
Decentralized Anonymous Payments

by

Ian Miers

A dissertation submitted to The Johns Hopkins University in conformity with the requirements for

the degree of Doctor of Philosophy.

Baltimore, Maryland

August, 2017

© Ian Miers 2017

All rights reserved



Abstract

Decentralized payment systems such as Bitcoin record monetary transactions

between pseudonyms in an append-only ledger known as a blockchain. Because the

ledger is public, permanent, and readable by anyone, a user’s privacy depends solely

on the difficulty of linking pseudonymous transactions either to each other or to

real identities. Both academic work and commercial services have shown that such

linking is, in fact, very easy. Anyone at any point in the future can download a user’s

transaction history and analyze it. In this work, we propose and implement privacy

preserving coins, payments, and payment channels that can be built atop a ledger.

In particular we propose:

Zerocoin A blockchain based protocol for breaking the link between a transaction

that receives non-anonymous funds and the subsequent transaction that spends

it.

Zerocash The successor to Zerocoin, a blockchain based payment system supporting

anonymous payments of arbitrary hidden value to other parties. While payments

are recorded publicly in the blockchain, they reveal almost nothing else: the
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recipient learns only the amount paid but not the source and anyone else learns

only that a payment of some value to someone took place.

Bolt A payment channel protocol that allows two parties to anonymously and se-

curely make many unlinkable payments while only posting two messages to

the blockchain. This protocol provides for instant payments while providing

drastically improved scalability as every transaction is no longer recorded in the

blockchain.

Primary Reader: Matthew Green

Secondary Readers: Abhishek Jain, Aviel Rubin
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Chapter 1

Introduction

Bitcoin has rapidly advanced from a toy system to one worth 35 billion dollars as of May

2017. Regardless of what happens to Bitcoin or crypto-currencies in general, the technical mechanisms

underpinning it are worthy of study, not because of its success in and of itself, but because that

success indicates that, somewhat surprisingly, the underlying paradigm is viable. Unlike almost all

previous proposals for electronic cash, and indeed much of cryptography and computer security,

Bitcoin does not depend on a central trusted authority. Instead of a trusted central bank or server

that manages funds, every transaction is contained in a public, append-only, auditable ledger known

as a blockchain. This blockchain is maintained by a peer-to-peer network under the assumption that

some super-majority of its computational power is honest. This lack of trust enabled Bitcoin to grow

organically without having to find a party or parties to trust with 35 billion dollars.

This approach need not be limited to payments. It can be used to manage identities and

provide other services in peer-to-peer networks and other settings where there is no trusted party or

finding and selecting such a party is challenging. Even where there is such a party, a blockchain can

be used to minimize the security requirements for that party and make it auditable. Indeed, even if

Bitcoin ultimately fails, basing systems on a public append-only log is an approach clearly worth

exploring. However, this very feature—that all transactions are public and auditable—is also the

1



CHAPTER 1. INTRODUCTION

greatest limitation to Bitcoin and blockchains in general.

Since all transactions are recorded in a public ledger between pseudonyms, data mining

can reveal users’ spending habits to anyone by linking pseudonymous transactions together and

to a user’s real identity. In addition to many academic papers on the topic (e.g. [1, 2]), there are

several companies in the business of providing such analysis [3, 4]. Deanonymization is a problem not

just for individuals who value their privacy but for businesses who wish to keep suppliers, employee

salaries, and revenue confidential from their competitors. Beyond being a privacy impediment,

deanonymization is also an economic hindrance. Because payments have a public history, they are

not necessarily fungible, i.e., one unit of currency is not necessarily interchangeable with another.

For example, funds which have in the past been associated with questionable activity may not be

exchangeable with funds which have no such history. While this limitation may seem like a good

thing, commerce is based on the fundamental assumption that money—if legitimately obtained—is

worth its face value. When coins have a readily available history, the face value is not the only

information that will be used in determining the value of the coin.

The lack of privacy and confidentiality is an inherent limitation of Bitcoin and any blockchain

based approach which does not select completely trusted peers. Because the ad hoc peer-to-peer

network needs to be tolerant of churn, it must be open for others to join. As a result, what is

recorded in the blockchain is fundamentally public. Even if the records were somehow encrypted, the

peers would need access to cleartext records. Since anyone can join the network, such protections

become meaningless. Even if we discard the peer-to-peer requirement, anyone who wishes to audit

the blockchain needs to read it. Thus a fully private blockchain is in most contexts no blockchain

at all since it lacks many of the features that enabled Bitcoin’s success. This lack of privacy is a

fundamental consequence of recording everything in an auditable ledger.

Privacy and confidentiality, however, are not the only limitations to Bitcoin. A second

major issue is latency. The ledger is updated in chunks called a block, and blocks must be confirmed

by the network. In the case of Bitcoin, it takes 10 minutes to create a block and 60 minutes to

2



CHAPTER 1. INTRODUCTION

fully confirm one. While there are no doubt many performance improvements to be had and other

crypto-currencies offer better performance, the very nature of a wide area peer-to-peer network makes

it unlikely payments will ever be confirmed fast enough for most in-person transactions.

Finally, recording every transaction in a public ledger entails large scalability issues. As of

summer 2017, limitations on the size of blocks in Bitcoin lead to a large backlog of nearly 165,000

transactions [5]. This block size limitation restricts Bitcoin to a maximum of 7 transactions per

second with an average of 3 to 4 [6]. Of course, different crypto-currencies may have different

performance characteristics, and there are a variety of proposals for at least alleviating Bitcoin’s

current scaling issues, including simply increasing the block size. However, large scale usage is still

a major issue for all existing crypto-currencies. Visa’s payment network, for example, handles an

average of nearly 4500 transactions per second with peak capacity of 65,000. [6]. Because broadcasting

and recording all transactions globally is an intrinsically expensive operation, achieving this kind

of scale with conventional techniques is a challenge, particularly given the latency requirement for

in-person payments.

Payment channels [7, 8] are a novel approach that sidesteps scaling the blockchain itself.

Instead of using the blockchain to record every transaction, payment channels use the blockchain

merely to resolve disputes. When two parties want to open a channel, they escrow funds on the

blockchain. Those parties can then, without interacting with the blockchain, make payments between

themselves simply by updating their split of the escrowed funds. They do so by invalidating the

current split of funds, agreeing on a new split, and creating a transaction that pays each party

the agreed split of the escrowed funds. The blockchain only needs to ensure that any transaction

spending the escrowed funds is 1) signed by both parties; and 2) not based on an invalid split. As a

result, individual payments are near instantaneous and do not take up space on the blockchain.

Unfortunately, payment channels do not solve Bitcoin’s privacy issues and, in certain cases,

exacerbate them. Payment channels still leak the relationship between participants to any observer
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of the blockchain, and channels frequently leak the amount of money exchanged over the channel1.

The only thing payment channels do obscure is the exact value and timing of individual payments.

However, in many cases (e.g. payments to an oncologist) the existence of a set of payments and

their aggregate amount is far more sensitive than the particular amount or timing of any individual

payment.

Even worse, channels provide more information to intermediaries who are party to the

channel. Because transactions between long-lived pseudonyms are visible to participants in the

channel, patterns can be seen in repeated interactions that might ordinarily be obscured by the use of

new pseudonymous addresses. As a result, channels offer slightly increased privacy from third party

observers but potentially much less privacy from payment processors and merchants. Since channels

use repeated interactions with fixed pseudonyms (the identities used to establish the channel), they

present a privacy problem even if the underlying ledger is somehow made private. Consequently,

payment channels require special privacy solutions.

Our Contribution In this work we propose and implement protocols for privacy preserving

decentralized coins, payments, and payment channels which allow us to build decentralized anonymous

payments. These techniques maintain Bitcoin’s core identity as a public auditable ledger while

resolving both the fundamental privacy and scaling issues.

1.1 Background and Related Work

1.1.1 Bitcoin, crypto-currencies, and blockchains

Bitcoin is a decentralized payment protocol and crypto-currency, the development of which

dates to at least 2009 by a person or persons using the pseudonym Satoshi Nakamoto [9]. Bitcoin’s

core technical achievement is a public log of transactions maintained by an ad hoc peer-to-peer

1Many payment flows are unidirectional. Since closure is public, the rate of which a channel between two parties is
closed and a new one established reveals the total cash flow.
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network. This log is called the blockchain because it chains blocks of data together: each block

contains the hash of the previous block along with a set of transactions moving funds between public

keys known as addresses. The longest sequence of blocks containing valid transactions and a valid

proof of work is considered the authoritative state of the blockchain. Since honest peers will only add

onto valid chains, the combination of these two rules effectively ensures that if some super-majority2

of peers in the network are honest, then the blockchain is correct. In Bitcoin, the proof of work

is to find a nonce such that H(data||nonce) < T where H is a hash function and T is some target

difficulty. Assuming the proper choice of H, the only way to do this is by trial and error. Thus more

computational power implies a greater chance of generating a block.

Although it was the first, Bitcoin is not the only crypto-currency. Many others exist that

use different software, protocols, and proofs of work. Even a brief discussion of these is beyond the

scope of this work.

1.1.2 E-cash

E-cash, first introduced by Chaum [11] and extended in subsequent work, e.g. [12, 13, 14],

allows for private transactions between a customer, a merchant, and a trusted bank. The customer

withdraws cryptographic tokens, often called coins, signed by the bank and later spends them with a

merchant. E-cash guarantees that the customer cannot forge tokens and that the merchant, even if

she colludes with the bank, cannot link withdrawal of the coins to when they were spent. Since the

customer identifies themselves when withdrawing the funds from their account (but need not identify

themselves to conduct the transaction), anonymity is ensured.

Even if the customer cannot forge a coin, they can copy it and try to spend it twice. This

strategy is known as a double spend attack. To prevent it, e-cash schemes typically embed a unique

serial number into each coin. The serial number is recorded when the coin is spent, and spending a

2The exact threshold is an open question. Originally it was believed to be anything over 50%. However, there is
evidence that this threshold is not the case [10], and at this time determining the exact threshold is an active research
area.
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coin whose serial number is already recorded is prohibited.

The challenge in using e-cash with Bitcoin is that no trusted party is available to store the

signing key needed to issue coins. Consequently, we must take a completely different approach.

1.2 Intuition: From public to unlinkable and then anony-

mous payments and channels3

Consider a physical “pencil and paper” analog to a blockchain, which we call bbcoin (bulletin

board coin). All users share access to a physical bulletin board to which they can post messages.

No user can delete, reorder, or overwrite a message posted to the bulletin board. Messages that are

posted to the bulletin board must be valid according to some set of rules. These rules are enforced

by the users who will remove anything that is invalid.

The goal of the various forms of bbcoin is to allow Alice to use the bulletin board to make

private payments. In the “pencil and paper” model, we assume there is an underlying physical

currency and that this currency is traceable. For example, assume that the underlying currency is

denominated in 1 USD notes that can only be transferred by posting a message to the bulletin board

specifying the recipient and affixing a dollar note. Because the bills have a unique serial number,

anyone who watches the bulletin board can trace payments.

We now show, in a series of five steps, how to move from this system where payments are

completely public, through one where the links between payments can be broken, to one where

payments can be made that reveal neither the amount, the sender, nor the recipient.

Version 1: coins with hidden origin. In this version of bbcoin, we want to break the linkage

between the funds Alice is paid and the funds she makes payments with. To do this, we allow Alice

to exchange currency associated with her for special cryptographic tokens called coins that are not

linked to her.

3A condensed version of this appeared in [15]. What follows here is an expanded intuitive version intended for a
broader audience.
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To create a coin, Alice generates a random coin serial number sn and commits to it with

randomness r. She posts the resulting commitment cm to the bulletin board along with $1 of the

underlying currency. A commitment is the cryptographic equivalent of a sealed envelope. No one can

see what is inside it, and Alice cannot change its contents once she seals the envelope. Later, using r,

Alice can reveal the contents. In effect, she has committed in advance to a serial number she can

later reveal. All users accept the posted transaction if cm is well formed and the attached funds are

genuine. Alice has in effect exchanged a unit of traceable currency for a cryptographic token.

To complete the exchange and redeem the token, Alice first assembles a list CMList of all

such commitments cm0, . . . , cmn that have been posted to the bulletin board by her or anyone else.

She then generates a non-interactive zero-knowledge proof π that:

1. She knows randomness r opening some commitment cm to a serial number sn

2. cm ∈ CMList

While this proof intentionally reveals sn, it reveals nothing else and hides Alice’s commitment

in the set of all commitments. Next, under a new pseudonym and disguised, Alice posts the proof π

to the bulletin board. If the proof is valid and the serial number sn has never appeared before on the

bulletin board, Alice is allowed to take one unit of currency off the bulletin board. Crucially, that

unit of currency need not be the same unit of currency Alice originally posted. In fact, Alice should

choose the unit of currency she takes at random.

Although this protocol may seem rudimentary, it allows Alice to regain her privacy: she

has replaced a dollar linked to her with one chosen at random for one of the other participants in the

protocol. Because the zero-knowledge proof does not reveal which coin commitment she used, no one

can link her redemption of the coin to the currency originally used to fund its creation. At the same

time, because the proof is sound and the commitment scheme is binding, Alice cannot make coins

out of thin air; she must always pay for them. Finally, because the serial number can only be used

once, Alice cannot make multiple proofs using the same coin.
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Version 2: coins with efficient expenditure. a.k.a Zerocoin. A naive proof that cm ∈

CMList = {cm0, . . . , cmn} takes the form of an “OR” proof that cm = cm1 OR cm = cm2 OR . . ..

Such a proof’s generation time and size grows linearly with CMList. Since coin commitments cannot

be “dropped” from CMList because they are, by necessity, never identified when they are spent, this

list will be very large.

What we need is a compact proof of set membership which is zero-knowledge. The general

approach is to combine some set membership mechanism with a zero-knowledge proof system. The

challenge is finding an efficient combination given the practical limitations of zero-knowledge proof

techniques. There are at least two ways to make this compact set membership proof, and the choice

of approach marks the first difference between Zerocoin and follow up work Zerocash.

In Zerocoin, compactness is achieved with a cryptographic accumulator [16]A = ucm1·cm2·...·cmn
0

mod N where N is an RSA modulus. The proof itself is constant size but requires linear computation.

With careful optimization, most of this computation can be computed by the network.4 When

instantiated using Schnorr proofs [17], the proof is computationally practical. However, it is ∼ 25KB

for an optimized implementation. This size is a major limitation.

The second approach, used by Zerocash, relies on a Merkle tree for a compact representation

of CMList and efficient membership proofs whose size and generation time is logarithmic in the size of

CMList. Thus, unlike Zerocoin, spending a coin does not require knowing the entire ledger’s contents,

only the appropriate path from the leaf of the Merkle tree to the root. We denote the Merkle tree’s

root rt(CMList) and the collision-resistant hash function used in the tree as CRH. The set-membership

portion of π now consists of showing that cm is in the Merkle tree with root rt(CMList).

Using standard zero-knowledge proofs, this proof would be exceedingly large due the

necessity of proofs over hash functions. However, advances in zero-knowledge proofs, specifically

zk-SNARKs [18], enable a compact and efficiently verifiable proof.

Version 3: from coins to transfers. So far, bbcoin only allows Alice to exchange her own

4Users need only compute over the list of all coins added after the one they are spending.
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currency. If she wishes to make a payment to Bob, she must then construct a separate non-

anonymous transaction that pays him with the underlying currency. While Alice and Bob can both

use fresh pseudonyms for this payment, it is still public and the value of the transaction is leaked.

Is it possible to skip this step? Instead of claiming the funds herself, can Alice give Bob the

information necessary to construct the proof and redeem the currency himself? While this strategy

is the right approach, we cannot use the existing scheme for two reason.

First, because Alice created the coin and knows its contents, she can spend it herself. Thus

she could give the coin to Bob in exchange for goods or services and then spend the coin before Bob

does. Second, since Alice knows the serial number of the coin, she can see when Bob spends it.

To solve the ownership issue, we include the identity of the recipient in the coin commitment.

Each user gets a public address, apk := PRFaddr
ask

(0), where ask is the corresponding private key.5

Coins destined to a user contain the user’s address in the commitment in addition to the value. To

redeem the coin, the recipient must prove he knows the private key ask corresponding to the public

key included in the payment. This proof prevents Alice from stealing back the coin.

To solve the serial number privacy issue, coins no longer have an explicit serial number

precomputed by their creator. Instead, the serial number needs to be computed by the recipient in a

deterministic way that the creator of the coin cannot predict. We accomplish this by generating the

serial number from a pseudorandom function keyed off the recipient’s private key but evaluated on

randomness ρ provided by the sender. This computation is denoted as sn := PRFsn
ask

(ρ). Since only

the recipient knows the proof key, the resulting serial number cannot be predicted by anyone else

even if they know ρ. On the other hand, the process is deterministic, so the recipient cannot double

spend the same coin by causing it to have two different serial numbers.

With these two changes, Bob can now safely receive payments from Alice and be assured

that the money can neither be stolen or traced. He is then free to redeem the coin for a unit of

currency himself.

5Users can have as many addresses as they want.
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Version 4: from money orders to payments. While bbcoin now supports transfers between

parties, we are still operating in a model where Alice converts one unit of currency to a coin, pays

the coin to Bob, and then Bob converts it back to the underlying currency. This process is akin to

money-orders where funds are converted back to the base currency at either end of the transaction.

When Bob wishes to make a payment to Charlie using the funds he received from Alice,

he can simply skip the intermediary step. He posts the proof claiming the coin Alice gave him and

simultaneously posts a new coin addressed to Charlie. Bob does not remove a unit of the underlying

currency from the bulletin board since he is, in effect, paying it to Charlie. The other users need

merely verify this proof and that the new coin is correctly formatted because they are already assured

that Bob has “claimed” one unit of currency and immediately paid it to someone else.

Eventually some user, if they want, can take their coin and convert it to the underlying

currency. However, there is no immediate need to do so. Coins now effectively function like currency

backed by precious metal: they can be redeemed for backing value if needed, but it is not necessary

or even practical to do so on a day-to-day basis. Of course, coins still need to be created initially

with some underlying value, but that process only needs to be done once for each coin. The exact

method by which it is done is an economic question, not a technical one.

Version 4: payments with arbitrary values. Instead of fixed value coins, the coin commitment

cm can store both the serial number sn and the coin’s value v. Alice can post the commitment along

with v units of currency to the bulletin board. She must prove that the value inside the commitment

corresponds to the value of the posted currency.

Naturally, if the coin is ever redeemed, the owner reveals the value v and takes the

corresponding equivalent in base currency. Payments now can be made for arbitrary values.

This step introduces one additional issue: if Alice has a coin for $100 and wishes to send

$25 to Bob, what happens to the remaining $75? Alice seemingly must pay Bob the whole $100. To

fix this problem, we change the proof used to make a payment to one that produces two coins instead

of one and prove that the sum of the two new coins does not exceed the sum of the coin being spent.
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Thus Alice can post two coins and a proof to the bulletin board. The first coin pays $75 to Alice as

“change;” while the second pays Bob $25.

With these modifications, a coin is now a tuple c := (apk, v, ρ, r, s, cm). Knowledge of this

tuple and address secret key ask is sufficient to claim the coin with the appropriate proof. The final

proof πPOUR posted to the bulletin board is for the following statement:

“Given the Merkle-tree root rt(CMList), serial number sn, and coin commitments cm1, cm2, one

knows coins c, c1, c2 and address secret key ask such that:

• The coins are well-formed: for c it holds that k = COMMr(apk‖ρ) and cm = COMMs(v‖k);

and similarly for c1 and c2.

• The address secret key matches the public key: apk = PRFaddr
ask

(0).

• The serial number is computed correctly: sn := PRFsn
ask

(ρ).

• The coin commitment cm appears as a leaf of a Merkle-tree with root rt(CMList).

• The values add up: v1 + v2 + vpub = v.”

The resulting transaction txPour := (rt, sn, cm1, cm2, πPOUR) is appended to the bulletin board. (As

before, the transaction is rejected if the serial number sn appears in a previous transaction or the

proof is invalid.) In the final construction, detailed later, we allow for coins to be merged as well as

split. In fact, the number of input and output coins can be fixed at arbitrary values. For simplicity,

we use 2 coins in 2 coins out.

Version 5: direct anonymous payments. To spend his freshly received payment of $25, Bob

needs to know the opening to the commitment. Alice could send this to Bob out of band. However,

doing so requires Bob to be online and reachable via an anonymous communication channel.

To avoid that requirement, we allow Alice to use the bulletin board to send this information

to Bob. We give each user a key-pair, (pkenc, skenc) for an encryption scheme. When Alice pays Bob,

she encrypts the necessary information for Bob to claim the coin. Bob scans the bulletin board and

attempts to decrypt every message with his key. When he successfully decrypts a message, he stores

it and adds the coins to his wallet.
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However, a simple public key encryption scheme would be problematic since the ciphertext

can leak what public key it is encrypted under and thus the identity of the recipient. As a result,

multiple payments to the same party can be linked together.

1.2.1 Augmenting direct anonymous payments with anonymous channels

While the above system is completely private, it requires that every transaction be posted

to the bulletin board. In our toy example this system may scale, but in a real world system scalability

and latency are real issues.

Payment channels are a novel solution to this problem because they only use the blockchain

for dispute resolution. In bbcoin we can think of channels as IOUs that are enforced by the rest of

the room. To open a channel with Bob for $100, Alice and Bob agree on a unique channel ID and

then both sign an IOU for “$100 to Alice from channel ID”. Alice then posts a message declaring

a channel with Bob under that ID and attaches $100. The channel can only be closed by the IOU

signed by both Alice and Bob. If Alice wishes to pay Bob $5, she and Bob sign a new IOU for “$95

to Alice, $5 to Bob from channel ID”. They then destroy the old IOU. Alice can close the channel by

posting the most recent IOU for that channel.

We cannot merely compose Zerocash with existing payment channels, however, and get

privacy. The channel itself identifies the participants. Thus multiple payments made on the same

channel can be linked together. Bob always knows he is being paid by Alice. Even if Alice uses a

pseudonym when establishing the channel, all payments on that channel are linked together via the

pseudonym.

A fully private payment channel would prevent that linkage, allowing a customer and

a merchant to exchange payments while obscuring the customer’s identity from the merchant.

Fundamentally, however, one party is always linked to the transactions. Such linkage is implicit in

the notion of a channel: it has to be open with someone. If the customer initiates the channel, then

she knows who she is paying every time she uses the channel. The merchant, on the other hand, will
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only learn they are interacting with one of the people with whom they have an open channel. This

situation is similar to a cash transaction at a store: the customer knows who they are paying, but

the merchant does not know the customer. We assume merchants have well known identities and

hence chose the terminology accordingly.6

Unidirectional payment channels Consider the following straw-man private channel protocol.

To establish a channel, Alice withdraws classical e-cash coins issued by Bob. These tokens would

be tied to a channel Alice opens on the bulletin board. Payments would take place as in standard

e-cash with Bob playing the role of both the bank and the merchant: i.e. to pay Bob $2 from a $10

channel, Alice would send two $1 coins to Bob. The channel would be closed by Alice “paying” her

remaining 8 unused coins to herself and posting the resulting transactions to the bulletin board. Bob

could close the channel by posting a notice that forces Alice to either post her unspent coins within

some time period or forfeit the channel balance.

Despite the fact that Bob plays the role of the issuing “bank,” no party is trusted in this

setup. If Alice attempted to claim coins that she already paid to Bob, it would result in a double

spend. Provided the e-cash scheme allows third parties (i.e. other observers of the bulletin board) to

detect double spends, then Alice’s claim will be denied. Thus Bob will always be paid what he is

owed. If the scheme provides strong exculpability, then Bob (in his role as the “bank”) cannot frame

Alice for double spends. As a result, Bob cannot claim more of the escrowed funds than he has been

paid even if he issues himself coins.

This scheme, however, is not succinct: Alice must post all of her unspent coins to close

the channel. In order to realize the scalability promises of channels, we must somehow remove this

requirement. Otherwise, the cost of this protocol, at least when transactions are disputed, is the

same as just making n payments.

To get succinctness, Alice must be able to close her channel without posting every unspent

coin. To accomplish that, Alice generates ciphertexts c0, . . . , cn one for each coin in a channel with

6It is of course possible to reverse the roles, but the asymmetry remains just in the other direction.
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balance n. ci contains the transaction for spending coin i and the encryption key for ciphertext ci+1.

Alice signs each of these and gives them to Bob. To close the channel and claim her n− i renaming

funds, she posts the key to ciphertext i, allowing Bob to decrypt all subsequent unspent coins. If

any of decrypted coins are double spent, Bob can post the first spent transaction along with the

decrypted one as evidence of double spending. He need only do this for one transaction to invalidate

Alice’s claim.

Bidirectional payment channels The above scheme inherits the limitation of classical e-cash:

it can only make fixed value payments. As a consequence, it also cannot make payments from the

merchant to the customer, i.e. the channel is unidirectional. Unfortunately, unlike our transformation

from Zerocoin to Zerocash, we cannot merely include a hidden value in each coin to get variable value

payments. The above approach to unidirectional payment channels works by, in essence, declaring the

value of each transaction in advance and giving each one encrypted to Bob. We cannot meaningfully

do that with variable valued payments since we would have to know all the values in advance.

To build variable valued payments, we need to allow interaction between the two parties. In

essence, the customer and merchant will, during each payment, jointly agree and update the channel

state. If, for example, Alice and Bob have a channel with $10 owed to Alice and the remainder

owed to Bob, updating the channel from $10 to $6 pays Bob $4. The first challenge is that we need

to update the channel state while hiding from the merchant which channel is being updated and

what the balance is. These requirements can be met with zero-knowledge proofs over signatures and

commitments: the customer proves that they have a signed balance in a commitment and then asks

for a signature on a new committed balance which differs by δ from the payment amount.

The challenge with this approach is that we seemingly need to atomically 1) invalidate the

old signed channel state; and 2) issue the new state. If we fail to invalidate the old channel state

before signing the new one, Alice can spend out her channel but then use the still valid old channel

state to claim back all of her money. On the other hand, if we invalidate the old channel state before
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getting the new channel state, then Alice cannot claim any of her funds. However, it is not clear

how to do that, and the most obvious approach, a fair exchange of signatures (i.e. one on the new

channel state by the merchant and one invalidating the old channel state by the customer) is known

to be impossible. [19]

Since we cannot atomically transition between the new and old channel states, we add an

intermediate state that only allows for channel closure but not subsequent payments. First, Alice

reveals an identifier for her current channel state to prevent her from replaying it. She then gets a

token that allows her to close the channel with the new (but still hidden by a commitment) balance.

Crucially, since this token cannot be used to make further payments, Alice has no opportunity for

fraud but is assured she can close her channel. Now Alice can safely revoke her channel state by

signing the revocation statement containing the old channel state identifier. When that is done, Bob

can safely issue a new channel state.

The downside to this protocol is that it is not completely anonymous: if Bob is malicious he

can force Alice to close the channel with a token linked to the current transaction. For this reason,

we require that the channel itself be established anonymously via Zerocash.

Organization In the next three chapters, we present Zerocoin, Zerocash, and Bolt. Each chapter

is drawn from the corresponding publication with little modification or additional content. Interested

readers should refer to the full versions of these papers which may contain updates or corrections.

A note on definitions and proofs The definitions for both Zerocoin and Zerocash are game

based. Although the definitions are different, they both take the same basic approach with one game

ensuring anonymity and one ensuring balance, i.e. ensuring that a party cannot forge coins. This

approach is, in fact, incomplete. Neither definition ensures that a party can spend the money they

are paid.

In particular, it is possible in Zerocash for Alice to pay Bob two payments with the same

serial number since they contain the same payer provided randomness and recipient address.
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The security definitions do not prohibit such attacks. We would like to thank Zooko Wilcox

in 2015 for the observation and attack details. This issue is mostly a definitional problem, as the

actual attack is readily fixed.

The simple solution to the attack is for Bob to check for duplicate serial numbers. Another

solution is to force payer provided randomness to be chosen deterministically as a function of the

serial number of the coins being spent. This solution avoids the recipient needing to check for

duplicate serial numbers.

Serial number attacks also apply to Zerocoin. An attacker, on observing a legitimate spend

by a user of a coin with serial number x, can drop that transaction, insert their own coin with

serial number x into the blockchain, and then after that coin is put in a block, spend it. This tactic

blocks the spending of the original coin. The solution here is to make the serial number a public

key and then require a signature under that key to spend. We would like to thank Tim Ruffing for

independently pointing this out.

The choice of complete definitions is a challenging and open problem. One option, as shown

in [20] is to use ideal functionalities and assume simulation soundness. One could go further and

provide UC secure ideal functionalities [21], but that provision comes at the cost of succinctness.

The most promising approach is given in Appendix B of [22], which is similar to [20], but

far easier to work with. It provides for an idealized ledger that is operated by a trusted party who

maintains a version of the ledger in the clear and enforces consistency checks. At every step, the

party extracts and enforces these checks against the in-clear ledger. This approach greatly reduces

the complexity of extending the definitions. However, practical complete definitions are the subject

of ongoing work. Therefore, we opt to retain the original definitions and proofs for Zerocoin and

Zerocash here and simply note the modifications necessary to prevent these attacks.

Funding In addition to the various funding agencies and grants listed in each chapter that supported

my research or my co-authors throughout my studies, the preparation of this thesis itself was supported
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by the NSF under CNS 1228443.
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Chapter 2

Zerocoin

This chapter is based on joint work with Christina Garman, Matthew Green, and Aviel

Rubin titled ”Zerocoin: Anonymous Distributed E-Cash from Bitcoin,” appearing in the 2013 IEEE

Symposium on Security and Privacy. [23]

2.1 Overview of Bitcoin

In this section we provide a short overview of the Bitcoin protocol. For a more detailed

explanation, we refer the reader to the original specification of Nakamoto [9] or to the summary of

Barber et al. [24].

The Bitcoin network. Bitcoin is a peer-to-peer network of nodes that distribute and record transactions,

and clients used to interact with the network. The heart of Bitcoin is the block chain, which serves as

an append-only bulletin board maintained in a distributed fashion by the Bitcoin peers. The block

chain consists of a series of blocks connected in a hash chain.1 Every Bitcoin block memorializes a

set of transactions that are collected from the Bitcoin broadcast network.

Bitcoin peers compete to determine which node will generate the next canonical block.

1For efficiency reasons, this chain is actually constructed using a hash tree, but we use the simpler description for
this overview.
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This competition requires each node to solve a proof of work based on identifying specific SHA-256

preimages, specifically a block B such that SHA256(SHA256(B)) < T .2 The value T is selected by a

periodic network vote to ensure that on average a block is created every 10 minutes. When a peer

generates a valid solution, a process known as mining, it broadcasts the new block to all nodes in the

system. If the block is valid (i.e., all transactions validate and a valid proof of work links the block

to the chain thus far), then the new block is accepted as the head of the block chain. The process

then repeats.

Bitcoin provides two separate incentives to peers that mine new blocks. First, successfully

mining a new block (which requires a non-trivial computational investment) entitles the creator

to a reward, currently set at 12.5 BTC.3 Second, nodes who mine blocks are entitled to collect

transaction fees from every transaction they include. The fee paid by a given transaction is determined

by its author (though miners may exclude transactions with insufficient fees or prioritize high fee

transactions).

Bitcoin transactions. A Bitcoin transaction consists of a set of outputs and inputs. Each output is

described by the tuple (a, V ) where a is the amount, denominated in Satoshi (one bitcoin = 109

Satoshi), and V is a specification of who is authorized to spend that output. This specification,

denoted scriptPubKey, is given in Bitcoin script, a stack-based non-Turing-complete language similar

to Forth. Transaction inputs are simply a reference to a previous transaction output,4 as well as a

second script, scriptSig, with code and data that when combined with scriptPubKey evaluates to true.

Coinbase transactions, which start off every block and pay its creator, do not include a transaction

input.

To send d bitcoins to Bob, Alice embeds the hash5 of Bob’s ECDSA public key pk b, the

amount d, and some script instructions in scriptPubKey as one output of a transaction whose referenced

2Each block includes a counter value that may be incremented until the hash satisfies these requirements.
3The Bitcoin specification holds that this reward should be reduced every few years, eventually being eliminated

altogether.
4This reference consists of a transaction hash identifier as well as an index into the transaction’s output list.
5A 34 character hash that contains the double SHA-256 hash of the key and some checksum data.
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Input:
 Previous tx: 030b5937d9f4aaa1a3133b...
 Index: 0
 scriptSig: 0dcd253cdf8ea11cdc710e5e92af7647...

Output:
 Value: 5000000000
 scriptPubKey: OP_DUP OP_HASH160  
 a45f2757f94fd2337ebf7ddd018c11a21fb6c283
 OP_EQUALVERIFY OP_CHECKSIG

Figure 2.1: Example Bitcoin transaction. The output script specifies that the redeeming party
provide a public key that hashes to the given value and that the transaction be signed with the
corresponding private key.

inputs total at least d bitcoins (see Figure 2.1). Since any excess input is paid as a transaction fee to

the node who includes it in a block, Alice typically adds a second output paying the surplus change

back to herself. Once the transaction is broadcasted to the network and included in a block, the

bitcoins belong to Bob. However, Bob should only consider the coins his once at least five subsequent

blocks reference this block.6 Bob can spend these coins in a transaction by referencing it as an input

and including in scriptSig a signature on the claiming transaction under sk b and the public key pk b.

Anonymity. Anonymity was not one of the design goals of Bitcoin [9, 1, 26]. Bitcoin provides

only pseudonymity through the use of Bitcoin identities (public keys or their hashes), of which a

Bitcoin user can generate an unlimited number. Indeed, many Bitcoin clients routinely generate new

identities in an effort to preserve the user’s privacy.

Regardless of Bitcoin design goals, Bitcoin’s user base seems willing to go through consider-

able effort to maintain their anonymity — including risking their money and paying transaction fees.

One illustration of this is the existence of laundries that (for a fee) will mix together different users’

funds in the hopes that shuffling makes them difficult to trace [24, 27, 28]. Because such systems

require the users to trust the laundry to both (a) not record how the mixing is done and (b) give the

users back the money they put in to the pot, use of these systems involves a fair amount of risk.

6Individual recipients are free to disregard this advice. However, this could make them vulnerable to double-spending
attacks as described by Karame et al. [25].
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2.2 Decentralized E-Cash

Our approach to anonymizing the Bitcoin network uses a form of cryptographic e-cash.

Since our construction does not require a central coin issuer, we refer to it as a decentralized e-cash

scheme. In this section we define the algorithms that make up a decentralized e-cash scheme and

describe the correctness and security properties required of such a system.

Notation. Let λ represent an adjustable security parameter, let poly(·) represent some polynomial

function, and let negl(·) represent a negligible function. We use C to indicate the set of allowable

coin values.

Definition 2.2.1 (Decentralized E-Cash Scheme). A decentralized e-cash scheme consists of a tuple

of possibly randomized algorithms (Setup,Mint,Spend,Verify).

• Setup(1λ) → pp. On input a security parameter, output a set of global public parameters pp

and a description of the set C.

• Mint(pp)→ (c, skc). On input parameters pp, output a coin c ∈ C, as well as a trapdoor skc.

• Spend(pp, c, skc, info,C)→ (π, S). Given pp, a coin c, its trapdoor skc, some transaction string

info ∈ {0, 1}∗, and an arbitrary set of coins C, output a coin spend transaction consisting of a

proof π and serial number S if c ∈ C ⊆ C. Otherwise output ⊥.

• Verify(pp, π, S, info,C)→ {0, 1}. Given pp, a proof π, a serial number S, transaction informa-

tion info, and a set of coins C, output 1 if C ⊆ C and (π, S, info) is valid. Otherwise output

0.

We note that the Setup routine may be executed by a trusted party. Since this setup occurs

only once and does not produce any corresponding secret values, we believe that this relaxation is

acceptable for real-world applications. Some concrete instantiations may use different assumptions.

Each coin is generated using a randomized minting algorithm. The serial number S is

a unique value released during the spending of a coin and is designed to prevent any user from
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spending the same coin twice. We will now formalize the correctness and security properties of

a decentralized e-cash scheme. Each call to the Spend algorithm can include an arbitrary string

info, which is intended to store transaction-specific information (e.g., the identity of a transaction

recipient).

Correctness. Every decentralized e-cash scheme must satisfy the following correctness requirement.

Let pp← Setup(1λ) and (c, skc)← Mint(pp). Let C ⊆ C be any valid set of coins, where |C| ≤ poly(λ),

and assign (π, S)← Spend(pp, c, skc, info,C). The scheme is correct if, over all C, R, and random

coins used in the above algorithms, the following equality holds with probability 1− negl(λ):

Verify(pp, π, S, info,C ∪ {c}) = 1

Security. The security of a decentralized e-cash system is defined by the following two games:

Anonymity and Balance. We first describe the Anonymity experiment, which ensures that the

adversary cannot link a given coin spend transaction (π, S) to the coin associated with it, even when

the attacker provides many of the coins used in generating the spend transaction.

Definition 2.2.2 (Anonymity). A decentralized e-cash scheme Π = (Setup,Mint,Spend,Verify)

satisfies the Anonymity requirement if every probabilistic polynomial-time (p.p.t.) adversary A =

(A1,A2) has negligible advantage in the following experiment.

Anonymity(Π,A, λ)

pp← Setup(1λ)

For i ∈ {0, 1}: (ci, skci)← Mint(pp)

(C, info, z)← A1(pp, c0, c1); b← {0, 1}

(π, S)← Spend(pp, cb, skcb, info,C ∪ {c0, c1})

Output: b′ ← A2(z, π, S)

We define A’s advantage in the above game as |Pr [ b = b′ ]− 1/2|.
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The Balance property requires more consideration. Intuitively, we wish to ensure that an

attacker cannot spend more coins than she mints, even when she has access to coins and spend

transactions produced by honest parties. Note that to strengthen our definition, we also capture the

property that an attacker might alter valid coins, e.g., by modifying their transaction information

string info.

Our definition is reminiscent of the “one-more forgery” definition commonly used for blind

signatures. We provide the attacker with a collection of valid coins and an oracle Ospend that she may

use to spend any of them.7 Ultimately A must produce m coins and m+ 1 valid spend transactions

such that no transaction duplicates a serial number or modifies a transaction produced by the honest

oracle.

Definition 2.2.3 (Balance). A decentralized e-cash scheme Π = (Setup,Mint,Spend,Verify) satisfies

the Balance property if ∀N ≤ poly(λ) every p.p.t. adversary A has negligible advantage in the

following experiment.

Balance(Π,A, N, λ)

pp← Setup(1λ)

For i = 1 to N : (ci, skci)← Mint(pp)

Output: (c′1, . . . , c
′
m,S1, . . . ,Sm,Sm+1)

← AOspend(·,·,·)(pp, c1, . . . , cN )

The oracle Ospend operates as follows: on the jth query Ospend(cj ,Cj , infoj), the oracle

outputs ⊥ if cj /∈ {c1, . . . , cN}. Otherwise it returns (πj , Sj) ← Spend(pp, cj , skcj , infoj ,Cj) to A

and records (Sj , infoj) in the set T .

We say thatA wins (i.e., she produces more spends than minted coins) if ∀s ∈ {S1, . . . ,Sm,Sm+1}

where s = (π′, S′, info′,C′):

• Verify(pp, π′, S′, info′,C′) = 1.

7We provide this functionality as an oracle to capture the possibility that the attacker can specify arbitrary input
for the value C.
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• C′ ⊆ {c1, . . . , cN , c′1, . . . , c′m}.

• (S′, info′) /∈ T .

• S′ appears in only one tuple from {S1, . . . ,Sm,Sm+1}.

We define A’s advantage as the probability that A wins the above game.

2.3 Decentralized E-Cash from Strong RSA

In this section we describe a concrete instantiation of a decentralized e-cash scheme. We

first define the necessary cryptographic ingredients.

2.3.1 Cryptographic Building Blocks

Zero-knowledge proofs and signatures of knowledge. Our protocols use zero-knowledge proofs that

can be instantiated using the technique of Schnorr [17], with extensions due to e.g., [29, 30, 31, 13].

We convert these into non-interactive proofs by applying the Fiat-Shamir heuristic [32]. In the latter

case, we refer to the resulting non-interactive proofs as signatures of knowledge as defined in [33].

When referring to these proofs we will use the notation of Camenisch and Stadler [34]. For

instance, NIZKPoK{(x, y) : h = gx ∧ c = gy} denotes a non-interactive zero-knowledge proof of

knowledge of the elements x and y that satisfy both h = gx and c = gy. All values not enclosed in ()’s

are assumed to be known to the verifier. Similarly, the extension ZKSoK[m]{(x, y) : h = gx ∧ c = gy}

indicates a signature of knowledge on message m.

Accumulators. Our construction uses an accumulator based on the Strong RSA assumption. The

accumulator we use was first proposed by Benaloh and de Mare [16] and later improved by Baric

and Pfitzmann [35] and Camenisch and Lysyanskaya [36]. We describe the accumulator using the

following algorithms:
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• AccumSetup(λ) → pp. On input a security parameter, sample primes p̂, q̂ (with polynomial

dependence on the security parameter), compute N = p̂q̂, and sample a seed value u ∈

QRN , u 6= 1. Output (N, u) as pp.

• Accumulate(pp,C)→ A. On input pp (N, u) and a set of prime numbers C = {c1, . . . , ci | c ∈

[A,B]},8 compute the accumulator A as uc1c2···cn mod N .

• GenWitness(pp, v,C)→ w. On input pp (N, u), a set of prime numbers C as described above,

and a value v ∈ C, the witness w is the accumulation of all the values in C besides v, i.e.,

w = Accumulate(pp,C \ {v}).

• AccVerify(pp, A, v, ω) → {0, 1}. On input pp (N, u), an element v, and witness ω, compute

A′ ≡ ωv mod N and output 1 if and only if A′ = A, v is prime, and v ∈ [A,B] as defined

previously.

For simplicity, the description above uses the full calculation of A. Camenisch and Lysyanskaya [36]

observe that the accumulator may also be incrementally updated, i.e., given an existing accumulator

An it is possible to add an element x and produce a new accumulator value An+1 by computing

An+1 = Axn mod N . We make extensive use of this optimization in our practical implementation.

Camenisch and Lysyanskaya [36] show that the accumulator satisfies a strong collision-

resistance property if the Strong RSA assumption is hard. Informally, this ensures that no p.p.t.

adversary can produce a pair (v, ω) such that v /∈ C and yet AccVerify is satisfied. Additionally, they

describe an efficient zero-knowledge proof of knowledge that a committed value is in an accumulator.

We convert this into a non-interactive proof using the Fiat-Shamir transform and refer to the resulting

proof using the following notation:

NIZKPoK{(v, ω) : AccVerify((N, u), A, v, ω) = 1}.
8Specifically, the values A,B must be chosen such that 2 < A < B < A2 as described in [36].
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2.3.2 Our Construction

We now describe a concrete decentralized e-cash scheme. Our scheme is secure assuming

the hardness of the Strong RSA and Discrete Logarithm assumptions, and the existence of a

zero-knowledge proof system.

We now describe the algorithms:

• Setup(1λ) → pp. On input a security parameter, run AccumSetup(1λ) to obtain the values

(N, u). Next generate primes p, q such that p = 2wq + 1 for w ≥ 1. Select random generators

g, h such that G = 〈g〉 = 〈h〉 and G is a subgroup of Z∗q . Output pp = (N, u, p, q, g, h).

• Mint(pp)→ (c, skc). Select S, r ← Z∗q and compute c← gShr mod p such that {c prime | c ∈

[A,B]}. Set skc = (S, r) and output (c, skc).

