
 1

 
 
 
 
 
 
 
 

INELASTIC BENDING CAPACITY IN 
COLD-FORMED STEEL MEMBERS 

 
 
 
 
 
 
 
 
 
 
 

report to: 
American Iron and Steel Institute 

Committee on Specifications 
Subcomittee 10 – Element Behaviors and Direct Strength Method 

Subcomittee 24 – Flexural Members 
 
 
 

report prepared by 
Yared Shifferaw 

(Ben Schafer – Advisor) 
Thin-walled Structures Research Group 

Department of Civil Engineering 
Johns Hopkins University 

  
 

July 2008 
 
 
 
 



 2

 Ben Schafer, Ph.D., P.E. 
 Associate Professor 
 203 Latrobe Hall 
 410-516-7801 
 schafer@jhu.edu 

 
To:  Helen Chen, Senior Engineer 

Cold-Formed Steel Construction 
American Iron and Steel Institute 
1140 Connecticut Ave. - Suite 705 
Washington, DC 20036 
email: hchen@steel.org 

 
re:  AISI report on Inelastic Bending of Cold-Formed Steel Members 
 
 
Helen 
 
The enclosed research report has been prepared for the AISI as supporting material for proposed 
additions to the AISI Specification (AISI-S100-07) with respect to inelastic bending of cold-
formed steel flexural members. In particular, an extension to the Direct Strength Method of 
Appendix 1 of AISI-S100-07 is proposed which allows for design capacities to exceed My (and 
approach Mp) as a function of the slenderness in the local-global or distortional modes. 
 
The funding for this project largely came from the National Science Foundation, and journal 
publications related to this work are in preparation. For now, we felt that this AISI report would 
be the best way to share the work with the AISI-COS committee and to help the committee 
proceed with creation of a ballot. 
 
Sincerely, 

 
Ben Schafer 
 
 



 3

Table of Contents 
 
1. Introduction.....................................................................................................5 
 

1.1 Introduction........................................................................................5 
1.2 Elementary Mechanics for Inelastic Reserve ..................................6 
1.3 Mechanisms for Inelastic Reserve ...................................................8 
1.4 Existing Tests and Finite Element Models ......................................9 

 
2. Development and Verification of Unique and Simple Finite Element Model 
to Study Local and Distortional Inelastic Bending Capacity ..........................13 
 

2.1 Material Model....................................................................................13 
2.2 Element and Mesh Density ...............................................................14 
2.3 Solution Controls...............................................................................15 
2.4 Boundary Condition ..........................................................................16 

2.4.1 Test Boundary Conditions ..................................................16 
2.4.1.1 Local Tests..............................................................16 
2.4.1.2 Distortional Tests ...................................................17 
2.4.2 Idealized FE model boundary conditions................18 

2.5 Imperfection .......................................................................................21 
2.6 Verification of FE Models ..................................................................21 
2.7 Conclusion .........................................................................................24 
 

3.  Comprehensive Finite Element Study .........................................................25 

3.1 Member Length for Local Finite Element Model .............................26 

3.1.1Study of Mesh Density and Imperfection Sensitivity on 
Member Length Selection ...........................................................26 

3.2 Member Length for Distortional Finite Element Model...................28 

3.2.1 Study of Mesh Density and Imperfection Sensitivity on 
Member Length Selection ...........................................................28 
3.2.2 Study on the Impact of Lateral-Torsional Buckling in 
Selection of Member Length for Distortional Models ................33 



 4

4. Parametric Study and Design Formulations ................................................37 
 

4.1 Slenderness vs. Strain Limit Ratio...................................................39 
4.1.1 Parametric Study .................................................................39 
4.1.2 Design Equations ................................................................41 

4.2 Strain Limit vs. Strength ...................................................................46 
4.2.1 Parametric Study..................................................................46 
4.2.2 Design ...................................................................................47 

4.3 Direct Strength Method Formulation: Slenderness as a Function of 
Strength ....................................................................................................49 

4.3.1 Parametric Study..................................................................49 
4.3.2 Design ...................................................................................50 
4.3.3 Design Statistics ..................................................................52 

 
5. Appendix ........................................................................................................53 

Acknowledgement..............................................................................................62 

References ..........................................................................................................62 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5

1. INTRODUCTION 
 

1.1 Introduction 

It is common for braced hot-rolled steel beams to develop bending capacity 

exceeding the first yield moment, My, and reaching as high as the plastic moment, 

Mp, depending on the constituent elements’ slenderness. In the case of cold-

formed steel (CFS) such inelastic reserve (capacity exceeding My) is uncommon in 

comparison with those of hot-rolled steel cross-sections.  This is due to the thin-

walled nature of cross-sections inducing the limit states of local, distortional, and/or 

global buckling and hence reducing the bending capacity to be lower than the yield 

moment. However, in practice, inelastic reserve capacity has been found to 

develop in tests carried out on cold-formed steel thin-walled beams. 

Research was done on inelastic reserve capacity of cold-formed steel beams by 

Reck, et. al as early as 1975 who investigated CFS beams with web-stiffened 

compression flanges for inelastic reserve strength. Different test specimens were 

studied and included sections with initial yielding in compression, in tension as well 

as balanced ones. The results of these tests indicated that the ratio of the 

compressive strain to yield strain ( yC ) was a function of the compressive flange’s 

width to thickness ratio.  A design curve relating yC  to that of the compressive 

flange’s width to thickness ratio and also modified to include the effect of yield 

stress was developed. Reck et al. (1975) also discussed the hot-rolled steel 

provisions, but noted differences between CFS and hot-rolled sections: higher web 

to flange area, greater use of unsymmetric sections resulting in first yield occurring 
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in the tension flange, and the inability of CFS sections to sustain high compressive 

strains. Through testing, provisions for the maximum compressive strain that 

stiffened CFS elements could sustain, predicted as a function of element 

slenderness, were developed (Yener and Peköz 1983, 1985) and adopted as may 

be found in current CFS specifications (NAS 2001). Bambach and Rasmussen 

(2004) extended the NAS (2001) approach to cover inelastic reserve for 

unstiffened elements under a stress gradient with the free edge in tension. 

Although recent research has been conducted on inelastic reserve and ductility in 

hot-rolled steel beams (primarily for seismic applications) inelastic reserve has not 

been studied further for CFS beams. The extent to which inelastic reserve exists in 

commonly used CFS sections, and the typical increases one achieves in capacity 

are not widely known. Existing design provisions do not apply to the most 

commonly used beams (C’s and Z’s) and the new Direct Strength Method (DSM) 

(Schafer 2006, NAS 2004 Appendix 1) has not been extended to cover inelastic 

bending reserve.  

1.2 Elementary Mechanics for Inelastic Reserve 

The moment in a cross-section may be readily determined by the integration of the 

longitudinal stress,σ , times the distance from the neutral axis, y, over the cross-

section, A, via 

∫σ=
A

ydAM     (1) 
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The neutral axis location from the bottom of the section, y’, may be determined for 

a cross-section of depth, h, by enforcing equilibrium via 

0dxdydxdy
h

'y

'y

0

=σ+σ ∫ ∫∫ ∫     (2) 

Now, consider a nonlinear (uniaxial) material, where the stress is a function of the 

strain, but still assuming elementary mechanics where the strain varies linearly 

across the section:  

σ  = f(ε ) and  σ = (y/ylim) ε max     (3) 

where ylim is the maximum distance to the extreme fiber of the cross-section from 

the neutral axis, i.e., ylim= max(y’, h-y’), and ε max is the strain sustained at that 

location. The moment M is then 

( )∫∫ ε=ε=
A

maxlim
A

ydA)yy(fydA)(fM     (4) 

Thus, the moment in the section is a function of the maximum strain sustained. For 

uniaxial treatment of an elastic-perfectly plastic material 

f(ε ) ≡ σ  = Eε  for ε <ε y and σ = fy for ε >ε y     (5) 

So, for the case of ε max = ε y, we have the classic moment at first yield: 

( ) SfyIfdAyyEydA)yy(EM y
A

limy
2

limy
A

ylimy ==ε=ε= ∫∫     (6) 

Further, for the case ε max=∞ 

∫ ==
A

yyp ZfydAfM     (7) 

In general for ε y< ε max < ∞ the moment follows Eq. 4. Note, that Eq. 2 must be 

enforced uniquely for each ε max to determine the current neutral axis location (y’). 

CFS sections have some inelastic reserve capacity, but typically not Mp; hence the 
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moment sustained is determined by the maximum strain, typically defined in terms 

of the yield strain: 

ε max = Cyε y    (8) 

Depending on the cross-section geometry first yield may be in tension or 

compression and thus we may define the maximum strains as: 

ε max-compression = Cyε y and ε max-tension = Cy-tensionε y    (9) 

where typically the concern is with compressive strains, and thus the maximum Cy 

that can be sustained before inelastic buckling. 

