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A firm hires an agent (e.g., store manager) to undertake both operational and marketing tasks. Marketing

tasks boost demand, but for demand to translate into sales, operational effort is required to maintain adequate

inventory. The firm designs a compensation plan to induce the agent to put effort into both marketing and

operations while facing “demand censoring” (i.e., demand in excess of available inventory is unobservable).

We formulate this incentive-design problem in a principal-agent framework with a multitasking agent subject

to a censored signal. We develop a bang-bang optimal control approach, with a general optimality structure

applicable to a broad class of incentive-design problems. Using this approach, we characterize the optimal

compensation plan, with a bonus region resembling a “mast” and “sail,” such that a bonus is paid when

either all inventory above a threshold is sold or the sales quantity meets an inventory-dependent target. The

optimal “mast and sail” compensation plan implies non-monotonicity, where the agent can be less likely to

receive a bonus for achieving a better outcome. This gives rise to an ex post moral hazard issue where the

agent may “hide” inventory to earn a bonus. We show this ex post moral hazard issue is a result of demand

censoring. If available information includes a waitlist (or other noisy signals) to gauge unsatisfied demand,

no ex post moral hazard issues remain.
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1. Introduction

The impetus for studying the interface of operations and marketing is the contention that each

function cannot be managed without careful consideration of the other (Shapiro 1977; Ho and

Tang 2004). This reality is acutely apparent in retail settings, where a single manager oversees

both operational and marketing tasks. A search on the online employment platform Monster.com

returns over 8,500 retail store manager job listings with “multitasking” as a core skill. Echoing this

requirement, DeHoratius and Raman (2007, p. 523) contend the store manager is a “multitasking

agent who allocates effort to different activities based on the rewards that accrue from, and the

cost of pursuing, each of these activities” [emphasis added]. Stated differently, the multitasking

store manager must allocate efforts across both functions, and the effectiveness of this “balance of

effort” is critical to the success of the store.

We focus on two activities of a store manager: (a) marketing (i.e., bolstering customer demand)

and (b) operations (i.e., ensuring inventory can be put in the hands of customers, where it belongs,
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instead of being misplaced, damaged, spoiled, or stolen through mismanagement).1 How to design

compensation plans to get the most out of their store managers, in light of these two competing

areas of focus? Such a question is a critical concern for those running decentralized retail chains.

The challenge of compensation design for retail store managers is the subject of business school

case studies (Krishnan and Fisher 2005) and empirical research (DeHoratius and Raman 2007).

The vast majority of compensation models consider single-tasking agents, most prominently in

the salesforce compensation literature (see Section 2 for more detail). When it comes to multi-

tasking agents, the research typically restricts attention to linear contracts in settings where the

outcomes of each task are perfectly observable. The former belies an interest in non-optimal con-

tracts (the optimality of linear contracts is only established in very restrictive settings), whereas the

latter is unsuitable for our setting. To translate demand generated through marketing effort into

sales requires sufficient inventory, an outcome of operational effort. When inventory is insufficient,

unmet demand is lost and unobservable, a phenomenon known as demand censoring. Accordingly,

the outcomes of the associated tasks in our setting lack observability.

Demand censoring is widely seen in practice and well studied in economics (e.g., Conlon and

Mortimer 2013), marketing (e.g., Anupindi et al. 1998), and operations management (e.g., Besbes

and Muharremoglu 2012). Its negative implications for sales performance is well known, largely

because censoring complicates the forecasting of demand and the planning of inventory. However,

the effect of demand censoring on contract design has not been studied in the multitasking setting.

A major takeaway of this paper is that demand censoring—a defining feature of the interplay

between operations and marketing—has inherent and perplexing implications for compensation

design. We come to this conclusion as follows. Practically implementable compensation plans typi-

cally have simple structures. Two prime examples are quota-bonus contracts and linear commission

contracts in salesforce compensation. A pivotal property of these contracts, in addition to being

easily understood by salespeople, is that they are monotone, meaning that an increase in sales

weakly increases compensation. It would strike a salesperson as strange if an additional sale reduced

their compensation. However, establishing the monotonicity of optimal contracts proves difficult.

In single-tasking salesforce compensation, researchers have examined the optimality of quota-

bonus and linear commission contracts. Rogerson (1985), for example, shows monotonicity using the

so-called “first-order approach.” The first-order approach—a standard procedure used in deriving

the optimal compensation plan in moral hazard problems—is not without controversy. Laffont and

Martimort (2009, p. 200) state that “the first-order approach has been one of the most debated

1 Among the main sources of the discrepancy of recorded inventory and available inventory are shrinkage and mis-
placement (Atalı et al. 2009; Ton and Raman 2004). Beck and Peacock (2009) estimate retailers around the globe
suffer a $232 billion annual loss from inventory shrinkage.
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issues in contract theory” and “when the first-order approach is not valid, using it can be very

misleading.” In particular, the convex distribution function condition (CDFC), often assumed in the

moral hazard principal-agent literature to support the first-order approach, is satisfied by essentially

no familiar distributions. The validity of the first-order approach is particularly troubling under a

multitasking setting, with a multidimensional effort and a multidimensional output signal.2

To overcome these technical challenges, we develop a “bang-bang” optimal control approach that

applies to a broad class of incentive-design problems that significantly relaxes conditions needed to

establish optimality. This approach allows for most of the commonly used families of distributions

on both the operational and marketing sides. Using this approach, we characterize the optimal

compensation plan for a multitasking agent subject to a censored signal. The optimal compensation

plan we derive is analogous to the quota-bonus contracts of the salesforce literature, except now

a bonus region for sales and inventory realizations exists: if sales and inventory realize in this

region, a bonus is granted; otherwise, the store manager gets only her salary. Concretely, we find

an optimal compensation plan for the multitasking store manager, under the monotone likelihood

ratio property (MLRP) that is commonly assumed in the principal-agent literature (see Laffont and

Martimort 2009, pp. 164–165), that consists of a base salary and a bonus paid to the store manager

when either (i) inventory does not clear and the sales quantity exceeds an inventory-dependent

threshold or (ii) inventory clears and the realized inventory level exceeds a threshold.

Intriguingly, the structure of such a bonus region gives rise to inherent non-monotonicity of

the optimal compensation plan—given the same sales outcome, scenarios exist in which the store

manager receives the bonus at some inventory level, but no longer so at a higher inventory level.

In other words, ceteris paribus, the store manager seems to be penalized for better inventory

performance. This nonintuitive result can be understood as follows. When inventory is cleared,

the realized demand is unobservable and capped by the inventory level. The firm’s observed sales

quantity is a lower bound on realized demand. Given the same sales quantity, as inventory increases,

the sales manager no longer clears the inventory. The observed sales quantity is equal to (as opposed

to a lower bound of) realized demand. Increased inventory is informative of the store manager not

exerting high marketing effort. This informational reasoning justifies a loss of the bonus.

Our derivation of the optimal compensation plan restricts attention to ex ante moral hazard

(i.e., the agent’s effort after entering into the compensation plan is not observable). This focus is

standard in the literature—the vast majority of the moral hazard literature ignores any ex post

moral hazard (i.e., after exerting effort, the agent does not manipulate the realized outcome). A

non-monotone optimal compensation plan evokes the speculation that, in certain cases, a store

2 The multitasking literature (e.g., Holmstrom and Milgrom 1991; Feltham and Xie 1994; Dewatripont et al. 1999)
focuses on deriving optimal parameters of linear compensation schemes, without establishing their optimality.
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manager may “hide” inventory to represent a stockout to the firm, thereby hiding a potential

deficiency in marketing effort. In other words, in the presence of the additional consideration of ex

post moral hazard, demand censoring further confounds operations-marketing multitasking.

Of course, the incentive to “hide” inventory could be monitored by the company. However, the

need for such careful monitoring runs against the principle of effective incentive design: if incentives

are appropriately designed, employees have the “right” incentives to manage their own behavior. If

monitoring can capture the overstating of inventory losses (i.e., ex post moral hazard), can we not

also monitor operational and marketing effort (i.e., ex ante moral hazard)? This reveals an “agency

conundrum”: because of the firm’s inability to monitor customer intentions (i.e., not observing all

of demand due to inventory shortfalls), it is unable to design intuitive compensation schemes that

preclude the need for the monitoring of employee intentions, either their conscientiousness in sales

and operational activities or in their honesty in representing the level of inventory in the store.

This conundrum has important implications for incentive design in the retail setting.

We believe this agency conundrum (the result of demand censoring and non-monotone contracts)

is at the core of multitasking with censored signals. Further analysis and numerical investigations

show several intuitive, monotone compensation plans fail to be optimal. A natural first idea, given

the two output signals (demand and inventory), is to give the store manager a bonus if each signal

meets some minimum threshold. We call such compensation plans “corner” compensation plans,

because the two thresholds form a corner in the outcome space. The logic of corner compensation

plans finds its trace in practice (e.g., Krishnan and Fisher 2005; DeHoratius and Raman 2007)

and is in line with known results in the single-tasking contract theory literature (e.g., Oyer 2000).

Nonetheless, we show such plans cannot be optimal and furthermore exhibit natural cases where

they perform arbitrarily poorly. Other simple (and monotone) compensation plans, like linear

compensation, do not fare any better in our numerical experiments.

Our resolution of the agency conundrum is also telling. The trap of both ex ante and ex post moral

hazard is not overcome by further monitoring of employees, but instead by improved monitoring of

customer intentions, even to a modest degree. If the firm can noisily gauge unsatisfied demand, for

example, through a waitlist where an unknown but nonzero proportion of unsatisfied demand is

recorded, an optimal compensation plan be constructed to handle both ex ante and ex post moral

hazard issues. Remarkably, going from complete demand censoring to “partial” demand censoring

greatly alleviates the challenge of managing inventory, here indirectly through incentive design.

Taken together, our results allude to a novel connection between customer intention and employee

effort. The visibility of customer behavior (i.e., their demand) and the visibility of employees behav-

ior (i.e., their effort) are linked through employee compensation. Monitoring employee behavior

in order to improve employee effort is unnecessary; improved monitoring of customers can suffice.
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This interplay between customer behavior and operational planning goes to the very heart of what

makes the operations-marketing interface compelling to study.

2. Related Literature

The retail operations literature has empirically documented the importance of incentive design for

store managers. DeHoratius and Raman (2007) empirically study store managers as multitasking

agents who function as both an inventory-shrinkage controller and a salesperson. DeHoratius and

Raman (2007) substantiate the view that store managers makes their effort decision across both job

functions in response to incentives. Krishnan and Fisher (2005) provide a process view of the range

of a retail manager’s responsibilities and detail the impact of incentive design on operational and

marketing efforts, counting spoilage and shrinkage control as crucial areas of managerial control.

To the best of our knowledge, our paper is the first analytical treatment of optimal incentive design

for a multitasking store manager. Accordingly, we are the first to provide an optimal benchmark

to assess losses due to demand censoring and multitasking. Our findings shed light on the nature

of the relationship between marketing and operations, an issue that has inspired a voluminous

literature (e.g., Shapiro 1977; Ho and Tang 2004; Jerath et al. 2007).

Salesforce compensation has been studied in the economics, marketing, and operations manage-

ment literature (see, e.g., Lal and Srinivasan 1993; Raju and Srinivasan 1996; Oyer 2000; Misra

et al. 2004; Herweg et al. 2010; Jain 2012; Chen et al. 2019; Long and Nasiry 2019). Much of this

literature focuses on two types of contracts, linear commission and quota-bonus (i.e., the salesper-

son receives a bonus for meeting a sales quota). The optimality of linear commission contracts has

various caveats—its primary justification assumes a normally distributed outcome and a constant

absolute risk-aversion (CARA) agent utility. By contrast, the optimality of quota-bonus contracts

has followed from less restrictive conditions, namely, risk neutrality, limited liability, and a general

outcome distributions. (Limited liability captures an agent’s aversion to downside risk and can be

viewed as a type of risk aversion.) We follow the latter tradition and derive optimal contracts in a

spirit similar to quota-bonus contracts, although with important differences.

The salesforce compensation literature had, until recently, assumed unlimited inventory meets

demand generated by the salesperson. A recent stream of literature (Chu and Lai 2013; Dai and

Jerath 2013, 2016, 2019) incorporates demand censoring due to limited inventory into the single-

tasking model. We study the compensation of a store manager who undertakes operational effort

to increase the realized inventory level, in addition to marketing effort to influence demand. As a

result, our optimal compensation plan exhibits a structure that does not immediately generalize

the well-studied quota-bonus contract from the single-tasking setting. Indeed, we show several

“intuitive” generalizations, including that corner compensation plans are not optimal and can

perform poorly relative to the optimal compensation plan.
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Our paper also relates to the accounting and economics literature (e.g., Holmstrom and Milgrom

1991; Feltham and Xie 1994; Dewatripont et al. 1999) on multitasking. The seminal work here is

Holmstrom and Milgrom’s (1991) model of a multitasking agent whose job consists of multiple,

concurrent activities that jointly produce a multidimensional output. They focus on a linear com-

pensation scheme and show varying the weights of the compensation plan elicits changes in the

agent’s effort allocation. Our work departs from this setting in several ways. First, our multidi-

mensional output affects the principal’s utility in a nonlinear fashion. Second, our paper derives

the optimal compensation plan, whereas the literature (following Holmstrom and Milgrom (1991))

mostly assumes a linear compensation scheme without careful justification of optimality. Third,

the observability of our multidimensional output signal is imperfect, microfounded through demand

censoring. By contrast, the literature typically assumes perfect observability on all dimensions of

the output signal. As we reveal, unobservability provides rich managerial implications.

Thematically, demand censoring plays a significant role in our analysis.3 By providing a novel

connection between understanding customer demand and designing compensation plans, our paper

enriches a stream of literature on demand censoring. In particular, Besbes and Muharremoglu

(2013) show an exploration–exploitation trade-off in a multi-period inventory control problem with-

out moral hazard. They show in the case of a discrete demand distribution that the lost-sales

indicator voids the need for active exploration. Jain et al. (2015) study another multi-period inven-

tory control problem (also without moral hazard) and numerically show the timing information

of stock-out can help recover much of the inefficiency from demand censoring. Related to this

literature, we show a noisy signal of the lost demand can resolve ex post moral hazard issues.

Finally, we advance the methodology of principal-agent theory by using a “bang-bang” approach

to solve risk-neutral, limited-liability moral hazard problems with finitely many actions. Although

optimal control is a classical tool in economics, marketing, and operations (see, e.g., Sethi and

Thompson 2000; Crama et al. 2008), to our knowledge, the application of this type of logic in the

moral hazard literature is limited. We model the risk-neutral setting, which makes the problem

linear, so optimality is based on extremal solutions with a bang-bang structure. We explore this

approach generally to provide a methodological understanding of the approach that we believe may

be of separate interest for contract theory researchers. Our work applies results from a particularly

cogent presentation of optimization in L∞ spaces in Barvinok (2002, Sections III.5 and IV.12).

This general setup treats linear optimal control as a special case.

3 The operations management and accounting literature (e.g., Chao et al. 2009; Baiman et al. 2010; Krishnan and
Winter 2012, Section 8.1; Nikoofal and Gümüş 2018) has studied similar settings where the outcome of a product is
determined by the weakest of its several components, such as demand and inventory in our setting.
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3. Model

Consider a multitasking store manager (the agent) hired by a firm (the principal) to make oper-

ational effort eo and marketing effort em. We assume eo and em take on at most finitely many

values. Operational effort concerns increasing available inventory, and marketing effort concerns

increasing demand. The principal cannot directly observe the effort choices of the store manager;

they can only be indirectly inferred by observing inventory and demand realizations.

Let us be more precise about the mechanics of operational effort and realized inventory. The firm

supplies the store manager with an initial inventory level Ī. The realized inventory I ≤ Ī is all that

is available to meet demand. The difference Ī−I is unavailable to meet demand due to a variety of

factors, including theft, damage, spoilage, and misshelving. Operational effort stochastically affects

these factors to improve realized inventory. Until Section 9.2, we focus on the underlying incentive

issues for effectively handling a given stock of inventory (i.e., Ī is exogenous).

The cumulative distribution function of realized available inventory I is F (i|eo) with probability

density function f(i|eo), where i ∈ [0, Ī]. We denote demand by Q, its cumulative distribution

function by G(q|em), and its probability density function by g(q|em) for q ∈ [0, Q̄], where Q̄ is an

upper bound on demand.4 These assumptions imply operational effort does not affect demand and

marketing effort does not affect the realization of available inventory. Accordingly, for every effort

level, the random variables I and Q are independent. Both density functions f and g are continuous

functions of their first argument. We make a standard assumption (see, e.g., Grossman and Hart

1983; Rogerson 1985) that the output distributions f(I|eo) and g(Q|em) satisfy the monotone

likelihood ratio property (MLRP); that is,

f(i|eo)

f(i|êo)
nonincreasing in i for eo < êo and g(s|em)

g(s|êm)
nonincreasing in s for em < êm. (1)

The MLRP implies a better inventory (demand) outcome is more informative of the fact that the

store manager has exerted operational (marketing) effort. The MLRP is satisfied by most of the

commonly used families of distributions.

