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Abstract 

 

Atherosclerosis detection remains challenging in coronary CT angiography due to 

motion and metal artifacts. Motion artifacts arising from rapid coronary artery displacement 

occurred over the acquisition window may lead to intensity reduction and feature doubling or 

distortion, severely hindering the visualization of a plaque of interest. Similarly, for patients 

with cardiac implants, pacing electrodes or implant lead components can create substantial 

blooming and streak artifacts in the heart region, obscuring the background anatomy adjacent 

to the component. In this work we presented an image-based compensation framework 

exploiting a rigid and linear motion model for correcting motion artifacts, and a novel 

reconstruction method incorporating a deformable model for metal leads to eliminate metal 

artifacts to improve plaque visualization. The feasibility of both correction methods is 

validated with simulation and experimental studies. We found a dramatic improvement in the 

ability to visualize fine details in the coronary artery plaque after the application of the 

proposed motion compensation method. Similarly, anatomy visualization even near the 

boundary of the component has greatly improved after reconstruction with the deformable 

known-component model. Both proposed methods have the potential to improve plaque 

visualization and characterization in coronary CT angiography.   
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I. Introduction 

Patients with atherosclerotic plaques, or lesions formed from buildup of lipid, calcium, 

and fibrous tissue at the coronary arterial wall, may benefit from coronary computed 

tomography angiography (CCTA), a non-invasive imaging technique that has short scanning 

time and high spatial resolution. This method may be particularly useful for those with metallic 

cardiac implants, including pacemakers and cardioverter defibrillators, due to its lack of 

contraindication to metal. In addition to atherosclerosis, CT angiography may also permit 

detection of complications associated with implantable devices such as lead perforation. Yet 

these tasks remain challenging owing to artifacts caused by coronary artery motion as well as 

those from metal devices. Acquiring motion-artifact-free images is not a trivial task given the 

rapid arterial motion (up to 65 mm/s when HR < 60 bpm [1]), or when the patient has irregular 

cardiac rhythm. When acquired at the wrong cardiac phase, images are uninterpretable. 

Manifest motion artifacts often seen are intensity lowering, feature doubling, blurring, and 

distortion. Furthermore, up to 60% of images are significantly degraded by metal artifacts 

resulting from endocardial leads, which prevents reliable coronary artery assessment. Streaks 

and blooming around metal components can largely obscure the surrounding anatomy, 

making it difficult to visualize detailed features of interest.  

An extensive number of correction methods for motion artifacts have been reported. 

Solutions widely utilized for cardiac motion correction involve hardware, beta-blockers, and 

multisector algorithms [2]. Yet development of imaging hardware such as multi-detector and 

dual-source systems [3], [4] is expensive and has physical limitations. Beta-blockers have 

limited efficacy in controlling heart rate [5], and they cannot be administered on patients with 

contraindications. Multisector methods [6], [7] involve acquisition of multiple heartbeats that 

increases patient dose and fail when the cardiac motion is not repeatable. Contrarily, motion 
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estimation and compensation methods leveraging reconstruction images [8], [9] are proven to 

be effective in mitigating motion artifacts as well as very cost-efficient, yet they either rely on 

the presence of at least one static reference image or 4D datasets for tracking and interpolating 

cardiac motion. In this work, we propose a purely image-based iterative motion estimation 

strategy exploiting a 3 degree-of-freedom (DoF) motion model and anatomical features 

associated with an object of interest. We presume that locally the motion is rigid and linear 

over the acquisition window in diastasis [10], [11], and severe artifacts predominantly result 

from translational coronary artery motion. No initial motion estimations are required, and 

dimension of the motion estimation is significantly reduced with these presumptions.  

Similarly, numerous metal artifact correction methods have been proposed. One idea 

that arises is to replace low-fidelity data correspond to the metal components through 

interpolation [12]–[14], in-painting [15], [16], and many other similar approaches [17], [18]. 

