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ABSTRACT 

HIV is largely spread through sexual transmission in sub-Saharan Africa. Despite 

major biomedical innovations in HIV prevention, South Africa continues to bear a 

disproportionate burden of HIV. This dissertation aims to assess sexual behavior among 

people living with HIV comparing those on antiretroviral therapy (ART) to those not, 

describe sexual mixing patterns and number of sexual partners, and characterize sexual 

networks consistent with limited network data and assess the impact of network structure 

on disease potential. Throughout this dissertation, we present analyses of the Human 

Sciences Research Council’s 2012 South African National HIV Prevalence, Incidence 

and Behaviour Survey (SABSSM IV), a nationally representative household based cross-

sectional survey. 

We first use logistic regression to assess the relationship between ART and sexual 

behavior among those living with HIV. We find that ART is associated with increased 

odds of condom use among those living with HIV (aOR>2), but not associated with 

reporting multiple sexual partners. This aim suggests that people living with HIV not yet 

on ART in South Africa likely contribute the greatest number of transmissions (both due 

to sexual behavior and ART reducing infectivity), and reinforces the importance of 

engaging individuals living with HIV in care. 

Next, we use mixing matrices and Newman’s assortativity coefficients to describe 

sexual mixing patterns, and fit a number of count distributions to degree distribution 

(number of sexual partners in the past year) data. Sexual mixing patterns are strongly 

assortative in South Africa, with assortativity coefficients for age, race, education, HIV-

status, number of sexual partners and ARV status indicating strong assortativity in 
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household partnerships (>0.6). Number of sexual partners was low (mean in past year = 

1.34) but men were 5 times more likely to report 2+ partners in the past year. Our 

findings suggest that the strongly assortative nature of sexual networks in South Africa 

could have implications for HIV combination prevention intervention efficacy. 

Finally, we use a nonparametric Markov chain Monte Carlo approach to simulate 

complete sexual networks consistent with mixing patterns and degree distribution data. 

We assess network characteristics on these consistent networks, and assess the impact of 

assumptions to balance male and female degree on these networks. We then estimate the 

impact of network structure on disease transmission.  Simulated sexual networks 

consistent with our limited sexual network data varied little, but were highly dependent 

on assumptions made to balance male and female degree distributions. Networks with 

FSW populations had the greatest potential for HIV spread. Network characteristics were 

associated with potential HIV spread.  Our results suggest the importance of capturing 

highly connected individuals in survey data, as these individuals will play a major role in 

disease transmission. 

Sexual networks have the potential to dramatically influence the impact of HIV 

combination prevention interventions.  This dissertation builds upon a body of work to 

provide an improved understanding of sexual behavior, sexual mixing and sexual 

networks within South Africa. These results can be utilized in the development of 

interventions to predict the potential effect an intervention could have in order to 

efficiently target interventions to have the greatest impact on HIV burden in South 

Africa.   
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1. Introduction 

1.1.  Overview of the HIV epidemic in South Africa 

 South Africa has been greatly impacted by the HIV pandemic, with an estimated 

HIV prevalence in individuals aged 15-49 of 19.2% in 2015[1]. An estimated 7.0 million 

people are living with HIV infection in South Africa[1], making South Africa the country 

with the largest number of people living 

with HIV worldwide and nearly one-sixth 

of the burden worldwide[4, 5]. Between 

2010 and 2013, UNAIDS estimates that 

the number of new HIV infections 

dropped by approximately 22%, though 

there were still 345,000 new infections in 

2013[6]. While South Africa has made 

great strides to decrease the burden of 

HIV, including having 3.4 million people on antiretroviral treatment (ART)[5] and 

increasing coverage of HIV counseling and testing (HCT) to over 9.5 million South 

Africans in a one-year period during 2014-2015[7], HIV remains a major public health 

problem[8] and was the single disease responsible for the most deaths in 2012[9].  

The HIV epidemic in South Africa has notable heterogeneity along a number of 

dimensions. HIV in South Africa is geographically extremely disparate (Figure 1.1). HIV 

prevalence is highest in KwaZulu-Natal (28%), a bit lower in Mpumalanga, Free State, 

North West, Eastern Cape, and Gauteng provinces (18-22%), and quite substantially 

Figure 1.1: Map of South Africa, HIV prevalence  

among 15-49 year olds by province in 2012 [2] 
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lower in Limpopo, Northern Cape and Western Cape (8-14%). There is also substantial 

variability by age and sex, shown in Figure 1.2.  HIV prevalence is higher among females 

than males within all age groups.  The HIV prevalence among women peaks at ages 30-

34 at 36%, while it peaks at ages 35-39 among males at 28.8%. Peak HIV prevalence 

shifted between 2008 and 2012, from the peak among women being at ages 25-29 and 

among men being at ages 30-34[10].  This change has also come with an overall increase 

in HIV prevalence in that period, attributed to the increased availability of ART and 

consequently improved survival while maintaining high incidence.  Sex prevalence 

differentials in young adults (aged 15-19 and 20-25) has led to a focus on age mixing and 

the potential role of older 

male partners in 

introducing the HIV 

epidemic to younger 

women[11]. There are 

additionally major 

disparities in the burden of HIV by race in South Africa.  Black Africans have the highest 

HIV prevalence (22.7%), followed by coloured (4.6%), Indian/Asian (1.0%) and white 

(0.6%)[2].  

1.2.  Sexual behaviors, sexual networks, and HIV 

The majority of HIV transmission globally[4] and in Southern Africa[12] occurs via 

sexual transmission. Sexual transmission has been challenging to elucidate, partly due to 

the sensitive nature of sexual behavior data, and partly due to the fact that an individual’s 

sexual partners’ behaviors can have as much impact on their infection risk as the 

Figure 1.2: HIV prevalence by age and sex in South Africa, 2012[2] 
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individual’s own behaviors[13]. As a result, both sexual behaviors[14] and sexual 

networks[15-18], the networks formed by connecting individuals through their sexual 

partnerships, have become an increasingly studied area of research.   

 One measure of individual sexual risk that is measured frequently is number of 

partners in the past year (referred to as “degree” in network literature).  In general 

populations in Eastern and Southern Africa, the mean number of sexual partners in the 

past year reported by sexually experienced men ranged from 1.2-1.9 in different sites, and 

among women ranged from 0.82-1.1[19].  Across studies, men report from 20-100% 

more sexual partners than women report[20]. 

 Individual sexual behavior is challenging to ascertain accurately, because it is 

highly personal, and relies almost exclusively on self-report[21]. There has been some 

work that uses semen biomarker detection from vaginal swabs in heterosexual sex, 

primarily as a validation of self-report, though this represents a relatively short window 

of recall (1-2 days) and has not been widely used to ascertain sexual behavior[22]. 

Previous work has shown sexual behavior reports are strongly influenced by survey 

methodology [21, 23-26], and has suggested that non-interviewer administered 

questionnaires (such as audio computer-assisted self-interviewing – ACASI) may provide 

more valid results. 

1.2.1. Sexual behavior & ART status 

A recent randomized controlled trial (RCT), HPTN 052, measuring the 

transmission of HIV from HIV-positive individuals to their HIV-negative 

(serodiscordant) stable partners showed a 93% decrease in linked transmission events 

among individuals on immediate ART compared to those who had a delayed start[27, 
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28].  Results from systematic reviews of observational studies assessing the decrease in 

HIV transmission among serodiscordant heterosexual partners range from 34-91% 

reduction in incidence rate, with differences by study population and setting, CD4 count 

at which ART was initiated, and strength of evidence[29, 30]. A recent observational 

study found that among serodifferent couples that reported condomless sex acts while the 

seropositive partner had suppressed viral load there were no phylogenetically linked 

transmissions[31]. These findings suggest that the sexual behaviors of those living with 

HIV not on ART are of the greatest importance to HIV transmission. Other investigators 

suggest that risk compensation (increased sexual risk behavior reported by individuals 

who feel protected by protective interventions, in this case ART[32]) will possibly negate 

the protective effects of ART on transmission[33, 34]. Modeling studies suggest that 

sexual behavior change would have to be quite dramatic for it to overcome the protective 

nature of ART[35].  

There was early evidence suggesting that individuals on ART had greater risk 

behavior than those living with HIV not yet on ART in Western countries[36-39]. 

However, literature published in South Africa[40-43] and other settings in sub-Saharan 

Africa[44-53] (including a meta-analysis published in 2012[54]) found either no 

significant difference in sexual risk behavior or a decrease in sexual risk behavior 

between individuals on ART compared to those who are not. Few studies showed support 

for an increase in sexual risk behavior by individuals on ART[55-57]. 

1.2.2. Sexual network data collection methods 

 Collection of sexual network data generally ranges from sociometric data, in 

which all individuals in a network are captured, and egocentric data, where only an 
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individual’s personal networks are captured, with a number of “partial network” study 

designs such as snowball sampling or respondent driven sampling, falling in the middle 

of those[13]. Figure 1.3 visually depicts some types of network data where each dot 

represents an individual, the lines represent a sexual partnership between those two 

individuals, and colors indicate the node’s 

sex (this network is exclusively 

heterosexual). In Figure 1.3a, sociometric 

data allow us to see the full, true underlying 

network, by conducting a census of an area, 

and specifically naming and identifying each 

of a person’s partners within that area from 

the census list. Figure 1.3b shows egocentric 

data, where the survey only captures 

individuals in boxes, but we are able to learn from the sampled individuals about the 

individuals with whom that person has relationships. We are unable to see individuals 

who are greyed out.  Figure 1.3c shows household data, which can be used to understand 

mixing between two individuals, but doesn’t allow us to know about other partners.  

Other study designs that allow for inference about sexual networks include molecular 

biology/phylogenetic data and public health contact tracing data[11, 15]. 

 Each network study design has strengths and weaknesses.  Sociometric data 

provides the most complete picture of a network, but is limited by its high cost and time-

intensiveness. Selecting a boundary of the network can be challenging in our highly-

connected world[13].  Egocentric data, while relatively easy to collect, does not inform us 

Figure 1.3: Visual depictions of sociometric, 

egocentric and household network data sources 
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about higher order network structures[17]. Additionally, egocentric data has similar 

validity concerns as individual-level self-reported risk behavior[58, 59]. 

The most complete source of empirical sexual network data in SSA comes from the 

Likoma Network Study (LNS) conducted on Likoma Island, Malawi. The authors 

described sociometric sexual networks in the three years prior to survey and found that 

the majority (86%) of components (individuals who were linked through sexual 

partnerships) were of size five or smaller but that these components represented 34% of 

the respondents, while two-thirds of the population were in 35 (of 256) components of 

size six or larger[60].  There was a “giant” component of 883 (of 1803) network 

members, which was characterized by an overall higher average degree (3 vs 1.8) but still 

had 40% participants who reported 2 or less partners in the three previous years. Notably, 

in this cross-sectional assessment, the sparser regions of the network had higher HIV 

prevalence, though there are demographic and risk factors that likely explain this 

paradoxical observation[60, 61]. The LNS also found that women were more likely to 

report relationships with visitors, potentially efficient bridges to introduce HIV to 

communities and their regular partnerships[62]. 

1.2.3. Sexual network implications for disease transmission 

The basic reproductive number (R0, frequently referred to erroneously as a rate), 

the average number of secondary infections following the introduction of one infected 

individual to a fully susceptible population, is designated as the following:  

𝑅0 = 𝛽𝑐𝑑 

where β is equal to the per contact probability of infection, c is the number of contacts per 

unit time, and d is the duration of infectiousness[63]. 𝑅0 has implications for the 
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capability of a disease to spread in a population, if 𝑅0 > 1, there is potential for the 

epidemic to spread throughout the population.  If 𝑅0 < 1, the disease will ultimately fade 

out of the population.  The epidemic threshold, 1 −
1

𝑅0
, represents the proportion of the 

population that must be immune to a disease, under assumptions of random mixing, for 

the disease to be eliminated from the population. 

 Anderson and May[63] show that average number of contacts can be rewritten as: 

𝑐 = 𝑚 +
𝜎2

𝑚
 

where m is the mean, and σ2 is the variance of number of contacts.  Thus, the c in the 

calculation of 𝑅0 for a sexually transmitted disease is not a simple arithmetic mean of 

number of sexual partners.  They emphasize that “superspreaders” who dramatically 

increase the variance of number of partners have a larger than expected impact on 

transmission of infection and maintenance of a disease within a population. 

 Following upon this work, a highly influential paper found that sexual degree 

distributions in Sweden can be characterized by a scale-free power law[64]. Power laws 

follow a distribution function: 

𝑃(𝑘) ≈ 𝑘−𝛼 

where k is equal to degree and α is the scaling parameter.  When the scaling parameter is 

2 < α ≤ 3, the network formed by this degree distribution is referred to as a scale-free 

network and this degree distribution has infinite variance.  Based on this infinite variance, 

authors find that scale free networks have no epidemic threshold[65-68], though finite 

population sizes may impact this finding[67].  A number of models simulating scale-free 

networks found that removing the most connected nodes restores the epidemic 

threshold[65]. Potential interventions could include targeted provision of combination 
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HIV prevention to those with the greatest number of partners, such as condoms, ART if 

living with HIV, and PrEP if HIV-negative. Data from Zimbabwe[69] and among males 

from Burkina Faso[70] support the scale-free hypothesis. Some teams have criticized the 

rush of scale-free research[71-74], due to limitations to the methods used to characterize 

the power-law scaling parameter or concerns about capturing the tails of the distributions, 

suggesting that these networks may not all be scale-free. However, the strategies to 

intervene in distributions with highly skewed degree even if they are not scale-free likely 

remain the same[75].  

1.2.4. Assortative Mixing 

Assortative mixing, the concept of “like-with-like” partnering[13], is observed on 

numerous networks[76]. Newman’s assortativity coefficient has been used in non-African 

settings to describe sexual mixing of key populations[77-80].  It was recently used to 

assess assortativity by educational attainment between partners using two rounds of DHS 

data from 7 countries in sub Saharan Africa (Cameroon, Ethiopia, Kenya, Lesotho, 

Malawi, Rwanda, and Zimbabwe), where assortativity coefficients for education ranged 

from 0.09 in urban Zimbabwe to 0.44 in non-urban Cameroon[81]. One study which 

assessed sexual mixing by ethnicity in the 1999 Carletonville Youth Survey[82] found 

that ethnic mixing of sexual partners was homophilous among 15-24 year old 

participants, though the extent to which this was observed varied by ethnicity under 

consideration.  A recent modeling study found that ART assortativity could impact the 

population level effect of ART on HIV incidence, but that this effect is modified by the 

prevalence of HIV, the adherence to ART and the prevalence of ART[83]. 
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 Theoretical work has shown that assortativity by degree, or assortativity by 

“activity class” can influence the shape of an HIV epidemic. Extremely high assortativity 

by degree is associated with a rapid initial spread of HIV but ultimately a lower overall 

epidemic, as the epidemic exhausts itself within this “high risk” group of individuals[84, 

85]. High assortativity by degree could result in epidemics with multiple peaks across 

years[85].  Extremely low assortativity by degree is associated with a longer and 

ultimately more impactful epidemic[84, 85]. Some models of the HIV epidemic in South 

Africa include sexual activity level mixing, i.e. between low- and high-level sexual risk 

groups, though these parameters were exclusively calibrated, as opposed to empirically 

derived[86-89]. 

1.2.5. Core Group Theory 

 A classic sexually transmitted infection (STI) theory, core group theory suggests 

that a core group of individuals who experience the majority of sexually transmitted 

infection (STI) disease burden and mix predominantly with themselves, keep STIs 

prevalent by regular sexual activity and partner turnover[90]. These individuals are also 

hypothesized to be responsible for disease transmission outside of the core group to 

peripheral groups through occasional non-core-group partnerships. A mathematical 

modeling study found that the impact of core group mixing is dramatically different by 

the transmission probability of the infective organism.  With lower infectivity per sexual 

contact assumed for HIV, partner mixing did not have implications for the epidemic size, 

but with higher transmission probability assumed, increasing partner mixing led to 

increased epidemic size[91]. Recent work suggests that both core groups with high 

partner turnover, and the duration that a higher risk individual remains in the “core 
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setting” (i.e. duration of sex work or duration as a client of sex work) can impact HIV 

transmission [92].   

1.2.6. Concurrency 

 Concurrent sexual partnerships, or overlapping sexual partnerships with two or 

more different partners in which sexual acts with one partner occur between sexual acts 

with another partner[93], have been a topic of extensive debate among HIV researchers 

for the past two decades[3, 94-101].  Concurrency is theorized to be an important driver 

of HIV transmission throughout sexual networks because it results in more partnerships 

which overlap during the acute phase of HIV infection, which is the period immediately 

after infection that is characterized by high viral load and a higher transmission 

probability[101].  This is in contrast to serial monogamy, in which earlier partners are not 

at risk of HIV infection 

from subsequent 

partners, and in which 

the majority of new 

partnerships will occur 

after the infected partner 

has passed from the 

acute phase into the 

asymptomatic phase, which is associated with a much lower per act transmission 

probability[102-104]. A competing hypothesis is that there is coital dilution (i.e. lower 

number of sex acts) with concurrent partners[105, 106]. There is mixed evidence for the 

coital dilution hypothesis[104, 107].  The measurement of concurrency has been a 

Figure 1.4: Theoretical results on concurrency[3] 
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challenge for researchers, given the sensitive nature of the sexual behavior data being 

collected, lack of uniformity in definition across researchers, and issues of temporality 

[108, 109].  Theoretical results (Figure 1.4) have found that relatively small increases in 

concurrency can lead to dramatic changes in the connectivity of sexual networks[3]. 