1.3 Mechanisms for Inelastic Reserve 

CFS beams achieve inelastic bending reserve through two, primarily distinct, 

mechanisms. First, for cross-sections which are symmetric about the axis of 

bending, or have first yield in compression, inelastic reserve is achieved through 

the ability of the cross-section to sustain higher compressive strains (Cy>1) before 

inelastic local, or distortional buckling occurs. The evolution of stress through the 

cross-section for sections symmetric about the axis of bending is illustrated in 

Figure 1(i). The second inelastic reserve mechanism is for sections with first yield 

in tension, the greatest portion of inelastic reserve is achieved through yielding in 

the tension flange of the section (Cy-tension>1) and subsequent shift in the neutral 

axis, as illustrated in Figure 1(ii). If the compressive fiber (top of Figure 1(ii)) does 

not yield (i.e., Figure 1(ii.b)) then all of the inelastic reserve generates from tension 

yielding; however, if high enough rotations are sustained, some yielding in 

compression may occur – and thus at least partial inelastic buckling may be 
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sustained. This work largely focuses on the first mechanism: inelastic buckling in 

symmetric sections. 

fy

fy
fy

fy

εmax=2εy, Cy=2 εmax=3εy, Cy=3 εmax=∞, Cy=∞

M=My M=MpMy<M<Mp

εmax=εy, Cy=1

fy fy

fy
fy

(a) (b) (c) (d)
Cy-tension=1.5 Cy-tension=4 Cy-tension=∞Cy-tension=1

Cy<1 Cy=1.2 Cy=∞Cy=1/3

fy

fy

fy

fy

fy fy

M=My M=MpMy<M<Mp

(a) (b) (c) (d)

 

(i) symmetric section (ii) first yield in tension 

Figure 1 Evolution of stress in bending following elementary mechanics for an 

elastic-perfectly plastic material 

1.4 Existing Tests and Finite Element Models 
 
A number of researchers have tested cold-formed steel (CFS) beams for bending 

resistance. Data was compiled on CFS tests that exhibited inelastic reserve. The 

sections that were considered mainly included hat and deck sections, and C and Z 

sections. JHU-Tests in bending of CFS beams of C and Z sections by Yu and 

Schafer (20003, 2006) separately achieved distinct local and distortional buckling 

limit states. These test results were used to validate the direct strength method of 

design, particularly for distortional buckling. Figure 2 shows the test results that 

were used in DSM development. It can be seen that quite a significant number of 

these tests lie above the plateau line highlighted on Figure 2 (Mtest / My) which 

indicates that they possess inelastic reserve bending capacity1. The number of 

                                                 
1 Yield stresses used in the calculations were from the as-formed cross-sections (as opposed to the virgin or 
coil yield stress), as reported by the various researchers. Thus, it is believed that the majority of capacity 
above My comes from inelastic reserve, not from cold-work of forming effects. 
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such tests that exhibited inelastic reserve capacity served as a motivation to 

extend the Direct Strength Method to take into account such additional capacity.  

 

0

0.5

1

1.5

0 1 2 3
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DSM local buckling 
DSM distortional buckling
Experiments failing in local mode
Experiments failing in distortional mode
Elastic buckling

λmax = M My cr

M
M

test

y

transition in inelastic regime, where Mn>My has 
not been explored for cold-formed sections.

 

Figure 2 Development of DSM expressions for local and distortional buckling of 

beams with possible inelastic transition curve highlighted. 

Tests resulting in failure bending capacity 95% or higher than the yield moment 

were selected to closely examine inelastic bending capacity in cold-formed steel 

beams. The study of these cross-sections indicated that there were distinct 

mechanisms by which cold-formed steel beams develop inelastic reserve. A 

summary of the tests that were adopted in this study is given by Table 1. Inelastic 

capacity was observed in more than 15% of all tests that were considered, which 

underscores the importance of understanding inelastic reserve in cold-formed steel 

beams. Maximum observed inelastic reserve was 18%, observed in tests carried 

out by Yu and Schafer (2003, 2006), with an average maximum reserve of 10%. 

After determining the plastic moment of the cross-sections in these tests the shape 

factors (Mp / My) were computed and are given in Table 1. It can be noted that 
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there is a large variation of shape factors and that the maximum shape factors are 

significantly higher than the maximum observed inelastic reserve in the tests. 

Thus, it is clear that partial reserve is achieved, but not the full inelastic bending 

capacity Mp. 

Table 1 Observed inelastic reserve in CFS beams 
 
Section and 
Researcher 

count 
Mtest>0.95My

max 
Mtest/My 

min 
Mp/My 

max 
Mp/My 

Hats and Deck 
Sections 

    

Acharya (1997) 12 1.04 1.10 1.31 
Desmond (1977) 2 1.01 1.25 1.25 
Hoglund (1980) 36 1.16 1.15 1.26 
Papazian (1994) 8 1.12 1.13 1.29 
Winter (1946) 3 1.15 1.28 1.32 
C and Z Sections     
Cohen (1987) 7 1.05 1.24 1.26 
LaBoube and Yu 
(1978) 

10 1.04 1.14 1.19 

Rogers (1995) 17 1.15 1.16 1.31 
Shan (1994) 6 1.17 1.15 1.23 
Yu and Schafer (2003) 8 1.18 1.14 1.20 
Yu and Schafer (2006) 4 1.06 1.14 1.23 

 

Further examination of the strain at failure of these tests revealed three regions of 

failure in bending, as shown in Figure 3. The plot shows failure mechanisms of the 

cold-formed steel beam tests with respect to normalized ratios of maximum tensile 

and compressive strain to yield strain. Figure 3 shows tests that fall in the first 

region which showed no inelastic reserve, those that fall in the second region failed 

by tension yielding without the compressive fibers reaching yield and the rest of the 

tests that failed with the compressive fibers subjected to maximum strains 

exceeding the yield strains. The case of failure by the maximum compressive 

strain exceeding yield induces inelastic buckling, though first yield could be either 

in tension or compression. 
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Figure 3 Examination of strain at failure in tests of Table 1 

 
In addition to the actual tests that were carried out, results of Yu and Schafer’s 

(2007) finite element models that were developed for test verification and further 

extended for use in the study of distortional and local CFS beam bending 

capacities were used in the study of inelastic reserve capacity reported here. 

These FE models were used to predict separate local and distortional bending 

capacities for typical C and Z sections.  
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2.  DEVELOPMENT AND VERIFICATION OF UNIQUE AND SIMPLE FINITE 

ELEMENT MODEL TO STUDY LOCAL AND DISTORTIONAL INELASTIC 

BENDING MOMENT 

 
Based on the observation of the existence of inelastic reserve in CFS beams 

during tests, further investigation was needed to develop finite element analysis 

models that will capture such behavior and satisfactorily represent actual physical 

test conditions. With the view to developing a Direct Strength Method approach to 

investigate inelastic reserve bending capacity in CFS beams unique finite element 

models were required to actually represent buckling limit states which induce 

distinct mechanisms for inelastic reserve. Yu and Schafer (2007) tests that were 

carefully set-up to result in the separation of the distortional and local buckling limit 

states served as a basis for determining the modeling assumptions in the finite 

element models to be developed.  

 
2.1 Material Model 
 
In the finite element models that were developed, five different non-linear material 

models were used. The yield stresses in the material models varied between 33 ksi 

and 73.4 ksi. Figure 4 shows the stress-strain plots of the material models. The 

material models were adopted from a series of tensile coupon tests of specimens 

of the tested cross-sections (Yu and Schafer (2007)). The use of these actual non-

linear material models, and not assumed material models, and the observation of 

inelastic reserve during the tests implied that the phenomenon of inelastic bending 

in cold-formed steel beams is a real possibility.  
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Figure 4 Stress-strain relations used in FE study 

 
2.2 Element and Mesh Density 
 
The nine-node quadratic interpolated thin shell ABAQUS element: S9R5, was used 

in the analysis.  The impact of mesh density was studied by considering the non-

linear finite element analysis results with different choice of element aspect ratios.  

The decision to consider the different aspect ratios was found to be important with 

respect to the non-linear finite element runs. Not-sufficiently fine meshes coupled 

with the geometric and material nonlinearities might pose problems of instabilities 

and/or non-convergence in the numerical solution. Various mesh densities for the 

different elements of the sections (with respect to flange, web, and corner) were 

investigated as to the impact on the failure inelastic bending capacity. The mesh 

density impact analysis was done in both the verification and further parametric 

studies. Element aspect ratios were kept near 1.0, with the exception being the 

rounded corner regions where ratios were kept below 4:1. A minimum of 2 

elements were employed in the lip, 4 in the flange, and 16 in the web, of the 
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modeled C and Z sections. Examples of converged meshes are provided in the 

subsequent sections. 