The (random) sales outcome is denoted S ,min{I,Q}. To reflect the phenomenon of demand

censoring, we assume both the firm and store manager observe the realized inventory level and

sales outcome, but neither can observe the realized demand in excess of the realized inventory level.

We assume Q̄≥ Ī to allow for the possibility that demand is censored at its highest level.

The store manager is effort averse. Her disutility from exerting efforts (eo, em) is given by

c(eo, em). We assume c(eo, em) is increasing in both dimensions of effort.

4 Consistent with most of the moral hazard literature, we use a constant support for both demand and inventory
outcomes. If either support moves with effort, the well-known “Mirrlees argument” applies: The firm can detect, with
a positive likelihood, that the store manager has deviated from the desired action (Mirrlees 1999).
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The firm designs a compensation plan w(I,S) to maximize its total expected revenue less the

total expected compensation to the store manager. We assume both the firm and store manager

are risk neutral but with limited liability, bounding w below by
¯
w and above by w̄. The lower

bound on compensation (
¯
w) is normalized to zero without loss. The latter (w̄) implies the firm is

budget constrained and cannot compensate beyond w̄. This budget w̄ is known to both the firm and

the store manager. Assuming an upper bound for the compensation level is fairly common in the

contract theory literature (e.g., Holmstrom 1979; Innes 1990; Arya et al. 2007; Jewitt 2008; Bond

and Gomes 2009). In particular, Bond and Gomes (2009, p. 177) provide a variety of motivations

for it, such as “a desire to limit the pay of an employee to less than his/her supervisor.” We take w̄

as given until Section 9.1, in which we generalize the upper bound on w(i, s) to be a more general

resource constraint that is an integrable function of i and s.

The sequence of events is as follows. First, the firm offers a compensation plan w(i, s) to the

store manager who either takes it or leaves it. Second, if the compensation plan is accepted,

the store manager chooses an operational effort eo and a marketing effort em. Both efforts are

exerted simultaneously. Third, inventory I and demand Q outcomes are simultaneously realized

and inventory and sales S = min{Q,I} are observed. Each unit of met demand yields the principal

a margin of r, unmet demand is lost and unobserved, and unused inventory is salvaged at a return

normalized to zero. Fourth, the firm compensates the store manager according to w(·, ·). Because

initial inventory Ī is given, the cost of procuring inventory is sunk. Accordingly, we may formulate

the firm’s problem as

max
w,e∗o,e∗m

rE[S|e∗o, e∗m]−E[w(I,S)|e∗o, e∗m] (2a)

subject to S = min{Q,I} (2b)

E[w(I,S)|e∗o, e∗m]− c(e∗o, e∗m)≥
¯
U (2c)

E[w(I,S)|e∗o, e∗m]−E[w(I,S)|eo, em]≥ c(e∗o, e∗m)− c(eo, em) for all (eo, em) (2d)

0≤w(i, s)≤ w̄ for all (i, s), (2e)

where the expectation E[·|eo, em] is taken over the joint distribution of I and S at effort levels eo

and em. The participation constraint (2c) ensures the store manager’s expected net payoff is no

lower than a reservation utility
¯
U , and the incentive compatibility (IC) constraint (2d) ensures

choosing (e∗o, e
∗
m) over all other effort levels is optimal for the store manager.

We refer to problem (2) as a multitasking store manager problem. This problem is conceptually

challenging. Indeed, it is a bilevel optimization problem with an infinite-dimensional decision vari-

able w. Deriving the form of an optimal compensation plan w(·, ·) requires a methodical exploration

of optimality conditions in this setting.
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4. A Bang-Bang Optimal Control Approach

In this section, we study a general class of risk-neutral moral hazard problems with finite agent

action sets. Our approach applies more broadly than the multitasking store manager setting, so

we describe it in a general notation not overly specific to its use in this paper.

Consider a moral-hazard problem between one principal and one agent. The agent has a finite set

of actionsA= {~a1,~a2, . . . ,~am}; we use the “arrow” notation ~a to denote a vector. In the multitasking

setting, this assumption implies a finite number of operational effort levels eo, a finite number of

marketing effort levels em, and each action ~a∈A is a pair of efforts ~a= (eo, em).

The agent incurs a cost c(~a) for taking action ~a ∈ A, where we assume c(~a) is increasing in ~a.

The output is a vector ~x∈X , where X is a compact subset of Rn, for some integer n.5 The random

output X has a density function f(~x|~a), where f(·|~a) is in L1(X ) for all ~a ∈A and f(~x|~a)> 0 for

all ~x ∈ X and ~a ∈ A; the notation L1(X ) denotes the space of all absolutely integrable functions

on X with respect to Lebesgue measure on Rn. This general formulation allows the signals to be

correlated and depend on combinations of efforts.

The principal offers the agent the wage contract w :X →R that pays out according to the realized

outcome. The principal values outcome ~x∈X according to the valuation function π :X →R. The

agent has limited liability and must receive a minimum wage of
¯
w almost surely. We normalize

¯
w to

zero. Moreover, the principal has a constraint that tops compensation out at w̄; that is, w(x)≤ w̄

for almost all x∈X . Finally, the agent has a reservation utility
¯
U for her next-best alternative.

Both the principal and agent are risk neutral. The expected utility of the principal is

denoted V (w,~a),
∫
x∈X (π(~x)−w(~x))f(~x|~a)dx, and the expected utility of the agent is U(w,~a),∫

~x∈X w(~x)f(~x|~a)d~x− c(~a). We formulate the moral hazard problem as

max
w,~a

V (w,~a) (3a)

subject to U(w,~a)≥
¯
U (3b)

U(w,~a)−U(w,~ai)≥ 0 for i= 1,2, . . . ,m (3c)

0≤w≤w. (3d)

Following the two-step solution approach developed by Grossman and Hart (1983), we suppose

an implementable target action ~a∗ has been identified. This approach reduces the problem to

min
w

∫
~x∈X

w(~x)f(~x|~a∗)d~x (4a)

5 The compactness condition of X is not overly restrictive. If the original space of signals is unbounded, for instance,
a transformation of the signal could make the signal space compact. For instance, tasking the transformation ex

1+ex

of the original signal x, in each dimension, can achieve the desired goal.
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subject to

∫
~x∈X

w(~x)f(~x|~a∗)d~x≥
¯
U (4b)

∫
~x∈X

Ri(~x)w(~x)f(~x|~a∗)d~x≥ c(~a∗)− c(~ai) for i∈ {1,2, . . . ,m} such that ~ai 6=~a∗ (4c)

0≤w≤w, (4d)

where we use the fact that V (w,~a) =E[π(~x)|~a∗]−
∫
~x∈X w(~x)f(~x|~a∗)d~x, drop the constant E[π(~x)|~a∗]

from the objective, convert to a minimization problem, and simplify the constraint (3c) by defining

Ri(~x), 1− f(~x|~ai)
f(~x|~a∗) (5)

for i= 1,2, . . . ,m. Finally, we drop the IC constraint for ~ai =~a∗, because this constraint is always

satisfied with equality.

A bang-bang contract is a feasible solution to (4), where w(~x)∈ {0,w} for almost all ~x∈X .

Theorem 1. An optimal bang-bang contract for (4) exists.

Next, we characterize when an optimal bang-bang contract takes the value of 0 and when it

takes the value w̄. This characterization is associated with a trigger value of a weighted sum of

appropriately defined covariances of the contract with the likelihoods of outcomes under different

actions. Our analysis uses tools found in Barvinok (2002, Section IV.12).

Theorem 2. There exist nonnegative multipliers ωi and a “target” t such that an optimal solu-

tion to (4) of the following form exists:6

w∗(~x) =

{
w if

∑m

i=1ωiRi(~x)≥ t
0 otherwise

, (6)

where
∑m

i=1ωi = 1 holds.

Let B , {~x∈X :
∑m

i=1ωiRi(~x)≥ t} denote the bonus region of the compensation plan w∗. In

other words, w∗(~x) evaluates to w̄ inside B and zero outside B.

The contract in (6) has a compelling economic interpretation. Consider the condition

m∑
i=1

ωiRi(~x)≥ t (7)

that defines the bonus region B. Because the ωi are nonnegative and sum to 1, the left-hand side

is a weighted sum of likelihood ratios that can be viewed as a measure of the information value (or

6 This assumes the function
∑m

i=1 ωiRi(~x) has zero mass at the cutoff t. If positive mass exists at the cutoff, a lottery
with payouts on 0 and w̄ can characterize an optimal contract. We assume zero mass at the cutoff to avoid this
additional complication.
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informativeness) of outcome ~x for determining if the agent took the target action ~a∗. For the given

outcome ~x, larger values of Ri(~x) are associated with actions ~ai, where the outcome ~x is less likely

under action ~ai than action ~a∗. Thus, the larger
∑m

i=1ωiRi(~x) is, the less likely the agent is to have

deviated from ~a∗. The trigger condition (7) rewards outcomes whose informativeness exceeds the

given threshold t. The weights ωi fine-tune how we measure this informativeness and are determined

through solving a dual problem that “prices” the significance of deviations to different actions.

In light of this logic, we refer to contracts of the form (6) as information-trigger contracts (or

simply trigger contracts). If the information value (as measured by
∑m

i=1ωiRi(~x)) exceeds some

trigger value, the agent is rewarded for that outcome.

The proof of Theorem 2 derives ωi and t from solving a dual optimization problem. However,

another approach is to solve a restricted class of the primal moral hazard problem (4), where

contracts are information-trigger contracts of the form (6). If w is an information-trigger contract,

V (w,~a∗) = w̄

∫
~x∈X subject to∑m

i=1 ωiRi(~x)≥t

f(~x|~a∗)d~x= w̄P

[
m∑
i=1

ωiRi( ~X)≥ t

]

and ∫
~x∈X subject to∑m

i=1 ωiRi(~x)≥t

Ri(~x)w(~x)f(~x|~a)d~x= w̄E

[
Ri( ~X)

∣∣∣∣ m∑
i=1

ωiRi( ~X)≥ t

]
,

where P[·] is the probability measure and E[·] is the expectation operator associated with f(·|~a∗).
Using this notation, the restriction of (4) over trigger contracts of the form (6) is

min
ω,t

w̄P

[
m∑
i=1

ωiRi( ~X)≥ t

]
(8a)

subject to w̄P

[
m∑
i=1

ωiRi( ~X)≥ t

]
≥

¯
U (8b)

w̄E

[
Ri( ~X)

∣∣∣∣ m∑
i=1

ωiRi( ~X)≥ t

]
≥ c(~a∗)− c(~ai) for i∈ {1,2, . . . ,m} (8c)

m∑
i=1

ωi = 1 (8d)

ωi ≥ 0 for all i∈ {1,2, . . . ,m}. (8e)

The next result relates optimality in this problem to the original problem (4).

Theorem 3. Problem (8) has the same optimal value as (4). Moreover, an optimal solution to

(8) corresponds to an optimal solution to (4).

Theorem 3 says that it suffices to solve the finite-dimensional problem (8) to solve the original

moral hazard problem.
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5. Analyzing the Multitasking Store Manager Problem

We now study store manager problem introduced in Section 3 using the bang-bang approach of

the previous section.

5.1. General Optimality Structure

Theorem 2 applies directly to the store manager problem (2). A critical object needed to define

information-trigger compensation plans of the form (6) is the joint distribution of S and I. Demand

Q and inventory I are assumed to be independent, and hence deriving their joint distribution is

straightforward. Deriving the joint distribution of the sales and inventory is more difficult because

of demand censoring. The following lemma provides the joint cumulative distribution function

Pr(I ≤ i,S ≤ s|eo, em) of I and S.

Lemma 1. The joint cumulative distribution function

Pr(I ≤ i,S ≤ s|eo, em) =

{
F (s|eo) +G(s|em)[F (i|eo)−F (s|eo)] if s < i

F (i|eo) if s= i
.

Before deriving the joint probability density function, we briefly discuss the domain of compen-

sation plans. Note D ,
{

(i, s) : 0≤ s≤ i and 0≤ i≤ Ī
}

is the domain of any feasible compensa-

tion plan because of demand censoring. We also denote by DNSO , {(i, s)∈D : s < i} and DSO ,

{(i, s)∈D : s= i} the regions of the domain where no stockout occurs and stockout occurs, respec-

tively. For simplicity, we denote by w(i) the compensation level when s = i; that is, we shorten

w(i, i) to w(i).

The underlying measure of tuples (i, s) is absolutely continuous when s < i, whereas along the

45◦ line for each i, a point mass of weight 1−G(i|em) at (i, i) is present. The joint probability

density function of S and I is thus h(i, s|eo, em) = f(i|eo)g(s|em) for s < i, and h(i, i|eo, em) =

f(i|eo)(1−G(i|em)) when s= i.

Given this density function, using (5), we represent the ratio function Reo,em(i, s) as

Reo,em(i, s) = 1− I[i > s]f(i|eo)g(s|em) + δ(i= s)f(i|eo)(1−G(i|em)

I[i > s]f(i|e∗o)g(s|e∗m) + δ(i= s)f(i|e∗o)(1−G(i|e∗m)
,

where I[·] is the indicator function and δ(i= s) is a Dirac function at i. We describe an optimal

information-trigger compensation plan in two different scenarios: (i) where i > s (no stockout) and

(ii) where i= s (stockout), by defining appropriate ratio functions. In the nonstockout (NSO) case,

RNSO
eo,em

(i, s) = 1− f(i|eo)g(s|em)

f(i|e∗o)g(s|e∗m)
, (9)

and in the stockout (SO) case,

RSO
eo,em

(i) = 1− f(i|eo)(1−G(i|em)

f(i|e∗o)(1−G(i|e∗m)
. (10)
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Theorem 2 implies an optimal compensation plan takes the following form:

w∗(i, s) =

{
wNSO(i, s) if (i, s)∈DNSO

wSO(i) if (i, s)∈DSO
, (11)

where

wNSO(i, s) =

w if
∑
eo,em

ωeo,emR
NSO
eo,em

(i, s)≥ t

0 otherwise
and wSO(i) =

w if
∑
eo,em

ωeo,emR
SO
eo,em

(i)≥ t

0 otherwise,

for some choice of t and nonnegative ωeo,em satisfying
∑

eo,em
ωeo,em = 1.

Recall that B denotes the bonus region of the information-trigger compensation plan w∗ defined

in (6). We adopt that notation here and refine it further by setting

BNSO ,

{
(i, s)∈DNSO :

∑
eo,em

ωeo,emR
NSO
eo,em

(i, s)≥ t

}
, (12)

BSO ,

{
(i, s)∈DSO :

∑
eo,em

ωeo,emR
SO
eo,em

(i, s)≥ t

}
. (13)

A key observation here is that the bonus region BNSO is possibly a full-dimensional subset of

the nonstockout region of the domain DSO, whereas the bonus region BSO is a one-dimensional set

along the 45◦ line DSO.

5.2. Mast-and-Sail Compensation Plans

Throughout the rest of paper, we make more concrete the structure of the optimal com-

pensation plan (11) in a special multitasking setting with two levels—“high” (H) and “low”

(L)—for each of the operational and marketing efforts. In the notation of Section 4, A =

{(eHo , eHm), (eHo , e
L
m), (eLo , e

H
m), (eLo , e

L
m)}. We also assume the target action is (eHo , e

H
m), that is, for

the store manager to make her best effort in both operations and marketing. For a discussion of

scenarios where other effort levels may be targeted, see Section OA.6.

We first look into the structure of BNSO under these assumptions.

Proposition 1. A nonincreasing and continuous function s∗ and is ∈ (0, Ī] exist such that

BNSO = {(i, s) : i≥ is and s∗(i)≤ s < i}.7

Because s∗(i) is a nonincreasing and continuous function of i on its domain, the bonus region

resembles the one shown in Figure 1(a). We call the shape of this region a “sail.”

Proposition 2. An inventory value im ∈ (0, Ī] exists, such that BSO = {(i, s) : s= i≥ im}.

7 Observe that BNSO can be empty under this definition when the function s∗ only takes values in (Ī , Q̄], in which
case is = Ī, which is not optimal. For this reason, in figures like Figure 1(a), we restrict the vertical axis to be between
0 and Ī, as opposed to 0 and Q̄.
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s

Ī
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is

s∗(i)

BNSO

(a) The “sail” bonus region BNSO.

