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Abstract 

Lung cancer is the most common cause of cancer mortality throughout the world 

with an overall survival rate of around 17%. Adenocarcinoma is the most common 

histologic subtype of lung cancer, and a majority of human lung adenocarcinomas have 

somatic mutations in genes encoding members of the EGFR/KRAS/BRAF signaling 

pathway. Combining this knowledge with animal models of the pathway indicate that this 

signaling axis is of central importance to lung adenocarcinoma development.  Non-small 

cell lung cancers with EGFR mutations, while initially responding well to EGFR tyrosine 

kinase inhibitors (TKIs) such as erlotinib, develop acquired resistance within 10-16 

months. A relatively uncharacterized mechanism of resistance is lung cancer cells that 

have undergone a morphological change, termed epithelial-mesenchymal transition 

(EMT). Twist1 is one of the inducers of EMT and we have created a transgenic 

autochthonous lung cancer mouse model expressing EGFRL858R/Twist1. Using this novel 

in vivo model, as well as in vitro models, we have shown that overexpression of Twist1 

can confer resistance to erlotinib in EGFR mutant lung cancers. Using these novel model 

systems we are trying to determine the downstream effects of Twist1 overexpression that 

lead to erlotinib resistance. To complement our work on Twist1-mediated erlotinib 

resistance, a bioinformatic-chemical screen was performed to identify potential 

pharmacological inhibitors of Twist1. From that screen, a promising class of agents, 

harmala alkaloids, was identified. Using human lung cancer cell lines to validate these 

agents has shown that several of the compounds have growth inhibitory effects. We 
 

tested one of the most promising compounds, harmine, in vivo with a transgenic 
 

KrasG12D/Twist1 mouse model of autochthonous lung adenocarcinomas. When mice were 
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treated with harmine, tumor growth delay was observed by computed tomography 

imaging in harmine versus vehicle control mice. We are currently in the process of 

examining the molecular and cellular mechanisms of action of harmine using novel in 

vitro and in vivo model systems.  These results are promising and provide a foundation 

for future experiments to determine if harmine, by inhibiting Twist1, can re-sensitize 

EGFR mutant lung cancers to erlotinib. 
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Chapter 1: Introduction 
 
 

Lung cancer is the leading cause of cancer mortality in the United States, resulting 

in more deaths than prostate, breast, and colorectal cancers combined. Most lung cancers 

are diagnosed at an advanced stage and tend to be treatment resistant, leading to an 

estimated overall survival rate of a mere 17% (1). Non-small cell lung cancer (NSCLC) 

accounts for more than 80% of lung cancers and includes two major types, non-squamous 

carcinoma, which includes adenocarcinoma, the most common type of lung cancer in the 

United, and squamous cell carcinoma. Patients with locally advanced (stage III) and 

metastatic (stage IV) NSCLC comprise more than 50% of patients with lung cancer. 

Several biomarkers serve as prognostic or predictive makers in NSCLC, including the 

presence of ALK alterations, KRAS and epidermal growth factor receptor (EGFR) 

mutations. Surgery, radiation therapy and chemotherapy are the three methods most 

common for treatment of patients with NSCLC. Depending on the disease stage, they can 

be used alone or in combination (2). 

 
A growing and increasingly important class of drugs for cancer treatment is 

targeted therapies, specifically tyrosine kinase inhibitors (TKIs). This is due to 

advancements in knowledge of genetic and molecular features of patient’s cancer, such as 

mutational status of specific oncogenic drivers (3). In NSCLC, especially, targeted 

therapies have improved outcomes for patients with a variety of molecular profiles, 

leading to complete and durable responses (4). The success of these therapies is due to 

the oncogene addicted nature of some tumors. In these tumors, mutations lead to 

constitutive activation of receptor tyrosine kinases (RTKs), which then are able to 
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activate downstream signaling pathways, enabling cancer growth. Inhibiting the RTK, 

with a targeted therapy, results in suppression of all the activated downstream pathways, 

leading to cell growth arrest and death and ultimately tumor regression (5, 6). 

 
Targeted therapies, such as TKIs, are a preferential method of treatment, as they 

have high specificity for tumor cells resulting in less toxicity to healthy cells and a 

broader therapeutic window (7). The first generation of EGFR TKIs, which includes 

erlotinib, is orally available, quinazoline-based small molecules. These molecules 

reversibly inhibit the ligand-induced phosphorylation by competing with adenosine- 

triphosphate (ATP) for binding with the intracellular catalytic domain of EGFR (8). 

While EGFR TKIs have activity against wild type EGFR, the activating mutations in 

EGFR, the exon 19 deletion and L858R mutation, confer increased sensitivity to the 

targeted agents. These mutations cluster near the ATP binding pocket of EGFR. Since 

erlotinib competes with ATP at this site, the mutations have been hypothesized to 

increase the affinity for the small molecule over ATP or to stabilize the interaction 

between EGFR and erlotinib (9-11). 

 
While targeted therapies have advanced treatment, acquired resistance is 

seemingly inevitable. Some cancers are intrinsically resistant to therapy and acquired 

resistance commonly develops after 1-2 years, regardless of whether the treatment was 

first-line or subsequent. Formal criteria to define acquired resistance exist for some types 

of oncogene driven tumors, but in general it is any evidence of clinical progression after 

initial clinical benefit. In lung cancer patients that have oncogene-addicted cancers, there 

are two main types of acquired resistance, pharmacological and biological. 

Pharmacological resistance is due to inadequate on-target drug exposure. More common 
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is biologic resistance in which resistant cancer subclones emerge under the selective 

pressure of a targeted inhibitor (4). Targeted therapy resistance is a common occurrence, 

not just in lung cancer treatment, and understanding basic mechanisms of the biologic 

resistance could potentially allow for prevention of resistance, leading to sustained 

responses, as well as facilitating design of therapies that will be more effective in the long 

term. Four common general mechanisms of targeted therapy resistance include target 

reactivation, activation of “downstream” effectors, bypass of the (onco) protein effector 

and adaptation (3, 12). As illustrated in Figure 1.1, acquired resistance to an EGFR TKIs, 

actually takes advantage of each of these mechanisms. 

 
Target reactivation can occur through a secondary mutation in the kinase target, 

changing the affinity for the TKI or the affinity for an effector molecule. Activation of 

downstream effectors can result from mutations in or modification of expression levels of 

molecules that are downstream of the initial kinase target in the signaling pathway. The 

complete bypass of the kinase can occur through modification of the expression of 

another tyrosine kinase that activates the same or complimentary signaling pathway (3). 
 
 

One of the most targetable mutated driver oncogenes in NSCLC, as previously 

mentioned, is EGFR, with around 20% of adenocarcinomas possessing an EGFR 

mutation. The highest prevalence is seen in female never-smokers. The two most 

common mutations are an exon 19 deletion or an exon 21 L858R point mutation. The 

mutations are mutually exclusive and their presence is strongly predictive of benefit 

(ORR 60-70%) from an EGFR TKI, such as erlotinib (11, 13). This molecular phenotype 

distinguishes EGFR mutant disease as a distinct category of NSCLC. 
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Figure 1.1. EGFR Tyrosine Kinase Inhibitor (TKI) mechanisms of acquired resistance. Adopted from 
Garraway and Jänne, Cancer Discovery 2012; 2:214-226. Erlotinib is an EGFR TKI and patients with exon 
19 deletions or L858R mutations in EGFR frequently have initial great responses to the drug. However, 
acquired resistance occurs, through several known and unknown mechanisms. The known mechanisms 
include a secondary mutation in EGFR, EGFRT790M, PTEN loss or PIK3CA mutation, and MET 
amplification. Patients commonly see the return of their disease within a year of erlotinib therapy. 
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EGFR is a member of the ErbB RTK family and is activated by secreted growth 

factors, which leads to dimer formation, increase in kinase activity, phosphorylation of 

intracellular tyrosine residues, and activation of signaling pathways as can be seen in 

Figure 1.2. In cancer, overexpression of EGFR conveys several advantages that promote 

cell proliferation, survival, angiogenesis, invasion and metastasis. Mutations in EGFR 

lead to increased activity and ligand independent dimerization and phosphorylation. As a 

result of this amplified EGFR signaling activity, the PI3K/Akt and STAT signaling 

pathways appear to be most affected. This promotes the increased cell proliferation and 

survival, partially through inhibition of apoptosis, as well as tumorigenesis (14). 

 
Despite the initial dramatic response to erlotinib, after an average duration of 

response of approximately 12 months, disease progression occurs due to acquired 

resistance to erlotinib and other EGFR inhibitors (12). Primary resistance tends to be less 

common and thus it is the mechanisms of acquired or secondary resistance that have 

warranted more investigation. The most common mechanism of acquired resistance to 

EGFR TKIs, accounting for >50%, is the presence of a second site EGFR mutation, 

T790M. This residue is located in the hydrophobic ATP-binding pocket of the catalytic 

region, and the mutation prevents the formation of a hydrogen bond essential for the 

TKIs’ action (15). A second mechanism of acquired resistance is amplification of the 

gene encoding the MET receptor tyrosine kinase. About 15-20% of cancers demonstrate 

this amplification, which is not mutually exclusive with the T790M mutation. MET 

amplification activates downstream intracellular signaling independent of EGFR via 

ERBB3 (16, 17). Other less common mechanisms of resistance include mutations in 

PIK3CA (~5%) and PTEN loss, both impacting the Akt signaling pathway, amplification 
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Figure 1.2. Altered EGFR signaling in NSCLC. From Irmer D, Funk JO, Blaukat A. EGFR kinase domain 
mutations - functional impact and relevance for lung cancer therapy. Oncogene, 2007. Comparison of EGFR signaling 
in wild type versus mutant EGFR NSCLC. 
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of HER2, as well as transformation from NSCLC to small cell lung cancer (SCLC) and 

epithelial-mesenchymal transition (EMT) (12, 18, 19). 

