a key regulator for 

the onset of puberty and necessary for normal sex hormone production in both males and females 

(Irwig et al., 2004; Novaira et al., 2014; Rhie, 2013; Skorupskaite et al, 2014). Kisspeptin 

receptor knockout studies in mice have confirmed this. Both male and female kisspeptin 

knockout mice had low gonadotropin levels and were infertile (Novaira et al., 2014).  

During puberty, kisspeptin binds to its receptor on target cells located in the 

arcuate/infundibular nucleus and preoptic area of the hypothalamus, which then stimulates the 

release of gonadotropin-releasing hormone, or GnRH. It is still unclear what causes the heighted 

kisspeptin production observed at the onset of puberty. Nevertheless, its action is necessary to 

stimulate the hypothalamus to secrete GnRH (Novaira et al., 2014). The hypothalamic neurons 

are associated with the anterior pituitary via the hypophyseal portal system, which are a 
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collection of blood vessels that allow rapid communication between the glands. Upon secretion 

by the hypothalamus, GnRH travels through this collection of vessels to the anterior pituitary and 

elicits the production and secretion of gonadotropins, luteinizing hormone (LH) and follicle 

stimulating hormone (FSH). These hormones are then released into systemic circulation where 

they travel throughout the body. GnRH release is pulsatile, which leads to the pulsatility of 

gonadotropin secretion (Irwig et al., 2004; Novaira et al., 2014; Rhie, 2013; Skorupskaite et al, 

2014). FSH acts on the Sertoli cells found in the seminiferous tubules of the testis and facilitates 

the production of sperm. LH induces the Leydig cells found in the interstitial compartment of the 

testis to produce T. When T is produced, it travels through the serum to negatively feedback on 

its own production by suppressing GnRH, LH, and FSH release from the hypothalamus and 

anterior pituitary. This action by T also contributes to the pulsatility of the hormones and thus its 

own production. A summary of the HPG axis is shown in Figure 1.  

Steroidogenesis – Cellular Mechanism for Testosterone Biosynthesis 

There has yet to be a consensus on the full T biosynthetic pathway, but it is thought that 

many of the key players have been identified. The proposed pathway (shown in Figure 2) begins 

as LH from the anterior pituitary arrives at the interstitial compartment of the testis via the 

bloodstream. The LH receptor, a member of the seven-transmembrane G protein-coupled 

receptor (GPCR) superfamily, resides on the plasma membrane of Leydig cells. Each receptor is 

composed of a G protein and three subunits (α, β, and γ), which reside on cytoplasmic face of the 

plasma membrane. The Gα subunit interacts with both the G protein and the Gβ and Gγ subunits, 

which are typically bound together. In the inactive state, GDP is bound to the Gα subunit. LH 

binding induces to a conformational change in the receptor that leads to the dissociation of GDP 

and successive binding of GTP to the Gα subunit (Midzak et al., 2009). This subunit, now active, 
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interacts with an effector called adenylyl cyclase (AC). This enzyme uses local ATP supplies to 

generate cyclic adenosine monophosphate (cAMP), a key second messenger in the pathway. At 

some point, the Gα subunit uses its ATPase activity to hydrolyze the bound GTP breaking the 

stimulatory interaction between it and AC. The GPCR subsequently returns to its resting state. 

(Midzak et al., 2009). But as long as GTP is bound to the Gα subunit (assuming the rest of the 

cascade is unaffected), the pathway remains active. 

Once produced, cAMP leads to an amplification of the signal throughout the cell. Four 

molecules of cAMP activate protein kinase A (PKA) by binding to PKA’s regulatory subunits 

releasing the catalytic subunits that can go on to phosphorylate downstream substrates (Liu et al., 

2006). The remaining steps are heavily under investigation, and therefore the exact mechanism 

remains unclear.  

Arguably the most important finding associated with LH-stimulated cAMP signaling is that it 

has been linked to the formation of a large protein complex, commonly referred to as the 

transduceosome. This complex facilitates the transfer of cholesterol from the cytoplasm to the 

mitochondrion, the rate-determining step of steroid synthesis (Privalle et al., 1987; Simpson et 

al., 1978). Thus, the more efficiently this step occurs the more efficient the overall process 

becomes. Cholesterol is recruited from one of three sources. It can be generated de novo in the 

smooth endoplasmic reticulum (ER), the mobilized from lipid droplets, or utilized from the 

plasma membrane (Rone et al., 2009). The majority of cholesterol in a cell is embedded in the 

plasma membrane and recycles in and out of the cell, but the cholesterol that is mobilized to the 

mitochondria is thought to originate from cytosolic storages of lipid droplets (Rone et al., 2009). 

The mobilization of cholesterol can be modeled in two phases (Midzak et al., 2009). The first 

involves cholesterol esterase which becomes active upon phosphorylation by cAMP-activated 
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PKA (Beckett & Boyd, 1977; Trzeciak & Boyd, 1973). This enzyme then catalyzes the 

hydrolysis of lipid droplet cholesteryl esters creating a pool of cytosolic unesterfied cholesterol 

that can be transported to the mitochondria and utilized for steroidogenesis (Shen et al., 2003). 

The second phase consists of transduceosome-mediated movement of cholesterol from the outer 

mitochondrial membrane (OMM) to the inner mitochondrial membrane (IMM) and the 

continued movement via the metabolon, another important complex associated with the 

mitochondrion, to a key metabolic enzyme found mitochondrial matrix.   

The transduceosome and metabolon that drive the second phase have been of high research 

interest, but the role of each player within these complexes remains highly controversial. 

Researchers believe the transduceosome is composed of many proteins localized to the OMM 

including OMM proteins, translocator protein (TSPO), previously named peripheral 

benzodiazepine receptor, and voltage-dependent anion channel (VDAC). Studies have shown 

that there are cytosolic proteins that also assemble with TSPO and VDAC to form the 

transduceosome. These include steroid acute regulatory (StAR) protein, acyl-CoA binding 

domain-containing protein 3 (ABCD3), protein kinase A regulatory subunit I alpha (PKA-RIα), 

and 14-3-3 adaptor proteins (Issop et al., 2013; Rone et al., 2012; Zirkin et al., 2018). There has 

been considerable progress in establishing functions to each of these proteins, but the exact 

interactions that facilitate cholesterol’s movement is still under investigation. 

The proposed mechanism begins with Golgi-associated protein, ABCD3 (previously PAP7). 

Its ability to bind both TSPO and PKA-RIα allows it to detach from the Golgi and bring cAMP-

dependent PKA-RIα found in the cytosol to the mitochondria via interaction with OMM protein 

TSPO or VDAC1 or both (Aghazadeh et al., 2012; Li et al., 2001, Liu et al., 2006; Issop et al., 

2013). This moves PKA-RIα into the proximity of the StAR protein allowing for efficient 
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phosphorylation of StAR’s Ser-194 residue resulting in its maximum activity. StAR mRNA is 

pre-made and is translated upon cAMP signal transduction (Aghazadeh et al., 2012; Reinhart et 

al., 1999). This 37-kDa protein has two distinct regions, hydrophobic STAR-related lipid transfer 

(START) domain that binds cholesterol and an N-terminal mitochondrial signal sequence that is 

removed after reaching the OMM. Together, these regions of the protein facilitate the movement 

of cholesterol from the cytosolic environment to the OMM (Aghazadeh et al., 2012; Issop et al., 

2013; Liu et al., 2006; Rone et al., 2009). TSPO is an 18-kDa OMM protein that also contains 

two distinct domains as well that are important for steroidogenesis, a benzodiazepine-binding 

(drug) site and a cholesterol recognition amino acid consensus (CRAC) site (Midzak, Akula, et 

al., 2015). The benzodiazepine-binding site has been found to bind a many compounds, which 

appear to stimulate the translocation activity of TSPO making this protein a promising 

pharmacological target (Midzak, Akula, et al., 2015; Midzak, Zirkin et al., 2015). TSPO’s high 

affinity CRAC motif promotes the capture of cholesterol from StAR. Fluorescence resonance 

energy transfer (FRET) analysis has shown that these proteins indeed interact (West et al., 2001). 

Hormonal stimulation leads to TSPO aggregation/polymerization, which has been correlated 

with higher cholesterol binding affinity and movement into the mitochondria (Bogan et al., 2007; 

Issop et al., 2013). VDAC’s beta-barrel secondary structure is thought to form a pore with TSPO 

facilitating the movement of cholesterol across the OMM. 

The 14-3-3 proteins are small acidic cytosolic proteins that regulate various cellular functions 

including DNA replication, transcription, mitosis, apoptosis, cellular signaling, and cytoskeletal 

structure and function. These proteins are believed to be integrally involved in the T biosynthetic 

pathway. Researchers believe they interact with the transduceosome to negatively regulate the 

translocation of cholesterol and thus steroid production (Aghazadeh et al., 2012; Aghazadeh et 
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al., 2014). The γ isoform is found in both homodimers and heterodimers with other 14-3-3 

isoforms under basal conditions. But upon hormonal stimulation, concentrations of this protein 

increase and the dimers dissociate allowing the monomers to bind other substrates (Aghazadeh et 

al., 2014). These monomers bind the START domain of StAR in steroidogenic cells keeping it in 

its unphosphorylated and only partially active form (Aghazadeh et al., 2014). Continued 

stimulation leads to a more substantial increase in 14-3-3γ levels, which through a dominant 

negative mechanism dissociates from StAR and re-dimerizes (Aghazadeh et al., 2014). This 

allows StAR to become fully active by phosphorylation of its Ser-194. The ε isoform is another 

14-3-3 protein but works through a different mechanism. VDAC1 and StAR are thought to 

compete for 14-3-3ε binding. VDAC1 binding and association with TSPO is believed to promote 

the intercalation of 14-3-3ε between the two proteins physically blocking the movement of 

cholesterol into the mitochondria (Aghazadeh et al., 2012). Somehow these interactions are 

balanced in normal cells so that this protein’s inhibitory function is prevented. 

