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Abstract

Genome-wide association studies (GWAS) have had great success in identifying

human genetic variants associated with human traits. With recent developments in

high throughput biology, immense amount of data have been generated, thus calling

for novel statistical and computational approaches to be developed and draw bio-

logical meaningful conclusions. A current direction for GWAS method development

has been to use Bayesian approaches, where prior beliefs of variant effects are in-

corporated into test statistics, to boost the power to detect real associations. With

previous success in developing Bayesian-based GWAS method for single phenotype,

in this work the Bayesian idea is extended to multiple phenotypes, aiming at develop-

ing a method that detects pleiotropic genome-wide associations. Alongside with the

method development, analytical simulations were also performed to investigate into

the possible power gain by using such Bayesian approaches, as well as to understand

how different factors influence the behavior of Bayesian-based GWAS methods.

Many variants are pleiotropic, and discovery of these variants could help reveal

disease mechanisms, suggest new therapeutic options. Therefore, we developed a
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pleiotropic GWAS method based on Bayesian framework, SNP And Pleiotropic PHe-

notype Organization (SAPPHO), which learns pleiotropy using identified associations

to discover additional associations with shared patterns. SAPPHO was applied on two

sets of real data: 1. Atherosclerosis Risk in Communities (ARIC) study of 8,000 indi-

viduals, whose gold-standard associations were provided by meta-analysis of 40,000 to

100,000 individuals from the Cohorts for Heart and Aging Research in Genomic Epi-

demiology (CHARGE) consortium; 2. Cancer phenotypes from UK Biobank project,

consisting several hundred to 15,000 individuals, with gold-standard obtained from

GWAS catalog. For both data sets, SAPPHO was able to detect additional associa-

tions that were not detected with the conventional univariate test, and boost power

when different variants follow the same association patterns.

Bayesian approaches boost power for GWAS through alleviating burdens from

multiple hypothesis testings, which is usually on the scale of thousands to millions.

Intuitively, by making use of prior probabilities that bias favored sets thought to

be enriched for significant findings, power for detecting true associations could be

increased. Therefore, an analytical study was conducted here to see theoretically

to what extent power could gain by using such approaches, and how does this gain

depend on different factors. By calculating test power assuming perfect knowledge of

a prior distribution, the population size increase required to provided the same boost

without a prior was obtained, and it is shown that population size is exponentially

more important than prior, providing a rigorous proof for the lack of use for prior-
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based GWAS methods.
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CHAPTER 1. INTRODUCTION

Genome-wide association studies (GWAS) have had great success in identifying

human genetic variants associated with human traits, including human diseases, dis-

ease risk factors, and other biomedical phenotypes. According to GWAS catalog,

more than 17607 genetic variants, primarily single nucleotide polymorphisms (SNPs),

have been proved to be associated with at least 785 distinct phenotypes, at genome-

wide significance of 5 × 10−8 (Welter et al., 2014). With recent developments in

high throughput biology, immense amount of data have been generated; this strongly

calls for novel statistical and computational approaches to be developed and draw

biological meaningful conclusions.

Among the multiple approaches taken for GWAS method development (Zhu et al.,

2015; Liu et al., 2010; Wu et al., 2011; Klei et al., 2008; O’Reilly et al., 2012; Wu et al.,

2009; Kim and Xing, 2009; Huang et al., 2011; Chanda et al., 2013), a reasonable and

widely-adopted direction for GWAS method development has been to use Bayesian

approaches, where prior beliefs of variant effects are incorporated into test statistics,

in order to boost the power to detect real associations (Hindorff et al., 2009; Schork

et al., 2013; Petersen et al., 2013; Sveinbjornsson et al., 2016; Meyer et al., 2018).

For example, a method developed by Pickrell et al. incorporated 450 different anno-

tations into GWAS analysis of 18 human traits, and showed the number of loci with

high confidence associations was increased by around 5% (Pickrell, 2014); our group

has also previously developed and implemented a Bayesian method for gene-based

association tests called Gene-Wide Significance (GWiS), which aggregates statistical
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associations of multiple independent variants within a gene for a single phenotype

(Huang et al., 2011; Chanda et al., 2013); the method was proved to have greater

power than univariate tests as well as other gene-based methods including L1/LASSO

and summing the effects over all variants(Wu et al., 2009; Liu et al., 2010). There-

fore in this work, we first follow the same idea which GWiS was developed based on,

and tried to expand the Bayesian framework to test on multiple phenotypes on the

whole genome scale, in order to detect pleiotropic associations genome-wide. Then,

simulations were performed to analytically investigate into the dependency of power

gain by using such Bayesian approaches on different factors, including prior strength

and population size.

Even after correction for trait-trait correlations, many genetic variants are asso-

ciated with multiple phenotypes, which motivates systematic approaches to identify

these variants. While there are no pleiotropic association methods in general use,

there have been three general directions for methods development: 1. for small

collection of highly correlated phenotypes, a reasonable approach is to aggregate as-

sociations over all phenotypes and get a pooled z-score (Zhu et al., 2015); 2. when

phenotypes are highly correlated and possibly redundant, a second direction is to

use orthogonalization methods, like principal component analysis or singular value

decomposition (Klei et al., 2008; O’Reilly et al., 2012); 3. regularization methods like

L1/LASSO that favor selection of sparser sets of features have also been tried, despite

the difficulty to scale on the genome level (Kim and Xing, 2009). While few Bayesian

3
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methods have been applied to the pleiotropic GWAS problem, such approaches have

the potential to use observed patterns of pleiotropy to identify additional variants that

follow the same pattern; in other words, the observed patterns would provide prior

probabilities that could boost the confidence that other variants with the same pat-

tern are true associations, even if there univariate p-values do not reach conventional

genome-wide significance thresholds.

Therefore, we introduce this pleiotropic GWAS method based on Bayesian frame-

work, SNP And Pleiotropic PHenotype Organization (SAPPHO), which learns pleiotropy

using identified associations to discover additional associations with shared patterns.

The detailed approaches for method development is described in Chapter 2. SAP-

PHO, along with other state of art approaches for pleiotropic association tests were

tested using simulations over a range of scenarios with different association archi-

tectures and phenotypic correlations; scenarios where SAPPHO performed the best

and worst were explored, and possible explanations were given. Then, SAPPHO was

further assessed with two sets of real data: 1. Atherosclerosis Risk in Communities

(ARIC) study of 8,000 individuals, whose gold-standard associations were provided

by meta-analysis of 40,000 to 100,000 individuals from the Cohorts for Heart and

Aging Research in Genomic Epidemiology (CHARGE) consortium; 2. Cancer phe-

notypes from UK Biobank project, consisting several hundred to 15,000 individuals,

with gold-standard obtained from GWAS catalog. It was shown that for both data

sets, SAPPHO was able to detect additional associations that were not detected with

4
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the conventional univariate test, and boost power when different variants follow the

same association patterns.

Despite the great efforts put into the method development using Bayesian ap-

proaches, performance of these methods wasn’t as great as they were expected to

be. For application to ARIC ECG phenotypes, GWiS only detected one additional

hit compared to univariate test; while the pleiotropic method SAPPHO detected 5

more additional loci associated with the three ECG traits, additional pleiotropic ef-

fect was detected for only one loci compared with univariate test (Huang et al., 2011;

Zhan et al., 2018). For Bayesian methods developed by other groups, it was also ob-

served the average gain of power is on the range of 5% to 10%(Sveinbjornsson et al.,

2016; Pickrell, 2014). Therefore, an analytical study was conducted to demonstrate

why Bayesian approaches wasn’t very successful in beating unbiased univariate tests.

Given that Bayesian approaches usually incorporates prior probabilities that bias sig-

nificance for favored sets thought to be enriched for significant findings, the simulation

was done by calculating test power assuming perfect knowledge of a prior distribu-

tion, and then derive the population size increase required to provided the same boost

without a prior. Two types of priors were considered: 1. hard prior, where only a

fraction of total hypotheses are tested; 2. soft prior, for which all variants are divided

into two classes, and a higher prior value is given to the favored class which is believed

to be enriched with true associations. It is proved that for the case of hard prior,

population size is exponentially more important than prior; and for soft prior, large

5
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power gain could only be obtained under very specific circumstances, and on average

the power gain is only around 5-10%. These findings provide a rigorous explanation

for the observed avoidance of prior-based methods, and support for the continued use

of simple, robust univariate test rather than more sophisticated approaches.

6
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CHAPTER 2. DISCOVERING PATTERNS OF PLEIOTROPY IN
GENOME-WIDE ASSOCIATION STUDIES

Abstract

Genome-wide association studies have had great success in identifying human genetic

variants associated with disease, disease risk factors, and other biomedical pheno-

types. Many variants are associated with multiple traits, even after correction for

trait-trait correlation. Discovering subsets of variants associated with a shared subset

of phenotypes could help reveal disease mechanisms, suggest new therapeutic options,

and increase the power to detect additional variants with similar pattern of associ-

ations. Here we introduce two methods based on a Bayesian framework, SNP And

Pleiotropic PHenotype Organization (SAPPHO), one modeling independent pheno-

types (SAPPHO-I) and the other incorporating a full phenotype covariance structure

(SAPPHO-C). These two methods learn patterns of pleiotropy from genotype and

phenotype data, using identified associations to discover additional associations with

shared patterns. The SAPPHO methods, along with other recent approaches for

pleiotropic association tests, were first assessed by performing simulations over a

range of scenarios and different genetic architectures. It is observed that SAPPHO

methods perform the best when the true association patterns are simple, namely

when association is between one single phenotype and each active variant, or when
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all phenotypes are associated with each active variants. For scenarios where several

but not all phenotypes are associated with the active variants, by comparing results

obtained from greedy forward heuristic search and feeding SAPPHO with true as-

sociation model, it was suggested that more sophisticated searching approach might

have to be adopted for SAPPHO to obtain better performance.

SAPPHO was further assessed with data from the Atherosclerotic Risk in Com-

munities (ARIC) study of 8,000 individuals on electrocardiogram(ECG) phenotypes,

whose gold-standard associations were provided by meta-analysis of 40,000 to 100,000

individuals from the CHARGE consortium. Using power to detect gold-standard as-

sociations at genome-wide significance (0.05 family-wise error rate) as a metric, SAP-

PHO performed best. The SAPPHO methods were also uniquely able to select the

most significant variants in a parsimonious model, excluding other less likely variants

within a linkage disequilibrium block. For meta-analysis, the SAPPHO methods im-

plement summary modes that use sufficient statistics rather than full phenotype and

genotype data. Meta-analysis applied to CHARGE detected 16 additional associa-

tions to the gold-standard loci, as well as 124 novel loci, at 0.05 false discovery rate.

With SAPPHO we were able to learn genetic structures that were hidden using the

traditional univariate tests.

With SAPPHO’s outstanding performance in both assessments using simulated

and ECG data, we further applied it on cancer phenotypes from UK Biobank (UKB)

project. The UKB project consists of 500,000 individuals, with 99% of the participants
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genotyped. 13 cancer phenotypes were tested with SAPPHO in summary mode,

and the results were compared with univariate test and genome-wide associates from

GWAS catalog. With number of cases for each cancer phenotype ranging from 300

to 14,647, univariate test detected 51 hits on the loci level, at 5 × 10−8 genome-wide

significance; at 0.05 FDR, SAPPHO run in summary mode detected 59 loci, which

includes all 51 loci detected by univariate test and 8 novel loci. 4 loci were pleiotropic,

which were detected by both univariate and SAPPHO; out of the 4 loci, SAPPHO

detected additional associations for 2 of them. All detected loci were compared with

associations from GWAS catalog to gain further insights.
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2.1 Introduction

Genome-wide association studies (GWAS) have had remarkable success in iden-

tifying genetic variants responsible for human disease, disease risk factors, and other

biomedical phenotypes. To date, more than 17607 variants, primarily single nu-

cleotide polymorphisms (SNPs), have been associated at genome-wide significance

with at least 785 distinct traits, according to the GWAS catalog (Welter et al.,

2014). Many variants are pleiotropic, with significant associations with multiple

traits (Fig. 2.1). Observations of pleiotropy motivate systematic approaches to iden-

tify pleiotropic variants. Such approaches could use observed patterns of pleiotropy

to identify additional variants that follow the same pattern. In a Bayesian setting,

the observed patterns would provide prior probabilities that could boost the confi-

dence that other variants with the same pattern are true associations, even if their

univariate p-values do not reach conventional genome-wide significance thresholds. A

second valuable application could be to use pleiotropic associations to infer mecha-

nisms shared by multiple diseases, which could lead to new therapeutic approaches

including drug repurposing.

A challenge is that we do not know in general which traits share causal genetic

factors. While these pleiotropic patterns may be discovered from genome-wide as-

sociation study data, re-use of the same data for pattern discovery and association

discovery requires new methods to control false discovery rates. A second important

challenge is to develop methods that provide as direct a route as possible to the
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most significant variant within an association locus. Methods that produce parsimo-

nious models, selecting just the most significant variant and excluding the neighboring

linked variants, have great value. A third challenge is to incorporate the phenotype-

phenotype covariance structure in the analysis to discriminate between a model in

which a variant affects two phenotypes directly and an alternative model in which

a variant directly affects one phenotype, which in turn affects a second correlated

phenotype.

While there are no pleiotropic association methods in general use, there have been

three general directions for methods development. First, for small collections of highly

correlated phenotypes, a reasonable approach is to aggregate associations over all the

phenotypes. This approach has greatest power when the true model is that a variant

affects each phenotype. A recent report demonstrated good power for phenotypes

related to hypertension (Zhu et al., 2015). This approach is similar in motivation

to gene-based methods for GWAS signal aggregation, including VEGAS for common

variants (Liu et al., 2010) and SKAT for rare variants (Wu et al., 2011).

When phenotypes are highly correlated and possibly redundant, a second direction

has been to use orthogonalization methods, usually principal component analysis or

singular value decomposition, to identify a rank-reduced set of linear combinations.

A representative method is principal components of heritability (PCH), which gen-

erates linear combination of phenotypes with highest heritability for each genetic

variant (Klei et al., 2008). A drawback of this approach is that validating an asso-
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ciation with a linear combination of phenotypes is more difficult than validating an

association with a single phenotype, particularly when different studies assess dif-

ferent sets of phenotypes. An alternative approach is to use a linear combination of

phenotypes as a feature to predict the variant genotype, reversing the typical direction

of regression. The MultiPhen method uses ordinal regression to perform this type of

test, with increased power for variants affecting multiple phenotypes (O’Reilly et al.,

2012). While methods such as canonical correlation analysis (CCA) and MANOVA

that assume that genotypes follow a normal distribution have inflated type-I error,

MultiPhen produces no such inflation when parametric p-values are used.

A third approach has been to adapt methods like L1/LASSO (Wu et al., 2009) that

favor selection of sparser sets of features (Kim and Xing, 2009). Despite the promise

of this approach, it has not been widely used, possibly because the L1 regularization is

still too weak to reject variants introduced through correlation only and not causation

and because of computational costs for genome-wide applications.

The approach pursued here is to exploit observed association patterns to identify

additional variants following the same pattern. These patterns are biclusters, with

subsets of variants associated with subsets of phenotypes. Biclustering has been a

productive approach for identifying block structure in gene expression data (Pontes

et al., 2015). Biclustering is not directly applicable to GWAS data, however, because

blocks of SNPs identified by näıve application of standard biclustering algorithms

would be dominated by non-causal variants in linkage disequilibrium or haplotype
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blocks with a single causal variant.

We report results for a new Bayesian framework for genome-wide association stud-

ies of multiple phenotypes with shared genetics: SNP And Pleiotropic PHenotype

Organization, SAPPHO. The SAPPHO method is motivated by our previous work

developing a Bayesian method for gene-based association tests, Gene-Wide Signifi-

cance (GWiS) (Huang et al., 2011; Chanda et al., 2013), which aggregates statistical

associations of multiple independent variants within a gene for a single phenotype.

Each identified variant within a gene effectively updates the prior probability that

additional variants within the same gene are also associated, permitting successive

identification of variants with smaller effects that could be missed by conventional

univariate tests of individual SNPs. Using an assessment with real data and gold

standards from meta-analysis, GWiS was found to have greater power than univari-

ate tests and also greater power than other gene-based methods, including methods

based on summing the effects over all variants (Liu et al., 2010) and methods using

L1/LASSO (Wu et al., 2009). GWiS had robust performance across different genetic

architectures, including the number of true effects per gene and the minor allele fre-

quencies. The robust performance was in part due to a lack of tuning parameters.

Instead, most parameters in the GWiS model were treated as nuisance parameters

and removed by integration.

