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Abstract

Super-saturated water body can leads to the death of fish inhabiting it. A pos-

sible way to accelerate the reduction of the air concentration in water is to inject

bubbles in order to increase the gas-liquid exchange surface. To investigate the effec-

tiveness of this technique, two different methods, i.e., Lagrangian-Eulerian(L-E) and

Eulerian-Eulerian(E-E), can be used to simulate the bubble-water mixture. Numeri-

cal simulations using these two different methods have been set up, and comparison

between the results from these two methods have been conducted. A good match

between the two methods when the fluid is quiescent is found, while there is a small

difference when the liquid is allowed to flow by the drag of the buoyantly rising

bubbles. Possible reasons for these differences will be described.
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Secondary Reader: Prof. Rajat Mittal
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Chapter 1

Introduction

1.1 Background

Super-saturated water bodies are reported1 to kill their inhabitants, fish. The

process is similar to the one that leads to the so called decompression sickness expe-

rienced by deep sea divers, that is, dissolved nitrogen and oxygen form gas bubble

inside fish’s blood vessel because, in a lower-pressure environment, gas dissolved in

the blood tends to come out of solution.

To solve this problem, it is necessary to reduce the amount of super-saturated

air in water. However natural processes including diffusion and convection are very

inefficient. Diffusion is inefficient because the mass diffusivity of dissolved air in

water is very small; convection can bring the water to the surface, but the last few

millimetres present a big obstacle because air has to diffuse the layer. In a previous
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CHAPTER 1. INTRODUCTION

work, Prosperetti and Geng2 proposed a way to accelerate the reduction of air by

injecting bubbles into the super-saturated water body, and performed some laboratory

experiments showing the conceptual feasibility of a method of this type. According

to them, injecting bubbles can lead to the reduction of air by two processes:

1. Firstly, the bubbles greatly increase the mass exchange surface between air and

water. Dissolved air can be absorbed by the air bubbles by the process of

diffusion, and then carried to the atmosphere with the bubbles.

2. Secondly, the bubbles can bring up water from deep regions towards the surface

to directly contact with atmosphere. In this process, mixing between low and

high concentration regions will also be increased, which in turn leads to the

reduction of concentration in more super-saturated region.

The aim of this essay is to perform a full and in-depth examination of this tech-

nique by numerical simulation. There are two phases in this system, which are cou-

pled to each other by mass and momentum transfer, and both are subject to two-way

forcing, that is, not only are the bubbles affected by the fluid field, but they also

provide reaction effects. Currently, there are three possible models to simulate this

bubble-water mixture, i.e., fully resolved bubble model, Lagrangian-Eulerian(L-E)

model, and Eulerian-Eulerian(E-E) model. Fully resolved bubble model3,4 treats the

bubble surfaces as moving boundaries for the liquid, and applies certain boundary

conditions for velocity, pressure and concentration on them. While it captures most

2



CHAPTER 1. INTRODUCTION

of the physics, it is so computationally expensive that the number of bubbles it is able

to simulate is way insufficient with respect to that required by the problem described

above. The latter two models are less accurate physically, but they make it possible

to simulate realistic conditions with millions of bubbles.

The L-E approach treats the dispersed air bubble phase as point sources and tracks

the motion of each bubble individually, while the liquid phase is described using the

ordinary Eulerian representation. The E-E approach uses the Eulerian description

for both dispersed and liquid phases. We have developed the computational code

based on flow solver, the so called Bluebottle developed by Adam Sierakowski,5 and

the bubble model is modified from Shigan Chu’s original work.6 Powered by CUDA

parallel computing, the code is able to efficiently simulate this multiphase flow with

up to tens of millions of bubbles and yield intriguing and instructive results.

1.2 Structure of the essay

This essay will present in detail the works related with the L-E model, including

its theoretical basis and numerical implementation. It will also give a brief summary

of the governing equations used in E-E model and the difference between L-E and

E-E models theoretically. Finally, numerical comparison between these two models

will be shown.

The liquid we are concerning about is water under standard conditions. The

3



CHAPTER 1. INTRODUCTION

bubbles are constituted by air, which is assumed to be an ideal gas. The physical and

computational values for all the parameters involved in this problem are summarized

in Table 1.1

Table 1.1: Parameter values.

Parameters Values
ρf 103 kg/m3

ν 10−6m2/s
ρ0 1.225 kg/m3

D 2× 10−9m2/s
H 10.3m

csat,0 2.27× 10−2kg/m3

g 9.8kg× m/s2

The simulation domain and boundary conditions are chosen carefully in such a

way that an experiment water tank or a segment of river can be simulated. Detailed

information about this can be found in Chapter 4. Air bubbles are injected at a

constant rate through the bottom of the domain by a model of bubble generator,

which will be described in section 3.3, and they will disappear immediately as they

reach the top the domain as long as the boundary conditions on the top are not

periodicity. Bubbles passing a periodic boundary will come back into the domain

through the opposing boundary. This is the same as what will happen in reality.

There are two computational results we are particularly interested in. The first one

is the average dissolved air concentration in the domain, which directly shows the

effectiveness and efficiency of the technique of injecting bubble on the reduction of

dissolved air supersaturation. The second one is the total bubble number in the

4



CHAPTER 1. INTRODUCTION

domain, which is closely related to the rate of dissolved air concentration reduction.

As mentioned above, bubbles are injected at a constant rate and will disappear after

they reach the top of the domain. Given the bubble residence time being the same, the

total bubble number should be only dependent on the bubble injection rate. However,

the flow prompted by the injection of the bubbles will change the bubble residence

time dramatically, thus in turn change the total bubble number. So the total bubble

number gives a overall description of the flow field. The comparison between L-E and

E-E models will focus on the above two results.

5



Chapter 2

Theoretical Model

The Lagrangian-Eulerian approach is widely used to calculate phenomena in mul-

tiphase flow systems, such as particle laden flow.7 Its theoretical foundations have

been lay down by previous researchers, and its mathematical formation has long

been available.8 There are many possible representations for the dispersed phase,9

e.g.,point particles,10 statistically averaged field and so on.11 The method this essay

uses for its greatest part is adopted from previous works by Prosperetti12 for the

specific problem addressed.

The merit of the L-E approach lies in the fact that it finds a good balance be-

tween computational complexity and simulation accuracy. It is not as accurate as

the methods where air bubbles are fully resolved, but makes it possible to simulate

millions of bubbles, as well as showing some detailed flow and bubble features with

relatively inexpensive computational costs.