1.3.  Mathematical Models of HIV transmission 

Classical mathematical models of disease transmission assume random mixing 

between individuals constructed using a series of differential equations to describe spread 

from “infected” to “susceptible” populations[63, 110].  When these models, referred to as 

compartmental models, are applied to HIV transmission without additional 

“compartments”, they assume that sexual partnerships are selected at random and that 

partnerships are not ongoing (i.e. long-term partnerships do not exist).  Given that these 

assumptions are controverted by evidence of assortativity in sexual partnership mixing 

and lengthy duration of live-in and marital partnerships, compartmental models of HIV 

transmission frequently add population structure (such as high vs low-risk sexual 

behavior[84], or age structure[111]) to incorporate key sexual network characteristics. 

Work has shown that differentials in sexual activity by age (high activity in the young, 

and lower in the older) enhances HIV transmission[84]. 

In contrast, network models simulate individuals who are connected to one 

another through sexual partnerships across which HIV transmits[112]. Network models 

are dramatically more computationally intensive than compartmental models, and involve 

two simulation steps, first the simulation of the sexual network, followed by the 

simulation of disease transmission upon this network. Pair formation models have been 

developed as a middle ground between compartmental and network models[113, 114]. 
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Exponential random graph models (ERGMs) have increasingly been used in 

mathematical modeling of HIV and STI transmission[115, 116], as they provide a 

statistical model of sexual networks which can be used as the groundwork for a 

transmission model.  However, most mathematical models that utilize ERGMs (including 

the limited number of ERGM-based models of the sub-Saharan epidemic[116-118]) do 

not present the ERGM coefficients from the cross-sectional model that is fit.  The 

presentation of ERGM network statistics would allow other researchers to parameterize 

and fit sexual networks in the area of interest using widely utilized statistical 

packages[119-121]. 

Mathematical models of the HIV epidemic in SSA frequently do not sufficiently 

incorporate sexual mixing. In a mathematical modeling study compiling ten recent 

models of HIV transmission in South Africa[122], the models’ sexual mixing parameter 

sources were limited and not clearly cited.  Several models incorporated age mixing[123-

127], with the parameters coming from the Africa Centre team in rural KwaZulu-Natal in 

2011[128], the 1998 South African Demographic and Health Survey (DHS)[129], 

personal communications on mixing patterns in Guguletu (a township near Cape Town) 

and Carletonville (near Johannesburg)[123], and unclear source[130]. None of the models 

incorporate sexual mixing on characteristics other than age and sexual risk level.   
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2.1.   Abstract 

The sexual behavior of individuals living with HIV determines the onward transmission 

of HIV. With the understanding that antiretroviral therapy (ART) prevents transmission 

of HIV, the sexual behaviors of the individuals not on ART with unsuppressed viral loads 

becomes of the greatest importance in elucidating transmission. We assessed the 

association between being on ART and sexual risk behavior among those living with HIV 

in a nationally representative population-based cross-sectional survey of households in 

South Africa that was conducted in 2012.  Of 2,237 adults (aged 15-49) who tested HIV-

seropositive, 667 (29.8%) had detectable antiretroviral drugs in their blood specimens.  

Among males, 77.7% of those on ART reported having had sex in the past year 

contrasted with 88.4% of those not on ART (p=0.001); among females, 72.2% of those 

on ART reported having had sex in the past year while 80.3% of those not on ART did 

(p<0.001). For males and females, the odds of reporting consistent condom use and 

condom use at last sex were statistically significantly higher for individuals on ART 

compared to those not on ART (Males: consistent condom use aOR=2.8, 95% CI=1.6-

4.9, condom use at last sex aOR=2.6, 95% CI=1.5-4.6; Females: consistent condom use 
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aOR=2.3, 95% CI=1.7-3.1, condom use at last sex aOR=2.3, 95% CI=1.7-3.1), while 

there were no statistically significant differences in odds of reporting multiple sexual 

partners in the past year.  In this nationally representative population-based survey of 

South African adults, we found evidence of less risky sexual risk behavior among people 

living with HIV on ART compared to those not on ART.   
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2.2.  Introduction 

South Africa has been greatly impacted by the HIV epidemic, with an estimated 

HIV prevalence among individuals aged 15-49 of 18.8% (95% confidence interval [CI]: 

17.5-20.3%) in 2012[1].  An estimated 6.4 million people were living with HIV infection 

in South Africa in 2012[1], making South Africa the country with the largest absolute 

number of people living with HIV worldwide and nearly one-sixth of the burden 

worldwide[2]. The government of South Africa has made a strong commitment to 

providing HIV counseling and testing (HCT) to all individuals, and provided HCT to 

approximately 9 million South Africans between April 2012 and March 2013[3]. 

Additionally, the South African government has greatly expanded access to antiretroviral 

treatment[4] including increasing coverage of antiretroviral therapy (ART) to an 

estimated over 2 million people in mid-2012[1]. While South Africa has made great 

strides to decrease the burden of HIV, there remains significant stigma around HIV and 

HIV remains a major public health problem.   

The HIV Prevention Trials Network (HPTN) 052 study clearly demonstrated the 

protective nature of ART on risk of HIV transmission, showing that HIV transmission 

between serodiscordant couples is reduced by 96% with early treatment of the 

seropositive partner[5]. The protective nature of ART on HIV transmission makes the 

sexual behaviors of individuals who are not on ART, who mostly have unsuppressed viral 

loads and are at increased risk of transmitting their virus, of the utmost importance to 

understand in order to implement effective positive prevention strategies. 

The sexual behavior of individuals on ART is additionally of interest.  People 

living with HIV who initiate ART often experience an improvement in general health and 
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may have an accompanied increase in sexual activity[6].  Given that superinfection with 

novel strains, particularly with drug-resistant strains of HIV, can speed up disease 

progression and complicate the treatment of HIV[7], understanding the risk behavior of 

people both on and off ART is necessary, particularly in the context of increasingly 

earlier treatment guidelines[8].  Increased sexual risk taking among individuals both on 

and not on ART, mainly increases in unprotected sex acts and increased number of sexual 

partners, puts individuals at increased risk for sexually transmitted infections (STIs) and 

unplanned pregnancies.  Additionally, adherence to ART becomes increasingly 

important, including as protection from superinfection, though previously adherence has 

been found to be inconsistent in South African populations[9,10]. 

 While early studies from Western countries suggested that individuals on ART 

may have increased risk behavior[11-14], most literature published in South Africa[15-

18] and other settings in sub-Saharan Africa[19-27] (including a meta-analysis published 

in 2012[28]) found either no significant difference in sexual risk behavior or a decrease in 

sexual risk behavior between individuals on ART compared to those who are not, while a 

few studies showed support for an increase in sexual risk behavior by individuals on 

ART[29-31].  This question has yet to be assessed on a nationally representative scale in 

South Africa. 

We aimed to assess the association between being on ART and sexual risk 

behavior among people of reproductive age (age 15-49) living with HIV in a nationally 

representative sample from South Africa undertaken in 2012. We assessed the following 

among those who reported sexual activity in the past 12 months: consistency of condom 
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use, condom use at last sex and multiple sexual partnerships, comparing those on and not 

on ART. 

2.3.  Methods 

2.3.1. Study Design and Setting 

 The fourth South African National HIV Prevalence, Incidence, and Behaviour 

Survey (SABSSM IV) was a cross-sectional survey conducted in 2012 among individuals 

of all ages in all provinces of South Africa.  SABSSM IV was a multi-stage cluster 

sample survey of residential households within enumeration areas sampled by province, 

race group and locality type (urban/rural and formal/informal) as defined by the census in 

South Africa[32].  Institutionalized individuals (including individuals in educational 

institutions, military barracks, old-age homes, or hospitals) were excluded from the study.  

This analysis is restricted to individuals aged 15-49 living with HIV. 

Interviewers administered questionnaires to participants that included 

demographics, sexual history (including partner history, consistency of condom use and 

condom use at last sex), HIV testing history and risk perception, history of sexually 

transmitted infections, male circumcision, contraceptive use, and alcohol use, amongst 

others.  All youth and adults who participated provided either written or verbal consent, 

including parent/guardian informed consent for youth under 18 years of age and youth 

verbal assent to have a blood specimen taken.   

2.3.2. Laboratory Measures 

Dried blood spot (DBS) specimens were collected from each participant who 

assented or consented using finger prick.  Samples were tested for HIV using an enzyme 
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immunoassay (EIA) (Vironostika HIV Uni-Form II plus O, Biomeriux, Boxtel, The 

Netherlands), and samples that tested positive were retested using a second EIA (Advia 

Centaur XP, Siemens Medical Solutions Diagnostics, Tarrytown, NJ, USA).  Any 

samples with discordant results on the first two EIAs were tested with a third EIA (Roche 

Elecys 2010 HIV Combi, Roche Diagnostics, Mannheim, Germany).  Samples that tested 

positive for HIV-1 antibodies were tested for the presence of antiretroviral drugs (ARVs) 

using high performance liquid chromatography (HPLC) coupled with tandem mass 

spectrometry.  Zidovudine, Nevirapine, Efavirenz, Lopinavir, Atazanavir, and Darunavir 

were detected using an Applied Biosystems API 4000 tandem mass spectrometer.  The 

limit of detection was set to 0.2 micrograms/ml. 

2.3.3. Statistical Analysis 

We report socio-demographics of participants living with HIV by ART status 

stratified by sex, and test for differences between groups by ART status using the Pearson 

chi-square test of independence, in STATA 12 (Stata Corp., College Station, TX).  To 

assess the association between ART status and sexual behavior outcomes (consistency of 

condom use with most recent partner, condom use at last sex, and multiple sexual 

partnerships), again stratified by sex, we used simple and multiple logistic regression for 

each outcome variable.  Variables were included in multiple logistic regression analysis 

based on our literature review, and our final models adjusted for age category, race, 

income in the past month, locality type, partner type, education and alcohol use, as well 

as disclosure of HIV status to partner and alternative contraceptive method for condom 

use outcomes.  Consistency of condom use was dichotomized to indicate “always” 

compared to “less than always” use.  
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2.4.   Results 

 Of 2,237 adults between the ages of 15 and 49 who tested HIV-seropositive, 667 

(29.8%) had detectable ART in their blood specimens.   Table 2.1 shows demographic 

characteristics of respondents living with HIV on and not on ART, stratified by gender.  

Among both males and females, the majority of the individuals on ART were older than 

those who were not on ART (median age 38 and 35 vs 32 and 30 for males and females, 

respectively).  Fewer participants on ART had a regular sexual partner than those not on 

ART (among males: 69.0% of those on ART and 79.8% of those not on ART; among 

females: 66.6% of those on ART and 74.0% of those not on ART).  A slightly higher 

proportion of males and females on ART had received any income in the past month 

compared to those not on ART (69.7% vs 61.4% among males, 59.0% vs 54.6% among 

females).  The distribution of males on ART was different by locality type (more in rural 

informal areas were on ART: 32.1% vs 22.6%; and less often men in rural formal areas 

were on ART: 12.8% vs 18.9%), while among females, no locality differences were seen 

by ART. 

 Table 2.2 shows HIV risk behavior reported by participants living with HIV by 

ART status, stratified by sex.  Individuals on ART were less likely to report having been 

sexually active in the past year than those who were not on ART (77.7% compared to 

88.4% among males, and 72.2% compared to 80.3% among females).  Higher 

proportions of respondents on ART reported that they used condoms consistently and at 

last sex compared to those not on ART (consistent condom use: 57.4% vs 34.9% among 

males, and 53.7% vs 33.5% among females; condom use at last sex: 73.2% vs 45.3% 

among males, and 65.5% vs 44.5% among females).  The proportion of respondents 
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reporting multiple partnerships in the past 12 months was slightly lower among those on 

ART compared to those not on ART (14.9% vs 20.9% among males; 5.1% vs 7.7% 

among females).  Those respondents on ART reported less binge drinking (28.8% vs 

34.1% among males; 8.0% vs 11.1% among females), and more respondents on ART 

reported no alcohol use in the past 12 months (58.8% vs 46.7% among males; 87.0% vs 

79.4% among females).  A greater proportion of those on ART disclosed their status to 

their sexual partner (62.3% vs 46.3% among males and 60.3% vs 53.9% among females).  

Of those who were not on ART, 52.1% of women and 39.6% of men had received an 

HIV test and their results in the past 12 months.  Significantly more individuals on ART 

reported healthcare services use in the past 6 months compared to those not on ART 

(71.0% and 71.5% compared to 41.0% and 50.2%, for males and females, respectively). 

 Figure 2.1 shows the unadjusted and adjusted associations between ART and 

sexual risk behaviors.  For males and females, the odds of reporting condom use were 

statistically significantly higher for individuals on ART compared to those not on ART, 

even after adjusting for potential confounders (Males: consistent condom use aOR=2.8, 

95% CI=1.6-4.9, condom use at last sex aOR=2.6, 95% CI=1.5-4.6; Females: consistent 

condom use aOR=2.3, 95% CI=1.7-3.1, condom use at last sex aOR=2.3, 95% CI=1.7-

3.1).  There was no statistically significant difference in reporting of multiple sexual 

partners in the past year comparing those on ART to those not on ART after adjusting for 

other potential confounders for either males or females (among males: aOR=0.81, 95% 

CI=0.41-1.6; among females: aOR=0.94, 95% CI=0.52-1.7).  We assessed for mediation 

and effect modification by exposure to healthcare services in the past year and did not 

find a large impact (<10%) as a mediator nor statistically significant interaction term. We 
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additionally stratified our analyses by respondents’ having disclosed their HIV status to 

partners, and respondents’ awareness of their partners’ status, but found our conclusions 

did not change. 

2.5.   Discussion 

 In this nationally representative population-based survey of South African adults, 

we found evidence of increased sexual risk behavior among people living with HIV not 

on ART compared to those who are on ART.  Individuals on ART were more likely to 

report condom use and disclosing their status to partners, and less likely to report 

hazardous alcohol use.   

 The above results indicate the necessity for HIV prevention interventions to target 

individuals who are not yet on ART with behavioral HIV prevention interventions.  

Individuals not on ART reported high levels of sexual risk.  Nearly two-thirds of HIV-

positive individuals not on ART reported inconsistent condom use and over half of the 

same individuals did not use a condom at last sex.  This suggests that the individuals with 

the greatest potential for onward transmission of HIV, those who are not on ART who 

likely have higher viral loads, are engaging in behaviors that put their sexual partners at 

high risk of infection. However, identifying this population for behavioral prevention 

interventions is a major challenge, given the possibility that these individuals are simply 

less likely or willing to engage with public health or clinical medicine and the combined 

challenges of sexual behavior change while simultaneously linking a newly diagnosed 

positive individual to clinical care.  

 Individuals on ART also reported much higher levels of recent interaction with 

healthcare providers.  It is possible that the lower reported levels of sexual risk behavior 
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can be explained by this interaction, though effect modification and mediation by having 

seen a healthcare provider in the past 6 months was not significant.  South African ART 

counseling guidelines include risk reduction/prevention for positives[4].  It is unclear if 

the effect we observe is simply a case of individuals who interact with the healthcare 

system knowing the “right” answers and therefore our results potentially could be due to 

social desirability bias, or if the observed effect is a truly protective effect. 

There are numerous potential limitations to the results presented.  The cross-

sectional nature of the data collected in SABSSM IV means that no assessments of 

temporality may be made for the associations examined.  We did not ask participants if 

they were aware of their HIV status, and therefore HIV-1 antibody-positive participants 

not on antiretroviral therapy will represent a mixture of participants who are aware of 

their status but not yet on ART (potentially because their CD4+ cell count is above 350 

cells/mm3), aware of their status and non-adherent to their ART regimen, and individuals 

who are unaware of their status. We are unable to assess if differences in reported sexual 

behavior could be attributed to simply awareness of HIV status, or to being on ART, 

which is potentially a major confounder of our results. Previous studies have found that 

self-reported HIV status and self-reported ART use are often misreported when compared 

to biological HIV testing and ART detection[33,34], making assessing awareness of HIV 

status and HIV care in household-based cross-sectional studies very challenging. 

Individuals living with HIV but unaware of their status have been shown to engage in the 

highest risk behavior[35-37], and may thus increase the risk profile of the not on ART 

group in our study.  
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We are thus additionally unable to separate out the sexual behavior of participants 

who are non-adherent to ART. However, the individuals who are on ART but non-

adherent to their medications may be of the greatest interest in assessing potential for 

“risk compensation,” in which individuals engage in higher risk behaviors because they 

perceive themselves to be protected[38].  Future studies should differentiate between 

non-adherence and individuals not yet on ART. Further, we did not measure CD4 levels 

to determine whether those not on ART would meet local treatment guidelines. Nor did 

we measure whether individuals were aware of the protective nature of ART on HIV 

transmission.  As the results of HPTN 052 become increasingly widespread, it will be 

vital to understand if risk compensation attenuates the effect of treatment as 

prevention[39]. 

Additionally, sexual behavior was ascertained through participant self-report.  

Given the wide-scale general population knowledge about HIV and the numerous health 

education campaigns that have been conducted in South Africa, there is substantial 

reason to expect that self-report may be more conservative than true sexual behavior 

(though there is some question as to whether females under-report sexual activity while 

males over-report sexual activity[40]).  Of greatest concern is the potential that 

participants who are on ART and therefore receiving counseling on safe sex are more 

likely to under-report their sexual activity than those who are not in regular care.  There 

is little guidance to correct for this potential differential misclassification. 

Cross-sectional studies have several additional limitations in answering the 

question of differences in sexual behavior between those on and not on ART.  

Particularly, the individuals who initiate and maintain ART likely are inherently different 
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from the individuals who do not initiate ART or those who never get tested, and this 

unmeasured confounding may lead to un-interpretable results.  As a result, future studies 

assessing differential sexual risk taking by ART status should have more rigorous 

longitudinal designs and assess the nuances in the population not on ART.  