 
Despite the large effort to understand the mechanisms of acquired resistance to 

erlotinib, and targeted therapies in general, a significant portion of acquired resistance 

cases have an unknown mechanism (12). A potential and less well defined mechanism, 

accounting for anywhere from 5-30% of cases, is that of epithelial lung cancer cells that 

have undergone a morphological change to a more mesenchymal phenotype, better 

known as having undergone EMT (12, 20). Many groups have utilized cell lines and 

patient samples to show a correlation between EMT and EGFR TKI acquired resistance, 

however direct causation and the mechanism of how EMT is preventing the drugs from 

being effective has yet to be established (12, 21-29). 

 
EMT is a highly conserved cellular program that allows for epithelial cells to 

convert to mesenchymal cells, resulting in a loss of polarity and an increase in motility. 

The process was identified nearly 40 years ago and subsequently defined as a distinct 

cellular program in the 1970-80s and has been loosely defined by three major changes in 

cellular phenotype (30-33): 

 
(1) morphological changes from a cobblestone-like monolayer of 

epithelial cells with an apical-basal polarity to dispersed, spindle-shaped 

mesenchymal cells with migratory protrusions; (2) changes of 

differentiation markers from cell-cell junction proteins and cytokeratin 

intermediate filaments to vimentin filaments and fibronectin; (3) 
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functional changes associated with the conversion of stationary cells to 

motile cells that can invade through the [extracellular matrix] ECM. 

 
While individual examples of EMT can vary substantially, the ability to migrate and 

invade the ECM, as well as low E-cadherin and high vimentin expression, are considered 

key features of the EMT program. Important in development and silenced post-natally, 

EMT has also been implicated in carcinoma progression and metastasis (31, 34). Many 

studies, involving both cell culture and mice, have shown that originally epithelial cancer 

cells can acquire a mesenchymal phenotype. These cells that have undergone an EMT are 

commonly seen at the invasive front of tumors and are likely the cells that enter into the 

invasion-metastasis cascade as can be seen in Figure 1.2 (30, 35). 

 
EMT’s role in promoting cancer progression and metastasis may be a factor in 

contributing to acquired resistance to TKIs. Samples from patients with unknown 

mechanisms of resistance to TKIs have shown evidence of EMT, including changes 

consistent with a mesenchymal phenotype (12). Recently published studies have shown 

that the up-regulation of the AXL signaling pathway is both associated with EMT and 

results in acquired resistance to erlotinib (20). Additional studies have looked at other 

canonical EMT inducers, including TWIST1, and their roles in EGFR mutant lung cancer 

(36). Establishing causation between EMT and acquired resistance to TKIs would 

provide important mechanistic insights for many cancers, not just NSCLC. However the 

identification of a target within the EMT program is needed to develop therapies to 

combat this cellular program. 
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Figure 1.3. EMT is a dynamic process. From Peinado, Olmeda & Cano. Nature Reviews Cancer (June 
2007). Epithelial cells undergo a phenotypic change in which they lose cell-cell adhesion and can break 
through the basement membrane and enter the bloodstream through intravasation. The mesenchymal cells 
can undergo the opposite process, mesenchymal-epithelial transition (MET) and revert to the epithelial 
phenotype to colonize at distant sites. 
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One of the prototypical inducers of developmental and pathologic EMT is 

TWIST1, a basic helix-loop-helix (bHLH) transcription factor that has been shown to 

prevent oncogene-induced cell senescence and p53 mediated apoptosis, as well as to 

increase resistance to chemotherapy (37-39). Twist1 is essential for embryogenesis, with 

deletion being embryonic lethal and germ-line mutations, resulting in haploinsufficiency, 

leading to the development of Saethre-Chotzen syndrome, an inherited craniosynostosis 

condition that leads to abnormal limb development (38, 40). Typically undetectable in 

adult tissues, TWIST1 has been shown to be overexpressed in some cancers and that high 

expression has a strong correlation with cancers that are highly invasive and metastatic 

(37, 39, 41-47). Twist1 is involved in EMT via down-regulation of key proteins that 

maintain an epithelial phenotype, like E-cadherin, and up-regulation of proteins that 

confer a mesenchymal phenotype, such as vimentin (37). 

 
TWIST1 is amplified in many cancers, as can be seen in Figure 1.3 from the cBio 

database, not just lung cancer, indicating potential expanded benefit if TWIST1 is 

implicated in acquired resistance (48, 49). While data exists to link EMT to acquired 

resistance, there is little knowledge of how this occurs and a few studies have begun to 

link TWIST1 to acquired resistance to drugs, such as paclitaxel resistance in 

nasopharyngeal carcinoma cell lines (50). Interestingly, another study found that in 

hematologic cells, activation of Axl, already implicated in EMT and acquired resistance, 

induced expression of Twist1 (51). Whether such a relationship, or other interactions, 

occurs in EGFR mutant NSCLC is unknown, as is the direct role, if any, of TWIST1 in 

determining erlotinib acquired resistance. 



11  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.4. Cross-cancer alteration summary for TWIST1 from cBio portal. Genomic data from 105 cancer studies 
showing mutations, deletion, amplification and multiple alterations for TWIST1 across multiple cancers. In about 5% of 
lung cancers (indicated by arrows), TWIST1 amplification (red) is seen. 
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This thesis seeks to determine if Twist1, potentially through induction of the 

epithelial-mesenchymal transition (EMT), can cause resistance to erlotinib in EGFR 

mutant NSCLC and further starts to test potential Twist1 inhibitors for improved therapy. 

The first aim is to determine if TWIST1can confer resistance to erlotinib and investigate 

the mechanisms of TWIST1-induced erlotinib resistance of lung cancer cell lines. This 

assumes that overexpression of TWIST1 will induce EMT and that in the EGFR mutant 

cell lines the overexpression is sufficient to induce resistance that can be observed 

through changes in cell viability. More importantly, the assumption is that it is EMT and 

not a different function of TWIST1, such as suppression of apoptosis, which is 

responsible for the resistance. However, development of an in vitro model is beneficial 

for teasing out a mechanism for the resistance and testing potential methods for 

overcoming the resistance. 

 
The second aim is to determine if Twist1 will cooperate with mutant EGFR to 

induce lung tumorigenesis in an autochthonous lung tumor model. While in vitro models 

are helpful, having a transgenic mouse that has spontaneous arising lung cancer 

expressing both mutant EGFR and Twist1 is far closer to modeling the actual human 

disease. The role of the tumor microenvironment, potentially essential to development of 

resistance, cannot be studied in cell culture; hence the necessity and benefit of a 

transgenic mouse model. 

 
After developing the autochthonous lung tumor model, the third aim is to 

investigate the mechanisms of Twist1-induced erlotinib resistance in vivo. The resistant 

tumors can be isolated from mice and differences between genotypes and treatment 

groups characterized. Uncovering the changes induced by Twist1 expression and 
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erlotinib treatment could ultimately lead to determination of the underlying mechanism of 

resistance. 

 
The final aim of this thesis seeks to test if compounds identified through 

Connectivity Mapping (CMap) can pharmacologically target Twist1 and inhibit tumor 

growth in vivo. Twist1 is commonly overexpressed in cancer and no current inhibitor 

exists. If a compound is found to inhibit Twist1, its use could improve therapy and in the 

setting of EGFR mutant NSCLC, could re-sensitize resistant cancers to conventional 

therapies. Together these studies will try to better understand a poorly characterized 

mechanism of resistance and attempt to find ways to overcome that resistance. 
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Cell lines 

Chapter 2: Materials and Methods 

 
The human NSCLC cell line HCC827 and embryonic kidney cell line HEK 293T 

were obtained from the American Type Culture Collection and grown in media as 

recommended. The human NSCLC cell lines, (11-18, PC9, HCC4006, HCC4011), were 

obtained from Dr. Katerina Politi and grown in media as recommended. 

 
Lentiviral overexpression experiments 

 
293T cells were seeded (2.5 × 106 cells) in T25 flasks. Lentiviral particles were 

generated using a three-plasmid system and infected as per the TRC Library Production 

and Performance Protocols, RNAi Consortium, Broad Institute (52). Twenty-four hours 

after infection, cells were treated with 1 μg/mL puromycin and passaged once 80% 

confluent. 

 
Immunoblot analysis 

 
Cells or homogenized lung tissue were lysed on ice for 60 minutes in 

radioimmunoprecipitation assay buffer supplemented with protease and phosphatase 

inhibitors (Sigma-Aldrich) and clarified by centrifugation. Protein concentrations were 

determined by Pierce Micro BCA protein assay (Thermo Fisher Scientific). Equal protein 

concentrations of each sample were run on NuPAGE bis-Tris gels (Invitrogen) and 

electrophoretically transferred to polyvinylidene difluoride membranes. After being 

blocked with 5% dried milk in TBS containing 0.1% Tween 20, the filters were incubated 

with primary antibodies. The following primary antibodies were used: anti-EGFR (sc-03, 

Santa Cruz), -phospho-EGFR (3777, Cell Signaling), -AKT (9272, Cell Signaling), - 

phospho-AKT (4060, Cell Signaling), -ERK1/2 (9102, Cell Signaling), -phospho- 
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ERK1/2 (4370, Cell Signaling), -phospho-PAX (2541, Cell Signaling), -Twist1 (sc- 
 

81417, Santa Cruz), -GAPDH (FL-335, Santa Cruz). After washing and incubation with 

horseradish peroxidase (HRP)-conjugated anti-rabbit or anti-mouse IgG (Amersham), the 

antigen–antibody complexes were visualized by chemiluminescence (ECL detection 

system; Perkin Elmer). 