  
2.3 Solution Controls 
 
The modified Riks method implemented in ABAQUS version 6.7.1 (ABAQUS 2007) 

is the algorithm adapted to study post-buckling response.  In this method nodal 

variables and the loading parameter define the single equilibrium path, and the 

solution development requires this path be traversed as far as required. The 

increment size is limited since at any time there is a finite radius of convergence in 

the basic Newton method algorithm and path-dependent response is exhibited by 

most materials and loadings of interest. In the implementation in ABAQUS, a given 

distance is traversed along the tangent line to the current solution point, and 

equilibrium is sought in the plane passing through the resulting point and 

orthogonal to the tangent line.  

 
Different non-linear finite element models were built to study the effect of the 

various “RIKS” parameters before verification with the tests that were done at 

Hopkins.  The different studies that were conducted included parameter studies 

such as the impact of initial step increment, the total period, minimum as well as 

maximum step sizes in the choice of RIKS solution parameters. In the 

subsequently reported results sufficiently small initial and maximum step sizes 

were selected, such that peak load typically occurred in approximately 20 steps. 
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2.4 Boundary Condition 

The study of the boundary conditions for the local and distortional buckling modes 

was found to be the most crucial step in the development of FE models. To 

achieve separation of these modes, simplified boundary condition approximations 

resembling the test set-up conditions of Yu and Schafer (2003, 2006) were 

adopted. The impact of these boundary condition approximations was examined in 

comparison to the actual test results. The results indicated that the boundary 

conditions that should be adopted for the local and distortional mode studies were 

quite different as the two dominant modes represent different deformation in the 

buckling of the cross-section. Hence, the choice of the boundary conditions for the 

two cases was based on the general deformed shape of the cross-section where 

one of the two buckling modes dominated. 

 

2.4.1 Test Boundary Conditions 
 

2.4.1.1 Local Tests 
 

In the set-up for local buckling tests (Yu and Schafer 2003), two members are 

placed side by side with opposing in-plane flange rotations inducing tension on 

panel on top (Figure 5.a). The panel thereby provides additional restraint on the 

flange distortional buckling. In order to engage the panel, closer spacing of 

fasteners than the standard fastener-panel configuration needed to be used for 

restricting the flanges from translation.  
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2.4.1.2 Distortional Tests 
 
In the set-up for distortional tests, two members are placed side by side as in the 

case of local tests except the panels are removed in the middle span so as to 

induce such buckling as shown in Figure 5.b. 

 
a. 
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b. 
 
Figure 5 Yu & Schafer Test set-ups a) Local, b) Distortional 
 

2.4.2 Idealized FE model boundary conditions 
 
 A segment of the beam under constant bending was considered in the model to 

study inelastic bending capacity. Hence corresponding boundary conditions of the 

idealized model with respect to end restraints needed to effectively capture the 

continuity conditions in the actual beam and need to be carefully investigated.  

 

In the case of the local buckling FE models, mid-points of the top flange were 

restrained from rotating, thus simulating an ideal version of the panel restriction of 

the compression flange in the test set up condition (Figure 5.a). The end boundary 
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conditions were modeled in two ways for comparison with tests: with rigid 

boundary condition restraining the ends from warping and, with warping free 

conditions.  

 

With respect to the distortional buckling mode boundary conditions, two types of 

boundary conditions were investigated as to the appropriateness and proximity to 

possible test boundary conditions. The first boundary condition that was 

considered is similar to the CUFSM boundary conditions where warping is free at 

the end of the member and restrained in the middle of the member. In this 

boundary condition the member was also restrained from transverse translations at 

the ends.  It is to be noted that such boundary condition resembling CUFSM 

boundary conditions represent a pin-ended, but warping-free, condition at the 

ends. But as can be seen from the experimental setup (Figure 5.b) where the 

interior top panel was removed to initiate distortional buckling close to the center of 

the beam, the boundary conditions for an induced distortional buckling under such 

circumstances is likely to be at least partially restrained from warping - unlike the 

case of a simple supported end. The second set of boundary conditions that were 

considered involved the coupling of a reference node to the rest of the nodes at the 

ends of the member where the reference node is subjected to rigid rotation, this 

results in warping fixed ends.  

 

The rigid rotation with respect to the reference node was the boundary condition 

that was finally adopted in both the local and distortional finite element models 
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(Figure 6.a &b respectively). Also in both cases, rotation was imposed as 

prescribed displacement at the reference node to induce uniform moment, 

resulting in a pin-ended but warping fixed boundary condition. 

 

a. 

 

 

b. 

Figure 6 FE model boundary conditions a) Local, b) Distortional 
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2.5 Imperfections 
 
As the contribution of the geometric imperfections to the study of the non-linear 

analysis was important, appropriate local and distortional imperfections with three 

different percentage values (25%, 50% and 75%) with respect to the probability of 

being exceeded were considered in accordance with that suggested by Schafer 

and Pekoz (1998). Different modal imperfections were imposed on the members 

and the models’ imperfection sensitivities were analyzed. Local and distortional 

imperfections that corresponded to the CUFSM elastic local and distortional 

buckling shapes were adopted. Investigation of imperfection sensitivity was done in 

the verification and development of the comprehensive study for parametric 

studies. Two different directions of the imperfections were studied as to their 

impact on the bending capacity of CFS beams in local and distortional failure. 

 

2.6 Verification of FE Models 

A comprehensive verification in the development of a finite element analysis for 

inelastic bending reserve in cold-formed steel members was examined. The cross-

sections that were adopted for verification were tested sections and those studied 

under the extended FE analysis of the full test set-up that possessed inelastic 

reserve.  

 

Table 2 shows the comparison of Yu and Shafer (2003, 2006) test results with 

those from the simplified FE. The results of the finite element analyses showed 



 22

that that the percentage difference between the tests and that of the simplified 

finite element models for failure by local buckling is 3% and for distortional failure 

with less number of sections falling in this category, 9%. Imperfection magnitude of 

50% cdf was adopted for the comparisons of the finite element models.  For the 

simplified model, the length of the member was considered as 64 in. similar to the 

test set up section where there is a uniform bending moment in the member in the 

middle 64 in.  

 

The comparison of the extended FE analysis2 results with those from the simplified 

FE is shown in Table 3. Various imperfection distribution and magnitudes were 

considered. For a 50% cdf imperfection magnitude in the case of local buckling 

failure the results of the finite element analyses showed a 2% difference between 

the extended and that of the simplified finite element models and a 2% difference 

in the case of distortional failures. The small percentage differences between the 

simplified FE models developed and those of the extended FE models indicated 

that the simple FE models were adequate for capturing the separate test set-ups 

and the mechanisms associated with local and distortional failures. 

 
 

 

 

 

 

 

                                                 
2 In the “extended” FE analysis of Yu and Schafer (2007) the entire test setup is modeled. In the simplified 
models reported here only the constant moment region is considered. 
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Table 2 Comparison between tests and simplified FE model with respect to imperfection magnitude 

a. Local 

 
Section 

fy 
(ksi) 

Mtest 
(kip-in) 

My 
(kip-in) 

Mtest/My Mfe,loc 
(kip-in) 

(25%cdf) 

Mfe,loc 
(kip-in) 

(50%cdf) 

Mfe,loc 
(kip-in) 

(75%cdf) 
8.5Z120-2 60.1 280 264 1.06 275.6 266.5 249.8 
8C097-3 59.6 172 157 1.10 164.7 156.2 146.3 
8C068-5 48.6 104 102 1.02 98.36 94.36 91.37 
6C054-2 36.1 45 43 1.06 46.06 42.91 40.02 
4C054-2 44.7 28 27 1.03 26.74 25.80 23.37 

3.62C054-2 32.0 20 17 1.17 17.36 16.76 15.62 
 

b. Distortional 

 
Section 

fy 
(ksi) 

Mtest 
(kip-in) 

My 
(kip-in) 

Mtest/My Mfe,dist 
(kip-in) 

(25%cdf) 

Mfe,dist 
(kip-in) 

(50%cdf) 

Mfe,dist 
(kip-in) 

(75%cdf) 
D8.5Z120-4 61.4 254 265 0.96 267.9 263.3 234.8 
D8C085-2 52.8 122 124 0.99 112.9 109 103.4 
D10C068-4 22.0 51 53 0.95 50.58 48.38 45.90 

D3.62C054-3 32.9 17 16 1.04 15.17 15 14.71 
 

Table 3 Extended FE vs. Simplified FE Model with respect to imperfection direction and magnitude 

a. Local 

Mfe,loc,simplified(kip-in) 
 

25% 
 

 
50% 

 
75% 

 
Section 

fy 
(ksi) 