The SAPPHO method uses a similar approach to associate individual variants

with multiple phenotypes in a single genome-wide model for testing T total SNPs
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for association with P total phenotypes. Model priors interpolate between two prob-

ability distributions for genetic architecture, one which each of the T × P possible

SNP-phenotype associations is independent, and a second in which each of the 2P

possible patterns of association has its own prior probability. All of the remaining

association structure parameters are integrated out, yielding a method with only a

single adjustable parameter, the mixing fraction of the two priors. This parameter is

essentially the threshold for the weakest possible variant-phenotype association that

can be entered into a regression model. Identifying the most likely model is NP-hard,

and heuristics are needed for an acceptable runtime. SAPPHO uses a greedy forward

approach to identify a local optimum with an algorithm that scales linearly with the

number of SNP-phenotype associations identified in the data.

We evaluate our proposed method through simulation and analysis of cardiovas-

cular electrocardiogram (ECG) phenotypes. For ECG phenotypes, meta-analyses of

studies with 40,000 to 100,000 individuals have been conducted with overlapping sets

of variants associated with PR, QRS, and QT intervals. Notwithstanding concerns

about missing heritability (Silva et al., 2015), the fraction of heritability explained by

genome-wide significant associations for these traits ranges from 4% to 17% (Pfeufer

et al., 2010; Sotoodehnia et al., 2010; Pfeufer et al., 2009; Arking et al., 2014). The

genome-wide significant findings provided by meta-analysis provide gold-standard

true positive associations for assessing the power of different methods. The SAPPHO

methods have the further potential to provide new biomedical knowledge by reveal-
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ing classes of variants that contribute to distinct subsets of ECG parameters. Given

the outstanding performance of SAPPHO on both simulations and ECG phenotypes,

SAPPHO was further applied to UK Biobank project to try to explore pleiotropic

patterns on cancer phenotypes.

The Methods section provides a mathematical description of SAPPHO and the

algorithm used to identify an optimum in the space of all possible models. Briefer

summaries of other approaches are provided, together with summaries of real and

simulated data used for assessment. Then follows section reports on the assessment

results and the pleiotropic patterns observed for simulations representing a range of

scenarios of phenotypes that share genetic and environmental factors and also for

ECG traits. The Discussion concludes with an interpretation of the benefits and

drawbacks of different pleiotropy methods and a vision for possible future directions

to discover and exploit pleiotropy in human genetic association studies.

2.2 Methods

2.2.1 Genetic model

SAPPHO has been developed for quantitative phenotypes. Case/control or other

dichotomous phenotypes can be represented as 0/1 encodings, which general retain

high power when causal variants have small effects (Chanda et al., 2013). Similarly,

rank-ordered categories can be represented as corresponding integers. Unranked cat-
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egories can in principle be represented as 0/1 indicators for each category; in prac-

tice, these are less common than quantitative, graded, or dichotomous phenotypes.

Extensions to dichotomous phenotypes or general linear models in the exponential

family are possible but more computationally intensive without a corresponding gain

in power (Chanda et al., 2013).

The SAPPHO statistical model considers a population of N unrelated individuals

and P distinct phenotypes, with each individual assessed for each phenotype. The

phenotype data is represented as a real-valued phenotype matrix Y with N rows

and P columns. Individuals are also genotyped at distinct loci corresponding to

T total independent tests, represented as a real-valued genotype matrix X with N

rows and T columns. In most applications, the genotype values will correspond to

allele frequencies or dosages for bi-allelic single nucleotide polymorphisms (SNPs),

measured directly or imputed. All data elements of Y and X are assumed present. In

practice, some individuals will lack data for some genotypes and phenotypes. In this

work, for simplicity only individuals with complete data are retained. Exclusion could

be done at the level of individual means, variances, and covariances of phenotypes

and genotypes, which in theory leads to non-positive-definite covariance matrices but

in practice usually does not cause numerical instabilities (Chanda et al., 2013).

An association model, denoted M , specifies the direct effects of variants on pheno-

types. For this work, we restrict attention to linear models. Thus, a model specifies

which elements of a regression coefficient matrix β with T rows and P columns may
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be non-zero; the number of non-zero elements is denoted |M |. The model does not

specify the corresponding values; these are treated as nuisance parameters that are

integrated out. We consider two different models representing alternative assump-

tions about the phenotype covariance matrix: SAPPHO-I models each phenotype as

independent given the genetic effects; SAPPHO-C models the complete phenotype-

phenotype covariance structure. Given the model M and the genotypes X for an

individual, the probability distribution for phenotypes Y is multivariate normal with

covariance matrix Ω, diagonal for SAPPHO-I and including off-diagonal elements for

SAPPHO-C,

Pr(Y|X,M) =
∫
β

Pr(β)dβ
∫

Ω
Pr(Ω)dΩ×

N∏
i=1

(2π)−P/2|Ω|−1/2 ×

exp[−(1/2)(yi − xiβ)+Ω−1(yi − xiβ)] (2.2.1)

where xi and yi are genotype and phenotype vectors for individual i, and the super-

script + denotes transpose. The integral over β is over the |M | non-zero elements, and

the β and Ω integrals include formal normalization factors Pr(β) and Pr(Ω). The

notation |Ω| denotes the determinant of the phenotype covariance matrix Ω. This

covariance matrix does not include the genetic contributions; the observed covariance

matrix V is

V = Ω + (N − 1)−1β+X+ · [I −N−111+] ·Xβ. (2.2.2)
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The normalization factors Pr(β) and Pr(Ω) formally depend on meta-parameters

for regularization. In practice, we use the asymptotic limit that excludes the contri-

bution of the meta-parameters, as we did with GWiS (Huang et al., 2011), keeping

terms of order lnN and greater. Performing steepest descents around the maximum

likelihood estimates β̂ and Ω̂, equivalent to the Bayesian Information Criterion or

BIC (Schwarz, 1978), the asymptotic limit for the log-probability of the observed

phenotypes given genotypes and model is

ln Pr(Y|X,M) ∼ ln Pr(Y|X, β̂, Ω̂)− (|M |/2) lnN

= −(1/2) ln[(2π)P |Ω̂|]− (N/2)

−(|M |/2) lnN. (2.2.3)

For SAPPHO-I, we assume that the phenotypes are independent with each other;

this is essentially equivalent to setting the non-diagonal elements of Ω equal to zero,

leaving only the non-diagonal σ2
j s that correspond to the residual variance of each

phenotype; in other words, now |Ω| = ∏P
j=1 σ

2
j , where σ2

j is the residual variance of

each phenotype. The probability distribution for phenotypes Y becomes a product

of P normal distributions, with the number of distributions equal to the number of
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phenotypes:

Pr(Y|X,M) =
∫
β

Pr(β)dβ
∫

Ω
Pr(Ω)dΩ×

N∏
i=1

P∏
j=1

(2πσ2
j )−1/2 ×

exp[−(2σ2
j )−1(yij − xiβj)+(yij − xiβj)], (2.2.4)

where yij is the jth element of vector yi, and βj denotes the jth column of matrix

β. Adopting the same asymptotic approximation for the log-probability using BIC

yields

ln Pr(Y|X,M) ∼ ln Pr(Y|X, β̂, Ω̂)− (|M |/2) lnN

= −1
2

P∑
j=1

ln(2πσ̂j2)− (N/2)

−(|M |/2) lnN. (2.2.5)

2.2.2 Model prior

The model prior probability, Pr(M), is represented as the product of two terms,

Pr(M) ∝ PrMγ
1 PrM (1−γ)

2 . (2.2.6)
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This form corresponds to linear interpolation on a logarithmic scale,

ln Pr(M) = γ ln PrM1 + (1− γ) ln PrM2 + constant, (2.2.7)

where γ ∈ [0, 1] and the constant term is model-independent and may be ignored.

The prior PrM1 penalizes each genotype-phenotype association individually, while

the prior PrM2 penalizes based on each different association pattern, as described

below.

The prior PrM1 models each possible SNP-phenotype pair as a binary random

variable reflecting association with probability θ or no association with probability

1 − θ for θ ∈ [0, 1]; the single parameter θ is shared by each of the T × P possible

genotype-phenotype associations. For any model with |M | = K total associations,

PrM1 is

PrM1 =
∫ 1

0
dθP (θ)θK(1− θ)(TP−K), (2.2.8)

where P (θ) is a possible prior on θ; we use the uniform prior P (θ) = 1. While P varies

with the number of phenotypes in different studies, T is set equal to the conventional

number of independent effects in the genome for human GWAS, 106. The nuisance

parameter θ is integrated out to yield the standard result,

PrM1 = K!(TP −K)!
(TP + 1)! = Beta(K + 1, TP −K + 1), (2.2.9)
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where ‘!’ denotes the factorial function and ‘Beta’ is the standard Beta function

extending the combinatorial factor to non-integer arguments.

The derivation of PrM2 is similar to PrM1, except that it considers patterns

rather than individual associations. A pattern α is one of the 2P − 1 possible subsets

of phenotypes, excluding the null pattern of no associations. The probability that

a SNP belongs to pattern α is denoted θα, with θα ∈ [0, 1] and ∑
α θα = 1 defining

a multinomial probability distribution. Denoting nα as the total number of variants

with pattern α, and ∑
α nα = n, n being the total number of associated SNPs, the

probability for a particular model M is

PrM2 = (2P − 1)!
∫
{θ}
d{θ}P [{θα}]

∏
α

θnαα . (2.2.10)

The integral is over all possible feasible parameters and P [{θα}] is a possible prior

distribution; we use the uniform distribution P [{θα}] = 1. The term (2P − 2)! is the

standard normalization factor for a multinomial distribution. The nuisance parame-

ters θα are removed by integration, yielding the standard result,

PrM2 = (2P − 1)!
(n+ 2P − 1)!

2P−1∏
α=1

nα!. (2.2.11)

Note that for PrM2 only the occupied patterns contribute to the model probability,

similar to latent Dirichlet allocation (LDA) in which only occupied states contribute

(Blei et al., 2003). This probability model favors pleiotropy models in which variants
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share the same association patterns. The overall prefactor (2P − 1)!/(n+ 2P − 1)! is

identical for all models and independent of the occupation numbers {nα} for different

patterns. Therefore, for the purpose of computational efficiency, we use

PrM2 ∝
∏2P−1
α=1 nα!
n! . (2.2.12)

2.2.3 Model score

The goal of SAPPHO is to identify the most likely model, M̂ , defined as M̂ =

arg maxM Pr(M |Y,X). The posterior probability of a model is defined by Bayes rule

as

Pr(M |Y,X) = Pr(Y,X,M)/Pr(Y,X)

= Pr(Y|X,M)Pr(X,M)/Pr(Y,X). (2.2.13)

We make the standard assumption that the model M is independent of the genotype

data, Pr(X,M) = Pr(X)Pr(M), giving

Pr(M |Y,X) = Pr(Y|X,M)Pr(M)
Pr(Y|X) . (2.2.14)

The conditional probability Pr(Y|X) is independent of model and need not be calcu-

lated. Similarly, to avoid numeric overflow and underflow, model posterior probabil-
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ities are always calculated as log-likelihood ratios relative to the null model, defined

as the model score SM ,

SM ≡ ln Pr(Y|X,M)Pr(M)
Pr(Y|X,M∅)Pr(M∅)

= (1/2) ln(|V |/|Ω|)− (|M |/2) lnN

+γ ln Beta(K + 1, TP −K + 1)

+(1− γ)
∑
α

ln Γ(nα + 1)

−(1− γ) ln Γ(
∑
α

nα + 1) (2.2.15)

In practice, all models, including the null model, typically include constant terms

for phenotype mean and covariates that represent relevant clinical variables, including

sex, age, height, weight, and body mass index, and possible additional covariates

that describe population structures. Regression coefficients for these covariates are

calculated in parallel with regression coefficients for genetic variants, but they make no

net contribution when models are compared. For computational efficiency, SAPPHO

regresses out the known covariates and then operates on the residuals.

The parameter γ is the single adjustable parameter in the SAPPHO method.

While it could be set using cross-validation, this would require a gold-positive training

set and depends on the genetic architecture. An architecture with no shared genetic

factors would favor PrM1, whereas an architecture with a small number of strong

patterns would favor PrM2. Instead, we relate γ to the effect size required to enter
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a new SNP-phenotype association into a model. To be more specific, we take the

dominant term from the Beta penalty, together with the BIC penalty, giving the χ2

threshold for adding a single association to the model,

χ2 = ln(|V |/|Ω|) (2.2.16)

The value of γ is then calculated accordingly,

γ = χ2 − lnN
2 ln(TP ) (2.2.17)

Behavior of SAPPHO under different values of this tuning parameter is discussed in

the following paragraphs. In general, with real data, we found that setting γ ln(TP ) =

ln(103) is a good value to control for type I and II error rate; with simulation, different

tuning parameter will lead to different behaviors of SAPPHO, favoring different true

underlying real association patterns.

2.2.4 Model search and variant ranking

Identifying M̂ is NP-hard and is not attempted directly. Instead, a greedy forward

approach is employed. Given a current model, all models that may be reached by

adding a single genetic association are considered. There are two possible cases. In

one case, a variant with no associations gains an association to a single phenotype. In
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the second case, a variant associated with a subset of phenotypes gains an association

with one additional phenotype. With T total variants and P total phenotypes, this

procedure requires calculating the posterior probability for approximately T × P

possible models. The model with the greatest increase in posterior probability is

selected, and the procedure continues until any additional association decreases the

posterior probability. The resulting model, locally optimal with respect to adding

associations, is termed M̃ , distinct from the global optimum M̂ . In principle, stepwise

forward-backward selection would also be possible, but would require full matrix

inverses that would vastly increase the computational cost. Backward steps removing

a variant and all of its associations are used at the very end of the model search,

however, for variant ranking.

For SAPPHO-I, computation is made more efficient by using successive orthog-

onalization rather than matrix inverses at each step to obtain the new maximum

likelihood estimates for β̂ and Ω̂.

To further speed the model search by SAPPHO-I and SAPPHO-C, the candidate

list of variants is pre-filtered, as is common with with other approaches that build

multivariate genome-scale models. A preliminary univariate test is conducted for

each of the T total variants with each of the P total phenotypes, yielding T ×P total

p-values. Each variant is then assigned its minimum p-value across the P phenotypes,

and variants are sorted from smallest to largest p-value. Candidate variants are taken

from this list in increasing p-value order, with variants excluded if they are in strong
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linkage disequilibrium (r2 ≥ 0.8) with a better-ranked variant that has already been

selected. Selection ends when the p-value of the best remaining variant is above a

threshold. We used 1×10−4 as a threshold and found no differences in model selection

for a more lenient and more computationally expensive threshold of 1 × 10−3.

2.2.5 Test statistic and significance thresholds

Starting from the full final model, M̃ , a test statistic for each variant v in the

model is obtained by removing that single variant from M̃ to obtain a new model

M̃/v. All of the variant’s associations are removed; thus, if M̃ has |M | non-zero β

parameters and a variant v in the model has associations with Pv phenotypes, the

new model M̃/v has |M | − Pv non-zero β parameters. The score Sv for a particular

variant v is calculated as expected,

Sv = ln Pr(M̃ |Y,X)− ln Pr(M̃/v|Y,X), (2.2.18)

and serves as the test statistic for that variant. As mentioned above, the model M̃ is

optimal with respect to forward selection but not necessarily to backward selection.

While the search biases Sv to positive values, negative values are possible and are

observed, albeit infrequently.

Genome-wide randomizations were used to calibrate the value of Sv, controlling

for either family-wise error rates (FWER), with FWER = 0.05 corresponding to
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genome-wide significance, or false discovery rate (FDR), controlling for FDR = 0.05

as the threshold. Thresholds for FDR require fewer permutations for estimation;

FDR was therefore used for simulated data and CHARGE data, whereas FWER was

used for analysis of ARIC data. Permutations of the original data were generated

starting with the vector of genotypes and the vector of phenotypes for each individual,

with covariates already regressed out. Permutations were performed by randomizing

the pairing between a genotype vector and its phenotype vector. Elements within

individual genotype and phenotype vectors were not permuted. These permutations

maintain the genetic covariance and phenotype covariance structure of the data.

Filtering steps independent of genotype-phenotype pairing, primarily filtering

based on allele frequency and Hardy-Weinberg equilibrium, were identical for all per-

mutations. Subsequent processing of permuted data sets exactly matched processing

of the original data, including the computationally expensive step of performing all

the genome-wide univariate tests. For FWER, the null distribution of the test statis-

tic was obtained from 100 genome-wide permutations. The score of the best variant

was retained for the 100 permutations, and the 5th-best score was used to define

the 0.05 FWER threshold. For FDR, 10 permutations were done in the same way.

