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ABSTRACT 

Background: Arsenicals (roxarsone and nitarsone) used in poultry production likely 

increase inorganic arsenic (iAs) concentrations in poultry meat. The association between 

poultry intake and iAs exposure, as reflected in elevated urinary arsenic concentrations, 

however, is unknown.  

Objectives: Evaluate the association between 24-hour dietary recall of poultry 

consumption and iAs exposure, as reflected in increased urine arsenic concentrations, in 

the U.S. population. We hypothesized that the association between turkey intake and 

increased urine arsenic concentrations would be modified by season, reflecting seasonal 

use of nitarsone. 

Methods: We evaluated 3,329 participants ≥6 years old from the 2003-2010 National 

Health and Nutrition Examination Survey (NHANES) with urine arsenic available and 

undetectable urine arsenobetaine levels. Geometric mean ratios (GMR) of urine total 

arsenic and dimethylarsinic acid (DMA) were compared across increasing levels of 

poultry intake. 

Results:  After adjustment, participants in the highest quartile of poultry consumption had 

urine total arsenic 1.12 (95% CI 1.04, 1.22) and DMA 1.13 (1.06, 1.20) times higher than 

non-consumers. During the fall/winter participants in the highest quartile of turkey intake 

had urine total arsenic and DMA 1.17 (0.99, 1.39, p-trend=0.02) and 1.13 (0.99, 1.30, p-

trend=0.03) times higher, respectively, than non-consumers. Past 24-hour consumption of 

turkey was not associated with total arsenic or DMA during the spring/summer.  
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Conclusions: Poultry intake was associated with increased urine total arsenic and DMA 

in NHANES 2003-2010, reflecting iAs exposure. Seasonally stratified analyses by 

poultry type provide strong suggestive evidence that the historical use of arsenic-based 

poultry drugs contributed to iAs exposure in the U.S. population, and support the banning 

of arsenic-based poultry drugs internationally. 
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INTRODUCTION 

In populations with low arsenic levels in drinking water, exposure to iAs occurs 

mainly through diet, particularly rice and other grains, as well as some juices and wine 

(Davis et al. 2012; DeCastro et al. 2014; FDA 2014a; Navas-Acien et al. 2011). Inorganic 

arsenic is a toxic and carcinogenic metalloid naturally occurring in water, air, and soil 

that enters the food supply through geological releases, contaminated water, and 

anthropogenic sources such as pesticide residue, non-ferrous metal smelting, and waste 

incineration (ATSDR 2007). Little is known, however, about the potential contribution of 

poultry intake to iAs exposure in human populations. 

Arsenic-based drugs (roxarsone for chickens and nitarsone for turkey) were 

deliberately used in United States poultry production for decades, potentially representing 

an unnecessary and easily controllable source of iAs exposure in the population 

(Silbergeld and Nachman 2008). The FDA withdrew marketing approvals for roxarsone 

and two other arsenic-based feed additives in 2013, and withdrew approval for nitarsone, 

used to prevent histomoniasis in turkeys, in December of 2015. (FDA 2014b; Abraham et 

al. 2013; FDA 2015). Historical use of nitarsone in turkey production and roxarsone in 

chicken production may thus have been a chronic source of iAs exposure for the U.S. 

population, and is likely on-going in other parts of the world.  

In 2010, it was estimated that ~88% of broiler chickens available at market had 

been treated with roxarsone (Nachman et al. 2012). A similar estimate is not available for 

nitarsone, but turkey industry representatives have reported that nitarsone was used 

seasonally during hot-weather months in young turkeys that were consumed during the 
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fall/winter (Aubrey 2013). Analyses of chicken meat have shown that the use of 

roxarsone during chicken production likely contributes to elevated iAs, DMA, and other 

unknown arsenic species in chicken meat, and that the concentration of iAs increases 

with cooking (Nachman et al. 2013). Analyses of turkey meat have also shown that the 

use of nitarsone during turkey production likely contributes to elevated iAs, 

monomethylarsonate (MMA), and other unknown arsenic species in turkey meat 

(Nachman KE, oral communication, November 2015). It is unknown, however, if 

consumption of poultry exposed to arsenic-based drugs results in increased iAs exposure 

and internal dose in the population, as reflected in urinary excretion. 

The National Health and Nutrition Examination Survey (NHANES) collects 24-

hour dietary recall information the same day a spot urine sample is collected for total and 

speciated arsenic analysis (NCHS 2014). We evaluated whether consumption of poultry 

in the past 24-hours was associated with increased iAs exposure, as measured in urine by 

total arsenic and DMA during a time period when arsenic-based poultry drugs were 

approved for use in the U.S.  

We hypothesized a priori that the association between turkey intake and elevated 

urine total arsenic and DMA would be modified by season (strongest for turkey 

consumed during the fall/winter and null for turkey consumed during the spring/summer), 

while the association for chicken intake would persist across seasons. To our knowledge, 

this is the first study to evaluate the association between recent poultry consumption and 

iAs exposure, as reflected in urine total arsenic and DMA concentrations. 
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METHODS 

Study population 

We analyzed data from the 2003-2010 cycles of the NHANES, conducted by the 

U.S. National Center for Health Statistics. NHANES is a multi-stage, nationally-

representative sample of the non-institutionalized population (NCHS 2014). Our study 

uses data from the demographic questionnaire, the 24-hour dietary recall, the clinical 

examination, and the laboratory examination. All NHANES protocols were approved by 

the U.S. National Center for Health Statistics institutional review board and all 

participants gave written informed consent (NCHS 2011a). Our study was exempt from 

IRB approval because we used de-identified, publically-available data. To capture a time 

period when urine arsenic measures were available and roxarsone, nitarsone, and other 

arsenic-based drugs were still available in poultry production, we restricted our analysis 

to 2003-2010 NHANES cycles. 

