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Abstract

Robotic surgical systems have contributed greatly to the advancement of Mini-

mally Invasive Surgeries (MIS). More specifically, telesurgical robots have provided

enhanced dexterity to surgeons performing MIS procedures. However, current robotic

teleoperated systems have only limited situational awareness of the patient anatomy

and surgical environment that would typically be available to a surgeon in an open

surgery. Although the endoscopic view enhances the visualization of the anatomy,

perceptual understanding of the environment and anatomy is still lacking due to the

absence of sensory feedback.

In this work, these limitations are addressed by developing a computational frame-

work to provide Complementary Situational Awareness (CSA) in a surgical assistant.

This framework aims at improving the human-robot relationship by providing elab-

orate guidance and sensory feedback capabilities for the surgeon in complex MIS

procedures. Unlike traditional teleoperation, this framework enables the user to tele-

manipulate the situational model in a virtual environment and uses that information

to command the slave robot with appropriate admittance gains and environmental
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constraints. Simultaneously, the situational model is updated based on interaction of

the slave robot with the task space environment.

However, developing such a system to provide real-time situational awareness

requires that many technical challenges be met. To estimate intraoperative organ in-

formation continuous palpation primitives are required. Intraoperative surface infor-

mation needs to be estimated in real-time while the organ is being palpated/scanned.

The model of the task environment needs to be updated in near real-time using the

estimated organ geometry so that the force-feedback applied on the surgeon’s hand

would correspond to the actual location of the model. This work presents a real-time

framework that meets these requirements/challenges to provide situational awareness

of the environment in the task space. Further, visual feedback is also provided for

the surgeon/developer to view the near video frame rate updates of the task model.

All these functions are executed in parallel and need to have a synchronized data

exchange. The system is very portable and can be incorporated to any existing teler-

obotic platforms with minimal overhead.
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Chapter 1

Introduction

1.1 Background

Minimally Invasive Surgeries (MISs) are redefining the field of medicine. MIS in-

cludes both laparoscopy (surgery through small holes) and endoscopy (diagnostic and

therapeutic procedures performed through the body’s organs and vessels). In MIS,

the surgeon makes small holes, usually less than half an inch rather than making

a large incision. The surgeon then inserts specially designed thin instruments and

sophisticated video equipment to perform the operation through that small opening,

making the whole procedure minimally invasive. MIS is based on three basic re-

quirements: availability of high-quality videoendoscopic images, use of high precision

surgical instruments and high dexterity in the execution of surgical maneuvers, with

personnel who have to be specifically trained to improve their surgical skills.
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Currently, MIS is impacting all surgical specialties and can be divided into two

levelsbasic and advanced. Basic laparoscopic skills are one-handed that involve sim-

ple organ removal, require limited vascular control and no reconstruction, and can

be performed safely by almost any surgeon. Advanced MIS procedures require two-

handed skills, such as bimanual manipulation, suturing, and knot tying. Depending

on the procedure, MIS can be performed with the surgeon manipulating the instru-

ments by hand or with robot-assistance. Hand-assisted laparoscopic surgery devices

allow the surgeon to overcome skill and instrument limitations and this offers patients

a portion of the benefits of MIS. However, the introduction of robotic technology can

enhance human visualization, strength, precision, and degrees of motion in performing

complex surgical tasks.1

In the mid-80’s, the idea of robots in surgery was a proof of concept rather than an

advantage over traditional surgery. Since then, significant developments have been

made in the field of robotic surgery. Telerobotics is considered to be an integral

part of the wider field of telemedicine. Robotic systems have made an impact in

various medical disciplines including general surgery, neurosurgery and orthopedic

surgery.2–6 There have been multiple robot-assisted surgeries and developments that

include cholecystectomy,7 prostatectomy,8 hip-replacement9,10 and lower abdominal

laparoscopy.11 Some of the advantages of robot-assisted surgery include the elimi-

nation of fatigue for labor-intensive movements, increased precision, ease of use and

motion scaling.
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Teleoperation or telerobotics is defined as the operation of a machine or a robot

at a distance. It is similar in meaning to the phrase “remote control” but is usually

encountered in research, academic and technical environments. In telerobotic systems,

the remote manipulator is controlled from the operator’s site by sending position or

velocity commands while receiving visual and other sensory feedback information.

The local system operated by the user is called the “master” robot, and the remote

system that is being manipulated is called the “slave” robot, and the overall system is

referred to as a “master-slave system”. This master-slave paradigm is used for many

applications. A computer interface is used to aid in the planning, command, and

control of the robots. In 1988, Machida et al.12 demonstrated a system on which the

supervisor could teach a computer-modeled telerobot and receive force-feedback on

the master hand if mechanical interference occurs between the modeled slave hand

and its environment. Park et al.13(1991) demonstrated a computer-aided technique

for commanding a telerobot to move to a goal point while avoiding objects. In 1992,

Funda et al.14 extended the work of Machida et al., and the key feature in their work is

that the instructions sent to the robot are generated automatically in a more compact

form than record and playback of analog signals. The operator commands the robots

by kinesthetic as well as visual interactions with a virtual computer simulation.

In the late 90s, the interest shifted to other areas such as space,15–21 medicine,22–27

undersea28–31 or mobile32–38 robotics. Efforts were accelerated by the availability of

increasing computer power as well as the introduction of novel hand controllers, e.g.,
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the PHANToM device.39 With the first transatlantic telesurgery demonstration in

2001, Computer Motion demonstrated the feasibility of telerobotic systems even in

the delicate field of surgery.40 A surgeon in New York (USA) used a ZEUS41 system to

perform a laparoscopic cholecystectomy on a patient located in Strasbourg (France).

The use of telerobotics in the field of medicine, in particular, MIS procedures, has

been increasing. In a robotic MIS, the surgeon or doctor holds on to a master device

and uses it to control the movement of the robotic instrument attached to a slave

robot. The slave manipulator is programmed to track the master device. Many

medical robotic systems employ teleoperation as the major mode of operation while

both the master manipulator and the slave remote manipulator are located in the

same room.

One key factor that enhances the performance of a telerobotic system is telep-

resence. Telepresence means that the information about the remote environment is

presented to the surgeon/operator in a natural fashion, which implies a feeling of

presence at the remote site. A good degree of telepresence guarantees the feasibility

of the required manipulation task.42 Telepresence in a telerobotic system is generally

classified as weak or strong. If the operator gives symbolic commands by pushing

buttons on the master and watches the resulting action in the remote environment,

its coupling is rather weak. Some degree of “intelligence” is required for a remote

robot to execute such symbolic commands. The coupling is comparably strong in a

bilateral teleoperation scenario. Generally, the motion (and/or force) of the human
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operator initiates the motion of the master robot. The motion of the master robot is

transmitted to the slave robot that tracks the motion of the master robot. During the

task execution, the interactions of the slave robot with the remote environment are

sensed, communicated and fed back to the operator through a multi-modal human-

system interface. Thus, to develop a real-time multi-modal teleoperation framework,

one has to make sure to have strong control distribution between the operator and

the slave robot controller.

Existing Telerobotic Research Platforms

Following are few telerobotic research platforms and slave arms that are commonly

used in medical robotics:

1. dVRK43 : da Vinci Research Kit (dVRK) is one of the most capable research

platforms in surgical robotics developed from the first-generation da Vinci®

Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA). The da Vinci System

can be configured (by the manufacturer) to have a read-only interface to both

master and slave manipulators for research purposes, limiting access to the rest

of the control architecture. The dVRK provides open-source control electronics,

firmware, and software to control research systems based on the first generation

da Vinci System. This enables researchers to modify control algorithms and

test new control methods, including autonomous and semi-autonomous control.

The software architecture of dVRK44 consists of a distributed hardware interface
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layer, a real-time component-based software framework, and integration with

Robot Operating System (ROS). Figure 1.1 shows the dVRK setup at Johns

Hopkins Universty with two Master Tool Manipulators (MTMs) and two Patient

Side Manipulators (PSMs).

Figure 1.1: The dVRK Research Platform (two MTMs, two PSMs)
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2. Raven II:45 The Raven II is an open-architecture surgical robot for laparoscopic

surgery research from Applied Dexterity. It has two 3-Degree of Freedom (DOF)

spherical positioning mechanisms capable of attaching interchangeable 4-DOF

instruments. This system is intended to facilitate collaborative research on ad-

vances in a surgical robot.

Figure 1.2: The Raven II surgical robot

3. UR3:46 Universal Robots UR3 (Universal Robots, Odense, Denmark) is a col-

laborative table-top robot used for light assembly tasks and automated work-

bench scenarios. Applications of the UR3 robot span manufacturing industries
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from medical devices to circuit boards and electronic components. The com-

pany provides documentation for communicating with the robot over a network

using the Transmission Control Protocol (TCP). The research group working

on dVRK at Johns Hopkins University have developed an open source software

package using the cisst libraries to control the robot. This allows the research

community to use Universal Robots (UR3, UR5 or UR10) as a slave robot or

as a cooperatively-controlled robot.

Figure 1.3: The Universal Robots UR3
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4. LBR iiwa47 : LBR iiwa is a 7 DOF robot produced by a German multinational,

KUKA. LBR stands for Leichtbauroboter (German for lightweight robot) and

iiwa for intelligent industrial work assistant. It is mainly designed for inter-

actions with humans and is therefore equipped with torque sensors after the

gearbox of each actuated joint, which allows for cooperative interaction control.

Figure 1.4: LBR iiwa by KUKA
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Model Mediated Teleoperation (MMT)

Integration of model mediation into teleoperation frameworks is an effective ap-

proach to enable strong telepresence in such systems.48 In the MMT approach, a

model of the environment at the slave side is employed on the master side, approxi-

mating the task space/environment at the slave side. The model parameters describ-

ing an object in the slave environment are continuously estimated in real-time and

transmitted back to the master robot whenever an updated model of the environment

is obtained at the slave side. On the master side, the local virtual model of the envi-

ronment is reconstructed or updated on the basis of the received model parameters,

and the haptic feedback is computed on the basis of the local model. The Model Me-

diated Teleoperation (MMT) approach is usually used in bilateral telemanipulation

systems under large communication delays ranging from hundreds of milliseconds to

several seconds. One key application where MMT is useful in is on-orbit satellite

servicing49 where the goal is to repair, refurbish or refuel a satellite that has already

been launched. In this case, for a servicing spacecraft to refuel the remote satellite, it

is first needed to cut the tape that secures the patch of multi-layer insulation covering

the satellite access panel. This task is challenging due to communication delay of sev-

eral seconds. This task was modeled as sliding a tool along a planar surface, and the

use of MMT allows the user to experience lag-free haptic feedback even though there

is a large communication delay. While MMT is useful in bilateral telemanipulation

under the delay, the paradigm can be also advantageous in the absence of commu-
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nication delay. MMT enables development of a high-fidelity telerobotic framework

where the model of the task environment can be updated in real-time without any

communication delay in applications such as robot-assisted MIS. A more detailed

background on MMT is discussed in Chapter 4.

The work discussed in this dissertation is focused on developing a strongly coupled

multi-modal teleoperation system to provide Complementary Situational Awareness

(CSA) in a surgical assistant. Unlike traditional telerobotic systems, this framework

uses model-mediated teleoperation and monitors the interaction of the slave robot

with the remote environment. The information is then used to update the model of

the remote environment in real-time for teleoperation. The framework is developed in

a modular fashion to readily incorporate CSA into any existing open-source robotic

platform.

1.2 Relevant Prior Work

There is considerable prior art describing capabilities that can be implemented

in an MMT to provide more information to the surgeon. Sotiras et al.50 presented

a review of various deformable registration methods dealing with environments that

deform relative to a priori models. In more recent work,51,52 global deformation of a

model was addressed.

A number of researchers53–58 have developed finger-like tactile and force sensors
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to provide information about tool-to-tissue interaction forces. Mahvash et al.59 de-

veloped a control system for the da Vinci surgical system,60 which provides force

feedback with a position-position controller with friction and inertia compensation.

Using this system they provided some results on stiffness estimation of a tissue model,

based on discrete palpation. More recently, Xu and Simaan have developed meth-

ods for estimating the force/moment acting at the tip of continuum robots by using

measurements of joint-level actuation forces and extrinsic information regarding the

type of interaction with the environment.61,62 These methods have been used in [63]

to enable force-controlled exploration of flexible anatomy in a manner that benefits

from the palpation methods presented in this research.

Mitra and Niemeyer48 originally introduced the concept of MMT for the general

case of bilateral teleoperation under large communication time delays. Based on

this approach, Xia et al.64 demonstrated model-based telemanipulation for satellite

servicing using hybrid force/motion control to accommodate environment mismatch

with the slave robot. Force-controlled exploration has also been examined previously

as a means of gathering information for registration and updating a pre-operative

model.65 Constrained Kalman filtering was employed to obtain the rigid registration

of the model using contact and estimated stiffness information.

Mavash et al.59 reported a method for stiffness estimation of a tissue model based

on discrete palpation. They developed a control system for the da Vinci surgical sys-

tem that provided force feedback with a position-position controller with friction and
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inertia compensation. In more recent work, methods to estimate forces acting at the

tip of continuum robots were developed using joint-level actuation forces.61,62 These

methods have been used to enable force-controlled exploration of flexible anatomy.63

Surface information is useful in the registration of preoperative data and in pro-

viding “augmented reality” information support to the surgeon. Many authors have

reported computer vision methods for estimating surface geometry, e.g., [66–69]. Dis-

crete probing can be used to obtain additional information at a large number of points,

which can be used to correct for camera-to-robot misalignment. While discrete prob-

ing can generate a model of tissue stiffness across an organ, the process can be very

time-consuming. In an effort to improve the efficiency of probing for detecting tumors,

Ayvali et al.70 explored Bayesian optimization strategies to guide the probe towards

unexplored regions that would result in maximum information gain in predicting stiff

regions.

Caccamo et al.71 developed an online probabilistic framework for autonomous

estimation of a deformability distribution map of heterogeneous elastic surfaces from

few physical interactions. Caccamo’s framework combines both visual and haptic

measurements with active exploration and builds deformability maps. There are other

vision-based algorithms available for online surface reconstruction.72 In more recent

work, Garg et al.73 have presented an autonomous tumor localization technique using

Gaussian Processes (GP) adaptive sampling. The technique uses a palpation probe

to estimate surface stiffness using discrete probing, and an implicit level-set upper
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confidence bound (ILS-UCB) algorithm is used for an offline estimation of the tumor

boundary.

Limitations : Even though these challenges have been tackled individually, exist-

ing approaches have limitations when implemented together in a real-time interactive

environment, and require a system infrastructure that is non-trivial to implement.

Further, when the system has to perform interactively in response to new incoming

data, there are additional problems that arise, such as registration and update of the

situational model. To estimate surface information, researchers have used discrete

probing strategies,74 which can be extremely time-consuming and wasteful.

This work presents a component-based framework that addresses the above-mentioned

challenges together. In particular, the computational framework facilitates interac-

tive and online updates of the situational model using information from multiple

sources while concurrently updating task-based virtual fixtures based on information

obtained during manipulation. Further, the CSA framework dynamically corrects for

discrepancies between the situational model and the target anatomy.

1.3 Thesis Story

The proposed CSA can be summarized into two fundamental concepts;

(a) Manipulation is mediated by a situational model.

(b) The situational model is updated based on information from manipulation.
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Thesis statement : Complementary Situational Awareness in a telerobotic sur-

gical assistant system helps improve the execution of a complex surgical task, while

simultaneously evaluating and monitoring the changes in the task environment using

elaborate guidance and sensory capabilities.

Significance : Although robot-assisted surgery addresses many limitations of

traditional surgery, it has its own share of disadvantages over traditional surgery. In

the most basic form of teleoperation, the slave robot follows a motion command given

by the master device operated by a human. Due to uncertainty in the environment,

performing complex manipulation tasks using basic teleoperation can be risky and is

completely dependent on the surgeon’s visual perception of the environment. In some

cases, it is impractical or extremely difficult to visualize the anatomical features. The

proposed framework aims at dynamically providing information of the situational

model to the surgeon, ensuring that the surgeon is aware of the constantly evolving

model of the target anatomy.

Basic Requirements : To provide CSA, the computational framework must

incorporate many machine capabilities, including sensor information fusion, enforcing

operational constraints for human-robot task execution, providing sensory feedback

of the situational model environment, and updating an a priori model based on the

environment. Further, these functions must be executed simultaneously at interactive

and near-to-video frame rates.
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1.4 Contributions

Key contributions presented in this dissertation are as follows:

• A high-fidelity framework that provides real-time Complementary Situational

Awareness while performing complex MIS procedures. [Outlined in Chapter

2, discussed throughout]

• Novel offline technique to estimate tissue stiffness and surface geometry using

Gaussian Processes. [Chapter 3]

• Real-time estimation of tissue stiffness and surface geometry using spatial hash

grids and local Gaussian Processes. The estimation is updated graphically in

near-video frame rates to visualize for the user/surgeon. [Chapter 3]

• Incremental deformable registration technique using spatial hash grids and co-

herent point drift registration algorithm. [Chapter 3]

• Model-mismatch correction using the concept of a proxy slave. When dealing

with model-mediated teleoperation model-mismatch is imminent and important

to address. [Chapter 4]

• Capability of incorporating virtual fixtures and other guidance behaviors for

robot assistance. [Chapter 5, 6]

• Integration of multiple sensing modalities. [Chapter 6]
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Chapter 2

Complementary Situational

Awareness (CSA)

Unlike in the traditional open surgery, surgeons lack surgical situational awareness

during MIS procedures. Although the endoscopic view enhances the visualization

of the anatomy, perceptual understanding of the environment and anatomy is still

lacking due to the absence of sensory feedback. The CSA framework is developed to

address these limitations by providing additional sensory information complementary

to the user’s awareness of both the remote environment (situational model) and the

robot’s operational constraints. Based on the interaction with the situational model,

CSA not only informs the user about the changes in the task environment but also

provides task-specific guidance to assist the surgeon.

This chapter gives a high-level overview of the proposed CSA framework and pro-
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vides hardware and software dependencies needed to incorporate CSA to any robotic

platform. Detailed descriptions of the behavior and significance of various compo-

nents of the framework are discussed in following chapters.

2.1 Motivation

Surgeon Technology

Information

Surgeon Technology

Master

Slave

Figure 2.1: Transformation to a three-way communication without CSA

Human-machine partnership requires a two-way communication between the sur-

geon and the technology. However, if we put a computer between these two devices,

it becomes a three-way communication between the surgeon, technology and infor-

mation. Surgeons use the technology and information to treat the patient better.

Figure 2.1 shows the transformation of a two-way communication to a three-way

communication with the addition of a computer interface. This computer interface
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supplements the perception of the surgeon with more information about the surgical

task environment and provides guidance, accordingly. CSA can even further enhance

the communication and flow of information as shown in Figure 2.2, by 1) modeling

the task environment in real-time, 2) providing haptic feedback based on the updated

model, 3) displaying latest surface information on the console view for the surgeon

to locate and palpate the abnormalities in the tissue. Further, the framework also

minimizes the surgeon’s work in various surgical tasks.

Manipulation

GuidanceVisualization

Teleop, Palpation

Virtual fixtures , 
Surface Modelling, 

Registration, Haptics
Stiffness and surface 
information, Display

Surgeon Technology

Information

Figure 2.2: Three-way communication with CSA

Figure 2.3(a) depicts a simple scenario of a traditional telerobotic human-machine

partnership where sensory information from various components are provided to the

surgeon using computer intervention. However, processing of this multi-modal infor-

mation is still done by the surgeon while performing the surgical task, which con-
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siderably increases the workload of the surgeon during the operation. The aim of

CSA is to offload the work of the surgeon by providing guidance strategies based

on the multi-model sensory information. Figure 2.3(b) shows the modified human-

machine partnership with incorporation of CSA. Here, the surgeon manipulates the

model of the task environment using task-specific guidance virtual fixtures. Based

on the contact information with the model, smooth haptic feedback is provided for

the user along with necessary task-specific information displayed on the console view.

This helps the surgeon focus on the surgical task and lets the machine figure out the

logistics of manipulation and guidance.

The main theme of CSA is as follows:

(a) The surgeon manipulates the model of the task environment,

(b) Manipulation provides information about the task environment, and

(c) The information is then used to update the model of the task environment.