Once cholesterol bypasses the negative effects of these 14-3-3 proteins and has entered the 

OMM pore of the transducesome, it moves on the metabolon. There is considerable overlap 

between these two protein complexes. The metabolon is an 800-kDa protein complex composed 

of transducesome proteins, TSPO and VDAC1, IMM protein ATPase family AAA Domain-

containing protein 3 (ATAD3), and matrix protein Cytochrome P450 11A1 (CYP11A1). ATAD3 

is an IMM protein that interacts with both the TSPO/VDAC1 pore and CYP11A1. It establishes 

a route for cholesterol to move through the IMM to CYP11A1 which is associated with the 

matrix face of the IMM (Issop et al., 2013; Rone et al., 2012). CYP11A1 is an enzyme that 

catalyzes the conversion of cholesterol into pregnenolone (Issop et al., 2013; Rone et al., 2012). 

Figure 3 is a schematic that shows the proteins of the transduceosome and the metbolon. 
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Pregnenolone is shuttled to the smooth endoplasmic reticulum (ER) where the remaining 

enzymatic events occur. It is quickly converted to progesterone by 3β-Hydroxysteroid 

dehydrogenase (3β-HSD). Progesterone and its successor are acted on by cytochrome p450 17 

(CYP17) forming 17α-hydroxprogesterone and androstenedione respectively. Finally, 17β-

Hydroxy steroid dehydrogenase (17β-HSD) catalyzes the last step converting androstenedione to 

T (Midzak et al., 2009). 

Leydig cell development 

There are two distinct populations of Leydig cells found in mammals: fetal Leydig cells 

(FLCs) that develop in utero and adult Leydig cells (ALCs) that develop after birth (Chen et al., 

2009; Chen, Stanley et al., 2010). The FLCs produce T and its metabolites during gestation at as 

early as day 15.5 to promote the formation of the male external genitalia and urogenital system 

(Warren, 1989). FLCs are able to synthesize T without LH stimulation. This has been confirmed 

by studies that investigated LH receptor null mice in utero, which produce T at similar levels as 

wildtype mice (Zhang et al., 2001). FLCs are eventually lost after birth and replaced by ALCs. 

Despite this, rat studies have demonstrated that FLCs can persist for a significant amount of time 

after birth (Ariyaratne & Mendis-Handagama, 2000; Kerr & Knell, 1988; Zirkin & Ewing, 

1987). 

A number of experiments have been conducted to provide support for the presence of Stem 

Leydig Cells (SLCs). The morphology of these cells has been described as spindle-shaped and 

these cells are observable around day 7 post-birth. When isolated and cultured with growth 

factors, these mesenchymal-like cells can be maintained for an extended period of time 

supporting self-renewal characteristic of stem cells (Davidoff et al., 2004; Ge et al. 2006). 

Changing the medium to one that contained LH and a number of other factors caused the SLCs 
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to become 3βHSD, one of the smooth ER enzymes, and produce T suggesting that they had 

subsequently differentiated (Ge et al. 2006). A lineage tracing experiment was performed to see 

if this differentiation could occur in an adult rat in vivo. In this experiment, an alkylating agent 

called ethane dimethane sulphonate (EDS) was used to selectively kill all the ALCs. Researchers 

labeled isolated putative SLCs, labeled them with a fluorescent dye (carboxyfluorescein diacetate 

succinimidyl ester) and injected them into parenchyma at the cranial pole of the testis. Ten days 

post-treatment they extracted the rats’ testes. There was an emergence of large population of 

fluorescently labeled cells that were 3βHSD positive compared to rats injected with saline, which 

suggesting that the SLCs were indeed stem cells (Ge et al. 2006). 

There has been a four-stage model established using rats. The model begins with the 

“mensenchymal like” SLCs, which do not express key Leydig cell markers (i.e.3β-HSD and the 

LH receptor) denoting their “stemness” and providing evidence that they are in an 

undifferentiated state. The next stage, progenitor Leydig cells (PLCs), is defined by commitment 

to the Leydig cell lineage because they begin to express Leydig cell specific markers and 

produce T (Shan et al., 1993). These cells are small and spindle-shaped making them very 

similar morphologically to the SLCs. They are highly proliferative, but their numbers 

concurrently decline (Hardy et al., 2009). While PLCs decline, morphologically distinct cells 

denoted as immature Leydig cells (ILCs) emerge. The transition to this stage is evident as the 

cells are round shaped and have increased levels of steroidogenic enzymes (Shan et al., 1993; 

Zirkin & Ewing, 1987). T is not the primary steroid produced as T metabolic enzymes, 3α-

hydroxysteroid dehydrogenase and 5α-reductase, are highly expressed (Murono, 1989; Shan et 

al., 1993). But cells eventually reach the ALC stage. Their turnover rate is very low and T 
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biosynthesis is several-fold higher than both PLCs and ILCs due to higher production of 

androgen and lower T metabolism (Chen et al., 2009; Ge et al. 2006).  

Because ALCs do not proliferate often, it is clear that there are age-related changes that occur 

within these cells that lead to reductions in T production, as previously mentioned. With that in 

mind, there has been interest in determining if SLCs also age. One study treated young and old 

Brown Norway rats using EDS to eliminate the ALCs and measure T production when the ALCs 

repopulated the testis. Surprisingly, the restored ALCs from aged animals was comparable to that 

of young rats even at 10 weeks post-EDS treatment, and this heightened T production was not 

the result of higher LH exposure (Chen et al., 1996). Even more interesting is that at 30 weeks 

post-EDS treatment, the ALCs that repopulated the testes of the old rats produced T that was 

significantly lower than the level observed at 10 weeks (Chen, Guo et al., 2015). This 

observation has two implications. (1) The SLCs from which these new ALCs arise could be aged 

and/or (2) there is a difference between the young and old animal environments in which the new 

ALCs develop (Chen, Guo et al., 2015). Additionally, another study treated neonatal Sprague-

Dawley rats with EDS which eliminated the existing FLCs (Su et al., 2018). The ALCs that 

repopulated the testes 21 days later first showed an increase in T production but after 56 days 

showed a substantial decline in T synthesis. These ALCs were somehow defective suggesting 

that development of ALCs is a highly sensitive process. A broader understanding on the intrinsic 

and extrinsic factors that regulate the differentiation of SLCs and development of ALCs could 

provide further implications on how aging occurs in hypogonadal men. 

Testosterone Signaling and its Role in Spermatogenesis  

Once produced by the Leydig cells and secreted by the testes, T circulates in the blood in one 

of three forms. The majority of it, estimated to be 97%, is either bound weakly to the blood 
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plasma protein, albumin, or tightly to sex hormone binding globulin (Ullah et al., 2014). The 

other 3% or so travels through the blood freely (Ullah et al., 2014). T levels vary widely from 

person to person and with age. Despite this, investigation of serum levels versus levels in the 

testes has revealed that intratesticular T (ITT) levels are much higher. In fact, studies have found 

that the ITT levels are at least 30 fold higher in rats and 100 fold higher in humans (Coviello et 

al., 2004; Hill et al., 2004). This makes sense, of course, because T is produced by the Leydig 

cells, which reside in the testes, so local concentration would be expected to be higher than that 

of systemic circulation. Research has shown that when ITT falls below a critical value 

spermatogenesis is dramatically affected (Hill et al., 2004). In one important experiment, 

Sprague-Dawley rats were administered T-containing silastic implants of varying sizes (Zirkin et 

al, 1989). The size of the implant correlated with increases in measured serum T and ITT. After 

dropping below certain concentration of T (in this case ~20ng/ml), there was a significant 

reduction in sperm count indicating that a certain amount of T is necessary in order to maintain 

spermatogenesis (Zirkin et al, 1989). This has also become clear through experiments in which T 

was administered to healthy men. The administration of exogenous T inhibits the production of 

endogenous T due to negative feedback on the hypothalamus and pituitary thereby substantially 

reducing ITT levels (Coviello et al., 2004). These low ITT levels lead to significant reductions in 

sperm count and germ cell loss (Coviello et al., 2004; Hill et al., 2004).  

Taken together, the above observations denote that T, particularly ITT, is integrally involved 

in the maintenance of spermatogenesis. Androgen receptors have been found in peritubular cells, 

Sertoli cells, and Leydig cells (Coviello et al., 2004). Sertoli cells have been determined to be the 

main cells in which ITT carries out its effects. T diffuses through the plasma membrane due to its 

hydrophobicity and can subsequently bind to its androgen receptor (AR) displacing heat shock 
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proteins that had previously been sequestering it to the cytosol. The T-AR complex then 

translocates to the nucleus where it can bind to DNA and induce expression of T-dependent 

genes (Hill et al., 2004; Walker, 2011). The exact biological mechanism by which T regulates 

spermatogenesis remains unclear. Interestingly though, T deprivation or AR knockout 

specifically in Sertoli cells can result in infertility in three different ways. One of these 

impairments results from a failure of round spermatids to transform into elongated spermatids as 

this process is dependent on T (Holdcraft & Braun, 2004; O’Donnell et al., 1994). Another is that 

fully mature spermatozoa are cannot detach from the Sertoli cells and the germ cells are 

endocytosed by the Sertoli cells (O’Donnell et al., 1994). And finally, the blood testis barrier is 

disrupted making the developing sperm susceptible to attack by the immune system (Meng et al, 

2011; Willems et al., 2010). Further, ITT has been shown to modulate the expression and 

localization of AR (Hill et al., 2004). In one experiment, T/estradiol implants were administered 

to male rats, which resulted in reduced ITT levels via negative feedback on the HPG axis. 

Immunostaining illustrated a dramatic loss of AR protein localization to the nucleus despite 

unchanged AR mRNA levels (Hill et al., 2004). Local administration of T rescued this mutate 

phenotype suggesting the T somehow controls AR localization in Sertoli cells. These data 

support the assertion that T is essential to the maintenance of homeostatic level of 

spermatogenesis. 

Hypogonadism  

Hypogonadism, or androgen deficiency syndrome, can manifest from alterations upstream or 

within the T biosynthesis pathway.  Its classification as primary or secondary hypogonadism is 

dependent on where in the pathway the problem originates. Primary hypogonadism is when the 

Leydig cells have reduced responsiveness to normal LH levels. Thus, the problem arises at the 
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level of the testes or more specifically the Leydig cells. Secondary hypogonadism is 

characterized by dysfunction within the hypothalamic-pituitary gonadal axis. This is marked by 

reduced levels of T in the bloodstream, which is brought about by inadequate levels of 

gonadotropins, LH and FSH. Due to low T production, men with secondary hypogonadism often 

have reduced spermatogenesis as well (Basaria, 2014; Kumar et al., 2010). 