Ī

s

inventory, i

sales

im

BSO

(b) The “mast” bonus region BSO.

Figure 1 Illustrations of the “sail” and “mast” regions.

Ī

s

im
inventory, i

sales

is

B

(a) A “mast-and-sail” bonus region.

Ī

s

im

inventory, i

sales

is

B

(b) A non-closed bonus region.

Figure 2 Two possible structures of the union of the “mast” and the “sail” bonus regions.

Figure 1(b) gives a visualization of the bonus region BSO. We call this region a “mast.”

Taken together, the bonus region of the optimal compensation plan w∗ defined in (11) is the

union of the regions in Propositions 1 and 2. Figures 2(a) and 2(b) illustrate two of the possible

structures of this union that result from the regions failing to “overlap” perfectly. When is > im,

the bonus region has an inherent nonconvexity at (is, is), as illustrated in Figure 2(a). The shape in

this figure makes clear our usage of the phrase “mast and sail” to describe the bonus region of an

optimal compensation plan. When is < im, the “mast and sail” (with what looks like a mast that

is too short for its sail) overlap to form a region that is not closed, as illustrated in Figure 2(b).The

next result shows only the structure seen in Figure 2(a) is possible.

Proposition 3. In every optimal compensation plan w∗ of the form (11), we have i∗s ≥ i∗m.

5.3. Are Marketing and Operational Outcomes Complements or Substitutes?

Mast-and-sail compensation plans have several interesting properties. We discuss a key one (non-

monotonicity) in the next section. Here, we examine whether operational and marketing outcomes

act as complements or substitutes.
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Proposition 4. As i increases, (i) if im ≤ i < is, the minimum sales quantity required for the

store manager to qualify for the bonus strictly increases (“moving up the mast”), and (ii) if i≥ is,

the minimum sales quantity s∗(i) required for the store manager to qualify for the bonus decreases

(“slipping down the sail”).

Proposition 4(i) reveals that in the “mast” part of the bonus region (i.e., the region with i < is),

which corresponds to stockout scenarios, a high realized inventory level has to be accompanied

by a high sales outcome. The complementarity in the compensation plan takes such an extreme

form that the sales threshold is exactly equal to the inventory outcome. Because the inventory is

not sufficiently high, the firm expects the agent to generate a high-enough demand to clear all the

inventory to demonstrate the agent has exerted sufficient marketing effort.

In the “sail” part of the bonus region (i.e., the region with i≥ is), as inventory increases, the

minimum sales quantity to receive the bonus decreases. Intuitively, if inventory is high, one might

expect the firm to only reward higher marketing effort to clear the inventory. “Slipping down the

sail” seems to suggest lower marketing efforts are also tolerated, precisely when the store has a lot

of inventory. Might this realization send the wrong signal to store managers, namely that they can

slack off in marketing when they keep a lot of inventory in the store? Can “slipping down the sail”

induce a “slipping” in marketing effort?

To see it is not the case, “slipping down the sail” only occurs when inventory meets the mini-

mum threshold is, indicating a sufficiently high likelihood of significant operational effort has been

invested. “Slipping down the sail” is not meant as an enticement for low marketing effort; rather,

it comes as an acknowledgment that high marketing effort may still result in low demand, and

because inventory effort is already likely to be high, such unlucky outcomes should not be overly

penalized. An upward-sloping sail heightens penalties for unlucky marketing outcomes, which for

an agent who has already invested significant operational effort, is a deterrent for investing even

in the marketing effort needed to clear inventory.

More technically, the optimality of “slipping down the sail” is connected to the MLRP. The

MLRP suggests the informative value of the observed signal (i, s) increases in both i and s. Note

the “sail” part corresponds to the scenarios without stockouts so that the true demand is equal to

the observed sales quantity. Thus, the firm can infer the same likelihood that the store manager

has exerted both operational and marketing efforts based on either (i) a low inventory level and a

high demand outcome or (ii) a high inventory level and a lower demand outcome. For this reason,

operations and marketing act as substitutes in the optimal compensation plan.
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s

inventory, i
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(im, im)

(is, is)

(i, s)

(i◦, s◦)

Figure 3 An illustration of the lack of joint monotonicity of an optimal compensation plan.

6. Ex Post Moral Hazard in Mast-and-Sail Compensation Plans

In this section, we explore the monotonicity of the mast-and-sail structure. To make things concrete,

and because a compensation plan has two arguments (i and s), we start with carefully defining

monotonicity. We say w(i, s) is monotone in i if w(i′, s)≤ w(i′′, s) for every (i′, s), (i′′, s) ∈D and

i′ ≤ i′′. Similarly, we say w(i, s) is monotone in s if w(i, s′) ≤ w(i, s′′) for every (i, s′), (i, s′′) ∈D

and s′ ≤ s′′. Finally, we say w(i, s) is (strictly) jointly monotone if w(i′, s′) ≤ w(i′′, s′′) for all

(i′, s′), (i′′, s′′)∈D with i′ < i′′ and s′ < s′′.8

Proposition 5. For an optimal compensation plan w∗ of the form (11), (i) w∗ is monotone in

s, (ii) if is = im, w∗ is also monotone in i and jointly monotone, and (iii) if is > im, w∗ is neither

monotone in i nor jointly monotone.

Figure 3 provides the intuition for this result. Part (i) concerns monotonicity in the vertical

direction, which clearly holds in the figure because we never move beyond the 45◦ line in the vertical

direction. Part (ii) concerns monotonicity in the horizontal direction. Moving a short distance

horizontally from the bottom corner (im, im) of the mast drops the store manager’s compensation

from having the bonus to losing the bonus. Lastly, part (iii) concerns moving northeast in the

graph. As shown in Figure 3, a move from the corner (im, im) of the mast to the point (i◦, s◦),

where i◦ = is + ε for some positive ε and s◦ = s∗(i◦) again drops the bonus for the store manager.

As discussed at length in the introduction, to say an optimal compensation plan is not monotone

in every sense is somewhat nonintuitive. Indeed, as seen in Figure 3, the store manager could be

worse off for achieving strictly better inventory and sales outcomes. When stockout occurs along

the mast part of the bonus region, the realized demand is censored by the inventory level. The

firm’s observed sales quantity is only a lower bound of the realized demand. The store manager

might have made significant marketing effort that realized in a high demand level, which (possibly

8 We say “strictly” here because we require strict improvement in both the inventory and sales outcomes. Note that
allowing i′ = i′′ or s′ = s′′ in the definition of joint monotonicity is a case that can be handled by one of the two
earlier definitions of monotonicity.
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unluckily) available inventory was not able to meet. Given the same sales quantity, as inventory

increases, the firm no longer experiences stockouts. The observed sales quantity is equal to (as

opposed to a lower bound of) the realized demand. Thus, an increased realized inventory level

may be informative of the fact that the store manager has not exerted high marketing effort. In

other words, to encourage greater marketing effort, the firm is rewarding the possibility of a high

demand realization when inventory stocks out. When the uncertainty surrounding realized demand

(as opposed to sales) is removed, better performance is required to warrant the bonus.

Interesting as the above non-monotonicity property is, it may raise implementability concerns. If

inventory can be “hidden” from the principal ex post, which does not seem entirely inconceivable,

the compensation plan becomes faulty. To see this possibility concretely, suppose a store manager

realizes inventory and sales (i′, s′) with i′ > im but does not receive a bonus. This scenario occurs,

for instance, when i′ ∈ (im, is) and i′ < s′ < s∗(i′). If the store manager could hide some of the

realized inventory (or claim it was “shrunk”) to reveal an output of (i′, i′), she would receive a

bonus. In other words, the store manager is effectively rewarded for disposing of inventory, meaning

ex post moral hazard issue is inherent with contracts that are non-monotone in inventory.

In practice, inventory can neither be freely “hidden” nor perfectly observed. The ex post moral

hazard problem of manipulating inventory is thus similar to “costly state falsification” problems

studied in the accounting and economics literature (see, e.g., Lacker and Weinberg 1989, Beyer et

al. 2014). Monitoring ex post manipulation by the firm is itself limited, and penalties are difficult

to enforce. Indeed, the setup of our problem supposes marketing and operational effort of the store

manager are not observable to the firm. This setup suggests monitoring of inventory is limited for

the same reasons. To the extent that a careful accounting of realized inventory and assessment of

store manager effort are confounded, the non-monotonicity of the mast-and-sail compensation plan

is an endemic issue. If, under some method, inventory realizations can be observed and operational

effort remains hidden, the non-monotonicity of the mast-and-sail compensation plan is less of a

concern. However, we are unaware of such tools for use in practice.

In the rest of the paper, we search for alternate compensation plans that resolve the ex post

moral hazard issue of inventory manipulation.

7. Monotone (But Not Optimal) Compensation Plans

In the previous two sections, we have characterized an optimal mast-and-sail compensation plan,

but these compensation plans suffer from non-monotonicity, limiting their practicality in the pres-

ence of ex post moral hazard over the hiding of inventory.9 This issue motivates interest in exploring

the performance of classes of implementable compensation plans that are monotone.

9 It is worth noting that the non-monotonicity issue disappears if demand is fully observed. We explore this issue in
Section OA.4, where we also explore the dead-weight loss due to demand censoring.
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Figure 4 Illustration of a corner compensation plan.

There are two natural candidates for implementable compensation plans. The first is a bonus

compensation plan where a bonus is given if both a sales and inventory quota are met, termed

a “corner” compensation plans in the introduction. The other candidate is a modification of the

mast-and-sail by snipping “mast” to remove non-convexity of the bonus region (and thus assuring

monotonicity) and linearizing the downward-sloping s∗ function defining the sail in Proposition 1.

Our goal in studying these two candidate solutions is to assess the extent of optimality loss asso-

ciated with monotonicity, using the optimal mast-and-sail compensation plan as the benchmark.

7.1. Corner Compensation Plans

Corner compensation plans build on the logic of the quota-bonus compensation plans that are

optimal in the risk-neutral setting in the salesforce compensation literature (Oyer 2000; Dai and

Jerath 2013, 2016). A corner compensation plan (a, b) is one where any outcomes (i, s) with i≥ a

and s≥ b earn a bonus 0≤ β ≤ w̄. See Figure 4 for an illustration.

The next result shows the mast-and-sail compensation plans often perform strictly better than

corner compensation plans. We say f and g satisfy the strict MLRP; that is, (1) holds with weak

inequalities replaced by strict inequalities. Many commonly studied families of distributions (e.g.,

binomial, exponential, log-normal, normal, and Poisson) satisfy the strict MLRP.

Proposition 6. Given a multitasking store manager problem described in Section 5.2, with the

further restriction that f and g satisfy the strict MLRP and the agent earns positive rents, an

optimal compensation plan cannot be a corner compensation plan.

Assuming positive rents for the agent is common in the literature (e.g., Oyer 2000; Dai and

Jerath 2013). The situation in which the agent earns no rents yields a first-best contract whereby

the incentive issue does not have any “bite” and is thus less interesting as an incentive problem.

Using similar reasoning as the proof of this proposition, one can show the best corner compensation

plan with bonus w̄ outperforms every other corner compensation plan. Accordingly, we focus on
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corner compensation plans with bonus w̄. Moreover, observe that compensation plans rewarding

sales only are achieved by setting a= b, and those rewarding inventory only are achieved by setting

b= 0. Single-tasking compensation plans are special cases of corner compensation plans and so are

(weakly) dominated by the optimal corner compensation plan.

Additional analytical performance bounds are hard to come by, in no small part because of the

challenging nature of computing the parameters of the optimal compensation plan. The difficulty

is that the weights ωi and t in (12) and (13) must be computed to get a sense of the shape of the

mast and sail. Problem (8) and Theorem 3 provide our best hope for computing ωi and t in general.

However, (8) is a challenging optimization problem and, to our knowledge, does not readily admit

analytical characterizations that can be used to provide bounds. For this reason, we primarily use

numerical calculations to further compare various compensation plans.

To numerically quantify the performance loss of corner compensation plans, we need to describe

the structure of an optimal corner compensation plan. Luckily, the analysis under a corner com-

pensation problem greatly simplifies, as evidenced by the following simple result.

Proposition 7. The expected wage payout of the corner compensation plan (a, b) is w̄(1 −
F (a|e∗o)(1−G(b|e∗m) where (1−F (a|e∗o)(1−G(b|e∗m) is the probability of paying out the bonus, where

(e∗o, e
∗
m) is the target effort level to be implemented.

Given this characterization of expected wage payout, problem (2) evaluated at the corner com-

pensation plan (a, b) becomes (after some basic simplifications)

max
a,b,a≥b

rE[S|eHo , eHm]− w̄(1−F (a|eHo )(1−G(b|eHm) (14a)

s.t. [1−F (a|eHo )][1−G(b|eHm)]− [1−F (a|eLo )][1−G(b|eLm)]≥ c(eHo , e
H
m)− c(eLo , eLm)

w̄
(14b)

[F (a|eLo )−F (a|eHo )][1−G(b|eHm)]≥ c(eHo , e
H
m)− c(eHo , eLm)

w̄
(14c)

[1−F (a|eHo )][G(b|eLm)−G(b|eHm)]≥ c(eHo , e
H
m)− c(eLo , eHm)

w̄
, (14d)

assuming we look at the setting where the store manager earns positive rents (as discussed after

Proposition 6). Optimal solutions to (14) are relatively easy to characterize, depending on which

of the constraints are slack or tight. The next result follows from this reasoning.

Proposition 8. If constraint (14b) is tight at optimality, the optimal corner compensation plan

(a, b) has a and b satisfy the equation:

Hf (a|eHo )

Hg(b|eHm)
=
Hf (a|eLo )

Hg(b|eLm)
, (15)

where Hf (a|e∗o) = f(a|e∗o)

1−F (a|e∗o)
is the hazard rate for density f and Hg is the hazard rate of density g.

On the other hand, if (14b) does not bind, then a= b, where a is characterized by setting either

constraint (14c) or (14d) to be tight.
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(b) Parameters: w̄ = 10, c(eLo , e
L
m) = 1, c(eLo , e

H
m) =

1.8, c(eHo , e
H
m) = 3.5, c(eHo , e

L
m) between 1.5 and 1.8.

Figure 5 Performance of optimal corner compensation plan versus optimal mast-and-sail compensation plan. We

assume F (i|eo) = (H(i))eo and G(s|em) = (L(s))em , where H(i) = i and L(s) = s.

This structure assists us in running numerical experiments to evaluate the performance of optimal

corner compensation plans. For an illustration of how to use these results, see a concrete numerical

example in Section OA.3. Here, we present two representative and contrasting scenarios in Fig-

ures 5(a) and 5(b). Figure 5(a) shows the performance of the corner compensation plan is close to

optimal (within 1%) when the marketing and operational activities are highly complementary in

terms of the agent’s cost structure. By contrast, Figure 5(a) shows when the marketing and oper-

ational activities are not sufficiently complementary, the performance of the corner compensation

plan is far from optimal, with a gap of up to 18%.

In certain cases, the corner compensation plan fails to induce the target action achievable under

the optimal compensation plan. Example 1 provides one such example. Although the corner com-

pensation plan may lead to a lower expected compensation than the optimal compensation plan,

the firm’s expected sales quantity is also lower because of the store manager’s lower effort than

the desired one. Thus, under a sufficiently high unit revenue (so that the target action entails high

effort in both operational and marketing activities), the firm’s expected profit is higher under the

mast-and-sail compensation plan. Indeed, for this type of scenario, we can show the efficiency loss

under the corner compensation plan increases linearly in the unit revenue. In other words, the

worst-case loss in performance of corner compensation plans is arbitrarily large.

Example 1. Consider the following instance where eo ∈ {eLo , eHo } and em ∈ {eLm, eHm} where eLo =

eLm = 1 and eHo = eHm = 2. The target action is (eHo , e
H
m) = (2,2). The cost function is c(eHo , e

H
m) = 3.1,

c(eHo , e
L
m) = 1, c(eLo , e

H
m) = 1.6, and c(eLo , e

L
m) = 0.1. The resource constraint for the firm has w̄= 10.

For this instance, we can show the firm can use a mast-and-sail compensation plan with ω∗
eLo ,e

L
m

=

0, ω∗
eHo ,e

L
m

= 0.8602, ω∗
eLo ,e

H
m

= 0.1398, and t∗ = 0.1817 to induce the target action, under which the

store manager’s probability of receiving the bonus is 58.70%. However, no corner compensation plan
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Figure 6 Expected profits under the mast-and-sail and corner compensation plans versus revenue rate r.

exists that can induce the target action. Indeed, the best that the corner compensation plan can

achieve is to induce (eHo , e
L
m) with parameters of a∗ = b∗ = 0.6186, under which the store manager’s

probability of receiving the bonus is 23.55%. We illustrate the firm’s expected profits under both

types of compensation plans in Figure 6, as a function of the per-unit revenue rate r.

