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ABSTRACT 

This work seeks to develop reliable biomarkers of disease activity, 

progression and outcomes through the identification of significant 

associations between high-throughput flow cytometry data and a 

scleroderma clinical phenotype – initially, interstitial lung disease (ILD) - 

which is the leading cause of morbidity and mortality in Systemic Sclerosis 

(SSc). A specific aim of the work involves developing a clinically useful 

screening tool (hereafter a filter). Such a filter could yield accurate 

assessments of disease state such as the risk or presence of SSc-ILD, the 

activity of lung involvement and the possibility to respond to therapeutic 

intervention. Ultimately this instrument should facilitate a refined 

stratification of SSc patients into clinically relevant subsets at the time of 

diagnosis and subsequently during the course of the disease, preventing bad 

outcomes from disease progression or unnecessary treatment side effects. 

This role could involve a scenario in which an SSc patient passes the 

presumptive (FVCstpp) test for ILD, but the filter indicates that their flow 

cytometry (FC) profile is consistent with ILD. In such a case, a physician 

might: 1) increase frequency of testing to detect early development of ILD; 2) 

implement more sophisticated diagnostic procedures (e.g., high resolution 
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chest CT scan - HRCT) to confirm the presence of ILD; and 3) consider 

prophylactic disease modifying treatments. Note that the intention of this 

research is not to develop screening tools that merely aim at predictive 

accuracy, but to produce methods that also contribute to the understanding 

of disease mechanisms. Having used ILD as phenotype, subsequent analyses 

in this thesis used different phenotypes: antiTopoisomerase (ATA), 

antiCentromere Anti Nuclear Antibodies (these antibodies are most strongly 

associated with diffuse and limited systemic sclerosis respectively) and 

cancer. This research was based on clinical and peripheral blood flow 

cytometry data (Immune Response In Scleroderma, IRIS) from consented 

patients followed at the Johns Hopkins Scleroderma Center.  

Methods. The methods utilized in the work involve: (1) data mining 

(Conditional Random Forests - CRF) to identify subsets of FC variables that 

are highly effective in classifying ILD patients; (2) Gene Set Enrichment 

Analysis (GSEA) to further refine FC subsets; (3) stochastic simulation and 

Classification and Regression Trees (CART) to design, test and validate ILD 

filters; and (4) Stepwise Generalized Linear Model (GLM) regression and 

Drop-in-Deviance testing to identify minimal size, best performing models 

for predicting ILD status from both FC and selected clinical variables.  
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Results. IRIS flow cytometry data provides useful information in 

assessing the ILD status of SSc patients. Our hybrid analysis approach 

proved successful in predicting SSc patient ILD status with a high degree of 

success (out-of-sample > 82%; training data set 79 patients, validation data 

set 40 patients). Pre-partitioning patients into groups using CART 

significantly increased validation performance to 95% successful ILD 

identification.  When the phenotype was Cancer, FC subsets, created through 

ranked Student t Test scores and point-wise GLM were statistically 

significant (p < 0.05) using GSEA. After applying Stepwise GLM on the 

CRF FC subsets, four FC variables were observed to be highly associated 

with Cancer in SSc patients.  An ILD-Cancer GSEA intercomparison was 

made (use the best ILD FC set with cancer as the phenotype, and vice-versa) 

showed that GSEA results were highly phenotype-specific. Other 

phenotypes including ATA and ACA were also analyzed and found to be 

statistically significantly associated with certain subset of FC variables, but 

with different FC set sizes (38 and 6 respectively) based on the CRF-GSEA-

Stepwise GLM algorithm.  

In future research, HRCT confirmation of patient ILD status will be a 

critical next step in developing additional confidence with our approach (and 
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the appropriateness of an 80% FVCstpp threshold for presumptive ILD 

determination).  
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Interstitial lung disease (ILD) is a major 
cause of death in SSc patients. In ILD, 
sections of lung tissue become hardened 
and scarred and thus lose function. Lung 
transplantation is often not an option for 
patients with severe ILD (De Cruz & Ross, 
2013). 

A. INTRODUCTION 

A.1 Systemic Sclerosis 

Systemic Sclerosis is an autoimmune disorder - it is “a condition that 

occurs when the immune system mistakenly attacks and destroys healthy 

body tissue” (Goronzy & Weyand, 2007; Siegel & Lipsky, 2009). SSc can 

have severe effects, principal among them extensive fibrosis, vascular 

alterations and autoantibody response (Gabrielli, Avvedimento & Krieg, 

2009; Boin & Rosen, 2007). SSc 

is classified into limited and 

diffuse forms depending on the 

extent of skin involvement. Both 

subsets can manifest progression to visceral organ involvement, e.g., lungs, 

heart, gastrointestinal tract and kidneys (Harris & Rosen, 2003). Although 

this type of classification identifies distinct clinical phenotypes, it remains 

inadequate to fully capture the spectrum and heterogeneity of SSc clinical 

manifestations (Gabrielli, Avvedimento & Krieg, 2009). Limited cutaneous 

SSc often manifests as CREST Syndrome (Calcinosis, Raynaud's 

phenomenon, Esophageal dysfunction, Sclerodactyly and Telangiectasias; 

Winterbauer, 1964). Both SSc types can become life-threatening, 

http://en.wikipedia.org/wiki/Calcinosis
http://en.wikipedia.org/wiki/Raynaud%27s_phenomenon
http://en.wikipedia.org/wiki/Raynaud%27s_phenomenon
http://en.wikipedia.org/wiki/Esophagus
http://en.wikipedia.org/wiki/Sclerodactyly
http://en.wikipedia.org/wiki/Telangiectasias
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particularly pulmonary fibrosis (or Interstitial Lung Disease, ILD) which is 

an important cause of morbidity and frequent cause of death in SSc patients 

(Steen, 1998). The essential nature of ILD is: “the majority of SSc-ILD 

patients show replacement of the normal lung parenchyma with inflamed 

and fibrotic tissue, which is ineffective for gas exchange” (Luo & Xiao 2011; 

Harrison et al. 1990). Additionally, SSc patients are more susceptible than 

the general population to other severe diseases including a variety of 

malignancies (Shah & Rosen, 2011).  

As is the case with other autoimmune disorders, there are no curative 

therapies but only treatments aimed at halting progression towards end-stage 

disease. Due to limited knowledge about the role of autoimmunity in the 

pathogenesis of SSc, conventional treatments such as anti-inflammatory and 

immunosuppressant therapies are typically poorly effective (Boin & Rosen, 

2007). 

There are three main obstacles preventing a full understanding of SSc 

and the development of effective targeted therapies. First, there is extreme 

heterogeneity in clinical manifestations among different SSc patients. The 

disease course is highly variable in terms of onset, timing, intensity of 

symptoms, patterns of organ involvement and response to therapy. It has 
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been suggested that susceptibility to SSc varies in accordance with certain 

demographic factors such as gender, race and age (Chifflot et al., 2008). For 

example, high female-to-male ratios were consistently reported, with males 

developing in general more severe disease. Non-Caucasian patients and in 

particular African Americans tend to have an earlier onset of SSc, a more 

aggressive clinical course and higher mortality (Gelber et al. 2013). 

Schachna et al. (2003) identified “increasing age at scleroderma onset as a 

risk factor for pulmonary arterial hypertension (PAH)” and Perez-

Bocanegra et al. (2010) discovered that there exist “differences in SSc 

clinical features and survival” for different age groups.  

The second major challenge derives from the occult nature of early 

immune effector’s pathways and the complex interaction of multiple 

humoral or cellular mediators, making the identification of the key drivers of 

clinical phenotypes difficult. Subsumed within this challenge is the difficulty 

in measuring and characterizing immune response (Whitfield et al. 2003; 

Chung and Utz 2004; Warrington et al. 2006; Boin et al. 2008; Salamunić 

2010). Several levels of evidence support the involvement of the immune 

system, particularly during early stages of SSc or at the time of disease 

activity within specific target tissues (e.g., lungs). Nonetheless, the 
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relationship between a sustained immune response and the progression 

toward different clinical outcomes remains poorly understood. In addition, 

despite convincing in-vitro data linking innate and adaptive immunity to 

aberrant collagen synthesis and endothelial cell dysfunction, no reliable and 

accurate measure of the ongoing immune response has been defined in-vivo 

in SSc patients (Salamunić 2010; Boin et al. 2008; Cracowski et al. 2001).  

Pathologic studies on SSc patients with early lung disease showed that 

fibrosis is preceded by the presence of a mixed interstitial inflammatory 

infiltrate spilling into the alveolar spaces (alveolitis) composed mainly of 

macrophages, lymphocytes (notably T cells), granulocytes and other 

accessory cells (Harrison et al. 1990). As the disease progresses, deposition 

of collagen and thickened alveolar walls substitute air spaces with less 

evidence of inflammation. It is plausible that with early detection and 

treatment of lung inflammation, SSc patients may avoid progression to 

severe pulmonary fibrosis (Varga, 2014). T lymphocytes seem to have a 

central role and are required for initiation and propagation of the fibrotic 

lung insult. In SSc patients with alveolitis, T cell counts are increased in the 

pulmonary interstitium on lung biopsies and in Bronchoalveolar lavage 

(BAL) fluids. CD8+ T cells with an activated phenotype predominate and 

correlate with more severe pulmonary fibrosis (Yamadori et al. 2000; Luzina 
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This thesis will therefore concentrate 
on different subsets of T cells. 

et al. 2003). Previous studies have shown that increased frequency of 

circulating T cells exhibiting a “polarized” phenotype (i.e., T cells 

manifesting specific patterns of cytokine secretion) are significantly 

associated in SSc patients with the presence of pulmonary fibrosis and lung 

disease progression (Boin et al 2008; Truchetet et al. 2010). Despite all this 

evidence, it remains unclear how T cells contribute with their unique 

features and function to the pathogenesis of SSc at different times along 

disease progression, which is the third obstacle in understanding SSc. 

Elucidating the close temporal as well as biological relationship that exists 

between abnormal immune activation and the clinical manifestations present 

in SSc may allow for identification of 

novel and specific cellular as well as 

molecular probes to monitor disease activity, predict with accuracy clinical 

outcomes and ultimately design novel disease-specific therapeutic strategies. 

Potential participants in SSc pathogenesis include: (1) auto-antigens 

(Rosen & Casciola-Rosen, 1999, 2009; Casciola-Rosen, Anhalt & Rosen, 

1994); (2) antigen presenting cells (APCs) (Leon et al., 2000; Alexander & 

Wahl, 2011); (3) Interleukin 2 (IL-2) (Burroughs et al., 2006, 2008; Isaeva 

& Osipove, 2009a,b); (4) Type I interferon (Hall & Rosen, 2010);  (5) T 
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lymphocytes or T cells (Leon et al., 2000, 2004; Chao, et al., 2004; 

Burroughs et al., 2006, 2008; Carneiro et al., 2005, 2007; Isaeva & Osipove, 

2008; Baltcheva, 2010; Alexander & Wahl, 2011; Velez de Mendizabal et 

al., 2011; and Saeki & Iwasa, 2009, 2010). A possible mechanism for 

autoimmunity is shown in Figure A-1 which illustrates a series of 

interrelated biological events. 

 

Figure A-1. A Possible Mechanism for Autoimmunity  

Source: Hall & Rosen, 2010. 

After plasmacytoid Dendritic Cells (pDCs) recognize virus in the 

form of nucleic acid in apoptotic debris, a large amount of type I IFN is 

rapidly produced in response, which triggers three processes: (1) “self-

amplification of the Toll Like Receptor (TLR) pathway in pDCs”; (2) the 
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state of the target cells becomes antiviral; and (3) monocytes are 

differentiated and Dendritic Cells (DCs) activated. DCs will “process and 

present self and viral antigens derived from dying cells” and activate 

autoreactive CD4+ and CD8+ T cells for which survival would be promoted 

by type I IFN receptor signals. These signals also “enhance the cytotoxic 

activity of Cytotoxic T Lymphocytes (CTLs) which eliminate uninfected host 

cells, expressing large quantities of autoantigens via the granzyme B 

pathway”. Remnants of dying cells are consumed by DCs and “presented for 

recognition by T cells in a self-amplifying loop” (Hall & Rosen, 2010).  

A.2 Literature Review - Methods 

Different quantitative approaches have been used to investigate SSc 

for purposes of prediction and explanation.  In particular, various methods 

have been applied in order to: 1. better understand the mechanism of 

systemic autoimmunity in general; 2. provide improved insights concerning 

the SSc patients population in terms of epidemiological characteristics; 3. 

identify association between certain biomarkers and clinical manifestation or 

measurements of SSc; and 4. make predictions of disease outcomes. 

Examples of each are summarized in the literature review of this thesis. 
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They fall into two major categories: mechanistic modeling and data-based 

(or data-driven) analysis.  

A.2-1 Mechanistic Models 

Although the pathogenesis of SSc is not yet fully known, it has been 

suggested that all systemic autoimmune diseases may share common 

underlying mechanisms (Wahren-Herlenius & Dorner, 2012).  Most 

mechanistic models of autoimmunity are built using ordinary differential 

equations. Waniewski and Waniewski & Prikrylova (1988) mathematically 

described autotolerance and autoimmunity considering the effect of 

plasmapheresis and immunosuppression. Nevo et al. (2004) presented a 

spatio-temporal model based on the concept of “comprehensive immunity” 

which views autoimmunity as a “special case” of immunity. They suggested 

that autoimmunity provides a protective mechanism for the Central Nervous 

System (CNS), e.g., preventing the CNS from degenerating into a more 

chaotic state. Leon et al. (2000, 2004) proposed a cross-regulation model 

that implies a “bi-stable” state – autoimmunity or tolerance – a state in 

which effector T cells and regulatory T cells coexist in a balanced manner. It 

was argued that there exist tradeoffs between the risk of autoimmunity and 

reactivity of the system. The role of Antigen Presenting Cells (APC) was 
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emphasized in the interaction between cytotoxic T cells and regulatory T 

cells. Burroughs et al. (2006) argued that cytokines such as IL-2 are actively 

involved in autoimmunity and therefore should be included in mathematical 

models.  Leon & Garcıa-Martınez (2011) explicitly include IL-2 into their 

cross-regulation model. Iwami et al. (2007) developed a mathematical model 

based on a personal immune response function and a target cell growth 

function. Alexander and Wahl (2011) emphasized the importance of 

including professional1 APC in modeling the mechanism of autoimmune 

diseases, which is consistent with the theory offered by Hall & Rosen (2010) 

on the self-amplifying nature of type I IFN production and tissue damage in 

systemic autoimmunity. Velez de Mendizabal et al. (2011) used the T cell 

cross-regulation model to analyze the “relapsing-remitting dynamics” of 

Multiple Sclerosis. Saeki & Iwasa (2009, 2010) used a fitness function to 

explain “the advantage of having regulatory T cells” and identified an 

optimal number of regulator T cells.  

                                                 
1 Professional Antigen Presenting Cells are APC that produce a co-stimulatory signal that 
activates T cells. In our case, the co-stimulatory molecule is MHC II (Major Histocompatibility 
Complex II).  pAPC includes Dendritic Cells, Macrophages and certain B cells. (Child, 2006) 
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A.2-2 Data-Driven Models 

Traditional approaches for analyzing SSc integrate data from 

biological measurements, physician insight, clinical experience and other 

sources and thus are not purely data driven (Mathai et al., 2010; Mathian et 

al., 2012). Data-driven analysis has gradually entered the arena of 

autoimmunity research including SSc. Statistical methods have been applied 

to three levels of data: population, genetic and cellular. At the population 

level, the European League Against Rheumatism (EULAR) Scleroderma 

Trials And Research (EUSTAR) group collected the “Minimal Essential 

Data Set” (MEDS) with 3656 SSc patients from 102 centers and 30 

countries (Distlar et al. 2009). They found that the association between 

autoantibody status and clinical manifestations of SSc was stronger than that 

between autoantibody and SSc subtypes (diffuse vs. limited) on a cross-

sectional multivariate analysis. EUSTAR (2013) also concluded that 

“pulmonary fibrosis, PAH and cardiac causes, accounted for the majority of 

deaths in SSc” based on 5860 SSc patients. Another interdisciplinary registry 

of 1483 patients in Germany was established to better detect SSc patients 

with various disease manifestations (Hunzelmann et al., 2008). Recently, 

Merkel et al. (2012) performed an individual patient meta-analysis based on 
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Data driven research analyses on 
Scleroderma are fairly recent. SSc 
data driven analysis using flow 
cytometry data is novel. 

629 diffuse SSc patients. Razykov et al. (2013) identified “the association 

between sociodemographic and clinical variables and pruritus” using 

multiple logistic regression based on 959 patients. Pruritus was determined 

to be statistically associated with “the degree of skin involvement and 

gastrointestinal system involvement”. 

Microarray data has been a major focus of SSc analysis on a genetic 

level. Symbolic Discriminant 

Analysis was used to make 

classifications and predictions of 

autoimmune disease using DNA gene expression data collected in peripheral 

blood mononuclear cells (PBMC) from 12 control individuals and 16 

patients with either rheumatoid arthritis (RA) or systemic lupus 

erythematosus (SLE) (Moore et al., 2002). Gene expressions of skin biopsies 

from four diffuse SSc patients and four normal volunteers were analyzed 

using hierarchical clustering (Whitfield et al., 2003) while genetic 

programming, an extension of genetic algorithms, was employed to identify 

“differences in patterns of gene expression of skin biopsies” from control 

and case groups of SSc patients (Paul & Iba, 2006). Microarray data of a 

molecular phenotype (combined proteome and transcriptome) from non-

obese diabetic (NOD) mice was used to explore pathways of autoimmune 
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diabetes using two-way analysis of variance (ANOVA), k-mean clustering 

and principal component analysis (PCA) (Gerling et al., 2006). Duan et al. 

(2008) analyzed the gene expression of purified monocytes and T 

lymphocytes from 18 female SSc patients and 11 healthy female control 

subjects in an attempt to gain insights into the pathogenetic mechanisms of 

SSc. They suggested that “leukocytes respond to cytokine [messenger RNA 

(mRNA)] locally in the vessels”. Lindahl et al. (2013) identified “a strongly 

suppressed interferon-stimulated gene program in fibroblasts from fibrotic 

lung” using microarray profiling.  

Advanced techniques for acquiring data on a cellular level include: 

enzyme-linked immunosorbent assay (ELISA) which uses antibodies and 

color change to identify different entities (Ashihara et al., 2011); MACS 

MicroBeads Column (Miltenyi Biotec, 2014) which is a type of cell 

separation and culturing method; and flow cytometry (§B.1). In order to 

examine the association between PAH biomarkers, IFN-regulated gene 

expression and “alternative activation pathways of SSc”, Christmann et al. 

(2011) analyzed: (1) experimental data of Peripheral Blood Mononuclear 

Cells (PBMCs) isolated using a MACS MicroBeads Column (Miltenyi 

Biotec, 2014); (2) microarray data of IFN-regulated and “PAH biomarker” 
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genes; (3) plasma measurement of Interleukin-13 (IL-13); and (4) IL-4 

concentrations and flow cytometry data of CD14 and other cells. Rank 

correlation (Spearman’s coefficient) and the paired Wilcoxon signed ranks 

test were also used to analyze flow cytometry data of Treg cells and ELISA 

measurement of TGF-β and IL-10 respectively to evaluate the role of Treg 

cells in SSc patients. Linear regression was applied to investigate the 

relations between severity score and activity index of SSc and case-control 

ratio of Treg cell count (Slobodin et al., 2010).  

A review of the literature showed that few studies investigating SSc 

pathogenesis have been solely driven by quantitative data. A study on how 

certain SSc clinical phenotypes are associated with a group of cellular level 

biomarkers purely based on quantitative analysis can be useful in further 

understanding SSc mechanisms. This research therefore mainly addresses 

the quantitative association between certain SSc phenotypes and group of 

FC variable as a whole, namely FC set, and examines the clinical utility of 

the identified FC set based on statistical analyses.  

A.3 Dissertation Outline 

There are six more chapters after the Introduction in this dissertation. 

Chapter B provides detailed description of the flow cytometry and the IRIS 
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data set. Chapter C illustrates the main methodologies used. Chapter D 

presents results associated with different approaches and phenotypes. 