An important longitudinal study published in 2001 analyzed both total and free T in a 

homogenous population of healthy men. This study revealed that aging was likely the primary 

contributor to declines of in T observed over time (Harman et al., 2001).  Although most 

commonly attributed to changes that arise over time, hypogonadism can stem from other deficits 

brought about by chronic disease, serious injury, obesity, medications, phthalate exposure, 

cancer treatment (chemotherapy and radiation), pituitary disorders, or Klinefelter’s syndrome 

(Basaria, 2014; Gao et al., 2017; Ha et al., 2016; Kumar et al., 2010; Motohashi et al., 2016). 

Because of the symptoms that present with androgen deficiency syndrome, research largely 

seeks to understand the intrinsic and extrinsic contributions to Leydig cell aging in order to 

develop therapies for reversal and even potential prevention methods. 

Intrinsic and Extrinsic Contributions to Leydig cell Aging 

Model Organisms for Leydig cell Aging 

It is essential to the validity of disease modeling studies to conduct experiments using 

animals that manifest the disease or condition of interest in a similar manner to that of humans. 

Thus, obtaining a model organism that reflects the age-related changes that are characteristic of 

men with reduced T is the goal for studying hypogonadism. There are a number of rat strains that 

show declines in serum T over time, these being Fisher 344, Wistar, Sprague-Dawley, and 

Brown Norway. Despite this, most of these strains have characteristics that do not represent that 
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pattern of aging seen in men. The most important of these is the paired decline in gonadotropin 

levels suggesting that the decreased T phenotype stems from defects within the HPG axis, or 

secondary hypogonadism. As such, these rat strains can be treated via the administration of 

human chorionic gonadotropin (HcG), which functions like LH, to rescue lowered serum T 

levels (Zirkin et al., 2018). This contrasts, of course, with humans. As mentioned earlier, the 

levels of LH and FSH are unchanged in men with primary hypogonadism (the largest and thus 

most relevant population) denoting that the deficit comes from Leydig cell dysfunction. Further, 

some strains have physiological manifestations, such as weight gain and tumors of the HPG axis, 

that occur with aging making it difficult to distinguish hypogonadism from other diseases and 

conditions. The Brown Norway is a rat strain that shows the same age-associated changes in 

cellular environment and decline in serum T without low gonadotropin levels and minimal 

ambiguous physiological presentations making it a good model organism (Zirkin et al., 2018).  

Intrinsic: Shifts in Redox state  

The free radical theory of aging states that over time cells experience a shift in the ratio of 

pro-oxidants and antioxidants in such a way that oxidative damage to intracellular 

macromolecules, such as DNA, proteins, and/or lipids, can occur (Cui et al, 2012; Luo et al., 

2006; Rebrin & Sohal, 2008). Such damage can have functional consequences within cells.  

Bearing this in mind, it is possible that decreases in protective antioxidants and increases in pro-

oxidant molecules could lead to reductions in important upstream signaling molecules and 

eventually T production (Diemer et al., 2003; Quinn & Payne, 1984; Quinn & Payne, 1985). In 

fact, in aged Leydig cells, levels of non-enzymatic antioxidants, such as glutathione (GSH), and 

enzymatic antioxidants, namely GSH peroxidase and superoxide dismutase 1 and 2 (SOD-1, 2), 

are substantially reduced (Cao et al., 2004; Luo et al., 2005).  
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The role of antioxidants in Leydig cells aging has been studied by analyzing the transcription 

factor known as nuclear factor erythroid 2-related factor (Nrf2). This protein regulates the 

expression of many phase II enzymatic antioxidant genes (Yang et al., 2016). Nrf2 displays 

cellular latency as, under basal conditions, it is sequestered to the cytoplasm by another protein 

called Keap1. This protein acts to inhibit Nrf2’s translocation into the nucleus to active 

transcription via its U3 ubiquitin ligase activity that targets Nrf2 to the proteasome for 

degradation. Only upon activation by some stimulation, such as oxidative stress, does the 

dissociation of Nrf2 occur which allows it to enter the nucleus and bind the antioxidant response 

element (ARE) promoting the expression of these antioxidant genes (Yang et al., 2016).One 

study created Nrf2 null mice and observed T production of their Leydig cells over time. It was 

found that initial loss of Nrf2 didn't affect serum levels, as young (3 months) Nrf 2-/- mice had 

serum T levels that were comparable to control mice (Nrf2+/+) (Chen, Jin et al., 2015). But by 

middle age (8 months), these mice displayed reductions in steroidogenic function with gradually 

declining T levels through old age (21-24 months). Moreover, knockout of Nrf2 (and its 

downstream antioxidants) was paired with increased oxidative stress through measurement of 

protein nitrotyrosines providing more evidence for intrinsic Leydig cell aging theory that 

oxidative stress leads to reduced steroidogenesis. 

Further, cells metabolize carbohydrates via the electron transport chain to generate large 

amount of energy in the form of ATP. Free radicals or ROS are produced as by-products of 

normal metabolism (Cui et al, 2012). Leydig cells undergo the same metabolism to produce 

energy and residual ROS, but they are also steroidogenic, which makes them even more 

susceptible to oxidative stress. The phase I cytochrome P450 enzymes also can generate ROS 

contributing to the imbalance in the redox state of the cell (Hanukoglu, 2006). Research supports 
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these assertions as studies show levels of superoxide content, a form of ROS, and lipid 

peroxidation, an example of oxidative damage, are elevated in aged Leydig cells (Chen et al., 

2001; Peltola et al., 1996). 

 Moreover, the mitochondrial theory of aging stems from the free radical theory citing that 

aging results from oxidative damage to macromolecules but specifically in the mitochondria (Cui 

et al, 2012). This theory is somewhat supported by the observed decline in functional 

cytochrome P450 11A1 (CYP11A1) levels. This enzyme resides in the mitochondria and 

catalyzes the first step in T biosynthesis. If CYP11A1 levels drop, T production could also drop. 

The positive correlation between age and oxidative stress proposes a mechanism for the decline 

of T observed over time. One notable study looked at long-term suppression of endogenous T 

production via the administration of T implants (Chen & Zirkin, 1999). The implants were given 

to young (3 months old) and middle aged (13 month old) rats. After 8 months, the implants were 

removed. After 2 months, it was observed that both groups (now 13 and 23 months old) 

produced T at levels comparable to young rats which was substantially higher than 23 month 

controls (Chen & Zirkin, 1999). One could conclude that because these cells were not producing 

T the Leydig cells were less susceptible to oxidative stress and therefore aging. 

As previously mentioned, aging men experience a substantial decline in measurable serum T 

levels. These declining levels are accompanied by age-related changes in the T biosynthesis 

pathway, namely LH receptor-stimulated cAMP production and levels of key proteins including 

StAR, TSPO, and some of the steroidogenic enzymes (Chen et al. 2004; Diemer et al., 2003; Luo 

et al., 2005). Reduced levels in StAR and TSPO have been of great research interest because of 

their function in the mobilization from cholesterol from cytosolic stores to the mitochondria. A 

shift in the redox environment of steroidogenic cells that results increased in oxidative stress is 



 18 

thought to be the culprit of reduced levels of these key proteins and steroid formation (Diemer et 

al., 2003; Quinn & Payne, 1984; Quinn & Payne, 1985). Oxidative stress is brought about by 

reductions in enzymatic (GSH peroxidase, and Cu, Zn-superoxide dismutase, Mn-dismutase) and 

non-enzymatic antioxidants (GSH, ascorbic acid, α-tocopherol) and increased susceptibility to 

free radical production by both the electron transport chain and mitochondrial cytochrome P450 

enzymes (Cao et al., 2004; Hanukoglu, 2006; Cui et al, 2012). Therefore, without the protective 

action of antioxidants, the electrophilic properties of free radicals, such as hydrogen peroxide, 

superoxide, and hydroxyl radicals, can lead to severe macromolecular damage, including lipid 

peroxidation and formation of protein and DNA adducts (Cao et al., 2004).  

Among the cellular changes observed as Leydig cells begin producing less T over time, the 

non-enzymatic antioxidant, GSH, has been of great interest. It is the most abundant antioxidant 

in cells with the primary function of ridding the body of ROS and harmful xenobiotic 

electrophiles to prevent oxidative damage and reduce adduct formation (Forman et al., 2009; Yu, 

1994). As such, a number of studies used a compound called buthionine sulfoximine (BSO) to 

diminish GSH levels in order to observe the effects on steroid synthesis (Chen et al., 2008; Chen, 

Zhou, et al, 2010). GSH is a tri-peptide thiol that requires two ATP dependent enzymes, γ-

glutamylcysteine ligase and GSH synthetase, for its production (Griffith & Meister, 1979). BSO 

is a potent inhibitor of γ-glutamylcysteine ligase, which is important for these studies because 

this enzyme catalyzes the rate-determining step in GSH biosynthesis (Griffith & Meister, 1979). 

In one study, researchers extracted and cultured in vitro Leydig cells from Brown Norway rats; 

they found that by diminishing available GSH using BSO these cells produced significantly less 

T (Chen et al., 2008). The same study found that administering BSO directly to Brown Norway 

rats in vivo via injection resulted in the same decline in T synthesis (Chen et al., 2008). Another 
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study used MA-10 tumor Leydig cells, which are cells that produce progesterone (P) as an end 

product instead of T through a very similar pathway. In this study, scientists depleted GSH using 

two different compounds, BSO and dimethyl maleate (DEM), and observed the effects on P 

production. Additionally, a subset of cells was exclusively exposed to the pro-oxidant, tert-butyl 

hydroperoxide (t-BuOOH). They found that using these compounds to diminish GSH levels as 

well as exclusively subjecting cells to t-BuOOH did not result in a drop in steroid synthesis 

(Chen, Zhou, et al., 2010). Interestingly though, incubating the MA-10 cells with BSO or DEM 

while also subjecting these cells to t-BuOOH researchers observed a significant decline in P 

production (Chen, Zhou, et al., 2010). This could be a result of differences between the internal 

environments of the MA-10 Leydig cells and primary Leydig cells of Brown Norway rats. The 

MA-10 cells are also cells derived from Leydig cell tumors that are alternatively grown in 

culture, which could potentially account for the differences observed. Nonetheless, it is clear 

from these studies that even if oxidative stress is not exclusively responsible, it certainly plays an 

important role in the decline in T biosynthesis observed over time. 