The expected number of false discoveries F̂ (S?) with scores greater than or equal to

threshold S? was estimated as

F̂ (S?) = B−1
B∑
b=1

∑
v

Θ[Sv(b) ≥ S?]× Pbv, (2.2.19)
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where B = 10 is the number of permutations, Sv(b) is the score of variant v in

permutation b, Θ(u) = 1 if logical argument u is true and 0 if false, and Pbv is the

number of phenotypes associated with variant v in permutation b. The FDR for the

unpermuted data for a given threshold was then calculated as

FDR(S?) = F̂ (S?)∑
v Θ[Sv ≥ S?]× Pv

. (2.2.20)

Variants from the unpermuted data were arranged in decreasing order by score; the

first SNP v′ for which FDR(Sv′) > 0.05 was identified; and the previous SNPs with

Sv > Sv′ were retained as the predicted positives at FDR 0.05. As is standard for

methods based on model scores, calibration by permutation test is done separately

for each data set analyzed.

2.2.6 Other methods

Assessments involved representative available implementations of major classes

of pleiotropy methods. In general, adjustable parameters were set using published

recommendations. We restricted attention to methods with run times that were small

multiples of the cost of performing all T × P univariate tests of individual variants

and phenotypes.

For aggregating association signals over a set of phenotypes, the methods SHom

and SHet, using homogeneous and heterogeneous test statistics, were selected (Zhu
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et al., 2015). Given summary statistics of all T × P univariate tests (regression coef-

ficients and standard deviations), SHom uses a generalized inverse-variance weighted

analysis to combine individual tests into a pooled z-score, which also considers the

correlation between phenotypes and sample sizes of different studies. By comparing

the test statistic with a standard normal distribution, SHom obtains one p-value for

each tested variant. SHet has a scoring function similar to SHom, but also introduces

a threshold τ . The p-value for the test statistic combining all t-scores greater than τ

is maximized, and the corresponding p-value is assigned to the given SNP. Because

of this selection process, SHet does not follow a standard normal distribution, and

p-values are obtained through permutation.

For tests involving linear combinations of phenotypes, the Principal Components

of Heritability (PCH) method (Klei et al., 2008) and MultiPhen (O’Reilly et al., 2012)

were selected. With PCH, a phenotype loading vector w is first estimated for each

SNP. The loading vector is selected to maximize the variance of the loaded phenotypes

explained by the given SNP using a subset of the data. Next, a t-score is obtained

by regressing the genotype data onto the loaded phenotypes using the remainder of

the data. By adopting a bagging technique and running cross-validation, the t-score

distribution is estimated and a p-value is obtained.

For MultiPhen, each genotype is treated as a response variable outcome, and phe-

notypes are predictors. MultiPhen uses proportional odds logistic regression to regress

genotype on the hyperplane constructed by the phenotypes, which models genotype
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data as ordinal (O’Reilly et al., 2012). No distributional assumptions are required for

phenotypes, allowing MultiPhen to accommodate both binary and continuous mea-

surements in a single framework. While ordinal regression for integer-valued allele

dosages is theoretically attractive, the computational cost is much greater than for

linear regression (Table 2.1). Furthermore, allele dosages estimated from imputation

are real-valued rather than integer-valued. MultiPhen includes a gaussian kernel for

this reason, and gaussian regression was used instead of ordinal regression for some

of the results reported here. MultiPhen has two additional modes, variable selec-

tion and variable non-selection. For variable non-selection, all phenotypes are used

as predictors for the genotype data; for variable selection mode, backward selection

were performed on the phenotypes in order to exclude the phenotypes that were not

associated with the SNP, and then the selected phenotypes were regressed on the

genotype data. Non-selected phenotypes have nominal p-values of 1 as output.

We attempted to assess a regularized regression method, using an available im-

plementation of the graphical fusion LASSO (Kim and Xing, 2009). The shrinkage

behavior of graphical fusion LASSO method requires optimization of regularization

parameters λ and γ by cross-validation over a search grid. The cross-validation steps

were computationally intensive, and for many (λ, γ) grid values the iterations did not

converge. No other implementations for GWAS were readily available. Published

results based on graphical LASSO are generally for smaller data sets; the available

implementation was originally developed for a data set of 34 SNPs and 543 individ-
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uals (Kim and Xing, 2009). We therefore excluded LASSO-based methods from the

comparison.

Calibration of methods for 0.05 FWER or 0.05 FDR were conducted as for SAP-

PHO using the same set of genome-wide permutations. This calibration was con-

ducted even for methods providing a nominal p-value based on assumed parametric

distributions to ensure accurate benchmarking.

2.3 Assessment with simulated data

2.3.1 Methods

Methods were first run on simulated data to gain insight into differences in perfor-

mance due to controlled aspects of genetic and environmental architecture of complex

phenotypes. Simulations followed previous protocols used to assess GWiS and other

gene-based tests (Huang et al., 2011). Simulated data sets included 1,000,000 in-

dependent SNPs for 10,000 individuals. Minor allele frequencies for each SNP were

generated uniformly between 0.01 and 0.5 to model common variants. Three sets

of simulations were done using frameworks denoted ‘genes only’, ‘genes and environ-

ment’, and ‘genes only with random phenotypes’. Each phenotype y with genotype

vector x was simulated as

y = µ+ (x− 2p) · β + ε
√

1− σ2
G, (2.3.1)
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where µ is the overall phenotype mean, p is the vector of minor allele frequencies,

β is the vector of regression coefficients for the scenario, ε is a unit normal random

variable, and σ2
G is the genetic variance,

σ2
G =

∑
k

2pk(1− pk)β2
k

where pk denotes the minor allele frequency of SNP k. The entry βk = 0 if SNP k is

not associated with the phenotype. For an associated SNP,

βk =
√

Vk
2pk(1− pk)

.

The term Vk is chosen based population size N and specified type I and type II error

rates α1 and α2 for univariate tests as

Vk = (z1 − z2)2

N
.

For a two-tailed test, z1 = Φ−1(1 − α1/2). The term z2 is set by the desired type

II error rate α2 ≡ 1 − power as z2 = Φ−1(α2). The function Φ−1 is the inverse of

the standard normal cumulative distribution with Φ(z) ≡
∫ z
−∞ du exp(−u2/2)/

√
2π.

With this setting, a SNP with regression coefficient βk will have the specified power

at threshold α. All simulations were performed 5 independent times, including 10

sets of permutations each to determine the 0.05 FDR threshold.
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2.3.1.1 Genes-only simulations

In the ‘genes-only’ scenarios, phenotypic correlations were due entirely to shared

genetic variants with no environmental effects. These simulations considered 6 phe-

notypes and 24 SNPs with causal effects. Simulations were performed separately for

3 scenarios reflecting increased sharing of genetic factors: independent, in which 4

SNPs were associated with each phenotype and no SNPs shared between phenotypes

(24 total pairwise SNP-phenotype associations); block, in which the 6 phenotypes

were divided into 2 blocks, and each block was associated with 12 SNPs (72 total

SNP-phenotype associations); and full, in which the 24 SNPs contributed to each of

the 6 phenotypes (144 total SNP-phenotype associations). Effects for all SNPs were

set to have 50% power at 5× 10−8 threshold.

2.3.1.2 Genes-and-environment simulations

For ‘genes-and-environment’ simulations, phenotypic correlations were due to both

genetic and environmental effects. Two scenarios were simulated in this case: weak

environment and strong environment. For weak environment, 4 phenotypes were

partitioned into 2 blocks of 2 phenotypes; phenotypes within the same block are cor-

related through environmental effects, while phenotypes across different blocks are

not; for strong effects, the 4 phenotypes are all correlated through environmental

effects. For these scenarios, the random variable ε for each phenotype p (Eq.2.3.1 )

follows a multivariate normal with Var(εp) = 1 and with covariance Cov(εp, ε′p) deter-
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mined by a predefined environmental covariance structure. For the weak environment

simulation, the 4×4 covariance matrix is a block matrix of two matrices of size 2, and

for strong environmental simulation, all elements of the 4 × 4 matrix are non-zero.

For this study, we chose to set the correlation for different environmentally correlated

phenotypes to 0.5. For weak environment, SNPs were associated with the pheno-

types in 4 modes: different-block-same-effect, where each SNP is associated with two

phenotypes, one from each block, and the effects are in the same direction; different-

block-different-effect, where each SNP is associated with two phenotypes, one from

each block, and the effects are in opposite directions; same-block-same-effect, where

each SNP is associated with two phenotypes from the same block, and the effects are

in the same direction; same-block-different-effect, where each SNP is associated with

two phenotypes from the same block, and the effects are in opposite directions. For

strong environment, SNPs were associated with the phenotypes in 2 modes: same ef-

fect, where SNPs are correlated with all phenotypes with effects of the same direction;

different effect, where SNPs are correlated with first two phenotypes with positive ef-

fects, and the last two phenotypes with negative effects. Different directions of effect

were represented by different signs for the regression coefficients, with magnitudes de-

fined based on type I and type II error rates exactly as in the ‘genes-only’ simulation.

All effects were simulated to have 50% power at 5 × 10−8 univariate test threshold.

For weak environment, 24 SNPs were simulated and divided equally into 4 modes,

with 6 SNPs in each mode, ending up with 48 total associations; for strong environ-
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ment, 24 SNPs were simulated and divided equally into two modes, with 12 SNPs in

each mode, ending with 96 total associations. With this set of simulation assessed

the capability of different methods to detect SNPs whose association patterns have

the same or opposite direction from the environmental association patterns.

2.3.1.3 Mixture of genetic and non-genetic phenotypes

For the ‘mixture of genetic and non-genetic phenotypes’ simulations, we attempted

to generate scenarios similar to the real ARIC data with known association patterns.

Therefore, 13 total phenotypes were simulated, and the simulations were done with

three scenarios: ONE association, where all active SNPs were associated with phe-

notype 1; TWO associations, where all active SNPs were associated with phenotypes

1 and 2; and THREE associations, where all active SNPs were associated with phe-

notypes 1, 2, and 3. For each scenario, all active SNPs follow the same association

pattern, with the number of associated phenotypes differing between the scenarios.

The effect of each association was simulated such that each SNP has 50% power at

5× 10−8 threshold, with the two associations and three associations effect calculated

as follows using P to denote power:

Punivariate = 1− (1− PTWO)2 = 1
2 (2.3.2)
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which gives us PTWO = 0.293.

Punivariate = 1− (1− PTHREE)3 = 1
2 (2.3.3)

which gives us PTHREE = 0.206. 24 SNPs were simulated to be associating variants

in each scenario, yielding 24, 48, and 72 total associations.

2.3.2 Results

2.3.2.1 Genes-only simulations

Methods were assessed with phenotypes with shared genetic factors but without

shared environmental contributions (Fig. 2.2). Three scenarios were considered, with

increased sharing of genetic factors: independent, with 4 independent SNPs con-

tributing to each of 6 phenotypes; block, with 12 SNPs contributing to one block of 3

phenotypes, and 12 other SNPs contributing to a second block of 3 phenotypes; and

full, with 24 SNPs contributing to all 6 phenotypes. In general, all pleiotropy-based

methods performed better with increasing shared genetic factors. Univariate tests

were run and real-positives were determined with three methods: UNI where the 0.05

FDR threshold was used; UNILE with LE standing for loose-empirical where the

standard 5× 10−8 threshold were used for each association; UNISE with SE standing

for stringent-empirical where the 5 × 10−8 threshold was corrected with the number

of phenotypes tested, which in this case is 6.
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The performance of SAPPHO, assessed as power to detect at genome-wide sig-

nificance, out-performed all other methods for the independent scenario. Methods

other than SAPPHO have lower power than univariate tests when phenotypes do not

share causal variants. For the full scenario, pleiotropy methods other than PCH and

UNISE had power close to 100%, making the methods difficult to distinguish on this

basis. For the block scenario, the MNS (MultiPhen-non-select) and MS (MultiPhen-

select) methods were somewhat better than other methods, outperforming SAPPHO-

I, SAPPHO-C, and SHet by 1 to 2 hits in 2 out of 5 runs.

2.3.2.2 Genes-and-environment simulations

As described in the method section, for the genes-and-environment simulations,

phenotypic correlations were set to be due to both genetic and environmental effects.

Simulations were run in two modes: strong environment and weak environment.

For strong environment same-effect SNPs, most methods performed well except

for SHet and SAPPHO-C, which were unable to detect most associations for this

group of SNPs. SHom was able to detect all SNPs because the underlying association

pattern was same as the simulated pattern, namely the variant is associated with

all phenotypes. Although the underlying assumption for SAPPHO-I did not match

the simulation pattern, it performed well because all the SNPs followed the same

association pattern; thus the pattern prior gives its power to detect all the variants.

Unexpectedly, SAPPHO-C performed poorly in the same-effect setting. The rea-
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son is likely because the variance explained by one association is compensated through

correlation with other phenotypes, with the result that adding a variant to the model

does not improve the model score. To explore this effect further, we calculated the

SAPPHO-C score for the true model and found it to have a large negative score. We

can also explain this effect by noting that the BIC penalty assumes that regression

coefficients for a SNP have independent sign, whereas the architectures in this sce-

nario force the regression coefficients to have the same sign, resulting in a penalty

that is too large.

For strong environment different-effect SNPs, all methods performed well, except

for SHom, due to the difference in the simulated data and its underlying assumption.

For weak environment simulations, SNPs were simulated to follow 4 different pat-

terns: different-block-same-effect(dbse), different-block-different-effect(dbde), same-

block-same-effect(sbse), same-block-different-effect(sbde). Different/same-block de-

notes whether the environmental correlation is identical with the genetic pleiotropic

effects, and same/different effect denotes whether the effects for the simulated pleiotropic

SNPs are of the same direction or not. For dbse, SAPPHO-C and MultiPhen per-

formed the best by finding all associated SNPs; followed by SAPPHO-I, SHet, and

PCH; for dbde, SAPPHO-C and MultiPhen again performed the best. This is some-

what similar to the genetic only simulation, where the correlation between pheno-

types are only through genetic effect, and SNPs are correlated with both blocks. For

sbse, SAPPHO-I performed the best, while SAPPHO-C, SHet, and SHom performed

39



CHAPTER 2. DISCOVERING PATTERNS OF PLEIOTROPY IN
GENOME-WIDE ASSOCIATION STUDIES

poorly; this situation is similar to the same-effect SNPs for strong environment simu-

lation, where a SNP is associated with all phenotypes in a block, with positive effects.

Similarly, the performance on sbde was same as different-effect for strong environ-

ment simulation, with all methods performing well. For both simulations, the original

version of MultiPhen using ordinal regression was again performed, yielding outcomes

similar to using Gaussian regression, but with much longer running time.

2.3.2.3 Mixture of genetic and non-genetic phenotypes

We performed simulations with genetic effects in 3 out of 13 total phenotypes

to further investigate the relative performance of SAPPHO and MultiPhen and, in

cases where SAPPHO performed less well, whether the cause was the underlying

statistical model or the greedy rather than full model search. These simulations used

three scenarios labeled ONE, TWO, and THREE. In scenario ONE, all associations

were with phenotype 1. In scenario TWO, all associations were pleiotropic with

phenotype 1 and phenotype 2. In scenario THREE, all associations were pleiotropic

with phenotypes 1, 2, and 3. Phenotypes 4-13 were random in all simulations, with

no genetic component. Other methods performed less well (Supplemental Table 3).

As described previously (see model score in the Method section), SAPPHO has a

single tuning parameter defined by the least significant univariate p-value that can be

added to an association model. Because model scores are calibrated by permutation,

this parameter does not affect stringency in terms of FDR or FWER. It can affect
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power, however, because a more stringent threshold will reject weaker true associa-

tions. It also affects computational cost because a looser threshold yields a longer

list of candidate variants. We used thresholds 5 × 10−4, 2.5× 10−4, 10−4, 10−5, 10−6

(Supplementary Table 4).

Using the loose threshold of 5 × 10−4, SAPPHO-I outperformed MultiPhen for

scenario ONE, performed equivalently for scenario TWO, and had slightly less power

than MultiPhen for scenario THREE (Fig. 2.5). To determine whether the power dis-

advantage was due to the greedy search or to the statistical model, we also calculated

the score of model defined by the true associations. In this case, SAPPHO performed

better than MultiPhen. We conclude that SAPPHO’s performance could be improved

using a more sophisticated model search, for example considering considering single

and double associations in a single step, or adding backward steps.