Chapter E includes discussions of the results, followed by conclusions 

(Chapter F) and suggestions for future research (Chapter G).     
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B. DATA 

B.1 Flow Cytometry 

Flow cytometry (FC) is a powerful tool used to analyze multiple 

characteristics of individual cells within heterogeneous populations (Shapiro, 

2003; Picot et al., 2012). 

Through more than seven 

decades of innovation 

(Perfetto et al., 2004; Picot et 

al., 2012) flow cytometry has 

proven to be exceedingly 

useful in biological and 

medical studies, especially in 

the field of immunology 

(Hedley et al., 1983; Nicoletti 

et al., 1991; Vermes et al., 

2000; Raja et al., 2013). 

The sequence of processes that constitute flow cytometry is shown in Figure 

B-1. 

Figure B-1. Flow Cytometry Processes Sequence 
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As shown below in Figure B-2, flow cytometer instruments have the 

following components: (1) the fluidics system; (2) laser; (3) optics; (4) 

detectors; and (5) the electronics and computer system. The fluidics system 

aligns cells (one at a time) using hydro-dynamic focusing (Lee et al., 2001). 

Individual cells are then excited with a laser beam that causes either forward 

or side scatter. The scattered light from each cell is then directed by optics to 

detectors that generate signals. A dedicated computing system then analyzes 

and converts these signals into useful statistics regarding characteristics of 

each cell 

(http://media.invitrogen.com.edgesuite.net/tutorials/4Intro_Flow/player.html). 

 

 

Figure B-2. Components of Flow Cytometer Instrument 

Source: http://media.invitrogen.com.edgesuite.net/tutorials/4Intro_Flow/player.html 

Fluidics 
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B.2 JHU Data Set 

The data set used in this work (Immune Response In Scleroderma, 

IRIS, 2013) was provided by the Division of Rheumatology of the JHU 

School of Medicine. It is based on anonymous human subjects. Currently 

there are 158 SSc patients in total and each has 190 features grouped 

according to: 1. general background knowledge, e.g., age, sex and race; 2. 

clinical data such as presence of lung disease and skin severity score; 3. 

serology that indicates the presence and type of autoantibodies; 4. 

pulmonary function tests; 5. echocardiograms; 6. medications; and 7. T cell 

flow cytometry data.  

The original 116 T cell flow cytometry variables2 contained in the 

data set fall into 4 functional panels: memory, activation, polarization and 

traffic (data in this panel are particularly pertinent to skin and lung T cell 

migration). Each functional panel has different T cell subsets that are 

connected to each other through a hierarchical structure. An example of the 

memory panel is given in Figure B-3.  All of the child nodes are expressed 

as percent of the parent node. Specific biological definitions of each 

acronym in the figure can be found in Table B-1. 

                                                 
2 FC expressions are the values of FC variables. In the literature, these terms are sometimes used 
interchangeably. 
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This IRIS data set has been occasionally updated at times which is a 

normal course of events as procedures (gating) are refined, new patients are 

added and additional blood testing performed. Six versions of the data set 

exist so far, labelled by their dates: Jun. 21st, 2012, Aug. 2nd, 2012, Jan. 

29th, 2013, Feb. 14th, 2013, Jul. 18th, 2013 and Mar. 8th, 2013. The version 

of the data set will be denoted below as IRISMMDDYY, e.g., IRIS071813 

means data set updated on Jul. 18th, 2013. Although results based on 

different data sets can differ, these differences have consistently been 

inconsequential. 

The hierarchical structure and FC variable definitions for the 

remaining three panels are provided in Appendix I.1. 
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Figure B-3. Memory Panel Hierarchy 

Source: Dr. Andrea Fava, Division of Rheumatology, JHMI 
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Table B-1 Memory Panel T cell Subset Definitions 

Code Subset Definition 

mem3abs CD3+ absolute count 

mem4 CD3+/CD4+/CD8- 

mem8 CD3+/CD4-/CD8+ 

memratio48 ratio of mem4 to mem8 

naive4 CD3+/CD4+/CD8-/CD8-/CD45RA+/CCR7+/CD27+/CD28+ 
(Naïve T cells) 

cm4 CD3+/CD4+/CD8-/CD8-/CD45RA-/CCR7+ (Central 
memory) 

emra4 CD3+/CD4+/CD8-/CD8-/CD45RA+/CCR7- (Terminally 
differentiated "effector memory CD45RA+" cells) 

em4 CD3+/CD4+/CD8-/CD8-/CD45RA-/CCR7- (effector 
memory) 

emra478 CD3+/CD4+/CD8-/CD45RA+/CCR7-/CD27+/CD28+ 

emra47 CD3+/CD4+/CD8-/CD45RA+/CCR7-/CD27+/CD28- 

emra48 CD3+/CD4+/CD8-/CD45RA+/CCR7-/CD27-/CD28+ 

emra40 CD3+/CD4+/CD8-/CD45RA+/CCR7-/CD27-/CD28- 

cm478 CD3+/CD4+/CD8-/CD45RA-/CCR7+/CD27+/CD28+ 

cm48 CD3+/CD4+/CD8-/CD45RA-/CCR7+/CD27-/CD28+ 

em478 CD3+/CD4+/CD8-/CD45RA-/CCR7-/CD27+/CD28+ 

em47 CD3+/CD4+/CD8-/CD45RA-/CCR7-/CD27+/CD28- 

em48 CD3+/CD4+/CD8-/CD45RA-/CCR7-/CD27-/CD28+ 

em40 CD3+/CD4+/CD8-/CD45RA-/CCR7-/CD27-/CD28- 
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cd4k CD3+/CD4+/CD8-/CD57+ 

emra4k CD3+/CD4+/CD8-/CD45RA+/CCR7-/CD57+ 

em4k CD3+/CD4+/CD8-/CD45RA-/CCR7-/CD57+ 

naive8 CD3+/CD4-/CD4-/CD8+/CD45RA+/CCR7+/CD27+/CD28+ 
(Naïve T cells) 

cm8 CD3+/CD4-/CD4-/CD8+/CD45RA-/CCR7+ (Central 
memory) 

emra8 CD3+/CD4-/CD8+/CD45RA+/CCR7- (Terminally 
differentiated "effector memory CD45RA+" cells) 

em8 CD3+/CD4-/CD8+/CD45RA-/CCR7- (effector memory) 

emra878 CD3+/CD4-/CD8+/CD45RA+/CCR7-/CD27+/CD28+ 

emra87 CD3+/CD4-/CD8+/CD45RA+/CCR7-/CD27+/CD28- 

emra88 CD3+/CD4-/CD8+/CD45RA+/CCR7-/CD27-/CD28+ 

emra80 CD3+/CD4-/CD8+/CD45RA+/CCR7-/CD27-/CD28- 

cm878 CD3+/CD4-/CD8+/CD45RA-/CCR7+/CD27+/CD28+ 

em878 CD3+/CD4-/CD8+/CD45RA-/CCR7-/CD27+/CD28+ 

em87 CD3+/CD4-/CD8+/CD45RA-/CCR7-/CD27+/CD28- 

em88 CD3+/CD4-/CD8+/CD45RA-/CCR7-/CD27-/CD28+ 

em80 CD3+/CD4-/CD8+/CD45RA-/CCR7-/CD27-/CD28- 

cd8k CD3+/CD4-/CD8+/CD57+ 

emra8k CD3+/CD4-/CD8+/CD45RA+/CCR7-/CD57+ 

em8k CD3+/CD4-/CD8+/CD45RA-/CCR7-/CD57+ 
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C. METHODOLOGY 

C.1 Overview 

In the following sections, several methods are described that all 

essentially have the same purpose: to reduce the dimensionality of the data. 

The presumption made here is basically that not all 116 (or later, 112) flow 

cytometry variables are likely to be useful in either predicting the ILD status 

of SSc patients  or gaining a better understanding of the etiology and 

pathogenesis of systemic sclerosis and its connections to selected 

phenotypes, mostly notably, ILD and cancer. Later, I also performed 

preliminary analyses on other phenotypes including Anti-topoisomerase I 

antibodies (ATA, or anti-Scl-70 antibodies) and anti-centromere antibodies 

(ACA).  

The rest of the chapter starts with introducing the traditional statistical 

approach Principal Component Analysis (PCA) which is well known in 

reducing data dimensionality (§C.2). It was found that the resultant principal 

components cannot be biologically interpreted. Therefore, results of PCA 

were not used for the rest of this research. Next is description of four non-

parametric data mining methods (Classification And Regression Tree, 

Random Forest, Conditional Random Forest and Support Vector Machines) 
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and related model performance evaluation procedures (§C.3).  In Section 

§C.4, I described Gene Set Enrichment Analysis (GSEA) algorithm and how 

it was adapted in this research including its algorithm and permutation test. 

Having identified the best FC subset using data mining methods and GSEA, 

there were two analysis directions – drawing statistical inference and making 

predictions. The former is the combination of Generalized Linear Regression 

Model (GLM) and stepwise variable selection algorithm which will be 

illustrated in Section §C.5. The latter is the randomized filter design 

(introduced in §C.6) which essentially is a screening tool used to 

differentiate SSc patients with ILD from those without. Figure C-1 gives an 

illustration of the relations among the last three methods mentioned. 

 

Figure C-1. Two Analysis Directions  

GSEA

Stepwise GLM Screening Tool 
Stochastic Simulation

(Randomized Screening Tool Design) 
Inputs are FC Profiles; Output is 

patient ILD Status
First Training then Validation

Phenotypes: ILD, cancer Phenotype: ILD
FC Subsets

Correlation-ranked FC List
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C.2 Principal Component Analysis 

Principal Component Analysis (PCA) is a mathematical procedure 

widely used in reducing data dimensionality without loss of useful 

information from original data set. In specific, PCA will create a set of new 

variables, namely Principal Components, that are linear combinations of the 

original variables (Pearson, 1901; Ramsey & Schafer, 2012). The 

coefficients of the original variables that are associated with each principal 

component are called loadings. Variables have large variance will tend to 

have large loadings (Wold, Esbensen, & Geladi, 1987). The principal 

components are closely related to each other. The first principal component 

will be constructed to have the largest variance and the second principal 

component will be established in the same way with one extra constraint that 

it will be perpendicular to the first one. Other principal components will be 

established similarly. For example, the third principal component will also 

have the largest variance and have to be orthogonal to the plane where the 

first and second principal component locate. All the created principal 

components will therefore be uncorrelated even if the original variables are 

correlated (Wold, Esbensen, & Geladi, 1987; Abdi & Williams, 2010; 

Ramsey & Schafer, 2012). The purpose is to define a few dimensions (the 
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first few PCs) that capture most of the variance, are uncorrelated, and might 

have an interpretation.  Factor analysis (Child, D., 2006) is a set of 

procedures that further manipulates those components (including orthogonal 

and non-orthogonal rotations) in order to increase their interpretability. 

In this research, interpretation of the principal components can be 

difficult in that we found that the linear combinations of FC variables 

unfortunately contained little understandable biological meaning. In the next 

two sections (§C.3 and §C.4), I will present a new method that is 

combination of data mining approach and Gene Set Enrichment Analysis. 

This method can maintain interpretability of the results while reducing data 

dimensionality. In future research, Factor Analysis could be applied with the 

same goal. 

C.3 Data Mining and Partitioning Methods 

Three major schools of statistical and data mining methods have been 

proven useful for medical diagnosis (Kononenko, 2001) including: 1) 

statistical pattern recognition method such as naïve Bayesian Classifiers 

(Domingos & Pazzani, 1997); 2) artificial neural networks (Bishop, 1995); 

and 3) inductive learning of symbolic rules such as the decision trees method  

(Breiman et al., 1984). In that the IRIS data set used in this study is featured 
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by high correlated predictor variables issue, naïve Bayesian Classifiers was 

not used because of its assumption that all the features in the data set of 

interest should be independent.  

Although artificial neural networks can yield high predictive accuracy 

in medical diagnosis (Khan et al., 2001; Dreiseitl  & Ohno-Machado, 2002), 

it has been found that “the network comes to clinical closure based on the 

settings of all variables in a pattern and that the impact of a single variable 

cannot be taken out of the context of a pattern” (Baxt, 1992). Lately, there 

was discovery that neural network may be useful in presenting information 

concerning contribution of each variable for estimating the response 

variables but with the condition that interpretation of model parameters can 

only be verified externally (Olden et al., 2004). This model was not adopted 

in this research because of its limitations in making statistical inference such 

as extracting variable importance information.  

After removing observations whose FC profile was not complete (i.e., 

containing missing values), the number of observations is smaller than the 

number of covariates, resulting in the problem known as “Large P small N”. 

Therefore, only non-parametric methods such as decision trees models were 

considered because parametric approaches tend to overfit the data set. Later, 
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in this research, after the dimensionality of the data set was reduced, 

parametric methods such as logistic regression model were revisited. In this 

section, I will describe the models that were evaluated in this research and 

the criteria used to determine the best model.  

C.3-1 Models Implemented 

Classification And Regression Trees (CART) (Breiman et al., 1984) is 

a modeling approach for classification and regression. Classification refers 

to the situation where the response is binary or categorical. Its regression 

interpretation is used here, that is, using predictor variables (flow cytometry 

expression) to predict a continuous (0,1) response (the probability of having 

ILD or Cancer). CART is a non-parametric procedure (there is no reliance 

upon data distribution) comprised of a sequence of recursive tests, with the 

outcome of a current Test determining the specifics of the next Test and 

terminated by stopping criteria. The first Test is to identify which FC 

variable is most important in accurately predicting ILD status and the value 

of that variable (from among all the values in the data set). There exist 

different metrics for importance depending upon whether CART is used for 

classification or regression. The following equations and corresponding 
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description regarding CART are from (Hastie et al., 2009). The measure of 

node impurity used here is residual sum of squares (RSS): 

( )( )2
i iRSS y f x= −∑  

For each SSc patient i (i = 1, 2, ..., N) there are p FC expressions 

( )1 2 ,.. ,, .i i i ipx x x x= and a binary response iy  (ILD status). The FC data are 

partitioned into M regions R1, R2, . . . , RM. Response is modeled as a 

constant in each region  

( ) ( )
1

M

m M
m

f x c I x R
=

= ∈∑
 

The best 𝑐𝑚�  is the average of yi in region Rm: 

( )|m i i mc ave y x R= ∈  

which, from an implementation perspective, is not a helpful result because 

identifying the best binary partition on the basis of minimum sum of squares 

is, in general, computationally infeasible. The recourse is to follow a greedy 

algorithm: Starting with all of the data, a splitting variable j and split point s 

are selected which defines the half-planes 

( ) { } ( ) { }1 2, | , |j jR j s X X s and R j s X X s= ≤ = ≥  

Next, the splitting variable j and split point s are found that solve 
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For any choice j and s, the inner minimization is solved by 

( )( ) ( )( )1 1 2 2垐 | , | ,i i i ic ave y x R j s and c ave y x R j s= ∈ = ∈  

 Having found the best split value s for FC variable j, the data are 

partitioned into two regions with the splitting process repeated for each 

region. The process is then repeated for all of the remaining regions. An 

additional complication is how large to grow the tree (equivalently, how 

many splits to perform). A large tree may over-fit the data whereas a small 

tree may fail to capture important structure in the data. The balance between 

these two extremes is achieved through validation (see § D.6). 

 Graphically, this gives rise to a tree-like structure shown below. We 

can see in Figure C-2 that the FC expression act4103 at value 1.525 was 

identified as most important (it is associated with the greatest decrease in 

node impurity).  SSc patients whose act4103 expression is less than 1.525 

are split to the left branch, those with act4013 expression greater than or 

equal to 1.525 are directed to the right. The process is repeated (it is 

recursive) with the next most important variable identified as memem4 at 

value 17.65, and so on.  

 ( ) ( )
( )( )

2 2

1 2
1 21 2
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Figure C-2. Graphical Presentation of CART 

Thus, the main elements of CART are (Nisbet et al. 2009): rules for 

splitting data at a node based on the value of one variable; stopping rules for 

deciding when a branch is terminal and can be split no more; and finally, a 

prediction for the target variable in each terminal node. 

The stopping rules involve two considerations: (1) instances where 

subsequent splitting is impossible, i.e., a node contains only one patient or a 

node is pure (all patients are ILD or non-ILD); and (2) a pre-specified 

stopping criterion (our stopping criterion was less than 20 patients in a node, 

which is the default setting in R package “rpart” (Therneau et al., 2014)).  

In comparison with traditional regression, CART has advantageous 

attributes beyond being independent of data distribution:  (1) CART is 

relatively insensitive to outliers in the input variables; (2) Stopping rules can 
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be relaxed to over-fit the data. The training tree can then be pruned back to a 

level that maximizes validation performance; and, (3) CART can re-use 

variables in different parts of the tree and possibly uncover complex 

interdependencies between sets of variables. (Nisbet et al. 2009) 

The Random Forest (RF) modeling approach (Breiman, 2001) 

involves an ensemble of many regression or classification trees. Each tree in 

RF differs from CART in the following respects: 1. random (bootstrap) 

sampling of the original data is used to create training subsets (as opposed to 

using the entire data set); and 2. the splitting variables at each node in a tree 

are randomly chosen from a subset of covariates as opposed to the pool of 

all covariates. The output from an RF model is the average of the 

performance from all of the regression trees generated. (Breiman, 2001) 

The Conditional Random Forest (CRF) modeling approach is similar 

to RF in that it is also an ensemble of trees - but with the following 

modification. The variable selection process is separated from the splitting 

criteria and involves a hypothesis testing procedure. The null global 

hypothesis - all stimulus variables are independent of the response - is tested 

by examining the partial hypotheses that each stimulus variable is 

independent of the response. Only when the null global hypothesis is 
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rejected does the variable selection process continue. This modification 

enforces the condition that each predictor variable selected as a splitting 

variable in each tree to be strongly associated with response variable through 

hypotheses testing under an unbiased conditional inference framework 

(Hothorn et al., 2006). This process exploits the discriminatory power of 

predictor variables and is especially important with our IRIS data set in 

which numerous covariates within the same panel are highly correlated. The 

Variable Importance Measures (VIMs), quantitative measurements of 

relative importance among predictor covariates, of RF can be unstable and 

suffer from “correlation bias” due to the effects of predictor variable 

correlation: 1. VIMs are not necessary connected to discriminatory power of 

stimulus variables; 2. the size of the group of correlated variables is 

consequential (Gregorutti et al., 2013; Toloşi & Lengauer, 2011); and, 3. 

VIMs do not “directly reflect the coefficients in the generating model” 

(Nicodemus et al., 2010). Strobl et al. (2008) showed that VIMs based on the 

conditional permutation scheme described above better match the 

coefficients associated with greatest predictor discriminatory power and that 

VIM stability was improved over that of the unconditional importance 

approach. 
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Figure C-3. Support Vector Machine  

 Support Vector Machines (SVM) (Cortes & Vapnik, 1995) is a binary 

linear classifier which takes predictor data as input; the output is a prediction 

function. In this application, flow cytometry data are the inputs with ILD 

status (0 or 1) the prediction output. FC data are represented as points in 

space, with prediction arranged (“mapped”) into categories (0 = non-ILD; 

1= ILD) separated by as large a distance as possible (i.e., the margin as 

shown in Figure C-3). Additional FC variables follow the same mapping that 

the model is trained on, with prediction 

being which category they are assigned. 

Extensions to nonlinear partitioning are 

accomplished by expanding the predictor 

variable space through so-called kernel 

functions (Hastie et al., 2009; Kecman, 

2005). 

C.3-2 Evaluation Criteria  

Based on different purposes (either making diagnosis or predictions), 

statistical models were evaluated by various methods (Cook, N. R., 2008). In 

this thesis, I focused on predictive accuracy and goodness-of-fit given their 

appropriateness for the statistical methods evaluated. 

Source: Hastie et al., 2009 
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C.3-2-1 Predictive Accuracy 

50 Times holdout analysis was used to examine the out-of-bag (OOB) 

predictive accuracy of all the above-mentioned models. Each time of the 

holdout analysis was essentially an unequal size two-fold cross validation 

(Kohavi, 1995) with the modification that each time the training data set was 

created (by randomly subsampling approximately 90% of the original data) 

the remaining 10% was used as the test data set for validation. Because five 

models (CART, RF, CRF, SVM and mean-only model) were examined in 

total, it created 10 simultaneous hypothesis tests. In order to hold an overall 

confidence level of 95% for the combined set of hypothesis tests, each test 

could be regarded as significant if its p-value is below 5×10-3, based on 

Bonferroni correction (Dunn, 1961) for multiple hypothesis tests. 