Intrinsic: Increase in cyclooxygenase-2 

Cyclooxygenases are important enzymes involved in the production of prostacyclins, 

thromboxanes, and prostaglandins (PGs) (Huang et al., 2003). PGs are involved in the regulation 

of several biological processes such as osmotic balance, blood pressure, and immune responses 

among others (Huang et al., 2003). Cyclooxygenase is expressed in two isoforms. The first, 

COX-1, has been found to be expressed constitutively in cells whereas the second, COX-2, is 

expressed in response to a variety of cellular changes one of which is hormone stimulation (Chen 

et al, 2007). When LH binds to its receptor, arachidonic acid is released from Leydig cell 

membranes and can be used as a substrate for COX-2 catalyzed production of PG. Research has 
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shown that suppression of steroidogenesis is concomitant with PG production (Chen et al, 2007). 

Additionally, COX-2 levels are considerably higher in the Leydig cells of aged Brown Norway 

rats suggesting that COX-2 expression negatively regulates steroid production (Frungieri et al., 

2006). This has been supported by a study that used COX-2 inhibitors. This study showed that, 

in fact, these inhibitors led to increased T production in aged Brown Norway rats providing 

evidence for the theory that COX-2 has conflicting effects on steroid synthesis (Frungieri et al., 

2006). COX-2 expression levels have been documented in men with infertility issues that are 

presumably is driven by low T levels (Frungieri et al., 2006). Consequently, the age-related 

increases in COX-2 expression observed in Brown Norway rats could also be reflected in 

primary hypogonadal men and thus provide an additional intrinsic mechanism by which aging 

leads to declines in serum T.  

Extrinsic: Phthalate Exposure 

Much of the research into low serum T levels of hypogonadal men has been focused on 

investigating the intrinsic causes of aging. Accordingly, there has been a great deal of evidence 

to support the free radical theory of aging on which a lot of Leydig cell aging hypotheses are 

based. But, it goes without saying that there are extrinsic factors that could be at play here as 

humans are exposed to countless xenobiotics. The investigation of exposures to environmental 

toxicants provides an alternate approach to understanding how Leydig cell aging occurs. 

Phthalate exposure has been linked to major deficits in the structure and functioning of the male 

reproductive tract including morphological changes, reproductive toxicity, and low T.  

Phthalate esters are potent endocrine disruptor molecules; these derivatives of phthalic acid 

are chemicals that are manufactured to create and promote the malleability and longevity of a 

broad range of consumer products that include but are not limited to: paints, personal care 
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products, toys, food packing containers, and pharmaceuticals etc. (Gao et al., 2017; Ha et al., 

2016; Motohashi et al., 2016). Therefore, it is no question that humans are exposed to phthalates 

daily. Because of this, the United States Environmental Protection Agency (US EPA) has 

classified many phthalates as priority pollutants (US EPA, 2007). This organization expressed 

concern and strongly advocated for methods to prevent or reduce exposure to phthalates. 

Relevant exposures, such as microwaving food in plastic containers and infants’ mouthing of 

toys, have been difficult to quantify, though, due to problems with obtaining reliable data (US 

EPA, 2007). Nonetheless, human phthalate exposure is ubiquitous and affects all humans 

throughout their lifespan. 

Because of the hydrophobic nature of some phthalate esters, exposure to these chemicals 

begins even before birth. The placenta allows the slow transfer of short-chain esters from the 

maternal blood supply to the fetus (Mose et al., 2007). One study looked at how orally 

administering in four different doses (0, 10, 50, and 100 mg/kg) a commonly found phthalate, 

di(n-butyl) phthalate, to the pregnant female Sprague-Dawley rats would affect male 

reproductive function (Motohashi et al., 2016). This lab found time and dose dependent changes 

in Leydig cell mitochondrion morphology, and reductions in steroidogenic enzymes and T levels 

of male pups. Phthalate metabolites have been found in breast milk of pregnant women citing 

one important source by which infants are exposed indicating that exposure after birth can occur 

through the mother (Motohashi et al., 2016). Another study explored, in vivo and in vitro, the 

effects of a different phthalate ester, di(2-ethylhexyl) phthalate (DHEP), on testicular structures 

and T production (Ha et al., 2016). The in vivo approach involved the administration of DHEP to 

Sprague-Dawley rats by gavage for 30 days. In the in vitro approach, a mouse Leydig cell line 

(TM3 cells) was treated with DHEP for 24 hours. The in vivo study revealed that exposure to 
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DHEP could lead to morphological malfunctions of seminiferous tubules, mitochondria, 

chromatin, as well as germ and Sertoli cell death. Results of both studies showed that DHEP 

exposure was correlated reductions T production. Concomitant measurements of two groups of 

molecules indicated that two distinct pathways were contributing to the reductions in T levels.  It 

was observed lipid peroxidation was increased as well as ERK pathway induced 5α-reductase 2 

(an enzyme that converts T to dihydrotesterone; DHT) suggesting oxidative damage and 

irreversible conversion of  T to DHT provided one mechanism for reduced T (Ha et al., 2016). 

Additionally, serum LH levels (but no changes in GnRH) were reduced in the Sprague-Dawley 

rats indicating that there were abnormalities with the HPG axis (Ha et al., 2016). Although these 

mechanisms might be different from men with low T, these results strongly support the fact that 

phthalate exposure affects testicular morphology and function. 

The two studies cited above looked at phthalate exposures that were acute in comparison to 

that what would be expected over the course of a typical human lifetime. Further, these studies 

exposed rats to high levels of one type of phthalate, but in reality humans are exposed to many 

different types of phthalates (among other things). Thus, a more relevant study would be one that 

analyzes the effects of human applicable exposures over a long duration. One study did this by 

examining the effects of long-term low-dose exposure to a mixture of six phthalates: di-n-octyl 

phthalate (DNOP), dimethyl phthalate (DMP), di(n-butyl) phthalate (DBP), di(2-ethylhexyl) 

phthalate (DEHP), diethyl phthalate (DEP), and butyl benzyl phthalate (BBP) (Gao et al., 2017). 

This phthalate mixture was orally administered at three low doses by gavage to male Sprague-

Dawley rats daily for 15 weeks. Vital proteins in the T biosynthesis pathway, like StAR, 

Cytochrome 450 enzymes, and 17β-HSD, were reduced in exposed mice (Gao et al., 2017). 

These lowered protein levels were accompanied by significant declines in serum T and ITT 
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without decreasing serum LH levels (Gao et al., 2017). Hence, this study provides more pertinent 

evidence that low dose exposure to phthalates over an extended period of time could, in fact, 

pose a threat to the reproductive homeostasis and adequate T levels. 

Therapy for Hypogonadism 
Testosterone Replacement Therapy  

Various studies have attempted to determine the prevalence of male hypogonadism, but there 

doesn't seem to be a clear consensus on the number of affected individuals (Araujo et al., 2004; 

Araujo et al., 2007; Harman et al., 2001; Morley et al., 1997; Pastuszak et al., 2016; Wu et al., 

2010). This is because successful diagnosis is heavily dependent on early morning serum T 

measurement, as that is the time when the T levels are the highest (McGill et al., 2012). Because 

this isn’t a test run during routine checkups, diagnosis is reliant on men reporting symptoms to 

their doctors, not to mention many facilities don't have the resources necessary to perform T 

measurements (McGill et al., 2012). Possibly the most unfortunate characteristic of this 

syndrome is that many of its symptoms overlap with those of other diseases and conditions. 

Consequently, the diagnosis of this condition is extremely difficult. Even worse, there aren’t 

many therapies for androgen deficiency. The main treatment prescribed by physicians, though, is 

T replacement therapy (TRT).  

TRT is primarily used to treat the burdensome symptoms of androgen deficiency, such as 

lower urinary tract symptoms, erectile dysfunction and lowered energy, sex drive, muscle mass, 

bone loss etc. (McGill et al., 2012). Advances in TRT have led to the development different 

ways in which T can be administered. Injections, transdermal patches and gels are the main 

modes of delivery, but these methods aren’t without issues. The injections usually elicit 

substantial fluctuations in serum T necessitating adjustment to find the appropriate dosage 

(Beattie et al., 2015; Surampudi et al, 2012). The transdermal approaches circumvent this 
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problem by releasing constant T, but they have drawbacks as well. The gel can rub off via skin 

contact with a partner for example (Beattie et al., 2015; Surampudi et al, 2012) and the patch can 

be irritating or detach from the skin due to sweating/contact with water (Ullah et al.,  2014). 

Nonetheless, studies have shown that TRT has been effective in improving hypogonadal 

symptoms, particularly impotence, lower urinary tract symptoms, and erectile dysfunction 

(Yassin et al, 2014 ; Yucel et al., 2017). 

Despite being the most commonly used therapy and its validity in treating the symptoms of 

male hypogonadism, TRT use has been called into question because of its proposed links to 

major diseases affecting men, namely prostate cancer and cardiovascular diseases/events. One 

early study found that male castration resulted in a regression of metastatic prostate cancer and 

prostate cancer was activated (measured by serum acid phosphatase levels) after androgen 

injections suggesting that T influenced prostate cancer progression (Huggins & Hodges, 2002). 