Mfe,loc,extended 
(kip-in) 

Dir1 Dir2 Dir1 Dir2 Dir1 Dir2 
8Z2.25x100 33 114.2 118.6 118.8 115.2 115.8 110.1 110.3

8C068 33 69.4 69.25 69.56 67.33 67.50 63.65 63.85
8.5Z082 33 103.2 105.1 105.3 101.7 102.1 96.79 97.3 

 

b. Distortional 

Mfe,dist,simplified(kip-in) 
 

25% 
 

 
50% 

 
75% 

 
Section 

fy 
(ksi) 

Mfe,dist,extended
(kip-in) 

Dir1 Dir2 Dir1 Dir2 Dir1 Dir2 
8Z2.25x100 33 114.2 113.90 117.1 111.3 115.6 106.9 112 

8.5Z092 33 109.5 112.9 115.5 111.3 114.2 108.5 111.4 
8.5Z120 44 149.7 155.1 159.1 152.2 158 147.5 153.8 
8C097 44 92.3 96.84 97.01 94.64 94.81 89.36 91 
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2.7 Conclusion 

Relatively simple FE models for capturing distinct local and distortional failures 

were developed, taking into consideration appropriate boundary conditions and 

other modeling parameters. These models were verified against the test results 

and extended FE models and were found to be satisfactory. Observation of 

imperfection sensitivity, primarily with respect to the distortional failures, indicate 

that imperfection studies need to be accounted for in any parametric analyses to 

be done later as inelastic bending reserve capacities of CFS beams are 

investigated.
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3.  COMPREHENSIVE FINITE ELEMENT STUDY  

 

With the finite element model verified with respect to boundary conditions and 

other parameters, a comprehensive study needed to be done to understand the 

behavior of inelastic bending reserve capacity of CFS beams.  An investigation into 

the various parameters involved in coming up with comprehensive FE models that 

can be adopted for a general study on the inelastic local and distortional bending 

capacity of beams is discussed in this section.  

 

For a general approach to the problem a fundamental factor that needed to be 

considered was the choice of appropriate finite element model length in the study 

of local and distortional buckling effects in inelastic reserve capacity of cold formed 

steel members subjected to bending. In the non-linear finite element analysis the 

need to separate the local and distortional buckling modes meant separate 

member lengths for similar cross-sections so as to simulate the impact of the 

separation of modes much in the way the tests were set up. In order to accomplish 

this, different member lengths were considered and the impact of these on the 

non-linear finite element solutions were compared with the verification test results 

done by Yu and Schafer (2003, 2006).  
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3.1 Member Length for Local Finite Element Model 

3.1.1Study of Mesh Density and Imperfection Sensitivity on Member 

Length Selection  

To answer the question of what length of the simplified finite element model should 

be adopted to predict the inelastic local bending capacities of beams, an 

investigation into the impact of length variation in local strength prediction is 

completed. For this study, the seven cross-sections used in the extended finite 

element studies of Yu and Schafer (2003, 2006) adopted in the previous 

comprehensive verification (Section 2.6) were considered. A plot of the normalized 

local failure strength vs. multiples of the critical elastic local buckling half-wave 

length is shown in Figure 7. The finite element model lengths were varied between 

1 to 10 times the critical lengths for the different cross-sections which were 

computed from an elastic finite strip analysis. Two different mesh densities were 

considered and as can be seen from Table a (Appendix), there was little or no 

significant advantage in using the finer mesh case in terms of prediction of local 

buckling capacities for the various multiples of elastic critical local buckling half-

wavelength (nl ) of the finite element model. Hence, the “coarser3” mesh was 

adopted for further investigation of the impact of imperfection direction on failure 

local bending capacities as a function of model length in terms of the elastic critical 

local half-wavelength. It can be observed that as those of the verification models 

(for both tests and extended finite element model study cases of Yu and Schafer 

(2003, 2006)) with a fixed finite element model, a similar phenomenon was 
                                                 
3 The “coarse” mesh includes >2 elements in the lip, 4 elements in the flange, and 16 elements in the web; 
and aspect ratios in accordance with the discussion of Section 2. 
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observed with respect to imperfection direction sensitivity for a local failure case in 

that little or no significant change in local capacity prediction was seen for different 

finite element model lengths as shown in Table a (Appendix).  In addition, in Figure 

7 it is observed that the local failure moment prediction levels off after a value of 

nl=3 for higher multiples of the elastic critical length. This observed convergence of 

the prediction of local failure moments led to the conclusion that a finite element 

model that is of length in the neighborhood of three times the cross-sectional 

elastic critical local half-wavelength can sufficiently predict the inelastic local 

buckling failure moment capacity of the cross-section. Hence, comprehensive 

parametric studies that are further discussed will have finite element models of 

length equal to three times the particular cross-section’s elastic critical local half-

wavelength. 
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Figure 7 Plot of local FE model length (function of elastic critical length) vs. 

normalized strength for different sections 

3.2 Member Length for Distortional Finite Element Model 

3.2.1 Study of Mesh Density and Imperfection Sensitivity on Member 

Length Selection  

In a similar fashion to the case of local buckling, the distortional failure bending 

capacity ratios normalized with respect to the yield moment were plotted against 

the finite element model length, normalized  in terms of the number of elastic 

critical distortional bucking half-wave lengths. The seven cross-sections 

considered in the case of the extended finite element analysis of Yu & Schafer 

(2003, 2006) were used. The distortional finite element models’ length was varied 
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from 1 to 5 times the elastic critical distortional buckling half-wavelength. Table b 

(Appendix) shows the impact of mesh density with regards to the failure distortional 

moment capacities. Two mesh densities were compared and the coarser mesh 

(same basic mesh density as the “coarser” mesh for the local buckling studies 

reported in the previous section) was deemed sufficient for further consideration. 

 

The influence of imperfection direction on the distortional failure bending capacities 

of the finite element models was further investigated with the chosen mesh density. 

As can be observed in Figure 8, for the various member lengths considered the 

distortional failure bending capacity was in general sensitive to the imperfection 

direction, unlike the case of local failure bending capacity.  

 

Two different imperfection sensitivities were observed. The first imperfection 

direction incorporates a case where the flange at the middle of the member is 

moving outward. The shape of this imperfection is shown in Figure 9 (b, d & f) 

where three member lengths with three and five times the elastic critical 

distortional half-wave lengths for Z and C cross-sections are plotted. The second 

imperfection direction incorporates a case where the flange at the middle is moving 

inward. This imperfection direction for the member length with different member 

lengths is shown in Figure 9 (a, c & e).  

 

The two imperfection directions lead to somewhat different distortional inelastic 

bending capacities as shown in Figure 8a & b. In the case of the imperfection 
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where the flange at the middle of the member is moving outward (Figure 9 (b, d & 

f)) the distortional failure inelastic bending capacities were found to be higher. The 

inward movement of the flange, on the other hand reduces the inelastic buckling 

distortional capacity of the member.  

 

As shown in Figure 8a, for the cross-sections considered in the study of member 

length sensitivity to inelastic distortional bending capacity, about 75% of them 

exhibited inelastic reserve (Mud/My>1) for the imperfection direction with middle 

member flange moving outward. In the second case, where imperfection direction 

results with middle member flange moving inside, about 90% exhibited inelastic 

reserve. For a member length with twice the length of the distortional elastic critical 

buckling half-wave lengths, imperfection direction variation resulted in a maximum 

of variation of 3.43% in inelastic reserve. 
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Figure 8 Plot of distortional FE model length (function of elastic critical length) vs. 

normalized strength for different sections a) Imperfection direction one b) 

Imperfection direction two 
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a) 
b) 

 

c) 
 

d) 

e) 

 

f) 

 

Figure 9 Plot of imperfection direction in distortional buckling failures  

a),c),e) inward at mid-span   b),d),f) outward at mid-span 
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3.2.2 Study on the Impact of Lateral-Torsional Buckling in Selection of 

Member Length for Distortional Models 

To decide on the appropriate length of a finite element model that exhibits 

exclusively distortional failure, the impact of lateral-torsional failure initiation 

member length is examined. The seven cross-sections used in the extended finite 

element study of Yu and Schafer that showed inelastic reserve capacities were 

further analyzed for the effect of lateral-torsional buckling. In order to determine the 

length of a member to induce lateral torsional buckling the critical elastic lateral-

torsional buckling moment is taken as 2.78 My or higher since it corresponds to a 

nominal moment strength of Mα (NAS 2001). Corresponding length of the member 

that results in such lateral-torsional buckling moment is then determined from 

classical solutions. These are given in the Table 4. 