As “treatment as prevention” strategies are increasingly implemented, it will 

remain vital to understand the sexual behavior of individuals living with HIV whether on 

or not on ART. Implementing HIV prevention interventions to decrease sexual risk 

behaviors of individuals not on ART are of the greatest importance for curtailing the HIV 

epidemic, though to identify these individuals they will need to be tested, setting them 

onto the “continuum of care.” Additionally, as the public becomes increasingly aware of 

the protective nature of ART against transmission, assessing the potential for increased 

risk behaviors among those on ART will also be of interest. Continued monitoring of the 

sexual behaviors of individuals living with HIV and implementation of behavioral 

strategies to modify risky sexual behaviors among these individuals remain key strategic 

targets for the HIV response. 
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Table 2.1: Demographic characteristics by ART status stratified by sex among South 

Africans living with HIV, 2012 

 

 Males Females 

 

Not on 

ART  

(N= 509) 

On ART 

(N=156) 

Not on 

ART 

(N=1061) 

On ART 

(N=511) 

 N % N % N % N % 

Age         
Median 32  38  30  35  

15-24 84 16.5 9 5.8 252 23.8 54 10.6 

25-34 236 46.4 47 30.1 460 43.4 183 35.8 

35-49 189 37.1 100 64.1 349 32.9 274 53.6 

Race         
African 453 89.0 137 87.8 982 92.6 474 92.8 

Non-African 56 11.0 19 12.2 79 7.5 37 7.2 

Partner Statusa         
No regular partner 

(Single, divorced, etc) 102 20.2 48 31.0 273 26.0 170 33.4 

Regular partner 

(Married, cohabitating, 

going steady) 403 79.8 107 69.0 776 74.0 339 66.6 

Received any income 

in last montha 309 61.4 108 69.7 569 54.6 298 59.0 

Locality Type         
Urban Formal 198 38.9 50 32.1 351 33.1 162 31.7 

Urban Informal 100 19.7 36 23.1 218 20.6 112 21.9 

Rural Informal 115 22.6 50 32.1 371 35.0 182 35.6 

Rural Formal 96 18.9 20 12.8 121 11.4 55 10.8 

 

 
a Totals within demographic characteristics do not add to overall total due to missing data
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Table 2.2:  HIV risk behaviors by ART status stratified by sex among South Africans living with HIV, 2012 

 Males Females 

 

Not on ART  

(N= 509) 

On ART 

(N=156) 

Chi-

squared 

statistic 

(df) 

Not on ART 

(N=1061) 

On ART 

(N=511) 

Chi-

squared 

statistic 

(df) 

 N % N % [p-value] N % N % [p-value] 

Sex in past 12 months 417 88.4 115 77.7 

10.5 (1) 

[0.001] 813 80.3 351 72.2 

12.2(1) 

[<0.001] 

Most recent sex partner typea     5.8 (2)     0.8 (2) 

Husband/Wife/Live-in Partner 169 41.3 61 53.0 [0.054] 306 38.1 141 40.2 [0.673] 

Girlfriend/Boyfriend not live-in 233 57.0 51 44.4  479 59.6 200 57.0  

Consistency of Condom Usea     31.7 (3)     51.5 (3) 

Every time 143 34.9 66 57.4 [0.001] 271 33.5 188 53.7 [<0.001] 

Almost every time 22 5.4 12 10.4  41 5.1 18 5.1  

Sometimes 59 14.4 16 13.9  162 20.0 67 19.1  

Never 186 45.4 21 18.3  336 41.5 77 22.0  

Condom at last sexa 182 45.3 82 73.2 

27.4 (1) 

[<0.001] 359 44.5 224 65.5 

42.2 (1) 

[<0.001] 

Multiple Partnersa 87 20.9 17 14.9 

2.04 (1) 

[0.153] 62 7.7 18 5.1 

2.5 (1) 

[0.114] 

Binge Drinking     7.6 (2)     14.3 (2) 

No drinking in past 12 months 233 46.7 90 58.8 [0.023] 834 79.4 435 87.0 [0.001] 

Drinking with no binge drinking 96 19.2 19 12.4  100 9.5 25 5.0  

Binge drinking 170 34.1 44 28.8  117 11.1 40 8.0  



 

 49 

Disclosed Status to all current 

partners     39.1 (2)     44.9 (2) 

No 221 44.8 28 18.2 [<0.001] 301 29.1 71 14.3 [<0.001] 

Yes 228 46.3 96 62.3  557 53.9 299 60.3  

No partner 44 8.9 30 19.5  175 16.9 126 25.4  
Received HIV test and results in 

past year 197 39.6 N/A N/A N/A 539 52.1 N/A N/A N/A 

Exposure to Healthcare services 

in past 6 months 206 41.0 110 71.0 

42.8 (1) 

[<0.001] 526 50.2 358 71.5 

62.6 (1) 

[<0.001] 
a Denominator represents only individuals who report being sexually active in the past 12 months 
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Figure 2.1:  Unadjusted and adjusted odds ratios for sexual behaviors by ART status 

among South African males and females living with HIV, 2012 

All aORs are adjusted for age category, race, income in past month, locality type, partner 

type, education, and alcohol use, while condom use outcomes additionally adjust for 

disclosure of HIV status to partner and alternative contraceptive use 
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3.1.  Abstract 

 

Background: Sexual transmission accounts for most HIV transmission in sub-Saharan 

Africa, but little is known about the structure of sexual networks, and the resulting 

transmission networks, in the region. We examined sexual mixing and sexual partnership 

distributions in South Africa. 

Methods: Egocentric and household sexual relationship data came from a nationally 

representative household-based survey of South Africans conducted in 2012. We use 

mixing matrices, Newman’s assortativity coefficients, and fit distributions to characterize 

like-with-like sexual mixing patterns and number of sexual partners. 

Results: Among 15,283 sexually active respondents, the number of sexual partners 

reported in the last year was low (mean = 1.35), and men were 5.1 times as likely to 

report ≥2 partners than among women. A discrete q-exponential distribution best fit 

observed non-live-in number of partners. We found substantial assortativity by age, race, 

education, HIV-status, number of sexual partners and ARV use (assortativity 

coefficients>0.6). 
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Conclusions: Our empirical results can be used to understand HIV transmission in South 

Africa, including the parameterization of mathematical modeling studies of sexual 

mixing and HIV transmission to model network impacts on interventions. Better 

estimates of sexual mixing patterns and degree distributions will allow for more targeted 

HIV prevention efforts.   
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3.2.  Introduction 

 In sub-Saharan Africa (SSA), HIV primarily is spread through sexual contact [1, 

2], thus an understanding of the structure and dynamics of sexual networks aids the 

understanding and prevention of HIV transmission.  There are limited data on sexual 

networks in the general heterosexual population of SSA.  Data on sexual networks is 

primarily collected through egocentric methods, in which a respondent is asked about 

their network contacts but those contacts are not necessarily included in the study, or 

sociometric methods, in which all network members are included [3].  Sociometric data 

are more complete and allows for the direct examination of higher order network 

structure, but can be quite challenging to collect.  Egocentric data, on the other hand, are 

easily collected. While they do not allow assessment of full network structure, they do 

allow an assessment of sexual mixing patterns and degree (number of contacts)[4].   

With the exception of a detailed sociometric network study conducted on Likoma 

Island, Malawi [5-7], and a large body of work conducted on age-mixing between young 

women and older men [8-20], relatively few studies in SSA have focused on sexual 

mixing. Assortativity, partnering of like-with-like, can greatly impact rate of increase and 

ultimate burden of an HIV epidemic in a population, though the impact of assortativity 

varies by epidemic stage and mixing characteristic assessed[21, 22]. Further, an 

understanding of sexual mixing patterns can help target and implement interventions [23, 

24]. This is of particular importance in South Africa, which has the highest absolute 

number of people living with HIV of any country in the world [25], and has been an 

extensive focus in the HIV modeling community.   
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 In recent mathematical models of HIV transmission in South Africa [26-38], some 

models incorporate age assortativity [27-31, 38] from a variety of sources [39-41]. Other 

models included sexual activity level mixing, i.e., between low- and high-level sexual 

risk groups, though these parameters were exclusively calibrated, as opposed to 

empirically derived [32-35]. None of these models have incorporated sexual mixing on 

characteristics other than age and sexual risk level.   

Sexual mixing in numerous settings is often characterized using Newman’s 

assortativity coefficient [42-55]. This measure was recently used to assess mixing by 

educational attainment between partners using two rounds of Demographic and Health 

Surveys (DHS) data from Cameroon, Ethiopia, Kenya, Lesotho, Malawi, Rwanda, and 

Zimbabwe, where assortativity coefficients for education ranged from 0.09 in urban 

Zimbabwe to 0.44 in non-urban Cameroon, on a scale from (at lowest) -1 to 1 where 

values over 0 indicate assortativity [56].  Using other measures, a South African study 

assessed sexual mixing by ethnicity in the 1999 Carletonville Youth Survey [57], finding 

that ethnic mixing of sexual partners was homophilous (homophily and assortativity are 

used interchangeably) among 15-24 year old participants, though the extent to which this 

was observed varied by ethnicity. 

Research in SSA has generally shown that people report a low number of lifetime 

and past year sexual partnerships. In an assessment of nationally representative surveys 

of adults from Kenya, Lesotho, Uganda and Zambia, Morris et al. found that the average 

proportion reporting two or more partners in the past year was 11.4 to 19.8% (depending 

on study administrator – PSI vs DHS), but that the proportion was dramatically lower 

among women (2.8 to 9.2%) compared to men (21.5 to 32.3%) [58].   
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Sexual degree data frequently have a strong right tail[59], with a high proportion 

of individuals having zero or one partner and a minority having much higher numbers of 

partners. Authors have shown that R0, the number of new infections resulting from a 

single infected individual in a fully susceptible population, increases with the variance of 

number of contacts (in HIV, number of sexual partners) divided by the mean number of 

contacts [60-62]. An influential paper suggested that past year sexual partnerships in 

Sweden follow a scale-free power law distribution, with infinite variance, consistent with 

a preferential-attachment mechanism, and suggestive that there was no epidemic 

threshold for sexually transmitted diseases in this population [63]. An epidemic threshold 

determines whether a disease is controllable.  Additional studies have found that degree 

distributions in SSA also follow a similar scale-free or close to scale-free distribution [64, 

65], though others have found that distributions with finite variance fit best [66]. 

However, other authors have found that some methods to fit power law distributions lead 

to inaccurate results, frequently power laws only apply to certain values of degree above 

a minimum, and it is rare to be able to state definitively that data arose from a power law 

distribution[67], suggesting a concrete epidemic threshold [66, 68]. Most recent work 

fitting distributions to empirical degree data has focused on finding the best count 

distributions to fit collected data [69-71], though mitigating transmission by intervening 

among those with the highest number of partners remains the public health strategy 

regardless of the distribution fit [72, 73]. 

 In the context of limited data on sexual mixing in southern Africa, we analyze a 

dataset of egocentric and household-based sexual partnerships collected in a nationally 

representative survey of South Africans in 2012.  We describe reported sexual behavior 
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and present network statistics including mixing matrices, assortativity coefficients and 

degree distributions. 

3.3.  Methods 

3.3.1. South African National HIV Prevalence, Incidence and Behaviour Survey 

Description 

 The South African National HIV Prevalence, Incidence and Behaviour Survey 

(SABSSM IV) was conducted in 2012.  The survey was a multi-stage cluster sample of 

households in South Africa, and the survey methodology has been previously described 

[25].  Briefly, 1,000 enumeration areas were selected sampled by province, locality type 

(urban formal, urban informal, rural formal and rural informal), and race strata2.  Within 

each enumeration area, 15 households were selected to participate using aerial photos. 

Within each selected household all individuals were invited to participate. Up to five 

visits were made at each household to ensure full participation. Dried blood spot 

specimens (DBS) were collected from every participant who consented and tested for 

HIV using serology, and the DBS that tested HIV-positive were tested for the presence of 

ART. 

 Respondents aged 15 and older were asked the number of sexual partners they 

have had in their lifetime and in the past year.  For their most recent sexual partners in the 

past year (up to three in the past year), participants were asked to list the age and type of 

partner (husband/wife, live-in partner, girlfriend/boyfriend not living with you, casual 

                                                 
2 Although legally mandated racial discrimination was abolished in 1994, the four racial categories of 

Black African, White, Coloured and Indian/Asian continue to be used as both social and economic 

inequalities still prevail as a legacy of the apartheid policies. 
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partner, someone whom you paid for sex, other), the start and end dates of the 

partnership, and patterns of condom use (at last sex and consistency).  

 Respondents with household sexual partners who also completed the SABSSM IV 

questionnaire were asked to identify this partner at the end of the survey, and the 

partner’s study id number was recorded.  Using this variable, an entire participant’s 

questionnaire could be tied to his or her partner’s questionnaire.  In matching household 

partners, we did not require that both partners have listed one another but included 

partnerships where only one partner listed the other. 

Our results are based on three different sources within SABSSM IV: self-reported 

number of partners (degree distribution), self-reported egocentric/partnership history data 

on age and partner type of three most recent sexual partners in past year, and household 

partners’ linked questionnaires. Age assortativity for live-in partners is presented twice, 

once from household results and once from egocentric data. The reasons for presenting 

this from both data sources are multi-fold. First, household linked questionnaires 

represent the participants’ true ages, as opposed to egocentric data where the alter’s 

(partner’s) age is reported by the ego (respondent). Second, the egocentric data on live-in 

partners is more extensive than the household partnership data. Respondents could report 

on live-in partners in the egocentric partnership history even if their partner was, for 

instance, a migratory worker and thus away during the time of the survey, or their partner 

refused to participate, or both partners chose not to disclose their household sexual 

partner at the end of the questionnaire to allow for linkage. Third, while household-linked 

partners are represented in the egocentric live-in partner data who we would be able to 

identify through the linked questionnaires as one another’s partners through assessing 
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concordance between linked questionnaire partner age and egocentric partner age (see 

further analysis in appendix), we are unable to decisively conclude that a live-in partner 

is, in fact, the linked partner due to potential misreporting. Therefore, while the live-in 

partners reported in a questionnaire that was linked to another household member most 

likely represents that same live-in partnership, there will be limited cases where it 

represents an additional live-in partner. Further, due to an inability to tease apart 

egocentric live-in partners that are both included in the survey (male and female reports 

that are not independent data points) and egocentric live-in partners that are not both 

included in the survey, we analyze egocentric age mixing data separately by sex. 

We restrict our analyses of number of partners to individuals aged 15-65, because 

individuals over 65 are substantially less likely to report sexual activity in the past year 

(among 2,239 participants aged >65, 76.7% with non-missing data report no sexual 

partners during the past year). For mixing analyses, egocentric and household partnership 

data are presented for all ages, instead of for a subset of ages, to avoid artificial edge 

effects created by excluding partners over 65, under the assumption that partnership 

mixing of individuals over age 65 are not systematically different from those under the 

age 65. 

 All youth and adults who participated provided either written or verbal consent, 

including parent/guardian informed consent for respondents less than 18 years of age.  

SABSSM IV has Institutional Review Board (IRB) approval from the Human Sciences 

Research Council IRB and the Centers for Disease Control and Prevention Center for 

Global Health IRB. 
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3.3.2. Data analysis 

 Throughout our analyses, we present the egocentric partner census separately 

from household partnerships. We refer to “household” and “non-household” partners 

with “household” representing marital or live-in partnerships and “non-household” 

referring to all other types of partnerships (girlfriend/boyfriend, casual, paid, other).  Data 

is weighted at the individual and household-level to account for the complex survey 

design and survey refusal. Throughout our analyses, we assume that observed data is 

representative of missing observations (see appendix for description of missingness). We 

assume that missing egocentric partners are missing completely at random. All analyses 

were conducted in R version 3.3.1 (R Foundation for Statistical Computing). 

 To estimate the relative increase in same group mixing relative to random mixing 

stratified by sex for categorical variables (and in analysis of continuous variables 

categorically), we divide the proportion of observed in-group mixing by the proportion of 

the opposite sex sample that is in that group. To estimated confidence intervals on this 

relative increase, we conducted 1,000 weighted bootstrapped samples of our data and 

recalculated the statistic for each sample. A very small number of household partners are 

in more than one household partnership, and thus we assume that choice of additional 

household partners is independent of initial household partner in order for our 

bootstrapped confidence intervals to be valid. 

 To estimate the count of “non-household” partnerships in the past year, we 

subtracted the number of live-in and marital partners designated in the egocentric data 

section (of 3 most recent partners) from the total number of partners in the past year.  
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This assumes that any live-in or marital partners would have been in the three most recent 

sexual partners for any respondent. 

3.3.3. Mixing Matrices 

 To develop sexual mixing matrices from egocentric and household partnership 

data, we calculated the relative increase in observed number of partnerships in two 

groups over expected number of partnerships between people in the two groups based on 

the marginal number of partnerships in each group.  Hence, each cell represents the 

increase in number of partnerships between given groups relative to random mixing [74, 

75]. 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
=

𝑁𝑖𝑗

𝑁𝑖.

𝑁 ∗
𝑁.𝑗

𝑁 ∗ 𝑁

=
𝑁𝑖𝑗 ∗ 𝑁

𝑁𝑖. ∗ 𝑁.𝑗
 

Where Nij represents the number of partnerships observed between groups i and j, Ni. 

represents the number of partnerships reported by people in group i (the row sum), and N 

represents all of the partnerships reported. Each cell’s Nij is weighted and as such our 

results represent a weighted pseudopopulation (described in appendix). 

We use a Mantel test [76] to test for differences between two mixing matrices 

(described in appendix).  