Urine arsenic was measured in a one-third subsample of all participants ≥ 6 years 

of age. From 10,451 participants in the NHANES 2003-2010 urine arsenic subsamples, 

we excluded 387 missing total urine arsenic, arsenobetaine, or DMA; 229 who were 

pregnant; 880 missing BMI, cotinine, urinary creatinine, or education information; and 

5,626 with detectable arsenobetaine, as seafood arsenicals markedly contribute to total 

arsenic exposure and DMA and make it difficult to evaluate the contribution of other 

foods to iAs exposure (Navas-Acien et al. 2011). The final sample size was 3,329 

participants 6 years and older. The response rate across the entire survey period was 

76.5% (NCHS 2013). 
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Urine arsenic 

Spot urine samples were collected during examination, poured in 5-mL cryovial 

vessels, frozen at ≤-20º C, and shipped within one week on dry ice to the National Center 

for Environmental Health at the Center for Disease Control and Prevention for analysis 

(NCHS 2005). Total arsenic concentrations were determined via quadrupole inductively 

coupled-plasma mass spectrometry with dynamic reaction cell (ICP-DRC-MS). Speciated 

arsenic concentrations (arsenite, arsenate, MMA, DMA and arsenobetaine) were 

determined via HPLC coupled to ICP-DRC-MS (NCHS 2007, 2009a, 2011b, 2011c).  

We used total arsenic and DMA as proxies for inorganic arsenic internal dose 

(ideally measured as the sum of iAs and metabolites MMA and DMA), as the limits of 

detection (LOD) and percent of analytic sample below the LOD for arsenite (1.2 µg/L, 

97.7%), arsenate (1.0 µg/L, 96.8%), and MMA (0.9 µg/L, 74.0%) were high compared to 

some other studies evaluating urinary arsenic levels, and most samples were largely 

undetectable (Cubadda et al. 2012; NCHS 2007, 2009a, 2011b, 2011c; Scheer et al. 

2012). Although total arsenic and DMA reflect organic and inorganic arsenic exposure, 

restricting to participants with undetectable arsenobetaine likely removed the effect of 

organic arsenicals, which are thought to be largely non-toxic and which are attributable to 

seafood intake (Navas-Acien et al. 2011).   

The LOD for total arsenic ranged from 0.60 µg/L to 0.74 µg/L across the entire 

survey period, with an inter-assay coefficient of variation ranging from 3.0% to 19.4% 

for lots with mean concentrations of 3.6 µg/L to 8.15 µg/L (NCEH 2006a, 2007, 2008, 

2010). For DMA across the entire survey period, the LOD was 1.7 µg/L with an inter-
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assay coefficient of variation ranging from 4.6% to 6.6% for lots with mean 

concentrations of 4.12 µg/L to 6.85 µg/L (NCEH 2004, 2006b, 2008, 2010). The percent 

of participants in the analytic sample below the LOD for poultry consumers and non-

consumers was 1.2% and 4.0%, respectively, for urine total arsenic and 28.2% and 

32.0%, respectively, for DMA. Values below the LOD for total arsenic and DMA were 

replaced by the LOD divided by the square root of two. The LOD for arsenobetaine was 

<0.4 µg/L across the entire survey period (NCEH 2004, 2006b, 2008, 2010). 

  

24-hour poultry intake assessment 

Poultry intake during the past 24-hours was collected via multiple-pass dietary 

recall during the in person questionnaire. Multiple-pass dietary recall is the validated 

method of choice for food recall, and is conducted in five steps: 1) easily remembered 

foods; 2) frequently forgotten foods; 3) time and occasion of meals; 4) detailed 

descriptions, eating locations, portions; and 5) final review probe (Conway et al. 2004; 

NCHS 2009b). To estimate portion size, participants are given 2- and 3-dimensional 

measuring guides (NCHS 2010). Food and drink items are reported in grams of intake 

and linked to 8-digit U.S. Department of Agriculture (USDA) food codes. Because 

USDA food codes often contain multiple food components (e.g. chicken sandwich), we 

used Food Commodity Index Database (FCID) codes to determine the weight of each 

USDA food item attributable to poultry meat (See Supplementary Material: Table S1) 

(EPA 2010a). The FCID was developed by the Environmental Protection Agency’s 

(EPA) Office of Pesticide Programs. FCID codes convert the weight of each USDA food 
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item into the respective weights of all commodities included in the item. For each 

participant, FCID commodity codes are summed across all USDA food items. We 

analyzed FCID commodity codes for “Turkey, meat” and “Chicken, meat,” and defined 

poultry intake as the sum of chicken and turkey meat intake, in g/kg bodyweight per day. 

To control for potential confounding by other foods that contain substantial 

amounts of iAs, we used FCID commodity codes corresponding to rice, wine, and juice 

intake (Table S1) (FDA 2014a). Because no FCID commodity codes exist for cereals, we 

used corresponding USDA food codes (See Supplementary Material: Table S2). 