 

Table 4 Lateral-torsional buckling length vs. elastic critical distortional length 

 
Section 

 
Lcr,d (in) 

 
L*

LTB (in) 
nLTB= 

LLTB/ Lcr,d 
8Z2.25x100 17.5 64.3 3.67 
8.5Z2.5x70 22.5 68.1 3.03 

8C068 17.5 49.3 2.82 
8.5Z092 20.5 67.4 3.29 
8.5Z120 18.5 70.4 3.81 
8.5Z082 21.5 66.7 3.10 
8C097 13.5 48.8 3.61 

  LLTB = Length at which Mcr,e= 2.78 My for LTB 

 
 

 In Figure 9 the normalized failure load as a function of length of the member in 

terms of the elastic critical distortional buckling length is plotted along with dashed 
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lines indicating the break off lengths in terms of the nd for lateral-torsional failure for 

the different cross-sections. As can be observed, the lateral-torsional effect starts 

within a span of member length as a little less than three to around four times the 

elastic critical distortional half-wavelength. It was hence concluded that in the 

inelastic bending reserve study for distortional failure bending capacity 

determination it was satisfactory to adopt a finite element model length twice the 

critical elastic distortional buckling half-wavelength to observe a distortional failure 

free of the lateral-torsional buckling effect.  

 

The deformation characteristic for two different member lengths of a section is 

shown in Figure 11. It is evident from Figure 11a that the member with twice the 

elastic critical distortional length showed a distortional deformation whereas that 

with five times the elastic critical distortional length indicated interaction with 

lateral-torsional buckling (Figure 11 b). It should be noted that the choice of the 

distortional finite element member length which is the same as the elastic critical 

distortional length of the cross-section becomes un-conservative.  With such length 

of a member a maximum increase of 5.2% in inelastic capacity was observed in 

comparison to that of a member length twice the elastic critical distortional length 

without being unduly influential by the boundary conditions.  Hence, a choice of the 

distortional finite element model length twice the elastic critical distortional length 

can be considered as appropriate and conservative.  
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Figure 10 Comparison with distortional buckling models to see break off points 

where LTB is activated 

 
 
a)  L=2Lcr,d 
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b) L=5Lcr,d 

Figure 11 Deformation plots   a) distortional and b) interaction with lateral-torsional 

buckling  

 
 

In conclusion, in the preliminary investigation appropriate boundary conditions and 

mesh densities were considered in coming up with a finite element model that can 

capture and separate local and distortional failure bending mechanisms. Moreover 

for a generalized approach to the problem, the inelastic reserve prediction was set 

up to appropriately capture  various cross-sections by making use of the relatively 

simple finite element model with a length set appropriately as a multiple of the 

cross-section’s critical local or distortional elastic buckling half-wavelength from a 

finite strip analysis. 
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4. Parametric Study and Design Formulations 
 
 
A parametric study considering 17 cross-sections from tests and extended finite 

element studies of Yu & Schafer (2003, 2006) that exhibited inelastic reserve was 

done. In order to investigate the phenomenon of inelastic bending reserve in these 

beams, a range of practical thickness values was made use of to ensure inelastic 

local and distortional failure bending capacities. These thicknesses ranged from 

0.0538 in. to 0.1345 in. and are given in Table C of the Appendix. 

 

An investigation of the impact of strain-hardening and the ultimate stress on the 

inelastic bending capacity was also done. In order to see this effect, three different 

variation of the ultimate to yield ratio was considered. Ultimate to yield stress ratios 

of 1.66 (representing the original tested material model), 1.33 and 1 (representing 

elastic-perfectly plastic material model) were adopted. The engineering stress-

strain curves for the different ultimate to yield stress ratios is shown in Figure 12. 

The yield stress considered was 33ksi. 

 

In addition, preliminary design expressions are developed based on the 

experimental data and finite element model results of the parametric study. 

Possible extension of the current Direct Strength Method to include inelastic 

reserve is also looked into. 
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Figure 12 Stress vs. strain for the various fu/fy ratios 

The finite element models developed for the parametric studies were used in order 

to examine the impact of a material model’s ultimate stress with regards to 

relationship between strength and strain limits. Cross-section D8.5Z120-4 with 

eleven thickness variations was selected for this study similar to the parametric 

study (Table C of Appendix).  
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4.1 Slenderness vs. Strain Limit Ratio 

4.1.1 Parametric Study  

Figure 13 shows a plot of slenderness versus the strain limit for the case of 

distortional and local failure inelastic reserve. The strain limits represent the 

average membrane strain values at ultimate moments corresponding to either the 

distortional or the local failure cases. As shown in Figure 13 there was a scatter in 

the strain limit as a function of slenderness in both cases. The average membrane 

strain limit reaches as high as 3.5 or 14 times the yield strain for the case of 

distortional and local buckling failures respectively. It was noted that the higher 

strains (> 5) in the local buckling cases occurred in the shorter and thicker sections 

( thickness > 0.10 in.) whose elastic critical local buckling half-wavelengths , hence 

the finite element model lengths, are shorter. It was observed that using higher 

multiple (>5) of the local half-wavelengths for generating the finite element models 

giving longer models in comparison with the section dimensions resulted in 

reducing these strains.  

 

Computation of Cy from FE models involved FE model lengths that were decided to 

be a multiple of the critical elastic buckling lengths for local and distortional 

buckling of the cross-sections; but it was observed that the average compressive 

strain in the model varied with change in the cross-section length of the FE 

models, depending on the number of local or distortional buckling waves formed in 

the post-buckling stability behavior. However the corresponding variation in 

ultimate inelastic capacity remained basically the same. Hence, this ultimate 
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reserve capacity was used to back-calculate corresponding strain numerically 

using the basic mechanics formulations discussed in section 1.2. The back-

calculated strain Cy,b is hence found to be a practical and general formulation to 

predict inelastic reserve capacity than Cy,FE which was sensitive to assumed length 

of FE model. Moreover, for tests done in the past that were part of the data for 

inelastic reserve study in CFS beams, comparison with FE models vis-à-vis 

normalized strain can be done through Cy,b only. 
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Figure 13   Slenderness vs. normalized strain for FE models a) 15≤yC  

b) Typical Cy 

 

4.1.2 Design  

Design expressions that relate elastic buckling slenderness to the membrane strain 

limit are developed in this section.  

 
A simple power equation was adopted for developing local design equation with 

lowest sum of squared absolute error as a fitting target. The proposed expression 

for the local buckling case is given by equation (10) as   

if lyl λλ <  then 
0.2

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

l

l

l λ
λ y

FEyC where lyλ =0.776 & ll cry MM=λ                 (10) 

Similarly, for the design equation for a distortional case is given by equation (11): 
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if dyd λλ <  then 
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where dyλ =0.673 & crdyd MM=λ       (11) 

 

Using back-calculated strain, the relation between strain and slenderness two 

relationships (equations 12 & 13 for local and distortional cases respectively) are 

developed. With data corresponding to fu/fy of 1.66, same as tested cross-section 

material model, these relationships become: 

if lyl λλ <  then 
544.0
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where dyλ =0.673 & crdyd MM=λ                 (13)      

 

The design expressions given by equations (12 & 13) are found to be conservative 

in comparison with the available test data. A plot of the proposed design curves is 

shown in Figure 14 along with tests and FE model results. 

 

The variation of local and distortional slenderness with strain-limits for the different 

ultimate to yield stress ratios is also shown in Figure 14. The variation in the 

prediction of the membrane strain limit for the distortional case shows a sharp 

increase as the distortional slenderness values get smaller. For the majority of the 

cross-sectional thicknesses considered the variation of strain limit prediction was 

not varying significantly in the case of distortional failures. The local failures 

exhibited more scatter in the membrane strain limit predictions in contrast to the 

distortional failures. This variation for the different ultimate to yield stress was more 
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distinct for thicker cross-sections. Expressions relating the slenderness variation 

with strain limits for these data points were developed in various forms as shown in 

equations 14-16. 

if lyl λλ <  then 
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where lyλ =0.776 & ll cry MM=λ      (14) 

Since Mp/My for the section is the same and also since it is included in the Mu/My 

prediction equation as one factor, a more appropriate expression could be: 
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Ignoring the impact of fu/fy gives equation (16):  

if lyl λλ <  then 
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Comparison of equation (16) with the expression developed with fu/fy =1.66 

(equation 12) for the parametric study indicates that equation (12) is a more 

conservative equation as shown in Figure 14 a. 

 

Similarly the distortional relationships corresponding to the various cases leading 

to development of equations 14-16 are given in equations 17-19: 
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if dyd λλ <  then 
3.1

⎟⎟
⎠

⎞
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⎝

⎛
=

d

dy

bydC
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λ

where dyλ =0.673  & crdyd MM=λ                (19) 

 

Similar comparison of equation (19) with equation (13) for the parametric study 

data indicates that equation (13) is conservative as shown in Figure 14 b. Figure 

14 c shows both the local and distortional design curves via equations (13) and 

(19) respectively.  