 
Proliferation and viability assay 

 
Cells were seeded 5000 cells/well in a 96 well plate and allowed to attach 

overnight. The next day the cells were treated with erlotinib (0.001-100 μM) for ~65 

hours. At that point cell viability was assessed using CellTiter-Blue (Promega) and 

quantified on a SpectraMax M2e plate reader (Molecular Devices). Raw data were 

corrected for background luminescence, transformed (x=log(x)), and analyzed by 

nonlinear regression (log(inhibitor) vs. response with variable slope) in GraphPad Prism 

5 to obtain IC50 values, 95% confidence intervals, and R2. IC50 was considered not 

determined if calculated as ambiguous by Prism. Transformed data were then normalized 

to untreated controls to generate log dose response curves. Results from representative 

experiments are shown. 

 
Transgenic mice 

 
Mice were housed in groups of no more than five per cage with free access to 

 
food and water, under controlled light/dark cycles, in facilities with regulated temperature 

and humidity. Mice were randomly assigned to different experimental groups. All 

procedures were approved by the Institutional Animal Care and Use Committee of The 

Johns Hopkins University. 
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Inducible EGFRL858R and Twist1/EGFRL858R transgenic mice in the FVB/N inbred 

background were of the genotype: CCSP-rtTA/tetO-EGFRL858R (CE) CCSP-rtTA/tetO- 

EGFRL858R/Twist1-tetO-luc (CET). The CE mice were obtained from Dr. Katerina Politi. 

All the mice were weaned 3–4 weeks of age and then placed on dox at 4–8 weeks of age. 

Mice were left on DOX for 2-3 weeks before beginning treatment. The mice treated had 

similar levels of tumor burden per CT. 

 
Erlotinib and dasatinib were purchased from Selleckchem (Houston, TX). For in 

vivo experiments, erlotinib was dissolved into a slurry in 0.5% methylcellulose, dasatinib 

was dissolved in 1% DMSO, 30% PEG, 1% Tween 80. The mice received 50 mg/kg 

erlotinib or vehicle via oral gavage, 30mg/kg dastatinb or vehicle via intraperitoneal 

injection daily, 6 days a week for 3 weeks. 

 
Histology and immunohistochemistry 

 
Tissues were fixed in 10% buffered formalin for 24 h and then transferred to 70% 

ethanol until embedding in paraffin. Tissue sections 5 µm thick were cut from paraffin 

embedded blocks, placed on glass slides and hematoxylin and eosin (H&E) staining was 

performed using standard procedures (Johns Hopkins Histology Core). Antibodies used 

in our study: Twist1 (Santa Cruz), Ki-67 (Leica Biosystems), cleaved caspase 3 (Cell 

Signaling), vimentin (Abcam), and e-cadherin (Cell Signaling). Samples were dewaxed 

in xylene and rehydrated in a graded series of ethanols. Antigen retrieval was performed 

by 45 min rice-cooker irradiation in citrate-based Antigen Unmasking Solution (Vector 

Laboratories, Burlingame, CA, USA). Endogenous peroxidases were blocked in 3% 

hydrogen peroxide in methanol for 10 minutes. Non-specific binding was blocked with 

2% bovine serum for 60 minutes or M.O.M. (Twist1). Primary antibodies were used at 
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appropriate dilutions (Twist1 at 1:200; vimentin and e-cadherin at 1:400; cleaved caspase 
 

3 at 1:500; and Ki-67 at 1:2000) and sections incubated overnight at 4 degrees Celsius. 

Secondary incubation was done using PowerVision Poly-HRP anti-rabbit IgG (Leica 

Biosystems) or using M.O.M. for Twist1 (Vector Laboratories). Visualization was 

performed using DAB substrate kit for Peroxidase (Vector Laboratories). Sections were 

counterstained with Gill's hematoxylin (Vector Laboratories) and slides were mounted in 

aqueous mounting media (Vector Laboratories). 

 
PathScan RTK antibody array kit 

 
The PathScanRTKsignaling array kit containing 39 fixed antibodies against 

phosphorylated forms of kinases and key signaling proteins by the chemiluminescent 

sandwich ELISA format was used per manufacturer’s direction (Cell Signaling 

Technologies). Images were analyzed with ImageJ (http://rsbweb.nih.gov/ij/) by loading 

the image as a gray scale picture. Each kinase array dot was manually selected, and an 

average intensity for each kinase was calculated. Normalization within one stimulation 

experiment was done by subtracting the intensity of the negative control dot from each 

value. For comparison of different stimulation conditions, sets were normalized so that 

the positive controls had equal intensities. 

 
Microarray data acquisition and analysis 

 
Microarrays were performed using GeneChip WT cDNA Synthesis and 

Amplification Kit and WT Terminal Labeling Kit (Affymetrix, Santa Clara, CA). RNA 

was isolated by the Johns Hopkins Medical Institution Deep Sequencing and Microarray 

Core Facility. The labeled ssDNA was hybridized to the GeneChip Mouse Gene 1.0 ST 

Array (Affymetrix), washed with the Fluidics Station 450, and array scanning was 

http://rsbweb.nih.gov/ij/)
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conducted as previously described (53). Arrays were normalized using the Robust 

Multichip Average in the oligo Bioconductor package at the transcript level (54). Genes 

and gene sets with Benjamini-Hochberg (55) P < 0.05 were considered statistically 

significant. Gene set enrichment analysis (GSEA) was performed using the C2 Curated 

Gene Sets collection from the Molecular Signature Database 3.0 and statistical 

comparisons by Fisher exact test. Additionally, data were analyzed through the use of 

QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity). 

http://www.qiagen.com/ingenuity)
http://www.qiagen.com/ingenuity)
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Chapter 3: Characterization of TWIST1 mediated acquired resistance 
to Erlotinib in EGFR mutant lung cancer cell lines. 

 
Section 3.1: Results 

 
 

To explore the role of TWIST1 in resistance to EGFR targeted therapy, we stably 

overexpressed TWIST11 in the erlotinib sensitive EGFR mutant human cell lines, 

HCC827, 11-18, PC9, HCC4006, and HCC4011 (Fig. 3.1A). Both  of the most common 

EGFR TKI sensitizing mutations, the exon 19 deletion (PC9, HCC827, HCC4006) and 

the L858R mutation (HCC4011, 11-18) were represented. TWIST1 was ectopically 

expressed in these cell lines and westerns were performed to assess the effect of 

TWIST11 overexpression on EGFR and downstream phosphorylation both in the 

presence and absence of erlotinib treatment. Not unexpectedly, an increase in pAKT is 

seen with TWIST1 expression and erlotinib treatment in HCC4006, HCC4011 and PC9. 

Additionally, in PC9, phospho-ERK1/2 levels are slightly higher in the TWIST1 

expressing line, compared to vector control, with erlotinib treatment. In HCC4011, the 

level of phospho-EGFR is decreased with the combination of TWIST1 expression and 

erlotinib treatment, compared to vector control. Interestingly, the level of phospho-EGFR 

in HCC827 was decreased by the expression of TWIST1 alone compared to control, both 

at baseline and with erlotinib treatment (Fig. 3.1B). 
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Having seen the change in downstream signaling components after erlotinib 

exposure for only 24 hours, we utilized MTS assays to assess the effect of TWIST1 

expression on erlotinib sensitivity and resistance. Interestingly, varying degrees of 

acquired resistance to erlotinib was observed with TWIST1 overexpression in all cell 

lines, after 72 hours of erlotinib exposure. HCC4011 showed the greatest decrease in 

sensitivity to erlotinib as a result of TWIST1 overexpression. Conversely, two of the cell 

lines, 11-18 and PC9, showed a slight increase in erlotinib sensitivity with TWIST1 

expression (Fig. 3.2). While these data demonstrate a trend towards TWIST1 expression 

conferring resistance in vitro, the results were not conclusive as different cell lines 

showed varying results. 
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Figure 3.1. Overexpression of TWIST1 alters levels of phosphorylation downstream of EGFR in vitro. (A) Five 
EGFR mutant cell lines were infected with TWIST1 or vector control. (B) Western showing levels of proteins 
downstream of EGFR with TWIST1 overexpression, plus or minus erlotinib treatment for 24 hours, in the EGFR 
mutant cell lines HCC4006, HCC4011, HCC827 and PC9. In HCC4006, an increase in pAkt is seen with TWIST1 
expression and erlotinib treatment. A similar increase is seen in HCC4011, as well as a decrease in pEGFR with 
TWIST1 expression and erlotinib treatment. The cell line PC9, shows an increase in levels of pAkt and pErk1/2 with 
TWIST1 expression in the presence of erlotinib. A decrease in pEGFR with TWIST1 expression is seen in HCC827, 
with and without erlotinib treatment. 
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Figure 3.2. Overexpression of TWIST1 confers erlotinib resistance in a subset of EGFR mutant cell lines. 
MTS assays demonstrating varying degrees of growth inhibition of erlotinib in HCC827, HCC4006, HCC4011, 11- 
18 and PC9 vector control and TWIST1 EGFR mutant cell lines following treatment with erlotinib at 72 hrs. In two 
of the cell lines, 11-18 and PC9, TWIST1 expressing lines actually appear more sensitive to erlotinib. Similar 
viability is seen between control and TWIST1 lines in HCC4006, while modest decreases in sensitivity are seen in 
HCC827 and HCC4011. 
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Section 3.2: Discussion 
 

A common method for creating resistant cell lines is sequential exposure to higher 

drug doses (56), however here overexpression of a single protein appears sufficient to 

induce changes potentially demonstrating resistance. Previous studies have shown that 

when drug resistant lines are created from the parental EGFR mutant cell lines, the 

mechanism of resistance differs between cell lines and even between different clones 

from the same cell line (57). While TWIST1 expression did result in changes in levels of 

phosphorylation downstream of EGFR, both in the absence and presence of erlotinib, the 

changes varied between cell lines. Additionally, a change in phosphorylation levels of 

any proteins looked at did not necessarily equate to a change in cell viability in the short 

term viability assays and thus an alteration in sensitivity to erlotinib. 