6



CHAPTER 2. THEORETICAL MODEL

2.1 Momentum equation for water-bubble

mixture

We start from the general form of the volume-averaged momentum equation for

water-air mixture:

3(1− α)ρf
du

dt
+

1

V

∑
i

d(mivi)

dt
= ∇ · σ + (1− α)ρfg +

1

V

∑
i

mig, (2.1)

where

α =
1

V

∑
i

vi, (2.2)

is the volume fraction of air; u is the liquid velocity field; mi,vi, vi are the mass, ve-

locity and volume for the ith bubble; V is the volume of the domain. The summations

are over all the bubbles. Rewrite the above equation as

ρf
du

dt
= ∇ · σ + ρfg + αρf

(
du

dt
− g

)
+

1

V

∑
i

[
mig − d(mivi)

dt

]
. (2.3)

On the right hand side, the last term is the reaction force from air bubbles to water,

and the second term is due to the volume occupancy by the air bubbles. Furthermore,

the equation can be put into the point-particle form, which is

ρf
du

dt
= ∇ · σ + ρfg +

Np∑
i=1

[
mf,i

dui

dt
− d(mivi)

dt
− (mf,i −mi)g

]
δ(x − xi), (2.4)

7



CHAPTER 2. THEORETICAL MODEL

where mf,i = ρfvi is the mass of water that would occupy the volume occupied by

the air bubble with index i. The average stress in the mixture is approximated by

the stress in water, which is treated as an incompressible Newtonian fluid:

σ = −p+ µ(∇u+ u∇), (2.5)

and we use the modified pressure p̃ = −(p − ρgz),which includes the hydrostatic

pressure. Finally the averaged momentum equation is:

ρf
du

dt
= −∇p̃+ µ∇2u+ F, (2.6)

where F is the total force exerted on the fluid due to the replacement of air bubble

for water, and is defined as follows:

F =

Np∑
i=1

[
mf,i

dui

dt
− d(mivi)

dt
− (mf,i −mi)g

]
δ(x− xi). (2.7)

The first term is a correction to the inertia of the liquid, the second term comes from

the momentum change of the air bubbles, and the third term is the buoyancy force,

which is the dominant term.

The complete form of the mass conservation equation for the liquid phase is:

∇ · u =
∂α

∂t
+ α∇ · u+ u · ∇α. (2.8)

8



CHAPTER 2. THEORETICAL MODEL

The problem this essay deals with has a low volume fraction for the air bubbles part

(within 5%). The bubble injection rate we will use also ensure that the rate of change

of volume fraction ∂α/∂t is small. Simple dimensional analysis will show that the

third term on the right hand side of equation (2.8) is also small compared to the term

on the left hand side. The length scale L for the variances of velocity and volume

fraction are about to be the same, because both of them are caused by the injection

of air bubbles. Suppose the velocity scale is U we have:

∇ · u ∼ U

L
, (2.9)

u · ∇α ∼ α
U

L
, (2.10)

so the relative magnitude of these two terms is:

u · ∇α

∇ · u
∼ α ≪ 1. (2.11)

From the above discussion, it can be seen that all the three term on the right hand side

of equation 2.8 can be neglected to retain the continuity equation for incompressible

flow:

∇ · u = 0. (2.12)

9



CHAPTER 2. THEORETICAL MODEL

2.2 Scalar diffusion equation

We start from the general conservation equation in a control volume:

d

dt

∫
Vf

cdVf =

∫
Vf

QdVf −
∮
Sf

cu · ndSf −
∮
Sf

j · ndSf , (2.13)

where c is the density of air dissolved in water, and it has a dimension of kg· m−3.

On the right hand side, the first term is the volume source,

Q = −
Np∑
i

dmi

dt
δ(x− xi).

The third term is the diffusive transport of mass through the control surface, where

j is the average diffusive mass flux, and according to Fick’s law,

j = −D∇c,

where D is the mass diffusivity of air in water. So upon volume averaging and using

the continuity equation 2.12, the general form of differential equation for concentra-

tion of air in water is:

(1− α)
dc

dt
= −

Np∑
i

dmi

dt
+∇ · ((1− α)D∇c). (2.14)

10
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Again it can be put into the point-particle form, omitting the termDα because α ≪ 1,

then we have:

dc

dt
= D∇2c+

Np∑
i

[
d(mc,i)

dt
− dmi

dt

]
δ(x− xi), (2.15)

where mc,i = civi is the mass of air that would be dissolved in the volume occupied by

ith bubble. Because ci << ρair, mc,i << mi and thus is negligible, finally the scalar

diffusion equation is

dc

dt
= D∇2c−

Np∑
i

dmi

dt
δ(x− xi) (2.16)

2.3 Air bubble model

The Lagrangian approach is applied here, so the air bubble position xi can be

found by integrating

dxi

dt
= vi. (2.17)

The equation of motion for each air bubble is

d(ρbvv)

dt
= −3πCdρfdb(v − u) + Caρf

[
v

(
du

dt
− dv

dt

)
+ (u− v)

dv

dt

]
+ρfv

du

dt
+Clρfv(∇× u)× (v − u) + (ρb − ρf )vg.

On the right hand side, the first term is the drag force, the second one is added

mass force, the third one is the virtual buoyancy, followed by lift force, gravity and

buoyancy. Virtual buoyancy comes from the pressure distribution on the surface of

11
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the bubble due to the acceleration of the fluid. Lift force is neglected, giving

d(mv)

dt
= −3πfµdb(v − u) + Caρf

[
v

(
du

dt
− dv

dt

)
+ (u− v)

dv

dt

]
+ (m−mf )g.