  

Other variables 

Questionnaire data (age, sex, race/ethnicity, education, smoking status, poverty-

income ratio), examination data (body mass index, urine creatinine, serum cotinine) and 

tap water source were also available from NHANES. We categorized race/ethnicity as 

non-Hispanic white/non-Hispanic black/Mexican-American/other, including multiple 

races. Smoking status in adults was defined as never/former/current by self-report. 

Children (<20 years old) who never smoked a whole cigarette were categorized as 

“never” smokers; children who smoked a whole cigarette, but not in the past 30 days, 

were categorized as “former” smokers; children who smoked a cigarette in the last 30 

days were categorized as “current” smokers. All participants with serum cotinine ≥10 

ng/mL were re-categorized as “current” smokers, and children missing self-reported 

smoking status with serum cotinine <10 ng/mL were categorized as “never” smokers. 
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Statistical analysis 

All statistical analyses were performed using the ‘survey’ package in R to account 

for NHANES complex survey design and sampling weights (Lumley 2014). Both urine 

total arsenic and DMA were right skewed and log-transformed for analysis. 

We compared the geometric mean ratios (GMR) and corresponding 95% 

confidence intervals for both total arsenic and DMA by poultry intake using multiple 

linear regression across categories of intake for poultry and for chicken and turkey 

separately, comparing quartiles of intake within those who reported consuming poultry, 

chicken, or turkey to a reference category that included those who did not report any 

poultry, chicken, or turkey intake, respectively. Model 1 adjusted for urine creatinine 

(log-transformed continuous), age (continuous), sex (male/female), race/ethnicity (non-

Hispanic white/non-Hispanic black/Mexican-American/other, including multiple), 

education (less than high school/high school or equivalent/greater than high school), 

poverty-income ratio (continuous), body mass index (continuous), smoking status 

(never/former/current), serum cotinine (log-transformed continuous), and tap water 

source (community supply/well or cistern/spring/other/no tap water). We were unable to 

exclude participants living in areas with high iAs levels in drinking water, as no 

information about participant location or geography was publically available. Model 2 

further adjusted for past 24-hour intake of rice, cereal, juice, and wine (g/kg bodyweight, 

continuous). To allow a more flexible dose-response analysis, we also analyzed poultry 

intake as log-transformed continuous with restricted quadratic splines at the 10th, 50th, 



 

 

8 
 

and 90th percentiles of poultry consumption among consumers, defining those who 

reported no poultry consumption as the reference group. 

We also conducted subgroup analyses for poultry consumption by age, sex, 

race/ethnicity and rice consumption using multiple linear regression on total arsenic and 

DMA as log-transformed, with interaction terms for each subgroup. We then estimated 

the GMR of total arsenic and DMA comparing the 75th to 25th percentile of the poultry 

intake distribution, including non-consumers, by subgroup. To determine if season 

modified the relationship between intake and urine arsenic for turkey, but not chicken, we 

stratified our analyses by fall/winter (November 1st – April 30th) and spring/summer 

(May 1st – October 31st). We hypothesized that for turkey meat, but not chicken meat, the 

association would attenuate in the spring/summer but remain positive in the fall/winter, 

reflecting the seasonal use of nitarsone in turkey production and yearlong use of 

roxarsone in chicken production. Specifically, we hypothesized that summer use of 

nitarsone in turkey production would result in iAs exposure, as reflected in elevated urine 

total arsenic and DMA levels, in consumers during the fall/winter only. 
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RESULTS 

Participant characteristics by poultry consumption 

The weighted prevalence of poultry intake in the last 24-h was 52% overall and 

50% among those with undetectable arsenobetaine (Table 1). Poultry consumers were 

younger, more likely to belong to racial/ethnic minority groups, more likely to report 

consuming rice and juice in the past 24-hours, and less likely to report consuming cereals 

in the past 24-hours. Among those with undetectable arsenobetaine, the median 

concentration of urine total arsenic and DMA were 4.18 and 2.56 µg/L, respectively, 

among poultry-consumers and 3.99 and 2.42 µg/L, respectively, among non-consumers. 

 

Urine arsenic by poultry intake 

After full adjustment, the GMRs (95% CIs) comparing the highest quartile of 

poultry intake among consumers (>1.61 g/kg bodyweight per day) to non-consumers 

were 1.12 (1.04, 1.22) for total arsenic and 1.13 (1.06, 1.20) for DMA (Table 2). When 

stratified by the type of poultry, the corresponding GMRs for total arsenic and DMA 

were 1.15 (1.06, 1.25) and 1.13 (1.06, 1.21) for chicken and 1.09 (0.99, 1.20) and 1.10 

(1.01, 1.20) for turkey. In restricted quadratic spline models, both total arsenic and DMA 

increased significantly with increasing poultry intake beyond approximately 1.0 g/kg 

bodyweight (Figure 1). We found no difference in GMRs of total arsenic or DMA by 

poultry intake across age, sex, race/ethnicity and rice consumption subgroups (Figure 2). 
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Stratified analysis by season 

In analyses stratified by season (winter vs. summer), the association between 

chicken intake and urine total arsenic and DMA remained similar for both seasons (p-

value for interaction 0.76 for total arsenic and 0.24 for DMA). For turkey intake, 

however, the interaction was statistically significant for total arsenic (p-value for 

interaction 0.04 and borderline for DMA (0.07)), with strong associations for total arsenic 

and DMA in the fall/winter (p-for trend=0.02 and 0.03, respectively), but not in the 

spring/summer (p-for trend= 0.70 and 0.99, respectively) (Table 3). 
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DISCUSSION 

In this representative study of the U.S. population conducted when roxarsone, 

nitarsone, and other arsenicals were widely used in poultry production, past 24-hour 

consumption of poultry was associated with elevated total arsenic and DMA 

concentrations in urine, reflecting iAs exposure (Chapman and Johnson 2002; Nachman 

et al. 2012). As hypothesized, chicken consumption was associated with increased urine 

total arsenic and DMA year-round, while only turkey consumption during the fall/winter, 

but not spring/summer, was associated with increased total arsenic and DMA in urine. 