Alternatively, Leave-One-Out Cross Validation (LOOCV) (Kohavi, 

1995) was also used to evaluate predictive accuracy of different models. It is 

a special case of cross validation in which only one observation will be held 

out at a time and the remaining data will be used as training data. This 

process will be repeated for N times (N being the number of observations). 

Eventually, all the estimated responses will be compared with the observed 

values of responses.  
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The Receiver Operating Characteristics curve (ROC) (Zweig & 

Campbell, 1993) also served as a tool for evaluating model performance. 

The Receiver Operating Characteristic curve is a graphical means of 

assessing binary classifier performance.  It is a graph of the fraction of true 

positives out of the actual positives (TPR = true positive rate, generally 

known as sensitivity – plotted on the ordinate) against the fraction of false 

positives out of the actual negatives (FPR = false positive rate which equals 

one minus specificity – plotted on the abscissa) for varying discriminant 

thresholds (Zweig and Campbell, 1993). 

C.3-2-2 Goodness of Fit 

The whole data set was used to construct the best candidate models 

without holding any observation. The model would then generate continuous 

estimation of response variable for each observation, which would become 

potential cut points for converting continuous response into binary values. 

ROC curves based on these cut points values were then plotted to indicate 

goodness of fit for the model of interest. 

After the best model was found, Variable Importance Measures (VIMs) 

would be extracted from the best model. Statistical significance of the top 

certain number of most important variables as a group will be examined 
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using an algorithm named Gene Set Enrichment Analysis (GSEA), which 

will be illustrated in the next section.  

C.4 Gene Set Enrichment Analysis 

C.4-1 GSEA Algorithm 

A gene set is a manipulatable number of genes in a typically very long 

DNA sequence (Yang et al. 2010). The key attribute here (that was 

discovered early on in genomics) is that analyses involving the study of only 

one gene at a time were of limited usefulness. What was needed was to 

examine sets of genes, with the determination of gene set size a critical 

issue. This in turn led to Gene Set Enrichment Analysis (GSEA) (Mootha et 

al. 2003; Subramanian et al., 2005). The idea of coordinated, multiple FC 

expression movement seemed applicable to this work, thus gene sets became 

FC sets. An example of the GSEA algorithm can be found in the “Methods” 

section of (Subramanian et al., 2005).  

The following will describe how the GSEA algorithm was adapted to 

this research. Three main components of the GSEA algorithm are the ranked 

list, gene set of interest and random walk. First, any suitable metric that can 

measure the correlation between a given phenotype and gene expressions 
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can constitute the ranked list (Subramanian et al., 2005). In our analysis, 

correlation coefficients between flow cytometry variables and a specific 

phenotype (e.g., ILD) are computed and ranked. The second component - 

gene set of interest (FC set in this study) - can be determined in differing 

ways including literature-based information, biological guidance from 

experts and identification via model inference. In this research, the Variable 

Importance List from the best model Conditional Random Forest (CRF) 

(Strobl et al., 2009) was used to identify FC sets. Third, after the FC set is 

identified, a random walk is performed using ranked correlation coefficients 

between response ILD and all flow cytometry variables. The process 

involves moving the FC set down the ranked list from top to bottom and 

recording the running sum for each step. If a variable in the ranked list is 

encountered that is in the FC set, the following quantity is added to the 

running sum: 

N G
G
−  

otherwise add:  

  

G
N G

−
−
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where G is size of the FC set and N is the total number of FC variables (116, 

or later 112). Below in Figure C-4 is a schematic representation of GSEA. 

 

               Figure C-4. Schematic Representation of GSEA Algorithm 

Having obtained the random walk, the maximum deviation from zero 

(absolute value), namely Enrichment Score (ES) will be recorded in order to 

evaluate the degree of enrichment.  

C.4-2 Permutation Test 

To examine the statistical significance level of ES*, a permutation test 

(Subramanian et al., 2005) for 10,000 times will be performed. Basically, the 

response values of all the subjects in the data matrix will be shuffled while 

remaining part of the data will stay the same in each permutation. After each 

shuffling, a new data set will be generated and the ranked list, i.e., sorted 

Pearson correlation coefficients, will be recalculated. The same FC set 
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identified previously will go through the newly calculated ranked list, a new 

random walk and corresponding ES will therefore be obtained. For 10,000 

permutations, there will be 10,000 values of ES. The p-value of this 

permutation test is the total number of ES that are at least as large as the 

observed ES*, divided by 10,000.  

If a group of variables, or a set, is statistically significant, it means 

that the corresponding ES of the random walk will be a relative large 

number, and only very few simulated ES in the permutation test will be 

higher than the observed ES, i.e., the p-value of permutation test is smaller 

than prescribed significance level such as 0.05.  

If the permutation test of the GSEA algorithm indicates that the FC set 

is statistically significant, there were two analysis directions – drawing 

statistical inference and making predictions. In the following two sections, I 

will present details regarding these analysis directions, starting with 

randomized filter design that is a novel screening techique differentiating 

SSc patients with ILD from those without based on the best FC set, followed 

by stepwise GLM, a tool used to draw statistical inference with respect to 

the association between the responses and FC variables.  
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C.5 Randomized Filter Design and Testing for ILD vs. no-ILD 

Classification 

By using the new method combining data mining and GSEA, data 

dimensionality can be reduced. Essentially, a group of FC variables would 

be identified. In this research, it was found that none of the models 

implemented has high predictive accuracy when response variable is ILD 

(see §D.2). Therefore, the first analysis direction was to create a 

generalizable method and practical tool for assessing patient’s ILD status 

given their FC data. The original motivation derived from the observation 

that assigning thresholds to individual FC expressions and applying these 

thresholds (in the form of a filter) had success in identifying SSc patient’s 

ILD status. In our filter design, a patient is declared ILD if any of their FC 

expressions is above a positive or below a negative standardized threshold in 

the FC set.   

Mathematically, the logic of a filter can be described as the follows.  

Let’s define the following parameters: 

K – number of components, or FC variables in a filter; 

I – number of patients; 
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FCki – binary variable indicates whether the ith patient’s kth FC expression is 

above an upper threshold Ui or below a lower threshold Li ;  

Zi  - binary variable indicating whether the ith patient has ILD or not. We 

have: 

FCki = �1, 𝑖𝑖 𝐹𝐹𝑘𝑖 >  𝑈𝑖  𝑜𝑜 𝐹𝐹𝑘𝑖 <  𝐿𝑖  
0, 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒  

∑ 𝐹𝐹𝑘𝑖𝐾
𝑘=1  ≤ M*Zi 

where, M is a large number. If Zi equals 1, then the patient has ILD and else 

otherwise.  

We experimented with different metrics to assess filter performance: 

(1) the ratio of number of predicted ILD patients to the sum of correctly 

predicted ILD and incorrectly predicted no-ILD patients; (2) the ratio of the 

number of predicted ILD patients to the true number of ILD patients (i.e., 

the True Positive Rate); (3) The product of (1) and (2) (which penalizes 

filters with good ILD prediction but poor no-ILD prediction); and (4) The 

fraction of total misclassified patients (the Overall Misclassification Rate, 

OMR) that equally weights both forms of misclassification. We decided on a 

two-level metric (OMR with TPR used break ties if necessary) because we 

had discovered that in some situations, best filters were not unique 

(Examples could be found in §D.6).  
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Standardized threshold deviates were computed using the FC 

expression ranges from the IRIS data. Thresholds were randomly generated 

using a uniform generator (R Core Team, 2013) which is an efficient way to 

explore a large unknown parameter space due to simplicity of coding. The 

design process is computationally challenging in that we have N FC 

variables with which to construct filters, but no a priori knowledge of how 

many variables and which variables should be included in any particular 

filter. A conservative but computationally expensive approach would 

involve full combinatorial expansion, that is, we would construct filters 

comprised of ( )1
N , ( )2

N , … , ( )N
N  FC variables, which  represents a very large 

number with increasing N. Adding to the computational challenge, stochastic 

simulation is performed many times for each filter realization. Being 

completely random in nature (i.e., we have no biological or other guidance 

to suggest which variable subsets and respective thresholds are likely to 

perform well) it follows that the vast majority of filters we create will 

perform poorly in a validity test (their Overall Misclassification Rate will be 

high in a validity test). 
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C.6 Stepwise GLM 

Having identified a group of FC variables, the data dimension reduced 

and therefore the ‘Large P small N’ issue no longer held. Parametric method 

especially Stepwise General Linear Model analysis was used to draw 

statistical inferences and also further reduce the dimensionality of the data. 

After a full model is fitted, a stepwise algorithm in both directions (forward 

and backward) was applied to find the “best” model using the Akaike 

Information Criterion (AIC) (Akaike, 1981): 

AIC = -2LL + 2p  

where, LL is the maximum log likelihoods and p is the number of 

parameters. AIC was chosen for the reason of obtaining a model with good 

fit but as smaller number of parameters as possible. 

Starting with a full model (many parameters) a backward algorithm is 

first used - remove one variable at a time (i.e., make the model smaller) to 

determine whether AIC decreases. When AIC no longer decreases by a 

prescribed amount, we then declare the current model as best. Forward 

algorithm is the opposite. Start with a small model, say only the intercept 

term is involved, then one variable at a time is added to see how 

AIC changes.  
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The stepwise algorithm (Hastie et al., 2009; Ramsey & Schafer, 2012) 

combines forward and backward algorithms. No restrictions are made 

regarding which direction to move. Adding a variable or removing a variable 

are acceptable as long as AIC decreases by a prescribed (threshold) amount. 

C.6-1 Drop-in-Deviance test 

Consider two models: one with more parameters (Full model, denoted 

F) and the other with fewer parameters (Reduced model, denoted R). By 

defining Deviance as the following: 

D = C -2LL  

where, D means Deviance, C is constant and LL is the maximum log-

liklihood,  

Deviance_F will in general be less than Deviance_R  because a model 

with more parameters will tend to fit the data better. Deviance 

approximately follows a Chi-square distribution with degree of freedom 

equal to the difference of the number of parameters between the two models 

(Nelder & Wedderbu, 1972). The conventional goodness-of-fit Test is a 

special case of Drop-in-Deviance in which the full model is “saturated” with 

n parameters (n being the sample size). An alternative way of showing 
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goodness-of-fit of the model is to plot an in-sample ROC curve and calculate 

the Area Under Curves (AUC). These ROC curves will be in-sample 

because the stepwise GLM model will not be used for making predictions 

but drawing statistical inferences. Therefore, they are different from those 

out-of-sample ROC curves.   

We therefore have adapted and integrated three approaches, including 

CRF, GSEA and stepwise GLM, to define a group of statistically significant 

variables (therefore reducing the dimensionality of the data set). Recall that 

the output of CRF – the Variable Importance List, is used as input to GSEA, 

which in turn yields the best FC set associated with highest ES. This set of 

FC variables serve as the input covariates for the stepwise GLM of which 

the fitted coefficients are instrumental in interpreting the underlying 

biological significance of different subsets of T cells in the occurrence and 

development of SSc-ILD.  

In the next chapter, results associated with the above-mentioned 

methodology will be shown. 
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D. RESULTS 

In this chapter, the PCA results will be presented first (§D.1) which 

shows that an inability to interpret the created principal components is an 

issue. Therefore, these PCA results were not further utilized. In Section §D.2, 

performance indices, such as predictive accuracy and goodness-of-fit, of the 

four data mining models were compared. The variable importance measures 

were extracted from the best model and became input to the Gene Set 

Enrichment Analysis (GSEA) of which the results are presented in Section 

§D.3. Results regarding robustness of the GSEA algorithm are presented in 

Section §D.4.  Based on the FC sets identified in Section §D.3, on one hand, 

randomized design filters were constructed to differentiate SSc patients with 

ILD from those without. Details with respect to refining the filters in order 

to reduce misclassification rates are shown in Section §D.5, and validation 

results of the best filters found are presented in §D.6. On the other hand, 

stepwise GLM and partial dependence plots (PDP) analysis using CRF are 

used to draw statistical inference from the identified FC set, whose results 

are included in Sections §D.7 and §D.8.  

Through Sections §D.2 to §D.8, the phenotype of interest was ILD. In 

Section §D.9, the same procedures (CRF-GSEA-Stepwise GLM/PDP) were 
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applied to another phenotype ‘Cancer’. In order to examine inter-

relationship between phenotype ILD and Cancer, results of GSEA inter-

comparison of these two are presented in Section §D.10.  

Next, three different methods of determining FC sets were evaluated 

including, biological information (§D.11), Student’s t-test statistics (§D.12) 

and p-values from point-wise GLM (§D.13).  

This chapter closes in Section §D.14 with results of CRF-GSEA-

stepwise GLM analysis using other phenotypes such as Anti-topoisomerase I 

antibodies (ATA, or anti-Scl-70 antibodies) and anti-centromere antibodies 

(ACA).   

D.1 Predictor variable correlation - PCA 

Predictor variable correlation exists due in part to the hierarchical 

relations among FC variables in each panel of the data set. Without 

consideration of input variable correlation, results can be adversely affected. 

Consider for example the estimated p-value of the GSEA test (a developed 

statistical test described in section §C.4 Gene Set Enrichment Analysis). 

Variable correlation has the effect of making the p-value smaller than what it 

really is because highly correlated variables tend to cluster towards certain 
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area in a ranked list, thus producing a nonconservative result. A traditional 

method for dealing with colinearity between variables is to use Principal 

Components Analysis (PCA). Application of PCA to the IRIS data showed 

that the first 10 principal components (PC) explained 57% of the total 

variance and more than 30 components are needed to explain 90% of the 

total variance of the 112 variables. Note that these results are based on the 

FC variable correlation matrix as opposed to the original FC expressions to 

avoid scaling inconsistencies. 

 

Figure D-1. Cumulative Variance Explained for Different Number of PC 

Table D-1 Cumulative Variance Explained for Selected PC Number 

PC number 10 22 33 71 
Cumulative Variance 
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This suggests that PCA can reduce the dimension of the data set, but 

the degree of reduction did not outperform the hybrid CRF-GSEA approach 

because the number of principal components are larger than the number of 

variables in the best FC set(results are shown in §D.3). Moreover, the 

principal component variables (weighted FC expressions) are difficult to 

interpret clinically or biologically, in that one PC is a linear combination of 

more than 100 FC variables of which each is associated with different 

loadings. The loadings of each PC can be found in Appendix I.4. In that 

PCA was not useful in terms of interpretability, no further analysis 

concerning PCA were performed and other unsupervised machine learning 

methods such as factor analysis were not attempted as well.    

In the next section, I will present results regarding model performance 

of the data mining methods evaluated in this work.  

D.2 Data Mining Model Performance 

Five classification methods were tested (Classification and Regression 

Trees (CART), Random Forests (RF), Conditional Random Forests (CRF), 

Support Vector Machines (SVM) and a mean-only model) using 112 FC 

expressions as predictor variables and ILD as response. The mean-only 

model simply uses the mean value of the response in the training data as 



50 

 

future prediction. Mean Absolute Errors (MAEs) and Mean Squared Errors 

(MSEs) are the two measurements of the comparison. They were calculated 

based on the following formula:  

1 ˆ
n

i i
i

MAE y y
n

= −∑                                 

( )21 ˆ
n

i i
i

MSE y y
n

= −∑                               

where, n = 50, yı�  is the estimate of ith response variable, and yi is the actual 

value of the ith response variable. Table D-2 shows the mean MAE and mean 

MSE of the five approaches. 

Table D-2 Mean MAE & Mean MSE of 50 Times Holdout Analysis for Data Mining 
Approaches 

 mean MAE mean MSE 
CART 0.471 0.356 

RF 0.482 0.246 
CRF 0.492 0.248 
SVM 0.502 0.253 
mean 0.502 0.254 

 

When comparing predictive accuracy between two models, a one-

sided two samples Student’s t-tests was performed to examine whether the 

mean of the two corresponding vectors of MAEs or MSEs are equivalent.  

RF and CRF perform best (by a small amount) but their differences in MAE 

and especially MSE are not statistically significant (p-value = 0.0996 for 
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MAE and p-value = 0.785 for MSE). The mean-only result confirmed our 

understanding that this statistical estimation problem is very flat (i.e., no 

single FC variable or small subset of variables is highly associated with ILD 

status). From their Receiver Operating Characteristic (ROC) curves 

performance (Figure D-2a) RF, SVM and CRF emerged as the most 

effective classifiers. All consistently yielded AUC (Area Under Curve) 

values of greater than 0.95. Thus, RF, SVM and CRF fit the data well and 

exhibited high true positive rates (out of the positives) and few false 

positives (out of the true negatives) , but this is training performance. As 

shown in Figure D-2b, all four models were fairly poor out-of-sample (i.e., 

out-of-bag, OOB) classifiers based on the Leave-One-Out Cross Validation 

(LOOCV). The OOB AUCs for all models evaluated are between 0.5 and 

0.6. The highest AUC is associated with RF (0.57) while the lowest 

associated with SVM (0.53). This is the reason why we created screening 

tools via stochastic simulation. 
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Figure D-2a. Goodness-of-Fit ROC Curves for Various Data Mining Methods 
(Phenotype is ILD) 

 

Figure D-2b. Leave-One-Out Cross Validation (LOOCV) ROC Curves for Various 
Data Mining Methods (Phenotype is ILD) 
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Conditional Random Forest (CRF) was eventually chosen over RF 

and SVM for several reasons. First, the permutation computing scheme for 

variable importance measures (VIMs) in CRF provides a “more fair means 

of comparison that can help identify the truly relevant predictor variables” 

(Strobl, 2008; Strobl, Hothorn, & Zeileis, 2009). Specifically, it enforces the 

requirement that each predictor variable that is selected as a split variable in 

each tree must be strongly associated with response variables (through 

hypotheses testing under an unbiased conditional inference framework) 

(Hothorn, Hornik, & Zeileis, 2006).  This is a robust way of enhancing the 

discriminant power of a predictor variable and is particularly useful for our 

IRIS data set in which a significant number of FC expressions are highly 

correlated. In contrast, the VIMs of RF were unstable and suffered from 

“correlation bias” due to effects related to predictor correlation, including: 

(1) VIMs were not necessarily aligned with the discriminant power of the 

stimulus variable; (2) the size of the group of correlated variables has a 

pronounced effect (Gregorutti, B Michel, & Saint-Pierre, 2013; Toloşi & 

Lengauer, 2011); and, (3) VIMs did not “directly reflect the coefficients in 

the generating model” (Nicodemus, Malley, C Strobl, & Ziegler, 2010). 

Using the conditional importance measure, Strobl et al. (2008) showed that 

VIMs based on the conditional permutation scheme better reflect the pattern 
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of the coefficients associated with predictor discriminant power and the 

variability was “lower than that of the unconditional importance within each 

level of mtry” (mtry is the parameter in R specifying the number of 

covariates randomly selected to split the node in each tree of the RF model). 

In this research, it was discovered that the conditional permutation scheme 

exerted almost no influence on the VIM output. Also, the computational 

burden of executing the conditional permutation scheme was particularly 

expensive in that the computing time increased exponentially as the number 

of observations increased. Eventually, VIM information was extracted from 

CRF without conditional permutation scheme. Second, the ROC curves of 

the fitted CRF, RF and SVM models suggested that RF and SVM might be 

overfitting. CRF misclassified 5 patients out of 79 whereas RF and SVM 

had 100% predictive accuracy. Third, the ES based on the variable 

importance list drawn from CRF were always larger than those of RF 

regardless of configuration settings, including the number of trees and mtry. 

The results are shown in Table D-3.  

Table D-3 Enrichment Scores of RF vs. CRF 

mtry ntree RF CRF 
5 1000 21.77 23.43 

11 1000 20.76 22.34 
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To the best of the author’s knowledge, no existing predictive methods 

could yield well predictive accuracy when the response variable is ILD. 

However, as to the randomized filter design, promising results were obtained 

in terms of predictive accuracy of this screening tool whose validation 

results will be presented later in Section § D.6.  

Recall that the Gene Set Enrichment Analysis (GSEA) was designed 

and adapted in this study to capture combined effects of a group of FC 

variables. In the following sections, performance of GSEA (in §D.3) and 

robustness of this algorithm (in §D.4) will be demonstrated.  