(2.18)

Ca =
1
2
, and f can be determined from the following experimental correlation:

f = 1 + 0.15Re0.687p , (2.19)

where Reb = ρdb|u− v|/µ, is the Reynolds number defined on the basis of velocity

difference between the bubble and local fluid. The change of bubble mass is modelled

by

dmi

dt
= πd2bhi(ci − csat,i), (2.20)

where csat,i is the saturation concentration at the surface of bubble with index i. hi

can be determined by the standard correlation

Sh =
hidb
D

= 2 + 0.6Re
1/2
b S1/3

c , (2.21)

where Sh is the Sherwood number and Sc = ν/D is the Schmidt number. Therefore

the final form of the mass transfer equation is:

dmi

dt
= πdbShD(ci − csat,i). (2.22)

12
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Air is assumed to be an ideal gas, so ideal gas law can be applied to every bubble:

vi =
miRsT

pi
, (2.23)

where Rs is the specific gas constant. Volume change of the air bubble can then be

described by the following equation:

dvi
dt

=
d

dt

(
miRsT

pi

)
=

RsT

pi
πdbShD(ci − csat,i)−

miRsT

p2i
∇pi · vi. (2.24)

Define H = p0/(ρfg) ≃ 10.3 m. By further assuming that temperature is constant

and pressure in water is approximately the hydrostatic pressure, p = p0 + ρfgh,the

above equation can be rewritten as:

dvi
dt

=
H

H + h
πdbShD

(ci − csat,i)

ρ0
+

1

H + h
viwi, (2.25)

where wi = −dh
dt

is the vertical velocity of ith bubble. It is preferable to write the

above equation in the form of bubble diameter to have a nicer form:

ddb
dt

=
2

1 + h/H

ShD

db

(ci − csat,i)

ρ0
+

1

3

1

H + h
dbwi (2.26)

Finally, csat,i can be computed from Henry’s Law

p = kHc, (2.27)

13
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where kH is constant for dissolved air. We assume that the pressure disturbance

caused by the flow prompted by the injected bubbles are negligible compared to the

hydrostatic pressure. csat,0 is the saturation concentration of dissolved air in water

under standard atmospheric pressure, then csat,i can be represented as

csat,i = (1 +
h

H
)csat,0. (2.28)

2.4 Summary of equations in E-E model

The governing equations for the E-E model also comes from the previous works by

Prosperetti,13,14 where 5 extra field variables are introduced to describe the dispersed

bubble phase:

1. n: number density field, which describes the distribution of bubble position;

2. vb: bubble volume field, which describes the distribution of bubble volume;

from vb, the bubble mass field mb and bubble diameter field db can be directly

computed;

3. w: bubble velocity filed, which describes the distribution of bubble velocity.

With the definitions given above, the governing equations for E-E models can be

developed.

14
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First, the mixture momentum equation is:

ρf
du

dt
= −∇p̃+ µ∇2u+ F, (2.29)

where

F = nvb
ρb − ρ

ρ
g. (2.30)

F is just the buoyancy force.

Then, the bubble motion equation is:

∂n

∂t
+∇ · (wn) = 0. (2.31)

Bubble number density is allowed to be changed by convection, and the convective

velocity is the bubble velocity field, which is explicitly computed from

w = u− wT
g

∥g∥
, (2.32)

where wT is the terminal velocity field, and is computed by implicitly solving the

equation balancing drag and buoyancy:

wT =
ρf − ρb

ρf

d2b∥g∥
18νff

, (2.33)

where f is available from equation (2.19).

15
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Finally the mass exchange equation is :

dc

dt
= D∇2c− Ṁ, (2.34)

∂

∂t
(ρv) +w · (ρv) = Ṁ, (2.35)

Ṁ = πdbShD(c− csat,i). (2.36)

The L-E model and E-E model resemble each other in many ways, e.g., the mixture

momentum equation and the concentration equation have the same form. However

the difference between the two models are noteworthy, and they are the following:

1. The fundamental difference between the two models lies in that the L-E model

tracks each bubble, while the E-E model describes bubbles using a density;

2. The L-E model allows bubbles to accelerate and accounts the volume fraction,

which adds two extra forcing terms into the mixture momentum equation;

3. The E-E model assumes all the bubbles to be equal in each cell.

2.5 Average model

For the purpose of numerical testing, a simplified average model is developed. The

volume average of any quantity q in water phase is defined as,

⟨q⟩(x, t) = 1

VL

∫
VL

q(x+ ξ, t)d3ξ. (2.37)

16
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All the quantities in angle bracket are the volume averages of that quantity, and can

be computed from the above equation. Assuming all periodicity boundary conditions

on the faces of the computational domain, then scalar diffusion equation (2.16) can

be integrated over the entire computational domain,

∫
VL

∂c

∂t
dVL = −

Np∑
i

ṁi

∫
V

δ(x− xi)dlV = − 1

V

Np∑
i

ṁi. (2.38)

Note that the volume integral of the convection and diffusion terms are zero because of

the periodicity boundary conditions and thus don’t appear in equation 2.38. Further

assume that the rate of change of α is negligible. The above equation can be simplified

to:

(1− α)
d

dt
⟨c⟩ = − 1

V

Np∑
i

ṁi. (2.39)

Define particle average p as

p =
1

Np

∑
i

pi. (2.40)

The above equation then becomes

d

dt
⟨c⟩ = − ⟨n⟩

1− α
ṁi, (2.41)

17
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where ⟨n⟩ = Np/V is the average number density in the entire computational domain.

Upon putting the expression for ṁi into the right hand side, we find:

d

dt
⟨c⟩ = − ⟨n⟩

1− α
πdbShD(ci − csat,i). (2.42)

Define cover,i = ci−csat,i, which is the concentration over saturation. csat,i is considered

to be constant over the entire computation domain, so we have

⟨cover⟩ = ⟨c⟩ − csat,i,
d

dt
⟨cover⟩ =

d

dt
⟨c⟩, cover,i = ci − csat,i. (2.43)

Equation (35) can then be rewritten in cover,i; for convenience, the subscript over is

omitted from here on,

d

dt
⟨c⟩ = − ⟨n⟩

1− α
πdbShDci. (2.44)

Let

πdbShDci = πShDdbci + [πShDdbci]
′. (2.45)

If the bubble number is large and they are evenly distributed in the domain, ⟨c⟩ and

ci are approximately the same; upon neglecting the second term on the right hand

side in the above equation, we find:

πdbShDci = πShDdb⟨c⟩. (2.46)

18
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Finally equation (2.44) becomes

d

dt
⟨c⟩ = − ⟨n⟩

1− α
πShDdb⟨c⟩. (2.47)

Apply particle average on the diameter changing equation (2.26)

ddb
dt

=
2

1 + h/H

ShD

db

ci
ρ0

+
1

3

1

H + h
dbwi. (2.48)

The second term in the right hand side accounts for diameter change due to pressure

change, which is much smaller the the first term. Moreover, it is exactly zero for a

static bubble, so we have

ddb
dt

=
2

1 + h/H

ShD

db

ci
ρ0

(2.49)