• Spend(pp, c, skc, info,C) → (π, S). If c /∈ C output ⊥. Compute A ← Accumulate((N, u),C)

and ω ← GenWitness((N, u), c,C). Output (π, S) where π comprises the following signature of

knowledge:9

π = ZKSoK[info]{(c, w, r) :

AccVerify((N, u), A, c, w) = 1 ∧ c = gShr}

• Verify(pp, π, S, info,C)→ {0, 1}. Given a proof π, a serial number S, and a set of coins C, first

compute A ← Accumulate((N, u),C). Next verify that π is the aforementioned signature of

knowledge on info using the known public values. If the proof verifies successfully, output 1,

otherwise output 0.

Our protocol assumes a trusted setup process for generating the parameters. We stress that

the accumulator trapdoor (p̂, q̂) is not used subsequent to the Setup procedure and can therefore

be destroyed immediately after the parameters are generated. Alternatively, implementers can use

9See Appendix A.2 for the construction of the ZKSoK.
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the technique of Sander for generating so-called RSA UFOs for accumulator parameters without a

trapdoor [37].

2.3.3 Security Analysis

We now consider the security of our construction.

Theorem 2.3.1. If the zero-knowledge signature of knowledge is computationally zero-knowledge in

the random oracle model, then Π = (Setup,Mint,Spend,Verify) satisfies the Anonymity property.

We provide a proof sketch for Theorem 2.3.1 in Appendix A.1. Intuitively, the security of

our construction stems from the fact that the coin commitment C is a perfectly-hiding commitment

and the signature proof π is at least computationally zero-knowledge. These two facts ensure that

the adversary has at most negligible advantage in guessing which coin was spent.

Theorem 2.3.2. If the signature proof π is sound in the random oracle model, the Strong RSA

problem is hard, and the Discrete Logarithm problem is hard in G, then Π = (Setup,Mint,Spend,Verify)

satisfies the Balance property.

A proof of Theorem 2.3.1 is included in Appendix A.1. Briefly, this proof relies on the

binding properties of the coin commitment, as well as the soundness and unforgeability of the ZKSoK

and collision-resistance of the accumulator. We show that an adversary who wins the Balance game

with non-negligible advantage can be used to either find a collision in the commitment scheme

(allowing us to solve the Discrete Logarithm problem) or find a collision in the accumulator (which

leads to a solution for Strong RSA).

27



CHAPTER 2. ZEROCOIN

2.4 Real World Security and Parameter Choice

2.4.1 Anonymity of Zerocoin

Definition 2.2.2 states that given two Zerocoin mints and one spend, one cannot do much

better than guess which minted coin was spent. Put differently, an attacker learns no more from

our scheme than they would from observing the mints and spends of some ideal scheme. However,

even an ideal scheme imposes limitations. For example, consider a case where N coins are minted,

then all N coins are subsequently spent. If another coin is minted after this point, the size of the

anonymity set for the next spend is k = 1, not k = 11, since it is clear to all observers that the

previous coins have been used. We also stress that — as in many anonymity systems — privacy may

be compromised by an attacker who mints a large fraction of the active coins. Hence, a lower bound

on the anonymity provided is the number of coins minted by honest parties between a coin’s mint

and its spend. An upper bound is the total set of minted coins.

We also note that Zerocoin reveals the number of minted and spent coins to all users of the

system, which provides a potential source of information to attackers. This is in contrast to many

previous e-cash schemes which reveal this information primarily to merchants and the bank. However,

we believe this may be an advantage rather than a loss, since the bank is generally considered an

adversarial party in most e-cash security models. The public model of Zerocoin actually removes an

information asymmetry by allowing users to determine when such conditions might pose a problem.

Lastly, Zerocoin does not hide the denominations used in a transaction. In practice, this

problem can be avoided by simply fixing one or a small set of coin denominations and exchanging

coins until one has those denominations, or by simply using Zerocoin to anonymize bitcoins.

2.4.2 Parameters

Generally, cryptographers specify security in terms of a single, adjustable security parameter

λ. Indeed, we have used this notation throughout the previous sections. In reality, however, there are
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three distinct security choices for Zerocoin which affect either the system’s anonymity, its resilience

to counterfeiting, or both. These are:

1. The size of the Schnorr group used in the coin commitments.

2. The size of the RSA modulus used in the accumulator.

3. λzkp, the security of the zero-knowledge proofs.

Commitments. Because Pedersen commitments are information theoretically hiding for any Schnorr

group whose order is large enough to fit the committed values, the size of the group used does not

affect the long term anonymity of Zerocoin. The security of the commitment scheme does, however,

affect counterfeiting: an attacker who can break the binding property of the commitment scheme can

mint a zerocoin that opens to at least two different serial numbers, resulting in a double spend. As

a result, the Schnorr group must be large enough that such an attack cannot be feasibly mounted

in the lifetime of a coin. On the other hand, the size of the signature of knowledge π used in coin

spends increases linearly with the size of the Schnorr group.

One solution is to minimize the group size by announcing fresh parameters for the com-

mitment scheme periodically and forcing old zerocoins to expire unless exchanged for new zerocoins

minted under the fresh parameters.10 Since all coins being spent on the network at time t are spent

with the current parameters and all previous coins can be converted to fresh ones, this does not

decrease the anonymity of the system. It does, however, require users to convert old zerocoins to

fresh ones before the old parameters expire. For our prototype implementation, we chose to use 1024

bit parameters on the assumption that commitment parameters could be regenerated periodically.

We explore the possibility of extensions to Zerocoin that might enable smaller groups in Section 2.8.

Accumulator RSA key. Because generating a new accumulator requires either a new trusted setup

phase or generating a new RSA UFO [37], we cannot re-key very frequently. As a result, the

10Note that this conversion need not involve a full spend of the coins. The user may simply reveal the trapdoor for
the old coin, since the new zerocoin will still be unlinkable when properly spent.
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accumulator is long lived, and thus we truly need long term security. Therefore we currently propose

an RSA key of at least 3072 bits. We note that this does not greatly affect the size of the coins

themselves, and, because the proof of accumulator membership is efficient, this does not have a large

adverse effect on the overall coin spend proof size. Moreover, although re-keying the accumulator is

expensive, it need not reduce the anonymity of the system since the new parameters can be used to

re-accumulate the existing coin set and hence anonymize spends over that whole history.

Zero-knowledge proof security λzkp. This parameter affects the anonymity and security of the zero-

knowledge proof. It also greatly affects the size of the spend proof. Thankfully, since each proof is

independent, it applies per proof and therefore per spend. As such, a dishonest party would have to

expend roughly 2λzkp effort to forge a single coin or could link a single coin mint to a spend with

probability roughly 1

2λzkp
. As such we pick λzkp = 80 bits.

2.5 Integrating with Bitcoin

While the construction of the previous section gives an overview of our approach, we have

yet to describe how our techniques integrate with Bitcoin. In this section we address the specific

challenges that come up when we combine a decentralized e-cash scheme with the Bitcoin protocol.

The general overview of our approach is straightforward. To mint a zerocoin c of denomina-

tion d, Alice runs Mint(pp)→ (c, skc) and stores skc securely.11 She then embeds c in the output

of a Bitcoin transaction that spends d+ fees classical bitcoins. Once a mint transaction has been

accepted into the block chain, c is included in the global accumulator A, and the currency cannot be

accessed except through a Zerocoin spend, i.e., it is essentially placed into escrow.

To spend c with Bob, Alice first constructs a partial transaction ptx that references an

unclaimed mint transaction as input and includes Bob’s public key as output. She then traverses

all valid mint transactions in the block chain, assembles the set of minted coins C, and runs

11In our implementation all bitcoins have a single fixed value. However, we can support multiple values by running
distinct Zerocoin instantiations simultaneously, all sharing the same set of public parameters.
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Spend(pp, c, skc, hash(ptx),C)→ (π, S). Finally, she completes the transaction by embedding (π, S)

in the scriptSig of the input of ptx. The output of this transaction could also be a further Zerocoin

mint transaction — a feature that may be useful to transfer value between multiple Zerocoin instances

(i.e., of different denomination) running in the same block chain.

When this transaction appears on the network, nodes check that Verify(pp, π, S, hash(ptx),C) =

1 and check that S does not appear in any previous transaction. If these condition hold and the

referenced mint transaction is not claimed as an input into a different transaction, the network

accepts the spend as valid and allows Alice to redeem d bitcoins.

Computing the accumulator. A naive implementation of the construction in Section 2.3 requires that

the verifier re-compute the accumulator A with each call to Verify(. . .). In practice, the cost can be

substantially reduced.

First, recall that the accumulator in our construction can be computed incrementally, hence

nodes can add new coins to the accumulation when they arrive. To exploit this, we require any node

mining a new block to add the zerocoins in that block to the previous block’s accumulator and store

the resulting new accumulator value in the coinbase transaction at the start of the new block.12 We

call this an accumulator checkpoint. Peer nodes validate this computation before accepting the new

block into the blockchain. Provided that this verification occurs routinely when blocks are added to

the chain, some clients may choose to trust the accumulator in older (confirmed) blocks rather than

re-compute it from scratch.

With this optimization, Alice need no longer compute the accumulator A and the full

witness w for c. Instead she can merely reference the current block’s accumulator checkpoint and

compute the witness starting from the checkpoint preceding her mint (instead of starting at T0),

since computing the witness is equivalent to accumulating C \ {c}.

New transaction types. Bitcoin transactions use a flexible scripting language to determine the validity

12The coinbase transaction format already allows for the inclusion of arbitrary data, so this requires no fundamental
changes to the Bitcoin protocol.
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of each transaction. Unfortunately, Bitcoin script is (by design) not Turing-complete. Moreover, large

segments of the already-limited script functionality have been disabled in the Bitcoin production

network due to security concerns. Hence, the existing script language cannot be used for sophisticated

calculations such as verifying zero-knowledge proofs. Fortunately for our purposes, the Bitcoin

designers chose to reserve several script operations for future expansion.

We extend Bitcoin by adding a new instruction: ZEROCOIN MINT. Minting a zerocoin

constructs a transaction with an output whose scriptPubKey contains this instruction and a coin c.

Nodes who receive this transaction should validate that c is a well-formed coin. To spend a zerocoin,

Alice constructs a new transaction that claims as input some Zerocoin mint transaction and has a

scriptSig field containing (π, S) and a reference to the block containing the accumulator used in π.

A verifier extracts the accumulator from the referenced block and, using it, validates the spend as

described earlier.

Finally, we note that transactions must be signed to prevent an attacker from simply

changing who the transaction is payed to. Normal Bitcoin transactions include an ECDSA signature

by the key specified in the scriptPubKey of the referenced input. However, for a spend transaction

on an arbitrary zerocoin, there is no ECDSA public key. Instead, we use the ZKSoK π to sign the

transaction hash that normally would be signed using ECDSA.13

Statekeeping and side effects. Validating a zerocoin changes Bitcoin’s semantics: currently, Bitcoin’s

persistent state is defined solely in terms of transactions and blocks of transactions. Furthermore,

access to this state is done via explicit reference by hash. Zerocoin, on the other hand, because of its

strong anonymity requirement, deals with existentials: the coin is in the set of thus-far-minted coins

and its serial number is not yet in the set of spent serial numbers. To enable these type of qualifiers,

we introduce side effects into Bitcoin transaction handling. Processing a mint transaction causes a

coin to be accumulated as a side effect. Processing a spend transaction causes the coin serial number

to be added to a list of spent serial numbers held by the client.

13In practice, this modification simply requires us to include the transaction digest in the hash computation of the
challenge for the Fiat-Shamir proofs. See Appendix A.1 for details.
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For coin serial numbers, we have little choice but to keep a full list of them per client and

incur the (small) overhead of storing that list and the larger engineering overhead of handling all

possible ways a transaction can enter a client. The accumulator state is maintained within the

accumulator checkpoints, which the client verifies for each received block.

Proof optimizations. For reasonable parameter sizes, the proofs produced by Spend(. . .) exceed

Bitcoin’s 10KB transaction size limits. Although we can simply increase this limit, doing so has two

drawbacks: (1) it drastically increases the storage requirements for Bitcoin since current transactions

are between 1 and 2 KB and (2) it may increase memory pressure on clients that store transactions

in memory.14

In our prototype implementation we store our proofs in a separate, well-known location (a

simple server). A full implementation could use a Distributed Hash Table or non block-chain backed

storage in Bitcoin. While we recommend storing proofs in the block chain, these alternatives do not

increase the storage required for the block chain.15

2.5.1 Suggestions for Optimizing Proof Verification

The complexity of the proofs will also lead to longer verification times than expected with

a standard Bitcoin transaction. This is magnified by the fact that a Bitcoin transaction is verified

once when it is included by a block and again by every node when that block is accepted into the

block chain. Although the former cost can be accounted for by charging transaction fees, it would

obviously be ideal for these costs to be as low as possible.

One approach is to distribute the cost of verification over the entire network and not make

each node verify the entire proof. Because the ZKSoK we use utilizes cut-and-choose techniques, it

essentially consists of n repeated iterations of the same proof (reducing the probability of forgery to

14The reference bitcoind client stores transactions as STL Vectors, which require contiguous segments of memory.
As such, storing Zerocoin proofs in the transaction might cause memory issues far faster than expected.

15Furthermore, this solution allows for the intriguing possibility that proofs be allowed to vanish after they have
been sufficiently verified by the network and entombed in the block chain. However, it is not clear how this interacts
with Bitcoin in theory or practice.
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roughly 2−n). We can simply have nodes randomly select which iterations of the proofs they verify.

By distributing this process across the network, we should achieve approximately the same security

with less duplication of effort.

This optimization involves a time-space tradeoff, since the existing proof is verified by

computing a series of (at a minimum) 1024 bit values T1, . . . , Tn and hashing the result. A naive

implementation would require us to send T1, . . . , Tn fully computed — greatly increasing the size of

the proof – since the client will only compute some of them but needs all of them to verify the hash.

We can avoid this issue by replacing the standard hash with a Merkel tree where the leaves are the

hashed Ti values and the root is the challenge hash used in the proof. We can then send the 160 bit

or 256 bit intermediate nodes instead of the 1024 bit Ti values, allowing the verifier to compute only

a subset of the Ti values and yet still validate the proof against the challenge without drastically

increasing the proof size.

2.5.2 Limited Anonymity and Forward Security

A serious concern in the Bitcoin community is the loss of wallets due to poor endpoint

security. In traditional Bitcoin, this results in the theft of coins [38]. However, in the Zerocoin

setting it may also allow an attacker to de-anonymize Zerocoin transactions using the stored skc.

The obvious solution is to securely delete skc immediately after a coin is spent. Unfortunately, this

provides no protection if skc is stolen at some earlier point.

One solution is to generate the spend transaction immediately (or shortly after) the coin

is minted, possibly using an earlier checkpoint for calculating C. This greatly reduces the user’s

anonymity by decreasing the number of coins in C and leaking some information about when the

coin was minted. However, no attacker who compromises the wallet can link any zerocoins in it to

their mint transactions.
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2.5.3 Code Changes

For our implementation, we chose to modify bitcoind, the original open-source Bitcoin

C++ client. This required several modifications. First, we added instructions to the Bitcoin script for

minting and spending zerocoins. Next, we added transaction types and code for handling these new

instructions, as well as maintaining the list of spent serial numbers and the accumulator. We used

the Charm cryptographic framework [39] to implement the cryptographic constructions in Python,

and we used Boost’s Python utilities to call that code from within bitcoind. This introduces some

performance overhead, but it allowed us to rapidly prototype and leave room for implementing future

constructions as well.

2.5.4 Incremental Deployment

As described above, Zerocoin requires changes to the Bitcoin protocol that must happen

globally: while transactions containing the new instructions will be validated by updated servers,

they will fail validation on older nodes, potentially causing the network to split when a block is

produced that validates for some, but not all, nodes. Although this is not the first time Bitcoin

has faced this problem, and there is precedent for a flag day type upgrade strategy [40], it is not

clear how willing the Bitcoin community is to repeat it. As such, we consider the possibility of an

incremental deployment.

One way to accomplish this is to embed the above protocol as comments in standard Bitcoin

scripts. For non Zerocoin aware nodes, this data is effectively inert, and we can use Bitcoin’s n of

k signature support to specify that such comment embedded zerocoins are valid only if signed by

some subset of the Zerocoin processing nodes. Such Zerocoin aware nodes can parse the comments

and charge transaction fees for validation according to the proofs embedded in the comments, thus

providing an incentive for more nodes to provide such services. Since this only changes the validation

mechanism for Zerocoin, the Anonymity property holds as does the Balance property if no more than

n− 1 Zerocoin nodes are malicious.

35



CHAPTER 2. ZEROCOIN

 0

 5

 10

 15

 20

 25

 30

 35

1024 2048 3072

Ti
m

e
 (

se
c)

Modulus Size (bits)

Coin Functions

Mint
Spend
Verify

(a) Times for a single Zerocoin operation mea-
sured in seconds. These operations do not include
the time required to compute the accumulator.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1024 2048 3072
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

C
o
in

 S
iz

e
 (

b
y
te

s)

P
ro

o
f 

S
iz

e
 (

b
y
te

s)

Modulus Size (bits)

Transaction Sizes

Coin
Proof

(b) Zerocoin proof sizes measured in bytes as a
function of RSA modulus size.

 0

 50

 100

 150

 200

 250

 300

 350

 0  200  400  600  800  1000

Ti
m

e
 (

se
c)

Number of Elements Accumulated

Accumulation Time

N=1024
N=2048
N=3072

(c) Time required to accumulate x elements.
Note, this cost is amortized when computing the
global accumulator.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100

Tr
a
n
sa

ct
io

n
s 

p
e
r 

m
in

u
te

Percentage of Zerocoins

Zerocoin Block Verification Performance

N = 1024
N = 2048
N = 3072

(d) Transaction verifications per minute as a func-
tion of the percentage of Zerocoin transactions in
the network (where half are mints and half are
spends). Note, since we plot the reciprocal of
transaction time, this graph appears logarithmic
even though Zerocoin scales linearly.

Figure 2.2: Zerocoin performance as a function of parameter size.

Some care must be taken when electing these nodes to prevent a Sybil attack. Thankfully,

if we require that such a node also produce blocks in the Bitcoin block chain, we have a decent

deterrent. Furthermore, because any malfeasance of these nodes is readily detectable (since they

signed an invalid Zerocoin transaction), third parties can audit these nodes and potentially hold

funds in escrow to deter fraud.
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2.6 Performance

To validate our results, we conducted several experiments using the modified bitcoind

implementation described in Section 2.5. We ran our experiments with three different parameter

sizes, where each corresponds to a length of the RSA modulus N : 1024 bits, 2048 bits, and 3072

bits.16

We conducted two types of experiments: (1) microbenchmarks that measure the performance

of our cryptographic constructions and (2) tests of our whole modified Bitcoin client measuring the

time to verify Zerocoin carrying blocks. The former gives us a reasonable estimate of the cost of

minting a single zerocoin, spending it, and verifying the resulting transaction. The latter gives us an

estimate of Zerocoin’s impact on the existing Bitcoin network and the computational cost that will

be born by each node that verifies Zerocoin transactions.

All of our experiments were conducted on an Intel Xeon E3-1270 V2 (3.50GHz quad-core

processor with hyper-threading) with 16GB of RAM, running 64-bit Ubuntu Server 11.04 with Linux

kernel 2.6.38.

2.6.1 Microbenchmarks

To evaluate the performance of our Mint, Spend, and Verify algorithms in isolation, we

conducted a series of microbenchmarks using the Charm (Python) implementation. Our goal in these

experiments was to provide a direct estimate of the performance of our cryptographic primitives.

Experimental setup. One challenge in conducting our microbenchmarks is the accumulation of coins

in C for the witness in Spend(. . .) or for the global accumulator in both Spend(. . .) and Verify(. . .).

This is problematic for two reasons. First, we do not know how large C will be in practice. Second,

in our implementation accumulations are incremental. To address these issues we chose to break

our microbenchmarks into two separate experiments. The first experiment simply computes the

16These sizes can be viewed as roughly corresponding to a discrete logarithm/factorization security level of 280, 2112,
and 2128 respectively. Note that the choice of N determines the size of the parameter p. We select |q| to be roughly
twice the estimated security level.
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accumulator for a number of possible sizes of C, ranging from 1 to 50,000 elements. The second

experiment measures the runtime of the Spend(. . .) and Verify(. . .) routines with a precomputed

accumulator and witness (A,ω).

We conducted our experiments on a single thread of the processor, using all three parameter

sizes. All experiments were performed 500 times, and the results given represent the average of these

times. Figure 2.2a shows the measured times for computing the coin operations, Figure 2.2b shows

the resulting proof sizes for each security parameter, and Figure 2.2c shows the resulting times for

computing the accumulator. We stress that accumulation in our system is incremental, typically over

at most the 200− 500 transactions in a block (which takes at worst eight seconds), and hence the cost

of computing the global accumulator is therefore amortized. The only time one might accumulate

50,000 coins at one time would be when generating the witness for a very old zerocoin.

2.6.2 Block Verification

How Zerocoin affects network transaction processing determines its practicality and scala-

bility. Like all transactions, Zerocoin spends must be verified first by the miner to make sure he is

not including invalid transactions in a block and then again by the network to make sure it is not

including an invalid block in the block chain. In both cases, this entails checking that Verify(. . .) = 1

for each Zerocoin transaction and computing the accumulator checkpoint.

We need to know the impact of this for two reasons. First, the Bitcoin protocol specifies that

a new block should be created on average once every 10 minutes.17 If verification takes longer than

10 minutes for blocks with a reasonable number of zerocoins, then the network cannot function.18

Second, while the cost of generating these blocks and verifying their transactions can be offset by

transaction fees and coin mining, the cost of verifying blocks prior to appending them to the block

chain is only offset for mining nodes (who can view it as part of the cost of mining a new block).

17This rate is maintained by a periodic network vote that adjusts the difficulty of the Bitcoin proof of work.
18For blocks with unreasonable numbers of Zerocoin transaction we can simply extend bitcoind’s existing anti-DoS

mechanisms to reject the block and blacklist its origin.
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This leaves anyone else verifying the block chain with an uncompensated computational cost.

Experimental setup. To measure the effect of Zerocoin on block verification time, we measure how

long it takes our modified bitcoind client to verify externally loaded test blocks containing 200, 400,

and 800 transactions where 0, 10, 25, 75, or 100 percent of the transactions are Zerocoin transactions

(half of which are mints and half are spends). We repeat this experiment for all three security

parameters.

Our test data consists of two blocks. The first contains z Zerocoin mints that must exist

for any spends to occur. The second block is our actual test vector. It contains, in a random order,

z Zerocoin spends of the coins in the previous block, z Zerocoin mints, and s standard Bitcoin

sendToAddress transactions. We measure how long the processblock call of the bitcoind client

takes to verify the second block containing the mix of Zerocoin and classical Bitcoin transactions. For

accuracy, we repeat these measurements 100 times and average the results. The results are presented

in Figure 2.2d.

2.6.3 Discussion

Our results show that Zerocoin scales beyond Bitcoin transaction volumes as of 2013.

Though we require significant computational effort, verification does not fundamentally threaten the

operation of the network: even with a block containing 800 Zerocoin transactions — roughly four

times the number of transactions in a Bitcoin block as of 2013 — verification takes less than five

minutes. This is under the unreasonable assumption that all Bitcoin transactions are supplanted

by Zerocoin transactions.19 In fact, we can scale well beyond Bitcoin’s average of between 200 and

400 transactions per block [41] if Zerocoin transactions are not the majority of transactions on the

network. If, as the graph suggests, we assume that verification scales linearly, then we can support a

50% transaction mix out to 350 transactions per minute (3,500 transactions per block) and a 10%

mixture out to 800 transactions per minute (8,000 per block).

19In practice we believe Zerocoin will be used to anonymize bitcoins that will then be spent in actual transactions,
resulting in far lower transaction volumes.
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One remaining question is at what point we start running a risk of coin serial number

collisions causing erroneous double spends. Even for our smallest serial numbers — 160 bits — the

collision probability is small, and for the 256 bit serial numbers used with the 3072 bit accumulator,

our collision probability is at worst equal to the odds of a collision on a normal Bitcoin transaction

which uses SHA-256 hashes.

We stress several caveats about the above data. First, our prototype system does not exploit

any parallelism either for verifying multiple Zerocoin transactions or in validating an individual proof.

Since the only serial dependency for either of these tasks is the (fast) duplicate serial number check,

this offers the opportunity for substantial improvement.

Second, the above data is not an accurate estimate of the financial cost of Zerocoin for the

network: (a) it is an overestimate of a mining node’s extra effort when verifying proposed blocks

since in practice many transactions in a received block will already have been received and validated

by the node as it attempts to construct its own contribution to the block chain; (b) execution time is

a poor metric in the context of Bitcoin, since miners are concerned with actual monetary operating

cost; (c) since mining is typically performed using ASICs, which are far more efficient at computing

hash collisions, the CPU cost measured here is likely insignificant.

Finally, our experiment neglects the load on a node both from processing incoming trans-

actions and from solving the proof of work. Again, we contend that most nodes will probably use

ASICs for mining, and as such the latter is not an issue. The former, however, remains an unknown.

At the very least it seems unlikely to disproportionately affect Zerocoin performance.

2.7 Previous Work

2.7.1 E-Cash and Bitcoin

Electronic cash has long been a research topic for cryptographers. Many cryptographic

e-cash systems focus on user privacy and typically assume the existence of a semi-trusted coin issuer
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or bank. E-cash schemes largely break down into online schemes where users have contact with a

bank or registry and offline schemes where spending can occur even without a network connection.

Chaum introduced the first online cryptographic e-cash system [11] based on RSA signatures, later

extending this work to the offline setting [12] by de-anonymizing users who double-spent. Many

subsequent works improved upon these techniques while maintaining the requirement of a trusted

bank: for example, by making coins divisible [42, 43] and reducing wallet size [14]. One exception to

the rule above comes from Sander and Ta-Shma [44] who presciently developed an alternative model

that is reminiscent of our proposal: the central bank is replaced with a hash chain and signatures with

accumulators. Unfortunately the accumulator was not practical, a central party was still required,

and no real-world system existed to compute the chain.

Bitcoin’s primary goal, on the other hand, is not anonymity. It has its roots in a non-

academic proposal by Wei Dai for a distributed currency based on solving computational problems [45].

In Dai’s original proposal anyone could create currency, but all transactions had to be broadcast

to all clients. A second variant limited currency generation and transaction broadcast to a set of

servers, which is effectively the approach Bitcoin takes. This is a marked distinction from most, if

not all, other e-cash systems since there is no need to select one or more trusted parties. There is a

general assumption that a majority of the Bitcoin nodes are honest, but anyone can join a node to

the Bitcoin network, and anyone can get the entire transaction graph. An overview of Bitcoin and

some of its shortcomings was presented by Barber et. al. in [24].

2.7.2 Anonymity

Numerous works have shown that “pseudonymized” graphs can be re-identified even under

passive analysis. Narayanan and Shmatikov [46] showed that real world social networks can be

passively de-anonymized. Similarly, Backstrom et al. [47] constructed targeted attacks against

anonymized social networks to test for relationships between vertices. Previously, Narayanan and

Shmatikov de-anonymized users in the Netflix prize data set by correlating data from IMDB [48].
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Bitcoin itself came into existence in 2009 and is now beginning to receive scrutiny from

privacy researchers. De-anonymization techniques were applied effectively to Bitcoin even at its

relatively small 2011 size by Reid and Harrigan [1]. Ron and Shamir examined the general structure

of the Bitcoin network graph [49] after its nearly 3-fold expansion. Finally, we have been made

privately aware of two other early-stage efforts to examine Bitcoin anonymity.

2.8 Conclusion and Future Work

Zerocoin is a distributed e-cash scheme that provides strong user anonymity and coin

security under the assumption that there is a distributed, online, append-only transaction store. We

use Bitcoin to provide such a store and the backing currency for our scheme. After providing general

definitions, we proposed a concrete realization based on RSA accumulators and non-interactive

zero-knowledge signatures of knowledge. Finally, we integrated our construction into Bitcoin and

measured its performance.

Our work leaves several open problems. First, although our scheme is workable, the

need for a double-discrete logarithm proof leads to large proof sizes and verification times. We

would prefer a scheme with both smaller proofs and greater speed. This is particularly important

when it comes to reducing the cost of third-party verification of Zerocoin transactions. There

are several promising constructions in the cryptographic literature, e.g., bilinear accumulators,

mercurial commitments [50, 51]. While we were not able to find an analogue of our scheme using

alternative components, it is possible that further research will lead to other solutions. Ideally such

an improvement could produce a drop-in replacement for our existing implementation.

Second, Zerocoin currently derives both its anonymity and security against counterfeiting

from strong cryptographic assumptions at the cost of substantially increased computational complexity

and size. As discussed in section 2.4.2, anonymity is relatively cheap, and this cost is principally

driven by the anti-counterfeiting requirement, manifesting itself through the size of the coins and the
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proofs used.

In Bitcoin, counterfeiting a coin is not computationally prohibitive, it is merely computa-

tionally costly, requiring the user to obtain control of at least 51% of the network. This provides a

possible alternative to our standard cryptographic assumptions: rather than the strong assumption

that computing discrete logs is infeasible, we might construct our scheme on the weak assumption

that there is no financial incentive to break our construction as the cost of computing a discrete log

exceeds the value of the resulting counterfeit coins.

For example, if we require spends to prove that fresh and random bases were used in the

commitments for the corresponding mint transaction (e.g., by selecting the bases for the commitment

from the hash of the coin serial number and proving that the serial number is fresh), then it appears

that an attacker can only forge a single zerocoin per discrete log computation. Provided the cost of

computing such a discrete log is greater than the value of a zerocoin, forging a coin is not profitable.

How small this allows us to make the coins is an open question. There is relatively little work

comparing the asymptotic difficulty of solving multiple distinct discrete logs in a fixed group,20 and

it is not clear how theory translates into practice. We leave these questions, along with the security

of the above proposed construction, as issues for future work.

Finally, we believe that further research could lead to different tradeoffs between security,

accountability, and anonymity. A common objection to Bitcoin is that it can facilitate money

laundering by circumventing legally binding financial reporting requirements. We propose that

additional protocol modifications (e.g., the use of anonymous credentials [52]) might allow users to

maintain their anonymity while demonstrating compliance with reporting requirements.

Acknowledgements. We thank Stephen Checkoway, George Danezis, and the anonymous reviewers for
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Research under contract N00014-11-1-0470, and DARPA and the Air Force Research Laboratory

(AFRL) under contract FA8750-11-2-0211.

20We note that both SSH and the Internet Key Exchange protocol used in IPv6 use fixed Diffie-Hellman parameters.
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Zerocash

This chaper is based of joint work with Eli Ben-Sasson , Alessandro Chiesa , Christina

Garman, Matthew Green, Eran Tromer, and Madars Virza titled ”Zerocash: Decentralized Anonymous

Payments from Bitcoin,” appearing in the 2014 IEEE Symposium on Security and Privacy. [23]

3.1 Introduction

(1) We introduce the notion of a decentralized anonymous payment scheme, which formally captures

the functionality and security guarantees of a full-fledged decentralized electronic currency with

strong anonymity guarantees. We provide a construction of this primitive and prove its security

under specific cryptographic assumptions. The construction leverages recent advances in the area of

zero-knowledge proofs. Specifically, it uses zero-knowledge Succinct Non-interactive ARguments of

Knowledge (zk-SNARKs) [53, 54, 55, 56, 57, 18, 58, 59].

(2) We implement the above primitive, via a system that we call Zerocash. Our system (at 128 bits

of security):

• reduces the size of transactions spending a coin to under 1 kB (an improvement of over 97.7%);

• reduces the spend-transaction verification time to under 6 ms (an improvement of over 98.6%);

44



CHAPTER 3. ZEROCASH

• allows for anonymous transactions of variable amounts;

• hides transaction amounts and the values of coins held by users; and

• allows for payments to be made directly to a user’s fixed address (without user interaction).

To validate our system, we measured its performance and established feasibility by conducting

experiments in a test network of 1000 nodes (approximately 1
16 of the unique IPs in the Bitcoin

network and 1
3 of the nodes reachable at any given time [60]). This inspires confidence that Zerocash

can be deployed as a fork of Bitcoin and operate at the same scale. Thus, due to its substantially

improved functionality and performance, Zerocash makes it possible to entirely replace traditional

Bitcoin payments with anonymous alternatives.

Concurrent work. The idea of using zk-SNARKs in the Bitcoin setting was first presented by one

of the authors at Bitcoin 2013 [61]. In concurrent work, Danezis et al. [62] suggest using zk-SNARKs

to reduce proof size and verification time in Zerocoin; see Section 3.9 for a comparison.

3.1.1 zk-SNARKs

A zk-SNARK is an efficient variant of a zero-knowledge proof of knowledge [63], which we

first informally describe via an example. Suppose Alice wishes to prove to Bob the statement “I

(Alice) own 30 bitcoins”. A simple method for Alice to do so is to point to 30 coins on the block chain

and, for each of them, sign a message (“hello, world”) using the secret key that controls that coin.

Alas, this method leaks knowledge to Bob, by identifying which coins are Alice’s. A zero-knowledge

proof of knowledge allows Alice to achieve the same goal, while revealing no information to Bob

(beyond the fact that she knows some secret keys that control 30 coins). Crucially, such proofs can be

obtained for any statement that can be verified to be true by use of an efficient computation involving

auxiliary inputs such as trapdoors and passwords (such statements are called “NP statements”).

We now sketch in more technical terms the definition of a zk-SNARK; see Section 3.2 for

more details. A zk-SNARK is a non-interactive zero-knowledge proof of knowledge that is succinct,

i.e., for which proofs are very short and easy to verify. More precisely, let L be an NP language, and
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let C be a nondeterministic decision circuit for L on a given instance size n. A zk-SNARK can be

used to prove and verify membership in L, for instances of size n, as follows. After taking C as input,

a trusted party conducts a one-time setup phase that results in two public keys: a proving key pk

and a verification key vk. The proving key pk enables any (untrusted) prover to produce a proof π

attesting to the fact that x ∈ L, for an instance x (of size n) of his choice. The non-interactive proof

π is zero knowledge and a proof of knowledge. Anyone can use the verification key vk to verify the

proof π; in particular zk-SNARK proofs are publicly verifiable: anyone can verify π, without ever

having to interact with the prover who generated π. Succinctness requires that (for a given security

level) π has constant size and can be verified in time that is linear in |x| (rather than linear in |C|).

3.1.2 Centralized anonymous payment systems

Before describing our new decentralized payment system, we put it in context by recalling

two pre-Bitcoin payment schemes, both of which relied on a bank, acting as a central trusted party.

Anonymous e-cash. Chaum [11] first obtained anonymous e-cash. In Chaum’s scheme, the

minting of a coin involves both a user, Alice, and the bank: to mint a coin of a given value v, Alice

first selects a random secret serial number sn (unknown to the bank); then, the bank, after deducting

v from Alice’s balance, signs sn via a blind signature. Afterwards, if Alice wants to transfer her

coin to Bob, she reveals sn to him and proves that sn was signed by the bank; during this transfer,

Bob (or the bank) cannot deduce Alice’s identity from the revealed information. Double-spending is

prevented because the bank will not honor a coin with a previously-seen serial number.

Unforgeable e-cash. One problem with Chaum’s scheme is that coins can be forged if the bank’s

secret key is compromised. Sander and Ta-Shma [44] addressed this, as follows. The bank maintains

a public Merkle tree of “coin commitments”, and users periodically retrieve its root rt; in particular,

the bank maintains no secrets. When Alice requests a coin (of unit value), she picks a random serial

number sn and auxiliary string r, and then sends cm := CRH(sn‖r) to the bank, where CRH is a

collision-resistant hash; the bank deducts the appropriate amount from Alice’s balance and then
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records cm as a leaf in the Merkle tree. Afterwards, to pay Bob, Alice sends him sn along with

a zero-knowledge proof of knowledge π of the following NP statement: “there exists r such that

CRH(sn‖r) is a leaf in a Merkle tree with root rt”. In other words, Alice can convince Bob that sn is

the serial number contained in some coin commitment in the Merkle tree; but the zero-knowledge

property prevents Bob from learning information about which coin commitment is Alice’s, thereby

protecting Alice’s identity. Later, Bob can “cash out” Alice’s coin by showing sn and π to the bank.1

Moving to a fungible anonymous decentralized system. In this paper, like [44], we hash a

coin’s serial number and use Merkle trees to compactly represent the set of minted coins. Unlike [44],

we also ensure the privacy of a coin’s value and support transactions that split and merge coins,

thus achieving (and implementing) a new kind of fully-fungible and divisible payment scheme. As

in Bitcoin (and in stark contrast to previous e-cash schemes), we do not rely on a trusted bank.

Therefore, we require a new set of definitions and protocols, designed to protect Alice’s anonymity

while preventing her from falsely increasing her balance under the veil of her boosted privacy. An

informal description of our payment scheme follows.

3.1.3 Decentralized anonymous payment schemes

We construct a decentralized anonymous payment (DAP) scheme, which is a decentralized

e-cash scheme that allows direct anonymous payments of any amount. See Section 3.3 for a formal

definition. Here, we outline our construction in six incremental steps; the construction details are in

Section 3.4.

Our construction functions on top of any ledger-based base currency, such as Bitcoin. At

any given time, a unique valid snapshot of the currency’s ledger is available to all users. The ledger is

a sequence of transactions and is append-only. Transactions include both the underlying currency’s

transactions, as well as new transactions introduced by our construction. For concreteness, we focus

the discussion below on Bitcoin (though later definitions and constructions are stated abstractly).

1We omit details about how the bank can identify Alice in the event that she double spends her coin.
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Step 1: user anonymity with fixed-value coins. We first describe a simplified construction,

in which all coins have the same value of, e.g., 1 BTC. This construction, similar to the Zerocoin

protocol, shows how to hide a payment’s origin. In terms of tools, we make use of zk-SNARKs

(recalled above) and a commitment scheme. Let COMM denote a statistically-hiding non-interactive

commitment scheme (i.e., given randomness r and message m, the commitment is c := COMMr(m);

subsequently, c is opened by revealing r and m, and one can verify that COMMr(m) equals c).

In the simplified construction, a new coin c is minted as follows: a user u samples a random

serial number sn and a trapdoor r, computes a coin commitment cm := COMMr(sn), and sets

c := (r, sn, cm). A corresponding mint transaction txMint, containing cm (but not sn or r), is sent

to the ledger; txMint is appended to the ledger only if u has paid 1 BTC to a backing escrow pool

(e.g., the 1 BTC may be paid via plaintext information encoded in txMint). Mint transactions are thus

certificates of deposit, deriving their value from the backing pool.

Subsequently, letting CMList denote the list of all coin commitments on the ledger, u may

spend c by posting a spend transaction txSpend that contains (i) the coin’s serial number sn; and (ii) a

zk-SNARK proof π of the NP statement “I know r such that COMMr(sn) appears in the list CMList

of coin commitments”. Assuming that sn does not already appear on the ledger (as part of a past

spend transaction), u can redeem the deposited amount of 1 BTC, which u can either keep, transfer

to someone else, or mint a new coin. (If sn does already appear on the ledger, this is considered

double spending, and the transaction is discarded.)

User anonymity is achieved because the proof π is zero-knowledge: while sn is revealed, no

information about r is, and finding which of the numerous commitments in CMList corresponds to a

particular spend transaction txSpend is equivalent to inverting f(x) := COMMx(sn), which is assumed

to be infeasible. Thus, the origin of the payment is anonymous.

Step 2: compressing the list of coin commitments. In the above NP statement, CMList is

specified explicitly as a list of coin commitments. This naive representation severely limits scalability

because the time and space complexity of most protocol algorithms (e.g., the proof verification
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algorithm) grow linearly with CMList. Moreover, coin commitments corresponding to already-spent

coins cannot be dropped from CMList to reduce costs, since they cannot be identified (due to the

same zero-knowledge property that provides anonymity).

As in [44], we rely on a collision-resistant function CRH to avoid an explicit representation

of CMList. We maintain an efficiently-updatable append-only CRH-based Merkle tree Tree(CMList)

over the (growing) list CMList and let rt denote the root of Tree(CMList). It is well-known that rt

can be updated to account for the insertion of new leaves with time and space proportional to just

the tree depth. Hence, the time and space complexity is reduced from linear in the size of CMList

to logarithmic. With this in mind, we modify the NP statement to the following one: “I know r

such that COMMr(sn) appears as a leaf in a CRH-based Merkle tree whose root is rt”. Compared

with the naive data structure for CMList, this modification increases exponentially the size of CMList

that a given zk-SNARK implementation can support. (Concretely: using Merkle trees of depth 64,

Zerocash supports 264 coins.)

Step 3: extending coins for direct anonymous payments. So far, the coin commitment cm

of a coin c is a commitment to the coin’s serial number sn. However, this creates a problem when

transferring c to another user. Indeed, suppose that a user uA created c, and uA sends c to another

user uB. First, since uA knows sn, the spending of c by uB is both non-anonymous (since uA sees

when c is spent, by recognizing sn) and risky (since uA could still spend c first). Thus, uB must

immediately spend c and mint a new coin c′ to protect himself. Second, if uA in fact wants to

transfer to uB, e.g., 100 BTC, then doing so is both unwieldy (since it requires 100 transfers) and

non-anonymous (since the amount of the transfer is leaked). And third, transfers in amounts that are

not multiples of 1 BTC (the fixed value of a coin) are not supported. Thus, the simplified construction

described is inadequate as a payment scheme.

We address this by modifying the derivation of a coin commitment, and using pseudorandom

functions to target payments and to derive serial numbers, as follows. We use three pseudorandom

functions (derived from a single one). For a seed x, these are denoted PRFaddr
x (·), PRFsn

x (·), and
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PRFpk
x (·). We assume that PRFsn is moreover collision-resistant.

To provide targets for payments, we use addresses: each user u generates an address key

pair (apk, ask), the address public key and address private key respectively. The coins of u contain the

value apk and can be spent only with knowledge of ask. A key pair (apk, ask) is sampled by selecting a

random seed ask and setting apk := PRFaddr
ask

(0). A user can generate and use any number of address

key pairs.

Next, we redesign minting to allow for greater functionality. To mint a coin c of a desired

value v, the user u first samples ρ, which is a secret value that determines the coin’s serial number

as sn := PRFsn
ask

(ρ). Then, u commits to the tuple (apk, v, ρ) in two phases: (a) u computes

k := COMMr(apk‖ρ) for a random r; and then (b) u computes cm := COMMs(v‖k) for a random

s. The minting results in a coin c := (apk, v, ρ, r, s, cm) and a mint transaction txMint := (v, k, s, cm).

Crucially, due to the nested commitment, anyone can verify that cm in txMint is a coin commitment

of a coin of value v (by checking that COMMs(v‖k) equals cm) but cannot discern the owner (by

learning the address key apk) or serial number (derived from ρ) because these are hidden in k. As

before, txMint is accepted by the ledger only if u deposits the correct amount, in this case v BTC.

Coins are spent using the pour operation, which takes a set of input coins, to be consumed,

and “pours” their value into a set of fresh output coins — such that the total value of output

coins equals the total value of the input coins. Suppose that u, with address key pair (aold
pk , a

old
sk ),

wishes to consume his coin cold = (aold
pk , v

old, ρold, rold, sold, cmold) and produce two new coins cnew
1

and cnew
2 , with total value vnew

1 + vnew
2 = vold, respectively targeted at address public keys anew

pk,1

and anew
pk,2. (The addresses anew

pk,1 and anew
pk,2 may belong to u or to some other user.) The user u, for

each i ∈ {1, 2}, proceeds as follows: (i) u samples serial number randomness ρnew
i ; (ii) u computes

knew
i := COMMrnew

i
(anew

pk,i‖ρnew
i ) for a random rnew

i ; and (iii) u computes cmnew
i := COMMsnew

i
(vnew
i ‖knew

i )

for a random snew
i .