 
The lack of a correlation between changes in downstream signaling and change in 

viability indicates that TWIST1 overexpression is inducing resistance to erlotinib in a cell 

type specific manner. While all the cell lines possessed an erlotinib sensitizing EGFR 

mutation, the other characteristics, in all likelihood, differed greatly. Some of the cell 

lines may innately be more mesenchymal or epithelial or have different genetic 

modifications or mutations before overexpression of TWIST1. Characterizing the 

differences between the cell lines by determining baseline levels of 

epithelial/mesenchymal markers as well as checking if other mutations or modifications 

exist could potentially help explain the variety of changes seen with TWIST1 

overexpression and erlotinib exposure. 

 
Several other possible explanations for the lack of consistency between Westerns, 

which were done at 24 hours and the viability assays, where cells were treated with 
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erlotinib for 65 hours or more, exist. A very plausible explanation is that some sort of 3D 

structure is required for resistance. One of the cell lines, HCC4011, tended to form a 

spherical structure in cell culture. The viability assay caught the change in erlotinib 

sensitivity for this cell line because the longer time period allowed the cells to form the 

3D structure. Another potential explanation is that there are signals from the tumor 

microenvironment that mediate the resistance. Several studies have been published 

showing that cell-adhesive interactions, such as activation of focal adhesion kinase 

(FAK) and SRC, within the tumor niche result in resistance (58, 59). These changes in 

the microenvironment could be either as a result of TWIST1 expression or result in 

TWIST1 expression. Ultimately, further investigation is required to develop an in vitro 

model of TWIST1-mediated erlotinib resistance. Repeating these experiments on 

collagen I or other extracellular matrix protein coated plates could result in very different 

data if, in fact, signals from the extracellular matrix is required for the development of 

resistance. 

 
Section 3.3: Conclusions 

 
The overexpression of TWIST1 alone in EGFR mutant cell lines appears to 

induce resistance to erlotinib in a cell type specific manner. One explanation for the 

failure of consistent induction of erlotinib resistance could be that the mechanism is not 

cell autonomous and requires the involvement of the tumor microenvironment or other 

interactions that simply are not present in cell culture. Other possibilities include baseline 

differences in the cell lines as well as additional mutations present in some lines but not 

others. Further experimentation is required to determine if an in vitro model can be 

developed using these cell lines. 
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Chapter 4: Creation and Characterization of an Autochthonous EGFR 
Mutant Lung Tumor Model 

 

Section 4.1: Results 

Transgenic mice are often used to study human cancers and both EGFRL858R and 

Twist1 inducible mouse models have been created (39, 60). Previous studies have looked 

at the effect of Twist1overexpression on mutant Kras tumorigenesis (39); however the 

interaction between Twist1 and mutant EGFR, especially in the context of acquired 

resistance, has yet to be closely studied. We therefore utilized two doxycycline inducible 

lung specific transgenic mouse models, CCSP-rtTA/tetO-EGFRL858R (CE), expressing 

human EGFR and CCSP-rtTA/Twist1-tetO7-luc (CT), expressing mouse Twist1. We 

crossed the two lines to create triple transgenic mice, CCSP-rtTA/tetO-EGFRL858R/Twist1- 

tetO7-luc (CET) (Fig. 4.1A). Having created this new model, we sought to assess the 
 

effect of Twist1 overexpression in the absence of treatment. Cohorts of CE and CET 
 

mice, aged 4-8 weeks, were administered doxycycline in the drinking water to turn on the 

transgenes. After 4 weeks, a point by which CE mice have developed tumors (60), mice 

were sacrificed and necropsies performed. Upon comparison of H&E sections from CE 

and CET mice by a veterinary pathologist, it was determined that CET tumors are more 

anaplastic and have larger, more irregular nuclei (Fig. 4.1B). The lesions from both 

genotypes were more diffuse rather than discrete tumors, as had been previously 

published for the CE model (60). Histologic changes are visible in CE mice after only 2 

weeks of doxycycline administration (60), and we have previously shown that Twist1 

expression accelerates mutant Kras tumorigenesis (39). After 4 weeks on doxycycline, 

when tumor burden is compared between CE and CET mice, there is no apparent 

difference (Fig. 4.1C). While variability exists within each genotype, as to the disease 
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burden, the total tumor burden is similar when compared across both CE and CET 

genotype (Fig. 4.1D). This suggests that despite a more aggressive or anaplastic 

appearance in the CET tumors, both genotypes develop tumors at approximately the same 

rate. 

 
To further characterize the novel CET mouse model, we looked at levels of 

epithelial and mesenchymal markers, since Twist1 is an inducer of EMT. We 

immunostained lung sections from both CE and CET mice with antibodies for e-cadherin, 

an epithelial marker, and vimentin, a mesenchymal marker. There was no distinguishable 

difference in levels of either marker between CE and CET mice (Fig. 4.2A). In previous 

studies, Twist1 has been shown to impact the proliferation rate of tumor cells as well as 

apoptosis levels (61, 62). We looked at the levels of proliferation through 

immunohistochemistry with an antibody for Ki-67 and apoptosis with an antibody for 

cleaved caspase 3. The overexpression of Twist1 in CET mice decreased proliferation 

rates, as measured by Ki-67 IHC, in comparison to CE mice (Fig. 4.2B). There was no 

apparent effect on apoptosis with Twist1 expression (Fig. 4.2C). While there is no 

evidence of tumor cells undergoing EMT, Twist1 can decrease proliferation in the short 

term, a characteristic often seen as a result of EMT-inducing transcription factors (61). 
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Figure 4.1. Generation and characterization of a novel Twist1 overexpressing, mutant EGFR autochthonous lung 
tumor mouse model. (A) Crosses (CE×CT) to produce CCSP-rtTA/EGFRL858R/Twist1-tetO7-luc (CET) mice. (B) 
H&E images from lung tissue of CE and CET mice. CET histology was more anaplastic with larger, more irregular 
nuclei. Lesions in both genotypes are more diffuse rather than discrete tumors. Black bars equal 500 and 50 μm. (C) 
Comparison of tumor burden, as percent of lung affected, between CE and CET untreated mice. Mice were on 
doxycycline for 4 weeks then sacrificed. (D) CT images from CE (upper) and CET (lower) mice on doxycycline for 4 
weeks. As evidenced from the images, varying levels of tumor burden can be seen within a genotype, however the level 
is comparable between genotypes. CT images are non-invasive and based on density; the denser areas, like bone, appear 
white, while the air space is black. The mice are lying on their stomach with noses pointed forward. 
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Figure 4.2. Generation and characterization of a novel Twist1 overexpressing, mutant EGFR autochthonous lung 
tumor mouse model. (A) Similar levels of e-cadherin and vimentin staining in CE and CET mice, with CET mice 
expressing Twist. (B) Decreased proliferation in CET mice compared to CE mice as determined by Ki-67 staining. 
P<0.0005. (C) Similar levels of apoptosis in CE and CET mice using cleaved caspase 3 IHC. For B-G, n=4 mice per 
genotype, black bars equal 50 μm. 
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Section 4.2: Discussion and Conclusions 
 

In this study, the development of a novel mouse model is described. While both 

the CE and CT models have previously been described (39, 60) this is the first 

characterization of the cross between the two genotypes, the CET mouse. This model was 

created to model what could be a subset of acquired resistance cases to EGFR TKIs that 

have undergone an EMT. Having previously seen that Twist1 accelerates mutant Kras 

lung tumorigenesis (39), the finding that there does not appear to be any acceleration in 

the setting of mutant EGFR is surprising. The CE mice do develop tumors much quicker 

than the CR mice (39, 60) so it is possible that earlier CT scans or a more detailed 

imaging method would be required to capture any differences in tumorigenesis. An 

ongoing experiment is studying the difference in overall survival between CE and CET 

mice; it is expected that CE mice will live much longer, even in the absence of treatment, 

than CET mice. 

 
The lung tumors in the CET mice are more anaplastic than those seen in CE mice, 

with larger more irregular nuclei. This is consistent with reports of cancers expressing 

Twist1 being more aggressive (63). Both genotypes display diffuse hyperplasia instead of 

discrete tumors, which is similar to the disease seen in some EGFR mutant NSCLC in 

humans. Additional characterization of the histology of the CET mice is needed. Mice 

were sacrificed after being on doxycycline for only 4 weeks, however it takes, on 

average, more than 4 weeks for CE mice to develop multifocal invasive adenocarcinomas 

(60). Mice would need to be sacrificed at distinct time points, after 4 weeks, to compare 

the histology of CET versus CE and determine what, if any, effect Twist1 has on the 
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development of adenocarcinoma. Additionally, PET could be used to look at differences 

in metabolism induced by Twist1 overexpression. 