Still we can rewrite it into the combination of two terms:

2

1 + h/H

ShD

db

ci
ρ0

=
2

1 + h/H

ShD

ρ0

ci

db
+

[
2

1 + h/H

ShD

db

ci
ρ0

]′
, (2.50)

where the second term is neglected. The final form becomes

ddb
dt

=
2

1 + h/H

ShD

ρ0

ci

db
≃ 2

1 + h/H

ShD

ρ0

⟨c⟩
db

(2.51)
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Upon dividing equation (2.47) by equation (2.51), we find:

⟨ċ⟩
ḋb

= −π(1 + h/H)⟨n⟩ρ0
2(1− α)

db
2
= −3κ⟨n⟩ρ0db

2
, (2.52)

where κ is a positive dimensionless number defined by

κ =
π(1 + h/H)

6(1− α)
. (2.53)

So

d

dt
(⟨c⟩+ κ⟨n⟩ρ0db

3
) = 0. (2.54)

Suppose the initial condition is ⟨c⟩|t=0 = c0, db|t=0 = d0, from the above equation, we

have the equality

⟨c⟩+ κ⟨n⟩ρ0db
3
= c0 + κ⟨n⟩ρ0d30 = m0. (2.55)

If the pressure variation in the computational domain can be neglected, i.e.,h ≪

H, ρbubble = ρ0,

κ =
π

6(1− α)
=

π

6

V

Vf

. (2.56)

Then equation (2.55) is equivalent to

⟨c⟩Vf +Np
π

6
ρ0db

3
= c0Vf +Np

π

6
ρ0d

3
0, (2.57)
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which is just the mass conservation of air in the computational domain: total mass

of dissolved air in water and air in bubbles doesn’t change. Eliminate ⟨c⟩ in equation

(2.51) using equation (2.55),

d∗bdd
∗
b

1− d∗b
3 =

πSh

1− α
D⟨n⟩d1dt, (2.58)

where d31 = d30+c0/κ⟨n⟩ρ0 is the biggest average diameter the bubbles can ever reach;

d∗b =
db
d1
. By integrating the above equation and using initial conditions, we find:

1

3
ln

(
d1 − d0

d1 − db

)
+

1

6
ln

(
db

2
+ dbd1 + d21

d20 + d0d1 + d21

)

− 2 arctan

(
12d1(db − d0)

13d21 + 16dbd0 + 8d1(db + d0)

)
=

πSh

1− α
Dd1⟨n⟩t. (2.59)

By using equation (2.55), similar result can be found for ⟨c⟩. The evolution of ⟨c⟩

and db can be easily found by solving equation 2.59 and the corresponding equation

for ⟨c⟩, which can be used to approximately test the code with the full model.
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Numerical Implementation

The system of equations is discretized with finite difference methods, and a code

was developed accordingly to integrate them to find the numerical solutions. The code

was written in C with the parallel computing platform CUDA15 created by NVIDA.

CUDA makes use of the powerful modern GPUs, which increase the computing per-

formance dramatically .

3.1 Flow solver with scalar convection-diffusion

equation

The grid arrangement and discretization for the momentum equation follows the

convention adopted from the flow solver. A regular Cartesian grid in a staggered-grid

arrangement is used, with scalars located at cell centers and each velocity and body
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force component at their respective face centers. A second order projection method16

is used to discretize the incompressible Navier-Stokes equations:

u∗ = un +∆t
[
−(u · ∇u)n+1/2 + ν(∇2u)n+1/2

]
, (3.1)

un+1 = u∗ − ∆t

ρf
∇pn+1/2. (3.2)

The terms with superscript n + 1
2
are intermediate terms, which are advanced using

the Adams-Bashforth method. To enforce the divergence-free condition in the N-S

equations, pressure Poisson equation is obtained by taking the divergence of equation

(3.2)

∇2pn+1/2 = ρf
∇ · u∗

∆t
. (3.3)

This equation is solved with zero normal gradient boundary conditions on the 6

surfaces of the domain. Finally, the intermediate velocity u∗ is projected onto un+1

via (3.2).

The convective terms are first written in conservative forms, then discretized using
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a second order central difference scheme. The formula for the x-component is :

(u · ∇u) · ex

⏐⏐⏐⏐⏐
i,j,k

=
(ui+1,j,k − ui,j,k)

2 − (ui+1,j,k + ui−1,j,k)
2

4∆x

+
(ui,j+1,k + ui,j,k)(vi,j+1,k + vi−1,j+1,k)− (ui,j,k + ui,j−1,k)(vi,j,k + vi−1,j,k)

4∆x

+
(ui,j,k+1 + ui,j,k)(wi,j,k+1 + vi−1,j,k+1)− (ui,j,k + ui,jj,k−1)(2i,j,k + wi−1,j,k)

4∆x
.

(3.4)

Similarly, the discretized formula for the x-component of the the diffusive terms is:

(∇2u) · ex

⏐⏐⏐⏐⏐ = ui+1,j,k − 2ui,j,k + ui−1,j,k

∆x2
+

ui,j+1,k − 2ui,j,k + ui,j−1,k

∆y2

+
ui,j,k+1 − 2ui,j,k + ui,j,k−1

∆z2
. (3.5)

The time step size of forward in time central in space(FTCS) scheme for a typical

convection-diffusion equation should satisfy the stability constraint,17 that is:

∆t ≤ min

{
∆x

|u|
,
∆x2

2ν
,
2ν

u2
,
∆y

|v|
,
∆y2

2ν
,
2ν

v2
,
∆z

|w|
,
∆z2

2ν
,
2ν

w2

}
. (3.6)

To satisfy this condition, the flow solver determines the time step by the following

formula:

∆t =
CFL

|u|
∆x

+ 2ν
∆x2 +

u2

2ν
+ |v|

∆y
+ 2ν

∆y2
+ v2

2ν
+ |w|

∆z
+ 2ν

∆z2
+ w2

2ν

, (3.7)

where CFL is a constant between zero and one. In our simulation, we set CFL to be
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equal to 1. An extra scalar convection-diffusion equation needs to be solved. Values

of the concentration field are located at each cell center. As long as the flow field at a

certain time step is known, the scalar equation can be integrated independently. The

convective term is firstly written in conservative form:

u ·∇c = ∇ · (uc) = ∂(uc)