This yields the coins cnew
1 := (anew

pk,1, v
new
1 , ρnew

1 , rnew
1 , snew

1 , cmnew
1 ) and cnew

2 := (anew
pk,2, v

new
2 ,

ρnew
2 , rnew

2 , snew
2 , cmnew

2 ). Next, u produces a zk-SNARK proof πPOUR for the following NP statement,
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which we call POUR:

“Given the Merkle-tree root rt, serial number snold, and coin commitments cmnew
1 , cmnew

2 , I know

coins cold, cnew
1 , cnew

2 , and address secret key aold
sk such that:

• The coins are well-formed: for cold it holds that kold = COMMrold(aold
pk ‖ρold) and cmold =

COMMsold(vold‖kold); and similarly for cnew
1 and cnew

2 .

• The address secret key matches the public key: aold
pk = PRFaddr

aold
sk

(0).

• The serial number is computed correctly: snold := PRFsn
aold

sk
(ρold).

• The coin commitment cmold appears as a leaf of a Merkle-tree with root rt.

• The values add up: vnew
1 + vnew

2 = vold.”

A resulting pour transaction txPour := (rt, snold, cmnew
1 , cmnew

2 , πPOUR) is appended to the ledger.

(As before, the transaction is rejected if the serial number sn appears in a previous transaction.)

Now suppose that u does not know, say, the address secret key anew
sk,1 that is associated with

the public key anew
pk,1. Then, u cannot spend cnew

1 because he cannot provide anew
sk,1 as part of the witness

of a subsequent pour operation. Furthermore, when a user who knows anew
sk,1 does spend cnew

1 , the

user u cannot track it, because he knows no information about its revealed serial number, which is

snnew
1 := PRFsn

anew
sk,1

(ρnew
1 ).

Also observe that txPour reveals no information about how the value of the consumed coin

was divided among the two new fresh coins, nor which coin commitment corresponds to the consumed

coin, nor the address public keys to which the two new fresh coins are targeted. The payment was

conducted in full anonymity.

More generally, a user may pour Nold ≥ 0 coins into Nnew ≥ 0 coins. For simplicity we

consider the case Nold = Nnew = 2, without loss of generality. Indeed, for Nold < 2, the user can mint

a coin with value 0 and then provide it as a “null” input, and for Nnew < 2, the user can create (and

discard) a new coin with value 0. For Nold > 2 or Nnew > 2, the user can compose logNold + logNnew

of the 2-input/2-output pours.

Step 4: sending coins. Suppose that anew
pk,1 is the address public key of u1. In order to allow u1
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to actually spend the new coin cnew
1 produced above, u must somehow send the secret values in

cnew
1 to u1. One way is for u to send u1 a private message, but the requisite private communication

channel necessitates additional infrastructure or assumptions. We avoid this “out-of-band” channel

and instead build this capability directly into our construction by leveraging the ledger as follows.

We modify the structure of an address key pair. Each user now has a key pair (addrpk, addrsk),

where addrpk = (apk, pkenc) and addrsk = (ask, skenc). The values (apk, ask) are generated as before. In

addition, (pkenc, skenc) is a key pair for a key-private encryption scheme [64].

Then, u computes the ciphertext C1 that is the encryption of the plaintext (vnew
1 , ρnew

1 , rnew
1 , snew

1 ),

under pknew
enc,1 (which is part of u1’s address public key addrnew

sk,1), and includes C1 in the pour trans-

action txPour. The user u1 can then find and decrypt this message (using his sknew
enc,1) by scanning

the pour transactions on the public ledger. Again, note that adding C1 to txPour leaks neither paid

amounts, nor target addresses due to the key-private property of the encryption scheme. (The user u

does the same with cnew
2 and includes a corresponding ciphertext C2 in txPour.)

Step 5: public outputs. The construction so far allows users to mint, merge, and split coins.

But how can a user redeem one of his coins, i.e., convert it back to the base currency (Bitcoin)? For

this, we modify the pour operation to include a public output. When spending a coin, the user u also

specifies a nonnegative vpub and a transaction string info ∈ {0, 1}∗. The balance equation in the NP

statement POUR is changed accordingly: “vnew
1 + vnew

2 + vpub = vold”. Thus, of the input value vold, a

part vpub is publicly declared, and its target is specified, somehow, by the string info. The string info

can be used to specify the destination of these redeemed funds (e.g., a Bitcoin wallet public key).2

Both vpub and info are now included in the resulting pour transaction txPour. (The public output is

optional, as the user u can set vpub = 0.)

Step 6: non-malleability. To prevent malleability attacks on a pour transaction txPour (e.g.,

embezzlement by re-targeting the public output of the pour by modifying info), we further modify

the NP statement POUR and use digital signatures. Specifically, during the pour operation, the user u

2These public outputs can be considered as an “input” to a Bitcoin-style transaction, where the string info contains
the Bitcoin output scripts. This mechanism also allows us to support Bitcoin’s public transaction fees.
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(i) samples a key pair (pksig, sksig) for a one-time signature scheme; (ii) computes hSig := CRH(pksig);

(iii) computes the two values h1 := PRFpk

aold
sk,1

(hSig) and h2 := PRFpk

aold
sk,2

(hSig), which act as MACs to

“tie” hSig to both address secret keys; (iv) modifies POUR to include the three values hSig, h1, h2 and

prove that the latter two are computed correctly; and (v) uses sksig to sign every value associated

with the pour operation, thus obtaining a signature σ, which is included, along with pksig, in txPour.

Since the aold
sk,i are secret, and with high probability hSig changes for each pour transaction, the values

h1, h2 are unpredictable. Moreover, the signature on the NP statement (and other values) binds all

of these together, as argued in more detail in Appendix B.2 and Appendix B.3.

This ends the outline of the construction, which is summarized in part in Figure 3.1. We conclude

by noting that, due to the zk-SNARK, our construction requires a one-time trusted setup of public

parameters. The soundness of the proofs depends on this trust, though anonymity continues to hold

even if the setup is corrupted by a malicious party.

… 

(c) coin commitment

rt
(a) Merke tree over (cm1,cm2,…)

cm

CRH CRH

CRH

CRH CRH

CRH

CRH

cm1 cm2cm3 cm4cm5cm6cm7 cm8

CRH CRH

CRH

COMM

v

ρ
���

PRFsn

PRFaddr

s ���

COMM
r

���

sn

�

(d) serial number

rt = Merkle-tree root
cm = coin commitment
sn = serial number
v = coin value
r, s = commitment rand.
ρ = serial number rand.
(apk,pkenc) = address public key

(ask,skenc) = address secret key

c = ((apk,pkenc), v, ρ, r, s, cm)
(b) coin

Figure 3.1: (a) Illustration of the CRH-based Merkle tree over the list CMList of coin commitments.
(b) A coin c. (c) Illustration of the structure of a coin commitment cm. (d) Illustration of the
structure of a coin serial number sn.

3.1.4 Zerocash

We outline Zerocash, a concrete implementation, at 128 bits of security, of our DAP scheme

construction; see Section 3.5 for details. Zerocash entails carefully instantiating the cryptographic
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ingredients of the construction to ensure that the zk-SNARK, the “heaviest” component, is efficient

enough in practice. In the construction, the zk-SNARK is used to prove/verify a specific NP

statement: POUR. While zk-SNARKs are asymptotically efficient, their concrete efficiency depends

on the arithmetic circuit C that is used to decide the NP statement. Thus, we seek instantiations for

which we can design a relatively small arithmetic circuit CPOUR for verifying the NP statement POUR.

Our approach is to instantiate all of the necessary cryptographic ingredients (commitment

schemes, pseudorandom functions, and collision-resistant hashing) based on SHA256. We first design

a hand-optimized circuit for verifying SHA256 computations (or, more precisely, its compression

function, which suffices for our purposes).3 Then, we use this circuit to construct CPOUR, which verifies

all the necessary checks for satisfying the NP statement CPOUR.

This, along with judicious parameter choices, and a state-of-the-art implementation of a

zk-SNARK for arithmetic circuits [59] (see Section 3.2.4), results in a zk-SNARK prover running

time of a few minutes and zk-SNARK verifier running time of a few milliseconds. This allows the

DAP scheme implementation to be practical for deployment, as our experiments show.

Zerocash can be integrated into Bitcoin or forks of it (commonly referred to as “altcoins”);

we later describe how this is done.

3.1.5 Paper organization

The remainder of this paper is organized as follows. Section 3.2 provides background on

zk-SNARKs. We define DAP schemes in Section 3.3, and our construction thereof in Section 3.4.

Section 3.5 discusses the concrete instantiation in Zerocash. Section 3.6 describes the integration

of Zerocash into existing ledger-based currencies. Section 3.7 provides microbenchmarks for our

prototype implementation, as well as results based on full-network simulations. Section 3.8 describes

optimizations. We discuss concurrent work in Section 3.9 and summarize our contributions and

3Alternatively, we could have opted to rely on the circuit generators [57, 18, 59], which support various classes of C
programs, by writing C code expressing the POUR checks. However, as discussed later, these generic approaches are
more expensive than our hand-optimized construction.
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future directions in Section 3.10.

3.2 Background on zk-SNARKs

The main cryptographic primitive used in this paper is a special kind of Succinct Non-

interactive ARgument of Knowledge (SNARK). Concretely, we use a publicly-verifiable preprocessing

zero-knowledge SNARK, or zk-SNARK for short. In this section we provide basic background on

zk-SNARKs, provide an informal definition, compare zk-SNARKs with the more familiar notion of

NIZKs, and recall known constructions and implementations.

3.2.1 Informal definition

We informally define zk-SNARKs for arithmetic circuit satisfiability. We refer the reader

to, e.g., [55] for a formal definition.

For a field F, an F-arithmetic circuit takes inputs that are elements in F, and its gates

output elements in F. We naturally associate a circuit with the function it computes. To model

nondeterminism we consider circuits that have an input x ∈ Fn and an auxiliary input a ∈ Fh, called

a witness. The circuits we consider only have bilinear gates.4 Arithmetic circuit satisfiability is

defined analogously to the boolean case, as follows.

Definition 3.2.1. The arithmetic circuit satisfiability problem of an F-arithmetic circuit C : Fn ×

Fh → Fl is captured by the relation RC = {(x, a) ∈ Fn × Fh : C(x, a) = 0l}; its language is

LC = {x ∈ Fn : ∃ a ∈ Fh s.t. C(x, a) = 0l}.

Given a field F, a (publicly-verifiable preprocessing) zk-SNARK for F-arithmetic circuit

satisfiability is a triple of polynomial-time algorithms (KeyGen,Prove,Verify):

• KeyGen(1λ, C) → (pk, vk). On input a security parameter λ (presented in unary) and an F-

arithmetic circuit C, the key generator KeyGen probabilistically samples a proving key pk and a

4A gate with inputs y1, . . . , ym ∈ F is bilinear if the output is 〈~a, (1, y1, . . . , ym)〉 · 〈~b, (1, y1, . . . , ym)〉 for some

~a,~b ∈ Fm+1. These include addition, multiplication, negation, and constant gates.
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verification key vk. Both keys are published as public parameters and can be used, any number of

times, to prove/verify membership in LC .

• Prove(pk, x, a)→ π. On input a proving key pk and any (x, a) ∈ RC , the prover Prove outputs a

non-interactive proof π for the statement x ∈ LC .

• Verify(vk, x, π)→ b. On input a verification key vk, an input x, and a proof π, the verifier Verify

outputs b = 1 if he is convinced that x ∈ LC .

A zk-SNARK satisfies the following properties.

Completeness. For every security parameter λ, any F-arithmetic circuit C, and any (x, a) ∈ RC ,

the honest prover can convince the verifier. Namely, b = 1 with probability 1 − negl(λ) in the

following experiment: (pk, vk)← KeyGen(1λ, C); π ← Prove(pk, x, a); b← Verify(vk, x, π).

Succinctness. An honestly-generated proof π has Oλ(1) bits and Verify(vk, x, π) runs in time Oλ(|x|).

(Here, Oλ hides a fixed polynomial factor in λ.)

Proof of knowledge (and soundness). If the verifier accepts a proof output by a bounded prover,

then the prover “knows” a witness for the given instance. (In particular, soundness holds against

bounded provers.) Namely, for every poly(λ)-size adversary A, there is a poly(λ)-size extractor E

such that Verify(vk, x, π) = 1 and (x, a) 6∈ RC with probability negl(λ) in the following experiment:

(pk, vk)← KeyGen(1λ, C); (x, π)← A(pk, vk); a← E(pk, vk).

Perfect zero knowledge. An honestly-generated proof is perfect zero knowledge.5 Namely, there

is a polynomial-time simulator Sim such that for all stateful distinguishers D the following two

probabilities are equal:

5While most zk-SNARK descriptions in the literature only mention statistical zero knowledge, all zk-SNARK
constructions can be made perfect zero knowledge by allowing for a negligible error probability in completeness.
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Pr


(x, a) ∈ RC

D(π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, vk)← KeyGen(1λ, C)

(x, a)← D(pk, vk)

π ← Prove(pk, x, a)


(the probability that D(π) = 1 on an honest proof)

and Pr


(x, a) ∈ RC

D(π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, vk, trap)← Sim(1λ, C)

(x, a)← D(pk, vk)

π ← Sim(trap, x)

 .

(the probability that D(π) = 1 on a simulated proof)

Remark. Both proof of knowledge and zero knowledge are essential to the use of zk-SNARKs in

this paper. Indeed, we consider circuits C that verify assertions about cryptographic primitives (such

as using a knowledge of SHA256 pre-image as a binding commitment). Thus it does not suffice to

merely know that, for a given input x, a witness for x ∈ LC exists. Instead, proof of knowledge

ensures that a witness can be efficiently found (by extracting it from the prover) whenever the verifier

accepts a proof. As for zero knowledge, it ensures that a proof leaks no information about the witness,

beyond the fact that x ∈ LC .

Remark. In the security proofs (see Appendix B.3), we deal with provers producing a vector of

inputs ~x together with a vector of corresponding proofs ~π. In such cases, it is convenient to use an

extractor that can extract a vector of witnesses ~a containing a valid witness for each valid proof. This

“multi-instance” extraction follows from the “single-instance” one described above [65, 66]. Namely, if

(KeyGen,Prove,Verify) is a zk-SNARK, then for any poly(λ)-size prover adversary A there exists a

poly(λ)-size extractor E such that

Pr

 ∃ i s.t.
Verify(vk, xi, πi) = 1

(xi, ai) /∈ RC

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, vk)← KeyGen(1λ, C)

(~x, ~π)← A(pk, vk)

~a← E(pk, vk)

 ≤ negl(λ) .

3.2.2 Comparison with NIZK

zk-SNARKs are related to a familiar cryptographic primitive: non-interactive zero-knowledge

proofs of knowledge (NIZKs). Both zk-SNARKs and NIZKs require a one-time trusted setup of
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public parameters (proving and verification keys for zk-SNARKs, and a common reference string for

NIZKs). Both provide the same guarantees of completeness, proof of knowledge, and zero knowledge.

The difference lies in efficiency guarantees. In a NIZK, the proof length and verification time depend

on the NP language being proved. For instance, for the language of circuit satisfiability, the proof

length and verification time in [67, 68] are linear in the circuit size. Conversely, in a zk-SNARK,

proof length depends only on the security parameter, and verification time depends only on the

instance size (and security parameter) but not on the circuit or witness size.

Thus, zk-SNARKs can be thought of as “succinct NIZKs”, having short proofs and fast

verification times. Succinctness comes with a caveat: known zk-SNARK constructions rely on stronger

assumptions than NIZKs do (see below).

3.2.3 Known constructions and security

There are many zk-SNARK constructions in the literature [53, 54, 55, 56, 57, 18, 58, 59].

We are interested in zk-SNARKs for arithmetic circuit satisfiability, and the most efficient ones for

this language are based on quadratic arithmetic programs [56, 55, 57, 18, 59]; such constructions

provide a linear-time KeyGen, quasilinear-time Prove, and linear-time Verify.

Security of zk-SNARKs is based on knowledge-of-exponent assumptions and variants of Diffie–

Hellman assumptions in bilinear groups [53, 69, 70]. While knowledge-of-exponent assumptions are

fairly strong, there is evidence that such assumptions may be inherent for constructing zk-SNARKs [71,

65].

Remark (fully-succinct zk-SNARKs). The key generator KeyGen takes a circuit C as input. Thus,

KeyGen’s running time is at least linear in the size of the circuit C. One could require KeyGen

to not have to take C as input, and have its output keys work for all (polynomial-size) circuits

C. In such a case, KeyGen’s running time would be independent of C. A zk-SNARK satisfying

this stronger property is fully succinct. Theoretical constructions of fully-succinct zk-SNARKs are

known, based on various cryptographic assumptions [72, 73, 66]. Despite achieving essentially-optimal
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asymptotics [74, 75, 76, 77, 66] no implementations of them have been reported in the literature to

date.

3.2.4 zk-SNARK implementations

There are three published implementations of zk-SNARKs: (i) Parno et al. [57] present

an implementation of zk-SNARKs for programs having no data dependencies;6 (ii) Ben-Sasson et

al. [18] present an implementation of zk-SNARKs for arbitrary programs (with data dependencies);

and (iii) Ben-Sasson et al. [59] present an implementation of zk-SNARKs that supports programs

that modify their own code (e.g., for runtime code generation); their implementation also reduces

costs for programs of larger size and allows for universal key pairs.

Each of the works above also achieves zk-SNARKs for arithmetic circuit satisfiability as

a stepping stone towards their respective higher-level efforts. In this paper we are only interested

in a zk-SNARK for arithmetic circuit satisfiability, and we rely on the implementation of [59] for

such a zk-SNARK.7 The implementation in [59] is itself based on the protocol of Parno et al. [57].

We thus refer the interested reader to [57] for details of the protocol, its intuition, and its proof of

security; and to [59] for the implementation and its performance. In terms of concrete parameters,

the implementation of [59] provides 128 bits of security, and the field F is of a 256-bit prime order p.

3.3 Definition of a decentralized anonymous payment scheme

We introduce the notion of a decentralized anonymous payment scheme (DAP scheme),

extending the notion of decentralized e-cash [23]. Later, in Section 3.4, we provide a construction.

6They only support programs where array indices are restricted to be known compile-time constants; similarly, loop
iteration counts (or at least upper bounds to these) must be known at compile time.

7In [59], one optimization to the verifier’s runtime requires preprocessing the verification key vk; for simplicity, we
do not use this optimization.
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3.3.1 Data structures

We begin by describing, and giving intuition about, the data structures used by a DAP

scheme. The algorithms that use and produce these data structures are introduced in Section 3.3.2.

Basecoin ledger. Our protocol is applied on top of a ledger-based base currency such as Bitcoin;

for generality we refer to this base currency as Basecoin. At any given time T , all users have access

to LT , the ledger at time T , which is a sequence of transactions. The ledger is append-only (i.e.,

T < T ′ implies that LT is a prefix of LT ′).
8 The transactions in the ledger include both Basecoin

transactions as well as two new transaction types described below.

Public parameters. A list of public parameters pp is available to all users in the system. These

are generated by a trusted party at the “start of time” and are used by the system’s algorithms.

Addresses. Each user generates at least one address key pair (addrpk, addrsk). The public key

addrpk is published and enables others to direct payments to the user. The secret key addrsk is used

to receive payments sent to addrpk. A user may generate any number of address key pairs.

Coins. A coin is a data object c, to which we associate the following.

• A coin commitment, denoted cm(c): a string that appears on the ledger once c is minted.

• A coin value, denoted v(c): the denomination of c, as measured in basecoins, as an integer between

0 and a maximum value vmax (which is a system parameter).

• A coin serial number, denoted sn(c): a unique string associated with c, used to prevent double

spending.

• A coin address, denoted addrpk(c): an address public key, representing who owns c.

Any other quantities associated with a coin c (e.g., various trapdoors) are implementation details.

New transactions. Besides Basecoin transactions, there are two new types of transactions.

• Mint transactions. A mint transaction txMint is a tuple (cm, v, ∗), where cm is a coin commitment,

v is a coin value, and ∗ denotes other (implementation-dependent) information. The transaction

8In reality, the Basecoin ledger (such as the one of Bitcoin) is not perfect and may incur temporary inconsistencies.
In this respect our construction is as good as the underlying ledger. We discuss the effects of this on anonymity and
mitigations in Section 3.6.5.
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txMint records that a coin c with coin commitment cm and value v has been minted.

• Pour transactions. A pour transaction txPour is a tuple (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, info, ∗),

where rt is a root of a Merkle tree, snold
1 , snold

2 are two coin serial numbers, cmnew
1 , cmnew

2 are

two coin commitments, vpub is a coin value, info is an arbitrary string, and ∗ denotes other

(implementation-dependent) information. The transaction txPour records the pouring of two input

(and now consumed) coins cold
1 , cold

2 , with respective serial numbers snold
1 , snold

2 , into two new output

coins cnew
1 , cnew

2 , with respective coin commitments cmnew
1 , cmnew

2 , as well as a public output vpub

(which may be zero). Furthermore, txPour also records an information string info (perhaps containing

information on who is the recipient of vpub basecoins) and that, when this transaction was made,

the root of the Merkle tree over coin commitments was rt (see below).

Commitments of minted coins and serial numbers of spent coins. For any given time T ,

• CMListT denotes the list of all coin commitments appearing in mint and pour transactions in LT ;

• SNListT denotes the list of all serial numbers appearing in pour transactions in LT .

While both of these lists can be deduced from LT , it will be convenient to think about them as

separate (as, in practice, these may be separately maintained for efficiency reasons; cf. Section 3.8.3).

Merkle tree over commitments. For any given time T , TreeT denotes a Merkle tree over

CMListT and rtT its root. Moreover, the function PathT (cm) gives the authentication path from a

coin commitment cm appearing in CMListT to the root of TreeT .9 For convenience, we assume that

LT also stores rtT ′ for all T ′ ≤ T (i.e., it stores all past Merkle tree roots).

3.3.2 Algorithms

A DAP scheme Π is a tuple of polynomial-time algorithms

(Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive)

with the following syntax and semantics.

9While we refer to Mekle trees for simplicity, it is straightforward to extend the definition to allow other data
structures representing sets with fast insertion and efficient proofs of membership.
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System setup. The algorithm Setup generates a list of public parameters:

Setup

• inputs: security parameter λ

• outputs: public parameters pp

The algorithm Setup is executed by a trusted party. The resulting public parameters pp are published

and made available to all parties (e.g., by embedding them into the protocol’s implementation). The

setup is done only once; afterwards, no trusted party is needed, and no global secrets or trapdoors

are kept.

Creating payment addresses. The algorithm CreateAddress generates a new address key pair:

CreateAddress

• inputs: public parameters pp

• outputs: address key pair (addrpk, addrsk)

Each user generates at least one address key pair (addrpk, addrsk) in order to receive coins. The public

key addrpk is published, while the secret key addrsk is used to redeem coins sent to addrpk. A user

may generate any number of address key pairs; doing so does not require any interaction.

Minting coins. The algorithm Mint generates a coin (of a given value) and a mint transaction:

Mint

• inputs:

– public parameters pp

– coin value v ∈ {0, 1, . . . , vmax}

– destination address public key addrpk

• outputs: coin c and mint transaction txMint

A system parameter, vmax, caps the value of any single coin. The output coin c has value v and coin

address addrpk; the output mint transaction txMint equals (cm, v, ∗), where cm is the coin commitment
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of c.

Pouring coins. The Pour algorithm transfers value from input coins into new output coins, marking

the input coins as consumed. Moreover, a fraction of the input value may be publicly revealed.

Pouring allows users to subdivide coins into smaller denominations, merge coins, and transfer

ownership of anonymous coins, or make public payments.10

Pour

• inputs:

– public parameters pp

– the Merkle root rt

– old coins cold
1 , cold

2

– old addresses secret keys addrold
sk,1, addr

old
sk,2

– authentication path path1 from commitment cm(cold
1 ) to root rt,

authentication path path2 from commitment cm(cold
2 ) to root rt

– new values vnew
1 , vnew

2

– new addresses public keys addrnew
pk,1, addr

new
pk,2

– public value vpub

– transaction string info

• outputs: new coins cnew
1 , cnew

2 and pour transaction txPour

Thus, the Pour algorithm takes as input two distinct input coins cold
1 , cold

2 , along with corresponding

address secret keys addrold
sk,1, addr

old
sk,2 (required to redeem the two input coins). To ensure that cold

1 , cold
2

have been previously minted, the Pour algorithm also takes as input the Merkle root rt (allegedly,

equal to the root of Merkle tree over all coin commitments so far), along with two authentication

paths path1, path2 for the two coin commitments cm(cold
1 ), cm(cold

2 ). Two input values vnew
1 , vnew

2

specify the values of two new anonymous coins cnew
1 , cnew

2 to be generated, and two input address

10We consider pours with 2 inputs and 2 outputs, for simplicity and (as discussed in Section 3.1.3) without loss of
generality.
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public keys addrnew
pk,1, addr

new
pk,2 specify the recipients of cnew

1 , cnew
2 . A third value, vpub, specifies the

amount to be publicly spent (e.g., to redeem coins or pay transaction fees). The sum of output values

vnew
1 + vnew

2 + vpub must be equal to the sum of the values of the input coins (and cannot exceed vmax).

Finally, the Pour algorithm also receives an arbitrary string info, which is bound into the output

pour transaction txPour.

The Pour algorithm outputs two new coins cnew
1 , cnew

2 and a pour transaction txPour. The

transaction txPour equals (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, info, ∗), where cmnew
1 , cmnew

2 are the two coin

commitments of the two output coins, and ∗ denotes other (implementation-dependent) information.

Crucially, txPour reveals only one value, the public value vpub (which may be zero); it does not reveal

the payment addresses or values of the old or new coins.

Verifying transactions. The algorithm VerifyTransaction checks the validity of a transaction:

VerifyTransaction

• inputs:

– public parameters pp

– a (mint or pour) transaction tx

– the current ledger L

• outputs: bit b, equals 1 iff the transaction is valid

Both mint and pour transactions must be verified before being considered well-formed. In practice,

transactions can be verified by the nodes in the distributed system maintaining the ledger, as well as

by users who rely on these transactions.

Receiving coins. The algorithm Receive scans the ledger and retrieves unspent coins paid to a

particular user address:

Receive

• inputs:

– recipient address key pair (addrpk, addrsk)
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– the current ledger L

• outputs: set of (unspent) received coins

When a user with address key pair (addrpk, addrsk) wishes to receive payments sent to addrpk, he uses

the Receive algorithm to scan the ledger. For each payment to addrpk appearing in the ledger, Receive

outputs the corresponding coins whose serial numbers do not appear on the ledger L. Coins received

in this way may be spent, just like minted coins, using the Pour algorithm. (We only require Receive

to detect coins paid to addrpk via the Pour algorithm and not also detect coins minted by the user

himself.)

Next, we describe completeness (Section 3.3.3) and security (Section 3.3.4).

3.3.3 Completeness

Completeness of a DAP scheme requires that unspent coins can be spent. More precisely,

consider a ledger sampler S outputting a ledger L. If c1 and c2 are two coins whose coin commitments

appear in (valid) transactions on L, but their serial numbers do not appear in L, then c1 and c2 can

be spent using Pour. Namely, running Pour results in a pour transaction txPour that VerifyTransaction

accepts, and the new coins can be received by the intended recipients (by using Receive); moreover,

txPour correctly records the intended vpub and transaction string info. This property is formalized via

an incompleteness experiment INCOMP.

Definition 3.3.1. A DAP scheme Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive)

is complete if no polynomial-size ledger sampler S wins INCOMP with more than negligible probability.

(See Appendix B.1 for details.)

3.3.4 Security

Security of a DAP scheme is characterized by three properties, which we call ledger

indistinguishability, transaction non-malleability, and balance.
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Definition 3.3.2. A DAP scheme Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive)

is secure if it satisfies ledger indistinguishability, transaction non-malleability, and balance.

Below, we provide an informal overview of each property, and defer formal definitions to Appendix B.2.

Each property is formalized as a game between an adversary A and a challenger C. In each game,

the behavior of honest parties is realized via a DAP scheme oracle ODAP, which maintains a ledger L

and provides an interface for executing CreateAddress, Mint, Pour and Receive algorithms for honest

parties. To elicit behavior from honest parties, A passes a query to C, which (after sanity checks)

proxies the query to ODAP. For each query that requests an honest party to perform an action, A

specifies identities of previous transactions and the input values, and learns the resulting transaction,

but not any of the secrets or trapdoors involved in producing that transaction. The oracle ODAP also

provides an Insert query that allows A to directly add aribtrary transactions to the ledger L.

Ledger indistinguishability. This property captures the requirement that the ledger reveals no

new information to the adversary beyond the publicly-revealed information (values of minted coins,

public values, information strings, total number of transactions, etc.), even when the adversary can

adaptively induce honest parties to perform DAP operations of his choice. That is, no bounded

adversary A can distinguish between two ledgers L0 and L1, constructed by A using queries to

two DAP scheme oracles, when the queries to the two oracles are publicly consistent : they have

matching type and are identical in terms of publicly-revealed information and the information related

to addresses controlled by A.

Ledger indistinguishability is formalized by an experiment L-IND that proceeds as follows.

First, a challenger samples a random bit b and initializes two DAP scheme oracles ODAP
0 and ODAP

1 ,

maintaining ledgers L0 and L1. Throughout, the challenger allows A to issue queries to ODAP
0 and

ODAP
1 , thus controlling the behavior of honest parties on L0 and L1. The challenger provides the

adversary with the view of both ledgers, but in randomized order: LLeft := Lb and LRight := L1−b. The

adversary’s goal is to distinguish whether the view he sees corresponds to (LLeft, LRight) = (L0, L1),
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i.e. b = 0, or to (LLeft, LRight) = (L1, L0), i.e. b = 1.

At each round of the experiment, the adversary issues queries in pairs Q,Q′ of matching

query type. If the query type is CreateAddress, then the same address is generated at both oracles.

If it is to Mint, Pour or Receive, then Q is forwarded to L0 and Q′ to L1; for Insert queries,

query Q is forwarded to LLeft and Q′ is forwarded to LRight. The adversary’s queries are restricted in

the sense that they must maintain the public consistency of the two ledgers. For example, the public

values for Pour queries must be the same, as well as minted amounts for Mint queries.

At the conclusion of the experiment, A outputs a guess b′, and wins when b = b′. Ledger

indistinguishability requires that A wins L-IND with probability at most negligibly greater than 1/2.

Transaction non-malleability. This property requires that no bounded adversary A can alter

any of the data stored within a (valid) pour transaction txPour. This transaction non-malleability

prevents malicious attackers from modifying others’ transactions before they are added to the ledger

(e.g., by re-targeting the Basecoin public output of a pour transaction).

Transaction non-malleability is formalized by an experiment TR-NM, in which A adaptively

interacts with a DAP scheme oracle ODAP and then outputs a pour transaction tx∗. Letting T denote

the set of pour transactions returned by ODAP, and L denote the final ledger, A wins the game if

there exists tx ∈ T , such that (i) tx∗ 6= tx; (ii) tx∗ reveals a serial number contained in tx; and

(iii) both tx and tx∗ are valid with respect to the ledger L′ containing all transactions preceding tx

on L. In other words, A wins the game if tx∗ manages to modify some previous pour transaction to

spend the same coin in a different way.

Transaction non-malleability requires that A wins TR-NM with only negligible probability.

(Note that A can of course produce valid pour transactions that are unrelated to those in T ; the

condition that tx∗ reveals a serial number of a previously-spent coin captures non-malleability.)

BAL. This property requires that no bounded adversary A can own more money than what he

minted or received via payments from others.

BAL is formalized by an experiment BAL, in which A adaptively interacts with a DAP
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scheme oracle ODAP and then outputs a set of coins Scoin. Letting ADDR be set of addresses returned

by CreateAddress queries (i.e., addresses of “honest” users), A wins the game if the total value

he can spend or has spent (either as coins or Basecoin public outputs) is greater than the value he

has minted or received. That is, A wins if vUnspent + vBasecoin + vA→ADDR > vMint + vADDR→A where:

(i) vUnspent is the total value of unspent coins in Scoin; (ii) vBasecoin is the total value of public outputs

placed by A on the ledger; (iii) vMint is the total value of A’s mint transactions; (iv) vADDR→A is the

total value of payments received by A from addresses in ADDR; (v) vA→ADDR is the total value of

payments sent by A to addresses in ADDR.

BAL requires that A wins BAL with only negligible probability.

3.4 Construction of a decentralized anonymous payment scheme

We show how to construct a DAP scheme (introduced in Section 3.3) using zk-SNARKs

and other building blocks. Later, in Section 3.5, we give a concrete instantiation of this construction.

3.4.1 Cryptographic building blocks

We first introduce notation for the standard cryptographic building blocks that we use.

We assume familiarity with the definitions of these building blocks; for more details, see, e.g., [78].

Throughout, λ denotes the security parameter.

Collision-resistant hashing. We use a collision-resistant hash function CRH : {0, 1}∗ → {0, 1}O(λ).

Pseudorandom functions. We use a pseudorandom function family PRF = {PRFx : {0, 1}∗ →

{0, 1}O(λ)}x where x denotes the seed. From PRFx, we derive three “non-overlapping” pseudorandom

functions, chosen arbitrarily as PRFaddr
x (z) := PRFx(00‖z) , PRFsn

x (z) := PRFx(01‖z) , PRFpk
x (z) :=

PRFx(10‖z). Furthermore, we assume that PRFsn is also collision resistant, in the sense that it is

infeasible to find (x, z) 6= (x′, z′) such that PRFsn
x (z) = PRFsn

x′ (z
′).

Statistically-hiding commitments. We use a commitment scheme COMM where the bind-
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ing property holds computationally, while the hiding property holds statistically. It is denoted

{COMMx : {0, 1}∗ → {0, 1}O(λ)}x where x denotes the commitment trapdoor. Namely, to reveal a

commitment cm to a value z, it suffices to provide z and the trapdoor x; then one can check that

cm = COMMx(z).

One-time strongly-unforgeable digital signatures. We use a digital signature scheme Sig =

(Gsig,Ksig,Ssig,Vsig) that works as follows.

• Gsig(1λ)→ ppsig. Given a security parameter λ (presented in unary), Gsig samples public parameters

ppsig for the encryption scheme.

• Ksig(ppsig)→ (pksig, sksig). Given public parameters ppsig, Ksig samples a public key and a secret

key for a single user.

• Ssig(sksig,m)→ σ. Given a secret key sksig and a message m, Ssig signs m to obtain a signature σ.

• Vsig(pksig,m, σ)→ b. Given a public key pksig, message m, and signature σ, Vsig outputs b = 1 if

the signature σ is valid for message m; else it outputs b = 0.

The signature scheme Sig satisfies the security property of one-time strong unforgeability against

chosen-message attacks (SUF-1CMA security).

Key-private public-key encryption. We use a public-key encryption scheme Enc = (Genc,Kenc,

Eenc,Denc) that works as follows.

• Genc(1
λ)→ ppenc. Given a security parameter λ (presented in unary), Genc samples public parameters

ppenc for the encryption scheme.

• Kenc(ppenc)→ (pkenc, skenc). Given public parameters ppenc, Kenc samples a public key and a secret

key for a single user.

• Eenc(pkenc,m) → c. Given a public key pkenc and a message m, Eenc encrypts m to obtain a

ciphertext c.

• Denc(skenc, c) → m. Given a secret key skenc and a ciphertext c, Denc decrypts c to produce a

message m (or ⊥ if decryption fails).

The encryption scheme Enc satisfies two security properties: (i) ciphertext indistinguishability under

69



CHAPTER 3. ZEROCASH

chosen-ciphertext attack (IND-CCA security); and (ii) key indistinguishability under chosen-ciphertext

attack (IK-CCA security). While the first property is standard, the second is less known; informally,

IK-CCA requires that ciphertexts cannot be linked to the public key used to encrypt them, or to

other ciphertexts encrypted with the same public key. For definitions, we refer the reader to [64].

3.4.2 zk-SNARKs for pouring coins

As outlined in Section 3.1.3, our construction invokes a zk-SNARK for a specific NP

statement, POUR, which we now define. We first recall the context motivating POUR. When a user u

pours “old” coins cold
1 , cold

2 into new coins cnew
1 , cnew

2 , a corresponding pour transaction

txPour = (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, info, ∗)

is generated. In our construction, we need to provide evidence in “∗” that various conditions

were respected by the pour operation. Concretely, txPour should demonstrate that (i) u owns

cold
1 , cold

2 ; (ii) coin commitments for cold
1 , cold

2 appear somewhere on the ledger; (iii) the revealed serial

numbers snold
1 , snold

2 are of cold
1 , cold

2 ; (iv) the revealed coin commitments cmnew
1 , cmnew

2 are of cnew
1 , cnew

2 ;

(v) balance is preserved. Our construction achieves this by including a zk-SNARK proof πPOUR for

the statement POUR which checks the above invariants (as well as others needed for non-malleability).

The statement POUR. Concretely, the NP statement POUR is defined as follows.

• Instances are of the form x = (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, hSig, h1, h2). Thus, an instance x

specifies a root rt for a CRH-based Merkle tree (over the list of commitments so far), the two serial

numbers of the consumed coins, two coin commitments for the two new coins, a public value, and

fields hSig, h1, h2 used for non-malleability.

• Witnesses are of the form a = (path1, path2, c
old
1 , cold

2 , addrold
sk,1, addr

old
sk,2, c

new
1 , cnew

2 ) where, for each
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i ∈ {1, 2}:

cold
i = (addrold

pk,i, v
old
i , ρold

i , rold
i , sold

i , cmold
i ) ,

cnew
i = (addrnew

pk,i, v
new
i , ρnew

i , rnew
i , snew

i , cmnew
i ) for the same cmnew

i as in x,

addrold
pk,i = (aold

pk,i, pk
old
enc,i) ,

addrnew
pk,i = (anew

pk,i, pk
new
enc,i) ,

addrold
sk,i = (aold

sk,i, sk
old
enc,i) .

Thus, a witness a specifies authentication paths for the two new coin commitments, the entirety of

coin information about both the old and new coins, and address secret keys for the old coins.

Given a POUR instance x, a witness a is valid for x if the following holds:

1. For each i ∈ {1, 2}:

(a) The coin commitment cmold
i of cold

i appears on the ledger, i.e., pathi is a valid authentication

path for leaf cmold
i with respect to root rt, in a CRH-based Merkle tree.

(b) The address secret key aold
sk,i matches the address public key of cold

i , i.e., aold
pk,i = PRFaddr

aold
sk,i

(0).

(c) The serial number snold
i of cold

i is computed correctly, i.e., snold
i = PRFsn

aold
sk,i

(ρold
i ).

(d) The coin cold
i is well-formed, i.e., cmold

i = COMMsold
i

(COMMrold
i

(aold
pk,i‖ρold

i )‖vold
i ).

(e) The coin cnew
i is well-formed, i.e., cmnew

i = COMMsnew
i

(COMMrnew
i

(anew
pk,i‖ρnew

i )‖vnew
i ).

(f) The address secret key aold
sk,i ties hSig to hi, i.e., hi = PRFpk

aold
sk,i

(i‖hSig).

2. Balance is preserved: vnew
1 + vnew

2 + vpub = vold
1 + vold

2 (with vold
1 , vold

2 ≥ 0 and vold
1 + vold

2 ≤ vmax).

Recall that in this paper zk-SNARKs are relative to the language of arithmetic circuit satisfiability

(see Section 3.2); thus, we express the checks in POUR via an arithmetic circuit, denoted CPOUR. In

particular, the depth dtree of the Merkle tree needs to be hardcoded in CPOUR, and we thus make it a

parameter of our construction (see below); the maximum number of supported coins is then 2dtree .
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3.4.3 Algorithm constructions

We proceed to describe the construction of the DAP scheme Π = (Setup,CreateAddress,

Mint,Pour,VerifyTransaction,Receive) whose intuition was given in Section 3.1.3. Figure 3.2 gives the

pseudocode for each one of the six algorithms in Π, in terms of the building blocks introduced in

Section 3.4.1 and Section 3.4.2. In the construction, we hardcode two quantities: the maximum value

of a coin, vmax, and the depth of the Merkle tree, dtree.

3.4.4 Completeness and security

Our main theorem states that the above construction is indeed a DAP scheme.

Theorem 3.4.1. The tuple Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive), as

defined in Section 3.4.3, is a complete (cf. Definition 3.3.1) and secure (cf. Definition 3.3.2) DAP

scheme.

We provide a proof of Theorem 3.4.1 in Appendix B.3. We note that our construction can be modified

to yield statistical (i.e., everlasting) anonymity; see the discussion in Section 3.8.1.

Remark (trusted setup). Security of Π relies on a trusted party running Setup to generate the

public parameters (once and for all). This trust is needed for the transaction non-malleability and

balance properties but not for ledger indistinguishability. Thus, even if a powerful espionage agency

were to corrupt the setup, anonymity will still be maintained. Moreover, if one wishes to mitigate the

trust requirements of this step, one can conduct the computation of Setup using secure multiparty

computation techniques; we leave this to future work.

Remark (use of pp). According to the definition of a DAP scheme (see Section 3.3), the public

parameters pp are given as input to each one of the six algorithms; this is also how we presented

our construction in Figure 3.2. However, in our construction, the public parameters pp equal a

tuple (pkPOUR, vkPOUR, ppenc, ppsig), and not every algorithm needs every component of pp. Concretely,

CreateAddress only needs ppenc; Mint only the security parameter λ; Pour only pkPOUR and ppsig;
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Setup
• inputs: security parameter λ
• outputs: public parameters pp

1. Construct CPOUR for POUR at security λ.
2. Compute (pkPOUR, vkPOUR) := KeyGen(1λ, CPOUR).
3. Compute ppenc := Genc(1λ).
4. Compute ppsig := Gsig(1λ).
5. Set pp := (pkPOUR, vkPOUR, ppenc, ppsig).
6. Output pp.

CreateAddress
• inputs: public parameters pp
• outputs: address key pair (addrpk, addrsk)

1. Compute (pkenc, skenc) := Kenc(ppenc).
2. Randomly sample a PRFaddr seed ask.
3. Compute apk = PRFaddr

ask
(0).

4. Set addrpk := (apk, pkenc).
5. Set addrsk := (ask, skenc).
6. Output (addrpk, addrsk).

Mint
• inputs:

– public parameters pp
– coin value v ∈ {0, 1, . . . , vmax}
– destination address public key addrpk

• outputs: coin c and mint transaction txMint

1. Parse addrpk as (apk, pkenc).
2. Randomly sample a PRFsn seed ρ.
3. Randomly sample two COMM trapdoors r, s.
4. Compute k := COMMr(apk‖ρ).
5. Compute cm := COMMs(v‖k).
6. Set c := (addrpk, v, ρ, r, s, cm).
7. Set txMint := (cm, v, ∗), where ∗ := (k, s).
8. Output c and txMint.

VerifyTransaction
• inputs:

– public parameters pp
– a (mint or pour) transaction tx
– the current ledger L

• outputs: bit b, equals 1 iff the transaction is valid

1. If given a mint transaction tx = txMint:
(a) Parse txMint as (cm, v, ∗), and ∗ as (k, s).
(b) Set cm′ := COMMs(v‖k).
(c) Output b := 1 if cm = cm′, else output b := 0.

2. If given a pour transaction tx = txPour:
(a) Parse txPour as

(rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, info, ∗), and ∗ as
(pksig, h1, h2, πPOUR,C1,C2, σ).

(b) If snold
1 or snold

2 appears on L (or snold
1 = snold

2 ),
output b := 0.