 
Initial characterization demonstrated that overexpression of Twist1 was not 

sufficient to induce any changes in levels of e-cadherin or vimentin, at least as assessed 

by IHC. Every case of EMT is unique, however, so the similar levels of epithelial and 

mesenchymal markers between CE and CET mice is not completely unexpected. The 

decrease in proliferation in CET mice in the absence of treatment is interesting and could 

benefit from further investigation. Additional characterization of the CET mouse is 

definitely warranted, as this is a novel transgenic mouse model and the interaction 

between Twist1 and mutant EGFR for lung tumorigenesis is apparently distinct from that 

of Twist1 and mutant KRAS. This novel mouse model may prove to be useful in studying 

targeted therapy resistance and examining the role of Twist1 in the EGFR mutant subset 

of NSCLC. 
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Chapter 5: Investigation of the Mechanisms of Twist1-induced Erlotinib 
Resistance in a mouse model of EGFR Mutant Lung Cancer 

 
Section 5.1: Results 

 
 

Twist1 expression results in erlotinib resistance. 
 

After characterizing the novel CET mouse model in the absence of drug treatment 

and demonstrating that Twist1 overexpression does not appear to accelerate EGFR 

mutant tumorigenesis, we wanted to investigate whether Twist1 expression would induce 

resistance to the EGFR TKI erlotinib in vivo. As previously described, upon 

administration of erlotinib to CE mice, the tumors regress and in some cases, a complete 

response occurs (60). In order to compare CE and CET mice tumor responses and overall 

survival, all mice were put on doxycycline, to turn on gene expression, by 8 weeks of 

age, and allowed to develop tumors for 3 weeks. Both CE and CET mice had similar 

levels of tumor burden prior to the start of treatment. At that time point, treatment day 0, 

all mice were scanned by CT and this scan was used as the baseline. The mice were 

treated for 3 weeks with erlotinib and scanned by CT each week (Fig. 5.1A). When 

baseline scans were compared to scans from after 3 weeks of erlotinib treatment, tumor 

regression was clearly visible in CE mice, while CET mice showed an increase in tumor 

burden (Fig. 5.1B). All scans were assessed and tumor burden graded on a scale of 0 (no 

tumor visible) to 5 (lungs completely filled with tumor). Based on the tumor burden 

change from the beginning to the end of treatment, a majority of CE mice demonstrated 

no disease progression, with no progression including complete and partial responses as 

well as stable disease. Conversely, over half of the CET mice had tumor progression over 

the three weeks of treatment (Fig. 5.1C). When looking at regression, a decrease in tumor 
 

burden grading, two-thirds of CE mice regressed. Only a quarter of CET mice 
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Figure 5.1 Twist1 expression results in erlotinib resistance. (A) Treatment schema for CE and CET mice erlotinib 
treatment. Mice are put on doxycycline, inducing EGFRL858R and Twist1 transgene expression, around 8 weeks of age and 
allowed to develop tumors for 3 weeks. Mice are scanned at the beginning of treatment, week 11, and each week thereafter 
until the end of treatment. Mice are treated with 50 mg/kg erlotinib by oral gavage 6 days a week for 3 weeks (weeks 11- 
14). (B) CT images from baseline and after 3 weeks of erlotinib treatment for CE and CET mice. CE mice show a decrease 
in tumor burden at the end of treatment compared to day 0. CET mice show a drastic increase in tumor burden despite 3 
weeks of treatment. (C) Tumor burden, as visualized by CT image, was graded on a scale of 0 (no tumor) to 5 (lungs filled 
with tumor) at day 0 and the end of treatment. No progression was considered a complete or partial response as well as 
stable disease. Only 1 CE mouse demonstrated disease progression, while over half of the CET progressed despite erlotinib 
treatment. (D) Regression was a decrease in tumor burden grade at 3 weeks compared to baseline. Two-thirds of CE mice 
regressed, while only one quarter of CET mice showed regression. (E) Kaplan-Meier overall survival from beginning of 
treatment. Median survival for CE mice was 8.7 weeks, for CET mice was 6.8 weeks. 
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demonstrated regression based on CT scans (Fig. 5.1D). After the 3 weeks of treatment, 

mice were monitored for weight loss, lethargy and other signs indicating a need for 

euthanasia or until mice died naturally. CET mice median overall survival time, from the 

beginning of treatment, was 6.8 weeks, while CE mice lived a median of 8.7 weeks (Fig. 

5.1E). Importantly, we have demonstrated that Twist1 does not lead to an increased tumor 

burden in the EGFR mice so an increased tumor burden cannot explain this decrease in 

overall survival (Fig. 4.1) These data demonstrate that expression of TWIST1 in CET 

mice induces resistance to erlotinib as seen by CT scans of lung tumor burden as well as 

by decreased overall survival time. 

 
To confirm the differences seen by CT, a cohort of CE and CET mice were treated 

with erlotinib for 1 week and the tumor histology assessed by a veterinary pathologist. 

While partial and complete responses were seen in CE mice, only partial and no 

responses occurred in the CET mice (Fig. 5.2A). Some of the CET mice demonstrated 

adenoma, though no adenocarcinoma was seen in the histology (Fig. 5.2B). Tumor 

burden, with the score reflecting the percent affected lung in each animal (0 meaning no 

hyperplasia and 5 meaning >75% of the lung is affected), was determined from the H&E 

slides by a veterinary pathologist. The tumor burden difference between CE and CET 

mice treated with erlotinib was not statistically significant, however there is an apparent 

trend towards CET mice having greater tumor burden (Fig. 5.2C). 
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Figure 5.2. Twist1 expression alters tumor burden and response to erlotinib treatment. (A) H&E images 
showing comparison of responses seen in CE and CET mice after only 7 days of erlotinib treatment. Black bars 
equal 500 (top) and 50 (bottom) μm. (B) Representative image of adenoma in a CET mouse. Black bar equals 250 
μm. (C) Pathology scores indicating tumor burden as percent of total lung affected. 
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Characterization of Twist1 induced resistance. 
 

Having demonstrated that expression of Twist1 leads to erlotinib resistance in the 

autochthonous mouse model, the mechanism of how Twist1 conveys this resistance 

remains unknown. Since Twist1 is one of the key mediators of EMT, the tumor cells 

could be undergoing this phenotypic change. However staining for e-cadherin and 

vimentin showed no change with Twist1 expression, with or without erlotinib treatment 

(Fig. 5.3A). Overexpression of Twist1, in the absence of treatment, decreased 

proliferation rates, as seen by Ki-67 levels. However, there was no significant difference 

between proliferation levels in CE and CET mice (Fig. 5.3B & 5.3C). Interestingly, when 

the amount of apoptosis was assessed through staining for cleaved caspase 3, the levels of 

apoptosis were decreased in CET erlotinib treated tissues compared to CE erlotinib 

treated tissues (Fig. 5.3D & 5.3E). This data suggests that while the level of proliferation 

is unchanged in the presence of erlotinib, the amount of apoptosis decreases with Twist1 

expression and erlotinib treatment. 

 
Many resistance mechanisms to targeted therapies are the result of amplified 

signaling through a parallel or complimentary signaling pathway (3, 12, 64, 65). Twist1 

could potentially be indirectly activating an alternative to the EGFR signaling cascade, 

leading to resistance. To determine if other pathways were upregulated, we utilized a 

RTK Signaling Antibody Array Kit from Cell Signaling. The output indicated if there 

were increased or decreased phosphorylation levels of the RTKs and signaling nodes 

represented by antibodies on the slide. Remarkably, several kinases/signaling nodes 

showed differential phosphorylation when compared between genotypes and treatment 

groups (Fig. 5.4A). The highest signal seen in the CET erlotinib treated samples were 
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Figure 5.3. Characterization of Twist1 induced erlotinib resistance. (A) Similar levels of e-cadherin and vimentin 
staining in CE and CET mice with and without erlotinib treatment, with CET mice expressing Twist. (B) Representative 
images of Ki-67 staining and quantification (C) of staining showing a decrease in proliferation to similar levels with 
erlotinib treatment in both CE and CET mice. (D) Representative images of cleaved caspase 3 staining and quantification 
(E) showing a decrease in apoptosis in CET compared to CE mice with erlotinib treatment. * p<0.05, ** p<0.005, *** 
p<0.0005. Black bars in A, B, D equal to 50 μm. 
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Figure 5.4. Twist1 expression alters phosphorylation levels of RTKs and signaling nodes. (A) 
Representative images from RTK antibody array showing increased phosphorylation of AKT serine 473 
(left box) and Src (right box) in CET erlotinib treated sample compared to CE erlotinib treated. (B) Heat 
map showing phosphorylation ratio of CET to CE samples for all RTKs and signaling nodes represented on 
antibody array. (C) Quantification of western looking at levels of phospho-Paxillin in CET mice treated 
with vehicle and erlotinib. Levels were increased in drug treated CET mice. 
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from Src and serine 473 on Akt. A heat map was created comparing the phosphorylation 

ratio of CET to CE samples (Fig. 5.4B). Of the potential targets identified from the heat 

map, Src was the most appealing, as data from other groups indicated a role for the Src 

family in EMT related drug resistance (66). Additionally, there have been some studies 

showing TWIST1 can upregulate Src and that Src can increase TWIST1 levels (67, 68). 

When we looked at paxillin, a direct phosphorylation target of Src, we saw elevated 

levels of phosphorylated paxillin in CET mice with erlotinib treatment (Fig. 5.4C). This 

further supported the hypothesis that Src was involved with the Twist1-mediated erlotinib 

resistance. 

 
Validation and investigation of Src target. 