These findings are consistent with the reported seasonal use of nitarsone in turkey 

production and the yearlong use of roxarsone in chicken production, and add to a 

growing body of literature suggesting that the use of arsenicals in poultry feed results in 

iAs exposure for poultry consumers (Aubrey 2013). 

Arsenic-based drugs were used in U.S. poultry production for decades to prevent 

histomoniasis (blackhead disease) and coccidiosis (parasitic infection) and to improve 

weight gain and meat pigmentation (Abraham et al. 2013; Chapman and Johnson 2002; 

Silbergeld and Nachman 2008). Our results strongly support the decision of the FDA to 

withdraw approval for nitarsone sales in the U.S. beginning in December of 2015, and for 

roxarsone and other arsenicals in 2013. However, there is no indication that the 

marketing and use of arsenicals will be discontinued internationally (FDA 2015). 

Inorganic arsenic is an established human carcinogen, causing cancers of the lung, 

skin, and bladder and maybe cancers of the liver and kidney (ATSDR 2007; IARC 2009). 

Increasing evidence supports that chronic low- to moderate iAs exposure levels results in 
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numerous non-cancerous health effects, including cardiovascular, kidney and respiratory 

disease and diabetes, and cognitive and reproductive defects (Ahmad et al. 2011; Chen et 

al. 2011; Farzan et al. 2013; Farzan et al. 2015; Moon et al. 2012; Moon et al. 2013; 

Navas-Acien et al. 2008; Rahman et al. 2009; Tolins et al. 2014; Zheng et al. 2014). In 

2011, the FDA concluded that any animal feed additive that contributed to increased iAs 

levels in poultry tissues was of concern (FDA 2011). The EPA’s Integrated Risk 

Information System (IRIS) is currently reevaluating iAs risk assessment; a draft 

appearing on the EPA website proposed an updated lung and bladder cancer potency 

factor of 25.7 for the U.S. population, citing the increased susceptibility of women (EPA 

2010b). Using this proposed cancer potency factor and intake rates from NHANES 2003-

2006, Nachman et al. (2013) estimated that, assuming roxarsone use in chickens, a 

typical consumer of conventionally-produced chicken would receive an average daily iAs 

dose of 1.44 x 10-6 mg/kg bodyweight, resulting in an excess 124 bladder and/or lung 

cancer cases per year in the U.S. 

Food is the primary source of unregulated arsenic exposure, highlighting the 

importance of eliminating or reducing dietary iAs exposures where possible 

(Georgopoulos et al. 2008). Specifically, rice, wine, juices, and cereals contribute to iAs 

exposure and rice can also contribute to DMA exposure, while seafood contributes to 

low-toxicity organic arsenicals (Davis et al. 2012; Jackson et al. 2012; Navas-Acien et al. 

2011; Schoof et al. 1999; Tariba 2011). Contamination of rice, grain, and grape products 

is likely attributable to the historical application of arsenic-based pesticides, naturally 

occurring ground water contamination, and especially for rice, the accumulation and 
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deposition of arsenic into the rice grain (Carey et al. 2012; Chen et al. 2015; Robinson et 

al. 2007; Tariba 2011; Wilson et al. 2012). There are also some reports of poultry waste 

being used to fertilize rice paddies and roxarsone potentially contributing to iAs in the 

rice (Alter vs. Pfizer Inc. 2012). Non-toxic, organic arsenicals (arsenobetaine, 

arsenosugars, arsenolipids) in seafood likely arise from the metabolism of naturally 

occurring arsenic in sea animals and plants (Sabbioni et al. 1991). Although 

phytoremediation by arsenic-accumulating plants can successfully remediate arsenic 

contaminated crop areas, remediation may require multiple cycles over long periods of 

time (Hettick et al. 2015). In contrast, eliminating the unnecessary and deliberate use of 

arsenic-based drugs in poultry production is an easily controlled method of reducing 

dietary iAs exposure. 

Our seasonally stratified analysis provides strong suggestive evidence that iAs 

exposure from poultry consumption was the result of arsenic-based drug use. Multiple 

studies have shown that roxarsone is transformed into inorganic and other arsenic species 

under particular environmental conditions (Arai et al. 2003; Garbarino et al. 2003; 

Jackson et al. 2001). Moreover, elevated total and inorganic arsenic is found in poultry 

tissues and meat after treatment with arsenicals (Conklin et al. 2012; FDA 2011), and 

conventionally produced poultry is known to have higher levels of total and inorganic 

arsenic compared to organic and antibiotic-free poultry (Nachman et al. 2013). It is 

possible, however, that other arsenic sources are responsible for elevated arsenic in 

poultry tissue, such as accidental or naturally-occurring contamination of the soil, water, 

food supply, or packaging process (Hettick et al. 2015). 
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         Our study has several limitations. We were unable to differentiate between 

poultry produced with and without arsenicals, as information regarding the consumption 

of organic or antibiotic-free poultry was not available and we were unable to quantify the 

amount of iAs present in the consumed poultry meat. Although consumption of poultry 

produced without arsenic-based drugs differs across socioeconomic groups, our analysis 

found no differences in urine total arsenic and DMA by poultry intake across 

racial/ethnic groups (Figure 1), poverty-income ratio (≤1 vs. >1), or education (data not 

shown) (Onyango et al. 2007). The LODs for total arsenic and arsenic species in 

NHANES are relatively high. Also, neither roxarsone nor nitarsone species were 

analyzed in urine. Additionally, our analysis was limited to poultry consumption in the 

past 24-hours, and urine arsenic may reflect dietary consumption over the last 1-4 days 