7.2. Modifying Mast-and-Sail Compensation Plans for Implementability

In the previous subsection, we used a single-tasking logic to construct and evaluate corner com-

pensation plans, with the sales-quota-bonus compensation plan being the simplest case, and found

its performance depends on the store manager’s cost structure and can be far from optimal. We

now switch gears to using our mast-and-sail compensation plan as inspiration for designing ex

post implementable compensation plans. We do so in two directions: (i) removing the mast (i.e.,

setting im = is and (ii) linearizing the downward-sloping function s∗ in Proposition 1. Removing

the mast assures monotonicity of the compensation plan and linearizing s∗ makes communicating

the compensation plan to sales managers easier in practice.10

Together this effort amounts to finding the best compensation plan where the bonus region is

characterized by a downward-sloping line (creating a “triangular sail” like that in Figure 7). We

call such compensation plans weighted-sum threshold compensation plans because the payout of

the bonus is determined by the weighted sum of the sales quantity and inventory level. Specifically,

the agent receives a bonus if the realized sales quantity s and inventory level i satisfy s+κ1 · i≥ κ2,

for some κ1, κ2 ≥ 0.11 To find the optimal weighted-sum threshold compensation plan, one searches

over the values of κ1 and κ2 that give the best payoff to the firm.
Numerical results (see Figure 8) show the optimal weighted-sum threshold compensation plans

10 In Section OA.5 we additionally explore non-monotone approximations of mast-and-sail compensation plans, for
the purpose of examining what aspects of the mast-and-sail structure drive optimality. There we show via extensive
numerical experiments that there is little optimality loss by replacing s∗ by a linear function. By contrast, removing
the mast can have a significant impact.

11 We restrict attention to nonnegative κ1 and κ2 to ensure the “triangular sail” is described by a downward-sloping
line and the 45◦ line. Recall the function s∗ in mast-and-sail compensation plans was downward sloping. Moreover,
an upward-sloping triangular sail itself is non-monotone, despite its simplicity, and thus susceptible to the ex post
moral hazard of hiding inventory. For these reasons, we restrict attention to nonnegative κ1 and κ2.
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Figure 7 An illustration of a weighted-sum-threshold compensation plan.
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Figure 8 Expected profits under the mast-and-sail and corner compensation plans versus c(eHo , e
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m)

also perform poorly (indeed, as poorly as corner compensation plans) in bad cases (losses of up to

18% in this example). We conclude the “loss due to monotonicity” that is captured by the ex post

moral hazard issue that afflicts mast-and-sail contracts has no easy fix. The next section shows,

however, with some additional information, this issue can be resolved.

8. Resolving Ex Post Moral Hazard through Gauging Unsatisfied
Demand12

In previous sections, we assumed any demand in excess of inventory cannot be observed. We now

consider a more general setting where partial information is revealed when demand exceeds sales.

In particular, we assume some random (and unknown) fraction of customers who do not receive

the product express interest via a waitlist (or some other method of capturing unsatisfied demand).

We introduce a new random variable13

Θ := Λ(Q− I) + I, (16)

12 We thank an anonymous reviewer for suggesting this direction of analysis to tackle ex post moral hazard.

13 In fact, our analysis allows for Θ to be defined by a general function of Γ, Q, and I that satisfies sufficient
monotonicity properties. We study the linear version due to its intuitive nature.
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where Λ is a continuous random variable distributed on (0,1). When Q, I, and Λ realize to outcome

(q, i, λ), where q > i, λ can be interpreted as the fraction of customers who sign the waitlist when

facing stockout. We call Λ the random fraction of captured demand (or simply the fraction).

We define a new random variable,

Z :=Z(I,Q,Θ) =

{
Q if Q≤ I
Θ if Q> I

, (17)

that captures what demand information can be observed. We cannot observe Q when Q> I and

we cannot observe Θ when Q≤ I. We assume the conditional density function γ(θ|q, i) for all q, i

such that q > i is known to both the firm and store manager. This assumption amounts to knowing

the probability density function ϕ of the fraction Λ, because in this case, γ(θ|q, i) = 1
q−iϕ

(
θ−i
q−i

)
.

The firm and store manager observe I and Z. When Z = Θ, the product Λ(Q−I) can be observed

(since I is also observable) but knowledge of this product does not reveal Λ or Q directly. That is,

the proportion of unsatisfied customers that sign up for the waitlist is not observable. The derived

signal Z captures intermediate degrees of demand censoring. In the classical censoring case, Θ is

precisely I with Λ a constant at 0. Accordingly, Z becomes the random variable S studied in earlier

sections. Similarly, the situation where demand is observed sets Θ =Q with Λ a constant at 1; this

full information case is explored in Section OA.4 of the online appendix.

Because the firm and store manager observe I and Z, the compensation plan w is a function of

I and Z. The same bang-bang methodology applies to this new setting, as the underlying problem

remains linear in w. The optimal compensation plan is therefore defined by characterizing its bonus

region where the store manager receives w̄, using the methodology of Section 4.

To get a sense of the bonus region, we need to understand the domain of w. According to (17),

two regions of the domain need to be considered: (i) the “no lost sales” (NLS) region (where Z ≤ I)

and (ii) the lost-sales (LS) region (where Z > I). As before, we may construct the bonus region in

the two “chunks” of the underlying domain, the NLS region and the LS region. The joint density

function of (I,Z) can be expressed over these two regions as follows:

h(i, z|eo, em) :=

{
f(i|eo)g(z|em) if z ≤ i∫ Q̄
q=i

γ(z|q, i)g(q|em)dqf(i|eo) if z > i.
(18)

Using the joint density function in (18), we define the bonus regions in the NLS and LS regions in

terms of likelihood ratio functions as follows:

RNLS
eo,em

(i, z) = 1− g(z|em)

g(z|e∗m)
· f(i|eo)
f(i|e∗o)

(19)

RLS
e0,em

(i, z) = 1−
∫ Q̄
q=i

γ(z|q, i)g(q|em)dq∫ Q̄
q=i

γ(z|q, i)g(q|e∗m)dq︸ ︷︷ ︸
(∗)

·f(i|eo)
f(i|e∗o)

, (20)
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where e∗o and e∗m are the target effort levels.

The NLS bonus region has a structure analogous to the nonstockout bonus region described in

Proposition 1. When z ≤ i, we have z = q = s and the bonus region is precisely BNLS = {(i, s) : i≥

is and s∗(i)≤ s≤ i}. The LS region is more complex due to the dependence of Θ on both I and

Q. Further assumptions are required to derive interpretable structure.

Assumption 1. The random variable Θ defined in (16) with conditional density function

γ(θ|q, i) is such that ∂ logγ(θ|q,i)
∂q

is nondecreasing in θ for every i.

This assumption is the MLRP of Θ with respect to changes in q, given every inventory realization

i. As we have said before, this assumption is common in the contract theory literature, and is

satisfied when, for example, Λ is uniformly distributed (among other distributions).

Ī

z

Ī

inventory, i

is

`∗(i)

BLS

BNLS

(a) The lost-sales bonus region in (21).

Ī

z

Ī

inventory, i

is ≈ 0.6

`∗(i)

BLS

BNLS

(b) The lost-sales bonus region in (22).

Figure 9 Illustrations of lost sales bonus region BLS.

Proposition 9. Under Assumption 1, we have the following cases:

(a)
∫ Q̄
i
γ(z|q, i)g(q|em)dq is unbounded for all i, then

BLS = {(i, z) : i≥ is and z > i} , and (21)

(b) there exists a continuous function `∗ defined on [0, is) such that14

BLS = {(i, z) : i < is and `∗(i)≤ z ≤ Q̄}∪ {(i, z) : i≥ is and i < z ≤ Q̄}. (22)

14 Recall that is possible in theory for is = Ī, and hence the region BLS need not cross the 45◦ line. In other words,
`∗(i)∈ (Ī , Q̄] for all i. We ignore this degenerate case, because here the store manager does not get a bonus even when
Ī is sold, which cannot be optimal because it does not implement high efforts.
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An important fact used in this proof is that Λ ∈ (0,1). When we can infer that Q = I (i.e.,

stockout occurs) when Z = I because this implies Λ(Q− I) = 0 and Λ never realizes to 0. In other

words, when the signal Θ is equal to I, no demand is lost. This ensures the LS and NLS bonus

regions meet at the same point on the 45◦ line (is).

Figure 9 gives a visualization of the bonus regions BLS and BNLS in cases (a) and (b) of Proposi-

tion 9. Figure 9(a) was generated assuming Λ is a power law distribution with cumulative distribu-

tion function λα, where α≤ 1. It is straightforward that this class of distributions (which includes

the uniform distribution) satisfies the conditions of Proposition 9(a). We generated Figure 9(b) by

considering the case in which Λ was distributed, so that − log Λ is a Gamma(α,β) distribution.

This ensures Λ ∈ (0,1). It is straightforward to check that the conditions of Proposition 9(b) are

satisfied for this setting. To generate the figure, we took α= 2 and β = 1/2.

The two different cases for the bonus region have interesting implications for the question of

monotonicity and ex post moral hazard. Observe that in Figure 9(a), the bonus region is jointly

monotone in z and i. This case is not trivial, because it includes the uniform distribution and

general power law distributions for the fraction Λ of captured demand. The intuition here is that

by including waitlist information, the old “mast” region disappears. The waitlist reveals sufficient

information about marketing effort, so that it is no longer necessary to reward low sales outcomes.

The essential message here is that the bonus region is now monotone; therefore, ex post moral

hazard issue of hiding inventory no longer exists. Indeed, the feasible region BLS is monotone in z

and so even if we allow downward manipulation of the waitlist, there is no incentive to do so.

By contrast, in the bonus region in Figure 9(b), the waitlist signal is sufficiently correlated with

marketing effort to offer bonuses if the waitlist is sufficiently large, even when the sales target is

is not met. This scenario may lead to bonus regions that are not jointly monotone in z and i,

a result coming from the fact that Assumption 1 does not require monotonicity properties of Θ

with respect to changes in i. It is important to point out that it does, nonetheless, preclude any

ex post moral hazard issue of hiding inventory. In the nonstockout region of the domain (s < i),

the store manager has no incentive to hide inventory, due to monotonicity in i: the bonus region is

monotone below the 45◦ line. The area above the 45◦ line captures scenarios with lost sales, and so

no inventory is left to “hide.” Assuming also that the signal Θ cannot be manipulated by the store

manager (e.g., the waitlist captures that the unique identity of customers can be directly verified

by the firm), no ex post moral hazard arises.

Of course, one may still argue that compensation plans with bonus regions such as in Figure 9(b)

are not completely intuitive. In practice, a store manager might wonder why a lower level of sales

requires a smaller waitlist signal to get a bonus, whereas a higher sales level requires a larger

bonus. The fact that no scope exists for ex post manipulation does not change the fact it could be
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Figure 10 The “double sail” bonus region BNLS ∪BLS under Assumption 1.

hard to explain such compensation plans to store managers. This lack of joint monotonicity above

the 45◦ line can be removed under the following assumption.

Assumption 2. The random variable Θ defined in (16) with conditional density function

γ(θ|q, i) is such that ∂ logγ(θ|q,i)
∂q

is nondecreasing in i for every θ.

Proposition 10. Under Assumptions 1 and 2, a continuous and nonincreasing function `∗(i)

exists such that BLS = {(i, z) : i ≤ is and `∗(i) ≤ z ≤ Q̄} ∪ {(i, z) : i ≥ is and i ≤ z ≤ Q̄}, implying

that BNLS ∪BLS has the “double sail” structure depicted in Figure 10.

It is straightforward to observe that the resulting optimal contract is w∗(i, z), where w∗(i, z) = w̄

when (i, z)∈BNLS ∪BNLS and 0 otherwise, is jointly monotone. In other words, under the waitlist

approach for gauging unsatisfied demand (and given the above technical conditions), an optimal

“double sail” compensation plan exists that is monotone. This avoids the ex post moral hazard

hiding of inventory that afflicted the “mast-and-sail” compensation plan, and has a more intuitive

structure than what we see in Figure 9(b).

One may ask how restrictive Assumptions 1 and 2 are on the distribution of the signal Θ. Note

that distributions that satisfy the condition of Proposition 9(a) fail this condition, but nonetheless

give rise to jointly monotone bonus regions. We saw in Figure 9 that gamma distributions can give

rise to scenarios with non-monotone lost-sales bonus regions. However, one can also check that

non-monotonicity does not hold for all parameter values. Indeed, an algebra exercise can verify

that when Λ is such that − log Λ is a Gamma(α,β), where α− 1 ≥ 4
e2+1

( 1
β

+ 1), Assumptions 1

and 2 hold and the resulting contract is monotone (by Proposition 10).

9. Further Discussions

In this section, we include some additional discussion on the flexibility of our analytical framework.

In particular, we are able to relax some of the assumptions of the base model that were included for

ease of discussion and presentation. Although not central to our managerial takeaways regarding the
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connection between demand censoring, non-monotonicity, and ex post moral hazard, we nonetheless

consider these extentions worthy of further discussion.

9.1. The Role of w̄ and More General Resource Constraints

The role of the upper bound w̄ on compensation is a delicate one. As mentioned in Section 3, the

assumption is not uncommon in the literature and has been justified elsewhere. However, because

w̄ is exogenous to the model, a question remains of how to interpret it. Can the firm set w̄? If so,

how high or low should it be set? How does w̄ change the optimal compensation plan?

Changing w̄ does not change the optimality of the mast-and-sail compensation plan, but may

change the relative length of the mast and shape of the sail and the probability of the agent

receiving the bonus under the target actions. If we view w̄ purely as a choice of the firm, and

consider its optimization over the choice of w̄, larger choices of w̄ are obviously better. Indeed,

w̄ only enters in the constraint w(i, s) ≤ w̄, and so increasing w̄ can only improve the objective

value of the firm. This slope is a slippery one. If the choice of w̄ is unconstrained, it will be sent

to infinity. When w̄ = +∞, an optimal compensation plan need not exist in general. This issue

is discussed at length in the economics literature (see, e.g., Chu and Sappington 2009). We find

it natural that, in practice, a natural upper bound for w̄ would exist that avoids this theoretical

issue. One possible justification is provided in Section OA.8.

We consider here a more general upper bound than w̄. Let m(i, s) be the available resources for

compensation by the firm when outcome (i, s) prevails. That is, constraint w(i, s)≤ w̄ is replaced

by constraint w(i, s)≤m(i, s) for almost all (i, s). As an example of m(i, s), consider the following

description from DeHoratius and Raman (2007): “BMS [the company they study] store managers

were offered a bonus for generating sales that ranged from 0.2% to 5% of the sales dollars above

store-specific targets.” In this case, m(i, s) is as fixed proportion of the store revenue less a store-

specific target. In other words, m(i, s) = α · r ·s−C, where r is the per-unit revenue and C denotes

the store-specific target. The range of α in this case ranges from 0.2% to 5%.

Our model can be adjusted to the setting with resource constraint w(i, s) ≤m(i, s), assuming

m(i, s) is an L1 function. Define a new variable β(i, s) where w(i, s) = β(i, s)m(i, s) and β(i, s) ∈

[0,1] for almost all (i, s). The new function β can be interpreted as the percentage of the resource

given to the store manager as a bonus. The problem becomes

max
β

r

∫
i

∫
s

sf(i|e∗o)g(s|e∗m)dids−
∫
i

∫
s

β(i, s)m(i, s)f(i|e∗o)g(s|e∗m)dids (23a)

s.t.

∫
i

∫
s

β(i, s)m(i, s)f(i|e∗o)g(s|e∗m)dids− c(e∗o, e∗m)≥
¯
U (23b)∫

i

∫
s

β(i, s)m(i, s)f(i|e∗o)g(s|e∗m)dids−
∫
i

∫
s

β(i, s)m(i, s)f(i|eo)g(s|em)dids (23c)
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≥ c(e∗o, e∗m)− c(eo, em) for all (eo, em)

0≤ β(i, s)≤ 1 for all (i, s). (23d)

This problem is of the form (4) interpreting f(x̄|ā∗) in that formulation as m(i, s)f(i|eo)g(s|em).

Thus, an optimal bang-bang contract exists for (23) with a similarly nice structure.