 
One of the potential mechanisms to overcome or prevent acquired resistance is the 

combination of targeted therapies. Prior studies have demonstrated success with this 

method in erlotinib acquired resistance (69-72). Having identified Src as being 

differentially phosphorylated through the antibody array, we sought to target Src in 

combination with erlotinib to attempt to overcome the resistance seen in CET mice. We 

administered two different doses, low (10 mg/kg) and high (30 mg/kg), of dasatinib, a Src 

family, as well as Bcr-Abl, inhibitor, alone and with erlotinib to CET mice in a short pilot 

experiment. When the mice were sacrificed after only 5 days of treatment, significant 

reduction in tumor burden was seen in the mice administered 30 mg/kg dasatinib and the 

standard 50 mg/kg erlotinib, in comparison to the other treatment groups. (Fig. 5.5A & 

5.5B). The level of e-cadherin and vimentin staining was fairly uniform across treatment 

groups (Fig. 5.5C). Interestingly, the level of proliferation decreased with the 

combination treatment, in comparison to either single therapy, as indicated by Ki-67 
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staining (Fig. 5.5D & 5.5E). To confirm we were achieving Src inhibition, we looked at 

the levels of the direct target paxillin and saw a decrease in phosphorylation levels with 

combination treatment (Fig. 5.6A). We also saw decreases in phosphorylation of AKT, 

demonstrating the downstream effects of erlotinib and dasatinib combination treatment 

(Fig. 5.6B). 
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Figure 5.5. Validation and Investigation of Src target. (A) Representative H&E images from each treatment group showing a 
decrease in tumor burden in 30 mg/kg dasatinib and 50 mg/kg erlotinib combination group. Black bars equal 100 μm. (B) 
Pathology scores reflecting percent of lung affected. (C) Similar levels of e-cadherin, vimentin and Twist1 by IHC staining 
between treatment groups. (D) Representative images of Ki-67 IHC and quantification (E) demonstrating a decrease in 
proliferation with combination treatment. * p<0.05, ** p<0.005, *** p<0.0005. Black bars in C, D equal 50 μm. For A-E, vehicle 
n=2, erlotinib n=2, 10mg/kg dasatinib n=2, 30mg/kg dasatinib n=2, erlotinib + 10mg/kg dasatinib n=3, erlotinib + 30mg/kg 
dasatinib n=3. 
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Figure 5.6. Combination treatment decreases downstream phosphorylation. Quantification of Western using 
lung lysates from CET mice showing a decrease in phospho-Paxillin (A) and phospho-Akt (B) with combination 
treatment. 
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Combination treatment with erlotinib and dasatinib overcomes resistance resulting 

from Twist1 expression. 

The results from the short term experiment treating CET mice with erlotinib and 

dasatinib indicated that targeting Src was able to overcome Twist1 meditated erlotinib 

resistance. The effect of combination treatment on tumor burden and overall survival, 

clinically relevant factors, was not determined in these short term experiments.. Thus, we 

treated cohorts of CET mice with vehicle, erlotinib alone, 30 mg/kg dasatinib alone, or 

combination of erlotinib and dasatinib, for 3 weeks, as had been previously done in CE 

and CET mice with erlotinib. Baseline CT scans were taken at the beginning of treatment 

and compared to scans from the end of 3 weeks of treatment. Reduction in tumor burden 

was visible by CT and seen in a majority of combination treated mice (Fig. 5.7A). All of 

the combination treated mice had no disease progression, indicating a complete or partial 

response or stable disease (Fig. 5.7B). Interestingly, over 70% of mice receiving erlotinib 

and dasatinib showed regression (Fig. 5.7C). At the end of treatment, mice were 

monitored for overall survival time. The combination group survived a median of 8.2 

weeks from the beginning of treatment, showing an increase of approximately 2 weeks 

over the erlotinib alone group and an increase of approximately 3 weeks over the 

dasatinib alone group (Fig. 5.7D). To ensure that the combination of two drugs was not 

too toxic for the mice, thus preventing them from drinking the water containing 

doxycycline that drives transgene expression, their weight was monitored. No significant 

weight loss was seen in any of the treatment groups during treatment (Fig. 5.7E). The 

combination of erlotinib and dasatinib appears to have synergistic effects in vivo, 

improving outcomes in the CET mice. 
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Figure 5.7. Combination treatment with erlotinib and dasatinib overcomes resistance resulting from Twist1 expression. 
(A) CT images from baseline and after 3 weeks of treatment for CET mice receiving vehicle, erlotinib alone, dasatinib alone 
or combination of erlotinib and dasatinib. CET mice receiving combination treatment show a decrease in tumor burden at the 
end of treatment compared to day 0. Other treatment groups show a drastic increase in tumor burden, or stable disease, despite 
3 weeks of treatment. (B) Tumor burden, as visualized by CT image, was graded as before and no progression defined 
previously. No mice treated with the combination of erlotinib and dasatinib progressed. (C) Regression was a decrease in tumor 
burden grade at 3 weeks compared to baseline. Over 70% of combination treated CET mice regressed, while only about one 
fifth of erlotinib treated mice showed regression. Other treatment groups, vehicle and dasatinib alone, showed no regression 
(D) Kaplan-Meier overall survival from beginning of treatment. Median survival for CET combination mice was 
8.2 weeks, for erlotinib treated mice was 6.8 weeks, for dasatinib treated mice was 5.6 weeks and vehicle was 7.4 weeks. (E) 
Mean weight of CET mice over the course of treatment, demonstrating minimal toxicity of combination treatment. 
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Bioinformatic Analysis of Erlotinib Resistance 
 

An unbiased gene expression approach to investigating potential resistance 

mechanisms was employed to complement the antibody array, which looked at changes 

in expression of a set of predefined proteins. RNA was isolated from the lung tissue of 

CE and CET mice that had been treated with vehicle or erlotinib for one week and 

microarray analysis was performed. The one week time point was the same used for the 

antibody array thus ideally allowing for comparison between microarray and antibody 

array results/hits. The microarray analysis allowed for a variety of comparisons to 

attempt to identify changes on the transcript level that could account for erlotinib 

resistance. Two different types of analyses were performed, Gene Set Enrichment 

Analysis (GSEA) and Ingenuity Pathway Analysis (IPA). One of the comparisons 

performed was interaction, which looked at genes expressed only as result of Twist1 

overexpression and erlotinib treatment. The top significant gene sets from that interaction 

comparison are listed in table 5.1 and the top 15 of 25 significant genes (p value < 0.05) 

are listed in table 5.2. None of the top genes/gene sets directly supported the Src 

resistance mechanism. 

 
An alternative analysis using IPA allowed for additional insight into gene 

expression differences between the genotypes and treatment groups. IPA provides 

particular molecules that are up or down regulated and associated networks, diseases and 

biological functions. This type of analysis focuses on changes in pathways, instead of 

particular genes or gene sets. Interestingly, several of the top networks from IPA 

involved aspects of the immune system, such as immune cell trafficking (Fig. 5.8A). 

Other networks that showed up as top hits were expected, including cell death and 
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survival and cellular growth and proliferation. Given some of the data demonstrating that 

overexpression of Twist1 decreases apoptosis in the presence of erlotinib, the cell death 

network was of particular interest. Networks involving particular molecules, such as Src, 

AKT, etc, can be mapped, resulting in a network map showing which associated 

molecules are up (red) or down regulated (green). This is a good visual representation of 

what is occurring throughout a signaling pathway of interest. In the interaction 

comparison, one of the significant networks was centered around AKT/MYC. Both the 

EGF ligand and amphiregulin were upregulated, which was an interesting result (Fig. 

5.8B). These analyses did not directly implicate the Src pathway, but do not rule out its 

potential role in Twist1-mediated erlotinib resistance.  Pathway analyses do point to the 

potential complexity of this resistance, and the many factors that may play a role in the 

shift from sensitive to resistant disease. 
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Table 5.1. Top significant gene sets. The significant gene sets from the interaction comparison 
of microarray data for CE and CET mice treated with vehicle or erlotinib. 

 
 

Table 5.1. Top significant gene sets. The significant gene sets from the interaction comparison 
of microarray data for CE and CET mice treated with vehicle or erlotinib. 
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Table 5.2. Top significant genes. Top 15 significant genes from 
interaction microarray comparison of CE and CET mice treated 
with vehicle or erlotinib. 

 
Table 5.2. Top significant genes. Top 15 significant genes from 
interaction microarray comparison of CE and CET mice treated 
with vehicle or erlotinib. 
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Figure 5.8. Ingenuity Pathway Analysis. (A) Top networks from IPA based off the interaction 
comparison. (B) MYC/AKT network from IPA showing up regulation (red) and down regulation 
(green) of molecules associated with the pathway and the interactions between the molecules. 
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Section 5.2: Discussion 
 

These results demonstrate that overexpression of Twist1, in the context of EGFR 

mutant NSCLC, leads to erlotinib resistance and through combination of erlotinib with a 

Src inhibitor, dasatinib, some of this resistance can be overcome. Having seen only 

minimal differences in tumor histology in CET versus CE mice, the effect of Twist1 on 

both tumor response and overall survival when mice were treated with erlotinib was 

surprising. While it might have been expected that a greater number of CET mice would 

have demonstrated resistance, in the context of progression/regression, the expression of 

Twist1 may have different effects in different mice, just as each individual patient’s 

cancer is unique. Our data do clearly support the original hypothesis that Twist1 

expression could result in increased erlotinib resistance. 

