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Abstract

In modern machine learning problems and applications, we deal with vast

quantities of data that are often high dimensional, making data analysis time-

consuming and computationally inefficient. Sparse recovery algorithms are

developed to extract the underlining low dimensional structure from the data.

Classical signal recovery based on ℓ1 minimization solves the least squares

problem with all available measurements via sparsity-promoting regularization.

It has shown promising performances in regression and classification. Previous

work on Compressed Sensing (CS) theory reveals that when the true solution is

sparse and if the number of measurements is large enough, then solutions to ℓ1

minimization converge to the ground truths. In practice, when the number of

measurements is low, when the noise level is high, or when measurements arrive

sequentially in streaming fashion, conventional ℓ1 minimization algorithms tend

to under-perform.

This research work aims at using multiple local measurements generated

from resampling using bootstrap or sub-sampling to efficiently make global

predictions to deal with the aforementioned challenging scenarios. We develop

two main approaches – one extends the conventional bagging scheme in sparse

regression from a fixed bootstrapping ratio whereas the other called JOBS applies
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a support consistency among bootstrapped estimators in a collaborative fashion.

We first derive rigorous theoretical guarantees for both proposed approaches

and then carefully evaluate them with extensive simulations to quantify their

performances. Our algorithms are quite robust compared to the conventional ℓ1

minimization, especially in the scenarios with high measurements noise and low

number of measurements. Our theoretical analysis also provides key guidance on

how to choose optimal parameters, including bootstrapping ratios and number of

collaborative estimates. Finally, we demonstrate that our proposed approaches

yield significant performance gains in both sparse regression and classification,

which are two crucial problems in the field of signal processing and machine

learning.
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Chapter 1

Introduction

In compressed sensing (CS) and sparse recovery, solutions to the linear inverse

problem in the form of least squares plus a sparsity-promoting penalty term have

been extensively studied. Formally speaking, a measurements vector y ∈ Rm is

generated by the model y = Ax + z, where A ∈ Rm×n is the sensing matrix,

x ∈ Rn contains the sparse codes with very few non-zero entries and z is noise

vector with bounded energy. The problem of interest is to find the sparse vector

x given the sensing matrix A as well as the measurement vector y. Among

many methods, the most common one is the ℓ1 minimization, in which the

regularization term is sum of the absolute values of the vector.

The performance of ℓ1 minimization in recovering the true sparse solution has

been thoroughly investigated in the CS literature (Cohen, Dahmen, and DeVore,

2009; Candes, 2008; Candes, Romberg, and Tao, 2006; Donoho, 2006; Candess

and Romberg, 2007). Pioneer works study the correctness and robustness of ℓ1

minimization. They establish conditions for successful recovery based on the Null

Space Property (NSP) (Cohen, Dahmen, and DeVore, 2009) and the Restricted

Isometry Property (RIP) as well as quantify the recovery performance via the
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RIP constant (Candes, 2008; Candes, Romberg, and Tao, 2006). Additionally,

under mild conditions on random sensing matrices, CS theory reveals that when

the true solution is sparse and with enough measurements, then (2.8) recovers

the ground truth and the solution to (2.9) is within a controllable neighborhood

of the true solution with high probability (Candes, 2008). Unfortunately, in

practice, measurements may not be available all at once. Moreover, certain

parts of the data might be missing and/or severely corrupted. For example, in

common streaming settings, measurements might be available sequentially or

in small batches. Waiting for all measurements to be available wastes valuable

processing time and buffering memory.

Alternatively, in sparse-representation-based classification, many schemes

use local observations and have shown promising performances (Aharon, Elad,

and Bruckstein, 2006; Yang et al., 2010; Liu, Tran, and Chin, 2016; Chen, Do,

and Tran, 2010; Bosworth et al., 2015b). The proper choices of measurement

subsets differ between applications and often require case-by-case treatment.

Obviously, prior knowledge should help significantly in the selection process.

For example, image datasets may have large variance overall but data remains

relatively homogeneous within local regions. Hence, choosing to work with

image patches often leads to satisfactory results in dictionary learning and

deep learning (Aharon, Elad, and Bruckstein, 2006; Krizhevsky, Sutskever, and

Hinton, 2012).

Without any prior information, a natural choice is to sample data uniformly

at random with replacement, termed bootstrap (Efron, 1979). This simple

sampling scheme has been shown to represent the entire system better than
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specific predefined choices. It performs reasonably well when all measurements

are equally good. In CS theory, many random matrices have been proven to be

excellent sensing matrices. These operators act by shuffling and recombining

entries of the original data samples, destroying any spatial or temporal structure

and making the measurements even more democratic.

To incorporate information from multiple estimates, the Bagging (Breiman,

1996) (Bootstrap Aggregating) framework has been proposed by Leo Breiman.

It is an efficient parallel ensemble method that improves the performance of

unstable predictors. The algorithm consists of solving the same objective function

multiple times independently from bootstrap samples and then averaging over

multiple predictions to obtain the final solution.

Applying Bagging to find a sparse vector with a specific symmetric pattern

was shown empirically to reduce estimation error when the sparsity level s is

high (Breiman, 1996) in a forward subset selection problem, and for general

sparse signals (Liu, Chin, and Tran, 2019). These experiments show the possi-

bility of using Bagging to improve other sparse regression methods on general

sparse signals. Although the well-known conventional Bagging method uses

the bootstrap ratio 100%, some follow-up works have shown empirically that

lower ratios improve Bagging in some classic classifiers: Nearest Neighbour

Classifier (Hall and Samworth, 2005), CART Trees (Sabzevari, Martinez-Munoz,

and Suarez, 2014), Linear SVM, LDA, and Logistic Linear Classifier (Zaman

and Hirose, 2009). Based on this success, we hypothesize that reducing the

bootstrap ratio will also improve performance of Bagging in sparse regression.

Therefore, we set up the framework with a generic bootstrap ratio and study its
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behavior with various bootstrap ratios.

In this thesis, we will demonstrate the generalized Bagging framework with

bootstrap ratio L/m and number of estimates K as parameters. An important

discovery is that in challenging cases when m is small, Bagging with a ratio L/m

that is smaller than the conventional ratio 100% can lead to better performance.

Although Bagging can be applied to sparse regression problems, the solutions

obtained using this method may not ultimately be very sparse. Individually

solved predictors are not guaranteed to have the same support, and in the worst

case, their average can be quite dense – its support size growing up to the

number of estimates times the true sparsity level. To alleviate this problem,

Bolasso (Bootstrapping Lasso) has been proposed (Bach, 2008a). Bolasso

first recovers the common support using the intersection of all bootstrapped

estimators and then estimates the magnitudes by applying least squares on the

support. However, this strategy is very aggressive. When the noise level is high,

it commonly recovers the extremely sparse or even all-zero solution.

To resolve the support consistency issue in Bagging and avoid the overly

aggressive two-step method Bolasso scheme, our second proposed method enforces

the row sparsity constraint among all predictors using the ℓ1,2 norm. The final

estimate is obtained by averaging over all estimators. We name this whole

procedure JOBS (Joint-sparse Optimization from Bootstrap Samples). The

proposed method involves two key parameters: the bootstrap sample size L of

random sampling with replacement from the original m measurements and the

K number of those bootstrap vectors.

We will show that JOBS consistently and significantly outperforms the
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baseline ℓ1-minimization algorithm in the challenging case when the number of

measurements m is limited. Our previous work (Liu, Chin, and Tran, 2019) has

shown that Bagging improves the baseline ℓ1 minimization when the bootstrap

ratio L/m is smaller than the conventional full bootstrap sampling rate of 1. An

interesting discovery is that the optimal bootstrap ratio JOBS is even lower than

that of Bagging for similar optimal performance levels. The row sparsity prior

among all estimators helps bring down the optimal bootstrap sampling ratio,

and therefore less data is required for JOBS to achieve a similar performance as

Bagging.

The main contributions of this thesis are as follows.

(i) We demonstrate that employing the powerful bootstrapping idea, inspired

from machine learning, can improve the robustness of sparse recovery in noisy

environments through a collaborative recovery scheme via two schemes: Bagging

in sparse regression and JOBS. (ii) We explore the theoretical properties asso-

ciated with finite L/m and K for the Bagging algorithm. (iii) We provide an

in-depth analysis of the proposed JOBS strategy. Since the critical parameters

in our method are the bootstrap sample size L and the number of bootstrap

measurement vectors K, we derive analytically various error bounds with regards

to these parameters. (iv) We confirm our optimal parameter settings and validate

our theoretical framework via extensive simulations results. (v) We extend the

theoretical analysis to the Bagging framework, using the same setting with vari-

ous bootstrap sampling ratios and different number of estimates. (vi) We present

a natural extension of the framework, employing a sub-sampling variation of the

proposed scheme (named Sub-JOBS) as an alternative to bootstrapping, and
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discuss the relationship between the sub-sampling variation to bootstrap. (vii)

We demonstrate that the proposed JOBS recovery also benefits discriminative

tasks such as face recognition over the baseline Sparse Representation-based

Classification (SRC) framework, in which the conventional ℓ1 minimization is em-

ployed (Wright et al., 2009). (viii) We show that a collaborative reconstruction

scheme from random subsets is powerful for signal recovery from a compressed

sensing hardware.

The outline of this thesis is as follows. Chapter 2 gives some background

about this work, including compressed sensing, bootstrapping, bagging, bolasso,

etc. Chapter 3 demonstrates the Bagging in Sparse Regression procedure, main

theoretical results as well as some simulation results. Chapter 4 illustrates

the proposed method JOBS, supported by theoretical performance bounds,

simulation results as well as classifications results compared among the classic ℓ1

minimization, Bagging method described in previous chapter as well as Bolasso.

Chapter 5 shows the usage of our proposed method on real data from Compressed

Sensing Optical Coherence Tomography (OCT) hardware. We will show that

a collaborative scheme on randomly chosen subsets of original measurements

can efficiently reconstruct three dimensional OCT images. Finally, Chapter 6

summarizes our proposed frameworks and Chapter 7 gives future directions.
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Chapter 2

Background

2.1 Notations

In this section, we introduce some main notations used throughout the thesis.

We first give definitions for ℓp vector norm and mixed ℓp,q norm for matrix. Then

we list other main notations that we use throughout this thesis.

2.1.1 ℓp Vector Norm

A vector in n-dimensional vector space is denoted as x ∈ Rn = (x1, x2, ..., xn)T ,

where subscripts 1, 2, ..., n denote indices and parentheses “()′′ denote stacking

elements column-wise. Since all vectors are defined as arrays with finite number

of rows, a generic form of a vector stacks its elements as multiple columns and

then takes a transpose, which is represented by symbol (·)T .

The ℓp norm p > 0 of a vector x ∈ Rn = (x1, x2, ..., xn)T is defined as:

∥x∥p = (
n∑

i=1
(xi)p)1/p. (2.1)

In the case when p ≥ 1, the ℓp norm is a proper vector norm ρ(·) being positive
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definite (ρ(x) ≥ 0, ρ(x) = 0 if and only if x = 0), subadditive (x, y ∈ Rn,

ρ(x) + ρ(y) ≥ ρ(x + y)), and absolutely scalable (α > 0, ρ(αx) = |α|ρ(x)).

When 0 < p < 1, the ℓp norm can still be computed using equation (2.1), however

it is not a proper vector norm because it is not subadditive, or in other words,

non-convex.

The famous ℓ1 norm that is commonly used to regress sparse vectors is the

sum of the absolute value of each entry:

∥x∥1 =
n∑

i=1
|xi|. (2.2)

2.1.2 The ℓ0 sparsity

The sparsity level is defined as counting the number of non-zero entries in a

vector x ∈ Rn, which is:

∥x∥0 :=
n∑

i=1
1{|xi| > 0}. (2.3)

Note that, although we adopt the notation of ℓp norm for the sparsity measure

(in which case p = 0), it is actually not a proper vector norm because it violates

the absolutely scalable property. Because of this, the literature often refers to

the ℓ0 norm as a quasi-norm or pseudo-norm.

2.1.3 Mixed ℓp,q norm of a matrix

A matrix with n rows and K columns is denoted as X ∈ Rn×K . It can be

represented as X = (xij), i = 1, 2, .., n and j = 1, 2, .., K, where xij is the

element on the (i, j)-th location. It can also represented as X = (x1, x2, ..., xK),
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where xj represents the j-th column of matrix X. To introduce the mixed ℓp,q

norm on a matrix, we also introduce composing a matrix by stacking multiple

rows: X = (x[1]T , x[2]T , .., x[n]T )T , where x[i] denotes the i-th row of matrix X.

The mixed ℓp,q norm on matrix X is defined as:

∥X∥p,q = (
n∑

i=1
∥x[i]T∥p

q)1/p = ∥(∥x[1]T∥q, ∥x[2]T∥q, ..., ∥x[n]T∥q)T∥p, (2.4)

where x[i] denotes the i−th row of matrix X. Intuitively, the mixed ℓp,q norm

essentially takes ℓq norms on rows of X first; then stacks those as a vector and

then computes its ℓp norm. Note when p = q, the ℓp,p norm of ∥X∥ is simply the

ℓp vector norm of the vectorized X. The row sparsity penalty that we employed

ℓ1,2 norm in JOBS is essentially a special case of (2.4) taking p = 1, q = 2, which

is in the following form:

∥X∥1,2 =
∑

(∥x[1]T∥2, ∥x[2]T∥2, ..., ∥x[n]T∥2). (2.5)

2.1.4 Mixed ℓp,q norm over block partition of a vector

Similarly to the ℓp,q norm on matrix in (2.4), we introduce a more general form:

the mixed ℓp,q norm over a block partition of a vector. The definition for ℓp,q

norm over block partition B = {B1,B2, ...,Bb} for a vector ∥x∥p,q|B:

∥x∥p,q|B =(
b∑

i=1
∥x[Bi]T∥p

q)1/p = ∥(∥x[B1]T∥q, ..., ∥x[Bb]T∥q)∥p. (2.6)

It is not difficult to see that the ℓp,q norm of a matrix is a special case of

ℓp,q norm over block of the vectorized version of that matrix. In fact, the mixed
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ℓ1,2 norm on matrix X can also be expressed as a mixed ℓ1,2|B norm on the

vectorized X given B, where the block partition is row-wise. We will give the

relationship in Section 4.9.1.

2.1.5 Other Main Notations List

Let matrix A ∈ Rm×n denote the original sensing matrix. Let vector y ∈ Rm

represent the measurement vector. Let I1, I2, ..., IK be bootstrap samples, each

containing L elements. For each bootstrapped sample Ij, the corresponding

bootstrapped sensing matrix A[Ij] of size L×n and bootstrapped measurements

vector y[Ij ] of length L are generated and xj ∈ Rn is a feasible estimator for the

j-th bootstrap sample. Concatenating K estimators x1, x2, ..., xK , we obtain

the sparse-code matrix X of size n×K. We summarize all relevant variables in

Table 2.1.

2.2 Compressed Sensing

In Compressed Sensing, the problem of interest is to find the sparse vector

x given the sensing matrix A as well as the measurement vector y. Let the

pseudo-norm ℓ0 norm be the sparsity level which counts the number of non-zero

entries; the mathematical formulation is as follows:

P1 : min ∥x∥0 s.t. y = Ax. (2.7)

Although minimizing the number of non-zero entries in vector x as in (2.7) is our

goal, directly minimizing the sparsity level is proven to be NP-hard (Natarajan,

1995). Instead, a convex regularizer is preferable. Among various choices of
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Table 2.1: Notation of Main Variables

m total number of measurements

n signal dimension

s sparsity level

L size of each bootstrap sample

L/m bootstrap sampling ratio

K number of bootstrap samples / the number of estimates

A the original sensing matrix of size m× n

y the original measurements vector of size m× 1

I a multi-set (it allows duplicate elements) or a set

Ij the j-th Bootstrap sample, j = 1, 2, ..., K, length of Ij = L

(·)[I] takes rows supported on I and throws away elements in Ic

A[Ij] bootstrapped sampling matrix for bootstrap sample Ij

y[Ij ] measurement vector corresponds to bootstrap sample Ij

xj the j-th column of matrix X;

a feasible solution corresponds to (A[Ij], y[Ij ])

x̂j the optimal solution corresponds to (A[Ij], y[Ij ])

(·)[i] the i-th row of a matrix/ vector.

x[i] the i-th row of matrix X

∥X∥p,q takes ℓq norms on rows of X; stacks those as a vector

and then computes ℓp norm. The precise form is in (2.4).

∥X∥1,2 row sparsity norm

∥X∥1,1 equivalents to the ℓ1 norm on vectorized X

xℓ1 the ℓ1 minimization solution

xB the Bagging solution

xJ the JOBS solution
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sparsity-promoting regularizers, the ℓ1 norm is the most commonly used. The

noiseless case is referred to as Basis pursuit:

P1 : min ∥x∥1 s.t. y = Ax. (2.8)

The noisy version is known as Basis pursuit denoising (Chen, Donoho, and

Saunders, 2001), or least absolute shrinkage and selection operator (Lasso)

(Tibshirani, 1996):

Pϵ
1 : min ∥x∥1 s.t. ∥y −Ax∥2

2 ≤ ϵ, (2.9)

where a non-negative scalar ϵ represents the energy level of the measurement

noise. The unconstrained form of (2.10) is: for some λ > 0,

Pλ
1 : min λ∥x∥1 + ∥y −Ax∥2

2. (2.10)

Many algorithms are developed to solve (2.9) such as in (Figueiredo, Nowak,

and Wright, 2007; Beck and Teboulle, 2009; Osborne, Presnell, and Turlach, 2000;

Combettes and Wajs, 2005; Boyd et al., 2011; Donoho, Maleki, and Montanari,

2009), etc.

2.3 Geometric Illustration of Proper Condition
for ℓ1 Minimization

Figure 2.1 illustrates level sets of the ℓ0 norm in equation (2.3) and the ℓ1 norm

in equation (2.2) level sets for two dimensional vector x = (x1, x2)T . From the

figure, we can see that the ℓ0 norm is non-smooth when near axes or the origin

whereas the relaxation ℓ1 norm is smooth, which is preferable for optimization
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algorithms.

Figure 2.1: A example of ℓ0 and ℓ1 norm level sets for two dimensional vector.

Figure 2.2 gives a geometry demonstration of three different cases. All these

three cases has the same true solutions that is (x1, x2) = (0, 1)T . Among three

cases, the sensing matrices and the resulting measurements, that are green lines

in these figures, are different. In the first case, ℓ1 minimization recovers the

true solution. In the second case, since the constraint is exactly parallel to

level sets of ℓ1 minimization norm, the ℓ1 minimization is not unique. Although

the true solution lies in the set of ℓ1 minimization solutions, since there are

multiple minima, it is treated as a failure recovery case. In the third case, the

ℓ1 minimization solution differs from the true solution and it is a failure case.

This example shows that a proper condition of sensing matrix A is needed to

guarantee correct recovery. This geometry property of A visualizes the null

space property (Cohen, Dahmen, and DeVore, 2009) of sensing matrix A that

characterise the correctness of sparse recovery and it will be elaborated in later
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chapters (Chapter 3 and Chapter 4).

Figure 2.2: The geometry demonstration of ℓ1 minimization. The pink star is the
true solution. The green lines are constraints and red diamond shape line is the unit
level set of the ℓ1 norm. In the middle figure, all points lie on the black line are
optimal ℓ1 solutions.

2.4 Applications of Compressed Sensing/ Sparse
Regression/ Sparse Coding

The field of compressed sensing, also known as sparse regression or sparse coding

has a wide range of applications in the field of machine learning.

2.4.1 Signal Recovery of CS Hardware Systems

In the past decade, the information theory community introduced the concept

of compressed sensing (CS) (Candès and Tao, 2005; Candes, Romberg, and Tao,

2006; Donoho, 2006; Baraniuk, 2007; Candès and Wakin, 2008), suggesting that

the sparsity of natural signals can be utilized to reduce the number of samples

required to capture signals of interest.
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In many systems, sensing processes are time and energy consuming. Efficient

compressed sensing design has been shown success in many imaging systems such

as single pixel camera (Duarte et al., 2008), fast MRI imaging Lustig, Donoho,

and Pauly, 2007, and Optical Coherence Tomography imaging (Lustig, Donoho,

and Pauly, 2007; Guo et al., 2010; Liu and Kang, 2010). These work all have

shown that much less measurements required by the Shannon/Nyquist theory.

2.4.2 Classification

Sparse regression is not only important in estimation problems, it also plays

a crucial role in discriminative classification tasks, which are very important

problem in machine learning.

A general framework of using sparse code features for classification is illus-

trated in Figure 2.3. Sparse Representation Classification proposed by Wright

in Wright et al., 2009 uses features from training data directly as a dictionary,

while other works in dictionary learning (Aharon, Elad, and Bruckstein, 2006;

Mairal, Bach, and Ponce, 2012) aim at learning a better representative dictionary

from training data features. These algorithms have shown a lot of success in

various classification algorithms and achieve state-of-the art performance.

2.5 Generalized Sparsity

There are generalized definitions of the classic sparsity, which measures the

sparsity level over some pre-defined patterns. We here introduce two common

types of patterns: block sparsity and row sparsity.
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Figure 2.3: A general classification frameworks based on sparse codes/ representa-
tions.

2.5.1 Block Sparsity

The classic sparse vector has few non-zeros entries. A general notation of sparsity

can be extended to blocks, which counts how many non-zero blocks there are

in a vector. For a block to be a non-zero block, The classic sparsity and block

sparsity of a vector x are depicted in Figure 2.4.

A more general sparsity can be defined over overlapping blocks, which is also

known as group sparsity.

Figure 2.4: The illustration of classic sparsity and block sparsity. The classic sparsity
is 6 and the block sparsity is 3 in this block partition (The blocks highlighted by yellow
solid circles are non-zero blocks).
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2.5.2 Row Sparsity

Row sparsity measures the sparsity of number of non-zero rows. It is a gener-

alization of vector sparsity to matrix rows. Figure 2.5 depicts a 1 row-sparse

matrix with only one row that is not a zero vector. The right panel of this figure

shows that the row sparsity of a matrix can be equivalently defined as a block

sparsity over its vectorized version. As we see in the figure, if we define blocks as

row indices in its matrix: B1 = 1, 4,B2 = 2, 5 and B3 = 3, 6, row sparsity can be

defined as a block sparsity pattern. We will explain the rigorous mathematical

form in Section 4.9.1.

Figure 2.5: Illustration of row sparsity. Left: example of a row-sparse matrix.
Right: row sparsity is a special case of block sparsity (The blocks highlighted by
yellow solid circles are non-zero blocks).

2.6 Bootstrap

In statistics, the term Bootstrapping refers to a famous re-sampling scheme. It is

a statistical method for estimating the underlining true sampling distribution

empirically by sampling with replacement from the original pool of samples.

Bootstrapping methods has been widely used in deriving robust estimates and
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confidence intervals of various statistics such as mean, median and conduction

hypothesis testings (Bootstrapping).