We also performed simulations using the more stringent threshold of 10−6 for

adding associations. In scenario ONE, SAPPHO still out-performed MultiPhen. In

scenarios TWO and THREE, SAPPHO performed worse, in large part because the

threshold prevented true associations from being considered.

At 0.05 FDR, both SAPPHO and MultiPhen returned false positive results. SAP-

PHO false positives tend to be spurious associations of a variant with an individual

phenotype. MultiPhen tends to over-predict associations: given a true association to

a phenotype, MultiPhen often predicts additional false-positive associations for the

same SNP with additional phenotypes. These results support the hypothesis on the
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real data result that the additional pleiotropic associations found by MultiPhen in

the ARIC data are false positives rather than true associations, consistent with the

lack of significance for these associations in the larger CHARGE data set.

2.4 Assessment with real data and pleiotropy

on ECG phenotypes

2.4.1 Electrocardiogram phenotypes

Electrocardiogram (ECG) phenotypes are considered to be measurements that

reflects conditions of heart. To be more specific: PR interval (from beginning of

the P wave to the beginning of the QRS interval) reflects atrial and atrioventricular

nodal conduction (Pfeufer et al., 2010); QRS interval (from beginning of the Q wave

to the end of the S wave) reflects depolarization of both ventricles (Sotoodehnia et al.,

2010); QT interval (from beginning of the Q wave to the end of the T wave) reflects

myocardial re-polarization (Arking et al., 2006; Pfeufer et al., 2009; Newton-Cheh

et al., 2009; Arking et al., 2014). These phenotypes are considered to be risk factors

for atrial fibrillation, sudden death, heart failure, and etc., and therefore have been

extensively investigated into (Pfeufer et al., 2010; Sotoodehnia et al., 2010; Pfeufer

et al., 2009; Arking et al., 2006; Newton-Cheh et al., 2009; Arking et al., 2014). To

date, research have shown that the fraction of heritability explained by genome-wide
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significant associations for these traits ranges from 4% to 17%, with 44, 22, and

35 independent genome-wide associations detected for PR, QRS, and QT intervals,

respectively. Therefore, these ECG phenotypes serve as ideal traits for us to test the

methods on.

2.4.2 Methods

SAPPHO, together with other methods under comparison, were tested using

individual-level ECG phenotype and genotype data from the the Atherosclerotic Risk

In Communities (ARIC) study cohort (ARICInvestigators, 1989). This cohort in-

cludes approximately 8000 Caucasian ethnicity subjects and 2000 African-American

ethnicity subjects. Assessments here use only the Caucasian ethnicity because power

has been insufficient for African-American ethnicity.

Known positive phenotype-genotype associations were taken from meta-analyses

conducted by the CHARGE consortium, which includes ARIC as a cohort. Recent

meta-analyses have included 88,000 individuals for PR, 40,407 for QRS, and approx-

imately 100,000 for QT (Pfeufer et al., 2010; Sotoodehnia et al., 2010; Arking et al.,

2014). Covariates for the EKG phenotypes were selected to be identical to those used

in meta-analysis: height, age, gender, center, BMI, centerm, and heart rate.

Genotypes for ARIC were imputed by pre-phasing with Shapelt (v1.r532) and

then imputing to 1000 Genomes (1000GenomesProjectConsortium et al., 2010) using

IMPUTE2 (Howie et al., 2009, 2011). Measured SNPs used for imputation were

43



CHAPTER 2. DISCOVERING PATTERNS OF PLEIOTROPY IN
GENOME-WIDE ASSOCIATION STUDIES

restricted to MAF > 0.005, > 95% complete, HWE > 0.00001, resulting in 711,589

SNPs in the final set used for the imputation. Final imputations from IMPUTE2

used the reference panel 1000 Genomes haplotypes – Phase I intergrated variant set

release (v3) in NCBI build 37 (hg19) in chunks of size 5Mb. All 1092 individuals were

used for imputation from the reference panel.

Analyses were done focusing on the overlapping variants between ARIC and

CHARGE cohorts, and we have tested that this overlap set of variants essentially

includes all SNPs reported as significant by previous GWAS for ECG traits. Variants

were removed if the ARIC or CHARGE genotypes violated Hardy-Weinberg equilib-

rium (P < 0.00001), were poorly imputed (Qual < 0.3), or if the minor alleles were

too low frequency to have power (MAF < 0.01), corresponding to fewer than 160

copies of the minor allele. These criteria and filtering variants to require univariate

p-value ≤ 10−4 and low LD with more significant variants (see Methods) resulted in

620 total variants for the PR, QRS, and QT phenotypes. This filtered list was used

for each method.

Assessments were performed by defining variant-phenotype associations present in

the meta-analyses at genome-wide significance (p-value ≤ 5×10−8 for each phenotype)

as known positives. Assessments are complicated by linkage disequilibrium within

the genome, which can lead to genome-wide significant findings for multiple variants

within a linkage disequilibrium block. These multiple variants often correspond to a

single causal variant, and for purposes of assessment they were grouped into a single
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known positive.

We performed the grouping as follows. For each phenotype, we linked together

pairs of genome-wide significant SNPs within 500 kbp of each other. We then identi-

fied the distance-based connected components defined by these pairwise links. Each

connected component in principle could contain multiple independent causal effects.

To determine whether independent effects were present, we provided the SNPs in each

connected component as a single locus to GWiS (Huang et al., 2011). GWiS was then

run separately on each connected component to select candidate SNPs representing

independent effects.

In regions with strong association signals, these candidate sets may still con-

tain more SNPs than independent effects. Furthermore, independent effects must be

matched across phenotypes. We therefore used linkage disequilibrium as defined by

r2 correlation to identify a final set of independent effects. We introduced correlation-

based links between pairs of SNPs with r2 ≥ 0.05 and identified the connected com-

ponents defined by the correlation-based links. This resulted with 107 gold-standard

connected components, each connected component corresponding to a single effective

known positive with one or more phenotypes.

We also investigated the robustness of the gold-standard connected components

with respect to the r2 threshold of 0.05. For a threshold of r2 ≥ 0.01 the number of

connected components was 90, and for r2 > 0.1 the number of connected components

was 112. At the lower threshold, multiple effects are merged into a single connected
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component, while at higher threshold, one single effect may be divided into multiple

connected components. With r2 ≥ 0.05, the SCN5A-SCN10A locus was assigned 3

different association signals, while at r2 ≥ 0.1 the SCN5A-SCN10A locus had 5 inde-

pendent effects, which bracket the estimates from existing literature (Pfeufer et al.,

2010; Sotoodehnia et al., 2010; Pfeufer et al., 2009; Arking et al., 2014). While the

details of performance of individual methods depend somewhat on the r2 threshold,

the relative performance of different methods is stable with reasonable choices for the

clustering threshold. Therefore for the current study all results were reported based

on r2 ≥ 0.05 (Supplementary table 1).

Methods differ in their treatment of LD blocks and their attempt to identify the

subset of phenotypes associated with each variant. The SAPPHO-I and SAPPHO-C

methods attempt to provide a parsimonious list of associations, with only one SNP

in each significant LD block. Other methods report each SNP within an LD block as

a positive. The SAPPHO-I, SAPPHO-C, MultiPhen-Selection, and univariate

methods identify the subset of phenotypes associated with a SNP, whereas other

methods do not. For purposes of assessment, we calculated the r2 for each SNP

selected by a method to each SNP in the gold standard correlation-based connected

components. We defined r2 ≥ 0.1 as the threshold for matching. Each correlation-

based connected component with at least 1 matching SNP was counted as a true

positive; the remaining connected components were counted as false negatives. We

tried different threshold including r2 ≥ 0.1, r2 ≥ 0.5, r2 ≥ 0.7, and r2 ≥ 0.8, and

46



CHAPTER 2. DISCOVERING PATTERNS OF PLEIOTROPY IN
GENOME-WIDE ASSOCIATION STUDIES

found that while using the thresholds other than r2 ≥ 0.1 did not substantially

increase the number of true positives, they yielded many false positives, primarily

non-causal variants somewhat correlated with real effects. We therefore used r2 ≥ 0.1

as the threshold for reporting results.

To be more favorable to the non-parsimonious methods, we used a similar grouping

strategy to define the number of false positives. SNPs reported by a method but with

r2 < 0.1 to any SNP in a gold-standard connected component were grouped into false-

positive connected components using r2 ≥ 0.05, and each false-positive connected

component was then counted as a single false positive. For SAPPHO, MultiPhen-

Selection and univariate tests, the methods which provide the subset of phenotypes

associated with each variant, we performed subsequent analyses to assess the ability

to detect the correct variant-phenotype associations.

In addition to performing assessments with the original ARIC data, we also per-

formed assessments in which the ARIC data was augmented with with random pheno-

types generated as independent and identically distributed standard normal random

variables. We performed tests with 3, 6, and 10 random phenotypes added to the 3

ECG phenotypes. These assessments were designed to identify robustness of methods

when phenotypes with shared genetic factors are unknown.

SAPPHO was then run in summary mode using sufficient statistics from CHARGE

analyses. The sufficient statistics included phenotype covariances, phenotype-genotype

regression coefficients and standard errors, allele frequencies, genotype-genotype co-
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variances, and sample numbers for each phenotype-genotype association. For SAPPHO-

C, the difference in sample numbers complicated the likelihood ratio term in the score

statistics, and the computational expense increased dramatically as more associations

were included into the model; therefore, only SAPPHO-I was run in this case. Permu-

tations were performed by randomly resampling 100,000 individuals from the ARIC

primary data. To be more specific, individuals from ARIC data were resampled with

replacement for 100,000 times to construct 100,000 ‘new’ individuals. With this proce-

dure, the genotype allele distribution for resampled population should be consistent

with that of the ARIC population. Shuffling and subsequent steps were then per-

formed exactly as for the ARIC primary data to preserve the underlying phenotype-

phenotype correlation was preserved. Results for 0.05 FDR used 10 population-wide,

genome-wide permutations. The methods for constructing the gold standard and

assessing true and false positives were the same as for the ARIC primary data.

To assess the biological relevance of new associations identified as significant by

SAPPHO for the CHARGE cohort, enrichment analysis was performed for genes

detected by SAPPHO-I at 0.05 FDR. The analysis focused on the curated gene sets

including BIOCARTA, KEGG, REACTOME, and GO pathways as aggregated by

MSigDB (Liberzon and et al., 2011). For this analysis, a 2 × 2 contingency table

was constructed for each pathway, with 0/1 columns denoting whether the gene was

detected by SAPPHO-I at 0.05 FDR as the columns, and 0/1 rows denoting whether

that gene was in the pathway. Fisher’s exact test was then run on each contingency
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table to obtain a one-sided p-value for a one-sided test of enrichment. We performed

this assessment first for all the loci reported by SAPPHO-I. We then modified the

procedure to account for the possibility that some of the pathway assignments found in

MSigDB may have been influenced by the GWAS contributing to CHARGE, whose

data we are using. Our modification was to exclude all gold-standard loci from

consideration, removing them both from the SAPPHO-I results and from the gene

sets. We then performed 2×2 contingency enrichment analysis as before but restricted

to the non-gold-standard loci.

2.4.3 Results

2.4.3.1 Assessment for different methods on ARIC data

For evaluation with primary data, both SAPPHO-I and SAPPHO-C, together

with other pleiotropy methods, were applied to identify shared genetic contributions

to ECG traits (Fig. 2.6). Methods were calibrated using permutations to identify

the appropriate threshold corresponding to a 0.05 FWER for genome-wide tests of 3

phenotypes. The conventional threshold for univariate tests of 3 independent pheno-

types would be (5/3)×10−8 = 1.67×10−8. Calibration by permutation for univariate

tests gave a single-test threshold of 1.068× 10−8. With ARIC data, SAPPHO-C was

able to recall 15 known loci, better than any other methods, followed by SAPPHO-I,

finding 13 known loci (Fig. 2.6). The MultiPhen and SHet methods are next best in

49



CHAPTER 2. DISCOVERING PATTERNS OF PLEIOTROPY IN
GENOME-WIDE ASSOCIATION STUDIES

performance, returning 8 or 9 true positives, but no better than standard univariate

tests. The methods PCH and SHom perform worse than univariate tests (Fig. 2.6,

Supplementary Table 2).

We then investigated the variants identified by each method. The set identified

by SAPPHO included the variants identified by all other methods, except for a single

locus found by SHet. This SNP, rs1896312, has known positive associations with

PCHARGE PR = 1.151×10−34 and PCHARGE QRS = 2.626×10−9. P-values from ARIC

for univariate tests were PARIC PR = 1.5× 10−6 and PARIC QRS = 3.3× 10−3. The p-

value returned by SHet was 2.94× 10−9, better than its FWER=0.05 threshold value

1.52 × 10−8. The SNP was added to both SAPPHO-I and SAPPHO-C models, but

did not pass the 0.05 FWER threshold. The reason that this loci was only detected

by SHet is that as observed with ARIC data and simulated data, SHet is powered to

find variants that have weak associations across all or most of the given phenotypes.

For SAPPHO, given its stringency for adding associations to the model, only the PR

association was detected, and thus, this SNP was not reported as being significant.

Two SNPs were identified by multiple methods, yet were not in the gold-standard:

rs7638275 and rs17608766. rs7638275 has PCHARGE PR = 0.845, PCHARGE QRS =

0.41, and PCHARGE QT = 0.4667, and was therefore not included in the gold-standard.

However, it has PARIC PR = 5.27×10−13 and PARIC QRS = 1.97×10−6, strong evidence

for a true association within the ARIC subpopulation. We note that rs7638275 was

reported as a rare variant with low imputation quality for most cohorts in CHARGE,
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and therefore it was not detected for any of the three ECG traits. In ARIC, how-

ever, rs7638275 was well imputed with a 1.5% minor allele frequency, and therefore

detected by methods including SAPPHO-I, SHet, MultiPhen, PCH, and univariate

tests. SAPPHO-C did not identify rs7638275 because its effect was partially explained

by correlated SNPs already in the model. We reached this conclusion by attempting

to add rs7638275 to the SAPPHO-C model; we found that its p-values were much

less significant, 2.11× 10−5 for PR and 0.01745 for QRS.

The other SNP, rs17608766, had p-values PCHARGE PR = 1.7×10−7 and PCHARGE QRS =

1.2× 10−5 for CHARGE, and PARIC PR = 1.4× 10−7 and PARIC QRS = 3.0× 10−4 in

ARIC cohort. It was not included the gold standard because none of its associations

passed the p-value 5 × 10−8 threshold. This SNP was found by both SHom/SHet

and SAPPHO-I using data from ARIC cohort. This SNP was also later found by

SAPPHO-I run on CHARGE meta-analysis results, which is strong evidence for its

association with ECG traits (Supplementary Table 3). This finding was supported

by a recent study which reported rs17608766, located in the gene GOSR2, to be

associated with cardiac structure and function (Wild et al., 2017), which exhibits

SAPPHO’s capability to identify novel pleiotropic associations.

We also investigated performance of each method as noise was introduced through

addition of null phenotypes (Fig. 2.6). This assessment models a collection of pheno-

types where only small subsets share genetic factors, and these subsets are unknown

at the outset. The least robust method is SHom, which makes the assumption that
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all traits share genetic factors. Other methods also lose power when noise phenotypes

are presented, though to a lesser degree. For real-world application, variants are not

likely to be associated with all inputed phenotypes, making robustness when noise

phenotypes are presented crucial.

2.4.3.2 Pleiotropy of ECG traits in ARIC and CHARGE

SAPPHO-I was run in summary mode on CHARGE meta-analysis summary re-

sults to see whether any additional pleiotropic SNP could be identified. The other

methods were not run with CHARGE summary results, for two different reasons:

PCH and MultiPhen require primary phenotype and genotype data which are not

available for CHARGE, and SHom/SHet perform poorly based on results from ARIC

cohort and simulations. These results, together with the association pattern obtained

from ARIC and the gold-standard, are shown in (Fig. 2.7).

The genetic architecture of ECG traits includes SNPs contributing to distinct sub-

sets of PR, QRS, and QT phenotypes. Given that ARIC is a subset of the CHARGE

cohort, the power to detect true associations using ARIC data is smaller compared to

using the entire CHARGE data. Therefore, for SAPPHO and univariate tests run on

ARIC, in some cases gold-standard SNPs were not detected at all; in other cases, the

strongest associations of a SNPs are retained but other gold-standard associations

are lost. As is seen in (Fig. 2.7), the predicted number of associations is smaller than

the expected number of associations, and the numbers denoting count of real hits lie
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below the diagonal line. For MultiPhen run on ARIC, however, the number denoting

real hit counts all lie on or above the diagonal line, indicating that more associations

were found for certain loci in the gold standard. Given the much smaller power of

ARIC compared to CHARGE, these are likely to be over-predicted associations from

MultiPhen rather than true pleiotropic loci; this over-predicting behavior of Multi-

Phen was later observed in the simulation studies as well (Supplementary Table 4,

association pattern).