D.3 GSEA Performance 

At this point in the analyses the IRIS data set changed and consisted 

of the original set of patients in IRIS071813, modified by: (1) removing the 

four dropped FC variables; (2) updating against IRIS030814; (3) adding 

missing fvcstpp/ILD data. From 112 FC variables, we found via the CRF-

GSEA algorithm 27 FC variables to be the most important in differentiating 

SSc patients with ILD from those without. Those variables are shown in 

Table D-4. 
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Table D-4 Most Important Variables Identify via CRF-GSEA algorithm  
(Phenotype is ILD) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pol8ccr5 pol8ccr5cxcr3neg memem4 pol8ccr5cxcr3 act4103 

act425lo memem478 act8103 memem8 mememra87 

act425103 traff4cxcr6 memnaive4 act425tot memcm878 

act410371 pol4ccr6 memem878 mememra478 memcm4 

memcm478 traff8cxcr4 mememra4 act425hladr memcm8 

act4103hladr memem48    

Below is the random walk for FC27. Figure D-3 shows that there is a 

peak between the 1st ranked FC variable and the 40th FC variable, and a 

valley when the ranking of FC variable was around 90. The former, in 

genomics research, is called up-regulated and the latter down-regulated. It 

means increase or decrease in gene or FC expression.  
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Figure D-3. Random Walk that Results from FC Set Comprised by Top 27 Most 
Important Variables  

Figure D-3 shows that the highest ES is associated with FC set size 

27. Figure D-4 is the full set of GSEA results that identified the best 

performing set as FC27. The corresponding ES statistical significance levels 

are presented in Figure D-5. The estimated p-values were calculated based 

on permutation test described in §C4-2. It can be seen in Figure D-5 that the 

estimated p-values of the FC set were smaller than 0.01 when the FC set size 

is between 15 and 40. 
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Figure D-4. Enrichment Scores of GSEA for Different FC Set Sizes  
(Phenotype is ILD) 

 

Figure D-5. P-values associated with Enrichment Scores for Different FC Set Sizes 
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The results in this section indicate that the GSEA algorithm can 

identify the best set size of a group of FC variables based on the Enrichment 

Scores (ES). When the response variable was ILD, the best FC set size was 

27 because its associated ES was the largest. This FC set of 27 variables is 

also considered as statistically significant based on the permutation test. In 

Section §D.4, I will present results with respect to robustness of the GSEA 

algorithm.  

D.4 Robustness of the GSEA algorithm 

D.4-1 Random Walk with differing FC set sizes 

All FC sets created to date (including the best performing – FC27) 

were based on the top-ranked variables in the CRF variable importance (VI) 

list. To examine the validity and robustness of this procedure, random walks 

were plotted using different FC set selection criteria.  Shown in Figure D-6 

is the random walk that results from an FC set comprised of the top 5 FC 

expressions in the VI list. 
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Figure D-6. Random Walk with Top 5 Most Important Variables  

In Figure D-6, it shows that the random walk was enriched in both 

ends (displayed as a peak and a valley) but have a relatively low ES if the 

FC set contains the top 5 most important variables. In addition, the 

maximum deviation from zero, or the supremum, is positive value, which 

means that this random walk is up-regulated. Note that enrichment score is 

the absolute value of the maximum deviation from zero and therefore it is 

always positive. When the FC set size was increased to 10, similar 

enrichment structure of the random walk showed up and ES increases 

substantially (see Figure D-7). 
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Figure D-7. Random Walk with Top 10 Most Important Variables 

Keep increasing FC set size in this situation will yields similar 

enrichment structure of a random. Figure D-8 shows the random walk with 

FC set size 50 and the random walk is up-regulated as well. The Enrichment 

Score did not increase substantially in that adding more FC variables to the 

FC set does not necessarily contribute the increase of the maximum 

deviation from zero.  

0 20 40 60 80 100 120

-1
0

-5
0

5
10

15

                 

   Ranked Flow Cytometry Variable 

D
is

pl
ac

em
en

t 

Response is ILD – Enrichment Score = 17.38 



62 

 

 

Figure D-8. Random Walk with Top 50 Most Important Variables 

So far, the FC set is all determined by choosing the FC variables from 

the top of the variable importance measure (VIM) list. Next, the GSEA 

performance was examined when the FC set was determined by choosing 

certain sequence of the variable importance list as opposed to choosing 

variables from the top. For example, a FC set can be determined by choosing 

from the 20th to the 30th variables in the VIM list. Shown in Figure D-9 is the 

random walk that resulted from an FC set comprised of the 20th to 30th 

variables in the VIM list. It can be seen that the enrichment structure switch 

to down-regulation. In other words, the associated maximum deviation 

becomes negative and its absolute value, or the ES, decreased.  
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Figure D-9. Random Walk with Top 20th to 30th Most Important Variables 

 

Figure D-10. Random Walk with Bottom 10 Most Important Variables 
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Figure D-10 shows the random walk using an FC set comprised of the 

bottom 10 variables of the VI list which are considered by Conditional 

Random Forest the least important variables. Almost no enrichment structure 

can be found in this setting, and the ES is less than 8.  

In sum, the GSEA algorithm is robust when the size of the FC set 

differs. In specific, the random walk is always up-regulated with large 

enrichment score if the FC set is determined by choosing FC variables from 

the top of the variable importance list. In the next sub-section, I will examine 

robustness of the GSEA permutation test.  

D.4-2 Robustness of the GSEA Permutation Test 

Results in this section were based on data set IRIS071813. When the 

number of permutations varied ranging from 1000 to 10,000,000, the 

estimated p-value of the GSEA test changed only slightly (between 0.019 

and 0.0262) - all significant at level 0.05. This implies that the GSEA 

significance level is robust to permutation number. Considering both 

reliability and computational efficiency, 10,000 was chosen as the 

permutation number for GSEA.  
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For the next several sections (from §D.5 to §D.8), I will present 

results regarding the two directions analysis mentioned in §C.1.  

D.5 Refinements in Filter Design  

In this section, I describe two methods of refining the filters design 

procedure - – threshold tightening and pre-partitioned FC classification, so 

as to reduce overall misclassification rate (OMR). The corresponding 

improvements of the filters performance associated with each method in 

terms of OMR will also be presented. Because of the superior improvements 

by using the second method, details of the associated best filters regarding 

filter components and associated thresholds are also explored and shown 

later in this section. Results in this section were based on data set 

IRIS071813. 

The first method refers to a procedure in which the ranges of random 

thresholds for each variable in the FC set were narrowed through an 

examination of well performing filters. Consider the case of 10,000 random 

filter trials, from which there emerged 200 filters for which the smallest 

Overall Misclassification Rate, or OMR, was about 0.24. It means that if 

there are 100 patients then we have 24 patients misclassified by the random 

filter. The random threshold ranges for each FC expression was updated for 
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subsequent analyses using the FC thresholds that produced these 200 filters. 

Threshold tightening alone improved filter performance OMR to about 0.16. 

Improved OMR results with threshold refinement are due to our 

randomization procedure wasting less time evaluating bad-performing filters.  

The second approach, Pre-partitioning using CART (with pruning at 

the 2nd level split producing three groups), was used to classify the data set 

into N subgroups with N being the number of end branches (Figure D-12). 

Random filter design was then applied to each subgroup. This method 

substantially improved filter performance. At the time, the lowest global 

OMR found considering all groups was 0.09 (see Table D-5). 

Table D-5 Classification Statistics of Three Prepartioned Groups 

Group Feature SSc # of NO 
ILD 

# of 
ILD 

Best 
OMR 

Misclassified 
ILD 

Misclassified 
NO ILD 

A traff4ccr10 < 
1.265 11 1 10 0 0 0 

B 

traff4ccr10 ≥ 
1.265 & 

mememra478 
< 0.595 

58 43 15 0.13 3 5 

C 

traff4ccr10 ≥ 
1.265 & 

mememra478  
≥ 0.595 

31 12 19 0.03 1 0 

OVERALL OMR = (3+5+1)/100 = 0.09 
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In one of the more recent experiments using all CART-partitioned 

groups (10) the filter-based approach successfully classified 124 of 125 SSc 

patients (OMR = 0.008). This extremely low OMR, however, needs a strong 

caveat: it may be a result of overfitting (Cawley & Talbot, 2010; Forsyth et 

al., 1994) that is, decreases in training data set error are accompanied by 

increases in validation data set error as the extent of pre-partitioning 

increases. Shown below in Figure D-11 are four pruning levels (the blue 

lines) for CRF-informed analyses involving 125 SSc patients. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure D-11. Four Pruning Levels of CART Pre-partitioning  
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The randomly generated threshold bounds for each FC variable were 

derived from the training set data. We then addressed the issue of which 

subsets of variables (from the set of 27 “best” variables identified through 

GSEA) should be used to construct filters. Experiments were conducted to 

see whether full combinatorial expansion was necessary, that is, did we need 

to evaluate filters with ( )27
1  through ( )27

27  components (134,217,727 possible 

combinations of variables; recall also that for each combination, many 

random threshold realizations are generated).  Our testing showed that the 

best performing filters (those with the lowest OMR)  were consistently 

comprised of at least three and no more than six FC variables, therefore all 

subsequent analyses involved filters comprised of ( )27
3  through ( )27

6  (i.e., 

2,925 + 17,550 + 80,730 + 296,010 = 397,215) combinations of FC 

variables.  

The best performing filter at this stage of the analyses had an overall 

misclassification rate of 18.98% (15 patients misclassified out of 79). We 

next performed pre-partitioning using CART to classify the data set into 

subgroups (Figure D-11). Random filter design was then performed for each 

subgroup (there are 14 shown in total in Figure D-11, but six are child nodes 

whose parents have OMR = 0; these six node ID’s are shown in black). This 
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method substantially improved filter performance. The pre-partitioned OMR 

results are shown in Table D-6 (MC = Misclassified). 

Table D-6 OMR Results for All Pre-partitioned Levels 

CART Node # ILD # NoILD # MC # ILD MC # NoILD MC OMR 
Level 0 38 41 15 11 4 0.1878 

1-1 24 38 11 9 2 0.1774 
1-2 14 3 0 0 0 0.0 

Level 1 38 41 11 9 2 0.1392 
2-1 17 37 9 8 1 0.1667 
2-2 7 1 0 0 0 0.0 

Level 2 38 41 9 8 1 0.1139 
3-1 1 18 1 0 1 0.0526 
3-2 16 19 5 2 3 0.1429 

Level 3 38 41 6 2 4 0.0759 
4-2 3 13 1 0 1 0.0625 
4-3 13 6 0 0 0 0.0 

Level 4 38 41 1 1 1 0.0127 
Parent Node > Child Node; 1-2 > 2-3 > 3-4 > 4-5;  2-2 > 3-3 > 4-4;  3-1 > 4-1 

 

Pre-partitioning had a large effect on OMR performance, reinforcing 

our expectation that CART is a highly effective classifier and that sub-

groups of patients identified through CART are, in a sense, relatively easier 

to correctly classify. But we are mindful not to overstate this result, for the 

sub-groups with the highest OMR values also had the most patients. To 

continue this line of thought, consider an extreme situation: 79 one-patient 

“groups” with a best filter created for each. The resulting training filter’s 

OMR performance will be perfect but operationally useless, both in 

validation and clinically.  Excepting the fourth level (where only one patient 
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of 79 was misclassified) there was considerable more misclassification of 

ILD than no-ILD patients. Moreover, the result that only one patient was 

misclassified at the fourth level of pre-partitioning is strongly suggestive of 

overfitting (which is addressed below in §D-6 Validation). 

Following in Table D-7 are details of the best training filters for no 

pre-partitioning (Level 0) and all lower levels. The FC variable names are 

shown as are the corresponding standardized random threshold deviates.   

Table D-7 Details of FC Variables in Different Prepartioned Levels 

Variable/Node  0 1-1 1-2 2-1 2-2 3-1 3-2 4-2 4-3 
act4103 0.57    -1.58     
act425lo  2.10 -1.60  -1.63  1.82   
act425tot 2.29  0.07  -0.24   2.47  
act8103         1.17 
act810371 1.43 2.44 0.68 2.13   1.28  2.09 
memem4 1.05 0.98   -0.59     
memem478     -0.41 1.85   -1.07 
memem48   -0.27   2.34 1.31 1.81 0.70 
memcm478         -0.26 
memcm4k      3.12    
memem8    -1.26      
memem878 -1.23 -0.92        
mememra4        1.88  
mememra4k      2.82    
mememra478        3.46  
pol8th17   1.84    -0.68 1.26  
pol8th1th2ratio    1.64  1.67    
pol4ccr6  -1.33  -1.36      
traff4ccr3 1.88   2.31   0.61   

 
Of the full set of 27 “best FC set” variables, 19 appeared in the 

highest performing training filters. Activation and polarization variables 
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have the highest representation. Only three variables, act425tot, act810371 

and memem4 appeared in all Levels (0-4). Pre-partitioning had very 

pronounced effects on active variables within and across levels. In Level 2 

for example, node 2-2 FC thresholds are all negative (cutoff thresholds for 

those variables less than their means). For all levels, active variable sets for 

all nodes are typically very different.   

D.6 Validation of Randomized Filter Design 

Having achieved in-sample success in filter design and calibration, the 

next critical step is validation. FC profiles of SSc patients whose FC 

expressions were not involved in filter design (i.e., out of sample analysis) 

will be processed using our best performing filters. In this section, results 

two protocols (A and B) of validation test will be presented. The main 

difference of these two validation protocols lies in the way the training data 

was generated of which the details will be described below. 

D.6-1 Validation Test A  

D.6-1-1 Test A Protocol 

The training data set consists of the original set of patients in 

IRIS071813, modified by: (1) removing the four dropped FC variables (2) 
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updating against IRIS030814. The resulting set contains data on 129 patients 

(61 ILD; 68 NO_ILD) and 20 “new” validation patients were provided (6 

ILD; 14 NO_ILD), namely IRIS041314. There are fewer patients to work 

with as FC set size increases due to missing data. 

 

 

Figure D-12. Six Pruning Levels of CART Pre-partitioning (Protocol A) 
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Through pre-partitioning, it is possible to reduce training set error 

(Overall Misclassification Rate) but likely at the expense of increasing 

validation set error (i.e., overfitting) visualized as:  

 
Figure D-13. Tradeoff between OMR and CART Pre-partitioning Level 

D.6-1-2 Validation Test A Results  

With no CART pre-partitioning (Level 0) the screening tool correctly 

classified the ILD status of 80% of the validation patients. In specific, 4 out 

of 6 ILD and 12 out of 14 NO ILD were correctly predicted. Level 1 results 

are the same as Level 0. At CART pre-partitioning Level 2 the screening tool 

correctly classified the ILD status of 90% of the validation patients. Details 

of the results are shown in Table D-8. The combined Level 2 OMR is 0.1. 

Table D-8 Classification Statistics for Level 2 (Protocol A) 

FC level FC21_2-1 FC21_2-2 FC21_2-3 
actual ILD 3 3 0 
correctly predicted ILD 2 3 0 
actual  NO ILD 10 3 1 
correctly predicted NO_ILD 10 2 1 
OMR 0.077 0.167 0 
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D.6-2 Validation Test B  

D.6-2-1 Test B Protocol 

A different protocol was developed to expose our methodology to a 

potentially more demanding validation test. It involves the following 

procedures: (1) Combining original and “new” patients into one data set and 

thoroughly shuffling them; (2) Randomly selecting a training set and a 

validation set of given proportions (66.7%-33.3%). These proportions derive 

from published guidance and testing of our data following Dobbin & Simon 

(2011); (3) 120 random selections were performed involving 38,750,400,000 

screening tool design and testing stochastic simulations.  

 There are 79 patients (38 ILD and 41 NO ILD) in the training data set 

and 40 patients (18 ILD and 22 NO ILD) in the validation data set. 

D.6-2-2 Validation Test B Results  

The best training filters were validated using FC data from 40 patients 

not used in training. Without pre-partitioning, the overall correct ILD 

classification rate was 82.5 % (7 patients misclassified out of 40). Pre-

partitioning the validation patients (using the CART-derived variables and 

splitting levels developed for the training data) increases correct validation 

classification to 95% after two levels of pruning (2 patients misclassified out 
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of 40). This indicates that overfitting was occurring for the deepest pre-

partitioning level (the training and validation curves cross) as figure D-14 

shows. Notable is the similar OMR performance between training and 

validation for no pre-partitioning (Level 0).   

 

 

 
  
 
 
 

Table D-9 gives the details of the best validation filters. Note that the 

best training filters are not the best validation filters.  

Table D-9 Details of Flow Cytometry Variables in the Best Validation Filters in 
Different CART Pre-partitioning Levels  

Variable/Node  0 1-1 1-2 2-1 2-2 3-1 3-2 4-2 4-3 

act4103   -0.08  -1.21     

act425lo 1.26  1.30   0.65  1.85  

act425tot   1.04  -1.45 0.48  1.89 1.62 

act8103 3.23    0.06     

act810371  2.69  2.43   1.05   

memem4 3.59 1.54        

Figure D-14. Training & Validation OMR at different Prepartioning Level 
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memem478         0.65 

memem48 3.94      1.83   

memcm478      -1.33 1.05   

memem8  -0.87 0.23 -0.87      

memem878        -0.97 2.05 

mememra4     1.14  5.22 1.00  

mememra478    4.78      

mememra4k  6.50        

pol8ccr4          

pol8th2      1.95 -0.68   

pol8th17   2.84      2.48 

pol8x3r4ratio  2.60  1.68  -1.28    

pol8th1th2ratio    1.10      

traff4ccr3     0.29   0.91 -0.11 

Note that each column contains information of the best filter in that particular level. 

Only 20 of the 27 “best FC set” variables were used in the best 

performing validation filters. All act4103 variables that were active in 

establishing ILD status had thresholds below their mean. On occasion we 

see thresholds that correspond to extremely high FC expressions (e.g., 5.22 

standard deviations above the mean for mememra4; 6.50 for mememra4k). 
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D.7 Generalized Linear Regression Model Results  

Results in this section were based on data set IRIS041314 (defined in 

§B-2). The estimated coefficients of the best GLM found based on the 

stepwise model selection algorithm is shown in Table D-10. The p-value of 

Goodness-of-Fit–Test (Pr( 2
13χ > 128.58)) is approximately 0.15, which is 

larger than 0.05. It indicates that there is no evidence that the model is 

inadequate. 

Table D-10 Estimated Coefficients of Stepwise GLM 

 
Mean Standard Error z value Pr(>|z|) 

(Intercept) -0.95 1.32 -0.72 4.70E-01 
pol8ccr5cxcr3neg -0.12 0.04 -2.81 4.89E-03 
pol8ccr5cxcr3 0.03 0.02 2.00 4.50E-02 
memem8 -0.25 0.10 -2.42 1.54E-02 
mememra87 0.43 0.18 2.43 1.53E-02 
memcm878 0.29 0.12 2.53 1.16E-02 
memcm4 -0.03 0.02 -2.00 4.54E-02 
type 1.05 0.47 2.22 2.64E-02 
scl70_ab 0.94 0.46 2.03 4.25E-02 
dd1symptom_y 0.07 0.03 2.28 2.25E-02 

     Residual deviance: 128.58  on 113  degrees of freedom 
Note: Bold values are statistically significant at 5% significance level or lower 

A Drop-in-Deviance Test comparing the Null model (or Intercept only 

model) with current model was performed with Drop-in-Deviance equal to 

39.58 (=168.16 - 128.58) and d.f. equal to 9 (=122-113). The corresponding 

p-value is smaller than 10-6, which suggests that the null hypothesis that 

coefficients of all variables in the model are equal zero is rejected. In other 
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words, the variables in stepwise GLM (pol8ccr5cxcr3neg, pol8ccr5cxcr3, 

memem8, mememra87, memcm878, memcm4, type, scl70_ab, 

dd1symptom_y) are all statistically significant.  

Table D-11 95% Confidence Interval of the Estimated Coefficients of Stepwise 
GLM 

 
Estimate 2.50% 97.50% 

pol8ccr5cxcr3neg -0.124  -0.217  -0.043  
pol8ccr5cxcr3 0.033  0.002  0.066  
memem8 -0.252  -0.472  -0.061  
mememra87 0.434  0.105  0.814  
memcm878 0.294  0.081  0.542  
memcm4 -0.034  -0.068  -0.002  
type 1.050  0.142  2.009  
scl70_ab 0.937  0.041  1.863  
dd1symptom_y 0.074  0.013  0.141  

Depending on the sign of coefficient for each FC variable, certain 

variables are negatively associated with the odds (not probability) of having 

ILD. As an example, holding the other variables constant, the odds of having 

ILD will change by a multiplicative factor of 0.8836 (or, exp (-0.12374)) 

with one unit increase of pol8ccr5cxcr3neg. In other words, the odds of 

having ILD will be 11.67% smaller with one unit increase of 

pol8ccr5cxcr3neg.  