(c) If the Merkle root rt is not on L, output b := 0.
(d) Compute hSig := CRH(pksig).
(e) Set x :=

(rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, hSig, h1, h2).
(f) Set m := (x, πPOUR, info,C1,C2).
(g) Compute b := Vsig(pksig,m, σ).
(h) Compute b′ := Verify(vkPOUR, x, πPOUR), and output

b ∧ b′.

Pour
• inputs:

– public parameters pp
– the Merkle root rt
– old coins cold

1 , cold
2

– old addresses secret keys addrold
sk,1, addrold

sk,2

– path path1 from commitment cm(cold
1 ) to root rt,

path path2 from commitment cm(cold
2 ) to root rt

– new values vnew
1 , vnew

2
– new addresses public keys addrnew

pk,1, addrnew
pk,2

– public value vpub

– transaction string info
• outputs: new coins cnew

1 , cnew
2 and pour transaction

txPour

1. For each i ∈ {1, 2}:
(a) Parse cold

i as (addrold
pk,i, v

old
i , ρold

i , rold
i , sold

i , cmold
i ).

(b) Parse addrold
sk,i as (aold

sk,i, skold
enc,i).

(c) Compute snold
i := PRFsn

aold
sk,i

(ρold
i ).

(d) Parse addrnew
pk,i as (anew

pk,i, pknew
enc,i).

(e) Randomly sample a PRFsn seed ρnew
i .

(f) Randomly sample two COMM trapdoors
rnew
i , snew

i .
(g) Compute knew

i := COMMrnew
i

(anew
pk,i‖ρ

new
i ).

(h) Compute cmnew
i := COMMsnew

i
(vnew
i ‖knew

i ).

(i) Set
cnew
i := (addrnew

pk,i, v
new
i , ρnew

i , rnew
i , snew

i , cmnew
i ).

(j) Set Ci := Eenc(pknew
enc,i, (v

new
i , ρnew

i , rnew
i , snew

i )).
2. Generate (pksig, sksig) := Ksig(ppsig).
3. Compute hSig := CRH(pksig).

4. Compute h1 := PRFpk

aold
sk,1

(1‖hSig) and

h2 := PRFpk

aold
sk,2

(2‖hSig).

5. Set
x := (rt, snold

1 , snold
2 , cmnew

1 , cmnew
2 , vpub, hSig, h1, h2).

6. Set a :=
(path1, path2, c

old
1 , cold

2 , addrold
sk,1, addrold

sk,2, c
new
1 , cnew

2 ).

7. Compute πPOUR := Prove(pkPOUR, x, a).
8. Set m := (x, πPOUR, info,C1,C2).
9. Compute σ := Ssig(sksig,m).

10. Set txPour := (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, info, ∗)
where ∗ := (pksig, h1, h2, πPOUR,C1,C2, σ).

11. Output cnew
1 , cnew

2 and txPour.

Receive
• inputs:

– public parameters pp
– recipient address key pair (addrpk, addrsk)
– the current ledger L

• outputs: set of received coins

1. Parse addrpk as (apk, pkenc).
2. Parse addrsk as (ask, skenc).
3. For each Pour transaction txPour on the ledger:

(a) Parse txPour as
(rt, snold

1 , snold
2 , cmnew

1 , cmnew
2 , vpub, info, ∗), and ∗

as (pksig, h1, h2, πPOUR,C1,C2, σ).
(b) For each i ∈ {1, 2}:

i. Compute (vi, ρi, ri, si) := Denc(skenc,Ci).
ii. If Denc’s output is not ⊥, verify that:

• cmnew
i equals

COMMsi (vi‖COMMri (apk‖ρi));
• sni := PRFsn

ask
(ρi) is not not on L.

iii. If both checks succeed, output
ci := (addrpk, vi, ρi, ri, si, cmnew

i ).

Figure 3.2: Construction of a DAP scheme using zk-SNARKs and other ingredients.
73



CHAPTER 3. ZEROCASH

VerifyTransaction only vkPOUR; and Receive only λ. In particular, since we rely on zk-SNARKs to

prove/verify POUR, pkPOUR is of constant, but large, size, and is only required by Pour. All other

components of pp are of small constant size.

Remark (checking received coins in ledger). The algorithm Receive tests whether the serial number

of a received coin already appears on the ledger, in order not to output coins that the user has

already received and spent by himself. Other users are, in any case, unable to spend coins addressed

to this user.

3.5 Zerocash

We describe a concrete instantiation of a DAP scheme; this instantiation forms the basis of

Zerocash. Later, in Section 3.6, we discuss how Zerocash can be integrated with existing ledger-based

currencies.

3.5.1 Instantiation of building blocks

We instantiate the DAP scheme construction from Section 3.4 (see Figure 3.2), aiming at a

level of security of 128 bits. Doing so requires concrete choices, described next.

CRH,PRF,COMM from SHA256. Let H be the SHA256 compression function, which maps a

512-bit input to a 256-bit output. We mostly rely on H, rather than the “full” hash, since this suffices

for our fixed-size single-block inputs, and it simplifies the construction of CPOUR (see Section 3.5.2).

We instantiate CRH,PRF,COMM via H (under suitable assumptions on H).

First, we instantiate the collision-resistant function CRH as H(z) for z ∈ {0, 1}512; this

function compresses “two-to-one”, so it can be used to construct binary Merkle trees.11

Next, we instantiate the pseudorandom function PRFx(z) as H(x‖z), with x ∈ {0, 1}256 as

11A single exception: we still compute hSig according to the full hash SHA256, rather than its compression function,
because there is no need for this computation to be verified by CPOUR.
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the seed, and z ∈ {0, 1}256 as the input.12 Thus, the derived functions are:

PRFaddr
x (z) := H(x‖00‖z) , PRFsn

x (z) := H(x‖01‖z) , PRFpk
x (z) := H(x‖10‖z) ,

with x ∈ {0, 1}256 and z ∈ {0, 1}254.

As for the commitment scheme COMM, we only use it in the following pattern:

k := COMMr(apk‖ρ) ,

cm := COMMs(v‖k) .

Due to our instantiation of PRF, apk is 256 bits. So we can set ρ also to 256 bits and r to 256+128 = 384

bits; then we can compute

k := COMMr(apk‖ρ) as H(r‖[H(apk‖ρ)]128) .

Above, [·]128 denotes that we are truncating the 256-bit string to 128 bits (say, by dropping least-

significant bits, as in our implementation). Heuristically, for any string z ∈ {0, 1}128, the distribution

induced by H(r‖z) is 2−128-close to uniform, and this forms the basis of the statistically-hiding

property. For computing cm, we set coin values to be 64-bit integers (so that, in particular,

vmax = 264 − 1 in our implementation), and then compute

cm := COMMs(v‖k) as H(k‖0192‖v) .

Noticeably, above we are ignoring the commitment randomness s. The reason is that we already

know that k, being the output of a statistically-hiding commitment, can serve as randomness for the

next commitment scheme.

12This assumption is reminiscent of previous works analyzing the security of hash-based constructions (e.g., [79]).
However in this work we assume that a portion of the compression function is the seed for the pseudorandom function,
rather than using the chaining variable as in [79].
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Instantiating the NP statement POUR. The above choices imply a concrete instantiation of the

NP statement POUR (see Section 3.4.2). Specifically, in our implementation, POUR checks that the

following holds, for each i ∈ {1, 2}:

• pathi is an authentication path for leaf cmold
i with respect to root rt, in a CRH-based Merkle tree;

• aold
pk,i = H(aold

sk,i‖0256);

• snold
i = H(aold

sk,i‖01‖[ρold
i ]254);

• cmold
i = H(H(rold

i ‖[H(aold
pk,i‖ρold

i )]128)‖0192‖vold
i );

• cmnew
i = H(H(rnew

i ‖[H(anew
pk,i‖ρnew

i )]128)‖0192‖vnew
i ); and

• hi = H(aold
sk,i‖10‖bi‖[hSig]253) where b1 := 0 and b2 := 1.

Moreover, POUR checks that vnew
1 + vnew

2 + vpub = vold
1 + vold

2 , with vold
1 , vold

2 ≥ 0 and vold
1 + vold

2 < 264.

Finally, as mentioned, in order for CPOUR to be well-defined, we need to fix a Merkle-tree

depth dtree. In our implementation, we fix dtree = 64, and thus support up to 264 coins.

Instantiating Sig. For the signature scheme Sig, we use ECDSA to retain consistency and

compatibility with the existing bitcoind source code. However, standard ECDSA is malleable: both

(r, s) and (r,−s) verify as valid signatures. We use a non-malleable variant, where s is restricted

to the “lower half” of field elements. While we are not aware of a formal SUF-1CMA proof for this

variant, its use is consistent with proposals to resolve Bitcoin transaction malleability [80].13

Instantiating Enc. For the encryption scheme Enc, we use the key-private Elliptic-Curve Integrated

Encryption Scheme (ECIES) [81]; it is one of the few standardized key-private encryption schemes

with available implementations.

3.5.2 Arithmetic circuit for pouring coins

Our DAP scheme construction from Section 3.4 (see Figure 3.2) also requires zk-SNARKs

relative to the NP statement POUR. These are obtained by invoking a zk-SNARK for arithmetic

circuit satisfiability (see Section 3.2.4) on an arithmetic circuit CPOUR, which verifies the NP statement

13In practice, one might replace this ECDSA variant with an EC-Schnorr signature satisfying SUF-1CMA security
with proper encoding of EC group elements; the performance would be similar.
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POUR. In our instantiation, we rely on the implementation of [59] for the basic zk-SNARK (see

Section 3.2.4), and apply it to the circuit CPOUR whose construction is described next.

An arithmetic circuit for verifying SHA256’s compression function

The vast majority of the “verification work” in POUR is verifying computations of H, the

compression function of SHA256 (see Section 3.5.1). Thus, we begin by discussing our construction

of an arithmetic circuit CH for verifying SHA256 computations. Later, in Section 3.5.2, we discuss

the construction of CPOUR, given the circuit CH.

We wish to construct an arithmetic circuit CH such that, for every 256-bit digest h and

512-bit input z, (h, z) ∈ RCH if and only if h = H(z). Naturally, our goal is to minimize the size

of CH. Our high-level strategy is to construct CH, piece by piece, by closely following the SHA256

official specification [82]. For each subcomputation of SHA256, we use nondeterminism and field

operations to verify the subcomputation using as few gates as possible.

Overview of SHA256’s compression function. The primitive unit in SHA256 is a 32-bit word.

All subcomputations are simple word operations: three bitwise operations (and, or, xor), shift-right,

rotate-right, and addition modulo 232. The compression function internally has a state of 8 words,

initialized to a fixed value, and then transformed in 64 successive rounds by following the 64-word

message schedule (deduced from the input z). The 256-bit output is the concatenation of the 8 words

of the final state.

Representing a state. We find that, for each word operation (except for addition modulo 232),

it is more efficient to verify the operation when its inputs are represented as separate wires, each

carrying a bit. Thus, CH maintains the 8-word state as 256 individual wires, and the 64-word message

schedule as 64 · 32 wires.

Addition modulo 32. To verify addition modulo 232 we use techniques employed in previous

work [57, 18, 59]. Given two words A and B, we compute α :=
∑31
i=0 2i(Ai + Bi). Because F has

characteristic larger than 233, there is no wrap around; thus, field addition coincides with integer
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addition. We then make a non-deterministic guess for the 33 bits αi of α (including carry), and enforce

consistency by requiring that α =
∑32
i=0 2iαi. To ensure that each αi ∈ {0, 1}, we use a 33-gate

subcircuit computing αi(αi − 1), all of which must be 0 for the subcircuit to be satisfiable. Overall,

verifying addition modulo 232 only requires 34 gates. This approach extends in a straightforward

way to summation of more than two terms.

Verifying the SHA256 message schedule. The first 16 words Wi of the message schedule are

the 16 words of the 512-bit input z. The remaining 48 words are computed as Wt := σ1(Wt−2) +

Wt−7 +σ0(Wt−15) +Wt−16, where σ0(W ) := rotr7(W )⊕ rotr18(W )⊕ shr3(W ) and σ1 has the same

structure but different rotation and shift constants.

The rotation and shift amounts are constants, so rotates and shifts can be achieved by

suitable wiring to previously computed bits (or the constant 0 for high-order bits in shr). Thus, since

the XOR of 3 bits can be computed using 2 gates, both σ0 and σ1 can be computed in 64 gates. We

then compute (or more precisely, guess and verify) the addition modulo 232 of the four terms.

Verifying the SHA256 round function. The round function modifies the 8-word state by

changing two of its words and then permuting the 8-word result.

Each of the two modified words is a sum modulo 232 of (i) round-specific constant words

Kt; (ii) message schedule words Wt; and (iii) words obtained by applying simple functions to state

words. Two of those functions are bitwise majority (Maj(A,B,C)i = 0 if Ai + Bi + Ci ≤ 1 else 1)

and bitwise choice (Ch(A,B,C)i = Bi if Ai = 1, else Ci). We verify correct computation of Maj

using 2 gates per output bit, and Ch with 1.

Then, instead of copying 6 unchanged state words to obtain the permuted result, we make

the permutation implicit in the circuit’s wiring, by using output wires of previous sub-computations

(sometimes reaching 4 round functions back) as input wires to the current sub-computation.

Performance. Overall, we obtain an arithmetic circuit CH for verifying SHA256’s compression

function with less than 30 000 arithmetic gates. See Figure 3.3 for a breakdown of gate counts.

Comparison with generic approaches. We constructed the circuit CH from scratch. We could
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Gate count for CH
Message schedule 8032
All rounds 19 584

1 round (of 64) 306
Finalize 288
Total 27 904

Figure 3.3: Size of circuit CH for SHA256’s compression function.

have instead opted for more generic approaches: implement SHA256’s compression function in a

higher-level language, and use a circuit generator to obtain a corresponding circuit. However, generic

approaches are significantly more expensive for our application, as we now explain.

Starting from the SHA256 implementation in PolarSSL (a popular cryptographic library) [83],

it is fairly straightforward to write a C program for computing H. We wrote such a program, and

gave it as input to the circuit generator of [57]. The output circuit had 58160 gates, more than twice

larger than our hand-optimized circuit.

Alternatively, we also compiled the same C program to TinyRAM, which is the architecture

supported in [18]; we obtained a 5371-instruction assembly code that takes 5704 cycles to execute on

TinyRAM. We could then invoke the circuit generator in [18] when given this TinyRAM program and

time bound. However, each TinyRAM cycle costs ≈ 1000 gates, so the resulting circuit would have at

least 5.7 · 106 gates, i.e., over 190 times larger than our circuit. A similar computation holds for the

circuit generator in [59], which supports an even more flexible architecture.

Thus, overall, we are indeed much better off constructing CH from scratch. Of course, this

is not surprising, because a SHA256 computation is almost a “circuit computation”: it does not

make use of complex program flow, accesses to memory, and so on. Thus, relying on machinery

developed to support much richer classes of programs does not pay off.

Arithmetic circuit for POUR

The NP statement POUR requires verifying membership in a Merkle tree based on H, a few

additional invocations of H, and integer addition and comparison. We construct the circuit CPOUR

for POUR by combining various subcircuits verifying each of these. There remains to to discuss the
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subcircuits for verifying membership in a Merkle tree (using the aforementioned subcircuit CH for

verifying invocations of H), and integer addition and comparison.

Merkle tree membership. We need to construct an arithmetic circuit that, given a root rt,

authentication path path, and coin commitment cm, is satisfied if and only if path is a valid

authentication path for the leaf cm with respect to the root rt. The authentication path path includes,

for each layer i, an auxiliary hash value hi and a bit ri specifying whether hi was the left (ri = 0) or

the right (ri = 1) child of the parent node. We then check membership in the Merkle tree by verifying

invocations of H, bottom-up. Namely, for d = 64, we set kd−1 = cm; then, for each i = d− 1, . . . , 1,

we set Bi = hi‖ki if ri = 0 else ki‖hi, and compute ki−1 = H(Bi). Finally we check that the root k0

matches the given root rt.

Integer addition. We need to construct an arithmetic circuit that, given 64-bit integers A,B,C

(presented as binary strings), is satisfied if and only if C = A+B over the integers. Again relying on the

fact that F’s characteristic is sufficiently large, we do so by checking that
∑63
i=0 2ici =

∑63
i=0 2i(bi+ai)

over F; this is enough, because there is no wrap around.

Integer comparison. We need to construct an arithmetic circuit that, given two 64-bit integers

A,B (represented in binary), is satisfied if and only if A+B fits in 64 bits (i.e. A+B < 264). We

do so by checking that
∑63
i=0 2i(bi + ai) =

∑63
i=0 ci for some ci ∈ {0, 1}. Indeed, if A+B < 264 then

it suffices to take ci as the binary representation of A+B. However, if A+B ≥ 264 then no choice

of ci can satisfy the constraint as
∑63
i=0 ci ≤ 264 − 1. Overall, this requires 65 gates (1 gate for the

equality check, and 64 gates for ensuring that c0, . . . , c63 are boolean).

Overall circuit sizes. See Figure 3.4 for the size of CPOUR. More than 99% of the gates are devoted

to verifying invocations of H.
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Gate count for CPOUR

Ensure cmold
1 is in Merkle tree 1 802 304

(1 layer out of 64) (28 161)
Ensure cmold

2 is in Merkle tree 1 802 304
(1 layer out of 64) (28 161)

Check computation of snold
1 , snold

2 2× 27 904
Check computation of aold

pk,1, a
old
pk,2 2× 27 904

Check computation of cmold
1 , cmold

2 , cmnew
1 , cmnew

2 4× 83 712
Check computation of h1, h2 2× 27 904
Ensure that vnew

1 + vnew
2 + vpub = vold

1 + vold
2 1

Ensure that vold
1 + vold

2 < 264 65
Miscellaneous 2384
Total 4 109 330

Figure 3.4: Size of the circuit CPOUR, which verifies the statement POUR.

3.6 Integration with existing ledger-based currencies

Zerocash can be deployed atop any ledger (even one maintained by a central bank). Here,

we briefly detail integration with the Bitcoin protocol. Unless explicitly stated otherwise, in the

following section when referring to Bitcoin, and its unit of account bitcoin (plural bitcoins), we mean

the underlying protocol and software, not the currency system. (The discussion holds, with little or

no modification, for many forks of Bitcoin, also known as “altcoins”, such as Litecoin.)

By introducing new transaction types and payment semantics, Zerocash breaks compatibility

with the Bitcoin network. While Zerocash could be integrated into Bitcoin (the actual currency and

its supporting software) via a “flag day” where a super-majority of Bitcoin miners simultaneously

adopt the new software, we neither expect nor advise such integration in the near future and suggest

using Zerocash in a separate altcoin.

Integrating Zerocash into Bitcoin consists of adding a new transaction type, Zerocash

transactions, and modifying the protocol and software to invoke Zerocash’s DAP interface to create

and verify these transactions. There are at least two possible approaches to this integration. The

first approach replaces all bitcoins with zerocoins, making all transactions anonymous at the cost

of losing any additional Bitcoin functionality provided by, e.g., the Bitcoin scripting language (see

Section 3.6.2). The second approach maintains this functionality, adding a parallel Zerocash currency,
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zerocoin, which can be converted to and from bitcoin at a one-to-one rate (see Section 3.6.3). Options

for protocol-level modifications for the later approach are discussed in Section 3.6.4; the former

can be readily inferred. In Section 3.6.5 we discuss anonymizing the network layer of Bitcoin and

anonymity safeguards.

Semantics of Bitcoin ]

3.6.1 Semantics of Bitcoin

In Bitcoin, each transaction specifies a list of inputs (pointers to previous transactions) and

outputs (each containing an amount and destination public key). Bitcoin protocol semantics require

that:

1. the bitcoins provided as input to a transaction must sum to the value of the bitcoins output, plus

a transaction fee14;

2. the public key specified in the claimed output must match the signature claiming it (to prevent

theft); and

3. outputs may only be used once as an input (to prevent double spending).

These properties are enforced by explicit checks that reveal both the amounts and identities involved

in a transfer. These checks are done when before individual miners create a block (which consists of

many transactions and the hash of the previous block) via a proof of work, and again when the rest

of the network validates the block before appending it to the block chain — the distributed ledger of

Bitcoin. Blocks containing transactions that do not pass these checks are rejected.

3.6.2 Integration by replacing the base currency

One approach is to alter the underlying system so that all monetary transactions are done

using Zerocash, i.e., by invoking the DAP interface and writing/reading the associated transactions

14The sole exception is the coinbase transaction of a block, which is used to create new bitcoins as a reward for
solving the cryptographic puzzle associated with the block. It takes no input coins.
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in the distributed ledger.

As seen in Section 3.3, this suffices to offer the core functionality of payments, minting,

merging, splitting, etc., while assuring users that all transactions using this currency are anonymous.

However, this has several drawbacks: (1) All pour transactions incur the cost of generating a

zk-SNARK proof. (2) If Bitcoin supports additional features, such as a scripting language for

specifying conditions for claiming bitcoins (as in Bitcoin), then these features are lost.15 (3) Bitcoin

allows the flexibility of spending unconfirmed transactions; instead, with a Zerocash-only Bitcoin,

this flexibility is lost: transactions must be confirmed before they can be spent. (And this imposes a

minimal delay between receiving funds and spending them.)

3.6.3 Integration by hybrid currency

A different approach is to extend Bitcoin with a parallel, anonymized currency of “zerocoins”,

existing alongside bitcoins, using the same ledger, and with the ability to convert freely between the

two. The behavior and functionality of regular bitcoins is unaltered; in particular, they may support

functionality such as scripting.

In this approach, the Bitcoin ledger consists of Bitcoin-style transactions, containing inputs

and outputs [9]. Each input is either a pointer to an output of a previous transaction (as in plain

Bitcoin), or a Zerocash pour transaction (which contributes its public value, vpub, of bitcoins to

this transaction). Outputs are either an amount and destination public address/script (as in plain

Bitcoin), or a Zerocash mint transaction (which consumes the input bitcoins to produce zerocoins).

The usual invariant over bitcoins is maintained and checked in plain view: the sum of bitcoin inputs

(including pours’ vpub) must be at least the sum of bitcoin outputs (including mints’ v), and any

difference is offered as a transaction fee. However, the accounting for zerocoins consumed and

produced is done separately and implicitly by the DAP scheme.

The life cycle of a zerocoin is as follows.

15However, in principle POUR could be extended to include a scripting language interpreter.

83



CHAPTER 3. ZEROCASH

Creating new zerocoins. A mint transaction consumes v worth of bitcoins as inputs, and outputs

coin commitment worth v zerocoins. The v bitcoins are effectively destroyed, in exchange for the

newly-minted zerocoins.

Spending zerocoins. Zerocoins can then be transferred, split, and merged into other zerocoins

arbitrarily, via pour transactions which, instead of explicit inputs, include zero-knowledge proofs that

such inputs exist. Pour transactions may optionally reveal a non-zero public output vpub. This is

either left unclaimed as a transaction fee,16 placed into a standard Bitcoin transaction output (e.g.,

one paying to a public key) or consumed by a mint transaction. Thus, vpub bitcoins are created ex

nihilo (similarly to how coinbase transactions produce bitcoin outputs as mining reward), in exchange

for destroying that amount of zerocoins. The Bitcoin outputs must be included in the transaction

string info, which is included as part of a pour transaction; transaction non-malleability ensures that

all this information is bound together.

Spending multiple zerocoins. To allow for pours to span more than two input and output coins,

txPour structures may be chained together within one transaction by marking some output coin

commitments as intermediates and having subsequent pours in the same transaction constructed

relative to an ephemeral Merkle tree consisting of only the intermediates commitments. For example,

a transaction might accept four input coins, with the first two Pour operations combining two of the

inputs to produce an intermediate commitment each and a final Pour combining the two intermediate

commitments into a final output new coin. Since the intermediate results are consumed instantly

within the transaction, they need not be recorded in the global Merkle tree or have their serial

numbers marked as spent.

Transaction fees. Collecting transaction fees is done as usual, via a coinbase transaction added

to each block, which pays as mining reward the difference between the total inputs (bitcoin and

pours’ vpub) and total outputs (bitcoin and mints’ v) in this block. Payment is either in bitcoins or

in newly-minted zerocoins (via a Mint).

16Since transaction fees may potentially be claimed by any node in the network, they represent the sole zerocoin
output that cannot be hidden from public view even in a Zerocash-only system.
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Validation and block generation. All transactions are verified via VerifyTransaction when they

are received by a node. Any plain Bitcoin inputs and outputs are processed as usual, and any

Zerocash inputs and outputs are checked using VerifyTransaction with the entire Bitcoin transaction

fed in as info for authentication. Once these transactions are assembled into a candidate block, each

transaction needs to be verified again to ensure its serial number has not become spent or its Merkle

root invalid. If these checks pass, the set of new coin commitments and spent serial numbers output

by the included transactions are added to the global sets, and the new Merkle root and a digest of

the serial number list is stored in the new block.17 Embedding this data simplifies statekeeping and

allows nodes to readily verify they have the correct coin list and serial number list. Upon receiving a

candidate block, nodes validate the block is formed correctly with respect to the above procedure.

Receiving payments. In order to receive payments to an address, users may scan the block chain

by running the Receive on every pour transaction. Alternatively they may receive coin information

via some out-of-band mechanism (e.g., via encrypted email). The former process is nearly identical

to the one proposed for “stealth addresses” for Bitcoin. In the worst case, scanning the block chain

requires a trial decryption of every ciphertext C. We expect many scenarios to provide explicit

notification, e.g., in interactive purchases where a communication channel already exists from the

payer to the payee. (Implementations may opt to drop the receive mechanism entirely, and require

out-of-band notification, in order to avoid storing the ciphertexts in the block chain.)

3.6.4 Extending the Bitcoin protocol to support the combined semantics

While the section above describes the life-cycle of a zerocoin and semantics of the sys-

tem, there remains the question of how transactions acquire the above necessary semantics. Two

implementation approaches are possible, with different engineering tradeoffs.

The first approach is to extend the protocol and its implementation with hard-coded

validation of Zerocash transactions, reading them from new, designated fields in transactions and

17This can be stored in the coinbase transaction, as certain other data currently is, or in a new field in the block
header.
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running VerifyTransaction. In this case the zk-SNARK itself effectively replaces the scripting language

for Zerocash transactions.

The second approach is to extend Bitcoin’s scripting language by adding an opcode that

invokes VerifyTransaction, with the requisite arguments embeded alongside the opcode script. Such

transactions must be exempt from the requirement they reference an input (as they are Zerocash

transactions are self-contained), and, like coinbase transactions, be able to create bitcoins ex nihilo

(to account for vpub). Moreover, while VerifyTransaction is run at the standard point in the Bitcoin

transaction processing flow for evaluating scripts, the coin commitments and spent serial numbers

are not actually added to CMList (resp., SNList) until their containing block is accepted (i.e., merely

verifying a transaction does not have side effects).

3.6.5 Additional anonymity considerations

Zerocash only anonymizes the transaction ledger. Network traffic used to announce transac-

tions, retrieve blocks, and contact merchants still leaks identifying information (e.g., IP addresses).

Thus users need some anonymity network to safely use Zerocash. The most obvious way to do this

is via Tor [84]. Given that Zerocash transactions are not low latency themselves, Mixnets (e.g.,

Mixminion [85]) are also a viable way to add anonymity (and one that, unlike Tor, is not as vulnerable

to traffic analysis). Using mixnets that provide email-like functionality has the added benefit of

providing an out-of-band notification mechanism that can replace Receive.

Additionally, although in theory all users have a single view of the block chain, a powerful

attacker could potentially fabricate an additional block solely for a targeted user. Spending any coins

with respect to the updated Merkle tree in this “poison-pill” block will uniquely identify the targeted

user. To mitigate such attacks, users should check with trusted peers their view of the block chain

and, for sensitive transactions, only spend coins relative to blocks further back in the ledger (since

creating the illusion for multiple blocks is far harder).
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3.7 Experiments

To measure the performance of Zerocash, we ran several experiments. First, we benchmarked

the performance of the zk-SNARK for the NP statement POUR (Section 3.7.1) and of the six DAP

scheme algorithms (Section 3.7.2). Second, we studied the impact of a higher block verification time

via a simulation of a Bitcoin network (Section 3.7.3).

3.7.1 Performance of zk-SNARKs for pouring coins

Our zk-SNARK for the NP statement POUR is obtained by constructing an arithmetic circuit

CPOUR for verifying POUR, and then invoking the generic implementation of zk-SNARK for arithmetic

circuit satisfiability of [59] (see Section 3.2.4). The arithmetic circuit CPOUR is built from scratch

and hand-optimized to exploit nondeterministic verification and the large field characteristic (see

Section 3.5.2) .

Figure 3.5 reports performance characteristics of the resulting zk-SNARK for POUR. This

includes three settings: single-thread performance on a laptop machine; and single-thread and

multi-thread performance on a desktop machine. (The time measurements are the average of 10 runs,

with standard deviation under 2.5%.) For instance, with single-thread code on the laptop machine,

we obtain that:

• Key generation takes 7 min 48 s, and results in a proving key pkPOUR of 896 MiB and a verification

key vkPOUR of 749 B. This is performed only once, as part of the Setup algorithm.

• Producing a proof πPOUR requires about 3 minutes; proofs have a constant size of 288 B. Proof

generation is a subroutine of the Pour algorithm, and the resulting proof is included in the

corresponding pour transaction.

• A proof πPOUR can be verified in only 8.5 ms. Proof verification is a subroutine of the VerifyTransaction

algorithm, when it is given as input a pour transaction to verify.
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Intel Intel
Core i7-2620M Core i7-4770

@ 2.70GHz @ 3.40GHz
12GB of RAM 16GB of RAM

1 thread 1 thread 4 threads

KeyGen Time 7 min 48 s 5 min 11 s 1 min 47 s
Proving key 896 MiB
Verification key 749 B

Prove Time 2 min 55 s 1 min 59 s 46 s
Proof 288 B

Verify Time 8.5 ms 5.4 ms
Figure 3.5: Performance of our zk-SNARK for the NP statement POUR. (N = 10, σ ≤ 2.5%)

3.7.2 Performance of Zerocash algorithms

In Figure 3.6 we report performance characteristics for each of the six DAP scheme algorithms

in our implementation (single-thread on our desktop machine). For VerifyTransaction, we separately

report the cost of verifying mint and pour transactions and, in the latter case, we exclude the cost of

scanning L (e.g., to check if a serial number is duplicate);18 for the case of Receive, we report the

cost to process a given pour transaction in L.

We obtain that:

• Setup takes about 5 minutes to run; its running time is dominated by the running time of KeyGen

on CPOUR. (Either way, Setup is run only once.) The size of the resulting public parameters pp is

dominated by the size of pkPOUR.

• CreateAddress takes 326.0 ms to run. The size of the resulting address key pair is just a few hundred

bytes.

• Mint takes 23 µs to run. It results in a coin of size 463 B and mint transaction of size 72 B.

• Pour takes about 2 minutes to run. Besides Setup, it is the only “expensive” algorithm to run; as

expected, its running time is dominated by the running time of Prove. For a transaction string

info, it results in (two new coins and) a pour transaction of size 996 B + |info|.

• VerifyTransaction takes 8.3 µs to verify a mint transaction and 5.7 ms to verify a pour transaction;

18Naturally, if SNList has 264 serial numbers (the maximum possible in our implementation), then scanning is very
expensive! However, we do not expect that a system like Zerocash will grow to 264 transactions. Still, such a system
may grow to the point that scanning SNList is too expensive. We detail possible mitigations to this in Section 3.8.3.
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the latter’s time is dominated by that of Verify, which checks the zk-SNARK proof πPOUR.

• Receive takes 1.6 ms per pour transaction.

Note that the above numbers do not include the costs of maintaining the Merkle tree because doing so

is not the responsibility of the DAP scheme algorithms. Nevertheless, these additional costs are not

large: (i) each update of the root of the CRH-based Merkle tree only requires dtree invocations of CRH,

and (ii) an authentication path consists of only dtree digests of CRH. In our implementation, where

CRH = H (the SHA256 compression function) and dtree = 64, each update requires 64 invocations of

H and an authentication path requires 64 · 32 B = 2 KiB of storage.

Remark. If one does not want to rely on the ledger to communicate coins, via the ciphertexts

C1,C2, and instead rely instead on some out-of-band mechanism (e.g., encrypted email), then the

Receive algorithm is not needed, and moreover, many of the aforementioned sizes decrease because

some pieces of data are not needed anymore; we denoted these pieces of data with “?” in Figure 3.6.

(E.g., the size of an address key pair is reduced to only 64 B, and the size of a coin to only 120 B.)

3.7.3 Large-scale network simulation

Because Bitcoin mining typically takes place on dedicated GPUs or ASICs, the CPU

resources to execute the DAP scheme algorithms are often of minimal consequence to network

performance. There is one potential exception to this rule: the VerifyTransaction algorithm must be

run by all of the network nodes in the course of routine transaction validation. The time it takes to

perform this verification may have significant impact on network performance.

In the Zerocash implementation (as in Bitcoin), every Zerocash transaction is verified at

each hop as it is forwarded though the network and, potentially, again when blocks containing the

transaction are verified. Verifying a block consists of checking the proof of work and validating the

contained transactions. Thus Zerocash transactions may take longer to spread though the network

and blocks containing Zerocash transactions may take longer to verify. While we are concerned with
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Intel
Core i7-4770
@ 3.40GHz

16GB of RAM
1 thread

Setup Time 5 min 17 s
Size of pp 896 MiB

size of pkPOUR 896 MiB

size of vkPOUR 749 B

? size of ppenc 0 B

size of ppsig 0 B

CreateAddress Time 326.0 ms
Size of addrpk 343 B

size of apk 32 B

? size of pkenc 311 B

Size of addrsk 319 B
size of ask 32 B

? size of skenc 287 B

Mint Time 23 µs
Size of coin c 463 B

size of addrpk 343 B

size of v 8 B

size of ρ 32 B

size of r 48 B

size of s 0 B

size of cm 32 B

Size of txMint 72 B
size of cm 32 B

size of v 8 B

size of k 32 B

size of s 0 B

Pour Time 2 min 2.01 s
Size of txPour 996 B + |info|

size of rt 32 B

size of snold
1 , snold

2 2× 32 B

size of cmnew
1 , cmnew

2 2× 32 B

size of vpub 8 B

size of info |info|
size of pksig 66 B

size of h1, h2 2× 32 B

size of πPOUR 288 B

? size of C1,C2 2× 173 B

size of σ 64 B

VerifyTransaction Time for mint tx 8.3 µs
Time for pour tx (excludes L scan) 5.7 ms

Receive Time (per pour tx) 1.6 ms

Figure 3.6: Performance of Zerocash algorithms. Above, we report the sizes of ppenc and ppsig as
0 B, because these parameters are “hardcoded” in the libraries we rely on for Enc and Sig. (N = 10
with σ ≤ 2.5% for all except that, due to variability at short timescales, σ(Mint) ≤ 3.3 µs and
σ(VerifyTransaction) ≤ 1.9 µs)

the first issue, the potential impact of the second issue is cause for greater concern. This is because

Zerocash transactions cannot be spent until they make it onto the ledger.

Because blocks are also verified at each hop before they are forwarded through the network,

delays in block verification slow down the propagation of new blocks through the network. This

causes nodes to waste CPU-cycles mining on out-of-date blocks, reducing the computational power
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of the network and making it easier to mount a “51% attack” (dishonest majority of miners) on the

distributed ledger.

It is a priori unclear whether this potential issue is a real concern. Bitcoin caches transaction

verifications, so a transaction that was already verified when it propagated through the network need

not be verified again when it is seen in a block. The unknown is what percentage of transactions in a

block are actually in any given node’s cache. We thus conduct a simulation of the Bitcoin network to

investigate both the time it takes Zerocash transactions to make it onto the ledger and establish

the effects of Zerocash transactions on block verification and propagation. We find that Zerocash

transactions can be spent reasonably quickly and that the effects of increased block validation time

are minimal.

Simulation design. Because Zerocash requires breaking changes to the Bitcoin protocol, we cannot

test our protocol in the live Bitcoin network or even in the dedicated testnet. We must run our

own private testnet. For efficiency and cost reasons, we would like to run as many Bitcoin nodes

as possible on the least amount of hardware. This raises two issues. First, reducing the proof of

work to practical levels while still preserving a realistic rate of new blocks is difficult (especially on

virtualized hardware with variable performance). Second, the overhead of zk-SNARK verification

prevents us from running many Bitcoin nodes on one virtualized server.

The frequency of new blocks can be modeled as a Poisson process with a mean of Λblock

seconds.19 To generate blocks stochastically, we modify bitcoind to fix its block difficulty at a trivial

level 20 and run a Poisson process, on the simulation control server, which trivially mines a block

on a randomly selected node. This preserves the distribution of blocks, without the computational

overhead of a real proof of work. Another Poisson process triggering mechanism, with a different

mean Λtx, introduces new transactions at random network nodes.

19Since computational power is added to the Bitcoin network faster than the 2-week difficulty adjustment period,
the frequency of block generation is actually skewed. As our experiments run for at most an hour, we ignore this.

20These code modifications have been rendered moot by the subsequent inclusion of a “regtest” mode in Bitcoin 0.9
that allows for precisely this type of behavior and block generation on command. At the time of our experiments, this
feature was not available in a stable release. Future work should use this feature.
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To differentiate which transactions represent normal Bitcoin expenditures versus which

contain Zerocash pour transactions, simulated Zerocash transactions pay a unique amount of bitcoins

(we set this value arbitrarily at 7 BTC). If a transaction’s output matches this preset value, and it is

not in verification cache, then our modified Bitcoin client inserts a 10 ms delay simulating the runtime

of VerifyTransaction.21 Otherwise transactions are processed as specified by the Bitcoin protocol.

We vary the amount of simulated Zerocash traffic by varying the number of transactions with this

particular output amount. This minimizes code changes and estimates only the generic impact of

verification delays and not of any specific implementation choice.

Methodology. Recent research [60] suggests that the Bitcoin network contains 16,000 distinct

nodes though most are likely no longer participating: approximately 3,500 are reachable at any given

time. Each node has an average of 32 open connections to randomly selected peers. As of November

2013, the peak observed transaction rate for Bitcoin is slightly under one transaction per second [86].

In our simulation, we use a 1000-node network in which each node has an average of 32

peers, transactions are generated with a mean of Λtx = 1 s, a duration of 1 hour, and a variable

percentage ε of Zerocash traffic. To allow for faster experiments, instead of generating a block every

10 minutes as in Bitcoin, we create blocks at an average of every Λblock = 150 s (as in Litecoin, a

popular altcoin).

We run our simulation for different traffic mixes, where ε indicates the percentage of

Zerocash transactions and ε ∈ {0%, 25%, 50%, 75%, 100%}. Each simulation is run on 200 Amazon

EC2 general-purpose m1.medium instances, in one region on a 10.10./16 private network. On each

instance, we deploy 5 instances of bitcoind.22

Results. Transactions are triggered by a blocking function call on the simulation control node

that must connect to a random node and wait for it to complete sending a transaction. Because the

Poisson process modeling transactions generates delays between such calls and not between the exact

21We used a generous delay of 10 ms (higher than the time reported in Figure 3.6) to leave room for machines slower
than our desktop machine.

22Higher densities of nodes per VM resulted in issues initializing all of the bitcoind instances on boot.
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points when the node actuals sends the transactions, the actual transaction rate is skewed. In our

experiments the real transaction rate shifts away from our target of one per second to an average of

one every 1.4 seconds.

In Figure 3.7 we plot three metrics for ε ∈ {0%, 25%, 50%, 75%, 100%}. Each is the average

defined over the data from the entire run of the simulation for a given ε (i.e., they include multiple

transactions and blocks).23 Transaction latency is the interval between a transaction’s creation and

its inclusion in a block. Block propagation time comes in two flavors: (1) the average time for a new

block to reach a node computed over the times for all nodes, and (2) the same average computed

over only the last node to see the block.

Block verification time is the average time, over all nodes, required to verify a block. If

verification caching was not effective, we would expect to see a marked increase in both block

verification time and propagation time. Since blocks occur on average every 150 s, and we expect

approximately one transaction each second, we should see 150 × 10 ms = 1500 ms of delay if all

transactions were non-cached Zerocash transactions. Instead, we see worst case 80 ms and conclude

caching is effective. This results in a negligible effect on block propagation (likely because network

operations dominate).

The time needed for a transaction to be confirmed, and hence spendable, is roughly 190 s.

For slower block generation rates (e.g., Bitcoin’s block every 10 minutes) this should mean users

must wait only one block before spending received transactions.

3.8 Optimizations and extensions

We outline several optimizations and extensions to Zerocash: everlasting anonymity (Sec-

tion 3.8.1), faster block propagation (Section 3.8.2), and improved storage requirements (Section 3.8.3).

23Because our simulated Bitcoin nodes ran on shared EC2 instances, they were subject to variable external load,
limiting the benchmark precision. Still, it clearly demonstrates that the mild additional delay does not cause catastrophic
network effects.

93



CHAPTER 3. ZEROCASH

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0% 20% 40% 60% 80% 100%

ti
m

e 
in

 s
ec

on
d

s

ε

Zerocash

(a) Transaction latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0% 20% 40% 60% 80% 100%

ti
m

e 
in

 s
ec

on
d

s

ε

last node
every node

(b) Block propagation time

 0

 10

 20

 30

 40

 50

 60

 70

 80

0% 20% 40% 60% 80% 100%

ti
m

e 
in

 m
il

li
se

co
n

ds

ε

Zerocash

(c) Block verification time

Figure 3.7: The average values of the three metrics we study, as a function of ε, the percentage of
transactions that are Zerocash transactions. Note that, in (a), latency is undefined when ε = 0 and
hence omitted.

3.8.1 Everlasting anonymity

Since transactions may persist virtually forever on the ledger, users may wish to ensure the

anonymity of their transactions also lasts forever, even if particular primitives are eventually broken

(by cryptanalytic breakthrough, engineering progress, or quantum computers). As we now explain,

the DAP scheme construction described in Section 3.4 is only computationally private, but can be

modified to achieve everlasting anonymity.

Recall that every Pour operation publishes a pour transaction txPour = (rt, snold
1 , snold

2 ,

cmnew
1 , cmnew

2 , vpub, info, ∗), where ∗ = (pksig, h1, h2, πPOUR,C1,C2, σ) and Ci = Eenc(pk
new
enc,i, (v

new
i , ρnew

i ,

rnew
i , snew

i )). Observe that:

• Since hSig = CRH(pksig) and hi = PRFpk

aold
sk,i

(hSig), an unbounded adversary A can iterate over all x

until PRFpk
x (hSig) equals hi; with overwhelming probability, there is only one such x, in which case

it equals aold
sk,i. Thus, A learns aold

sk,i, and hence aold
pk,i := PRFaddr

aold
sk,i

(0). This identifies the sender.

• An unbounded A can also decrypt Ci, so to learn (vnew
i , ρnew

i , rnew
i , snew

i ); then, A can try all

possible x until COMMsnew
i

(vnew
i ‖COMMrnew

i
(PRFaddr

x (0)‖ρnew
i )) equals cmnew

i ; with overwhelming

probability, there is only one such x, in which case it equals anew
sk,i . This identifies the recipient.