(CDC 2013). Because urine DMA has a shorter half-life than total arsenic, urine DMA is 

more likely to reflect past 24-hour dietary consumption (Fowler et al. 2007). We 

controlled for other dietary sources of arsenic exposure, including rice, wine, juices, 

cereals, and seafood. Restricting to participants with undetectable arsenobetaine likely 

removed the contribution of non-toxic organic seafood arsenicals and their metabolites, 

which, at very high concentrations, can overwhelm the evaluation of other dietary sources 

of arsenic. Although restriction markedly reduced the sample size, population 

characteristics before and after restriction remained similar (Table 1), and our results 

remained robust after full adjustment for both sociodemographic and dietary factors 

(Table 2). 
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CONCLUSIONS 

Consistent with a growing body of literature establishing diet as an unregulated 

yet important source of iAs exposure in the U.S. population (Tariba 2011; Jackson et al. 

2012), our results support that the use of arsenicals in poultry production resulted in iAs 

exposure to poultry consumers, as measured in elevated urine total arsenic and DMA. 

Historical seasonal use of nitarsone in turkey production and yearlong use of roxarsone in 

chicken production may represent an important source of chronic iAs exposure in the 

U.S. population. Future research should evaluate if the relationship between poultry 

consumption and elevated urine total arsenic and DMA is attenuated in years after the 

withdrawal of arsenic-based drugs from the U.S. market. Our study provides strong 

evidence to support the FDA’s recent decision to withdraw approval for nitarsone, and to 

extend the banning of arsenic-based drugs in food production to all countries around the 

world.
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TABLES 

 

Table 1. Participant characteristics by arsenobetaine and poultry intake, 2003-2010 

    Participants with undetectable 

arsenobetaine (N= 3,329) 
All participants (N= 8,955) 

    

  Poultry intake past 24-hours  Poultry intake past 24-hours  

      Yes  No  Yes  No 

N (%)a   1740 (50.1) 1589 (49.9) 4773 (52.0) 4182 (48.0) 

Age (yr) - mean (SE)  35.2 (0.6) 38.2 (0.8) 39.3 (0.4) 41.8 (0.5) 

Sex - % female (SE)  53.9 (1.5) 53.8 (1.7) 50.4 (1.1) 50.6 (1.0) 

Race/ethnicity - % (SE)      

 non-Hispanic white  70.0 (2.2) 76.2 (2.0) 65.4 (2.0) 73.7 (1.8) 

 non-Hispanic black  10.4 (1.1) 7.5 (0.9) 13.6 (1.1) 9.2 (0.7) 

 Mexican-American  11.6 (1.5) 9.0 (1.0) 9.7 (1.1) 8.7 (0.9) 

 

Other, including 

multiple 7.9 (0.9) 7.3 (1.0) 11.3 (1.0) 8.4 (0.8) 

Education - % (SE)      

 <High school  22.0 (1.5) 20.0 (1.4) 19.0 (1.0) 18.7 (1.0) 

 HS or equivalent  26.7 (1.6) 28.8 (1.7) 23.8 (0.8) 26.9 (0.9) 

 >HS  51.4 (2.0) 51.2 (1.9) 54.4 (1.2) 57.2 (1.2) 

Smoking - % (SE)      

 Never  58.3 (1.9) 59.0 (1.9) 57.5 (1.2) 52.8 (1.1) 

 Former  15.9 (1.1) 15.5 (1.4) 19.1 (0.8) 19.9 (0.9) 

 Current  25.8 (1.9) 25.4 (1.7) 23.4 (0.9) 27.3 (1.0) 

Cotinine (nmol/L)  0.07 (0.02, 6.80) 0.08 (0.02, 3.78) 0.06 (0.02, 2.17) 0.07 (0.02, 13.80) 

BMI - mean (SE)  26.2 (0.2) 26.3 (0.2) 27.1 (0.1) 27.2 (0.2) 

Chicken past 24-hr - N (%)  1622 (93.5) - 4459 (93.7) - 

Turkey past 24-hr - N (%)  752 (46.3) - 2093 (47.0) - 

 Both past 24-hr - N(%) 634 (39.8) - 1779 (40.7) - 
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Seafood past 24-hr - % (SE)  3.4 (0.6) 2.2 (0.5) 16.7 (0.8) 16.8 (0.9) 

Rice past 24-hr - % (SE)  18.9 (1.2) 10.7 (1.2) 26.7 (1.1) 14.9 (1.0) 

Juice past 24-hr - % (SE)  19.8 (1.2) 16.3 (1.4) 17.8 (0.7) 15.2 (0.7) 

Wine past 24-hr - % (SE)  3.2 (0.7) 3.6 (0.6) 6.4 (0.6) 6.1 (0.6)   