2.7 Bootstrap Aggregating (Bagging)

Bagging procedure (Breiman, 1996), is designed to improve the stability and

accuracy of machine learning algorithms in classification and regression problems.

In the sparse recovery problem, Bagging method can incorporate the information

from multiple estimates, Specifically, bagging solves objectives multiple times

(say K times) independently from bootstrap samples and then averages over

multiple predictions. Applying bagging in sparse regression was shown to reduce

estimation error when the sparsity level s is high (Breiman, 1996). However,

individually solved predictors aren’t guaranteed to have the same support and

in the worst case, their average can be quite dense: with its support size growing

up to Ks.

2.8 Bootstrap Lasso (Bolasso)

To alleviate the problem of creating non-sparse solutions, Bolasso was pro-

posed (Bach, 2008a). This is an algorithm that does support recovery via

Bootstrap samples and then recovers the amplitude of the signal. Bolasso firstly

recovers the support of the final estimate by detecting the common support

among K individually solved predictors and then applies least squares on the

common support. However, this strategy is very aggressive. When the noise

level is high, it commonly recovers very sparse or even zero solution.
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Chapter 3

Bagging in Sparse Regression

Classical sparse regression based on ℓ1 minimization solves the least squares

problem with all available measurements via sparsity-promoting regularization.

In challenging practical applications with high levels of noise and missing or

adversarial samples, solving the problem using all measurements simultaneously

may fail. Bagging, a powerful ensemble method from machine learning, has

shown the ability to improve the performance of unstable predictors in difficult

practical settings. Although Bagging is most well-known for its application

in classification problems, here we demonstrate that employing Bagging in

sparse regression improves performance compared to the baseline method (ℓ1

minimization). Although the original Bagging method uses a bootstrap sampling

ratio of 1, such that the sizes of the bootstrap samples L are the same as the

total number of data points m, we generalize the bootstrap sampling ratio in

our framework to explore the optimal sampling ratios for various cases.

(Part of the contents of this chapter has been published in (Liu, Chin, and

Tran, 2019).)
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3.1 Introduction

Compressed Sensing (CS) and Sparse Regression studies solving the linear inverse

problem in the form of least squares with an additional sparsity-promoting

penalty term. Formally speaking, the measurements vector y ∈ Rm is generated

by y = Ax + z, where A ∈ Rm×n is the sensing matrix, x ∈ Rn is a vector

of sparse coefficients with very few non-zero entries, and z is a noise vector

with bounded energy. The problem of interest is finding the sparse vector x

given A as well as y. Among various choices of sparse regularizers, the ℓ1

norm is the most commonly used. The noiseless case is referred to as Basis

Pursuit (BP) whereas the noisy version is known as basis pursuit denoising

(Chen, Donoho, and Saunders, 2001), or least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996) as in (2.9) and (2.10).

The performance of ℓ1 minimization in recovering the true sparse solution

has been thoroughly investigated in the CS literature (Candes, 2008; Candes,

Romberg, and Tao, 2006; Donoho, 2006; Candess and Romberg, 2007). CS

theory reveals that if the sensing matrix A has good properties, then BP recovers

the ground truth and the LASSO solution is close enough to the true solution

with high probability (Candes, 2008).

Classical sparse regression recovery based on ℓ1 minimization solves the

problem with all available measurements. In practice, it is often the case that

not all measurements are available or required for recovery. Some measurements

might be severely corrupted/missing or adversarial samples that break down

the algorithm. These issues could lead to the failure of the sparse regression

algorithm.
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The Bagging procedure (Breiman, 1996) proposed by Leo Breiman is an

efficient parallel ensemble method that improves the performance of unstable

predictors. In Bagging, we first generate a bootstrap sample by randomly drawing

m samples uniformly with replacement from all m data points. We repeat the

process K times and generate K bootstrap samples. Then one bootstrapped

estimator is computed for each bootstrap sample, and the final Bagged estimator

is the average of all K estimators.

Applying Bagging to find a sparse vector with a specific symmetric pattern

was shown empirically to reduce estimation error when the sparsity level s is

high (Breiman, 1996) in a forward subset selection problem. This experiment

shows the possibility of using Bagging to improve other sparse regression methods

on general sparse signals. Although the well-known conventional Bagging method

uses the bootstrap ratio 100%, some follow-up works have shown empirically

that lower ratios improve Bagging in some classic classifiers: Nearest Neighbour

Classifier (Hall and Samworth, 2005), CART Trees (Sabzevari, Martinez-Munoz,

and Suarez, 2014), Linear SVM, LDA, and Logistic Linear Classifier (Zaman

and Hirose, 2009). Based on this success, we hypothesize that reducing the

bootstrap ratio will also improve performance of Bagging in sparse regression.

Therefore, we set up the framework with a generic bootstrap ratio and study its

behavior with various bootstrap ratios.

Note that, we use the notation L as the sizes of bootstrap samples, m

as the number of all measurements, and K as the number of estimates. (i)

We demonstrate the generalized Bagging framework with bootstrap ratio L/m

and number of estimates K as parameters. (ii) We explore the theoretical

21



properties associated with finite L/m and K. (iii) We present simulation

results with various parameters L/m and K and compare the performances

of ℓ1 minimization, conventional Bagging, and Bolasso (Bach, 2008a), another

modern technique that incorporates Bagging into sparse recovery. An important

discovery is that in challenging cases when m is small, Bagging with a ratio L/m

that is smaller than the conventional ratio 100% can lead to better performance.

3.2 Proposed Method

3.2.1 Bagging in Sparse Regression

Our proposed method is sparse recovery using a generalized Bagging procedure.

It is accomplished in three steps. First, we generate K bootstrap samples, each

of size L, randomly sampled uniformly and independently with replacement from

the original m data points. This results in K measurements and sensing matrices

pairs: {y[I1], A[I1]}, {y[I2], A[I2]}...., {y[IK ], A[IK ]}. We use the notation (·)[I]

on matrices or vectors to denote retaining only the rows supported on I and

throwing away all other rows in the complement Ic. Second, we solve the sparse

recovery problem independently on each of those pairs; mathematically, for all

j = 1, 2, .., K, we find

xB
j = arg min

x∈Rn
λ∥x∥1 + ∥y[Ij ]−A[Ij]x∥2

2. (3.1)

The proposed approach is in the form of LASSO, and numerous optimization

methods can be used to solve it, such as (Boyd et al., 2011; Berg and Friedlander,

2008; Wright, Nowak, and Figueiredo, 2009).

Finally, the Bagging solution is obtained by averaging all K estimators from
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solving (3.1):
Bagging: xB = 1

K

K∑
j=1

xB
j . (3.2)

Compared to the ℓ1 minimization solution which is solved using all of the

measurements, the bagged solution xB is obtained by resampling without in-

creasing the number of original measurements. We will show that in some cases,

the bagged solution outperforms the base ℓ1 minimization solution.

3.3 Preliminaries

We summarize the theoretical results of CS theory which we need to analyze

our algorithm mathematically. We introduce the Null Space Property (NSP), as

well as the Restricted Isometry Property (RIP). We also provide the tail bound

of the sum of i.i.d. bounded random variables, which is needed to prove our

theorems.

3.3.1 Null Space Property (NSP)

The NSP (Cohen, Dahmen, and DeVore, 2009) for standard sparse recovery

characterizes the necessary and sufficient conditions for successful sparse recovery

using ℓ1 minimization.

Definition 1 (NSP, from (Cohen, Dahmen, and DeVore, 2009)) Every

s−sparse signal x ∈ Rn is a unique solution to P1 : min ∥x∥1 s.t. y = Ax

if and only if A satisfies NSP of order s: for any set S ⊂ {1, 2, .., n}, with

cardinality s : card(S) ≤ s,

∥v[S] ∥1 < ∥v[Sc] ∥1,
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for all v ∈ Null(A)\{0}, where v[S] denotes the vector equals to v on a index

set S and zero elsewhere.

3.3.2 Restricted Isometry Property (RIP)

Although NSP directly characterizes the ability of success for sparse recovery,

checking the NSP condition is computationally intractable. It is also not suitable

to use NSP for quantifying performance in noisy conditions since it is a binary

(True or False) metric instead of a continuous range. The Restricted isometry

property (RIP) (Candes, 2008) is introduced to overcome these difficulties.

Definition 2 (RIP, from (Candes, 2008)) A matrix A with ℓ2-normalized

columns satisfies RIP of order s if there exists a constant δs(A) ∈ [0, 1) such

that for every s−sparse v ∈ Rn,

(1− δs(A))∥v∥2
2 ≤ ∥Av∥2

2 ≤ (1 + δs(A))∥v∥2
2. (3.3)

3.3.3 Noisy Recovery Bounds based on RIP constants

It is known that satisfying the RIP conditions implies that the NSP conditions

are also satisfied for sparse recovery (Candes, 2008). More specifically, if the

RIP constant of order 2s is strictly less than
√

2− 1, then it implies that NSP

is satisfied in the order s. We recall Theorem 1.2 in (Candes, 2008), where the

noisy recovery performance for ℓ1 minimization is bounded based on the RIP

constant. This error bound is associated with the s−sparse approximation error

and the noise level.

Theorem 3 (Noisy recovery for ℓ1 minimization (Candes, 2008)) Let
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y = Ax⋆ + z, ∥z∥2 ≤ ϵ, x0 is s−sparse that minimizes ∥x − x⋆∥ over all

s−sparse signals. If δ2s(A) ≤ δ <
√

2−1, xℓ1 be the solution of ℓ1 minimization,

then it obeys

∥xℓ1 − x⋆∥2 ≤ C0(δ)s−1/2∥x0 − x⋆∥1 + C1(δ)ϵ,

where C0(·), C1(·) are some constants, which are determined by RIP constant

δ2s. The form of these two constants terms are C0(δ) = 2(1−(1−
√

2)δ)
1−(1+

√
2)δ and C1(δ) =

4
√

1+δ
1−(1+

√
2)δ .

3.3.4 Tail Bound of the Sum of i.i.d. Bounded Random
Variables

This exponential bound is similar in structure to Hoeffidings’ inequality. Proving

this bound requires working with the moment generating function of a random

variable.

Lemma 4 (Tail bound of the sum of i.i.d. bounded Random variables)

Let Y1, Y2, ..., Yn be i.i.d. observations of bounded random variable Y : a ≤ Y ≤ b

and the expectation EY exists, for any ϵ > 0, then

P{
n∑

i=1
Yi ≥ nϵ} ≤ exp{−2n(ϵ− EY )2

(b− a)2 }. (3.4)
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3.4 Main Theoretical Results for Bagging in
Sparse Regression

3.4.1 Noisy Recovery for Employing Bagging in Sparse
Regression

We derive the performance bound for employing Bagging in sparse regression, in

which the final estimate is the average over multiple estimates solved individually

from bootstrap samples. We give the theoretical results for the case that true

signal x⋆ is exactly s−sparse and the general case with no assumption of the

sparsity level of the ground truth signal. Note that, the theorems are based on

deterministic sensing matrix, measurements, and noise: A, y, z, in which all

vector norms are equivalent.

Theorem 5 (Bagging: error bound for ∥x⋆∥0 = s ) Let y = Ax⋆ + z,

∥z∥2 <∞. If for all bootstrap matrices δ2s(A[Ij]) <
√

2−1, j = 1, 2, ..., K, then

there exist a scaler δL,K such that δ2s(A[Ij]) ≤ δL,K <
√

2−1, and when the true

solution is exactly s−sparse, for any τ > 0, the Bagging solution xB satisfies

P
{
∥xB − x⋆∥2 ≤ C1(δL,K)(

√
L

m
∥z∥2 + τ)

}
≥ 1− exp −2Kτ 4

L2∥z∥4
∞

, (3.5)

where C1(·) is the same non-decreasing function of δ as in Theorem 3.

We also study the behavior of Bagging for a general signal x⋆, ∥x⋆∥0 ≥ s, in

which the performance involves the s−sparse approximation error. We use the

vector e to denote this error, and e = x⋆ − x0, where x0 is the best s-sparse

approximation of the ground truth signal over all s−sparse signals.
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Theorem 6 (Bagging: error bound for the general sparse recovery) Let

y = Ax⋆ + z, ∥z∥2 <∞. If there exists a constant related to parameters (L, K)

such that, If for all bootstrapped matrices δ2s(A[Ij]) <
√

2 − 1, j = 1, 2, ..., K,

then there exist a scaler δL,K such that δ2s(A[Ij]) ≤ δL,K <
√

2− 1, and for any

τ > 0, the Bagging solution xB satisfies

P
{
∥xB − x⋆∥2 ≤ (C0(δL,K)s−1/2∥e∥1 + C1(δL,K)(

√
L

m
∥z∥2 + τ)

}

≥ 1− exp −2KC1
4(δ)τ 4

(b′)2 ,

(3.6)

where C0(·), C1(·) are the same non-decreasing functions of δ as in Theorem 3,

and b′ = (C0(δ)s−1/2∥e∥1 + C1(δ)
√

L∥z∥∞)2.

Theorem 6 gives the performance bound for Bagging in general signal recovery

without the s−sparse assumption, and it reduces to Theorem 5 when the s−sparse

approximation error is zero, i.e., ∥e∥1 = 0. Both Theorem 5 and 6 above show

that increasing the number of estimates K improves the result by increasing the

lower bound of the certainty for the same performance level.

We give the proof sketch that demonstrate the key idea to prove both

Theorem 5 and Theorem 6. Main tools used are Theorem 3 and Lemma 4. Some

special treatments are required to deal with terms while proving Theorem 6. For

more technical details, full proofs can be found in next Section.

Proof Sketch: Similar to the sufficient condition in Theorem 3, the sufficient

condition to analyze Bagging is that all matrices resulting from Bagging have

well-behaved RIP constants of order 2s bounded by a universal constant δ.

Let I denote a generic multi-set containing L elements and each element in
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I are independent and identically, obeying a discrete uniform distribution from

sample space {1, 2, .., m}. The squared error function f(x(I)) = ∥x(I) − x⋆∥2
2,

where x(I) is the solution from ℓ1 minimization on I: x(I) = arg min λI∥x∥1 +

∥y[I] −A[I]∥2
2. Squared errors from K bootstrapped estimators f(xj) = ∥xB

j −

x⋆∥2
2, j = 1, 2, ..., K are realizations generated i.i.d. from the distribution of

f(x(I)).

We proceed the proof using the Lemma 4. We choose the upper bound of the

error to be a function of the expected value of noise power. For a exactly s−sparse

true solution x⋆, we pick ϵ = C1
2(δ)(E∥z[I]∥2

2 + τ 2), τ > 0 and for a general signal

x⋆, we pick ϵ = (C0(δ)s−1/2∥e∥1 + C1(δ)
√
E∥z[I]∥2

2)2 + C1
2(δ)τ 2, τ > 0. We can

obtain the root of the expectation of squared error
√
E∥z[I]∥2

2 =
√

L
m
∥z∥2. Then

we need to compute the upper bound b and the lower bound a for the random

variable f(x(I)). Since it is non-negative, we choose a = 0. The upper bound

b is obtained from Theorem 3 and then the maximum value ∥z∥∞ is employed

to further upper bound ∥zIj
∥2. Through this process, we obtain the inequality:

P{∑j ∥xB
j − x⋆∥2

2 −Kϵ ≤ 0} ≥ g(E(f(x), b, a), for some function g.

The Bagging solution is the average of all bootstrapped estimators. The key
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inequality to establish is as follows:

P{∥xB − x⋆∥2
2 − ϵ ≤ 0}

=P{K∥xB − x⋆∥2
2 −

∑
jf(xj) +∑

jf(xj)−Kϵ ≤ 0}

≥P{K∥xB − x⋆∥2
2 −

∑
jf(xj) ≤ 0,

∑
jf(xj)−Kϵ ≤ 0}

=P{K∥xB − x⋆∥2
2 −

∑
jf(xj) ≤ 0}P{∑jf(xj)−Kϵ ≤ 0}

=P{∑j∥xB
j − x⋆∥2

2 −Kϵ ≤ 0}.

The first term is independent with the second term and it is true with probability

1 by Jensens’ inequality. The bound for the second term is described in the

previous paragraph. Here we successfully establish the relationship of error

bound of the Bagging solution to the sum of squared errors of bootstrapped

estimates.

3.4.2 Parameters Selection Guided by the Theoretical
Analysis

Theorem 6 gives the performance bound for Bagging in sparse signal recovery

without the s−sparse assumption, and it reduces to Theorem 5 when the s−sparse

approximation error is zero ∥e∥1 = 0. Theorem 6 can be used to analyze the

cases with small m, where m is not sufficiently large enough compared to s.

Both Theorem 5 and 6 show that increasing the number of estimates K

improves the result, by increasing the lower bound of certainty of the same

performance. As for the sampling ratio L/m, because the RIP constant in general

decreases with increasing L (proof with Gaussian assumption in (Baraniuk et al.,
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2008)) and C1(δ) is a non-decreasing function of δ, a larger L in general results in

a smaller C1(δ). The second factor associated with the noise power term,
√

L/m,

suggests a smaller L.

Combining two factors indicates that the best L/m ratio is in between a

small and a large number. In the experiment results, we will show that when

m is small, varying L/m from 0 − 1 creates peaks with the largest value at

L/m < 100%. The first factor is dominating in the stable case when there are

enough measurements, in which a larger L leads to better performance.

3.5 Proofs of Main Theorems

3.5.1 Proof of Theorem 5: Performance Bound of Bag-
ging for Exactly s-sparse Signals

Let xB
1 , xB

2 , ..., xB
K be the solutions of individually solved problems and the

solution of the bagging scheme xB is obtained from their average: xB =
1
K

∑K
j=1 xB

j . We consider the distance to the true solution x⋆ from each estimate

separately. Here, the desired upper bound is the square root of the expected

power of each noise vector: (E∥z[I]∥2
2)1/2 =

√
L
m
∥z∥2, where I is a multi-set of

size L with each element randomly sampled from {1, 2, ..., m}. For any τ > 0,
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we have:

P{∥xB − x⋆∥2 − C1(δ)((E∥z[I]∥2
2)1/2 + τ) ≤ 0}

=P{∥xB − x⋆∥2 − C1(δ)(((E∥z[I]∥2
2)1/2 + τ)2)1/2 ≤ 0}

≥P{∥xB − x⋆∥2 − C1(δ)(E∥z[I]∥2
2 + τ 2)1/2 ≤ 0}

=P{∥xB − x⋆∥2
2 − C1

2(δ)(E∥z[I]∥2
2 + τ 2) ≤ 0}.

Consider using the average of errors for each estimate 1
K

∑K
j=1 ∥xB

j − x⋆∥2
2, we

can establish

P{∥xB − x⋆∥2 − C1(δ)((E∥z[I]∥2
2)1/2 + τ) ≤ 0}

= P{∥xB − x⋆∥2
2 −

1
K

K∑
j=1
∥xB

j − x⋆∥2
2

+ 1
K

K∑
j=1
∥xB

j − x⋆∥2
2 − C1

2(δ)(E∥z[I]∥2
2 + τ 2) ≤ 0}

≥ P{∥xB − x⋆∥2
2 −

1
K

K∑
j=1
∥xB

j − x⋆∥2
2 ≤ 0,

1
K

K∑
j=1
∥xB

j − x⋆∥2
2 − C1

2(δ)(E∥z[I]∥2
2 + τ 2) ≤ 0}

(from the independence of two terms)

= P{∥xB − x⋆∥2
2 −

1
K

K∑
j=1
∥xB

j − x⋆∥2
2 ≤ 0}

× P{
K∑

j=1
∥xB

j − x⋆∥2
2 −KC1

2(δ)(E∥z[I]∥2
2 + τ 2) ≤ 0}.
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By Jensen’s inequality, the bagging error is smaller than the averaged error of

each individual estimator as in (4.22) and the first term holds with probability

1. Therefore, we have:

P{∥xB − x⋆∥2 − C1(δ)((E∥z[I]∥2
2)1/2 + τ) ≤ 0}

≥P{
K∑

j=1
∥xB

j − x⋆∥2
2 −KC1

2(δ)(E∥z[I]∥2
2 + τ 2) ≤ 0}

=1− P{
K∑

j=1
∥xB

j − x⋆∥2
2 ≥ KC1

2(δ)(E∥z[I]∥2
2 + τ 2)}.

(3.7)

From this procedure, we can reduce the error bound for the bagging algorithm

to bound the sum of individual errors.

Let the random variable of error for each bagged estimator be x(I): ∥x(I)−

x⋆∥2
2 , where I denotes a bootstrap sample of size L and x(I) is the bagged

solution from ℓ1 minimization on the bootstrap sample I:

x(I) = arg min ∥x∥1 s.t. ∥y[I] − A[I]∥2
2 ≤ ϵ(I). The power of all errors for

each bagged estimators ∥xB
j − x⋆∥2

2 are realizations generated i.i.d. from the

distribution of ∥x(I) − x⋆∥2
2. We proceed with the proof using Lemma 4 that

establishes the tail bound of the sum of i.i.d. bounded random variables. It is a

generalization of Hoeffding’s inequality and the details of its proof can be found

in Appendix 3.8.

In this case, we consider the lower bound a and the upper bound b of the error

∥x(I)− x⋆∥2
2. Clearly this term is non-negative, hence, we can set a = 0. The

upper bound is obtained from the error bound of ℓ1-minimization in Theorem 3.

For all I:

P{∥x(I)− x⋆∥2
2 − C1

2(δ)∥z[I]∥2
2 ≤ 0} = 1. (3.8)
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According to the norm equivalence inequality, we have

∥z[I]∥2
2 ≤ (

√
L∥z[I]∥∞)2 ≤ (

√
L∥z∥∞)2 = L∥z∥2

∞. (3.9)

From this, we can set b = C1
2(δ)L∥z∥2

∞.

We can now apply the sum of i.i.d. bounded random variable in Theorem

4 to analyze our problem. By (3.7), the parameter ζ in (3.4) turns out to be:

ζ = C1
2(δ)(E∥z[I]∥2

2 + τ 2). Hence,

P{
K∑

j=1
∥xj − x⋆∥2

2 −Kζ ≥ 0} ≤ exp{−2K(ζ − E∥x(I)− x⋆∥)2

C1
4(δ)L2∥z∥4

∞
}. (3.10)

To simplify the right hand side, let us consider the expected bagged error:

E∥x(I)− x⋆∥2
2 = 1

|mL|
∑

I ∥x(I)− x⋆∥2
2. Our bound in (3.8) implies that

P{ 1
|mL|

∑
I
∥x(I)− x⋆∥2

2 ≤
1
|mL|

∑
I
C1

2(δ)∥zI∥2
2} = 1,

which is equivalent to

E∥x(I)− x⋆∥2
2 ≤

1
|mL|

∑
I
C1

2(δ)∥z[I]∥2
2 = E C1

2(δ)∥zI∥2
2 = C1

2(δ)E∥zI∥2
2.