The above attacks can be prevented as follows. First, every sender must use any given address
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only once (for receiving or sending coins): after receiving a coin c, a user u should immediately

generate a new address and pour c into a fresh one c′ relative to the new address; only afterwards

can u spend the coin. Second, a user should not put any data in a ciphertext Ci to communicate

a coin’s information, but must instead use some (informationally-secure) out-of-band channel to

do so. With these modifications (and recalling that COMM is statistically hiding and πPOUR is a

perfect-zero-knowledge proof), one can verify that the pour transaction txPour is statistically hiding,

i.e., leaks no information even to unbounded adversaries.24

3.8.2 Fast block propagation

As mentioned in Section 3.7.3, the higher block-verification time of Zerocash compared

to, e.g., Bitcoin does not greatly effect block propagation. Even so, we note a simple modification

that further mitigates concerns. Upon receiving a block, a node validates the proof of work and

(optionally) transactions other than mint and pour, and then forward the block right away. Only

afterwards, the node executes VerifyTransaction on any mint/pour transactions, before accepting it

for use in transacting. Thus, blocks are still validated by every node (so the security properties are

unhampered), and propagation delays in the broadcast of blocks are reduced.

In principle, this opens the possibility of a denial-of-service attack, in which the network is

spammed with invalid blocks which pass the proof-of-work check but contain invalid mint or pour

transactions. However, this attack appears unrealistic given the enormous (by design) cost of creating

blocks passing the proof-of-work check.

3.8.3 Improved storage requirements

Beyond the ledger L, users need to maintain two lists: CMList, the list of all coin commit-

ments, and SNList, the list of all serial numbers of spent coins (see Section 3.3.1). In our construction,

CMList is required to deduce authentication paths to create new pour transactions (via Pour), while

24As for mint transactions, one can verify that they are already statistically hiding, without any modifications.
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SNList is used to verify pour transactions (via VerifyTransaction). As the ledger grows, both CMList

and SNList grow in size, and can eventually impose substantial storage requirements (though both

are derived from, and smaller than, the block chain per se). We now explain how these storage

requirements can be mitigated, by relying on smaller representations of CMList and SNList that

suffice within our construction.

Supporting many coin commitments

To execute the Pour algorithm to spend a coin c, a user u needs to provide an authentication

path from c’s coin commitment to rt, the Merkle-tree root over CMList. If we make the following

protocol modifications, u does not need all of CMList to compute this authentication path.

In each block B of transactions, we store the Merkle-tree path pathB from the first coin

commitment in B to the root rtB of the Merkle tree over CMList when the last block in the ledger is

B. (In Zerocash, the additional per-block storage cost to store this information is only 2 KiB.)

Note that, given a block B and its successor block B′, the corresponding authentication

paths pathB and pathB′ can be easily checked for consistency as follows. Let CMListB and CMListB′

be the two lists of coin commitments corresponding to the two ledgers ending in block B and B′

respectively; since CMListB (i.e., coin commitments to “to the left” of pathB) is a prefix of CMListB′ ,

pathB′ can be computed from pathB and B in time O(|B|dtree), where dtree is the tree depth.

When the user u first receives (or mints) the coin c, and its coin commitment is included in

a block B, u immediately computes pathB, by using the predecessor block and its authentication

path. Afterwards, each time a new block is added to the ledger, u obtains a new path for c by using

the new block and the old path for c. Thus, u only needs to act each time a new block is added, and

each such update costs O(dtree) per transaction in the block.

Overall, u incurs a storage requirement of only O(dtree) for each coin he owns, and does not

need to store CMList anymore.
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Supporting many spent serial numbers

To execute the VerifyTransaction algorithm on a pour transaction txPour, a user u needs

access to SNList (in order to check for duplicate serial numbers). Note, in Bitcoin, nodes need to

maintain only the list of unspent transaction outputs, which is pruned as outputs are spent. In a

DAP scheme, in contrast, nodes have to maintain SNList, which is a list that always grows. We now

explain how to mitigate this storage requirement, in three incremental steps.

Step 1. The first step is to build a Merkle tree over SNList so to allow easy-to-verify non-membership

proofs for SNList; this can be done by letting the leaves of the Merkle tree be the intervals of unspent

serial numbers. Then, given the root rt of such tree, a serial number sn claimed to be unspent, and

an authentication path path for an interval I, the user can check that path is valid for rt and that

sn lies in I; the root rt and path path would be part of the pour transaction txPour to be verified.

The problem with this approach, however, is that generating path (and also updating rt) requires

knowledge of all of SNList.

Step 2. Next, instead of maintaining SNList in a single Merkle tree, we divide SNList, maintaining

its chronological order, into sublists of serial numbers SNList0,SNList1, . . . and build a Merkle tree

over the intervals induced by each sublist (i.e., apply Step 1 to each sublist). This modification implies

a corresponding modification for the auxiliary information stored in a pour transaction that allows

VerifyTransaction to check it. Now, however, producing such auxiliary information is less expensive.

Indeed, a user with a coin c should maintain a list of authentication paths pathc,0, pathc,1, . . . (one

for each sublist). Only the last path, corresponding to the active sublist, needs to be updated when

a serial number is added; the other sublists and authentication paths remain unchanged (and these

old sublists can in fact be discarded). When the user spends the coin, he can simply include these

paths in the pour transaction. While updating these paths is an efficient operation, computing the

initial paths for c is not, as it still requires the full set of sublists.

Step 3. To enable users to avoid the initial cost of computing paths for a new coin, we proceed as

97



CHAPTER 3. ZEROCASH

follows. First, a coin c is extended to contain a time stamp Tc corresponding to when c is created

(minted or poured into); the coin’s commitment is modified to depend on the timestamp, and the

timestamp is included in the clear within the transaction that creates the coin. Then, a user, upon

spending c, produces a zk-SNARK for the following NP statement: “for each Merkle-tree root created

(or updated) after Tc there is an interval and an authentication path for that interval such that the

serial number of c is in that interval”. Depending on the number of Merkle trees in such an NP

statement, such proofs may already be more efficient to produce, compared to the naive (Step 1)

solution, using existing zk-SNARK implementations.

3.9 Related work

Danezis et al. [62] suggest using zk-SNARKs to reduce proof size and verification time in

Zerocoin. Our work differs from [62] in both supported functionality and scalability.

First, [62]’s protocol, like Zerocoin, only supports fixed-value coins, and is best viewed as a

decentralized mix. Instead, we define, construct, and implement a full-fledged decentralized electronic

currency, which provides anonymous payments of any amount.

Second, in [62], the complexity of the zk-SNARK generator, prover, and verifier all scale

superlinearly in the number of coins, because their arithmetic circuit computes, explicitly, a product

over all coins. In particular, the number of coins “mixed together” for anonymity cannot be large.

Instead, in our construction, the respective complexities are polylogarithmic, polylogarithmic, and

constant in the number of coins; our approach supports a practically-unbounded number of coins.

While we do not rely on Pedersen commitments, our approach also yields statistical (i.e.,

everlasting) anonymity; see the discussion in Section 3.8.1.
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3.10 Conclusion

Decentralized currencies should ensure a user’s privacy from his peers when conducting

legitimate financial transactions. Zerocash provides such privacy protection, by hiding user identities,

transaction amounts, and account balances from public view. This, however, may be criticized for

hampering accountability, regulation, and oversight. Yet Zerocash need not be limited to enforcing

the basic monetary invariants of a currency system. The underlying zk-SNARK cryptographic proof

machinery is flexible enough to support a wide range of policies. It can, for example, let a user prove

that he paid his due taxes on all transactions without revealing those transactions, their amounts, or

even the amount of taxes paid. As long as the policy can be specified by efficient nondeterministic

computation using NP statements, it can (in principle) be enforced using zk-SNARKs, and added

to Zerocash. This can enable automated, privacy-preserving verification and enforcement of a wide

range of compliance and regulatory policies that would otherwise be invasive to check directly or

might be bypassed by corrupt authorities. This raises research, policy, and engineering questions

regarding which such policies are desirable and practically realizable.

Another research question is what new functionality can be realized by augmenting the

capabilities already present in Bitcoin’s scripting language with zk-SNARKs that allow fast verification

of expressive statements.
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Bolt

This chapter is based on joint work with Matthew Green [87] which will appear in the 2017

ACM Conference on Computer and Communications Security.

4.1 Introduction

4.1.1 Background on Payment Channels

A payment channel is a relationship established between two participants in a privacy-

preserving decentralized ledger-based currency network. While payments may flow in either direction

on an established channel, the parties themselves are not symmetric: for a payment channel to work,

at least one party must initiate the connection. For simplicity of exposition, we will refer to the

initiating party as a customer, and the responding party as a merchant. We assume that the payment

network includes a means to validate published transactions and to resolve disputes according to

public rules. In principle these requirements can be satisfied by the scripting systems of consensus

networks such as Monero or ZCash, using only minimal script extensions (which we discuss in §4.5.)

We stress that our proposals in this work focus on the privacy of payment channels, and thus we

assume the privacy of the underlying funding network.
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When two parties wish to open a channel, the parties first agree on the respective balance

shares of the channel, which we represent by non-negative integers Bmerch
0 and Bcust

0 . The parties

establish the channel by posting a payment to the network. Provided that these transactions are

correctly structured, the network places the submitted funds in “escrow” until a subsequent closure

transaction is received. The customer now conducts payments by interacting off-chain with the

merchant. For some positive or negative integer payment amount εi, the ith payment can be viewed

as a request to update Bcust
i := Bcust

i−1 − εi and Bmerch
i := Bmerch

i−1 + εi, with the sole restriction that

Bmerch
i ≥ 0 and Bcust

i ≥ 0. At any point, one or both parties may request to close the channel by

posting a channel closure message to the ledger. If the closure messages indicate that the parties

disagree about the current state of the channel, the ledger executes a dispute resolution algorithm

to determine the final channel balances. After a delay sufficient to ensure each party has had an

opportunity to contribute its closure message, the parties may recover their final shares of the channel

balance using an on-chain payment transaction.

Any payment channel must meet two specific requirements, which we refer to as universal

arbitration and succinctness:

1. Universal arbitration. In the event that two parties disagree about the state of a shared

channel, the payment network can reliably arbitrate the dispute without requiring any private

information.

2. Succinctness. To make payments scalable, all information posted to the ledger must be

compact — i.e., the size of this data should not grow linearly with the balance of the channel,

the number of transactions or the amounts exchanged.

The latter property is an essential requirement for the setting of payment channels, since it rules out

degenerate solutions that result in a posted transaction for every offline payment, or that post the

full off-chain payment interaction to the ledger.
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4.1.2 Customers, Merchants, and the Limits of Anonymity for Payment

Channels

Informally our constructions for payment channels provide the following privacy guarantee:

Upon receiving a payment from some customer, the merchant learns no information
beyond the fact that a valid payment (of some known positive or negative value) has
occurred on a channel that is open with them. The network learns only that a channel of
some balance has been opened or closed.

Note, however, that the privacy protections against a channel participant are slightly weaker than

those against third parties. This is an inherent limitation of the payment channel setting. Moreover,

these limitations change depending on if a payment is made over a single direct channel or an indirect

channel consisting of a series channels between the customer, one or more intermediaries, and a

merchant. We explain these limitations further here.

Direct channels. The direct channel setting has three limitations. First, the privacy provided for

direct channels is asymmetric: only the party initiating the payment is anonymous and unlinkable

between payments, while the target of the payment is pseudonymous. This holds because at least

one party must know which payment channel is being used.

Second, when receiving a payment on a channel, the recipient knows the payment came

from someone with whom they have an open channel. This is also fundamental to the nature of

channels, since they must be established with a counter-party before being used.

This final requirement suggests that recipients should use well-known channel parameters

to group all channels, and thus maximize the anonymity set of its customers. If a recipient provides

unique channel parameters to each potential payer (i.e., behaves as though it was a different party

to each payer), than the payer receives no privacy — as the set of channels open under that set of

parameters has an anonymity set of a single person.

This setting maps well to a situations where the payment target is known, e.g., where

a single merchant or website accepts payments from many anonymous customers. Thus for the

remainder of the paper we term this well-known target party the merchant, and refer to the paying
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party as the customer. We keep this terminology even when in settings where payment amounts

are negative (resulting in a reverse payment), since one party must still be well known and this

terminology maps to the case where, e.g., a merchant is refunding a customer for a previous purchase.

We stress that to anyone not a party to the payment channel, privacy is absolute.

Indirect channels For indirect channels which involve one or more intermediate channels, the

privacy guarantees may, surprisingly, be stronger than the direct case. First, this configuration

facilitates a larger anonymity set, since it encompasses any party who has a channel open with

the entry intermediary (for the initiator) as well as anyone who has a channel open with the exit

intermediary (for the target). Additionally, when channels contain a single intermediary, they can

be configured such that the merchant remains anonymous to the customer. Specifically, although

the underlying pair-wise channels still offer asymmetric privacy (i.e., one party is well-known), we

can arrange the indirect channels so that the customer and merchant are both holding the private

end of their channel and instead the intermediary is the only well-known party. We discuss this

arrangement in §4.4.3.

The advantages of intermediaries do not fully generalize to chains containing more than a

single intermediary. Specifically, we show that channels with a single intermediary can be configured

to hide the payment amount from the intermediary. However, channels which involve more than one

intermediary cannot hide the value of a payment from all intermediaries. Regardless of cryptographic

underpinnings, at least one endpoint1 of each channel must know the channel balance or else the

channel cannot be closed. As a result, in any chain of channels with multiple intermediaries, at

least one channel will have an intermediary party on both endpoints, and one of these parties will

inevitably learn the value of the payments. This is not a limitation of our techniques but simply a

consequence of the nature of payment channels.

1It is possible that neither endpoint knows the balance in full and instead must cooperate to learn it. This does not
alter the problem.
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4.1.3 Overview of our constructions

In this work we investigate two separate paradigms for constructing anonymous payment

channels. Our first construction builds on the electronic cash, or e-cash, paradigm first introduced

by Chaum [11] and extended in many subsequent works, e.g., [88, 89, 90]. This unidirectional

construction allows for succinct payments of fixed-value tokens from a customer to a merchant,

while preserving the anonymity and functionality of a traditional payment channel. Our second

construction extends these ideas to allow for variable-valued payments that traverse the channel

in either direction (i.e., each payment may have positive or negative value), at the cost of a more

complex abort condition. Finally, we show how to extend our second construction to support path

payments where users pay anonymously via a single untrusted intermediate party or a chain of

intermediaries.

We now present the intuition behind our constructions.

Unidirectional payment channels from e-cash. An e-cash scheme is a specialized protocol in

which a trusted party known as a bank issues one-time tokens (called coins) that customers can

redeem exactly one time. “Offline” e-cash protocols seem like a natural candidate for implementing a

one-way payment channel. For purposes of exposition, let us first consider a “strawman” proposal

based on some ideal offline e-cash scheme that allows for the detection of doubly-spent coins. In this

proposal, the merchant plays the role of the bank. After confirming that the customer has funded a

channel, it issues a “wallet” of anonymous coins to the customer, who then spends them back to the

merchant. To close the channel, the customer spends the remaining coins to herself and posts the

evidence to the payment network. The merchant can dispute the customer’s statement by providing

evidence of a doubly-spent coin.

This strawman protocol suffers from several weaknesses. Most obviously, it is not succinct,

since closure requires the customer to post all of her unspent coins. Secondly, there is an issue of

timing: the merchant cannot issue a wallet to the customer until the customer’s funds have been
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escrowed by the network, a process that can take from minutes to hours. At the same time, the

customer must be assured that she can recover her funds in the event that the merchant fails to issue

her a wallet, or aborts during wallet activation. Finally, to avoid customer “framing” attacks (in

which a merchant issues coins to itself and then accuses the customer of double-spending) we require

an e-cash scheme with a specific property called exculpability: namely, it is possible for any third

party (in our case the payment network) to distinguish “true” double spends — made by a cheating

customer — from false double-spends created by the merchant.

Intuition behind our unidirectional construction. To address the first concern, we begin with a compact

e-cash scheme [90]. Introduced by Camenisch et al, this is a form of e-cash in which B separate coins

can be generated from a constant-sized wallet stored at the customer (here B is polynomial in the

wallet size). While compact e-cash reduces the wallet storage cost, it does not immediately give

rise to a succinct closure mechanism for our channels. The key innovation in our construction is a

new mechanism that reduces channel closure to a single fixed-size message — at the cost of some

increased (off-chain) interaction between the merchant and customer.

To create a payment channel in our construction, the customer first commits to a set of

secrets used to formulate the wallet. These are embedded within a succinct wallet commitment that

the customer transmits to the payment network along with the customer’s escrow funds (and an

ephemeral public signature verification key pk c). The customer and merchant now engage in an

interactive channel establishment protocol that operates as follows. The customer first generates B

coin spend transactions, and attaches to each a non-interactive zero knowledge proof that each coin

is tied to the wallet commitment. She then individually encrypts each of the resulting transactions

using a symmetric encryption scheme such that each ciphertext Ci embeds a single spend transaction,

along with the decryption key for ciphertext Ci+1. After individually signing each of the resulting

ciphertexts using her secret key, the customer transmits the signed results to the merchant for

safekeeping. A critical aspect of this scheme is that from the merchant’s perspective these ciphertexts

are opaque: the customer does not need to prove to the merchant that any ciphertext is well-formed.
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Figure 4.1: High level description of bidirectional channel protocol. The customer is the anonymous
party. The merchant is a known identity. Only channel establishment and closure touch the
blockchain.

When the customer wishes to close an active channel with remaining balance N (for

0 < N ≤ B), she computes j = (B −N) + 1 and posts a signed message (channel ID, j, kj) to the

network, with kj being the decryption key for the jth ciphertext. The merchant can use this tuple to

decrypt each of the ciphertexts Cj , . . . , CN and thus detect further spending on the channel. If the

customer cheats by revealing an invalid decryption key, or if any ciphertext decrypts to an invalid

coin, or if the resulting transactions indicate that she has double-spent any coin, the merchant can

post indisputable evidence of this cheating to the network — which, to punish the customer, will

grant the full channel balance to the merchant.

Bidirectional payment channels. A restriction on the previous construction is that it is unidirec-

tional: all payments must flow from the customer to the merchant. While this is sufficient for many

useful applications — such as micropayments for web browsing — some applications of payment

channels require payments to flow from the merchant to the customer. As we further discuss below,

a notable example of such an application is third party payments, where two parties send funds via

an intermediary, who must increase the value of one channel while decreasing the other.

For these applications, we propose a second construction that combines techniques from

existing (non-anonymous) payment channels with blind signatures and efficient zero-knowledge proofs.
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As in the existing payment channel systems [91, 8], the customer and merchant first on agree on an

initial channel state, with the customer holding Bcust
0 escrowed funds, and the merchant provides

a signature on this balance. When the customer wishes to pay the merchant an arbitrary positive

or negative amount ε, she conducts an interactive protocol to (1) prove knowledge of the previous

signature on the current balance Bcust
i−1, and (2) demonstrate that she possesses sufficient balance to

complete the payment. She then (3) blindly extracts a new signed refund token from the merchant

containing the updated balance Bcust
i = Bcust

i−1 − ε. At any point, the customer may post her most

recent refund token to the blockchain to redeem her available funds. See figure 4.1.

The main challenge in this approach is to prevent a dishonest customer from retaining and

using earlier versions of her refund token on channel closure. To prevent this, during each payment,

the customer interacts with the merchant to present a revocation token for the previous state. As

long as the customer behaves honestly, this revocation token can never be linked to the channel or to

any previous transactions. However, if the customer misbehaves by posting an obsolete refund token,

the merchant can instantly detect this condition and present the revocation token to the network as

proof of the customer’s malfeasance – in which case, the network awards the balance of the channel

to the merchant. Unlike the e-cash approach, this proposal suffers from the possibility that one of

the parties will abort the protocol early; we address this by using the network to enforce fairness.

From direct to third-party payments. As the concluding element of our work, we show how a

bidirectional payment channel can be used to construct third-party payments, in which a first party A

pays a second party B via a common, untrusted intermediary I to which both parties have previously

established a channel. In practice, this capability eliminates the need for parties to maintain channels

with all of their peers. The key advantage of our proposal is that the intermediary I cannot link

transactions to individual users, nor — surprisingly — can they learn the amount being paid in

a given transaction. Similarly, even if I is compromised, it cannot claim any transactions passing

through it. This technique makes anonymous payment channels usable in practice, provided there

exists a highly-available (untrusted) intermediary to route the connections. We provide the full
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details of our construction and how to extend it to support multiple intermediaries in §4.4.3.

Aborts. Our unidirectional protocol provides privacy guarantees that are similar to the underlying

e-cash protocol, with the obvious (and necessary) limitation that final channel balances are revealed on

closure. Payments between a customer and merchant are non-interactive and completely anonymous.

The bidirectional payment construction, on the other hand, provides a slightly weaker guarantee:

by aborting during protocol execution, the merchant can place the customer in a state where she is

unable to conduct future transactions. This does not prevent the customer from resorting to the

network to close the channel, but it does raise concerns for anonymity in two ways:

1. The merchant can arbitrarily reduce the anonymity set by (even temporarily) evicting other

users through induced aborts.

2. The merchant may link a user to a repeating sequence of transactions by aborting the user in

the middle of the sequence.

For many traditional commerce settings, the consequences of such aborts may be minimal: no matter

the payment mechanism, the merchant can fail to deliver the promised goods and the customer

will almost certainly abort. For other settings, such as micropayments, these possibilities should be

considered. In such settings customers should scan the network for premature closures and abort the

channel if the number of open channels with a merchant falls below their minimal anonymity set.

4.1.4 Comparison to related work

In concurrent work, Heilman et al. proposed an elegant mixing system called Tumblebit [92].

Tumblebit is compatible with classical Bitcoin and operates in two modes. The first allows users to

anonymize (aka mix or “launder”) their own coins. The second mode allows for payment channels

between distinct users. Overcoming the limited choice of cryptographic primitives to get Bitcoin

compatibility is a serious achievement, but for Tumblebit it comes at the cost of far more limited

features, performance, and privacy in comparison to Bolt’s payment channels.
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Most significantly, in a payment from Alice to Bob, “Bob and the Tumbler can collude to

learn the true identity of Alice” [92] since Alice identifies herself to the Tumbler when making a

payment because she must pay the Tumbler with traceable Bitcoins.2 In contrast both our schemes

provide provable privacy for Alice even in the face of corrupted and colluding parties. Second,

Tumblebit does not hide payment values.

On the functionality side: Tumblebit payments are of a single fixed value and payment

channels are unidirectional. In contrast we provide for bidirectional payment channels with variable

valued payments. Tumblebit payments are also not succinct: a channel allowing n payment needs

either O(n) state on the blockchain or O(n2) invocations of their protocol.

On the performance side: at 387ms per channel payment, Tumblebit is 5 times slower

than our prototype implementation of Bolt’s bidirectional channels. We stress that this is not due

to a design flaw in Tumblebit: working within the confines of Bitcoin compatibility is extremely

challenging and comes at a high cost.

Finally, like Tumblebit, our unidirectional protocol provides full protections from aborts.

Our bidirectional protocol does not and requires an underlying anonymous currency for safety

(see §4.1.3). Variable payments seem to require multiple rounds of interaction, thus risking aborts

terminating in invalid intermediate states.

4.1.5 Outline of this paper

The remainder of this paper proceeds as follows. In §2.2 we present definitions for anonymous

payment channels. In §4.3 we present the building blocks of our scheme. In §4.4 we describe the

protocols for our payment channel constructions, and in §4.5 we present concrete instantiations of

these protocols. Finally, in §4.6 we discuss the related work.

2This is likely fundamental. See Section 7.c of [92] for further discussion. Although Heilman et al. provide some
mitigations for these attacks, as they acknowledge the Tumbler and Bob can still correlate Alice’s interactions. Thus
they cannot offer Alice provable privacy from Bob.
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4.2 Definitions

Notation: Let λ be a security parameter. We write P (A(a),B(b))→ (c, d) to indicate a protocol

P run between parties A and B, where a is A’s input, c is A’s output, b is B’s input and d is B’s

output. We will define negl(·) as a negligible function. We will use valmax to denote the maximum

balance of a payment channel, and denote by the set of integers {εmin, . . . , εmax} the range of valid

payment amounts.

4.2.1 Anonymous Payment Channels

An Anonymous Payment Channel (APC) is a construct established between two parties

that interact via a payment network. In this section we first describe the properties of an anonymous

payment channel scheme, which is a collection of algorithms and protocols used to establish these

channels. We then explain how these schemes can be used to construct channels in a payment

network. We now provide a formal definition of an APC scheme.

Definition 4.2.1 (APC scheme). An anonymous payment channel scheme consists of a tuple of

possibly probabilistic algorithms (KeyGen, InitC , InitM,Refund,Refute,Resolve) and two interactive

protocols (Establish,Pay). These are defined in Figure 4.2. For completeness we also define an

optional function Setup(1λ) to be run by a trusted party for generating the parameters pp, e.g., a

Common Reference String. In some instantiations the CRS is not required. In this case, we set

pp := 1λ.3

Using Anonymous Payment Channels. An anonymous payment channel scheme must be used

in combination with a payment network capable of conditionally escrowing funds and binding these

escrow transactions funds to some data. Such payment networks can be constructed using blockchain-

based systems, although they can be built from other technology as well. In this work we assume

only the existence of a payment network with these capabilities, and leave the details of the payment

3Looking forward to our recommended instantiations in §4.5, we propose to use a CRS based on public randomness.
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Key generation and channel initialization algorithms:

KeyGen(pp). This algorithm generates a keypair (pk , sk) for use by each customer or merchant.

InitP(pp, Bcust
0 , Bmerch

0 , pk , sk). For P ∈ {C,M} this algorithm is run by each party prior to opening a channel.
On input the initial channel balances, public parameters and the party’s keypair, the InitC algorithm
outputs the party’s channel token TP and a corresponding secret cskP .

Two-party protocols run between a customer C and a merchant M:

Establish({C(pp,TM, cskC)}, {M((pp,TC , cskM)}. On input public parameters and each of the initial channel
tokens, the Establish protocol activates a channel between two parties who have previously escrowed funds.
If successful, the merchant receives established and the customer receives a wallet w. Either party may
receive the distinguished failure symbol ⊥.

Pay({C(pp, ε, wold)}, {M(pp, ε,Sold)}). On input parameters, a payment amount ε, and a wallet wold from a
customer, and the merchant’s current state Sold (initially ∅) from the merchant: the customer receives
a payment success bit RC and new wallet wnew if the interaction succeeded. The merchant receives a
payment success bit RM and an updated state Snew if the interaction succeeded.

Channel closure and dispute algorithms, run by the customer and merchant respectively:

Refund(pp,TM, cskC , w). On input a wallet w, outputs a customer channel closure message rcC .

Refute(pp,TC ,S, rcC). On input the merchant’s current state Sold and a customer channel closure message,
outputs a merchant channel closure message rcM and an updated merchant state Snew.

Dispute resolution algorithm, run by the network:

Resolve(pp,TC ,TM, rcC , rcM). On input the customer and merchant’s channel tokens TC ,TM, along with
closure messages rcC , rcM (where either message may be null), this algorithm outputs the final channel
balance Bmerch

final , B
cust
final.

Figure 4.2: Definition of an Anonymous Payment Channel scheme.

network’s implementation (e.g., modeling a blockchain) as a separate problem. We now describe how

these algorithms and protocols are used to establish a channel on a payment network.

To instantiate an anonymous payment channel, the merchantM first generates a long-lived

keypair (pkM, skM)← KeyGen(pp) that will identify it to all customers. The merchant initializes its

state S← ∅. A customer C generates an ephemeral keypair (pkC , skC) for use on a single channel.

The customer and merchant agree on their respective initial channel balances Bcust
0 , Bmerch

0 . They

now perform the following steps:

1. Each party executes the InitC algorithm on the agreed initial channel balances, in order to

derive the channel tokens TC ,TM.

2. The two parties transmit these tokens to the payment network along with a transaction to

escrow the appropriate funds.

3. Once the funds have been verifiably escrowed, the two parties run the Establish protocol to
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activate the payment channel. If the parties disagree about the initial channel balances, this

protocol returns ⊥ and the parties may close the channel.

4. If channel establishment succeeds, the customer initiates the Pay protocol as many times as

desired, until one or both parties close the channel.

5. If the customer wishes to close the channel, she runs Refund and transmits rcC along with the

channel identifier to the payment network.4

6. The merchant runs Refute on the customer’s closure token to obtain the merchant closure token

rcM.

At the conclusion of this process, the network runs the Resolve algorithm to determine the final

channel balance and allows each party to collect the determined share of the escrowed funds.

4.2.2 Correctness and Security

We now described the correctness and security of an anonymous payment channel scheme.

Here we provide intuition, and present formal definitions in Appendix C.2.

Correctness. Informally, an APC scheme is correct if for all correctly-generated parameters pp and

opening balances Bcust
0 , Bmerch

0 ∈ {0, . . . , valmax}, every correct (and honest) interaction following the

paradigm described above always produces a correct outcome. Namely, each valid execution of the

Pay protocol produces success, and the final outcome of Refute correctly reflects the final channel

balance.

Security. The security of an Anonymous Payment Channel scheme is defined in terms of two games,

which we refer to as payment anonymity and balance. We now provide an informal description of

each property, and refer the reader to Appendix C.2 for the formal definitions.

4Here we assume that channel closure is initiated by the customer. In cases where the merchant wishes to initiate
channel closure, it may transmit a special message to the network requesting that the customer close the channel.

113



CHAPTER 4. BOLT

Payment anonymity. Intuitively, we require that the merchant, even in collaboration with a set of

malicious customers, learns nothing about a customer’s spending pattern beyond the information

that is available outside of the protocol. In our anonymity definition, which extends a definition of

Camenisch et al. [90], the merchant interacts with either (1) a series of oracles implementing the real

world protocols for customers C1, . . . , CN , or (2) with a simulator S that performs the customer’s

part of the Pay protocol. In the latter experiment, we assume a simulator that has access to side

information not normally available to participants in the real protocol, e.g., a simulation trapdoor or

control of a random oracle. We require that the simulator has the ability to simulate any customer

without access to the customer’s wallet, and without knowing the identity of the customer being

simulated. Our definition holds if no adversary can determine whether she is in world (1) or (2). We

stress that this definition implies anonymity because the simulator has no information about which

party it is simulating.

Balance. The balance property consists of two separate games, one for the merchant and one for the

customer. In both cases, assuming honest execution of the Resolve protocol, this property ensures

that no colluding set of adversarial counterparties can extract more value from a channel than

justified by (1) the party’s initial channel funding, combined with (2) the set of legitimate payments

made to (or by) the adversary. Because the merchant and customer have different interfaces, we

define this property in terms of two slightly different games. In each game, the adversarial customer

(resp. merchant) is given access to oracles that play the role of the merchant (resp. customer), and

allows the parties to establish an arbitrary number of channels with chosen initial balances. The

adversary may then initiate (resp. cause the other party to initiate) the Pay protocol repeatedly on

adversarially-chosen payment amounts ε. Finally, the adversary can initiate channel closure with the

counterparty to obtain channel closure messages rcC , rcM. The adversary wins if the output of the

Resolve protocol is inconsistent with the total value funded and paid.
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4.3 Technical Preliminaries

In this section we recall some basic building blocks that we will use in our constructions.

Commitment schemes. Let Πcommit = (CSetup,Commit,Decommit) be a commitment scheme

where CSetup generates public parameters; on input parameters, a message M , and random coins r,

Commit outputs a commitment C; and Decommit on input parameters and a tuple (C,m, r) outputs

1 if C is a valid commitment to the message, or 0 otherwise. In our instantiations, we recommend

using the Pedersen commitment scheme [93] based on the discrete logarithm assumption in a cyclic

group.

Symmetric encryption schemes. Our constructions require an efficient symmetric encryption

scheme as well as a one-time symmetric encryption scheme. We define a symmetric encryption

scheme Πsymenc = (SymKeyGen,SymEnc,SymDec) where SymKeyGen outputs an `-bit key. We also

make use of a one-time encryption scheme Πotenc = (OTKeyGen,OTEnc,OTDec). In practice, the

encryption scheme can be implemented by encoding the plaintext as an element in a cyclic group

G and multiplying by a random group element. In either case, our constructions require that the

schemes provide IND-CPA security.

Pseudorandom Functions. Our unidirectional construction requires a pseudorandom function

(PRF) F that supports efficient proofs of knowledge. For our purposes it is sufficient that the

PRF be secure for a poly-size input space. In addition to the standard pseudorandomness property,

ourprotocols require that the PRF should also possess a property we refer to as strong pre-image

resistance. This property holds that, given access to an oracle implementing the function Fs(·) for

a random seed s, no adversary can find an input point x and a pair (s′, x′) in the domain of the

function such that Fs(x) = Fs′(x
′) except with negligible probability. We propose to instantiate F

using the Dodis-Yampolskiy PRF [94], the public parameters are a group G of prime order q with

generator g. The seed is a random value s ∈ Zq and the function is computed as fs(x) = g1/(s+x) for
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x in a polynomially-sized set. We show in Appendix C.5 that the Dodis-Yampolskiy PRF satisfies

the strong pre-image resistance property.

Signatures with Efficient Protocols. Our schemes make use of a signature scheme Πsig =

(SigKeygen,Sign,Verify) with efficient protocols, as proposed by Camenisch and Lysyanskaya [95].

These schemes feature: (1) a protocol for a user to obtain a signature on the value(s) in a commitment

without the signer learning anything about the message(s), and (2) a protocol for (non-interactively)

proving knowledge of a signature. Several instantiations of these signatures have been proposed

in the literature, including constructions based on the Strong RSA assumption [95] and various

assumptions in bilinear groups [96, 97]. For security, we assume that all signatures satisfy the property

of existential unforgeability under chosen message attack (EU-CMA).

Non-Interactive Zero-Knowledge Proofs. We use several standard results for non-interactively

proving statements about committed values, such as (1) a proof of knowledge of a committed value,

and (2) a proof that a committed value is in a range. When referring to the proofs above, we will use

the notation of Camenisch and Stadler [34]. For instance, PoK{(x, r) : y = gxhr ∧ (1 ≤ x ≤ n)}

denotes a zero-knowledge proof of knowledge of integers x and r such that y = gxhr holds and

1 ≤ x ≤ n. All values not in enclosed in ()’s are assumed to be known to the verifier. Our protocols

require a proof system that provides simulation extractability, which implies that there exists an

efficient proof extractor that (under specific circumstances, such as the use of a simulation CRS)

can extract the witness used by an adversary to construct a proof, even when the adversary is also

supplied with simulated proofs. In practice we can conduct these proofs non-interactively using a

variety of efficient proof techniques [96, 17, 29, 13, 98, 99, 100, 101, 102].

4.4 Protocols

In this section we present our main contribution, which consists of three protocols for

implementing anonymous payment channels. Our first protocol in §4.4.1 is a unidirectional payment
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channel based on e-cash techniques. Our second construction in §4.4.2 allows for bidirectional

payments, with a more complex protocol for handling aborts. Finally, in §4.4.3 we propose an

approach for third-party payments, in which two parties transmit payment via an intermediary.

4.4.1 Unidirectional payment channels

Our first construction modifies the compact e-cash construction of Camenisch et al. [90] to

achieve efficient and succinct unidirectional payment channels. We now provide a brief overview of

this construction.

Compact e-cash. In a compact e-cash scheme, a customer withdraws a fixed-size wallet capable

of generating B coins. The customer’s wallet is based on a tuple (k, sk , B): k is an (interactively

generated) seed for a pseudorandom function F , sk is the customer’s private key, and B is the number

of coins in the wallet. Once signed by the merchant, this wallet can be used to generate up to B

coins as follows: the ith coin consists of a tuple (s, T, π) where s is a “serial number” computed

as s = Fk(i); T is a “double spend tag” computed such that, if the same coin is spent twice, the

double spend tags can be combined to reveal the customer’s key pk (or sk); and π is a non-interactive

zero-knowledge proof of the following statements:

1. 0 < i ≤ B

2. The prover knows sk .

3. The prover has a signature on the wallet (k, sk , B).

4. The pair (s, T ) is correctly structured with respect to the signed wallet.

This construction ensures that double spending is immediately detected by a verifier, since both

transactions will share the serial number s.5 The verifier can then recover the spender’s public key

by combining the double-spend tags. At the same time, the individual coin spends cannot be linked

5In the original compact e-cash construction [90], the key k was generated using an interactive protocol between
the customer and bank, such that honest behavior by one party ensured that k was uniformly random. In our revised
protocol below, k will be chosen only by the customer. This does not enable double-spending, provided that the PRF
is deterministic and the proof system is sound.
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to each other or to the user. Camenisch et al. [90] show how to construct the proof π efficiently using

signatures and proof techniques secure under the Strong RSA or bilinear assumptions in the random

oracle model. Subsequent work presents efficient proofs in the standard model [96, 103].

Achieving succinct closure. Let us recall our intuition for using compact e-cash in a unidirectional

payment channel (see §4.1.3). In this proposal, the merchant plays the role of the bank and issues

the customer a wallet of B coins, which she can then (anonymously) spend back to the merchant.

To close a channel, the customer simply spends any unused coins “to herself”, thus proving to the

merchant that she retains no spending capability on the channel (since any subsequent attempt to

spend those coins would be recognized by the merchant as a double spend). Unfortunately while

compact e-cash provides a succinct wallet, this does not immediately lead to a succinct protocol for

closing the channel — as the customer cannot simply reveal the wallet secrets without compromising

the anonymity of previous coins spent on the channel. We require a mechanism to succinctly reveal

only a fraction of the coins in a wallet, without revealing them all. At the same time, we wish to

avoid complex proofs (e.g., a proving cost that scales with O(B)).6

Our approach is to use the merchant to store the necessary information to verify channel

closure. This requires a number of changes to the compact e-cash scheme of Camenisch et al. [90]

(requiring a fresh analysis of the scheme, which we provide in §4.4.1). First, we design the customer’s

InitC algorithm so that the PRF seed k is generated solely by the customer, rather than interactively

by the customer and the bank (merchant) as in [90]. The customer now commits to the wallet secrets,

producing wCom, and embeds this into the customer’s channel token TC := (wCom, pk c) where pk c is

a signature verification key. During the Establish protocol to obtaining the merchant’s signature on

wCom, the customer provides the merchant with a series of signed ciphertexts (C1, . . . , CB), each of

which contains a coin spend tuple of the form (s, T, π′) where π′ is identical to the normal compact

6Indeed, an alternative proposal is to construct the coin serial numbers using a chained construction, where each si
is computed as a one-way hash of the key used in the previous transaction. This would allow the customer to revoke
the channel by posting a secret from one transaction. Unfortunately, proving the correctness of si using standard
zero-knowledge techniques would then require O(B) proving cost, and moreover, does not seem easy to accomplish
using the efficient zero knowledge proof techniques we recommend in this work.
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e-cash proof, but simply proves that s, T are correct with respect to wCom (which is not yet signed

by the merchant). These ciphertexts are structured so that a key revealed for the jth ciphertext will

also open each subsequent ciphertext.

The key feature of this approach is that the merchant does not need to know if these

ciphertexts truly contain valid proofs at the time the channel is opened. To reveal the remaining j

coins in a channel, the customer reveals a key for the jth ciphertext, which allows the merchant to

“unlock” all of the remaining coin spends and verify them with respect to the commitment wCom

embedded in the customer’s channel token. If any ciphertext fails to open, or if the enclosed proof is

not valid, the merchant can easily prove malfeasance by the customer and obtain the balance of the

channel. This requires only symmetric encryption and a means to “chain” symmetric encryption keys

– both of which can easily be constructed from standard building blocks.7 Our schemes additionally

require a one-time encryption algorithm OTEnc where the keyspace of the algorithm is also the range

of the pseudorandom function F .

We now present the full scheme:

Setup(1λ). On input λ, optionally generate CRS parameters for (1) a secure commitment

scheme and (2) a non-interactive zero knowledge proof system. Output these as pp.

KeyGen(pp). Compute (pk , sk)← Πsig.SigKeygen(1λ).8

InitC(pp, B
cust
0 , Bmerch

0 , pkc, skc). On input a keypair (pkc, skc), uniformly sample two distinct

PRF seeds k1, k2 and random coins r for the commitment scheme. Compute wCom = Commit(skc,

k1, k2, B
cust
0 ; r). For i = 1 to B, sample cki ← SymKeyGen(1λ) to form the vector ~ck. Output

TC = (wCom, pkc) and cskC = (skc, k1, k2, r, B
cust
0 , ~ck).

InitM(pp, Bcust
0 , Bmerch

0 , pkm, skm). Output TM = pkm, cskM = (skm, B
cust
0 ).

Refund(pp,TM, cskC , w). Parse w (generated by the Establish and Pay protocols) to obtain

7For example, the necessary properties can be achieved using a secure commitment scheme and any secure symmetric
encryption mechanism.

8For simplicity of exposition, we assume that pk can be derived from sk
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~ck and the current coin index i. Compute σ ← Sign(skc, refund‖cID‖i‖cki) (where cID uniquely

identifies the channel being closed) and output rcC := (cID, i, cki, σ).

Refute(pp,TC ,S, rcC). Parse the customer’s channel closure message rcC as (cID, i, cki, σ) and

verify cID and the signature σ. If the signature verifies, then obtain the ciphertexts Ci, . . . , CB stored

after the Establish protocol. For j = i to B, compute (j‖sj‖uj‖πrj‖ckj‖σ̂j)← SymDec(ckj , Cj) and

verify the signature σ̂j and the proof πrj . If (1) the signature σ̂j or the proof πrj fail to verify, (2)

any ciphertext fails to decrypt correctly, or (3) any of the decrypted values (sj , uj) match a valid

spend containing (sj , tj) in S where OTDec(uj , tj) = pkc: record the invalid result into rcM along

with cID and sign the result using skm so that it can be verified by the network. Otherwise set

rcM = (accept) and sign with skm. Finally for each valid Cj , set S← S ∪ (sj , tb, π) and output S

as the new merchant state.

Resolve(pp,TC ,TM, rcC , rcM). Parse the customer and merchant closure messages and verify

all signatures. If any fail to verify, grant the balance of the channel to the opposing party. If

rcC = (N, skN , σ) and rcM = accept then set Bcust
final to (Bcust

0 − N) + 1. Otherwise, evaluate the

merchant closure message to determine whether the customer misbehaved. If so, assign the merchant

the full balance of the channel.

We present the Establish and Pay protocols in Figure 4.3.

Security Analysis

Theorem 4.4.1. The unidirectional channel scheme satisfies the properties of anonymity and balance

under the assumption that (1) F is pseudorandom and provides strong pre-image resistance, (2) the

commitment scheme is secure, (3) the zero-knowledge system is sound and zero-knowledge, (4) the

signature scheme is existentially unforgeable under chosen message attack and signature extraction is

blind, and (5) the symmetric encryption and one-time encryption scheme are each IND-CPA secure.

We present a proof of Theorem 4.4.1 in Appendix C.3.
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Customer(pp,TM, cskC) Establish Merchant(pp,TC , cskM)

1. Parse cskC as (pkc, skc, k1, k2, r, B). Sample sk0 ∈ {0, 1}`.
2. Generate a proof π1 that

PK{(skc, k1, k2, r) : wCom = Commit(skc, k1, k2; r)

∧ (pkc, skc) ∈ KeyGen(1λ)}

3. For j = 1 to B:

(a) Compute sj ← Fk1 (j), uj ← Fk2 (j), πrj where

πrj = PK{(skc, k1, k2, r) : s = Fk1 (j) ∧ u = Fk2 (j)

∧ wCom = Commit(skc, k1, k2; r)

∧ (pkc, skc) ∈ KeyGen(1λ)}

(b) Compute an internal signature σ̂j =
Sign(skc, spend‖j‖sj‖uj‖πrj ‖ckj+1).

(c) Compute Cj = SymEnc(ckj , j‖sj‖uj‖πrj ‖σ̂j‖ckj+1) and an exter-

nal signature σj = Sign(skc, coin‖j‖Cj).

wCom, π
−−−−−−−−−−−−−−−−→

(C1,σ1,...,CB ,σB)

σw←−−−−−−−−−−−→
Verify the signature on TC , and check that Bcust

0 = B. Verify π1 and for i = 1
to B, verify the signature σj on Cj . If any check fails, abort and output ⊥.
Otherwise, interact with the customer to provide a blind signature σw on the
contents of wCom.