Proposition 11. If m is an L1 function, nonnegative multipliers ωi and a “target” t exist such

that an optimal solution to (23) of the following form exists:15

w∗(i, s) =

{
m(i, s) if

∑
eo,em

ωeo,emReo,em(i, s)≥ t.
0 otherwise

,

where

Reo,em(i, s) = 1− I[i > s]f(i|eo)g(s|em) + δ(i= s)f(i|eo)(1−G(i|em)

I[i > s]f(i|e∗o)g(s|e∗m) + δ(i= s)f(i|e∗o)(1−G(i|e∗m)
.

Under the compensation plan specified by Proposition 11, the store manager’s compensation is

monotone nondecreasing in s, as long as m(i, s) does not decrease in s.

9.2. Endogenizing Initial Inventory

In this section, we endogenize the choice of initial inventory Ī. Whether it is more natural for Ī

to be under the control of the firm or the store manager is a matter of debate. In this paper, we

analyze the former. This perspective particularly applies in settings where the firm oversees a large

chain of stores where ordering is done centrally. Allowing the store manager to decide the initial

inventory level gives rise to additional incentive issues that go beyond our scope.

To set the benchmark, suppose we can ignore the incentive compatibility constraint of the store

manager and pay her a constant wage to meet the minimum utility
¯
U to work at effort level (eHo , e

H
m).

Under this assumption, the firm’s problem is maxĪ rE[S|Ī]−C(Ī), where C(·) is a convex increasing

cost for procuring inventory Ī and E[·] is the conditional expectation given inventory Ī. Thus, the

optimal inventory level is the classical newsvendor solution INV that solves r d
dĪ

E[S|INV] =C ′(INV).

As for the second-best compensation plan, where the store manager’s incentives must be taken

into consideration, the firm’s inventory decision becomes

max
Ī
rE[S|Ī]−W (Ī)−C(Ī), (24)

where

W (Ī),min
w

E[w(I,S)|eHo , eHm]

s.t. E[w(I,S)|eHo , eHm]− c(eHo , eHm)≥
¯
U

15 Again, this assumes the function
∑m

i=1 ωiRi(~x) has zero mass at the cutoff t.
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E[w(I,S)|eHo , eHm]−E[w(I,S)|eo, em]≥ c(eHo , eHm)− c(eo, em) for all (eo, em)

0≤w(i, s)≤ w̄ for all (i, s)

is the optimal value function when (eHo , e
H
m) is the target effort level.

Proposition 12. (i) Under the assumption that (eHo , e
H
m) is the target effort level and f and g

satisfy the MLRP, we have d
dĪ
W (Ī)< 0 for all Ī. That is, an increase in Ī leads to a decrease

in the expected payout to the store manager.

(ii) The firm’s optimal inventory level, by accounting for the multitasking store manager problem,

is higher than that in the newsvendor problem, which helps the firm achieve a lower expected

payment to the store manager than otherwise.

The intuition behind Proposition 12(i) is as follows. Because the firm is more likely to pay a

bonus if the inventory is cleared (as long as sales are greater than im), increasing inventory reduces

the chance of inventory clearing and thus the chance of paying out the bonus.

Proposition 12(ii) entails optimizing the initial inventory level Ī. Let I∗ be the optimal inventory

choice in (24). The first-order condition of (24) yields the necessary optimality condition for I∗:

r
d

dĪ
E[S|I∗]− d

dĪ
W (I∗) =C ′(I∗). (25)

In light of (24) and (25), and because d
dĪ
W (I∗)< 0 (by Proposition 12) and C is a convex increasing

function, we can conclude I∗ > INV . In other words, the firm over-invests in inventory as compared

to the classical newsvendor setting without agency issues. This result echoes the view of Dai and

Jerath (2013, 2019) that a higher inventory level mitigates the possibility of demand censoring and

hence benefits the firm by reducing the complications in contract design.

10. Conclusion

In this paper, we examined incentive issues at the intersection of operations and marketing. We

show the censoring of marketing outcomes (i.e., demand censoring) gives rise to a vexing incentive

issue of both ex ante and ex post moral hazard. Addressing ex ante moral hazard alone leads to

an optimal compensation plan that does not overcome the ex post issue. Only by providing for an

additional signal of unsatisfied demand (e.g., via a waitlist) can we construct a compensation plan

that is both optimal and resolve the ex ante and ex post moral hazard issues.

Taken together, our research provides a compelling narrative linking customer and employee

behavior in the retail setting. Because of its inability to monitor customer intentions (i.e., not

observing all of demand), for the firm to design intuitive compensation schemes, it has to monitor

employee intentions (i.e., their conscientiousness in sales and operational activities or in accurately

representing the level of inventory in the store). In effect, an arms-length company cannot stop the
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employee from using its lack of understanding of customer demand to benefit employee compensa-

tion. Employees incur a rent from the company’s lack of visibility over customers. Only additional

information about customer intentions removes this rent-seeking opportunity.

Our novel methodology (i.e., the bang-bang optimal control approach) transcends the limitations

of classical solution approaches in contract theory and is applicable to a broad set of incentive

design problems. In addition, we hope our work will inspire future research into this immensely

exciting venue. For example, instead of having a single manager in charge of both operations

and marketing, one could imagine two managers responsible for one of each task. The nature of

the relationship between these two managers, and their compensation plans, should also include

aspects of customer demand and behavior. Another scenario involves a store manager who has

operational responsibilities not only for execution (i.e., maintaining inventory), but also in making

operational decisions, such as inventory stocking levels (see, e.g., Sen and Alp 2019). Stockouts—

and the associated incentive complications—will be likely even more prevalent in a decentralized

supply chain because of double marginalization. An interesting research question would be whether

agency issues make optimal order quantities more or less conservative.
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“Incentive Design for Operations-Marketing Multitasking”

In this online appendix, we provide proofs of the results in the main body, additional technical

details, and robustness checks.

OA.1. Proofs of Results Stated in the Paper

Proof of Theorem 1: We need the following two lemmas.

Lemma OA1. An optimal contract for (4) exists.

Proof of Lemma OA1. Due to constraint (4d), we may assume w is a function in L∞(X ), the

space of uniformly bounded functions on X . Moreover, those same constraints ensure the feasible

region of (4) is bounded in the norm on L∞(X ). Hence, by Alaoglu’s Theorem (see Theorem

5.105 in Aliprantis and Border 2006), the set {w : 0≤w(~x)≤w} is compact in the weak topology

σ(L∞(X ),L1(X )) (for a definition of this weak topology, see Section 5.14 of Aliprantis and Border

(2006)). Because f(·|~a) is in L1(X ) for all ~a ∈ A, the constraints (4b) and (4c) are continuous in

the σ(L∞(X ),L1(X )) topology, and so the feasible region is a closed subset of {w : 0≤w(~x)≤w}

and thus also compact in the σ(L∞(X ),L1(X )) topology. Moreover, the objective function V (w,a)

is continuous in the σ(L∞(X ),L1(X )) topology, and so, by Weierstrass’s Theorem (see Theorem

2.35 in Aliprantis and Border 2006), an optimal contract exists. �

Let W denote the set of feasible contracts to (4). An extremal contract of W is a contract that

cannot be written as the convex combination of two other feasible contracts. That is, w ∈W is

an extremal contract if w1,w2 ∈W , and λ1, λ2 ∈ (0,1) with λ1 + λ2 = 1 do not exist such that

w= λ1w
1 +λ2w

2. The next result is a consequence of Barvinok (2002, Proposition III.5.3).

Lemma OA2. Every extremal feasible contract to (4) is a bang-bang contract.

Proof of Lemma OA2. This argument can be adapted from Proposition III.5.3 in Barvinok (2002).

Our problem (4) is a linear program in L∞(X ) with finitely many constraints. Proposition III.5.3

in Barvinok (2002) shows that in linear programs in L∞[0,1], extremal solutions have a bang-bang

structure. This result can be adjusted to the multidimensional setting over the compact set X

using standard arguments. Details are omitted. �

Bauer’s Maximum Principle (see Theorem 7.69 in Aliprantis and Border (2006)) states that every

lower semicontinuous concave function has an extreme-point minimizer over a compact convex set.

The feasible region W is convex because all constraints are linear. The compactness of W and

the continuity of the objective of (4) were argued in the proof of Lemma OA1. Hence, by Bauer’s
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Maximum Principle, an optimal extremal contract exists. Therefore, by Lemma OA2, an optimal

bang-bang contract exists. �

Proof of Theorem 2. We use Barvinok (2002) Proposition IV.12.6, which is based on duality and

complementary slackness, to characterize the structure of an optimal solution to our linear program

over L∞[0,1]. Adapted to our setting, this method involves setting a Lagrange multiplier µ for

the IR constraint (4b) and Lagrange multipliers λ1, λ2, . . . , λm for the constraints in (4c). Given a

choice of nonnegative dual multipliers µ and λi, we define a function

p(~x),max{0,−f(~x|~a∗) +µf(~x|~a∗) +
m∑
i=1

λiRi(~x)f(~x|~a∗)} (OA1)

and, by Barvinok (2002, Proposition IV.12.6), an optimal bang-bang contract has the form

w∗(~x) =

{
w if p(~x)> 0

0 if p(~x) = 0
, (OA2)

assuming {~x :−f(~x|~a∗) +µf(~x|~a∗) +
∑m

i=1 λiRi(~x)f(~x|~a∗) = 0} has measure zero.

Observe that p(~x)> 0 if and only if

− 1 +µ+
m∑
i=1

λiRi(~x)> 0, (OA3)

which can be rewritten as

m∑
i=1

ωiRi(~x)> 1−µ∑m
i=1 λi

,

where ωi ,
λi∑m
i=1 λi

. In the first step, we divide both sides of the argument in the “max” in (OA1)

by f(~x|~a∗), which is positive for all ~x∈X . In the last step, we divide through by
∑m

i=1 λi which we

assume is nonzero. This assumption is without loss, because otherwise λi = 0 for all i, and so (OA3)

either holds for all x or no x. Thus, if
∑m

i=1 λi = 0, the extremal contract is either constant at 0 or

constant at w̄. In either case, the contract is either not feasible (violates IR) or not optimal (pays

out the maximum) and thus can be excluded from consideration. Observe that ωi is nonnegative

because λi is nonnegative for all i. Using this equivalence and defining

t, 1−µ∑m
i=1 λi

,

we may re-express the optimal bang-bang contract in (OA2) as16

w∗(~x) =

{
w if

∑m

i=1ωiRi(~x)≥ t.
0 otherwise.

16 Note we change the strict inequality in (OA2) to a weak inequality here. Because p(~x) = 0 is assumed to be a
measure-zero event, this change can be made without loss.
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This completes the proof. �

Proof of Theorem 3. By Theorem 2, an optimal contract to (4) exists that is feasible to (8). Thus,

the optimal value of (8) is at least the optimal value of (4). Moreover, because the feasible region

of (8) is a restriction of the feasible region of (4) (i.e., it restricts to information-trigger contracts),

the value of the former cannot exceed the value of latter. Together, this implies both problems

have the same optimal value. An optimal solution (ω∗, t∗) of (8) yields the trigger contract

w∗(~x) =

{
w if

∑m

i=1ω
∗
iRi(~x)≥ t∗

0 otherwise,

which is a feasible solution to (4). Moreover, w∗ attains the optimal value of (4) because (ω∗, t∗)

is optimal to (8) and the values of both problems are equal. Therefore, w∗ is optimal to (4). �

Proof of Lemma 1. When the context is clear, we lighten notation to Pr(I ≤ i,S ≤ s). First, note

Pr(I ≤ i,S ≤ s) = Pr(I ≤ i,min{Q,I} ≤ s) = Pr(I ≤ i,Q< I,Q≤ s) + Pr(I ≤ s,Q≥ I)

because s≤ i. We can develop this derivation further by noting that

Pr(I ≤ i,Q< I,Q≤ s) = Pr(Q< I ≤ i,Q≤ s)

=

∫ s

0

∫ i

q

f(j|eo)g(q|em)djdq

=

∫ s

0

(F (i|eo)−F (q|eo))g(q|em)dq

= F (i|eo)
∫ s

o

g(q|em)dq−
∫ s

0

F (q|eo)g(q|em)dq

= F (i|eo)G(s|em)−
∫ s

0

F (q|eo)g(q|em)dq.

It is useful to further analyze this by integration by parts to conclude that

Pr(I ≤ i,Q< I,Q≤ s) = F (i|eo)G(s|em)−F (s|eo)G(s|em) +

∫ s

0

G(q|em)f(q|eo)dq. (OA4)

Moreover,

Pr(I ≤ s,Q≥ I) =

∫ s

0

(∫ Q̄

j

g(q|em)dq

)
f(j|eo)dj

=

∫ s

0

(1−G(j|em))f(j|eo)dj

= F (s|eo)−
∫ s

0

G(j|em)f(j|eo)dj. (OA5)

From (OA4) and (OA5), we can conclude that

Pr(I ≤ i,S ≤ s) = Pr(I ≤ i,Q< I,Q≤ s) + Pr(I ≤ s,Q≥ I)
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= F (i|eo)G(s|em)−F (s|eo)G(s|em) +

∫ s

0

G(q|em)f(q|eo)dq+F (s|eo)−
∫ s

0

G(j|em)f(j|eo)dj

= F (s|eo) +G(s|em)[F (i|eo)−F (s|eo)]

for s < i, and that if s= i,

Pr(I ≤ i,S ≤ s) = F (i|eo).

To conclude, we have derived the joint cumulative distribution function as

Pr(I ≤ i,S ≤ s) =

{
F (s|eo) +G(s|em)[F (i|eo)−F (s|eo)] if s < i

F (i|eo) if s= i

and complete the proof. �

Proof of Proposition 1. This follows from implications of the MLRP assumptions stated in Section 3.

To explore the implications of the MLRP assumption, it is useful to represent RNSO
eo,em

(i, s) and

RSO
eo,em

explicitly:

RNSO
eHo ,e

L
m

(i, s) = 1− g(s|eLm)

g(s|eHm)
, RNSO

eLo ,e
H
m

(i, s) = 1− f(i|eLo )

f(i|eHo )
, and RNSO

eLo ,e
L
m

(i, s) = 1− f(i|eLo )g(s|eLm)

f(i|eHo )g(s|eHm)
; (OA6)

RSO
eHo ,e

L
m

(i) = 1− 1−G(i|eLm)

1−G(i|eHm)
, RSO

eLo ,e
H
m

(i) = 1− f(i|eLo )

f(i|eHo )
, and RSO

eLo ,e
L
m

(i) = 1− f(i|eLo )(1−G(i|eLm))

f(i|eHo )(1−G(i|eHm))
. (OA7)

The MLRP lends monotonicity to the ratios on the right-hand sides of (9) and (10) that allows us

to reveal the structure of the bonus regions BNSO and BSO defined in (12) and (13), respectively.

We state these implications in the following lemma.

Lemma OA3. The following hold: (i) both f(i|eLo )

f(i|eHo )
and 1−G(i|eLm)

1−G(i|eLm)
are nonincreasing and noncon-

stant in i; and (ii) g(s|eLm)

g(s|eHm)
is nonincreasing and nonconstant in s.

Finally, note RNSO
eHo ,e

L
m

(i, s) is constant in i and RNSO
eLo ,e

H
m

(i, s) is constant in s.

Returning to the proof of the proposition, let

s∗(i),min{s :ϕNSO(i, s) = t}, (OA8)

where

ϕNSO(i, s),
∑
eo,em

ωeo,emR
NSO(i, s). (OA9)

These objects are illustrated in Figure OA.1. The critical inventory value is is the unique fixed

point of s∗. That is, it is defined by

s∗(is) = is. (OA10)

We first note the domain of s∗ need not be all [0, Ī], because for a given i, an s might not exist

such that ϕNSO(i, s) = t. However, properties on the RNSO
eo,em

imply that once some ī and s exist such
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s

inventory, i

sales

s∗(i)

{(i, s) : ϕ(i, s) = t}

Figure OA.1 Illustration of the level set {(i, s) : ϕNSO(i, s) = t} of the function ϕNSO (defined in (OA9)) and the

function s∗(i) (defined in (OA8).

that ϕ(̄i, s) = t is nonempty, the same is true for any i larger than ī. That is, the domain of s∗ is

an interval of the form [̄i, Ī].

Next, we show the mapping s∗(i) is well behaved. Specifically, it is a nonincreasing, continuous,

and almost everywhere differentiable function of i on its domain. The reasoning is as follows. As

described in the paragraph above (OA8), each of the RNSO
eo,em

(i, s) are continuous, nonincreasing,

and nonconstant in each of its coordinates. Hence, the same is true of the function ϕ(i, s). Hence

the level set {(i, s) : ϕ(i, s) = t} has the structure illustrated in Figure OA.1. That is, the level set

{(i, s) :ϕ(i, s) = t} is the region between two nonincreasing and continuous functions. Observe that

the graph of s∗(i) in (i, s)-space is precisely the lower envelope of {(i, s) :ϕ(i, s) = t}. Thus, we can

conclude s∗ is a nonincreasing, continuous, and almost everywhere differentiable function of i.