By successfully following these three steps in real-time, the CSA framework can

improve the quality of the task execution and decrease the degree of expertise required

of a surgeon to perform a complex MIS procedure.
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a

Figure 2.3: a) Conventional human-machine partnership in teleoperation, b) Modified
human-machine partnership in teleoperation integrated with CSA
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Clinical Motivation

Some of the key surgical tasks that necessitate the development of CSA include

• Palpation: Palpation helps surgeons feel the sensitive anatomy and correlate

the actual anatomy with the preoperative data. Examples include identifica-

tion of arteries during dissection,75 identification of hepatic aneurysms,76 in-

tramedullary fixation of tibia and femur during orthopedic surgery,77 and iden-

tification of laryngeal nerves during thyroid surgery.78

• Dissection: Dissection around arteries and sensitive anatomy is a critical sur-

gical task for preserving organ function. Examples include dissection around

vessels during radical prostatectomy,79 dissection while preserving the common

hepatic duct during cholecystectomy,80 pelvic lymph node dissection to check for

cancer,81 and selective dissection of renal arteries during partial nephrectomy.82

• Ablation: Performing an ablation task can be challenging due to the flexibility

of the underlying anatomy. Examples include atrial fibrillation ablation around

the pulmonary veins,83 thermal ablation to remove kidney tumors, inoperable

pulmonary nodules and breast tumors,84 and percutaneous radiofrequency ab-

lation of hepatic tumors, adrenal tumors and adreno-cortical carcinoma metas-

tases.85,86

• Separation of adherent organs: This is an important task during abdominal and

thoracic procedures. For example, surgeons must separate the gallbladder off
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the liver bed during cholecystectomy.87 Other examples include surgical sepa-

ration of scar tissue (adhesions) that typically form after abdominal, thoracic,88

pelvic,89 and gynecologic surgery.90

During robot-assisted and computer-aided surgeries, surgeons attempting to per-

form a surgical procedure are challenged by the above-mentioned critical tasks. We

believe the CSA framework will benefit these applications by providing necessary

task-specific constraints to navigate the instrument on a fixed trajectory for ablation,

provide information about the tumor location and help localize the tumor bound-

ary, and also provide guidance fixtures for precise resection without damaging the

nearby tissue. The framework also provides, and supports, various palpation strate-

gies and sensing modalities to provide information on the intraoperative anatomy to

the surgeon.

Example Surgical Workflow

Here we present a sample surgical scenario and discuss how the surgeon can ben-

efit from various functionalities provided by the CSA framework, during a surgical

task. For this, we chose to take up a robotic task in renal surgery, in particular, par-

tial nephrectomy.91 This is a minimally invasive technique to remove a small renal

tumor while preserving the remainder of the kidney. The retroperitoneal approach to

robotic partial nephrectomy (RPN) is ideal for posterior tumors, which would other-

wise require complete mobilization if using a transperitoneal technique.92 Some tasks

25



CHAPTER 2. COMPLEMENTARY SITUATIONAL AWARENESS (CSA)

involved in this procedure, that can benefit from the CSA architecture, include hilar

dissection, tumor identification, and tumor excision.

During hilar dissection, it is important to stretch the kidney, to improve identifi-

cation of the vessels and to facilitate dissection of the hilar vessels. Failure to identify

the vessels rapidly and correctly can lead to increased duration of operations, the

risk of the vessel injury, and the probability of open surgery. A robotic ultrasound

transducer can be used to quickly identify the vessels before clamping. The probe’s

contact force will be monitored by the CSA, thus allowing the surgeon to quickly scan

through, without worrying about damaging the tissue. The probe may also be used

to confirm sufficient parenchymal ischemia after clamping.

For identifying the tumor, the surgeon can perform a continuous robotic palpation,

that can display the estimated stiffness map of the organ. Based on the relative

stiffness provided, the surgeon can make an informed decision on identifying the

tumor. To further confirm the location of the tumor, the surgeon can switch to an

intraoperative ultrasound probe, as before, that will provide segmented stiff regions

if any.

Once the tumor is located, the surgeon can make a virtual boundary around the

tumor. This will generate a constrained motion for the slave arm to stay on the

predefined boundary for excision. Simultaneously, compliance forces will be applied

to the master handle preventing the surgeon from deviating from the predefined tumor

boundary. The surgeon would be able to redefine the boundary at any time, if needed,
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based on the updated stiffness and segmented ultrasound information, which will

always be available for viewing.

2.2 System Architecture

CSA is implemented as a component-based framework, using the open source cisst

libraries, developed at Johns Hopkins University,93,94 with support for the ROS.95

Figure 2.4 shows the proposed framework and various component interactions to fa-

cilitate CSA. Teleop is the central high-level component managing communication

between various components of the framework. The Master Mid Level Controller

(MLC) sends position to the Teleop; the Slave MLC receives these position com-

mands from the Teleop and executes the motion. Each component in this framework

is responsible for a particular task and together they provide situational awareness

for the surgeon. This computational framework can be incorporated into any teler-

obotic platform with the following capabilities: a) The Master Low Level Controller

(LLC) can be commanded in torque and position control, b) The Slave LLC can

be commanded in position control and c) there exists a means to report interaction

forces.

27



CHAPTER 2. COMPLEMENTARY SITUATIONAL AWARENESS (CSA)
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Figure 2.4: Various components in the CSA framework.

28



CHAPTER 2. COMPLEMENTARY SITUATIONAL AWARENESS (CSA)

Following is a brief description of the various components and their significance

to provide CSA in surgical assistant robots :

• The Teleop process is the central control point for the system. This process runs

as a real-time, clock-driven process (currently, at 200-300 Hz). It is responsible

for real-time telemanipulation behavior, and also for managing communications

between other components of the system namely: the Master Controller, Slave

Controller, Proxy Slave Controller, Modeler, and the higher-level Behavior Se-

lection processes. The Teleop process receives state information from theMaster

MLC and Slave MLC and passes this information on to the Modeler and the

Behavior Selection Process. Based on the entire combined state information

(master, slave, model, etc.) and the current behavior mode, the Teleop com-

ponent determines appropriate admittance and virtual fixture commands and

sends them to the Slave Controller. Similarly, appropriate impedance com-

mands are also sent to the Master Controller.

• The Master Controller process is responsible for the control of the master ma-

nipulator. This process consists of two sub-processes: a Master MLC, which

communicates with the TeleOp process, and a Master LLC, which communi-

cates with the master manipulator and performs basic joint-level servo control

functions. The Master MLC runs as a clock-driven process at a repetition rate

of approximately 100-500 Hz. The Master LLC typically may run at a faster

duty cycle. Most of the hardware-dependent components will reside in the
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Master LLC, so it should be possible to adapt the system to use other master

manipulators in a fairly straightforward manner.

The Master MLC receives impedance specification commands from the Teleop

process and translates them into an appropriate form for execution by the Mas-

ter LLC. The Master MLC process also returns state information to the Teleop

process, including positions and velocities in joint and cartesian spaces, gripper

state of the master manipulator, and forces and torques exerted by the master

robot on the surgeon’s hand.

• The Slave Controller process is responsible for the control of the slave manipu-

lator. Like the Master Controller, this process consists of a Slave MLC, which

communicates with the Teleop process, and a Slave LLC, which communicates

with the slave manipulator. The Slave MLC runs as a clock-driven process at

a repetition rate of approximately 100-500 Hz. The Slave LLC typically may

run at a faster duty cycle (such as 1kHz). The Slave Controller also contains a

Force Sensing component, which may be implemented as part of the Slave LLC

or as a separate process, depending on the hardware configuration. Almost all

of the hardware dependencies will be managed in the LLC, although there may

need to be some changes in the MLC as well to accommodate special hardware

needs.

The Slave MLC receives admittance and virtual fixture specification commands
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from the Teleop process and translates them into Cartesian or joint position/ve-

locity commands that are passed onto the Slave LLC. In some embodiments, the

MLC may pass on specialized force admittance commands to the LLC, although

this function would normally be performed in the MLC. The Slave MLC run

loop transforms admittance and virtual fixture specifications into a constrained

quadratic optimization problem, which also may comprise manipulator-specific

constraints such as joint position, velocity, and acceleration limits.

The Slave MLC receives state information from the LLC, combines this infor-

mation with other Slave Controller information (e.g., forces and contact infor-

mation) and passes the combined state information back to the Teleop process.

• The Proxy Slave implements pure position control representing Teleop’s notion

of where the slave robot should be. The situational model in the virtual envi-

ronment is registered to a simulated slave robot, called the Proxy Slave. The

user teleoperates the proxy slave robot and based on the interaction with the

situational model Teleop sends appropriate commands to the Master and Slave

MLC. The advantage of the proxy slave robot is that it provides the state infor-

mation of the slave robot with an ideal position control. This allows the Teleop

component to use the contact information of the proxy slave robot with the

situational model for haptic rendering on the master side. Additionally, TeleOp

uses this information to send admittance commands to the slave side for force

limiting purpose and additional task-based constraints.
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• The Behavior Selection process runs in the background and communicates with

the Teleop process to inform it of changes in the desired behavior (e.g., simple

unilateral telemanipulation with no force-feedback, bilateral model-mediated

telemanipulation with or without force limitation, bilateral telemanipulation

with superimposed palpation motion). It receives state information from the

TeleOp process and the Modeler, as well as direct input from the user.

• The Modeler process is responsible for maintaining a model of the task at the

environment side. Initially, based on some pre-operative information this model

will consist of a surface mesh representation of an anatomic organ or phantom

object, annotated with stiffness information for each triangle, together with

registration information giving the pose (position and orientation) of the model

relative to the slave robot. The Modeler receives state information from the

Teleop process and combines this information with a prior model (such as what

might come from a CT scan) to produce an updated model. The updated

model is then passed on to the other components in the system, along with the

estimated confidence level of the Modeler with respect to various components

of the model.
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2.3 Development Dependencies

The CSA framework is a layer that can be employed on top of any telerobotic

platform. For development purposes, the dVRK platform was chosen as the principal

experimental telerobotic platform due to the familiarity to the architecture. In Section

6.3, the integration of the CSA with the UR3 robot, as a secondary platform, is also

discussed, along with the details of experimental implementation. Following are few

of the principal software library dependencies of the dVRK and CSA platform:

cisst-saw

The dVRK uses C++ on Linux, though most of the software is portable to other

platforms. It is a real-time, component-based framework that enables low latency

control. The dVRK is based on the open source cisst libraries developed at Johns

Hopkins University (JHU).93,94 cisst is a collection of various open-source libraries

which enables one to develop off-the-shelf application components called Surgical

Assistant Workstation (SAW) packages. The dVRK uses several of these SAW com-

ponents, along with open-source electronics to create a research platform.

CSA is developed in a similar way using several SAW components. Some of the

key cisst libraries that are used in the dVRK as well as in the CSA platform are

detailed below for better understandability:

• cisstVector : This is a collection of classes used for linear algebra and spatial
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transformations. This includes vectors, matrices, multi-dimensional arrays and

some classes to represent 2D and 3D transformations. cisstVector is heavily

templated for flexibility and efficiency.

• cisstParameterTypes : These are a collection of strongly-typed payload datatypes

to facilitate data exchange between cisst components.

• cisstMultiTask : This library defines the cisst component model that is im-

plemented by the mtsComponent base class. It provides all the mechanisms

to create interfaces (explained below) but does not handle any threading. To

ensure mechanisms of thread safety when communicating through interfaces,

the component needs to derive from the mtsTask base class. Several types of

components are derived from this class. However, only two of key classes that

are used in CSA are detailed here:

1. mtsTaskPeriodic : This is a base class for any task that needs to be exe-

cuted periodically.

2. mtsTaskContinuous : This is a base class for any task that needs to be

executed as fast as possible.

All tasks derived frommtsTask define three pure virtual methods, Startup(void),

Cleanup(void) and Run(void) methods that help initialize, cleanup and execute,

respectively. The Run method is where the core logic is implemented for con-

tinuous/periodic execution.
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cisstMultiTask follows a “command pattern” paradigm, i.e., an object is used to

encapsulate all the information needed to perform an action or trigger an event at

a later time. In this design, an object Application Programming Interface (API) is

defined by a list of pointers on methods. This list of method pointers (commands) is

queried using string comparison during run-time rather than compile-time binding.

Commands are grouped in “provided interfaces” corresponding to the list of provided

functionalities acting as a server. Similarly, a list of required functionalities by a client

component are grouped in a “required interface” on the client side. For the client

component to use the functionalities provided by the server component, its required

interface needs to be connected to the interface provided by the server. Figure 2.5

illustrates a sample interface connection where the required interface of component

B is connected to the provided interface of component A, and the required interface

of component C is connected to the provided interface of component B.

C
PR

A
PR

B
PR R

P
Required

Provided

Figure 2.5: Sample interface connection

All the messages received by threaded components are queued for thread safety.

The receiving component typically calls ProcessQueuedCommands and ProcessQueuedE-
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vents at the start of the Run method to dequeue all commands of all provided inter-

faces and all events of all required interfaces, respectively.

ROS Bridge

Most of the existing robotic research platforms use ROS to develop high-level

interfaces. Thus, having the CSA framework to be ROS-compatible was necessary to

ensure that the developers can utilize CSA functionality over a ROS channel. This

is possible due the availability of a cisst-ROS bridge used in the dVRK that the

CSA framework uses to provide access to CSA functionality using MATLAB-ROS

or Python-ROS. Further, rviz, which is a 3D visualizer for the ROS framework, is

used for displaying model information and task-specific data. This display window

is placed towards the bottom-left of the master console view without obstructing the

main view.

Other Library Dependecies

Other library dependencies that are used in the dVRK and the CSA platform

include:

• Qt : Qt is a cross-platform application and user interface framework. Devel-

opers have the flexibility to create their application level interfaces in C++ or

python.
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• PCL : Point cloud library (PCL) is a standalone open project for 2D/3D image

and point cloud processing.

2.4 Contributions

The principal contribution reported in this chapter is:

1. System and architecture designs of CSA such that it can be readily incorporated

into any existing robotic platform that can meet certain hardware requirements.

2.5 Published Work

Material from this chapter has appeared in the following publication:

1. P Chalasani, A Deguet, P Kazanzides, RH Taylor, “A Computational Frame-

work for Complementary Situational Awareness (CSA) in Surgical Assistant

Robots,” in 2018 Second IEEE International Conference on Robotic Comput-

ing (IRC), 9-16
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In MMT, the user controls the master device to manipulate the model of the task

environment and based on such interactions with the model, appropriate commands

are sent to the slave robot to manipulate the anatomy. However, manipulation is
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only possible if the model of the task environment is thoroughly registered to the

master device based on the registration transformation between the slave robot and

the anatomy. Another key feature of MMT is the provision of haptic feedback, which

requires the model of the task environment to be dynamically updated in real-time so

that the user experience accurate haptic feedback. This is essential during a surgical

task since surgeons generally deal with non-rigid and deformable objects.

Lets consider a simple case of palpation of the liver during traditional open surgery;

in a traditional surgical operation, the surgeon has to first make a large incision to

gain access to the liver and, then the surgeon gently apply pressure on the surface of

the liver using his or her hand/fingers to determine the condition of an underlying

tissue. In a MIS procedure, however, the surgeon would not have direct access to

the tissue and would need some kind of haptic/visuo-haptic feedback to improve

their telepresence. One possible approach to provide haptic/visuo-haptic feedback

is through the characterization of tissue properties, based on which a map of tissue

properties can be provided to the surgeon. To characterize tissue properties, the

control architecture needs to continuously monitor the deformation of the model based

on the contact information of the tool and the anatomy. This is done by adding a force

sensing modality in the task environment to analyze the tool-tissue interactions, and

then reconstructing organ geometry and tissue stiffness based on preoperative data

and current contact information. Further, the estimated geometric information and

tissue stiffness are used to perform a deformable registration technique to constantly
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update the model of the anatomy for a functional MMT when dealing with non-rigid

objects.

Modeler is one of the key components of CSA that deals with the aforementioned

problem of maintaining a sensible model of the task environment for a functional

MMT and accurate haptic feedback. Modeler is responsible for providing the Teleop

component with the latest model information based on the interaction between the

slave robot and the anatomy. Additionally, the component also provides a means

of communicating with an optimization framework that provides the next optimal

location for exploration to maximize information gain.

3.1 Prior Art

There have been studies to estimate stiffness properties of an organ based on

tool-tissue interaction force information. Mavash et al.59 reported results of stiffness

estimation of tissue based on discrete palpation. They developed a control architec-

ture for the da Vinci surgical system that provides force feedback through a position-

position control schema along with friction and inertia compensation. In more recent

work, methods to estimate forces acting at the tip of continuum robots were devel-

oped using joint-level actuation forces.61,62 These methods have been used to enable

force-controlled exploration of flexible anatomy.63 Garg et al.73 have presented an au-

tonomous tumor localization technique using Gaussian Processes adaptive sampling.
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The technique uses a palpation probe to estimate surface stiffness using discrete prob-

ing and an implicit level-set upper confidence bound (ILS-UCB) algorithm is used for

an offline estimation of the tumor boundary.

All the above-mentioned studies on stiffness and organ geometry estimation de-

pend on discrete probing strategies. One advantage of discrete probing is that it per-

mits accurate assessment of tissue stiffness and surface location at the point probed.

The drawback is that it can be inefficient, compared to continuous palpation primi-

tives. The need for continuous palpation primitives required a novel implementation

for estimating organ geometry and tissue stiffness. The control law and specifications

of the palpation primitives are discussed in Chapter 5.

As mentioned earlier, the sole purpose of the Modeler is to make sure the model of

the task environment is always updated based on the contact information of the slave

robot tool with the task environment. This task is divided into various subprocesses

(Figure 3.1):

• Extract surface information (Section 3.3)

• Using the surface information to update the task model. (Section 3.4)

• Provide optimal trajectory or direction to maximize the information gain based

on the updated model and estimated surface stiffness information. (Section

3.6)
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Figure 3.1: Modeler subprocesses
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3.2 Modeler Workflow
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Figure 3.2: Modeler Workflow

Figure 3.2 shows the communication flow between the Modeler’s subprocesses.

Based on the current model data, the Teleop (described in Chapter 4) component

provides the contact information, i.e, the current contact location of the tip of the

slave robot with the tissue based on the robot kinematics (xc), and the contact force

sensed by a force sensor (fc). This information is passed to the first module called the

“GP Component”, which uses the current and stored contact information to estimate

the surface point (xs) and its corresponding tissue stiffness (κs) at the current surface

location. The current surface information, along with the previous geometry and stiff-

ness estimates, is sent to the second module called the “Registration Component” for

the purpose of a model update. The Registration component uses the estimated sur-
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face geometry based on contact information and preoperative model (MP ) to perform

a rigid registration step using the Iterative Most Likely Point (IMLP) algorithm.96

The outputs of this module are the registration parameters (θ) and an intermediate

model data (MI), which is registered to align as closely as possible with the preop-

erative data. However, during surgery, the intraoperative model deviates from the

preoperative model due to tissue deformation. Thus, after the initial alignment, the

model information is passed over to MATLAB via an “Intermediate Interface” to

perform a non-rigid registration step based on the Coherent Point Drift (CPD) al-

gorithm51. CPD performs well if the angle of initial misalignment is less than 70

degrees, thus we perform an optional rigid alignment before CPD. The result of CPD

is an updated model (MR) that is fed back to the Teleop component. The user then

manipulates on the updated model of the task environment and this runs in a loop.

The architecture is developed in a modular manner such that, for a tissue explo-

ration task, developers are able to attach their “Trajectory Optimizer” setup to use

the estimated stiffness and other model information to provide an optimal trajectory

or direction to maximize information gain. All the model information is sent over

to MATLAB and developers have access to necessary ROS functionalities to send

information from the optimized trajectory back to the robot.
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Data Format of the Model

A mesh data format was used to represent a model of the task environment. A

custom file format was used to load the mesh data into the framework. Figure 3.3(a)

shows an example model of a kidney phantom used in the experiments, described in

Chapter 6. Here the kidney model is represented by a set of vertices and triangles,

where this information is stored in a file as shown in Figure 3.3(b).

(a) Triangular mesh of a kidney model

POINTS 3688
0.011335 -0.026434 -0.124993
0.012252 -0.026332 -0.125497
...
...
...
TRIANGLES 7314
2899 2959 2902
3169 3114 3060
...
...
...
NORMALS 7314
0.457710 -0.311181 0.832867
0.558008 -0.286730 0.778725
...
...
...