 
Similar to what was seen in untreated animals, the levels of epithelial and 

mesenchymal markers does not qualitatively change, however further characterization 

may reveal subtle differences. The decrease in apoptosis seen in CET mice with erlotinib 

treatment, as indicated by levels of cleaved caspase 3, is interesting and indicates a 

potential role for Twist1 in regulation of apoptosis. Recent data has identified BIM as a 

target gene of TWIST1 and demonstrated that loss of BIM is sufficient to prevent 

apoptosis after TWIST1 inhibition (Yochum and Burns, personal communication). 

Upregulation of BIM is consistently seen with TKI-induced apoptosis and the loss of 

BIM is a known resistance mechanism to EGFR TKIs (73). Thus investigating the 

changes in levels of BIM in the CE and CET mice, with single and combination therapy, 

could reveal a mechanism of how TWIST1 is mediating erlotinib resistance. 
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Use of the antibody array was extremely helpful in identifying potential leads for 

the mechanism of resistance. While certain RTKs were expected to have altered 

phosphorylation levels, such as EGFR and perhaps Axl, the appearance of a difference in 

phosphorylated Src was unexpected and exciting. This finding was supported by other 

studies published around the same time as well as some previous work that connected Src 

and TWIST1 (66-68), however a mechanism and the clinical implications are still 

undetermined. The bioinformatics data provided a wide variety of information that still 

needs to be analyzed to potentially help understand how Twist1 expression can lead to 

erlotinib resistance, both by Src-dependent and –independent mechanisms. 

 
Clinical trials have been conducted, combining erlotinib and dasatinib, and the 

results have ultimately not supported the use of the combination patients with acquired 

resistance to erlotinib. Additionally, significant toxicities were observed with the 

combination (74). Conversely, in this study there was a clear reduction in tumor burden 

visible with the combination of erlotinib and dasatinib after only 5 days of treatment. 

This effect is amplified with longer treatment, leading to tumor regression in a majority 

of cases and prolonged overall survival. There appeared to be minimal toxicity to the 

mice from the combination of drugs. 

 
A possibility is that Twist1 is acting independently of EMT, or multiple resistance 

mechanisms are arising as a result of Twist1 expression. All CET mice still do not 

respond to individual or combination treatment the same, as indicated by the different 

responses seen by CT scan and histologically. Further characterization is essential to 

explore the differences both between treatment groups and within a treatment group, as 

well as determining the effect of combination treatment in the CE mice. Identifying 
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markers that predict a response to the combination treatment would improve the design of 

clinical trials on combination therapies and ultimately treatment for NSCLC and patients 

facing acquired resistance. 

 
Section 5.3: Conclusions 

 
Expression of Twist1 induces resistance to erlotinib in EGFR mutant NSCLC. As 

a result of Twist1 expression and erlotinib treatment, the levels of Src phosphorylation 

increases, indicating activation of Src. Combining erlotinib treatment with the Src 

inhibitor, dasatinib, in the CET mice leads to tumor regression, prolonged overall 

survival, as well as decreases in proliferation and downstream signaling. This indicates 

that the combined treatment overcomes the effect of Twist1 and resistance, resulting in a 

phenotype very similar to CE mice treated with erlotinib alone. 
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Chapter 6: Identification and Characterization of a novel TWIST1 
inhibitor 

 

Section 6.1: Introduction 
 

Lung cancer is the leading cause of cancer death in the United States and 

worldwide. In 2015 alone, an estimated 221,200 new cases will be diagnosed and 

158,040 lung cancer deaths will occur in the US (1). Recent advances in the treatment of 

NSCLC have come from recognition that NSCLC is not a single disease entity but rather 

a collection of distinct molecularly driven neoplasms. This paradigm is typified by the 

recent progress made in the treatment of patients with EGFR mutant and EML4-ALK 

translocation driven adenocarcinomas of the lung with tyrosine kinase inhibitors targeting 

these oncogenes (75). Unfortunately, little progress has been made in the treatment of 

patients with the most frequently observed driver oncogene, mutant KRAS. KRAS is 

mutated in one third of all malignancies and approximately 25% of all NSCLC (76). 

Furthermore, acquired resistance to the currently targetable driver mutations is all but 

inevitable (77, 78). New strategies are needed to effectively and durably target oncogene 

driven NSCLC. 

 
Oncogene induced senescence (OIS) is an irreversible cell cycle arrest that is 

characterized by cells displaying an enlarged, flattened cytoplasm, increased senescence 

associated beta-galactosidase (SA-β-Gal) activity, increased chromatin condensation and 

changes in gene expression associated with DNA damage and cell cycle checkpoint 

pathways. OIS is thought to be triggered early during tumorigenesis after oncogene 

activation and serves as a checkpoint to prevent pre-malignant lesions from progressing 

to malignancy (79). The bypass of senescence in mouse models of Kras-mediated 

adenocarcinoma of the lung and pancreas is essential for tumorigenesis (62, 80, 81). We 



53  

have shown that TWIST1 is required for suppression of OIS (39, 82). Pro-senescence 

therapy in oncogene driven NSCLC through inhibition of key downstream mediators that 

suppress OIS would be a valuable treatment. 

 
Apoptosis is a cellular process that leads to activation of “executioner” cysteine 

aspartate- specific proteases (caspases), which cleave a variety of cellular substrates 

leading to cell death (83). Apoptosis eliminates cells in response to a number of cellular 

stresses, including genome instability, oncogene activation, or hypoxia (83). We have 

demonstrated that TWIST1 is required to suppress apoptosis in a subset of oncogene 

driven NSCLC (39). Cancer cells frequently evade apoptosis and therefore, reactivation 

of suppressed apoptotic pathways in NSCLC would be a valuable therapeutic strategy. 

 
TWIST1 is a basic helix-loop-helix (bHLH) transcription factor that plays critical 

roles at multiple stages of organismal development (84). A number of reports have 

implicated TWIST1 in oncogenesis through its ability to inhibit apoptosis, prevent OIS 

and promote metastasis through induction of the epithelial-mesenchymal transition 

(EMT) (37, 47, 85-89). Increased TWIST1 expression is also correlated with increased 

risk of metastasis and poor prognosis in a number of solid tumor types including lung 

(90). We have demonstrated that Twist1 cooperates with mutant Kras to induce lung 

adenocarcinoma in vivo and that inhibition of Twist1 in vivo and in human lung cancer 

cell lines led to OIS and in some cases, apoptosis (39, 82). Furthermore, we have found 

that TWIST1 is essential for tumor maintenance in human NSCLC characterized by 

defined oncogenic drivers including KRAS mutant, EGFR mutant and MET 

amplified/mutant tumors (39). Interestingly, the KRAS, EGFR and MET oncogenes 

activate common downstream signaling pathways including the RAF/MAPK and 
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PI3K/AKT pathways. Furthermore, the reciprocal crosstalk between EGFR and MET is 

well established and has significant therapeutic implications (91). Studying the role of 

TWIST1-E2A pathway in these three interrelated driver mutations could potentially lead 

to the development of therapies for patients bearing these driver mutations. 

 
TWIST1 functions as both a homo- and heterodimeric transcription factor and its 

choice of transcriptional binding partner can greatly influence its ability to modulate 

transcriptional activity and function (92). E12 and E47 are two transcription factors 

encoded through alternative splicing by the E2A locus that differ only in their bHLH 

domain. They can act either as tumor suppressors through inhibition of cell proliferation 

and promotion of apoptosis as seen in several lymphoid malignancies (93), or can 

function as oncogenes in solid tumors such as prostate cancer (94) and possibly in breast 

cancer (95). TWIST1 forms functional heterodimers with either E12 or E47 during limb 

development and cranial fusion (84). Furthermore studies in osteoblasts have shown that 

TWIST1 heterodimerization with E12 can stabilize TWIST1 by preventing its lysosomal 

degradation (96). The role of the TWIST1-E12/E47 heterodimer in cancer is unknown; 

however, our preliminary data suggests that the E2A protein play a key role in mediating 

TWIST1 dependent tumorigenesis. 

 
Having identified TWIST1 as a prospective target, we employed a combined 

bioinformatic-chemical approach to identify pharmacologic inhibitors of TWIST1 using a 

CMAP analysis (Fig. 6.1) (97). We used gene expression profiles from several KRAS 

mutant human lung cancer cell lines following shRNA-mediated TWIST1 knockdown to 

perform a CMap analysis (Fig 6.1), in an attempt to identify candidate agents that 

targeted TWIST1. We identified and demonstrated that the harmala alkaloid, harmine 
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phenocopied the growth inhibition observed with silencing of TWIST1 by inducing OIS 

or apoptosis in oncogene driver defined NSCLC cell lines (Fig 6.2A and data not shown). 