3.3.4. Assortativity Coefficients 

 We use two formulations of Newman’s assortativity coefficient [77, 78], one for 

discrete characteristics (race, education, employment, HIV status, ART status, HIV 

testing history) and another for continuous characteristics (age, degree).  The discrete 

assortativity coefficient is: 
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𝑟 =
Tr 𝐞 − ‖𝐞2‖

1 − ‖𝐞2‖
 

Where e is the adjacency matrix between characteristics divided by the sum of the matrix 

(i.e., each element eij is the fraction of all partnerships that connect a partner of 

characteristic i to one of characteristic j) and ||x|| denotes the sum of all elements in 

matrix x.  We use Newman’s closed form variance formula (an intraclass correlation 

variance estimate): 

𝜎𝑟
2 =

1

𝑀

∑ 𝑎𝑖𝑏𝑖 +𝑖 [∑ 𝑎𝑖𝑏𝑖]𝑖
2

− ∑ 𝑎𝑖
2𝑏𝑖 − ∑ 𝑎𝑖𝑏𝑖

2
𝑖𝑖

1 − ∑ 𝑎𝑖𝑏𝑖𝑖
 

Where M represents the number of edges, and ∑ 𝑒𝑖𝑗 = 𝑎𝑖𝑗  and ∑ 𝑒𝑖𝑗 = 𝑏𝑗𝑖 , the marginal 

sex-specific population proportions in a given group (e.g. proportion of men with primary 

education). We also present jackknife and weighted bootstrap confidence intervals. 

For continuous variables, the assortativity coefficient is equal to:  

𝑟 = ∑
𝑥𝑦(𝑒𝑥𝑦 − 𝑎𝑥𝑏𝑦)

𝜎𝑎𝜎𝑏𝑥𝑦
 

Where x and y represent the values of the continuous variables, exy is the value of the 

matrix e above between partners with characteristics x and y, ax and by are the marginal 

proportion of partnerships among those with characteristics x and y, and 𝜎𝑎 and 𝜎𝑏 are the 

standard deviations of the distributions of ax and by, with the variance denoted by: 

𝜎𝑎
2 = ∑ 𝑥2𝑎𝑥 − [∑ 𝑥𝑎𝑥

𝑥
]

2

𝑥
 

Newman’s continuous coefficient is a Pearson correlation coefficient, and we use 

Fisher’s transformation [79] which showed that the inverse hyperbolic tangent 

transformed correlation coefficient has approximate standard error 
1

√𝑁−3
 to calculate 
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confidence intervals. We also present jackknife and weighted bootstrap confidence 

intervals. 

Newman’s coefficients are bounded by -1 and 1 (though the categorical 

coefficient only approaches -1 for a variable with 2 categories [80]), with 0 representing 

random mixing and 1 representing perfectly assortative mixing. Newman’s coefficients 

avoid the problems presented by Q-statistics/modularity (which are not bounded) by 

normalizing the quantity and scaling it to range from -1 to 1. Previous authors have 

interpreted Newman’s assortativity coefficients of 0.35 or higher as highly assortative, 

0.15 to 0.34 as assortative, 0.10 to 0.15 as minimally assortative and below 0.10 as 

disassortative [44, 48]. For egocentric data, we assume that individuals choose each 

partner independently of the age of their previous partners. To test this assumption, we 

compare assortativity coefficients calculated with only most recent sexual partner. We 

made the same assumption with household partners that report polygamy/polyamory, 

though we do not test this assumption due to it representing an extremely small 

proportion of the household partnership sample. For both assortativity coefficients, our 

confidence intervals do not represent our uncertainty in the sampling weights, but rather 

take weights as constants and present confidence around our weighted pseudopopulation 

estimate.  

3.3.5. Degree Distribution 

 A number of count distributions have been proposed to fit sexual partnership 

degree distributions [63, 66, 69, 81, 82].  We fit distributions to our non-household and 

household partnership degree counts for sexually active individuals (1+ partners in the 

past year) separately for men and women. The rationale for choosing to fit to degree 1+ is 
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to allow comparability between distributions that allow 0’s (such as Poisson and negative 

binomial) and distributions that disallow 0’s (such as discrete Pareto and Yule).  We fit 

the following distributions: Poisson distribution, Poisson with lognormally distributed 

mean, negative binomial distribution, geometric distribution, discrete Pareto distribution, 

Waring distribution, Yule distribution, discrete q-exponential, geometric-Waring 

distribution, geometric-Yule distribution, negative binomial-Waring distribution, and 

negative binomial-Yule distribution. These distributions’ probability mass functions 

(PMFs) are listed in the appendix. 

We modified the R package ‘degreenet’ to allow for weighted degree distributions 

[82, 83].  For distributions which allow 0’s (Poisson, negative binomial), the package 

standardizes the remaining probability mass function (PMF) by the proportion greater 

than 0 (i.e., divides the remaining PMF by 1-P(K=0)), and does the reverse for 

distributions with an artificial upper bound.  Our upper bound for the household 

partnerships was 3 because of the structure of the egocentric partnership census.  We 

estimated the maximum likelihood parameters for each of these distributions given our 

data, then compared the AICc (AIC with correction for finite sample sizes) 

𝐴𝐼𝐶𝑐 = 2𝑘 − 2log (L) +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 

 of the potential distributions to select the distribution that we utilized.  Due to the highly 

skewed nature of the household partnership data (almost exclusively 1’s), we were unable 

to fit all distributions to the household partnership data (those with the Yule distribution 

were unable to be fitted). 
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3.4.  Results 

 Among 38,098 respondents in SABSSM IV, 24,367 were aged 15-65, and 15,283 

(68.3%) reported at least one sexual partner in the previous year. The overall number of 

sexual partners reported was low (mean = 0.92, among sexually active mean = 1.4).  

Figure 3.1 shows the full degree distributions for number of sexual partners in the past 

year (Figure 3.1a) and number of sexual partners in the respondents’ lifetime (Figure 

3.1b) among all respondents stratified by sex. Figure 3.2a shows that the proportion of 

males reporting two or more partners in the past year is much higher than among females 

(5.1 times higher), and that the proportion reporting two or more partners in the past year 

decreases with increasing age. Figure 3.2b shows that number of lifetime partners 

reported is higher for men than women in all age groups.  The average age of sexual 

debut among participants was 18.5 years of age (median 18), and Figure 3.2b shows that 

the proportion with 0 lifetime partners rapidly drops between the 15-20-year age group 

and the 21-25-year age group.  

In Table S3.1, we present the maximum likelihood estimates for fitted 

distributions to the non-household and household degree data. The discrete q-exponential 

distribution best fit the non-household degree data for both men and women, while the 

geometric-Waring (women) and discrete Pareto (men) distributions best fit the household 

degree data. Figure S3.1 shows the fitted distributions and observed data for non-

household (Figure S3.1a and b) and household (Figure S3.1c and d) partnerships 

stratified by sex. Very few individuals with at least one live-in partner reported more than 

one live-in partner (among women, 0.3%, among men, 1.0%). 
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3.4.1. Household results 

We were able to match 5,217 couples based on partner unique IDs collected at the 

end of the survey. We found that 91 (1.7%) household same-sex partnerships were 

reported (56 female-female, 35 male-male).  Due to the potential for information bias as a 

result of same-sex sexual behaviors being highly stigmatized and the differential impact 

of this stigma in different settings in South Africa, we anticipate that the same-sex 

partnerships captured in this sample is biased with little possibility to mitigate this bias.  

As such, we exclusively analyze the 5,126 (98.3%) heterosexual partnerships reported. 

Seven men were listed as a household partner by two women, an additional one man was 

listed as a household partner by three women.  Four women were listed as a household 

partner by two men.  Of all participants with appropriately specified household partners, 

96.6% (8940/9253) reported their relationship status as married and living with their 

partner, living with their non-marital partner, or in a civil union (marital status was 

missing for 999 of the household partners).  Of the additional 313 individuals, 81 (25.9%) 

reported being married but not living with their spouse, and 132 (42.2%) reported having 

a boyfriend/girlfriend with whom they did not reside. 

Females in household partnerships ranged in age from 13 to 99 with a median of 

44 (IQR=33-54) while males ranged from 15 to 103, median 47 (IQR=37-58). Male 

partners were on average 3.8 (median 3, IQR = 1-6, range = -58 to 56) years older than 

female partners. Figure 3.3a and b show the age difference between household partners 

by male and female age.  

Table 3.1 shows a description of the household partnerships, the percent of 

household partnerships that are “in group” or between two individuals with the same 
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characteristic, and the relative increase in “in group” over what would be anticipated due 

to random mixing, stratified by sex.  In the household sample, black African race made 

up the largest group (63.1%), with coloured, Indian/Asian and white representing from 4-

20% each.  Just over half of individuals had received some secondary education or 

completed secondary school.  The proportions employed varied substantially between 

men and women in household partnerships, with 58.3% of men reporting employment 

compared to only 38.4% of women.  One-tenth of the household sample was living with 

HIV.  Nearly 40% of female household partners reported only one lifetime partner, while 

20% of males reported only one lifetime partner.  In the past year, 82 and 86% of male 

and female household partners had one partner, while only 5.4 and 1.7% of men and 

women reported 2 or more.  The proportion of household partners in which both partners 

were in the same group (% in-group) was very high for race (93-98%), slightly lower for 

education (68-83%), and lower still for employment (50-80%).  Fifty- to seventy-percent 

of HIV positive individuals were in a relationship with someone else living with HIV, 

and 92-96% of HIV-negative individuals were with another negative partner.  In-group 

percent for lifetime number of sexual partners ranged from 12 to 81%, and for sexual 

partners in the past year ranged from 11 to 96%.  The relative increase in in-group 

assortativity compared to random mixing was above one for all groups, though the 

magnitude of the increase varied substantially.  The relative increase was highest overall 

for race (ranging from 1.6-24.1). Any relative increase with a lower confidence bound 

over 1 suggests that we observe significantly more within-group mixing than is expected 

by chance alone.  However, the size of the relative impact is determined partially by the 

size of the group (i.e. a very small group can have a very large relative increase, while a 
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very large group cannot).  Relative increase was also quite high for HIV-positive 

individuals (5.0).  Notably, it was very high for having had 2+ sexual partners in the past 

year (5.9 and 6.4), suggesting evidence of assortativity by degree, though there was not 

particularly strong evidence of assortativity by lifetime degree. 

Figure 3.4 shows the mixing matrices for the household partnership data, while 

Table 3.2 shows assortativity coefficients for age mixing in the household partnership 

data.  In Figure 3.4a, age mixing is strongly assortative, with male partners slightly older 

than female partners consistently across ages, corresponding to an assortativity 

coefficient of 0.88. b shows strongly assortative mixing by race (assortativity coefficient, 

AC=0.96).  Figure 3.4c shows less assortativity by education, with a great deal of mixing 

between those with a secondary education and those with primary or tertiary, but very 

little mixing between tertiary and primary educated individuals (AC=0.68).  Figure 3.4d 

shows mixing by employment status; while mixing is greatest among those who are more 

similar in their employment status, slightly more employed males are partnered with 

unemployed females than there are employed females with unemployed males 

(AC=0.48).  Figure 3.4e shows the mixing matrix by HIV status, with much higher than 

expected mixing between individuals living with HIV (AC=0.67).  Figure 3.4f shows 

mixing by lifetime number of partners, and shows a higher proportion of mixing among 

those with 8+ lifetime partners than would have been expected (AC=0.28 for categorical, 

0.32 for continuous).  Figure 3.4g shows mixing by number of partners in the past year 

(AC=0.72 for categorical, 0.19 for continuous). The assortativity coefficient for 

categorical number of partners in the past year is substantially higher than the continuous 

estimate, and likely is more meaningful because a precise correlation between number of 
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partners is likely not as indicative of HIV network risk as categorization into two or more 

partners vs. one or zero. Figure 3.4h shows somewhat assortative mixing by HIV testing 

history (AC=0.43). Figure 3.4i shows that individuals on ART are more likely to be 

partnered with others on ART, if both are positive (AC=0.70). All assortativity 

coefficients were high (0.19-0.96) and all qualify in the range of “assortative” or “highly 

assortative” (described in Methods).   

3.4.2. Egocentric results 

 Among 16,581 egocentric partnerships reported by respondents, 354 (2.1%) were 

between same-sex partners (146 female-female and 208 male-male).  Eight (2.3%) of 

persons who reported same-sex partnerships also reported a heterosexual partnership in 

the past year.  Once again, we exclusively analyze the sample of opposite sex 

partnerships (including the eight individuals who had both a same- and opposite-sex 

partner in the past year), leaving 16,227 opposite sex partnerships reported by 15,872 

respondents.  Of these 16,227 partnerships, 7,058 (44.5%) were with a marital partner, 

1,863 (11.8%) were with a non-marital live-in partner, 6,170 (38.9%) were with a 

boyfriend/girlfriend with whom the partner did not live, 662 (4.2%) were with a casual 

partner, 10 (0.06%) were with an individual the respondent had paid for sex, and 88 

(0.6%) categorized their partnership as “other.”  Males reported being an average of 3.7 

(median = 3, IQR= 1-6, range= -58 to 65) years older than the female partner in 

egocentrically collected partnerships.  This difference varied minimally by partner type; 

the average difference was 3.7 (median=3, IQR=1-6, range= -53 to 61) among live-in 

partners, 3.5 (median=3, IQR=1-5, range= -58 to 47) among non-live-in 

boyfriend/girlfriend, and 4.1 (median=3, IQR=1-6, range = -56 to 65) among casual 
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partnerships. Figure 3.3c-f shows the distribution of age differences by respondent age in 

the egocentric partnership data.  While age difference appears to be fairly steady among 

non-live-in partners, though decreasing in older ages (Figure 3.3f) across female 

respondent age, the difference in partner age appears to greatly increase among male 

respondents as male respondent age increases (Figure 3.3e). 

 Figure 3.5 shows the mixing matrices by age for the egocentric partnership data 

stratified by partnership type and gender.  Based on a visual assessment, the matrices are 

relatively similar regardless of partnership type, though there might be a bit more spread 

in age between older respondents with their non-live-in girlfriend/boyfriend as compared 

to live-in partners (Figure 3.5). Figure S3.2 shows the egocentric age mixing matrices 

stratified by HIV status and sex of the respondent. Using the Mantel test, all eight of 

these egocentric age mixing matrices (in combinations of 2) are more similar to one 

another than expected by random permutations. 

 In Figure S3.3 we display the probability of using a condom at last sex by age of 

participant and age of partner.  While the overall matrix (Figure S3.3a) shows that young 

people are much more likely to use a condom than older respondents, when we stratify by 

partnership type, we see that live-in partners rarely use condoms with one another (Figure 

S3.3b),  girlfriend/boyfriend partners who don’t live together have a higher probability of 

condom use with one another (Figure S3.3c), and casual partners have a very high 

probability of using condoms with one another (Figure S3.3d).  This is supported by 

Table S3.2, which shows that the proportion of partnerships that are live-in partners 

increases dramatically across both sexes (from 2.1% in 15-19 year old males to 89.2% in 

60+ year old males and from 12.4% in 15-19 year old females to 93.4% in 60+ year old 
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females), while the proportion of non-household partnerships (girlfriend/boyfriends with 

whom you do not live and casual partnerships) decreases proportionally.    

 Table 3.2 shows assortativity coefficients for age mixing in the egocentric data.  

Assortativity by age is high across all of the egocentric age mixing data.  When stratified 

by partner type, assortativity is highest among all partners (0.92 for men and 0.91 for 

women), next highest among live-in partners (0.90 for both sexes), and somewhat lower 

among casual partners (0.86 for men and 0.82 for women) and girlfriends/boyfriends with 

whom the respondent was not living (0.85 for men and 0.87 for women).  Age 

assortativity was slightly higher among HIV-negative men (0.92) and women (0.93) than 

among HIV-positive men (0.83) and women (0.80). In sensitivity analysis among only 

most recent sexual partner (Table S3.3), assortativity coefficients were almost identical to 

the full sample.  

3.5.  Discussion 

We find substantial evidence of assortative mixing by age, race, education, 

number of sexual partners, HIV status and ART status in this nationally representative 

survey of South Africans collected in 2012.  Consistent with previous research, we find 

that, on average, respondents report a low number of sexual partners in the past year, 

though men consistently report more partners than women.  Our results have implications 

for the design and implementation of interventions to combat the HIV epidemic, and can 

be directly used in mathematical models of HIV transmission to better capture the 

nuances of sexual mixing patterns and sexual degree, and thus HIV transmission, in 

South Africa. 



 

 72 

Our results demonstrate assortativity by degree (or preferential attachment) in this 

sample of household partners.  While numerous models assume assortativity by degree to 

some extent [32-35], to our knowledge, this has not been documented previously in South 

Africa. Assortative mixing by degree has been shown to have a substantial impact on STI 

transmission potential in simulation studies [84]. It is possible that our estimate of 

assortativity by degree is biased upward by an increased willingness on the part of 

couples in open relationships to both disclose outside partners, while individuals in 

closed relationships might have non-assortative outside partnerships but be unwilling to 

disclose these partners due to the nature of their relationship. However, we believe that 

this would merely dilute the effect observed, not nullify it. It is important to note that due 

to the very small number of household partners (1.7% of female partners and 5.4% of 

male partners) reporting 2+ sexual partners in this sample, our finding is based on 

relatively small numbers (15 couples).  Additionally, we only observe this effect in 

household partnerships, not in non-household relationships.  Future studies should 

attempt to capture assortativity by degree among less permanent relationships to improve 

our understanding of assortativity by degree in South Africa.  

We find substantially higher education assortativity in the household partnership 

data from SABSSM IV (assortativity coefficient = 0.68) than was recently found in DHS 

data from 7 countries in SSA (assortativity coefficient range = 0.09-0.44) [85].  This 

likely is partially explained by the DHS analyses using a continuous measure of 

education (number of years of education) while we use a categorical measure of 

education (three levels of primary, secondary, and tertiary) due to limitations of the 

questionnaire administered. Within our results, we found that assortativity coefficients 
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are higher when variables are categorized rather than analyzed continuously, though 

South African social structure may inherently be different than other countries in SSA. 