∂x
+

∂(vc)

∂y
+

∂(wc)

∂z
. (3.8)

Since velocity values are located at face centers, while concentration values are located

at cell centers, all three velocity components are interpolated to cell center using

simple linear interpolation, then a compact first order upwind scheme is used. Suppose

the convective term is discretized around a cell center, indexed with i, j, k. Define:

uc =
ui−1/2,j,k + ui+1/2,j,k

2
, (3.9)

cw =
ci−1,j,k + ci,j,k

2
, (3.10)

ce =
ci+1,j,k + ci,j,k

2
. (3.11)

Index 1/2 indicates that u is face centred, so uc is just the interpolated x-velocity

on cell center, and ce and cw are concentrations at two neighbouring face centers in

x-direction, where the x-position of ce is to the left of that of cw. Then the term
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∂(uc)/∂x can be discretized as:

If uc > 0:
∂(uc)

∂x

⏐⏐⏐⏐⏐
i,j,k

=
ci,j,kuc − cwui−1/2,j,k

1
2
∆x

,

If uc < 0:
∂(uc)

∂x

⏐⏐⏐⏐⏐
i,j,k

=
ceui+1/2,j,k − ci,j,kuc

1
2
∆x

. (3.12)

The other two terms are computed similarly.

The diffusive term is discretized with second order central difference scheme:

(∇2c)

⏐⏐⏐⏐⏐
i,j,k

=
ci+1,j,k − 2ci,j,k + ci−1,j,k

∆x2
+

ci,j+1,k − 2ci,j,k + ci,j−1,k

∆y2

+
ci,j,k+1 − 2ci,j,k + ci,j,k−1

∆z2
. (3.13)

A second-order variable time step Adams-Bashforth method is also used to inte-

grate the equation over time. Similar stability constraints also apply to the scalar

convection-diffusion equation, which is:

∆t ≤ min

{
∆x

|u|
,
∆x2

2D
,
2D

u2
,
∆y

|v|
,
∆y2

2D
,
2D

v2
,
∆z

|w|
,
∆z2

2D
,
2D

w2

}
. (3.14)

In the simulations, the dominant part of (3.7) and (3.14) is mostly w2/2D and other

similar terms. And since D is much smaller than ν, the time step size determined

from (3.14) is mostly much smaller than that from (3.7). There are two ways to

handle this. The first way is to use the smaller time step as a sub time step, that
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is integrate the N-S equations using the longer time step, then integrate the scalar

equation as well as the bubble equations using the smaller time step until it reaches

the span of the longer time step. This is more computationally efficient, however, it

compromises accuracy especially since there is a two-way coupling between the flow

and the bubbles. So the second way is preferred, i.e., using the smaller time step for

all the equations.

In the mixture momentum equation, scalar diffusion equation and the bubble

momentum equation, there are terms with subscript i, like ui, dui/dt, ci, which are

fluid properties at the bubble position. All these values are interpolated with a

second order Lagrangian interpolation using values from eight neighboring cells. In

one dimension, the weight functions are

lx[1] =
x− x1

x2 − x1

, lx[2] =
x− x2

x1 − x2

, ly[1] =
y − y1
y2 − y1

,

ly[2] =
y − y2
y1 − y2

, lz[1] =
z − z1
z2 − z1

, lz[2] =
z − z2
z1 − z2

,

where x1, x2, y1, y2, z1, z3 can be the position of the cell center or face center depending

on the value type needs to be interpolated. Finally the 3-D weight is

w[i][j][k] =
lx[i]ly[j]lz[k]∑2

m,n,p=1 lx[m]ly[n]lz[p]
i, j, k = 1, 2. (3.15)
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3.2 Delta function and source implemen-

tation

The source terms have the form fbδ(x − xb). To numerically approximate them,

value of fb needs to be available at all the cells in the domain. The conservation of

mass or momentum in equation 2.6 and 2.16 requires

∫
V

fbδ(x− xb)dV =
∑
i,j,k

vcfi,j,k, (3.16)

where V is the volume of the entire domain, vc is the volume of a cell, and fi,j,k is

the value of source terms at cell with index i, j, k. Therefore, we have

fb
vc

=
∑
i,j,k

fi,j,k. (3.17)

Suppose that fi,j,k can be represented by fb/vc using some weight function wi,j,k, so

that fi,j,k = wi,j,kfb/vc. From the above conservation law, one can conclude that

∑
i,j,k

wi,j,k = 1. (3.18)

The summation is over all the cells in the domain. In the essay two kinds of weight

functions have been used. The first one uses the simplest delta function weight, by

setting wi,j,k = 1 in the cell where the bubble center is and wi,j,k = 0 in all the other
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cells. The second one uses a Gaussian function

g(|x− xi|) =
1

(2πσ2)3/2
e−

|x−xi|
2

2σ2 , (3.19)

where σ is the width of the Gaussian kernel and is taken to be the smallest length of

the three sides of each cell. In our simulation, we cut off the Gaussian weight to a

cube of 27 cells and rescale it to make sure the conservation law is satisfied. Suppose

the index for the cell where the bubble center is is i0, j0, k0, define ∆i = i− i0,∆j =

j− j0,∆k = k−k0, l
2
i,j,k = (∆i∆x)2+(∆j∆y)2+(∆k∆z)2, where ∆x,∆y,∆z are the

length of the three sides of a cell. If −1 ≤ ∆i,∆j,∆k ≤ 1, formula for the Gaussian

weight we use is as follow:

I =
∑

−1≤∆i,∆j,∆k≤1

1

(2πσ2)3/2
e−

l2i,j,k

2σ2 , (3.20)

wi,j,k =
1

I(2πσ2)3/2
e−

l2i,j,k

2σ2 ; (3.21)

otherwise, wi,j,k is zero. By either using the delta or Gaussian weights, the source

terms can be mollified to be a field in the domain so that they can be integrated

directly in the mixture momentum equation and the scalar diffusion equation. In

practice, the Gaussian weight is much smoother than the delta weight, as expected,

yet both of them will make the scalar field oscillatory to some extent. Because both

of them use a certain range of cells, and there will be a sudden jump when a bubble
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moves across the boundary of a cell in this range.