Finally, we prove the existence of uniqueness of is. Because s∗(i) is a nonincreasing and continuous

function of i and we have assumed BNSO has a positive measure, the arg min in (OA10) is nonempty

(by Brouwer’s Fixed Point Theorem (Corollary 17.56 in Aliprantis and Border (2006)) and is a

singleton (because s∗ is nonincreasing and the 45◦ line is strictly increasing). Hence, a unique choice

exists for is. �

Proof of Proposition 2. When BSO has positive measure, we set

im = min
{
i :ϕSO(i) = t

}
,

where

ϕSO(i),
∑
eo,em

ωeo,emR
SO
eo,em

(i).
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If BSO has zero measure, we simply set im = Ī.

To see that the set of i such that ϕSO(i) = t is nonempty, observe that ϕSO(Ī)≥ t because (Ī , Ī)

must be in every bonus region, and an i exists such that ϕSO(i) < 0. The latter follows because

properties (OA6) and (OA7) imply
∫
DSO R

SO
eo,em

(i, s)f(i|eo)g(i|em)dsdi≤ 0 for all eo, em, and so for

all eo, em, an i exists such that RSO
eo,em

(i)< 0 . Hence, by this continuity of ϕSO(i), the set of i such

that ϕSO(i) = t is nonempty. Again, from the monotonicity properties of ϕSO, the bonus region in

the stockout case is precisely as defined in Proposition 2. �

Proof of Proposition 3. From the definition of s∗(i), is, and im, the following holds for every valid

choice of t and (ωeHo ,eLm , ωeLo ,eLm):

1− t= ωeHo ,eLm
1−G(im|eLm)

1−G(im|eHm)
+ωeLo ,eHm

f(im|eLo )

f(im|eHo )
+ωeLo ,eLm

f(im|eLo )(1−G(im|eLm))

f(im|eHo )(1−G(im|eHm))

= ωeHo ,eLm
g(s∗(is)|eLm)

g(s∗(is)|eHm)
+ωeLo ,eHm

f(is|eLo )

f(is|eHo )
) +ωeLo ,eLm

f(is|eLo )g(s∗(is)|eLm)

f(is|eHo )g(s∗(is)|eHm)

= ωeHo ,eLm
g(is|eLm)

g(is|eHm)
+ωeLo ,eHm

f(is|eLo )

f(is|eHo )
) +ωeLo ,eLm

f(is|eLo )g(is|eLm)

f(is|eHo )g(is|eHm)
,

where the second equality follows because s∗(is) = is. MRLP distributions also have increasing

failure rates, so we have 1−G(·|eLm)

1−G(·|eHm)
< g(·|eLm)

g(·|e∗m)
, which implies

ωeHo ,eLm
g(is|eLm)

g(is|eHm)
+ωeLo ,eHm

f(is|eLo )

f(is|eHo )
) +ωeLo ,eLm

f(is|eLo )g(is|eLm)

f(is|eHo )g(is|eHm)

≤ ωeHo ,eLm
g(im|eLm)

g(im|eHm)
+ωeLo ,eHm

f(im|eLo )

f(im|eHo )
) +ωeLo ,eLm

f(im|eLo )g(im|eLm)

f(im|eHo )g(im|eHm)
. �

Because f and g satisfy the MLRP, ωeHo ,eLm
g(i|eLm)

g(i|eHm)
+ωeLo ,eHm

f(i|eLo )

f(i|eHo )
)+ωeLo ,eLm

f(i|eLo )g(i|eLm)

f(i|eHo )g(i|eHm)
is a decreasing

function of i. As result, we can conclude i∗1 ≥ i∗2.

Proof of Proposition 5. We first prove (i). For i < im, notice that w∗(s′, i) = w∗(s′′, i) = 0 for all

(i, s′), (i, s′′) ∈D with s′ ≤ s′′. For i ∈ [im, is], observe that w(s, i) = 0 if s < i and w̄ if s= i. Thus,

w∗(s′, i)≤w∗(s′′, i) = 0 for all (i, s′), (i, s′′)∈D with s′ ≤ s′′. Finally, suppose i > is. By the structure

of BNSO and BSO in Propositions 1 and 2, w∗(s, i) = w̄ if s∗(i) ≤ s ≤ i, and 0 otherwise. Hence,

again, w∗(s′, i)≤w∗(s′′, i) = 0 for all (i, s′), (i, s′′)∈D with s′ ≤ s′′. This implies w∗ is monotone in

s. We now show (ii). First, we show w∗ is monotone in i. Suppose s≥ is. This implies w(i, s) = w̄

for all i ≥ s (which is needed for (i, s) ∈D) and so w∗ is monotone in i in this region. Suppose

otherwise that s < is. In this case, w(i, s) = 0 for i≤min(s∗)−1(s) and w̄ otherwise, which again

yields monotonicity in i. Joint monotonicity now follows from monotonicity in both direction i and

s. Turning now to (iii), if im < is, an ε > 0 exists such that w∗(im, im) = w̄ but w∗(im + ε, im) = 0,

and thus w∗ is not monotone in i.

Finally, we show w∗ also fails joint monotonicity when im < is. Consider the point (i◦, s◦) ,

(is + ε, s∗(i1 + ε)) on the graph of s∗. This means w∗(i◦, s◦) = w̄ because the graph of s∗ for i≥ is
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Figure OA.2 Illustration of the objects in the proof of Proposition 6.

lies in the bonus region of w∗. Choose any (i, s) in the open line segment between (im, im) and

(i◦, s◦) with i < is. Such a choice is possible because im < is. See Figure 3 for an illustration.

Note (i, s) does not lie in the bonus region. Indeed, i < is (by construction) and s∗(i)< is (because

s◦ ≤ is and s∗ is a nonincreasing function). Hence, w∗(i, s) = 0. This yields a contradiction of

monotonicity. Observe that (im, im)< (i, s)< (i◦, s◦) but w∗(im, im) =w∗(i◦, s◦) = w̄ and w∗(i, s) =

0.17 �

Proof of Proposition 6. We prove both by noting that no optimal compensation plan can have a

bonus region that has a “corner,” defined as follows. Let B denote the bonus region of an optimal

contact, that is, where the store manager receives a positive bonus. Let (a, b) be a point in B and

let C , (a, b) +Rn+ denote the (translated) cone of points that are pointwise no smaller than (̄i, s̄).

We say (a, b) is a corner point of B if (a, b) is an isolated extreme point of B. That is, a nonempty

neighborhood N of (̄i, s̄) exists, such that B∩N =C∩N . This claim rules out corner compensation

plans, but also any compensation plan with a “corner” as defined above.

We first prove the claim in the simplest case, in which on the no-jump constraint for (eLo , e
L
m) is

tight, the other two no-jump constraints (for (eHo , e
L
m) and (eLo , e

H
m)) are slack. This case is the easiest

to understand and will make clear what needs to be handled in the more challenging settings. Let

w∗ be an optimal compensation plan with a corner at (a, b) go to a new point (̂i, ŝ) = (a, b)+δ(1,1),

where δ is chosen sufficiently small so that the no-jump constraints for (eHo , e
L
m) and for (eLo , e

H
m)

remain slack. Now, define the set R=
{

(i, s) :RNSO
eLo ,e

L
m

(i, s)≥RNSO
eLo ,e

L
m

(̂i, ŝ)
}

, which is the RNSO
eLo ,e

L
m

(̂i, ŝ)-

superlevel sets of RNSO
eLo ,e

L
m

(i, s). Now, δ is also chosen sufficiently small so that both of the sets

D0 , {(i, s) : s < i}∩ (C \R)

D1 , {(i, s) : s < i}∩ (R∩N \C)

17 Not this proof allows for the possibility that s∗(i) = s∗(is) for all i≥ is, which cannot be ruled out under the MLRP
assumptions.
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have positive measure (where N is defined when we say (a, b) is a corner). We intersect both sets

with {(i, s) : s < i} so that we only deal with points in the interior of the domain of the optimal

compensation plan w∗ (which is only defined on {(i, s) : i≤ s}). Such a choice for δ is possible

because the boundary of the set R expressed by the implicit function theorem by r(i) as a function

of i is a strictly decreasing function of i. The fact that r(i) is both a function and is strictly

decreasing is due to the assumption that f and g satisfy the strict MLRP. See Figure 4 for a visual

representation of the sets D0 and D1.

Now, consider the perturbation function h defined as follows:

h(s, i) =


−ε0 if (i, s)∈D0

ε1 if (i, s)∈D1

0 otherwise,

where ε0, ε1 > 0 are chosen so that E[h|eHo , eHm] = 0. Such a choice is possible because D0 and D1

both have positive measure. Now consider the new optimal compensation plan w′ = w∗ + h. We

claim w′ is also an optimal compensation plan. Indeed,

E[w′|eHo , eHm] =E[w∗|eHo , eHm] +E[h|eHo , eHm] =E[w∗|eHo , eHm]

because E[h|eHo , eHm] = 0. Thus, if we can show w′ is feasible, it is optimal. Because we have assumed

the IR constraint is not binding at w∗ and ε0, and D2 can be chosen sufficiently small so that the

IR constraint is satisfied at w′ (indeed, the condition that E[h|eHo , eHm] = 0 is only a single linear

constraint on ε0 and D2, and thus a degree of freedom from that requirement allows us to drive ε0

and D2 arbitrarily small). Now consider the IC constraint. We claim that∫
s≤i

ReLo ,eLm(i, s)w′(i, s)f(i|eLo )g(s|eLm)dids >

∫
s≤i

ReLo ,eLm(i, s)w∗(i, s)f(i|eLo )g(s|eLm)dids (OA11)

≥ c(eHo , eHm)− c(eLo , eLm)

holds for all (eo, em). Notice the second inequality holds because w∗ is feasible to the IC constraint

(here we are taking the form of IC constraints from (4c)). Thus, it remains to show (OA11). This

follows because∫
s<i

RNSO
eLo ,e

L
m

(i, s)h(s, i)f(i|eLo )g(s|eLm)dids

=−ε0
∫
D0

RNSO
eLo ,e

L
m

(i, s)f(i|eLo )g(s|eLm)dids+D2

∫
D1

RNSO
eLo ,e

L
m

(i, s)f(i|eLo )g(s|eLm)dids

>RNSO
eLo ,e

L
m

(a, b)

−ε0 ∫
D0

f(i|eLo )g(s|eLm)dids

+RNSO
eLo ,e

L
m

(̂i, ŝ)

D2

∫
D1

f(i|eLo )g(s|eLm)dids


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>R(a, b)

−ε0 ∫
D0

f(i|eLo )g(s|eLm)dids+D2

∫
D1

f(i|eLo )g(s|eLm)dids

 = 0,

where the key fact in each step is that RNSO
eLo ,e

L
m

(i, s) is coordinatewise strictly increasing. This implies

(OA11). Indeed, observe that it suffices to integrate in the region s < i to conclude the IC constraints

bind for w′ because w′(i, s) =w∗(i, s) for i= s (due to h(i, s) = 0 for i= s). We thus conclude w′ is

an optimal compensation plan.

In fact, we have shown something more in (OA11): the IC constraints are slack at optimal

compensation plan w′. However, because problem (2) is linear, every optimal compensation plan

must be on the boundary of the feasible region. This implies either w′ must bind the IR constraint,

which violates our assumption of positive rents, which is a contradiction. This completes the proof

in the special case of the argument in which only the no-jump constraint for (eLo , e
L
m) was initially

tight.

We now allow the possibility that at least one of the other two no-jump constraints is tight at

(a, b). In the case in which exactly one of the no-jump constraints for (eHo , e
L
m) or (eLo , e

H
m) is tight, an

argument largely analogous to the previous one can be conducted. Here, the region D1 will consist

of only one “piece” (the D1 in Figure OA.2 has two distinct pieces) because the no-jump constraints

for (eHo , e
L
m) or (eLo , e

H
m) correspond to horizontal and vertical superlevel sets for RNSO

eo,em
(i, s) from

the discussion following (OA7). The difficulty here is that when both of the no-jump constraints for

(eHo , e
L
m) or (eLo , e

H
m) are tight, “room” remains to construct D1 as in Figure OA.2. In this setting,

we need to construct three regions, D0, D1, and D2, where a tradeoff exists between the value of

the perturbation in regions D1 and D2 to lead to a strictly increasing covariance as we were able

to show in (OA11).

To make this argument, we need the following definitions. We also move a distance δ along (1,1)

to the point (̂i, ŝ). The superlevel set R and the region D0 are defined exactly as before. To define

D1 and D2, we need the following concepts. At (a, b), ReHo ,eLm(i, s) , R2(s) is constant in i at b

with value R1(b) and so we consider the horizontal line through the point (a, b). Where this line

intersects R is denoted (i1, b). The region D1 is chosen below the horizontal line to the right of

(i1, b), above R, and inside N . Similarly, ReLo ,eHm(i, s) , R2(i) is constant in s at a (at the value

R2(a)). The region D2 is chosen to the left of the vertical line above (a, s2) and above the lower

envelope of R. The specific sets D1 and D2 and δ are chosen so that an ε̄ > 0 exists such that

E[R1(s)|D1]−R1(b)≤ ε̄ and E[R2(i)|D2]−R2(a)≤ ε̄,

where (as used above) E[·] is the expectation with respect to distributions with effort (eHo , e
H
m).

From the regions D0, D1, and D2, we define the perturbation
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h(i, s) =


−ε0 if (i, s)∈D0

ε1 if (i, s)∈D1

ε2 if (i, s)∈D2

0 otherwise.

Using a logic similar to the simpler case above, it suffices to show that E[h(S, I)] = 0 and

E[R(S, I)h(S, I)]> 0. We now have three degrees of freedom, and so this is possible. For the con-

dition E[h(S, I)] = 0, this only requires

ε0P(D0) = ε1P(D1) + ε2P(D2),

where P[·] is the probability measure with respect to distributions with effort (eHo , e
H
m). As for the

covariance condition E[R(S, I)h(S, I)]> 0, this analysis is more delicate. We first show how to find

ε1 and ε2 such that

∫
D0

R1(s)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

(
ε1

∫
D1

g(s)f(i)dsdi+ ε2

∫
D2

g(s)f(i)dsdi

)
< ε1

∫
D1

R1(s)g(s)f(i)dsdi+ ε2

∫
D2

R1(s)g(s)f(i)dsdi

and

∫
D0

R2(i)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

(
ε1

∫
D1

g(s)f(i)dsdi+ ε2

∫
D2

g(s)f(i)dsdi

)
< ε1

∫
D1

R2(i)g(s)f(i)dsdi+ ε2

∫
D2

R2(i)g(s)f(i)dsdi.

To see that, we note the coefficient of ε1 in the first inequality is∫
D1

R1(s)g(s)f(i)dsdi−
∫
D0

R1(s)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

∫
D1

g(s)f(i)dsdi > 0,

and the coefficient of ε1 in the second inequality is∫
D1

R2(i)g(s)f(i)dsdi−
∫
D0

R2(i)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

∫
D1

g(s)f(i)dsdi < 0.

Therefore, the existence of such ε1 and ε2 depends on

∫
D0

R2(i)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

∫
D2
g(s)f(i)dsdi−

∫
D2
R2(i)g(s)f(i)dsdi∫

D1
R2(i)g(s)f(i)dsdi−

∫
D0

R2(i)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

∫
D1
g(s)f(i)dsdi

>
ε1
ε2
>

∫
D0

R1(s)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

∫
D2
g(s)f(i)dsdi−

∫
D2
R1(s)g(s)f(i)dsdi∫

D1
R1(s)g(s)f(i)dsdi−

∫
D0

R1(s)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

∫
D1
g(s)f(i)dsdi

.
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The sufficient condition is∫
D2

R2(i)g(s)f(i)dsdi∫
D2

g(s)f(i)dsdi
−

∫
D0

R2(i)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi∫
D0

R2(i)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi
−

∫
D1

R2(i)g(s)f(i)dsdi∫
D1

g(s)f(i)dsdi

>

∫
D0

R1(s)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi
−

∫
D2

R1(s)g(s)f(i)dsdi∫
D2

g(s)f(i)dsdi∫
D1

R1(s)g(s)f(i)dsdi∫
D1

g(s)f(i)dsdi
−

∫
D0

R1(s)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

.