Racial assortativity was extremely high (assortativity coefficient of 0.96).  Given 

that the South African population is largely (~80%) black African[86], this finding may 

not influence how we conceptualize sexual networks in South Africa.  However, this 

level of assortativity does lead to some understanding of why South Africa has continued 

to maintain disparate HIV prevalence rates by race across many years of its epidemic 

(overall HIV prevalence in 2012  by race: black African, 15.0%; white, 0.3%; coloured, 

3.1%; Indian/Asian, 0.8%) [25]. 

Our analyses of age mixing showed that while males are on average older than 

their female partners by just under 4 years, difference between partner ages varies a fair 

amount by male age, though seems to be more consistent by female age among non-live-

in relationships.  Our result for male age is consistent with a recent analysis of the South 

African National Communication Survey [87], and an analysis of age-mixing on Likoma 

Island, Malawi[88]. 

In the SABSSM IV data, women report a much lower proportion of sexual 

partners than men, a finding consistent with previous studies [58, 89-92].  It is unclear if 

this is due to men over-reporting number of sexual partners, women under-reporting 

number of sexual partners, women with higher risk (such as female sex workers) not 

being captured in the survey, or a combination of these biases. The discretized q-

exponential distribution proposed by Handcock[83] best fit our degree data for non-

household partnerships. The q-exponential distribution is an exponential family 

distribution with two parameters which, depending on the value of those parameters, can 
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characterize a long right tail [93]. Our best fit parameters for the q-exponential have a 

long right tail for both male and female non-household partners, implying that a strategy 

to reach the individuals with the greatest number of partners with combination 

interventions is vital to control the HIV epidemic[60]. The provision of our best fit 

parameters allows mathematical modelers to directly generate data from the best fit 

distribution to simulate data consistent with the SABSSM IV results. We observe 

substantial digit preference in the degree distribution data, with certain numbers (10, 20, 

25, 30, 40, 50) having notably higher proportions reporting than the digits just before and 

after (i.e. 9 and 11).  This phenomenon has been documented previously [94-96], and 

while it may have impacted the goodness of fit of our degree distribution to assessed 

probability distributions, we anticipate it does not impact the overall soundness of our 

results. We find a very low overall proportion of individuals who reported paying for sex 

in the previous year compared to other nationally representative surveys which found a 

prevalence closer to 10%[90], though these surveys asked about exchanging “gifts or 

money” and the HSRC survey was worded as a partner “paid” for sex. 

The primary limitation to our analysis is the potential for reporting bias in the 

number of sexual partners and egocentric partner age data. We rely exclusively on self-

reported sexual behavior data in an interviewer-administered survey. Previous work has 

shown sexual behavior reports are strongly influenced by survey methodology [92, 97-

100], and that individuals often misreport their partners’ ages[101, 102]. However, these 

studies show misreporting trends in both directions. The household partnership mixing 

data is less vulnerable to this potential bias since we are able to directly link participant 

surveys. We find high accuracy of household partner age reporting in most household 
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partnerships (appendix). We also are limited by grouping a range of partnership types 

into “non-household” partnerships (girlfriend/boyfriend, casual, paid, other), some of 

which (girlfriend/boyfriend) encompass a range of long-term and short-term partnering.  

A further limitation is that we assume that selection of secondary partners is independent 

of selection of primary partners, and ignore variability in the estimation of sampling 

weights. As such, our results likely slightly overestimate our confidence around presented 

assortativity coefficients. However, our sensitivity analyses find that when conducting 

these analyses among only most recent partner (eliminating potential dependence within 

a given individual’s partners) our estimates remain stable and confidence intervals remain 

effectively the same width. We expect that even with the additional potential variability 

introduced by incorporating variability in sampling weights, these results would still 

point to substantial assortativity. An additional limitation is that we do not analyze same-

sex partnerships, as a result of the potential for bias to skew our results.  The inclusion of 

same-sex partnerships and sex workers in future research is important to fully understand 

patterns of sexual mixing in South Africa, but ultimately this was beyond the scope of 

this household survey design. Additionally, the cross-sectional nature of our findings 

precludes an assessment of whether HIV assortativity is indicative of an infectious 

process or sero-sorting. 

In conclusion, our results can be utilized to improve our understanding of sexual 

HIV transmission in South Africa. Future mathematical modeling studies can utilize these 

results to appropriately simulate sexual network mixing and degree distributions.  

Simulation studies increasingly find that sexual network structure and mixing patterns 

may influence HIV prevention interventions[23, 24], thereby it is necessary to include 
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empirical network data in mathematical modeling studies to improve predictions of 

potential impact.  Further elucidation of HIV transmission networks will allow for us to 

better target our ever-growing toolbox of HIV preventive interventions in order to 

achieve an AIDS-free generation.  
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Table 3.1 Description of household data, percent in-group and relative increase in like-

with-like mixing relative to random mixing 
Characteristic % (n/N) or mean (sd) 

of total household 

partner sample 

% in-group* Relative increase 

compared to 

random mixing 

(95% 

bootstrapped CIs) 

Males 

Race    

Black 63.1 (2019/5110) 98.7 (1962/2018) 1.56 (1.53-1.60) 

Coloured 13.1 (1131/5110) 93.1 (1087/1130) 7.20 (6.74-7.72) 

Indian/Asian 4.0 (942/5110) 95.7 (917/942) 24.08 (21.25-27.68) 

White 19.6 (1006/5110) 98.4 (987/1005) 4.96 (4.70-5.27) 

Education    

Primary or less 31.2 (1122/4719) 71.2 (746/1085) 2.58 (2.47-2.69) 

Some secondary or secondary 

completion 

54.3 (2892/4719) 82.9 (2398/2842) 1.42 (1.39-1.45) 

Some tertiary or higher 14.5 (705/4719) 67.6 (441/691) 4.84 (4.53-5.17) 

Employment status    

Unemployed 41.7 (1488/4258) 79.3 (1130/1416) 1.29 (1.26-1.32) 

Employed 58.3 (2770/4258) 50.6 (1264/2565) 1.32 (1.28-1.36) 

HIV Status    

Positive 10.3 (252/3148) 68.1 (162/234) 4.96 (4.53-5.38) 

Negative 89.7 (2896/3148) 92.3 (2467/2612) 1.07 (1.06-1.08) 

Number of lifetime sexual 

partners 

   

1 20.0 (1036/3903) 80.6 (797/932) 1.94 (1.85-2.03) 

2-3 29.5 (1234/3903) 43.9 (466/1130) 1.06 (1.00-1.12) 

4-5 21.2 (761/3903) 17.4 (100/693) 1.56 (1.34-1.77) 

6+ 29.4 (872/3903) 12.3 (90/791) 2.08 (1.83-2.35) 

Number of sexual partners 

in past 12 mos 

   

0 12.8 (543/4191) 83.6 (409/505) 6.62 (6.18-7.12) 

1 81.8 (3499/4191) 95.5 (3146/3257) 1.11 (1.10-1.13) 

2+ 5.4 (149/4191) 10.6 (15/139) 6.41 (4.20-8.63) 

HIV Testing History    

Never 34.4 (1419/4332) 47.5 (659/1346) 1.95 (1.86-2.04) 

2+ years ago 13.8 (669/4332) 36.8 (221/628) 2.09 (1.90-2.30) 

1-2 years ago 11.3 (500/4332) 24.7 (119/475) 2.09 (1.79-2.40) 

Within past year 40.5 (1744/4332) 64.2 (1011/1630) 1.39 (1.35-1.44) 

ART Status (among those 

living with HIV) 

   

On ART 29.9 (66/250) 71.0 (34/54) 2.27 (1.92-2.62) 

Not on ART 70.1 (184/250) 88.1 (91/108) 1.28 (1.19-1.37) 

Females 

Race    

Black 63.1 (2021/5122) 98.5 (1962/2017) 1.56 (1.53-1.60) 

Coloured 13.0 (1156/5122) 94.2 (1087/1151) 7.17 (6.72-7.67) 

Indian/Asian 4.0 (932/5122) 97.6 (917/928) 24.07 (21.46-27.44) 

White 19.8 (1008/5122) 97.1 (987/1006) 4.96 (4.72-5.23) 
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Education    

Primary or less 27.6 (1076/4772) 80.0 (746/1028) 2.56 (2.47-2.66) 

Some secondary or secondary 

completion 

58.4 (3058/4772) 77.3 (2398/2968) 1.42 (1.39-1.45) 

Some tertiary or higher 14.1 (638/4772) 70.3 (441/622) 4.85 (4.55-5.19) 

Employment status    

Unemployed 61.6 (1863/4695) 55.1 (1130/2431) 1.32 (1.29-1.35) 

Employed 38.4 (2832/4695) 76.4 (1264/1550) 1.31 (1.28-1.35) 

HIV Status    

Positive 13.7 (388/3626) 51.4 (162/307) 5.00 (4.57-5.49) 

Negative 86.3 (3238/3626) 96.0 (2467/2539) 1.07 (1.06-1.08) 

Number of lifetime sexual 

partners 

   

1 41.7 (2226/4459) 37.9 (797/1784) 1.89 (1.80-1.99) 

2-3 41.3 (1593/4459) 32.1 (466/1254) 1.09 (1.03-1.17) 

4-5 11.1 (428/4459) 33.2 (100/339) 1.58 (1.39-1.80) 

6+ 5.9 (212/4459) 57.1 (90/169) 1.93 (1.71-2.16) 

Number of sexual partners 

in past 12 mos 

   

0 12.7 (577/4624) 80.0 (409/501) 6.28 (5.86-6.80) 

1 85.6 (4002/4624) 92.1 (3146/3359) 1.13 (1.11-1.14) 

2+ 1.7 (45/4624) 31.6 (15/41) 5.87 (3.89-7.95) 

HIV Testing History    

Never 24.4 (1237/4753) 63.9 (659/1108) 1.87 (1.78-1.96) 

2+ years ago 17.3 (878/4753) 29.7 (221/736) 2.14 (1.94-2.34) 

1-2 years ago 11.8 (566/4753) 24.2 (119/480) 2.14 (1.83-2.46) 

In past year 46.4 (2072/4753) 56.9 (1011/1755) 1.40 (1.36-1.44) 

ART Status (among those 

living with HIV) 

   

On ART 31.3 (115/389) 78.4 (34/51) 2.62 (2.26-3.10) 

Not on ART 68.7 (274/389) 82.3 (91/111) 1.18 (1.10-1.28) 

*% In group represents the proportion of all individuals paired to a household partner 

who had a partner that matched their group 

Denominators different for columns due to missing data for partners 

  



 

 92 

Table 3.2: Newman’s assortativity coefficients 

Characteristic Assortativity (95% 

pseudo-pop closed-

form CI) 

Assortativity (95% 

pseudo-pop jack-

knifed CI) 

Assortativity (95% 

weighted bootstrap 

CI) 

Household Partnerships 

Age 0.88 (0.88-0.89) 0.88 (0.88-0.88) 0.88 (0.87-0.90) 

Race 0.96 (0.95-0.98) 0.96 (0.95-0.97) 0.96 (0.95-0.97) 

Education 0.68 (0.67-0.70) 0.68 (0.66-0.71) 0.68 (0.67-0.70) 

Employment status 0.48 (0.46-0.50) 0.48 (0.45-0.51) 0.48 (0.46-0.50) 

HIV status 0.67 (0.65-0.69) 0.67 (0.63-0.71) 0.67 (0.64-0.69) 

Lifetime number of partners, categorical 0.28 (0.27-0.30) 0.28 (0.26-0.31) 0.28 (0.27-0.30) 

Lifetime number of partners, continuous 0.32 (0.28-0.35) 0.32 (0.26-0.37) 0.32 (0.19-0.45) 

Past year number of partners, categorical 0.72 (0.70-0.73) 0.72 (0.69-0.75) 0.72 (0.70-0.74) 

Past year number of partners, continuous 0.19 (0.16-0.22) 0.19 (0.17-0.20) 0.19 (0.12-0.27) 

HIV Testing History 0.43 (0.42-0.45) 0.43 (0.41-0.46) 0.43 (0.42-0.45) 

ARV Status 0.70 (0.61-0.79) 0.70 (0.59-0.80) 0.70 (0.61-0.77) 

Egocentric Partnerships - Men 

Age 0.919 (0.916-0.922) 0.919 (0.912-0.926) 0.919 (0.913-0.924) 

Age among live-in partners 0.902 (0.895-0.907) 0.902 (0.889-0.914) 0.902 (0.892-0.910) 

Age among non-live-in girlfriend/boyfriends 0.851 (0.843-0.860) 0.851 (0.830-0.874) 0.851 (0.836-0.867) 

Age among casual partners 0.860 (0.838-0.879) 0.860 (0.812-0.908) 0.860 (0.800-0.904) 

Age among HIV-negative  0.915 (0.911-0.919) 0.915 (0.906-0.924) 0.915 (0.914-0.928) 

Age among HIV-positive  0.830 (0.809-0.848) 0.830 (0.793-0.866) 0.830 (0.795-0.860) 

Egocentric Partnerships - Women 

Age 0.909 (0.905-0.913) 0.909 (0.899-0.920) 0.909 (0.902-0.916) 

Age among live-in partners 0.899 (0.893-0.905) 0.899 (0.885-0.913) 0.899 (0.890-0.907) 

Age among non-live-in girlfriend/boyfriends 0.868 (0.859-0.877) 0.868 (0.842-0.895) 0.868 (0.846-0.889) 

Age among casual partners 0.817 (0.763-0.859) 0.817 (0.714-0.919) 0.817 (0.732-0.880) 

Age among HIV-negative  0.930 (0.925-0.934) 0.930 (0.921-0.938) 0.930 (0.924-0.936) 

Age among HIV-positive  0.795 (0.773-0.814) 0.795 (0.725-0.837) 0.795 (0.760-0.816) 
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Figure 3.1 Degree Distribution by sex for participants aged 15-65 a) in the past year and 

b) over respondents’ lifetime, South Africa, 2012 
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Figure 3.2 Degree Distribution by age and sex a) in the past year and b) over the 

respondents’ lifetime 

 

 
  



 

 95 

Figure 3.3: Age difference between male and female partners among household data on 

partners of a) males and b) females, among egocentric data on live-in partners of c) males 

and d) females, among egocentric data on boyfriend/girlfriend or casual partners of e) 

males and f) females 
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Figure 3.4 Mixing matrices for household partnership data for a) age, b) race, c) 

education, d) employment status, e) HIV status, f) lifetime number of sexual partners, g) 

number of sexual partners in past year, h) HIV testing history and i) ART status among 

couples where both are living with HIV. Each cell represents the relative ratio of 

observed mixing compared to random mixing. 
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Figure 3.5: Age mixing matrix for all a) men’s egocentric data, b) women’s egocentric 

data, c) men’s egocentric live-in partners, d) women’s egocentric live-in partners, e) 

men’s egocentric boyfriend/girlfriend, f) women’s egocentric boyfriend/girlfriend, g) 

men’s egocentric casual partnerships and h) women’s egocentric casual partnerships. 

Each cell represents the relative ratio of observed mixing compared to random mixing. 
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3.7.  Appendix 

 

3.7.1. Weighted Pseudopopulation 

 To incorporate complex survey weights in mixing matrices, each individual was 

up- or down-weighted within mixing matrices to represent their relative contribution to 

the overall South African population.  All weights summed to the total sample size.  We 

refer to this mixing matrix as a weighted pseudopopulation that is (under our assumptions 

listed above) representative of the “true” mixing matrix across South Africa. 

3.7.2. Mantel Test 

The Mantel test [1] is a permutation test of the similarity between matrices 

wherein the rows and columns of the matrices are permuted randomly and a Z statistic is 

calculated, with the Z statistic between matrices X and Y being: 

𝑍 = ∑ 𝑋𝑖𝑗 ∗ 𝑌𝑖𝑗
𝑖𝑗

 

We then compare our observed value to the permuted null distribution to assess if these 

matrices are more similar than expected by chance.  

3.7.3. Missingness Analysis 

Overall, there were 24,367 participants aged 15-65 in SABSSM IV.  Of these 

individuals, 953 (3.6%) did not respond to the question on having ever had sex, 2,431 

(9.1%) did not respond to the question on number of lifetime partners, 1,252 (4.7%) did 

not respond to the question on sexual activity in the past year, and 1,283 (4.8%) did not 

respond to the question on number of sexual partners in the past year. 
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 Of all participants, 14,422 reported the sex and age of one partner on the 

egocentric partner census, 567 reported sex and age for two partners, and 275 reported for 

three partners.  We found that when we compared our egocentric partnerships with full 

age and sex to the number of partners reported earlier in the questionnaire (degree in the 

past year), 20,745 respondents had no disparity in number of partners, but 1,430 (5.6%) 

had a disparity between their reports, with 999 reporting one more participant in the 

degree question than the egocentric, 305 reporting 2 more in the degree question, and 24 

reporting 3+ more in the degree question, while 88 reported one more in the egocentric 

section than the degree question, 11 two more in the egocentric section, and 3 three more 

in the egocentric section, representing 1,681 (6.6%) egocentric partnerships missing. 

Table S3.4 shows the degree reported among the 1,430 with a disparity between their 

degree distribution and egocentric data by the number difference in partners.  We see that 

in the largest group (those with 1 more partner reported in degree than egocentric), just 

over half (56%) reported 1 partner the degree question but none in the egocentric section, 

while another third (35%) reported 2 partners in the degree distribution but only one in 

the egocentric section. This is a relatively low proportion overall, but given that only 

1,495 participants reported two or more sexual partners in the past year on the degree 

question, less than half provided consistent reporting (725, 48.5%) between the degree 

question and the egocentric data. 