Number of mesh 
vertices

Number of 
triangles

Number of 
triangle normals

Each row corresponds to 
a vertex location (x,y,z)

Each row corresponds to 
vertex indices of a 

triangle

Each row corresponds to 
a triangle normal.

(b) Mesh file format

Figure 3.3: Data representation and storage formats of a phantom model in CSA
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Model Assumptions

Throughout this dissertation, three simplifying assumptions are made regarding

the model, which are reasonable for semi-rigid organs such as kidney or liver :

1. The direction of the force vector at a point under the tissue surface is essentially

equal to the surface normal at that location. Thus, surface stiffness can be

computed using the normal component of the tool-tissue interaction force.

2. Stiffness can be computed using a simple linear force model, i.e., F⃗ = κx⃗ where

F⃗ is the force vector, κ is stiffness and x⃗ is displacement.

3. The target organ is rigid enough so that forces applied at one point deform the

organ only a small region around the probe tip.

In the following sections, various components of the Modeler will be discussed in

further details. First, we discuss the details of estimating surface properties, organ

geometry, and stiffness. Analytical results are also presented for comparison between

offline and online approach. Using the estimated geometry an online registration

framework is discussed with a sample workflow example. Our initial implementation

of trajectory optimizer is also demonstrated and results are discussed accordingly.
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3.3 Surface Estimation (GP Component)
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This process is responsible for providing surface and stiffness information based

on continuous palpation. The method is based on GP estimation. The initial imple-

mentation explores the application of GP in estimating organ geometry and tissue

stiffness in an offline manner. In this approach, we use the GP formulation to gener-

ate a predictive distribution of force-field underneath the organ surface. This allows

us to predict a force value at any given location underneath the surface. Using this

model, we determine the surface height and tissue stiffness. However, for the CSA

framework to execute in real-time, the estimation has to be done incrementally. Our

new approach is based on learning the local force model around the palpation region

using GP in real-time. This model is then used to incrementally estimate the local

stiffness and shape of the anatomy while the organ is being palpated. Spatial data
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structures, specifically hash grids, are used to store position and force information

for efficient data storage and retrieval. This allows for low-latency estimation of local

surface information around the region of palpation.

In the next section, some necessary background on GP is provided for the reader

to better understand the offline estimation techniques used in the literature, described

in the later subsections. Later, we discuss the online approach for near-video frame

rate updates of the stiffness map.

3.3.1 Gaussian Processes

A GP is a collection of random variables, any finite number of which have (con-

sistent) joint Gaussian distributions.97,98 GP is a non-parametric approach where it

finds a distribution over all the possible functions and is commonly represented as:

f ∼ GP(µ(x), k(x, x′)), (3.1)

where it is completely described by its mean µ(x) and a covariance function k(x, x′).

This is a natural generalization of the Gaussian distribution whose mean and covari-

ance is a vector and matrix, respectively.

Given n observations, ȳ = {y1, . . . , yn}, each observation from dataset ȳ can be

assumed to be sampled from an n − variate Gaussian distribution. The prior mean

of a GP is often assumed to be zero everywhere. In such cases, what relates one
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observation to another is just a covariance function, k(x, x′). The usual choice of

covariance function is the ‘squared exponential’ kernel, because of being flexible and

physically intuitive.:

k(x, x′) = σ2
f exp

[
−∥x− x′∥2

2l2

]
, (3.2)

where σ2
f is the maximum allowable covariance and l is the length scale. Since, data is

often noisy, due to measurement errors, sensor resolution, etc., Gaussian white noise

with variance σn is added to the covariance through the Kronecker delta function

δ(x, x′) :

k(x, x′) = σ2
f exp

[
−∥x− x′∥2

2l2

]
+ σ2

nδ(x, x
′), (3.3)

To prepare for GP regression, the covariance function stated in Equation 3.3, is

calculated using the following three matrices,

K =

⎡⎢⎢⎢⎢⎢⎢⎣
k(x1, x1) . . . k(x1, xn)

...
. . .

...

k(xn, x1) . . . k(xn, xn)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.4)

k∗ = [k(x∗, x1) . . . k(x∗, xn)] k∗∗ = k(x∗, x∗) (3.5)

The diagonal elements of K correspond to σ2
f +σ2

n, and the extreme diagonal elements

tend to zero when x spans a large-enough domain.

Since the key assumption is that the observations are sampled from a multivariate
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Gaussian distribution, the data can be represented as

⎡⎢⎢⎣ y

y∗

⎤⎥⎥⎦ ∼ N
⎛⎜⎜⎝0,

⎡⎢⎢⎣K KT
∗

K∗ K∗∗

⎤⎥⎥⎦
⎞⎟⎟⎠ (3.6)

Thus, the conditional probability p(y∗|y) can be written as,

y∗|ȳ ∼ N (k∗K
−1ȳ, k∗∗ − k∗K

−1kT
∗ ), (3.7)

or, equivalently, the mean and variance (uncertainty in the estimate) of y∗ is

µf (x∗|ȳ) = k∗K
−1ȳ, (3.8)

Vf (x∗|ȳ) = k∗∗ − k∗K
−1kT

∗ (3.9)

3.3.2 Direct GP modeling

In this work, two modes of estimation were explored using GP. The first imposes

a model directly on the force field measurements (described in this subsection) and

the second is based on Latent GP estimation (described in Section 3.3.3).

Formulation

Using the formulation defined in Section 3.3.1, the GP model over force field

τ(x) ∼ GP(µτ (x), kτ (x, x
′)) is defined where each point x corresponds to a palpation
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point p = (px, py, pz) ∈ R3. This model can be used to estimate forces at different

depths in the direction of the force vector. Stiffness κ is estimated along the force

direction by assuming a linear stiffness model of the form

f2 − f1 = κ(d2 − d1), (3.10)

where f2, f1 are forces at depths d2, d1 respectively. The estimated mean (µκ) and

variance (Vκ) of the surface stiffness in the force direction from an interior point pfar

given by

µκ(pfar) =
µτ (pfar)− µτ (pclose)

d
(3.11)

Vκ(pfar) =

√
V 2
τ (pfar) + V 2

τ (pclose)

d2
, (3.12)

where pfar is chosen such that it is deep inside the surface. This is because the signal-

to-noise ratio of the force sensor gets better as we push into the surface, resulting in

an accurate direction of the force vector. pclose is a point along the force direction

and d = ||pfar− pclose|| is the distance between the two points, pfar and pclose. Figure

3.4(a) shows an overall illustration of these points.

Next, the surface geometry can be estimated in three different ways :

1. Surface estimation from stiffness: In this method, surface geometry is

calculated using the estimated stiffness distribution. The mean and variance of
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Figure 3.4: Estimation of surface point from the predictive distribution of force field
from GP model, a) Illustration of pfar (deep point inside the organ) and pclose (inside
point relatively closer to the surface), b) Zero-crossing, c) Linear search

the surface geometry is calculated as follows,

µs(pfar) = pfar +
µτ (pfar)

κ
.

Due to the nonlinear relationship between stiffness and surface geometry, the

resulting covariance can be approximated99 according to

Vs(pfar) = JΣJT ,

where

J =

[
1

κ
− µτ (pfar)

κ2

]
,Σ =

⎡⎢⎢⎣ Vτ (pfar) 0

0 Vκ(pfar)

⎤⎥⎥⎦ .

2. Zero-crossing:100 A line is fit through the predicted force and the z-components
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of position along the direction of force vector from pfar. The intercept value at

which the line crosses the axis defining the z-components of the intercept value

for which force is zero, is called the zero-intercept. This zero-intercept value is

considered to be the surface point (Figure 3.4(b)).

3. Linear search: Using the GP force model, a linear search strategy is used to

find near-zero mean forces with minimum variances along the force direction of

point pfar (Figure 3.4(c)).

In the first method, the estimated geometry depends on predicted stiffness, i.e.,

there is significant error propagation from force to stiffness and from stiffness to ge-

ometry. The second and third methods estimate stiffness and geometry directly from

the force and position distribution, thus minimizing the error propagation. Therefore,

the second method is used in the current implementation, while the third method will

also produce a similar result.

Algorithm 3.1 Direct GP

Input: Palpated positions and the corresponding force values, I = {p⃗i, τi}
Output: N (µκ, Vκ),N (µs, Vs)

Is(ps, τ) = SubSample(I)
X = ps , Y = τ
GPTrain(X, Y )
µτ (pc), Vτ (pc) = GPEstimate(pc)
µτ (pcd), Vτ (pcd) = GPEstimate(pcd)

N (µκ, Vκ) = N (µτ (pcd)−µτ (pc)
d

,
√

V 2
τ (pc)+V 2

τ (pcd)
d2

N (µs, Vs) = pcd +
µτ (pcd)

κ
, JΣJT
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Experiment

The direct GP approach was applied to a palpation set consisting of 77000 pal-

pation points and force pairs. For verification purposes, initially, the true stiffness

and geometry were estimated using all the palpation points. However, a subset of

n = 2500 points was used for training and a different set of m = 1000 points was

used for prediction. For display purposes, the estimated stiffness and geometry were

interpolated over a regular grid with 1mm cell size. For this experiment, a length

scale of 5mm was used along with an optimized variance parameter, σf , by maximiz-

ing the negative log-likelihood, as described in [97]. The resultant value of σf was

0.86, which complies with the observations because the maximum force applied on

the object was around 1.6N and it lies in the 95% confidence level of the maximum

variance. The noise parameter was empirically modeled, σn = 0.01N , by analyzing

the noise observed in force values measured when various static loads were applied on

the sensor. Fig 3.5 shows the ground truth estimation using 77000 samples and Fig

3.6 compares the estimation result with the ground truth. The Root Mean Square

(RMS) stiffness error for this particular set of samples was 120.4 mN/mm and the

RMS error of the surface geometry was 2.61mm. This accuracy in stiffness/surface

estimation is sufficient for a surgeon to detect stiff features or abnormal growth of

tissue.

This approach was also tested against varying sizes of input samples. The variance

in the force field decreases as the number of training samples were increased. This
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makes sense because it is expected to see low uncertainty in the prediction of an

unknown observation when the prediction is based on a large number of neighboring

known observations. However, RMS error in the surface geometry decreases very

slowly as the number of training samples is increased. The reason for this behavior

is because of the way we are calculating the surface geometry. The error in surface

estimation is not only propagated from the force uncertainty, but also from stiffness

uncertainty. An alternative way of calculating the surface geometry, using the force

field, is to do a linear search in the vertical direction, at each grid point, and look

for the distribution where the mean is zero and has the minimum variance. This will

give an estimate of the surface, with a much higher confidence than the one computed

using the predictive distribution of stiffness.

Figure 3.5: True surface stiffness and geometry
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Figure 3.6: Direct GP estimation a) Contour plot of true stiffness; b) Contour plot of
estimated mean of stiffness; c) Contour plot of estimated error in stiffness; d) Contour
plot of true surface height; e) Contour plot of estimated mean of the surface geometry;
f) Contour plot of estimated error in surface geometry
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3.3.3 Latent GP modeling

As an alternative, instead of imposing a model directly on the force field mea-

surements, the construction of a model of the underlying physical properties of the

palpated object is considered. These properties include the physical geometry and

the surface stiffness. A key advantage of such an alternative approach is that prior in-

formation about these properties and about their relationship to force measurements

could be incorporated as part of the estimation process. This is in contrast to first

estimating an unconstrained force field and then deriving the surface and stiffness

from the force model.

Our approach is therefore to place a GPmodel over the surface s(x) ∼ GP (µs(x), ks(x, x
′))

and over the stiffness κ(x) ∼ GP (µκ(x), kκ(x, x
′)). Existing knowledge about the stiff-

ness spatial correlation (e.g., the size of the abnormal tissue) and about the variability

and roughness of the surface can be captured through proper choice of GP covariance

parameters. For simplicity, object geometry is represented as a graph of the height pz

over the 2-D (px, py) domain. Similarly, the concern here is also with estimating the

stiffness near the object surface, which motivates representing stiffness using a graph

over the (px, py) domain.

The key challenge is that there is no direct measurement of stiffness κ(x) or surface

s(x) at locations x = (px, py). Therefore, in this approach, the output data of these

GPs is treated as hidden variables that will be optimally estimated using the induced

measurements of the forces obtained at 3-D locations p.
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Formulation

Here, a general approach to the latent GP estimation is introduced and then, its

application to the palpation scenario is demonstrated.

Consider the problem of estimating a vector-valued function f : Rnx → Rny ,

defined according to

y = f(x) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
f1(x)

...

fn(x)

⎤⎥⎥⎥⎥⎥⎥⎦
with inputs x ∈ Rnx and outputs y ∈ Rny .

Assume that y cannot be directly observed and instead, noisy observations z ∈ Rnz

can be accessed such that

z(x) = h(x, f(x)) + ϵ(x),

where h(x, y) is a known nonlinear function with additive Gaussian noise ϵ(x) ∼

N (0,Σϵ(x)). The goal is to optimally estimate f using a set of Mz collected observa-

tion pairs Dz = {(xj, zj)}Mz
j=1.

Although f(x) is unknown, some knowledge about the spatial correlation between

its inputs and outputs is assumed to be known. This motivates the representation as

a Gaussian Process, i.e., f(x) ∼ GP (µ(x), k(x, x′)). Note that it can be assumed that

all outputs fi and fj for all i ̸= j are uncorrelated (in which case k(x, x′) ∈ Rny×ny
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is diagonal), or that they are coupled101 (in which case k(x, x′) will have off-diagonal

elements). Normally, the posterior of such a GP would be constructed given data

pairs Dy = {xj, yj}My

j=1, which in our case are unavailable, or latent. Our proposed

approach is to select the points xj in Dy using some rule (e.g., they could be a subset

of those in Dz or otherwise could be placed on a uniform grid over the domain of

interest) and to regard the outputs yj in Dy as unknown variables to be optimally

estimated. In addition, the GP hyperparameters θhyper (e.g., the maximum covariance

and length-scale used in standard kernels) could also be treated as unknowns. Thus,

a vector of latent variables θ = (ȳ, θhyper), where ȳ = (y1, . . . , yMy), can be formed,

and we assume that a prior is available as

θ ∼ N (·|θ0, P0),

with a known mean θ0 and covariance matrix P0.

The most likely GP model of f can now be estimated using a maximum-likelihood

approach by optimizing

min
θ

[− log p(f |Dz, Dy)]

= min
θ

[− log p(z̄|f, x̄, ȳ)− log p(f |x̄, ȳ)]

= min
θ

[
Mz∑
j=1

∥h(xj,f(xj; θ))−zj∥2Σ−1
ϵ (xj)

+∥θ−θ0∥2P−1
0

]
,

(3.13)
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where the GP form of f is given by

f(xj; θ) = k̄(xj)
TK−1ȳ,

where

k̄(x)=

⎡⎢⎢⎢⎢⎢⎢⎣
k(x, x1)

...

k(x, xMy)

⎤⎥⎥⎥⎥⎥⎥⎦, K=

⎡⎢⎢⎢⎢⎢⎢⎣
k(x1, x1) · · · k(x1, xMy)

...
. . .

...

k(xN , x1) k(xN , xN)

⎤⎥⎥⎥⎥⎥⎥⎦.

The formulation (3.13) corresponds to a nonlinear least-squares problem in view of

the residual vector r = (r1, · · · , rMz), where each residual is defined by

rj(x; θ) = h(x, f(x; θ))− zj, j = 1, . . . ,Mz.

The gradient of each residual can be readily computed as

∇θrj(x, θ) = K−1k̄(x)∇yh(x, f(x)).

A desirable property of the gradient ∇r(θ) is that ∇r(θ)∇r(θ)T is full rank, which

requires that Mz ≥ Myny. Note that all quantities K−1k̄(xj) are precomputed and

cached before a least-squares solver (such as Levenberg-Marquardt) is applied.
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The resulting error covariance of the estimate θ∗ can be approximated as

P ≈ 1

Mz −Myny

∥r(θ)∥2(∇r(θ)∇r(θ)T )−1.

in case of uninformative priors (with P0 =∞). This expression can be easily extended

to the case when a prior is employed.

Experiment

The proposed latent GP approach is now applied to the palpation problem. The

measurement z ∈ R≥0 denotes the norm of a force recorded by the robot at a com-

manded end-effector point p = (px, py, pz) ∈ R3. Our model has two hidden outputs

y = (κ, s) where κ denotes the surface stiffness and s denotes the surface height over

a given point x = (px, py). The function h then defines the physical relationship

between force, depth, and stiffness according to

h(x, y) = κ(s− pz(x)),

where the function pz(x) simply looks up the recorded height at given recorded loca-

tion x = (px, py). Force measurements are assumed to have variance Σϵ = σ2
f with

σf = 0.01 N.

The two outputs are modeled as independent GPs in which case diagonal kernel
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covariance becomes

k(x, x′) =

⎡⎢⎢⎣ kκ(x, x
′) 0

0 ks(x, x
′)

⎤⎥⎥⎦ ,

where kκ defines the GP covariance for the stiffness and ks gives the GP covariance

for the surface. A standard squared exponential kernel is employed for both with

different parameters.

The gradient of the force required for the solution of (3.13) is simply

∇yh(x, y) =

⎡⎢⎢⎣ s− pz(x)

κ

⎤⎥⎥⎦ .

This approach was applied to the palpation problem using Mz = 2000 data points

by selecting the locations xj in the latent GP dataset Dy to be on a regular grid

with 5mm cell size, resulting in My = 256 points. For this experiment, very wide

priors were employed, specifying that the surface mean is at 15 mm with a standard

deviation of 20 mm and a stiffness at 500 N/m with a standard deviation of 1000

N/m were used. Figure 3.7 compares the resulting estimated function to the ground

truth estimates from 77000 points.

Although the accuracy of latent GP estimation was comparable to the direct GP,

this approach was not explored further as the former direct GP estimation technique

was extensible to fit in the CSA framework and was more efficient to implement.

62



CHAPTER 3. HIGH-LEVEL CONTROLLERS - MODELER

Figure 3.7: Latent GP estimation a) Contour plot of true stiffness; b) Contour plot of
estimated mean of stiffness; c) Contour plot of estimated error in stiffness; d) Contour
plot of true surface height; e) Contour plot of estimated mean of the surface geometry;
f) Contour plot of estimated error in surface geometry

63



CHAPTER 3. HIGH-LEVEL CONTROLLERS - MODELER

3.3.4 Online GP Estimation

In the previous subsection (3.3.2), offline estimation techniques independent of

palpation strategy were presented to estimate organ shape and stiffness using GP. It

demonstrated the feasibility of concurrent estimation of the surface geometry and stiff-

ness from continuous palpation trajectories. However, the execution time increased

quadratically with the amount of training data, thus, defying the real-time claim of

CSA. One method to speed up the estimation would be to sample the incoming data

at a much lower rate. However, this would result in the loss of valuable training

data and such subsampled data can still introduce numerical instabilities when the

exploration trajectory crosses over itself.

To overcome these limitations, we developed a technique to improvise the direct

GP estimation to provide reasonable support for GP, while using small sets of train-

ing data to expedite the estimation process. This allows having near-video frame rate

updates of the organ geometry and stiffness. One of the key challenges in providing

such “online” updates is data redundancy. GP estimation is extremely sensitive to

redundant data and its computational efficiency is affected by the amount of data

used in training. To tackle this problem, a spatial data structure was used to prune

redundant data and to efficiently retrieve data for training purposes. Figure 3.8 shows

a conceptual illustration of both the offline direct GP technique and the online tech-

nique. In the offline technique, the estimation of geometry and stiffness is predicted

using a training model over all the data. On the contrary, the online technique, dis-
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Figure 3.8: Conceptual representation of offline and online estimations of stiffness
and surface geometry: a) offline technique requiring training a GP over all the data,
b) online surface and stiffness estimation using only nearby information to estimate
surface information along the palpation trajectory
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cussed in this section, only uses the neighboring information to train the GP model.

The proposed online estimation technique uses the core formulation of GP with the

main focus on delivering near-video frame rate updates of the organ geometry and

tissue stiffness during force controlled exploration/palpation.