Improvement on the overall image quality is achievable with these methods. Yet features that 

are in close proximity to the object, which may often be the object of clinical interest (i.e. 

plaques, fractures), remain unseen or obscure due to residual artifacts at the at the component 

edges. Recently, the class of known-component reconstruction (KCR) [19]–[21] has 

demonstrated significant metal artifact correction even at the boundary of the component. 

Such performance is achieved through integration of models of metal components into the 

reconstruction process, in which each model is constructed based on specific component 

configuration and material composition. Yet such information of components might not be 

available, and it is possible for components to undergo deformation during or after surgical 

placements. Further metal artifact reduction may be obtained through an additional integration 

of a polyenergetic x-ray system model into the estimation as well as scatter correction. 

Therefore, we proposed a reconstruction framework including three stages: 1) modeling of a 
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specific component in the reconstruction field-of-view in which the model parameterization 

enables deformation within a constrained volume, 2) jointly optimizing model and registration 

parameters, and 3) scatter correction and deformable known-component model-based 

reconstruction. 

 

II. Methods 

A. Motion Artifact Correction 

1. Image-Based Motion Compensation 

The proposed motion compensation framework is shown in Figure 1. A standard FBP 

reconstruction is performed using the projection data. This reconstruction is uncompensated 

and may contain an object of interest that is degraded by motion artifacts. A volume of interest 

(VoI) containing the object is then selected. Our presumption is that the motion is rigid and 

linear within this small VoI, regardless of the complex gross cardiac motion. In addition, 

artifacts predominantly arise from translational coronary artery motion, and thus rotational 

motion may be neglected. Consequently, we proposed a motion model describing a 3 DoF 

rigid transformation of the VoI, which requires only 3 parameters defining the relative 

displacement of the volume over the acquisition window [10], [11]. The transformation for 

each projection view is interpolated from these 3 parameters. The resulting transformations 

make up of a specific motion trajectory which is applied to the backprojection process for 

reconstructing the selected VoI. Defined in Equation 2, the negative gradient magnitude of 

the reconstructed volume serves as a metric for evaluating the compensation effectiveness 

introduced by the current trajectory. A non-linear, non-convex optimization algorithm, the 
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Covariance Matrix Adaptation Evolution Strategy (CMA-ES), is employed to search for the 

motion trajectory that minimizes the metric. The objective function is shown as: 

�̂� = arg min
𝑇

𝐺(𝑇, 𝜇) (1) 

𝐺(𝑇, 𝜇) = − ∑ ∇𝑥𝜇𝑗
2 + ∇𝑦𝜇𝑗

2 + ∇𝑧𝜇𝑗
2

𝑗

(2) 

where the negative gradient magnitude 𝐺  of the reconstructed volume of interest 𝜇  is 

evaluated through summing the directional gradient of each voxel 𝑗 for the current motion 

trajectory 𝑇 . The gradient operator is denoted by ∇  and the subscript describes the 

corresponding orthogonal direction of the volume.  

 

2. Simulation Methods 

To test the feasibility of the proposed motion compensation framework, we designed 

a digital coronary artery tree phantom containing three arterial branches with varying 

diameters, and randomly add high contrast, irregular-shaped objects to the inner wall of each 

branch. The digital phantom is then forward projected using a curved detector operator and a 

known motion trajectory is applied on the phantom during the process. 800 projections are 

generated over 360 and each has a size of 896 bins x 240 rows, with 1 mm2 pixel spacing. A 

standard FBP reconstruction is performed using the motion contaminated projections for the 

volume of interest selection. The proposed algorithm is then applied on the selected volume. 

A static reconstruction volume is also obtained from motion free projections, serving as a 

reference image for evaluating the motion-compensated reconstruction.  

We chose a translation of 6, 4, 8 mm in the positive x, y, and z direction respectively 

as the simulated motion. The amplitude is determined based on statistics reported by Lu et al. 