(3.11)

From here, it is easy to see that

ζ − E∥x(I)− x⋆∥2
2

=C1
2(δ)(E∥z[I]∥2

2 + τ 2)− E∥x(I)− x⋆∥2
2

≥C1
2(δ)(E∥z[I]∥2

2 + τ 2)− C1
2(δ)E∥zI∥2

2 = C1
2(δ)τ 2.

(3.12)

The right hand side of (3.10) is upper bounded by exp{− 2Kτ4

L2∥z∥4
∞
}. Substituting
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this result into (3.7), we can obtain the result in our main bagging theorem.

3.5.2 Proof of Theorem 6: Bagging Performance Bound
of Bagging for Approximately Sparse Signals

In this section, we are working with the case when the true solution x⋆ is only

approximately sparse. In other words, its sparsity level may exceed s and the

s−sparse approximation error is no longer necessarily zero. Let ϵs denote the

sparse approximation error ϵs = C0(δ)s−1/2∥e∥1. The square root of the expected

power of each noise vector is (E∥z[I]∥2
2)1/2 =

√
L
m
∥z∥2. We consider the following

bound:

P{∥xB − x⋆∥2 − (ϵs + C1(δ)((E∥z[I]∥2
2)1/2 + τ)) ≤ 0}

=P{∥xB − x⋆∥2
2 − (ϵs + C1(δ)((E∥z[I]∥2

2)1/2 + τ))2 ≤ 0}

≥P{∥xB − x⋆∥2
2 − ϵs + C1(δ)(E∥z[I]∥2

2)1/2)2 + C1
2(δ)τ 2) ≤ 0}.

Set ζ ′ = (ϵs + C1(δ)(E∥z[I]∥2
2)1/2)2 + C1

2(δ)τ 2 and consider using the averages

of the errors 1
K

∑K
j=1 ∥xB

j − x⋆∥2
2 as an intermediate term. Repeating the same

proving technique as in (3.7) yields

P{∥xB − x⋆∥2
2 − ζ ′} ≥ P{

K∑
j=1
∥xB

j − x⋆∥2
2 −Kζ ′ ≤ 0}

= 1− P{
K∑

j=1
∥xB

j − x⋆∥2
2 ≥ Kζ ′}.

According to Lemma 4, we have:

P{
K∑

j=1
∥xB

j − x⋆∥2
2 ≥ Kζ ′} ≤ exp{−2K(ζ ′ − E∥x(I)− x⋆∥2

2)2

(b′ − a′)2 }. (3.13)
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Here, a′ = 0 and b′ = (ϵs + C1(δ)
√

L∥z∥∞)2. The lower bound a′ is set to zero

since the error for any bagged estimator ∥xB
j −x⋆∥2

2 is non-negative. The upper

bound b′ can be obtained using Theorem 3 and substituting in the upper bound

of the noise power as derived in (3.9).

Next, consider the term ζ ′−E∥x(I)−x⋆∥2
2 = (C0(δ)s−1/2∥e∥1+C1(δ)

√
L
m
∥z∥2)2+

C1
2(δ)τ 2 − E∥x(I)− x⋆∥2

2. We can upper bound the expected value of the error

of bagged estimator with same approach in (3.11). From Theorem 3, for all I:

P{∥x(I)− x⋆∥2
2 ≤ (ϵs + C1(δ)∥z[I]∥2)2} = 1. (3.14)

Since I takes value of all mL choices with equal probability, the following result

is implied from (3.14):

P{E∥x(I)− x⋆∥2
2 ≤ E(ϵs + C1(δ)∥z[I]∥2)2} = 1. (3.15)

Since f(x) = x2 is a convex function, applying Jensen’s inequality results in

(E∥z[I]∥2)2 ≤ E∥z[I]∥2
2.

Since the square root x1/2 is a increasing function of x, taking square root

preserves the sign of the inequality:

E∥z[I]∥2 ≤ (E∥z[I]∥2
2)1/2. (3.16)

35



Then, from (3.15), we have:

E∥x(I)− x⋆∥2
2 ≤ E(ϵs + C1(δ)∥z[I]∥2)2

= ϵ2
s + C1

2(δ)E∥z[I]∥2
2 + 2ϵsC1(δ)E∥z[I]∥2

(by (3.16))

≤ ϵ2
s + C1

2(δ)E∥z[I]∥2
2 + 2ϵsC1(δ)(E∥zI∥2

2)1/2

= (ϵs + C1(δ)(E∥z[I]∥2
2)1/2)2.

Finally, we can bound the term ζ ′ − E∥x(I)− x⋆∥2
2 as follows:

ζ ′ − E∥x(I)− x⋆∥2
2

=(ϵs + C1(δ)(E∥z[I]∥2
2)1/2)2 + C1

2(δ)τ 2 − E∥x(I)− x⋆∥2
2

≥((ϵs + C1(δ)(E∥z[I]∥2
2)1/2)2 + C1

2(δ)τ 2 − (ϵs + C1(δ)(E∥z[I]∥2
2)1/2)2

=C1
2(δ)τ 2.

One can observe that the upper bound of this difference is C1
2(δ)τ 2, which is

the same as in the case of the exact s−sparse signal in (3.12). The bound for

(3.13) can be upper bounded by

P{
K∑

j=1
∥xB

j − x⋆∥2
2 −Kζ ′ ≥ 0} ≤ exp{−2KC1

4(δ)τ 4

(b′)2 },

where b′ = (C0(δ)s−1/2∥e∥1 + C1(δ)
√

L∥z∥∞)2.
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3.6 Experimental Results

In this section, we perform sparse recovery on simulated data to study the

performance of our algorithm. In our experiment, all entries of A ∈ Rm×n

are i.i.d. samples from the standard normal distribution N (0, 1). The signal

dimension n = 200 and various numbers of measurements from 50 to 2000 are

explored. For the ground truth signals, their sparsity levels are all s = 50, and

the non-zero entries are sampled from the standard Gaussian with their locations

being generated uniformly at random. For the noise processes z, which entries

are sampled i.i.d. from N (0, σ2), with variance σ2 = 10−SNR/10∥Ax∥2
2, where

SNR represents the Signal to Noise Ratio. In our experiment, we add white

Gaussian noise to make the SNR = 0 dB. Gaussian model is chosen since it is

the most commonly used model for noise processes. Although its support is not

bounded, in numerical experiments, realizations of Gaussian are always finite

values. We use the ADMM (Boyd et al., 2011) implementation of Lasso to solve

all sparse regression problems, in which the parameter λ(K,L) balances the least

squares fit and the sparsity penalty.

We study how the bootstrap sampling ratio L/m as well as the number of

estimates K affects the result. In our experiment, we take K = 30, 50, 100, while

the bootstrap ratio L/m varies from 0.1 to 1. We report the Signal to Noise

Ratio (SNR) as the error measure for recovery: SNR(x, x⋆) = −10 log10 ∥x−

x⋆∥2
2/∥x⋆∥2

2 averaged over 20 independent trials. For all algorithms, we evaluate

λ(K,L) at different values from .01 to 200 and then select optimal values that

gives the maximum averaged SNR over all trials.

Bagging and BoLasso with the various parameters K, L and ℓ1 minimization
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are studied. The results are plotted in Figure 3.1. The colored curves show

the cases of Bagging with various number of estimates K. The intersections

of colored curves and the purple solid vertical lines at L/m = 100% illustrates

conventional Bagging with a full bootstrap rate. The grey circle highlights the

best performance and the grey area highlights the optimal bootstrap ratio L/m.

The performance of ℓ1 minimization is depicted by the black dashed lines, while

the best Bolasso performance is plotted using light green dashed lines. In those

figures, for each condition with a choice of K, L, the information available to

Bagging and Bolasso algorithms are identical, and ℓ1 minimization always has

access to all m measurements.

From Figure 3.1, we see that when m is small, Bagging can outperform ℓ1

minimization. As m decreases, the margin increases. The important observation

is that with a low number of measurements (m is between s to 2s: 50− 100, s

is the sparsity level), and a reduced bootstrap ratio L/m (60%− 90%), Bagging

beats the conventional choice of full bootstrap ratio 100% for all different choices

of K. Also with a reduced ratio and a small K our algorithm is already quite

robust and outperforms ℓ1 minimization by a large margin. When the number

of measurements is moderate m = 3s = 150, Bagging still beats the baseline;

however, the peaks take at full bootstrapping ratio and reduced bootstrap ratios

does not gain more benefits. Increasing the level measurement makes the base

algorithm more stable and the advantage of Bagging starts decaying.
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3.7 Summary

We extend the conventional Bagging scheme in sparse recovery with the boot-

strap sampling ratio L/m as adjustable parameters and derive error bounds for

the algorithm associated with L/m and the number of estimates K. Bagging

is particularly powerful when the number of measurements m is small. This

condition is notoriously difficult, both in terms of improving sparse recovery

results and obtaining tight bounds of theoretical properties. Despite these chal-

lenges, Bagging outperforms ℓ1 minimization by a large margin and the reduced

sampling rate has a larger margin over the conventional Bagging algorithm

L/m = 1. When the number of measurements m is s−2s, where s is the sparsity

level, the conventional Bagging achieves 270%−29% and the generalized Bagging

achieves 367%− 32% SNR improvement over the original ℓ1 minimization with

reduced sampling rate. Our Bagging scheme achieves acceptable performance

even with very small L/m (around 0.6) and relative small K (around 30 in our

experimental study). The error bounds for Bagging show that increasing K will

improve the certainty of the bound, which is validated in the simulation. For a

parallel system that allows a large number of processes to be run at the same

time, a large K is preferred since it in general gives a better result.

3.8 Appendix: Proof of Lemma 4

To prove of this lemma, We would need the Markov’s inequality for non-negative

random variables here. Let X be a non-negative random variable and suppose
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that EX exists. For any t > 0, we have:

P{X > t} ≤ EX

t
. (3.17)

We also need the upper bound of the moment generating function (MGF) of the

random variable Y . Suppose that a ≤ Y ≤ b, then for all t ∈ R,

E exp{tY } ≤ exp{tEY + t2(b− a)2

8 }. (3.18)

Back to Lemma 4, for t > 0,

P{
n∑

i=1
Yi ≥ nζ} = P{exp{

n∑
i=1

Yi} ≥ exp{nζ}}

= P{exp{t
n∑

i=1
Yi} ≥ exp{tnζ}}

using the Markov inequality in (3.17), we have:

P{
n∑

i=1
Yi ≥ nζ} ≤ exp{−tnζ}E{exp{t

n∑
i=1

Yi}}

= exp{−tnζ}E{Πn
i=1 exp{tYi}}

= exp{−tnζ}Πn
i=1E{exp{tYi}}

by upper bound for MGF in (3.18)

P{
n∑

i=1
Yi ≥ nζ} ≤ exp{−tnζ}(exp{tEY + t2(b− a)2

8 })n

= exp{−tnζ + tnEY + t2(b− a)2n

8 }.

The right hand side is a convex function with respect to t. Taking the derivative

with respect to t and set it zero, we obtain the optimal t, t⋆ = 4ζ−4EY
(b−a)2 . The right
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hand side is minimized at value:

exp{−t⋆nζ + t⋆nEY + t⋆2(b− a)2n

8 } = exp{−2n(ζ − EY )2

(b− a)2 }.
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(a) m = 50 (b) m = 75

(c) m = 100 (d) m = 150

Figure 3.1: Performance curves for Bagging with various sampling ratios L/m and
number of estimates K, the best performance of Bolasso as well as ℓ1 minimization. The
Purple lines highlighted conventional Bagging with L/m = 1. In all cases, SNR = 0
dB and the number of measurements m = 50, 75, 100, 150 from left to right. The grey
circle highlights the peak of Bagging, and the grey area highlights the bootstrap ratio
at the peak point.
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Chapter 4

JOBS: A Collaborative
Regression Scheme

In this chapter, we elaborate our proposed method: a robust global sparse

recovery strategy, named JOBS, which uses subsets of measurements to improve

sparse regression in challenging circumstances. Here, K measurement vectors are

generated from the original pool of m measurements via bootstrapping – each

bootstrap sample containing L elements – and then a joint-sparse constraint

is enforced to ensure support consistency among multiple predictors. The

final estimate is obtained by averaging over K estimators. We will study the

performance limits associated with different choices of bootstrap sampling ratio

L/m and number of estimates K is analyzed theoretically and use simulations

to validate our analysis.

(Part of the contents of this chapter has been published in (Liu, P, and

Tran, 2019) and part of the contents of this chapter has been under review for

Information Theory.)
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4.1 Introduction

In compressed sensing (CS) and sparse recovery, solutions to the linear inverse

problem in the form of least squares plus a sparsity-promoting penalty term

have been extensively studied. Formally speaking, a the measurements vector

y ∈ Rm is generated by the model y = Ax + z, where A ∈ Rm×n is the sensing

matrix, x ∈ Rn contains the sparse codes with very few non-zero entries and

z is noise vector with bounded energy. The problem of interest is to find the

sparse vector x given the sensing matrix A as well as the measurement vector y.

However, directly minimizing the sparsity level, which is the number of non-zeros

in x, is proven to be NP-hard (Natarajan, 1995). Instead, a convex regularizer

is preferable. Among various choices of sparsity-promoting regularizers, the ℓ1

norm is the most commonly used. The noiseless case is referred to as Basis

pursuit in (2.8). The noisy version is known as Basis pursuit denoising (Chen,

Donoho, and Saunders, 2001), or least absolute shrinkage and selection operator

(Lasso) (Tibshirani, 1996) as in (2.9) and (2.10).

The performance of ℓ1 minimization in recovering the true sparse solution has

been thoroughly investigated in the CS literature (Cohen, Dahmen, and DeVore,

2009; Candes, 2008; Candes, Romberg, and Tao, 2006; Donoho, 2006; Candess

and Romberg, 2007). Pioneer works study the correctness and robustness of ℓ1

minimization. They establish conditions for successful recovery based on the Null

Space Property (NSP) (Cohen, Dahmen, and DeVore, 2009) and the Restricted

Isometry Property (RIP) as well as quantify the recovery performance via the

RIP constant (Candes, 2008; Candes, Romberg, and Tao, 2006). Additionally,

under mild conditions on random sensing matrices, CS theory reveals that when
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the true solution is sparse and with enough measurements, then (2.8) recovers

the ground truth and solution to (2.9) is within a controllable neighborhood

of the true solution with high probability (Candes, 2008). Unfortunately, in

practice, measurements may not be available all at once. Moreover, certain

parts of the data might be missing and/or severely corrupted. For example, in

common streaming settings, measurements might be available sequentially or

in small batches. Waiting for all measurements to be available wastes valuable

processing time and buffering memory.

Alternatively, in sparse-representation-based classification, many schemes

use local observations and have shown promising performances (Aharon, Elad,

and Bruckstein, 2006; Yang et al., 2010; Liu, Tran, and Chin, 2016; Chen, Do,

and Tran, 2010; Bosworth et al., 2015b). The proper choices of measurement

subsets differ between applications and often require case-by-case treatment.

Obviously, prior knowledge should help significantly in the selection process.

For example, image datasets may have large variance overall but data remains

relatively homogeneous within local regions. Hence, choosing to work with

image patches often leads to satisfactory results in dictionary learning and

deep learning (Aharon, Elad, and Bruckstein, 2006; Krizhevsky, Sutskever, and

Hinton, 2012).

Without any prior information, a natural choice is to sample data uniformly

at random with replacement, termed bootstrap (Efron, 1979). This simple

sampling scheme has been shown to represent the entire system better than

specific predefined choices. It performs reasonably well when all measurements

are equally good. In CS theory, many random matrices have been proven to be
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excellent sensing matrices. These operators act by shuffling and recombining

entries of the original data samples, destroying any spatial or temporal structure

and making the measurements even more democratic.

To incorporate information from multiple estimates, the Bagging (Breiman,

1996) (Bootstrap Aggregating) framework has been proposed. It solves the

same objective function multiple times independently from bootstrap samples

and then averages over multiple predictions to obtain the final solution. Applying

the Bagging method in sparse regression has been shown to reduce estimation

error when the sparsity level s is high for signals with a specific sparsity pat-

tern (Breiman, 1996) and for general sparse signals (Liu, Chin, and Tran, 2019).

Although Bagging is a general procedure for regression and classification tasks,

in this work, we use Bagging to refer to employing Bagging procedure in sparse

recovery. However, individually solved predictors are not guaranteed to have the

same support, and in the worst case, their average can be quite dense – its sup-

port size growing up to the number of estimates times the true sparsity level. To

alleviate this problem, Bolasso (Bootstrapping Lasso) has been proposed (Bach,

2008a). Bolasso first recovers the common support using the intersection of all

bootstrapped estimators and then estimates the magnitudes by applying least

squares on the support. However, this strategy is very aggressive. When the

noise level is high, it commonly recovers the extremely sparse or even all-zero

solution.

in this work, to resolve the support consistency issue in Bagging and avoid

the overly aggressive two-step method Bolasso scheme, we propose enforcing

the row sparsity constraint among all predictors using the ℓ1,2 norm. The final
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estimate is obtained by averaging over all estimators. We name this whole

procedure JOBS (Joint-sparse Optimization from Bootstrap Samples). The

proposed method involves two key parameters: the bootstrap sample size L of

random sampling with replacement from the original m measurements and the

K number of those bootstrap vectors.

We will show that JOBS consistently and significantly outperform the base-

line ℓ1-minimization algorithm in the challenging case when the number of

measurements m is limited. Our previous work (Liu, Chin, and Tran, 2019) has

shown that Bagging improves the baseline ℓ1 minimization when the bootstrap

ratio L/m is smaller than the conventional full bootstrap sampling rate of 1.

An interesting discovery is that the optimal bootstrap ratio JOBS is even lower

than that of Bagging for similar optimal performance level. The row sparsity

prior among all estimators helps bring down the optimal bootstrap sampling

ratio and therefore less data is required for JOBS to achieve similar performance

as Bagging.

The main contributions of this paper are as follows. (i) We demonstrate

that employing the powerful bootstrapping idea, inspired from machine learning,

can improve the robustness of sparse recovery in noisy environments through

a collaborative recovery scheme. (ii) We provide an in-depth analysis of the

proposed JOBS strategy. Since the critical parameters in our method are the

bootstrap sample size L and the number of bootstrap measurement vectors K,

we derive analytically various error bounds with regards to these parameters.

(iii) We confirm our optimal parameter settings and validate our theoretical

framework via extensive simulations results. (iv) We extend the theoretical
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analysis to the Bagging framework, using the same setting with various bootstrap

sampling ratios and different number of estimates. (v) We present a natural

extension of the framework, employing a sub-sampling variation of the proposed

scheme (named Sub-JOBS) as an alternative to bootstrapping, and discuss the

relationship between the sub-sampling variation to bootstrap. (vii) Finally,

we demonstrate that the proposed JOBS recovery also benefits discriminative

tasks such as face recognition over the baseline Sparse Representation-based

Classification (SRC) framework, in which the conventional ℓ1 minimization is

employed (Wright et al., 2009).

The outline of this chapter is as follows. Section 4.2 illustrates the JOBS

procedure, demonstrate that it is a relaxation of ℓ1 minimization, and provide

relevant intuition for further analysis. Section 4.3 summarizes necessary theo-

retical background to analyze our algorithm. Section 4.4 then demonstrates all

the major theoretical results of JOBS and Bagging with a generic L/m ratio

and K – theoretical guarantee of JOBS solution and the worst case performance

bounds for JOBS as well as Bagging. Section 4.5 presents the analysis and

derivation of the results in the previous Section 4.4. Section 4.6 provides a

detailed comparison between JOBS, Bagging, Bolasso, and ℓ1 minimization on a

synthetic dataset. Finally, Section 4.7 illustrates the application of JOBS on the

classic classification task of face recognition using two real-world datasets.

48



Figure 4.1: The Diagram of JOBS framework. The ℓ1 minimization solution is
obtained from solving optimization directly using the original sensing matrix A and
the measurements vector y. To obtain JOBS solution, K bootstrap samples of size
L are generated from A and y. A row-sparsity regularization is applied across all
predictors. The final prediction is obtained by averaging.

4.2 Proposed Method: JOBS

4.2.1 JOBS

Our proposed method JOBS consists of three steps. First, we generate a boot-

strap sample I, in which each element is randomly sampled from the global

measurement set {1, 2, .., m}. We repeat this process K times and create K

bootstrap samples: {I1, I2, .., IK}. By taking corresponding rows from selected
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bootstrap samples, the data now contain K pairs of sensing matrices measure-

ments: {y[I1], A[I1]}, {y[I2], A[I2]}...., {y[IK ], A[IK ]}, where the operation (·)[I]

takes the rows of a matrix or vector supported on I. Second, we solve the col-

laborative recovery on those sets. The optimization problem has both noiseless

and noisy cases. The noiseless case problem is as follows. For all j = 1, 2, ..., K,

J12 : min ∥X∥1,2 s.t. y[Ij ] = A[Ij]xj, (4.1)

and the noisy counterpart can be expressed as: for some non-negative number

ϵJ > 0,

JϵJ

12 :X̂ = arg min ∥X∥1,2 s.t.
K∑

j=1
∥y[Ij ]−A[Ij]xj∥2

2 ≤ ϵJ . (4.2)

The proposed forms in J12, JϵJ

12 are in the form of block (group) sparse recov-

ery (Berg and Friedlander, 2008) and there are numerous optimization methods

for solving them such as (Boyd et al., 2011; Baron et al., 2009; Heckel and

Bolcskei, 2012; Sun et al., 2009; Bach, 2008b; Berg and Friedlander, 2008;

Wright, Nowak, and Figueiredo, 2009; Deng, Yin, and Zhang, 2011). in this

work, we focus on the noisy form in (4.2). The noiseless form is presented only

for the purpose of deeper understanding and analysis of theoretical properties.

Finally, the JOBS solution is obtained by averaging the columns of the

solution X̂ from (4.2):

JOBS: xJ = 1
K

K∑
j=1

x̂j. (4.3)

All supports (the locations of non-zero entries) of x̂1, x̂2, ..., x̂K are the same

because of the row sparsity constraint that we impose. Therefore, the sparsity
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level of the JOBS solution xJ is guaranteed to be preserved during the averaging

process unlike in the Bagging case. Figure 4.1 illustrates the entire proposed

JOBS framework.

4.2.2 Implementation of JOBS

We present the pseudo-code for solving JOBS optimization problem via Alter-

nating Direction Method of Multipliers(ADMM) updates. The key difference

to Bagging and the baseline ℓ1 minimization here is that we employ the soft-

thresholding operation on each row in JOBS (described in line 6 of Algorithm 1),

rather than the common entry-wise thresholding operation on each individual

sparse-code element in Bagging.