To further explore the relative importance of the group of clinical 

variables v.s. the 6 FC variables, two reduced GLMs (clinical-only model 

and FC-only model) were fitted and compared with the stepwise GLM.   
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Table D-12 Estimated Coefficients of Reduced GLMs 

Clinical-only Model 
    

 
    Mean Std. Error z value Pr(>|z|) 

(Intercept) -1.90  0.46  -4.12  3.82E-05 
type 1.27  0.43  2.96  3.12E-03 
scl70_ab 0.93  0.41  2.25  2.46E-02 
dd1symptom_y 0.08  0.03  2.69  7.22E-03 

     Residual deviance: 147.79  on 119  degrees of freedom 
FC-only Model 

    
 

Mean Std. Error z value Pr(>|z|) 
(Intercept) 1.07  1.10  0.97  3.32E-01 
pol8ccr5cxcr3neg -0.11  0.04  -2.73  6.30E-03 
pol8ccr5cxcr3 0.03  0.02  2.06  3.94E-02 
memem8 -0.27  0.09  -2.88  3.99E-03 
mememra87 0.47  0.17  2.82  4.79E-03 
memcm878 0.32  0.11  2.99  2.77E-03 
memcm4 -0.05  0.02  -2.94  3.32E-03 

     Residual deviance: 141.56  on 116  degrees of freedom 
 

Table D-13 Drop-in-Deviance-Test Comparing Stepwise GLM and Reduced GLMs 

 
Drop-in-Deviance  Drop-in-d.f. p-value 

Clinical-only Model 19.21 6 3.83E-03 
FC-only Model 12.98 3 4.68E-03 

In Table D-13, both of the estimated p-values of the Drop-in-

Deviance-Test are smaller than 0.005, which implies that there is strong 

statistical evidence that the 3 clinical variables and the six FC variables 

individually and as groups are highly associated with the odds of having 

ILD. In particular, with six FC variables, the residual deviance of stepwise 

GLM model decreases by a statistically significant amount (p-value < 

0.005).  
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D.7-1 Case-Influence Statistics  

During the process of searching for a statistical model that fits the data 

set well, it is important to examine the individual influence of selected data. 

Case-influence statistics are mathematical measurements used to 

characterize such individual influence (Ramsey & Schafer, 2012). Many of 

them have been used to further improve fitted models (Belsley, Kuh and 

Welsch (1980), Cook and Weisberg (1982), Williams (1987), Fox (1997, 

2002)). Four different kinds of statistics have been utilized in this research: 

leverages, standardized residuals and Studentized residuals, Cook’s 

distances.  

(1) Leverage measures the distance between the explanatory variable value 

of a case (in this research, a case means a patient) and the mean of the 

explanatory variables value of all cases. The leverage of the ith case is:  

ih = ( )
( )

2

2
1ix x
nx x

−
+

−∑
      

where, ix is the explanatory variable value of the ith case, x is the average of 

all x, and n is the sample size. 

(2) Standardized residual is the residual of a case divided by the variance. Its 

formula is the following:  
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where, îε is the deviation or residual of the ith case, σ̂ is the estimated 

standard deviation from the fit, and ih is the leverage of the ith case. 

(3) Studentized residual is similar to standardized residual except using a 

different definition of variance in which the calculation does not include the 

case of interest.  
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(4) Cook’s Distance measures the effect of omitting the ith case upon the 

estimated overall regression coefficients, using the following formula: 

( )( )2

i 2
1

垐

ˆ

n jj i

j

Y Y
D

pσ=

−
=∑   

where, ˆ
jY is the jth fitted value based on a fit model using the entire data set, 

( )
ˆ

j iY  is the jth fitted value in a fit excluding the ith case from the data set, p is 

the number of parameters and σ̂ is the estimated standard deviation from the 

fit. As shown in Figures D-15, few patients had Cook’s distances and 

leverage that were distinct from the majority. The Studentized residuals and 
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standardized residuals plots also suggest that no outliers were found based 

on stepwise GLM.  

Figure D-15. Diagnostics Statistics Based on GLM (Phenotype is ILD) 
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D.8 Partial Dependence Analyses 

Results in this section were based on data set IRIS041314. A Partial 

Dependence Plot is a tool to estimate the marginal effects of a subset of 

explanatory variables (usually less than 3) upon a response, accounting for 

the effects of all other FC variables on that response (Hastie et al., 2009). 

The method used is CRF. The PDP procedure is:  

- Select a FC variable in the FC set 

- Sort the expressions of that variable in the IRIS data set 

- Replace all expressions of that variable with the first expression in the 

sorted list; No other FC expressions in the data set are changed 

- Perform CRF with that newly created IRIS matrix (only one column 

has changed and all of that column’s row entries are the same); the 

CRF result is probability of having ILD 

- Repeat for all the other expressions in the sorted list; plot completed 

- Select another FC variable in the FC set 
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Figure D-16. Partial Dependence Plots for FC Variables (Phenotype is ILD) 

 

Figure D-16 shows that as the values of FC variables memcm878 and 

memcm4 increase, the probability of having ILD becomes larger. The 

remaining four FC variables had the opposite effect on the probability of 

having ILD.  Increasing trends for the two memory panel variables were 

limited between probability 0.395 and 0.41, while the ranges of declining 

trends were relatively larger. FC variable memem8 has the smallest decrease 

(from about 0.415 to 0.395). Mememra87 and two polarization variables 

reduced from 0.42 to 0.375.  
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D.9 Phenotype as Cancer 

So far, the phenotype of interest has been ILD. In this section, the 

same procedures (CRF-GSEA-Stepwise GLM/PDP) were applied to another 

phenotype ‘Cancer’ in order to identify a group of flow cytometry variables 

as a whole that are strongly associated with cancer in SSc patients.  

D.9-1 CRF-GSEA 

Using the IRIS071813 data set (Section §B-2), CRF classification was 

first performed. Through Gene Set Enrichment Analysis, the relationship 

between FC set size and Enrichment Score was examined. Next, the FC 

variables that comprise the FC sets were identified.  

Following are some preliminary results, beginning with an in-sample 

CRF ROC curve and continuing through FC set size experiments, associated 

p-values, the GSEA Random Walk and finally a table of FC expressions in 

FC set sizes 5 to 50. In Figure D-17, it shows that the AUC of the in-sample 

ROC curve associated with CRF was 1, which suggests that the CRF model 

fitted the data set very well.  
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Figure D-17. ROC Curve for CRF (Phenotype is Cancer) 

 

Figure D-18. Enrichment Scores of GSEA for Different FC Set Sizes (Phenotype is 
Cancer) 
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Figure D-18 shows that the highest ES is associated with FC set size 

12. ES increases as FC set size becomes larger from set size 5 to set size 12 

until it reaches the peak 34.6, but displays a sharp declining trend with 

greater FC set size. The estimated p-values associated with each ES are all 

below 10-4 when FC set size is smaller than 30 (see Figure D-19) but 

become less significant afterward. However, they are all below the 

significance level 0.05.  

 

Figure D-19. P-values associated with Enrichment Scores of GSEA for Different FC 
Set Sizes (Phenotype is Cancer) 
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Figure D-20. Random Walk that Results from FC Set Comprised by Top 12 Most 
Important Variables 

D.9-2 Stepwise GLM 

All the results shown from now to the end of this section were based 

on data set IRIS041314. A logistic binomial linear regression model with 12 

FC as covariates was fit to estimate the binary outcome CANCER, followed 

by the stepwise variable selection algorithm. The results are shown in Table 

D-14.   
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Table D-14 Estimated Coefficients of Stepwise GLM (Phenotype is Cancer) 

 
Mean Standard Error z value Pr(>|z|) 

(Intercept) -4.63 1.21 -3.82 1.33E-04 
act4103hladr 3.05 1.09 2.80 5.07E-03 
traff4ccr3 0.66 0.33 2.02 4.39E-02 
act825 0.10 0.04 2.49 1.28E-02 
pol4th2 -0.19 0.08 -2.27 2.35E-02 

     Residual deviance: 66.302  on 134  degrees of freedom 

 From the goodness-of-fit Test (p=0.9999998; a large p value indicates 

that the model is adequate) and Drop-in-Deviance test comparing the current 

model with the Null model (p <10-5), we know that stepwise GLM is 

sufficient to estimate response CANCER.  

Table D-15 95% Confidence Interval of the Estimated Coefficients of Stepwise 
GLM 

 
Estimate 2.50% 97.50% 

act4103hladr 3.053 0.983 5.384 
traff4ccr3 0.658 0.043 1.350 
act825 0.103 0.024 0.189 
pol4th2 -0.189 -0.377 -0.046 

Table D-16 95% C.I. of the Exponentiated Estimated Coefficients (of Stepwise GLM) 
Subtracted 100% 

 
Estimate 2.50% 97.50% 

act4103hladr 20.182 1.672 216.823 
traff4ccr3 0.930 0.044 2.859 
act825 0.108 0.024 0.208 
pol4th2 -0.173 -0.314 -0.045 
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Four FC variables were 
discovered to be highly associated 
with phenotype ‘Cancer’. 
Stepwise GLM and Partial 
Dependence Plot were useful in 
drawing statistical inference from 
the identified FC set. 

Among the 4 FC variables, pol4th2 was negatively associated with the 

odds of having cancer, i.e., holding the other variables constant, the odds of 

having cancer will be 17.3% smaller with one unit increase of pol4th2. The 

other three variables are positively 

associated with the odds of having cancer, 

among which variable act4103hladr had 

the strongest association – approximately 

20 times higher with one unit increase in 

the FC expression.  

Note:  
act4103hladr = CD3+/CD4+/CD8-/CD103+/HLADR+ 
traff4ccr3 = CD3+/CD4+/CD8-/CCR3+ 
act825 = CD3+/CD4-/CD8+/CD25+ 
pol4th2 = CD3+/CD4+/CD8-/CXCR3-/CCR4+/CCR6- 
 

The ROC curve for this model was also plotted (see Figure D-21). The 

Area Under Curve (AUC) is 0.8688, which supports the conclusion that 

stepwise GLM fits the data set reasonably well.   
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Figure D-21. In-sample ROC Curve for Stepwise GLM 

Stepwise GLM yielded the result that only 4 FC variables remain. 

Each is statistically significant at the 5% level. To further explore 

relationships among these covariates, a matrix of scatter plots between pairs 

of these variables is presented in Figure D-22. Two different symbols are 

used to represent patients with (red triangle) and without (black square) 

cancer diagnosis. We find in Figure D-22 that variable pol4th2 is particularly 

intriguing in this context. In the last column of the matrix of scatter plots, the 

red triangles cluster cohesively toward the left while the black dots spread 
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Figure D-22. Matrix of Scatter Plots for 4 FC Variables in GLM 

D.9-3 Diagnostic Statistics  
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two patients (ID:2202, 3083) are considered as isolated observations 
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influence, a stepwise GLM was implemented using the data set without 

these two isolated cases. Table D-17 gives the output.  
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Figure D-23. Diagnostics Statistics Based on GLM (Phenotype is Cancer) 
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significant but the p-values associated with act4103hladr and pol4th2 

decreased. The p-value of the corresponding Drop-in-Deviance test is 8.54e-

06, which highly suggests that these 4 FC variables are statistically 

significant. The goodness-of-fit Test (§C.5-1) gives a p-value that is almost 

1. It indicates that there is no evidence for the inadequacy of the fitted 

model. For these four FC variables, Student’s t-tests were undertaken with 

the null hypothesis that the mean difference between FC variable 

expressions is zero for SSc cancer and SSc non-cancer patients. Shown in 

Table D-18, zero was not included in the 95% C.I. of the mean difference 

between non-cancer patients and cancer patients when the FCs of interest 

were act4103hladr and traff4ccr3. It suggests that the act4103hladr and 

traff4ccr3 expression differs between cancer patients and non-cancer 

patients with a 95% confidence interval.  

Table D-18 95% C.I. for 4 FC Variables in GLM based on Student t-tests 

FC Variable mean difference 95% C.I. 
act4103hladr -0.290357 -0.31972 -0.26099 
traff4ccr3 -0.8182419 -1.31324 -0.32324 
act825 -5.3151505 -40.6785 30.04821 
pol4th2 3.8572312 -31.115 38.82946 

 Next, stepwise GLM without CRF-GSEA using the full data set was 

fitted to evaluate the influence of the CRF-GSEA procedure. The results (see 

Table D-19) show that 16 FC variables out of 112 remain but none of them 
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are statistically significant. The implication here is that our hybrid CRF-

GSEA procedure is highly effective in selecting important FC sets. 

Table D-19 Details of the Fitted GLM Using Full Data set 

  Estimate Std. Error z value Pr(>|z|) 
(Intercept) -2821.09 226601.20 -0.01 0.99 
mememra48 2253.91 217791.60 0.01 0.992 
memcm8 4892.27 401141.20 0.01 0.99 
memem8 -167.93 13631.79 -0.01 0.99 
memcm878 -4901.00 402153.80 -0.01 0.99 
memcm87 -4531.66 394922.70 -0.01 0.991 
memcm88 -4544.56 388574.60 -0.01 0.991 
memcm80 -5152.71 396416.50 -0.01 0.99 
memem878 172.73 14162.81 0.01 0.99 
memem87 268.68 21355.31 0.01 0.99 
memem80 153.21 12911.43 0.01 0.991 
pol4cxcr3 20.50 1873.06 0.01 0.991 
pol8x3r4ratio 18.85 1590.05 0.01 0.991 
act425lo 15.50 1380.24 0.01 0.991 
act4103hladr 567.84 51596.43 0.01 0.991 
act82571 446.11 51474.60 0.01 0.993 
act86971 -450.96 45674.70 -0.01 0.992 

D.9-4 Partial Dependence Analyses 

The PDP plots in Figure D-24 show that, with the exception of 

pol4th2, as all four remaining FC variables from stepwise GLM increased, 

the probability of having cancer in SSc patients increases. 
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Figure D-24. Partial Dependence Plots for FC Variables (Phenotype is Cancer) 
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Figure D-25. 3D PDP with Two FC Variables                                                                               

Another issue was revisited: if the variables in the FC set are highly 

correlated, how would that affect the final results and interpretation? When 

using cancer as phenotype based on 071813 data set, the FC set includes 4 

highly correlated variables: one mother node (act4103) and three child nodes 

(act4103hladr, act410371, act425103). To examine the effect of variable 

correlation and robustness of PDP, 3 child variables from the FC set 

containing the parent act4103 were removed before the PDP of act4103 was 

created. Figure D-27 indicates that no significant change occurred.  
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Figure D-26. PDP of Act4103 Before and After Removing 3 Child Nodes 

The results in this section are all related to phenotype ‘Cancer’. In the 

next section, results of how the phenotypes ILD and Cancer are related in 

terms of GSEA will be presented.  

D.10 ILD – Cancer GSEA Intercomparison 

In order to examine inter-relationship between phenotype ILD and 

Cancer, results of GSEA inter-comparison of these two are shown here.  

Results in this section were based on data set IRIS071813. GSEA 

performance of the cancer FC set with ILD as the phenotype and vice-versa 
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were examined. The results were immediately obvious – GSEA performance 

in these experiments was not statistically significant. When ILD is 

phenotype using the cancer set, the ES is always smaller than 12 and very 

often below 10 regardless of FC set size (see Figure D-27). The associated 

estimated p-values are all above 0.3 which indicates a low level of statistical 

significance (show in Figure D-28). A similar situation occurs for cancer as 

the phenotype with the ILD FC set: no ES is above 12 and all estimated p-

values are over 0.3 (See Figures D-29 and D-30). The performance of these 

random walks was completely different from what was seen previously 

when using the same phenotype as the basis for the establishment of the 

ranked list and FC set. The motivation for performing these experiments was 

to examine whether overlapping FC sets exist for both ILD and Cancer 

phenotypes.  

Not only did these results indicate that there is little similarity shared 

between the two phenotypes in SSc patients, but they also highlight the 

specificity of different phenotypes. More detailed discussion can be found in 

section §E.8.  
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Figure D-27. Enrichment Scores of GSEA for Different FC Set Sizes  
(CANCER Set – ILD is phenotype) 

         

 

Figure D-28. P-values associated with Enrichment Scores of GSEA for Different FC 
Set Sizes (CANCER Set – ILD is phenotype)                                                                                          
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Figure D-29. Enrichment Scores of GSEA for Different FC Set Sizes 
(ILD Set –CANCER is phenotype) 

 

Figure D-30. P-values associated with Enrichment Scores of GSEA for Different FC 
Set Sizes (ILD Set –CANCER is phenotype) 
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In the following three sections, three different methods of determining 

FC sets were evaluated including biological information (§D.11), Student’s 

t-tests statistics (§D.12) and p-values from point-wise GLM (§D.13).  

D.11 Bio-informed FC Sets 

Another modification for creating FC sets abandoned the CRF-

informed VI list altogether and instead used two alternative sets (Table D-

20) comprised of possibly important markers that were identified by our 

medical colleagues: 

Table D-20 Biological Informed FC Sets List 

CD4 CD8 
pol4th1 act8103 
pol4th2 pol8cxcr3 
pol4th17 pol8ccr4 
pol4th1th17 pol8ccr6 
act425lo act8dr 
act425hi traff8cxcr6 
act4dr traff8ccr10 
traff4ccr10 memnaive8 
traff4cxcr6 mem8cmefratio 
memnaive4 mem8ememraratio 
mem4cmefratio memcd8k 
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Here is the random walk for the CD4 FC set (Figure D-31). No 

significant enrichment structure can be observed and the corresponding 

enrichment score is relatively low. 

 

 

Figure D-31. Random Walk that Results from CD4 Bio-informed FC Set  

Figures D-32 and D-33 show the corresponding GSEA results and 

significance levels for FC set sizes 3 to 11. No FC sets had statistically 

significant enrichment scores (p > 0.25). CD8 results were comparable. 
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Figure D-33. P-values associated with Enrichment Scores of GSEA for Different FC  

Set Sizes (CD4 Bio-informed FC Set) 
 

4 6 8 10

5
6

7
8

9

        p

  

 

4 6 8 10

0.
4

0.
6

0.
8

1.
0

       

  

Figure D-32. Enrichment Scores of GSEA for Different FC Set Sizes (CD4 Bio-
informed FC Set) 
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D.12  Student’s t-tests Based FC sets 

Two samples Student’s t-tests for act4103hladr and traff4ccr3 

expressions strongly suggested that there was differences between the cancer 

patients group and non-cancer patients group (at the 95% confidence level) 

(see §D.9-3). Motivated by these encouraging results, t statistics was used as 

the basis to construct FC sets. The followings are specific procedures of 

obtaining the Student’s t-tests based FC set. 

1. Perform t Tests for all 112 FC variables between cancer patients and non-

cancer group. 

2. Extract all the FC variables whose 95% C.I. excluded zero. Here, only 17 

FC variables remained. 

3. Ranked the 17 FC variables based on absolute signal-to-noise ratios. The 

signal here is the mean difference between cancer and non-cancer and the 

noise is the pooled sample variance. 