With ARIC data, SAPPHO methods were able to retrieve more hits than either

MultiPhen or univariate tests. For CHARGE data, SAPPHO-I run in summary mode

was able to retrieve all the real hits in the gold standard. Additional associations

were found with SAPPHO-I for some gold standard loci, yielding additional loci with

pleiotropic effects (Table 2.3). The number of additional associations added depends

on the tuning parameter; for this test we set the γ parameter to allow for associations

with p < 10−4 to be added.

For loci already part of the gold standard, two types of new associations were

added (Table 2.3): (1) a variant already associated with at least one trait was as-

sociated with at least one additional trait; (2) a variant not previously associated

with any trait was associated with a new trait not yet associated with that locus.

In loci not part of the gold standard, SAPPHO detected 124 new hits at 0.05 FDR.

Most were associated with single traits, but the above-mentioned SNP rs17608766

in GOSR2 was detected as pleiotropic. Pleiotropic effects at the locus level were
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observed more frequently. For example, SLC12A7 contains rs2334955 and rs4285270,

which were associated with QT and PR respectively, and KLHL38 contains rs4871397

and rs16898685, which were associated with PR and QRS respectively. The linkage

disequilibrium for each of these pairs of SNPs is weak, R2 = 0.064 for rs2334955

and rs4285270 and R2 = 0.0017 for rs4871397 and rs16898685, suggesting two inde-

pendent effects within each locus. These associations reveal new genetic connections

between different ECG traits.

Our analysis of CHARGE has no known ground truth; therefore, we used biological

annotations to assess performance and gain insight. These assessments tested for

enrichment of genes identified at 0.05 FDR for membership in annotated gene sets (see

Methods). A total of 7246 gene sets were analyzed, corresponding to a nominal p-value

of 6.9× 10−6 for conventional significance. Genes detected by SAPPHO at 0.05 FDR

show strong enrichment signals for several pathways involved with cardiac physiology

and activities (Supplemental Table 5). The three most significant gene sets represent

regulation of heart contraction (p = 2.5 × 10−19), muscle systems processes (p =

3.6× 10−19), and cardiac conduction (p = 3.7× 10−19). Additional notable categories

include regulation of heart rate (p = 3.0 × 10−17), heart process (p = 1.1 × 10−14),

and cardiac muscle cell action potential (p = 4.3 × 10−14). To ensure that these

findings were robust, we repeated the analysis but excluded the significant findings

from previously published GWAS. Gene sets specific to cardiac electrophysiology

remain highly significant, including regulation of heart contraction (p = 3.5× 10−8),
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muscle systems processes (p = 2.3 × 10−9), cardiac conduction (p = 1.6 × 10−7), as

well as heart rate (p = 5.9×10−6), heart process (p = 5.9×10−6), and cardiac muscle

cell action potential (p = 3.1 × 10−6). These findings support the conclusion that

the novel loci with statistical associations detected by SAPPHO increase are indeed

causal for ECG traits.

Given that pleiotropy is observed for ECG traits, we asked whether variants

that affect the same subset of traits typically have the same direction of effect,

and whether this depends on the observed phenotypic correlation. For ECG traits,

Cor(PR,QRS) = 0.051, Cor(PR,QT) = −0.026, Cor(QRS,QT) = 0.168, where

Cor(x, y) stands for the correlation between the two traits x and y. The consis-

tency of direction of effects and phenotypic correlations for pleiotropic SNPs detected

by SAPPHO on CHARGE are shown in Table 2.4, where ‘+/+’ denotes the SNPs

whose effects are in the same direction, and ‘+/-’ denotes the count of SNPs whose

effects are in different directions. Out of the 23 pairs of association effects, 16 were

consistent with the phenotypic correlations. The probability that association effects

were consistent with phenotype correlation was 0.70 with a 95% binomial distribu-

tion confidence interval of [0.49, 0.84]. We conclude that SAPPHO is able to detect

variants whether or not the direction of genetic effect matches the overall direction

of correlation. We further conclude that variants that contribute to the same pair

of phenotypes can often show different directions of effect, suggesting that distinct

biological mechanisms connect the variants to their downstream effects on ECG traits.
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2.5 Application to UK Biobank cancer phe-

notypes

2.5.1 UK Biobank project and cancer phenotypes

Cancer is the second leading cause of death in the United States, which devel-

ops when abnormal cells undergo uncontrolled growth and spread. In contrast to

benign tumors, cancer cells usually invades to other parts of the body, impacting

the normal functioning of these tissues and organs, thus becomes life threatening.

In 2017, 1.7 million new patients were diagnosed with cancer, and about 600,000

patients died because of it (AmericanCancerSociety, 2017). Large twin studies of

cancer have been performed in order to provide insight into the relative contribution

of inherited factors and characterize familial cancer risk by leveraging the genetic

relatedness of monozygotic and dizygotic pairs of twins (Mucci et al., 2016). With a

recent study which consists of 27,156 incident cancers happened in 23,980 individuals,

it was found that for most cancer types, there were significant familial risks and the

cumulative risks were higher in monozygotic than dizygotic twins. Heritability of can-

cer overall was 33%(95% CI, 31%-37%), with significant heritability detected for skin

melanoma(58%; 95% CI, 43%-73%), prostate cancer(57%; 95% CI, 51%-63%), non-

melanoma skin(43%; 95% CI, 26%-59%), ovary(39%; 95% CI, 23%-55%), kidney(38%;

95% CI, 21%-55%), breast (31%; 95% CI, 11%-51%), and corpus uteri(27%; 95% CI,
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11%-43%) (Mucci et al., 2016).

GWAS has been performed extensively on cancer phenotypes. To date, over 450

genetic variants have been proved to associate with increased risk of cancer (Sud

et al., 2017). Some of the well-proved cancer susceptibility genes include those for

breast (BRCA1/2), colorectal cancer(CRC), and melanoma (CDKN2A) (Sud et al.,

2017). Besides revealing novel pathways important in carcinogenesis, GWAS studies

have also shown that some common genetic variations contribute substantially to the

heritable risk of many common cancers (Wu et al., 2017). This makes looking into the

pleiotropic effect across different cancer phenotypes meaningful, and discovering such

genetic variants would provide opportunities for drug discovery and repositioning as

well as for cancer prevention.

In this project, we decided to look into cancer susceptibility, as well as the

pleiotropic effect for genetic variants, using data from the UK Biobank (UKB) project

(Bycroft et al., 2017). The UK Biobank project is a large prospective cohort study

consisting of 500,000 individuals from across the United Kingdom, aged between

40-69 at recruitment. A rich variety of phenotypic and health-related information

was collected on each participant, including self-reported information like basic de-

mographics, diet, and exercise habits; as well as other sources of health-related infor-

mation such as medical records and cancer registers being integrated and followed up

over the course of the participants’ lives. 14 distinct cancer phenotypes were provided

among all phenotypes given by UKB project, with in total 40,000 cancer incidents
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reported. Genotypes for more than 98% of all participants were collected, which

provides great potential to exploit the interaction between cancer phenotypes and

genotypic variants. For the study, both traditional univariate logistic regression test

and SAPPHO were run on the cancer phenotypes; hits were collected at 0.05 FWER

for univariate tests and 0.05 FDR for SAPPHO, and first compared with genome-wide

associations in GWAS catalog to see if any new associations were detected. Then,

phenotypes associated with each locus were compared between the two methods, to

see whether any additional pleiotropic effects were discovered.

2.5.2 Methods

UKB project participants were genotyped using two arrays that are very similar

with each other. The UKB Axiom array was used to genotype ∼ 450, 000 of the

∼ 500, 000 individuals, and the other ∼ 50, 000 samples were genotyped using the

UK BiLEVE Axiom array. Both arrays include ∼ 825, 000 markers, including both

single nucleotide polymorphisms (SNPs) and small insertions and deletions (Indels).

95% of common markers for the two arrays are overlapped, with UKB Axiom array

including additional novel markers such as cancer-related markers, which replaced a

small fraction of markers used for genome-wide coverage. The position of markers

in are reported in coordinates of the genome build Genome Reference Consortium

Human Reference 37 (GRCh37). In order to increase power of the study, number of

markers were boosted by first pre-phasing the directly genotyped markers, followed
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by haploid imputation. Pre-phasing was done by first removing markers having more

than 5% missingness or having minor allele frequency < 10−4, which resulted in

670,739 autosomal markers in 487,442 samples; then phasing on the autosomes were

carried out using SHAPEIT3 (O’Connell et al., 2016) in chunks of 15,000 markers,

with an overlap of 250 markers between chunks. The 1000 Genome Phase 3 dataset

(1000GenomesProjectConsortium et al., 2010) was used as reference panel, predomi-

nantly to help with the phasing of sample with non-European ancestry. Imputation

using IMPUTE2 (Howie et al., 2009, 2011) was carried out in chunks of approximately

50,000 imputed markers with 250kb buffer region on 5,000 samples per compute job,

which resulted in 92,693,895 autosomal SNPs in 487,442 individuals.

For GWAS, it is usually preferred that effects of strong population structures

are reduced and the samples are unrelated, yielding a set of independent samples

with relatively homogenous ancestry, to satisfy the independent identical distributed

assumption for most tests. Therefore, two more processes were performed on the sam-

ples to get a maximal set of unrelated individuals with homogeneous ancestry. First,

a white British ancestry subset was selected; this was done by first selecting 431,059

individuals who reported their ethnic background as ”British”; then a Bayesian out-

lier detection algorithm implemented in the R package called aberrant (Bellenguez

et al., 2012) was run on the set to isolate the largest cluster of samples from the rest,

using the first 40 principle components. Then, a maximal set of unrelated individ-

uals was found by using the i-graph(Csardi and Nepusz, 2006) package in R, where
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for each family (network of nodes joined by edges), the largest subset of individuals

(vertices) were found such that there is no relatedness (edges) between them. After

doing these two sample filtering procedures and excluding samples that have miss-

ing values, we were left with ∼ 330, 000 samples. Out of the ∼ 330, 000 samples, the

number of cases for each cancer phenotype is shown in Table 2.5. It could be observed

that bone, articular cartilage of limbs has number of cases of 58, which is considered

too small a number to perform associations tests; for other cancer phenotypes, the

number of cases range from a few hundreds to ∼ 15, 000, which guarantees power to

detect meaningful associations.

To test associations between genetic variants and cancer phenotypes, univariate

logistic regressions were first performed on each cancer phenotype. To avoid run-

ning logistic regressions on highly unbalanced data, given the large population of

UKB individuals and relatively small number of cases for each cancer phenotype,

control samples were sampled randomly from the above mentioned unrelated British

ancestry population, such that the case/control has an approximately 1:3 ratio. For

gender-specific cancer types, including breast cancer and female genital organs for fe-

male, and male genital organs for male, controls were sampled from only female/male

sub-population of the unrelated British ancestry population for more detailed strat-

ification. Covariates of the tests included BMI, current smoker, age, and 40 genetic

principal components; sex was included as a covariate only for non-gender-specific

cancer types, to avoid collinearity with the intercept term of the linear component
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of logistic regression, which will lead to singularity when taking inverse. SNPs were

excluded for MAF < 0.01, HWE < 10−5.

SAPPHO was run on summary statistics obtained from logistic regression. The

candidate SNP list selection, filtering procedures, and hit calling were performed

exactly the same as for ARIC ECG phenotypes. Since SAPPHO is implemented as

a linear model, the regression coefficients and standard errors obtained from logistic

regression could not be directly used as inputs; therefore, these two terms were back

calculated from the z-score of each univariate test, under the assumption that when

effect size is small, power for logistic regression and linear regression will be similar.

To be more specific, assume each phenotype has variance equal to 1, then for any

SNP with minor allele frequency p:

se ∼
√

1
N × 2p(1− p)

and

beta = se× Z

where N stands for the effective sample size for that specific association, and Z stands

for the z-score for the association. Each phenotype were assumed to have unit vari-

ance, and covariance between any pair of phenotypes were set to be 0. Genotypic

covariances and minor allele frequency for each SNP were calculated using the unre-

lated British ancestry mentioned above. Permutations were first performed for each
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phenotype individually, and then followed by exact same steps as for ARIC ECG per-

mutations. In total 10 permutations were performed to control for SAPPHO result

at 0.05 FDR.

2.5.3 Results

Numbers of associations detected on locus level for both methods are shown in

Table 2.6. It could be observed that no association was detected using either method

for 4 out of 13 cancer phenotypes. Univariate test detected 54 associations with 5

cancer phenotypes, and SAPPHO detected 66 associations with 9 phenotypes. More

than ten associations were detected by both methods for skin cancer, breast cancer,

and cancer for male genital organs, with fewer associations detected for other cancer

phenotypes. All associations detected by univariate tests were also detected by SAP-

PHO at 0.05 FDR. Comparing the detected hits with known associations from GWAS

catalog, it could be observed that most hits detected by either methods have been

well established to be associated with the corresponding phenotypes (Supplementary

Table 6). For example, many detected associations with skin cancer were found in

GWAS catalog to be associated with “basal cell carcinoma”, “melanoma”; and most

detected associations with male genital organs were found in GWAS catalog to be

associated with “prostate cancer”, and etc.

Number of different loci detected by univariate tests and SAPPHO was 51 and 59,

respectively (Supplementary Table 6). For both methods, the same four loci were de-
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tected to be pleiotropic, with the remaining 47 and 55 loci associated with one single

phenotype (Table 2.7). For two out of all four pleiotropic loci, SAPPHO was able to

detected one extra association for each one of them: cancer for digestive organs for the

SRRM1P1-POU5F1B locus, and cancer for respiratory intrathoracic organs for the

TERT-MIR4457-CLPTM1L locus. Both extra associations were verified by compar-

ing with known associations from GWAS catalog, which further proved SAPPHO’s

advantage over univariate test. 8 novel cancer related loci were detected by SAP-

PHO (Supplementary Table 6). Unlike the 51 loci detected by both SAPPHO and

univariate test, some of these 8 additional loci did not have explicit associations with

corresponding cancer phenotypes in GWAS catalog. For some of the novel hits de-

tected, like SNRK (rs76161159), GLIS3 (rs12378136), and PCDH15 (rs118113166),

it was observed that the detected loci were associated with more general underly-

ing biological processes that might contribute to cancer in a more indirect way; for

other novel hits detected, like ZNF646P1 (rs7997746), associations from GWAS cat-

alog indicate that they are associated with explicit phenotypes that doesn’t seem to

be correlated with cancer phenotypes, like the association with BMI in the case of

rs7997746. Another reason for these detections might be because for SAPPHO, cor-

rection is performed to allow 5% false discoveries on the SNP association level, which

given the ∼ 90 total associations between SNP and cancer phenotypes, the expected

number of false discoveries will be around 5. A way to further eliminate the false

discoveries will probably be to run more permutations and control for family-wise er-
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ror rate at desired level, say 5%. Nonetheless, these novel hits detected by SAPPHO

could provide potential cancer associated loci that could be further investigated into.

2.6 Discussion

We have presented a Bayesian-motivated method, SAPPHO, designed to detect

pleiotropic effects in GWAS. SAPPHO exploits previously observed association pat-

terns to identify additional variants following the same pattern. Representative meth-

ods were selected for comparison: SHom and SHet, which pool summary statis-

tics of all variant-phenotype associations to define a combined test-statistic; PCH,

which constructs linear combinations of phenotypes for genotype data to be regressed

on; and MultiPhen, which performs reverse regression such that the phenotypes are

treated as predictors to explain the variance of genotypes.

Simulated phenotype and genotype data sets were first used to compare the meth-

ods. These studies suggested that the version of SAPPHO that models the full pheno-

type covariance matrix, SAPPHO-C, can actually perform poorly when phenotypes

are strongly correlated. A simplified version in which phenotypes are modeled as

independent when conditioned on genetic effects, SAPPHO-I, retains robust perfor-

mance. SAPPHO-I is also more computationally efficient and more amenable to use

with summary data from meta-analysis.

Simulations also demonstrated that SAPPHO can have an advantage over uni-
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variate tests even applied to a mixture of phenotypes in which some lack genetic

effects. The Bayesian prior learns this pattern and is able to boost associations with

the phenotypes that have genetic effects.