Algorithm 1 ADMM implementation of JOBS
Require: Sensing matrix and measurements vector (A, y), bootstrap ratio and

number of estimates (L/m, K), sparse balancing ratio λ, learning rate ρ,
maximum number of iterations MaxIter.
Initialization: X̂0, W 0, U 0 ← O (zero matrix of size n×K)

1: generate K bootstrap samples of length L:
{I1, I2, ..., IK}, and its corresponding {A[Ij], y[Ij ]}

2: for t = 1 : MaxIter do
3: X̂ update: x̂j ←

(A[Ij]∗A[Ij] + ρI)−1(A[Ij]∗y[Ij ] + ρ(w − u))
4: X̂ ← αX̂ + (1− α)W
5: W update: applying shrinkage operations on each row. For i = 1, 2, .., n,
6: w[i]←Shrinkageλ/ρ(x̂[i]− u[i]),

Shrinkageκ(x) = max(1− κ/∥x∥2, 0)x
7: U update: U = U + X −W
8: end for
9: JOBS solution is the average columns of solution matrix X̂: xJ = 1/K

∑
x̂j
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4.2.3 Intuitive Explanation of Why JOBS Works

JOBS recovers the true sparse solution because it is essentially a relaxation of

the original ℓ1 minimization problem in a multiple vectors fashion. Therefore, it

is not so surprising that JOBS relaxation can recover the true solution: exactly

in the noiseless case and within some neighbourhood of the ground truth in

noisy case.

We demonstrate that JOBS is a two-step relaxation procedure of ℓ1 mini-

mization. For a ℓ1 minimization as in equation (2.8) with a unique solution x⋆,

the multiple measurement vectors (MMV) equivalence is: for j = 1, 2, .., K

P1(K) : min ∥X∥1,1 s.t. y = Axj, (4.4)

where ∥X∥1,1 = ∑
i ∥x[i]T∥1 as mentioned in Table 2.1. We show that this MMV

form (4.4) is equivalent to the original problem (2.8). If the original problem

P1 in (2.8) has a unique solution x⋆, then the solution to the MMV problem

P1(K) in (4.4) yields a row sparse solution X⋆ = (x⋆, x⋆, ..., x⋆). This result

can be derived via contradiction. The reverse direction is also true: if the MMV

problem P1(K) has a unique solution, it implies that the P1 must also have a

unique solution. Details are stated in Lemma 18 in Section 4.9.2.

Since the ℓ1,1 norm of X essentially takes ℓ1 norm of its vectorized version,

it only enforces the sparsity for all elements in X without any structure such as

the support consistency across its columns. To obtain the JOBS form, We first

relax the ℓ1,1 norm in (4.4) to the ℓ1,2 norm. For all j = 1, 2, .., K

P12(K) : min ∥X∥1,2 s.t. y = Axj. (4.5)
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From here, to obtain J12 in (4.1), we further drop all constraints that are not in

Ij from (4.5) for estimator xj, j = 1, 2, ..., K. This two-step relaxation process

is illustrated in Figure 4.2. Figure 4.3 gives an geometric illustration of this

two-step relaxation using an example, where red surfaces are level sets of norms;

blue and yellow hyper-planes are constraints; pink point is the true solution and

black stars are optimization solutions. Detailed parameters are explained in

Section 4.9.4.

The noisy version can be obtained similarly. We formulate the MMV version

of the original ℓ1 problem; relax the regularizer from ℓ1,1 norm to ℓ1,2 norm, and

then further relax the objective function by dropping the constraints that are

not on the selected subset Ij for the j−th estimate xj to obtain the proposed

form JϵJ

12.

Because JOBS procedure is a two-step relaxation of the ℓ1 minimization, it

gives some insight of why JOBS algorithm can correctly recover sparse solution,

which is important for analyzing the algorithm. In Section 4.4, we will establish

the correctness of JOBS algorithm rigorously.

P1(K)

P1

P12(K) J12

Relax
objective

‖ · ‖1,1 →
‖ · ‖1,2

Relax
constraints

Drop Ic
j

Figure 4.2: JOBS framework is a two-step relaxation of ℓ1 minimization
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(a) P1(2): the ℓ1,1 norm minimization
over all constraints

(b) P12(2): the ℓ1,2 norm minimization
over all constraints

(c) J12 : I1 = {1}, I2 = {1}.
JOBS relaxation, drop one constraint.

Figure 4.3: JOBS is a two-step relaxation scheme of ℓ1 minimization. The first
relaxation: Relaxing from ℓ1,1 norm (Fig 4.3a ) to ℓ1,2 norm (Fig. 4.3b). The second
relaxation: further relaxing constraint in Fig 4.3b by dropping one constraint resulting
in Fig. 4.3c. Red surfaces are level sets; Blue and yellow hyper planes are constraints;
pink dot is the true solution and black dots are optimization solutions.

4.2.4 The sub-sampling Variation: Sub-JOBS

Bootstrapping (random sampling with replacement) creates duplicates within a

bootstrap sample. Although it simplifies the analysis, in practice, duplicate in-

formation does not add value. One natural extension of the proposed framework

is to use sub-sampling, which is sampling without replacement instead of with

replacement. The sub-sampling variation of Bagging is known as Subagging
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estimator (short for Subsampling Aggregating) in the literature (Bühlmann

and Yu, 2000; Buhlmann, 2003). We adopt a similar name for the sub-sampling

variation of the proposed method: Sub-JOBS, where the prefix“Sub” represents

sub-sampling. The only difference to the original scheme is that for each boot-

strap sample Ij, L distinct samples are generated by random sampling without

replacement from m measurements rather than the conventional bootstrapping

scheme. Note that, for any two different sub-sampling samples Ij, It, j ̸= t, there

may be shared samples.

in this work, all the theoretical results are for the bootstrapping version

for simplicity of presentation. The numerical results and discussion for both

the original bootstrapping scheme as well as the sub-sampling variation will be

shown in Section 4.6.2. The connection between bootstrap and sub-sampling is

also explained in details in Section 4.9.6.

4.3 Preliminaries

We summarize the theoretical results that are needed for understanding and

analyzing our algorithm mathematically. We offer a quick review of several

concepts including block sparsity, Null Space Property (NSP) (Cohen, Dahmen,

and DeVore, 2009), Restricted Isometry Property (RIP) (Candes, 2008) for

classical sparse signal recovery as well as Block Null Space Property (BNSP) (Gao,

Peng, and Zhao, 2015), Block Restricted Isometry Property (BRIP) (Eldar and

Mishali, 2009) for block sparse signal recovery.
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4.3.1 Block Sparsity

Since row sparsity is a special case of block sparsity (or more precisely, the

non-overlapping group sparsity) (Eldar and Mishali, 2009), we therefore can

employ the tools from block sparsity to analyze our problem. Block sparsity is a

generalization of the standard ℓ1 sparsity. To start, we recall its definition.

Definition 7 (Block Sparsity, from (Eldar and Mishali, 2009)) x ∈ Rn

is s−block sparse with respect to a partition B = {B1,B2, ...,Bb} of {1, 2, ..., n} if

for x = (x[B1], x[B2], ..., x[Bb]), the block sparsity level is ∥x∥0,2|B := ∑b
i=1 1{∥x[Bi]∥2 >

0} ≤ s and the relaxation ℓ1,2 norm is ∥x∥1,2|B := ∑b
i=1 ∥x[Bi]∥2.

The block sparsity level ∥x∥0,2|B counts the number of non-zero blocks of

the given a block partition B. The ℓ1,2 norm ∥x∥1,2|B := ∑b
i=1 ∥x[Bi]∥2 is one of

its convex relaxations. For the same sparse vector x, its block sparsity level

with respect to a non-overlapping block partition is in general smaller than its

sparsity level.

The ℓ1,2 minimization is a special case of block sparse minimization, with

each element in the block partition containing all indices of a row and the details

are in Section 4.9.1. The results of block sparsity such as BNSP, BRIP can be

useful tools to analyze our algorithm.

4.3.2 Block-Null Space Property (BNSP)

For standard sparse recovery, its null sparse property as described in Definition 1

and restricted isometry property as in Definition 2 are important properties

for its performance bounded. Similarly, for block sparse signal recovery, there
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are block Null Space Property (BNSP) and Block Restricted Isometry Property

(BRIP) and crucial to study the theoretical performances.

We will stated them in the following sections. BNSP is obtained from a more

general result of BNSP of ℓp,2 block norm stated in (2.6) from (Gao, Peng, and

Zhao, 2015) taking p = 1.

Definition 8 (BNSP, from (Gao, Peng, and Zhao, 2015)) Every s−block

sparse signal x with respect to block assignment B, is a unique solution to

min ∥x∥1,2|B s.t. y = Ax if and only if matrix A satisfies block null space

property over B of order s: for any set S ⊂ {1, 2, ..., n} with card(S) ≤ s,

∥v[S] ∥1,2|B < ∥v[Sc] ∥1,2|B,

for all v ∈ Null(A)\{0}, where v[S] denotes the vector equal to v on a block

index set S and zero elsewhere.

4.3.3 Block-Restricted Isometry Property (BRIP)

Although NSP directly characterizes the ability of success for sparse recovery,

verifying the BNSP condition is computationally intractable and it is also not

suitable for quantifying performance in noisy cases since it is a binary (True

or False) metric instead of a continuous one. Restricted Isometry Properties:

BRIP (Eldar and Mishali, 2009) are introduced for those purposes.

Definition 9 (BRIP, from (Eldar and Mishali, 2009)) A matrix A with

ℓ2-normalized columns satisfies Block RIP with respect to block partition B of

order s if there exists a constant δs|B(A) ∈ [0, 1) such that for every s−block
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sparse v ∈ Rn over B,

(1− δs|B(A))∥v∥2
2 ≤ ∥Av∥2

2 ≤ (1 + δs|B(A))∥v∥2
2. (4.6)

If we take the location of each entry as one block, the block sparsity RIP

reduces to the standard RIP condition. Therefore, BRIP is a generalization of

RIP.

4.3.4 Noisy Recovery Bounds based on RIP Constants

It is well-known that certain RIP conditions imply NSP conditions for both

classical sparse recovery and block sparse recovery. More specifically, if the RIP

constant in the order 2s is strictly less than
√

2− 1, then it implies that NSP is

satisfied in the order of s. This applies to sparse recovery (Candes, 2008) and

block sparse recovery (Eldar and Mishali, 2009).

Stated below are the error bound for conventional sparse recovery based on

ℓ1 minimization and the RIP constant as well as for block sparse recovery based

on BRIP constant. According to Theorem 3, the sparse recovery bound is

∥xℓ1 − x⋆∥2 ≤ C0(δ)s−1/2∥e∥1 + C1(δ)ϵ,

where C0(·), C1(·) are certain functions depending on the RIP constant δ2s(A).

They are in the form of non-decreasing functions of δ: C0(δ) = 2(1−(1−
√

2)δ)
1−(1+

√
2)δ and

C1(δ) = 4
√

1+δ
1−(1+

√
2)δ .

Theorem 10 (Block sparse recovery error bound, from (Eldar and

Mishali, 2009)) Let y = Ax⋆ + z, ∥z∥2 ≤ ϵ; x0|B is s−block sparse and

minimizes ∥x−x⋆∥2 over all s−block sparse signals, and the vector eB represents
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the s-sparse approximation error vector eB = x⋆ − x0|B. If δ2s|B <
√

2− 1, then

there exists a scaler δ such as δ2s|B(A) ≤ δ <
√

2− 1, and the solution of block

sparse minimization xℓ1,2|B satisfies

∥xℓ1,2|B − x⋆∥2 ≤ C0(δ)s−1/2∥eB∥1,2|B + C1(δ)ϵ,

where C0(·), C1(·) are the same non-decreasing functions of δ as in Theorem 3.

4.3.5 Sample Complexity for i.i.d. Gaussian or Bernoulli
Random Matrices

With A being a random matrix in which entries are identically and independently

distributed (i.i.d.), previous work in (Baraniuk et al., 2008) builds a relationship

between the sample complexity for random matrices to a desired RIP constant

as a direct implication from Johnson-Lindenstrauss lemma as stated below.

Theorem 11 (Sample Complexity, from (Baraniuk et al., 2008)) Let

entries of A ∈ Rm×n from Gaussian distribution N (0, 1/m) or Bernoulli 1/
√

m

Bern(0.5). Let ξ, δ ∈ (0, 1), and if m ≥ βδ−2(s ln(n/s) + ln(ξ−1)) for a universal

constant β > 0, then P(δs(A) ≤ δ) ≥ 1− ξ.

By rearranging the terms in this theorem, the sample complexity can be

derived: when m is sufficiently large, which is in the order of O(2s ln(n/2s)),

there is a high probability that the RIP constant of order 2s is sufficiently small.
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4.4 Theoretical Results

4.4.1 BNSP for JOBS

Similarly to previous CS analysis in (Candes, 2008), we first give the null space

property to characterize the exact recovery condition of our algorithm. The

BNSP for JOBS is stated as follows.

Lemma 12 (BNSP for JOBS) A set of bootstrapped sensing matrices

{A[I1], A[I2], ..., A[IK ]} satisfies BNSP of order s if

∀ (v1, v2, ..., vK) ∈ Null(A[I1]) × Null(A[I2])... × Null(A[IK ])\{(0, 0, ..., 0)},

such that for all S :

S ⊂ {1, 2, ..., n},card(S) ≤ s, ∥V [S]∥1,2 < ∥V [Sc]∥1,2.

Theorem 13 (Correctness of JOBS) The noiseless JOBS program J12 in

(4.1) successfully recovers all the s−row sparse solution if and only if

{A[I1], A[I2], ..., A[IK ]} satisfies BNSP of the order of s described in Lemma 12.

The solution is of the form X⋆ = (x⋆, x⋆, ..., x⋆), where x⋆ is the unique true

sparse solution. Then, the JOBS solution xJ , which is the average over columns

of X⋆, is x⋆.

The BNSP of JOBS characterizes the existence and uniqueness of the solution,

and Theorem 13 establishes the correctness of JOBS. Since the final estimate

the average of the solution, the latter part of Theorem 13 implies that the JOBS

solution is also optimal xJ = x⋆.

The first part of Theorem 13 for the BNSP of JOBS can be obtained directly

from Theorem 8, which is a special case in (Gao, Peng, and Zhao, 2015), whereas
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the second part for the correctness of the JOBS solution can be derived by

showing that X⋆ is feasible and achieves the lower bound of the ℓ1,2 norm among

all feasible solutions. The proof of this Theorem is shown in Section 4.5.1.

4.4.2 BRIP for JOBS

Let the JOBS block diagonal matrix AJ = block_diag(A[I1], A[I2], ..., A[IK ]),

where block_diag denotes the operator that stacks matrices as a block diagonal

matrices, and B = {B1,B2, ...,Bn} is the block partition of all indices of vectorized

matrix X ∈ Rn×K : vec(X) ∈ RnK that correspond to the row sparsity pattern.

The vectorized JOBS formulation can be written as:

minvec(X)∈RnK∥vec(X)∥1,2|B s.t.

∥vec(y[I1], y[I2], ..., y[IK ])

− block_diag(A[I1], A[I2], ..., A[IK ])vec(X)∥2
2 ≤ ϵJ

(4.7)

Let δs|B denote the row sparse BRIP constant of order s over a given block

partition B and δs denote the standard RIP constant of order s. We have the

following proposition for JOBS.

Proposition 14 (BRIP for JOBS) For all s ≤ n, s ∈ Z+,

δs|B(AJ) = max
j=1,2,...,K

δs(A[Ij]). (4.8)

It is not surprising at all that the BRIP of JOBS depends on the worst

case among all K bootstrapped matrices since a smaller RIP constant indicates

better recovery ability. If there are duplicated rows of A[Ij] resulted from

bootstrapping, they are removed before computing the RIP constant scaled by a
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value related to the occurrence. The proof of this proposition is elaborated in

Section 4.9.5.

4.4.3 Noisy Recovery for JOBS

Next, we analyze the error bound for JOBS using BNSP and BRIP in the

noisy case. Note that our theorems are based on deterministic sensing matrix,

measurements and noise vectors: A, y, z and the randomness in our framework

is introduced by the bootstrap sampling process.

From previous analysis, we have established that if the BRIP constant of

order 2s is less than
√

2 − 1, it implies that {A[I1], A[I2], ..., A[IK ]} satisfies

BNSP of order s. Then, Theorem 13 establishes that the optimal solution to J12

in (4.1) is the s−row sparse signal X⋆ with every column being x⋆. Similar to

the bound in Theorem 10, the reconstruction error is determined by the s−block

sparse approximation error and the noise level. The Hoeffding’s tail bound is

used to obtain the worst case performance for JOBS. The following theorem

states the performance bound for JOBS when the ground truth signal x⋆ is

exactly s−sparse.

Theorem 15 (JOBS: error bound for ∥x⋆∥0 = s ) Let y = Ax⋆ + z,

∥z∥2 < ∞. If the BRIP constant of the JOBS matrix δ2s|B(AJ) <
√

2 − 1,

then there exists a constant related to parameters (L, K) such that, δ2s|B(AJ) ≤

δL,K <
√

2− 1 and when the true solution is exactly s−sparse, for any τ > 0,

JOBS solution xJ satisfies

P
{
∥xJ − x⋆∥2 ≤ C1(δL,K)(

√
L

m
∥z∥2 + τ)

}
≥ 1− exp −2Kτ 4

L∥z∥4
∞

, (4.9)
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where C1(·) is the same non-decreasing functions of δ as in Theorem 3.

The relationship to the upper bound of RIP constant is discussed in Sec-

tion 4.4.5. In the more general case, when the sparsity level of x⋆ possibly

exceeds s, there is no guarantee that the non s−sparse part will be preserved

by the relaxations in the JOBS framework. Namely, let XJ⋆ denote the true

solution for the noiseless row sparse recovery program J12. If BNSP of order

greater than s is not guaranteed to be satisfied, then we cannot guarantee that

XJ⋆ = X⋆. However, if x⋆ is nearly s−sparse, then XJ⋆ is not far away from

X⋆. Since X̂, recovered from JϵJ

12 in (4.2), is close to XJ⋆ via the block sparse

recovery bound, X̂ must also be close enough to X⋆. This result is stated in

the following theorem.

Theorem 16 (JOBS: error bound for the general case) Let y = Ax⋆ +z,

∥z∥2 <∞. If the BRIP constant of the JOBS matrix δ2s|B(AJ) <
√

2− 1, then

there exists a constant related to parameters (L, K) such that, δ2s|B(AJ) ≤ δL,K <
√

2− 1, and for any τ > 0, JOBS solution xJ satisfies

P
{
∥xJ − x⋆∥2 ≤ ∥e∥2 + C1(δL,K)(

√
L

m
∥Ae + z∥2 + τ)

}

≥ 1− exp −2Kτ 4

L(∥A∥∞,1∥e∥∞ + ∥z∥∞)4 ,

(4.10)

where C1(·) is the same non-decreasing function of δ as in Theorem 3; e is the

s-sparse approximation error: e = x⋆ − x0 with x0 containing the largest s

components of the true solution x⋆; and ∥A∥∞,1 = maxi=1,2,...,m(∥a[i]T∥1) denotes

the largest ℓ1-norm of all rows of A.

The error bound in Theorem 16 relates to s−sparse approximation error
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as well as the noise level, which is similar to ℓ1 minimization and block sparse

recovery bounds. JOBS also introduces a relaxation error bounded by ∥e∥2. The

smaller the power of e, the lower the upper bound will be. When e = 0, x⋆ is

exactly s−sparse, then Theorem 16 reduces to Theorem 15.

We use Theorem 16 to explain the case when the number of measurements is

low compared to the true sparsity level s. The trade-offs for a good choice of the

bootstrap sample size L and the number of bootstrap samples K are discussed

in Section 4.4.5.

4.4.4 Comparison to Noisy Recovery for Bagging in Sparse
Recovery

We also derive the performance bound for employing the Bagging scheme in

sparse recovery problems, in which the final estimate is the average over multiple

estimates solved individually from bootstrap samples. We derive the theoretical

results for the case that the true signal x⋆ is exactly s−sparse and the general

case that it is only approximately s−sparse. The results are in previous chapter

in Theorem 5 and Theorem 6.

It is interesting to contrast the error bound for JOBS compared to Bagging.

The RIP condition for Bagging is the same as the RIP condition for JOBS,

under the assumption that all bootstrapped matrices A[Ij]s are well-behaved in

the worst case analysis. When ∥x⋆∥0 = s, the bound in Bagging is worse than

JOBS since the certainty for algorithm is at least 1− exp −2Kτ4

L2∥z∥4
∞

, compared to

the certainty bound 1− exp −2Kτ4

L∥z∥4
∞

in JOBS. With a L squared term instead of

L in the denominator, the certainty bound is larger for JOBS given the same
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choices of L and K.

As for the general signal recovery bound of Bagging in Theorem 6, the error

bound for bagging does not contain the multiple vector measurements relaxation

error as the one in JOBS. On the other hand, the uncertainty term in the

exponential term involves more complicated terms. This bound is nontrivial

comparing to the one for JOBS. Although the s−sparse assumption limits to

exact s−sparse signals, for signals that are approximately s−sparse, or with low

energy in the s−sparse approximation (i.e., ∥e∥1 is small), the behavior would

be close to that of the exact s−sparse case.

4.4.5 Parameters Selection from Theoretical Analysis

Our analysis of error bounds of JOBS actually guides us to the optimal choices

of two important parameters: the bootstrap sample ratio L/m and the number

of bootstrap samples K. We focus on analyzing how the error bound in (4.10)

of Theorem 16 provides guidance to optimal parameter setting.

First, consider the sampling ratio L/m. The BRIP constant in general

decreases with increasing L. The intuition behind this trend is that taking more

measurements tends to gain a better ability to preserve the information of the

signal after projection. The RIP constant for ℓ1 minimization was proven to be

smaller with high probability for a larger number of measurements (Baraniuk

et al., 2008), i.e., a larger L indicates a smaller RIP constant. Although the

result is based on the assumption that the sensing matrix is either random

Gaussian or Bernoulli, in practice, for general matrices, more measurements

leads to better recovery which indicates a smaller upper bound of RIP constant.
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Increasing L decreases the upper bound of RIP constant for each A[Ij].

According to the BRIP constant for JOBS that we have proven in Proposition 14,

the BRIP is the maximum RIP constant over K bootstrapped matrices. With

increasing L, the upper bound of RIP constant for each A[Ij] increases, therefore

BRIP constant will also become smaller. Next, since C1(δ) is a non-decreasing

function of δ and a larger L results in a smaller δ, one can see that C1(δ) is also

smaller. On the other hand, the second factor associated with the noise power

term,
√

L/m, suggests a smaller L to obtain a smaller upper bound for the noise

energy.

Combining these two factors indicates that the best L/m ratio should be

somewhere in between. In the experimental results, we show that when m is

small, varying L/m from 0−1 creates peaks with the largest value at L/m ≈ 0.4.

However, the first factor, which is the relationship between the BRIP constant

and L, is dominating in the stable case (when m is large), so that larger L leads

to better performances.