Cereal past 24-hr - % (SE)  29.2 (1.7) 33.0 (2.2) 29.7 (0.9) 31.5 (1.2) 

Total urine arsenic (µg/L)  4.18 (2.47, 6.97) 3.99 (2.21, 6.30) 8.22 (4.35, 16.49) 7.63 (4.00, 16.17) 

Urine DMA (µg/L)  2.56 (1.20, 4.26) 2.42 (1.20, 3.93) 3.73 (2.11, 6.00) 3.52 (2.00, 5.93) 

Urine arsenobetaine (AB) (µg/L) - - 1.20 (0.28, 5.89) 0.94 (0.28, 5.38) 

Total arsenic minus AB (µg/L)   - - 6.10 (3.34, 10.70) 5.77 (3.12, 10.47) 

Cotinine, total urine arsenic, dimethylarsinate (DMA), arsenobetaine (AB), and total arsenic minus AB are median 

(interquartile range). 
a All percentages are weighted to account for NHANES complex sampling design and weights. 
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Table 2. Urine arsenic concentrations by poultry intake in the past 24-hrs (N=3,329) 

    Total arsenic DMA 

  
N (%)a 

Geometric mean                                                           

(95% CI) 

Model 1c                                                           

GMR (95% CI) 

Model 2d                                                          

GMR (95% CI) 

Geometric mean                                                           

(95% CI) 

Model 1c                                                           

GMR (95% CI) 

Model 2d                                                           

GMR (95% CI) 

Poultry intake             

(g/kg bodyweight) 
       

0 1589 (49.9) 3.72 (3.45, 4.01) 1 (reference) 1 (reference) 2.53 (2.40, 2.67) 1 (reference) 1 (reference) 

0.001 - 0.42 435 (12.6) 3.63 (3.29, 4.01) 1.06 (0.99, 1.14) 1.05 (0.99, 1.13) 2.39 (2.24, 2.55) 1.02 (0.95, 1.08) 1.01 (0.95, 1.07) 

0.421 - 0.90 435 (12.3) 4.11 (3.64, 4.64) 1.13 (1.04, 1.23) 1.12 (1.04, 1.22) 2.64 (2.39, 2.93) 1.08 (1.00, 1.16) 1.07 (0.99, 1.16) 

0.901 - 1.61 435 (13.0) 4.12 (3.84, 4.43) 1.12 (1.04, 1.21) 1.12 (1.05, 1.21) 2.65 (2.46, 2.85) 1.08 (1.01, 1.17) 1.08 (1.01, 1.16) 

1.611 + 435 (12.1) 4.60 (4.16, 5.09) 1.17 (1.08, 1.28) 1.12 (1.04, 1.22) 3.03 (2.81, 3.28) 1.17 (1.10, 1.25) 1.13 (1.06, 1.20) 
b p-trend     <0.001 <0.001   <0.001 <0.001 

Chicken intake       

(g/kg bodyweight) 
       

0 1707 (53.2) 3.74 (3.48, 4.02) 1 (reference) 1 (reference) 2.54 (2.41, 2.67) 1 (reference) 1 (reference) 

0.001 - 0.30 406 (12.2) 3.44 (3.12, 3.79) 1.02 (0.94, 1.10) 1.02 (0.95, 1.09) 2.28 (2.12, 2.46) 0.99 (0.92, 1.05) 0.98 (0.93, 1.04) 

0.30 - 0.79   405 (11.4) 4.16 (3.77, 4.60) 1.13 (1.04, 1.23) 1.12 (1.04, 1.20) 2.70 (2.45, 2.97) 1.09 (1.02, 1.17) 1.08 (1.01, 1.15) 

0.79 - 1.44 406 (12.3) 4.24 (3.91, 4.60) 1.17 (1.08, 1.26) 1.16 (1.08, 1.25) 2.73 (2.52, 2.97) 1.12 (1.05, 1.21) 1.12 (1.04, 1.20) 

1.44+ 405 (10.9) 4.72 (4.23, 5.27) 1.19 (1.09, 1.30) 1.15, (1.06, 1.25) 3.07 (2.83, 3.34) 1.17 (1.09, 1.25) 1.13 (1.06, 1.21) 
b p-trend     <0.001 <0.001   <0.001 <0.001 

Turkey intake         

(g/kg bodyweight) 
       

0 2577 (76.8) 3.86 (3.61, 4.12) 1 (reference) 1 (reference) 2.58 (2.45, 2.71) 1 (reference) 1 (reference) 

0.001 - 0.14 188 (5.6) 3.79 (3.30, 4.36) 1.06 (0.98, 1.14) 1.04 (0.95, 1.14) 2.62 (2.33, 2.94) 1.07 (0.99, 1.17) 1.06 (0.97, 1.15) 

0.14 - 0.29 188 (5.2) 3.93 (3.48, 4.43) 1.04 (0.94, 1.14) 1.07 (0.97, 1.17) 2.44 (2.22, 2.68) 0.98 (0.91, 1.06) 1.01 (0.94, 1.08) 

0.29 - 0.54 188 (5.8) 3.98 (3.41, 4.65) 1.06 (0.96, 1.18) 1.06 (0.96, 1.17) 2.53 (2.19, 2.92) 1.02 (0.91, 1.14) 1.01 (0.91, 1.13) 