The MultiPhen method also performed well. It out-performed SAPPHO in some

simulation settings involving weaker effects, although it had a drawback of over-

predicting spurious associations for variants with true associations for a subset of

phenotypes.

SAPPHO depends on a single adjustable parameter, which in effect determines

the minimum effect strength that can be entered into the genetic model. Permitting

weaker effects, expressed as a looser univariate p-value, improved SAPPHO’s perfor-

mance. We found, however, that the greedy forward search implemented by SAPPHO

occasionally yields a local rather than global optimum, as assessed by calculating the

score of the true model. Improving the search heuristic, for example by permitting

the model to add two associations simultaneously, may improve the performance.

In applications to a real data set, ECG phenotypes from ARIC, with known pos-

itives available from the much larger CHARGE study, SAPPHO performed better

than other pleiotropy methods in discovering the true associations at genome-wide

significance. SAPPHO also performed best when additional random phenotypes aug-

mented the true phenotypes, an assessment of performance when pleiotropy involves

only a subset of the phenotypes in a study.

SAPPHO uses an association model that is in the exponential family, which
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makes it amenable to use with summary statistics rather than individual pheno-

type-genotype data in the context of meta-analyses. In applications to meta-analysis

data from CHARGE, SAPPHO identified 295 loci at 0.05 FDR, corresponding to

171 loci in the genome-wide significance gold standard and 124 novel loci. Gene sets

corresponding to cardiac electrophysiology are highly enriched for these novel loci,

supporting a conclusion that SAPPHO has identified many additional relevant loci

beyond those previously reported. Similar results were observed for SAPPHO run on

data from UK Biobank project, where 2 pleiotropic loci with additional associations

and 8 novel loci were detected for cancer phenotypes. While some of the additional

loci may arise from using a less stringent 0.05 FDR threshold compared with the

0.05 FWER threshold, we also note that there are no established methods to define

significant loci for pleiotropic tests. Investigating the direction of effect for pleiotropic

variants, we find that variants affecting pairs of traits often have relative directions

of effect that are different and that often do not match the overall phenotypic cor-

relation. These findings suggest that multiple independent biological mechanisms

connect pleiotropic variants to downstream phenotypes.

We conclude that SAPPHO, and particularly the SAPPHO-I implementation for

summary statistics, is a powerful method for discovering pleiotropic patterns of as-

sociation in the context of single studies, with access to individual genotype and

phenotype data, and also to meta-analyses. Application to large compendiums of

GWAS results, for example dbGaP or the UK BioBank, could lead to new discov-
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eries of genetic associations and patterns of shared genetic architecture for human

phenotypes and disease.
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Figure 2.1: Histogram of pleiotropic variants. Counts are for variants associated
with at least one trait at genome-wide significance (p < 5 × 10−8) (Welter et al.,
2014); no attempt was made to correct for correlation between variants (linkage
disequilibrium) or between traits. The number of total variants is 17607, and total
number of phenotypes is 785.
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Figure 2.2: Power for associations of 6 phenotypes simulated to be correlated through
genetic effects only. Scenarios are Independent (6 phenotypes, no pleiotropy), Block
(2 blocks of 3 phenotypes each), and Correlated (all 6 phenotypes correlated). Error
bars indicate 95% confidence intervals estimated from 5 repeated runs and a bino-
mial distribution. For the independent scenario lacking pleiotropy, SAPPHO methods
performed the best. For the block correlation scenario, MultiPhen leading performed
best, followed by SAPPHO. For a single correlated block, all pleiotropy methods
perform well. Methods were MultiPhen-NonSelection (MNS); MultiPhen Ordinal re-
gression (MO); MultiPhen-Selection (MS); univariate test corrected with permutation
(UNI); univariate test at loose empirical threshold p < 5× 10−8 (UNILE); univariate
test at stringent empirical threshold p < 5× 10−8/6 for 6 phenotypes (UNISE).
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Figure 2.3: Power to detect associations for scenarios involving strong environmen-
tal correlations. Two sets of SNPs each containing 12 variants were simulated to
contribute to 4 phenotypes. For the same-direction scenario, all 12 SNPs have pos-
itive effect with all phenotypes; for the different-direction scenario, the 12 variants
had positive effects for the first 2 phenotype and negative effects for the second 2
phenotypes. SAPPHO-C and SHet were unable to detect same-effect SNPs; SHom
could not detect different-direction SNPs. Methods were MultiPhen-NonSelection
(MNS); MultiPhen Ordinal regression (MO); MultiPhen-Selection (MS); univariate
test corrected with permutation (UNI).
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Figure 2.4: Power to detect associations for scenarios involving weak environmen-
tal correlations. Four sets of SNPs each containing 6 variants were simulated to
contribute to 4 phenotypes. Scenarios as described in the main text were DBSE,
different-block-same-effect; DBDE, different-block-different-effect; SBSE, same-block-
same-effect; and SBDE, same-block-different-effect. SAPPHO-I and MultiPhen per-
formed the best over all scenarios. SAPPHO-C experiences dramatic loss of power
under the sbse scenario, similar to its loss of power for similar scenarios involving
strong environmental correlations. Methods were MultiPhen-NonSelection (MNS);
MultiPhen Ordinal regression (MO); MultiPhen-Selection (MS); univariate test cor-
rected with permutation (UNI).
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Figure 2.5: Simulations of a mixture of genetic and non-genetic phenotypes, with 1, 2,
or 3 genetic phenotypes embedded as part of 13 total phenotypes. The remaining non-
genetic phenotypes generated as standard normal random variables. The SAPPHO
parameter was set to include associations with p-value < 5 × 10−4. Methods were
MultiPhen in selection mode (MS), SAPPHO-I with a greedy forward (SAPPHO-
I), and the SAPPHO-I score for the true model (True Model). The greedy forward
search limits the power of SAPPHO-I; a more sophisticated strategy could improve
its power.
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Figure 2.6: Pleiotropy methods were used to detect associations with the PR, QRS,
and QT phenotypes in the ARIC cohort. The three measured phenotypes were then
augmented with 3, 6, and 10 noise phenotypes. SAPPHO had the greatest power
to detect associations regardless of noise phenotypes were present. The pleiotropy
methods SHet, MS, MNS had power similar to standard univariate tests. PCH and
SHom had lower power than univariate tests, and the performance of SHom degraded
further as noise phenotypes were added. All methods were controlled for type I error
at FWER = 0.05. Methods were MultiPhen-Selection (MS), Mutiphen-NonSelection
(MNS), Principal Components of Heritability (PCH), Homogeneous Test Statistics
(SHom), Heterogeneous Test Statistics (SHet), and univariate tests corrected using
permutations (UNI).
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Figure 2.7: Number of associations recovered versus number previously known (p <
5 × 10−8 in CHARGE for univariate single phenotype test). First row: CHARGE
meta-analysis data as analyzed by univariate tests for each phenotype (p < 5× 10−8)
and by SAPPHO-I (0.05 FDR). The first row denotes univariate test (with p <
5×10−8 cut-off) and SAPPHO-I run on CHARGE meta-analysis results; Second row:
ARIC data as analyzed by SAPPHO-I and SAPPHO-C using 0.05 FWER threshold.
Third row: ARIC data as analyzed by MultiPhen and univariates test using 0.05
FWER threshold, equivalent to p < 5× 10−8/3 for univariate tests. More discoveries
are made with CHARGE (top row) because it is a larger cohort and because 0.05 FDR
is a less stringent threshold than 0.05 FWER. SAPPHO has greater power for the
ARIC cohort than MultiPhen or univariate tests. Pleiotropic associations discovered
by MultiPhen in the ARIC cohort (bottom left panel) may be over-predictions as
these associations were not genome-wide significant in the much larger CHARGE
cohort.
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Method Run Time
SHom 0m2s
SHet 0m13s
SAPPHO-I 1m1s
MultiPhen NonSelection Gaussian 2m2s
PCH 3m38s
SAPPHO-C 4m39s
MultiPhen Selection Gaussian 4m55s
MultiPhen NonSelection Ordinal 30m15s
MultiPhen Selection Ordinal 115m28s

Table 2.1: Running time for different methods for a simulation with 10,000 individu-
als, 6 phenotypes, and 638 SNPs of which 24 had associations, with Core i5 2.9 GHz
CPU, 8 GB RAM. 12 SNPs are associated the first three phenotypes, while the other
12 SNPs are associated with the second three phenotypes.
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Parsimonious Non-Parsimonious
Phenotype selection SAPPHO-I Univariate

SAPPHO-C MultiPhen-Selection
No phenotype selection SHom, SHet, PCH

MultiPhen-NonSelection

Table 2.2: Assessed methods provide qualitatively different types of predictions. ‘Par-
simonious’ indicates that a single SNP is selected from an LD block, whereas ‘Non-
Parsimonious’ indicates that all SNPs in an LD block are reported. ‘Phenotype
selection’ indicates that the subset of associated phenotypes is reported, whereas ‘No
phenotype selection’ indicates that the results do not specify which phenotypes are
associated with a SNP and which are not.
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Univariate SAPPHO
Locus GWS 0.05 FDR SAPPHO, SNPs PPR PQRS PQT

LRIG1 QRS PR, QRS rs2242285ă 1.3× 10−6 2.0× 10−8 0.094
HERPUD2 PR PR, QRS rs11763856 4.5× 10−10 1.82× 10−6 0.018
SIPA1L1- PR, QRS PR, QRS, QT rs17767398 6.4× 10−13 1.3× 10−10 3.1× 10−5

C14orf56
LAP3P2 QRS PR, QRS rs9470361 5.6× 10−7 8.8× 10−29 0.0048
EPS15 PR PR, QRS rs17106627 2.7× 10−8 2.2× 10−7 0.49

SLC35F1- QRS,QT PR,QRS,QT rs11153730 1.2× 10−6 1.3× 10−19 5.2× 10−67

C6orf204 (plus 3 additional)
LOC401324 QRS PR, QRS rs340389 6.4× 10−7 2.6× 10−8 0.011

PR rs12673438 9.3× 10−8 0.21 0.53
NOS1AP- QT QT rs12143842 0.12 1.3× 10−4 8.97× 10−210

OLFML2B QRS rs4656349 0.22 3.1× 10−6 5.23× 10−134

(plus 10 additional)
CAV1- PR PR rs3807989 8.7× 10−69 5.8× 10−6 6.6× 10−5

CAV2- QRS rs6867 4.0× 10−20 1.3× 10−6 2.0× 10−4

TES QT rs7801180 1.8× 10−15 1.7× 10−6 1.4× 10−6

SLC8A1 QT QT rs12997023 3.1× 10−6 0.06 5.4× 10−14

PR rs4993292 4.0× 10−6 0.06 2.3× 10−13

HETR5B- QRS QRS rs2160411 5.0× 10−3 1.3−9 2.3× 10−4

STRN PR rs6744560 1.2× 10−7 6.5× 10−4 0.45
FADS2 QT QT rs174577 5.0× 10−4 2.2× 10−5 1.2× 10−10

PR rs2727270 3.1× 10−6 0.34 0.22
SKI PR PR rs4648819 4.7× 10−10 1.1× 10−3 1.8× 10−2

QRS rs12045693 1.5× 10−3 6.7× 10−6 0.12
SMARCAD1 QT QT rs183993 1.9× 10−4 0.98 8.8× 10−9

PR rs2639793 3.6× 10−6 0.34 0.11
CCDC141- PR,QT PR rs922984 1.8−11 0.11 3.6× 10−3

TTN PR rs10497523 2.6× 10−8 0.42 0.18
QT rs7600330 0.045 0.068 3.2× 10−8

QRS rs17362588 1.01× 10−6 2.2× 10−7 0.087

Table 2.3: Additional novel associations detected by SAPPHO-I in known gold-
standard loci. Locus: Gene symbol or symbols spanning an associated region. Uni-
variate GWS: phenotypes detected at 5× 10−8 genome-wide significance threshold.
SAPPHO 0.05 FDR: phenotypes detected by SAPPHO at 0.05 FDR. SAPPHO,
SNPs: SNPs detected by SAPPHO, with rows corresponding to the previous SAP-
PHO 0.05 FDR column. PP R, PQRS, PQT : univariate p-values from CHARGE
meta-analysis. New associations added to a locus are in two categories: (1) a variant
already associated with at least one trait is associated with a new trait or traits (the
first 7 loci in the table); (2) a new variant is introduced and is associated with a trait
not previously associated with the locus (the last 8 loci in the table).
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Phenotypes Correlation +/+ +/−
PR-QRS 0.051 9 3
QRS-QT 0.168 3 4
PR-QT −0.026 0 4

Table 2.4: Consistency of direction of effects and phenotypic correlations for each
pair of ECG phenotypes. ‘Correlation’ denotes the correlation of each phenotype-
phenotype pair; ‘+/+’ denotes the count of SNPs whose effects are in the same
direction; ‘+/−’ denotes the count of SNPs whose effects are in different directions. Of
the 23 pairs of association effects, 16 were consistent with the phenotypic correlation,
corresponding to a probability of 0.70 (binomial parameter 95% confidence interval
[0.49, 0.84]) that the direction of effect agreed with the phenotypic correlation. These
results demonstrate that SAPPHO is able to detect variants whether or not the
direction of genetic effect matches the overall direction of phenotypic correlation.
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Cancer type ICD9 ICD10 Number of cases
Melanoma, malignant neoplasm of skin 172-173 c43-c44 14637

Breast cancer 174-175 c50 8847
Male genital organs 185-187 c60-c63 5913

Digestive organs 150-157,159 c15-c26 4760
Primary lymphoid 200-208 c81-c96 2623

Female genital organs 179-184 c51-c58 2343
Urinary tract 188-189 c64-c68 1492

Respiratory, intrathoracic organs 160-165 c30-c39 1441
Lip, oral cavity, pharynx 140-149 c00-c14 649

Central never system 190-192 c69-c72 446
Peripheral nerve tumors 158,171,176 c45-c49 421

Endocrine glands 193-194 c73-c75 400
Unspecific sites 195-199 c76-c80 320

Bone, articular cartilage of limbs 170 c40-c41 58

Table 2.5: Information for cancer phenotypes on UKB data. Columns are cancer phe-
notypes, cancer identification codes according to ICD9 coding, cancer identification
codes according to ICD10 coding, and number of cases for each type of cancer.
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Cancer type Univariate GWS SAPPHO 0.05 FDR
Melanoma, malignant neoplasm of skin 29 29

Breast cancer 12 12
Male genital organs 12 12

Unspecific sites 1 4
Endocrine glands 1 4

Central nerve system 0 1
Digestive organs 0 1

Respiratory intrathoracic organs 0 1
Peripheral nerve tumors 0 1

Table 2.6: Number of associations for each cancer phenotype for univariate test at
p = 5× 10−8 and SAPPHO at 0.05 FDR on locus level. No association was detected
for either method for 4 out of 13 cancer phenotypes. Univariate test detected in total
54 associations with 5 cancer phenotypes, and SAPPHO detected 66 associations with
9 phenotypes. More than ten associations were detected by both methods for skin
cancer, breast cancer, and cancer for male genital organs, with a few associations
detected for other cancer phenotypes. All loci detected by univariate tests were also
detected by SAPPHO at 0.05 FDR.
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Locus Univariate GWS SAPPHO 0.05 FDR GWAS catalog
MYEOV,IFITM9P mgo, breast mgo, breast breast cancer,

prostate cancer
RPL7P41 mgo, mmns mgo, mmns basal cell carcinoma,

cancer (pleiotropy)
prostate cancer,

SRRM1P1, POU5F1B mgo, breast mgo, breast, do colorectal cancer,
breast cancer, etc
prostate cancer,

TERT,MIR4457,CLPTM1L mgo, mmns mgo, mmns, rio lung adenocarcinoma,
basal cell carcinoma, etc

Table 2.7: Pleiotropic loci detected by univariate test at p = 5× 10−8 and SAPPHO
at 0.05 FDR. The same four loci were detected to be pleiotropic by both methods. For
two out of all four pleiotropic loci, SAPPHO was able to detect one extra association.
All associations were verified by comparing the detected associations with known
associations from GWAS catalog.
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Description for supplementary tables

Supplementary Table 1 : Gold-standard from CHARGE meta-analysis results

at different thresholds for generating the connected components.

Supplementary Table 2 : SNPs detected by pleiotropy methods on ARIC data

at 0.05 FWER. For each table, multiple SNPs can belong to the same locus.

The number of loci detected by each method is shown in Fig. 2.6.

Supplementary Table 3 : All variants detected by SAPPHO-I on CHARGE

meta-analysis results at 0.05 FDR.