[22] and displacements of coronary artery branches quantified from patient CCTA data. The 
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quantification algorithm is described as follows. First we select the motion-artifact-free image 

volumes through visual assessment. That is, the data happen to be taken at the quiescent 

periods of the cardiac cycle. Normally the quiescent periods are the end systolic (ES) and the 

end diastolic (ED) phase, but these periods may shorten or disappear as heart rate increases. 

In addition, different coronary artery branches have quiescent periods at different time points 

of the R-R interval, and thus we have identified not only different quiescent periods between 

patients, but also different quiescent periods between branches (RCA vs. LCA) within the 

same patient. We then performed a coronary artery centerline extraction method reported by 

Friman et al. [23], the winning algorithm of the second MICCAI grand challenge. The method 

is implemented using MeVisLab, which is a graphical programming software free to the public. 

By labeling artery of interest with a few seed points, we would be able to obtain a branch 

centerline (see Figure 2 and Figure 3). To simplify the displacement quantification and ensure 

measurement accuracy, only the bifurcation points of the artery tree were used for 

displacement calculation.  

 

3. Experimental Methods 

We further validated the feasibility of the algorithm with experimental data acquired 

on a CBCT testbench (shown in Figure 4). A cadaveric heart sample containing distorted 

arteries and irregular-shape calcification pieces was chosen as the imaging object. We first 

obtained and reconstructed the standard motion-free projections of the sample to identify 

features of interest. The static volume would serve as a reference image for the performance 

evaluation. In addition, we employed a 6-axis positioner that can generate motion during data 

acquisition. Specifically, translational motion of approximately 8 mm was introduced to the 

sample in the superior-inferior direction. The X-ray tube is operated at 80 kVp (+1 mm Al, 
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0.5 mm Cu) and the dose is 0.8 mAs per projection.  720 projections (1536x1536 pixels, 0.278 

mm2 spacing) are acquired over 360. The reconstruction volume has size of 45x45x1.5 mm 

with 0.15 mm3 voxels. For the optimization, we specify boundary constraints to be less than 

15 mm for the amplitude of motion in each dimension, and convergence criteria is achieved 

when change in best solution is less than 10-2. Runtime of this algorithm is up to 30 minutes.  

 

B. Metal Artifact Correction 

1. Polyenergetic Known-Component Reconstruction Overview 

The core of the Poly-KCR approach is a mixed fidelity model, which combines the 

unknown anatomical structures and a deformable homogeneous component. This model may 

be written as 

𝜇 = 𝜇∗ + 𝑇𝜇𝐼 (3) 

in which 𝜇∗  denotes the background anatomy and 𝜇𝐼  represents the component. The 

transformation 𝑇 is the outcome of a preregistration process, in which the component is 

registered to the reconstruction volume while undergoing deformation. Based on the mixed 

fidelity model, the associated forward model may be derived as: 

�̅� = 𝐃{𝑔} exp(−𝐀𝜇∗) ∗ 𝑓(−𝐀𝜇𝐼) (4) 

in which 𝐃{𝑔} is a diagonal matrix forming from the vector 𝑔, which denotes the system gain. 

The forward model for the anatomical background, exp(−𝐀𝜇∗), is modified upon the Beer’s 

Law. At this step, we seek to model the process of x-ray emitting from the source, penetrating 

the object, and ultimately interacting with the detector. And in this case, the projection 

operation has to be a discrete-to-discrete conversion, since image volume is parameterized 

using voxels and the detector is composed of a finite number of detector elements. Therefore, 
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in this model, the system matrix 𝐀, which specifies the contribution of a particular voxel to a 

particular measurement, is adopted. This forward model assumes single-energy x-ray photon 

emission, or a monoenergetic beam.  