0.54+ 188 (6.5) 4.55 (3.94, 5.25) 1.12 (1.00, 1.25) 1.09 (0.99, 1.20) 3.00 (2.63, 3.42) 1.13 (1.02, 1.26) 1.10 (1.01, 1.20) 
b p-trend     0.04 0.04   0.07 0.08 
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GMR = geometric mean ratio. Poultry defined as chicken and/or turkey. 
a All percentages are weighted to account for NHANES complex sampling design and weights. 
b p-trend obtained from adding quartile of poultry intake as continuous variable to model. 
c  Model 1 adjusted for urine creatinine (log-transformed continuous), age (continuous), sex (male/female), race/ethnicity (non-Hispanic white/non-Hispanic 

black/Mexican-American/Other, including multiple), education (<high school/ high school or equivalent/ >high school), body mass index (continuous), 

smoking status (never/former/current), serum cotinine (log-transformed continuous), poverty income ratio (PIR, continuous), and tap water source (community 

supply/well,cistern/spring/other/no tap water). 
d Model 2 further adjusted for past 24-hr intake of rice, cereal, juice, and wine (g/kg bodyweight, continuous). 
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Table 3. Urine arsenic concentrations by poultry intake in the past 24-hrs - stratified by season (N= 3,329) 

   Total arsenic DMA 

Intake 

(g/kg bodyweight) 
N (%)e 

Geometric mean                                                           

(95% CI) 

Model 1h                                                          

GMR (95% CI) 

Model 2i                                                           

GMR (95% CI) 

Geometric mean                                                           

(95% CI) 

Model 1h                                                           

GMR (95% CI) 

Model 2i     

  GMR (95% CI) 

Turkey intake Spring/summer season 

0 1410 (77.5) 3.71 (3.40, 4.05) 1 (reference) 1 (reference) 2.50 (2.35, 2.66) 1 (reference) 1 (reference) 

0.001 - 0.15 104 (6.0) 3.65 (3.00, 4.44) 1.02 (0.90, 1.14) 1.00 (0.88, 1.14) 2.61 (2.24, 3.05) 1.10 (0.98, 1.23) 1.08 (0.96, 1.23) 

0.15 - 0.29 101 (4.9) 3.69 (3.13, 4.33) 0.99 (0.84, 1.16) 1.02 (0.88, 1.17) 2.27 (1.99, 2.58) 0.93 (0.81, 1.08) 0.95 (0.84, 1.08) 

0.29 - 0.53 102 (6.0) 3.64 (3.00, 4.42) 1.02 (0.89, 1.16) 1.02 (0.90, 1.16) 2.28 (1.94, 2.68) 0.93 (0.82, 1.06) 0.94 (0.82, 1.07) 

0.53+ 102 (5.6) 3.94 (3.29, 4.70) 1.02 (0.91, 1.14) 1.01 (0.92, 1.12) 2.65 (2.26, 3.12) 1.07 (0.95, 1.20) 1.06 (0.96, 1.17) 
f p-trend     0.75 0.70   0.98 0.99 

 Fall/winter season 

0 1167 (75.6) 4.12 (3.80, 4.47) 1 (reference) 1 (reference) 2.74 (2.57, 2.92) 1 (reference) 1 (reference) 

0.001 - 0.14 86 (5.2) 4.23 (3.60, 4.97) 1.13 (1.00, 1.27) 1.11 (1.00, 1.24) 2.68 (2.26, 3.18) 1.04 (0.92, 1.18) 1.03 (0.92, 1.15) 

0.14 - 0.28 86 (5.9) 4.13 (3.57, 4.79) 1.13 (0.96, 1.32) 1.16 (1.00, 1.34) 2.65 (2.36, 2.98) 1.08 (0.97, 1.21) 1.11 (1.02, 1.22) 

0.28 - 0.56 85 (5.3) 4.79 (3.82, 6.00) 1.10 (0.91, 1.32) 1.06 (0.90, 1.26) 3.07 (2.41, 3.90) 1.13 (0.93, 1.37) 1.09 (0.92, 1.30) 

0.56+ 86 (7.9) 5.38 (4.33, 6.69) 1.22 (1.01, 1.48) 1.17 (0.99, 1.39) 3.47 (2.87, 4.20) 1.19 (1.00, 1.40) 1.13 (0.99, 1.30) 
f p-trend   0.013 0.018  0.02 0.03 

g p-interaction     0.030 0.044   0.05 0.07 

Chicken intake Spring/summer season 

0 994 (55.8) 3.63 (3.30, 3.99) 1 (reference) 1 (reference) 2.48 (2.32, 2.64) 1 (reference) 1 (reference) 

0.001 - 0.26 209 (11.4) 3.31 (2.90, 3.78) 1.02 (0.93, 1.12) 1.01 (0.94, 1.10) 2.21 (2.02, 2.42) 0.97 (0.91, 1.05) 0.97 (0.90, 1.04) 

0.26 - 0.77 204 (10.8) 3.87 (3.31, 4.53) 1.10 (1.00, 1.22) 1.10 (1.00, 1.21) 2.56 (2.17, 3.02) 1.07 (0.96, 1.20) 1.07 (0.96, 1.18) 

0.77 - 1.41 205 (11.7) 3.91 (3.57, 4.29) 1.16 (1.06, 1.27) 1.17 (1.07, 1.28) 2.54 (2.30, 2.80) 1.12 (1.04, 1.20) 1.12 (1.04, 1.20) 

1.41+ 207 (10.4) 4.30 (3.74, 4.96) 1.17 (1.05, 1.30) 1.12 (1.02, 1.24) 2.73 (2.44, 3.06) 1.11 (1.02, 1.21) 1.08 (1.00, 1.17) 
f p-trend     <0.001 0.003   0.001 0.007 