Return w = (sk0, skc, k1, k2, r, B, σw, 1). Return established.

Customer(pp, ε, wold) Pay Merchant(pp, ε,Sold)

1. Parse wold as (sk0, skc, k1, k2, r, B, σw, i). Abort if i ≥ B.

2. Compute s← Fk1 (i), t← OTEnc(Fk2 (i), pkc), and a proof:

π = PK{(pkc, skc, k1, k2, r, i, σw) : s = Fk1 (i) ∧ 0 < i ≤ B
∧ t = OTEnc(Fk2 (i), pkc)

∧ Verify(pkm, (k1, k2, skc), σw)

∧ (pkc, skc) ∈ KeyGen(pp) }

(s, t, π)
−−−−−−−−−→

Verify π and that (s, ·, ·) /∈ S. If so, set S← S ∪ (s, t, π) and set RM ← 1 , else
set RM ← ⊥.

Return wnew := (sk0, skc, k1, k2, r, B, σw, i+ 1). Return RM.

Figure 4.3: Establishment and Payment protocols for the Unidirectional Payment Channel scheme.
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Customer(pp,TM, cskC) Establish Merchant(pp,TC , cskM)

1. Parse cskC to obtain (cID,wCom, wpk,wsk, r, Bcust
0 ).

2. Generate a proof π1 of the following statement:

π1 = PK{(wpk,wsk, r) : wCom = Commit(cID, wpk,Bcust
0 ; r)

∧ (wpk,wsk) ∈ KeyGen(pp)}

π1−−−−−−−−−−−→

σw←−−−−−−−−−−−→
Parse TC to obtain Bcust

0 ,wCom. Verify that the proof π1 is valid. If not, output
⊥, If the proof is valid: interact with the customer to provide a blind signature
σw under skm on the contents of wCom.

Return w := (Bcust
0 , wpk,wsk, r, σw). Return established.

Customer(pp, ε, wold) Pay Merchant(pp, ε,Sold)

1. Parse wold as (cID, B, wpk,wsk, r, σw).
2. Sample (wpk′, wsk′)← KeyGen(pp) and sample random coins r′.
3. Generate wCom′ ← Commit(cID, wpk′, B − ε; r′) and formulate the proof:

π2 = PK{(wpk′, B, r′, σw) : wCom′ = Commit(cID, wpk′, B − ε; r′)
∧ Verify(pkm, (wpk,B), σw) = 1

∧ 0 ≤ (B − ε) ≤ valmax }

ε,wCom′, wpk, π2−−−−−−−−−−−−−−−−→

rtw′←−−−−−−−−−−−→

Verify π2, ensure that (wpk, ·) /∈ S and εmin ≤ ε ≤ εmax. If these conditions do
not hold, abort and output ⊥. Otherwise set Snew := Sold ∪ {(wpk,⊥)}. If
ε < 0, RM ← 1 otherwise RM ← ⊥. Interact with the customer to provide a
partially blind signature rtw′ under skm on the message (refund‖wpk′‖B − ε),
where wpk′ and B − ε are the contents of wCom′.

Compute Verify(pkm, rtw′ , refund‖wpk′‖B − ε). If verification fails, or if this
message does not arrive, abort and output rtw′ . Else compute σrev =
Sign(wsk, revoke‖cID‖wpk).

σrev−−−−−−−−−−−−−→

σw′←−−−−−−−−−−−→
Ensure Verify(wpk, revoke‖wpk, σrev) = 1. If so, set Snew := Sold ∪ {(wpk, σrev)}
and RM ← 1. Generate a blind signature σw′ on the contents of wCom′ using
skm. If this completes, set RM ← 2

return wnew := (B − ε, wpk′, wsk′, r′, σw′ ) return Snew, RM

Figure 4.4: Establishment and Payment protocols for the Bidirectional Payment Channel scheme

4.4.2 Bidirectional payment channels

The key limitation of the above construction is that it is unidirectional, and only supports

payments from a customer to a merchant. Additionally, it supports only fixed-value coins. In this
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section we describe a construction that enables bidirectional payment channels which feature compact

closure, compact wallets, and allow a single run of the Pay protocol to transfer arbitrary values

(constrained by a maximum payment amount).

In this construction the customer’s wallet is structured similarly to the previous construction:

it consists of Bcust
0 , and a random wallet public signature key wpk. The customer first commits to

these values and sends the resulting commitment to the payment network. The wallet is activated

when the customer and merchant interact to provide the customer with a blind signature on its

contents.

The key difference from the first protocol is that, instead of conducting the payment ε using

a series of individual coins, each payment has the customer (1) prove that it has a valid signed wallet

with balance Bcust ≥ ε of currency in it, and (2) request a blind signature on a new wallet for the

amount Bcust − ε (and embedding a fresh wallet public key wpknew). Notice that in this construction

the value ε can be positive or negative. The customer uses a zero knowledge proof and signatures with

efficient protocols to prove that the contents of the new requested wallet are constructed properly,

that the balances of the new wallet differs from the original balance by ε, and that (Bcust − ε) ≥ 0.

At the conclusion of the transaction, the customer reveals wpkold to assure the merchant that this

wallet cannot be spent a second time, and the old wallet is invalidated by the customer signing

a “revoked” message with wsk the corresponding private key. Closing the channel consists of the

customer posting a valid wallet signed by the merchant to the blockchain.9 The challenge in this

construction is to simultaneously invalidate the existing wallet and sign the new one. If the merchant

signs the new wallet before the old wallet is invalidated, then the customer can retain funds in the

old wallet while continuing to use the new one. On the other hand, if the merchant can invalidate the

old wallet before signing the new one, the customer has no way to close the channel if the merchant

refuses to sign the new wallet.

To solve this, we separate the wallet — used in interactive payments — from the value that

9In the special case where the customer has not obtained a signature on the wallet from the merchant (e.g., because
the merchant never accepted the channel opening), it can simply post an opening of the wallet commitment.
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is posted to perform channel closure and use a two phase protocol to obtain each of these values.

Instead of revealing the most recent wallet w, C closes the channel using a refund token rt which

specifies Bcust, the current wallet’s public key, and a signature by the merchant. In phase one of Pay,

the customer first obtains a signature on the refund token blindly from M. In the second phase, the

customer invalidates the old wallet, and then the merchant signs the new wallet. If the merchant

refuses to sign the new wallet, the customer can safely close the channel using rt.

We now describe the revised scheme. The protocols Establish and Pay are presented in

Figure 4.4. The Setup and InitM algorithms are identical to the previous construction.

• KeyGen(pp). Compute (pk , sk)← Πsig.SigKeygen(1λ).

• InitC(pp, cID, B
cust
0 , Bmerch

0 , pkc, skc). The customer generates the wallet commitment by sam-

pling random coins r, computing an ephemeral keypair (wpk,wsk)← KeyGen(pp) and producing

a commitment wCom = Commit(cID, wpk,Bcust
0 ; r). It outputs the token TC = (pkc,wCom) and

retains the secrets cskC = (wCom, skc, cID, wpk, wsk, r, B
cust
0 ).

• InitM(pp, Bcust
0 , Bmerch

0 , pkm, skm). Output TM = pkm, cskM = (skm, B
cust
0 ).

• Refund(pp,TM, cskC , w). If the customer has not yet invoked the Pay protocol, it sets

m := (refundUnsigned, (cID, wpk,B), r). Otherwise set m := (refundToken, (cID, wpk,B), rtw).

Compute σ = Sign(skc,m). Output rcC = (m,σ).

• Refute(pp,TC ,S, rcC). If a merchant sees a channel closure message, it first parses TC to obtain

pkc. It parses rcC as (m,σ) and verifies the signature σ using pkc. If this signature verifies, it

parses m to obtain (cID, wpk,B) and verifies that cID matches the channel. Finally, if it has

previously stored (wpk, σrev) in its state S then it outputs rcM = ((revoked, σrev), σ) where σ

is a valid signature on the message (revoked, σrev) under skm. Otherwise it adds the new key

wpk to its state S.

• Resolve(pp,TC ,TM, rcC , rcM).
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Verify that both rcC , rcM are correctly signed by the customer and merchant keys pkc and pkm

respectively. Verify that both tokens contain the same cID and this matches the channel identifier

from TC ,TM. If either of the tokens fails this test, replace it with ⊥. Let Btotal = Bcust
0 +Bmerch

0 .

If rcC is ⊥, simply output all funds to the merchant.

1. Parse TC to obtain (pkc,wCom).

2. Parse m as (type, (cID, wpk,B),Token).

3. Parse m as (revoked, wpk, σrev). Check that Verify(wpk, (revoke‖cID‖wpk)σ) = 1. If any

check fails, terminate and output Bcust
final = Btotal and Bmerch

final = 0.

4. Perform the following checks:

(a) Check the refund’s validity: If type is refundUnsigned, check that wCom = Commit(cID, wpk,

B,Token). If the merchant’s token contains σrev

Otherwise type is refundToken, so check that Token is a valid refund token on (cID, wpk,B).

If either check fails, terminate and output Bcust
final = 0 and Bmerch

final = Btotal.

(b) Check the refutation’s validity: and check Verify(wpk, revoke‖wpk, σrev) = 1. If so,

terminate and output Bcust
final = 0 and Bmerch

final = Btotal. Otherwise return Bcust
final = B and

Bmerch
final = Btotal −B (i.e. pay the claimed B to C and the remainder to M).

Security Analysis

As we noted in §4.1.3, the main limitation of the bidirectional protocol is the possibility that

a malicious merchant may abort the protocol. The nature of the protocol ensures that a customer

is not at risk of losing funds due to such an abort, since she may simply provide her refund token

rtw′ to the payment network in order to recover her balance. The main limitation therefore is to the

customer’s anonymity. A malicious merchant can place a customer into a situation where she cannot

continue to spend, and must close her channel. This implicitly links the payment to the channel – a

matter that is of only limited concern, if the channel is funded with anonymous currency.
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Of more concern is the possibility that a malicious merchant will use aborts to reduce the

anonymity set of the system, by causing several channels to enter a non-functional state. In practice,

this attack will produce a visible signal at the payment network, allowing customers to halt use of

the channel. However, within the context of our security proof we address this in a simpler way, by

simply preventing the adversarial merchant from aborting during the Pay protocol.

Theorem 4.4.2. The bidirectional channel scheme satisfies the properties of anonymity and balance

under the restriction that the adversary does not abort during the Pay protocol, and the assumption

that (1) the commitment scheme is secure, (2) the zero-knowledge system is simulation extractable

and zero-knowledge, (3) the blind signature scheme is existentially unforgeable under chosen message

attack, and (4) the one time signature scheme is existentially unforgeable under one time chosen

message attack.

We include a proof of Theorem 4.4.2 in Appendix C.4.

4.4.3 Bidirectional Third Party Payments

One of the main applications of the bidirectional construction above is to enable third party

payments. In these payments, a first party A makes a payment of some positive value to a second

party B via some intermediary I with whom both A and B have open channels. In this case, we

assume that both A and B act as the customer for channel establishment, and I plays the role of the

merchant. Our goal is that I does not learn the identities of the participants, or the amount being

transferred (outside of side information she can learn from her channel state), nor should she trusted

to safeguard the participants’ funds. This construction stands in contrast to existing non-anonymous

payment channel schemes [91, 8] where given the chain A→ I→ B, the intermediary always learns

both the amount and the participants.

The challenge in chaining payment channels is to make the payments atomic. That is, the

payer A only wants to pay the intermediary I once I has paid the recipient B. But of course this

places the intermediary at risk if A fails to complete the payment. Similarly, the payer risks losing
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A I B

commitment to a new wallet and a proof πB that the updated balance is greater by ε
Step 1

commitment to ε, A & B’s new wallet commitments, proofs πA, πB
Step 2

refund token for A, conditional refund token for B
Step 3

revocation token for A, conditional refund token for B
Step 4

revocation tokens for A & B’s old wallets
Step 5

signature for B’s new walletsignature for A’s new wallet
Step 6

Figure 4.5: Outline of our third-party payments protocol. In practice, A can route all messages
from B to I.

her funds to a dishonest intermediary. There is no purely cryptographic solution to this problem,

since it’s in essence fair exchange — a problem that has been studied extensively in multi-party

protocols. However, there are known techniques for using blockchains to mediate aborts [104, 105].

This is our approach as well.

Recall from §4.4.2 that the Pay protocol occurs in two phases. The first portion is an

exchange of refund tokens that can be used to reclaim escrowed funds. The second phase generates

an anonymous wallet for subsequent payments. For a chained transaction from A→ I→ B to be

secure, we need only ensure that the first phase of both legs completes or fails atomically.

We accomplish this by adding conditions to the refund tokens. These conditions are simple

statements for the network to evaluate on examining a token during the Resolve protocol. Specifically,

to prevent the recipient B from claiming funds from I if the payer A has not delivered a corresponding

payment to I, we introduce the following conditions into B’s refund token:

1. B must produce a revocation message (i.e. a signature using A’s wsk) on A’s previous wallet.

2. A has not posted a revocation token containing wsk to the ledger.

By condition (1), once B forces a payment on I → B, A → I cannot be reversed since I has the

revocation token. By condition (2) if A → I has been already been reversed, B cannot force the

payment I→ B since wpk is already on the ledger.

Hiding the payment amount. Our third-party payment construction also provides an additional
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useful feature. Since I acts only a passive participant in the transaction and does not maintain state

for either channel, there is no need for for I to learn the amount being paid. Provided that both

A and B agree on an amount ε (i.e., both parties have sufficient funds in each of their channels),

neither party need reveal ε to I: I need merely be assured that the balance of funds is conserved.

To hide the payment amount, we must modify the proof statement used to construct π2

from the Pay protocol of Figure 4.4. Rather than revealing ε to the merchant, the customer A now

commits to ε and uses this value as a secret input in computing the payment. Simultaneously, in the

payment protocol conducted to adjust B’s wallet, B now proves that his wallet has been adjusted by

−ε.

To do this, we change the proof in the pay protocol to one that binds ε to a commitment

but does not reveal it:

π2 = PK{(wpk′,B, r′, σw, ε, rε) :

wCom′ = Commit(wpk′, B − ε; r′)

∧ Verify(pkm, (wpk,B), σw) = 1

∧ vCom = Commit(ε, rε)

∧ 0 ≤ (B − ε) ≤ valmax }

A can then prove to I that the two payments cancel or (if fee is non-zero), leave B with fee extra

funds via a proof:

πε = PK{(εA, εB, rεA , rεB) :vComεA = Commit(εA; rεA)

∧vComεB = Commit(εB; rεB)

∧εA < εmax ∧ −εB < εmax

∧εA + εB = fee
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The protocol. We now combine the process of updating both A and B’s wallet into a single protocol

flow, which we outline in Figure 4.5. In detail, the steps are as follows:

1. B commits to ε and conducts the first move of the variable payment Pay protocol (Figure 4.4)

(with the modified balance-hiding proof described above) and sends a commitment to its new

wallet state wCom′b, proof of correctness for the wallet, πB, and commitment randomness to A.

2. A completes it’s own first move, generating wCom′a, πA and additionally computes πA attesting

to the correct state of its original wallet and new wallet commitment. It sends these and B’s

new wallet commitment and πA to I.

3. I, after validating the proofs, issues A a refund token for its new wallet rtw′a and B a conditional

refund token crt
σwarev
w′b

as its new wallet. This token embeds the condition that B must produce

a revocation token for A’s old wallet and that A must not have closed the channel already.

4. A completes its second move in the variable payment Pay protocol to generate σwarev the

revocation token for its old wallet. It sends that and the crt
σwarev
w′b

to B.

5. B completes its second move to generate σwbrev the revocation token for its old wallet. After

validating that it now has a valid refund token by verifying σwarev, it sends σwarev, σ
wb
rev to I.

6. I completes the remaining moves of the variable payment Pay protocol with A and B individually,

giving each a blind signature on their new wallets.

Anonymity and abort conditions.

In terms of anonymity, the execution of this protocol is no different in terms of the

information revealed than two in parallel payments from A→ I and I→ B. Our payment anonymity

definition already allows this type of attack even for the two party case.

The main challenge in realizing this construction is the possibility that a malicious I can

selectively abort the protocol during a transaction. This does not allow I to steal funds, but it does
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force A and B to transmit messages to the network in order to recover their funds. This potentially

links the payment attempt to A and B’s channels. Unfortunately, this seems fundamentally difficult

to avoid in an interactive protocol.

We note that the anonymity threat is limited in practice by the fact that the channels

themselves can be funded with an anonymous currency (e.g., [23, 62, 15]), so linking two separate

channels does not reveal the participant identifiers. More importantly, since the intermediary can

use this abort technique only one time during the lifetime of a channel, there is no possibility for the

merchant to link separate payments on the same channel. Finally, an intermediary who performs this

abort technique will produce public evidence on the network, which allows participants to avoid the

malicious intermediary.

4.4.4 From Third Party Payments to Payment Networks

It should be possible to extend the above protocol to allow payments of the form A→ I1 →

. . .→ In → B via techniques similar to those used in non-anonymous payment channel networks [91].

As discussed in §4.1.2, it is not possible to hide channel balances in such a setting. The general

approach is as follows: we use “hash locks” to enforce that either all refund and revocation tokens

are valid or none are. Specifically, we attach to both the fund and revocation tokens a condition that

they can only be used if one party reveals x such that y = H(x), where x is picked by A. Because if

one party releases x, all parties may close their channels, this forces the entire sequence of payments

to either go through or not. As with Lightning, the timeouts for each channel must be carefully

chosen. We leave the exact details of this approach to future work.

4.4.5 Hiding Channel Balances

Each of the constructions presented above has a privacy limitation: the balance of each

payment channel is revealed when a channel is closed. While individuals can protect their identities

and initial channel balances by using an anonymous currency mechanism to fund channels, the
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Customer Merchant
primitive Establish(ms) Pay(ms) Setup(ms) Establish(ms) Pay(ms)

Bilinear CL-Sigs [97] 8.07± 0.13 100.13± 1.60 1433.51± 23.69 15.87± 0.27 82.32± 1.37
Algebraic MACs [106] 6.90± 0.17 37.61± 0.93 826.78± 19.26 11.97± 0.31 34.39± 0.88

Figure 4.6: Performance comparison of different implementations of BOLT bidirectional payment
protocol. 1000 iterations on a single core of a Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz.
Customer setup is included in Establish.

information about channel balances leaks useful information to the network. We note, however, that

in the case of non-disputed channel closure, even this information can be hidden from the public as

follows. On channel closure, the customer posts a commitment to the final channel balance, along

with a zero-knowledge proof that she possesses a valid channel closure token (ı.e., a signature on

the channel balance in our bidirectional construction). In systems such as Zerocash [15], the final

payment redeeming coins to the merchant and customer can be modified to include an additional

statement: the amounts paid in this transaction are consistent with the commitment, and do not

exceed the initial funding transaction that created the channel. We leave the precise details of such a

construction to future work.

4.5 Implementation of the Bidirectional scheme

We now detail the integration of Bolt into a cryptocurrency and performance and crypto-

graphic details of a concrete instantiation.

4.5.1 Integration with a Currency

In this section we consider the problem of integrating the bidirectional Bolt protocol into

a Bitcoin like cryptocurrency in a soft fork : a protocol change which does not break backward

compatibility with existing nodes. Recall that the bidirectional scheme requires that the channels be

funded anonymously in order to protect against aborts linking the aborted payment to the channel

opening (this does not hold if one wishes merely to prevent multiple payments on the same channel

from being linked together). In these conditions, the anonymity of the payment channel is no better
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than the anonymity of the underlying cryptocurrency. Of the Bitcoin derived currencies, Zerocash

and ZCash [15, 107] provide a strong underlying anonymity layer. Anonymity tools for Bitcoin, such

as Coinjoin [108], may also be sufficient in some circumstances and future improvements to Bitcoin

may increase the achievable anonymity. The mechanism for deployment is compatible with either

currency.

In Bitcoin and ZCash each transaction10 consists of a set of inputs and a set of outputs.

Inputs reference a previous transaction output and contain a ScriptSig authorizing use of the funds.

Outputs specify the amount of the output and a ScriptPubKey specifying when the output can be

spent. To evaluate a transaction the ScriptPubKey from the previous transaction and ScriptSig

from the current transaction are combined and evaluated using a stack-based scripting language. In

the simplest case, ScriptPubKey requires a signature under a specified public key to spend the funds

and ScriptSig contains such a signature. However, more complex scripts are allowed including

control flow such as if statements, time locks that enforce that a given number of blocks has elapsed

since the transaction was created, and threshold signatures. As long as the combined script evaluates

to True, spending is authorized.

Our soft fork approach involves adding a single opcode, OP BOLT to the scripting language.

This opcode has the power to

1. validate the commitment opening and blind signature on the commitment in a refund token,

and

2. inspect the output of the transaction and enforce restrictions on it.

Most opcodes do not inspect transaction outputs. The notable exception to this rule are

signature opcodes that may hash the entire transaction, including both inputs and outputs, in order

to verify the signature. However, it is entirely possible to modify the ZCash and Bitcoin codebase to

enable opcodes that do have access to transaction outputs in general.11 Specifically, our new opcode

10We refer here to the “unshielded” transactions in ZCash. Shielded transactions function differently.
11In systems derived from Bitcoin core’s source code, this requires some modification as the current architecture
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will enforce two constraints on the outputs of a transaction closing the channel:

1. Verifying that there are two outputs: one paying the merchant his balance and the other paying

the customer hers.

2. Verifying that the customer’s payout is time locked such that it can be claimed by the merchant

if the refund token has been invalidated (i.e. the customer tried to close on an old channel

state).

To accomplish this, we implement the Pay protocol so that the revocation token is the

private key corresponding to a Bitcoin (resp. transparent ZCash) address. When a channel is closed,

the merchant’s fraction of the channel balance is paid in a transaction that is spendable immediately.

However, the customer’s funds are not immediately spendable by the customer since we need to allow

the merchant to dispute the closure. The merchant does this by signing a transaction with both his

key and the revocation token key. If the merchant does not do so, the customer can claim the funds

after some elapsed time. The script is given below:

OP IF # I f merchant

OP 2 <rev−pubkey><merchant−pubkey> OP 2

OP CHECKMULTISIG #2 o f 2 multi−s i g check

OP ELSE #I f customer wait

<delay> # delay to wait

OP CSV # Timelock e n f o r c e s de lay

OP DROP

<customer−pubkey> # key f o r customers funds

OP CHECKSIG

OP ENDIF

abstraction in script evaluation provides a callback to get the transaction hash, not direct access to the transaction
itself. However this is not a protocol limitation and indeed past versions of the codebase did expose direct access.
Exposing direct access does not affect consensus rules in and of itself.
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This approach greatly simplifies the implementation. Channel opening consists of posting a transaction

with (previously anonymized) inputs containing the needed funds for escrow and a single output.

This outputs ScriptPubKey contains the new opcode OP BOLT and the channel parameters as one

argument. To close the channel, the customer posts the appropriate transaction spending that

output with a ScriptSig that contains what is required to satisfy OP BOLT: the refund token and

two outputs. One output for the merchant’s share of the channel which is spendable immediately and

one with the customer’s spendable under the above time locked script. Finally, each party can post

the appropriate transaction claiming their output. The merchant can dispute the channel closure and

claim the funds immediately with OP FALSE <sig revocation-pubkey> <sig merchant-pubkey>.

On the other hand, the customer must wait and then claim with OP TRUE <sig customer-pubkey>.

Simplified resolution At the cost of an extra round trip in the Pay protocol, we can eliminate

the need to validate “blind” signatures in the resolution phase, instead opting to verify a simple

commitment opening and a standard (e.g. ECDSA) signature on that commitment. We do this by

having the refund token consist of a standard signature on the wallet commitment. Because it is a

standard signature, refund token issuance can be linked to usage. This is not a problem if the token

is used to handle an abort in the same protocol run as its issuance—our security model assumes the

attacker can link a single transaction to channel open/closure. However, it cannot be safely used

after that, i.e. in the first step of the next pay protocol, because the unblinded signature will link

the current execution of the protocol to the previous one. To solve this, at the start of every run of

the pay protocol, we request a fresh refund token on the current wallet before revealing anything.

Because the contents of the refund token commitment are deterministically and provably generated

from the existing wallet, issuing multiple of them has no other effect. However, it eliminates the need

to ever use the old refund token. The only consequence is an additional round trip as we must wait

for the refreshed refund token before we can publish.
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4.5.2 Implementation

We provide two constructions of Bolt, one using signatures with efficient protocols [97] and

the other using using Algebraic MACs [106]. We defer further discussion of primitive selection and

usage to Appendix C.1 and move directly to presenting performance numbers in Figure 4.6.

4.6 Related Work

Anonymity and scaling for Bitcoin. A number of works have proposed additional privacy

protections for Bitcoin. Zerocoin, Zerocash and similar works [23, 15] provide strong anonymity

through the use of complex zero knowledge proofs. A separate line of works seek to increase anonymity

by Bitcoin by mixing transactions (e.g. CoinJoin [108], CoinShuffle, CoinSwap). Like Bitcoin, each

of these constructions require that all transactions are stored on the blockchain. Finally, recent work

has proposed probabilistic payments as an alternative payment mechanism [109].

Privacy in payment channels As discussed in detail in the introduction, Heilman et al. [110]

construct off-chain payments with 3rd party privacy.

Lightning anonymity limitations. The Lightning Network [91] does not provide payment

anonymity between pairs of channel participants – i.e., a merchant can see the channel identity of

every customer that initiates a payment. However, the protocol includes some limited anonymity

protections for path payments. These operate on a principle similar to an onion routing network,

by using multiple non-colluding intermediaries to obscure the origin and destination of a path.

Unfortunately this proposal suffers from collusion problems: given the chain A→ I1 → I2 → I3 → B,

only I1 and I3 must collude to recover the identities of A and B, since all transactions on the path

share the same Hash Timelock Contract ID. Moreover, this security mechanism assumes there exist

a network with sufficient path diversity for these protections to be viable. The practical viability of

path routing in the Lightning payment network is a subject of some debate given the large amount of

funds that would be tied up in maintaining open channels [111, 7]. It seems more likely that deployed
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channels will rely on a star topology where clients and merchants interact via a one of a handful of

highly-available parties, which is the situation we address in our constructions.
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4.8 Conclusion

In this work we showed how to construct anonymous payment channels between two mutually

distrustful parties. Our protocols can be instantiated using efficient cryptographic primitives with no

trusted third parties and (in many instantiations) no trusted setup. Payments of arbitrary value can

be conducted directly between the parties, or via an intermediate connection who learns neither the

participants identities nor the amount involved. Coupled with an decentralized anonymous payment

scheme for funding the channels, they provide for private instantaneous anonymous payments without

a trusted bank.

We leave two main open problems. The first is to investigate the necessary details for

extending the third party payment protocol to support arbitrary paths consisting of n > 3 parties.

Second, we did not consider the problem of performing payment resolution (in the event of a dispute)

without revealing the final channel balance to the network.
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Conclusion

In this work we proposed a number of privacy preserving payment schemes for blockchain

based currencies. These schemes leave open two principle problems:

1. The construction of a more efficient version of Zerocash using zkSNARKs and a better choice

of primitives. This problem raises a more general question: how to construct cryptographic

primitives such as hash functions and permutations that have efficient representations in

zkSNARKs?

2. Privacy preserving scripting and smart contracts. Bitcoin supports a scripting language where

complex authorization checks for spending a payment can be specified. Ethereum [112] takes this

one step further and allows Turing complete smart contracts with almost arbitrary functionality.

In both cases, these scripts are executed in the clear. Extending execution to the private setting

and doing so efficiently is an interesting avenue for future research.
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Zerocoin

A.1 Security Proofs

A.1.1 Proof of Theorem 2.3.1

Proof. Let A = (A1,A2) be an adversary that wins the Anonymity game with advantage ε. We

approach this proof in two steps. In the first step we replace the proof π given to A with a simulated

signature of knowledge.1 In the second step, we replace the coins (c0, c1) and serial number S

provided to A with random values sampled from the appropriate distributions. At each step we argue

that A’s advantage is only negligibly different than its advantage against the real protocol. Finally,

we note that A’s view in the final game is independent of the bit b, and therefore A’s advantage must

be negligible in the security parameter.

Replacing the SoK. We first argue that if the SoK π is computationally zero knowledge,2 then π

can be replaced with a simulated signature π′ without substantially affecting A’s advantage. More

concretely, let OSoK(·) be an oracle that on input a valid witness to the statement defined in the

real protocol, flips a random bit b̂ and if b = 0 outputs a SoK as in the real protocol, and if b = 1

1Our proofs assume the existence of an efficient simulator and extractor for the ZKSoK. See Appendix A.2.
2We state a relatively weak result here, and note that the same necessarily holds if π is perfect- or statistically zero

knowledge.
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outputs a simulated SoK π′. We show that if A wins the anonymity game with non-negligibly

different probability when π is replaced with a simulated proof, we can construct a distinguisher that

determines the bit b̂ selected by the oracle OSoK .

The simulation proceeds as follows: first, A′ generates pp ← Setup(1λ) as in the real

protocol. It next mints two coins c0, c1 ∈ Mint(pp) and stores the associated trapdoors (skc0, skc1).

It provides the resulting values to A1, which outputs a set C and transaction string info using any

strategy it wishes. Next A′ samples b← {0, 1} and executes the Spend algorithm on coin b as in the

normal protocol, though with one modification: rather than execute the ZKSoK algorithm it instead

queries the oracle OSoK on the identical inputs to obtain π. It then provides (S, π) to A2. When A2

outputs a guess b′, A′ outputs 1 if b = b′.

Note that when OSoK executes with b̂ = 0 (i.e., generates a standard SoK) the input to

A2 is distributed identically to the real protocol, thus A’s advantage is ε and A′ outputs 1 with

probability 1/2 + ε. Thus it remains to consider the case where OSoK outputs a simulated proof.

In this case, if A wins the anonymity game with probability non-negligibly different than ε then A′

would guess the bit b̂ chosen OSoK with non-negligible advantage. Thus A’s advantage in winning

the anonymity game must be at most ε+ negl(λ) when the SoK is replaced with a simulated SoK.

Modifying the values. We next consider the following modification: rather than generate the coins

c0, c1 as in the real protocol, we instead sample two values c0, c1 at random from the set of prime

numbers in the range [A,B].3 We also sample the value S at random from Z∗q and simulate the

protocol using these values. Finally, we simulate the SoK π. We observe that all values in this

protocol are distributed identically to those in the previous game, and A’s view is independent of the

bit b. By implication, Pr [ b = b′ ] = 1/2 + negl(λ) and A’s advantage in the anonymity game ε must

be negligible.

A.1.2 Proof of Theorem 2.3.2

3“Where A and B can be chosen with arbitrary polynomial dependence on the security parameter, as long as 2 < A
and B < A2.” [113] For a full description, see [113, §3.2 and §3.3].
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Proof. Let A be an adversary that wins the Balance game with non-negligible advantage ε. We

construct an algorithm B that takes input (p, q, g, h), where G = 〈g〉 = 〈h〉 is a subgroup of Z∗p of

order q, and outputs x ∈ Zq such that gx ≡ h (mod p). B works as follows:

On input (p, q, g, h), first generate accumulator parameters N, u as in the Setup routine

and set pp← (N, u, p, q, g, h). For i = 1 to K, compute (ci, skci)← Mint(pp), where skci = (Si, ri),

and run A(pp, c1, . . . , cK). Answer each of A’s queries to Ospend using the appropriate trapdoor

information. Let (S1, info1), . . . , (Sl, infol) be the set of values recorded by the oracle.

At the conclusion of the game, A outputs a set of M coins (c′1, . . . , c
′
M ) and a corresponding

set of M + 1 valid tuples (π′i, S
′
i, info

′
i,C

′
i). For j = 1 to M + 1, apply the ZKSoK extractor to the

jth zero-knowledge proof π′j to extract the values (c∗j , r
∗
j ) and perform the following steps:

1. If the extractor fails, abort and signal EventExt.

2. If c∗j /∈ C′j , abort and signal EventAcc.

3. If c∗j ∈ {c1, . . . , cK}:

(a) If for some i, (S′j , r
∗
j ) = (Si, ri) and info′j 6= infoi, abort and signal EventForge.

(b) Otherwise if for some i, (S′j , r
∗
j ) = (Si, ri), abort and signal EventCol.

(c) Otherwise set (a, b) = (Si, ri).

4. If for some i, c∗j = c∗i , set (a, b) = (S′i, r
∗
i ).

If the simulation did not abort, we now have (c∗j , r
∗
j , S

′
j , a, b) where (by the soundness of π)

we know that c∗j ≡ gS
′
jhr

∗
j ≡ gahb (mod p). To solve for logg h, output (S′j − a) · (b− r′j)−1 mod q.

Analysis. Let us briefly explain the conditions behind this proof. When the simulation does not

abort, we are able to extract (c∗1, . . . , c
∗
M+1) where the win conditions enforce that ∀j ∈ [1,M + 1],

c∗j ∈ C′j ∈ {c1, . . . , cK , c′1, . . . , c′M} and each S′j is distinct (and does not match any serial number

output by Ospend). Since A has produced M coins and yet spent M + 1, there are only two

possibilities:
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1. A has spent one of the challenger’s coins but has provided a new serial number for it. For some

(i, j), c∗j = ci ∈ {c1, . . . , cK}. Observe that in cases where the simulation does not abort, the

logic of the simulation always results in a pair (a, b) = (Si, ri) where gahb ≡ gS
′
jhr

∗
j ≡ c∗j

(mod p) and (a, b) 6= (S′j , r
∗
j ).

2. A has spent the same coin twice. For some (i, j), c∗j = c∗i and yet (S′j 6= S′i). Thus again we

identify a pair (a, b) = (S′i, r
∗
i ) that satisfies gahb ≡ c∗j (mod p) where (a, b) 6= (S′j , r

∗
j ).

Finally, we observe that given any such pair (a, b) we can solve for x = logg h using the equation

above.

Abort probability. It remains only to consider the probability that the simulation aborts. Let negl1(λ)

be the (negligible) probability that the extractor fails on input π. By summation, Pr [EventExt ] ≤

(M + 1)negl1(λ). Next consider the probability of EventCol. This implies that for some i, A has

produced a pair (S′j , r
∗
j ) = (Si, ri) where S′j has not been produced by Ospend. Observe that there

are l distinct pairs (S, r) that satisfy c∗j = gShr mod p and A’s view is independent of the specific

pair chosen. Thus Pr [EventCol ] ≤ 1/l.

Next, we argue that under the Strong RSA and Discrete Log assumptions, Pr [EventAcc ] ≤

negl2(λ) and Pr [EventForge ] ≤ negl3(λ). We show this in Lemmas A.1.1 and A.1.2 below. If A

succeeds with advantage ε, then by summing the above probabilities we show that B succeeds with

probability ≥ ε− ((M + 1)negl1(λ) + negl2(λ) + negl3(λ) + 1/l). We conclude with the remaining

Lemmas.

Lemma A.1.1. Under the Strong RSA assumption, Pr [EventAcc ] ≤ negl2(λ).

Proof sketch. The basic idea of this proof is that an A′ who induces EventAcc with non-negligible

probability can be used to find a witness ω to the presence of a non-member in a given accumulator.

Given this value, we apply the technique of [36, §3] to solve the Strong RSA problem. For the
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complete details we refer the reader to [36, §3] and simply outline the remaining details of the

simulation.

Let A′ be an adversary that induces EventAcc with non-negligible probability ε′ in the

simulation above. We use A′ to construct a Strong RSA solver B′ that succeeds with non-negligible

probability. On input a Strong RSA instance (N, u), B′ selects (p, q, g, h) as in Setup and sets

pp = (N, u, p, q, g, h). It generates (c1, . . . , cK) as in the previous simulation and runs A′. To induce

EventAcc, A′ produces valid output (π′,C′) and (by extraction from π′) a c∗ /∈ C′. B′ now extracts

ω∗ from π′ using the technique described in [36, §3] and uses the resulting value to compute a solution

to the Strong RSA instance.

Lemma A.1.2. Under the Discrete Logarithm assumption, Pr [EventForge ] ≤ negl3(λ).

Proof sketch. The proof is similar to those used by earlier schemes, e.g., [34]. We now sketch it. Let

A′ be an adversary that induces EventForge with non-negligible probability ε′ in the simulation

above. On input a discrete logarithm instance, we run A′ as in the main simulation except that we

do not use the trapdoor information to answer A′’s oracle queries. Instead we select random serial

numbers and simulate the ZKSoK responses to A′ by programming the random oracle. When A′

outputs a forgery on a repeated serial number but a different string info′ than used in any previous

proof, we rewind A′ to extract the pair (S′j , r
∗
j ) and solve for the discrete logarithm as in the main

simulation.

A.2 Zero-Knowledge Proof Construction

The signature of knowledge

π = ZKSoK[info]{(c, w, r) :
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AccVerify((N, u), A, c, w) = 1 ∧ c = gShr}

is composed of two proofs that (1) a committed value c is accumulated and (2) that c is a commitment

to S. The former proof is detailed in [113, §3.3 and Appendix A]. The latter is a double discrete log

signature of knowledge that, although related to previous work [31, §5.3.3], is new (at least to us). It

is constructed as follows:

Given y1 = ga
xbzhw.

Let l ≤ k be two security parameters and H : {0, 1}∗ → {0, 1}k be a cryptographic hash
function. Generate 2l random numbers r1, . . . , rl and v1, . . . , vl. Compute, for 1 ≤ i ≤ l,
ti = ga

xbrihvi . The signature of knowledge on the messagem is (c, s1, s2, . . . , sl, s
′
1, s
′
2, . . . , s

′
l),

where:
c = H(m‖y1‖a‖b‖g‖h‖x‖t1‖ . . . ‖tl)

and

if c[i] = 0 then si = ri, s
′
i = vi;

else si = ri − z, s′i = vi − wbri−z;

To verify the signature it is sufficient to compute:

c′ = H(m‖y1‖a‖b‖g‖h‖x‖t̄1‖ . . . ‖t̄l)

with

if c[i] = 0 then t̄i = ga
xbsihs

′
i ;

else t̄i = yb
si

1 hs
′
i ;

and check whether c = c′.

Simulating and extracting. Our proofs in Appendix A.1 assume the existence of an efficient simulator

and extractor for the signature of knowledge. These may be constructed using well-understood results

in the random oracle model, e.g., [34].

A.2.1 Proof Construction

The proof is constructed as follows:

Given y1 = ga
x

1 gw2 and y2 = gx3 , we want to prove that:

Dloga(Dlogg1(y1/g
w
2 )) = logg3(y2) = x
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Let l ≤ k be two security parameters and H : {0, 1}∗ → {0, 1}k be a cryptographic
hash function. Generate 2l random numbers r1, . . . , rl and v1, . . . , vl. Compute, for
1 ≤ i ≤ l, ti = ga

ri

1 gvi2 and t′1 = gri3 . The signature of knowledge on the message m is
(c, s1, s2, . . . , sl, s

′
1, s
′
2, . . . , s

′
l), where:

c = H(m‖y1‖y2‖a‖g1‖g2‖g3‖t1‖ . . . ‖tl‖t′1‖ . . . ‖t′l)

and

if c[i] = 0 then si = ri, s
′
i = vi;

else si = ri − x, s′i = vi − w;

To verify the signature it is sufficient to compute:

c′ = H(m‖y1‖y2‖a‖g1‖g2‖g3‖t̄1‖ . . . ‖t̄l‖t̄′1‖ . . . ‖t̄′l)

with

if c[i] = 0 then t̄i = ga
si

1 g
s′i
2 , t̄
′
i = gsi3 ;

else t̄i = y1g
asi
1 g

s′i
2 , t̄
′
i = y2g

si
3 ;

and check whether c = c′.

A.2.2 HVZK

λ1 = p(|g3|), λ2 = p(|g2|)

λi upper bound on size of x,w respectively ie 0 ≤ x,w ≤ 2λi

ε > 1 constant

Let Sv be a simulator. Choose c ∈R {0, . . . , 2k − 1}. Choose ri = si ∈R {0, . . . , 2ελ1 − 1}. Choose

vi = s′i ∈R {0, . . . , 2ελ2 − 1}.

Using these values, the simulator computes:

ti =


ga

si

1 g
s′i
2 if c[i] = 0

y1g
asi
1 g

s′i
2 else

t′i =


gsi3 if c[i] = 0

y2g
si
3 else

for i = 1, . . . , l. To prove that these values are statistically indistinguishable from a view of a
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protocol run with the prover, it suffices to consider the probability distributions PS1,...,Sl(s1, . . . , sl)

of the si’s of the prover and PS′1,...,S′l (s
′
1, . . . , s

′
l) of the s′i’s of the prover and PR1,...,Rl(r1, . . . , rl) of

the ri’s of the simulator and PV1,...,Vl(v1, . . . , vl) of the vi’s of the simulator. The latter values are∏l
i=1 PRi(ri) and

∏l
i=1 PVi(vi) where PRi(ri) is the uniform distribution over {0, . . . , 2ελ1 − 1} and

PVi(vi) is the uniform distributions over {0, . . . , 2ελ2 − 1}. If the prover chooses the ri’s uniformly

at random from {0, . . . , 2ελ1 − 1} and the vi’s uniformly at random from {0, . . . , 2ελ2 − 1} and the

secret key randomly from {0, . . . , 2λ − 1} according to any distribution, we have

PSi(s) =



= 0 for s < −(2λ1 − 1)

≤ 2−ελ1 for − (2λ1 − 1) ≤ s < 0

= 2−ελ1 for 0 ≤ s ≤ 2ελ1 − 2λ1

≤ 2−ελ1 for 2ελ1 − 2λ1 < s ≤ (2ελ1 − 1)

= 0 for 2ελ1 − 1 < s

PVi(v) =



= 0 for s < −(2λ2 − 1)

≤ 2−ελ2 for − (2λ2 − 1) ≤ s < 0

= 2−ελ2 for 0 ≤ s ≤ 2ελ2 − 2λ2

≤ 2−ελ2 for 2ελ2 − 2λ2 < s ≤ (2ελ2 − 1)

= 0 for 2ελ2 − 1 < s

These hold for any distribution of c[i] over {0, 1}. Similarly, the probability PS′1,...,S′l(s
′
1, . . . , s

′
l)

(resp. PV ′1 ,...,V ′l (v′1, . . . , v
′
l)) is 0 if any si (resp. vi) is smaller than −(2λ1 − 1) (resp. −(2λ2 − 1)) or

larger than −(2ελ1− 1) (resp. −(2ελ2− 1)), equals 2−kελ1 (resp. 2−kελ2) if all si (resp. vi) are in the

range {0, . . . , 2ελ1 − 2λ1} (resp. {0, . . . , 2ελ2 − 2λ2}, and is smaller or equal to 2−kελ1 (resp. 2−kελ2)

in the other cases. Thus we have

∑
a∈(Z)k

|PS′1,...,S′l (α)− PR′1,...,R′l(α)| ≤ 2(2kελ1 − (2kλ1 − 2λ1 + 1)k)

2kελ1

=
2(2kελ1 − 2kελ1(1 + 1−2λ1

2ελ1
)k)

2kελ1
≤ 2(1− (1 + k

1− 2λ1

2ελ1
))

= 2k
2λ1−1

2ελ1
<

2k

(2λ1)ε−1
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and

∑
a∈(Z)k

|PS′1,...,S′l (α)− PR′1,...,R′l(α)| ≤ 2(2kελ2 − (2kλ2 − 2λ2 + 1)k)

2kελ2

=
2(2kελ2 − 2kελ2(1 + 1−2λ2

2ελ2
)k)

2kελ2
≤ 2(1− (1 + k

1− 2λ2

2ελ2
))

= 2k
2λ2−1

2ελ2
<

2k

(2λ2)ε−1

For λ1 and λ2 as defined, the last term can be expressed as one over a polynomial in the input length,

and therefore the two distributions are indistinguishable.