There have been studies done that have implicated TRT as a contributor to recurrence in 

previous prostate cancer patients and development of cancer in high-risk men (Fowler & 

Whitmore, 1981; Prout & Brewer, 1967). There is not enough evidence to definitively link TRT 

to progression or recurrence in men with a history of prostate cancer or rule out such a link 

(Pastuszak et al., 2016). Further, examining PSA levels is used as an initial screening procedure 

during the work up of males over the age of 40. A meta-analysis of randomly controlled trials 

found no significant association between TRT and prostate-specific antigen (PSA) levels (Kang 

& Li, 2015). There are other studies that support that TRT is not associated with an increased 

incidence of prostate cancer (Coward & Carson, 2009; Haider et al, 2009;,39; Jin et al., 2001). In 

fact, it appears that age is the most important and reliable characteristic associated with 

progression of prostate cancer (Jin et al., 2001). However, physicians as well as well-informed 
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cancer patients can be reluctant to use TRT to treat hypogonadism if it presents as a comorbidity 

necessitating more concrete data. 

Like studies into prostate cancer, there has been controversy over the proposed link between 

TRT and cardiovascular disorders. An epidemiological study assessed the risk of cardiovascular 

dysfunction in hypogonadal men using TRT (Maggi et al., 2016). This study looked at a large 

cohort of European men and found no TRT related ties to adverse cardiovascular events in these 

men. However, a recent controlled clinical trial analyzed association between TRT and non-

calcified coronary plaque volume, as a measure cardiovascular risk (Budoff et al., 2017). It was a 

double blind experiment consisting of mainly older white men conducted over the course of 12 

months. After a year, there was significant correlation between TRT and non-calcified coronary 

plaque volume determined by computed tomography angiography (Budoff et al., 2017). There 

are other studies that confirm this denoting that exogenous T administration is linked to other 

cardiovascular events/conditions, such as myocardial infarction (heart attack), coronary artery 

disease, and erythrocytosis leading other adverse cardiovascular events (Bachman et al., 2010; 

Basaria et al., 2010; Calof et al., 2005; Coviello et al, 2004; Finkle et al., 2014). This evidently 

conflicts with the conclusions of the epidemiological study mentioned previously as well as 

many other emerging studies. It goes without saying that much of the research done to look at the 

correlation between TRT and these diseases is riddled with bias, particularly selection bias. For 

example, many of these studies looked at primarily older white men, yet this is not the only 

population that is affected by hypogonadism. Therefore, more research into the possible 

associations between TRT and other health complications are necessary. 

 Although not observed in all men, TRT has been shown to reduce endogenous T production 

ultimately leading to azoospermia (Brumner et al., 1991; Murdoch & Goldberg, 2014; Tom et 
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al., 1992). This makes sense as the exogenous T administration leads to a suppression of 

gonadotropins from the pituitary resulting in lower ITT and thus low sperm count. Adequate ITT 

is necessary in order to maintain spermatogenesis in men and other male mammals (McLachlan 

et al., 2002; Weinbauer & Nieschlag, 1993; Zirkin et al., 1989). As previously stated, 

hypogonadism primarily affects men beginning in their 40s or 50s. However, hypogonadism 

does affect some younger men. These men, unlike many of the men who are associated with this 

condition, may wish to father children. Because of the contraceptive properties of exogenous T, 

TRT is not an adequate treatment for these men. Thus, there has been increasing interest in 

establishing validity for other therapies that can raise serum T without suppression the 

endogenous T production and spermatogenesis. As such, TSPO drug ligands have become area 

of interest for treatment of these young hypogonadal men who wish to have children. 

TSPO drug ligands 

TSPO is arguably the most important protein in the T biosynthetic pathway, as it is a protein 

that is a member of both the transduceosome and the metabolon. Its role is to facilitate the 

movement of cholesterol through the mitochondrial membrane and ultimately its delivery to 

CYP11A1, the rate-determining step in T synthesis. However, one study has refuted the TSPO’s 

assumed vitality. In this study, the research team was able to successfully create TSPO null mice. 

Examination of spermatogenesis, reproductive capacity, and T production showed that all were 

unaffected (Motohashi et al., 2016). Closer analysis revealed that levels of other key molecules 

of T pathway, namely 3β-HSD, StAR, and CYP11A1, were also unchanged (Motohashi et al., 

2016). The conclusion drawn by this research team was that TSPO is not essential for T 

production. On the contrary, other TSPO null research has challenged the validity of this study, 

as these knockout experiments showed significant reductions in steroid synthesis (Fan et al., 
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2015; Fan et al, 2017; Owen et al., 2017). The former group didn't provide an alternative 

mechanism to explain normal steroidogenesis in these TSPO knockout mice. It is possible that in 

TSPO deficient cells other proteins are compensating for the loss of this protein. Further, MA-10 

cell research has shown that TSPO knockout increases ROS production (Tu et al., 2016). 

Because elevated ROS is thought to be linked to cell aging and lower steroid production (due to 

TSPO’s function in the transduceosome and metabolon), it seems unlikely that knocking down 

TSPO would leave steroid production unaffected. It appears that this protein is indeed very 

important to adequate steroid production whether it is present or not. 

It appears that, when TSPO is present, it can be utilized in order to facilitate steroid 

production. TSPO consists two domains, the CRAC motif that binds cholesterol and the 

benzodiazepine site that binds a number of compounds. In the presence of a TSPO agonist, these 

two regions seem to work in concert to speed the movement of bound cholesterol into the 

mitochondrion thereby improving the efficiency of the rate limiting step in steroid synthesis 

(Midzak, Akula, et al., 2015).  

Low steroid concentration in the brain has been linked to neurological issues, such as 

depression and anxiety (Rasmusson et al., 2006; Uzunova et al, 1998). Production of steroids 

within the brain has been found to modulate gamma-aminobutyric acid type A (GABAA) 

receptor activity. Studies have shown that these neurosteroids bind to GABAA receptors 

enhancing their activity which results in reductions in stress responses as well as analgesic, 

anticonvulsant, and anxiolytic effects (Barbaccia et al., 1996; Brunton et al, 2009; Patchev et al., 

1994; Patchev et al., 1996). With this in mind, new research has been geared towards TSPO as a 

target to treat neurological disorders, especially anxiety disorders. Currently, the main treatments 

for anxiety disorders are benzodiazepines and selective serotonin reuptake inhibitors (SSRIs). 
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Many patients taking benzodiazepines report negative side effects, tolerance, and withdrawal 

issues (Bandelow et al., 2008). Although SSRIs are often reliable, it takes a while for patients to 

experience the positive effects and sometimes during this time their initial symptoms worsen 

(Bandelow et al., 2008). Researchers have been interested in using TSPO drug ligands to test it 

as an alternative treatment for these disorders. One drug ligand, XBD-173, has been shown to 

stimulate GABAenergic neurotransmission and liberate experimentally-induced panic attacks in 

rodent models without the sedation or withdrawal symptoms (Rupprecht et al., 2009). It also 

showed fast acting anxiolytic effects in human volunteers (Rupprecht et al., 2009). There have 

been clinical trials conducted to investigate its safety and efficacy with results that seem 

promising (Rupprecht et al., 2010).  

Although there are limited published studies looking at how TSPO agonists affect steroid 

production in the male, TSPO could be a promising pharmacological target particularly for 

reversal of declining serum T levels that are observed with age. Some studies have induced 

hypogonadism in young rats using a GnRH antagonist (cetrorelix). Administration of TSPO 

ligand to these animals resulted in significantly higher ITT, illustrating that these ligands could 

reverse induced hypogonadism (Aghazadeh et al., 2014; Papadopoulos et al., 2015). Perhaps, the 

most exciting and relevant research with respect to the treatment of hypogonadal men was a 

reversal study that looked at how TSPO ligands affected ITT and serum T levels in primary 

hypogonadal rats. This study utilized an in vivo and an in vitro approach to examine the effects 

of two distinct TSPO drug ligands, N,N-dihexyl-2-(4-fluorophenyl)indole-3-acet-amide (FGIN-

127) and benzodiazepine 4’-chlorodiazepam (Ro5-4864) (Chung et al., 2013). In the in vitro 

experiment, Leydig cells from both young and old Brown Norway rats were cultured with each 

of the TSPO drug ligands. Similarly, the in vivo study involved the injection of these drug 
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ligands. The approaches showed that FGIN-127 substantially increased T production by old cells 

and in old rats to that of their younger counterparts. FGIN-127 is currently being evaluated in 

labs to determine the extent of its stimulatory effects with respect to concentration and time. 

Further, research groups are studying how these drug ligands stimulate steroidogenesis because 

the precise mechanisms by which this occurs is still unclear (Papadopoulos et al., 2015). In spite 

of its unknown mechanism, these compounds are prime drug candidates that can be utilized for 

treating male hypogonadism. 
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INTRODUCTION 

Leydig cells are testosterone (T)-producing cells localized in the interstitial compartment of 

the mammalian testis. These cells are stimulated by luteinizing hormone (LH) released from the 

anterior pituitary, which elicits cAMP-mediated transport of cholesterol through the outer 

mitochondrial membrane (OMM) to inner mitochondrial membrane (IMM) protein cytochrome 

P450 side-chain cleavage enzyme (CYP11A1). This enzyme carries out a side cleavage reaction 

converting cholesterol to pregnenolone. Then, pregnenolone is shuttled to the smooth 

endoplasmic reticulum (ER). It is quickly converted to progesterone by 3β-Hydroxysteroid 

dehydrogenase (3β-HSD). Progesterone and its successor are acted on by cytochrome p450 17 

(CYP17) forming 17α-hydroxprogesterone and androstenedione respectively. Finally, 17β-

Hydroxy steroid dehydrogenase (17β-HSD) catalyzes the last step converting androstenedione to 

T (Midzak et al., 2009; Miller & Bose, 2011; Rone et al., 2009). 

Translocator protein (18-kD TSPO), an OMM protein, appears to be crucial for normal 

steroidogenesis, as it moves cholesterol from an intracellular source through the OMM to 

CYP11A1, the rate-limiting step in steroid synthesis (Midzak, Rone et al., 2011; Papadopoulos et 

al., 2015). TSPO contains two distinct domains that are important for cholesterol transport, a 

benzodiazepine-binding site and a cholesterol recognition amino acid consensus (CRAC) site 

(Midzak, Akula, et al., 2015). Structural characterization studies that have used recombinant 

TSPO support its proposed structural and functional significance (Murail et al., 2008). Site-

specific mutagenesis has also been employed to disrupt the CRAC domain, which resulted in an 

inability of TSPO to bind cholesterol (Jamin et al., 2005). The benzodiazepine-binding site has 

been found to bind a number of compounds. In fact, one study showed that TSPO’s binding of 

ligands stabilizes its secondary and tertiary structures (Lacapere et al., 2001; Murail et al., 2008). 
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Ligand binding also seems to stimulate the cholesterol translocation activity of TSPO, making 

this protein a promising pharmacological target (Midzak, Akula, et al., 2015; Midzak, Zirkin et 

al., 2015).  