 

The relationship between slenderness and Cy was based on slenderness values 

the correspond to Mcr as a result of elastic stress distribution despite the fact that 

Cy is essentially due to the inelastic stress distribution. This becomes even more 

significant for smaller slenderness values with high Cy. Slenderness that is function 

of Mcr which takes into factor inelastic stress distribution might explain the scatter 

in the plots relating slenderness and Cy observed in Figure 14. Previously this was 

investigated in part by calculating Mcr for the inelastic stress distribution, although 

the differences were not great they did exist and were dependent on the cross-

section, or more exactly the influence of the web on the local buckling mode, since 

the web sees the changing stress distribution (from elastic to inelastic).   
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Figure 14 Slenderness vs. back-calculated normalized strain for test & FE models 

& proposed design curve a) Distortional b) Local c) Both local and distortional 

 

4.2 Strain Limit vs. Strength 

4.2.1 Parametric Study 

The variation of average membrane normalized finite element strain-limit (Cy,FE) as 

a function of normalized strength prediction is shown in Figure 15. In both the 

distortional and local failures, as the average membrane strain increases the 

normalized strength prediction increases. Both the distortional and local failure 

strength prediction plots indicate scatter. It was noted that the maximum average 

membrane strain was found to be higher for local failures than for distortional 

failures. For a typical normalized strength prediction, it can be observed that the 
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typical average membrane strain limits (Cy,FE) fall under 4 for the case of 

distortional failures and under 5 for the case of local failures. 

 

4.2.2 Design 

The proposed design equation relating the average normalized strain-limit to 

normalized moment for the local and distortional cases is given by equation (20) 

and shown in Figure 15. 
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 for Cy,FE>1                  (20) 

 
Using back-calculated strain-limit, the equation for strength prediction is given by 

equation (21): 
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 for Cyb>1                  (21) 

 

Figure 16 shows the normalized strength vs. back-calculated strain limit for both 

local and distortional failures for the parametric study FE models, tests along with 

the results for the study for different material models, and the proposed design 

curve. It can be observed that the back-calculated strain- slenderness relationship 

equation fits well with the FE and test results. 
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Figure 15 Normalized strain vs. strength for FE models & design curve 
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Figure 16 Back-calculated normalized strain vs. strength for test, FE models & 

design curve 

 

4.3 Direct Strength Method Formulation: Slenderness as a Function of 

Strength 

 

4.3.1 Parametric Study 

Figure 17 shows a study of the distortional strength predictions which are 

normalized with respect to the yield and plastic strengths, as a function of the 

slenderness of the cross-section. Among the 187 finite element models, 72% of 

those with distortional boundary conditions and 77% of the models with local 

boundary conditions possessed inelastic reserve.  
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4.3.2 Design 

Design expressions relating slenderness and bending strength are developed in 

this section. Equations (12) & (21) were combined to give the expression for local 

strength prediction given in equation (22) 
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Similarly, for distortional strength prediction the expression developed by 

combining equations (13) and (21) is given by equation (23) 

If dyd λλ < , ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+=

38.2

1
dy

d
ypynd MMMM

λ
λ       (23) 

 

The curves using these expressions are shown in Figure 17 plotted against the 

distortional and local finite element data points and test results and extended FE 

results of Yu and Schafer. 
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Figure 17 Slenderness vs. strength for test & FE models & proposed design curve 

a) Distortional b) Local 
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4.3.3 Design Statistics 

The statistics using the Direct Strength Method prediction formulations for inelastic 

bending reserve capacity is shown in Table 5 for the data that included the tests 

and finite element models. The DSM prediction equations correspond well with 

observed results from tests and are with reasonably low standard deviations. 

Table 5 Prediction statistics for inelastic bending capacity 
Section and Mtest/Mn Mtest/Mn for Mn>My* 
Researcher ave. st.dev. n ave. st.dev. n 
Hats and Decks       
Acharya (1997) 1.11 0.08 12 1.03 0.01 2 
Desmond (1977) 1.10 0.03 2    
Hoglund (1980) 1.05 0.07 36 1.00 0.04 15 
Papazian (1994) 1.17 0.16 8 0.98 0.03 2 
C and Z ‘s        
Cohen (1987) 1.18 0.07 7    
LaBoube and Yu (1978) 1.14 0.04 10    
Rogers (1995) 1.05 0.05 17 1.04 0.04 12 
Shan (1994) 1.11 0.09 6 1.15 0.02 3 
Yu and Schafer (2003) 1.03 0.04 8 1.04 0.04 6 
Yu and Schafer (2006) 1.08 0.02 4    
All test data 1.08 0.09 110 1.03 0.06 40 
FE Studies        
Local models 1.03 0.03 187 1.02 0.02 135 
Distortional models 1.06 0.05 187 1.05 0.04 144 

* these statistics are provided only when Eq. 14 and 15 are employed for prediction, i.e., when the 
predicted Mn is greater than My (or equivalently λl<λly or λd<λdy) 
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5. APPENDIX 

Table A Study of length of simplified local FE model  

Mesh 1 +50% 

Mfe,loc,simplified(kip-in) 
nl= 

 
Section 

Mfe,loc,extended 
(kip-in) 

1 2 3 4 5 6 7 8 9 10 
8Z2.25x100 114.2 124.60 122.50 119.7 119.2 119.3 119.3 118.0 119.3 119 118.7 
8.5Z2.5x70 87.9 91.51 89.92 89.02 89.80 88.08 88.23 88.04 88.59 88.50 87.95 

8C068 69.4 71.28 69.97 68.67 68.77 68.63 68.62 68.73 68.82 68.68 68.56 
8.5Z092 117.2 121.90 119.80 118.20 118.60 117.50 117.2 117.5 117.6 117.6 117.6 
8.5Z120 155.6 169.8 166.6 163.7 163.8 163.5 163.4 163.4 163.3 163.3 162.8 
8.5Z082 103.2 108.1 106.9 104.3 103.4 104.3 104.0 104.1 104.3 103.4 103.4 
8C097 98.1 105.6 103.4 101.40 100.5 100.8 100.9 100.8 100.4 100.7 100.5 

 

Mesh2 +50% 

Mfe,loc,simplified(kip-in) 
nl= 

 
Section 

Mfe,loc,extended 
(kip-in) 

1 2 3 4 5 6 7 8 9 10 
8Z2.25x100 114.2 124.1 122.4 119.5 119.2 119.2 120.4 117.9 119.0 118.7 118.6 
8.5Z2.5x70 87.9 91.13 89.82 88.90 89.84 87.85 87.78 87.89 87.88 88.00 87.69 

8C068 69.4 70.95 69.84 68.70 68.81 68.56 68.70 68.57 68.66 68.63 68.33 
8.5Z092 117.2 122.3 121.3 117.9 117.0 118.0 117.7 117.6 117.9 116.8 116.8 
8.5Z120 155.6 169.9 168.2 163.9 163.5 163.4 164.6 163.4 163.4 162.2 162.8 
8.5Z082 103.2 107.1 105.6 104.3 105.6 103.3 103.4 103.3 103.7 103.6 103.0 
8C097 98.1 104.4 102.4 101.0 100.7 100.6 100.9 100.6 100.6 100.3 99.73 
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Mesh 2 -50% 

Mfe,loc,simplified(kip-in) 
nl= 

 
Section 

Mfe,loc,extended 
(kip-in) 

1 2 3 4 5 6 7 8 9 10 
8Z2.25x100 114.2 123.6 121.4 119.3 119.4 119.0 119.2 119.0 119.0 118.8 118.4 
8.5Z2.5x70 87.9 91.72 90.87 88.60 87.63 88.54 88.28 88.75 88.42 87.96 89.35 

8C068 69.4 70.72 69.56 68.63 68.61 68.40 68.23 68.41 68.38 68.49 68.22 
8.5Z092 117.2 121.6 119.7 118 118.6 117.2 117.2 117.2 117.3 117.3 116.6 
8.5Z120 155.6 169.2 166.4 163.5 163.8 163.3 162.9 163.1 162.9 162.8 162.3 
8.5Z082 103.2 107.7 107.0 104.2 103.1 103.9 103.6 104.0 103.7 103.2 103 
8C097 98.1 104.4 102.4 101.0 100.7 100.6 100.9 100.6 100.6 100.3 99.73 

 

 

Table B  Study of length of simplified distortional FE model 

Mesh 1 +50% 

Mfe,dist,simplified(kip-in) 
nd= 

 
Section 

Mfe,dist,extended 
(kip-in) 

1 2 3 4 5 
8Z2.25x100 114.2 120.8 115.3 115.2 118.3 110.1 
8.5Z2.5x70 81.7 90.55 85.94 84.99 85.88 79.71 