 On the other hand, although a system matrix 𝐀 is also utilized in the forward model 

for the metal component, 𝑓(−𝐀𝜇𝐼), this model assumes polyenergetic beam and has much 

higher fidelity, aiming at eliminating artifacts associated with the component such as streaks 

and “blooming”. We denote this novel forward model as the spectral transfer function (STF), 

which approximates polyenergetic beam by specifying a polynomial relationship between x-

ray pathlengths and the measurements [24]. This relationship is defined as: 

𝑓(𝑝; 𝜅) = exp (∑ 𝜅𝑘(𝑝)𝑘
𝐾

𝑘=1
) (5) 

where 𝑝 denotes x-ray pathlength through the component and 𝜅 depends on the component 

material and the x-ray beam spectrum. When 𝜅𝑘 ≡ 0 for all 𝑘 ≠ 1, the above equation may 

be used to approximate a monoenergetic x-ray system, and therefore 𝜅𝑘  is the negative 

attenuation coefficient of the component. As the order of the polynomial 𝑘  increases to 

second or third, the function becomes sufficient to model the attenuation behavior of the 

component.  

With the mixed fidelity model, we may jointly estimate background attenuation and 

STF coefficients given the measurements by using the following reconstruction objective 

function: 

{�̂�∗, �̂�} = argmin Φ(𝜇∗, 𝜅; 𝑦) = argmin 𝐿(𝜇∗, 𝜅; 𝑦) − 𝛽𝑅(𝜇∗) (6) 

By applying a log transform on the mixed fidelity model, we may derive the negative log-

likelihood equation, which is a weighted 2-norm including the monoenergetic forward model 
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of the anatomical background, the polyenergetic model of the component, and the normalized 

and log-processed projection data: 

𝐿(𝜇∗, 𝜅; 𝑦) = ‖𝐀𝜇∗ − ∑ 𝜅𝑘(𝑝)𝑘 − log(𝐃{𝑔} ∗ �̅�−1)
𝐾

𝑘=1
‖

𝑊

2

(7) 

One thing to note is that in standard filtered backprojection, the tradeoff between image noise 

and spatial resolution is controlled by manipulating Hanning filters and a cutoff frequency (as 

a fraction of the Nyquist rate). The effectiveness of the filter drops to zero beyond the cutoff 

frequency, and hence the lower the cutoff frequency, the lower the image variance, and the 

smoother the image appears. 

In penalized likelihood reconstruction, the noise-resolution tradeoff is achieved with 

a different set of methods, involving regularization terms and parameters. Regularization term 

refers to the type of regularizers one would like to use, and the regularization parameter is for 

controlling the strength of the regularization. One typical penalty function is quadratic penalty, 

which tends to enforce smoothness through the entire image to achieve good noise reduction: 

𝑅(𝜇) = ∑ ∑ 𝑤𝑗𝑘𝜓(𝜇𝑗 − 𝜇𝑘)

𝑘∈𝑁𝑗

(8) 

where 𝑁 denotes the neighboring voxels of voxel 𝑗 and 𝜓 is a convex function that enforce 

neighboring value similarity [25]. Quadratic penalty might be undesired since it also penalizes 

edges in the image, and thus non-quadratic regularizations such as Lange or P-Norm penalty 

serves as a better term in this case, given the fact that it decreases the penalty on increasing 

voxel differences and thus preserve true edges while reduce noise.  

In this study, we employed a non-quadratic regularization term combing the basic 

quadratic penalty with an edge-preserving penalty function named the Huber function [26]: 
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𝜓𝐻(𝑥) = {
   

1

2𝛿
𝑥2, |𝑥| ≤ 𝛿

|𝑥| −
𝛿

2
, |𝑥| > 𝛿

(9) 

where the term 𝛿 controls the application range of the two functions. The quadratic penalty 

will be applied to differences smaller than 𝛿 whereas those the edge-preserving penalty to 

those greater than 𝛿. When 𝛿 approaches zero, the quadratic penalty term is eliminated and 

the image appears to be “cartoonish”, or piecewise-constant. When a large 𝛿 is chosen, the 

regularization predominantly results from the basic quadratic penalty, with an exact difference 

of a factor of 1/𝛿.  