We can choose D0 such that∫
D0
R2(i)g(s)f(i)dsdi∫
D0
g(s)f(i)dsdi

−R2(a)≤ ε̄ and

∫
D0
R1(s)g(s)f(i)dsdi∫
D0
g(s)f(i)dsdi

−R1(b)≤ ε̄.

Choose D1 and D2 to make
∫
D2

R2(i)g(s)f(i)dsdi∫
D2

g(s)f(i)dsdi
as large as possible and

∫
D1

R2(i)g(s)f(i)dsdi∫
D1

g(s)f(i)dsdi
as close to

R2(a) as possible (indeed the distance is also controlled by ε̄), and
∫
D2

R1(s)g(s)f(i)dsdi∫
D2

g(s)f(i)dsdi
as large as

possible. Then, it suffices to have∫
D2

R2(i)g(s)f(i)dsdi∫
D2

g(s)f(i)dsdi
−

∫
D0

R2(i)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi∫
D0

R2(i)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi
−R2(a) + ε̄

>

∫
D0

R1(s)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi
− (R1(s̄)− ε̄)∫

D1
R1(s)g(s)f(i)dsdi∫
D1

g(s)f(i)dsdi
−

∫
D0

R1(s)g(s)f(i)dsdi∫
D0

g(s)f(i)dsdi

.

Note both
∫
D2

R2(i)g(s)f(i)dsdi∫
D2

g(s)f(i)dsdi
and

∫
D2

R1(s)g(s)f(i)dsdi∫
D1

g(s)f(i)dsdi
can be sufficiently large. In the limit case, we

can make ∫
D2

R2(i)g(s)f(i)dsdi∫
D2

g(s)f(i)dsdi
−R2(a)

2ε̄
>

2ε̄∫
D1

R1(s)g(s)f(i)dsdi∫
D1

g(s)f(i)dsdi
−R1(b)

,

which is always possible. �

Proof of Proposition 9: The proof of parts (i) and (ii) are similar to that of Proposition 1. Due to

Theorem 2 there exists an optimal information trigger contract involving likelihood ratio functions

Reo,em(i, z) as described in (19) and (20).

For part (i), note that (∗) equals∫ Q̄
i

1
q−iϕ( z−i

q−i )g(q|eLm)dq∫ Q̄
i

1
q−iϕ( z−i

q−i )g(q|eHm)dq
=

∫ Q̄
i

1
q−iϕ( z−i

q−i )g(q|eLm)dq∫ Q̄
i

1
q−iϕ( z−i

q−i )
g(q|eHm)

g(q|eLm)
g(q|eLm)dq

≤ 1
g(i|eHm)

g(i|eLm)

,

which is bounded, where g(q|eHm)

g(q|eLm)
≥ g(i|eHm)

g(i|eLm)
by MLRP. Now, as

∫ Q̄
i

1
q−iϕ( z−i

q−i )g(q|eLm)dq→∞, it must

be that
∫ Q̄
i

1
q−iϕ( z−i

q−i )
g(q|eHm)

g(q|eLm)
g(q|eLm)dq→∞ as well. First, by changes of varibles, ς = q− i,∫ Q̄−i

0
1
ς
ϕ( z−i

ς
)g(ς + i|eLm)dς∫ Q̄

0
1
ς
ϕ( z−i

ς
)g(ς + i|eHm)dς

= lim
ε→0

∫ Q̄−i
ε

1
ς
ϕ( z−i

ς
)g(ς + i|eLm)dς∫ Q̄

ε
1
ς
ϕ( z−i

ς
)g(ς + i|eHm)dς

.

Therefore, by L’Hopital’s rule, we have

lim
ε→0

∫ Q̄−i
ε

1
ς
ϕ( z−i

ς
)g(ς + i|eLm)dς∫ Q̄

ε
1
ς
ϕ( z−i

ς
)g(ς + i|eHm)dς

= lim
ε→0

1
ε
ϕ( z−i

ε
)g(ε+ i|eLm)

1
ε
ϕ( z−i

ε
)g(ε+ i|eHm)

=
g(i|eLm)

g(i|eHm)
,
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which is independent of z. This establishes the result, because it also implies RLS
eo,em

(i, z) =

RNLS
eo,em

(i, z) at z = i, and so BNLS has the structure expressed in the result.

For part (ii), we show RLS(i, z|eo, em) is nondecreasing in z. This suffices to show an i` ∈ (0, Ī]

exists such that

BLS = {(i, z) : i≤ i` and `∗(i)≤ z ≤ Q̄}∪ {(i, z) : i≥ i` and i≤ z ≤ Q̄},

using an argument analogous to that of Proposition 1. The final part of the proof argues i` = is,

establishing the result.

To establish the first part of the argument, we first claim (∗) in (20) is nonincreasing in z under

Assumption 1. First, we can write∫ Q̄

i

γ′(z|q, i)g(q|em)dq=

∫ Q̄

i

γ′(z|q, i)
γ(z|q, i)

g(q|em)

g(q|e∗m)
γ(z|q, i)g(q|e∗m)dq.

Note γ′(z|q,i)
γ(z|q,i) is nondecreasing in q by Assumption 1, g(q|em)

g(q|e∗m)
is nonincreasing in q. Therefore, the

two functions γ′(z|q,i)
γ(z|q,i) and g(q|em)

g(q|e∗m)
are negatively correlated given any z. Therefore,∫ Q̄

i

γ′(z|q,i)
γ(z|q,i)

g(q|em)

g(q|e∗m)
γ(z|q, i)g(q|e∗m)dq∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

≤
∫ Q̄
i

γ′(z|q,i)
γ(z|q,i) γ(z|q, i)g(q|e∗m)dq∫ Q̄
i
γ(z|q, i)g(q|e∗m)dq

∫ Q̄
i

g(q|em)

g(q|e∗m)
γ(z|q, i)g(q|e∗m)dq∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

.

By canceling out one of the
∫ Q̄
i
γ(z|q, i)g(q|e∗m)dq in the denominator, we obtain∫ Q̄

i

γ′(z|q, i)
γ(z|q, i)

g(q|em)

g(q|e∗m)
γ(z|q, i)g(q|e∗m)dq ≤

∫ Q̄

i

γ′(z|q, i)
γ(z|q, i)

γ(z|q, i)g(q|e∗m)dq

∫ Q̄
i

g(q|em)

g(q|e∗m)
γ(z|q, i)g(q|e∗m)dq∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

=

∫ Q̄

i

γ′(z|q, i)g(q|e∗m)dq

∫ Q̄
i
γ(z|q, i)g(q|em)dq∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

.

It remains to show is and i` are equal. This requires that RLS
eo,em

(i, i) =RNSL
eo,em

(i, i), which occurs

if ∫ q̄
i
γ(i|q, i)g(q|em)dq∫ q̄

i
γ(z|q, i)g(q|e∗m)dq

=
g(i|em)

g(i|e∗m)
.

But this holds because Λ∈ (0,1), and so γ(i|q, i)dq is the Dirac measure δ(i= q), thus yielding the

result.

Proof of Proposition 10: It suffices to show
∫ Q̄
i γ(z|q,i)g(q|em)dq∫ Q̄
i γ(z|q,i)g(q|e∗m)dq

is nonincreasing in i. We need

∂

∂i

[∫ Q̄
i
γ(z|q, i)g(q|em)dq∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

]
≤ 0.

It is equivalent to show

−h(i|q, i)g(i|em) +
∫ Q̄
i

∂
∂i
γ(z|q, i)g(q|em)dq∫ Q̄

i
γ(z|q, i)g(q|em)dq

−
−h(i|q, i)g(i|e∗m) +

∫ Q̄
i

∂
∂i
γ(z|q, i)g(q|e∗m)dq∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

≤ 0.
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The fact that

−h(i|q, i)g(i|em)∫ Q̄
i
γ(z|q, i)g(q|em)dq

+
h(i|q, i)g(i|e∗m)∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

< 0

is due to Assumption 1: ∫ Q̄
i
γ(z|q, i)g(q|e∗m)dq∫ Q̄

i
γ(z|q, i)g(q|em)dq

>
g(i|e∗m)

g(i|em)
.

It remains to show ∫ Q̄
i

∂
∂i
γ(z|q, i)g(q|em)dq∫ Q̄

i
γ(z|q, i)g(q|em)dq

≤
∫ Q̄
i

∂
∂i
γ(z|q, i)g(q|e∗m)dq∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

.

By Young’s Theorem, Assumption 2 implies
∂
∂iγ(z|q,i)
γ(z|q,i) is nondecreasing in q, and so we have

∫ Q̄

i

∂

∂i
γ(z|q, i)g(q|em)dq

=

∫ Q̄

i

∂
∂i
γ(z|q, i)
γ(z|q, i)

g(q|em)

g(q|e∗m)
γ(z|q, i)g(q|e∗m)dq

≤
∫ Q̄

i

∂
∂i
γ(z|q, i)
γ(z|q, i)

γ(z|q, i)g(q|e∗m)dq

∫ Q̄
i

g(q|em)

g(q|e∗m)
γ(z|q, i)g(q|e∗m)dq∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

=

∫ Q̄

i

∂

∂i
γ(z|q, i)g(q|e∗m)dq

∫ Q̄
i
γ(z|q, i)g(q|em)dq∫ Q̄

i
γ(z|q, i)g(q|e∗m)dq

,

which shows the desired inequality.

Proof of Proposition 12. First, note f(i|eo) may potentially involve Ī, so we do some transformation.

Let τ = i/Ī be the ratio. Suppose τ ∈ [0,1] has a distribution F̃ (τ |eo), which is independent of Ī.

Then, F (i|eo) = F̃ (i/Ī|eo) and f(i|eo) = 1
Ī
f̃(i/Ī|eo).

We denote s̃(µ,λ, τ) as the cut-off solving µ+
∑

j λj(1−
g(s|êjm)f̃(τ |êjo)

g(s|e∗m)f̃(τ |e∗o)
) = 1 for s < τ Ī, where j is the

index for the j-th IC constraint. And denote τs(µ,λ) as the minimum solution for s̃(µ,λ, τ) = τ Ī,

τm(µ,λ) as the minimum solution for µ+
∑

j λj(1−
(1−G(τĪ|êjm))f̃(τ |êjo)

(1−G(τĪs|e∗m))f̃(τ |e∗o)
) = 1.

By strong duality, and Theorem 2, we have

−W (Ī) = min
µ,λ

φ(µ,λ, Ī)

= min
µ,λ

∫ 1

τs(µ,λ)

∫ τĪ

s̃(µ,λ,τ)

(
−1 +µ+

∑
j

λj(1−
g(s|êjm)f̃(τ |êjo)
g(s|e∗m)f̃(τ |e∗o)

)

)
g(s|e∗m)f̃(τ |e∗o)dsdτ

+

∫ 1

τm(µ,λ)

(
−1 +µ+

∑
j

λj(1−
(1−G(τ Ī|êjm))f̃(τ |êjo)
(1−G(τ Īs|e∗m))f̃(τ |e∗o)

)

)
(1−G(τ Īs|e∗m))f̃(τ |e∗o)dτ

−
∑
j

λj[c(e
∗)− c(êj)]−µ[c(e∗) +U ].
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Note the dual is convex in (µ,λ). Let (µ∗, λ∗) be the solution of the dual minimization. Then, by

the envelope theorem, we have

−dW (Ī)

dĪ
=

∂

∂Ī
φ(µ∗, λ∗, Ī)

=

∫ 1

τs(µ∗,λ∗)
τ

(
−1 +µ∗+

∑
j

λ∗j (1−
g(τ Ī|êjm)f̃(τ |êjo)
g(τ Ī|e∗m)f̃(τ |e∗o)

)

)
g(τ Ī|e∗m)f̃(τ |e∗o)dτ

−
∫ 1

τm(µ∗,λ∗)
τ

(
(−1 +µ∗)g(τ Ī|e∗m)f̃(τ |e∗o) +

∑
j

λ∗j [g(τ Ī|e∗m)f̃(τ |e∗o)− g(τ Ī|êjm))f̃(τ |êjo)]

)
dτ

= −
∫ τs(µ∗,λ∗)

τm(µ∗,λ∗)
τ

(
−1 +µ∗+

∑
j

λ∗j (1−
g(τ Ī|êjm)f̃(τ |êjo)
g(τ Ī|e∗m)f̃(τ |e∗o)

)

)
g(τ Ī|e∗m)f̃(τ |e∗o)dτ

> −

(
−1 +µ∗+

∑
j

λ∗j (1−
g(τs(µ

∗, λ∗)Ī|êjm)f̃(τs(µ
∗, λ∗)|êjo)

g(τs(µ∗, λ∗)Ī|e∗m)f̃(τs(µ∗, λ∗)|e∗o)
)

)∫ τs(µ∗,λ∗)

τm(µ∗,λ∗)
τg(τ Ī|e∗m)f̃(τ |e∗o)dτ = 0,

where the inequality is by MLRP and τs(µ
∗, λ∗)≥ τm(µ∗, λ∗).

OA.2. Numerical Illustration of a Mast-and-Sail Compensation Plan

We now use a numerical example to illustrate an optimal bonus region of the “mast and sail”

structure (as seen in Figure 2(a)) in the case of outcome distributions that satisfy the MLRP.

This example shows the delicacy of numerical computation in this setting, which is typical of

moral hazard problems. Our extensive numerical simulations use similar logic to that found in this

example.

Example OA.1. Consider the following instance of the multitasking store manager. The distri-

bution functions of operating and marketing effort are F (i|eo) = ieo and G(s|em) = sem , respectively,

where eo ∈ {eLo , eHo } and em ∈ {eLm, eHm}, where eLo = eLm = 1 and eHo = eHm = 2. The target action is

(eHo , e
H
m) = (2,2). The cost function is c(eHo , e

H
m) = 5, c(eHo , e

L
m) = c(eLo , e

H
m) = 4 and c(eLo , e

L
m) = 2.

The resource constraint for the firm has w̄= 10.

For now, we suppose an optimal choice of ω (as guaranteed to exist by Theorem 2) has ωeLo ,eLm = 1

and ωeHo ,eLm = ωeLo ,eHm = 0. We construct the associated trigger value t below, and also show the

resulting compensation plan with these choices of parameters is indeed feasible to (4) and thus

optimal.

The condition RNSO
eo,em

(i, s)≥ t can be expressed as

1− t≥ f(i|eo)g(s|em)

f(i|eHo )g(s|eHm)
= eo

eHo

em
eHm
ieo−e

H
o sem−e

H
m

and the condition RSO
eo,em

(i)≥ t amounts to

1− t≥ eoi
eo−1(1−iem )

eHo i
eHo −1(1−ieHm )

.
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s

.5355 = im
inventory, i

sales

is = .6412

B

1

Figure OA.3 The bonus region of the optimal compensation plan for Example OA.1.

These two conditions are equivalent to (suppose eo < e
H
o )

i≥

{
1

4s(1−t) if s < i

im(t) if s= i
,

where im(t),
−1+
√

1+2/(1−t)
2

. Therefore, the bonus region BNSO is

{(i, s) : 1
4i(1−t) ≤ s < i and i≥ is(t)},

where is(t), 1
2
√

1−t .

The next step is to determine t. Because ωeLo ,eLm = 1, the NJ constraint between (eHo , e
H
m) and

(eLo , e
L
m) is tight. We can isolate for t in the resulting equality to determine t. The tight NJ constraint

is ∫
R(i,s|e)≥t

R(i, s)f(i|e∗o)g(s|e∗m)dsdi= (c(eHo , e
H
m)− c(eLo , eLm)) · w̄−1,

which can be rewritten as∫ 1

is(t)

∫ i

1
4i(1−t)

(4si− 1)dsdi+

∫ 1

im(t)

(2i(1− i2)− (1− i))di= 0.3.

Solving for t results in t∗ ' 0.3919.

We check whether the trigger compensation plan w∗ with t∗ ' 0.3919, ωeLo ,eLm = 1, and ωeHo ,eLm =

ωeLo ,eHm = 0 is an optimal compensation plan. It suffices to check that the remaining no-jump con-

straints are feasible. We first check that no profitable deviation to e= (eHo , e
L
m) exists. Under the

trigger compensation plan, the marginal revenue of deviation to (eHo , e
L
m) is

w̄

∫ 1

is(t)

∫ i

1
4i(1−t)

(4si− 2i)dsdi+ w̄

∫ 1

im(t)

(2i(1− i2)− 2i(1− i))di.