However, one research group has provided results refuting TSPO’s assumed vitality to 

steroidogenesis. In this study, TSPO null mice were created. Examination of spermatogenesis, 

reproductive capacity, and T production revealed that all were unaffected (Motohashi et al., 

2016). Closer analysis showed that levels of other key molecules of T pathway, namely 3β-HSD, 

steroidogenic acute regulatory protein (StAR) protein, and CYP11A1, were also unchanged 

(Motohashi et al., 2016). The conclusion drawn by this research team was that TSPO is not 

essential for T production. On the contrary, one prior study showed that selective TSPO knock 

down using a Cre-recombinase system resulted in significant reductions hormone-stimulated 

steroidogenesis (Fan et al., 2015). Additionally, two subsequently published studies showed that 

TSPO disruption resulted in reduction in steroid production (Fan et al, 2017; Owen et al., 2017). 

Specifically, Fan et al generated two TSPO mutant MA-10 cell lines using the CRISPR-Cas9 

system. Both of these lines showed significant reductions in steroid formation even upon the 

administration of a cAMP analog, dibutyryl cAMP (Fan et al, 2017). Further the Owen et al. 

study showed that a human polymorphism in TSPO’s CRAC domain resulted in an amino acid 

substitution, which presumably reduces its ability to bind cholesterol. This polymorphism is 

observed in humans that have anxiety disorders and often these disorders are caused by low 

steroid concentrations in the brain. Thus, it has been proposed that this polymorphism impairs 

TSPO’s function leading to reduced neurosteorid production and psychological disorders.  Owen 

et al. found that by recapitulating this in a rodent model there was indeed a reduction in steroid 
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production. Also, in vitro studies also showed that the corresponding TSPO mutation resulted in 

lowered cholesterol affinity (Owen et al, 2017).  

The group that reported TSPO deletion had no effect on steroidogenesis provided no 

alternative hypothesis for this observation. It is possible that in TSPO deficient cells other 

proteins are compensating for the loss of this protein. MA-10 cell research has shown that TSPO 

knockout increases ROS production (Tu et al., 2016). Because there is a proposed link between 

elevated ROS and both cell aging and lower steroid production (due to TSPO’s function in the 

transduceosome and metabolon), it seems unlikely that knocking down TSPO would leave 

steroid production unaffected. It appears that this protein is indeed very important to adequate 

steroid production whether it is present or not. In accordance with studies supporting TSPO’s 

role in steroidogenesis, introduction of TSPO cDNA into TSPO deficient cells is able to rescue 

their steroidogenic function (Papadopoulos et al., 1997).  

With aging, Leydig cells of both men and rodents produce less T. Analysis of aged Leydig 

cells has revealed that there are concomitant reductions in TSPO, LH receptor-stimulated cAMP 

synthesis, StAR, and enzymes in the mitochondria and smooth ER (Chen et al. 2004; Diemer et 

al., 2003; Luo et al., 2005). Low serum T results in a condition that is clinically referred to as 

hypogonadism and is thought to affect 4 to 5 million men in the United States, with the majority 

being 60 years or older (Zirkin et al., 2018). Insufficient production of androgen is accompanied 

by many symptoms that include but are not limited to: decreased muscle mass, increased weight 

gain, and low bone density, cognitive changes, erectile dysfunction, increased fatigue, and low 

libido (Kumar et al., 2010, Ullah et al., 2014). Primary hypogonadism describes men who show 

significant reductions in serum T over their lifespan despite having normal levels of LH. 

Therefore, the observed decline in T levels cannot be attributed to inadequate LH production and 
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release by the anterior pituitary but rather to the Leydig cells’ insensitivity to LH (Chen et al., 

2002). It has been difficult to pinpoint exactly how these defects come about, but generally aging 

is coupled with both intrinsic (ie. oxidative stress) and extrinsic (ie. environmental exposures) 

changes that could result in reduced steroidogenic function (Cui et al, 2012; Rebrin & Sohal, 

2008).  

This has brought about considerable interest in therapies to combat both the decline in T 

production and the side effects of hypogonadism. T replacement therapy (TRT) has been used 

largely to treat the symptoms (Ullah et al., 2014). This mode of action is met with some benefits 

but also has a number proposed of risks, such as increase susceptibility to prostate cancer and 

cardiovascular events (Bachman et al., 2010; Basaria et al., 2010; Budoff et al., 2017; Calof et 

al., 2005; Coviello et al, 2004; Finkle et al., 2014; Fowler & Whitmore, 1981; Maggi et al., 2016; 

Prout & Brewer, 1967). The correlation between TRT and these diseases is controversial, 

though, and its research ongoing.  

Although exogenous T administration leads to an increase in serum T, it also results in 

suppression via negative feedback of the release of gonadotropin-releasing hormone (GnRH) and 

gonadotropins (LH and follicle-stimulating hormone) from the hypothalamus and pituitary, 

respectively. Reduced LH leads to lower ITT and eventually sperm count. In one important 

experiment, Sprague-Dawley rats were administered T-containing silastic implants of increasing 

sizes (Zirkin et al, 1989). The size of the implant correlated with increases in measured serum T. 

After dropping below certain concentration of T (~20ng/ml) within the testis, there was a 

significant reduction in sperm count indicating that a certain amount of T is necessary in order to 

maintain spermatogenesis (Zirkin et al, 1989). This has also become clear through experiments 

in which T was administered to healthy men. The TRT administration inhibits the production of 
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endogenous T due to negative feedback thereby substantially reducing ITT levels (Coviello et 

al., 2004). These low ITT levels lead to significant reductions in sperm count and germ cell loss 

(Coviello et al., 2004; Hill et al., 2004). Thus, adequate ITT levels are necessary in humans in 

order to maintain sperm numbers (McLachlan et al., 2002; Weinbauer & Nieschlag, 1993; Zirkin 

et al., 1989). 

Hypogonadism primarily affects men beginning in their 40s or 50s. However, hypogonadism 

also affects some younger men (Yin & Swerdloff, 2010). These men, unlike many of the men 

who are associated with this condition, may wish to father children. Because of the suppressive 

effects of exogenous T on both the hypothalamus and the pituitary, TRT is not an adequate 

treatment for these men (Brumner et al., 1991; McLachlan et al., 2002; Murdoch & Goldberg, 

2014; Tom et al., 1992; Weinbauer & Nieschlag, 1993; Zirkin et al., 1989). Thus, there has been 

increasing interest in establishing validity for other therapies that can raise serum T without 

suppression the endogenous T production and spermatogenesis. Stimulation of aged rats in vivo 

and aged Leydig cells in vitro with TSPO drug ligands have been shown to increase steroid 

production in some laboratory studies (Aghazadeh et al., 2014; Chen et al. 2004; Chung et al., 

2013; Papadopoulos et al., 2015). As such, TSPO drug ligand administration could become a 

treatment method of these young hypogonadal men who wish to have children. We hypothesized 

herein that administering TSPO drug ligands would increase serum T without reducing ITT 

levels, and therefore maintaining spermatogenesis. This is in contrast to TRT, which would 

increase serum T levels but would reduce in ITT levels due to negative feedback on the 

hypothalamus and pituitary and eventually reduce spermatogenesis. 

To test this hypothesis, we determined the in vivo effects of administering high affinity 

TSPO drug ligands FGIN-1-27, XBD-173, and Ro5-4864 to aged (21 months) Brown Norway 
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rats on serum T and ITT and compared these results to aged controls. We also administered 

exogenous T via T-containing Silastic implants to aged rats and observed how the effects on 

serum T and ITT compared to aged controls. We furthered these efforts by determining how T 

implants affected seminiferous tubule fluid (STF) T and sperm production in young Brown 

Norway rats. We show that administering T implants significantly increased serum T in aged 

rats, but decreased intratesticular T (ITT) levels significantly when compared to aged controls. 

Conversely, FGIN-1-27 (but not XBD-173 at 1 mg/kg body weight and Ro5 at 3 mg/kg body 

weight) administration to aged rats at 1 mg/kg body weight significantly increased serum T and 

maintained ITT levels compared to aged controls. We also show that T implants significantly 

reduced STF T and sperm count in young rats. The 2 cm capsule given to young rats resulted in 

the most significant reduction in STF T levels and sperm count when compared to controls. 

Because the STF T levels of young rats that received 2 cm implants were strikingly similar to 

ITT levels of old rats that received 2 cm implants, it can be inferred that the aged rats that 

received 2 cm capsules also would show a significant reduction in sperm count. On the contrary, 

ITT levels of the FGIN-1-27 treated old rats were significantly higher than ITT levels of aged 

controls. This suggests that spermatogenesis would not be suppressed in these FGIN-1-27 treated 

hypogonadal rats and FGIN-1-27 administration might even enhance this process. These results 

provide early evidence that pharmacological stimulation of TSPO could serve as a novel therapy 

for young hypogonadal men. 

MATERIALS AND METHODS 

Reagents 

N,N-Dihexyl-2-(4-fluorophenyl)indole-3-acetamide (FGIN-1-27), benzodiazepine 4’-

chlordiazepam 4′-chlorodiazepam (Ro5-4864), N-benzyl-N-ethyl-2-(7-methyl-8-oxo-2-
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phenylpurin-9-yl)acetamide (XBD-173) were obtained from Sigma-Aldrich (St Louis, Missouri). 

[1,2,6,7,16,17-3H(N)]-Testosterone was from PerkinElmer Life Sciences, Inc (Boston, 

Massachusetts). T antibody was from MP Biomedical (Solon, Ohio). 