A.2.3 Soundness

We proceed as follows:

Without loss of generality, we assume that the j-th bits of c and c̃ differ and that c[j] = 0. Then we

have

tj = ga
sj

1 g
s′j
2 = y1g

as̃j
1 g

s̃′j
2 = ga

x

1 gw2 (ga
s̃j

1 g
s̃′j
2 )

and thus ax ≡ asj−s̃j (mod n) holds. Hence we can compute (in (Z)

x = sj − s̃j

w = s′j − s̃′j

A.3 Zero-Knowledge Proofs

A.3.1 Proof Construction

The proof is constructed as follows:
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Given y1 = ga
x

1 gw2 and y2 = gx3 , we want to prove that:

Dloga(Dlogg1(y1/g
w
2 )) = logg3(y2) = x

Let l ≤ k be two security parameters and H : {0, 1}∗ → {0, 1}k be a cryptographic
hash function. Generate 2l random numbers r1, . . . , rl and v1, . . . , vl. Compute, for
1 ≤ i ≤ l, ti = ga

ri

1 gvi2 and t′1 = gri3 . The signature of knowledge on the message m is
(c, s1, s2, . . . , sl, s

′
1, s
′
2, . . . , s

′
l), where:

c = H(m‖y1‖y2‖a‖g1‖g2‖g3‖t1‖ . . . ‖tl‖t′1‖ . . . ‖t′l)

and

if c[i] = 0 then si = ri, s
′
i = vi;

else si = ri − x, s′i = vi − w;

To verify the signature it is sufficient to compute:

c′ = H(m‖y1‖y2‖a‖g1‖g2‖g3‖t̄1‖ . . . ‖t̄l‖t̄′1‖ . . . ‖t̄′l)

with

if c[i] = 0 then t̄i = ga
si

1 g
s′i
2 , t̄
′
i = gsi3 ;

else t̄i = y1g
asi
1 g

s′i
2 , t̄
′
i = y2g

si
3 ;

and check whether c = c′.

We now show that the above proof is Honest Verifier Zero Knowledge and Sound.

A.3.2 HVZK

λ1 = p(|g3|), λ2 = p(|g2|)

λi upper bound on size of x,w respectively ie 0 ≤ x,w ≤ 2λi

ε > 1 constant

Let Sv be a simulator. Choose c ∈R {0, . . . , 2k − 1}. Choose ri = si ∈R {0, . . . , 2ελ1 − 1}. Choose

vi = s′i ∈R {0, . . . , 2ελ2 − 1}.

Using these values, the simulator computes:
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ti =


ga

si

1 g
s′i
2 if c[i] = 0

y1g
asi
1 g

s′i
2 else

t′i =


gsi3 if c[i] = 0

y2g
si
3 else

for i = 1, . . . , l. To prove that these values are statistically indistinguishable from a view of a

protocol run with the prover, it suffices to consider the probability distributions PS1,...,Sl(s1, . . . , sl)

of the si’s of the prover and PS′1,...,S′l (s
′
1, . . . , s

′
l) of the s′i’s of the prover and PR1,...,Rl(r1, . . . , rl) of

the ri’s of the simulator and PV1,...,Vl(v1, . . . , vl) of the vi’s of the simulator. The latter values are∏l
i=1 PRi(ri) and

∏l
i=1 PVi(vi) where PRi(ri) is the uniform distribution over {0, . . . , 2ελ1 − 1} and

PVi(vi) is the uniform distributions over {0, . . . , 2ελ2 − 1}. If the prover chooses the ri’s uniformly

at random from {0, . . . , 2ελ1 − 1} and the vi’s uniformly at random from {0, . . . , 2ελ2 − 1} and the

secret key randomly from {0, . . . , 2λ − 1} according to any distribution, we have

PSi(s) =



= 0 for s < −(2λ1 − 1)

≤ 2−ελ1 for − (2λ1 − 1) ≤ s < 0

= 2−ελ1 for 0 ≤ s ≤ 2ελ1 − 2λ1

≤ 2−ελ1 for 2ελ1 − 2λ1 < s ≤ (2ελ1 − 1)

= 0 for 2ελ1 − 1 < s

PVi(v) =



= 0 for s < −(2λ2 − 1)

≤ 2−ελ2 for − (2λ2 − 1) ≤ s < 0

= 2−ελ2 for 0 ≤ s ≤ 2ελ2 − 2λ2

≤ 2−ελ2 for 2ελ2 − 2λ2 < s ≤ (2ελ2 − 1)

= 0 for 2ελ2 − 1 < s

These hold for any distribution of c[i] over {0, 1}. Similarly, the probability PS′1,...,S′l(s
′
1, . . . , s

′
l)

(resp. PV ′1 ,...,V ′l (v′1, . . . , v
′
l)) is 0 if any si (resp. vi) is smaller than −(2λ1 − 1) (resp. −(2λ2 − 1)) or

larger than −(2ελ1− 1) (resp. −(2ελ2− 1)), equals 2−kελ1 (resp. 2−kελ2) if all si (resp. vi) are in the

range {0, . . . , 2ελ1 − 2λ1} (resp. {0, . . . , 2ελ2 − 2λ2}, and is smaller or equal to 2−kελ1 (resp. 2−kελ2)

in the other cases. Thus we have

∑
a∈(Z)k

|PS′1,...,S′l (α)− PR′1,...,R′l(α)| ≤ 2(2kελ1 − (2kλ1 − 2λ1 + 1)k)

2kελ1
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=
2(2kελ1 − 2kελ1(1 + 1−2λ1

2ελ1
)k)

2kελ1
≤ 2(1− (1 + k

1− 2λ1

2ελ1
))

= 2k
2λ1−1

2ελ1
<

2k

(2λ1)ε−1

and

∑
a∈(Z)k

|PS′1,...,S′l (α)− PR′1,...,R′l(α)| ≤ 2(2kελ2 − (2kλ2 − 2λ2 + 1)k)

2kελ2

=
2(2kελ2 − 2kελ2(1 + 1−2λ2

2ελ2
)k)

2kελ2
≤ 2(1− (1 + k

1− 2λ2

2ελ2
))

= 2k
2λ2−1

2ελ2
<

2k

(2λ2)ε−1

For λ1 and λ2 as defined, the last term can be expressed as one over a polynomial in the input length,

and therefore the two distributions are indistinguishable.

A.3.3 Soundness

We proceed as follows:

Without loss of generality, we assume that the j-th bits of c and c̃ differ and that c[j] = 0. Then we

have

tj = ga
sj

1 g
s′j
2 = y1g

as̃j
1 g

s̃′j
2 = ga

x

1 gw2 (ga
s̃j

1 g
s̃′j
2 )

and thus ax ≡ asj−s̃j (mod n) holds. Hence we can compute (in (Z)

x = sj − s̃j

w = s′j − s̃′j
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Zerocash

B.1 Completeness of DAP schemes

A DAP scheme Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive) is com-

plete if no polynomial-size ledger sampler S can win the incompleteness experiment with more than

negligible probability. In Section 3.3.4 we informally described this property; we now formally define

it.

Definition B.1.1. Let Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive) be a (can-

didate) DAP scheme. We say that Π is complete if, for every poly(λ)-size ledger sampler S and

sufficiently large λ,

AdvINCOMP
Π,S (λ) < negl(λ) ,

where AdvINCOMP
Π,S (λ) := Pr[INCOMP(Π,S, λ) = 1] is S’s advantage in the incompleteness experiment.

We now describe the incompleteness experiment mentioned above. Given a (candidate)

DAP scheme Π, a ledger sampler S, and a security parameter λ, the (probabilistic) experiment

INCOMP(Π,S, λ) consists of an interaction between S and a challenger C, terminating with a binary

output by C.
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At the beginning of the experiment, C samples pp← Setup(1λ) and sends pp to S. Then, S

sends C a ledger, two coins to be spent, and parameters for a pour transaction; more precisely, S

sends (1) a ledger L; (2) two coins cold
1 , cold

2 ; (3) two address secret keys addrold
sk,1, addr

old
sk,2; (4) two

values vnew
1 , vnew

2 ; (5) new address key pairs (addrnew
pk,1, addr

new
sk,1), (addrnew

pk,2, addr
new
sk,2); (6) a public value

vpub; and (7) a transaction string info. Afterwards, C performs various checks on S’s message.

Concretely, C first checks that cold
1 and cold

2 are valid unspent coins, i.e., checks that: (i) cold
1

and cold
2 are well-formed; (ii) their coin commitments cmold

1 and cmold
2 appear in (valid) transactions

on L; (iii) their serial numbers snold
1 and snold

2 do not appear in (valid) transactions on L. Next, C

checks that vnew
1 + vnew

2 + vpub = vold
1 + vold

2 (i.e., the values suggested by S preserve balance) and

vold
1 + vold

2 ≤ vmax (i.e., the maximum value is not exceeded). If any of these checks fail, C aborts and

outputs 0.

Otherwise, C computes rt, the Merkle-tree root over all coin commitments in L (appearing

in valid transactions), and, for i ∈ {1, 2, }, pathi, the authentication path from commitment cmold
i to

the root rt. Then, C attempts to spend cold
1 , cold

2 as instructed by S:

(cnew
1 , cnew

2 , txPour)← Pour(pp, rt, cold
1 , cold

2 , addrold
sk,1, addr

old
sk,2, path1, path2, v

new
1 , vnew

2 , addrnew
pk,1, addr

new
pk,2, vpub, info) .

Finally, C outputs 1 if and only if any of the following conditions hold:

• txPour 6= (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, info, ∗), where cmnew
1 , cmnew

2 are the coin commitments of

cnew
1 , cnew

2 ; OR

• txPour is not valid, i.e., VerifyTransaction(pp, txPour, L) outputs 0; OR

• for some i ∈ {1, 2}, the coin cnew
i is not returned by Receive(pp, (addrnew

pk,i, addr
new
sk,i), L

′), where L′ is

the ledger obtained by appending txPour to L.

Remark. There is no need for the challenger C check that, in turn, both cnew
1 and cnew

2 are spendable,

because this follows by induction. Namely, if cnew
1 , cnew

2 were not spendable, a different sampler S ′

(that simulates S and then computes and outputs cnew
1 and cnew

2 ) would provide a counterexample to

the above definition.
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B.2 Security of DAP schemes

A DAP scheme Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive) is secure if

it satisfies ledger indistinguishability, transaction non-malleability, and balance. (See Definition 3.3.2.)

In Section 3.3.4 we informally described these three properties; we now formally define them.

Each of the definitions employs an experiment involving a (stateful) DAP oracle ODAP that

receives and answers queries from an adversary A (proxied via a challenger C, which performs the

experiment-specific sanity checks). Below, we first describe how ODAP works.

The oracleODAP is initialized by a list of public parameters pp and maintains state. Internally,

ODAP stores: (i) L, a ledger; (ii) ADDR, a set of address key pairs; (iii) COIN, a set of coins. All of

L,ADDR,COIN start out empty. The oracle ODAP accepts different types of queries, and each query

causes different updates to L,ADDR,COIN and outputs. We now describe each type of query Q.

• Q = (CreateAddress)

1. Compute (addrpk, addrsk) := CreateAddress(pp).

2. Add the address key pair (addrpk, addrsk) to ADDR.

3. Output the address public key addrpk.

The ledger L and coin set COIN remain unchanged.

• Q = (Mint, v, addrpk)

1. Compute (c, txMint) := Mint(pp, v, addrpk).

2. Add the coin c to COIN.

3. Add the mint transaction txMint to L.

4. Output ⊥.

The address set ADDR remains unchanged.

• Q = (Pour, idxold
1 , idxold

2 , addrold
pk,1, addr

old
pk,2, info, v

new
1 , vnew

2 , addrnew
pk,1, addr

new
pk,2, vpub)

1. Compute rt, the root of a Merkle tree over all coin commitments in L.
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2. For each i ∈ {1, 2}:

(a) Let cmold
i be the idxold

i -th coin commitment in L.

(b) Let txi be the mint/pour transaction in L that contains cmold
i .

(c) Let cold
i be the first coin in COIN with coin commitment cmold

i .

(d) Let (addrold
pk,i, addr

old
sk,i) be the first key pair in ADDR with addrold

pk,i being cold
i ’s address.

(e) Compute pathi, the authentication path from cmold
i to rt.

3. Compute (cnew
1 , cnew

2 , txPour) := Pour(pp, rt, cold
1 , cold

2 , addrold
sk,1, addr

old
sk,2, path1, path2, v

new
1 , vnew

2 , addrnew
pk,1,

addrnew
pk,2, vpub, info).

4. Verify that VerifyTransaction(pp, txPour, L) outputs 1.

5. Add the coin cnew
1 to COIN.

6. Add the coin cnew
2 to COIN.

7. Add the pour transaction txPour to L.

8. Output ⊥.

If any of the above operations fail, the output is ⊥ (and L,ADDR,COIN remain unchanged).

• Q = (Receive, addrpk)

1. Look up (addrpk, addrsk) in ADDR. (If no such key pair is found, abort.)

2. Compute (c1, . . . , cn)← Receive(pp, (addrpk, addrsk), L).

3. Add c1, . . . , cn to COIN.

4. Output (cm1, . . . , cmn), the corresponding coin commitments.

The ledger L and address set ADDR remain unchanged.

• Q = (Insert, tx)

1. Verify that VerifyTransaction(pp, tx, L) outputs 1. (Else, abort.)

2. Add the mint/pour transaction tx to L.

3. Run Receive for all addresses addrpk in ADDR; this updates the COIN with any coins that

might have been sent to honest parties via tx.
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4. Output ⊥.

The address set ADDR remains unchanged.

Remark. The oracle ODAP provides A with two ways to cause a pour transaction to be added to L.

If A has already obtained address public keys addrpk,1 and addrpk,2 (via previous CreateAddress

queries), then A can use a Pour query to elicit a pour transaction txPour (despite not knowing

address secret keys addrsk,1, addrsk,2 corresponding to addrpk,1, addrpk,2). Alternatively, if A has

himself generated both address public keys, then A knows corresponding address secret keys, and

can invoke Pour “in his head” to obtain a pour transaction txPour, which he can add to L by using an

Insert query. In the first case, both addresses belong to honest users; in the second, both to A.

But what about pour transactions where one address belongs to an honest user and one to

A? Such pour transactions might arise from MPC computations (e.g., to make matching donations).

The ledger oracle ODAP, as defined above, does not support such queries. While extending the

definition is straightforward, for simplicity we leave handling such queries to future work.

B.2.1 Ledger indistinguishability

Ledger indistinguishability is characterized by an experiment L-IND, which involves a

polynomial-size adversary A attempting to break a given (candidate) DAP scheme.

Definition B.2.1. Let Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive) be a (can-

didate) DAP scheme. We say that Π is L-IND secure if, for every poly(λ)-size adversary A and

sufficiently large λ,

AdvL-IND
Π,A (λ) < negl(λ) ,

where AdvL-IND
Π,A (λ) := 2 · Pr[L-IND(Π,A, λ) = 1]− 1 is A’s advantage in the L-IND experiment.

We now describe the L-IND experiment mentioned above. Given a (candidate) DAP scheme

Π, adversary A, and security parameter λ, the (probabilistic) experiment L-IND(Π,A, λ) consists of

an interaction between A and a challenger C, terminating with a binary output by C.
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At the beginning of the experiment, C samples b ∈ {0, 1} at random, samples pp← Setup(1λ),

and sends pp to A; next, C initializes (using pp) two separate DAP oracles ODAP
0 and ODAP

1 (i.e., the

two oracles have separate ledgers and internal tables).

The experiment proceeds in steps and, at each step, C provides to A two ledgers (LLeft, LRight),

where LLeft := Lb is the current ledger in ODAP
b and LRight := L1−b the one in ODAP

1−b ; then A sends

to C a pair of queries (Q,Q′), which must be of the same type (i.e., one of CreateAddress, Mint,

Pour, Receive, Insert). The challenger C acts differently depending on the query type, as follows.

• If the query type is Insert, C forwards Q to ODAP
b , and Q′ to ODAP

1−b . This allows A to insert his

own transactions directly in LLeft and LRight.

• For any other query type, C first ensures that Q,Q′ are publicly consistent (see below) and then

forwards Q to ODAP
0 , and Q′ to ODAP

1 ; letting (a0, a1) be the two oracle answers, C replies to A

with (ab, a1−b). This allows A to elicit behavior from honest users. However note that A does not

know the bit b, and hence the mapping between (LLeft, LRight) and (L0, L1); in other words, A does

not know if he elicits behavior on (L0, L1) or on (L1, L0).

At the end of the experiment, A sends C a guess b′ ∈ {0, 1}. If b = b′, C outputs 1; else, C outputs 0.

Public consistency. As mentioned above, A sends C pairs of queries (Q,Q′), which must be

of the same type and publicly consistent, a property that we now define. If Q,Q′ are both of

type CreateAddress or Receive, then they are always publicly consistent. In the special case of

CreateAddress we require that both oracles generate the same address. If they are both of type

Mint, then the minted value in Q must equal that in Q′. Finally, if they are both of type Pour, the

following restrictions apply.

First, Q,Q′ must be individually well-formed; namely, (i) the coin commitments referenced

by Q (via the two indices idxold
1 , idxold

2 ) must correspond to coins cold
1 , cold

2 that appear in the ledger

oracle’s coin table COIN; (ii) the two coins cold
1 , cold

2 must be unspent (i.e. their serial numbers must

not appear in a valid pour transactions on the corresponding oracle’s ledger); (iii) the address public
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keys specified in Q must match those in cold
1 , cold

2 ; and (iv) the balance equation must hold (i.e.,

vnew
1 + vnew

2 + vpub = vold
1 + vold

2 ).

Furthermore, Q,Q′ must be jointly consistent with respect to public information and A’s

view; namely: (i) the public values in Q and Q′ must equal; (ii) the transaction strings in Q and Q′

must equal; (iii) for each i ∈ {1, 2}, if the i-th recipient addresses in Q is not in ADDR (i.e., belongs

to A) then vnew
i in both Q and Q′ must equal (and vice versa for Q′); and (iv) for each i ∈ {1, 2}, if

the i-th index in Q references (in L0) a coin commitment contained in a transaction that was posted

via an Insert query, then the corresponding index in Q′ must reference (in L1) a coin commitment

that also appears in a transaction posted via an Insert query and, moreover, vold
i in both Q and Q′

must equal (and vice versa for Q′). The challenger C learns vold
i by looking-up the corresponding coin

cold
i in the oracle’s coin set COIN. (v) for each i ∈ {1, 2} if the i-th index in Q must not reference a

coin that has previously been spent.

B.2.2 Transaction non-malleability

Transaction non-malleability is characterized by an experiment TR-NM, which involves a

polynomial-size adversary A attempting to break a given (candidate) DAP scheme.

Definition B.2.2. Let Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive) be a (can-

didate) DAP scheme. We say that Π is TR-NM secure if, for every poly(λ)-size adversary A and

sufficiently large λ,

AdvTR-NM
Π,A (λ) < negl(λ) ,

where AdvTR-NM
Π,A (λ) := Pr[TR-NM(Π,A, λ) = 1] is A’s advantage in the TR-NM experiment.

We now describe the TR-NM experiment mentioned above. Given a (candidate) DAP

scheme Π, adversary A, and security parameter λ, the (probabilistic) experiment TR-NM(Π,A, λ)

consists of an interaction between A and a challenger C, terminating with a binary output by C.

At the beginning of the experiment, C samples pp ← Setup(1λ) and sends pp to A; next,
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C initializes a DAP oracle ODAP with pp and allows A to issue queries to ODAP. At the end of the

experiment, A sends C a pour transaction tx∗, and C outputs 1 if and only if the following conditions

hold. Letting T be the set of pour transactions generated by ODAP in response to Pour queries,

there exists tx ∈ T such that: (i) tx∗ 6= tx; (ii) VerifyTransaction(pp, tx∗, L′) = 1, where L′ is the

portion of the ledger preceding tx;1 and (iii) a serial number revealed in tx∗ is also revealed in tx.

B.2.3 BAL

BAL is characterized by an experiment BAL, which involves a polynomial-size adversary A

attempting to break a given (candidate) DAP scheme.

Definition B.2.3. Let Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive) be a (can-

didate) DAP scheme. We say that Π is BAL secure if, for every poly(λ)-size adversary A and

sufficiently large λ,

AdvBAL
Π,A(λ) < negl(λ) ,

where AdvBAL
Π,A(λ) := Pr[BAL(Π,A, λ) = 1] is A’s advantage in the BAL experiment.

We now describe the BAL experiment mentioned above. Given a (candidate) DAP scheme

Π, adversary A, and security parameter λ, the (probabilistic) experiment BAL(Π,A, λ) consists of an

interaction between A and a challenger C, terminating with a binary output by C.

At the beginning of the experiment, C samples pp← Setup(1λ), and sends pp to A; next, C

(using pp) initializes a DAP oracle ODAP and allows A to issue queries to ODAP. At the conclusion of

the experiment, A sends C a set of coins Scoin. Recalling that ADDR is the set of addresses returned by

CreateAddress queries (i.e., addresses of “honest” users), C computes the following five quantities.

• vUnspent, the total value of all spendable coins in Scoin. The challenger C can check if a coin

c ∈ Scoin is spendable as follows: mint a fresh coin c′ of value 0 (via a Mint query) and check if a

corresponding Pour query consuming c, c′ yields a pour transaction txPour that is valid.

1That is, L′ is the longest ledger prefix that can be used to spend at least one of the coins spent in tx.
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• vMint, the total value of all coins minted by A. To compute vMint, the challenger C sums up the

values of all coins that (i) were minted via Mint queries using addresses not in ADDR, or (ii) whose

mint transactions were directly placed on the ledger via Insert queries.

• vADDR→A, the total value payments received by A from addresses in ADDR. To compute vADDR→A,

the challenger C looks up all pour transactions placed on the ledger via Pour queries and sums up

the values that were transferred to addresses not in ADDR.

• vA→ADDR, the total value of payments sent by A to addresses in ADDR. To compute vA→ADDR,

the challenger C first deduces the set S′ ⊆ COIN of all coins received by honest parties and then

sums up the values of coins in S′. (Note that C can compute S′ by selecting all coins in COIN that

are both tied to an address in ADDR and arose from transactions placed on the ledger by Insert

queries.)

• vBasecoin, the total value of public outputs placed by A on the ledger. To compute vBasecoin, the

challenger C looks up all pour transactions placed on the ledger by Insert and sums up the

corresponding vpub values.

At the end of the experiment, C outputs 1 if vUnspent + vBasecoin + vA→ADDR > vMint + vADDR→A; else,

C outputs 0.

Remark. There are two methods for A to spend more public-output money than he owns: (i) by

directly inserting transactions on the ledger, and (ii) by asking honest parties to create such

transactions. The first method is accounted for in the computation of vBasecoin, while the second

method is accounted for in the computation of vA→ADDR (since A must first pay the honest party).

B.3 Proof of Theorem 3.4.1

We prove Theorem 3.4.1. We omit a formal proof of the completeness claim; one can verify

that the DAP scheme’s completeness follows, in a straightforward way, from the completeness of the
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construction’s building blocks. Next, we argue security via three separate proofs, respectively showing

that our construction satisfies (i) ledger indistinguishability, (ii) transaction non-malleability, and

(iii) balance.

B.3.1 Proof of ledger indistinguishability

We describe a simulation asim in which the adversary A interacts with a challenger C, as in

the L-IND experiment. However asim differs from the L-IND experiment in a critical way: all answers

sent to A are computed independently of the bit b, so that A’s advantage in asim is 0. The remainder

of the proof is devoted to showing that AdvL-IND
Π,A (λ) (i.e., A’s advantage in the L-IND experiment) is

at most negligibly different than A’s advantage in asim.

The simulation. The simulation asim works as follows. First, after sampling b ∈ {0, 1} at random,

C samples pp← Setup(1λ), with the following modification: the zk-SNARK keys are generated as

(pkPOUR, vkPOUR, trap)← Sim(1λ, CPOUR), to obtain the zero-knowledge trapdoor trap. Then, as in the

L-IND experiment, C sends pp to A, and then initializes two separate DAP oracles ODAP
0 and ODAP

1 .

Afterwards, as in L-IND, asim proceeds in steps and, at each step, C provides to A two

ledgers (LLeft, LRight), where LLeft := Lb is the current ledger in ODAP
b and LRight := L1−b the one in

ODAP
1−b ; then A sends to C a message (Q,Q′), which consist of two (publicly-consistent) queries of the

same type. The challenger C acts differently depending on the query type, as follows.

• Answering CreateAddress queries. In this case, Q = Q′ = CreateAddress.

To answer Q, C behaves as in L-IND, except for the following modification: after obtaining

(addrpk, addrsk)← CreateAddress(pp), C replaces apk in addrpk with a random string of the appro-

priate length; then, C stores addrsk in a table and returns addrpk to A.

Afterwards, C does the same for Q′.

• Answering Mint queries. In this case, Q = (Mint, v, addrpk) and Q′ = (Mint, v, addr′pk).

To answer Q, C behaves as in L-IND, except for the following modification: the Mint algorithm
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computes the commitment k as COMMr(τ‖ρ), for a random string τ of the appropriate length,

instead of as COMMr(apk‖ρ), where apk is the value specified in addrpk.

Afterwards, C does the same for Q′.

• Answering Pour queries. In this case, Q and Q′ both have the form (Pour, cmold
1 , cmold

2 , addrold
pk,1,

addrold
pk,2, info, v

new
1 , vnew

2 , addrnew
pk,1, addr

new
pk,2, v

new
pub ).

To answer Q, C modifies the way some values are computed:

1. Compute rti by accumulating all of the valid coin commitments on Li.

2. Set vpub and info to the corresponding input values.

3. For each j ∈ {1, 2}:

(a) Sample a uniformly random snold
j .

(b) If addrnew
pk,j is an address generated by a previous query to CreateAddress, (i) sample

a coin commitment cmnew
j on a random input, (ii) run Kenc(ppenc) → (pkenc, skenc) and

compute Cnew
j := Eenc(pkenc, r) for a random r of suitable length.

(c) Otherwise, calculate (cmnew
i ,Cnew

i ) as in the Pour algorithm.2

4. Set h1 and h2 to be random strings of the appropriate length.

5. Compute all remaining values as in the Pour algorithm

6. The pour proof is computed as πPOUR := Sim(trap, x), where x := (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, h1, h2).

Afterwards, C does the same for Q′.

• Answering Receive queries. In this case, Q = (Receive, addrpk) and Q′ = (Receive, addr′pk).

The answer to each query proceeds as in the L-IND experiment.

• Answering Insert queries. In this case, Q = (Insert, tx) and Q = (Insert, tx′). The answer to

each query proceeds as in the L-IND experiment.

In each of the above cases, the response to A is computed independently of the bit b. Thus, when A

outputs a guess b′, it must be the case that Pr [ b = b′ ] = 1/2, i.e., A’s advantage in asim is 0.

2Note that by the restrictions of the experiment, the value vnew
i is identical between QLeft and QRight.
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Proof that the simulation is indistinguishable from the real experiment. We now describe

a sequence of hybrid experiments (areal,a1,a2,a3,asim) in each of which a challenger C conducts a

modification of the L-IND experiment with A. We define areal to be the original L-IND experiment,

and asim to be the simulation described above.

With a slight abuse of notation, given experiment a, we define Adva to be the absolute value of the

difference between (i) the L-IND advantage of A in a and (ii) the L-IND advantage of A in areal.

Also, let

• qCA be the total number of CreateAddress queries issued by A,

• qP be the total number of Pour queries issued by A, and

• qM be the total number of Mint queries issued by A.

Finally, define AdvEnc to be A’s advantage in Enc’s IND-CCA and IK-CCA experiments, AdvPRF to be

A’s advantage in distinguishing the pseudorandom function PRF from a random one, and AdvCOMM

to be A’s advantage against the hiding property of COMM.

We now describe each of the hybrid experiments.

• Experiment a1. The experiment a1 modifies areal by simulating the zk-SNARKs. More

precisely, we modify areal so that C simulates each zk-SNARK proof, as follows. At the be-

ginning of the experiment, instead of invoking KeyGen(1λ, CPOUR), C invokes Sim(1λ, CPOUR) and

obtains (pkPOUR, vkPOUR, trap). At each subsequent invocation of the Pour algorithm, C computes

πPOUR ← Sim(trap, x), without using any witnesses, instead of using Prove. Since the zk-SNARK

system is perfect zero knowledge, the distribution of the simulated πPOUR is identical to that of the

proofs computed in areal. Hence Adva1 = 0.

• Experiment a2. The experiment a2 modifies a1 by replacing the ciphertexts in a pour transaction

by encryptions of random strings. More precisely, we modify a1 so that, each time A issues a Pour

query where one of the output addresses (addrnew
pk,1, addr

new
pk,2) is in the set of addresses previously

generated by a CreateAddress query, the two ciphertexts Cnew
1 ,Cnew

2 are generated as follows:
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(i) (pknew
enc , sk

new
enc )← Kenc(ppenc); (ii) for each j ∈ {1, 2}, Cnew

j := Eenc(pk
new
enc,j , r) where r is a message

sampled uniformly from the plaintext space of the encryption scheme. By Lemma B.3.1 (see

below), |Adva2 − Adva1 | ≤ 4 · qP · AdvEnc.

• Experiment a3. The experiment a3 modifies a2 by replacing all PRF-generated values with

random strings. More precisely, we modify a2 so that:

– each time A issues a CreateAddress query, the value apk within the returned addrpk is

substituted with a random string of the same length;

– each time A issues a Pour query, each of the serial numbers snold
1 , snold

2 in txPour is substituted

with a random string of the same length, and hinfo with a random string of the same length.

By Lemma B.3.2 (see below), |Adva3 − Adva2 | ≤ qCA · AdvPRF.

• Experiment asim. The experiment asim is already described above. For comparison, we explain

how it differs from a3: the coin commitments are replaced with commitments to random inputs.

More precisely, we modify a3 so that:

– each time A issues a Mint query, the coin commitment cm in txMint is substituted with a

commitment to a random input; and

– each time A issues a Pour query, then, for each j ∈ {1, 2}, if the output address addrnew
pk,j is in

the set of addresses previously generated by an CreateAddress query, cmnew
j is substituted

with a commitment to a random input.

By Lemma B.3.3 (see below), |Advasim − Adva3 | ≤ (qM + 4 · qP) · AdvCOMM.

As argued above, the responses provided to A in asim are independent of the bit b, so that Advasim = 0.

Then, by summing over A’s advantages in the hybrid experiments, we can bound A’s advantage in

areal by

AdvL-IND
Π,A (λ) ≤ 4 · qP · AdvEnc + qCA · AdvPRF + (qM + 4 · qP) · AdvCOMM ,

which is negligible in λ. This concludes the proof of ledger indistinguishability. Below, we sketch
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proofs for the lemmas used above (Lemma B.3.1, Lemma B.3.2, and Lemma B.3.3).

Lemma B.3.1. Let AdvEnc be the maximum of:

• A’s advantage in the IND-CCA experiment against the encryption scheme Enc, and

• A’s advantage in the IK-CCA experiment against the encryption scheme Enc.

Then after qP Pour queries, |Adva2 − Adva1 | ≤ 4 · qP · AdvEnc.

Proof sketch. Define ε := Adva2 − Adva1 . Using A, we first show how to construct a solver with

advantage ≥ ε
2·qP in the IK-CCA or IND-CCA experiments. We use a hybrid H, intermediate between

a1 and a2; concretely, H modifies a1 so that each ciphertext (where the corresponding public key

appears in the set generated by a CreateAddress query) is replaced with the encryption of the same

plaintext, but under a new, random public key generated via the Kenc algorithm. (For comparison,

a2 modifies H so that each plaintext is replaced with a random plaintext drawn from the plaintext

space.) We now argue that A’s advantage in distinguishing H and a1 is at most 2 · qP · AdvEnc, and

so is for distinguishing a2 and H. Overall, we deduce that |Adva2 − Adva1 | ≤ 4 · qP · AdvEnc.

First, we discuss H and a1. For some j ∈ {1, . . . , qCA}, when A makes the j-th query of the

form CreateAddress, query the IK-CCA challenger to obtain two public keys (pkenc,0, pkenc,1) and

return pkenc := pkenc,0 in the response to A. At the time A issues a Pour query that results in the

i-th ciphertext Ci being encrypted under pkenc, query the IK-CCA challenger on the corresponding

plaintext m and receive C∗ = Eenc(pkenc,b̄,m) where b̄ is the bit chosen by the IK-CCA challenger.

Substitute Ci := C∗ and write the resulting txPour to the Ledger. When A outputs b′ we return

this guess as our guess in the IK-CCA experiment. We note that when b̄ = 0 then A’s view of the

interaction is distributed identically to that of a1, and when b̄ is 1 then A’s view represents an

intermediate hybrid where one key has been substituted. By a standard hybrid argument over each

of the 2 · qP ciphertexts, we note that over the random coins of the experiment, our solver must

succeed in the IK-CCA experiment with advantage ≥ ε
2·qP . If we assume a maximum adversarial

advantage AdvEnc against the IK-CCA experiment for the encryption scheme, then we get that
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∣∣∣AdvH − Adva2

∣∣∣ ≤ 2 · qP · AdvEnc.

Next, we discuss a2 and H; the argument is similar to the above one. This time, rather

than replacing the key used to encrypt, we replace the plaintext with a random message drawn from

the plaintext space; this final distribution is the same as in a2. We omit the formal description of

the resulting IND-CCA solver (which essentially follows the pattern above), and simply note that∣∣∣Adva2 − AdvH
∣∣∣ ≤ 2 · qP · AdvEnc.

Lemma B.3.2. Let AdvPRF be A’s advantage in distinguishing the pseudorandom function PRF from

a random function. Then, after qCA CreateAddress queries, |Adva3 − Adva2 | ≤ qCA · AdvPRF.

Proof sketch. We first describe a hybrid H, intermediate between a2 and a3, in which all values

computed using the first (rather than all) oracle-generated key ask are replaced with random strings.

Then, we show that A’s advantage in distinguishing between H and a2 is at most AdvPRF. Finally,

we extend the argument to all qCA oracle-generated keys (corresponding to what happens in a3).

We now describe H. On receiving A’s first CreateAddress query, replace the public

address addrpk = (apk, pkenc) with addrpk = (τ, pkenc) where τ is a random string of the appropriate

length. On each subsequent Pour query, for each i ∈ {1, 2}, if addrold
pk,i = addrpk then:

1. in the output txPour, replace snold
i with a random string of appropriate length;

2. in the output txPour, replace each of h1, h2 with a random string of appropriate length.

3. simulate the zk-SNARK proof πPOUR for the new transaction.

Note that the above modifications do not affect the computation of the zk-SNARK proof πPOUR,

because πPOUR is simulated with the help of a trapdoor.

We now argue that A’s advantage in distinguishing between H and a2 is at most AdvPRF. Let

ask be the random, secret seed for PRF generated by the oracle in answering the first CreateAddress

query. In a2 (as in areal):

• apk := PRFaddr
ask

(0);

• for each i ∈ {1, 2}, sni := PRFsn
ask

(ρ) for a random (and not previously used) ρ
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• for each i ∈ {1, 2}, hi := PRFpk
ask

(i‖hSig) and, with overwhelming probability, hSig is unique.

Moreover, each of PRFaddr
ask

,PRFsn
ask
,PRFpk

ask
are constructed from PRFask

as specified in Section 3.4.1.

Note that, with overwhelming probability, no two calls to PRFask
are made on the same input. First,

even identical inputs passed to PRFaddr
ask

,PRFsn
ask
,PRFpk

ask
produce different underlying calls to PRFask

.

Second, within each construction, there is exactly one call to PRFaddr
ask

, and the calls to PRFsn
ask

are

each by definition unique. Finally, with overwhelming probability, the calls to PRFpk
ask

from different

transactions each reference a distinct digest hSig, and, within a given transaction, the two calls each

begin with a distinct prefix.

Now let O be an oracle that implements either PRFask
or a random function. We show that

if A distinguishes H from a2 with probability ε, then we can construct a distinguisher for the two

cases of O. In either case we use O to generate all values computed using PRFaddr
ask

,PRFsn
ask
,PRFpk

ask
.

Clearly, when O implements PRFask
, the distribution of the experiment is identical to a2; instead,

when O implements a random function, the distribution of the experiment is identical to H. Thus,

A’s advantage is at most AdvPRF.

Finally, by a standard hybrid argument, we extend the above to all qCA oracle-generated

addresses; then, A’s differential distinguishing advantage is at most qCA · AdvPRF. Because this final

hybrid is equal to a3, we deduce that |Adva3 − Adva2 | ≤ qCA · AdvPRF.

Lemma B.3.3. Let AdvCOMM be A’s advantage against the hiding property of COMM. After qM

Mint queries and qP Pour queries, |Advasim − Adva3 | ≤ (qM + 4 · qP) · AdvCOMM.

Proof sketch. We only provide a short sketch, because the structure of the argument is similar to the

one used to prove Lemma B.3.2 above.

For the first Mint or Pour query, replace the “internal” commitment k := COMMr(apk‖ρ)

with a random string of the appropriate length. Since ρ is random (and unique), then A’s advantage

in distinguishing this modified experiment from a2 is at most AdvCOMM. Then, if we similarly

modify all qM Mint queries and all qP Pour queries, by replacing the resulting qM + 2 · qP internal
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commitments with random strings, we can bound A’s advantage by (qM + 2 · qP) · AdvCOMM.

Next, in a similar vein, if replace the coin commitment in the first Pour with a commitment

to a random value, then A’s advantage in distinguishing this modified experiment from the above one

is at most AdvCOMM. Then, if we similarly modify all qP Pour queries, by replacing the resulting

2 · qP coin commitments with random strings, we obtain the experiment asim, and deduce that

|Advasim − Adva3 | ≤ (qM + 4 · qP) · AdvCOMM.

B.3.2 Proof of transaction non-malleability

Letting T be the set of pour transactions generated by ODAP in response to Pour queries,

recall that A wins the TR-NM experiment whenever it outputs tx∗ such that there exists tx′ ∈ T

such that: (i) tx∗ 6= tx′; (ii) VerifyTransaction(pp, tx∗, L′) = 1, where L′ is the portion of the ledger

preceding tx′; and (iii) a serial number revealed in tx∗ is also revealed in tx′. Being a pour transaction,

tx∗ has the form (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, info, ∗), where ∗ := (pksig, h1, h2, πPOUR,C1,C2, σ);

set hSig := CRH(pksig). Let pk′sig be the corresponding public key in tx′ and set h′Sig := CRH(pk′sig).

Define ε := AdvTR-NM
Π,A (λ), and let QCA = {ask,1, . . . , ask,qCA

} be the set of internal address

keys created by C in response to A’s CreateAddress queries. Let QP = (pksig,1, . . . , pksig,qP) be the

set of signature public keys created by C in response to A’s Pour queries. We decompose the event

in which A wins into the following four disjoint events.

• Eventsig: A wins, and there is pk′′sig ∈ QP such that pksig = pk′′sig.

• Eventcol: A wins, the above event does not occur, and there is pk′′sig ∈ QP such that hSig =

CRH(pk′′sig).

• Eventmac: A wins, the above two events do not occur, and hi = PRFpk
a (i‖hSig) for some i ∈ {1, 2}

and a ∈ QCA.

• Eventkey: A wins, the above three events do not occur, and hi 6= PRFpk
a (i‖hSig) for all i ∈ {1, 2}

and a ∈ QCA.

Clearly, ε = Pr [Eventsig ] + Pr [Eventcol ] + Pr [Eventkey ] + Pr [Eventmac ]. Hence, to show that
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ε is negligible in λ, it suffices to argue that each of these probabilities is negligible in λ.

Bounding the probability of Eventsig. Define ε1 := Pr [Eventsig ]. Let σ be the signature in

tx∗, and σ′′ be the signature in the first pour transaction tx′′ ∈ T that contains pk′′sig. When Eventsig

occurs, since pksig = pk′′sig, the two signatures are with respect to the same public key. Moreover,

since tx∗ is valid, Vsig(pksig,m, σ) = 1 where m is everything in tx∗ but for σ. Let m′′ consist of all

elements in tx′′ but for σ′′. Observe that whenever tx∗ 6= tx′′ we also have (m,σ) 6= (m′′, σ′′). We

use this fact below to show that A forges a signature with non-negligible probability.

First, we argue that, conditioned on Eventsig, tx∗ 6= tx′′ with overwhelming probability; we

do so by way of contradiction. First, since A wins, by definition there is tx′ ∈ T such that tx∗ 6= tx′

and yet each of tx∗ and tx′ share one serial number. Therefore: (i) tx∗ 6= tx′; and (ii) if tx∗ = tx′′

then tx′′ and tx′ also share a serial number. However the probability that tx′ and tx′′ share a serial

number is bounded by the probability p̃ that T contains two transactions that share the same serial

number. Because each serial number is computed as PRFsn
ask

(ρ), where ρ is random, p̃ is negligible.

We conclude that tx∗ 6= tx′′ with all but negligible probability.

Next, we describe an algorithm B, which uses A as a subroutine, that wins the SUF-1CMA

game against Sig with probability ε1/qP. After receiving a verification key pk′′sig from the SUF-1CMA

challenger, the algorithm B performs the following steps.

1. B selects a random index j ← {1, . . . , qP}.

2. B conducts the TR-NM experiment with A, except that, when A issues the j-th Pour query,

B executes Pour as usual, but modifies the resulting pour transaction tx′′ as follows: (i) it

substitutes pk′′sig for the signature public key in tx′′; (ii) it queries the SUF-1CMA challenger to

obtain σ′′ on the appropriate message m′′; and (iii) it substitutes σ′′ for the signature in tx′′.

3. When A outputs tx∗, B looks into tx∗ to obtain pksig, m, and σ.

4. If pksig 6= pk′′sig then B aborts; otherwise B outputs (m,σ) as a forgery for Sig.

Note that tx′′ has the same distribution has an “untampered” pour transaction; thus, all transactions

returned to A are distributed as in the TR-NM experiment. Since the index j is selected at random,
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B succeeds in the experiment with probability at least ε1/qP. Because Sig is SUF-1CMA, ε1 must be

negligible in λ.

Bounding the probability of Eventcol. Define ε2 := Pr [Eventcol ]. When Eventcol occurs,

A receives a transaction tx′ containing a public key pk′′sig, and subsequently outputs a transaction

tx∗ containing a public key pksig such that (i) pksig 6= pk′′sig, but (ii) CRH(pksig) = CRH(pk′sig). In

particular, A finds collisions for CRH with probability ε2. Because CRH is collision resistant, ε2 must

be negligible in λ.

Bounding the probability of Eventmac. Define ε3 := Pr [Eventmac ]. We first define an experi-

ment a1, which modifies the TR-NM experiment as follows. When C samples pp← Setup(1λ), the

sub-call to (pkPOUR, vkPOUR)← KeyGen(1λ, CPOUR) is replaced by (pkPOUR, vkPOUR, trap)← Sim(1λ, CPOUR),

so to obtain the zero-knowledge trapdoor trap. Afterwards, each time A issues a Pour query, C

replaces the zk-SNARK proof in the resulting pour transaction with a simulated proof, obtained by

running Sim(trap, x) for an appropriate input x. Because the zk-SNARK is perfect zero knowledge,

Pr [Eventmac ] = ε3 in the a1 experiment as well.