As for the number of estimates K, increasing K has a weak effect in increasing

the BRIP constant. However, the maximum is taken over K RIP constants.

Consequently, for any JOBS matrix AJ generated from K +1 bootstrap samples,

there exists one generated from K bootstrap samples with smaller or equal BRIP

constant. Furthermore, the sample complexity result in (Baraniuk et al., 2008)

shows that for the random matrices with the same sizes, the RIP constants

are fairly concentrated. It is reasonable to deduce that increasing K does not

increase the BRIP by a significant margin. In the sparse regression simulation,

we find that increasing K in general does not reduce the performance.
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The number of estimates K mainly affects the uncertainty in (4.10), which

decays exponentially with K, so a large K is indeed preferable in this sense. The

certainty can be written as p(K) = 1 − exp{−αK}, for some constant α > 0.

By taking the derivative p′(K) = α exp{−αK} > 0, we know that the growth

rate of p(x) is non-negative and decreasing with K. This phenomenon is also

verified in our simulation. Although increasing K will in general improve the

results, the performance tends to be flattened out, and the improvement margin

decreases.

4.5 Proofs of Main Theoretical Results in Sec-
tion 4.4

4.5.1 Proof of Theorem 13: Correctness of JOBS

The first part of Theorem 13 can be directly shown from the BNSP for block

sparse minimization problems as in (Eldar and Mishali, 2009). We only need to

show the procedure to prove the latter part. If BNSP of order s is satisfied for

{A[I1], A[I2], ..., A[IK ]}, then each bootstrap matrix A[Ij] satisfies the Null

Space Property (NSP) of order s, which is proven in Section 4.9.3. Consequently,

for all j = 1, 2, ..., K, x⋆ also turns out to be the optimal solution to all estimators:

x⋆ = arg minxj
∥xj∥1 s.t. y[Ij ] = A[Ij]xj.

For X to be a feasible solution, consider its ℓ1,2 norm, we have:

∥X∥1,2 =
n∑

i=1
(

K∑
j=1

(x2
ij))1/2 =

√
K

n∑
i=1

( 1
K

K∑
j=1

(x2
ij))1/2.
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By concavity of the square root, we have

∥X∥1,2

≥
√

K
n∑

i=1

1
K

K∑
j=1

√
x2

ij =
√

K
1
K

K∑
j=1

n∑
i=1
|xij|

≥
√

K
1
K

K∑
j=1

min
xj :x1j ,...,xnj

A[Ij ]xj=y[Ij ]

n∑
i=1
|xij|

=
√

K
1
K

K∑
j=1

min
xj :A[Ij ]xj=y[Ij ]

∥xj∥1

=
√

K∥x⋆∥1.

Since X⋆ = (x⋆, x⋆, ..., x⋆) is a feasible solution and ∥X⋆∥1,2 = ∥(x⋆, x⋆, ..., x⋆)∥1,2

=
√

K∥x⋆∥1, it achieves the lower bound. By the uniqueness part of the theorem,

we can concluded that X⋆ is the unique solution. Since the JOBS solution takes

the average over columns of multiple estimates, we can easily deduce that JOBS

returns the correct answer.

4.5.2 Proof of Theorem 15: JOBS Performance Bound
of for Exactly s−sparse Signals

If the true solution is exactly s−sparse, the sparse approximation error is zero.

Then the noise level of performance only relates to measurements noise. For ℓ1

minimization, z is the noise vector and we use matrix Z = (z[I1], z[I2], ..., z[IK ])

to denote the noise matrix in JOBS. We bound the distance of ∥Z∥2,2 to its

expected value using Hoeffding’s inequalities stated in (Hoeffding, 1963).

Theorem 17 (Hoeffding’s Inequalities) Let X1, ..., Xn be independent bounded

random variables such that Xi falls in the interval [ai, bi] with probability one.
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Denote their sum by Sn = ∑n
i=1 Xi. Then for any ζ > 0, we have:

P
{

Sn − ESn ≥ ζ
}
≤ exp −2ζ2∑n

i=1(bi − ai)2 and (4.11)

P
{

Sn − ESn ≤ −ζ
}
≤ exp −2ζ2∑n

i=1(bi − ai)2 . (4.12)

Here, the entire noise vector is z = Ax− y = (z[1], z[2], ..., z[m])T , ∥z∥∞ =

maxi=1,2,...,m |z[i]| < ∞. We consider the matrix Z ◦ Z = (ξji), where ◦ is the

entry-wise product. The quantity that we are interested in ∥Z∥2,2 is the sum of

all entries in Z ◦Z. Each element in this matrix Z ◦Z is drawn i.i.d from the

squares of entries in z: {z[1], z[2], ..., z[m]} with equal probability. Let Ξ be the

underlining random variable and Ξ obeys a discrete uniform distribution:

P(Ξ = z2[i]) = 1
m

, i = 1, 2, ..., m. (4.13)

The lower and upper bound of Ξ is then

0 ≤ min
i

z2[i] ≤ Ξ ≤ ∥z∥2
∞. (4.14)

We use zero as lower bound for Ξ instead of the minimum value to simplify the

terms. The expected power of Z is

E∥Z∥2
2,2 = KL

m
∥z∥2

2. (4.15)

Applying Hoeffding’s inequality for any τ > 0 leads to

P{∥Z∥2
2,2 − E∥Z∥2

2,2 − τ ≤ 0} ≥ 1− exp −2τ 2

KL∥z∥4
∞

. (4.16)
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Next, let X̂ be the solution of JϵJ

12. Theorem 10 yields

P{∥X̂ −X⋆∥2
2,2 − C2

1(δ)∥Z∥2
2,2 ≤ 0} = 1. (4.17)

Let ∆ denote the difference between the solution to the truth solution scaled by

the C1 constant. Hence, ∆ = 1
C1(δ)∥X̂ −X⋆∥2,2 and (4.17) becomes

P{∆− ∥Z∥2,2 ≤ 0} = 1. (4.18)

Since Z depends on the choice of I1, I2, ..., IK , we derive the typical performance

by studying the distance of the solution to the expected noise level of JOBS.

P{∆2 − E∥Z∥2
2,2 − τ 2 ≤ 0}

= P{∆2 − ∥Z∥2
2,2 + ∥Z∥2

2,2 − E∥Z∥2
2,2 − τ 2 ≤ 0}

≥ P{∆2 − ∥Z∥2
2,2 ≤ 0, ∥Z∥2

2,2 − E∥Z∥2
2,2 − τ 2 ≤ 0}

(The first and the second parts are independent)

= P{∆2 − ∥Z∥2
2,2 ≤ 0}P{∥Z∥2

2,2 − E∥Z∥2
2,2 − τ 2 ≤ 0}

(using (4.18) and (4.16))

≥ 1− exp −2τ 4

KL∥z∥4
∞

.

In summary, this procedure results in

P{∆2 ≤ E∥Z∥2
2,2 + τ 2} ≥ 1− exp −2τ 4

KL∥z∥4
∞

. (4.19)
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We can bound the squared error as follows:

P{∆ ≤ (E∥Z∥2
2,2)1/2 + τ}

= P{∆2 ≤ E∥Z∥2
2,2 + τ 2 + 2τ(E∥Z∥2

2,2)1/2}

≥ P{∆2 ≤ E∥Z∥2
2,2 + τ 2}.

(4.20)

Combining (4.19) and (4.20), we arrive at

P{∆ ≤ (E∥Z∥2
2,2)1/2 + τ} ≥ 1− exp −2τ 4

KL∥z∥4
∞

. (4.21)

Since f(x) = ∥x− x⋆∥2
2 is convex, we can apply Jensens’ inequality to establish:

∥ 1
K

K∑
j=1

x̂j − x⋆∥2
2 ≤

1
K

K∑
j=1
∥x̂j − x⋆∥2

2. (4.22)

The JOBS estimate is averaged column-wise over all estimates: xJ = 1
K

∑K
j=1 x̂j .

Therefore, equation (4.22) is essentially

P{∥xJ − x⋆∥2
2 −

1
K
∥X̂ −X⋆∥2

2,2 ≤ 0} = 1. (4.23)

Now, we consider the typical performance of the JOBS solution and recall

that ∆ denotes the difference between the solution to the truth solution scaled
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by the C1: ∆ = 1
C1(δ)∥X̂ −X⋆∥2,2. We can then bound the probability of error.

P{∥xJ − x⋆∥2 −
C1(δ)√

K
((E∥Z∥2

2,2)1/2 + τ) ≤ 0}

=P{∥xJ − x⋆∥2 −
1√
K
∥X̂ −X⋆∥2

+ 1√
K
∥X̂ −X⋆∥2 −

C1(δ)√
K

((E∥Z∥2
2,2)1/2 + τ) ≤ 0}

≥P{∥xJ − x⋆∥2 −
1√
K
∥X̂ −X⋆∥2 ≤ 0, ∆ ≤ (E∥Z∥2

2,2)1/2 + τ}

=P{∥xJ − x⋆∥2 −
1√
K
∥X̂ −X⋆∥2 ≤ 0}P{∆ ≤ (E∥Z∥2

2,2)1/2 + τ}

(by (4.23) and (4.21))

≥1− exp −2τ 4

KL∥z∥4
∞

.

Substituting the expected noise level derived in (4.15) yields

P{∥xJ − x⋆∥2 ≤ C1(δ)(
√

L

m
∥z∥2 + τ√

K
)} ≥ 1− exp −2τ 4

KL∥z∥4
∞

.

By replacing τ/
√

K with τ , the quantity on the right hand side of the equation

then becomes 1− exp −2Kτ4

L∥z∥4
∞

and we have proved the theorem.

4.5.3 Proof of Theorem 16: JOBS Performance Bound
of JOBS for General Sparse Signals

Now we consider the case that the BNSP is only satisfied for order s whereas

there is no s−sparse assumption on the true solution. Therefore, the JOBS

algorithm can only guarantee the correctness of the s−row-sparse part and our
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best hope is to be able to recover the best s−sparse approximation of the true

solution. Let x0 be the best s−sparse approximation of the true solution x⋆ and

e denote the difference of the sparse approximation: e = x⋆ − x0. We rewrite

the measurements to include the s−sparse approximation error as part of noise:

for j = 1, 2, ..., K,

y[Ij ] = A[Ij]x⋆ + z[Ij ]

= A[Ij](x0 + (x⋆ − x0)) + z[Ij ]

= A[Ij]x0 + z̃j,

(4.24)

where z̃j = A[Ij](x⋆ − x0) + z[Ij ] = A[Ij]e + z[Ij ] .

To bound the distance of solution of JϵJ

12: X̂ to the true solution X⋆, we

evaluate its distance to the exactly s row-sparse matrix X0 = (x0, x0, ..., x0) as

an intermediate step. Since e = x⋆ − x0, we have: X⋆ −X0 = (e, e, ..., e) and

∥X0 −X⋆∥2,2 =
√

K∥e∥2. Then, the distance of X̂ to the true solution X⋆

can be decomposed into two components:

∥X̂ −X⋆∥2,2 = ∥X̂ −X0 + X0 −X⋆∥2,2

≤ ∥X̂ −X0∥2,2 + ∥X0 −X⋆∥2,2

= ∥X̂ −X0∥2,2 +
√

K∥e∥2.

(4.25)

To bound the first component in (4.25): ∥X̂ − X0∥2,2, the procedure is

similar to the prove the exactly s−sparse case. We use the recovery guarantee

from the row sparse recovery result in Theorem 10, which gives an upper bound
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of this term associated with the power of the noise matrix Z̃ = (z̃1, z̃2, ..., z̃K):

∥Z̃∥2
2,2 =

K∑
j=1
∥z̃j∥2

2 =
K∑

j=1
∥A[Ij]e + z[Ij ] ∥2

2

=
K∑

j=1

∑
i∈Ij

(⟨a[i], e⟩+ z[i])2.

(4.26)

Next, let Ξ̃ = (⟨a[i], e⟩+ z[i])2 with a[i], z[i] generated uniformly from all rows of

A and z. Since Ξ̃ is non-negative, Ξ ≥ 0, the lower bound is 0. Its upper bound

can be derived using the Hölders inequality:

Ξ̃ = (⟨a[i], e⟩+ z[i])2 ≤ (∥⟨a[i], e⟩∥1 + ∥z∥∞)2

≤ (∥a[i]T∥1∥e∥∞ + ∥z∥∞)2

≤ (max
i
∥a[i]T∥1∥e∥∞ + ∥z∥∞)2

= (∥A∥∞,1∥e∥∞ + ∥z∥∞)2,

(4.27)

where ∥A∥∞,1 = maxi=1,2,..,m ∥a[i]T∥1. Since A is deterministic with all bounded

entries, the quantity ∥A∥∞,1 is bounded.

Also, from (4.26), the expectation of ∥Z̃∥2
2,2 is

E∥Z̃∥2
2,2 =

K∑
j=1

∑
i∈Ij

E(⟨a[i], e⟩)2 + 2Ez[i]⟨a[i], e⟩+ Ez[i]2

= KL

m
∥Ae + z∥2

2.

(4.28)

Obtaining the the lower and upper bound of Ξ̃, we can then apply Hoeffding’s

inequality to get the tail bound of ∥Z̃∥2
2,2. It can be written as follows: for any
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τ > 0,

P{∥Z̃∥2
2,2 − E∥Z̃∥2

2,2 − τ ≤ 0} ≥ 1− exp −2τ 2

KL(∥A∥∞,1∥e∥∞ + ∥z∥∞)4 . (4.29)

Similarly, as in the proof of Theorem 15, here we consider the distance from

the recovered solution X̂ to the exactly s−row-sparse solution X0. Let ∆̃ be

∆̃ = 1
C1(δ)∥X̂ −X0∥2,2 and, according to Theorem 10, we have

P{∥∆̃− ∥Z̃∥2,2 ≤ 0} = 1. (4.30)

Combing (4.29) and (4.30) allows us to conclude that

P{∆̃2 − E∥Z̃∥2
2,2 − τ 2 ≤ 0}

= P{∆̃2 − ∥Z∥2
2,2 + ∥Z̃∥2

2,2 − E∥Z̃∥2
2,2 − τ 2 ≤ 0}

≥ P{∆̃2 − ∥Z∥2
2,2 ≤ 0, ∥Z̃∥2

2,2 − E∥Z̃∥2
2,2 − τ 2 ≤ 0}

= P{∆̃2 − ∥Z∥2
2,2 ≤ 0}P{∥Z̃∥2

2,2 − E∥Z̃∥2
2,2 − τ 2 ≤ 0}

≥ 1− exp −2τ 4

KL(∥A∥∞,1∥e∥∞ + ∥z∥∞)4 .

We can then bound the expected square root of noise power:

P{∆̃ ≤ (E∥Z̃∥2
2,2)1/2 + τ} (by (4.20))

≥ P{∆̃2 ≤ E∥Z̃∥2
2,2 + τ 2}

≥ 1− exp −2τ 4

KL(∥A∥∞,1∥e∥∞ + ∥z∥∞)4 .

(4.31)

The final JOBS estimates xJ is xJ = 1
K

∑K
j=1 x̂j and as a direct result of (4.23),
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we have

∥xJ − x⋆∥2 ≤
1√
K
∥X̂ −X⋆∥2,2

(by (4.25))

≤ 1√
K
∥X̂ −X0∥2,2 + ∥e∥2 = C1(δ)∆̃√

K
+ ∥e∥2.

(4.32)

Combing the results from (4.31) and (4.32) yields

P{∥xJ − x⋆∥2 ≤
C1(δ)((E∥Z̃∥2

2,2)1/2 + τ)
√

K
+ ∥e∥2}

≥P{C1(δ)∆̃√
K

+ ∥e∥2 ≤
C1(δ)((E∥Z̃∥2

2,2)1/2 + τ)
√

K
+ ∥e∥2}

=P{∆̃ ≤ (E∥Z̃∥2
2,2)1/2 + τ}

≥1− exp −2kτ 4

(∥A∥∞,1∥e∥∞ + ∥z∥∞)4 .

(4.33)

Finally, by substituting in the expected noise level derived in (4.28), we arrive

at

P{∥xJ − x⋆∥2 ≤ C1(δ)(
√

L

m
∥Ae + z∥2 + τ√

K
) + ∥e∥2}

≥ 1− exp −2τ 4

KL(∥A∥∞,1∥e∥∞ + ∥z∥∞)4 .

(4.34)

Replacing τ with τ/
√

K, the quantity on the right hand side of the equation

then becomes 1− exp −2Kτ4

L(∥A∥∞,1∥e∥∞+∥z∥∞)4 and we have proved the theorem.

76



4.6 Experimental Results on Sparse Regression

In this section, we perform sparse recovery on a generic synthetic dataset to

study the performance of the proposed algorithm. In our experiment, all entries

of A ∈ Rm×n are i.i.d. samples from the standard normal distribution N (0, 1).

The signal dimension n = 200, and various numbers of measurements from 50

to 200 are explored. We will focus on the results with small number of mea-

surements from 50 to 150, where JOBS has an advantage over the conventional

ℓ1-minimization. The ground truth signals x⋆ have their sparsity levels set to

s = 50. The location of each non-zeros entry is selected uniformly at random

whereas its magnitude is sampled from the standard Gaussian distribution. For

the noise processes z, all entries are sampled i.i.d. from N (0, σ2), with variance

σ2 = 10−SNR/10∥Ax∥2
2, where SNR represents the Signal-to-Noise Ratio. In our

experiment, we study three different noise levels: when SNR = 0, 1 and 2 dB.

We employ the Alternating Direction Method of Multipliers (ADMM) imple-

mentation of block (group) Lasso (Boyd et al., 2011) to solve the unconstrained

version of the noisy form of JOBS as in (4.2). The parameter λL,K > 0 bal-

ances the least squares fit and the joint sparsity penalty based on the choice of

bootstrap sampling size and number of bootstrap samples (L, K):

min
X

λL,K∥X∥1,2 + 1
2

K∑
j=1
∥y[Ij ]−A[Ij]xj∥2

2. (4.35)

The same solver is used to solve Bagging, Bolasso, and ℓ1-minimization with

K = 1 for a fair comparison. The implementation details of ADMM for solving

JOBS optimization is in Section 4.2.2.

We explore how two key parameters – the number of estimates K and the
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bootstrapping ratio L/m – affect sparse regression results. In our experiment,

we vary K = 30, 50, 100 while setting the bootstrap ratio L/m from 0.1 to 1

with an increment of 0.1. We report the average recovered Signal to Noise Ratio

(SNR) as the error measure to evaluate the recovery performance: SNR(x̂, x⋆) =

−10 log10 ∥x̂ − x⋆∥2
2/∥x⋆∥2

2 (dB) averaged over 20 independent trials. For all

algorithms, we vary the balancing parameter λL,K at different values from .01 to

200 and then select the optimal value that gives the maximum averaged SNR

over all trials at each (L, K).

4.6.1 Performance of JOBS, Bagging, Bolasso and ℓ1 min-
imization with Small Number of Measurements

We study the performance of JOBS, Bagging and Bolasso, as well as ℓ1 mini-

mization, using the same parameters (L, K). We plot the performance of JOBS

and Bagging with various bootstrap sampling ratios L/m and the number of

estimates K in Figure 4.4 and Figure 4.5 for four different total numbers of

measurements m ranging from 50 to 150. The solid curves show ours results with

various number of estimates K. The grey circle highlights the best performance

whereas the grey area highlights the optimal bootstrap ratio L/m. The smaller

the grey area, the smaller the optimal bootstrap ratio is. In these figures, for each

condition with a particular choice of (L, K), the information available to JOBS,

Bagging and Bolasso algorithms is identical and ℓ1-minimization always has

access to all m measurements. The performance of ℓ1 minimization is depicted

by the black dashed lines. Since the performance of Bolasso is much lower than

the other algorithms, only the best Bolasso performances among all choices of

(L/m, K) are shown using the green dashed lines.
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From Figure 4.4, we can observe that when the number of measurements m

is limited, JOBS outperforms ℓ1 minimization significantly. As m increases in

Figure 4.5, the margin decreases. When the number of measurements is low (the

sparsity level s = 50 and m is only 50−150, which is between 1×s to 3×s), and

with very small bootstrap sampling ratio L/m (L/m is only 0.3− 0.5), JOBS

and Bagging are quite robust and outperform all other algorithms using the

same parameters (L, K). In addition, although JOBS and Bagging are similar

in terms of the best performance limit, Bagging requires higher L/m ratios

(typically ≥ 0.6) to achieve peak performance. The grey area in Figure 4.4 and

Figure 4.5 highlighting the optimal bootstrap ratio L/m is further left for JOBS

than for Bagging. In short, applying the correct prior on multiple estimates

shows its advantage most prominently when the total amount of data is limited.

However, when the level of measurements is high enough, bootstrapping loses its

advantages and ℓ1 becomes the preferred strategy. We will see in the following

subsection that for the alternative sub-sampling scheme, JOBS at least reaches

ℓ1 minimization solution when the number of measurements is high. Finally,

increasing the number of bootstrap vectors (estimates) K seems to improve

recovery results in general.

4.6.2 Results for the sub-sampling Variation: Sub-JOBS

In a similar manner as the previous section, we study the performance of the

sub-sampling variation of the original framework: Sub-JOBS where the prefix

“Sub-” denotes sub-sampling. We study how varying the sub-sampling ratio L/m

from 0.1 to 1 as well as the number of estimates K from 30 to 100 affects the

result. The same variation is also adopted in Bagging and Bolasso for comparison.
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JOBS Bagging

Figure 4.4: Recovery SNR (dB) performance curves for JOBS and Bagging (with
various L,K) versus the peak Bolasso performance among various L,K and ℓ1 minimiza-
tion. The number of measurements are m = 50, 75 from top to bottom. Noise level is
set to SNR = 0 dB. The grey circles highlight peaks while the grey area highlights the
optimal bootstrap ratio. The optimal JOBS bootstrap ratio is smaller than that of
Bagging. The y-axis of plots in the same row has been calibrated to have the same
range.
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JOBS Bagging

Figure 4.5: Recovery SNR (dB) performance curves for JOBS and Bagging (with
various L,K) versus the peak Bolasso performance among various L,K and ℓ1 minimiza-
tion. The number of measurements are m = 100, 150 from top to bottom. Noise level
is set to SNR = 0 dB. The grey circles highlight peaks while the grey area highlights
the optimal bootstrap ratio. The optimal JOBS bootstrap ratio is smaller than that
of Bagging. The y-axis of plots in the same row has been calibrated to have the same
range.
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Sub-JOBS Subagging

Figure 4.6: Recovered SNR (dB) performance curves for the sub-sampling schemes:
Sub-JOBS, Subagging (with various L,K) versus Subolasso and ℓ1 minimization. The
number of measurements are m = 50, 75 from top to bottom. The noise level is set to
SNR = 0 dB. Grey circles highlight the peaks and the grey area highlights the optimal
sub-sampling ratio. The optimal sampling ratio of Sub-JOBS is smaller than that of
Subagging. The y-axis of plots in the same row has the same range.
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Sub-JOBS Subagging

Figure 4.7: Recovered SNR (dB) performance curves for the sub-sampling schemes:
Sub-JOBS, Subagging (with various L,K) versus Subolasso and ℓ1 minimization. The
number of measurements are m = 100, 150 from top to bottom. The noise level is
set to SNR = 0 dB. Grey circles highlight the peaks and the grey area highlights the
optimal sub-sampling ratio. The optimal sampling ratio of Sub-JOBS is smaller than
that of Subagging. The y-axis of plots in the same row has the same range.
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Table 4.1: The averaged sparsity ratios (± one standard deviation) of recovered
optimal solutions of JOBS, Bagging, Bolasso (Top rows: original scheme; Bottom rows:
sub-sampling variations) and ℓ1 minimization. The numerical threshold for non-zero
is 10−2. SNR = 0 dB.