8C068 63.7 70.75 68.99 65.53 64.45 65.05 
8.5Z092 109.5 120.1 117.4 111.6 111.4 111.9 
8.5Z120 149.7 164.40 157.00 157.60 162.10 151.00 
8.5Z082 94.8 106.00 102.90 97.78 97.16 98.09 
8C097 92.3 103.00 99.16 98.08 101.00 96.33 
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Mesh2 +50% 

Mfe,dist,simplified(kip-in) 

nd= 

 
Section 

Mfe,dist,extended 
(kip-in) 

1 2 3 4 5 
8Z2.25x100 114.2 120.7 115.2 115.2 118.4 110.1 
8.5Z2.5x70 81.7 90.39 86.20 85.02 85.72 79.65 

8C068 63.7 70.70 68.97 65.29 64.58 65.02 
8.5Z092 109.5 119.5 113.6 114.1 121.2 108.3 
8.5Z120 149.7 165.2 162.4 154.7 154.9 155.2 
8.5Z082 94.8 106.0 102.9 97.72 97.16 98.05 

8C097 92.3 102.8 99.00 97.89 102.0 96.02 
 

Mesh 2 -50% 

Mfe,dist,simplified(kip-in) 
nd= 

 
Section 

Mfe,dist,extended 
(kip-in) 

1 2 3 4 5 
8Z2.25x100 114.2 121.0 118.4 113.0 112.9 113.4 
8.5Z2.5x70 81.7 90.39 86.20 82.88 81.94 83.12 

8C068 63.7 71.21 68.60 67.11 70.57 65.25 
8.5Z092 109.5 120.3 117.3 111.6 111.4 111.9 
8.5Z120 149.7 164.3 157 157.5 162.4 151.3 
8.5Z082 94.8 106.0 102.9 97.72 104.6 94.57 
8C097 92.3 102.4 100.2 98.08 94.80 95.54 
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Table C Parametric study 

 
Section 

t 
(in.) 

My (kip-
in) 

Mp (kip-
in)  

Mfe,loc 
(kip-in) 

(+50%cdf) 

Mfe,dist 
(kip-in) 

(+50%cdf) 

Mfe,dist 
(kip-in) 

 (-50%cdf) 
8Z2.25x100 0.0538 58.66 68.70 57.76 53.94 56.35  
8Z2.25x100 0.0566 61.71 72.28 61.5 59.88 57.91 
8Z2.25x100 0.0598 65.20 76.36 65.45 64.10 62.46 
8Z2.25x100 0.0673 73.38 85.94 75.62 72.89 74.08 
8Z2.25x100 0.0713 77.74 91.05 81.14 79.67 78.39 
8Z2.25x100 0.0747 81.45 95.39 85.68 82.91 84.10 
8Z2.25x100 0.0897 97.80 114.55 105.8 104.7 101.8 
8Z2.25x100 0.1017 110.89 129.87 121.9 117.8 120.5 
8Z2.25x100 0.1046 114.05 133.57 125.8 124.3 121.5 
8Z2.25x100 0.1196 130.40 152.73 145.8 144.7 141.1 
8Z2.25x100 0.1345 146.65 171.76 166.4 160.7 164.5 
8.5Z2.5x70 0.0538 67.25 78.58 63.09 59.37 62.74 
8.5Z2.5x70 0.0566 70.75 82.67 68.62 63.97 66.97 
8.5Z2.5x70 0.0598 74.74 87.34 73.62 71.65 69.41 
8.5Z2.5x70 0.0673 84.12 98.29 84.76 81.65 83.01 
8.5Z2.5x70 0.0713 89.12 104.14 91.22 87.88 89.39 
8.5Z2.5x70 0.0747 93.37 109.10 96.42 94.64 93.51 
8.5Z2.5x70 0.0897 112.12 131.01 119.5 117.9 115.2 
8.5Z2.5x70 0.1017 127.12 148.54 138 136.5 133.1 
8.5Z2.5x70 0.1046 130.74 152.77 142.2 137.3 141 
8.5Z2.5x70 0.1196 149.49 174.68 165.8 159.8 164.3 
8.5Z2.5x70 0.1345 168.11 196.44 189 182.2 187.5 

8C068 0.0538 50.37 60.01 50.05 50.61 48.72 
8C068 0.0566 52.99 63.13 53.29 52.29 53.76 
8C068 0.0598 55.99 66.70 57.05 57.19 56.21 
8C068 0.0673 63.01 75.07 65.8 65.73 65.43 
8C068 0.0713 66.76 79.53 70.53 70.02 70.56 
8C068 0.0747 69.94 83.32 74.58 74.11 74.08 
8C068 0.0897 83.98 100.05 92.48 90.95 91.71 
8C068 0.1017 95.22 113.43 105.9 105.5 104.5 
8C068 0.1046 97.93 116.67 110.4 108.9 107.7 
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8C068 0.1196 111.98 133.40 128.5 126.2 124.7 
8C068 0.1345 125.93 150.02 146.1 141.7 142.9 

8.5Z092 0.0538 65.30 77.03 63.32 59.22 62.51 
8.5Z092 0.0566 68.70 81.04 66.7 63.84 66.68 
8.5Z092 0.0598 72.58 85.62 72.79 71.25 69.08 
8.5Z092 0.0673 81.69 96.36 83.57 82.63 80.96 
8.5Z092 0.0713 86.54 102.08 89.83 87.12 88.75 
8.5Z092 0.0747 90.67 106.95 95.35 92.20 93.93 
8.5Z092 0.0897 108.87 128.43 117.9 113.2 116.9 
8.5Z092 0.1017 123.44 145.61 136.1 135.2 130.7 
8.5Z092 0.1046 126.96 149.76 140.5 135.2 139.3 
8.5Z092 0.1196 145.16 171.24 163.5 157.2 162.1 
8.5Z092 0.1345 163.25 192.57 186 179.2 184.8 
8.5Z120 0.0538 66.96 78.78 63.36 65.56 60.16 
8.5Z120 0.0566 70.45 82.88 67.85 67.69 64.74 
8.5Z120 0.0598 74.43 87.56 73.18 72.41 70.11 
8.5Z120 0.0673 83.77 98.54 85.86 84.06 82.15 
8.5Z120 0.0713 88.75 104.40 92.19 88.49 90.32 
8.5Z120 0.0747 92.98 109.38 97.73 93.92 95.58 
8.5Z120 0.0897 111.65 131.34 120.8 118.9 115.6 
8.5Z120 0.1017 126.58 148.91 139.5 133.2 137.5 
8.5Z120 0.1046 130.19 153.16 143.8 137.5 142.2 
8.5Z120 0.1196 148.86 175.12 167.4 159.9 165.5 
8.5Z120 0.1345 167.41 196.94 189.9 182.6 188 
8.5Z082 0.0538 65.27 77.21 63.95 59.21 62.52 
8.5Z082 0.0566 68.67 81.23 68.35 63.84 66.66 
8.5Z082 0.0598 72.55 85.82 72.5 71.21 69.07 
8.5Z082 0.0673 81.65 96.59 84.23 80.93 82.63 
8.5Z082 0.0713 86.50 102.33 90.58 88.71 87.05 
8.5Z082 0.0747 90.63 107.21 95.5 92.04 93.97 
8.5Z082 0.0897 108.83 128.74 118.4 116.9 113.2 
8.5Z082 0.1017 123.39 145.96 136.6 131.1 134.7 
8.5Z082 0.1046 126.90 150.12 140.8 135.3 139.2 
8.5Z082 0.1196 145.10 171.65 163.9 162.2 157.4 
8.5Z082 0.1345 163.18 193.03 186.7 179.4 184.8 
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8C097 0.0538 49.94 59.89 49.37 48.74 48.10 
8C097 0.0566 52.54 63.01 52.68 51.77 52.04 
8C097 0.0598 55.51 66.57 56.47 56.14 55.66 
8C097 0.0673 62.48 74.92 65.15 64.30 65.09 
8C097 0.0713 66.19 79.38 69.96 69.51 69.08 
8C097 0.0747 69.34 83.16 74.01 73.23 73.16 
8C097 0.0897 83.27 99.86 91.74 89.90 90.23 
8C097 0.1017 94.41 113.22 105.8 103.3 103.9 
8C097 0.1046 97.10 116.45 109.3 106.6 107.4 
8C097 0.1196 111.03 133.15 127.2 124.7 123.5 
8C097 0.1345 124.86 149.74 144.9 140.5 142.8 