Plugging t∗ ' 0.3919 into the above object yields 1.748> 1 = c(eHo , e
H
m)− c(eHo , eLm). Therefore, the

store manager will not deviate to (eHo , e
L
m).



oa16 Online Appendix to: Incentive Design for Operations-Marketing Multitasking

Similarly, the store manager’s marginal revenue of deviation to (eLo , e
H
m) is

w̄

∫ 1

is(t)

∫ i

1
4i(1−t)

(4si− 2s)dsdi+ w̄

∫ 1

im(t)

(2i(1− i2)− (1− i2))di.

Plugging t∗ ' 0.3919 into the above object yields 1.864 > 1 = c(eHo , e
H
m) − c(eLo , eHm). Therefore,

the store manager will not deviate to (eLo , e
H
m). The bonus region is illustrated in Figure OA.3.

Note im(t∗) = 0.5355< is(t
∗) = 0.6412, and so we have a mast-and-sail bonus region as plotted in

Figure OA.3. Under this optimal compensation plan, the probability of payout under the optimal

mast-and-sail compensation plan is 51.96%.

OA.3. Numerical Illustrations of Corner Compensation Plans

To give a sense of how to compute the optimal corner compensation plan we give two concrete

examples. These examples refer to some auxiliary results in the same online appendix that help us

analyze corner compensation plans.

Example OA.2 (Example OA.1 continued). Returning to the set up in Example OA.1, the

optimal corner compensation plan solves problem (14) and can be simply stated as:

min
a,b

(1− b2)(1− a2)

s.t. (1− b2)(1− a2)− (1− b)(1− a)≥ 0.3

(1− b2)(1− a2)− (1− b2)(1− a)≥ 0.2

(1− b2)(1− a2)− (1− b)(1− a2)≥ 0.2

b≤ a.

Note we have formulated the objective to minimize the expected probability of paying out the

bonus w̄ (following Proposition 7), which is equivalent to the objective function (14a).

Now, the optimality condition for the optimal corner compensation plan

Hf (a|e∗o)
Hg(b|e∗m)

=
Hf (a|eo)
Hg(b|em)

from equation (15) implies

2a
(1−a2)

2b
(1−b2)

=

1
(1−a)

1
(1−b)

,

which yields a = b. Combined with the other case of Proposition 8, we have a = b in optimality.

In this case, we can show the optimal choice of ω has ωeLo ,eLm = 1 and ωeHo ,eLm = ωeLo ,eHm = 0. The

optimal corner compensation plan can be obtained through solving (1− b2)(1− b2)− (1− b)2 = 0.3,

which yields b∗ = 0.5234. Under the optimal corner compensation plan, the probability of payout

is 0.5271. By comparison, the probability of payout under the optimal mast-and-sail compensation

plan is 0.5196. So the performance gap is (0.5271-0.5196)/0.5196=1.44%.
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Example OA.3. Consider an instance with the same setting as in Example OA.1 except that

the cost functions are as follows: c(eHo , e
H
m) = 3.4, c(eHo , e

L
m) = 1.5, c(eLo , e

H
m) = 1.8, and c(eLo , e

L
m) = 1.

In this case, we can show the optimal choice of ω has ωeHo ,eLm = 1 and ωeLo ,eLm = ωeLo ,eHm = 0. Thus,

we can solve for b∗ by setting (1− b2)(1− b2)− (1− b2)(1− b) = 0.19, which yields b∗ = 0.4896,

which corresponds to a probability of payout of 0.5781. By comparison, the optimal mast-and-sail

compensation plan has a probability of payout of 0.5148. Thus, using a corner compensation plan

leads to an efficiency loss of (0.5781− 0.5148)/0.5148 = 12.30%.

OA.4. Fully Observed Demand

A natural benchmark is to look at the scenario where demand is fully observed and not censored by

inventory; that is, both the firm and store manager can observe Q. This situation is much simpler

than the case of censored demand. The analysis in Section 4 still applies and it can be shown that

Reo,em(i, q) = 1− f(i|eo)g(q|em)

f(i|e∗o)g(q|e∗m)
, which is precisely what we analyzed before as RNSO

eo,em
(i, s) in (9) for

s≤ i. Similar reasoning thus yields the result:

Proposition OA1. A nonincreasing and continuous function qf exists such that an optimal

contract wf to the fully observed demand exists with the form

wf (i, q) =

{
w if (i, q)∈Bf

0 otherwise,

where Bf = {(i, q) : q≥ qf (i)}.

Recall, just as in Proposition 1 for s∗, the domain of the function qf need not be all of [0, Ī], and

an ī may exist such that Bf ⊆ [̄i, Ī]× [0, Q̄]. Thus, the bonus region of the optimal contract in the

fully observed demand case is an “expanded sail” that is not truncated by the 45◦ line.

Next, we use a numerical experiment to demonstrate the efficiency loss due to demand censoring,

by comparing the firm’s expected additional payment to the store manager — compared to the

first-best scenario — for inducing the same effort level. We illustrate our result in Figure OA.4.

OA.5. Approximating Mast-and-Sail Contracts

In this section, we consider approximating mast-and-sail contracts when we allow these contracts to

be nonmonotone in nature, in contrast to Section 7.2, where attention was restricted to monotone

approximations. The purpose of this exercise is to understand what aspects of the mast-and-sail

structure are driving optimality.

We consider the following three nonmonotone approximations, in addition to weighted-sum

threshold policies:
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Figure OA.4 Expected additional payment relative to the first-best scenario with and without demand censoring.

Parameters: w̄ = 20, c(eLo , e
L
m) = 1 and c(eHo , e

L
m) = c(eLo , e

H
m) = 5. We vary c(eHo , e

H
m) between 7.5

and 8.

κ2

1−κ1 Ī

s

inventory, i

sales

κ2

(a) A weighted-difference-

threshold compensation plan.

Ī

s

inventory, i

sales

ξsξm

(b) A mast-and-flat-sail compensa-

tion plan.

Ī

s

inventory, i

sales

κ2

κ1+1ξm

κ2

(c) A mast-and-linearized-sail com-

pensation plan.

Figure OA.5 Nonmonotone simplifications of the mast-and-sail contracts.

(a) Weighted-difference threshold compensation plan: This compensation plan is similar to a

weighted-sum threshold compensation plan, except that the threshold for the bonus payout is

a weighted difference of the sales quantity and inventory level. Specifically, the agent receives

a bonus if the sales quantity s and inventory level i satisfy s−κ1 · i≥ κ2, for some κ1, κ2 ≥ 0.

(b) Mast-and-flat-sail compensation plan: This compensation plan has both a “mast” and a “sail”

except that the bottom of the sail is flattened. It has two parameters, ξm and ξs, where

0< ξm ≤ ξs < 1, such that the agent receives a bonus under one of the following two conditions:

(a) the sales quantity s≥ ξm and all inventory is cleared and (b) the sales quantity s≥ ξs and

not all inventory is cleared.
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(c) Mast-and-linearized-sail compensation plan: This simple contract most closely mimics the

structure of the mast-and-sail contract and has three parameters, ξm, κ1 and κ2, all nonneg-

ative, such that the agent receives a bonus under one of the following two conditions: (a)

the sales quantity s≥ ξm and all inventory is cleared or (b) the sales quantity s and realized

inventory level i satisfy s+κ1 · i≥ κ2 and not all inventory is cleared.

These contract types are illustrated visually in Figures OA.5(a) and OA.5(c). One can view the

mast-and-flat-sail compensation plan as a “demand-censoring-aware” threshold policy because it

can be viewed as a generalized sales-quota-bonus compensation plan with two thresholds, depend-

ing on whether inventory is cleared. Similarly, the mast-and-linearized-sail compensation plan is

a “demand-censoring-aware” weighted-sum compensation plan. In this case, however, the linear

portion is always downward sloping, because it mimics the nonincreasing function s∗.

We evaluate the performance of the above three compensation plans (along with weighted-sum

threshold contracts) through extensive numerical experiments, and illustrate two representative sce-

narios in Figure OA.6. We draw the following observations. First, the performance of the weighted-

sum threshold compensation plan is similar to that of the corner (or sales-quota-bonus) compen-

sation plan in that it is near optimal when the marketing and operational activities are sufficiently

complementary (see Figure OA.6(a)), yet far from the optimal otherwise (see Figure OA.6(b)).

Interestingly, the weighted-difference threshold compensation plan performs reasonably well in the

latter case.

Second, the mast-and-flat-sail compensation plan, despite having both a “mast” and a “sail,” can

be outperformed by a “triangular sail” of the weighted-sum threshold described in Section 7.2 (see

Figure OA.6(a)). However, the shape of the triangular sail is important here. Contracts with two

“pieces” (a mast and something resembling a sail) can tailor incentives to the “cleared inventory”

and “not cleared inventory” cases in isolation from each other. A single “piece” contract (like a

weighted threshold compensation plan) needs to effectively “bridge” between these two cases by

designing the transition from “cleared inventory” to “not cleared inventory.” A perfect “bridge” is

not always possible to build, but our experiments show single-piece contracts with strong perfor-

mance are possible if constructed correctly. The correct construction (whether a weighted-sum or

weighted-difference threshold) is the one that most closely mimics the structure of the underlying

optimal mast-and-sail contract. For instance, a weighted-difference contract mimics the case in

which the bottom tip of the mast is lower than the bottom tip of the sail. Note, however, that

weighted-difference compensation plans are also not monotone, again underscoring the fact that

non-monotonicity is somehow endemic to the case of pure demand censoring explored here.

This leads to our final observation. The performance of the mast-and-linearized-sail compensation

plan is consistently near optimal (or optimal). It treats the “cleared inventory” case and “not
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cleared inventory” case individually and with relatively little restriction (except that the sail is

triangular). Thus, it gains many of the benefits of the mast-and-sail compensation plan but remains

simple and easier to compute. The drawback, of course, is that it remains non-monotone and thus

susceptible to ex post manipulation of inventory just as in the mast-and-sail setting.
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(a) Parameters: w̄ = 10, c(eHo , e
L
m) = c(eLo , e

H
m) = 3.0, and

c(eHo , e
H
m) = 3.5. We vary c(eLo , e

L
m) between 1 and 1.5.
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(b) Parameters: w̄ = 10, c(eLo , e
L
m) = 1, c(eLo , e

H
m) = 1.8,

and c(eHo , e
H
m) = 3.5. We vary c(eHo , e

L
m) between 1.5 and

1.8.

Figure OA.6 Performance of the optimal weighted-sum threshold , weighted-difference threshold, mast-and-

flat-sail, and mast-and-linearized-sail compensation plans, relative to the optimal mast-and-sail

compensation plan. We assume the same random distributions for I and S as in Figure OA.5.

OA.6. Single-tasking versus Multitasking

A natural question is to compare a multitasking manager to a single-tasking manager responsible

for only one of these tasks. In this section, we ask about the optimal incentives for an inventory

manager who finds himself in the same situation as the store manager in the main body of the

paper, but cannot influence demand through his efforts (i.e., he can only undertake operational

effort). Building on our analysis of the general multitasking setting in Section 4 (in particular

Theorem 2), one can show the optimal contract for the inventory manager problem is an inventory

quota-bonus compensation plan.

Proposition OA2. There exist nonnegative multipliers ω and a “target” t such that an optimal

solution to the single-tasking inventory manager problem of the following form exists:

w∗(i, s) =

{
w̄ if R(i, s)≥ t
0 otherwise

,

where now R(i, s) = 1− f(i|eL)

f(i|eH )
, and where the goal is to implement high inventory effort.
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Figure OA.7 Comparison of inventory thresholds under single-tasking versus multitasking. All the parameters

are the same as in Figure 5(b)

Under the MLRP assumption, it is straightforward to show the condition R(i, s)≥ t translates

into an inventory threshold i∗ where

w∗(i, s) =

{
w̄ if i≥ i∗.
0 if i < i∗.

(OA12)

Given the optimality of a quota-bonus structure for the inventory management problem, an

interesting question is whether the inventory threshold should be higher for the single-tasking

agent than the multitasking agent. We explore this question numerically. Consider the same set

of parameters as in Figure 5(b). In the case of single-tasking, we fix the marketing effort em as

eHm and look for an inventory threshold i∗ specified in (OA12). We observe from Figure OA.7 that

under single-tasking, the firm consistently chooses an inventory threshold i∗ that is higher than

both inventory thresholds (i.e., i∗s and i∗m) derived from the multitasking setting. In particular, this

result implies an inventory manager has a more stringent requirement for earning a bonus in terms

of inventory than a multitasker who is responsible for inventory (among other things).

OA.7. Effect of Compensation Ceiling on Compensation Plans and
Firm Profitability

We now numerically illustrate the effect of the compensation ceiling (w̄) on the design of the

optimal compensation plan and the firm’s profitability. Consider a case in which all the parameters

are the same as in Figure 5(a) except that (a) we fix c(eLo , e
L
m) = 1.0 and (b) we vary the value of w̄

from 9 to 21. We compute the optimal compensation plans and plot three scenarios in Figure OA.8,

corresponding to the cases of w̄ = 9,15, and 21, respectively. In addition, we compute the firm’s
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expected cost of compensating the store manager for each combination of parameters. We do

not explicitly report the firm’s expected profit, which also depends on its unit revenue; a lower

compensation cost suggests a higher expected profit. Figure Figure OA.9 shows the relationship

between w̄ and the firm’s expected cost of compensation.
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Figure OA.8 The effect of compensation ceiling on the optimal bonus region. In each panel, the blue line shows

the “mast” part of the bonus region, whereas the green area shows the “sail” part.

10 12 14 16 18 20
0

1

2

3

4

5

6

T
he

 fi
rm

's
 e

xp
ec

te
d 

co
st

 o
f c

om
pe

ns
at

in
g 

th
e 

st
or

e 
m

an
ag

er

Figure OA.9 The effect of w̄ on the firm’s expected cost of compensating the store manager.

OA.8. Microfounding the Compensation Ceiling

In this section, we attempt to microfound the compensation ceiling by examining the case in which

the agent’s probability of receiving the bonus cannot be below a pre-specified threshold (denoted

by P). Our analysis is motivated by the observation that in practice, firms aim to ensure each

agent, when opting to exert effort, can receive the bonus with a reasonably high likelihood.
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In an influential book on salesforce compensation, Zoltners et al. (2006, pp. 53–57) point out two

key factors in the effect of contracts to motivate effort in salesforce staff — engagement (measured

by an “engagement rate”) and excitement (measured by an “excitement index”). The engagement

rate “measures what percentage of a sales force receives incentive pay with a plan,” whereas the

excitement index measures “the rate at which salespeople earn their last incremental dollar” (in

our case, the bonus). Clearly, a tension exists between the engagement rate and excitement index.

Zoltners et al. (2006) states that too low an engagement rate can hurt the morale of the salesforce.

Although we are examining a multitasking setting, we believe the engagement-excitement tradeoff

characterized by Zoltners et al. (2006) is relevant to our setting because a higher compensation

ceiling (w̄) makes the optimal compensation plan more rewarding yet less achievable. Hence, the

choice of w̄ illustrates this engagement-excitements tradeoff. Zoltners et al. (2006) argue that an

“ideal engagement rate” exists and depends on a number of factors. We believe this notion provides

practical justification for the notion that w̄ could be chosen to match this “ideal engagement rate”

that balances the engagement-excitement tradeoff to best motivate the store manager to exert high

effort.
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Figure OA.10 The maximum w̄ as a function of the agent’s minimum likelihood of receiving the bonus (P),

which varies between 25% and 75%. All the parameters are the same as in Figure 5(a) except

that we fix c(eLo , e
L
m) = 1.0.

Note that for any given w̄, we can characterize the optimal compensation plan as in Section 5.2,

which gives the optimal solution specified by t∗(w̄) such that the bonus region consists of two parts:

BNSO(w̄),

{
(i, s)∈DNSO :

∑
eo,em

ωeo,emR
NSO
eo,em

(i, s)≥ t∗(w̄)

}
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and

BSO(w̄),

{
(i, s)∈DSO :

∑
eo,em

ωeo,emR
SO
eo,em

(i, s)≥ t∗(w̄)

}
.

Thus, the problem is equivalent to finding the maximum w̄ that satisfies

Pr

(∑
eo,em

ωeo,emR
NSO
eo,em

(i, s)≥ t∗(w̄)

)
+ Pr

(∑
eo,em

ωeo,emR
SO
eo,em

(i, s)≥ t∗(w̄)

)
≥P. (OA13)

Using (OA13) as an additional constraint and endogenously choosing w̄, we conduct a numerical

experiment and illustrate in Figure OA.10 a sensitivity analysis showing how P restricts the range

of w̄ in the incentive-design problem. Our experiment shows that as such a likelihood increases,

as one would expect, the value of w̄ decreases. Thus, by incorporating the agent’s likelihood of

receiving a bonus, this extension can be viewed as a natural way of microfounding w̄.
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