Hash grids

A brief overview of spatial data structures, in particular, hash grids, is provided

here for understandability of the reader. Spatial hashing102,103 can help speed up

certain operations like collision, ray-tracing, nearest neighbor search, etc. For the

online estimation, the most important capability is acquiring local/neighborhood in-

formation around a given region of interest in constant time. While there are other

advanced data structures for spatial indexing, hash grids were chosen because of their

straightforward implementation and simple structure. A hash grid (HG) is a two or

three-dimensional extension of a hash table. It’s a simple data structure that subdi-

vides the 2D/3D space into uniformly-sized ‘bins’ or ‘buckets’. The basic idea of a

hash table is that a piece of data (the ‘key’) is passed through some function (hash

function) to generate a new value (the ‘hash’) which is used as an index into a set of

buckets. Figure 3.9 shows a visual representation of a 3D hash grid, where the red

cuboids represent a bucket/bin and the blue dots represent 3D points.
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Figure 3.9: 3D spatial grid (Image taken from http://www.sgh1.net/)
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Notations

A few important notations that are used in the following subsection are listed in

Table 3.1 for the reader’s reference.

HGt Training hash grid

HGp Prediction hash grid

X All position data stored in HGt

Y All force data stored in HGt

Tgp (Xs ≪ X, Ys ≪ Y ) position-force pairs used for training

Pgp Set of query points for prediction

pc Current tip position

τc Sensed forces

pq Query point

h(p) Hash ID for point p

pq(h) Query point stored in the bucket with hash ID h

Nt(h) Neighboring hash IDs of h in HGt

Np(h) Neighboring hash IDs of h in HGp

Table 3.1: Variables used in the proposed online GP estimation technique
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The Proposed Online Estimation Methodoloy

In the offline stiffness estimation, all the position-force pairs were used to train the

GP model. This results in a predictive distribution of force over the entire surface.

However, based on the model assumptions mentioned in Section 1.2, not all the

training data is needed to estimate a predictive force distribution with acceptable

accuracy at a certain location. Suppose that we have a GP model over forces based

on position data X and its corresponding force data T . Now, given a query point

pq, a predicted mean and variance can be obtained according to (3.11) and (3.12).

Since it is assumed that the deformations from palpation are local, the position-

force pairs far away from the query point will have a negligible contribution to the

predicted distribution at pq. Thus, a subset of position-force pairs Xs << X and

Ts << T are sufficient to predict the force distribution at pq. In order to implement

the proposed online estimation method, two continuous tasks were developed using

the cisst component-based framework;

(a) mtsGPCollector: This continuous task reads the contact locations of the tip of

the slave robot with the surface of the tissue, and stores them in a hash grid.

Further, it estimates the query point based on the current tip location and packs

the query point along with the required training data for estimation.

(b) mtsGPEstimator : This continuous task retrieves the training set from the

mtsGPCollector and performs a direct GP estimation as described in Section
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3.3.2. The estimated data is sent back to mtsGPCollector and is stored in a

different hash grid.

Both these processes are executed in parallel to make sure one component always

collects and stores the data, and the other is only used for GP training and prediction.

A brief overview of component-level communication is shown in Figure 3.10. The

provided interface of the mtsGPCollector is connected to the required interface of the

mtsGPEstimator. This allows the mtsGPEstimator to retrieve the latest training and

query sets and also to update the prediction grid upon completion of the prediction

procedure. This workflow consists of three major parts,

(a) Add/retrieve data from training grid

(b) Select when/where to predict, i.e., how to calculate the query point.

(c) Train position-force data, and Predict geometry and stiffness.

A) Add/retrieve data from training grid

This subprocess is executed by the mtsGPCollector. For fast retrieval of Tgp =

{Xs, Ts}, the training grid represented by HGt is used. HGt is preallocated with

empty buckets based on a user-specified grid size (gSize) and min-max limits (minLim,maxLim)

in each dimension of the grid. The grid size should be specified based on the feature

that is being identified. For example, if we are trying to locate an artery-like feature,

then the grid size should be the approximate diameter of the artery. The grid size,
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Figure 3.10: GP collector and estimator components. ‘P’ and ‘R’ represent provided
and required interfaces, respectively. Orange colored boxes represent access to data/-
function via interface communication. (More details about interface connections are
described in Section 2.3).
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gSize, is chosen such that, the data that are 3 ∗ gSize units away from each other

have a minimal correlation. This can be assumed based on the model assumptions

described in Section 1.2. Any given bucket, with hash ID h, in HGt contains the

following information;

• A FIFO (first-in-first-out) queue of position-force vector pairs, Q(h). Since

the data is collected at a very high frequency (usually the frequency at which

the robot is controlled), queue size should be large enough to store a lot of

information. However, during the retrieval process, sparse amount of data is

randomly sampled.

• A precomputed vector containing hash IDs of neighboring buckets, Nt(h). In-

formation of the neighboring bucket is calculated based on linear indexing of

grid cells.

When a new position-force pair is obtained, the following steps take place in a

sequential order,

• Calculate hash ID : Given a palpation point pc = [pxc , p
y
c , p

z
c ]

⊤ and corre-

sponding force τc, the hash function used to generate the bucket/hash ID is

h(pc) = i + gSize.X ∗ j + gSize.X ∗ gSize.Y ∗ k (3.14)
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where,

i =
floor(px

c −minLim)

BucketSize.X
, BucketSize.X =

maxLim.X −minLim.X

gSize.X

j =
floor(py

c −minLim)

BucketSize.Y
, BucketSize.Y =

maxLim.Y −minLim.Y

gSize.Y

k =
floor(pz

c −minLim)

BucketSize.Z
, BucketSize.Z =

maxLim.Z −minLim.Z

gSize.Z

{pc, τc} is then added to the FIFO queue Q(h(pc)).

• Package training data : If a query point pq is selected, an appropriate set of

Xs and Ts values needs to be retrieved from HGt. To retrieve this data from the

training grid, first, the corresponding hash ID h(pq) is calculated using (3.14).

Then, the iteration over all the neighboring hash IDs stored in Nt(h(pq)) is done

to retrieve a certain number of random position-force pairs from their respective

queues. An optimal bucket size is empirically calculated such that a minimal

number of buckets are sufficient to characterize the local surface geometry and

tissue stiffness.

This process is computationally inexpensive since at any time the maximum

number of neighbors in 2D and 3D grids would be 8 and 26, respectively. Once

we have Tgp, we can proceed to train and generate a GP model of forces in the

neighborhood of pq. The pseudocode for retrieving the training data set for GP

is given in Algorithm 3.2.
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Algorithm 3.2 Retrieving Training Data
Input: HGt, pq
Output: Tgp

hId = h(pq) ▷ Hash ID of the query point

{Tgp} = Q(hId) ▷ Initialize the queue with data from hId

for each h in Nt(hId) do

Tgp ← Tgp ∪Q(h) ▷ Add data from neighbors of hId to the training queue

end for

B) Query point selection

This subprocess is executed in the mtsGPEstimator component while some com-

mands are called from mtsGPEstimator upon completion of the prediction procedure,

via interface communication. Query point selection is one of the main challenges in es-

timating the surface geometry and stiffness since the selection criteria will impact the

accuracy of estimation. As mentioned earlier, a query point should be deep enough

inside the surface where the force vector is noise-free. The information is being gath-

ered during a palpation task (described later in Section 5.1.3), where the desired force

applied by the palpation tool on the tissue is set to follow a sinusoidal profile. This

allows storing the contact point as a query point when the force is maximum. For

reference, following is the force motion (F ∗
d ) commanded to the slave tip for palpation

(complete details are in Section 5.1.3),

F ∗
d = Fd + A ∗ Sin(2πωt)
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where A, ω, t are parameters of the sine motion. Here, the force will be maximum

when the sine function is 1, i.e, Sin(2πωt) = 1. However, due to delay in the low-

level controller, the time at which the maximum force is actually applied by the

probe tip will lag slightly from the time at which the force is commanded (Figure

3.11). Thus, adding the position-force pair when the sine value reaches 1 is not

appropriate. Instead, when the algorithm asks for maximum force, from that instant

a search is initiated to find the contact position, pc, at which the force magnitude

starts decreasing. Thus, a query point pq = pc is added to HGp when the palpation

force τc satisfies the condition described in Algorithm 3.3. Each point pq added to

HGp now inherently corresponds to a pfar stated in (3.11).

Algorithm 3.3 Adding to the Prediction Grid
Input: pc,τc,maxF,fSearch
Output: HGp,maxF,fSearch

hId = h(pc)

if value of sine function = 1 then

fSearch = true ▷ Start searching

maxF = 0

end if

if fSearch then

if τc > maxF then

maxF = τc ▷ Force is still increasing
else

pq(hId) = pc ▷ Add query point to HGp

maxF=∞, fSearch=false ▷ Reset

end if

end if

Note that all the palpation points are not stored in the prediction grid, but only
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(a) Control lag between commanded and ac-
tual motion/force

(b) Commanded force is maximum; start
search, i.e. fSearch = true

(c) Sensed force is maximum at this state, when the sensed force starts decreasing

Figure 3.11: Sinusoidal motion in force profile. Blue dot corresponds to commanded
force/motion and black dot corresponds to sensed force or current location.
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the ones that are deep inside the tissue, where the signal-to-noise ratio is higher,

are identified and stored. Now, to retrieve the query point based on the current

contact point pc, one just needs to retrieve the query point stored in the prediction

grid HGp based on the spatial location of pc. Algorithm 3.4 describes the process of

retrieving the set of query points, Pgp, for prediction purposes, which includes pq and

its neighbors.

Algorithm 3.4 Retrieve Query Set
Input: Pgp

Output: pq, Np(pq)
hId = h(pc) ▷ Calculate hash ID for pc

pq = HGp(hId) ▷ Get the query point

Pgp = pq ▷ Add pq to set of query points

for each h in Np(hId) do

Pgp = Pgp ∪ pq(h)

end for

C) Train position-force data, and Predict geometry and stiffness

This subprocess is executed in the mtsGPEstimator component to train the GP

model using the training data received from the mtsGPCollector component via in-

terface communication. Query points Pgp are also retrieved using the same interface

communication for prediction purposes. Using the formulation described in Section

3.3.2 mean estimates of the organ geometry and tissue stiffness along with their un-

certainty are calculated at all the retrieved query points using the trained model, GP .

The pseudocode for training and prediction procedures is detailed in Algorithm 3.5.
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Algorithm 3.5 GP Train and Predict
Input: Tgp, HGp, pq
Output: Updated HGp

hId = h(pq)

Calculate µhId
κ (pq), V

hId
κ (pq) ▷ Calculate mean stiffness and variance

Calculate µhId
s (pq), V

hId
s (pq) ▷ Calculate mean surface point and variance

for each p in Pgp do

Update µh
κ(p), V

h
κ (p)

Update µh
s (p), V

h
s (p)

end for

▷ Update neighboring information of pq in HGt

Overall communication flow

Figure 3.12 shows the entire communication details for the online estimation strat-

egy. Once a new palpation point-force pair, (pc, τc), is obtained from the robot, it

is added to the HGt using the formulation in Section 3.3.4. Based on the current

position pc, query set Pgp is retrieved from HGp using Algorithm 3.4, and training

data Tgp is retrieved from HGt using Algorithm 3.2. Simultaneously, the palpation

point pc is also added to HGp based on the decision process described in Algorithm

3.3. A GP model is trained using the training set Tgp followed by an estimation pro-

cedure using the query set Pgp, as described in Algorithm 3.5. Updated estimation

information is added to HGt for later storage and display purposes.

Experiment

In this subsection, we present the results of the online estimation of tissue stiffness

and surface geometry during teleoperation.
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Robot Palpation
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Write

𝒯01

Write

Update 𝒯01
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Add data to grids Decision process for adding point to 𝐻𝐺1
Retrieve data from grids Train and predict

Figure 3.12: Communication flow of online geometry and stiffness estimation
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We used a simulated surgical scenario to demonstrate the feasibility of using our

online estimation in an interactive surgical assistant. Our scenario assumes that the

user has an intuition about the approximate location of the stiff inclusion, comparable

to what might be obtained from a segmented CT or MRI image. For this experiment,

we chose a different phantom, shown in Figure 3.13, which is softer than the phantom

used in the previous experiment (Figure 3.15).

d) Stiff Inclusion

Figure 3.13: Soft phantom (100 mm x 100 mm) with an embedded rubber wire
resembling an artery

We used the method described in Section 3.3.5 to generate ground truth for this

phantom. Since the surface of the model is soft, exerting large forces will puncture the

tissue, therefore, the force controller reference was set at 0.3 N normal to the surface.

Additionally, this allowed us to demonstrate the working of our algorithm where the

force normals are a bit noisy due to low range forces. Approximate registration was
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performed by pointing to the corners of the phantom, and a user-defined region of

interest (ROI) was acquired for exploration, as explained in Section 6.1. A virtual

fixture was defined using the framework defined in [104,105] to constrain the motion

of the probe to the interior of the region. The user teleoperated the probe along

the surface of the anatomy, while the algorithm superimposed a palpation motion

based on a sinusoidal reference force in the direction normal to the surface (Section

5.1.3). We call this semi-autonomous teleoperation. The stiffness map was continually

updated during palpation.

This exploration strategy closely resembles a surgical setup where the surgeon

would like to know the stiffness of an underlying tissue while palpating. Our online

estimation allows this capability by providing near-video frame updates of the stiffness

map which would help the surgeon make an informed decision on the trajectory of

teleoperation. While the user was teleoperating, our online estimator received data

at 200 Hz and the surface stiffness was updated at 50 Hz. Figure 3.14c shows the

stiffness map generated by the online estimation after teleoperated exploration of the

ROI.
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a) b) c)

Figure 3.14: Semi-automated teleoperation experiment with our online estimator
receiving data at 200 Hz. a) User-specified region of interest for semi-autonomous
teleoperation, b) Ground truth stiffness map, c) Estimated stiffness using the online
method
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3.3.5 Comparison and Evaluation of Online Esti-

mation

In this subsection, the efficiency of the online strategy is compared with the direct

GP offline approach described in Section 3.3.2. Further results of the online strategy

are evaluated for stiffness estimation. In this application, dVRK was used with an

8mm needle driver for teleoperation. Since the dVRK manipulators do not have built-

in force sensors, an ATI Mini 40 Force-Torque sensor was attached below the phantom.

Other methods (e.g [63]) can be used to estimate tool-tissue interaction forces, so the

results are not limited to this particular setup. This experiment was performed on

an Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz with 24 GB RAM. The phantom

used for this experiment was made of silicone elastomer (M-F Manufacturing, Fort

Worth, Texas), resembling the shape of a kidney. The phantom contained a stiff

rubber inclusion resembling a subsurface artery. i

Comparison

Autonomous palpation was performed on a silicone phantom (Figure 3.15) with

an embedded rubber wire resembling an artery. Optimum palpation frequency of 2

Hz and amplitude of 1 N were empirically calculated for minimal harmonic excitation

in the force sensor while palpating. The mean desired force of 1.5 N was chosen to

iThis experiment was performed at Johns Hopkins University with remote assistance from Van-
derbilt University; Members include Long Wang, Rashid Yasin, Nabil Simaan, and Russell H. Taylor.
Details of this experiment can be found in [104].
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ensure that the probe tip remains in contact with the phantom model at all times.

The probe was then given a preplanned trajectory on the phantom for continuous

palpation.

Stiff Inclusion

Figure 3.15: Stiff phantom (100 mm x 100 mm) with an embedded rubber wire
resembling an artery

To compare the efficiency and accuracy of the offline and the online estimation

methods, we set up two estimator blocks which received this palpation data at 200

Hz and updated the stiffness map as fast as possible. We continuously streamed the

estimated surface information to MATLAB for display purposes. The first estimation

block was based on the offline method, in which the estimation is performed recur-

sively using all the data currently stored until that iteration. The second estimation

was based on the online approach, in which the estimation is performed while the user

is palpating. For comparison purposes, we used the same values for GP hyperparam-

eters in both cases. The length scale (l) was set to be 6 mm and variance (σf ) was
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Figure 3.16: Time taken to train the GP model and predict stiffness at each iteration
for the first 1425 sampled training data (position-force) pairs.

set to be 0.9 N. In Figure 3.16 we can clearly see that the processing time for offline

estimation increases quadratically with incoming data, since all the data is trained

and the estimation is done on the region palpated till that iteration. Eventually, the

offline method took ≈ 9.5 seconds when the number of training data pairs reached

2400. However, the online estimation trains a maximum of 380-400 data pairs, re-

sulting in an average processing time of 0.02 sec (50 Hz) in each iteration. Use of the

fast spatial data structure enables these points to be chosen appropriately for training

the GP model without excessive local redundancy in the data used. Additionally, the

online method only requires neighboring information for local stiffness update, thus

limiting the number of training data pairs in each iteration.
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Evaluation

To evaluate the accuracy of the online algorithm for stiffness estimation, we com-

pared our results with the ground truth surface and stiffness information. True surface

information was calculated by deploying a discrete probing strategy using a high stiff-

ness Cartesian stage robot. To generate a dense distribution of probing points in a

grid format with 1 mm spacing, the robot recorded 10 measurements at each probe

location by probing along the normal up to a depth of 3 mm in increments of 0.3 mm.

The surface point was computed by using a regression fit on forces and z-positions

along the normal. A simple linear model was used to calculate the ground truth stiff-

ness at that location using two position-force pairs along the normal. Figure 3.17a

shows the ground truth information generated. In this experiment, data was received

at a frequency of 200 Hz for both the offline and the online method. In the case of

the offline method, the incoming data was stored and the stiffness map was estimated

after trajectory completion as shown in Figure 3.17b. In the case of the online esti-

mation technique, the stiffness map was updated at a frequency of 47 Hz and the end

result is shown in Figure 3.17c.

As shown in Table 3.2, our online method estimated the surface geometry and

stiffness with at least comparable accuracy to the previous offline method. Our expe-

rience with previous work106 and our conversations with surgeons indicates that the

accuracy reported by the online estimation is sufficient for a surgeon to detect stiff

features relative to adjacent softer tissues.
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Figure 3.17: a) Ground truth stiffness, b) Stiffness estimation using offline method,
c) Stiffness estimation using online method, d) Silicone model with highlighted region
used for palpation, e) Contour plot of the estimated stiffness variance using offline
method, f) Contour plot of stiffness variance using online method.

Offline estimation Online estimation

geometry RMS error (mm) 1.3676 1.3203

stiffness RMS error (mN/mm) 80.4 69.8

Table 3.2: RMS errors for stiffness and geometry based on previous offline estima-
tion106 and current online estimation using automated palpation.
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Repeatability

We also performed multiple trials with different data acquisition rates. The pal-

pation setup remained the same as described above, however, the rate at which the

online estimator receives the position-force data is varied. We compared the results

from each trial with the ground truth stiffness and geometry data and the RMS errors

for the same are detailed in Table 3.3. As we can see from the table and Figure 3.18,

our online estimation produced comparable results across a wide range of sample

rates.

frequency (Hz) geometry RMS
error (mm)

stiffness RMS error
(mN/mm)

update rate (Hz)

50 1.3541 70.4 43

100 1.3729 72.5 42

200 1.3514 69.5 45

400 1.3446 70.3 50

500 1.3246 70.3 52

1000 1.3701 77.3 53

Table 3.3: Geometry and stiffness results for different sample rates using the online
estimation method.
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a b c

d e f

Figure 3.18: Stiffness maps generated by online estimation at various data acquisition
rates.
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3.4 Model Registration

𝒙𝒄, 𝒇𝒄

Trajectory 
Optimizer
(MATLAB)

Teleop

GP Component

Modeler

𝑴𝑷

𝑴𝑹

𝑿𝒔 ,𝚱𝒔

𝑿𝒔 ,𝚱𝒔

𝝃, 𝜽

Intermediate 
InterfaceUpdate

Initialize

𝒑𝒏

Model Information

Updated Model

Registration 
Component

CPD Registration

Model registration is performed in two steps: 1) a rigid registration based on

Iterative Most Likely Point (IMLP), and 2) non-rigid registration based on Coherent

Point Drift (CPD). Both these subprocesses together are responsible for providing

the latest model information by registering the current model with the information

provided by the GP component. In the following subsections, necessary data storage

required for registration is discussed, followed by a brief overview of IMLP and CPD.