At the early stage of the project, we found another problem which arose when

integrating the mass transfer equation (2.22). In a natural diffusion process, if the

ambient water body is super-saturated, an air bubble will grow monotonically with

time and the concentration in water body will not go below saturation. This is not

the case in numerical integration. The mass transfer rate of a bubble will increase

with the growth of its diameter. At that time we were using a rather small cell size,

so the bubble was able to grow as large as several tens of cell size. Then the mass

transfer rate will be so high that the concentration in all the cells where sources are

present went below saturation or even below zero in a single time step. This in turn

led to the loss of mass of the air bubbles, which made the concentration in those cells

to be very high, and the concentration even lower in the next time step. This process

repeated, worsened, and come to an end when the mass of the air bubble becomes

negative. The reason why this happened is that either weight function has a fixed

width, and the bubble radius may go very far beyond this width. Although this rarely

happens in the simulations we are running right now, for we are using larger cell size,

but it motivated us to use a way to implement the sources which is robust for any

cell size.

The method we used was developed by Capecelatro and Desjardins.18 Besides

mollification, they introduced a second step to spread source implementation accord-
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ing to a diffusion equation

∂c

∂τ
= D∇2c.

The purpose of this step is to diffuse the source field from mollification to a length

scale comparable to the bubble radius. This is equivalent to having a weight kernel

that will change width with the growth of bubble radius. According to their work,

the diffusion time τf is determined from

Dτf =
max(δ2f −∆x2, 0)

16 ln 2
. (3.22)

For a mono-disperse system, δf = 3db, and for a poly-disperse systems, δf = max (db).

Simulations with this method have been set up, and the scalar field and mass transfer

rate become smoother than those without the diffusion step.

3.3 Bubble motion and bubble generator

implementation

Bubble positions are directly integrated from the equation (2.17) using the Euler

method. A neat exponential integration technique19 is used to integrate the bubble

motion equation (2.18) to get the bubble velocities. The method is the following.
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Equation (2.18) can be written in the following form

M
dv

dt
= −av + F , (3.23)

where

M = m+ Caρfv, (3.24)

is the ”actual” mass of bubbles in the liquid,

a = 3πCdρfdb +
dm

dt
+ Ca

dv

dt
, (3.25)

is the coefficient for all the forces that are proportional to v, and

F = 3πCdρfdbu+ Caρfv
du

dt
+ Caρfu

dv

dt
+ (m−mf )g. (3.26)

The dominant part in F is (m−mf )g, so F is approximately constant. An equation

of the above form can be integrated as follows,

v(t+ δt) = exp(−δt
a

M
)[v(t)− F

a
] +

F

a
, (3.27)

where δt is the integration time step. The term F/a has the dimension of velocity,

which actually is what would be the terminal velocity if the bubble was only subjected

to buoyancy. With this integration technique, bubble velocities are guaranteed to
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converge to their terminal values when gravity dominates and larger time steps can

be used. For accuracy, it is preferable to use a time step that satisfies δt < M
a
. This

is a rather strong constraint on the time step, and since all the equations, including

the mixture momentum equation, use the same time step, imposing this constraint

will greatly increase the computational cost. The inaccuracy cost by using a large

time step is most significant at the time of injecting bubbles, where all the bubbles

are accelerated from zero to terminal velocity. As a consequence, instead of requiring

∆t < M
a
, we inject the bubbles with terminal velocity. Then the difference between

bubble velocities and their terminal values are always small, so that using a bigger

time step is legitimate.

The bubble generator is a model that injects air bubbles into the domain at a

constant rate from the bottom of the domain. It can also determine whether bubbles

have moved out of the domain or not and kill those that have moved out. The

numerical implementation is basically a data structure and memory management

problem.

An array of integers a[i] is used to track whether each bubble is in the domain or

not. The corresponding element will be set to 0 if the answer is yes, and 1 otherwise.

After each time step, this array will have a value of 0 or 1 for each of its element.

Then a second array of integers b[i] is created. The value of kth element of the second

array is

b[k] =
k∑
0

a[i],
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which is just the summation of all the elements in the first array before and including

index k. So the value of b[k] is the total number of bubbles that are out of the domain

among all the bubbles with index from 0 to k. The last component of the array b is

the total number of bubbles that should be killed. The data for all the bubbles are

stored in an array of C structure. After obtaining the value of array b, the data of all

the bubbles inside the domain can be copied to a new array. In this process values of

array a are used to determine whether a certain element of the old bubble structure

should be copied or not, and values of array b are used to determine the index of a

bubble in the new array,

inew = iold − b[iold]. (3.28)

Finally the memory used to store the old array is freed.

The tricky part is to find a parallel algorithm to compute b based on a, which is

a so called inclusive scan. In serial code, it’s trivial. A single loop can be used to

sum up a to get b. A parallel algorithm developed by Hillis and Steele (1986)20 is the

current solution for the problem. The following figure shows how it works:

Suppose we need to perform an inclusive scan on a array x with n elements. At

the first stage of the algorithm, the operation is:

x1[i] = x[i] + x[i− 1] if i− 1 ≥ 0,

x1[i] = x[i] if i− 1 < 0,
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Figure 3.1: Computing a scan of an array of 8 elements using Hillis and Steele scan
algorithm

where x1 is the array after the first stage of operation. At the second stage, the

operation becomes:

x2[i] = x1[i] + x1[i− 2] if i− 2 ≥ 0,

x2[i] = x1[i] if i− 2 < 0.

At the kth stage, we have:

xk[i] = xk−1[i] + kk−1[i− 2] if i− 2k−1 ≥ 0,

xk[i] = xk−1[i] if i− 2k−1 < 0.

After log2 n stages of operation, the array we get is the inclusive scan of the initial

array. At every stage, number n addition needs to be done, so the computation com-

plexity of this algorithm is O(n log2 n), which is a great improvement over the serial
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algorithm with computational complexity O(n2). With this method, the memory

used to store bubbles data can be allocated and freed dynamically.