Supplementary Table 4 : Results for simulation with noise phenotypes at 0.05

FDR. Sheet 1: Number of true positives and false positives for all methods;

Sheet 2: Number of true positives for SAPPHO-I fed with true associations at

different thresholds, and MultiPhen in select mode; Sheet 3: association pat-

terns for SAPPHO-I and MultiPhen in select mode: Missed entirely denotes

the number of variants missed entirely; Under-predicted denotes the number of

variants detected but with a subset of true associations found; Exactly-predicted

denotes variants detected with the correct association pattern; Over-predicted

denotes variants detected with a mix of true associations and spurious associa-

tions; False positives denotes variants reported but lacking any true associations.

Supplementary Table 5: Gene sets enriched for loci reported by SAPPHO-I
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at 0.05 FDR for CHARGE ECG meta-analysis, calculated for all loci and for

novel findings defined by excluding the ECG gold-standard loci. Meaning of the

columns: ‘Pathway’ denotes the pathway name; ‘pathway gene counts’ denotes

the number of genes in that pathway; ‘SAPPHO gene counts’ denotes number

of all genes detected by SAPPHO; ‘SAPPHO 11’ denotes the number of genes

detected by SAPPO and in that corresponding pathway; ‘SAPPHO 10’ denotes

the number of genes detected by SAPPHO but not in the pathway; ‘SAPPHO

01’ denotes the number of genes in the pathway but not detected by SAPPHO;

‘SAPPHO 00’ denotes number of genes not in the pathway and not detected by

SAPPHO; ‘SAPPHO pval’ denotes the pvalue of Fisher’s exact test; ‘SAPPHO

loci’ denotes the genes in the ‘SAPPHO 11’ column. The following columns are

of the same meaning for the SAPPHO loci excluding the gold-standard.

Supplementary Table 6: Results for cancer phenotypes using traditional univari-

ate test and SAPPHO in summary mode on UK Biobank cancer phenotypes.

Results were corrected to control for 0.05 FWER for univariate test and 0.05

FDR for SAPPHO.
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Abstract

Biological experiments often involve hypothesis testing at the scale of thousands

to millions of tests. Gene-based tests for human RNA-Seq data, for example, involve

approximately 20,000; genome-wide association studies (GWAS) involve about 1 mil-

lion effective tests. The conventional approach is to perform individual tests and

then apply a Bonferroni correction to account for multiple testing. This approach

implies a single-test p-value of 2.5× 10−6 for RNA-Seq experiments, and a p-value of

5× 10−8 for GWAS, to control the false-positive rate at a conventional value of 0.05.

Alleviating the multiple testing burden has been a goal of many methods designed

to boost test power by focusing tests on the alternative hypotheses most likely to

be true. Very often, these methods either explicitly or implicitly make use of prior

probabilities that bias significance for favored sets thought to be enriched for signif-

icant finding. At the extreme limit, only the candidate set is tested, corresponding

to a decreased multiple testing burden. Despite decades of methods development,

prior-based tests have not been generally used; most genomics experiments, and in

particular genome-wide association studies (GWAS), still use traditional univariate

tests rather than more sophisticated approaches. Here we use GWAS to demonstrate
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why unbiased tests remain in favor. Here we compare the power increase possible with

a prior with the increase possible with a much simpler strategy of increasing a study

size. We calculate test power assuming perfect knowledge of a prior distribution and

then derive the population size increase required to provided the same boost without

a prior. We show that increasing the population size is exponentially more valuable

than increasing the strength of prior, even when the true prior is known exactly.

The results provide a rigorous explanation for the observed avoidance of prior-based

methods, and support for the continued use of simple, robust methods rather than

more sophisticated approaches.
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3.1 Introduction

Genomics experiments involve testing thousands to millions of hypotheses. In

functional genomics and proteomics, each gene or protein usually corresponds to a

single test, with 20,000 or more tests required for an RNA-Seq or proteomics exper-

iment. In human genetics, the number of independent tests accounting for linkage

disequilibrium in a single ethnicity is usually assumed to be about 1 million. To main-

tain a family-wise error rate (FWER) controlled at 0.05, a long-standing approach

has been to apply a Bonferroni correction, requiring a single-test p-value of 0.05

divided by the number of hypotheses tested. This multiple-testing correction from

this stringent approach is seen as a burden for identifying genome-wide significant

findings.

A current direction of GWAS is to incorporate prior knowledge about functional

effects of SNPs, in order to increase the power to detect SNPs with true associations

or to identify which SNP in an linkage disequilibrium (LD) region is most likely to

be the causal variant (Hindorff et al., 2009; Schork et al., 2013; Petersen et al., 2013;

Sveinbjornsson et al., 2016). A representative approach incorporated 450 different

annotations into GWAS analysis of 18 human traits; the number of loci with high-

confidence associations was increased by around 5% (Pickrell, 2014). Despite the

intuitive value of incorporating pre-existing biological knowledge, it remains unclear

whether this roughly 5% increase in genome-wide significant findings is the best that

could be obtained, and additionally whether the increase comes at the cost of false

87



CHAPTER 3. THE PALTRY POWER OF PRIORS VERSUS POPULATIONS

negatives for true positives that lack similar annotations.

Other groups, including our own, have developed methods that incorporate priors

based on patterns learned from the data (Chanda et al., 2013; Huang et al., 2011;

Zhan et al., 2018). These patterns may include multiple independent effects found

within a single genes, or patterns of pleiotropic variants that contribute to a shared

subset of traits in a multi-phenotype data set. While these methods have value in

providing a clearer view of genetic architecture than available through univariate

tests, the number of new significant findings has been small (Sveinbjornsson et al.,

2016; Meyer et al., 2018).

Still other methods introduce prior distributions for model parameters, or equiva-

lently regularizations, which implicitly define a prior favoring candidate variants with

the largest observed effects. These methods have usually not been used in practice

for GWAS because the computational expense has not been justified by improved

results.

In this paper, we use theoretical models and derivations to investigate into the

dependency of power on population size and incorporating priors. We consider two

types of priors: hard prior, which is an idealized prior that only a fraction of to-

tal hypotheses are tested; soft prior, for which all hypotheses are divided into two

classes, and a higher prior value is given to the favored class which is believed to

be enriched with true associations. For hard prior, we proved analytically that the

dependence of power on population size is linear, whereas the dependence on prior
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strength is logarithmic, which indicates the importance of having larger population

size over bigger prior strength when doing association tests. For soft prior, we provide

numerically exact results showing that the power gains for the favored class are large

only for limited circumstances; the gains for the favored class imply power loss for

the non-favored class, and the average power gain considering both classes is only

5-10%. These gains require exact knowledge of the true priors; in practice, gains with

estimated priors should be smaller.

3.2 Methods

3.2.1 Hypothesis testing

We consider tests of association between a feature of the data, x, and an observed

phenotype or response variable, y, assumed to be scalars for simplicity. For a pop-

ulation of size N , these are aggregated into vectors x and y. An association test

compares a null model M0, to an alternative, M1, which for a linear model takes the

form

M0 : y ∼ Norm(µ0, σ
2
0);

M1 : y ∼ Norm(µ1 + βx, σ2
1).
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One such M1 exists for each possible feature to be tested. With A total possible

alternatives to be tested, these could be denoted {Ma}, a ∈ {1, 2, . . . , A}. We consider

one such alternative at a time and for simplicity denote it M1. Model parameters

are Θ0 = {µ0, σ
2
0} for the null model and Θ1 = {µ1, σ

2
1, β} for the alternative model.

These models correspond to a null hypothesis H0 and alternative hypothesis H1,

H0 : β = 0;

H1 : β 6= 0.

For nested models, the hypothesis test is usually performed by a likelihood ratio

test or its equivalent. Denote the maximum likelihood parameters as Θ̂0 and Θ̂1, and

assume independence of the model and data. A test statistic τ is defined as

τ = 2 ln Pr(y|x, Θ̂1)Pr(M1)
Pr(y|x, Θ̂0)Pr(M0)

= q2 + 2 ln[Pr(M1)/Pr(M0)]. (3.2.1)

According to Wilks’ Theorem, under the null hypothesis, q2 is a random variable

distributed as χ2
1, or more generally as a χ2

d random variable where the null model is

nested inside an alternative model with d additional parameters (Wilks, 1938). Under

the alternative hypothesis, q2 is distributed as a non-central χ2 with non-centrality
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parameter q2
1,

q2
1 = NR2/(1−R2), (3.2.2)

where R2 is the fraction of variance explained by the alternative hypothesis, and

1−R2 is the residual fraction of variance.

For a conventional test, the prior Pr(M) is identical for the null and each alter-

native; it does not contribute to the test statistic. To control the type I error (false-

positive rate) at family-wise error rate FWER α, the Bonferroni method requires a

single-test p-value of α/A for A total tests. Define the quantile of the uniform normal

distribution corresponding to a two-tailed test at this stringency zI . More formally,

if Φ(z) is the cumulative lower tail probability distribution for standard normal ran-

dom variable z, then Φ(−zI) = α/2A. For true effect q1, the power is Φ(|q1| − zI), or

equivalently

(zI − zII)2 = NR2

1−R2 . (3.2.3)

This key expression relates the type I error (false-positive rate), the type II error

(false-negative rate or complement of power), the population size N , and the effect

size R2.

3.2.2 Hard prior

A hard prior is an idealized prior in which only hypotheses corresponding to a

faction 1/S of the total are tested. Larger S corresponds to a stronger prior. For
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20,000 gene-based tests, testing 10% of the total corresponds to S = 10, and testing

20 genes corresponds to S = 1000. Realistically, priors stronger than S = 100,

corresponding to 200 genes tested, are unlikely.

The effect of a hard prior is to reduce the multiple-testing burden. To maintain

FWER α, each two-tailed test is performed at stringency Sα/2A rather than α/2A.

This reduces the quantile zI required for significance and increases the power to detect

an association with a smaller effect R2. Equivalently, Eq. 3.2.3 can be solved for R2

to calculate the critical effect size to achieve desired power at stated type I error,

R2 = (zI − zII)2

N + (zI − zII)2 . (3.2.4)

The effect of a hard prior on zI may also be estimated analytically. A steepest

descents approximation relates the quantile z > 0 to its upper-tail area ε,

ε = (2π)−1/2
∫ ∞
z

due−u
2/2

= (2π)−1/2e−z
2/2

∫ ∞
z

due−(u+z)(u−z)/2

≈ (2π)−1/2e−z
2/2

∫ ∞
z

due−z(u−z)

= 1√
2πz

e−z
2/2.

Equivalently,

z2 ≈ −2 ln[
√

2πzε].

92



CHAPTER 3. THE PALTRY POWER OF PRIORS VERSUS POPULATIONS

In terms of the quantile zI for prior strength S and a two-tailed test, we have approx-

imately

z2
I ≈ −2 ln[

√
2πzISα/A]. (3.2.5)

Define ζ as the value of zI for no prior, S = 1, with Φ(−ζ) = α/2A and

ζ2 ≈ −2 ln(
√

2πζα/A). (3.2.6)

For GWAS with a p-value threshold of 5 × 10−8, ζ = 5.45 and ζ2 = 29.7. Because

the dependence of Eq. 3.2.5 on ln z is weak, we replace ln z with ln ζ,

z2
I ≈ −2 ln[

√
2πζSα/A] ≈ ζ2 − 2 lnS = ζ2(1− 2ζ−2 lnS).

Keeping terms of order 1/ζ,

zI ≈ ζ(1− ζ−2 lnS)

zI − zII ≈ ζ − zII − ζ−1 lnS

(zI − zII)2 ≈ (ζ − zII)2 − 2(ζ − zII)
ζ

lnS

= (ζ − zII)2
[
1− 2

ζ(ζ − zII)
lnS

]
.

According to Eq. 3.2.3, the critical effect size depends only on the ratio (zI −

zII)2/N . Consider two scenarios with equal critical effect size, one with population
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size N1 and prior strength S1, and the second with population size N2 and prior

strength S2. For these to have equal critical effect size,

(ζ − zII)2
[
1− 2

ζ(ζ − zII)
lnS1

]
/N1 ≈ (ζ − zII)2

[
1− 2

ζ(ζ − zII)
lnS2

]
/N2.

Cancelling constant terms ζ − zII and noting that 2ζ−1(ζ − zII) lnS is small,

N1

N2
≈

[
1− 2

ζ(ζ − zII)
lnS1

]
/

[
1− 2

ζ(ζ − zII)
lnS2

]

≈
[
1− 2

ζ(ζ − zII)
lnS1

]
×

[
1 + 2

ζ(ζ − zII)
lnS2

]

≈ 1 + 2
ζ(ζ − zII)

ln S2

S1
.

The dependence on population size is linear, whereas the dependence on prior strength

is logarithmic. Equivalently, population size is exponentially more important that

prior strength. Again for GWAS with zII selected for 80% power, ζ(ζ−zII)/2 = 17.15,

and only a small fractional population increase is required to obtain the equivalent

power increase for a strong prior. An extremely strong prior with S2 = 1000, with

effectively only 20 genes selected for testing, can be matched by a population increase

of about 40%.

Contours of N and S with equal critical effect size can be estimated by returning
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to the approximate result

NR2/(1−R2) ≈ (ζ − zII)2[1− 2
ζ(ζ − zII)

lnS].

Noting that for small ε, 1 + ε lnS ≈ Sε, contours are given by

NS2/ζ(ζ−zII) ≈ (ζ − zII)2R2/(1−R2). (3.2.7)

On a log-log plot of log S versus logN , these contours would have steep negative slope

equal to −ζ(ζ − zII)/2.

3.2.3 Soft prior

Soft priors are incorporated into association analysis such that sequence variants

like loss-of-function and missense variants, which are more likely to affect protein

function and therefore more likely to be causative, are given higher prior belief to have

true signals before data was analyzed. For simulation, this is done by first dividing

all possible associations into two classes, a favored class F and a non-favored class

NF , and assuming true associations are enriched in the favored class and depleted

in the non-favored class. For Eq. 3.2.1, if we normalize Pr(M0) = 1, the expression

could be simplified into the following form:

τ = q2 + 2 ln [Pr(M1)] (3.2.8)
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Denote the model for variants in the favored class as MF and in the non-favored

class as MNF , if priors for the two classes Pr(MF ) and Pr(MNF ) are known exactly,

the probability distribution for the test statistic will now depend on the classes, with

their individual test statistics being:

τF = q2 + 2 log [Pr(MF )]

τNF = q2 + 2 log [Pr(MNF )]

Based on assumptions given above, we are able to simulate the change of power in

detecting real effects after incorporating the two classes. For simulation, we first fixed

the association effective size corresponding to 50% power to detect a true association

in a GWAS study at genome-wide significance (p = 5 × 10−8) assuming 1 million

effective tests. Using the same notation as above, this is equivalent to solving for first

the critical value τc such that

Φ(−τc) = 5× 10−8/2 = 2.5× 10−8

then solve for true effect qc such that Φ(|qc| − τc) = 0.5, which gives us |qc| = τc. To

avoid calculation on both tails of the standard normal distribution, the expression

could be simplified by introducing Ψ(z2; q2) to denote Pr(t > z2) where t follows a

1df non-central χ2 distribution with non-centrality parameter q2. The relationship
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between Φ and Ψ thus satisfies

2× Φ(z − |q|) = Ψ(z2; q2)

for z < |q| and

2× Φ(|q| − z) = Ψ(z2; q2)

for z ≥ |q|.

Power to detect SNPs with true associations for two classes combined could then

be calculated as a function of two variables:

• S, power strength, which is defined as inverse of the fraction of variants in the

favored class;

• [Pr(MF )/Pr(MNF )] the relative priors of the two classes.

The exact steps of simulation are as following:

• For a pair of values for fraction of variants in the favored class 1/S and prior en-

richment fold-enrichment [Pr(MF )/Pr(MNF )], the critical threshold for genome-

wide significance τ ′c could be solved using the following equation:

(1− 1/S)Pr(q2 > τ ′c) + (1/S)Pr(q2 + 2 ln
[

Pr(MF )
Pr(MNF )

]
> τ ′c) = 5× 10−8

With q2 following an 1df χ2 distribution, with the denotations defined above,
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this equation simplifies to:

(1− 1/S)Ψ(τ ′c; 0) + (1/S)Ψ(τ ′c − 2 ln
[

Pr(MF )
Pr(MNF )

]
; 0) = 5× 10−8 (3.2.9)

• Now with the critical threshold τ ′c and the non-centrality parameter qc calculated

above, power for the favored class could be calculated as:

power(MF ) = Ψ(τ ′c − 2 ln
[

Pr(MF )
Pr(MNF )

]
; q2
c ) (3.2.10)

And the power for the non-favored class could calculated as:

power(MNF ) = Ψ(τ ′c; q2
c ) (3.2.11)

• The average power for true associations could be calculated as:

power(Avg) = Pr(MF )
Pr(MF ) + (S − 1)Pr(MNF ) × power(MF ) (3.2.12)

+ (S − 1)Pr(MNF )
Pr(MF ) + (S − 1)Pr(MNF ) × power(MNF )

• Population size fraction increase to achieve the same average power could then

be calculated as N1/N2 = q′c/qc, where q′c correspond to the same average prior

without using any prior. Here N2 = population size to achieve the specific

power and 0.05 FWER using a prior, and N1=population size to achieve the
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same power and 0.05 FWER without a prior. This is similar to the exploration

between S and N in the hard prior case.