The intermediate interface used to send the output information of IMLP to CPD (in

MATLAB) is also detailed at the end of this section.
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3.4.1 Registration Algorithms

Iterative Most Likely Point (IMLP)

The IMLP algorithm, developed by Billings et al.,96 is a robust probabilistic al-

gorithm for registering positional feature data that is characterized by anisotropic

uncertainty. In order to converge towards the correct solution, within each iteration,

the algorithm dynamically adapts its noise model. It further uses the noise model

to detect and mitigate outliers. As discussed in [96], an efficient IMLP algorithm

consists of two phases :

1. Correspondence Phase : In this phase, the most likely match from the model

shape is computed in an efficient manner. A variant of the K-Dimensional (KD)

tree called the Principal Direction (PD) tree107 (also known as the covariance

tree), is used to search for an optimal point of correspondence on the model

shape. Both KD and PD trees partition the geometric space into a hierarchy of

nodes, however, the primary variation lies in the orientation of the coordinate

systems. The PD tree has a local coordinate system that is oriented based on

the geometric dispersion of the resident data, unlike the KD tree, where the

local coordinate system is axis-aligned with the global coordinate system.

2. Registration Phase : In this phase, a linear least-squares solver is set up

to minimize the match error between the model shape and the correspond-

ing point sets that are characterized by anisotropic uncertainty. The solution
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has the form of a modified Gauss-Newton approach that has both speed and

accuracy advantages compared to prior published solutions for this particular

problem.108,109

CSA takes advantage of the fact that the IMLP algorithm was also developed using the

cisst libraries, thus making the integration of this module straightforward. Further,

the speed and accuracy of the IMLP algorithm help maintain the real-time aspect of

the framework.

Coherent Point Drift (CPD)

The CPD algorithm is another probabilistic method, developed by Myronenko et

al.,51 that can be used for both rigid and nonrigid point set registration. For the

purpose of CSA, only the nonrigid registration is used. CPD considers the alignment

of two point clouds as a probability density estimation problem. The moving point

set is assumed to be a Gaussian Mixture Model (GMM) and GMM centroids are fit

to the fixed point set by maximizing the likelihood. The GMM centroids are forced

to move coherently as a group to preserve the topological structure of the point sets.

Coherence constraints are imposed to derive an optimal nonrigid transformation. The

details of the coherent constraints are detailed in [51].
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3.4.2 Workflow of Model Registration

The communication flow is very simple and straightforward as shown in Figure

3.19. First, the hash grid along with some necessary parameters for registration

are initialized. This component is derived from mtsConntinuousTask (described in

Section 2.3), thus, commands of all the provided interfaces and events of all the

required interfaces are dequeued at the start of the run loop. The latest set of surface

information from the GP component (Xs and Ks) is fetched and added to the hash

grid. Next, the IMLP algorithm is executed on all available sample points stored in

the hash grid. The output of the algorithm is stored in the component’s “StateTable”,

which is later fetched by the “Intermediate Interface”.

Initialization
• Create hash grid
• Init Reg Parameters, Alg, other variables

ProcessQueuedCommands
ProcessQueuedEvents

Add To grid

GetSamplePoints

Run IMLP

Update Model in the Statetable

Figure 3.19: Registration Workflow
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3.4.3 Data storage and retrieval

As mentioned in the previous section, spatial hash grids are very useful when

it comes to data collection and retrieval. Therefore, they have also been used for

storing the incoming surface data from the GP component and for fast retrieval for

the rigid registration. Output of the GP component is a set of surface points (Xs) and

corresponding stiffness values (Ks) that are used in IMLP. This information is stored

in hash grids based on spatial locations xs ∈ Xs using Equation 3.14. Following is

the information stored in each grid location :

• vct3 SurfacePos

• double SurfaceStiffness

At any time, only a single pair of location and stiffness is allowed to be stored in

a grid location. New information always replaces the old information stored in a

particular grid location. When the IMLP algorithm is ready to load in the next set

of input sample points, the latest information in all the grid locations is retrieved for

registration.

3.4.4 Example

Let us assume that some form of preoperative data of a kidney phantom is already

acquired. For the purpose of demonstration, a Stereolithography (STL) model repre-

senting an undeformed silicone phantom, as shown in Figure 3.20, is used. A point
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cloud, MP , is obtained from this STL model, by means of random sampling, repre-

senting the preoperative data. Our goal is to align the point cloud, MP , onto a set of

points, Xs, generated from the GP component during a palpation or an exploration

task on an intraoperative model, shown in Figure 3.21. The assumption here is that

the surgeon would have access to preoperative data of the kidney (this example), and

the intraoperative data is gathered by the means of palpation or exploration. Based

on the intraoperative and preoperative data, the Modeler updates the model of the

kidney for the surgeon to visualize the abnormalities of the tissue.

Figure 3.20: STL Model of an undeformed kidney phantom from which point cloud,
MP , is sampled
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Figure 3.21: Deformed point cloud (Xs) : Red dots represent the points from which
a mesh was interpolated for display purposes.
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For this purpose, firstMP is registered toXs using IMLP, resulting inXT
s as shown

in Figure 3.22. XT
s denotes the set of transformed points of Xs that are aligned with

the MP with minimal total registration error (TRE) based on IMLP.

Figure 3.22: Result of IMLP after registering the deformed point cloud to align with
the undeformed point set. The red dots represent the preoperative point cloud, MP ,
and the blue stars represent the transformed intraoperative point cloud, XT

s
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Now, CPD is used to perform a nonrigid registration to align Mp onto the trans-

formed point cloud Xs, the result of which is shown in Figure 3.23.

Figure 3.23: Result of CPD after deforming Mp onto Xs.
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Figure 3.24 shows the initialization and the final result of the complete registration

process.

Figure 3.24: Before and after registration result: Red points corresponds the the
preoperative data, MP , and the blue stars corresponds to the intraoperative data,
Xs.
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3.5 Intermediate Interface

𝒙𝒄, 𝒇𝒄
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𝑿𝒔 ,𝚱𝒔

𝑿𝒔 ,𝚱𝒔

𝝃, 𝜽

Update

Initialize

𝒑𝒏

Model Information

CPD Registration

Updated Model

Intermediate 
Interface

The intermediate interface allows for efficient data transmission from C++ to

MATLAB’s workspace, and further, allows the C++ program to execute MATLAB

scripts directly. This component uses those libraries of MATLAB, C/C++ and For-

tran Engine110 containing routines that allow you to call MATLAB from your own

program using MATLAB as a computation engine. The MATLAB Engine operates

by running in the background as a separate process from the C++ program. This

allows the developers to configure their workstations by having their user interface

on one workstation and performing the computations on a faster machine located

elsewhere on the network.

100



CHAPTER 3. HIGH-LEVEL CONTROLLERS - MODELER

3.6 Trajectory Optimization

𝒙𝒄, 𝒇𝒄
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Registration 
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(MATLAB)

CSA provides a means of exploring various trajectory optimization techniques to

estimate the next optimal direction or trajectory based on user-specified cost func-

tions. Here, some initial work on trajectory optimization using the offline GP ap-

proach of estimating organ geometry and stiffness is discussed. The key advantage of

using GPs to estimate object properties, including stiffness and geometry, lies in the

availability of uncertainty confidence intervals. By predicting both the mean and the

variance, one can adaptively guide palpation towards informative regions of interest.

This is accomplished through local continuous tool-tip path optimization aiming to 1)

reduce the overall model uncertainty, or 2) locate abnormally stiff features as quickly

as possible.
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3.6.1 Formulation

The optimized adaptive sampling is formulated as a stochastic optimization over

trajectories parametrized using a finite dimensional vector ξ. The vector encodes a

sequence of ns arcs in 3-D space and is defined as

ξ = (v1, ω1, d1, . . . , vns , ωns , dns),

where vi denotes the horizontal forward velocity, ωi denotes the horizontal angular

velocity, and di is the rate of change of depth. The motion is generated by assuming

that the tip moves with constant velocity (vi, ωi, di) during time interval [ti−1, ti], for

each i = 1, . . . , ns with t0 = 0, and tns provided as a fixed parameter.

Under this parametrization at time t ∈ [ti, ti+1], the position of the tip p(t) and

its heading angle θ(t) are

px(t)=

⎧⎪⎪⎨⎪⎪⎩
px(ti)+

vi+1

ωi+1
(sin θi+∆−sin θi), if ωi+1 ̸=0

px(ti)+vi+1∆ti cos θi, otherwise

py(t)=

⎧⎪⎪⎨⎪⎪⎩
py(ti)+

vi+1

ωi+1
(cos θi−cos θi+∆), if ωi+1 ̸=0

py(ti)+vi+1∆ti cos θi, otherwise

pz(t)=pz(ti) + ∆tidi+1

θ(t)=θ(ti)+∆tiωi+1,
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where ∆ti = t− ti, θi = θ(ti), and θi+∆ = θi +∆tiωi+1.

Two different cost functions were defined for given candidate paths p(t): one

minimizing the variance of stiffness, and thus, improving the overall model quality;

and the other seeking maximum stiffness. The costs are defined, respectively, by

J(ξ) =

⎧⎪⎪⎨⎪⎪⎩
∫ tf
t0
−Vκ(p(t))dt, : variance,∫ tf

t0
−µκ(p(t))− β

√
Vκ(p(t))dt : UCB,

where β is a user-defined constant, determining the upper confidence bound (UCB) on

the stiffness estimate, and is used to balance between visiting known stiff regions and

exploring uncertain, but potentially stiffer, regions. β = 1.96 was set, corresponding

to 95% confidence in the stiffness estimate. Both costs are computed by approxi-

mating the integrals using a finite number of points pi along p(t), and predicting the

mean µκ(pi) and variance Vκ(pi) from the current GP models.

The actual optimization of J(ξ) is performed using the cross-entropy method,111,112

which is a global optimization method that places a Gaussian density over ξ and itera-

tively updates this density until it has concentrated around the optimal ξ∗ minimizing

the cost function. This method was chosen since it can handle non-smooth and highly

irregular cost landscapes such as those that occur during non-parametric estimation.
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Figure 3.25: Adaptive sampling: a) GP Model over stiffness; b) True stiffness; c)
Contour plot of the true stiffness; d) Executed trajectory path; e) Estimated stiffness
f) Estimated upper confidence level of stiffness
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3.6.2 Experiment

Adaptive sampling was tested by initializing at a random location. It was in-

teresting to observe, in the executed path shown in Fig 3.25(d), that the simulated

trajectory constantly follows a spiral motion at stiff regions or unexplored regions.

This is identical to what a person would intuitively do to characterize the surface

properties. This shows that the trajectory, simulating the motion of the probe, adap-

tively changes the trajectory parameters to minimize the uncertainty at unexplored

and stiff regions. Fig 3.25e reveals the underlying stiff feature based on the executed

trajectory in Fig 3.25d. However, a significant noise is observed in the estimated stiff-

ness field, and it is likely due to incorrect force interpolation at the current location

p(t).

This work was not further explored as other members of the project took over the

trajectory optimization module and their work can be found in [70,113–115].

3.7 Contributions

The contributions reported in this chapter include:

1. A novel method for simultaneously estimating organ geometry and tissue stiff-

ness using Gaussian Processes, that is independent of the palpation strategy

(discrete or continuous).

2. Online estimation of organ geometry and tissue stiffness using spatial hash grids
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and local Gaussian Processes, during continuous palpation.

3. Near-video frame rate update of the stiffness map for display purposes based on

online estimation, the results of which were evaluated and also compared with

the offline method.

3.8 Published Work

Material from this chapter has appeared in the following publication:

1. P Chalasani, A Deguet, P Kazanzides, RH Taylor, “A Computational Frame-

work for Complementary Situational Awareness (CSA) in Surgical Assistant

Robots,” in 2018 Second IEEE International Conference on Robotic Comput-

ing (IRC), 9-16

2. P. Chalasani, L. Wang, R. Yasin, N. Simaan, and R. H. Taylor, “Preliminary

evaluation of an online estimation method for organ geometry and tissue stiff-

ness,” in 2016 IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.

18161823.

3. P. Chalasani, L. Wang, R. Roy, N. Simaan, R. H. Taylor, and M. Kobilarov,

“Concurrent nonparametric estimation of organ geometry and tissue stiffness

using continuous adaptive palpation,” in 2016 IEEE International Conference

on Robotics and Automation (ICRA), pp. 4164-4171
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High-Level Controllers - Teleop
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Teleop is part of the high-level controller which maintains the state information of

various components and is responsible for managing communications between those

components. As mentioned earlier, the whole CSA paradigm is based on Model
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Mediated Teleoperation (MMT). MMT has been initially proposed to address the

stability and transparency issues during communication delays.48,116,117 In the MMT

approach the user telemanipulates on a local object model employed on the master

side. This model is monitored and updated to approximate the slave environment.

Haptic feedback is computed on the basis of the local model on the master side. Many

groups have developed methods for accurate estimation of the remote environment

to provide stable and transparent teleoperation.48,118,119

Research on MMT started since the late 1980s, and at that time the predictive

display approach was developed to visually compensate for the communication de-

lay.120,121 The first prototype of MMT was proposed by Hannaford,116 which is very

similar to the state-of-the-art MMT approach. Later, the use of predefined models in

MMT systems shows some level of improved stability against communication delay,

and also of robustness against small modeling errors.122 However, using a prede-

fined model potentially results in modeling error. Alfi et al.123 proposed a modified

structure to improve system robustness against uncertainties of time delay and model

parameters.

Mitra and Niemeyer48 were the first to use the name MMT to indicate an alterna-

tive type of information exchange between the master and slave. The user holds the

master which is connected to a proxy slave. The proxy slave acts as a stand-in for the

real slave robot. The user interacts locally with the haptically rendered model and

the master-side forces are computed based on error distance between the proxy slave
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and the master. The slave executes both position and force commands based on its

contact with the environment and the contact state of the master with the virtual

environment. A more comprehensive survey on MMT can be found in [124].

4.1 Model mediated teleoperation (MMT)

in CSA

The idea of MMT approach, employed in the CSA, is inspired by the original

work done by Mitra and Niemeyer.48 Many researchers have developed techniques to

improve the model estimation, to increase the stability during communication delay,

however, the underlying information exchange between the master and slave remained

the same. The proposed MMT paradigm in this dissertation closely resembles the

concept of using a haptic proxy to interact with the master during MMT, however, we

provide a different way of correcting the model-reality mismatch, apart from updating

the environment itself.

In [48], Mitra and Niemeyer control a proxy slave using the master robot. By

construction, the model of the environment on the master side will track the environ-

ment on the slave side. The master sends force and motion commands tracked by the

slave robot, and the slave robot updates its model of the environment by monitoring

the contact with the floor. The master model then generates a haptic virtual floor

based on contact information sent by the slave. Since the proxy slave embodies the
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slave mechanism, it would track the master motion when in free space and will stop

at the model boundary when in contact. Further, the model of the virtual floor is

updated based on various transition states, as described in [48]. The slave robot also

switched between position and force control based on the contact information from

the master. This complete workflow allows the user to have smooth haptic feedback

even with communication delay. The authors explained this mismatch/correction cri-

teria using a single DOF case study. However, we are dealing with 3D models and

have no communication delays in surgical teleoperation. This allows us to modify

the mismatch/correction criteria for smooth and faster haptic updates and cover the

cases when the physical slave is palpating into the organ surface.

In our approach, we do not have a dynamic proxy slave, rather a simple position

controlled proxy. The proxy slave always follows the master motion and is allowed

to penetrate the virtual environment. The master force or the compliance force is

computed based on the interactions of the proxy slave with the virtual environment.

The slave robot is controlled based on hybrid force-motion control, such that the

commanded motion from the force controller is projected in the normal direction of

the force vector. Similarly, the commanded motion from the position controller is

projected in the tangential direction of the force vector.

Figure 4.1 shows the communication flow in MMT. Since the user is teleoperating

the proxy slave, the virtual environment will eventually drift from reality when there

is an interaction with the task model. This is due to the difference in control of
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the slave and proxy slave robots, as described in Sections 5.1 and 5.2, respectively.

The various mismatch states, along with their correction techniques, are described in

Section 4.1.1.
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Figure 4.1: High level communication flow of MMT in CSA
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4.1.1 Mismatch Scenario

Teleop Command :  Incremental Move (𝜹𝒙) Teleop Command :  Incremental Move (𝜹𝒙)𝒕𝟏

𝒕𝟐

𝒕𝟎

𝒕𝟑
MISMATCH 

Real Slave Proxy SlaveTime

𝜹𝒚 < 𝜹𝒙 𝜹𝒚 < 𝜹𝒙

𝜹𝒙

Target 
Position

Tip Position

Anatomy 
surface Target 

Position

Tip Position

Model 
surface

Figure 4.2: A sample mismatch scenario between real slave’s tip position and proxy
slave’s tip position

• At time step t0 the slave robot and the proxy slave robot are at the exact same

location in the real and the virtual environment, respectively. Let us assume a
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perfect registration of the anatomy with the real salve and model of the anatomy

with the proxy slave. At t0, tip positions of both the slaves are δy units away

from the surface of their respective anatomies. (blue line)

• Based on master movement, at time step t1, both receive an incremental move,

δx > δy, command from the Teleop. Both the slave and proxy slave components

will feed in the commanded motion into their respective control algorithms.

• At time step t2, slave robot makes contact with the surface of the anatomy (real

world) after moving δy units. Similarly, the proxy slave also makes contact with

the surface of the model (virtual world) after moving δy units. Moving forward,

the real slave, equipped with force sensing modality, will send force information

to the Teleop based on contact with the anatomy. Teleop will then generate

new sets of motion commands for the real slave to constrain the motion from

damaging the anatomy. Since the proxy slave has no such force sensing modality,

it will send distance information, ϵ, from the tip position to the surface.

• At t3, slave robot servos at the point of contact maintaining minimal contact

force with the surface of the anatomy. However, the proxy slave will complete

the rest of the trajectory based on the motion command sent by the Teleop.

• The slave robot reaches the surface of the model and servos at the point of

contact maintaining minimal contact force. However, proxy slave robot, obeying

position control, will cross the surface in the virtual environment, creating a
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mismatch between the joint state of the slave robot and the proxy slave.

This creates a mismatch between the joint states of the real slave and the proxy slave,

even though the model is accurate.

4.1.2 Mismatch Correction

To correct the mismatch between the joint states of the real and proxy slave, the

Teleop is operated in four operational modes. These modes are not selected by the

user, rather are switched based on contact states of the real slave and the proxy slave

robots. Based on the contact information, necessary admittance gains are sent to the

Slave MLC, as described in Section 5.1. Similarly, compliance forces are also sent to

the Master MLC, as described in Section 5.3.

However, the user can modify the interaction behavior based on task specifications.

1. PROXY CONTACT: This is the state of Teleop when the proxy slave is in con-

tact with the situational model but the slave robot is not in contact with the

anatomy.

Correction: Compliance forces are sent to the Master MLC for haptic render-

ing. Desired force (Fd) is calculated and sent to the Slave MLC according to

the following equation:

Fd = kdϵ⃗s (4.1)
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where ϵ⃗s is a vector defining the depth of the proxy slave’s tip inside the surface

and kd is a scaling factor resembling stiffness of the tissue. This correction

will eventually change the teleop state to FULL CONTACT, when pushing into the

model, or NO CONTACT, when transitioning into free space.

2. SLAVE CONTACT: This is the state of Teleop when the proxy slave is not in contact

with the situational model but the slave robot is in contact with the anatomy.

Correction: Send zero or minimal desired force to the Slave MLC, along with

necessary admittance gains. The Teleop state will switch to FULL CONTACT, if

the user moves towards the model or NO CONTACT, if the user moves away from

the anatomy.

3. FULL CONTACT: This is the state of Teleop when the proxy slave is in contact with

the situational model and the slave robot is also in contact with the anatomy.

Correction: Compliance forces are sent to the Master MLC and admittance

gains are sent to the Slave MLC. Additionally, the direction of the desired force

is calculated based on the direction of the sensed contact force. This will make

sure that the force reference direction is close to the surface normal direction.

4. NO CONTACT: This the state of Teleop when both the slave robots are in free

space. Both the slaves follow the master motion and no correction is required

in this state.

This design allows the system to dynamically detect and correct the mismatch be-

115



CHAPTER 4. HIGH-LEVEL CONTROLLERS - TELEOP

tween the virtual environment and reality. Simultaneously, the system also provides

smooth haptic rendering when interacting with the situational model (described in

Section 5.3).