The last thing to describe is the bubble injection area. A typical injection area is

a square area located at the center of the bottom of the domain. The liquid in the

cells where the bubbles are injected will be subjected to forces from the bubbles, and

those without will not be. A problem may arise near the edge of bubble injection area,

where a large difference in forcing within neighboring cells may occur. In practice this

has been found to lead to a divergence of pressure-Poisson equation. To resolve this

problem, bubbles are injected in such a way that their positions satisfy the following

probability density function:

P (x, y, z) =
1

I
exp

(
(z − z0)

2

2σ2
z

)(
1 + tanh

x− Lx1

ϵx1

)(
1 + tanh

Lx2 − x

ϵx2

)
(
1 + tanh

y − Ly1

ϵy1

)(
1 + tanh

Ly2 − y

ϵy2

)
, (3.29)

where I is a normalization factor, which can be find by requiring the integration of P

over the entire domain to be 1. z0, Lx1, Lx2, Ly1, Ly2 determine the bubble injection

area. The bubble injection rate then is given by

Ṅ(x, y, z) = ṄtP (x, y, z), (3.30)

where Ṅ(x, y, z) is the bubble injection rate at position (x, y, z), and Ṅt is the total

bubble injection rate.
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Because of the property of the hyperbolic tangent function, the value of this

distribution within the region Lx1 < x < Lx2 and Ly1 < y < Ly2 is almost uniform. Its

value outside this region is almost 0. In the area near x = Lx1, x = Lx2, y = Ly1, y =

Ly2, its value decreases, although not sharply, but continuously from 1/I to 0, which

resolves the problem caused by the discontinuity of the bubble injection boundary.

The smoothness of the distribution at boundary is controlled by ϵx1, ϵx2, ϵy1, ϵy2. By

numerical testing, the value we use is ϵi = Li/5, i = x1, x2, y1, y2, so that majority of

bubbles will still be injected in the square area, and the edges are smooth enough to

prevent the divergence of pressure-Poisson equation.

Numerical realization of this method is by firstly generating certain number of uni-

formly distributed bubble positions using a pseudo random number generator. Then

a filter is used to transform the uniform distributed numbers to the desired distri-

bution. The filter can be found by using the inverse transform method.21 Suppose

X is a random variable that satisfies uniform distribution. One wants to generate a

random variable Y with the cumulative distribution function F (Y ) by transforma-

tion Y = G(X). Then G = F−1. The probability distribution function desired is

given by equation (3.31), so its cumulative distribution function F can be found by

numerically integrating P . We only generate values for F at all the cell centers. F−1

is readily given at all the cell centers, and it is a monotonically increasing function.

Given a (xp, yp, zp) that is not the position of a cell center, a simple binary search

algorithm is used to find the neighboring two cell center positions. The value of F−1
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at (xp, yp, zp) can be interpolated from the values of F−1 at the two neighboring cell

center positions.

3.4 Computational Parcels

In L-E simulations, one possible trick to save computational resources is using

computational ’parcels’.22,23 Np injected air bubbles can be represented by Nc com-

putational parcels. The motion of every computational parcel is just like that of one

single actual bubble, while the total mass transfer and momentum transfer between

parcels and liquid is exactly the same as actual air bubbles. Nc isn’t necessarily equal

to Np. In fact, it can be a multiple of Np so as to save computational cost as well as

making simulation with more bubbles possible. Validity of this method needs careful

examination and rigorous analysis.

Intuitively, the method will make the flow field and concentration field less ac-

curate. However, as long as this inaccuracy is not too large to change the bubble

residence time significantly, the process of bubbles absorbing mass out of the liquid

should also not be affected too much. The ratio of Nc to Np is an important factor,

and the volume fraction of air bubble should be the other. Numerical results showing

the effect of Nc/Np will be shown later.
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Numerical Results

In this chapter, numerical results from the code built with the numerical methods

discussed in the previous chapter will be shown. Firstly, results from two simple

verification cases will be shown, followed by results showing the effect of different

weight function in the source implementation and the size of computational parcel,

and finally an emphasis will be put on the discussion about the comparison between

results from the L-E model and the E-E model. The results of the E-E model comes

from the works by my colleague Yuhang Zhang.24,25

The domain is always a cuboid, so there are 6 boundary surfaces. For the velocity

field, no-slip non-penetration boundary condition are used for the bottom surface

to simulate the solid bottom of river or tank. No-penetration free-slip boundary

condition are used for the top surface to simulate the free surface of water-atmosphere

interface, and periodicity boundary conditions are used for the four lateral surfaces.
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For the pressure field, zero-gradient boundary conditions are used on both top and

bottom domain, and periodicity boundary conditions are used for the four lateral

surfaces. For the concentration field, zero gradient boundary conditions are used on

both top and bottom surfaces to ensure that no dissolved air can leave the domain

via diffusion. Recall that in the velocity boundary condition, the normal velocity

at top and bottom boundaries is zero, so that dissolved air can’t leave the domain

via convection. Thus the only way for the total mass of dissolved air in the domain

to decrease is by transferring into the air bubbles and leaving the domain with the

bubbles. In all of the following discussions, the above boundary conditions are used

unless otherwise specified.

4.1 Comparison with the simplest model

For verification purposes, a numerical simulation with the simplest model was

set up. In this model, both the flow and the bubbles remain quiescent all the time,

one and only one bubble sits in the center of each cell. With this simplification, the

number of equations can be reduced to two, which are,

dc

dt
=

2πdbDc

V
, (4.1)

ddb
dt

=
4Dc

dbρb
, (4.2)
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where V is the volume of one single cell. These two equation can be easily integrated

by Matlab ODE solver, and the result can be used as verification.

In the simulation, the domain and bubble position arrangement can be visualized

by figure 4.1. Both the flow and the bubble are set to be quiescent to match the

condition of the simplest model. The domain size is 2×2×2 cm3 and the number of

cells is 20× 20× 20.

Figure 4.1: Bubble position arrangement

Figures 4.2 and 4.3 show the evolution of the radius of one single bubble and

averaged concentration in the domain over time for the results from the simplest

model and the L-E simulation, respectively. The concentration is normalized using

the saturation concentration. It can be seen clearly from the two plots that the these

two methods are indistinguishable. This verifies that the numerical implementation

of concentration equation and bubble mass/radius equation are correct.
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Figure 4.2: Evolution of radius for one bubble over time for result from simple
equation integration and numerical simulation

Time(s)

0 20 40 60 80 100

C
o

n
c
e

n
tr

a
ti
o

n

1

1.05

1.1

1.15

1.2

1.25

1.3

Simple Equation

Numerical Simulation

Figure 4.3: Evolution of average concentration over time for result from simple
equation integration and numerical simulation
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4.2 Comparison with the average model

In Chapter 2 section 2.5, the equations for the evolution of average concentration

in the domain, equation 2.47, and average bubble diameter, equation 2.51, have been

derived. These two equations can also be easily integrated, and the result used for

comparison.
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Figure 4.4: Evolution of average concentration over time for result from average
equation integration and numerical simulation, bubble injection rate 50000/s

Since the average equation is derived assuming periodicity boundary conditions on

all the boundaries, the simulation will also accommodate these boundary conditions.