 

2. Model Parameterization and Preregistration of Deformable Known Component 

As mentioned above, prior to the application of Poly-KCR to the CT angiogram target, 

the component has to be preregistered to the reconstruction volume. In other words, the 

transformation 𝑇 has to be determined before the reconstruction process. A model for the 

wire-like components including pacing leads or implantable cardioverter defibrillator, which 

is 𝜇𝐼  in Equation 3, is essential for the preregistration step. Although it is easy to obtain 

morphological information of the implant, the leads are flexible and can deform when inserted 

into the heart through a vein. This deformation is often unknown and varied from patient to 

patient. Inspired by Stayman et al. [27], we proposed a novel parameterization technique for 

modeling wire-shape components using a spline curve with control points defining its shape 

and an additional parameter defining the radius of the solid wire.  

An overview of the parameterization process is shown in Figure 5. To ensure the 

modeling accuracy and reduce the parameterization complexity, a rectangular volume 

containing an initial wire model is segmented out from a standard FBP reconstruction volume 
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using the Otsu’s method [28]. The volume is binary and any voxel within the wire has a value 

of 1. The wire centerline is composed of the centroids of the axial slices of the segmented 

wire, and the control points are sampled from these centroids and spaced out evenly along the 

centerline. Differed from the conventional control point definition where only the end points 

are on the curve and the rest are nearby for controlling the shape, our definition of control 

points is more intuitive and can ease the process of inducing exact deformations on the model. 

This step will also facilitate the model refinement process, which is to constrain the wire 

volume within the specified wire radius. To obtain a refined wire volume, we can simply 

compute the minimal distance of each voxel within the binary volume to the centerline of the 

wire, and the ones with minimal distance less than the specified radius are set to 1, otherwise 

0.  

Although this refinement approach is intuitive and accurate, it is time-consuming. Yet 

improving this process is possible because the refined volume is indeed very sparse. Therefore, 

we presume that the refined wire model will be within a constrained volume, which is a dilated 

version of the segmented wire, and only voxels within the dilated model have the potential to 

be voxels within the refined model. That is, voxels outside the dilated wire will always have 

the value of 0, and the minimal distance computation and comparison will only be carried out 

for the voxels within the dilated wire volume. The extend of the dilation is set to be large 

enough to not only accommodate potential morphological deformation but also unknown 

translational and rotational motion. This general deformable model can represent a good 

amount of wire-shaped components and it is relatively easy and fast to implement. 

Combination of the deformable model and the Poly-KCR method is referred as Poly-dKCR.  

This Poly-dKCR method is a staged process where registration of the component 

model is performed prior to the reconstruction. This manner hence enables the usage of any 



11 
 

registration method of choice. In this study, we proposed a 3D-2D registration method 

improved upon an algorithm developed by Otake et al. [29] for our purposes, since we have 

already acquired 2D projection data of the component with anatomical background and 

established a model of the wire-shape component in the previous step.  

 The proposed registration method is illustrated in Figure 6Error! Reference source 

not found.. Our goal is to jointly estimate the morphological and transformational parameters 

of the 3D wire-shape model, which are presented using 𝑑  and 𝑇 , respectively. The 

morphological parameters are the control point locations and the wire radius. The 

transformation is essentially a vector containing six-variable vector defining the object’s 

translational and rotational motion, including surge 𝑡𝑥, sway 𝑡𝑦, heave 𝑡𝑧, pitch 𝜃𝑥, roll 𝜃𝑦, 

and yaw 𝜃𝑧. Projections of a deformed wire-shape model with one transformation applied is 

generated using a forward projector. The gradient correlation between the acquired projection 

data containing both the component and the anatomy and the projection of the model is 

computed for each view to quantitatively evaluate image similarity. A non-convex, non-linear 

optimization algorithm called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is 

employed to search for the model parameters that maximize the total gradient correlation 

metric computed using all the projections. We employed the following objective function: 

{�̂�, �̂�} = arg max
𝑑,𝑇

∑ 𝐺𝐶(𝑦𝜃
′ (𝑇𝜇𝐼(𝑑)), 𝑦𝜃)

𝜃

(10) 