4.2 Component Connections

Teleop is implemented as a periodic task (mtsTaskPeriodic) with an update rate

of the loop set to ∼500 Hz. mtsTaskPeriodic is derived from mtsTask and all tasks

derived from mtsTask have a Run method which is called in a loop based on the

provided periodicity. Further, it has the capability of adding provided and required

interfaces to an existing component. CSA relies on the fast data transfer using inter-

face communication, via provided and required interfaces. Figure 4.1 demonstrates

the interface connections between the Teleop component and all other components in

CSA. To retrieve information from other components, Teleop has to add a required

interface to its component and connect that interface to the provided interface of the

component that has the necessary information. In this case, required interface of the

Teleop is connected to the provided interface of the Master MLC, Slave MLC and

Proxy Slave components to retrieve contact information, state information and access

few interface functions.Similarly, Teleop also has a provided interface that provides

access to model information, state information of all the arms and other useful debug-

ging information. Modeler component connects to this provided interface to retrieve
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force and position information of the slave. Further, ROS Bridge also connects to the

Teleop’s provided interface to broadcast useful information to applications running

outside the cisst-saw environment.

Teleop
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Modeler
PR

Slave
PR

Master
PR

Proxy 
Slave

PR
ROS 

Bridge

PR

State information like, position, velocity, 
Jacobean and contact information 

Admittance 
payload files

Impedance 
payload files

PROVIDE to Teleop

All provided 
interface 
functions

REQUIRE from Teleop

Model 
Information

Figure 4.3: Teleop interface connections
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4.3 Contributions

Principal contribution reported in this chapter include:

1. Application of model mediated paradigm and provided ways to correct the

model-reality mismatch.

4.4 Published Work

Material from this chapter has appeared in the following publication:

1. P Chalasani, A Deguet, P Kazanzides, RH Taylor, “A Computational Frame-

work for Complementary Situational Awareness (CSA) in Surgical Assistant

Robots,” in 2018 Second IEEE International Conference on Robotic Comput-

ing (IRC), 9-16

2. L. Wang, Z. Chen, P. Chalasani, R. M. Yasin, P. Kazanzides, R. H. Taylor, and

N. Simaan, “Force-controlled exploration for updating virtual fixture geome-

try in model-mediated telemanipulation,” in 2017 Journal of Mechanisms and

Robotics, vol. 9, no. 2, p. 021010
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The da Vinci Research Kit (dVRK) is one of the widely used research platforms

for teleoperation. The mid-level controller of the CSA is implemented in such a way

that it extends the functionality that of the dVRK mid level control by adding more
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features and capabilities to help complete the MMT paradigm. This chapter presents

the three MLCs of CSA, namely Slave, Proxy Slave and Master, that are responsible

for the control of their respective robots/arms.

5.1 CSA Slave

The Slave MLC is responsible for control of the slave manipulator. This compo-

nent communicates with the Teleop component and the Slave LLC, which communi-

cates with the slave manipulator. The Slave MLC runs as a clock-driven process at a

repetition rate of approximately 100-500 Hz. The Slave LLC typically may run at a

faster duty cycle (such as 2-3kHz). Almost all of the hardware dependencies will be

managed in the LLC, although there may need to be some changes in the MLC to

accommodate for special hardware needs.

The Slave MLC receives admittance and virtual fixture specification commands

from the Teleop and translates them into cartesian or joint position/velocity com-

mands that are passed onto the Slave LLC. In some embodiments, the MLC passes

on specialized force admittance commands to the LLC, although this function would

normally be performed in the MLC. The Slave MLC transforms admittance and

virtual specifications into a constrained quadratic optimization problem, which also

may comprise manipulator-specific constraints such as joint position, velocity, and

acceleration limits.
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5.1.1 Design Motivation

The Slave component of the CSA extends that of the dVRK by adding a force

controller to the already existing position controller. Further, afew motion primitives

are added in the CSA Slave to help in palpation tasks. For comparison, Figure

5.1 shows various subroutines in a standard dVRK Slave and Figure 5.2 shows the

subroutines in a CSA Slave. dVRK Slave is implemented as a position controller

with the slave robot following an absolute position control law. In contrast, CSA

Slave is implemented as an admittance type controller with the slave robot following

a hybrid force-motion (HFM) control law.125 Therefore, a force sensing component is

connected to the CSA Slave to provide interaction forces with the environment.

In the case of the dVRK Slave, Teleop commands the slave to move to a desired

position xd. Based on the current position xc and the desired position xd, the control

law computes the necessary joint motion qd to achieve the requested motion. qd is

then sent to the Slave LLC for robot movement.

In the case of CSA Slave, the component retrieves sensed forces Fc from the force

sensing. The Teleop sends admittance gain parameters along with the commanded

position xd and desired/limiting force Fd. Fd ensures the robot to servo at a particular

force value. xd and Fd are passed through a palpation block, which adds user-selected

motion primitives to the desired force or position. The output of this block, x∗
d and F ∗

d ,

along with xc and Fc, is fed to the HFM control law, which calculates the necessary

joint motion required to satisfy the commanded position and force.
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Figure 5.1: Standard dVRK Slave
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5.1.2 Control Law

As stated earlier, CSA Slave is implemented as an admittance controller with the

robot following a hybrid force-motion (HFM) control law. This includes both position

and force controllers.

Position Controller

The position controller is set up as an objective function to minimize the mag-

nitude of error between the current position xc and desired position xd, given as

min
δq
∥Jδq − (xd − xc)∥ (5.1)

such that,

vl ≤
δq

δt
≤ vu

where, J represents the body jacobian of the slave robot and δq corresponds to in-

cremental joint motion. In addition, vl and vu correspond to lower and upper joint

velocity limits, respectively.

Force/admittance Controller

In MIS procedures, manipulation is done on a very delicate tissue. For this rea-

son, a force controller is an excellent control structure for creating stiff virtual walls

prevents the tool from penetrating the tissue. This control can also be set up as an
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objective function as follows,

min
δq
∥Jδq −Kg(Fc − Fd)δt∥ (5.2)

such that,

vl ≤
δq

δt
≤ vu

where, Fc is the contact force detected by the force sensor, Fd is the desired/limiting

force, δt is the sampling rate of the component in seconds, and Kg is the admittance

gain matrix.

Hybrid Force Motion (HFM)

HFM is the combination of the aforementioned position and force controller, with

a motion from each controller decomposed in orthogonal directions. The combined

objective function would be

min
δq
∥Jδq − [Ka Kg(Fc − Fd)δt  

Force
controller

+Kp (xd − xc)  
Position
controller

]∥ (5.3)

vl ≤
δq

δt
≤ vu

where, Ka projects the motion from the force controller in the direction normal to the

surface, and Kp projects motion from the position controller in the direction perpen-
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dicular to the surface normal. The projection matrices are calculated as follows:126,127

Ka = N(NTN)−1NT

Kp = I −Ka

where, N corresponds to the desired force control direction. The resultant incremental

joint motion from Equation 6.3 is then sent to the Slave LLC to execute the motion.

xd and Fd are updated if additional motion primitives, as explained in Section 5.1.3,

are added to the desired position or force.

5.1.3 Motion Primitives

CSA Slave has a provision for choosing different motion primitives for continuous

palpation. Currently, two motion primitives are supported :

(a) Sinusoidal force reference: This motion is achieved by having the desired

force follow a sinusoidal profile, in the direction normal to the surface.

F ∗
d = Fd + A ∗ Sin(2πωt) (5.4)

where A, ω, t are parameters of the sine motion. Figure 5.3 depicts the motion

of the probe achieved with this motion primitive.

(b) Sinusoidal motion reference: This motion is achieved by applying a sinu-
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soidal motion reference in the direction of the sensed force vector.

x∗
d = xd + n̂A ∗ Sin(2πωt) (5.5)

where A, ω, t are parameters of the sine motion and n̂ = Fc

||Fc|| is the direction

of the sensed force vector. Figure 5.4 depicts the motion of the probe achieved

with this motion primitive.

Stiff feature

Sinusoidal motion of the probe tip under the surface

Surface

Figure 5.3: Reference force following a sinusoidal profile

Stiff feature

Sinusoidal motion of the probe tip under the surface

Surface

Figure 5.4: Position following a sinusoidal profile
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5.1.4 Interface Connections

Figure 5.5 shows the interface connections for the CSA Slave. The PID and IO

interfaces provide joint- and encoder-level information, respectively. Further, the CSA

Slave is connected to the Force sensing component that provides contact information

for the HFM controller. Proxy Slave also connects to the provided interface of CSA

Slave for intermittent joint synchronization, while homing or in idle state.

CSA Slave
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PID
PR

Force Sensor
PR

Proxy 
Slave

PR
ROS 

Bridge

PR

Joint level 
controls

Contact force-
torque

PROVIDE to CSA Slave

All provided 
Interface 
functions

REQUIRE from CSA Slave

Slave state 
Information

Teleop
PR

Joint state sync

IO
PR

Encoder 
information 

from IO

Figure 5.5: CSA Slave interface connections

5.2 Proxy Slave

As stated before, CSA focuses on interacting with the situational model and uses

the model interactions along with the sensory information to update the model of

the task environment. The situational model in the virtual environment is registered
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Figure 5.6: Proxy Slave : qc-current joint state, qd-desired joint state, xc-current
cartesian state, xd-desired cartesian state

to a simulated slave robot, called the Proxy Slave. The user teleoperates the proxy

slave robot and based on the interactions with the situational model, Teleop sends

appropriate commands to the Master MLC and Slave MLC. The advantage of the

Proxy Slave is that it provides the state information of the slave robot with an ideal

position control, i.e., ideal LLC. This allows the Teleop component to use the contact

information of the proxy slave robot with the situational model for haptic rendering

on the master side. Additionally, Teleop uses this information to send admittance

commands to the Slave MLC for force-limiting and other task-specific constraints.
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5.2.1 Motivation

Typically, in an MMT approach, as the model of the task environment is learned,

it is fed to the master device to haptically render user feedback. The quality of

haptics usually depends on the accuracy of the model and the noise in the contact

information. This works perfectly only when the model of the task environment

is known and the master device has very accurate gravity compensation module.

Further, one of the goals of the CSA framework is to provide adaptability to any

robotic platform, ensuring that any master device with haptic capability will be able

to use the CSA framework. The above-mentioned reasons motivate the need for a

“Proxy Slave”. It should be noted that Proxy Slave still allows the haptic rendering

on the master device, even though the model of the task environment is registered

to the proxy slave robot, rather than the master handle. Additionally, from the

developer’s point of view Proxy Slave can be used as simulated slave robot to test

various motion primitives before employing them on the real system.

5.2.2 Control Law

This component obtains position commands from the Teleop component and ex-

ecutes the motion based on the position controller only. The minimization problem
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is similar to that of Equation (5.1):

min
δq
∥Jδq − (xd − xc)∥

such that,

vl ≤
δq

δt
≤ vu

where, J represents the body jacobian of the proxy slave robot and δq corresponds

to incremental joint motion. vl and vu correspond to lower and upper joint velocity

limits, respectively.

Proxy Slave
PR

CSA Slave
PR

ROS 
Bridge

PR

Joint state 
Information

PROVIDE to Proxy Slave

All provided 
Interface 
functions

REQUIRE from Proxy Slave

Proxy Slave state 
Information

Teleop
PR

Figure 5.7: Proxy Slave interface connections
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5.2.3 Interface Connections

Proxy Slave is connected to the provided interface of CSA Slave for joint state

information for the purpose of intermittent joint synchronization between both of the

slave robots. Since the proxy slave robot does not have any low-level control, this

allows the proxy slave to re-synchronize its joint state with the actual slave robot

during homing or when idle. Further, the Teleop connects to the provided interface

of the Proxy Slave to retrieve robot state information. Figure 5.7 shows the interface

connections for the Proxy Slave.

5.3 CSA Master

The CSA Master process is responsible for the control of the master manipulator.

This process consists of two sub-processes: a Master MLC, which communicates

with the TeleOp process, and a Master LLC, which communicates with the master

manipulator and performs basic joint-level servo control functions. The Master MLC

runs as a clock-driven process at a repetition rate of approximately 100-500 Hz. The

Master LLC typically may run at a faster duty cycle. Most of the hardware-dependent

components will reside in theMaster LLC, so it should be possible to adapt the system

to use other master manipulators in a fairly straightforward manner.

TheMaster MLC receives impedance specification commands from the Teleop pro-

cess and translates them into an appropriate form for execution by the Master LLC.
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The Master MLC process also returns state information to the Teleop process, includ-

ing positions and velocities in joint and cartesian spaces, gripper state of the master

manipulator, and forces and torques exerted by the master robot on the surgeon’s

hand.

5.3.1 Control Law

Much like CSA Slave, CSA Master also extends the dVRK Master. The CSA Mas-

ter is implemented as a torque controller, same as dVRK Master, shown in Figure 5.8.

This allows the user to provide external joint torques computed from various control

goals. The component is responsible for adding all the necessary joint torques and

sending them to the Master LLC, which communicates with the master manipulator

to perform joint-level servo control.

Gravity compensation

𝝉𝒒, 𝒒̇, 𝒙, 𝒙̇
dVRK Master

Us
er

 In
pu

t

Master LLC

Teleop
Motion Commands

Figure 5.8: dVRK Master : q-joint position, q̇-joint velocity, x-cartesian position,
ẋ-cartesian velocity, τ -total joint torque sent to the Master LLC
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Algorithm 5.1 Compliance wrench

Output: Wrench [f, t]
ϵ⃗ = F−1

c p⃗ = R−1
c (p⃗− p⃗c) ▷ Position Error

v⃗ = R−1
c ṗ ▷ Velocity on compliance frame

for i ∈ {x, y, z} do
if ϵ⃗i ≤ 0 then

g⃗i = g⃗
(−)
i + k⃗

(−)
i ϵ⃗i + b⃗

(−)
i v⃗i

else
g⃗i = g⃗

(+)
i + k⃗

(+)
i ϵ⃗i + b⃗

(+)
i v⃗i

end if
end for
f⃗ = Rcg⃗ ▷ Desired force

θ⃗ = Rodriguez(△R = R−1
c R) ▷ Orientation Error

for i ∈ {x, y, z} do
if θ⃗i ≤ 0 then

τ⃗i = τ⃗
(−)
i + k⃗

(−)
oi θ⃗i

else
τ⃗i = τ⃗

(+)
i + k⃗

(+)
oi θ⃗i

end if
end for
t⃗ = Rcτ⃗ ▷ Desired torque

One such goal is compliance control, which requires the user to provide compliance

gains to the Master MLC. Using these gain parameters, the compliance wrench is

computed based on the pseudocode described in Algorithm 5.1. Here, the compliance

frame Fc = [Rc, pc], defined in the base frame of the master robot, is used to calculate

the desired wrench [f, t]. The position stiffness gains, k⃗(+) and k⃗(−), the position

damping gains, b⃗(+) and b⃗(−), and the force bias terms, g⃗(+) and g⃗(−) are used to

calculate the desired force. Similarly, torque bias terms, τ⃗ (+) and τ⃗ (−), and the

orientation stiffness gains, k⃗
(+)
o and k⃗

(−)
o , are used for computing the desired torque.

This compliance control is used to provide force feedback to the user on the master
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handle, which is helpful for user guidance.

The user also has a provision for sending the compliance wrench directly to the

Master MLC. This allows for the system to compute the compliance wrench externally

and send it to the Master MLC for haptic rendering. As shown in Fig. 5.9, the user

can either specify the external compliance wrench (fe, te), or provide the compliance

gains for the system to compute the compliance wrench (f, t). The compliance torque,

τc and the torque from gravity compensation, τgc, are added to get the total desired

torque.

ORCompute 
compliance wrench

Gravity compensation

+

Compliance wrench 

Compute compliance
joint torque

[𝒇, 𝒕]
[𝒇𝒆 , 𝒕𝒆]

𝝉𝒄
𝝉𝒈𝒄

𝝉

𝒒, 𝒒̇, 𝒙, 𝒙̇

Master MLC

Us
er

 In
pu

t

Master LLC

Teleop

Compliance 
gains

State Information

Figure 5.9: CSA Master : q-joint position, q̇-joint velocity, x-cartesian position, ẋ-
cartesian velocity, [fe, te]-compliance wrench from external source, [f, t]-wrench com-
puted based on compliance algorithm, τgc-joint torque from gravity compensation,
τc-joint torque from compliance control and τ -total joint torque sent to the Master
LLC
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CSA Master
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IO
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Bridge
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Joint level 
controls

Encoder 
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from IO
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functions
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commands and 
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Teleop
PR

Figure 5.10: CSA Master interface connections

5.3.2 Interface Connections

Figure 5.10 shows the interface connections for the CSA Master. The component

has a provided interface that connects to ROS Bridge to export useful functionality

to the ROS environment. Teleop also connects to the provided interface to retrieve

robot motion commands, state information, and functions to populate impedance

gains to the torque controller. CSA Master connects to the PID and IO interfaces,

which are part of LLC, to retrieve joint- and encoder-level information, respectively.
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5.4 Contributions

The contributions reported in this chapter include:

1. CSA Slave architecture, which extends the dVRK Slave with the addition of

hybrid force-motion control.

2. Incorporation of various motion primitives for continuous palpation tasks.

3. CSA Master architecture, which extends dVRK Master with inclusion of com-

pliance control for haptic visualization. This feature is readily available in the

latest release of the dVRK for the research community to use.

5.5 Published Work

Material from this chapter has appeared in the following publications:

1. P Chalasani, A Deguet, P Kazanzides, RH Taylor, “A Computational Frame-

work for Complementary Situational Awareness (CSA) in Surgical Assistant

Robots,” in 2018 Second IEEE International Conference on Robotic Comput-

ing (IRC), 9-16

2. P. Chalasani, L. Wang, R. Yasin, N. Simaan, and R. H. Taylor, “Preliminary

evaluation of an online estimation method for organ geometry and tissue stiff-

ness,” in 2016 IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.

18161823.
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3. L. Wang, Z. Chen, P. Chalasani, R. M. Yasin, P. Kazanzides, R. H. Taylor, and

N. Simaan, “Force-controlled exploration for updating virtual fixture geome-

try in model-mediated telemanipulation,” in 2017 Journal of Mechanisms and

Robotics, vol. 9, no. 2, p. 021010

4. P. Chalasani, L. Wang, R. Roy, N. Simaan, R. H. Taylor, and M. Kobilarov,

“Concurrent nonparametric estimation of organ geometry and tissue stiffness

using continuous adaptive palpation,” in 2016 IEEE International Conference

on Robotics and Automation (ICRA), May 2016, pp. 4164-4171
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Chapter 6

System-Level Tests

In this chapter, details of various tests are described to assess some of the features

implemented in the CSA framework. Table 6.1 shows the various functionalities that

were tested/evaluated in this chapter.