Effect of T-containing Silastic implants and TSPO drug ligands on T production in vivo 

Young (3 months old) and aged (21 months old) Brown Norway rats were obtained through 

the National Institute on Aging (Bethesda, Maryland). They were housed in the animal facilities 

of Johns Hopkins Bloomberg School of Public Health (Baltimore, Maryland) in controlled light 

(14-hour light, 10-hour dark) at a temperature of 22°C with free access to food and water. All 

animal handling and care were in line with the protocols approved by the institutional Animal 

Care and Use Committee of Johns Hopkins University. 

To determine the in vivo effect of TSPO ligand on T production, aged rats received FGIN-1-

27 or XBD-1-27 dissolved in 10% DMSO (1 mg/kg body weight) via daily ip injection. After 10 

days, serum and intratesticular fluid were collected for T measurement by radioimmunoassay 

(RIA). A preliminary experiment was conducted in which aged rats received Ro5-4864 dissolved 

in 10% DMSO (3 mg/kg body weight) via daily ip injection. After a 5-day period, serum and 

intratesticular fluid were collected for T measurement by RIA. To compare TSPO drug ligands 

to exogenous T administration, aged rats were given subdermal 2 cm T-containing Silastic 

implants. After 10 days serum and intratesticular fluid were collected for T measurement by 

RIA. Each experiment included control groups, both young and old, that were injected with 

vehicle (10% DMSO) with serum and intratesticular fluid collected for T measured via RIA to 

compare to the experimental groups. Finally, experimental rats received subdermal T implants 

totaling 1, 2, 6, 6, 12, or 24 cm in length.  After 8 weeks, rats were euthanized by decapitation, 

trunk blood was collected, and serum was prepared and stored frozen at -20 C for subsequent 
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determination of T by RIA. Both testes were removed and weighed. Briefly, IF and STF were 

collected as follows. The tunica albuginea was incised at one pole, and testes were centrifuged at 

low speed (54 x g; 10 min; 0 C) to drain IF. Subsequently, testes were decapsulated and rinsed 

thoroughly to remove residual IF. The seminiferous tubules were then extruded through the hub 

of a syringe, and the preparation was centrifuged (6,000 X g; 15 min; 0 C) to collect STF as a 

supernatant above the collapsed seminiferous tubules. Immediately after collection, IF and STF 

were snap-frozen in liquid nitrogen and subsequently stored frozen at -80 C before assay for T. 

The contralateral testis from each rat was used for determining the numbers of advanced 

spermatids per testis by the hemacytometric counting of testicular homogenates under phase 

contrast microscopy (Zirkin et al, 1989). 

Statistical analysis 

Data are expressed as means ± SEM of at least 3 independent experiments (except for 

experiments with Ro5-4864, XBD-173, and spermatogenesis). For two group comparisons, a 

student t-test was performed. Values were considered significant at P<0.05. 

RESULTS 

Hypogonadism in Brown Norway rats 

Figure 4A shows that serum T is significantly lower (~74%) in aged Brown Norway rats when 

compared to young rats. This is important as it displays the manifestation of hypogonadism in 

these rats. As shown in Figure 4B, aged rats also display a significantly lower concentration of T 

(~37%) within the testis compared to young rats. 

In vivo effects on aged rats with T-containing Silastic implants 

Two-centimeter T-containing Silastic implants were administered to aged Brown Norway 

rats. Control rats received vehicle. After a 10-day period, serum and intratesticular fluid were 
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collected for T measurement by RIA. Figure 5A illustrates that the implanted animals have 

significantly higher serum T levels compared the old controls, an increase of almost 5-fold. In 

contrast, Figure 5B displays a significant decrease in intratesticular testosterone (ITT) in rats 

administered implants compared to control rats (a decline of about 57%).  

In vivo effects of a TSPO drug ligand (FGIN-1-27) in aged rats 

To determine the effect of TSPO stimulation of T production in vivo, FGIN-1-27 was 

administered to aged rats via daily ip injection at a concentration 1 mg/kg body weight over the 

course of 10 days. Control rats received vehicle. Perhaps, the most exciting results are displayed 

in Figure 6A showing a 2-fold increase in serum T in FGIN-1-27 treated aged rats that was 

statistically significant. This was matched with a significant 1.5-fold increase in ITT in these rats 

compared to controls. There were no major changes in body weights of these animals denoting 

that there were not cytotoxic effects of any of the TSPO drug ligands.  

Relationship between intratesticular T concentration and spermatogenesis in young rats 

T-containing Silastic implants of increasing sizes were administered to young Brown 

Norway rats. After 8 weeks, STF was collected to measure T via RIA and testes were used to 

determine the numbers of advanced spermatids per testis by the hemacytometric counting of 

these cells in testicular homogenates. The effect of T-containing Silastic implants on STF T 

concentration and sperm counts is shown in Figure 7. The STF T concentration (7A) and sperm 

count (7B) in control rats were 31.2±2.5 ng/ml and 214.9±4.5 x 106 sperm/testis, respectively. In 

rats that received 2 cm implants, the STF T concentration (7.5±0.6 ng/ml) and sperm count 

(34.1±16.0 x 106 sperm/testis) were reduced to their lowest values which were both significantly 

less than those of control rats. There were step increases in the STF T concentration and sperm 

count of rats receiving implants greater than 2 cm. Comparison of Fig. 7A and 7B show that 



 39 

sperm numbers could be maintained quantitatively at about 15-20 ng/ml T in the STF. As shown 

in Figure 4B, intratesticular T levels in old controls, though reduced from that of young controls, 

is about 20 ng/ml, sufficiently high to maintain spermatogenesis quantitatively.  Whereas T 

implants reduced ITT levels to below 10 ng/ml (Fig. 5B), administering FGIN to the old rats 

resulted in ITT levels of about 30 ng/ml, well above the level required for spermatogenesis 

maintenance. 

In vivo effects of other TSPO drug ligands (XBD-173 and Ro5-4864) in aged rats – preliminary 

studies 

After observing the effects of FGIN-1-27 on serum and ITT, preliminary studies were 

conducted to determine if other TSPO drug ligands could elicit similar responses in hypogonadal 

rats. Therefore, preliminary studies were done to determine whether stimulation of TSPO using 

drug ligands XBD-173 and Ro5-4864 would increase serum T levels without reductions in ITT 

levels in old rats. XBD-173 was administered to aged rats via daily ip injection at a concentration 

1 mg/kg body weight over the course of 10 days. Control rats received vehicle. Ro5-4864 was 

administered to aged rats via daily ip injection at a concentration of 3 mg/kg body weight over a 

5 day period. Control rats received vehicle. Aged rats administered XBD-173 or Ro5-4864 did 

not show changes in serum T (Figures 8A and 9A) or ITT (Figures 8B and 9B) when compared 

to control rats. 

DISCUSSION 

Aging is accompanied by reduced serum T concentrations in both men and Brown Norway 

rats (Chen et al., 2002; Liu et al., 2005; Veldhuis et al., 2012; Zirkin & Chen, 2000). This 

condition, clinically termed hypogonadism, is thought to affect 4 to 5 million US men with 

reports stating that 20% to 50% of men over 60 are affected (Araujo et al., 2004; Araujo et al., 
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2007; Bhasin, & Basaria, 2011; Harman et al., 2001; Morley et al., 1997; Surampudi et al, 2012 

Zirkin et al., 2018, 72,). These men experience a number of uncomfortable symptoms including 

fatigue, decreased muscle mass, weight gain, osteoporosis, depression, erectile dysfunction, and 

low libido (Kumar et al., 2010, Ullah et al., 2014) Hypogonadal men don’t necessarily have 

fertility issues, but there are a lot of infertile males who have low T (Kim & Schlegel, 2008; 

Schlegel, 2009). This is a significant issue for infertile couples that are seeking medical 

advisement, as 40% to 50% of these cases can be at least partially attributed to the male (Hwang 

et al., 2011).   

It has become clear that normal steroidogenesis is initiated by the binding of LH, which 

promotes cAMP-mediated cholesterol transport from the cytosol to the mitochondria, the rate-

limiting step, where it begins its enzymatic conversion to T. StAR and TSPO are two key 

proteins that drive this process. StAR is a 37-kDa protein that has two distinct regions, 

hydrophobic STAR-related lipid transfer (START) domain that binds cholesterol and an N-

terminal mitochondrial signal sequence that is removed after reaching the OMM (Aghazadeh et 

al., 2012; Issop et al., 2013; Liu et al., 2006; Rone et al., 2009). TSPO is an 18-kDa OMM 

protein that also contains two distinct domains, a benzodiazepine-binding (drug) site and a 

cholesterol recognition amino acid consensus (CRAC) site (Midzak, Akula, et al., 2015). It is 

thought that hormone stimulation results in StAR’s mobilization of cholesterol. TSPO’s high 

affinity CRAC motif subsequently promotes the capture of cholesterol from StAR. TSPO then 

aggregates and interacts with another OMM protein called VDAC forming a pore in the OMM 

for cholesterol delivery to CYP11A1. TSPO null research has highlighted its importance to 

steroidogenesis, as these knockout experiments showed significant reductions in steroid 

synthesis (Fan et al., 2015; Fan et al, 2017; Owen et al., 2017). Interestingly, in aged Leydig 
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cells, there are significant reductions in TSPO, LH receptor-stimulated cAMP production, and 

some of the steroidogenic enzymes (Chen et al. 2004; Diemer et al., 2003; Luo et al., 2005).  

The main therapy for hypogonadal men, TRT, doesn't address the source of the intracellular 

dysfunctions, but rather attempts to alleviate the uncomfortable symptoms. Additionally, TRT 

has been controversial, as it seems to be tied to other health complications, such as 

cardiovascular problems and prostate cancer (Bachman et al., 2010; Basaria et al., 2010; Budoff 

et al., 2017; Calof et al., 2005; Coviello et al, 2004; Finkle et al., 2014; Fowler & Whitmore, 

1981; Maggi et al., 2016; Prout & Brewer, 1967). Advances in TRT have led to the development 

different ways in which T can be administered. Injections, transdermal patches and gels are the 

main modes of delivery, but these methods aren’t without issues. The injections usually elicit 

substantial fluctuations in serum T necessitating adjustment to find the appropriate dosage 

(Beattie et al., 2015; Surampudi et al, 2012). The transdermal approaches circumvent this 

problem by releasing constant T, but they have drawbacks as well. The gel can rub off via skin 

contact with a partner for example (Beattie et al., 2015; Surampudi et al, 2012) and the patch can 

be irritating or detach from the skin due to sweating/contact with water (Ullah et al., 2014). 