8.5Z120-2 0.0538 66.00 77.71 64.26 59.05 62.05 
8.5Z120-2 0.0566 69.43 81.75 68.72 63.66 66.31 
8.5Z120-2 0.0598 73.36 86.37 73.67 68.92 70.99 
8.5Z120-2 0.0673 82.56 97.21 84.62 81.07 82.57 
8.5Z120-2 0.0713 87.46 102.98 91.08 87.53 88.71 
8.5Z120-2 0.0747 91.63 107.89 96.2 92.28 94 
8.5Z120-2 0.0897 110.03 129.56 119 113.4 117.1 
8.5Z120-2 0.1017 124.75 146.89 137.2 135.2 131.4 
8.5Z120-2 0.1046 128.31 151.08 141.6 139.8 135.6 
8.5Z120-2 0.1196 146.71 172.74 164.6 162.7 157.8 
8.5Z120-2 0.1345 164.99 194.27 187.7 185.5 180.0 
8C097-3 0.0538 49.99 59.80 49.17 47.81 48.36 
8C097-3 0.0566 52.59 62.91 52.43 51.43 51.75 
8C097-3 0.0598 55.56 66.47 56.21 55.93 55.28 
8C097-3 0.0673 62.53 74.81 64.96 64.77 63.93 
8C097-3 0.0713 66.25 79.25 69.66 69.21 68.73 
8C097-3 0.0747 69.40 83.03 73.54 73.01 72.38 
8C097-3 0.0897 83.34 99.70 91.34 89.53 89.89 
8C097-3 0.1017 94.49 113.04 105.5 102.9 103.6 
8C097-3 0.1046 97.18 116.27 108.9 106.2 107.0 
8C097-3 0.1196 111.12 132.94 126.8 123.0 124.3 
8C097-3 0.1345 124.97 149.50 143.7 142.2 140.0 
8C068-5 0.0538 49.98 59.73 48.53 47.28 47.31 
8C068-5 0.0566 52.58 62.83 51.77 51.13 50.71 
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8C068-5 0.0598 55.55 66.39 55.46 54.22 55.47 
8C068-5 0.0673 62.52 74.71 64.21 64.18 62.75 
8C068-5 0.0713 66.24 79.15 69.03 67.59 68.59 
8C068-5 0.0747 69.40 82.93 73.06 72.29 71.69 
8C068-5 0.0897 83.33 99.58 90.08 88.78 88.51 
8C068-5 0.1017 94.48 112.90 104.8 103.0 102.3 
8C068-5 0.1046 97.17 116.12 108.2 105.3 105.5 
8C068-5 0.1196 111.11 132.77 125.9 122.4 123.6 
8C068-5 0.1345 124.95 149.31 143.5 140.1 139 
6C054-2 0.0538 33.53 39.43 35.36 34.14 35.67 
6C054-2 0.0566 35.27 41.49 37.28 36.21 37.95 
6C054-2 0.0598 37.27 43.83 39.83 40.43 38.61 
6C054-2 0.0673 41.94 49.33 45.75 44.22 46.35 
6C054-2 0.0713 44.44 52.26 48.9 47.17 49.58 
6C054-2 0.0747 46.55 54.75 51.78 49.75 52.11 
6C054-2 0.0897 55.90 65.75 63.41 64.03 60.94 
6C054-2 0.1017 63.38 74.54 73.17 69.85 73.36 
6C054-2 0.1046 65.19 76.67 74.23 71.99 75.75 
6C054-2 0.1196 74.54 87.66 84.41 83.29 87.32 
6C054-2 0.1345 83.82 98.58 95.88 94.37 99.49 
4C054-2 0.0538 19.28 21.97 19.87 21.05 19.36 
4C054-2 0.0566 20.29 23.12 21.13 22.79 20.51 
4C054-2 0.0598 21.43 24.42 22.17 21.82 24.66 
4C054-2 0.0673 24.12 27.49 25.47 24.88 27.72 
4C054-2 0.0713 25.56 29.12 27.23 30.28 26.52 
4C054-2 0.0747 26.78 30.51 28.72 31.63 27.89 
4C054-2 0.0897 32.15 36.63 35.28 34.01 37.61 
4C054-2 0.1017 36.45 41.53 40.5 38.91 44.28 
4C054-2 0.1046 37.49 42.72 41.75 45.32 40.08 
4C054-2 0.1196 42.87 48.85 49.49 46.20 51.36 
4C054-2 0.1345 48.21 54.93 56.66 52.25 58.47 

3.62C054-2 0.0538 17.20 19.61 18.15 19.11 17.47 
3.62C054-2 0.0566 18.10 20.63 19.28 20.44 18.47 
3.62C054-2 0.0598 19.12 21.80 20.57 22.14 19.62 
3.62C054-2 0.0673 21.52 24.53 23.15 24.64 22.35 
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3.62C054-2 0.0713 22.80 25.99 24.73 26.33 23.81 
3.62C054-2 0.0747 23.89 27.23 26.06 25.03 27.64 
3.62C054-2 0.0897 28.69 32.70 31.95 33.96 30.46 
3.62C054-2 0.1017 32.52 37.08 37.24 39.10 34.82 
3.62C054-2 0.1046 33.45 38.13 37.73 35.87 40.07 
3.62C054-2 0.1196 38.25 43.60 44.62 46.53 41.28 
3.62C054-2 0.1345 43.01 49.03 49.96 46.65 52.51 
D8.5Z120-4 0.0538 65.81 77.43 62.45 60.10 63.38 
D8.5Z120-4 0.0566 69.24 81.46 67.01 67.58 64.68 
D8.5Z120-4 0.0598 73.15 86.06 73.27 72.14 69.92 
D8.5Z120-4 0.0673 82.33 96.86 84.19 83.68 81.90 
D8.5Z120-4 0.0713 87.22 102.61 90.84 89.73 87.99 
D8.5Z120-4 0.0747 91.38 107.51 96.03 93.41 94.89 
D8.5Z120-4 0.0897 109.73 129.09 118.8 117.8 114.6 
D8.5Z120-4 0.1017 124.41 146.36 137.2 131.9 136.2 
D8.5Z120-4 0.1046 127.96 150.54 141.5 140.7 136.1 
D8.5Z120-4 0.1196 146.31 172.13 164.7 158.2 163.5 
D8.5Z120-4 0.1345 164.53 193.57 187.7 186.6 180.4 
D8C085-2 0.0538 50.85 60.82 49.92 48.71 50.08 
D8C085-2 0.0566 53.50 63.99 53.2 52.32 53.30 
D8C085-2 0.0598 56.53 67.60 56.98 56.86 56.66 
D8C085-2 0.0673 63.61 76.08 66 65.41 65.96 
D8C085-2 0.0713 67.40 80.60 70.78 70.26 70.66 
D8C085-2 0.0747 70.61 84.45 74.87 74.60 73.90 
D8C085-2 0.0897 84.79 101.41 92.89 91.53 91.58 
D8C085-2 0.1017 96.13 114.97 107.4 105.5 105.2 
D8C085-2 0.1046 98.87 118.25 110.9 108.5 108.9 
D8C085-2 0.1196 113.05 135.21 128.5 125.7 126.3 
D8C085-2 0.1345 127.14 152.05 146.6 143.1 142.7 
D10C068-4 0.0538 69.17 84.83 61.55 58.03 60.11 
D10C068-4 0.0566 72.77 89.24 65.84 64.32 62.17 
D10C068-4 0.0598 76.88 94.29 71.22 69.65 66.88 
D10C068-4 0.0673 86.52 106.11 82.84 81.41 77.71 
D10C068-4 0.0713 91.66 112.42 90.03 83.96 87.96 
D10C068-4 0.0747 96.04 117.78 95.62 88.31 92.78 
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D10C068-4 0.0897 115.32 141.43 119.8 115.6 111.2 
D10C068-4 0.1017 130.75 160.35 139.5 130.4 134.8 
D10C068-4 0.1046 134.48 164.93 144.6 138.0 133.1 
D10C068-4 0.1196 153.76 188.58 169.7 162.2 157.3 
D10C068-4 0.1345 172.92 212.07 194.5 184.3 179.0 

D3.62C054-3 0.0538 16.21 18.42 16.7 16.14 18.27 
D3.62C054-3 0.0566 17.05 19.38 17.72 17.13 19.11 
D3.62C054-3 0.0598 18.02 20.47 18.53 18.23 20.62 
D3.62C054-3 0.0673 20.28 23.04 21.23 20.80 23.63 
D3.62C054-3 0.0713 21.48 24.41 22.65 22.16 25.01 
D3.62C054-3 0.0747 22.51 25.57 23.86 23.32 25.71 
D3.62C054-3 0.0897 27.03 30.71 29.36 28.43 32.13 
D3.62C054-3 0.1017 30.64 34.82 33.88 35.93 32.55  
D3.62C054-3 0.1046 31.52 35.81 34.91 38.36 33.52 
D3.62C054-3 0.1196 36.04 40.95 41.29 38.61 43.07 
D3.62C054-3 0.1345 40.53 46.05 49.16 43.68     49.48 
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