Assume by way of contradiction that ε3 is non-negligible. We now show how to construct

an attacker B, which uses A as a subroutine, that distinguishes PRF from a random function RAND

with non-negligible probability. The algorithm B, which has access either to O = PRF or O = RAND,

“interfaces” between A and C in the experiment a1 above, as follows.

1. First, B selects a random index j ← {1, . . . , qCA}, which identifies ask,j ∈ QCA.

2. Next, B uses the oracle O instead of PRFask,j
, i.e., anytime a value needs to be computed

depending on PRFask,j
(z), for some z, O(z) is used instead. (For instance, the public address

key apk,j is one such value.)

3. Finally, after A outputs tx∗:

(a) if O has been previously evaluated the expression “PRFpk
ask,j

(i‖hSig)” using O, B aborts

and outputs 1;

(b) otherwise, B evaluates the expression “PRFpk
ask,j

(i‖hSig)” by using O; if the result equals
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hi, B outputs 1, else it outputs 0.

Conducting the above strategy does not require knowledge of ask,j because, having the simulation

trapdoor, B does not need witnesses to generate (valid) zk-SNARK proofs.

We now argue that
∣∣Pr
[
BPRF(1λ) = 1

]
− Pr

[
BRAND(1λ) = 1

]∣∣ is non-negligible.

• Case 1: O = RAND. Observe that:

Pr
[
BRAND(1λ) = 1 | BRAND(1λ) does not abort

]
= 2−ω .

where ω is the output length of PRF. Hence:

Pr
[
BRAND(1λ) = 1

]
=
(
1− Pr

[
BRAND(1λ) aborts

])
· 2−ω + Pr

[
BRAND(1λ) aborts

]
.

• Case 2: O = PRF. In this case the distribution of the simulation is identical to that of a1, and B

has set ask,j equal to the seed used by O. Recall that, when Eventmac holds, hi = PRFpk
a (i‖hSig)

for some a ∈ QCA. Since A’s view of the experiment is independent of j, the probability that

a = ask,j is at least 1/qCA, and the probability that hi = PRFpk
ask,j

(i‖hSig) is at least ε3/qCA. Hence:

Pr
[
BPRF(1λ) = 1 | BPRF(1λ) does not abort

]
= ε3/qCA .

Thus:

Pr
[
BPRF(1λ) = 1

]
=
(
1− Pr

[
BPRF(1λ) aborts

])
· ε3/qCA + Pr

[
BPRF(1λ) aborts

]
.

Clearly, 2−ω is negligible; moreover, if ε3 is non-negligible, then so is |ε3/qCA|. Thus, to show

that
∣∣Pr
[
BPRF(1λ) = 1

]
− Pr

[
BRAND(1λ) = 1

]∣∣ is non-negligible, it suffices to show that each of

Pr
[
BRAND(1λ) aborts

]
and Pr

[
BPRF(1λ) aborts

]
is negligible.

To do so, recall that B aborts if and only if it has previously evaluated the expression
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“PRFpk
ask,j

(i‖hSig)” using O prior to receiving A’s output. First note that B’s only calls to O occur when

it evaluates the functions PRFaddr,PRFsn and PRFpk. Moreover, due to the construction of these

functions it is not possible to evaluate the expression PRFpk
ask,j

(i‖hSig) using any calls to PRFaddr or

PRFsn. Thus B aborts if and only if it has previously queried PRFpk on the expression PRFpk
ask,j

(i‖hSig).

However it is easy to see that this cannot happen under the conditions of Eventmac, since such a

query would imply the condition Eventsig or Eventcol, each of which is excluded by Eventmac.

Hence the probability of either condition occurring is 0.

Bounding the probability of Eventkey. Define ε4 := Pr [Eventkey ], and let E be the zk-SNARK

extractor for A. Assume by way of contradiction that ε4 is non-negligible. We construct an algorithm

B that finds collisions for PRFsn with non-negligible probability (contradicting the fact that PRFsn is

collision resistant). The algorithm B works as follows.

1. Run A (simulating its interaction with the challenger C) to obtain tx∗.

2. Run E(pkPOUR, vkPOUR) to obtain a witness a for the zk-SNARK proof πPOUR in tx∗.

3. If a is not a valid witness for the instance x := (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, hSig, h1, h2),

abort and output 0.

4. Parse a as (path1, path2, c
old
1 , cold

2 , addrold
sk,1, addr

old
sk,2, c

new
1 , cnew

2 ).

5. For each i ∈ {1, 2}, parse cold
i as (addrold

pk,i, v
old
i , ρold

i , rold
i , sold

i , cmold
i ).

6. For each i ∈ {1, 2}, parse addrold
sk,i as (aold

sk,i, sk
old
enc,i).

(Note that, since a is a valid witness, snold
i = PRFsn

aold
sk,i

(ρold
i ) for all i ∈ {1, 2}.)

7. For each i ∈ {1, 2}:

(a) Look for a pour transaction tx ∈ T that contains snold
i .

(b) If one tx is found, let ask and ρ be the seed and input used to compute snold
i in tx; thus,

snold
i = PRFsn

ask
(ρ). If aold

sk,i 6= ask, output
(
(aold

sk,i, ρ
old
i ), (ask, ρ)

)
as a collision for PRFsn.

Note that, whenever Eventkey holds:

• the proof πPOUR is valid and, with all but negligible probability, the witness a is valid;

• the serial number snold
1 or snold

2 appears in some previous pour transaction in T ;
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• whenever a is valid, it holds that h1 = PRFpk

aold
sk,1

(hSig) and h2 = PRFpk

aold
sk,2

(hSig), so that it cannot

be that aold
sk,1 = aold

sk,2 = ask (as this contradicts the conditions of the event Eventkey).

Overall, we conclude that B finds a collision for PRFsn with probability ε4 − negl(λ).

B.3.3 Proof of balance

Define ε := AdvBAL
Π,A(λ); our goal is to show that ε is negligible in λ. Recall that ADDR is

the set of addresses returned by A’s CreateAddress queries.

Augmenting the ledger with witnesses. We modify the BAL experiment in a way that does

not affect A’s view: the challenger C computes, for each pour transaction txPour on the ledger L

(maintained by the oracle ODAP), a witness a = (path1, path2, c
old
1 , cold

2 , addrold
sk,1, addr

old
sk,2, c

new
1 , cnew

2 ) for

the zk-SNARK instance x = (rt, snold
1 , snold

2 , cmnew
1 , cmnew

2 , vpub, hSig, h1, h2) corresponding to txPour.
3

In this way, C obtains an augmented ledger (L,~a), where ai is a witness for the zk-SNARK instance

xi of the i-th pour transaction in L. Note that we can parse (L,~a) as a list of matched pairs (txPour, a)

where txPour is a pour transaction in L and a is its corresponding witness.

The discussion below is relative to the above modification of the BAL experiment.

Balanced ledgers. We say that an augmented ledger (L,~a) is balanced if the following holds.

I. Each (txPour, a) in (L,~a) contains openings (i.e., decommitments) of two distinct coin com-

mitments cmold
1 and cmold

2 ; also, each cmold
i is the output coin commitment of a pour or mint

transaction that precedes txPour on L.

II. No two (txPour, a) and (a′, tx′Pour) in (L,~a) contain openings of the same coin commitment.

III. Each (txPour, a) in (L,~a) contains openings of cmold
1 , cmold

2 , cmnew
1 , cmnew

2 to values vold
1 , vold

2 ,

vnew
1 , vnew

2 (respectively), with the condition that vold
1 + vold

2 = vnew
1 + vnew

2 + vpub.

IV. For each (txPour, a) in (L,~a) and for each i ∈ {1, 2}, the following conditions hold:

3Concretely, for pour transactions in L not inserted by A, C simply retains the witness a internally used by ODAP

to generate the transaction. As for the (valid) pour transactions inserted by A, C uses the zk-SNARK multi-instance
knowledge extractor corresponding to A; see Section 3.2.1. (If knowledge extraction fails, C aborts and outputs 1.
However, this only happens with negligible probability.)
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(a) If cmold
i is also the output of a mint transaction txMint on L, then the public value v in

txMint is equal to vold
i .

(b) If cmold
i is also the output of a pour transaction tx′Pour on L, then its witness a′ contains

an opening of cmold
i to a value v′ that is equal to vold

i .

V. For each (txPour, a) in (L,~a), where txPour was inserted by A, it holds that, for each i ∈ {1, 2},

if cmold
i is the output of an earlier mint or pour transaction tx′, then the public address of the

i-th output of tx′ is not contained in ADDR.

Intuitively, the above conditions ensure that, in L, A did not spend money that was not previously

minted, or paid to an address under A’s control. Concretely, one can prove by induction that if (L,~a)

is balanced then vUnspent + vBasecoin + vA→ADDR > vMint + vADDR→A.

In light of the above, it suffices to argue that the augmented ledger induced by the (modified) BAL

experiment is balanced with all but negligible probability. Suppose, by way of contradiction, that is

is not the case: A induces, with non-negligible probability, an augmented ledger (L,~a) that is not

balanced. We distinguish between five cases, corresponding to which one of the above conditions

does not hold with non-negligible probability. In each case, we show how to reach a contradiction,

concluding the proof.

A violates Condition I. Suppose that Pr [A wins but violates Condition I ] is non-negligible. By

construction of ODAP, every (txPour, a) in (L,~a) for which txPour was not inserted by A satisfies

Condition I; thus, the violation can only originate from a pair (txPour, a) in (L,~a) for which txPour

was inserted by A and such that: (i) cmold
1 = cmold

2 ; or (ii) there is i ∈ {1, 2} such that cmold
i has no

corresponding output coin commitment in any pour or mint transaction that precedes txPour on L.

Observe that the validity of txPour implies that:

• The two serial numbers snold
1 and snold

2 are distinct. Moreover, recalling that each snold
i equals

PRFsn
aold

sk,i
(ρold
i ), this also implies that (aold

sk,1, ρ
old
1 ) 6= (aold

sk,2, ρ
old
2 ).

• The witness a contains two valid authentication paths path1, path2 for a Merkle tree constructed
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using only coin commitments of transactions preceding txPour in L.

In either (i) or (ii), we reach a contradiction. Indeed:

(i) If cmold
1 = cmold

2 , then the fact that snold
1 6= snold

2 implies that the witness a contains two distinct

openings of cmold
1 (the first opening contains (aold

sk,1, ρ
old
1 ), while the second opening contains

(aold
sk,2, ρ

old
2 )). This violates the binding property of the commitment scheme COMM.

(ii) If there is i ∈ {1, 2} such that cmold
i does not previously appear in L, then pathi is an invalid

authentication path, and thus yields a collision in the function CRH. This violates the collision

resistance of CRH.

A violates Condition II. Suppose that Pr [A wins but violates Condition II ] is non-negligible.

Observe that, when Condition II is violated, L contains two pour transactions txPour, tx
′
Pour spending

the same coin commitment cm, and revealing two serial numbers sn and sn′. Since txPour, tx
′
Pour are

valid, it must be the case that sn 6= sn′. However (as argued already above), if both transactions spend

cm but produce different serial numbers, then the corresponding witnesses a, a′ contain different

openings of cm. This contradicts the binding property of the commitment scheme COMM.

A violates Condition III. Suppose that Pr [A wins but violates Condition III ] is non-negligible.

In this case, the contradiction is immediate: whenever Condition III is violated, the equation

vold
1 + vold

2 = vnew
1 + vnew

2 + vpub does not hold, and thus, by construction of the statement POUR, the

soundness of the zk-SNARK is violated as well.

A violates Condition IV. Suppose that Pr [A wins but violates Condition IV ] is non-negligible.

Observe that, when Condition IV is violated, L contains:

• a pour transaction txPour in which a coin commitment cmold is opened to a value vold; and also

• a (mint or pour) transaction tx′ that opens cmold to a value v′ different from vold.

This contradicts the binding property of the commitment scheme COMM.

A violates Condition V. Suppose that Pr [A wins but violates Condition V ] is non-negligible.

Observe that, when Condition V is violated, L contains an inserted pour transaction txPour that

spends the output of a previous transaction tx′ whose public address addrpk = (apk, pkenc) lies in
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ADDR; moreover, the witness associated to tx′ contains ask such that apk = PRFaddr
ask

(0). We omit the

full argument, but one can verify that, in this case, we can construct a new adversary B that uses A

to distinguish, with non-negligible probability, PRF from a random function.
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Bolt

C.1 Choice of cryptographic primitives

We now describe in depth our choice of cryptographic primitives:

C.1.1 Possible building blocks

Signatures with efficient protocols are the core building block of anonymous credentials and

are a well studied primitive with many solutions offering various performance, security, and feature

trade offs. One of the most efficient schemes that offers a full set of features and provable security is

the bilinear variant of CL-signatures due to Camenisch and Lysyanskaya [97]. An implementation

exists in Charm [39].

We are aware of two other candidate signature schemes with available implementations

from petLib [114] that are aimed at providing increased performance with reduced functionality. The

first is used in the construction of Lightweight Anonymous Credentials [115]. Here signatures can

only be shown anonymously once. Second, Algebraic MACs are used in [106], to build a limited

form of anonymous credential. Because it uses a MAC not a signature, only the issuer can verify

“signed” messages. This requires some modification to our protocol since closure of a channel currently
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requires public verification of the refund token.

C.1.2 Selecting the signature scheme

The scheme from Anonymous Credentials Light [115] is the fastest for issuing and showing,

with most operations taking less than 0.01ms. However, a registration phase must be completed

for the set of messages that can be signed. This must be repeated every time the set changes and

takes 100ms. Because the refund token rt is selected at random and changes on every instance, this

process must be done on every payment. Moreover, even if this were made far faster, the registration

process reveals the message set. It may be possible to patch Bolt to accommodate this or modify the

credential scheme to remove the restriction, but the 100ms cost is too high to pay per payment. The

remaining two schemes are more promising with most operations taking less than 30ms each.

C.1.3 Implementation

We build two completely distinct implementations of the bidirectional payment protocol. One

using bilinear CL-Sigs and the other using Algebraic MACs. Our approach mirrors the construction

of a credential scheme: we present a commitment to the wallet and a proof that it is signed and then

use Schnorr proofs [17] to prove the balance of the new wallet commitment is correct with respect to

the old wallet. We then blindly obtain a signature on the new wallet. For the range proof, we use a

technique reminiscent of [100]: we decompose the balance into bytes and prove we have a signature

issued on each byte. This allows us to reuse the code and primitives from the signature scheme rather

than using a separate range proof which would introduce more cryptographic assumptions, more

code, and more dependencies.

The results are given in Table 4.6. The implementation based on Algebraic MACs is

approximately twice as fast as the CL-Sig approach. It should be noted, however, that there is far

more room for optimization in the CL-signature library. While both are implemented in Python,

the implementation of Algebraic MACs use only elliptic curve operations via openSSL. As such, the
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principle overhead is from calling native code from Python. On the other hand, the CL-signature

implementation uses symmetric bilinear pairings with an implementation from the PBC library [116].

Use of asymmetric pairings and a faster pairing library such as RELIC [117] would give a marked

improvement.

C.1.4 Adapting channel closure to avoid public verification of credentials

Closing a disputed channel currently requires the blockchain to verify that the refund

token is signed. For our faster construction, this is impossible since the key remains secret and the

“signature” is actually a MAC. There are two solutions to this: 1) we can, as outlined in paragraph

4.5.1 opt to have the blockchain validate conventional signatures at the cost of an extra round trip in

pay. 2) We can allow the merchant to prove that a purported MAC is invalid.

The MAC itself consists of u, u′ = uHx(m) where Hx(m) is a keyed and deterministic hash

function. Unfortunately, u is chosen at random so the MAC is not unique and it is not sufficient

to reveal the correct MAC on the message and prove its correctness.1 Instead, we must prove that

logu(u′) 6= logv(v
′) (i.e. that uHx (m) 6= u′) and that the revealed MAC v, v′) is correct. Camenisch

and Shoup give an extremely efficient proof for discrete log inequality [118] where only one discrete

log is known to the prover and none known to the verifier. We implement this full proof of invalid

MAC combining the prove of MAC validity and discrete log inequality. It takes approximately 14ms

to generate and verify. We note that as this proof includes the actual valid MAC on the forged refund

token, it is necessary for the blockchain to blacklist this MAC and not accept it. However, since the

refund token can never be used in payments, we need not add extra steps to the pay protocol.

1Counter-intuitively, despite being built on a MAC, Keyed-Verification Anonymous Credentials include an efficient
zk-proof of validity of a MAC that effectively transforms the MAC into a (non blind) signature. Since this proof is
somewhat expensive, it is only used to verify the correctness of issued credentials.
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C.2 Security Definitions

In this section we provide formal security definitions for an anonymous payment channel

scheme.

C.2.1 Payment anonymity

Let A be an adversary playing the role of merchant. We consider an experiment involving

P “customers”, each interacting with the merchant as follows. First, A is given pp, then outputs

TM. Next A issues the following queries in any order:

Initialize channel for Ci. When A makes this query on input Bcust, Bmerch, it obtains the

commitment TiC , generated as (TiC , csk
i
C)

R← InitC(pp, B
cust, Bmerch).

Establish channel with Ci. In this query, A executes the Establish protocol with Ci as:

Establish({C(pp,TM, cskiC)}, {A(state)}

Where state is the adversary’s state. Let us denote the customer’s output as wi, where wi may

be ⊥.

Payment from Ci. In this query, if wi 6= ⊥, then A executes the Pay protocol for an amount ε

with Ci as:

Pay({C(pp, ε, wi)}, {A(state)})

Where state is the adversary’s state. We denote the customer’s output as wi, where wi may be

⊥.

Finalize with Ci. When A makes this query, it obtains the closure message rciC, computed as

rcC
R← Refund(pp, wi).

We say that A is legal if A never asks to spend from a wallet where wi = ⊥ or where wi is

undefined, and where A never asks Ci to spend unless the customer has sufficient balance to complete

the spend.
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Let auxparams be an auxiliary trapdoor not available to the participants of the real protocol.

We require the existence of a simulator SX−Y (·)(pp, auxparams, ·) such that for all TM, no allowed

adversary A can distinguish the following two experiments with non-negligible advantage:

Real experiment. In this experiment, all responses are computed as described above.

Ideal experiment. In this experiment, the Commitment, Establishment and Finalize queries are

handled using the procedure described abvove. However, in the Payment query, A does not

interact with Ci but instead interacts with SX−Y (·)(pp, auxparams, ·).

As in [90] we note that this definition preserves anonymity because the simulator S does

not know the identity of the user i for which he is spending the coin.

C.2.2 Payment Balance

A interacts with a collection of P honest customers C1, . . . , CP and Q honest merchants

M1, . . . ,MQ. Initialize the counters balA ← 0, claimedA ← 0. Let pp ← Setup(1λ). For each

merchant i ∈ [1, Q], at the start of the game let (pkMi
, skMi) ← KeyGen(pp). Give pp and

(pkM1
, . . . , pkMQ

) to A. Now A may issue the following queries in any order:

Initialize channel for Ci (resp. Mi) When A makes this query on input (Pi, Bcust
0 , Bmerch

0 ), it

obtains the commitment TCi (resp. TMi) computed as follows:

• If the party Pi is a customer: First compute (pkCi , skCi)← KeyGen(pp), then (TCi , csk
i
C)

R←

InitC(pp, B
cust
0 , Bmerch

0 , pkCi , skCi). Set balA ← balA +Bmerch
0 .

• If the party Pi is a merchant: Compute (TMi , cskMi)
R← InitM(pp, Bcust

0 , Bmerch
0 , pkMi

, cskiM).

Set balA ← balA +Bcust
0 .

Establish channel with Ci (resp. Mi). When A specifies (Pi,TA), and A has previously

initialized a channel with party Pi, execute the Establish protocol with Ci (resp. Mi) using the

following input:
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• If Pi is a customer: Establish({Ci(pp,TA, cskiC)}, {A(state)} → wi (or ⊥).

• If Pi is a merchant: Establish({A(state)}, {M(pp,TA, csk
i
M)} → established (or ⊥).

Where state is the adversary’s state.

Payment from Ci (resp. to Mi). In this query, A specifies (Pi, ε) where ε may be positive or

negative. If A has previously conducted the Establish protocol with this party and the party’s

output was not ⊥, then execute the Pay protocol with A as:

• If Pi is a customer: Pay({Ci(pp, ε, wi)}, {A(state)})→ wi (or ⊥). If the customer’s output

is not ⊥, set balA ← balA + ε.

• If Pi is a merchant: Pay({A(state)}, {Mi(pp, ε,Si)}) → Si (or ⊥). If the merchant’s

output is not ⊥, balA ← balA − ε.

Where state is the adversary’s state.

Finalize with Ci (resp. Mi) When A makes this query on input Pi and optional input rcC , if it

has previously established a channel with Pi, it obtains a closure message as:

• If Pi is a customer: if A has previously established a channel with Pi and has not previously

Finalized on this party, compute rcC
R← Refund(pp, wi), store rcC , and return rcC to A.

• If Pi is a merchant: if A has previously established a channel with Pi and has not

previously Finalized on this party, compute rcM
R← Refute(pp,Si, rcC).

If the adversary provided rcM and rcC is stored, compute (Bcust
final, B

merch
final ) ← Resolve(pp,TC ,

TM, rcC , rcM) and update claimedA ← claimedA +B
merch (resp. cust)
final .

We say that A is legal if A never asks to spend from a wallet where wi = ⊥ or where wi is

undefined, and where A never asks Ci to spend unless the customer has sufficient balance to complete

the spend. We say that A wins the game if at the conclusion of A’s queries, we have claimedA > balA.
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C.3 Proof of Security for Unidirectional Scheme

Proof of Theorem 4.4.1

Proof. The proof of Theorem 4.4.1 requires two separate arguments: (1) that the scheme satisfies the

anonymity property and (2) that the scheme satisfies the balance property. We begin by addressing

anonymity.

C.3.1 Anonymity

To prove that the scheme satisfies the anonymity property, we must describe a simulator

SX−Y (·)(pp, auxparams, ·) such that for all TM, no allowed adversary A can distinguish the Real

experiment from the Ideal experiment with non-negligible advantage. Recall that in the Ideal

experiment (as in the Real experiment), when the adversary A queries on channel initialization,

establishment or closure, the customer answers these queries by honestly running the appropriate

algorithms. When the adversary triggers a customer to initiate the Pay protocol, in the Real

experiment the adversary runs the protocol honestly. In the Ideal experiment, the customer’s side of

the protocol is conducted by S.

For all allowed adversaries A, the simulator S operates as follows. First, if required by the

zero-knowledge proof system, we generate a simulation CRS for the zero-knowledge proof system,

and embed this in pp.2 When A calls the simulator on a legal transaction, the simulator emulates

the customer’s side of the Pay protocol, but with the following changes. First, for j = 1 to B, the

simulator S employs the ZK simulation algorithm to simulate each of the zero knowledge proofs

π. It generates si by sampling a random element in the range of F . Finally, it samples a random

key k′ for the one-time encryption scheme, samples a random public key pk ′ by running the KeyGen

algorithm, and sets t := OTEnc(k′, pk ′).

To prove that the Real and Ideal experiments are indistinguishable, we will begin with Real

2This is necessary for certain proof systems such as [99].
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experiment, and modify elements via a series of games until we arrive at the Ideal experiment conducted

using our simulator S. Let negl1, . . . ,negl3 be negligible functions. For notational convenience, let

AdvGame i be A’s advantage in distinguishing the output of Game i from Game 0, i.e., the Real

distribution.

Game 0. This is the real experiment.

Game 1. In this game, each NIZK π issued during the Pay protocol is simulated. If the proof

system is zero-knowledge, then AdvGame 1 ≤ negl1(λ).

Game 2. In this game, each serial number s presented to A in the Pay protocol, and each

encryption key k used to construct the value t, is replaced with a random value in the range of

the pseudorandom function F . In Lemma C.3.1 we show that if the F is a PRF, the commitment

scheme is hiding, and the committing encryption is IND-CPA, then AdvGame 2−AdvGame 1

≤ negl2(λ).

Game 3. In this game, each value t presented to A in the Pay protocol is constructed by sampling

a random (pk′c, sk
′
c)← KeyGen(1λ), then encrypting pk′c. Under the assumption that OTEnc is

IND-CPA for a unique, random key k, then AdvGame 3− AdvGame 2 ≤ negl3(λ).

By summation over the individual hybrids, we have that AdvGame 3 is negligible in the security

parameter. Since the distribution of Game 3 is identical to the Ideal experiment conducted with

our simulator S, this concludes the main proof. We now sketch proofs of the remaining Lemmas.

Lemma C.3.1 (Replacement of the s, kt values.). For all p.p.t. distinguishers A the distribution

of Game 1 (in which each value s, t is generated as in the real protocol) is computationally indis-

tinguishable from the distribution of Game 2 (in which each s and the key kt used to encrypt t

is a random element) if (1) F is a PRF, (2) the wallet commitment scheme is hiding, and (3) the

committing symmetric encryption scheme (SymEnc,SymDec) is IND-CPA secure.
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Proof sketch. Let A be an allowed adversary that outputs 1 with non-negligibly different probability

when playing Game 2 and Game 1. We use A to construct three separate distinguishers B1,B2,B3

where at least one of the following is true: (1) B1 distinguishes the PRF F from a random function

with non-negligible advantage, (2) B2 succeeds against the IND-CPA security of the committing

symmetric encryption scheme (SymEnc,SymDec) with non-negligible advantage, or (3) B3 succeeds

against the hiding property of the commitment scheme with non-negligible advantage.

Let us define a series of intermediate hybrids H0 = Game 1, . . . ,HP = Game 2, and in

each Hybrid i = 1 to P , the output of the Pay protocol for a single customer Ci is modified in the

manner of Game 2. Given an allowed adversary A that distinguishes Game 1 from Game 2 with

non-negligible probability, there must exist an adversary A′ that for some i ∈ {1, . . . , P}, distinguishes

one pair of hybrids Hi and Hi−1 with non-negligible probability. Given such an adversary we now

define several more hybrids, and argue that for each of these hybrids the adversary A must distinguish

each from the previous hybrid with at most negligible probabilty.

I.1 Replace the proof π1 issued by Ci during the Establish protocol with a simulated

proof. If the proof system is zero knowledge, then A’s advantage in distinguishing this hybrid

from the previous hybrid is negligible in λ.

I.2 Replace wCom with a commitment to random values k′1, k
′
2. If an adversary distinguishes

this hybrid from the previous with non-negligible advantage, then this implies a distinguisher

B3 that succeeds with non-negligible advantage against the hiding property of the commitment

scheme. Since we assume the commitment scheme is secure, this bounds the difference between

the hybrids to be negligible in λ. (Note that the NIZK proof π1 is simulated and thus

independent of wCom and k′1, k
′
2.)

I.3 Replace each s, kt in the Pay protocol with a value computed using k′1, k
′
2. If an

adversary distinguishes this hybrid from the previous hybrid with non-negligible advantage,
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then by Lemma C.3.2 this implies an attacker against B2 that wins the IND-CPA game with

non-negligible advantage against (SymEnc,SymDec). Since we assume the encryption scheme to

be IND-CPA secure, this bound the difference between the hybrids to be negligible in λ. (Recall

that the NIZK proof generated in the Pay protocol is simulated.)

I.4 Replace each s, kt in the Pay protocol with a random element in the range of F . If

an adversary distinguishes this hybrid from the previous hybrid with non-negligible advantage,

then this implies the existence of B1 that distinguishes F from a random function, hence under

the assumption that F is a PRF, this bounds the difference between the hybrids to be negligible

in λ.

I.5 Replace the commitment wCom and proof π1 with the original distribution from

Game 2. Under the assumption that the proof system is zero-knowledge, and the commitment

scheme is hiding, the difference between this hybrid and the previous is negligible in λ.

Note that the final hybrid is identical to Game 2. Under the assumptions that the proof system is

zero knowledge, that F is a PRF, the committing encryption scheme is IND-CPA secure, and the

commitment scheme is hiding, the difference between A’s probability of outputting 1 in Game 2

and Game 1 is negligible in λ.

Lemma C.3.2 (Replacement of the wallet secrets.). For all p.p.t. adversaries A no adversary

can distinguish the intermediate hybrid I.2 from hybrid I.3 with non-negligible probability if

(SymEnc,SymDec) is IND-CPA secure.

Proof sketch. Let A be an allowed adversary that outputs 1 with non-negligibly different probability

in hybrid I.2 from hybrid I.3. We show that A implies an adversary B2 such that B2 succeeds in

the IND-CPA game against the encryption scheme (SymEnc,SymDec) with non-negligible advantage.

We now describe this adversary.

If A′ distinguishes I.2 from hybrid I.3 with non-negligible advantage, we construct B2 that
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succeeds with non-negligible advantage against the LOR-CPA security of the symmetric encryption

scheme (a definition that is equivalent to IND-CPA security [119]). B2 begins with the distribution of

I.2 and first picks a random integer J ∈ {0, . . . , B} and for d = 1 to J : queries the LOR encryption

oracle on the pair (sd‖ud‖πrd, s′d‖u′d‖π′rd ) where the left input is structured as in I.2 and the right input

is structured as in I.3. Given the resulting ciphertexts C1, . . . , CJ , A1 now generates the remaining

ciphertexts C ′J+1, . . . , C
′
B by querying the LOR oracle such that both inputs are constructed as in

hybrid Hj . It then constructs the ciphertext vector for customer i as (C1, . . . , CJ , C
′
j+1, . . . , C

′
B) and

gives this to A′ as Ci’s output in the Establish protocol. Note that if the LOR oracle chooses the left

input, the distribution of this vector is as in I.2, and if it chooses the right input, the distribution

is as in I.3. When A′ finalizes the channel with Ci, check that the final balance of the customer is

B − J , and if not, abort. Otherwise, finalize the channel and output A′’s guess as the guess for the

LOR-CPA oracle. Note that the abort probability is at most 1/P , for P polynomial in λ.

C.3.2 Balance

We now sketch a proof that the scheme satisfies the Balance definition if the zero-knowledge

proof system is simulation extractable, the commitment scheme is binding, and the signature schemes

are EU-CMA secure. The primary observation in our proof is that if A, acting as a customer, is able

to succeed in obtaining claimedA > balA, this implies that one of the following conditions is true: (1)

A has successfully paid more than Bcust
0 coins on a given channel, (2) during the Finalization process,

A has successfully claimed more than the remaining number of coins on a given channel and the

honest merchant is not able to produce evidence of fraud. Similarly, a legal adversary A that wins

the game must succeed in either (3) producing evidence (as a merchant) of a doubly-spent coin, even

when the customer has behaved honestly, or (4) producing evidence of an invalid ciphertext opening.

Let us first describe a simulated experiment, which is identical to the real protocol interaction

but with the following differences. First, if necessary we configure the proof system to allow for the

extraction of witnesses, and embed any resulting CRS into pp. Whenever A initiates the Pay protocol
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(acting as a customer) to send a successful (accepted) payment, we then extract the witness used to

construct the proof π and abort the experiment if the extractor does not produce a valid witness.

In addition, we abort if A is able to submit more than B coins for any given channel (identified

by the witness), or if the attacker is able to submit a signature forgery (i.e., submit a signature

that was not granted through the Establish protocol). Finally, if the attacker Finalizes the channel,

extracting more than the remaining number of coins available on a given channel, we abort (this

implies that A has produced an additional spend value with respect to the commitment wCom). We

simulate all proofs issued during the Pay and Establish protocols. Whenever the adversary, acting as

a merchant, posts a channel closure message rcM such that Resolve executed on the customer and

merchant inputs outputs Bmerch
final > 0, where the final balance is inconsistent with the actual remaining

balance, we abort the protocol. We note that if there exists an adversary A who succeeds in winning

the Balance game with non-negligible advantage, then this implies an attacker with the ability to

distinguish the real experiment from the simulated experiment with non-negligible advantage. We

show that such an attacker represents a contradiction, assuming that the proof system is sound and

the signature scheme is EU-CMA. Consider the following hybrids:

Game 0. This is the real experiment.

Game 1. This game is identical to Game 0 except that we extract on every valid proof π1 in the

Establish protocol, every proof π in the Pay protocol, and every proof πjr that the customer

reveals as a result of a channle Finalization. We abort if the extractor ever fails to produce a

valid witness. Under the assumption that the proof system is sound, the abort probability is

negligible. Thus AdvGame 1 ≤ negl1(λ).

Game 2. This game is identical to Game 1 except that we abort if the customer ever presents

a collision in wCom (e.g., in the witness to any proof of knowledge). Assuming that the

commitment scheme is binding, AdvGame 2− AdvGame 1 ≤ negl2(λ).

Game 3. This game is identical to Game 2 except that we abort if A is able to successfully submit
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B′ > B coins on a given channel. Note that the serial number s is computed as a function of the

secret key k1 and the coin index 0 ≤ i < B. Thus, there are at most B distinct values of s for

any given (signed) PRF seed k1. Thus, for this abort to occur, it must be the case that A has

forged a signature σw that was not issued during the Establish protocol. If this occurs, we obtain

an adversary B that succeeds against the EU-CMA security of the signature. Since we assume

that the signature scheme is EU-CMA secure, then we obtain AdvGame 3− AdvGame 2 ≤

negl3(λ).

Game 4. This game is identical to Game 3, except that we abort if A ever produces a ciphertext

Cj that contains a witness to the proof statement with an opening of the commitment wCom

that does not match with the corresponding values used in the Pay protocol. If this occurs, this

implies an attacker that violates the binding property of the commitment scheme. Since we

assume that the commitment scheme is binding, then we obtain AdvGame 4−AdvGame 3 ≤

negl4(λ).

Game 5. This game is identical to Game 4 except that whenever A presents signed evidence that

the customer has supplied an invalid ciphertext (that does not decrypt with key ckj), we abort.

Since no customer ever outputs invalid ciphertexts or keys, this implies that the adversary has

constructed a forged signature using the signature scheme. This implies that we can use A to

win the EU-CMA game against the signature scheme. Thus, under the assumption that the

signature scheme is EU-CMA secure, we have that AdvGame 5− AdvGame 4 ≤ negl5(λ).

Game 6. This game is identical to Game 5 except that we simulate each zero knowledge proof

issued in the Pay and Establish protocols. Since the proof system is zero knowledge, we have

that AdvGame 6− AdvGame 5 ≤ negl6(λ).

Game 7. This game is identical to Game 6 except that whenever A, acting as a merchant, presents

signed evidence of a doubly-spent coin that is accepted by the Resolve algorithm, we abort.

We argue that intuitively, such an adversary A can be used to break the EU-CMA property
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of the signature scheme or the IND-CPA property of the symmetric encryption scheme as

follows. On input a public key in the EU-CMA game, embed this key as pkc. Now guess an

index J at which the payment channel will be closed. We further replace each of the first J − 1

ciphertexts created during the Establish protocol with the encryption of a random element.

Now, if the adversary outputs a new proof, note that we can extract a witness to the (new)

proof, which is distinct from any of the previous proofs and therefore embeds a valid secret

key skc for the customer. This provides us with the signing key for the signature scheme and

allows us to forge a signature on any message. This proof requires that A cannot distinguish

the encryption of random messages from the encryption of valid proofs; this can be shown

using the IND-CPA property of the signature scheme. Completing this proof requires a hybrid

argument in which the above process is repeated for each customer. Thus, under the assumption

that the scheme is IND-CPA secure and the signature scheme is EU-CMA secure, we have

AdvGame 7− AdvGame 6 ≤ negl7(λ).

By summation over the individual hybrids, we have that AdvGame 7 is negligible in the security

parameter. We note that the distribution of Game 7 is computationally indistinguishable from the

real experiment. Thus the simulation satisfies the property of Balance.

C.4 Proof of Security for Bidirectional Scheme

Proof sketch. As in the previous proofs, the proof of Theorem 4.4.2 requires two separate arguments:

(1) that the scheme satisfies the anonymity property and (2) that the scheme satisfies the balance

property. We begin by addressing anonymity. Note that for this scheme we make the simplifying

assumption that the legal adversary does not abort the Pay protocol.
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C.4.1 Anonymity

To prove that the scheme satisfies the anonymity property, we must describe a simulator

SX−Y (·)(pp, auxparams, ·) such that for all TM, no allowed adversary A can distinguish the Real

experiment from the Ideal experiment with non-negligible advantage. Recall that in the Ideal

experiment (as in the Real experiment), when the adversary A queries on channel initialization,

establishment or closure, the customer answers these queries by honestly running the appropriate

algorithms. When the adversary triggers a customer to initiate the Pay protocol, in the Real

experiment the adversary runs the protocol honestly. In the Ideal experiment, the customer’s side of

the protocol is conducted by S.

For all allowed adversaries A, the simulator S operates as follows. First, if required by the

zero-knowledge proof system, we generate a simulation CRS for the zero-knowledge proof system,

and embed this in pp.3 When A calls the simulator on a legal transaction, the simulator S emulates

the customer’s side of the Pay protocol, but with three differences: (1) the commitment wCom′ is

replaced with a commitment to a random message, (2) the simulator S generates a random public

key wpk when it runs the protocol, and (3), the simulator employs the ZK simulation algorithm to

simulate each of the zero-knowledge proofs. In all other ways it behaves as in the normal protocol,

generating wpk and σrev as usual.

To prove that the Real and Ideal experiments are indistinguishable, we will begin with

Real experiment, and modify elements via a series of games until we arrive at the Ideal experiment

conducted using our simulator S. Let negl1,negl2 be negligible functions. For notational convenience,

let AdvGame i be A’s advantage in distinguishing the output of Game i from the Real distribution.

Game 0. This is the real experiment.

Game 1. This game is identical to Game 0 except that each NIZK generated by a customer at

any stage of the Pay protocol interaction is replaced with a simulated proof. Note that we

3This is necessary for certain proof systems such as [99].
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require all legal adversaries to refuse to proceed subsequent to the failure of any Pay protocol

interaction, and we provide this information to S. Thus, If the proof system is zero-knowledge,

then AdvGame 1 ≤ negl1(λ).

Game 2. This game is identical to Game 1 except that the commitment wCom′ is replaced with

a commitment to a random message. If the commitment scheme is (computationally) hiding,

then AdvGame 2− AdvGame 1 ≤ negl1(λ).

Game 3. This game is identical to Game 2 except that the value wpk is replaced with a random

key generated using the KeyGen algorithm. Note that the distribution of the replacement wpk

value is identical to the distribution of the original value, hence AdvGame 3−AdvGame 2 = 0.

By summation over the hybrids, we have that AdvGame 3 is negligible in the security parameter.

Since Game 3 is identical to the Ideal experiment, the bidirectional scheme is anonymous.

C.4.2 Balance

To win the Balance game, a malicious adversary A must claim more money than actually

available, as measured by her expenditures and channel openings. We proceed by describing a

simulated experiment in which A wins the Balance game with probability 0, and proceed to show

that the real protocol interaction is computationally indistinguishable from this simulation, under

the assumptions that (1) the ZK proof system is simulation-extractable, (2) the signature scheme

is EU-CMA secure, (3) the commitment scheme is secure. To complete this argument, let us first

define the following hybrids.

Game 0. This is the real experiment.

Game 1. This game is identical to Game 0 except that we extract on every proof π1, π2 in the

Establish and Pay protocols and abort if the extractor fails. By the soundness of the proof

system, AdvGame 1 ≤ negl1(λ).
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Game 2. This game is identical to Game 1 except that we abort if A ever presents a collision in

wCom (e.g., in the witness to any proof of knowledge). Assuming that the commitment scheme

is binding, AdvGame 2− AdvGame 1 ≤ negl2(λ).

Game 3. This game is identical to Game 1 except that we abort if the extracted signature on

wCom is not on a message signed by the merchant (as indicated by the witnesses extracted in

the first game). Under the assumption that the signature scheme is EU-CMA, we have that

AdvGame 3− AdvGame 2 ≤ negl3(λ).

Game 4. This game is identical to Game 2, except we abort if σw in the refund transaction

was not one produced by the merchant. Under the assumption that the signature scheme is

EU-CMA, we have that AdvGame 4− AdvGame 3 ≤ negl4(λ).

In the following we will argue that no alllowed adversary can succeed in the Balance game

against Game 4. By summation over the hybrids we have that Game 4 s indistinguishable from

Game 0, and this implies that all allowed adversaries will succeed with at most negligible advantage

against the real protocol.

Let A be a p.p.t. adversary that succeeds with non-negligible advantage in the Balance

game. We argue that this implies one of the following events has occurred:

1. The adversarial customer has presented a signature σw (as a witness) that was not issued by

the merchant. This cannot occur in Game 4 as it would imply an abort due to a signature

forgery.

2. The adversarial customer has forged a zero-knowledge proof. This cannot occur in Game 4 as

all proofs produce valid witnesses.

3. The adversarial customer has identified a collision in the commitment scheme. This cannot

occur in Game 4 as it would cause an abort.
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4. The adversarial merchant has produced a refund token σrev that the honest customer did not

produce. This cannot occur in Game 4 as it would imply an abort due to a signature forgery.

Since these events do not occur in Game 4, the advantage of an adversary succeeding in this game

is 0. This concludes the sketch

C.5 Additional assumptions for the PRF

In this section we briefly sketch a proof that the Dodis-Yampolskiy pseudorandom func-

tion [94] provides strong pre-image resistance if the q-DBDHI assumption holds in G.

The Dodis-Yampolskiy PRF. Let p be a prime and let I ⊂ Zp \ {0} be a polynomially-sized

input space. The public parameters for the Dodis-Yampolskiy PRF are a group G of prime order p

with generator g. The seed is a random element s ∈ Zp and the pseudorandom function is computed

as fs(x) = g1/(s+x). Security for the PRF over input space I with |I| = q is shown to hold under

the q-DBDHI assumption in [94].

The Dodis-Yampolskiy PRF provides strong pre-image resistance. We now sketch a proof

that the Dodis-Yampolskiy PRF provides strong pre-image resistance for a polynomially-sized domain

under the q-DBDHI assumption.

Our proof proceeds as follows. Let A be a p.p.t. adversary that, given access to an

oracle FDYs implementing the Dodis-Yampolskiy PRF with an honestly-generated seed s (with the

restriction that A can query only on elements in I) such that with non-negligible probability A

outputs (x, s′, x′) with x, x′ ∈ I and FDYs (x) = FDYs′ (x′). We show that A’s output can be used to

recover the seed for any PRF instance, thus violating the pseudorandomness property of the PRF.

To show this last step, we construct a distinguisher B against the pseudorandomness of the

Dodis-Yampolskiy scheme. B runs A internally and interacts with an oracle that implements either

the PRF or a random function. Each time A queries on some value xi, B queries its oracle on the
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same value and returns the response to A. When A outputs (x, s′, x′) such that FDYs (x) = FDYs′ (x′),

B computes a candidate guess for the PRF seed as s̄ = s′ + x′ − x, and tests to see whether two or

more distinct outputs it receives from its oracle are consistent with s̄. If so, B outputs 1.

If B is interacting with an instance of the PRF, then A will succeed with non-negligible

probability. In this instance, the value s̄ will be equal to the PRF seed, because if FDYs (x) = FDYs′ (x′)

then this implies the relation g1/s+x = g1/s′+x′ and thus s+ x = s′ + x′, yielding s = s′ + x′ − x. If

B is interacting with a random function, then there is no seed to recover, and the probability that

multiple oracle outputs are consistent with a recovered candidate seed is negligible. Thus B succeeds

with non-negligible probability. Since the pseudorandomness of the Dodis-Yampolskiy PRF is shown

to hold under the q-DBDHI assumption, this implies that the strong pre-image resistance must also

hold if q-DBDHI holds in G.

Other PRFs. While we recommend using the Dodis-Yampolskiy PRF for our constructions,

the strong pre-image resistance property holds for other PRFs. For example, hash-based PRFs

such as HMAC provide this property under the assumption that the underlying hash function is

collision-resistant, since the equality of two distinct outputs implies a collision in the hash function.
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