𝐺𝐶(𝑦′, 𝑦) =
1

2
(𝐶𝐶(∇𝑥𝑦′, ∇𝑥𝑦) + 𝐶𝐶(∇𝑦𝑦′, ∇𝑦𝑦)) (11) 

𝐶𝐶(𝑦′, 𝑦) =
∑ (𝑦𝑖,𝑗

′ − �̅�′)(𝑦𝑖,𝑗 − �̅�) 𝑖,𝑗  

√∑ (𝑦𝑖,𝑗
′ − �̅�′)

2
𝑖,𝑗  √∑ (𝑦𝑖,𝑗 − �̅�)

2
𝑖,𝑗

(12)
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where 𝐺𝐶  denotes the gradient correlation between model projection data and true 

measurements [30]. Derivation of the gradient correlation builds upon the normalized cross 

correlation (𝐶𝐶), and it takes the two directional gradients of each projection data as the inputs. 

Additionally, 𝑥 and 𝑦 represent the horizontal and vertical direction of the 2D image, and 𝑖, 𝑗 

is the pixel coordinates within a projection. 

While morphological parameters of the model have been pre-determined in the model 

refinement process and are fed to the optimization algorithm as part of the initialization, the 

process does not require initial guesses of the tran which ational parameters. Meanwhile, the 

morphological changes of the model are constrained by the dilated volume, given the 

presumption that only voxels within this volume have the possibility to be those within the 

optimized wire volume.  

 

3. Experimental Methods 

To verify the feasibility of the proposed method, we designed a cardiac phantom 

(shown in Figure 7) and obtained physical measurements using a CBCT test bench (shown in 

Figure 8). This phantom is built to emulate the situation when an object of interest, such as a 

calcified plaque, is located within close proximity to a metal component. A 1.59 mm Teflon 

sphere, which has Hounsfield unit attenuation similar to bone structure, is glued to the inner 

wall of a long, transparent vinyl tube. The vinyl tube is filled with distilled water and is 

encapsulating a bare copper wire mimicking a pacing lead.  

Projection data of the customized cardiac phantom is obtained on the test bench using 

a system geometry similar to a clinical cardiac scan. 360 projections are acquired covering 360 

using a flat panel detector (PaxScan 4030CB, Varian Medical Systems, Palo Alto CA) and each 

projection has 1536x1536 pixels at 0.278 mm pixel pitch. The source-to-detector distance 
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(SDD) is set to be ~1100 cm and the source-to-axis distance (SAD) is ~850 cm. The x-ray 

tube is operated at 80 kVp with 1 mm Aluminum and 0.5 mm copper filtration, and the 

amount of dose is 1.6 mAs per frame. 

A standard FBP reconstruction of size 650x700x305 voxels with 0.5 mm3 spacing, 

filtered by a Hann function combined with a cutoff frequency at 20% of Nyquist frequency, 

can be obtained from the projections. This reconstruction is used for obtaining the segmented 

component volume and for determining the parameters, which initializes the preregistration 

process. At each iteration of the preregistration, 80 candidate model volumes with distinct 

morphological and transformational parameters are evaluated and 100 iterations are needed 

for the algorithm to converge. After obtaining the optimal model parameters, a scatter 

correction method is applied on the projection data. The scatter is empirically estimated with 

the pixel values within and adjacent to the component and represented as a sinusoidal function 

of rotation angle. Specifically, a constant defined by the function is subtracted from the 

corresponding projection acquired at the same rotation angle. The proposed Poly-dKCR 

method is then performed using the model parameters and the scatter corrected projections. 

An aforementioned non-quadratic penalty is employed (𝛿 = 10−4) and the regularization 

strength is set to be 𝛽 = 0.05. In total, 40 separable quadratic surrogates with 20 ordered-

subsets are utilized. 

 

III. Results 

A. Coronary Artery Motion Quantification and Compensation  

The outcome of the coronary artery motion quantification strategy is shown in the 

tables below. Table 1 listed the locations of bifurcation points at various coronary artery 
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segments. The labels are assigned according to the ACC/AHA 29-segment guidelines [31]. 