Nonetheless, studies have shown that TRT has been effective in improving hypogonadal 

symptoms, particularly impotence, lower urinary tract symptoms, and erectile dysfunction 

(Yassin et al, 2014; Yucel et al., 2017). 

Although not observed in all men, TRT has been shown to reduce endogenous T production 

ultimately leading to azoospermia (Bremner et al., 1991; Murdoch & Goldberg, 2014; Tom et al., 

1992). This makes sense as the exogenous T administration leads to the suppression of GnRH 

release from the hypothalamus and LH from the pituitary resulting in lower ITT and thus low 

sperm count. Appropriate ITT levels are necessary in order to maintain spermatogenesis in men 
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and other male mammals (McLachlan et al., 2002; Weinbauer & Nieschlag, 1993; Zirkin et al., 

1989). As previously stated, hypogonadism primarily affects men beginning in their 40s or 50s, 

but a subset of these hypogonadal men are younger (Yin & Swerdloff, 2010). These men, unlike 

many of the men who are associated with this condition, may wish to father children. Because of 

the contraceptive properties of exogenous T, TRT is not an appropriate treatment for these men 

or infertile men who are hypogonadal. 

Thus, research into other possible therapies has been of great interest. The most promising of 

these seems to be TSPO drug ligands for its ability to raise endogenous T production by aged 

Leydig cells. Despite age-related reductions in TSPO, we hypothesized that pharmacological 

stimulation of TSPO via drug ligands would increase serum T without reducing ITT levels and 

therefore maintain spermatogenesis.  This is in contrast to exogenous T administration, which 

would increase serum T levels but would reduce in ITT levels due to negative feedback on LH 

and eventually reduce spermatogenesis. To test this, we compared serum T and ITT levels of 

aged rats receiving T implants to control rats. The same was done with FGIN-1-27 

administration. We also gave T implants of increasing sizes to young rats. We show that the 2 

cm capsule given to aged rats significantly increased serum T but significantly reduced ITT 

when compared to old controls. In striking contrast, FGIN-1-27 administration to old rats not 

only significantly increased serum T levels but also significantly increased ITT levels.  

Out of all capsule sizes, the 2 cm capsule given to young rats resulted in the most significant 

reduction in STF T levels and sperm count when compared to controls. We observed that STF T 

levels of young rats that received 2 cm implants were comparable to ITT levels of old rats that 

received 2 cm implants. Because these concentrations were so similar, it can be inferred that, like 

the young rats that received 2 cm capsules, the aged rats that received 2 cm capsules also show a 
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significant reduction in sperm count. In striking contrast, ITT levels of FGIN-1-27 treated old 

rats have ITT levels that were much higher than both of these T implanted groups and were 

comparable to young implanted controls indicating that sperm count was unaffected. Even 

further, the ITT levels of these FGIN-1-27 treated old rats were significantly higher than ITT 

levels of aged controls suggesting that FGIN-1-27 administration might lead to an enhancement 

of spermatogenesis. 

Taken together, this illustrated that exogenous T administration raised serum T levels but 

reduced ITT levels, resulting in reduced ITT and reduced sperm production. In striking contrast, 

the TSPO-specific drug ligand, FGIN-1-27, administration to aged rats not only raised serum T 

levels but also elevated ITT concentrations compared to old controls. From our results with the 2 

cm implants, this implies that maintaining or increasing ITT levels, as we show with FGIN-1-27, 

could maintain or even elevate sperm numbers. Because FGIN-1-27 is able to raise serum T 

levels without reducing ITT levels or sperm numbers, it might prove to be a useful therapy for 

hypogonadal men who wish to father children. 

Due to exciting results using FGIN-1-27, we conducted preliminary studies in aged rats using 

two structurally distinct drug ligands, XBD-173 and Ro5-4864. Unfortunately, we did not 

observe the same effects on serum and ITT with these two ligands.  

Despite the promising results described, there are a few limitations. (1) We did not compare 

the in vivo effects of TSPO drug ligands to both old and young rats. The significant increase we 

see in serum T and ITT for FGIN-1-27 compared to old rats might not have been substantial 

enough to be deemed statistically significant when juxtaposed with both young and old rats. (2) 

The lack of increase in serum T and ITT for the experiments using XBD-173 and Ro5-4864 

could have been due to how the ligand was dissolved. We used 10% DMSO as the solvent which 
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made the ligands’ dissolution more difficult. We did this to circumvent potential sensitivities the 

rats might have to high DMSO concentrations but could have reduced the potency of the drugs 

unintentionally undermining our efforts. (3) We only did short-term experiments with the TSPO 

drug ligands whereas the T implant experiment in young rats was done over an 8-week period. If 

FGIN-1-27 was administered for a longer period (or a period that matched that of the T implant 

experiment in young rats), its efficacy might have diminished or had cytotoxic effects in these 

animals. Further research on these molecules and others could provide mechanisms to stimulate 

endogenous T production and the restoration of male reproductive homeostasis. 
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FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. – Hypothalamic-pituitary-gonadal (HPG) axis Beginning at puberty, kisspeptin 
binds to GnRH neurons eliciting the release of gonadotropin releasing hormone (GnRH) 
from the hypothalamus (not shown). GnRH acts on the anterior pituitary stimulating the 
secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH), which travel 
via the bloodstream to the gonads. In the testis, LH binds to its receptor on the Leydig cells 
inducing the production of testosterone, which negatively feeds back on the release of GnRH 
and secretion of LH and FSH.  (Hill, 2012) 
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Figure 2 – Leydig Cell Testosterone Biosynthesis Pathway Luteinizing hormone (LH) binds 
to its receptor localized on the plasma membrane of Leydig cells, which subsequently leads to 
the cAMP production. Increases in cAMP levels allow StAR and TSPO to facilitate the transport 
of cholesterol to CYP11A1. Cholesterol is then converted to pregnenolone, which moves to the 
smooth endoplasmic reticulum where it undergoes a series of enzymatic reactions leading to 
testosterone as the final product. (Midzak	et	al.,	2009) 
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Figure 3 – Cholesterol movement into the mitochondria via two complexes, 
transduceosome and metabolon. In response to hormone stimulation, Golgi associated protein, 
ABCD3, is recruited to the mitochondria by OMM proteins TSPO and VDAC1. When ABCD3 
is recruited, it brings PKA-RIα. Simultaneously, activated StAR mobilizes cholesterol and 
interacts with VDAC1 and TSPO completing the transduceosome complex. VDAC1 and TSPO 
form the metabolon with IMM protein, ATAD3, and matrix protein, CYP11A1. Cholesterol is 
thus mobilized from the transduceosome through both the OMM and IMM to be metabolized to 
pregnenolone by CYP11A1. (Papadopoulos et al, 2015) 
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Figure 4 – Figure 4 – Serum (A) and intratesticular (B) T in young and old control rats.  (A) 
Serum T is significantly higher in young compared to old control rats. (B) Intratesticular T is 
significantly higher in young control than old control rats.  In each case, at least 3 independent 
studies were performed (mean±SEM). * P<0.05, **P<0.01  
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Figure 5 – Serum (A) and intratesticular (B) T in old rats administered 2 cm T-containing 
silastic implants or administered vehicle (control). (A) Serum T significantly increased in old rats 
given 2 cm T implants compared to old control rats. (B) Old rats administered 2 cm T implants 
show a significant decrease in intratesticular T levels compared to old rats administered vehicle. 
In each case, at least 3 independent experiments were performed (mean±SEM). *P<0.05, 
**P<0.01 compared with controls. 
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Figure 6 – Serum (A) and intratesticular (B) T in old rats administered FGIN-1-27 via daily ip 
injection at a concentration of 1 mg/kg body weight for 10 days. Control rats were administered 
vehicle for the same time period. (A) Serum T increased significantly in old rats administered 
FGIN-1-27 compared to old control rats. (B) In contrast to the effects of exogenously 
administered T (Fig. 3), intratesticular T levels increased significantly in response to FGIN-1-27 
administration compared to vehicle-treated old rats. In each case, at least 3 independent 
experiments were performed (mean±SEM). *P<0.05, **P<0.01 compared with controls 
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Figure 7 – Effect of T-containing silastic implants on seminiferous tubule fluid T (A) and 
sperm numbers per testis (sperm counts; B)  (A) Seminiferous tubule fluid T levels declined in 
young rats administered T implants of varying sizes compared to control rats. Levels reached a 
minimum in response to the 2 cm T implant. (B) Sperm counts declined in young rats 
administered T implants of varying sizes compared to control rats. Counts reached a minimum at 
the 2 cm T implant, the capsule size that elevated serum T in old rats, but resulted in reduced 
intratesticular T.  
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Figure 8 – Serum (A) and intratesticular (B) T in old rats administered XBD-173 via daily ip 
injection at a concentration of 1 mg/kg body weight for 10 days. Control rats were administered 
vehicle for the same time period. (A) Serum T increased significantly in old rats administered 
XBD compared to old control rats. (B) In contrast to the effects of exogenously administered T 
(Fig. 3), intratesticular T levels increased significantly in response to XBD-173 administration 
compared to vehicle-treated old rats (mean±SEM). Only one experiment was performed using 4 
rats per group. 
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Figure 9 – Serum (A) and intratesticular (B) T in old rats administered Ro5-4864 via daily ip 
injection at a concentration of 3 mg/kg body weight for 10 days. Control rats were administered 
vehicle for the same time period. (A) Serum T increased significantly in old rats administered 
Ro5-4864 compared to old control rats. (B) In contrast to the effects of exogenously 
administered T (Fig. 3), intratesticular T levels increased significantly in response to Ro5-4864 
administration compared to vehicle-treated old rats (mean±SEM). Only one experiment was 
performed using 4 rats per group. 
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