Bootstrapping-based methods
m JOBS Bagging Bolasso ℓ1 min.
50 89% (±3%) 91% (±2%) 0.025% (±0.1%) 5.7% (±2%)
75 78% (±4%) 82% (±5%) 0.20% (±0.4%) 8.7% (±3%)
100 71% (±4%) 91% (±2%) 0.25% (±0.3%) 15% (±3%)
150 47% (±6%) 87% (±5%) 3.6% (±1%) 21% (±4%)

Sub-sampling variations
m Sub-JOBS Subagging Subolasso ℓ1 min.
50 89% (±3%) 91% (±3%) 0.025% (±0.1%) 5.7% (±2%)
75 72% (±4%) 87% (±3%) 0.13% (0.3%) 8.7% (±3%)
100 57% (±3%) 74% (±7%) 0.60% (±0.5%) 15% (±3%)
150 55% (±6%) 79% (±8%) 3.8% (±2%) 21% (±4%)

All experimental settings are identical to those in the previous section except

that the bootstrapping resampling scheme is replaced by sub-sampling for each

subset Ij.

Figure 4.6 and Figure 4.7 depict the performances of three different algo-

rithms with the same parameters K, L. Similarly to the case in Figure 4.4 and

Figure 4.5, one immediately observes that both JOBS and Bagging outperform

ℓ1 minimization and the sub-sampling version of Bolasso: Subolasso. Further-

more, JOBS achieves the best performance with smaller L than Bagging. Since

sub-sampling potentially contains more information than bootstrapping, it also

reduces the length of the subsets L necessary to achieve the best performance.

For JOBS, the best sub-sampling ratio L/m at which the peak value is achieved

reduces to 0.2− 0.4 for small m (ranging from 50− 150), whereas for Bagging,
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the optimal sub-sampling ratio becomes 0.5− 0.7.

With the same L, K, the sub-sampling variation in general gives better

performance than bootstrapping since there are no duplicated measurements.

This is also not surprising since a sub-sampling ratio from 0 − 1 corresponds

to a bootstrap ratio from 0−∞. The relationship between bootstrapping and

sub-sampling ratios is well known and can be found in Figure 4.11 in Section 4.9.6.

For the same number of estimates K, the performance of JOBS under a certain

bootstraping ratio L/m is very similar to the performance of Sub-JOBS with

corresponding sub-sampling ratio taking at the ratio where it results in the

expected unique number of samples from bootstrapping.

We observe two key properties of the Sub-JOBS. (i) While m is small, the

optimal sub-sampling ratios L/m in Figure 4.6, Figure 4.7 are smaller than the

optimal bootstrap ratios in Figure 4.4 and Figure 4.5 for both JOBS and Bagging,

since the grey and white boundaries are further left in sub-sampling variations.

(ii) When more measurements m become available, JOBS and Bagging begin to

lose their advantages over ℓ1 minimization with the bootstrap scheme, whereas for

the sub-sampling variation, JOBS and Bagging both approach ℓ1-minimization

performance with reasonably small L/m and K.

4.6.3 JOBS Solutions are Consistently Sparser than Bag-
ging Solutions at Similar Performance Level

In JOBS, we have more precise control over the sparsity level. Individually

solved predictors in Bagging are not guaranteed to have the same support. In

the worst case, the average predictor from Bagging can be quite dense. We
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also observe in our experimental results that JOBS generally produces sparser

solutions than Bagging.

Here we analyze the sparsity of the reconstructed signals through the sparsity

ratio. For a reconstructed vector x̂ with a set threshold τ > 0, the sparsity ratio

is defined as the number of elements with whose magnitude higher the threshold

over the total number elements in the vector:

sr(x̂, τ) = 1{|x̂[i]| ≥ τ}/len(x̂). (4.36)

We calculate the average sparsity ratio over reconstructed samples. For our

sparse regression task with the SNR = 0 dB, the threshold is set at 0.01. We

take the peak performance solution and calculate their averaged sparsity ratios.

The sparsity ratios for JOBS, Bagging, Bolasso and their sub-sampling

variations as well as ℓ1 minimization are illustrated in Table 4.1. The averaged

sparsity ratio for the optimal Bagging solution fluctuates between 82% to 91%

as the number of measurements m changes from 50 to 150. The averaged

sparsity ratio of the JOBS solution ranges from 89% to 47% as m varies from

50 to 150. The ground truth sparsity ratio is set at 25%. When the number

of measurements increases, the sparsity ratio of the JOBS solution tends to

approach that of the ground truth. With the same number of measurements

m, an optimal JOBS solution is sparser than an optimal Bagging solution. As

expected, Bolasso solutions are much too sparse due to the strict constraint of

being in the intersection of supports for all estimators in order to be in the final

estimated support.

Another observation from Table 4.1 is: when the number of measurements
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m increases, the sparsity levels of optimal JOBS solution and Bagging solution

decreases whereas the optimal ℓ1 minimization solution and Bolasso solution

increases.

4.6.4 JOBS Optimal Sampling Ratio is
Consistently Smaller than that of Bagging

From our experiments, we notice that both JOBS and Bagging algorithms

outperform the classical ℓ1 minimization algorithm in the challenging case when

the total number of measurements m is low. The peak performance of JOBS and

Bagging are comparable. Table 4.2 shows the optimal ratios for JOBS algorithm

and for Bagging with the number of measurements m from 50-200 and various

SNR ratios SNR = 0, 1, 2 dB and the optimal value of the estimates K is the

maximum value. The optimal bootstrap sampling ratio for JOBS is smaller than

that for Bagging, both for the original bootstrap version and the sub-sampling

variation.

For the sub-sampling variations: Sub-JOBS and Subagging, their optimal

sub-sampling ratios are smaller than those of the bootstrap versions under the

same values of m and K. This observation matches our expectation of sub-

sampling due to the fact that bootstrapping creates duplicated measurements,

and thus it requires a larger sample size to achieve the same behavior as its

sub-sampling variation.
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(a) SNR = 0 dB (b) SNR = 1 dB (c) SNR = 2 dB

(d) SNR = 0 dB (e) SNR = 1 dB (f) SNR = 2 dB

Figure 4.8: Overall recovery performances with various number of measurements
for for JOBS, Bagging, Bolasso in (a)-(c) and their sub-sampling schemes: Sub-
JOBS, Subagging, Subolasso and ℓ1 minimization in (d)-(f), both compared with ℓ1
minimization with a full range of number of measurements from 50 to 2000 and various
SNR values at 0, 1, 2dB. The x-axis is plotted in log scale. In the challenging case
of limited m measurements and high noise level, the margin between Sub-JOBS and
ℓ1 minimization is larger (zoomed-in figures on the top row). Peak performances of
sub-sampling variations are similar and slightly better than the original bootstrap
versions for JOBS, Bagging and Bolasso.
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Table 4.2: The Empirical Optimal Sampling Ratios L/m with Limited Measurements
m. Various noise levels with SNR = 0, 1, 2dB.

SNR (dB) m JOBS Bagging Sub-JOBS Subagging
0 50 0.5 0.6 0.4 0.5
0 75 0.4 0.9 0.3 0.5
0 100 0.3 0.7 0.2 0.7
0 150 0.4 1 0.3 0.7
1 50 0.6 0.8 0.4 0.5
1 75 0.4 1 0.3 0.5
1 100 0.3 1 0.3 0.7
1 150 0.5 1 0.4 0.8
2 50 0.5 0.8 0.5 0.6
2 75 0.4 0.7 0.4 0.5
2 100 0.4 1 0.3 0.7
2 150 0.5 1 0.5 0.8

4.6.5 Lower Computational Complexity of JOBS than
Bagging due to Smaller Optimal Sampling Ratios

The computational complexity of the JOBS algorithm is obviously higher than

the conventional ℓ1 minimization algorithm. The extra computations allow

us to achieve an improvement in recovery performance as illustrated in the

experimental results. Regarding the algorithm itself, although the mixed ℓ1,2

norm at first glance seems more complicated to optimize, in terms of actual

implementation, the computation complexity for JOBS and Bagging turn out

to be very similar for a given sampling parameter (L, K). With the ADMM

implementation, Bagging uses iterative soft thresholding on each element of

the solution matrix whereas JOBS requires iterative row-wise soft thresholding

to achieve row sparsity (refer to Section 4.2.2 for details). The theoretical
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complexity level for both algorithms is O(n2(L + n)K) + TO(n2K), where T

is number of iterations. For ℓ1 minimization, the theoretical complexity level

is O(n2(m + n)) + TO(n2). The theoretical complexity of JOBS is less than

K times the complexity of ℓ1 minimization. The complexity terms that relate

to the number of iterations T counts the complexity of all operations needed

at every iteration, whereas the complexity term that does not relate to the

number of iterations correponds to line 3 in Algorithm 1 which remains the same

across every iteration. While calculating the computational complexity for all

algorithms, we assume that the inverse operation uses the Gaussian Elimination

implementation with O(n3) complexity.

With a large enough K, JOBS achieves optimal performance with a much

smaller vector size L compared to Bagging. Therefore, to obtain the peak

performance, the complexity for JOBS turns out to be lower than that of

Bagging. Bagging can benefit greatly from a parallel implementation. Similarly,

a distributed implementation reduces the running time for JOBS.

4.6.6 Peak Performances over a Large Range of Measure-
ments

We take a closer look at the peak performances of various recovery schemes

with a wide range of measurement numbers and various SNR setting at 0, 1, 2

dB. For the three bootstrapping algorithms, the optimal choices of parameters

K and L as found and presented in the previous section (indicated by the

grey circles in Figure 4.4, Figure 4.5 Figure 4.6) and Figure 4.7 are selected

throughout the entire experiment. We then explore the recovery power over a

wider range of available measurements, including the oversampling cases. The
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number of measurements m ranging from 50 to 2000. Figure 4.8 depicts the

peak performances of a wide range of number of measurements across all SNR

settings, using three bootstrapped methods and their sub-sampling variations as

well as the ℓ1 minimization.

As aforementioned, when the number of measurements m is low, JOBS and

Bagging outperform ℓ1 minimization. The larger the noise level, the larger the

margin becomes. As m decreases, the margin also increases. However, when

the level of m is high enough, the two bootstrapping-based strategies start

losing their advantages over ℓ1 minimization. The performance limits of JOBS

and Bagging are comparable (within 3% difference). Figure 4.4 and Figure 4.5

show that, in general, JOBS achieves comparable performance to Bagging with

significantly smaller L and K values. JOBS and Bagging performance tend to

get close to ℓ1 minimization as m increases. The remaining bootstrap-based

scheme of Bolasso only performs similarly to other algorithms for very large m.

The sub-sampling variations of the Sub-JOBS, Subagging, and Subolasso also

behave similarly.

The optimal bootstrap sampling ratio in the original version and the optimal

sub-sampling ratios for sub-sampling variations approximately matches to the

relationship in Figure 4.11. The optimal sub-sampling ratios are slightly smaller

than the original bootstrap sampling ratios in Figure 4.8 for the same SNR.

4.7 Experimental Results on Classification

In this section, we extend the JOBS framework to classification problems. We

solve the sparse regression problem using ℓ1 minimization, JOBS, Bagging,
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Bolasso and their sub-sampling variations, all within a Sparse Representation-

based Classification (SRC) framework proposed by Wright in (Wright et al.,

2009). The SRC framework predicts a class label of test data based on the

representation error from sparse regression results given the training data as the

sparsifying dictionary. In this section, we study how sparse regression solutions

from JOBS, Bagging and Bolasso affect classification results. In other words,

we would like to confirm that improvements in regression directly leads to

improvements in classification.

4.7.1 The SRC Algorithm

Many efforts have been made in developing classification algorithms based on

sparse representation. SRC is one of the earliest, the simplest, and also the

most well-known of these methods. The basic idea is as follows. Ideally, the test

data can be best represented by the linear combination of past observed data

samples from the same class. The SRC procedure first uses a dimension reduction

technique to generate feature vectors of all the data. Then, features of different

classes from the training set are concatenated to form the sparsifying dictionary.

For a given test data point, we first solve the sparse representation with respect

to the dictionary from training data. The test data should be better represented

by the training data from its own class, with most coefficients corresponding to

other classes set to zero. Hence, the predicted classification label is assigned

based on the class that gives the minimum class-wise representation error (Wright

et al., 2009).

Major extensions of the original SRC frameworks mainly concentrate on
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earning a better representative dictionary than the direct training data fea-

tures (Aharon, Elad, and Bruckstein, 2006; Mairal, Bach, and Ponce, 2012). in

this work, we only aim to demonstrate that improving the sparse regression stage

in SRC also leads to better classification results. The classification experiments

have been performed on two common face recognition datasets: the extended

Yale B dataset (Georghiades, Belhumeur, and Kriegman, 2001) and the cropped

AR dataset (Martinez and Kak, 2001).

4.7.2 The Extended Yale B Dataset

The Extended Yale B database consists of 2414 frontal-face images of 38 individ-

uals (Georghiades, Belhumeur, and Kriegman, 2001). For each subject, there

are 59− 64 images. Those different images are taken under different laboratory-

controlled lighting conditions. All images have been registered, normalized, and

resized to 192 × 168 pixels. Among all the data, 90% of data are randomly

selected for training and the rest are used for testing.

4.7.3 The Cropped AR Dataset

Apart from Yale B dataset, we also use a more challenging dataset called the

cropped AR dataset (Martinez and Kak, 2001). This dataset consists of 2600

images from 100 individuals with 50 male subjects and 50 female subjects. For

each subject, 26 images with different illumination conditions, facial expressions

and common occlusions such as from glasses and scarfs worn by individuals.

Some examples of these face pictures are shown in Figure 4.9. All images have

been registered and cropped to dimension 165 pixels ×120 pixels. Among all

the data, we again randomly select 90% of data for training and the rest are
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used for testing. Finally, for each task, the number of test samples among all

classes are the same. Therefore, the performance of test samples from each class

contributes the same weight to the final cumulative accuracy.

(a) (b) (c)

Figure 4.9: Examples of face pictures in the cropped AR data set. Left: a whole
face picture of a person. Middle: a face picture of a person with sun glasses. Right: a
face picture of a person with scarf.

4.7.4 Face Recognition Experiment Results

We extract low dimensional features before performing classification. Here we use

random projection for dimension reduction. A random Gaussian matrix of size

m×dImg is used, where m is the number of rows of the projection matrix and dImg

is the dimension of the images. For the AR dataset, dImg is 165×120 = 19800 and

for the Yale B dataset, the dimension is 192× 168 = 32256. These generate the

so-called random features as described in SRC (Wright et al., 2009). The random

projection setting is also consistent with the choice of random sensing matrix

A in our regression experiment. However, in this face recognition experiment,

we further reduce the number of features (measurements) in the AR dataset to

m = 50 and the images in the Yale B dataset m = 30 since the Yale B dataset

is less challenging and thus desirable performance can be achieved with fewer
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features. In this classification experiment, there is no extra added noise on

training or testing data features. Some face images contain glasses and scarf in

the cropped AR dataset, therefore there are inherent sparse noise in this dataset.

We compute the sparse representation using ℓ1 minimization, JOBS, Bagging

and Bolasso in the same manner as the regression experiment. From these

sparse representations, we then compute the class-wise residues as in the SRC

framework to arrive at the final prediction.

The classification results are shown in Table 4.3 and Table 4.4. On the

cropped AR dataset, classification based on sparse representations generated

by JOBS shows a consistent improvement of 3% in classification accuracy over

the baseline ℓ1 minimization. Similarly to the regression case, the optimal

bootstrapping ratio for JOBS is quite low (only around 0.5). Bagging solutions

do not result in any improvement over the baseline ℓ1 algorithm. Both achieve

the same accuracy of 0.855. The best accuracy for Bolasso is slightly lower:

0.790 whereas the optimal accuracy for JOBS is 0.880, obtained with optimal

bootstrap sampling ratio and number of estimates of (L/m, K) = (0.5, 30).

On the easier dataset Yale B, the accuracy for JOBS is 0.939, also a slight

improvement over the accuracy of 0.925 for ℓ1 minimization. Bagging yields 0.921

while Bolasso achieves 0.901. The Yale-B dataset is relatively simple compared

to the AR dataset. Hence, any improvements on a high baseline accuracy is

considerably more difficult.

Similarly to the sparse regression task, we also compare the sparsity levels

of optimal solutions for different algorithms. We calculate the sparsity ratio

as previously in equation (4.36), which expresses in percentage the ratio of the
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Table 4.3: Classification Accuracies with various methods on Yale-B data set. The
number of random features is 30 and the split ratio of training and testing set is 0.91.

Baseline Bootstrapping-based methods
Methods ℓ1 min. JOBS Bagging Bolasso
Accuracy 0.925 0.939 0.921 0.901

(L/m, K)⋆ (1,1) (0.6,10) (0.9,10) (0.9,10)
Sub-sampling variations

Sub-JOBS Subagging Subolasso
Accuracy 0.930 0.930 0.930

(L/m, K)⋆ (0.4,50) (0.9, 10) (0.7, 30)

Table 4.4: Classification Accuracies with various methods on AR data set. The
number of random features is 50 and the split ratio of training and testing set is 0.92.

Baseline Bootstrapping-based methods
Methods ℓ1 min. JOBS Bagging Bolasso
Accuracy 0.855 0.880 0.855 0.790

(L/m, K)⋆ (1,1) (0.5,30) (1,50) (0.9,30)
Sub-sampling variations

Sub-JOBS Subagging Subolasso
Accuracy 0.875 0.870 0.785

(L/m, K)⋆ (0.6,10) (0.9, 30) (0.9, 10)

number zero entries versus the the signal dimension, then averaging over all

sparse representations among all test data. We set a threshold of amplitudes

to be 1 × 10−6 for being non-zero. We compute the sparsity ratio for each

reconstructed signal, and then calculate the mean and standard deviation for

each algorithm. The result is in Table 4.5 and Table 4.6. The Bagging solution

is the most dense among all algorithms whereas Bolasso generates the most

sparse solution. The sparsity ratio of JOBS and ℓ1 minimization are in between

these two extremes. Noticeably, in harder AR dataset experiment with occlusion
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inherent in the data introduced by glasses and scarfs, JOBS solution is slightly

more sparse than ℓ1 solution. Our solutions in the classification experiment

match the solutions in the sparse regression experiment in terms of sparsity

levels and validates our intuition on sparsity levels and performances of various

algorithms.

Table 4.5: Comparison of Sparsity Ratios (± one standard deviation) of different
algorithms expressed in percentages. For all algorithms, the numerical threshold for
being non-zero is 10−6. Bagging generates the most dense solutions. JOBS and ℓ1
minimization generates solutions with moderate sparsity levels while Bolasso generates
the most sparse solutions. Yale B (m = 30).

Baseline Bootstrapping-based methods
ℓ1 min. JOBS Bagging Bolasso

0.93% (±0.3%) 2.4% (±0.4%) 5.94% (±1%) 0.48% (±0.3%)
Sub-sampling variations

Sub-JOBS Subagging Subolasso
2.5% (±0.4%) 3.8% (±0.8%) 0.39% (±0.2%)

Table 4.6: Comparison of Sparsity Ratios (± one standard deviation) of different
algorithms expressed in percentages. For all algorithms, the numerical threshold for
being non-zero is 10−6. Bagging generates the most dense solutions. JOBS and ℓ1
minimization generates solutions with moderate sparsity levels while Bolasso generates
the most sparse solutions. AR (m = 50).

Baseline Bootstrapping-based methods
ℓ1 min. JOBS Bagging Bolasso

3.6% (±0.5%) 2.7%(±0.5%) 27% (±3%) 0.56% (±0.3%)
Sub-sampling variations

Sub-JOBS Subagging Subolasso
2.4% (±0.4%) 13% (±2%) 0.63% (±0.2%)
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4.8 Summary

We propose a collaborative signal recovery framework named JOBS, motivated

from powerful bootstrapping ideas in machine learning. JOBS improves the

robustness of sparse recovery in challenging scenarios of noisy environments

and/or limited measurements. We carefully analyze theoretical properties of

JOBS such as BNSP and BRIP. We further derive error bounds for JOBS as well

as for a closely related scheme called Bagging and analyze their theoretic recovery

behaviors with respect to two key parameters: the bootstrap sampling ratio

L/m and the number of estimates K. We also study a common sub-sampling

variation of the framework and study its connection to the original bootstrap

scheme experimentally. Finally, experiments on sparse regression as well as

classification (face recognition task) are conducted for validation. Simulation

results show that the proposed algorithm consistently outperforms Bagging and

Bolasso among most parameter settings (L, K).

We summarize below several important properites that we discovered for

JOBS. (i) JOBS is particularly powerful when the number of measurements

m is limited, outperforming ℓ1 minimization by a large margin. (ii) JOBS

achieves desirable performances with relatively low bootstrap ratio L/m (peak

performance occurs at 0.3− 0.5 whereas the sub-sampling variation requires only

0.2− 0.4). It also demands a relatively small K (around 30 in our experimental

study). (iii) The optimal sampling ratio for JOBS is lower than that of Bagging

while achieving similar results. This results in a lower computation complexity

for JOBS. (iv) JOBS solutions are generally more sparse than Bagging’s – a

desirable property in sparse recovery.
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Future work may include developing online implementation of JOBS for

streaming applications, extending the JOBS framework to other forms of collabo-

rative sparse regression, and exploration of the framework to improve dictionary

learning.

4.9 Appendix

4.9.1 The Row Sparsity Norm is a Special Case of Block
(group) Sparsity

Consider the matrix that contains all bootstrapped estimators: X ∈ Rn×K =

[xij], i = 1, 2, ..., n, j = 1, 2, ..., K, the row sparsity norm: the ℓ1,2 norm of X is

equivalent to the a block assignment on the vectorized X: vec(X). Each block

assignment Bi in assignment {B1,B2, ...,Bn} takes the all elements in i−th row

of vec(X): {xi1, xi2, ..., xiK}. The vectorized JOBS formulation is in (4.7).