Section

6.1 6.2 6.3 6.4

Master-side VF [F] [F,E]

Slave-side VF [F]

Palpation [F]

Ultrasound Sensing [F]

Confocal Endomicroscopy Sensing [F,E]

Table 6.1: Outline of the chapter. [F] - Feasibility, [E] - Evaluation
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6.1 Constrained Teleoperation with Task-

Specific Constraints (dVRK)

In this subsection, we present a constrained teleoperation example where the user

selects a region of interest to explore. Corresponding boundary virtual fixtures are

enabled to allow the user to palpate in the region of interest. In a surgical task, this

behavior enables the surgeon to isolate the region of interest where a tumor might be

and perform a constrained robotic palpation rather than palpating the entire surface.i

a

dVRKMaster	

Console	 View b

Force	
Sensor

Phantom

Slave	Probe
Support	 Plate

Figure 6.1: a) User teleoperating using the dVRK master device; b) slave side setup
with phantom and force-torque sensor.

iThis experiment was performed at Johns Hopkins University; Anton Deguet volunteered to be
the user for the demo.
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This test was performed on a silicone phantom with an embedded stiff feature

resembling a tumor as shown in Figure 6.1b. An ATI Mini-25 force-torque sensor

(ATI Industrial Automation, Apex, NC, USA) was used to measure the interaction

forces. In our setup, we placed the force-torque sensor underneath the support plate

holding the phantom, however, the system is capable of receiving force information

over the network. With a conventional teleoperation system, the user would have to

perform discrete probing on the phantom and an offline estimation is done to estimate

the tissue stiffness. With the help of CSA framework, the user can either explore the

entire surface using the continuous palpation primitives described in Section 5.1.3 or

narrow down the exploration to a specific region of interest (ROI). The user needs to

provide a few point locations enclosing the region of interest (ROI) using the master

gripper. The system then generates a Forbidden Region Virtual Fixture (FRVF),

constraining the motion of the slave end effector inside the ROI. The compliance

wrench was also calculated based on the interaction of the Proxy Slave with the

situational model. The estimated compliance wrench was sent to the Master LLC to

render force-feedback at the handle of the master console. Figure 6.2 shows the master

console display as seen by the user. The situational model is located on the bottom

left, which includes the rendering of the ROI (computed using a convex hull) using

points selected by the user. The palpation information was then used to generate

stiffness information while the user was palpating.
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Figure 6.2: Endoscopic view as seen by the user. (Bottom Left) Overlay of the
situational model on the console view. (Top Left) This is not an overlay, it is for
the reader’s benefit to show the user performing constrained teleoperation on the
situational model.
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6.2 Model-Mediated Teleoperation with Path

Following VF (dVRK)

In this subsection, we demonstrate the advantage of MMT to improve the path fol-

lowing performance and to shorten the task completion time. The approach described

here directly correlates to the force controlled ablation task. In this experiment, two

silicone models made of silicone elastomer (M-F Manufacturing, Fort Worth, Texas)

with an embedded stiff feature were used, as shown in Figures 6.3 and 6.4.ii

Figure 6.3: Cartesian XYZ robot : (a) experiment setup, (b) ball probe finger ATI
force torque sensor, and (c) a phantom model used in the experiment.

iiThis experiment was performed at Vanderbilt University and Johns Hopkins University; Mem-
bers include Long Wang, Zihan Chen, Rashid M. Yasin, Peter Kazanzides, Russell H. Taylor and
Nabil Simaan. I was responsible for providing the CSA framework and performing the registration.
The primary author and others were responsible for conducting the experiment and analyzing the
data. Details of this experiment can be found in [105].
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Figure 6.4: dVRK PSM robot: (a) experiment setup, (b) ball probe finger adapter
integrated with EM tracker, and (c) a phantom model mounted on a force plate.

An STL file representing an undeformed silicone phantom was obtained from

a CAD model using Creo Parametric™. The undeformed silicone model was laser

scanned using a Faro Arm FusionVR to generate a point cloud (PCa). Another point

cloud Ca denoting a mockup preoperative plan was also marked on the undeformed

model and digitized using the Faro Arm. Figure 6.5 shows the digitized a priori point

cloud PCa along with the curve data Ca.

For the path following virtual fixture, we need to register the curve point cloud Ca

to the current deformed model. To gather point cloud (PCd) of the deformed model,

we performed surface exploration using the Cartesian XYZ stage and also using the

dVRK PSM. Figure 6.6 shows the exploration data collected using the Cartesian

robot and Figure 6.7 shows the exploration data collected using the dVRK PSM.
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Figure 6.5: Creating an a priori model of the silicone phantom: (a) a priori STL
model, (b) digitizing the target curve using Faro Arm, and (c) a priori point cloud
with curve information.

(a) (b)

Figure 6.6: Force-controlled exploration using the Cartesian robot: (a) Phantom used
(b) scanned point cloud

Figure 6.7: Force-controlled exploration using the dVRK PSM : (a) Phantom used
(b) scanned point cloud
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CPD non-rigid registration was used to deform the a priori point cloud PCa re-

sulting in T (PCa), where T (X) represents the transformed point cloud of X. Using

the registration information, a deformed curve point cloud T (Ca) was generated from

the undeformed curve point cloud Ca. A following virtual fixture was then enabled

to guide the user on a preplanned trajectory. Figure 6.8 illustrates the deformable

registration process where the blue point cloud represents the exploration data and

the red point cloud represents the updated a priori model at a different iteration.

Similarly, the green point cloud represents the updated curve at each iteration.

(a) (b) (c)

(d) (e) (f)Iteration 20

Iteration 1 Iteration 3 Iteration 5

Iteration 50 Iteration 100

Figure 6.8: CPD result on dVRK PSM exploration data: (a)(f) show result at various
iterations of deformable registration using PSM robot data. Blue point cloud corre-
sponds to the exploration data and the red point cloud corresponds to the updated
a priori model at a different iterations

To evaluate the performance of the exploration and registration, the actual curve

on the deformed model was also digitized to obtain a fitted ground truth Cgt. The

curve registration error between T (Ca) and Cgt is represented by ϵo. Table 6.2 shows
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the registration results using the Cartesian robot and the dVRK PSM robot where

the explorations were performed on the phantoms shown in Figures 6.3 and 6.4,

respectively.

Curve TRE Cartesian PSM

ϵo (mm) 3.393 3.386

Table 6.2: Deformable registration results for the Cartesian robot and dVRK PSM.

Evaluation of the Ablation Task

We also performed feasibility tests to evaluate the use of such updated curve in an

assistive VF in which lateral deviation from the desired path is resisted by applying

corrective impedance force on the master handle. The Cartesian robot was used with

the dVRK master manipulator for experimental validation. Three users participated

in the experiment; one was experienced and the other two were not. Each user was

instructed to follow the curve with and without the impedance virtual fixture. In the

former case, users had to follow the target curve back and forth twice. In the latter

case, the impedance virtual fixture was employed to guide the users to follow the

curve. Hybrid force motion control was enabled on the slave side in both the cases

with a desired force of 0.7N normal to the surface. Visualization on the slave side

environment was provided on the master console. The trajectory of the robot tip was

recorded along with the task completion time in both the cases. The RMS error and
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the completion time of each trial by every user is shown in Tables 6.3 and Table 6.4,

respectively. These results show that all users benefited from reduced time for each

trial and increased tracking accuracy when the curve-following VF was enabled.

Trial RMS Error

Without Virtual Fixture With Virtual Fixture

Trial User 1 User 2 User 3 User 1 User 2 User 3

1 5.40 5.87 5.06 5.06 4.51 6.37

2 4.98 5.63 5.13 5.13 4.85 4.21

3 5.32 5.30 5.00 5.00 4.47 4.40

4 5.22 5.56 4.63 4.63 4.51 4.32

5 5.11 4.85 4.73 4.73 4.71 4.42

Average 5.21 5.44 4.91 4.91 4.61 4.75

Table 6.3: RMS target curve tracking errors for each user (subject) with and without
virtual fixture assistance

Trial Completion Time (s)

Without Virtual Fixture With Virtual Fixture

Trial User 1 User 2 User 3 User 1 User 2 User 3

1 18.21 22.53 36.24 17.37 14.19 28.81

2 15.68 19.37 38.01 17.20 9.32 20.67

3 13.65 15.34 32.21 15.13 11.47 25.79

4 12.14 17.33 38.69 14.52 10.39 27.12

5 11.90 14.86 29.69 10.94 10.58 26.93

Average 14.32 17.89 34.97 15.03 11.19 25.86

Table 6.4: Trial completion time for each user (subject) with and without virtual
fixture assistance
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6.3 Teleoperated Ultrasound Scanning (UR3)

In this section, we demonstrate the use of ultrasound sensing modality to locate

and segment stiff inclusions in an organ, using the B-mode image. This information is

then used to update the preoperative Computed Tomography (CT) image. This is to

show the feasibility of performing a teleoperated ultrasound scanning with minimal

tool-tissue forces. Using the intraoperative ultrasound data, the model of the task

environment is updated.iii

Figure 6.9: UR3 robot with an ultrasound transducer attached to the end-effector

iiiThis experiment was conducted at Johns Hopkins University; I was responsible for integrating
the CSA framework with the UR control, to perform force-controlled ultrasound scanning. Other
team members, Baichuan Jiang, and Zhaoshuo Li were responsible for conducting the calibration,
segmentation, and registration. Text for Sections 6.3.1, 6.3.2 and 6.3.3 was provided by Baichuan
Jiang.
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For this experiment, we first deployed the CSA framework on the UR3 slave arm.

We attached a linear probe (Ultrasonix L14-5W) to the end-effector of the UR3, as

shown in Figure 6.9. The UR3 was teleoperated using the dVRK master and followed

the hybrid force-motion control, defined in Section 5.1.2. The calibration procedure

that is used to register the linear probe with the UR3 is described in Section 6.3.1.

Later, we perform image segmentation and registration, the procedure of which is

described in Sections 6.3.2 and 6.3.3, respectively.

6.3.1 Calibration

To obtain the 3D information from a 2D ultrasound probe, it is required to have

some form of tracking capability and establish the transformation relationship be-

tween the tracker and ultrasound image. The process of computing this transfor-

mation is called ultrasound calibration, regardless of the tracking modality. In our

setup, we are using the UR3 robot kinematics to track the 3D information during

ultrasound scanning, and BXp calibration method,128,129 as shown in Figure 6.10, is

used to identify the transformation from robot end-effector to ultrasound images.

We have a cross-wire phantom that is composed of two crossing fishing lines.

After installing the cross-wire phantom in the water tank, the crossing point can

be identified in the ultrasound image. By moving the robot to different poses that

capture the physically-same cross-wire point in the ultrasound image, a set of robot

frames Bi and a set of fiducial point locations in the images pi are collected. Then,
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Figure 6.10: BXp type ultrasound calibration128

we can establish the set of equations below (where c denotes the constant fiducial

point physical location):

BiXpi = c (6.1)

Plugging in the data Bi and pi and solving forX is essentially equivalent to finding the

set of parameters, param = [Xx,Xy,Xz,Xrx,Xry,Xrz, cx, cy, cz] that minimizes

the equation:

min
param

(BiXpi − c) (6.2)

where [Xx,Xy,Xz,Xrx,Xry,Xrz] denotes the 6DOF parameters ofX and [cx, cy, cz]

denotes the 3D component of c. After solving for X, the cross-wire is moved to a dif-

ferent physical location, and 5 more data points are collected to validate the computed

X. The result is shown in Figure 6.11.
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Figure 6.11: Bxp Result: Red points represent the computed cross-wire physical
locations in the robot base. Black point at the center represents the average of all red
points. Ellipsoids represents the standard deviation of 1.23mm, 1.54mm and 0.24mm
in x, y and z direction, respectively.

6.3.2 Segmentation

The features that we are going to extract are the lesion boundaries and the vessel

boundaries, both of which are shown hypoechoic in the ultrasound images. Therefore,

we are going to use the Active Contours algorithm (Snakes) introduced in [130] to

extract the boundary features. In general, the active contours algorithm utilizes a

“snake”, which is an energy minimizing, deformable spline influenced by constraints

and image forces that pull it towards object contours and internal forces that main-

tain smoothness and resist deformation. Although the active contours algorithm can

achieve the degree of accuracy and speed that the project requires, it heavily de-

pends on a good initialization. To continuously extract boundaries from a sequence

of ultrasound images, the following initialization scheme is proposed:

• The image is first smoothed by a median filter (Figure 6.12a).
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• Then a threshold filtering is applied to the smoothe anything else to say main

menu hanger thank you for Comcast image, which produces the image mask A

(Figure 6.12b)

• An optional process is doing an open-close operation on mask A to remove

smaller islands

• Then the mask B is created which is based on the ultrasound imaging setting,

i.e., imaging depth and probe width (Figure 6.12c)

• We do an AND operation on mask A and B so that only the region of interest

(ROI) is used for initializing the mask

• Finally, we use the combined mask as the initialization for the active contours

algorithm and the result is shown in (Figure 6.12d).

Because the ultrasound image sequence is time- and space- consecutive, the seg-

mentation result (boundaries extracted) is directly fed into the next slice and used as

the initialization mask. This will speed up the processing time and reject temporary

imaging artifacts. However, if we always use the previous result as the mask, some

new isolated features will not be captured by the active contours algorithm. There-

fore, we do the initialization every 10 image frames, which is a trade-off between

efficiency and robustness.
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Figure 6.12: Mask initialization and segmentation results, a) Result of a median filter;
b) Result after applying threshold filtering to the smoothened image; c) Mask based
on image depth and probe width, and d) Result of active contours algorithm
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6.3.3 CT Registration

We have done a Cone-Beam Computed Tomography (CBCT) scan of the kidney

phantom, which is used as the ground-truth preoperative data for performing the

registration with the intraoperative ultrasound features. The internal lesions and

vessel in the kidney phantom are manually segmented and shown in Figure 6.13.

Figure 6.13: CBCT scan of the kidney phantom with the internal feature segmentation

After obtaining the ultrasound features, we aggregated and downsampled the

extracted contour lines to form a point cloud as shown in Figure 6.14. We used the

CPD registration algorithm, reported in [51], which resulted in a registration error of

7.9303 mm, as shown in Figure 6.15.
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Figure 6.14: Contour points extracted from ultrasound image sequence

Figure 6.15: Registration result. Blue: CT point cloud. Green: Ultrasound point
cloud
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6.3.4 Discussion

This experiment demonstrated the feasibility of using robotic ultrasound sensing

for updating the preoperative CT model using the intraoperative B-Mode information.

We have further validated the CSA platform by adapting the framework on to the

UR3 arm, that was teleoperated by the dVRK master robot. However, there are

some limitations that can be addressed in later iterations of the framework. The active

contours algorithm, used for segmentation, is sensitive to the mask initialization. This

caused some image artifacts, which affected the registration algorithm. Therefore, the

CPD algorithm produced a larger registration error than expected, even though it

was tuned for outlier rejection.

In the future, these limitations can be addressed by having a better segmentation

algorithms as described in [131–133]. These can be further modified to perform in an

online manner, which in turn would complement the registration process to perform

as fast as possible.
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6.4 Confocal Endomicroscopy (dVRK)

Recent advances in optical biopsy techniques, and, in particular, probe-based con-

focal laser endomicroscopy (probe-based Confocal Laser Endomicroscopy (pCLE)),

have demonstrated great promise for real-time in vivo tissue characterization. Mo-

saicking algorithms are often required to provide macro coverage of the tissue surface

due to limited field-of-view of the current pCLE probes. Acquisition of high-quality

contiguous image streams is extremely challenging when acquired manually. With the

help of our colleagues at the Hamlyn Center for Robotic Surgery, Imperial College

London we developed a real-time closed-loop controller for the axial probe position

based on image quality metric alone. This sensorless framework integrated with CSA

allowed us to perform real-time autonomous probe-tissue contact management during

pCLE scanning.iv

The experiment was conducted at the Hamlyn Center and the hardware setup

comprises of two main systems: a) dVRK master and slave manipulators with inte-

grated CSA framework, and b) a line-scan confocal laser endomicroscopy system built

by the Hamlyn Center. The dVRK controllers are connected in a daisy chain topology

and communicate with the host PC via an IEEE 1394 firewire connection cable. A

detailed description of the dVRK system is provided by Kazanzides et al. [43]. The

ivThis experiment was conducted at Hamlyn Center with remote assistance from Johns Hopkins
University; Members include Eimear O’ Sullivan, Lin Zhang, Khushi Vyas, Russell H. Taylor, and
Guang-Zhong Yang. I was in charge of providing the CSA framework to test their blur-to-motion
algorithm. The text was adapted from an unpublished manuscript primarily co-authored by Eimear
O’ Sullivan and me. This is expected to be submitted later to a journal article.
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laparoscope was held by the da Vinci Endoscope Camera Manipulator (ECM) arm

and provides 720x576 SD PAL video streaming for left and right camera channels at

a rate of 25Hz. The stereo video stream was captured on the host PC using a Black-

magic (Victoria, Australia) DeckLink Duo 2 PCIe video capture card. A high-speed

laser line-scan confocal laser endomicroscopy system (built by Hamlyn Center) was

used for image acquisition and validation of the developed framework. The system

comprises of a line-scan confocal microscope coupled to a Cellvizio GastroFlex UHD

Probe (Mauna Kea Technologies, Paris, France) 30,000 core fiber-bundle with distal

micro-lens and a maximum outer diameter of 2.6mm. The system uses a 488 nm

laser source and provides a Field of view (FOV) of 240µm and fiber-limited resolu-

tion of approximately 1.5µm at 120 frames per second. A detailed description can

be found at [134]. Endomicroscopy images were pre-processed by a LabVIEW pro-

gram, scaled to 300x300 pixels and transmitted via TCP/IP connection to the dVRK

system controller.

The software component of the developed framework runs on ROS. The laparo-

scope images enable the estimation of the pose and position of the probe in the cam-

era frame using a KeyDot marker (KeyDot, Key Surgical, Minnesota) attached to the

probe adapter (Fig. 6.16a). The stereo camera and capture card were calibrated using

the method outlined in [135] to extract the intrinsic and extrinsic camera parameters.

Fast Fourier transform based Normalized Cross-Correlation (NCC) [136] was used

to provide real-time mosaic synthesis. Consecutive images from the endomicroscope
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data stream were assessed to determine the point of maximum image correlation,

providing a robust rotation invariant approach to composing the desired contiguous

image mosaic. All experiments were conducted using lens paper stained with 0.2% of

acriflavine hydrochloride solution.

Note: Complete algorithmic details of image classification and the blur calculation

are not provided in this document. Further details of this work can be found in [137].

Figure 6.16: System Overview at the Hamlyn Center. a) The da Vinci surgical robot
system and a zoomed in view of the pick-up adapter for pCLE and OCT; b) In-house
laser line-scan endomicroscopy system.
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Teleoperation Framework

The teleoperation framework used in this experiment is based on the CSA frame-

work. Just to recap, CSA supports force-controlled teleoperation, where the slave

robot is operated under hybrid force-motion control. The force controller regulates

the motion in the direction normal to the surface and the motion controller regulates

the motion tangential to the surface. The hybrid control is implemented as an opti-

mization problem to estimate the incremental joint motion. A brief summary of the

optimization setup is stated below,

δq = min∥Jδq − δx∥

such that,

δx = KaKg(Fc − Fd)δt+Kp(xd − xc)

vl ≤
δq

δt
≤ vu

where J represents the body jacobian of the slave robot, δt is the sampling rate of

the component in seconds and δx and δq represent incremental cartesian and joint

position, respectively. Kp and Ka are motion and force projection matrices, respec-

tively. Ka projects the motion from the force controller in the direction normal to the

surface. Similarly, Kp projects motion from the position controller in the directions
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tangential to the surface normal. Fc denotes the contact force obtained from the force

sensor and Fd denotes the desired force the slave should maintain with the anatomy.

Kg is the admittance gain matrix for the force motion. xc is the current cartesian

position and xd is the commanded/desired cartesian position. Complete details on

the motion control are described in Section 5.1.

In the above control equation, (Fc−Fd) corresponds to a resultant force direction

based on the contact force sensed by an external force sensor and a user-specified

desired/bias force. In lieu of an external force sensor, the motion control directly

receives a motion direction and a magnitude based on image quality using blur-to-

motion estimationv. The modified equation for calculating the incremental cartesian

position (δx) is as follows,

δx = KaKg∆Fδt+Kp(xd − xc)

where ∆F is the directional motion vector provided by the blur-to-motion algorithm.

Results

We evaluated our teleoperation framework in two different scenarios: i) uncon-

strained teleoperation without compensation and b) constrained teleoperation where

the axial probe motion is regulated by the blur-to-motion control. In both cases, the

vthe blur-to-motion algorithm is developed by the Hamlyn Center and provides a motion in the
axial direction to provide better image quality (analogous to auto-focus) based on the image blur.
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rotation of the end-effector was locked to align the probe with the normal direction

of the tissue surface.

A Burster 8438-5005 load cell and accompanying micro-controller (Cypress Semi-

conductor, San Jose, CA) were used for validation purposes to record the forces

encountered by the probe throughout the scanning process. The load cell had a

range of 0g to 500g and a linear fitting was derived to convert these values to mN. A

windowing filter was applied to the acquired signal to remove excess noise.

Three trials were conducted for both constrained and unconstrained teleoperated

scanning. Each trial commenced with the probe a similar distance from the tissue

surface and lasted approximately 20 seconds. Data analysis began when the probe

first made contact with the tissue surface.

Table 6.5 shows the mean and SD of the forces experienced by the probe for

constrained and unconstrained teleoperation during the trials. It can be observed

that the recorded values are lower in both cases, indicating that probe-tissue contact

forces remained consistently lower when the axial motion was controlled by CSA along

with motion feedback from the image blur.