 We hypothesized that the partners that were accurately reported were 

preferentially household partnerships, and to test this compared the distribution of 

partnership types by number of partners, finding little difference.  Among individuals 

who reported more than one egocentric partner, 16% of their first partners were live-in 
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partners, while 5% of the second partners reported were live-in and 6% of third partners 

were live-in partners. Among the 737 individuals who reported more partners in the 

degree distribution data than the egocentric data for whom there is egocentric data, 20% 

of their first partners were live-in, 6% of their second partners were live-in, and 7% of 

their third partners were live-in partners.   

 Since our primary analyses of the egocentric partnership data surround age of 

egocentric partner, we attempted to elucidate if the age of the partners reported second or 

later on the egocentric partnership questionnaire were systematically older or younger 

partners, to determine the need for IPW to account for missing partner age on second+ 

reported partnerships.  We find overall no large difference in partners’ age between first 

and second (median 0 years difference, IQR= -2 to 3, range= -22 to 45), second and third 

(median 0 years difference, IQR= -2 to 2, range = -29 to 22), and first and third (median 1 

years difference, IQR= -2 to 3, range = -38 to 31).  

3.7.4. Accuracy of self-reported live-in partner age 

 Among household partners, we assessed the accuracy of self-reported live-in 

partner age as compared to linked household partner age.  Among male reports of their 

female live-in partner ages, the majority (86%) had no difference between their self-

reported female age and linked female age.  In 95% of live-in partner age reports, men 

reported a partner’s age between 1 year younger and 5 years older than their female 

partners’ age, and were within 10 years above or below in 98.4% of cases.  The 

additional discrepancy in reports (1.6% of partner age reports) ranged from 37 years 

younger than partner to 43 years older than the household partner – which we cannot 

reliably assess between error in reporting by the respondent, error in recording by 
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interviewer or by data entry, or a different household partner being described in the 

egocentric data. 

 Among female reports of their male live-in partner ages, the majority (86%) had 

no difference between their self-reported male partner ages and linked partner age.  In 

95% of female partner age reports, partner age reported by females ranged from 4 years 

younger than household partner age to 1 year older than household partner age.  In 98.7% 

of cases, females reported partner age within 10 years of the reported partners’ age.  In 

the 1.3% of additional cases, the difference ranged from 47 years younger than linked 

partner age to 43 years older. 
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Table S3.1: Maximum likelihood estimates for degree distributions of male and female 

non-household and household partnerships, including the log-likelihood, the corrected 

AIC, and the BIC for the model.   

See appendix below for PMFs with each variable (V1, V2, V3, V4) designated 
Distribution V1 V2 V3 V4 Log-

likelihood 

AICc BIC 

Non-household Partnerships 

Females 

Discrete q-

exponential 1.79 0.33 - - -1420 2846 2865 

Waring 2.93 0.84 - - -1422 2849 2868 

Geometric-Waring 2.89 0.84 141.85 - -1422 2851 2877 

Negative binomial-

Waring 2.93 0.84 164.07 0.2 -1422 2853 2885 

Negative binomial-

Yule 2.75 2.41 0.03 - -1427 2863 2888 

Discrete Pareto 3.75 - - - -1438 2880 2892 

Negative binomial 0.24 0.25 - - -1444 2895 2914 

Yule 8.28 - - - -1527 3058 3071 

Geometric 1.18 - - - -1848 3700 3713 

Poisson 0.18 - - - -2341 4686 4698 

Geometric-Yule 7.95 1104.96 - - -3078 6164 6190 

Poisson lognormal 0.27 0.59 - - -3645 7295 7314 

Males 

Discrete q-

exponential 1.99 1.42 - - -5389 10783 10804 

Yule 2.94 - - - -5390 10783 10798 

Waring 3.04 0.49 - - -5389 10784 10806 

Negative binomial-

Yule 2.94 84.82 0.1 - -5389 10786 10814 

Geometric-Waring 3.04 0.49 15174.39 - -5389 10786 10815 

Negative binomial-

Waring 3.02 0.49 83.86 0.1 -5389 10787 10823 

Discrete Pareto 2.27 - - - -5431 10866 10880 

Negative binomial 1.29 0.19 - - -5507 11019 11041 

Geometric 2.04 - - - -6134 12271 12285 

Geometric-Yule 3.12 1903.66 - - -6782 13573 13601 

Poisson lognormal 1.18 1.72 - - -8879 17763 17785 

Poisson 1.04 - - - -9573 19150 19164 

Household Partnerships 

Females 

Geometric-Waring 2 0.36 214.09 - -101 210 235 

Waring 7.73 1 - - -103 211 230 

Negative binomial-

Waring 2 0.36 361.31 0.2 -101 212 243 
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Discrete q-

exponential 3.44 0.24 - - -103 212 231 

Discrete Pareto 8.14 - - - -104 212 225 

Geometric 1.00 - - - -109 222 235 

Negative binomial 3 0.004 - - -111 227 237 

Males 

Discrete Pareto 6.7 - - - -243 489 502 

Geometric 1.01 - - - -243 490 503 

Negative binomial 0.17 0.94 - - -242 491 510 

Waring 43.29 0.99 - - -242 491 510 

Discrete q-

exponential 13.94 2.57 - - -242 491 510 

Geometric-Waring 34.88 0.99 23.26 - -242 493 518 

Negative binomial-

Waring 19.5 0.99 9.68 0.84 -242 495 526 
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Table S3.2: Proportion of partnership type by age, egocentric data 

Age Live-in, Row % 

(n/N) 

GF/BF, Row % 

(n/N) 

Casual, Row % 

(n/N) 

Males 

15-19 2.1 (58/521) 86.8 (452/521) 11.1 (11/521) 

20-24 10 (158/1300) 77.8 (1012/1300) 12.2 (130/1300) 

25-29 27.2 (114/1107) 62.5 (692/1107) 10.3 (301/1107) 

30-34 49.5 (56/880) 44.1 (388/880) 6.4 (436/880) 

35-39 65.9 (49/818) 28.1 (230/818) 6 (539/818) 

40-44 78.4 (34/759) 17.1 (130/759) 4.5 (595/759) 

45-49 82.7 (20/607) 14 (85/607) 3.3 (502/607) 

50-54 84.2 (31/587) 10.6 (62/587) 5.3 (494/587) 

55-59 87.4 (19/476) 8.6 (41/476) 4 (416/476) 

60+ 89.2 (18/706) 8.2 (58/706) 2.5 (630/706) 

Females 

15-19 12.4 (13/515) 85 (438/515) 2.5 (64/515) 

20-24 25.9 (41/1244) 70.8 (881/1244) 3.3 (322/1244) 

25-29 45.3 (42/1275) 51.4 (655/1275) 3.3 (578/1275) 

30-34 62.2 (32/1057) 34.8 (368/1057) 3 (657/1057) 

35-39 69.6 (30/979) 27.4 (268/979) 3.1 (681/979) 

40-44 80.2 (15/839) 18 (151/839) 1.8 (673/839) 

45-49 80.7 (9/765) 18.2 (139/765) 1.2 (617/765) 

50-54 85.3 (15/617) 12.3 (76/617) 2.4 (526/617) 

55-59 94.1 (3/387) 5.2 (20/387) 0.8 (364/387) 

60+ 93.4 (3/412) 5.8 (24/412) 0.7 (385/412) 
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Table S3.3: Egocentric Newman’s assortativity coefficients with only most recent partner 

Characteristic Assortativity (95% 

pseudo-pop 

closed-form CI) 

Assortativity (95% 

pseudo-pop jack-

knifed CI) 

Assortativity (95% 

weighted bootstrap 

CI) 
Egocentric Partnerships - Men 
Age 0.922 (0.919-0.925) 0.922 (0.915-0.929) 0.922 (0.915-0.928) 

Age among live-in partners 0.902 (0.896-0.908) 0.902 (0.889-0.914) 0.902 (0.892-0.910) 

Age among non-live-in girlfriend/boyfriends 0.866 (0.858-0.875) 0.866 (0.847-0.886) 0.866 (0.850-0.882) 

Age among casual partners 0.839 (0.803-0.870) 0.839 (0.763-0.916) 0.839 (0.740-0.904) 

Age among HIV-negative  0.924 (0.920-0.928) 0.924 (0.916-0.933) 0.924 (0.918-0.932) 

Age among HIV-positive  0.829 (0.807-0.849) 0.829 (0.790-0.868) 0.829 (0.796-0.861) 

Egocentric Partnerships – Women 

Age 0.911 (0.907-0.915) 0.911 (0.900-0.921) 0.911 (0.904-0.917) 

Age among live-in partners 0.899 (0.893-0.905) 0.899 (0.885-0.913) 0.899 (0.890-0.907) 

Age among non-live-in girlfriend/boyfriends 0.870 (0.861-0.878) 0.870 (0.842-0.897) 0.870 (0.848-0.890) 

Age among casual partners 0.843 (0.791-0.884) 0.843 (0.753-0.934) 0.843 (0.779-0.896) 

Age among HIV-negative  0.931 (0.927-0.935) 0.931 (0.923-0.939) 0.931 (0.925-0.937) 

Age among HIV-positive  0.795 (0.773-0.814) 0.795 (0.751-0.838) 0.795 (0.760-0.815) 
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Table S3.4 Description of number of partners reported on degree question by difference 

between degree and egocentric reports 

Degree 3+ less 

partners 

in degree 

(N=3) 

2 less 

partners 

in degree 

(N=11) 

1 less 

partner 

in degree 

(N=88) 

1 more 

partner 

in degree 

(N=999) 

2 more 

partners 

in degree 

(N=305) 

3+ more 

partners 

in degree 

(N=24) 

0 3 (100%) 2 (18%) 71 (81%) 0 (0%) 0 (0%) 0 (0%) 

1 0 (0%) 9 (82%) 13 (15%) 562 

(56%) 

0 (0%) 0 (0%) 

2 0 (0%) 0 (0%) 4 (5%) 354 

(35%) 

39 (13%) 0 (0%) 

3+ 0 (0%) 0 (0%) 0 (0%) 83 (8%) 266 (87%) 24 (100%) 
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Figure S3.1: Non-household and household degree distributions for males and females 

with fitted distributions A) males’ non-household partnerships, B) females’ non-

household partnerships, C) males’ household partnerships, D) females’ household 

partnerships 
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Figure S3.2: Age mixing matrices for egocentric data stratified by HIV status: A) HIV 

positive male respondents, B) HIV positive female respondents, C) HIV negative male 

respondents, D) HIV negative female respondents. Each cell represents the relative ratio 

of observed mixing compared to random mixing. 
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Figure S3.3: Probability of using a condom at last sex by partner age, egocentric data 

among a) all egocentric data, b) live-in partners, c) non-live-in girlfriends/boyfriends, and 

d) casual partners 
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PMFs of fit degree distributions  

Poisson 

𝑃(𝐾 = 𝑘) =
𝑉1

𝑘𝑒
−𝑉1

𝑘!
 

Poisson with lognormally distributed mean 

𝑃(𝐾 = 𝑘) =
𝑒𝑘𝑉1−𝑒𝑉1

𝑘!
∫ 𝑒𝑘𝑉2𝑢−𝑒−𝑉2𝑢 1

√2𝜋
𝑒−𝑢2/2𝑑𝑢

∞

−∞

 

Negative binomial distribution 

𝑃(𝐾 = 𝑘) =
Γ(𝑘 + 𝑉1 + 𝑉2)

Γ(𝑉1 + 𝑉2)𝑘!
∗ 𝑉2

𝑉1+𝑉2(1 − 𝑉2)𝑘 

Geometric distribution 

𝑃(𝐾 = 𝑘) = (1 −
1

𝑉1
)

𝑘−1 1

𝑉1
 

Discrete Pareto distribution 

𝑃(𝐾 = 𝑘) =  exp (−𝑉1 ∗ log(𝑘) − log(𝜁(𝑉1))) 

where  

𝜁(𝑠) = ∑
1

𝑛𝑠

∞

𝑛=1

 

Waring distribution 

𝑃(𝐾 = 𝑘|𝐾 > 0) =
(𝑉1 − 1)Γ(𝑉1 + 𝑉2)

Γ(𝑉2 + 1)
∗

Γ(𝑘 + 𝑉2)

Γ(𝑘 + 𝑉2 + 𝑉1)
, 𝑉2 > −1 

 

Yule distribution 

𝑃(𝐾 = 𝑘) = 𝑉1

Γ(𝑘)Γ(𝑉1 + 1)

Γ(𝑘 + 𝑉1 + 1)
, 𝑉1 > 0 

Discrete Q-exponential 

𝑃(𝐾 = 𝑘) = exp (−𝑉1 ∗ log (1 +
𝑘 − 1

𝑉2
)) − exp (−𝑉1 ∗ log (1 +

𝑘

𝑉2
)) 
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4. Simulated sexual networks in South Africa: 

Implications for HIV transmission 
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4.1.  Abstract 

Background: Little is understood about sexual networks in South Africa, the country with 

the world’s greatest burden of HIV, despite extensive theoretical understanding of the 

impact that network structure can play on HIV transmission. Egocentric and household 

sexual network data is easy to collect and can inform simulations of sexual networks. 

Methods: We present a nonparametric approach to simulating sexual networks consistent 

with incomplete network data using Metropolis-coupled Markov chain Monte Carlo 

methods. We implement this method using a nationally representative household survey 

of South Africans, and describe network statistics consistent with limited egocentric and 

household partnership data. We compare two methods of handling balance between male 

and female number of partnerships. Finally, we explore how network structure impacts 

disease transmission on networks consistent with limited data. 

Results: Consistent networks are similar across multiple measures of network structure, 

including number of components, average path length, and average betweenness. 

Structures are very sensitive to assumptions about structure and reporting of sexual 

partnerships used to balance inconsistency between numbers reported by male and female 

participants. Consistent sexual networks in KwaZulu-Natal are less well connected than 

the rest of the country. Differences in network structure resulting from heterogeneous 
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assumptions can have a large impact on transmission dynamics, though behavior was 

similar within consistent networks with shared underlying assumptions. 

Conclusions: Simulating sexual networks consistent with limited egocentric and 

household data allows for improved understanding of disease transmission in South 

Africa and has potential to impact future HIV intervention implementation. 
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4.2.  Introduction 

Sexual contact accounts for the majority of HIV transmission globally[2] and in 

southern Africa[3]. Previous work has shown that sexual networks can impact the 

effectiveness of combination HIV prevention interventions[4, 5]. Due to the dyadic (i.e. 

between two individuals) nature of sexual partnerships, a given individual’s risk of HIV 

acquisition is not purely driven by their own sexual risk behavior, but by the sexual risk 

behaviors of their sexual partners as well[8]. One can conceive of the sexual partnerships 

between individuals as the links of a network, and therefore a complete sexual network 

would describe the individuals in a community and the sexual partnerships between 

them[9]. A sexual network describes the paths that a sexually transmitted infection, like 

HIV, is able to take through a community[10]. Thus, in order to fully understand sexual 

transmission of HIV, it is necessary to understand the complete sexual networks across 

which HIV spreads[9]. However, sexual networks are extremely difficult to study, partly 

due to the sensitive nature of sexual behavior, and partly due to difficulties in completely 

characterizing any network (such as boundary specification – the idea of defining the 

bounds of individuals included in a network and excluding those that are not[1, 11] - and 

geographically disparate partnerships)[8, 9]. As such, we have relatively little empirical 

data on complete sexual networks in sub-Saharan Africa (SSA), the region that has been 

hardest hit by the HIV pandemic[12]. 

Network data is traditionally split into two (or more) design types: egocentric and 

sociometric.  Egocentric designs are designs in which you recruit individuals and ask 

them questions about their network ties. Egocentric data can include information about 

degree (number of sexual partners) and partnership information such as mixing (who 
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forms partnerships with whom).  In sociometric study designs, you capture the full 

network by first conducting a census of the area of interest and then asking each 

individual which other individuals they have ties to (by looking at the census 

themselves).  There are several study designs referred to as partial network designs (such 

as snowball sampling or contact tracing) which lie along the continuum between 

egocentric and sociometric designs by sampling individuals and then recruiting from 

those individuals’ networks, and so on[8].  Egocentric study designs have been criticized 

as allowing for limited inference of sexual network structure[10], though there has been a 

movement developing to utilize egocentric mixing characteristics to estimate exponential 

random graph models (ERGMs), a statistical model used to describe networks[13]. 

Sociometric studies, on the other hand, provide full network structure data, but are 

exceedingly difficult and sensitive to conduct given that you must conduct a full census, 

and in an era of vast interconnectedness it is extremely difficult to define a way to limit 

the bounds of a network. 

The most complete empirical data on sexual networks in SSA come from the 

Likoma Network Study, a sociometric study of sexual networks on Likoma Island, 

Malawi. The authors described sexual networks in the three years prior to survey and 

found that the majority (86%) of components were of five individuals or smaller but that 

these components represented 34% of the respondents, while two-thirds of the population 

were in 35 (of 256) components of size six or larger[14].  There was a “giant” component 

of 883 (of 1803) network members, which was characterized by an overall higher average 

degree (3 vs 1.8) but still had 40% participants who reported 2 or less partners in the 

three previous years.  Notably, Helleringer and Kohler found in this cross-sectional 
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assessment that the sparser regions of the network had higher HIV prevalence, though 

they describe that there are demographic and risk factors that likely explain this 

paradoxical observation[14].  While the study was conducted on an island, they still 

encountered edge effects, wherein participants reported sexual partnerships with 

individuals off of the island or with non-spousal partners over 35 years of age, neither of 

whom were interviewed, and did not include more than 5 most recent partners. 