Since coronary artery structure varies largely among the population, we created our own 

version of segments based on the acquired patient data (see Figure 9 and Figure 10). The major 

difference lies in the right coronary artery, where the conus branch and the sinus node artery 

are included. Based on the modified segment map, we are able to label the extracted 

bifurcation points by their physical locations. For instance, at 30% of the R-R interval shown 

in Table 1, the first bifurcation is connecting the left circumflex artery segment and the first 

obtuse marginal branch segment, which is referred as LCX_OM1. The corresponding three-

dimensional coordinates of the bifurcation are also measured and reported. These coordinates 

are derived using the image slice numbers reported by OsiriX (Pixmeo SARL). The same 

convention applies to the bifurcation points extracted at the end diastolic phase (Table 2). One 

thing is note is that the point numbers are randomly assigned, only the physical locations are 

used for finding the same point at different phases. The displacements are then obtained by 

computing the location difference of the same point, and the results are shown in Table 3.  

The performance of the proposed motion compensation strategy based on the simulation and 

experimental studies are also reported below. For the simulation study, an axial slice of a 

standard FBP reconstruction of the digital coronary artery tree phantom, highlighted with 

yellow border, is shown in Figure 11. Two high-contrast, irregular-shaped objects are also 

shown. The motion-contaminated reconstruction is highlighted with red border. We are able 

to generate typical motion artifacts that are often seen in patient CCTA images, including 

shading near the boundaries, blurred targets, and distortion of coronary arteries. After applying 

the compensation algorithm, we obtain a compensated volume in which the motion artifacts 

are mitigated (highlighted with blue border). The artery boundaries as well as the calcifications 

are visible and qualified for quantitative assessment. In addition to visual assessment, the 
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performance of the algorithm is quantified with two image similarity metrics, the structural 

similarity index [32] and the root mean square error:  

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦)(2𝜎𝑥𝑦)

(𝜇𝑥
2 + 𝜇𝑦

2)(𝜎𝑥
2 + 𝜎𝑦

2)
(13) 

𝑅𝑀𝑆𝐸(𝑥, 𝑦) = √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

(14) 

The results of the simulation study are shown in Figure 12. Image similarity increases by 

approximately 25% after applying the compensation on the selected volume of interest, and 

the compensated volume is nearly the same as the reference.  

The results of the experimental study are consistent with the simulation outcomes. We 

identified a piece of calcium in the explanted heart sample, and due to motion artifacts, its 

shape and size are uninterpretable. Note that the soft-tissue boundaries adjacent to the calcium 

have also disappeared. Detailed structures of the calcium are visible in the compensated image, 

and the tissue boundaries are not only recovered, but also sharper than the ones in the 

reference image. The motion compensation method may potentially correct artifacts resulting 

from erroneous geometry calibration.  

 

B. Poly-KCR Method with Deformable Model 

The qualitative performance of the Poly-dKCR method is shown in Figure 15. The 

obtained reconstruction (Figure 15B) is displayed adjacent to the FBP reconstruction (Figure 

15A). The outcome of the preregistration is shown using a red overlay, which represents the 

wire-like implant model. It is apparent that the streak artifacts presented at the wire boundaries 

in the FBP reconstruction are significantly reduced after applying the Poly-dKCR method, and 
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thus we can have good visualization of the Teflon sphere. Shading artifacts are suppressed in 

the Poly-dKCR reconstruction and therefore the attenuation homogeneity in the central 

region of the tube has greatly enhanced. Recall that the tube is filled with water, which have 

an attenuation value close to that of the cardiac phantom.  

We have also performed a quantitative assessment of the method by measuring the 

peak attenuation coefficient of the Teflon sphere. The improvement provided by Poly-dKCR 

is significant. We expect the attenuation value of Teflon to be 0.414 mm-1 given an effective 

energy of 60 keV and material density of 2.2 g/cm3. The peak attenuation coefficient of the 

sphere in the FBP reconstruction is 0.0195 mm-1, which is significantly lower than the 

expectation. On the other hand, the value measured in the Poly-dKCR volume is 0.0408 mm-

1, which doubles the FBP value and closely approximated the expected attenuation. 