The flow is still set to be quiescent all the time while the bubbles are allowed to

move. The domain size is still 2× 2×2 cm3. Two different grid size with total cell

numbers equal to 403 and 203 are used. In figure 4.4, the blue solid line shows the

result from the average model by choosing the Sherwood number to be equal to 40.
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This choice accounts for the change of mass transfer rate between a single bubble

and the fluid due to the motion of the bubble. Numerical results with different grid

size are indistinguishable, which shows grid convergence of the code. Good match

between average model and numerical simulation is found.

4.3 Different weight function in source im-

plementation

As mention in section 3.2, there are two weight functions that are implemented
in the code, that is delta function and Gaussian function. Simulation conditions are
summarized in table 4.1

Table 4.1: Simulation Configuration

Domain Size 4cm× 4cm× 10cm(x, y, z)
Resolution 40× 40× 100(x, y, z)

Initial Concentration 10 times saturation
Bubble Initial Radius 0.1 mm
Bubble Injection Rate 50000/s
Liquid allowed to flow Yes

Note that a very small domain is used, while the initial concentration is very high,

both of which are unrealistic. This is because, for numerical verification purposes,

the point is not to simulate realistic conditions, but it is to push the numerics to see

how robust the results are. The configuration for all the simulations discussed from

here on are the same as shown in table 4.1 unless otherwise specified.

Figure 4.5 shows clearly that the difference due to the use of different weight

function is negligible. Since the Gaussian weight function is more computationally
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Figure 4.5: Evolution of average concentration with Delta and Gaussian weight
function

expensive than the delta function, the delta function is preferable.

4.4 Effect of computation parcel size

Three simulation cases are set up with the same configuration except that different

computational parcel sizes, Nc/Np = 0.1, 1, 10 are used. The case with Nc/Np = 0.1

is actually breaking a physical bubble into 10 computational parcels.

Figure 4.6 shows the evolution of the average concentration for the three cases

respectively. It can be seen that the results from the three cases are pretty close.

However, the average concentration tends to reduce faster with the decrease of com-

putation parcel size. The reason is illustrated by figure 4.7, in which the evolution the

total bubble number inside the computation domain is plotted. The bubble injection
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Figure 4.6: Evolution of average concentration number for Np/Nc = 0.1, 1, 10
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Figure 4.7: Evolution of total bubble number for Np/Nc = 0.1, 1, 10
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rate for the 3 cases are exactly the same, yet the induced flow by the injection of

bubbles in the three cases are different, which in turn changes the bubble residence

time. This effect accounts for the difference in the total bubble number. Figure 4.7

shows that the increase of the computation parcel size tends to reduce the bubble

residence time. This is closely related to the induced flow pattern, which will be

discussed in detail later.

4.5 Comparison between L-E and E-E mod-

els

Lagrangian-Eulerian and Eulerian-Eulerian models are different methods aiming

to solve the same problem. The comparison between these two methods not only

helps to justify the validity of each method, but it also helps find what impact the

approximation each method makes will have.

4.5.1 Comparison without flow

The result of simulations without flow for both models are shown in figure 4.8.

Excellent match between the two models is find when the liquid remains quiescent

all the time.
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Figure 4.8: Evolution of average concentration for L-E and E-E model without flow

4.5.2 Comparison with flow

In the following simulations, the liquid is allowed to flow. Figure 4.9 shows that

although the match between the two models is still pretty good, the difference is

much bigger than the previous comparison, where the liquid remains quiescent. So

the difference must come from the difference in the flow fields or more precisely, the

difference in flow fields resulting from the difference between these two models in

governing equations and numerical implementation.

Recall the difference between the two models discussed in section 2.4, one can

conclude that the most obvious difference is that there are the two extra forcing

terms in the L-E model mixture momentum equation. To see the effect of these two

terms, we drop them in a comparison simulation. In figure 4.10, the additional black

dash-dot line shows the result from modified L-E model. It can be seen that even
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Figure 4.9: Evolution of average concentration for L-E and E-E models with flow
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Figure 4.10: Evolution of average concentration for L-E, modified L-E, and E-E
models with flow
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though the result from the modified L-E model is closer to that of the E-E model,

the improvement is very small, which indicates that the two extra forcing terms are

unimportant. So it is legitimate to omit these two terms.

Since the difference comes from the difference in flow field, a deep look into the

flow field in the two calculations will be very helpful. Figure 4.11 shows the z-

component of velocity field on YOZ plane at actual time 1 s, 2 s, 3 s, and 4 s for

L-E and E-E model. It is clear that the flow field in L-E model is very unstable

and becomes chaotic very quickly after the injection of air bubbles. On the other

hand, the flow field in E-E model remains symmetric and stable for a much longer

time. There are two instability mechanism in this system. Firstly, the bubbly liquid

below is lighter than liquid without bubble above, which can lead to Rayleigh-Taylor

instability. Secondly, a strong shear flow is induced, which has the potential for

a Kelvin-Helmholtz instability. In the L-E model, the bubble initial positions are

generated by filtering numbers generated by a pseudo random number generator.

However good the statistical properties of the filter and random number generator

are, there will be an non-uniformity in the initial bubble position, which provides a

strong perturbation to the system and makes it to be unstable. Whereas in the E-E

model, the initial bubble positions are described by a density field, the value of which

can be made to be perfectly symmetric. Thus the initial perturbation is only of the

order of the round-off error, which is much smaller than that of L-E model.

This also explains the results we found in section 4.4. Given the same number of
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Flow field: L-E model

            T = 1s                                       T=2s                                  T=3s                                  T=4s
Flow field: E-E model

             T=1s T=2s T=3s      T=4s

Figure 4.11: Flow field at time equals to 1 s, 2 s, 3 s, 4 s for L-E and E-E model.
All the figures shows the value of vertical velocity at YOZ plane of the domain, which
has a width of 4cm and a height of 10cm. The velocity range from -7cm/s to 15cm/s.
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physical bubbles, the more computational parcels we have, the less the non-uniformity,

and the longer the stability of the flow can be maintained.
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