3.3 Results

3.3.1 Hard prior

Figure showing contour lines for GWAS.

Figure showing left panel as (population factor equivalent) vs (prior strength),

right panel as (exponent) vs (prior strength), demonstrating that slope estimate from

analytical expression is reasonably good.

Fig. 3.1 shows contours for critical R2 for p = 5×10−8 at power = 0.8 as a function

of prior strength and population size. As could be observed, the color corresponding

to critical R2 changes rapidly as population size changes, and doesn’t change much

as a function of prior strength. This indicates that power is much more sensitive to

population size compared to using a hard prior, namely restricting tests to a subset

of variants. On the log-log scale, given a fixed value of R2, the prior strength and

population size exhibits a clear linear pattern, which leads to the derivation on the

Hard prior part in the Methods section, and yielding a slope of 17.15 at 80% power.

Fig. 3.2 shows the analytical solution of the relationship between population size

and prior strength. The left panel denotes the population increase ratio versus prior

strength increase to achieve the same increase in power. If we have a prior strength
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of 100 for example, which correspond to testing 1/100 of all variants, we could get

the same power increase by increasing the population from N to fN where f is

the factor increase. Reading from the figure, this would be a factor about 1.35,

which correspond to a 33% increase in the cohort size. At the very extreme, a prior

strength of 1000, which corresponds to testing SNPs in only 20 genes, will only do

as well as increasing the cohort size by 70%. Panel on the right shows the linear

relationship between population size exponent and prior strength for a fixed effect

size, which quantifies the linear relationship as described in Eq. 3.2.2. Both figures

provide numerically exact result of the relationship between population size and prior

strength, which further strengthen the conclusion that population size is a much more

important factor to gain power than incorporating priors.

3.3.2 Soft prior

Figure showing left panel as (power increase for favored class), right panel as

(power increase for unfavored class) as function of enrichment vs fraction of favored

class. Maybe use 50% power for this one with no prior?

Figure showing average power as a function of enrichment vs fraction of favored

class. Again use 50% power with no prior?

Figure showing population size fraction increase to achieve the same average

power. x-axis is fraction of favored class. y-axis is enrichment. values are (N1/N2)

where N2 = population size to achieve the specified power and FWER using a prior,
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N1 = population size to achieve power and FWER without a prior.

3.3.2.1 Power for the two classes

Fig. 3.3 shows power for the two classes at different fold-enrichment for favored

class versus prior strength. For power of the favored class, when prior strength is

small, corresponding to a large fraction of variants in the favored class, power is

not sensitive to the fold enrichment. For example, when S = 2, corresponding to

the favored class consisting around 50% of the total tested variants, power boost for

the favored class is fixed at around 2% to 4% regardless of fold enrichment. This is

because, a large favored class fraction is essentially equivalent to a less well-defined

subset of variants, which usually fails to provide much valuable information regarding

prior beliefs. Therefore, giving the big favored class a higher prior value only results

in the decreased power for the non-favored class, as is shown in the right panel of Fig.

3.3.

As S increases, which corresponds to decreasing the fraction of favored class,

power becomes more sensitive to fold enrichment, and assigning it with a bigger prior

enhances its power. Specifically, a prior 2 to 5 folds as big as the non-favored class

prior gives a 5% to 10% power boost. This power increases even more as the fold-

enrichment enhances, as long as the fraction is fixed at the same level. This is because,

as the favored class gets smaller, the subset of variants becomes more informative,

thus giving the class higher prior greatly boosts its power. From the calculation
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perspective, as S becomes bigger, τ ′c term in Eq. 3.2.9 is mostly determined by

the non-favored class and remains mostly unchanged; thus little change to the fold

enrichment would result in big difference of the power of favored class.

Also note that, since the overall power is fixed at 50%, gain in power for the

favored class implies a loss of power for the non-favored class, which corresponds

to the “no-free-lunch theorem”. Power for the non-favored class remains around 50%

when fraction of favored class is low or fold enrichment is low, as in these two situations

the impact of the favored class is small; its power decreases, yielding more power for

the favored class, when both fold enrichment is high and fraction of favored class is

high.

3.3.2.2 Average power for combining both classes

Average power for combining both classes is shown in Fig. 3.4. For same fold-

enrichment and class fraction, the average power is relatively smaller than power for

the favored class alone, and higher than the non-favored class alone. This is because

gain for power of the favored class leads to loss for the non-favored class, as discussed

above, thus a combination of the two will result a value of power in the middle.

Shape of the contour is determined by weights of the two classes: for small prior

strength and large fold enrichment, shape of contour is more similar to the favored

class in Fig. 3.3; for large prior strength and small fold enrichment, shape is similar

to the non-favored class. This explains the curve which tilts up towards large prior
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strength, as when fraction for favored class is small, the power is mostly determined

by the un-favored class. Fig. 3.5 shows the population size fraction increase in order

to achieve the same power increase. As could be observed, the maximum population

increase is 1.3 fold to obtain the maximum power gain fulfilled through incorporating

a prior, further strengthening the conclusion from the hard prior part that, population

size is of a more crucial factor compared to prior incorporation as for association

involving large number of hypothesis testings.

3.4 Discussion

Despite the efforts on developing methods that incorporate priors into associa-

tion hypothesis tests, traditional unbiased univariate tests combined with Bonferroni

correction to control for FWER remains the rule of thumb method to test for associa-

tions. In this paper, we exploited the relationship of power to detect true associations

on increasing study size and incorporating priors. Two scenarios were considered in

this study: hard prior, for which only a fraction of all variants are tested to lower

the burden coming from multiple testing; soft prior, for which a fraction of variants

are given a higher belief a prior to doing the association analysis. For hard prior,

the dependence of heritability on population size and prior strength was analytically

derived, and it was proved that the dependence on population size is linear, whereas

the dependence on prior strength is logarithmic. Soft prior was able to boost power
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with very specific requirement on class fraction and fold-enrichment, and even so, its

maximum boost of power could be achieved by increasing population size by approx-

imately 30%. For both scenarios, it was concluded that increasing population size is

a better strategy to boost power compared to incorporating priors. With recent de-

velopments in high throughput biology, immense amount of data is being generated,

making improving power through increasing population size possible; in the mean-

time, a lack of prior-based methods with extraordinary performance on association

tests has been observed, which further strengthen the favor of population size from an

practical perspective. These results give valuable insights into what strategy should

be taken towards future directions for establishing associations between biological

variants and traits.

The usefulness of having larger sample size is not restricted to association tests

in the biological field. Huge success has been achieved in the application of machine

learning and deep learning into image analysis, nature language processing fields and

etc. While big credit has been given to the design and implementation of sophisticated

learning structures like convolution neural networks, recurrent neural networks and

etc., from results in this project, the role that the tremendous amount of data for

training these networks might have been well under-estimated.
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Figure 3.1: Contour plot for critical R2 for p = 5 × 10−8 at power = 0.8 as
a function of prior strength and population size. The color corresponding
to critical value R2 changes rapidly as population size changes, and doesn’t change
much as a function of prior strength, indicating that power is much more sensitive
to population size compared to restricting tests to a subset of variants. Relationship
between prior strength and population size appears to follow a linear relationship on
the log-log scale, and the slope of the linear relationship given a fixed value of R2

indicates the relative importance of the two factors.
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Figure 3.2: Population size and prior strength to achieve same power. X-
axis denotes the prior strength S; y-axis of the left panel denotes population fraction
increase; y-axis of the right panel denotes population size exponent for a fixed effect
value. The left panel shows the population size and prior strength to achieve the same
power; a prior strength at 1000 will have equivalent power if the cohort size increases
by 70%. The right panel shows the relation between population size exponent and
prior strength given a fixed effect size. Both figures shows numerically the linear
relationship between population size and logarithmic of prior strength.
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Figure 3.3: Contour plot of power for the favored class and non-favored
class at p = 5 × 10−8 threshold for 50% power. The left panel shows power
for the favored class, and the right panel shows power for the non-favored class.
X-axis denotes prior strength S, which is equal to inverse of fraction of SNPs in the
favored class; larger S value denotes smaller group of favored class and a more focused
subset of variants with higher prior. Y-axis denotes fold enrichment of the favored
class Pr(MF )/Pr(MNF ). For power for the favored class, it could be observed that
when prior strength is small, the power is insensitive to prior fold enrichment; this
is because large fraction for the favored class is essentially equivalent to a less well-
defined subset of variants, thus effect of prior enrichment becomes less obvious. When
the favored class is more well-defined, corresponding to larges S values and smaller
fractions of favored class, the effect of incorporating prior becomes more obvious; this
is reflected by the power gain at large S values, and the power increases with higher
fold-enrichment. Power of the non-favored class remains at around 50% when fraction
of favored class is small or fold-enrichment is small, because small fold enrichment
or small fraction of favored subset is unlikely to make big impact to the non-favored
class; when the favored class is given a large prior and consists of large proportion of
the total variants, the non-favored class begins to loose power.

107



CHAPTER 3. THE PALTRY POWER OF PRIORS VERSUS POPULATIONS

Figure 3.4: Average power for both classes combined at p = 5×10−8 threshold
for 50% power. Axes are defined in the same way as for Fig.3.3. Average power is
smaller than power for the favored class and larger than power for the non-favored
class given the same prior strength and fold enrichment, as a balance between gain of
power for the favored class and loss of power for the non-favored class. Shape of the
contour is determined by weights of the two different classes: for small prior strength
and large fold enrichment, shape of contour is more similar to the favored class in
Fig. 3.3; for large prior strength and small fold enrichment, shape is similar to the
non-favored class.
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Figure 3.5: Population size fraction increase to achieve the same average
power for at 5× 10−8. Axis are defined in the same way as for Fig. 3.3. Values are
N1/N2 where N1 is the population size without prior, and N2 is population size to
achieve the same power using prior. The maximum population size fraction increase
is 1.3 fold to obtain the maximum power gain fulfilled through incorporating a prior,
further prove the point that population size is of a more crucial factor for association
testing.
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Two main projects were presented in this thesis: development and assessment

of SAPPHO, a Bayesian-based GWAS method aimed at detecting pleiotropic asso-

ciations; an analytical simulation that explores the dependency of Bayesian-based

GWAS method on different factors including prior strength, population size, and

fold-enrichment.

Pleiotropy is wide-spread. At 5 × 10−8 genome-wide significance, ∼ 2, 000 out

of 17,607 SNPs were pleiotropic, consisting about 10-15% of the population(Welter

et al., 2014). The number is consistent with our analysis using univariate test on ECG

and cancer phenotypes: for CHARGE ECG meta-analysis results, 11 out of 107 loci

were pleiotropic; for UK Biobank cancer phenotypes, 4 out of 51 loci were pleiotropic.

However, if more sophisticated pleiotropy detection methods, like SAPPHO, were ap-

plied to the same set of data, it could be observed that the pleiotropic effect using

traditional univariate tests could be potentially under-estimated: for CHARGE re-

sults, 15 loci were detected to have additional associations; and for UK Biobank

cancer phenotypes, 2 loci were associated with more phenotypes. Although part of

the reason that more pleiotropic effects were observed might be because of the usage

of 0.05 FDR instead of a more stringent control over FWER, the observation on two

real data sets still makes us wondering if more sophisticated methods were used to

test on all associations from GWAS catalog, how many more pleiotropic effects could

be observed. Moreover, if instead of human diseases and traits, such approaches are

used to explore a broader range of phenotypes, for example gene expressions and
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expression quantitative trait loci (eQTLs), these methods could potentially help us

to better understand the underlying cellular biological processes, and build a more

completed gene regulatory network.

Despite the efforts spent on developing SAPPHO for detecting pleiotropy, we

found that the performance of SAPPHO was not as great as expected. For exam-

ple, it was shown through simulations that SAPPHO performed the best only when

the association patterns were simple: either the association is with only one single

phenotype, or all phenotypes are associated; when associations are for a subset of

all phenotypes, SAPPHO sometimes have difficulty in beating other non-Bayesian

pleiotropic methods, for example MultiPhen. On real data, application of SAP-

PHO on ARIC and UK Biobank cancer phenotypes detected only 1 and 2 additional

pleiotropic effects, respectively, at 0.05 FDR. Given that for one set of simulation,

SAPPHO performed best when it is fed with the true model, we inferred that a more

sophisticated searching strategy could potentially improve the performance of SAP-

PHO. Therefore, we tried another searching strategy, called SAPPHO local search,

to see whether it could improve the performance of SAPPHO.

The idea of SAPPHO local search is simple: with the SAPPHO scoring function,

the association that increases the score the most is added to the model; then, instead

of adding the next association which increases the score the most, we look at all

other associations for the same SNP added in the previous step, and add any other

association to the model if the score increase is greater than 0; associations are added
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until none of them could increase the score any more. This strategy was tried on

UK Biobank cancer phenotypes and results were compared with those obtained from

greedy-forward heuristic searching. It was observed that the two results were exactly

the same, except that the order of some associations added to the model was changed.

By looking at the marginal p-values of all associations for each SNP, we concluded

that the reason this local search failed is because: in one locus, a SNP with best

p-value for one phenotype is unlikely to have a great p-value for another phenotype,

and the pleiotropic SNPs usually have relatively good p-value for all phenotypes, but

not the best for any one of them. Therefore, given the parsimonious behavior of

SAPPHO, it tends to find the best SNP for each phenotype, instead of finding one

SNPs that have relative good p-value for all phenotypes. Given this, another possible

searching strategy that could potentially work better is as following: at each step,

for each SNP we keep adding associations until SAPPHO score does not improve

any more, and then for the current step, we add the SNP and its associations that

increases SAPPHO score the most. Given that the implementation of this strategy

involves lots of re-coding of the current version of SAPPHO, this part of the work is

left open as a future work for people to explore.

Another future work for SAPPHO is with score correction. Since SAPPHO uses

an heuristic selection process, the score itself does not follow any empirical distribu-

tion. Because of this, permutations are needed to correct for the SAPPHO scores, in

order to get p-values and control for false discovery rate or family-wise error rate. Per-
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mutations are easily done when primary data are present; with summary statistics,

how to do permutations has been less intuitive. Currently, the way permutations

are done with summary statistics has been to sample individual genotypes from a

reasonable population, and run permutations using the sampled primary data. The

sampling and running univariate tests has been very computationally intensive: for

UKB cancer phenotypes, running univariate tests alone took about 3 weeks to finish.

An easier and much faster way to run such permutations using summary statistics,

as suggested in a previous work (Chanda et al., 2013), is to directly sample z-scores

for all phenotypes from haplotype with the corresponding LD structures. Yet again

due to the efforts in implementation of such method, this part of the work is also left

open for future people to explore.

The performance of SAPPHO on detecting pleiotropic effects, as well as GWiS

on single phenotype, was not as satisfying as expected, despite the efforts devoted to

developing these methods. Therefore, this analytical study was performed to answer

the question “is Bayesian a good idea for GWAS”, the answer to which essentially

determines whether we should still focus on GWAS method improvement. Two con-

clusions drawn from the simulations were the most important: 1. population size

is exponentially more important than prior; 2. on average the power gain obtained

through prior incorporation is only around 5-10%. The former conclusion analytically

explained why in practice progress on finding GWAS hits has been majorly coming

from increasing sample size; and the later conclusion provides numerical explanation
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on the observed gain of power obtained through more advanced methods, including

GWiS and SAPPHO. Therefore, the insight that we could gain from the simulations

is simple: since power gain obtained from any method improvement would not beat

the effect of doubling the sample size, working on GWAS method development might

probably not be the best idea from now on. The simulation also indirectly indicates

why machine learning methods based on big data, like deep learning, has been a suc-

cess in the recent years: it might not have much to do with the details of the method;

the only thing which is important is the tremendous amount of data, and a model

complicated enough so that the data wouldn’t be under-fitted.
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