 Fall/winter season  

0 713 (48.9) 3.97 (3.59, 4.39) 1 (reference) 1 (reference) 2.65 (2.45, 2.87) 1 (reference) 1 (reference) 

0.001 - 0.34 201 (13.6) 3.77 (3.33, 4.28) 1.04 (0.93, 1.15) 1.04 (0.94, 1.15) 2.43 (2.19, 2.70) 1.00 (0.91, 1.09) 1.01 (0.93, 1.09) 

0.34 - 0.81 198 (12.6) 4.56 (4.06, 5.13) 1.22 (1.08, 1.37) 1.16 (1.04, 1.30) 2.89 (2.54, 3.29) 1.14 (1.03, 1.27) 1.09 (0.99, 1.19) 
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0.81 - 1.48 198 (12.8) 4.79 (4.21, 5.46) 1.13 (0.99, 1.28) 1.09 (0.97, 1.23) 3.11 (2.75, 3.52) 1.11 (0.96, 1.27) 1.07 (0.93, 1.22) 

1.48+ 200 (12.3) 5.22 (4.42, 6.17) 1.17 (1.01, 1.34) 1.13 (0.99, 1.28) 3.50 (3.13, 3.92) 1.24 (1.12, 1.36) 1.20 (1.09, 1.31) 
f p-trend   0.003 0.010  0.002 0.009 

g p-interaction     0.540 0.762   0.240 0.240 
e All percentages are weighted to account for NHANES complex sampling design and weights. 

f p-trend obtained from adding quartile of poultry intake as continuous variable to model. 
g p-interaction obtained from Model 2, adding poultry intake as log-transformed continuous, season (fall,winter/spring,summer), and an interaction term for 

season and poultry intake. 
h  Model 1 adjusted for urine creatinine (log-transformed continuous), age (continuous), sex (male/female), race/ethnicity (non-Hispanic white/non-Hispanic 

black/Mexican-American/Other, including multiple), education (<high school/ high school or equivalent/ >high school), body mass index (continuous), 

smoking status (never/former/current), serum cotinine (log-transformed continuous), poverty income ratio (PIR, continuous), and tap water source (community 

supply/well,cistern/spring/other/no tap water). 
i Model 2 further adjusted for past 24-hr intake of rice, cereal, juice, and wine (g/kg bodyweight, continuous). 
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FIGURE LEGENDS 

 

Figure 1. Geometric mean ratio (95% confidence interval) of urine total arsenic and dimethylarsinate (DMA) by poultry 

intake in the past 24-hours. 
Lines represent the geometric mean ratio of urinary arsenical concentrations of poultry consumers compared to non-consumers, based 

on restricted quadratic spline models with knots at the 10th, 50th, and 90th percentiles of log-transformed poultry intake. Polygons 

surrounding the lines represent 95% confidence intervals. The reference was set to non-poultry consumers. Geometric mean ratios 

were adjusted for urinary creatinine (log-transformed continuous), age (continuous), sex (male/female), race/ethnicity (non-Hispanic 

white/non-Hispanic black/Mexican-American/other, including multiple), education (<high school/ high school or equivalent/ >high 

school), body mass index (continuous), smoking status (never/former/current), serum cotinine (log-transformed continuous), poverty 

income ratio (PIR, continuous), and tap water source (community supply/well,cistern/spring/other/no tap water). Bars represent the 

distribution of poultry intake (g/kg bodyweight) within the study population. 

 

 

 

 

Figure 2. Geometric mean ratio (95% confidence interval) of total arsenic and DMA comparing an interquartile range (75th to 

25th percentile of poultry intake, g/kg bodyweight) 

GMR = geometric mean ratio. CI = confidence interval. 

Confidence intervals were obtained by comparing the 75th percentile vs the 25th percentile of the poultry intake distribution. 
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Figure 1. Geometric mean ratio (95% confidence interval) of urine total arsenic and dimethylarsinate (DMA) by poultry 

intake in the past 24-hours. 
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Figure 2. Geometric mean ratio (95% confidence interval) of total arsenic and DMA comparing an interquartile range (75th to 

25th percentile of poultry intake, g/kg bodyweight) 
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SUPPLEMENTARY MATERIAL 

 

 

 

 

 

 

 

 

Table S1. Food Commodity Index Database (FCID) commodity 

codes used to define intake variables.     

              

Intake variable FCID commodity codes Description     

Poultry  4000093000  Chicken, meat   

  5000382000  Turkey, meat   

       

Chicken  4000093000  Chicken, meat   

       

Turkey  5000382000  Turkey, meat   

       

Rice  1500323000  Rice, white   

  1500324000  Rice, brown   

  1500325000  Rice, bran   

  1500326000  Rice, flour   

       

Wine  1304179000  Grape, wine and sherry  

       

Juice  1100010000  Apple, juice   

  1304176000  Grape, juice   

  1100268000  Pear, juice   

  1203288000  Prune, juice   

  1307132000  Cranberry, juice  

       

       

       

Table S2. USDA food codes used to define cereal intake.   

              

Intake variable USDA food code   Description   

Cereal  

56200300  through  

56203620 Pastas, cooked cereals, and rice 

  

56206970  through  

57604100 

Cereals, not specified as to cooked, or not cooked, 

ready-to-eat cereals, and cereal grains 
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