4. Used the ranked 17 FC variables as input for GSEA. 

It showed that the best FC set size is 12. 
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Table D-21 Comparison between Ranked t-test Set and CRF VI List 

Ranked t-test Set Absolute Signal-to-Noise Ratio CRF  
act4103hladr 5.34 act4103hladr 
act410371 3.48 act410371 
mememra48 2.16 traff8cxcr5 
act425103 1.44 traff4ccr3 
act810369 1.12 act4103 
act4103 1.1 act425103 
memcm88 1.03 act82571 
act82571 0.99 act825 
traff4ccr3 0.89 pol4th2 
cd4cd8ratioLOG 0.87 memcm88 
mememra88 0.83 memem4 
act810371 0.7 traff8ccr10 
memcm87 0.7 

 memcm80 0.67 
 act469hladr 0.62 
 memcm40 0.55 
 memem47 0.55   

 

In Table D-21, the t-test set based on ranked absolute signal-to-noise 

ratio is presented, so is the CRF FC set. The ones highlighted in yellow are 

those appears in both FC sets. Shown in Figure D-34, the ES for t Test based 

FC sets achieved its maximum at FC set size 12. It can also be discerned that 

the ES did not increase monotonically. The estimated p-values for 

permutation tests were all smaller than 0.05 regardless of FC set size. This 

suggests that the t Test based FC sets are statistically significant as a group.  
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Figure D-34. Enrichment Scores of GSEA for Different Ranked t-tests FC Set Sizes 
(Cancer is Phenotype) 

 

 

Figure D-35. P-values associated with Enrichment Scores of GSEA for Different 
Ranked t-tests FC Set Sizes (Cancer is Phenotype) 
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D.13  p-value Based FC Sets 

D.13-1 Motivation and Procedure 

Inspired by the success achieved through drawing statistical inference 

from stepwise GLM (§C.5), FC sets based on the p-value associated with FC 

variable in GLM were constructed and used as input to GSEA. The analysis 

procedures are: 

• Construct a ranked FC list based on GLM p-value 

• Use FC sets as input for GSEA 

• Plot  ES vs. FC set size 

D.13-2 Phenotype is ILD 

We first used ILD as the phenotype for our p-value derived FC set 

analyses. Figure D-36 shows a comparison of our original and new lists for 

creating FC sets. The three FC variables in red are those appear both in the 

p-value based FC set and stepwise GLM. FC variables showing up in both 

CRF list and p-value based FC set are highlighted in yellow. Red slope lines 

were used to indicate FC variables that have high ranking in CRF list but 

lower ranking in p-value based FC list, while green is to the opposite. Gray 

lines indicate no ranking changes for certain variables such as pol8ccr5 and 
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memem4. The green horizontal line separates FC variable whose p-value is 

smaller than 0.05 from others.  

 

Figure D-36. Comparison between CRF Variable Importance List and P-value 
based FC list 
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The FC set size experiment results are shown in Figure D-37. 

 

 

Figure D-37. Comparison between P-value based GSEA and CRF based GSEA in 
Enrichment Scores (Phenotype is ILD)
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When the phenotype is ILD, comparing the 27 most important FC 

identified by CRF with the sorted list of FC based on p-value from GLM, it 

can be found that 15 of FC variables appeared in both two lists. However, 

the order is completely different. There are only 10 FC were statistically 

significant at significance level 0.05 based on GLM. Several FC variables, 

such as memem8 and traff4cxcr6, were highly valued by CRF but not 

considered to be relatively important based on the above-mentioned p-values. 

On the other hand, 4 FC (act425hladr, act410371, memcm878 and memcm8) 

were included in the FC set but their p-values were not statistically 

significant. The 10 statistically significant FC variables based on GLM were 

all included in the FC set identified through CRF-GSEA algorithm. In 

addition to these 10, the FC set also contains variables that had large p-

values. This implies that the FC set based on CRF-GSEA algorithm does not 

simply include all the variables that have generally linear and significant 

relations with the response. It also contained variables that will contribute to 

the increase of ES, but whose association with ILD cannot be captured by 

GLM. 

These results suggest that FC variables appear consistently in FC sets 

constructed in different ways should be emphasized in that they may contain 

more useful information in explaining the response variables.   
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D.13-2-1  Comparison based on ROC 

I further compared our two methods for creating FC sets by 

examining ROC performance. The procedure is: 

• Using the 15 overlapped variables as the “base” group (Figure D-36, 

highlighted in yellow), calculate the in-sample ROC and Area Under 

Curve (AUC) associated with the model, denoted as AUC0 

• Add one of the remaining 12 variables, construct the model again with 

16 FC variables (15+1), record the AUC, denoted as AUCi 

• Calculate the difference between AUCi and AUC0 

• repeat for the other remaining variables  

When GLM was used to draw statistical inference (it also helps 

reduce the dimension of the data set in this case), the results shown in Table 

D-22 were obtained: 
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Table D-22 Increase in AUC associated with each FC using GLM 

GLM 15 overlapped FC     
AUC0 0.8033 

  
  

Adding one of the following FC, the AUC becomes: 
  AUC 

 
  AUC-AUC0 

act8103 0.804476 
 

act8103 0.00113 
memem8 0.804476 

 
memem8 0.00113 

traff4cxcr6 0.800859 
 

traff4cxcr6 -0.00249 
memcm878 0.804476 

 
memcm878 0.00113 

act410371 0.806058 
 

act410371 0.002712 
memem878 0.804476 

 
memem878 0.00113 

memcm4 0.80425 
 

memcm4 0.000904 
memcm478 0.803798 

 
memcm478 0.000452 

traff8cxcr4 0.812387 
 

traff8cxcr4 0.009042 
act425hladr 0.811483 

 
act425hladr 0.008137 

memcm8 0.803798 
 

memcm8 0.000452 
act4103hladr 0.803798   act4103hladr 0.000452 

It can be seen in Table D-22 that two of the variables have relatively 

larger contribution to AUC (highlighted in red) but the addition of 

traff4cxcr6 caused decrease in AUC (highlighted in blue). 

When the model used was CRF, we obtained: 

Table D-23 Increase in AUC associated with each FC using CRF 

CRF 15 overlapped FC     
AUC0_CRF 0.9394 

  
  

Adding one of the following FC, the AUC becomes: 
  AUC 

  
AUC-AUC0 

act8103 0.9401 
 

act8103 0.000678 
memem8 0.941456 

 
memem8 0.002034 

traff4cxcr6 0.944846 
 

traff4cxcr6 0.005425 
memcm878 0.94349 

 
memcm878 0.004069 

act410371 0.940778 
 

act410371 0.001356 
memem878 0.939195 

 
memem878 -0.00023 

memcm4 0.941004 
 

memcm4 0.001582 
memcm478 0.941004 

 
memcm478 0.001582 
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traff8cxcr4 0.941682 
 

traff8cxcr4 0.00226 
act425hladr 0.941908 

 
act425hladr 0.002486 

memcm8 0.943942 
 

memcm8 0.004521 
act4103hladr 0.939421   act4103hladr 0 

 

For both models, none of the 12 non-overlapped FC variables 

contributed substantially in terms of AUC. This is likely due to the result 

that AUC of the base model was already large, especially when CRF was 

used. The 12 non-overlapped FC variables selected by CRF were not 

selected because of their contribution to goodness-of-fit measured by AUC.  

D.13-3 Phenotype is Cancer 

The analyses including CRF-GSEA and point-wise GLM were 

repeated but with cancer as the phenotype. 
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D.13-3-1 Comparison between Ranked lists 

 

Figure D-38.  CRF Variable Importance List and P-value based FC List  
(Cancer is Phenotype)  

If “cancer” is the phenotype, almost all of the important FCs identified 

by CRF are statistically significant in the point-wise GLMs except one - 

memem4. Another FC, traff8cxcr4, had a low p-value but was not included 

in the FC set based on the CRF-GSEA approach. 11 out of 12 variables in 

the FC set were considered statistically significant by GLM, which suggests 

that their relations with “cancer” are identified by GLM. These results are 

consistent with the significant outputs of the stepwise GLM using 12 FC to 

estimate cancer. Following are the results of the FC set size experiments. 
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Figure D-39. Comparison between P-value based GSEA and CRF based GSEA in 
Enrichment Scores (Cancer  is Phenotype) 
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D.14 Other Phenotypes 

The associations between SSc and various autoantibodies, especially 

Anti-topoisomerase I antibodies (ATA, or anti-Scl-70 antibodies) and anti-

centromere antibodies (ACA) have been discussed. Dick et al., (2002) found 

that “patients with both autoantibodies ATA and ACA often have diffuse 

scleroderma and show immunogenetic features of both antibody defined 

subsets of SSc”. Later, ACA was observed to be positive mostly in SSc 

patients who have CREST symptoms (Miyawaki, et al., 2005) and 

suggesting the occurrence of limited skin involvement (Castro, Jimenez, & 

Jefferson, 2010). Lota & Renzoni (2012) discovered that ATA and ACA 

were linked to pulmonary fibrosis and pulmonary hypertension respectively, 

and the presence of anti-Scl70 antibodies was believed to be indicator of 

higher risk for diffuse skin involvement and SSc lung disease (Castro, 

Jimenez, & Jefferson, 2010). Such connections may lead to new hypotheses 

on biological pathways and clinical relevance. Two clinical variables: 

Scl70_ab (Anti-topoisomerase) and ACA (Anti-Centromere Antibodies) 

were used as phenotype with FC as explanatory variables for CRF-GSEA 

analysis. Results shown in this section were based on data set IRIS041314. 
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D.14-1 Scl70_ab 

When using Scl70_ab as phenotype variable, the ES peaked at 23.57 

which was associated with FC set size 38, and reach its minimum when FC 

set size is 60 (see Figure D-40).  With regard to p-values of permutation tests, 

they were all statistically significant when FC set size is smaller than 60 at 

significance level 0.05 (See Figure D-41).  
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Figure D-40. Enrichment Scores for Different FC Set Sizes (Phenotype is Scl70_ab) 
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Figure D-41. P-values associated with Enrichment Scores for Different FC Set Sizes 
(Phenotype is Scl70_ab) 

 

Figure D-42. Random Walk that Results from FC Set Comprised by Top 38 Most 
Important Variables (Phenotype is Scl70_ab) 
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Thirty-eight FC covariates were used as input to fit a logistic binomial 

linear regression model with the two-directional stepwise variable selection 

algorithm estimating the binary outcome Scl_70ab (see Table D-24).  

Table D-24 Estimated Coefficients of Stepwise GLM (Phenotype is Scl70_ab) 

  Estimate Std. Error z value Pr(>|z|) 
(Intercept) -4.84 3.24 -1.5 1.34E-01 
act82571 -1.32 0.39 -3.35 8.15E-04 
memnaive4 -0.05 0.02 -2.96 3.12E-03 
pol4 0.15 0.07 2.07 3.83E-02 
cd4cd8ratioLOG -7.42 3.19 -2.33 2.00E-02 
pol8cxcr3 0.03 0.01 1.97 4.88E-02 

     
Residual deviance: 129.31  on 120  degrees of freedom 

 The Drop-in-Deviance test comparing the current stepwise GLM 

model with a null model (with intercept only) implies that these five 

variables are statistically significant (p-value = 2.71×10-6). The p-value of 

AUC = 0.786 

Figure D-43. In-sample ROC Curve for Stepwise GLM (Phenotype is Scl70_ab) 
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the goodness-of-fit Test was 0.265, suggesting that there is no evidence that 

the model is inadequate.  

Although a multivariate GLM will be used eventually for statistical 

inference, it is still interesting to examine which FC variable contributes 

most to explain the response. To evaluate how much each FC variable in the 

stepwise GLM contributes to goodness-of-fit, GLMs were fitted using only 

one FC at a time to estimate the response ILD (point-wise GLMs). Given 

that five FC variables were included in the stepwise GLM, there are five 

point-wise GLMs in total (Details in Table D-25). The corresponding AUC 

values of the in-sample ROC curves based on the point-wise GLMs are 

presented in Table D-26. Individually, the point-wise GLM with only 

act82571 fit the data set best in terms of AUC (=0.6757206). The fit was 

worst with pol4 (=0.5767738) among all the five point-wise GLMs. 

Table D-25 Details of Point-wise GLM (Phenotype is Scl70_ab) 

Pointwise GLM       
  Estimate Std. Error z value Pr(>|z|) 
(Intercept) 0.57 0.38 1.49 1.36E-01 
act82571 -1.08 0.33 -3.23 1.24E-03 
       
  Estimate Std. Error z value Pr(>|z|) 
(Intercept) 0.53 0.61 0.87 3.85E-01 
memnaive4 -0.02 0.01 -1.95 5.16E-02 
       
  Estimate Std. Error z value Pr(>|z|) 
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(Intercept) 1.11 1.07 1.04 3.01E-01 
pol4 -0.03 0.02 -1.63 1.03E-01 
       
  Estimate Std. Error z value Pr(>|z|) 
(Intercept) 0.25 0.41 0.60 5.51E-01 
cd4cd8ratioLOG -1.69 0.73 -2.30 2.12E-02 
       
  Estimate Std. Error z value Pr(>|z|) 
(Intercept) -1.79 0.74 -2.41 1.58E-02 
pol8cxcr3 0.02 0.01 1.65 9.90E-02 

 

Table D-26 AUC based on pointwise GLM using FC variable from the stepwise 
GLM (Phenotype is Scl70_ab) 

 AUC 
act82571 0.676 
memnaive4 0.610 
pol8cxcr3 0.609 
cd4cd8ratioLOG 0.605 
pol4 0.577 

Next, the cumulative effects of FC variables in the GLM were 

examined. The five FC were ranked based on their point-wise AUC values. 

GLM models were fitted adding one FC at one time starting with act82571. 

The AUC of GLMs gradually increased from approximately 0.6757 to 0.786, 

shown in Table D-27. Details of these accumulative GLMs are presented in 

Table D-28.  
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Table D-27 GLM with accumulative FC sets (Phenotype is Scl70_ab) 

 Accumulative AUC 
act82571 0.676 
memnaive4 0.733 
pol8cxcr3 0.761 
cd4cd8ratioLOG 0.767 
pol4 0.786 

Table D-28 Details of Accumulative GLMs (Phenotype is Scl70_ab) 

  Estimate Std. Error z value Pr(>|z|) 
(Intercept) 0.57 0.38 1.49 1.36E-01 
act82571 -1.08 0.33 -3.23 1.24E-03 
          
  Estimate Std. Error z value Pr(>|z|) 
(Intercept) 2.45 0.85 2.88 4.02E-03 
act82571 -1.23 0.36 -3.48 5.05E-04 
memnaive4 -0.04 0.01 -2.54 1.11E-02 
          
  Estimate Std. Error z value Pr(>|z|) 
(Intercept) 1.27 1.04 1.22 2.21E-01 
act82571 -1.26 0.37 -3.44 5.84E-04 
memnaive4 -0.04 0.02 -2.84 4.56E-03 
pol8cxcr3 0.03 0.01 2.03 4.21E-02 
          
  Estimate Std. Error z value Pr(>|z|) 
(Intercept) 1.56 1.08 1.44 1.50E-01 
act82571 -1.21 0.37 -3.29 9.91E-04 
memnaive4 -0.04 0.02 -2.48 1.32E-02 
pol8cxcr3 0.03 0.01 2.09 3.62E-02 
cd4cd8ratioLOG -1.16 0.84 -1.38 1.67E-01 
          
  Estimate Std. Error z value Pr(>|z|) 
(Intercept) -4.84 3.24 -1.50 1.34E-01 
act82571 -1.32 0.39 -3.35 8.15E-04 
memnaive4 -0.05 0.02 -2.96 3.12E-03 
pol8cxcr3 0.03 0.01 1.97 4.88E-02 
cd4cd8ratioLOG -7.42 3.19 -2.33 2.00E-02 
pol4 0.15 0.07 2.07 3.83E-02 
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D.14-2 ACA 

The analyses above were repeated with ACA as the phenotype. ES 

peaked at 24.9 which was associated with FC set size 6 and non-

monotonically decreased arriving at its minimum when FC set size is 79 (see 

Figure D-44).  The  p-values of permutation tests were smaller than 0.05 

when FC set size is smaller than 25, shown in Figure D-45.  

 
 

Figure D-44. Enrichment Scores of GSEA for Different FC Set Sizes 
(Phenotype is ACA) 
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Figure D-45. P-values associated with Enrichment Scores for Different FC Set Sizes 
(Phenotype is ACA) 

 

Figure D-46. Random Walk that Results from FC Set Comprised by Top 6 Most 
Important Variables (Phenotype is ACA) 
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Figure D-47. In-sample ROC Curve for CRF (Phenotype is ACA) 

GLM with logistic link function was fitted using input of 6 FC 

variables identified as the most important through CRF-GSEA algorithm to 

estimate the binary response ACA. Two-directional stepwise variable 

selection algorithm was then applied afterward. Only two of the six FCs 

remained in the final model (see details in Table D-29).  

Table D-29 Stepwise GLM with ACA as phenotype 

  Estimate Std. Error z value Pr(>|z|) 
(Intercept) -2.22 0.38 -5.83 5.40E-09 
pol8crth2 0.12 0.05 2.70 7.03E-03 
memem88 0.29 0.13 2.18 2.90E-02 

     
Residual deviance: 125.84  on 126  degrees of freedom 
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 The p-value of goodness-of-fit Test is 0.487, which suggests that there 

is no evidence that the model is inadequate. On the other hand, the p-value 

of Drop-in-Deviance test is 2.95E-05, which is significantly smaller than 

0.05. The null hypothesis that none of the two remaining FC variables 

(pol8crth2 and memem88) are statistically significant is rejected.   
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E. DISCUSSION 

In this chapter, the data mining methods used will be discussed (§E.1), 

followed by evaluation of the possibility of using other data mining models 

(§E.2). In section §E.3, different aspects of the Gene Set Enrichment 

Analysis (GSEA) algorithm will be focused, including potential 

improvements that can be made in the future. I will then discuss the 

randomized filter design procedure (§ E.4) and its potential clinical value in 

medical practice (§E.5).  

Biological meaning and interpretation of the defined FC set associated 

with ILD will be explored in Section §E.6. Issues regarding standardized 

Forced Vital Capacity (FVC) that was used to define ILD will be discussed 

in §E.7, and the importance of phenotype specificity will be highlighted in 

Section §E.8. This chapter ends with discussion on the two tools used to 

draw statistical inferences - stepwise GLM and Partial Dependence Plot 

(PDP) analysis.  

E.1 Data Mining 

The data mining techniques used (CART, RF, CRF and SVM) cannot 

outperform the mean-only model by a statistically significant amount in 

classifying the ILD status of SSc patients given their FC data as predictors. 
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However, their in-sample training performance showed that these models fit 

the data set well. CRF was eventually chosen based on its published 

performance with correlated predictor variables and testing with the IRIS 

data set.  More specifically, the permutation computing scheme for variable 

importance measure (VIMs) in CRF can provide a “more fair means of 

comparison that can help identify the truly relevant predictor variables” 

(Strobl et al., 2008).  

E.2 Other Data Mining Methods  

Characteristics of the data set of interest ultimately determine what 

type of models to be used. The IRIS data set used in this research is featured 

by ‘large P small N’ and highly correlated predictors issue. If the 

fundamental structure of the data set of interest is altered, especially the 

correlation structure of the FC variables, other tree-based models such as 

Random Forests, could possibly perform better. Moreover, other data mining 

methods such as GLM (that are not suitable for “large P small N” data sets) 

could prove effective provided that sample size is greatly expanded. But 

there also exist other approaches that have not yet been evaluated. For 

example, Bayesian confidence propagation neural network (BCPNN) was 

shown to be effective in classification in medical sciences (Orre et al., 2000; 
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Lisboa et al., 2003). Also, the selection of phenotype can significantly affect 

model performance. We discovered this when using pah_45 as phenotype. 

The resulting classification and GSEA performance was poor.  

In this work, CRF was chosen as a non-parametric method due to its 

strength in handling highly correlated predictor issue featuring the IRIS data 

set. CRF is recommended to be used in data sets with similar issues.  

E.3 Gene Set Enrichment Analysis 

The ES values associated with the FC sets formed from the group of 

variables at the top CRF variable importance list were consistently 

statistically significant based on the GSEA permutation test. The 

corresponding random walks were up-regulated. There exists a unique FC 

set size associated with an Enrichment Score supremum. Larger FC set sizes 

did not necessarily lead to greater enrichment scores. If all the variables in 

the FC set were highly correlated, the corresponding random walks would 

have even stronger enrichment and the estimated p-value of the GSEA test 

will be underestimated.  