 

IV. Conclusions and Future Work 

We developed and evaluated an image-based motion compensation framework that 

exploits a rigid and linear motion model emulating local residual cardiac motion. Motion 

trajectory of a selected volume of interest is estimated through maximizing sharpness of the 

reconstruction image with the non-convex CMA-ES method, and no initial motion estimates 

are required. The feasibility of the proposed method is validated with both simulation and 

experimental studies. A dramatic improvement in the ability to visualize fine details in the 

coronary artery plaque suggesting great potential for clinical application. Potential future work 

involves developing more sophisticated and complex simulation and experimental methods 

and applying such method on patient data.   

Additionally, we proposed and evaluated a novel polyenergetic reconstruction method 

involving a deformable model for wire-like cardiac implants. Prior to the reconstruction is a 
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gradient-based registration method that estimated the morphological and transformational 

parameters of the implant. The optimized model is then integrated into the polyenergetic 

known component reconstruction process which further estimates the spectral parameters 

associated with the component. Resulting images are nearly artifact-free, permitting good 

visualization of Teflon target as well as the anatomical background. Next step of the study 

may include application on phantom data with metal implants of different configurations, and 

target objects with varying attenuation coefficient values. In conclusion, we proposed two 

strategies aiming at overcoming the major challenges – motion and metal artifacts in coronary 

CT angiography, and positive performance of the proposed methods shows the potential to 

enhance visualization and diagnosis of atherosclerotic plaque and calcification.  
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Figure 1. A flowchart of the image-based motion estimation and compensation method. 
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Figure 3. Coronary artery tree centerline 
extraction at end diastolic phase.  
  
Although the bifurcation points are 
labeled with numbers, it does not 
correspond to the numbers in the end 
systolic phase. Matching bifurcation 
points are determined based on the 
anatomical position on the coronary 
artery tree.  
  

 

 

Figure 2. Coronary artery tree centerline 
extraction at end systolic phase.  
 
Each bifurcation point is labeled with 
numbers and coronary artery segmented 
are labeled based on the AHA standard.  
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Figure 4. Motion Compensation in experimental testbench data (human heart). 
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Figure 5. Overview of the implant model parameterization that includes morphological and transformational 
variables 
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Figure 6. Flow diagram of the iterative gradient-based preregistration process.    
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Figure 8. CBCT test bench used to obtain physical measurement data 

 

Figure 7. Cardiac Phantom with catheter and a plaque of interest 
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Figure 9. Right coronary artery segments system according to ACC/AHA Guidelines for Coronary Angiography.  
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Figure 10. Left coronary artery segments system according to ACC/AHA Guidelines for Coronary 
Angiography  
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Table 1. Slice locations of bifurcation points at various coronary artery segments (labeled) at the chosen end 
systolic phase.   
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Table 2. Slice locations of bifurcation points at various coronary artery segments (labeled) at the chosen end 
diastolic phase.   
 

Table 3. Specific and average displacement of various coronary artery segments, estimated from the locations 
of corresponding bifurcation point at the end systolic and end diastolic phase.  
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Figure 11. Axial image slices of the reference, the 
uncompensated, and the compensated reconstructed 
volume of the digital coronary artery tree.  
 

Figure 12. SSIM and RMSE values of the uncompensated (red) and the compensated (blue) volume.  
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Figure 13. Axial image slices of the reference, the 
uncompensated, and the compensated reconstructed 
volume of the cadaveric heart sample 
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Figure 14.  SSIM and RMSE values of the uncompensated (red) and the compensated (blue) volume. 
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Figure 15. Performance assessment of the Poly-dKCR method. 

 Axial and sagittal views are shown for (A) the FBP reconstruction and (B) the Poly-dKCR volume. The 
Teflon sphere is indicated in each view by a yellow arrow. 
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