Although blocks in block sparsity conventionally refer to indices sets that

are adjacent, block sparsity result can be easily extended to the cases with

non-adjacent indices blocks. In the vectorized JOBS problem, the indices in row

sparsity block is not adjacent due to the vectorization convention stacks columns

rather than rows. Rearranging the columns in the JOBS matrix AJ can make

the row sparsity block adjacent without changing the nature of the problem.

4.9.2 Proof of the Reverse Direction for Noiseless Recov-
ery

Lemma 18 If the MMV problem P1(K) , K > 1, in (4.4) has a unique solution,

it will be of form X⋆ = (x⋆, x⋆, ..., x⋆). Then, there is a unique solution to P1:
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x⋆.

Let us prove the other direction. If P1(K) has a unique solution, the solution

must be in the form of X⋆ = (x⋆, x⋆, ..., x⋆), and it implies that P1 has a unique

solution x⋆.

If P1(K) has a unique solution, then it is equivalent to say that A sat-

isfied BNSP of order s. For all V = (v1, v2, ..., vK) ̸= O, vj ∈ Null(A),

we have ∀ S, |S| ≤ s, ∥V [S]∥1,2 < ∥V [Sc]∥1,2. This implies that ∀ V =

(v, 0, 0, ..., 0), v ∈ Null(A)\{0}, BNSP is satisfied. Since in this case, except

the first column, all others are zero and therefore do not contribute any to the

group norm. Mathematically, for all S, ∥V [S]∥1,2 = ∥v[S]∥1. We, therefore, will

have the BNSP of order s, implying the NSP for A of order s.

4.9.3 Implications of Block Null Space Property of JOBS
Matrix

Using a similar analysis as in previous subsection 4.9.2, we conclude that

a block diagonal matrix satisfies BNSP of order s implies that each sub-

matrix satisfies NSP of order s. The block diagonal JOBS matrix AJ =

block_diag(A[I1], A[I2], ..., A[IK ]) satisfies BNSP of order s. Then, for all

V = (v1, v2, ..., vK) ̸= O, vj ∈ Null(A[Ij]), j = 1, 2, .., K, we have ∀ S, |S| ≤

s, ∥V [S]∥1,2 < ∥V [Sc]∥1,2. This implies that ∀ V = (0, ..., vj, ..., 0), vj ∈

Null(A[Ij])\{0}, BNSP is satisfied, which essentially states that NSP is statis-

fied for A[Ij].
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4.9.4 A Toy Example Shows the Correctness of JOBS

We give a toy example to illustrate our scheme geometrically and demonstrate

the feasibility of our algorithm. Let the dimension of signal n = 2 and number of

measurements m = 2. In this example, true solution x⋆ =
(
0 1

)T
The sensing

matrix A =
(

2 1
1 1

)
and the measurement vector is y = Ax⋆ =

(
1 1

)T
.

Since A is full rank and m = n, the ℓ1 solution is x⋆. For JOBS algorithm,

we let the sizes of subsets L = 1 and the number of subsets is K = 2. The true

MMV solution X⋆ = (x⋆, x⋆). Our solution candidate X lies in the domain of

2 by 2 matrices with 4 free parameters. For visualization purpose, we reduce the

degree of freedom by 1 by adding an extra constraint: let elements in the last

row be the same. Now, X ∈ X =
{(

vx vy

vz vz

)
: vx, vy, vz ∈ R

}
. This treatment

is reasonable since X⋆ = (x⋆, x⋆) ∈ X . We plot level sets of ℓ1,1 and ℓ1,2 norms

with respect to vx, vy and vz.

For subset I = {1} corresponds to the first constraint introduced by the dot

product of the first row of A and x, which is 2vx + vz = 1, and I = {2} denotes

to the second one, which is vy + vz = 1. Fig. 4.3a shows ℓ1,1 norm minimization

and Fig. 4.3b depicts relaxation version. Fig. 4.10a is a successful case whereas

Fig. 4.10b displays a failure. This illustrates that JOBS is a two-step relaxation

of the ℓ1 minimization and the success demonstrates the feasibility of JOBS

under proper conditions.

4.9.5 Proof of Proposition 14

To prove this proposition, we give an alternative form of RIP and BRIP which are

stated in the following two propositions. Alternative form of RIP as a function
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(a) J12 : I1 = {1}, I2 = {1} (b) J12 : I1 = {2}, I2 = {2}

Figure 4.10: Two cases of JOBS. Left: a successful recovery case. Right: a failure
recovery case. J12. The blue and yellow planes are the first and second constraints,
respectively. The green line is their intersection. The pink point is the true solution
and black points are reconstructed solutions.

of matrix induced norm is given as follows.

Proposition 19 (Alternative form of RIP) Matrix A has ℓ2-normalized

columns, and A ∈ Rm×n, S ⊂ {1, 2, ..., n} with size smaller or equal to s and

AS takes columns of A with indices in S. The RIP constant of order s of A,

δs(A) is:

δs(A) = max
S⊆{1,2,...,n},|S|≤s

∥AT
SAS − I∥2→2, (4.37)

where I is an identity matrix of size s× s and ∥ · ∥2→2 is the induced 2−norm

defined as: for any matrix A, ∥A∥2→2 = supx̸=0
∥Ax∥2
∥x∥2

.

This proposition can be directly derived from the definition of RIP constant.

Similarly, we can derive the alternative form of BRIP constant as a function of

matrix induced norm.

Proposition 20 (Alternative form of BRIP) Let matrix A ∈ Rm×n have

ℓ2-normalized columns and let B = {B1,B2, ...,Bn} be the group sparsity pattern
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that defines the row sparsity pattern, with Bi contains all indices corresponding

to all elements of the i−th row. For S ⊆ {1, 2, ..., n}, denote B(S) = {Bi, i ∈ S}

taking several blocks (groups) in S. The Block-RIP constant of order s of A:

δs|B(A) is

δs|B(A) = max
S⊆{1,2,...,n},|S|≤s

∥AT
B(S)AB(S) − I∥2→2. (4.38)

Without loss of generality, let us assume that all columns of A in the original

ℓ1 minimization have unit ℓ2 norms. Therefore, A does not have any zero column.

Before we calculate the RIP constant of the bootstrapped sensing matrices, we

need to perform two operations: remove the duplicate rows from bootstrapped

sensing matrices and then normalize the columns.

First, we remove the duplicated rows using the weighted scheme. In the

noisy recovery problem, for a multi-set I that may contain duplicate, the

set U denotes the set of all unique elements. In the constraint optimization,

we can express the sum using occurrence times in I for each element using ci.

∥A[I]x−y[I]∥2
2 = ∑

i∈I ∥a[i]x−y[i]∥2
2 = ∑

i∈U ∥
√

cia[i]x−y[i]∥2
2. Therefore, the

original program is equivalent to reducing the duplicated rows in the bootstrap

sample using √ci as weights. Because sampling with replacement is uniform,

therefore the expected values of occurrence times for each sample are the same.

To denote this operation, we have R ∈ Ru∈L, R = diag(√c1,
√

c2, ...,
√

cu)I[U ],

each row of I[U ] correponds to the unique vector of a row and this operation

deletes the duplicated rows.

Second, we normalize the columns of these matrices using the following

normalization procedure. For M ∈ Ru×n, since the original matrix A does not

have any zero column, Q(M ) ∈ Rn×n is a normalization matrix of M such that
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MQ(M) has ℓ2-normalized columns. Clearly, the normalization matrix Q of

M is obtained by:

Q(M) = diag(∥m1∥−1
2 , ∥m2∥−1

2 , ..., ∥mn∥−1
2 ), (4.39)

where mj denotes j−th column of M .

Similary, we can construct Qjs using (4.39) to normalize the columns. Let

the original JOBS matrix in the vectorized problem be

AJ = block_diag(A[I1], A[I2], ..., A[IK ]). We first normalize each block and

then obtain the normalized bootstrapped sensing matrix as: Ã[Ij] = RjA[Ij]Qj .

The original JOBS matrix can be transferred into the normalized version ÃJ =

block_diag(Ã[I1], Ã[I2], ..., Ã[IK ]).

Now, we consider the BRIP constant for AJ . In this derivation, column

selection of a matrix is written as a right multiplication of the matrix IS(·).

δs|B(AJ) = δs|B(ÃJ)

= max
S⊆{1,2,..,n},|S|≤s

∥(ÃJIB(S))T ÃJIB(S) − I∥2→2

= max
S⊆{1,2,..,n},

|S|≤s

max
j
∥(Ã[Ij]IS)T Ã[Ij]IS − I∥2→2

= max
S⊆{1,2,..,n},

|S|≤s

∥block_diag((Ã[I1]IS)T Ã[I1]IS − I,

..., (Ã[IK ]IS)T Ã[IK ]IS − I)∥2→2.

The induced 2−norm of a matrix equals to the max singular value of ∥D∥2→2 =

σmax(D) and if D is a block diagonal matrix D = diag(D1, D2, ..., DK), then
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σmax(D) = maxj=1,2,...,K σmax(Dj). Applying this property leads to

δs|B(AJ) = max
S⊆{1,2,..,n},

|S|≤s

max
j
∥(Ã[Ij]IS)T Ã[Ij]IS − I∥2→2

= max
j

max
S⊆{1,2,..,n},

|S|≤s

∥(Ã[Ij]IS)T Ã[Ij]IS − I∥2→2

= max
j

δs(A[Ij]).

4.9.6 Distribution of the Unique Number of Elements
for Bootstrapping

The bootstrap is essentially sampling with replacement, which is likely to create

duplicate information. The performance of sampling with replacement and sam-

pling without replacement (sub-sampling) can be linked by studying the quantity

of the number of unique elements. In this section, we give the analytic form of

the number of unique samples when there are finite number of measurements

m and bootstrap sample L, as well as the form for asymptotic case as m→∞.

The finite case is studied in a well-known statistics problem – the Birthday

Problem (The Birthday Problem). We also show empirically that the finite m

case is close in the asymptotic sense.

4.9.6.1 Unique Number of Bootstrap Samples with Finite Sample m

We generate L samples from m samples uniformly at random with replacement

(L ≤ m). Let U denote the number of distinct samples among L samples. Clearly

we have the number of distinct samples is between [1, L] and the probability
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mass function is given by (The Birthday Problem), same as the famous Birthday

problem in statistics:

P(U = u) =
(

m

u

)
u∑

j=0
(−1)j

(
u

j

)
(u− j

m
)L, u = 1, 2, ..., L. (4.40)

In our problem, we are interested in finding the lower bound of U with

certainty 1− α

P(U ≥ d) =
L∑

U=d

(
m

u

)
u∑

j=0
(−1)j

(
u

j

)
(u− j

m
)L ≥ 1− α. (4.41)

Therefore for

1 ≥ α ≥
d−1∑
u=0

(
m

u

)
u∑

j=0
(−1)j

(
u

j

)
(u− j

m
)L, (4.42)

equation (4.41) is satisfied.

4.9.6.2 Asymptotic Unique Ratios of Bootstrap Samples

The theoretically unique percentage for asymptotic case when the number of

total number of measurements goes to infinity m→∞ has been studied in the

literature (Weiss, 1958; Mendelson et al., 2016). In the limit case, the limiting

distribution of the number of unique elements U is normal. The asymptotic

mean for the unique number of elements over total number of measurements m

is EU
m

= 1− exp{−r}, where r is the bootstrap sampling rate. The asymptotic

variance of the unique ratio is then Var U
m

= 1
m

(exp{−r} − (1 + r) exp{−2r}),

which converges to zero when m is large.
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4.9.6.3 Finite Number of Measurements m Cases are Empricially
close to the Asymptotic Case

We generate 10000 trials of random sampling with replacement and then calculate

the empirical unique percentage by counting the ratio of the number of unique

elements over the total number of measurements m. The theoretical mean is

consistently lower than the mean for a finite m. From the plot, the average

unique elements in finite m cases m = 50, 75, 100, 150 are not so different from

the theoretical value of the infinite sample size.

The empirical mean and the asymptotic value are plotted in Figure 4.11a,

indicating that the numeric unique percentage is not that far from the asymptotic

value even when the number of estimates is finite and small. Figure 4.11b

illustrates the region between the mean plus and minus one standard of deviation.

As the asymptotic case, the theoretical standard deviation converges to zero.

We plotted the cases m = 150 and m = 50 compared to the asymptotic case.

For both, the variance is tight and gets smaller when m becomes larger. For the

same m, the variance of the unique number of elements become larger when the

bootstrap ratio L/m is large.
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Figure 4.11: Unique element ratios with various bootstrapping ratios. Top: The
mean of unique element ratios under various bootstrapping ratios with various total
number of measurements: m = 50, 75, 100, 150 and theoretical asymptotic value when
m→∞. Bottom: The area between of empirical mean plus and minus one empirical
standard deviation. The blue and the red area corresponds to m = 50 and 150
respectively. The black line is the asymptotic mean and the asymptotic variance
converges to zero.
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Chapter 5

Collaborative Scheme in CS 3-D
OCT Recovery

In this chapter, we demonstrate an application that employs collaborative

regression from sub-sampled measurements from a compressed sensing imaging

hardware. The algorithm has shown significant improvement in signal recovery

over conventional ℓ1 minimization. The algorithm is also efficient in recovering

signals of large dimensions.

(Part of the contents of this chapter has been under review for Optics Express.)

5.1 Introduction

Throughout the past decade, optical coherence tomography (OCT) has proven to

be a versatile tool in medical diagnostics allowing for example, straightforward

assessment of the progress of macular degeneration, multiple sclerosis, and

glaucoma (Fercher et al., 2003; Tomlins and Wang, 2005). Using the spectrally-

dependent interference of two light waves, OCT interrogates depth information

of a sample, including many different tissues, and can be scanned to collect a
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three-dimensional (3D) data cube of an object’s structure. The massive amount

of data collected in a volumetric OCT acquisition poses challenges for data

throughput, storage, and manipulation, typically requiring data compression

prior to any data processing (Zhang and Kang, 2010; Grulkowski et al., 2009).

Additionally, in many applications the signal capture should be performed quickly

to avoid motion artifacts that can distort the image (Yun et al., 2004; Zhang

et al., 2009).

In the past decade the information theory community introduced the concept

of compressed sensing (CS) (Candès and Tao, 2005; Candes, Romberg, and Tao,

2006; Donoho, 2006; Baraniuk, 2007; Candès and Wakin, 2008), suggesting that

the sparsity of natural signals can be leveraged to reduce the number of samples

required to capture signals of interest. This has been adopted by the medical field

and applied to MRI imaging, photo-acoustic imaging, and OCT (Lustig, Donoho,

and Pauly, 2007; Guo et al., 2010; Liu and Kang, 2010). Particularly, extensive

work on under sampling OCT data followed by implementing CS algorithms

has demonstrated successful reconstruction with less than 20% of measurements

required by the Shannon/Nyquist theory (Liu and Kang, 2010; Xu, Huang, and

Kang, 2014). By taking advantage of the compressibility of volumetric OCT

data (Wu et al., 2012), the data cube can be under sampled without the loss of

image quality (Young et al., 2011). However many of these methods still require

the entire data cube to be recorded at the Nyquist rate followed by digital under

sampling after acquisition (Liu and Kang, 2010; Xu, Huang, and Kang, 2014; Wu

et al., 2012; Young et al., 2011). Although compressed reconstruction after data

acquisition allows for real time visualization, such digital domain sub-sampling

110



fails to address the physical domain bottleneck at the signal acquisition stage

due to serial sampling limits of an ADC.

We have developed an architecture to implement CS at high speed in the

optical domain using optical signal processing in a technique we termed Continu-

ous High-Rate Photonically Enabled Compressed Sensing (CHiRP-CS) and have

leveraged this architecture for high-speed flow microscopy, ultra wide-band radio

frequency (RF) sensing, and preliminary work on OCT (Bosworth and Foster,

2013; Bosworth et al., 2015b; Bosworth et al., 2015a; Stroud et al., 2016).

For OCT we directly record optically computed inner products between

the interference signals and know binary patterns such that each ADC sample

contains information spanning the entire A-scan depth profile. This allows for

real-time optical domain data compression of the OCT signal prior to detection

by a high-speed ADC. Consequently, we can remove the limits imposed by

Nyquist sampling on A-scan rates and thus decouple imaging rate from ADC

sampling rate. Similar recent work, investigated the compressive acquisition

and reconstruction of A-scans at 1.51-MHz rates using a 66% compression ratio

(Mididoddi et al., 2017). Here, we demonstrate A-scan acquisition rates from

14.4-MHz to 144-MHz using compression ratios from 26% to 2.6%, respectively.

Such low compression ratios are achieved by implementing compressive sampling

in the axial A-scan dimension followed by joint reconstruction of the entire

volumetric C-scan data utilizing the multi-dimensional sparsity of the full 3D

signals of interest.
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5.2 Challenges

We image a test sample composed of an empty PDMS microfluidic channel

mounted on a glass slide and acquire a 1-mm by 1.5-mm transverse scan with a

10-um resolution resulting in a 100× 150× 384 OCT data cube. To visualize

the reconstruction result, we determine the 3D power spectrum of the recovered

spectral modulation signal by calculating the magnitude for each discrete spectral

modulation frequency from X̂ by summing the squared coefficients of positive and

negative frequencies at each corresponding location. For our 384 reconstructed

spectral pixels, this procedure results in 192 axial pixels in the depth image.

The 3D C-scan of the reference signal captured using time-stretch OCT is

shown in Figure 5.1a, in which the axial dimension spans from bottom to top.

If we just apply ℓ1 minimization, the typical reconstructed solution is displayed

in Fig 5.1b. This solution detects the locations of the layers fairly accurately

however we lose a lot of energy towards the top of the C-scan corresponding

to the region of high frequency spectral modulation. Also, the energy for the

middle slice with curved channel is aliased to these higher frequency bands.

Although using ℓ1 minimization will not give a recovered image of acceptable

quality due to missing major depth information, it is acceptable for use as a

start point since it detects the other two major frequency bands correctly. We

therefore proposed a weighted ℓ1 minimization that promotes a row-sparsity

pattern across each frequency band, and we will use the ℓ1 minimization solution

as a initialization point for our proposed framework.
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Figure 5.1: C-scan recovery from 80 compressed measurements, or an 18-MHz A-scan
rate. a) Ground truth reference. b) The output of the ℓ1 minimization recovery of
measurements from our CHiRP-CS hardware system. The entire top board that
corresponds high frequency is missing.

5.3 Proposed Method

5.3.1 Problem Formulation

To scan a 3D object S of size N1 × N2 × N3, the compressed measurements

were taken along the third, A-scan dimension. We generate N1 ×N2 number of

measurements for a C-scan, with each measurement of length M . Let y(i,j) ∈

RM , i = 1, 2, ..., N1, j = 1, 2, ..., N2 denote the measurements vector collected

from the signal at a spatial location (i, j) : s(i,j) ∈ RM , and A(i,j) ∈ RM×N3 is the

sensing matrix associated with that measurement vector. For the reconstructed

cube in the frequency domain, these dimensions are: N1 = 100, N2 = 150 and

N3 = 384. The recovered image is of size 100×150×192. The depth dimension is

half of the one in the frequency domain since along the depth direction, the final

image is calculated on the energy from both positive and negative frequencies.

In the recovery algorithm, the number of measurements per line M ranges from
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10 to 100, corresponding to compression ratios M/N3 from 2.6% to 26%. The

mathematical model of the system in matrix form is simply:

y(i,j) = A(i,j)s(i,j) + z(i,j), (5.1)

where z(i,j) represents the noise vector added to the (i, j)-th noiseless mea-

surement. The noise vector is generated from multiple sources such as the

linearization approximation error of the system, noise from the data collection

process, as well as pre-processing error, etc.

With OCT signals, we know the spectral modulation frequencies correspond to

different depths of the object. Additionally, in many OCT applications, the object

is sparse in the number of reflected layers, resulting a small number of cosine tones

along the compressed A-scan dimension. Therefore, if we represent the signal in

frequency domain, we would expect the coefficients to be sparse. Accordingly,

the inverse discrete Fourier transform matrix is used as the sparsifying basis in

the recovery algorithm.

Similar to many noise processes, the noise of this system is predominately of

high frequency. Consequently, the high frequency parts of the signal become less

distinguishable from the noise. While applying sparse recovery with the classic

ℓ1 min norm, we observe that as the sparsity level λ is increasing, the power of

the high frequency part vanishes much faster than the low frequency part. As a

result, there is a bias toward the low frequency interference depths. To resolve

this issue, we employ a weighted ℓ1 minimization to this problem. The general

weighted ℓ1 minimization method was proposed in (Khajehnejad et al., 2009).
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5.3.2 Collaborative Weighted Sparse Recovery

Our proposed method is composed of two steps. First, we generate a initialization

from the classic ℓ1 minimization problem. The weight vector w is then computed

based on the power spectrum of the initialization solution.

X̂0 = arg min
X0∈CN3×N1N2

1
2

N1N2∑
k=1
∥y(k) −A(k)Dx(k)∥2

2 + λ0

N1N2∑
k=1
∥x(k)

0 ∥1, (5.2)

where ∥x∥1 calculates the sum of absolute values of all entries of x : ∥x∥1 =∑N3
i=1 |xi| and λ0 > 0 is the sparsity balancing ratio. The non-negative regular-

ization parameter λ0 balances the ratio of sparsity of the solution and the fitness

of the solution with respect to the measurements. The larger value of sparsity

level leads to a more sparse solution.

Second, we pass the ℓ1 minimization solution to the weighted ℓ1 minimization

algorithm. For non-negative weights w = (w1, w2, ..., wN3)T , wi ≥ 0, the weighted

ℓ1 norm of vector x given the weight vector w is defined as: ∥x∥w,1 = ∑N3
i=1 wi|xi|.

For variable matrix X = (x(1), x(2), ..., x(N1N2)), we find:

X̂ = arg min
X∈CN3×N1N2

1
2

N1N2∑
k=1
∥y(k) −A(k)Dx(k)∥2

2 + λ
N1N2∑
k=1
∥x(k)∥w,1, (5.3)

where the sparisfying transform Φ is the inverse discrete Fourier basis. The

weight w in (5.3) is a function associated with the power spectrum of X̂0 from

solving (5.2). Smaller weights encourage higher amplitudes by reducing the

contribution in the penalty function. We estimated the support based on the

amplitudes of the ℓ1 minimization solution. To suppress noise on non-support

locations and hence enhance the image quality, the weight vector w is set to be

small for locations in the support and large for non-support locations. Essentially,
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our choice of w enforces joint sparsity along the depth dimension. Within the

support, the recovered locations with smaller amplitudes have smaller weights

in order to boost the energy of the reconstructed signal in high frequency bands.

More details on determining the weight vector are explained in the Section 5.3.3.