We also observed that the mosaic quality was consistent during constrained teleop-

eration as shown in Fig. 6.17b. However, the mosaic reconstruction was interrupted

during unconstrained scanning due to constant contact loss with the tissue. The

interruption can be clearly seen in Fig. 6.17a.
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Unconstrained (mN) Constrained (mN)

Trial 1 18.656± 13.764 5.404± 1.738

Trial 2 9.729± 14.384 6.159± 1.647

Trial 3 39.996± 47.433 7.208± 1.394

Average 22.699± 25.197 6.257± 1.593

Table 6.5: Force values for unconstrained/constrained teleoperation trials on static
tissue (Mean ± Sd)

Figure 6.17: a) Mosaic reconstruction for unconstrained teleoperation, b) Mosaic
reconstruction for constrained teleoperation with image compensation.
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Conclusions

This dissertation presented a high-fidelity framework that provides real-time sit-

uational awareness, for the surgeon, during complex MIS procedures. The proposed

framework is called Complementary Situational Awareness (CSA) and provides many

machine capabilities, that include sensor information fusion, provision of sensory feed-

back of the situational model environment, and real-time estimation of the intraop-

erative model. Developing such a system to provide real-time situational awareness

required that many technical challenges be met. These challenges were discussed and

addressed throughout the document. The CSA framework has support for multiple

sensing modalities. To demonstrate the feasibility, we incorporated the pCLE tech-

nique and ultrasound sensing. Further, task-specific assistance is also available in the

form of virtual fixtures, along with visual and haptic feedback. The system is devel-

oped in a modular fashion and can be incorporated into any existing robotic platform
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with minimal overhead. Appendix C also presents a socket based communication to

control slave arms that are on different operating platforms.

This chapter provides the summary of all the significant contributions presented

in each chapter and discusses possible future work to further improve the CSA frame-

work.

7.1 Summary

Chapter 1 provides introductory material explaining the technical background of

the reported work, a succinct statement of the overall thesis of the work, together

with a listing of the intellectual contributions reported.

Chapter 2 discusses the various clinical applications that motivated the develop-

ment of the CSA framework. A surgical workflow is also illustrated, that can be

benefited from using the CSA framework. The CSA was designed as a component-

based architecture and overviews of various key components are described. The CSA

architecture was initially prototyped using the open source dVRK research platform,

thus, some key library dependencies are detailed for the reader’s comprehension.

Chapter 3 describes the first high-level controller, the Modeler. The sole purpose

of the Modeler is to make sure that the model of the task environment is up-to-date.

When the slave robot interacts with the task environment, the contact information is

sent to the Modeler. The Modeler then uses the position-force pairs to estimate the
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organ geometry and surface stiffness. We developed a novel technique to estimate

this information using the GP. First, tool-tissue forces underneath the organ surface

are modeled using the GP, then, using this model surface stiffness and geometry are

estimated based on a linear stiffness model. This offline technique was later mod-

ified to perform in real-time, by making use of spatial grids. The goal is to store

all the contact information but train and predict the organ geometry and stiffness

based on neighboring information, rather than the entire surface. This estimation

produces fast updates to the geometry and stiffness map which is displayed for the

user at interactive frame rates. The estimated geometry and stiffness is then sent

to the registration component which performs a rigid, followed by a non-rigid regis-

tration technique. The rigid registration is done to correct the initial misalignment

as most non-rigid registration algorithms are sensitive to large initial misalignment.

For demonstration purposes, we used the rigid registration algorithm, IMLP,96 and

for the non-rigid registration, we used CPD.51 Based on the estimated stiffness, the

user has an option to use the trajectory optimizer to guide the palpation/exploration

towards unexplored, but potentially stiff, regions.

Chapter 4 describes the second high-level controller, the Teleop. The Teleop com-

ponent maintains the state information of the three MLCs and is responsible for

managing communications between those components. The Teleop incorporates the

MMT paradigm, in which the master robot operates on the model of the task envi-

ronment by telemanipulating a proxy slave device. Based on the interactions between
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the proxy slave device and the model, necessary commands are sent to the real slave

control. Further, the master control also receives necessary gain parameters from the

Teleop for haptic feedback.

Chapter 5 describes the three MLCs, the Master MLC, the Slave MLC, and the

Proxy Slave MLC. The Master MLC operates on torque control. Apart from gravity

compensation, compliance control is also incorporated for visualizing haptics. The

estimation of the compliance wrench is also explained based on the interactions of the

proxy slave with the model of the task environment. The Proxy Slave is implemented

as an ideal position control, thus, it is allowed to penetrate the surface of the model

in the virtual environment, and the compliance wrench is calculated based on the

penetration. The Slave MLC, on the other hand, follows hybrid force-motion control.

This prevents the slave robot from penetrating the surface of the organ and allows

it to servo at a desired force. The mismatch between the model and the reality

that occurs when both the slave robots interact with their respective environments is

monitored and corrected using different methods explained in this chapter.

Chapter 6 describes the various system-level tests that were conducted to validate

different components, and to evaluate different features and algorithms implemented

in the CSA framework.
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7.2 Future Work

There are many areas in this dissertation where there is room for improvement. In

terms of MMT, a more comprehensive user experience can be provided. In the current

implementation, the stiffness map and organ geometry is provided as a picture-in-

picture display. However, the video feed of the surgical site can be augmented with

the tissue properties. For this, a camera calibration needs to be done to register

the stereoscopic view to the robot. Many groups have developed different ways to

perform the calibration,138–141 which can be incorporated into the CSA workflow.

In the current GP implementation to estimate the organ geometry and tissue

stiffness, we use the spatial grids to store all the palpation position-force pairs and

only use the neighboring information during training and prediction. However, this

can be further optimized by having localized GP models for each spatial bucket. For

prediction, all the neighboring GP models will estimate a predictive distribution and a

weighted average of all these predicted means and variances would be the final result.

Further, we can implement ways to update the covariance matrix incrementally using

methods described in [142–144]. In terms of data pruning, the incoming position-force

pairs can be added/removed based on the model entropy.111,112

Online estimation of organ properties can also be extended to use/estimate the

biomechanical properties (viscosity, engineering stress-strain, stress relaxation, etc.),

apart from stiffness, to develop a realistic elastic deformable model.145–148 Accurate

models of clinically relevant tissues like, liver, gallbladder, kidney, and spleen can
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help prevent potential damage to the tissue.

A comprehensive user study is also planned in the near future. In this study, we

plan to recruit users to perform two tasks: palpation and ablation. Palpation is a

key diagnostic aid for physicians to locate underlying tissue abnormalities. We will

investigate the reliability and accuracy of the online stiffness estimation technique, in

detecting the location of hidden stiff inclusions, using robot-assisted telemanipulation.

This experiment will be performed on a mock anatomy. The ablation task will also

be performed on a similar mock anatomy with an embedded rubber representing an

artery. The user will be instructed to follow the artery with/without assistance and

the effectiveness of the force-feedback and guidance will be investigated. Note that

the robot will not be using any actual form of cautery/laser ablation.

Further, for a more interactive user-interface, we have an initial implementation

of masters-as-mice. The goal is to develop a haptic engine that would convert the

existing Qt based graphical user interface (GUI) to a haptic GUI. This will allow the

developers to overlay a haptic plane with a task-specific interactive Qt GUI on the

master console view. Our initial implementation is detailed in Appendix D
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Constrained Optimization

Constrained optimization used for motion control of the slave and proxy slave

robot used in 5.1 and 5.2 is detailed here. This chapter will provide an overview of the

basic optimization framework as discussed in [149, 150], followed by a few examples

of constrained motion. A series of linear equations is constructed that represent

constraints, and a least squares solver is used to determine the “best” motion of the

robot.

Objectives and Constraints

An objective is a term that the optimizer will try to minimize by its choice of a

solution. Given multiple objectives, a solution will be found that best minimizes all

of the corresponding expressions simultaneously. A constraint is a condition of an

optimization problem that the solution must satisfy. Constraints can be of two types:
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equality and inequality constraints.

• Objective : Objectives are of the form

min
X
∥AX −B∥ (A.1)

where A is the objective matrix and B is the objective vector.

• Equality Constraint : Equality constraints are usually of the form

EX = F (A.2)

where E is the equality matrix and F is the equality vector.

• Inequality Constraint : Inequality constraints are usually of the form

GX ≥ H (A.3)

where G is the inequality matrix and H is the inequality vector.

Example

A sample joint position control is detailed below, where the tip of the robot is

always on or above a known plane.
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Objective :

Minimize the distance between the current and the commanded cartesian position.

min
δq
∥Jδq − (xd − xc)∥

where J is the Jacobian of the robot, xd is desired/commanded cartesian position, xc

is the current cartesian position and δq is the incremental joint motion that is being

optimized.

Plane Constraint

The goal here is to set up a virtual plane to constrain the motion of the tooltip to

be on or above the plane. A plane passing through a point x⃗p with a normal n⃗ can

be represented as

n̂ · x⃗p = d

The goal is to constrain the resulting robot position, after applying the δx increment,

to be on or above the plane. So the constraint would be a

n̂ · (x⃗c + δx− x⃗p) ≥ 0

n̂ · δx ≥ n̂ · (x⃗p − x⃗c)

(n̂TJp)δq ≥ (n̂T (x⃗p − x⃗c))
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where Jp corresponds to Jacobian for the position of the end-effector. This equation

is of the form GX ≥ H.

Joint Limit Constraints

For any kind of robot motion it is absolutely necessary to have limits on the joint

motion for safety. Since the robot is controlled in joint space, we have joint limit

constraints set up as follows,

l ≤ qc + δq ≤ u⎡⎢⎢⎣ I

−I

⎤⎥⎥⎦
2n×n

∗

⎡⎢⎢⎣δq
⎤⎥⎥⎦

n×1

≥

⎡⎢⎢⎣ l − qc

qc − u

⎤⎥⎥⎦
2n×1

where l and u are the lower and upper joint position limits and qc is the current joint

state.
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Impedance Virtual Fixture

Example

A step-by-step example of a simple impedance virtual fixture/compliance wrench

estimation is demonstrated using the CSA interface. We assume the reader has a fair

knowledge of ROS subscribers and publishers which can be found in [151,152].

Example

Let’s assume we want to constrain the robot tip (pr) to stay on a plane (P)

defined by a normal vector (n̂) and origin (O) of the plane as shown in Figure B.1.

For simplicity, we assume the plane P is in the robot frame and thus the compliance

frame Fc = [I, 0⃗].
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𝒏"

𝑶

𝒑𝒓

Figure B.1: Example Plane, where green dot represents point on the plane and red
dot represents point above or below the plane

Compute

Only activate the fixture when the tip is within some threshold distance ϵd ≈ 2mm

from the plane, otherwise, a huge amount of force would be computed if the tip is far

away. Once the robot tip p⃗r is within ϵd distance from P , determine if pr is below or

above the plane. Thus, the position error ϵ⃗ in Algorithm 5.1 is computed as follows:

ϵ⃗ = p⃗r − p⃗c

where pc is the closest point on the plane, i.e, projection of p⃗r on P . (Figure B.2)

Sample stiffness gains to calculate the compliance force for this fixture are as

follows:

• Positive Stiffness Gain (k⃗+) : vct3(0,0,-1000)

• Negative Stiffness Gain (k⃗−) : vct3(0,0,-1000)
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Figure B.2: Projection p⃗c of robot tip p⃗r onto the plane

Similarly, tip velocity ṗr can be computed using the robot kinematics and necessary

damping gains can be added

• Positive Damping Gain (⃗b+) : vct3(-10, -10, -10)

• Negative Damping Gain (⃗b−) : vct3(-10, -10, -10)

Bias force g⃗+, g⃗− can also be added if we want the tip to slowly move towards the

plane when it is far away.

These gain parameters need to be set once during the start of the program and

internally CSA will turn on and off the impedance fixture based on the robot tip

position. Complete pseudocode for this fixture is detailed in Algorithm B.1. Necessary

ROS topics are available for the user to set these gain parameters using python or

C++ platform and the corresponding ROS message is shown in Figure B.3.
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Algorithm B.1 VF Example

Input: p⃗r, ṗr
Initialize VFGains ▷ Can be hard coded or set externally
[f⃗ , τ⃗ ] = Compute Compliance Wrench ▷ Algorithm 5.1
if (acos(p⃗r.n̂) ≤ 0) OR (ϵd ≤ 2) then

Enable Fixture ▷ If the tip is close to the plane or below the plane
else

Disable Fixture
[f⃗ , τ⃗ ] = 0⃗

end if
Send [f⃗ , τ⃗ ] to Master

#prmCartesianImpedanceGains.msg

Header header

#VF position and orientation

geometry_msgs/Quaternion ForceOrientation

geometry_msgs/Vector3 ForcePosition

geometry_msgs/Quaternion TorqueOrientation

#Force gains

geometry_msgs/Vector3 PosStiffPos

geometry_msgs/Vector3 PosStiffNeg

geometry_msgs/Vector3 PosDampingPos

geometry_msgs/Vector3 PosDampingNeg

geometry_msgs/Vector3 ForceBiasPos

geometry_msgs/Vector3 ForceBiasNeg

#Torque gains

geometry_msgs/Vector3 OriStiffPos

geometry_msgs/Vector3 OriStiffNeg

geometry_msgs/Vector3 OriDampingPos

geometry_msgs/Vector3 OriDampingNeg

geometry_msgs/Vector3 TorqueBiasPos

geometry_msgs/Vector3 TorqueBiasNeg

Figure B.3: Impedance gains ROS Message
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Cross-Platform Socket Based

Communication

As mentioned earlier, the CSA framework is independent of the robotic platform.

Any slave device with position control and any master device with torque control

is supported. However, not all robotic platforms use cisst libraries. Some robotic

platforms are developed on windows using the MATLAB Simulink® Real-TimeTM en-

vironment and some are built using ROS. We have developed a socket based commu-

nication pipeline using a custom User Datagram Protocol (UDP) packet for network

communication. This is a prototype version and is capable of communicating with a

slave over the network. There are two components developed for this purpose; one on

the server side (SocketServer) to get the information from the slave robot and send it

over UDP and the other on the client side (SocketClient) which retrieves information
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over UDP and sends it to the Teleop component. Figure C.1 shows the component

connections of this setup. Note that the SocketServer component is only needed when

the Slave robot supports cisst libraries and is on a different network, otherwise, the

slave robotic platform needs to build a network interface to send/receive the custom

UDP packet information. Complete packet information is provided in Figures C.2,

C.3 and C.4.

Teleop

P

R

Client

R

N
E
T
W
O
R
K

Server

P

Slave

P

R

C++ CISST Compatible C++ CISST Compatible

UDP 
Communication

Teleop

P

R

Client

R

N
E
T
W
O
R
K

Slave
(xPC, ROS  or any other platform)

C++ CISST Compatible Not CISST Compatible

UDP 
Communication

a)

b)

Figure C.1: UDP Slave configuration a) Cisst compatible Slave; b) Other Slave
devices.
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Value StateType Description

0 SCK UNINITIALIZED
Used to turn off the system

(Current/Desired)

1 SCK HOMING
Used to indicate the arm is currently

homing (Current)

2 SCK HOMED
Used to Home/Power the arm

(Current/Desired)

3 SCK CART POS
Used to set direct cartesian position

(Current/Desired)

4 SCK CART TRAJ
Used to set trajectory cartesian goal

(Current/Desired)

5 SCK JNT POS
Used to set direct joint position

(Current/Desired)

6 SCK JNT TRAJ
Used to set trajectory joint goal

(Current/Desired)

Table C.1: socketMessages : Enum values for robot states for socket based con-
nection. Can be used to either report the current state or set a desired state.
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socketHeader {

//Version number. 10000 stands for 1.00.00

int Version;

//Message id counter. Increment by 1 and the first packet number

starts with 0

unsigned int Id;

// Message size in bytes, including the header

int Size;3

// Local timestamp in seconds

double Timestamp;

// Last Message id received

unsigned int LastId;

// Timestamp in seconds of the last message received

double LastTimestamp;

}

Figure C.2: Header for the socket state and command message

socketState {

socketHeader Header;

socketMessages::StateType RobotControlState;

vctFrm3 CurrentPose;

double CurrentJaw;

}

Figure C.3: socketState: Message used to report current state information of the arm

socketCommand {

socketHeader Header;

socketMessages::StateType RobotControlState;

vctFrm3 GoalPose;

double GoalJaw;

}

Figure C.4: socketCommand: Message used to send motion commands to the arm
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Masters-as-Mice

Masters-as-mice is an interactive mode, where the user uses the master handle to

control a 3D cursor. In this case, a haptic interactive plane is rendered on the console

view and the developers can provide a task-specific user interface. The users would

be able to interact with this interface using the system cursor, and haptic feedback

would be provided upon interaction. There are three important tasks involved in

developing the masters-as-mice interactive mode,

• Use the master device to control the X11 cursor:

We make use of the X11 library to communicate with the X11 server and gen-

erate system level cursor motion events. We project the master handle’s 3D

motion onto a 2D virtual plane and generate a 2D X11 move/click event, as

shown in Figure D.1. This 2D motion is then sent to the X11 server as system

level cursor move/click events.
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X11
Server

RosX11Mouse Master

X11 Move

X11 Click

3d Pose + 
click event

Figure D.1: X11 Communication

• Convert Qt widget into a haptic widget: A haptic engine runs in the

background to constantly monitor the cursor location. The goal of this engine

is to convert any Qt widgets under the cursor location to haptic widgets. This is

done by adding some necessary Qt signal/slots for compliance wrench estimation

based on the cursor location. Figure D.2 shows the workflow of the haptic

engine. This would convert any existing Qt-based GUI to be used as a haptic

interface for masters-as-mice, without any code modifications.

Get Qt Widget 
Under Cursor

Create Haptic 
Widget

Create/Connect Qt
slots for haptics

Is Haptic 
Widget ?

Haptic Engine

YES

NO

Figure D.2: Haptic engine
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• Define click/move/slider interactions with the 3D cursor:

Different types of Qt widgets need to have different interactions, thus, we need

to define various compliance configurations based on widget type.

Figure D.3 shows the complete workflow to provide haptic feedback for the users

upon interacting with the user interface, using the 3D cursor.

Haptic Engine

QHapticWidget 1

QHapticWidget 2

QHapticWidget N

.…
.

QWidget 1

QWidget 2

QWidget N

.…
.

Qt Application

X11
Server RosX11Mouse Master

X11 Move

X11 Click

3d Pose + 
click event

Click Event ?

Compliance 
frame with 
VF gains

Figure D.3: Complete information flow in masters-as-mice mode
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API Application Programming Interface. 35

CBCT Cone-Beam Computed Tomography. 154

CPD Coherent Point Drift. 44, 90, 92, 98, 145, 154, 156, 166

CT Computed Tomography. 148, 156

DOF Degree of Freedom. 7, 9, 110

dVRK da Vinci Research Kit. 5, 6, 8, 33, 36, 83, 119, 121, 132, 136, 143, 146, 149,

156–158, 165

ECM Endoscope Camera Manipulator. 158

FOV Field of view. 158

GMM Gaussian Mixture Model. 92

GP Gaussian Processes. 13, 43, 47, 48, 50, 53, 54, 57–62, 64, 66, 69, 70, 73, 77,

83–85, 90, 93, 94, 101, 103, 166, 168
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Acronyms

GUI graphical user interface. 169, 183

IMLP Iterative Most Likely Point. 44, 90–94, 97, 166

IP Internet Protocol. 158

KD K-Dimensional. 91

LLC Low Level Controller. 27, 29–31, 120, 121, 125, 128, 131, 132, 135, 140

MIS Minimally Invasive Surgery. 1, 2, 4, 16, 19, 22, 39, 123, 164

MLC Mid Level Controller. 27, 29–31, 114–116, 120, 128, 131–134, 166, 167

MMT Model Mediated Teleoperation. 10, 11, 107–110, 129, 142, 166, 168

MTM Master Tool Manipulator. 6

NCC Normalized Cross-Correlation. 158

pCLE probe-based Confocal Laser Endomicroscopy. 157, 164

PD Principal Direction. 91

PSM Patient Side Manipulator. 6, 143, 146

RMS Root Mean Square. 54, 55, 88, 146

ROI region of interest. 152
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Acronyms

ROS Robot Operating System. 6, 27, 36, 44, 117, 135, 158, 174, 176, 178

SAW Surgical Assistant Workstation. 33

STL Stereolithography. 94

TCP Transmission Control Protocol. 8, 158

UDP User Datagram Protocol. 178
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