In SSA, network-based research has focused on the role of concurrency, which is 

multiple sexual partnerships overlapping in time, on HIV epidemics[15-23]. Concurrency 

is contrasted with serial monogamy, in which each partnership ends before the next 

partnership begins. Concurrency can be assessed using easily collected egocentric survey 

data. Much of this emphasis is drawn from the finding that acute HIV (generally defined 

as the first two months following infection[24, 25]) is a period of greater transmissibility 

and as such concurrent partnerships would propagate the epidemic by increasing the 

likelihood of sex acts with other uninfected partners during the acute phase[16]. 

Arguments against the “concurrency hypothesis” suggest that coital dilution (i.e. lower 

number of sex acts with higher number of concurrent partners) results in a reduced 

impact of concurrency on HIV spread[26, 27]. There is mixed evidence for the coital 

dilution hypothesis[28, 29]. Models of concurrency have shown that even relatively small 

increases in concurrency (from 56% to 68% concurrent) changes the proportion of the 

population connected through a sexual network dramatically (from 2% to 64%)[15].   

Exponential random graph models (ERGMs) have increasingly been used in 

mathematical modeling of HIV and STI transmission[4, 30-34], as they provide a 

statistical model of sexual networks which can be used as the groundwork for a 
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transmission model. ERGMs estimate the conditional log odds of a tie being added to a 

network given the current state of its network, and have been extended to allow for the 

simulation of dynamic networks[35]. Recently, methods to estimate ERGMs from 

egocentrically sampled network data have been developed and are widely available in 

statistical packages[36-38].  However, most mathematical models that utilize ERGMs 

(including the limited number of ERGM-based models of the sub-Saharan epidemic[4, 

23, 31, 32]) have not assessed the variability in network realizations consistent with 

cross-sectional egocentric network data. Authors acknowledge that little is known about 

the stability of complete network statistics when using egocentric data to estimate ERGM 

parameters[13]. 

Within this context, to answer questions about sexual transmission of HIV in 

South Africa, we must first attempt to make inference around complete sexual networks 

in South Africa. We use incomplete sexual network data from a South African survey to 

generate complete sexual networks using a novel, non-parametric approach.  We assess 

the performance of our method to produce sexual networks that are consistent with our 

limited data inputs, and characterize the extent to which simulated complete networks are 

similar to one another using network statistics. We compare methods to reconcile men 

and women’s sexual partnership reporting, and compare networks simulated using data 

from the province most impacted by the HIV epidemic (KwaZulu Natal) to the rest of the 

country, to describe differences in network structure. Finally, we characterize the impact 

of network structure on network HIV transmission. 
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4.3.  Methods 

4.3.1. South African National HIV Prevalence, Incidence and Behaviour Survey 

Description 

 The fourth South African National HIV Prevalence, Incidence and Behaviour 

Survey (SABSSM IV) was a multi-stage stratified cluster sample of South African 

households conducted in 2012. SABSSM IV has been described in detail elsewhere[39]. 

SABSSM IV sampled 1,000 enumeration areas stratified by province, locality type 

(urban vs rural, formal vs informal), and race3. In each enumeration area, 15 households 

were selected, and within each household, all individuals were invited to participate. 

Individuals responded to an interviewer-administered questionnaire that included number 

of sexual partners in the past year and an egocentric partner block on their three most 

recent sexual partners that included sex, age, and partner type (husband/wife, live-in 

partner, girlfriend/boyfriend not living with you, casual partner, someone whom you paid 

for sex, other).  Individuals in sexual partnerships with other household members had the 

study ID of their household partners recorded at the end of their questionnaire, allowing 

linking full questionnaires of household partners to one another. We did not require that 

both partners have listed one another but included partnerships where only one partner 

listed the other. 

 All youth and adults who participated provided either written or verbal consent, 

including parent/guardian informed consent for respondents less than 18 years of age.  

                                                 
3 Although racial discrimination was abolished in 1994, the four racial categories of Black African, White, 

Coloured and Indian/Asian continue to be used as both social and economic inequalities still prevail as a 

legacy of the apartheid policies. 
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SABSSM IV has Institutional Review Board (IRB) approval from the Human Sciences 

Research Council IRB and the Centers for Disease Control and Prevention Center for 

Global Health IRB.  

4.3.2. Network generation algorithm 

Our goal is to simulate a complete network of sexual contacts using a limited set 

of incomplete sexual partnership data available in SABSSM IV.  Because the size of a 

network increases dramatically with each person added (for instance, a heterosexual 

network of 3 men and 3 women has 23*3=512 possible realizations), we are 

computationally limited on network sizes that are feasible to simulate. We simulate a 

sexual network of 1,000 individuals under the assumption that the trends we observe are 

characteristic of larger complete sexual networks in South Africa. 

In order to simulate networks consistent with our observed data, we used 

Metropolis-coupled Markov chain Monte Carlo ((MC)3)[40] to characterize networks of 

1,000 individuals (Figure 4.1).  We initialized our 1,000 person networks with joint 

characteristics sampled proportional to SABSSM IV sampling weights.  The 

characteristics assigned to each person were: sex, age, race, employment, and education. 

Sex was distributed the same in each network (511 females, 489 males), and our network 

exclusively represents 15-65 year olds.  We then randomly distributed the expected 

number of casual and regular ties in a 1,000-person network between individuals of 

opposite sex. We define casual partnerships as any non-live-in partner, and regular 

partnerships as any live-in partner.  Starting with this initial network, on each step of the 

Markov chain Monte Carlo (MCMC), we permuted the network. We tested several 

different permutation steps (details in the appendix), and ultimately used as our number 
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of sexual partnerships (y) perturbed at each step: y=1 + Pois(λ=2). Our permutation step 

involved for each of the y partnerships having a 1/3 probability of adding a tie (½ casual, 

½ regular), a 1/3 probability of subtracting a tie (½ casual, ½ regular), and a 1/3 

probability of replacing a tie (½ casual, ½ regular). These y changes were made in y 

randomly sampled partners (except for in version 4 in which 3 changes were all made 

within the same individual, detailed in appendix).  We additionally permuted one 

person’s characteristics (age, race, education and employment) in 10% of permutation 

steps, replacing the sampled individual’s characteristics with characteristics jointly 

sampled proportional to sampling weights from the data.   

For each network, we calculated the log likelihood of the marginal SABSSM IV 

partnership data having arisen from the simulated network, by generating a probability 

mass function from the simulated network.  This log likelihood function was the sum of 

the following: males’ casual partnership degree distribution (stratified by age <30 and 

≥30); males’ regular partnership degree distribution (stratified by age <30 and ≥30); 

females’ casual partnership degree distribution (stratified by age <30 and ≥30); females’ 

regular partner degree distribution (stratified by age <30 and ≥30); female’s overall 

degree; male’s overall degree; the age difference between partners; the proportion 

matching by race, education and employment status; and the population’s distribution of 

age, race, education, and employment. See appendix, Table S4.1 and Table S4.2 for data 

used in network simulations.  At each proposed iteration, the simulated network PMF for 

each of the likelihood components (e.g., the proportion of males <30 years of age with 

casual degree 0, 1, 2, etc) was multiplied by count observations in our data (e.g., 

SABSSM IV number of males <30 years of age with casual degree 0, 1, 2, etc) to get the 
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likelihood of our data having been generated by that network. We compared the log 

likelihood of the proposed (permuted) network to the network in the prior step of the 

chain, and if it was greater than the log of a random uniform number (0,1), we accepted 

the permuted network.   

In parallel, each (MC)3 iteration ran 4 MCMC chains, which are run at different 

“temperatures.” The “cold” chain, from which our results come, explores an 

untransformed likelihood landscape.  The three “hot” chains explore a flattened 

likelihood landscape (transformed by square, cube and fourth roots, respectively).  The 

flattened likelihood landscape allows these chains to avoid being stuck on local maxima. 

At each iteration of the algorithm, the “cold” likelihood is compared to the three 

untransformed “hot” likelihoods and if the likelihood of one of the “hot” chains is higher, 

that chain becomes the “cold” chain. 

We started the (MC)3 with 10 random samples and ran for a burn-in period of 

1,000,000 iterations.  We then ran the (MC)3 chain for 1,000,000 additional iterations and 

randomly sampled 10 networks from each (MC)3 chain. We assessed convergence of our 

(MC)3 chains using the Gelman and Rubin R-hat statistic[41], using the cutoff of <1.2 to 

indicate convergence[42], estimated using the ‘asbio’ package in R[43]. 

4.3.3. Network sensitivity analyses 

 Men and women report an unbalanced number of partnerships across surveys in 

SSA[44-50]. In our sample, 11,889 (unweighted=10,194) men reported 12,951.4 

(unweighted 10,294) partnerships, while 12,043 (unweighted=13,090) women reported 

8,492.2 (unweighted 8,908) partnerships.  This represents 4,459.2 excess partners 

reported by men than women. In our first network simulations (“true reporting”), we 
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make no modifications, and our simulated network degree distributions are in a space 

between the distributions reported by men and those reported by women.  Next, we 

consider two scenarios in which we assume that male degree distributions are accurate 

and adjust female degree distributions accordingly. In the first scenario, “female 

underreporting,” we modify our simulated network female casual degree probability mass 

function with a truncated Poisson distribution, and fit the underreporting Poisson λ for 

each group (women <30 casual, women ≥30 casual, women overall degree) (see appendix 

for more details). In our second scenario, “FSW,” we assign a small group of women to 

be “sex workers” and assume a Poisson prior with mean informed by the literature (see 

appendix for more details).  

4.3.4. Large scale network structure 

 On our simulated networks, we calculated the following network statistics 

(defined in Box 4.1): number of components, percent of components size 5 of greater, 

size of largest component, diameter of largest component, average path length, average 

betweenness, percent of sexually active in components of size 5 or greater, percent of 

sexually active in the largest component, percent of largest component with 1 partner, 

percent of those with 1 partner in the largest component, edge density, and average 

coreness. We use the R package ‘igraph’ (v1.0.1)[7] to describe network statistics. 

4.3.5. Assessing network transmission characteristics 

 Within our consistent static networks, we simulated HIV transmission in two 

ways. First (“method A”), we randomly seed each of our networks 10 times with 10 

randomly infected individuals, and run our simulation for 10 timesteps, where each 



 

 125 

timestep represents 1 year (see appendix for derivation of probability of infection). Each 

timestep, if an individual is in a partnership with an infected individual, there is a 

Bernoulli draw to determine if they become infected. We do not model deaths or 

treatment, as we are attempting to demonstrate solely the impact of network 

characteristics on epidemic potential, not a realistic disease simulation.  

 In our second disease simulation, we run our disease simulation for only one 

timestep, and start each of our 10 disease simulations with from 1-500 infected 

individuals, and infection status is determined by probability of HIV infection according 

to SABSSM IV data (as predicted by simulated individuals’ sex, age, race, education and 

employment status, see Table S4.3 for regression model). For the FSW sensitivity 

analyses, FSWs have probability of HIV infection based on literature (see appendix).  

The outcome is number of secondary infections that result at 1 timestep into the 

simulation.  

Using our network simulation results, we regress number infected on network 

structure characteristics to assess if certain network characteristics are associated with 

greater epidemic potential.  For disease simulation method A, our outcome is final 

number infected and we use mixed effects linear regression (with random intercepts for 

network to account for the 10 randomly seeded networks’ non-independence).  For 

disease simulation method B, our outcome is the average number of secondary infections 

for each network seeded with 1:500 individuals and we use linear regression with a 

quadratic term for number of individuals seeded. Interactions between network 

characteristics and number seeded, and network characteristics and a quadratic term for 

number seeded, were tested. Due to high collinearity between network characteristics and 
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interaction terms incorporated in Method B, we use stepwise regression to select our final 

adjusted models. 

 All analyses were conducted in R version 3.3.1 (R Foundation for Statistical 

Computing). 

4.4.  Results 

The network simulation produced networks which converged on most network 

characteristics (18/20) and which matched our data inputs.  See appendix for more details 

on the performance of the (MC)3 algorithm. 

4.4.1. Network structure & variability 

 Simulated network structure was relatively consistent within a given network 

generation algorithm, though there were dramatic differences between the true reporting, 

female underreporting and FSW scenarios (Figure 4.2 and Figure S4.3). In the true 

reporting algorithm, there were 266-277 components in the simulated networks, with 

significantly more components in the female underreporting scenario and significantly 

less in the FSW scenario (see Box 4.1 for network definitions).  A minority of 

components had 5+ individuals in them (2.2-6.6% in true reporting algorithm), but this 

was significantly higher in the female underreporting scenario and significantly lower in 

the FSW scenario. The largest component in our true reporting and female underreporting 

scenarios were relatively small (9-47), but statistically significantly larger in the FSW 

scenario (138-224). Diameter varied less dramatically, with the true reporting and female 

underreporting scenarios having diameter ranging from 4-13, though the FSW scenario 

was significantly higher (8-16). Average path length and average betweenness were also 
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both significantly higher in the FSW scenario than in the true reporting, with no 

difference between female underreporting and true reporting for average path length or 

for average betweenness.  

 We find that several network characteristics are highly correlated with one 

another (Figure S4.4). The number of people in the largest component, percent of 

sexually active in largest component, percent of those with 1 partner in the largest 

component, average path length, diameter of the largest component, percent edge density, 

and average betweenness were all positively correlated. The number of components and 

percent of sexually active population in components size 5+ were negatively correlated.  

 In comparing networks simulated using KwaZulu-Natal (KZN) to those using the 

full country data, we found that KZN networks were significantly “lower risk” networks 

than the networks simulated from all South African data (Figure S4.5). KZN networks 

had a lower edge density (which matched the lower degree in Table S4.1), a lower 

number of components, a smaller diameter in the largest component, shorter average path 

length, and numerous other characteristics that made these networks less well-connected. 

4.4.2. Assessment of transmission characteristics 

 Our HIV transmission simulations using method A (simulation to year 10 on the 

static networks), show that the true reporting simulation method and female 

underreporting simulation method yield highly similar trajectories under this transmission 

setting (Figure 4.3 and Figure S4.6). While there was stochastic variability around 

transmission for these two network simulation methods (true reporting final number of 

infections ranged from 12-34, median 17; female underreporting ranged from 11-37, 

median=17), these trajectories were almost identical.  The FSW trajectory, however, 
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showed dramatically higher growth in number of infections than the other two simulation 

methods (final number of infections ranged from 12-82, median=26). We find that our 

KZN trajectories are almost identical to our “true reporting” method with the full South 

African data (Figure S4.8a). 

 Our HIV transmission simulations using method B (number infected in the first 

generation when infecting from 1-500 individuals based on probability of infection based 

on demographics or FSW status) show a difference between each of the three methods for 

generating networks (Figure 4.3b, Figure S4.7).  The true reporting method results in the 

fewest secondary infections, followed by the female underreporting scenario, with the 

most infections observed among the FSW scenario.  Secondary infections increase until 

the network has been seeded with 350-400 infections and then start to decrease as the 

network is saturated, a phenomenon observed consistently across methods of network 

generation.  Again, we find that our KZN trajectories are quite similar to our “original” 

method with the full South African data (Figure S4.8b). 

4.4.3. Association between network structure and transmission 

 All network characteristics were significantly associated with our Method A final 

number of infections in simple linear mixed effects regression (Table S4.4).  Increasing 

number of components and percent of components with size 5 or greater were both 

associated with a decreased final number of infections. Percent of people in components 

size 5 or greater, size of largest component, percent of the sexually active population in 

the largest component, percent of those with 1 partner in the largest component, percent 

of those in the largest component with 1 partner, diameter of largest component, edge 

density, and average coreness were all positively associated with increased final number 



 

 129 

of infections.  Due to high collinearity between parameters, the final model only included 

two characteristics significantly associated with final number of infections: edge density 

and average coreness.  Average coreness notably changed from a positive association 

with final number of infections to a negative association. 

 In modeling our average network secondary infections in Method B, we found 

that almost all of our interaction terms between network characteristics and number 

seeded and between network characteristics and the quadratic term for number seeded 

were statistically significant in simple regression (Table S4.5). The terms for number 

seeded and number seeded2 can be thought of as the slope at the intercept, and the shape 

of the curvature (with negative terms representing an upside down U, positive terms 

representing a rightside-up U, and terms closer to 0 representing a flatter curve), 

respectively. The independent effect for these network characteristics (non-interaction 

terms) were largely not significant, likely because there was very little spread near the 

intercept.  In adjusted regression, percent of components of size 5 or greater, percent of 

the largest component that had degree 1, and average path length were all associated with 

increased intercept, while percent of people in components 5 or greater, percent in largest 

component, and percent of all degree 1’s in the largest component were all associated 

with a decreased intercept. Interaction terms between number seeded and number of 

components, percent of people in components 5 or greater and percent in the largest 

component all were associated with a decreased slope at intercept, while diameter of 

largest component was associated with an increased slope at intercept.  Significant 

interaction terms with the quadratic term included an increase in the quadratic term 

(equating to a flatter parabola) for number of components, percent of people in 
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components five or greater, percent in the largest component, and edge density, while a 

decreased term (equating to a pointier parabola) was found for percent in components 

size 5 or greater and diameter. 

4.5.  Discussion 

We introduce and assess a nonparametric method for generating sexual networks 

using limited data, applying this method to the South African HIV epidemic to find that 

the space of networks consistent with our inputted data is relatively narrow but that there 

are major ramifications for the choice of method to deal with male-female disparities in 

degree distribution.  Assuming that all excess male partners come from sex workers, as 

opposed to a diffuse spreading out of underreporting amongst all females, leads to 

networks that are highly connected and have much greater epidemic potential.   

We build on ERGM networks methods for network generation with our novel 

nonparametric approach. ERGM networks are fit using a similar MCMC sampling 

process to that described above, however, ERGMs are fit using a parametric ERGM 

likelihood that has been fit to egocentrically sampled data – thus calculating the 

likelihood of each tie being added to the network through the ERGM likelihood[13]. 