The above two optimization problems (5.2)(5.3) can be solved efficiently by

several methods such as proximal gradient descent methods (Combettes and Wajs,

2005; Beck and Teboulle, 2009), gradient projection (Figueiredo, Nowak, and

Wright, 2007), alternating minimization (Boyd et al., 2011), approximate message

passing (Donoho, Maleki, and Montanari, 2009), etc. In our implementation, we

use gradient projection for sparse reconstruction (GPSR) (Figueiredo, Nowak,

and Wright, 2007) to solve both ℓ1 and weighted ℓ1 minimization programs.

The full image reconstruction process is illustrated in Figure 5.2, where the

inputs are the compressed measurements y and pseudo-random binary pattern

A, and the output is the reconstructed image X̂. The iterative ℓ1 minimization

algorithm using GPSR is fed the measurements and the known binary patterns

to reconstruct an initial image. This is sent into a weighted ℓ1 minimization

algorithm that produces the final image. The details regarding how to set the

weight vector in this method is elaborated in next section.

5.3.3 Details on Designing Weighting Vectors

In this section, we explain the details of designing a proper weighting scheme.

We first plot the 1D power spectrum for each depth for the ℓ1 minimization

solution. In Figure 5.3a, clearly for non-support part, the energy is reasonably

large. The 1D power spectrum statistics along the third dimension are used to
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Figure 5.2: The flowchart of the proposed two-step weighted algorithm. The
collaborative row-sparsity is enforced inexplicitly through the weighted ℓ1 minimization
step.

determine the weights for the weighted ℓ1 minimization algorithm to resolve these

issues. First, we search for peaks from the ℓ1 minimization solution to determine

the support and non-support part of the signal. We use three parameters to

determine the peaks: the threshold ratio τ between 0 to 1 on amplitudes to be

in the support, the minimum width δ ∈ Z+ to be a strong peak, and minimum

radius from the peak boundaries to the local maximum (peak centers) ρ ∈ Z+.

We first eliminate the support locations based on the first two parameters.

Then for the detected peaks, we find the local maximum within each local

region, treat it as the peak center and extend its boarder to 2ρ if the border

to center distance is less than ρ, encouraging a smoother transition between

support and non-support part in the solution. In our experiment, we pick

τ = 15%, δ = 3, ρ = 2. We find peaks within top 15% magnitudes with width at

least 3 pixels and radius at least 2 pixels from the peak center.

Next we compute the weight vector w according to the result from peak

detection. Within each peak region, the square root of the averaged power are

used as weights. Since the ℓ1 minimization recovery solution has a higher energy

at a lower frequency peak and a lower energy at a high frequency peak, this
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(a) Blue line: one dimensional (1-D) Spectrum of ℓ1 mini-
mization; Green linke: Weights assigned from detected peak
indicator function

(b) The one dimension power spectrum of reconstructed signal

Figure 5.3: The effect of using reweighted sparse recovery on 1D power spectrum.
Top: A typical power spectrum from ℓ1 minimization in blue and the weight in green
is calculated by the algorithm. Bottom: 1D spectrum of reweighted sparse recovery
solution by using the weights in green in (a).
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method assigns a lower weight for a high frequency peak compared to a lower

one. For the non-support part, we set their weights to be a constant higher

than all the weights for the support. Here, we set them to be two times the

square root of the max value of the 1D power spectrum vector. All parameters

in the peak finding and weight functions are determined empirically. The higher

the weight, the more the magnitude of corresponding location tends toward

zero because the weight contributes more to the penalty. Our designed weight

vector significantly decreases the reconstruction noise and boosts the energy in

high frequency bands. The weighting function calculated from our proposed

method is shown in Figure 5.3a. By applying this weight, we use reweighted ℓ1

minimization as given in equation (5.3). The resulting 1D power spectrum is

shown in 5.3b. As we expected, the third profile peak occurs and the power on

non-support are suppressed significantly.

5.4 Experimental Results

5.4.1 The Comparison between Randomly Sub-sampled
Measurements and Temporally-continuous Measure-
ments

We compare the result of using subsampled measurements A and y with us-

ing temporally-continuous measurements. Figure 5.4 gives the results with 50

measurements per A-scan direction with two different sampling pattern: one

is sequentially-continuous measurements and the other one is random subsets.

Random sub-sampling gives better results than a sequentially-continuous mea-

surements of the same size. In the top layer, the reconstruction result from
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sequentially-continuous measurements has more aliasing than the result from

random subsets.

This is because random sub-sampled measurements are more incoherent than

sequentially continuous measurements, which means that the random subsets

provide more useful information with the same number of measurements.

Figure 5.4: Comparison of reconstruction with continuous measurements versus
random measurements. (a) The reference. (b) The reconstruction result using 50
continuous measurements. PSNR = 24.3 dB. (c) The reconstruction results using a
random set of 50 measurements at each location. PSNR = 25.7 dB.

5.4.2 Performance with Various Number of Measurements
(Sampling rate)

The impact of compression rate on image quality is illustrated in Figure 5.5. In

Figure 5.5a, the increase in PSNR from 30 to 50 measurements corresponds to

properly reconstructing the third layer. The 100 measurement reconstruction

shows some noise reduction, but the increase in PSNR is minimal. Although

reconstructions using 10 and 30 samples fail to reconstruct all of the layers, there
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Figure 5.5: (a) Example C-scan reconstructions of an 100 x 150 x 192 depth image
with 10, 30, 50, and 100 measurements, or 144-MHz, 48-MHz, 28.8-MHz, and 1.44-MHz
A-scan rates, respectively. (b) The PSNR of the CS reconstruction vs the number of
compressed measurements used for reconstruction shows an increase in PSNR around
50 measurements where the third layer becomes clearly visible.
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is still a clear object reconstructed. This ability is due to the sparsity enforced

by the compressed reconstruction, meaning that the sparser the image, the fewer

samples that are needed to be used to form an image. As shown in Figure 5.5b,

when the number of measurements increases, the algorithm is able to recover

more details of the signal and the reconstruction image quality is improved

visually, as quantified by Peak Signal-to-Noise Ratio (PSNR). We calculate

PSNR by comparing the reference Nyquist-sampled time-stretch measurement

of the section of microfluidic channel to our CS reconstructions.

5.5 Summary

We demonstrate a compressed sensing OCT system that both addresses the need

for high-speed data acquisition and offers physical-domain data compression.

Using this approach we show real-time data compression of the OCT signals

allowing A-scan acquisition from deeply sub-Nyquist sets of measurements.

In this system, different frequencies corresponds to various depth information.

Using conventional ℓ1 minimization, the high frequencies components are not

recovered correctly and resulting one major depth profile is completely missing.

Additionally, we develop a reconstruction approach that leverages the joint

sparsity in both axial and transverse dimensions to efficiently and accurately

reconstruct the full C-scan data cube. The resulting reweighted scheme is

able to recover all depth profiles. Experimentally, we show successful C-scan

reconstruction of all layers in a microfluidic channel on a glass slide with only

13% of the measurements required by Nyquist sampling, or a 28.8-MHz A-scan

rate. Our results demonstrate that the conventional limit on axial pixel rate
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imposed by the ADC sampling rate in conventional Nyquist-sampling OCT

systems can be surpassed using sub-Nyquist CS sampling resulting in faster

collection times, less data, and lower cost detectors and ADCs.

5.6 Appendix: Hardware Systems

5.6.1 CHiRP-CS Sampling System

The CHiRP-CS optical system is shown in the lower half of Figure 5.6. The

approach begins with ultrafast laser pulses from a MLL source at a center

wavelength of 1550 nm and native 90-MHz repetition rate. Pulses from this laser

are first temporally multiplexed twice up to a repetition rate of 360 MHz and

then sent through a 853 ps/nm dispersion optical fiber module to spread the 22

nm of optical bandwidth over 20 ns. This resulting spectrum-to-time mapping

allows the spectrum of the laser pulses to be modulated in time with an EOM

operating at 11.52 Gb/s using a pre-programmed pseudo-random binary sequence

(PRBS). With the 2.77-ns repetition period of the laser pulse train and the over

20-ns chirped pulse duration, neighboring pulses overlap greatly, resulting in up

to three pulses modulated simultaneously. However this modulation is imparted

on different portions of their spectra resulting in unique spectral patterns on

each pulse. Modulating the 360-MHz pulse source at 11.52 Gb/s results in

sequential pulses spectrally shifting the PRBS pattern by 32 bits. In order to

reach our final 1.44-GHz repetition rate, the patterned source is temporally

multiplexed twice more, with large delays of 166 ns and 306 ns. The dispersed

pulses are re-compressed in 50 km of SMF resulting in a sequence of temporally

distinct short pulses with unique spectral patterns at a 1.44-GHz repetition
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rate. This approach results in minimum spectral features of 12.53 GHz, over

almost 3 THz of optical bandwidth, determined by the dispersion and EOM

modulation rate. Notably, given the 11.52-Gb/s modulation rate the 12.53-GHz

minimum spectral features are near the modulation limit from interbit spectral

distortion. Subsequently passing the spectrally-coded pulses through the OCT

interferometer piece-wise multiplies the binary spectral pattern with the OCT

interference signal of interest. Finally, detecting the temporally compressed

pulse after this process achieves optical integration. Thus this process optically

computes the vector inner product between the binary spectral patterns and the

OCT interference signal such that only a single ADC sample of each pulse is

required to capture each compressed measurement.

5.6.2 OCT Interferometer System

The OCT interferometer is constructed with a mirror as a reference arm and a

two-dimensional laterally scanning sample arm with a single 7.5-mm focal length

aspheric lens. The input CHiRP-CS source is split by a 80/20 coupler, where

80 percent enters the sample arm and 20 percent reaches the reference mirror.

The returned pulses are then recombined in a 50/50 coupler and detected in a

balanced configuration by a 1.6-GHz amplified photo-detector. As illustrated

in Figure 5.6, a single sample of the compressed pulse amplitude yields the

inner product between the spectral interference signals and the unique binary

spectral pattern imposed on each pulse by the CHiRP-CS system. Each inner

product contains information spanning the entire spectrum and can be described

mathematically as

y = ⟨a, s⟩+ z, (5.4)

124



Figure 5.6: Experimental setup for conventional time-stretch MHz OCT is shown on
top. A 90-MHz MLL is pulse picked down to a 18-MHz repetition rate and dispersed
to over 8 nanoseconds using SMF. This is sent into the OCT interferometer and the
returned pulses are detected with a 20-GHz balanced photo-detector and digitized at
40 Gsamples/s. Our CHiRP-CS MHz OCT system is shown at the bottom. Pulses
from a 90-MHz MLL are dispersed in DCF, spectral encoded with a PRBS using an
EOM, then temporally compressed in SMF. The pulses are temporally multiplexed
four times, before and after the modulation, for a final 1.44-GHz repetition rate. The
pulses are sent into the OCT interferometer and detected with a 1.6-GHz balanced
photo-detector and digitized at 1.44 Gsamples/s. MLL - mode-locked laser, SMF -
single mode fiber, DCF - dispersion compensating fiber, EOM - electro-optic modulator,
PRBS - psudeo-random binary sequence, BPD - balanced photo-detector.
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where a is one row in the known pseudo-random binary pattern A, and s is

the interference signal under test a sample location, and z denotes the noise.

We can then reconstruct the depth profile using a sequence of such compressed

measurements (vector y) and compressed sensing algorithms necessitating far

fewer measurements than a comparable Nyquist sampling system such as a time-

stretch system shown in the top of Figure 5.6. Specifically, here we reconstruct

the OCT spectra onto 384 spectral pixels using 10 to 100 samples yielding

compression ratios from 2.6% to 26%. Practically, this compression allows us to

use a much lower speed detector and ADC than the comparable time-stretch

system, while achieving the same imaging speed or, alternately higher imaging

speed using comparable electronics.

In order to investigate the fidelity of our CS approach, we first acquire

Nyquist-sampled time-stretch OCT measurement for comparison (Xu et al.,

2014; Goda et al., 2012). As shown on top in Figure 5.6, this time-stretch

system is implemented as follows. The 90-MHz MLL is sent into an EOM to

be pulse picked down to 18 MHz. Pulse picking is necessary to avoid pulse

overlap after the pulses then propagate through 853 ps/nm dispersion module to

achieve sufficient spectrum-to-time mapping for comparable axial dimension to

our CS system. This signal detected by a 20-GHz linear balanced photo-detector,

then digitized by a 20-GHz bandwidth 40-GS/s oscilloscope. This time-stretch

measurement is used as the ground truth in comparison to our compressed

sensing approach to evaluate reconstructed image quality.
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Chapter 6

Conclusion and Discussions

In this thesis, we proposed alternative methods for solving sparse regression

compared to the conventional Lasso approach.

The first framework that we propose is Bagging in Sparse Regression, which

employs bagging procedure in the bootstrap samples. In this work, we extend

the conventional Bagging scheme in sparse recovery with an adjustable bootstrap

sampling ratio L/m and derive error bounds for the algorithm associated with

L/m and the number of estimates K in Theorem 5 and Theorem 6. Bagging is

particularly powerful when the number of measurements m is small.

The performance limits associated with different choices of bootstrap sampling

ratio L/m and number of estimates K are analyzed theoretically. Simulation

results show that a lower L/m ratio (0.6 − 0.9) leads to better performance

than the conventional choice (L/m = 1), especially in challenging cases with

low levels of measurements. With the reduced sampling rate, SNR improves

over the original Bagging method by up to 24% and over the base algorithm ℓ1

minimization by up to 367%. With a properly chosen sampling ratio, a reasonably

small number of estimates (K = 30) gives a satisfying result, although increasing
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K is discovered to always improve or at least maintain performance. Moreover,

the reduced sampling rate shows a performance improvement measured by the

recovered SNR, and it is over the conventional Bagging algorithm by up to 24%.

Although Bagging in sparse regression is very robust and outperform ℓ1

minimization by significant margins in noisy cases, it is not guaranteed that the

Bagging solution is sparse during the averaging process. The second framework

that we propose a collaborative signal recovery framework named JOBS, which

is a collaborative scheme also using bootstrap samples. The usage of row sparsity

among different estimators enforces support consistency and hence the final

solutions’ sparsity level is preserved.

Similar to Bagging, JOBS improves the robustness of sparse recovery in

challenging scenarios of noisy environments and/or limited measurements. We

carefully analyze theoretical properties of JOBS such as BNSP and BRIP and

then we further derive error bounds for JOBS described in Theorem 15 and

Theorem 16. We analyze theoretic recovery behaviors with respect to two key

parameters: the bootstrap sampling ratio L/m and the number of estimates

K. We also extend the bootstrap scheme to a common sub-sampling variation

of the framework and study its connection to the original bootstrap scheme.

Finally, experiments on sparse regression as well as classification (face recognition

task) are conducted for validation. Simulation results show that the proposed

algorithm consistently outperforms Bagging and Bolasso among most parameter

settings (L, K).

JOBS yields state-of-the-art recovery performances, outperforming ℓ1 mini-

mization and other existing bootstrap-based techniques in the challenging case
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of limited measurements. With a proper choice of the bootstrap sampling ratio

in the range of (0.3− 0.5) and a reasonably large number of estimates (K ≥ 30),

the recovery SNR improvement over the baseline ℓ1-minimization algorithm

can reach up to 336%. JOBS also improves the baseline performance in face

recognition on the cropped AR dataset by 3% with the optimal bootstrapping

sampling ratio set at 0.5. In both regression and classification tasks, JOBS

solutions are validated to be more sparse than Bagging solutions.

The following points are several important properties that we discovered for

JOBS. (i) JOBS is particularly powerful when the number of measurements

m is limited, outperforming ℓ1 minimization by a large margin. (ii) JOBS

achieves desirable performances with relatively low bootstrap ratio L/m (peak

performance occurs at 0.3− 0.5 whereas the sub-sampling variation requires only

0.2− 0.4). It also demands a relatively small K (around 30 in our experimental

study). (iii) The optimal sampling ratio for JOBS is lower than that of Bagging

while achieving similar results. This results in a lower computation complexity for

JOBS. (iv) JOBS solutions are generally more sparse than Bagging’s – a desirable

property in sparse recovery. (v) Extending the framework in classification tasks,

only JOBS framework also improves classification accuracy; the improvement

over ℓ1 minimization is 3% for cropped AR dataset and 1.5% for Yale B dataset

with approximately 90%−10% training-testing split. (vi) JOBS has an advantage

over Bagging because the expected amount of data required for obtaining peak

performance is less; we have precise control of the sparsity level, and heuristically

we produce sparser solutions compared to Bagging, which matches our motivation

of developing JOBS framework.
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In the OCT recovery work, the problem has two main challenges: (i) The

speeding construction on sensing system, with limited measurements at each

location, the reconstruction is quite challenging. (ii) Both noise and some part

of signal are high frequency and therefore the high frequency signals are hard to

recover. We have shown the power for the collaborative approach on subsets of

measurements. The reconstruction result is much better than the conventional

sparse recovery. The algorithm also outperforms the same collaborative approach

but choosing continuous measurements.
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Chapter 7

Future works

In this thesis, we have proposed a general collaborative framework and there are

a lot of real-world applications that have a similar flavor. Although the major

contributions of this thesis lie in the theoretical understanding of the framework,

there are various potential future works that are related to this topic. In this

section, we will discuss a few future directions along this line of research.

7.1 Extension to Dictionary Learning

There are many dictionary learning frameworks that utilize sparse representation

to perform classification such as (Aharon, Elad, and Bruckstein, 2006), (Mairal,

Bach, and Ponce, 2012), etc. These dictionary learning methods have shown a

better performance than the SRC algorithm that we mentioned in the experiment.

The reason is that in dictionary learning frameworks, not only is the sparse

solution optimized, but also the dictionary matrix A is optimized, which improves

the representation of data.
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A natural extension will be incorporating this novel sparse recovery frame-

work in dictionary learning and improves supervised learning. We expect the

improvement in the regression will improve differentiation between different

classes on difficult examples and therefore improve classification frameworks

based on dictionary learning and sparse representation.

7.2 Non-ideal Sensing Matrix

In our simulations in both regression and classification frameworks, an i.i.d.

random matrix is used as sensing matrix A. In practice, there are cases that

the sensing matrix are non-i.i.d. or highly correlated. These conditions occur

commonly and are lack of tight bounds in theoretical studies. In numerical

studies, we have shown that the JOBS method improves hard cases at the

ranges where the conventional method tends to fail. It is also possible that

this technique will be able to improve the performance in hard cases such as a

non-i.i.d random matrix or highly correlated cases.

7.3 Spatially-Correlated Subsets

For some image recognition problems, not random subsets, instead, spatially-

correlated subsets are observed. For example, partial face recognition is a problem

that often arises in practical settings and applications. The main challenge is

that the lack of information will cause the failure of feature extraction and

images with different sizes and alignments may need to be treated differently.

Our proposed framework solved these two issues simultaneously. We propose a

sparse representation-based algorithm for this problem. Our method firstly trains
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a dictionary and the classifier parameters in a supervised dictionary learning

framework and then aligns the partially observed test image and seeks for the

sparse representation with respect to the training data alternatively to obtain

its label. We also analyze the performance limit of sparse representation-based

classification algorithms on partial observations. We did experiment on AR face

data-set. We training on holistic face of training and the testing is performed on

testing data, which are image patches of various sizes of the original test data.

Details are presented in our work (Liu, Tran, and Chin, 2016).

In our experiment, each test is evaluated on one image patch. The collabo-

rative scheme in JOBS has shown to improve the result if multiple subsets are

involved. For classification on spatially-correlated measurements (image patches

for iamge classification), a collaborative scheme over multiple patches of one test

may potentially improve the classification result.

7.4 Variations in Optimization and Obtaining
Final Estimator

There are variations of regularizer that can be imposed for row-sparsity. In

this work, the proposed method uses ℓ1,2 norm. Other choices of regularizer

can be used such as infinity norm, non-convex norm, greedy approach such

as simultaneous orthogonal matching pursuit can possibly be used. The final

estimator in this paper is obtained by taking average over multiple bootstrapped

estimators. In statistics, median is also a common choice for robust estimator.
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7.5 Streaming Implementations

Classical optimization methods for representation learning that process all data

at once (batch method) to minimize certain loss functions often requires large

amount of memory and are computationally costly. In large-scale problems or in

the streaming setting where new data are coming in constantly, these algorithms

are not very efficient because they are limited by the increased storage and

complexity requirements. Online Learning methods, which process one data

point at a time, and mini-batch algorithms which update predictions over a small

set of training data are desirable in training systems to dynamically adapt to

new data, solving a summation approximation of the loss functions on individual

samples or batches of samples. JOBS has shown to be effective in with lower

L, which will be an advantage if the algorithm is streaming. The streaming

variation of the proposed method could possibly be in the form of the following

equation, in which the superscript t denotes the t− th iteration:

X(t+1) = arg min
X(t)

∥X(t)∥1,2 s.t.
K∑

j=1
∥y[Ij ]−A[Ij]xj∥2 ≤ ϵJ , {I1I2, .., IK}(t).

(7.1)

Potentially a small L and reasonable K can be used for the streaming algorithm.

In the proposed work JOBS, we also have shown that JOBS procedure

is a relaxation of the ℓ1 minimization for all choices of I and therefore (7.1)

serves as the stochastic approximation using stochastic mini-batch method with

relaxation. Hopefully the streaming form of JOBS can improve the convergence

of mini-batch method for ℓ1 minimization.
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7.6 Extension of JOBS Framework to Other
Penalty Functions

JOBS is a framework as a relaxation of the standard sparsity penalty ℓ1 minimiza-

tion. Similar framework can be extended to other penalty functions such as: i)

Other block or group sparsity defined by particular group partition ii) non-convex

sparse promoting penalty function such as ℓp, 0 < p < 1. iii) Classification loss

functions.

7.7 Regression via Deep Learning Framework

In the era of big data, Deep learning methods today have become one of the most

powerful methods for classification tasks. Key to the success is the ability to learn

rich feature hierarchies (Girshick et al., 2014) , with low-level features like edges

and colors learned at lower layers, which are combined together in the higher

layers to detect complex shapes and patterns in a fully-differentiable end-to-end

framework. Although most advantages of deep learning are initially discovered

in classification, doing regression via deep learning recently has achieved some

success. Reconstruction algorithms such as ReconNet (Kulkarni et al., 2016),

DeepInverse (Mousavi and Baraniuk, 2017) and (Lohit, Kulkarni, and Turaga,

2016) have shown promising performances. We would like to try to employ deep

learning to solve regression problem of our proposed method JOBS and hopefully

the performance can be further improved.
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7.8 Multi-layer Sparse Coding Neural Networks

Convolution Neural Network (CNN) recently has shown its success in various

application field such as vision, speech and natural language processing. Recently

there have been works that use multi-layer sparse coding (Sulam et al., 2018; Sun,

Nasrabadi, and Tran, 2019) to achieve a hierarchical sparse features extraction

structure, which has shown to reach CNN performances on multiple tasks.

Our work improves on sparse regression, which is a single layer sparse coding

layer in a multi-layer framework. As such, an interesting extension is to see

whether a similar technique can improve the performances of a supervised

learning framework based on multi-layer sparse coding networks.
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