As mentioned earlier, having determined the FC set, two directions 

analysis were performed – making predictions and drawing statistical 

inference. Understanding relationship between variables in the FC set will be 
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useful in drawing statistical inference. The best FC sets that we found 

consisted of variables from different panels, thus indirectly rejecting the 

scenario that all the variables in the FC set were highly correlated with each 

other (variables within the same panels have higher correlation than those 

from different panels). Occasionally, however, two or more variables in the 

best FC sets were highly correlated. In this case, confounder effects 

(multiple predictor variables and the response are pairwise correlated with 

each other) must be considered (Hennekens et al., 1987; Mickey & 

Greenland, 1989).  Several possible options are available to cope with 

confounder effects. The first option is to manually remove one of the 

predictor variables, which is imprudent in that the variable removed may 

have strong biological or clinical relevance. Another option is to combine 

predictor variables (forming a composite variable such as the ratio of two 

variables).  A common practice in epidemiology is to stratify the data by one 

of the confounders and then give an overall estimate combining individual 

strata-specific predictions (Hoggart et al., 2003). This method works well for 

categorical predictor variables, but certain thresholds must be established for 

continuous variables depending on the density and range of the variable.  
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E.3-1 GSEA Robustness 

In our “top-down” analyses (form FC sets beginning at the top of the 

ranked correlation list in GSEA), all random walks were up-regulated with 

strong enrichment scores. To test the robustness of this result, we instead 

constructed FC sets beginning at some variable considerably down the 

ranked list, and in some cases, formed FC sets beginning at the bottom of the 

ranked list. Results in Section §D.4-1 indicate that the regulation direction of 

the random walks were robust. Significant enrichment structure of random 

walk will always result in larger ES which was associated with statistically 

significant p-value in permutation test. GSEA performance was also robust 

to the number of shuffling in the permutation test (see Section §D.4-2).  

E.3-2 The GSEA Ranked List 

Thus far, the ranked lists of the GSEA test were based on sorted 

correlation coefficients. This is the original and most common approach 

(Subramanian et al., 2008), but others exist, for example, the absolute value 

of correlation coefficients could serve as the foundation of ranked list. It 

follows in that case that all random walks would be up-regulated (see 

Appendix §I.4). This could result from the situation that all the FCs with 

high correlation coefficient clustered toward the same area in the ranked list. 
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It is another way of constructing ranked list and could possibly be applied in 

condition that the sign of correlation coefficient does not matter.  

E.3-3 GSEA – FC Set Determination  

In the original genomics applications, gene sets for GSEA were 

formed through biological insight (our rough equivalent might be effector’s 

pathways). A reasonable alternative here is to define FC sets based on FC 

variables considered to be potentially important biomarkers. Two such FC 

sets (CD4-based and CD8-based) were created and tested through GSEA 

(see Section §D.11). Performance was poor when compared with the hybrid 

CRF-GSEA approach, but this exercise was very limited in scope.  

In the future, if certain pathway of autoimmune disorder is 

hypothesized, the group of variables involved in the pathway can become 

input of the GSEA-FC set and tested with permutation test, in order to 

examine the statistical significance level of the assumed pathway.  

E.3-4 GSEA – Permutation Test 

Gene Set Analysis (GSA) in general can be divided into two major 

schools based on the permutation schemes used in their statistical tests: class 

label randomization and gene randomization (Luo et al., 2009). The GSEA 
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algorithm in this research, SAFE (Barry et al., 2005) and SAM- CS (Dinu et 

al., 2007) belongs to the first category, while PAGE (Kim & Volsky, 2005), 

T-profiler (Boorsma et al., 2005) and Random Set (Newton et al., 2007) are 

classified as gene-randomization. An important factor in assessing the 

suitable approach is sample size. Our data set contains 119 patients. This 

sample size may not “allow rigorous evaluation of significance levels by 

permuting the class labels” (Subramanian et al., 2008), however, our results 

were indeed robust with respect to the number of permutations used to 

estimate p-values (see Section §D.4).  The alternative approach (gene-

randomization) is to permute FC variables, but this will lead to non-

conservative significance levels, i.e., smaller p-values resulting in more false 

positives, because this approach does not account for stimulus variable 

correlation (Subramanian et al., 2008).  

In sum, the GSEA algorithm used in this research can help determine 

a group of important variables with regard to certain phenotype variable. Its 

performance is robust. With certain modification in the three components of 

GSEA such as FC set and ranked list, this algorithm can be applied in many 

more fields along with other variable settings.   
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E.4 Randomized Filter Design 

Randomized filter design is a novel mathematical tool used for ILD 

classification. Its non-parametric nature allows application in many other 

settings.  In the current design, the predictor variables are continuous and the 

response binary, however, with fairly simple modification, response, for 

example, could be categorical.   

While training filters performed well when classifying the entire data 

set (Overall Misclassified Rate (OMR) = 0.1898), the added step of pre-

partitioning patients using CART (and finding best training filters specific to 

each CART group) significantly improved filter performance. The splitting 

criterion used in CART appears to be a good starting point for identifying 

subpopulation of SSc patients. Our training filter experiments consistently 

resulted in best filters having three to six components with five most often. 

We currently have no mathematical or biological explanation why this 

should be the case.  

Predictive accuracy of this screening tool was promising in this study. 

However, its computation was rather expensive. It will be rather useful if 

this tool can be modified such that less computing time is needed in the 

future.  
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E.5 Clinical Value of Screening Tool  

Validation was successful (Section §D.6) with a correct classification 

rate of 82.5% for the entire validation data set (40 patients), increasing to 

95% with CART pre-partitioning. There exists a reasonable balance between 

training and validation error. Given FC data as input, the prediction of 

patient ILD status with our filter approach is essentially instantaneous and 

can be accomplished through a variety of software implementations. 

Ultimately this instrument should facilitate a refined stratification of SSc 

patients into clinically relevant subsets at the time of diagnosis and 

subsequently during the course of the disease, preventing bad outcomes from 

disease progression or unnecessary treatment side effects. This role could 

involve a scenario in which an SSc patient passes the presumptive test for 

ILD, but the filter indicates that their flow cytometry (FC) profile is 

consistent with ILD. In such a case, a physician might: 1) increase frequency 

of testing to detect early development of ILD; 2) implement more 

sophisticated diagnostic procedures (e.g., high resolution chest CT scan) to 

confirm the presence of ILD; and 3) consider prophylactic disease 

modifying treatments (e.g., cyclophosphamide, corticosteroids, interferons 

(White, 2003)).  
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We would expect that as more data becomes available, filter 

performance will continue to improve. This suggests another potentially 

important role for our approach in better understanding the progression of 

disease. We posit the scenario in which FC profile characteristics may 

change with disease progression and that these changes could be captured – 

reflected in changes in filter design and performance. Procedurally, we 

contemplate a procedure in which certain FC variables and their expressions 

are used as a basis for partitioning patients into disease progression states, 

with corresponding state-specific filter designs.  

The potential clinical value of the screening tool is encouraging.  

E.6 Biological Interpretation  

In FC27 (see Section §D.3, Table D-4), the two FC variables 

(pol8ccr5cxcr3neg, pol8ccr5cxcr3) identify Type 1 helper (Th1) polarized 

CD8 T cells. Informed by our medical colleagues, the first (lacking CXCR3) 

is “protective”; the second (CXCR3) is a “risk factor” for ILD. CXCR3 is a 

chemokine receptor which has been shown to direct inflammatory cells 

inside target tissue and drives acute inflammation (synovial tissue in 

rheumatoid arthritis, liver in autoimmune hepatitis, etc.). The variables 

memem8, mememra87, memcm878 and memcm4 belong to the T cell 
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memory subset. It appears that ILD status is associated with a shift of the 

CD8 T cells towards the activated effector memory/terminally differentiated 

state. This is in keeping with the pro-inflammatory polarized status observed. 

E.7 Issues Regarding FVCstpp   

FVCstpp is imprecise (e.g., poorly performed maneuvers) and 

uncertain (variable from test to test) (Alhamad et al., 2001; Enright, 2003; 

Hegewald & Crapo, 2010; Miller, 2005; Pierce, 2005; Petty & Enright, 2003; 

Hankinson, 1999) which presents several questions involving: (1) the 

accuracy of the current FVCstpp cutoff in accurately assessing ILD status; (2) 

the effect of the cutoff in filter performance; and (3) a corollary, whether the 

patients that are misclassified in training and validation have FVCstpp 

measurements in the so-called “gray area”.  Further to (3) Table E-1 shows 

FVCstpp values from the IRIS data set that are close to the ILD cutoff (80 

+/- 5%). The results are inconclusive: nine patients in this group of twenty-

two are among the misclassified patients in training and validation. The 

entries shaded in blue are training misclassifications; those in red are for 

validation misclassifications.  
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Table E-1 FVCstpp values from the IRIS data set that are close to the ILD cutoff (80 
+/- 5%) 

FVCstpp 
79.2 82.99 
77.7 82.66 
78.29 82.7 
75.93 82.3 
77.55 83.53 
75.33 82.9 
79.95 81.41 
75.53 81.22 
75.38 81.5 
76.78 84.05 
77.02 80.94 

 
Issue (1) points to the need for High Resolution Computing Tomography 

(HRCT) for interstitial lung disease (ILD) confirmation (Moore et al., 2013; 

Pandey et al., 2010; Zompatori et al., 2013). 

E.8 Phenotype Specificity (ILD vs. Cancer) 

Using different phenotypes as response variable resulted in distinctive 

outcomes including the best FC sets, direction of random walk, ES and 

model performance. In this study, the results associated with “cancer” as 

phenotype were found to be more striking than other phenotypes (see 

Section §D.9).  
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GSEA performance of the cancer FC set with ILD as the phenotype 

and vice-versa were examined. The results were not statistically significant – 

small ES and large estimated p-value. Although all the patients of interest 

were diagnosed as having SSc, yet the two phenotypes (cancer and ILD) are 

discovered to be related to different biomarkers and therefore distinct FC 

expressions. For example, as mentioned in section A.2 Systemic Scleorsis, 

previous studies have shown that increased frequency of circulating T cells 

exhibiting a “polarized” phenotype –the Polarization panel in the IRIS data 

set- are significantly associated in SSc patients with the presence of 

pulmonary fibrosis and lung disease progression (Boin et al 2008; Truchetet 

et al. 2010). However, it remains unknown whether such association still 

holds when the phenotype is cancer from the perspective of medical sciences.   

Regarding methodology, the inferior performance of the ILD-Cancer 

GSEA intercomparison experiments greatly suggests that the two 

components of GSEA algorithm (ranked list and FC set) should be always 

associated with the same phenotype in order to obtain reasonable and 

interpretable results, unless there is a significant number of overlapping 

“genes” across different sets. Subramanian et al. (2008) performed similar 

experiments using the Boston gene set in the Michigan lung cancer data sets, 

and the Michigan gene set in the Boston data set, in an attempt to draw 
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biological insight by examining overlapping genes. In our research, a similar 

analysis indicates that very few FC variables were overlapping between the 

ILD set and Cancer set (see Section §D.10).  

E.9 Statistical Inference 

E.9-1 Stepwise GLM 

When the phenotype was ILD, the p-value of the Goodness-of-fit Test 

for the stepwise GLM was approximately 0.15, which suggests that there 

was no evidence that the model is inadequate. However, this p-value was not 

large enough (close to 1) to be considered as statistically significant, 

therefore statistical inference from this model should be made cautiously, 

particularly the interpretation of the coefficients of each FC in the model. 

This under-fit eventually becomes one of the reasons why the outputs of this 

model are inconsistent with those of the Partial Dependence Plot for CRF 

which will be discussed in the next section. However, several Drop-in-

Deviance Tests regarding this stepwise GLM strongly suggest that the six 

FC variables and the three clinical variables (type, scl70_ab, dd1symptom_y) 

are of significant importance in estimating the response variable ILD. In 

addition, none of the four diagnostic statistics indicate that there were 
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isolated cases that have either high leverages or outliers regarding the fitted 

GLM.  

If using cancer as the phenotype, the stepwise GLM fitted the data set 

very well (p-value of the Goodness-of-fit Test was almost 1). All 4 FC 

variables were statistically significant at 5% level. Among these variables, 

pol4th2, or CD3+/CD4+/CD8-/CXCR3-/CCR4+/CCR6-, was negatively 

associated with the odds of having cancer and especially important in 

differentiating patients with cancer from those without. The other three 

variables are positively associated with the odds of having cancer, among 

which variable act4103hladr had the strongest association. These results 

were consistent with the PDP outputs below. In addition, based on Cook’s 

distance, standardized residuals and Studentized residuals, two patients 

(ID:2202, 3083) were identified as isolated observations. These two cases 

heavily influenced the coefficients of variable act4103hladr (from 3.05 to 

5.52). Lastly, without CRF-GSEA procedure, the fitted stepwise GLM based 

on the full data set did not fit the data set well – none of the remaining FC 

variables were statistically significant.  

GLM with a logistic link function assuming binomial distribution of 

the responses followed by stepwise algorithm has been widely used in 
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explaining dichotomous response variable using multiple continuous or 

categorical predictor variables (Hirzel et al., 2001; Ethier et al., 2008; 

Karlsson et al., 2010;). It was used in this research after the data dimension 

was reduced and it turned out to be rather useful in terms of drawing 

statistical inferences.  

Statistical inferences directly drawn from the stepwise GLM regarding 

coefficients of the FC variables should be of caution. It is true that stepwise 

GLM may have certain drawbacks such as potential exclusion of important 

variables but inclusion of noise variables (Derksen and Keselman, 1992) and 

Type 1 error inflation issues (Mundry & Nunn, 2009). However, in this work, 

the starting GLM was a full model, i.e., including all predictor variables at 

the beginning, therefore no exclusion of variables was made. Also, the 

statistical significance of the group of important variables was determined 

by the Drop-in-Deviance tests, instead of simply relying on significance 

level of Z-score Wald tests on an individual basis. The p-values of Z-score 

Wald tests were not used as the basis of determining statistical significance 

of multiple variables as a group, because these individual p-values tend to 

change when the number of input variables varies. Note that before the GLM 

had been fitted, a GSEA test was performed to guarantee that the group of 

FC variables was statistically significant as an entity. Lastly, the intention of 



144 

 

applying stepwise GLM is to present one possible approach for extending 

the results from CRF-GSEA and hopefully shed lights on future medical 

research direction.  

One interesting finding was that without CRF-GSEA procedure, the 

stepwise GLM based on original full data set had low level of goodness-of-

fit; but with CRF-GSEA, its fit was considerably improved. This result may 

originate from that stepwise GLM itself was insufficient to identify 

important variables, especially when the data set suffers from “Large P small 

N” issue. Another related explanation could be the predictor correlation 

issue which in this case was handled to some degree by the hypothesis 

testing structure in CRF.  

E.9-2 Partial Dependence Analysis  

For ILD as phenotype, as the values of FC variables memcm878 and 

memcm4 increased, the probability of having ILD became larger. The 

remaining four FC variables had the opposite trend with regard to the 

association with the probability of having ILD. Comparing these results with 

the estimated coefficients of stepwise GLM, only a moderate level of 

consistency can be found regarding whether the FC variables exert positive 
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or negative impacts on the probability of having ILD. The most likely reason 

for this result is that stepwise GLM did not fit the data set very well. 

When cancer was the phenotype, as three of four FC variables 

increased, the estimated probability of having cancer in SSc patients also 

increased when using PDP.  The exception was pol4th2. The 3D PDP with 

pol4th2, act825 and cancer probability indicated that cancer probability grew 

with a combination of decreasing pol4th2 and increasing act825. These PDP 

results are consistent with the stepwise GLM outputs. These PDP results 

strongly suggest that act4103hladr, traff4ccr3, act825 are positively 

associated with the probability of having cancer; its association with pol4th2 

is negative.  

Partial dependence plots are useful in diagnosing the dependence of a 

response variable on the joint values of stimulus variables (Hastie et al., 

2009). However, visualization with high dimensions can be difficult to 

visualize and interpret. PDP results are useful for yielding insights into the 

marginal effect of individual covariates, especially when the model of 

interest is classification or regression trees models (Elith et al., 2008).  
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F. CONCLUSIONS 

1. The combination of CRF and GSEA algorithm can determine 

statistically significant FC sets associated with phenotypes ILD and cancer. 

This approach is robust in terms of statistical significance of the GSEA 

permutation test.  

2. Randomized filter design is an effective approach in differentiating 

patients with ILD from those without.  

3. Stepwise GLM in conjunction with Partial Dependence Plots could 

be useful in drawing statistical inference from the outputs of CRF-GSEA 

algorithm.  

4. The specificity of phenotypes will directly impact the performance 

of GSEA algorithm.   

5. The construction of FC sets can be based on different methods.  

6. When ILD is the phenotype, variables included in p-value based FC 

set are the most important ones for the following reasons: a. results based on 

CRF VI list, filter set list and p-value based FC set were more statistically 

significant than bio-informed FC set; b. all the variables included in the p-

value based FC set were included in CRF VI list and filter set list. These 
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variables are: pol8ccr5, memnaive4, memem4, pol8ccr5cxcr3, pol4ccr6, 

pol8ccr5cxcr3neg, act425lo, act425tot, mememra87, act4103, memem48, 

mememra478, mememra4, act425103 and memem478. 

If Cancer is the phenotype, the variables listed below are attached 

with more importance because they showed up in CRF VI list, p-value based 

FC set and T Test based FC set. These variables are: act4103hladr, 

act410371, traff4ccr3, act4103, act425103, act82571 and memcm88. 

Details of the best FC set identified by different methods can be found 

in Appendix I.2.  
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G. FUTURE RESEARCH 

 The major focus thus far has been on ILD and cancer, driven by the 

seriousness of these diseases, but there are other phenotypes associated with 

SSc that too have important clinical outcomes, for example, elevated Right 

Ventricular Systolic Pressure (rsvp) and depressed Spirometry Diffusion 

Capacity (dlco). Principal Components Analysis was eventually not used 

because of the limitation of interpretability. Other factor analysis such as 

Sparse Factor Analysis (SPA) (Carvalho et al., 2008; Engelhardt & Stephens, 

2010) that may be able to overcome the interpretability issue can be 

explored.  

Data mining approaches followed by GSEA can be applied to these 

phenotypes. For those phenotypes that share common or highly relevant 

biological pathways, a GSEA intercomparison could be used to examine the 

overlaps in order to yield biological insights. Other data mining methods 

could be evaluated in addition to the five (CART, RF, CRF, SVM, GLM) we 

considered. Different antibodies associated with SSc can also be used as the 

phenotype. More ways of determining significant FC sets can be explored.  

In the future, if certain pathway of autoimmune disorder is 

hypothesized, the group of variables involved in the pathway can become 
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input of the GSEA-FC set and tested with permutation test, in order to 

examine the statistical significance level of the assumed pathway.  