Remarkably, these effects were associated with a decrease in TWIST1 levels through 

protein degradation in vitro (Fig. 6.2B & C). This demonstrates potential for harmine as a 

pharmacologic inhibitor of TWIST1. 
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Figure 5.1. Overview of CMap Analysis. Microarray data from knockdown of TWIST1 in human KRAS mutant NSCLC 
cell lines is fed into the CMap database and the gene signature compared to those produced by all the drugs, genetic agents, 
etc in the database. The output provides compounds that have a gene signature similar to or opposite of knockdown of 
TWIST1. This does not necessarily mean that the drug targets TWIST1. 
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Figure 6.2. . Harmine inhibits growth through degradation of TWIST1in oncogene 
driver define NSCLC cell lines. Harmine, identified through connectivity mapping (CMAP) 
demonstrates through (A) MTS assay growth inhibition in the indicated NSCLC cells in a 
dose and time dependent manner (B) Western blot demonstrating reduction of exogenous 
TWIST1 protein expression as well as induction of p21 after 72 hrs of harmine treatment. (C) 
Fluorescence microscopy (20X) demonstrating nuclear localization of TWIST1-EGFP (green). 
DAPI stain (blue) was used to stain the nucleus after addition of 500 ng/ml doxycycline and 
subsequent decrease in TWIST1 expression after co-treatment with increasing does of 
harmine. (unpublished data). 
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Section 6.2: Materials and Methods 
 
 

Immunoblot analysis 
 

Homogenized lung tissue were lysed on ice for 60 minutes in 

radioimmunoprecipitation assay buffer supplemented with protease and phosphatase 

inhibitors (Sigma-Aldrich) and clarified by centrifugation. Protein concentrations were 

determined by Pierce Micro BCA protein assay (Thermo Fisher Scientific). Equal protein 

concentrations of each sample were run on NuPAGE bis-Tris gels (Invitrogen) and 

electrophoretically transferred to polyvinylidene difluoride membranes.  After being 

blocked with 5% dried milk in TBS containing 0.2% Tween 20, the filters were incubated 

with primary antibodies. The following primary antibodies were used: anti-cleaved Parp 

(9548, Cell Signaling), anti-Twist1 (sc-81417, Santa Cruz), anti-GAPDH (FL-335, Santa 

Cruz), and anti-luciferase (20R-1419, Fitzgerald). After washing and incubation with 

horseradish peroxidase (HRP)-conjugated anti-rabbit or anti-mouse IgG (Amersham, 

Piscataway, NJ), the antigen-antibody complexes were visualized by chemiluminescence 

(ECL detection system; Perkin Elmer, Boston, MA). 

 
Histology and immunohistochemistry 

 
Tissues were fixed in 10% buffered formalin for 24 h and then transferred to 70% 

ethanol until embedding in paraffin. Tissue sections 5 µm thick were cut from paraffin 

embedded blocks, placed on glass slides and hematoxylin and eosin (H&E) staining was 

performed using standard procedures (Johns Hopkins Histology Core). Antibodies used 

in our study: Ki-67 (Leica Biosystems) and cleaved caspase 3 (Cell Signaling). Samples 

were dewaxed in xylene and rehydrated in a graded series of ethanols. Antigen retrieval 

was performed by 45 min rice-cooker irradiation in citrate-based Antigen Unmasking 
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Solution (Vector Laboratories, Burlingame, CA, USA). Endogenous peroxidases were 

blocked in 3% hydrogen peroxide in methanol for 10 minutes. Non-specific binding was 

blocked with 2% bovine serum for 60 minutes. Primary antibodies were used at 

appropriate dilutions (Ki-67 at 1:2000 and cleaved caspase 3 at 1:500) and sections 

incubated overnight at 4 degrees Celsius. Secondary incubation was done using 

PowerVision Poly-HRP anti-rabbit IgG (Leica Biosystems). Visualization was performed 

using DAB substrate kit for Peroxidase (Vector Laboratories). Sections were 

counterstained with Gill's hematoxylin (Vector Laboratories) and slides were mounted in 

aqueous mounting media (Vector Laboratories). 

 
Transgenic mice 

 
Mice were housed in groups of no more than five per cage with free access to 

 
food and water, under controlled light/dark cycles, in facilities with regulated temperature 

and humidity. Mice were randomly assigned to different experimental groups. All 

procedures were approved by the Institutional Animal Care and Use Committee of The 

Johns Hopkins University. 

 

Inducible Twist1/KrasG12D transgenic mice in the FVB/N inbred background were 

of the genotype: CCSP-rtTA/tetO-KrasG12D/Twist1-tetO-luc (CRT). All the mice were 

weaned 3–4 weeks of age and then placed on dox at 4–8 weeks of age. The mice treated 

had similar levels of tumor burden per CT. 
 
 

Harmine was purchased from Sigma Aldrich (St. Louis, MO). For in vivo 

experiments, harmine was dissolved in normal saline by heating and sonication. The mice 
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received 10 mg/kg harmine or normal saline via intraperitoneal injection daily, 5 days a 

week for 3 weeks. 

 
Section 6.3: Results 

 
Having the preliminary data demonstrate the effect of harmine on KRAS mutant 

NSCLC cell lines, we wanted to determine what effect, if any, the drug would have on an 

in vivo model of lung adenocarcinoma. We treated the CCSP-rtTA/tetO-KrasG12D/Twist1- 

tetO7-luc (CRT) mice (39) with harmine for 3 weeks and measured the lung tumor 

volume in each mouse at baseline and weekly with serial microCT. Micro-computed 

tomography (mCT) images, comparing tumor volume and baseline and at the end of 

treatment, revealed that treatment with harmine decreases the tumor volume growth rate 

(Fig. 6.3). Treatment of the animals with harmine had no observable toxicity on the 

animals and body weight was unaffected by harmine treatment suggesting that the doses 

uses were safe and efficacious. 
 
 

We then examined the potential mechanisms of growth inhibition after harmine 

treatment. We first examined whether a decrease in proliferation was responsible for the 

observed growth inhibition, however, we observed no significant difference in 

proliferation rate as measured by Ki-67 staining (Fig. 6.4). We next examined whether 

increased apoptosis contributed to the growth inhibitory effects of harmine. Remarkably, 

we observed increased apoptosis with harmine as measured by cleaved caspase 3 staining 

(Fig. 6.4) and cleaved PARP (Fig. 6.5). Furthermore, harmine treatment leads to marked 

decrease in Twist1 in the lung tumors (Fig. 6.5). Thus harmine has cytotoxic effects in 

vivo on Kras mutant, Twist1 overexpressing lung adenocarcinoma which are 

accompanied by Twist1 degradation. 
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Figure 6.3. Harmine has activity in a KrasG12D/Twist1 murine model of lung adenocarcinoma. 
Lung tumor growth rate is decreased after 3 weeks of treatment with harmine in the CCSP-rtTA/tetO- 
KrasG12D/Twist1-tetO7-luc (CRT) mice. Lung tumor volume was measured at baseline and weekly with 
serial CT in the same CRT mouse. Micro-computed tomography (mCT) images were reviewed by a 
board certified radiation oncologist on multiple index tumors in a blinded fashion (n= 2–5 tumors per 
mouse). Volumes were normalized to the starting volume, t= 0 before harmine treatment, and percent 
tumor volume growth was then calculated by (normalized tumor vol. X 100%) - 100%. 
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Figure 6.4. Harmine treatment alters some cellular processes in a KrasG12D/Twist1 murine model of 
lung adenocarcinoma. Treatment with harmine results in similar proliferation levels as measured by Ki-67 
staining (UPPER LEFT) and increased apoptosis (UPPER RIGHT) as measured by cleaved caspase 3 staining 
indicated by black arrows. LOWER: Quantification of Ki-67 staining (p= 0.3621) and Cleaved caspase 3 IHC 
(p= 0.0453). 
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Figure 6.5. Harmine decreases Twist1 levels in a KrasG12D/Twist1 murine model of lung adenocarcinoma. 
Quantitation of Twist1 and cleaved PARP protein levels in vehicle and harmine treated animals at 3 weeks. 
Proteins were normalized to luciferase protein levels to control for possible differences in tumor burden. 
Differences were statistically significant for Twist1, P < 0.04 and c-PARP, P < 0.005 respectively. 
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Section 6.4: Discussion and Conclusions 
 

This study demonstrates the ability of harmine to target Twist1 and slow tumor 

growth in the CRT mouse model. Targeting mutant KRAS has been largely unsuccessful 

(76) and another potential cancer therapy target, transcription factors, are difficult to 

inhibit pharmacologically (98). However through use of Connectivity Mapping 

bioinformatics analysis, the potential Twist1 inhibitor, harmine, was identified. 

Preliminary in vitro data demonstrated Twist1 inhibition and this was confirmed in vivo. 

The levels of Twist1 decreased in harmine treated mice, however whether the drug was 

targeting Twist1, or one of its binding partners, which then led to Twist1 degradation was 

not clearly demonstrated. Preliminary data suggests this is through disruption of the 

TWIST1-E12/E47 heterodimer. Further experimentation is required to determine the 

actual target of harmine in vivo. Harmine is known to inhibit DYRK kinases and it is 

possible that some of the growth inhibitory effects are TWIST1 independent. The 

observed in vitro growth inhibitory effects are at least partially dependent on the 

TWIST1-E2A pathway, as overexpression of either TWIST1, E12, E47, TWIST1-E12 or 
 

TWIST1-E47, but not TWIST1-TWIST1 can rescue harmine induced growth inhibition. 
 
 

While tumor regression was not seen, the slowing of tumor growth can still be 

considered an improvement in the treatment of KRAS mutant lung cancer. The increase in 

levels of cleaved caspase 3 and cleaved PARP with harmine treatment could indicate the 

involvement of Twist1 in regulation of apoptosis. Twist1 may inhibit apoptosis, allowing 

for tumor growth; decreased levels of Twist1 as a result of harmine treatment allows for 

the increase in apoptosis resulting in the slowing of tumor growth. Future experiments, 
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both in vitro and in vivo, can look at how Twist1 regulates apoptosis in the context of 

mutant KRAS lung cancer. 

 
Harmine and related compounds were identified through CMap, however drug 

screening could be performed in an attempt to find a more potent and less neurotoxic 

derivative of harmine or another inhibitor altogether. In addition, as harmine treatment 

affects TWIST1 levels, the combination of harmine and erlotinib could be studied in the 

context of EGFR mutant NSCLC. Similar to the experiments combining erlotinib and 

dasatinib in the CE and CET mice, treating the mice with harmine could help identify the 

mechanism of how TWIST1 is leading to erlotinib resistance. 
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