The randomized screening tool can be modified such that less 

computing time is needed. 
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I. APPENDIX 

I.1 Appendix - FC Variable Panels 

Figure I-1. Hierachical Structure of Activation Panel 

 

Figure I-2. Hierarchical Structure of Polarization Panel 
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Figure I-3. Hierarchical Structure of Traffic Panel 
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I.2 Appendix FC sets identified by CRF-GSEA algorithm 

Table I-1 FC sets identified by CRF-GSEA algorithm (Phenotype is ILD) 

CRF FC Set Filter Set Bioinformed FC Set  P-value Based FC 
Set 

pol8ccr5 act4103 pol4th1 pol8ccr5 
pol8ccr5cxcr3neg pol8ccr5 pol4th2 memnaive4 
memem4 act425tot pol4th17 memem4 
pol8ccr5cxcr3 act425lo pol4th1th17 pol8ccr5cxcr3 
act4103 pol8th17 act425lo pol8ccr5cxcr3neg 
act425lo mememra4 act425hi act425lo 
memem478 act8103 act4dr act425tot 
act8103 pol8ccr5cxcr3neg traff4ccr10 pol4ccr6 
memem8 pol8ccr4 traff4cxcr6 mememra87 
mememra87 act425103 memnaive4 act4103 
act425103 pol8th1th2ratio mem4cmefratio     memem48 
traff4cxcr6 act810371 act8103 mememra478 
memnaive4 memem4 pol8cxcr3 mememra4 
act425tot pol8x3r4ratio pol8ccr4 act425103 
memcm878 memem478 pol8ccr6 memem478 
act410371 mememra4k act8dr   
pol4ccr6 pol8th2 traff8cxcr6   
memem878 memem878 traff8ccr10   
mememra478 mememra478 memnaive8   
memcm4 memem48 mem8cmefratio    
memcm478 act4dr mem8ememraratio             
traff8cxcr4 memem8 memcd8k   
mememra4 memcm478     
act425hladr memcm4k     
memcm8 act8dr     
act4103hladr traff4ccr3     
memem48 pol4ccr6     
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Table I-2 FC sets identified by CRF-GSEA algorithm (Phenotype is Cancer) 

CRF FC Set p-value Based FC Set t-tests Based FC Set 
act4103hladr act4103hladr act4103hladr 
act410371 act82571 act410371 
traff8cxcr5 traff4ccr3 mememra48 
traff4ccr3 act410371 act425103 
act4103 act4103 act810369 
act425103 act425103 act4103 
act82571 traff8cxcr5 memcm88 
act825 act825 act82571 
pol4th2 memcm88 traff4ccr3 
memcm88 traff8cxcr4 cd4cd8ratioLOG 
memem4 pol4th2 mememra88 
traff8ccr10 traff8ccr10 act810371 
    memcm87 
    memcm80 
    act469hladr 
    memcm40 
    memem47 
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Table I-3 FC sets identified by CRF-GSEA algorithm (Phenotype is Scl70_ab) 

 

 

 

CRF FC Set 
act82571 
pol8ccr6 
memnaive4 
memcm4 
act86925 
traff8ccr3 
pol8cxcr3 
pol8 
pol8th17 
act869hladr 
memcm478 
pol4ccr5cxcr3 
pol4ccr5 
pol4 
cd4cd8ratioLOG 
pol8ccr5negcxcr3 
pol8th1th17 
act86971 
pol4cxcr3 
act869 
act810325 
memcm47 
act8hladr25 
pol8th1 
memcm48 
pol8crth2 
pol4th1th17 
memcm88 
memem48 
pol4th17 
act871 
act46971 
act8hladr71 
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Table I-4 FC sets identified by CRF-GSEA algorithm (Phenotype is ACA) 

CRF FC Set 
pol8crth2 
memcm88 
memem88 
pol8th17 
act825 
pol4crth2 
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I.3 Appendix - PCA Loading Matrix 

Table I-5 PCA Loading Matrix for all FC Variables (First 10 Principal Components) 

 
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 

pol4 -0.114 0.134 -0.128 0.015 0.041 0.115 -0.098 0.152 -0.055 0.019 
pol8 0.076 -0.131 0.139 -0.034 -0.081 -0.142 0.056 -0.166 0.037 -0.055 
memnaive4 -0.193 0.027 0.031 0.092 -0.132 0.052 -0.018 0.161 -0.106 -0.005 
memcm4 0.151 -0.057 -0.046 -0.210 -0.012 -0.041 -0.035 -0.092 0.132 -0.111 
mememra4 0.050 0.014 0.025 0.171 0.142 0.129 0.019 -0.119 -0.020 0.214 
memem4 0.101 0.038 0.001 0.112 0.220 -0.072 0.076 -0.122 -0.011 0.114 
mememra478 -0.056 0.026 -0.004 0.158 0.098 0.026 0.000 -0.090 0.011 0.193 
mememra47 0.087 0.068 0.024 0.026 0.105 0.009 0.030 -0.076 -0.072 -0.008 
mememra48 0.077 0.012 0.044 0.089 0.076 0.098 0.065 0.014 0.069 0.216 
mememra40 0.149 -0.018 0.049 0.076 0.101 0.181 0.021 -0.082 -0.055 0.098 
memcm478 0.141 -0.055 -0.056 -0.203 -0.028 -0.046 -0.054 -0.100 0.128 -0.142 
memcm47 -0.006 -0.008 0.000 -0.060 0.071 -0.086 0.124 0.018 -0.064 0.115 
memcm48 0.096 -0.025 0.033 -0.120 0.069 0.034 0.069 0.023 0.102 0.135 
memcm40 0.116 -0.054 0.061 0.053 0.061 0.034 0.079 -0.037 -0.069 -0.007 
memem478 0.021 0.056 -0.063 0.125 0.159 -0.104 0.026 -0.129 0.037 0.114 
memem47 0.096 0.016 0.052 -0.024 0.106 -0.098 0.109 -0.064 0.034 0.019 
memem48 0.106 0.035 0.040 0.008 0.205 -0.044 0.142 -0.020 0.068 0.135 
memem40 0.155 -0.040 0.108 0.038 0.121 0.060 0.047 -0.046 -0.157 -0.024 
memcm4k 0.172 -0.041 0.108 0.049 0.144 0.101 0.051 -0.048 -0.135 0.027 
mememra4k 0.140 -0.011 0.057 0.066 0.103 0.171 0.004 -0.079 -0.070 0.094 
memem4k 0.156 -0.033 0.106 0.030 0.142 0.059 0.061 -0.034 -0.149 -0.015 
memnaive8 -0.220 -0.026 -0.019 0.005 -0.087 0.036 0.032 -0.207 -0.029 0.012 
memcm8 0.083 0.133 -0.129 -0.213 0.108 0.101 0.008 0.004 0.034 -0.047 
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mememra8 0.124 -0.060 0.190 0.089 -0.023 0.062 -0.050 0.076 0.067 0.092 
memem8 0.157 0.006 -0.059 0.050 0.077 -0.172 -0.008 0.229 -0.036 -0.073 
mememra878 -0.025 0.059 -0.012 0.139 0.042 -0.056 -0.067 -0.054 0.093 0.202 
mememra87 0.060 -0.008 0.117 0.014 -0.010 -0.025 -0.103 0.048 0.117 -0.004 
mememra88 0.095 0.036 0.063 0.013 0.052 0.012 0.019 0.034 0.087 0.175 
mememra80 0.129 -0.081 0.188 0.067 -0.035 0.089 -0.018 0.085 0.025 0.056 
memcm878 0.078 0.129 -0.130 -0.216 0.104 0.095 0.011 0.004 0.040 -0.050 
memcm87 0.058 0.105 -0.096 -0.030 0.074 0.105 -0.077 -0.007 0.004 -0.012 
memcm88 0.112 0.144 -0.077 -0.158 0.108 0.091 0.005 0.004 -0.034 0.012 
memcm80 0.101 0.051 0.007 0.021 0.107 0.159 -0.018 0.009 -0.118 0.025 
memem878 0.092 0.051 -0.176 0.048 0.036 -0.205 -0.047 0.123 0.056 0.044 
memem87 0.100 -0.010 0.051 0.007 0.021 -0.089 0.004 0.105 0.023 -0.169 
memem88 0.114 0.112 -0.083 -0.022 0.087 -0.105 -0.001 0.062 0.034 0.043 
memem80 0.107 -0.072 0.108 0.032 0.064 -0.004 0.040 0.202 -0.141 -0.136 
memcd8k 0.147 -0.120 0.159 0.049 -0.012 0.059 -0.037 0.176 -0.041 -0.077 
mememra8k 0.127 -0.099 0.168 0.055 -0.048 0.105 -0.075 0.087 0.033 0.031 
memem8k 0.110 -0.099 0.088 0.022 0.032 -0.016 0.022 0.205 -0.105 -0.170 
pol4ccr4 0.109 0.167 0.026 0.096 -0.077 -0.150 0.032 -0.143 -0.030 -0.115 
pol4ccr5 0.013 -0.025 -0.060 0.008 0.053 -0.204 0.118 -0.057 -0.268 0.089 
pol4ccr6 0.128 -0.092 -0.083 0.006 -0.011 -0.090 -0.095 -0.196 -0.062 -0.105 
pol4crth2 0.109 -0.047 -0.013 -0.044 -0.064 -0.122 0.063 -0.109 0.007 -0.054 
pol4cxcr3 0.060 -0.115 -0.079 -0.156 0.155 -0.121 0.139 -0.016 0.113 -0.016 
pol4ccr5cxcr3 -0.007 -0.067 -0.086 -0.052 0.089 -0.177 0.165 0.025 -0.177 0.102 
pol4ccr5cxcr3neg 0.037 0.045 -0.011 0.078 -0.016 -0.159 -0.004 -0.132 -0.269 0.038 
pol4ccr5negcxcr3 0.071 -0.102 -0.053 -0.155 0.138 -0.062 0.088 -0.028 0.202 -0.061 
pol4th1 0.016 -0.138 -0.059 -0.183 0.175 -0.027 0.114 0.077 0.135 0.065 
pol4th1th17 0.021 -0.170 -0.107 -0.081 0.059 -0.093 0.012 -0.078 0.010 -0.075 
pol4th2 0.048 0.221 0.061 0.113 -0.109 -0.111 0.060 -0.066 0.002 -0.065 
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pol4th17 0.147 0.005 -0.022 0.064 -0.048 -0.075 -0.136 -0.199 -0.120 -0.122 
pol8ccr4 0.065 0.234 0.030 0.051 -0.064 -0.124 0.075 -0.038 -0.018 -0.109 
pol8ccr5 0.078 -0.048 -0.150 0.082 -0.019 -0.185 -0.064 0.220 -0.073 0.067 
pol8ccr6 0.087 0.032 -0.181 0.037 -0.034 -0.143 -0.156 0.078 -0.040 0.039 
pol8crth2 0.107 0.117 -0.039 -0.138 0.034 0.004 0.051 -0.029 -0.111 -0.089 
pol8cxcr3 -0.150 -0.104 -0.111 0.054 0.083 -0.052 0.178 -0.057 -0.018 -0.092 
pol8ccr5cxcr3 0.021 -0.111 -0.132 0.035 0.032 -0.121 0.083 0.193 -0.092 0.009 
pol8ccr5cxcr3neg 0.096 0.043 -0.093 0.089 -0.061 -0.158 -0.183 0.137 -0.017 0.093 
pol8ccr5negcxcr3 -0.172 -0.067 -0.066 0.044 0.077 -0.006 0.158 -0.141 0.018 -0.103 
pol8th1 -0.152 -0.195 -0.103 -0.010 0.109 0.041 0.086 -0.042 -0.030 -0.001 
pol8th1th17 -0.024 -0.082 -0.172 0.009 0.050 -0.049 -0.104 0.064 0.016 0.035 
pol8th2 0.092 0.254 0.075 -0.023 -0.062 -0.052 -0.011 -0.039 -0.026 -0.033 
pol8th17 0.115 0.108 -0.102 -0.013 -0.022 -0.076 -0.141 0.001 -0.128 -0.001 
cd4cd8ratioLOG -0.089 0.144 -0.129 0.020 0.073 0.136 -0.074 0.154 -0.036 0.041 
pol8th1th2ratio -0.128 -0.250 -0.089 0.000 0.078 0.058 0.013 -0.017 -0.011 0.053 
pol8x3r4ratio -0.121 -0.149 -0.045 -0.038 0.055 0.062 -0.068 -0.072 -0.036 0.023 
cd8r5th2ratio -0.012 -0.074 -0.054 0.080 0.006 -0.101 -0.085 0.177 -0.029 0.082 
cd4r5th2ratio -0.062 0.031 -0.032 0.041 0.100 -0.094 0.017 0.036 -0.184 0.114 
act425hi 0.018 -0.034 0.011 -0.029 -0.082 -0.107 0.023 -0.095 0.027 0.060 
act425lo 0.044 -0.013 -0.006 0.075 -0.092 0.047 -0.154 -0.190 -0.017 -0.047 
act425tot 0.047 -0.019 -0.004 0.071 -0.105 0.030 -0.151 -0.206 -0.012 -0.037 
act469 0.066 -0.005 -0.124 0.226 -0.068 0.073 0.193 0.005 0.121 -0.094 
act471 0.032 -0.123 -0.101 0.052 -0.083 -0.011 -0.025 -0.080 -0.178 0.036 
act4103 0.123 -0.115 -0.014 -0.016 -0.152 -0.036 -0.006 -0.045 0.090 0.192 
act4dr 0.028 0.092 0.045 -0.147 -0.192 0.058 0.180 0.027 -0.051 0.142 
act825 0.116 0.150 -0.090 -0.150 0.016 0.083 0.005 -0.052 -0.053 -0.015 
act869 0.047 0.037 -0.156 0.201 -0.016 0.051 0.138 0.053 0.066 -0.154 
act871 0.083 -0.111 -0.128 0.030 -0.038 0.176 0.070 -0.009 -0.073 -0.016 
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act8103 0.041 0.075 -0.151 -0.003 0.047 0.055 -0.174 0.025 0.127 0.121 
act8dr -0.007 0.075 0.012 -0.142 -0.167 0.104 0.167 0.048 -0.145 0.083 
act42569 0.079 -0.016 -0.124 0.222 -0.087 0.082 0.166 -0.029 0.107 -0.085 
act42571 0.030 -0.130 -0.099 0.063 -0.091 -0.002 -0.068 -0.124 -0.184 0.030 
act425103 0.110 -0.105 -0.029 -0.012 -0.161 -0.043 -0.025 -0.093 0.068 0.167 
act425hladr 0.032 0.081 0.038 -0.126 -0.211 0.067 0.140 0.002 -0.052 0.118 
act46971 0.086 -0.023 -0.153 0.169 -0.124 0.036 0.161 0.025 0.106 -0.041 
act469hladr 0.084 -0.009 -0.108 0.078 -0.178 0.077 0.168 0.048 0.124 0.091 
act410371 0.095 -0.171 -0.077 -0.007 -0.147 -0.022 -0.027 -0.003 0.054 0.153 
act4103hladr 0.107 -0.078 -0.057 -0.037 -0.175 -0.032 0.017 -0.020 0.117 0.167 
act471hladr 0.058 -0.050 -0.082 -0.069 -0.218 -0.006 0.130 0.049 -0.115 0.187 
act82571 0.093 -0.007 -0.202 -0.092 -0.020 0.147 -0.017 0.008 -0.116 -0.006 
act86925 0.047 0.118 -0.149 0.065 0.020 0.101 0.053 -0.046 -0.016 -0.068 
act86971 0.096 -0.017 -0.145 0.153 -0.022 0.115 0.186 0.006 0.054 -0.096 
act869hladr 0.037 0.038 -0.114 0.107 -0.119 0.088 0.231 0.091 0.016 -0.111 
act810325 0.040 0.110 -0.153 0.020 0.025 0.055 -0.154 -0.047 0.077 0.093 
act810369 0.055 0.028 -0.164 0.121 0.002 0.094 0.005 -0.044 0.135 -0.056 
act8103hladr -0.016 0.084 -0.118 0.070 0.023 -0.009 -0.025 -0.076 -0.009 0.122 
act810371 0.074 -0.065 -0.155 -0.004 0.007 0.098 -0.172 -0.018 0.063 0.050 
act8hladr25 0.022 0.120 -0.045 -0.169 -0.095 0.066 0.114 -0.022 -0.087 0.057 
act8hladr71 0.001 -0.098 -0.091 -0.073 -0.092 0.099 0.048 0.016 -0.221 -0.026 
traff4ccr2 0.038 -0.025 0.040 -0.103 -0.115 -0.083 0.083 0.005 -0.025 0.104 
traff4ccr3 0.137 -0.069 0.004 -0.062 -0.127 0.027 -0.089 -0.027 0.059 -0.054 
traff4cxcr4 -0.081 0.163 0.061 0.036 -0.022 -0.152 0.053 0.031 0.092 0.048 
traff4cxcr5 0.087 -0.130 -0.045 0.095 0.018 -0.035 -0.119 -0.055 -0.001 -0.131 
traff4cxcr6 0.017 0.040 0.076 -0.058 -0.067 -0.040 0.028 -0.005 0.106 0.027 
traff8ccr2 0.022 0.024 -0.014 -0.048 -0.087 -0.014 0.046 0.032 -0.146 0.066 
traff8ccr3 -0.001 -0.020 -0.067 -0.105 0.000 0.127 -0.113 0.005 -0.086 -0.040 
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traff8cxcr4 -0.149 0.139 -0.033 0.007 0.030 -0.125 0.096 -0.137 0.048 0.022 
traff8cxcr5 -0.004 -0.051 -0.122 -0.057 -0.019 0.102 -0.069 -0.058 -0.147 -0.042 
traff8cxcr6 0.050 0.018 0.015 0.040 0.008 -0.003 0.103 0.099 0.023 -0.118 
traff4ccr10 0.049 -0.013 -0.022 -0.054 -0.048 -0.081 0.049 0.014 -0.005 0.091 
traff8ccr10 0.029 -0.041 -0.062 -0.055 -0.027 -0.019 -0.002 0.062 -0.001 0.085 
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I.4 Random Walk based on Absolute Value of Ranked list 
 

 

  

0 20 40 60 80 100 120

0
5

10
15

20
25

30
35

                 

   Ranked Flow Cytometry Variable 

D
is

pl
ac

em
en

t 

Response is ILD – Enrichment Score = 35.24 



198 

 

VITA 
 

Hongtai Huang was born and raised in Swatow, China on January 20th, 

1987. He received his bachelor degree in Environmental Sciences in Sun 

Yat-Sen University (SYSU) in 2009. He was a research assistant at the 

Institute of Environmental Sciences at SYSU in 2010. From the fall of 2010 

to the spring of 2011, he served as a student consultant at Johns Hopkins 

University (JHU). In December 2011, he received his masters degree in 

Environmental Economics and Management at JHU. His masters research is 

on Mississippi river delta diversion project design. He coauthored a paper 

“Cost analysis of water and sediment diversions to optimize land building in 

the Mississippi River delta” which won the 2013 Water Resources Research 

Editor’s Choice Award. He was recruited as a doctoral student at the 

department of Geography and Environmental Engineering at JHU in June 

2012. His major research interests involve environmental decision making, 

environmental health and autoimmune disorders.  

He was also a mentor for four students in the Women In Sciences and 

Engineering (WISE) program from 2011 to 2013.  

 


	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	A.1 Systemic Sclerosis
	A.2 Literature Review - Methods
	A.2-1 Mechanistic Models
	A.2-2 Data-Driven Models

	Dissertation Outline

	B. DATA
	B.1 Flow Cytometry
	JHU Data Set

	C. METHODOLOGY
	C.1 Overview
	Principal Component Analysis
	C.3 Data Mining and Partitioning Methods
	C.3-1 Models Implemented
	C.3-2 Evaluation Criteria 
	C.3-2-1 Predictive Accuracy
	C.3-2-2 Goodness of Fit


	C.4 Gene Set Enrichment Analysis
	C.4-1 GSEA Algorithm
	C.4-2 Permutation Test

	C.5 Randomized Filter Design and Testing for ILD vs. no-ILD Classification
	C.6 Stepwise GLM
	C.6-1 ​Drop-in-Deviance test


	RESULTS
	D.1 Predictor variable correlation - PCA
	D.2 Data Mining Model Performance
	GSEA Performance
	Robustness of the GSEA algorithm
	D.4-1 Random Walk with differing FC set sizes
	Robustness of the GSEA Permutation Test

	D.5 Refinements in Filter Design 
	D.6 Validation of Randomized Filter Design
	D.6-1 Validation Test A 
	D.6-1-1 Test A Protocol
	D.6-1-2 Validation Test A Results 

	D.6-2 Validation Test B 
	D.6-2-1 Test B Protocol
	D.6-2-2 Validation Test B Results 


	D.7 Generalized Linear Regression Model Results 
	D.7-1 Case-Influence Statistics 

	D.8 Partial Dependence Analyses
	D.9 Phenotype as Cancer
	D.9-1 CRF-GSEA
	Stepwise GLM
	D.9-3 Diagnostic Statistics 
	D.9-4 Partial Dependence Analyses

	ILD – Cancer GSEA Intercomparison
	Bio-informed FC Sets
	D.12  Student’s t-tests Based FC sets
	D.13  p-value Based FC Sets
	D.13-1 Motivation and Procedure
	D.13-2 Phenotype is ILD
	D.13-2-1  Comparison based on ROC

	D.13-3 Phenotype is Cancer
	D.13-3-1 Comparison between Ranked lists


	D.14 Other Phenotypes
	D.14-1 Scl70_ab
	D.14-2 ACA


	DISCUSSION
	E.1 Data Mining
	E.2 Other Data Mining Methods 
	E.3 Gene Set Enrichment Analysis
	GSEA Robustness
	E.3-2 The GSEA Ranked List
	E.3-3 GSEA – FC Set Determination 
	E.3-4 GSEA – Permutation Test

	Randomized Filter Design
	E.5 Clinical Value of Screening Tool 
	E.6 Biological Interpretation 
	E.7 Issues Regarding FVCstpp  
	E.8 Phenotype Specificity (ILD vs. Cancer)
	E.9 Statistical Inference
	E.9-1 Stepwise GLM
	E.9-2 Partial Dependence Analysis 


	F. CONCLUSIONS
	G. FUTURE RESEARCH
	H. REFERENCES 
	I. APPENDIX
	I.1 Appendix - FC Variable Panels
	I.2 Appendix FC sets identified by CRF-GSEA algorithm
	I.3 Appendix - PCA Loading Matrix
	I.4 Random Walk based on Absolute Value of Ranked list

	VITA