First, an ERGM requires the estimation of sufficient statistics from egocentric data of 

given ERGM parameters of interest (count of a given degree, etc) in a network sampled 

of the size of the intended ERGM simulation.  Next, a network is generated by proposing 

individual ties and calculating the likelihood of that tie using the estimated ERGM [13].  

Our algorithm removes a step from the simulation process, the estimation of sufficient 

statistics, and simultaneously allows complete flexibility in the development of the 

likelihood function.  For instance, in future iterations, we plan to use full age and race 
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mixing matrices to generate networks instead of proportion matched.  One of the benefits 

of ERGMs is that they provide a network characterization that is network-size-invariant, 

i.e. degree does not increase proportional to the size of the network[51].  Our method 

does the same, by comparing directly to our data degree distribution for each proposed 

network.  

Our proposed method additionally allows for principled modifications to our 

sampling method, as demonstrated by our “female underreporting” and “FSW” scenarios. 

“Balancing” degree distributions has been a focus in previous modeling work, 

particularly in the context of compartmental modeling[52-54]. A previous network 

simulation study that accounted for balancing by incorporating FSWs into the network 

similarly found that the incorporation of FSWs into networks led to a small connected 

core component[55]. Empirical work has suggested that sex workers account for the sex-

imbalance in United States surveys[56]. We find that this assumption leads to a much 

larger size of the largest connected component, and leads to greater epidemic potential.  

Our female underreporting scenario led to larger numbers of secondary infections but not 

to a larger number of infections in a static network over time, likely because the structure 

of the underlying network did not change dramatically from the “true reporting” network 

that compromised between male and female degree. Our FSW scenarios are different 

than the previously proposed “core group” scenarios[57-59], some of which explicitly 

model sex work[60], in that men are not categorized to be “clients” but merely partner 

with FSWs as needed to fill up their excess casual partnerships. These men could serve as 

“bridge” populations between FSWs and non-FSW females[61]. Theoretical work[62-64] 

has supported HIV prevention interventions among key network members, such as FSWs 
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in our scenario. Our results support the importance of FSW-focused prevention 

interventions on the structural, behavioral, and biological levels[65]. 

In sensitivity analyses, our assumption that male degree distributions are 

completely accurate are likely not completely correct, given that previous work has not 

ruled out that men overreport to some extent[44-50]. However, this body of work has 

found disparate results that do not lead to a simple model to correct for female under- and 

male over-reporting. In our results, we choose to present sensitivity models that assume 

male reports are accurate. A limitation to our approach is that our two scenarios (one in 

which all women consistently underreport, and one in which a population of female sex 

workers is not captured) are likely oversimplifications. It is more likely that, rather, the 

truth lies somewhere in the middle of these scenarios. 

In comparison to the Likoma Network Study (LNS) networks, we find much 

lower connectivity among our simulated sexual networks[14]. We hypothesize that this is 

for a variety of reasons. First, the LNS network was over the previous 3 years where our 

networks were over the last year. Second, the LNS networks only included sexually 

active individuals. Third, the LNS networks were among individuals aged 18-35, a 

population more likely to report multiple sexual partners than 15-65. With all of these 

considerations, we would not rule out that our networks are consistent with their findings 

but our findings rather are inconclusive. 

We find that several network characteristics, most of which are challenging to 

collect in an egocentric survey, are important predictors of transmission potential.  While 

our methods fairly consistently produce similar networks within a given set of 

assumptions, the data does not allow us to tease apart between major network differences 
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(such as the “FSW” vs “female underreporting” scenarios) to truly understand a 

network’s transmission potential.  However, our potential scenarios provide upper and 

lower bounds for the description of networks that are feasible. 

Our finding that sexual networks in KwaZulu-Natal have lower edge density and 

lower number of individuals in the largest component suggests that KZN is not currently 

experiencing higher risk sexual networks, despite having the highest HIV prevalence[39] 

of provinces in South Africa and maintained high HIV incidence[66], particularly among 

young women[67, 68]. We do not find any differences by network transmission in KZN 

compared to the full South Africa data. We cannot rule out that there are possible 

explanations for why our simulated KZN sexual networks are “less risky” than the actual 

sexual networks in KZN, such as cultural norms around disclosure of personal 

information to interviewers, or bias in the sample not capturing individuals who report 

higher number of partners. It is possible that the large HIV epidemic in KZN has led to 

behavioral change and we are capturing behavior following this change. Our lack of 

evidence for higher risk sexual networks in KZN suggests that alternate explanations[3], 

such as the migrant labor, biological co-factors, poverty, or low linkage to care among 

positives[69] may currently be contributing more significantly to ongoing transmission in 

KZN. Alternatively, differences in concurrency as compared to serial monogamy within 

the last year, which are not directly captured in our results, may explain the differences in 

KZN network risk (60% of KZN respondents who reported multiple partners self-

reported concurrency in the past year, while 55% in the rest of South Africa self-reported 

concurrency). 
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A major limitation of our method is that we have not yet proposed a method for 

the change of partnerships over time. Network dynamics strongly impact the spread of 

infectious disease, and static networks fail to capture these disease dynamics[70, 71]. A 

second limitation is that we treat all past year partnerships as concurrent partnerships. In 

our sample, just over half (56%) of those with multiple sexual partners self-reported 

concurrent partnerships over the past year. Thus, we overestimate the density of our 

networks perhaps by as much as double. Our static networks fail to capture the timespan 

of partnerships, and, for instance, give greater importance to “one-off” partnerships than 

otherwise should be given.  This assumption is complicated further by the coital dilution 

hypothesis, which suggests that the impact of concurrency on disease transmission is 

reduced by having lower coital frequency with concurrent partnerships[28, 29]. We 

incorporate lower per year probability of HIV transmission for casual partnerships to 

partially account for potential coital dilution. 

An additional limitation is that we simulate networks that are all of the same size, 

and do not vary our network population size.  Previous work has shown that, 

unsurprisingly, with varying network size but identical mean degree, the relative size of 

the largest component, density, and component sizes vary[15]. Smaller networks do not 

follow asymptotic results for the formation of a “giant component,” and instead generate 

highly connected networks at lower mean degree[15]. An additional limitation is that we 

chose a slightly higher bound to indicate convergence of our MCMC chains, and not all 

of our network structure characteristics converge, suggesting that there could be some 

low-level autocorrelation remaining within our chains that would be eliminated by 

running our chains for longer and sampling less frequently.  Finally, due to computation 
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limitations, we are unable to run our simulation using larger networks. As such, we are 

unable to fit estimates for the most likely number of sex workers in our simulated 

network and instead assign randomly sex worker status at the beginning of iterations. Our 

results are likely susceptible to variability in the estimate of HIV prevalence among FSW, 

though a recent study found that HIV prevalence among FSWs ranged from 39.7% in 

Cape Town to 71.8% in Johannesburg[72], which is not inconsistent with the estimate we 

utilize. We do not assess the impact of different numbers of sex workers on network 

structure, only one scenario. Future work will assess whether the size of the sex worker 

population influences our results or if the presence of any highly-connected women leads 

to the same results. 

Our presented nonparametric network generation method provides a flexible and 

modifiable means to simulate sexual networks consistent with regularly collected 

egocentric and household survey data. Models to better characterize the sexual networks 

of South Africa allow for more refined mathematical models in which to test both basic 

questions about the nature of the HIV epidemic, as well as assess potential impact of 

interventions in the context of networks.    
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Figure 4.1: Schematic of MCMC (one chain of the (MC)3 algorithm) 
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Figure 4.2: Network structure among simulated networks using 1) true reporting 

algorithm, 2) female underreporting algorithm, 3) missing FSW algorithm. Asterisks (*) 

indicate a statistically significant difference from true reporting algorithm. 
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Figure 4.3: Network projections. Panel A: number infected to time-step 10, comparing 

networks generated with unmodified data (true reporting, TR), underreporting for all 

females, and missing FSW population. Panel B: number infected in 1 time-step, 

comparing networks generated with unmodified data (true reporting, TR), underreporting 

for all females, and missing FSW population. 
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Box 4.1: Description of large scale network structure statistics used 

 

  

 

 Components, subsets of individuals who can be tied to one another 

through sexual partnerships, but for which there are no sexual 

partnerships tying to individuals in different subsets[1] 

 Shortest path length (also referred to in the literature as geodesic 

distance or distance), the minimum number of partnerships one must step 

through to get from one individual to another individual on a sexual 

network[1] 

 Diameter, the maximum shortest path length between any pair of 

individuals in a component[1] 

 Edge density, the number of partnerships observed divided by the 

number of all possible partnerships[1] 

 Coreness, using the concept of k-cores, which are maximally connected 

subsets of a network for which all individuals in the subset have at least 

degree “k,” the “coreness” of a person represents the maximum k-core to 

which that person belongs[6, 7] 

 Betweenness, the number of shortest paths that an individual lies along[1] 
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4.7.  Appendix 

4.7.1. MCMC algorithm 

We tested several different permutation steps as follows: 

1. One partnership permuted at a time (y=1) 

2. One plus a random draw from a Poisson distribution (λ = 2) number of partners 

permuted at a time (y=1+pois(λ=2)) 

3. One plus a random draw from a Poisson distribution (λ = 2) partnerships 

permuted at a time in the cold chain (details on cold/hot chains below) with a 

Poisson draw with a higher λ in the hot chains (25, 25 and 50) (ycold=1+pois(λ=2), 

yhot1&2=1+pois(λ=25), yhot3=1+pois(λ=50)) 

4. One partnership permuted at a time 95% of the time, and 5% of the time an 

individual with 3+ partners had 3 partners permuted (95%: y=1; 5%: y=3 within 

same individual) 

4.7.2. Female sex workers 

 Data on number of sexual partners reported by female sex workers (FSWs) in 

sub-Saharan Africa is widely variable.  Studies in South Africa have found that FSWs 

report on average 20 sexual partners per week, though this varies substantially with an 

IQR of 12-28 partners[1].  However, we know some proportion of weekly partners are 

regular paying partners or non-paying spouse/boyfriend partners with whom the woman 

has repeated encounters. In Botswana, FSWs reported 7.6 (6.7-8.5) sexual partners in the 

past week, and this broke into 5.1 one-time paying customers, 2.3 regular paying 

partners, 0.7 spouse partners, 0.01 lover/boyfriend, and 0.03 casual/non-paying partners 
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(it is unclear why these do not sum to 7.6)[2]. Other studies in East Africa have found a 

median of 1 (IQR=1-2) in the past week[3] and 74.5 in the past 12 months (with 54.8 in 

the past 6 months and 19.1 in the past 30 days)[4].  

 Population size estimates for the South African FSW population range from 0.86-

0.9%[5, 6]. These estimates are irreconcilable with the number of partnership estimates 

found in the literature and the excess reported partners by men in our survey. If 0.9% of 

the female population reported even 5 one-time partners per week (260 partners per year), 

we would end up with women reporting around 2 times as many partners as men.  Thus, 

we must choose between maintaining the FSW population size and the FSW partner 

frequency from the literature.  Under the assumption that FSW partner frequency data 

could be biased upwards with increased recruitment of the most active sex workers, and 

the likelihood that women engage in episodic sex work and thus weekly partner reports 

might not be maintained throughout the year, we choose the utilize the population size 

estimate and fit our number of partners for FSW accordingly to men’s reports. 

4.7.3. Female underreporting scenario 

For underreporting among women, our “true” (simulated network) degree 

distribution is modified using a truncated Poisson distribution as follows:  

Pr(𝑜𝑏𝑠 = 0) = Pr(𝑇𝑟𝑢𝑒 = 0) ∗
𝜆0𝑒−𝜆

0!

𝑒−𝜆 ∑
𝜆𝑖

𝑖!
0
𝑖=0

+ Pr(𝑇𝑟𝑢𝑒 = 1) ∗
𝜆1𝑒−𝜆

1!

𝑒−𝜆 ∑
𝜆𝑖

𝑖!
1
𝑖=0

+

Pr(𝑇𝑟𝑢𝑒 = 2) ∗
𝜆2𝑒−𝜆

2!

𝑒−𝜆 ∑
𝜆𝑖

𝑖!
2
𝑖=0

+ ⋯  
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Pr(𝑜𝑏𝑠 = 1) = Pr(𝑇𝑟𝑢𝑒 = 1) ∗
𝜆0𝑒−𝜆

0!

𝑒−𝜆 ∑
𝜆𝑖

𝑖!
1
𝑖=0

+ Pr(𝑇𝑟𝑢𝑒 = 2) ∗
𝜆1𝑒−𝜆

1!

𝑒−𝜆 ∑
𝜆𝑖

𝑖!
2
𝑖=0

+

Pr(𝑇𝑟𝑢𝑒 = 3) ∗
𝜆2𝑒−𝜆

2!

𝑒−𝜆 ∑
𝜆𝑖

𝑖!
3
𝑖=0

+ ⋯  

Pr(𝑜𝑏𝑠 = 2) = Pr(𝑇𝑟𝑢𝑒 = 2) ∗
𝜆0𝑒−𝜆

0!

𝑒−𝜆 ∑
𝜆𝑖

𝑖!
2
𝑖=0

+ Pr(𝑇𝑟𝑢𝑒 = 3) ∗
𝜆1𝑒−𝜆

1!

𝑒−𝜆 ∑
𝜆𝑖

𝑖!
3
𝑖=0

+

Pr(𝑇𝑟𝑢𝑒 = 4) ∗
𝜆2𝑒−𝜆

2!

𝑒−𝜆 ∑
𝜆𝑖

𝑖!
4
𝑖=0

+ ⋯  

Where λ represents the mean underreporting among women. 

4.7.4. Probability of infection in epidemic simulations 

In order to incorporate differences in coital frequency between regular and casual 

partnerships, we must estimate coital frequency and per-act probability of transmission. 

Based on Grabowski et al’s estimate of per 18-month probability of infection from an 

HIV seroprevalent household partner of 0.153[7], we back-calculate using the following 

equation: 

Pr(𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) =  1 − (1 − 𝛽)𝑐∗𝑡 

where c is the coital frequency per unit time, t. We find that even the highest per-act 

probability of transmission gives us an unreasonable estimate for coital frequency over 

that 18-month period (0.0008 being the per-act probability of transmission estimated for 

receptive vaginal intercourse[8], and 207 therefore being the expected number of acts in 

18-months). Estimates for number of coital acts per year in Rakai range from 28-96, we 

assume that it is 90[9].  We therefore, assuming a constant probability of transmission 

during the 18-month interval, estimate that per act probability of transmission is closer to 
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1.23x10-3. Shisana et al suggest that a non-live in partnership will have ~60% of the 

coital acts of a live-in partnership[10].  Thus, we estimate per year probabilities of 

transmission for regular partnerships to be 0.105, and for casual partnerships to be 0.064. 

4.7.5. Performance of (MC)3 algorithm 

 After testing several different proposal mechanisms to improve mixing, we found 

that the proposal mechanism that most effectively explored the likelihood space was 

proposing one plus a random draw from a Poisson(λ =2) partnerships at a time. This 

proposal mechanism achieved an acceptance probability of 0.025 in the cold chains, with 

acceptance probability in the hot chains 0.061, 0.083 and 0.103.  While this acceptance 

probability is very low, this is due to the complicated multi-dimensional likelihood that 

we used, and why we utilized such a high number of iterations. Other proposal 

mechanisms led to lower acceptance probabilities or did not adequately achieve our target 

statistics.  Our chains converged (R-hat<1.2) for 18/20 of our tracked parameters (mean 

partner age difference; race mixing; education mixing; employment mixing; number of 

males with 1, 2 and 3+ partners; number of females with 0, 1, 2, and 3+ partners; mean 

female age; mean male age; number of components; edge density; diameter; average 

coreness; average betweenness). They failed to converge on number of males with 0 

partners (R-hat = 1.41) and size of the largest component (R-hat=1.42).  In Figure S4.2, 

we show network simulated degree and mixing compared to our observed data. In our 

true reporting algorithm, making no adjustment to female degree, we find that while our 

simulated degree distributions largely fit the observed data, the (MC)3 algorithm finds a 

middle ground between the observed degree distributions for women and the observed 

degree distributions for men.  Thus, the simulations have a higher proportion of 0’s in 
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male casual degree distributions than the data, with higher degrees having slightly lower 

proportions than the data.  Vice versa, women’s casual degree distributions have a lower 

proportion of 0’s than in the data but a higher proportion of 1’s and higher degrees.  

Mixing (average age difference and proportion matching on race, education, and 

employment) shows good alignment with the data, with slightly lower proportions of race 

matching in simulations than observed, likely due to the very high proportion matching in 

the data (97%) being difficult to achieve in a network of size 1000. 

In the female underreporting scenario, we fit 0.65, 0.56 and 0.26 as 

underreporting Poisson means for casual degree amongst young women, casual degree 

older women, and overall women’s degree distributions. 
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Table S4.1: Degree data inputs for network MCMC simulation 

 Females <30 Females ≥30 Males <30 Males ≥30 

South Africa - Overall 

Casual degree     

0 2877 (55.7) 6329 (79.9) 2293 (49.5) 4001 (72) 

1 2086 (40.4) 1479 (18.7) 1438 (31) 1095 (19.7) 

2 139 (2.7) 92 (1.2) 467 (10.1) 249 (4.5) 

3 22 (0.4) 13 (0.2) 183 (3.9) 78 (1.4) 

4 10 (0.2) 0 (0) 97 (2.1) 39 (0.7) 

5 1 (0) 0 (0) 41 (0.9) 21 (0.4) 

6 0 (0) 0 (0) 25 (0.5) 9 (0.2) 

7 4 (0.1) 0 (0) 13 (0.3) 1 (0) 

8 0 (0) 0 (0) 18 (0.4) 12 (0.2) 

9 9 (0.2) 7 (0.1) 5 (0.1) 22 (0.4) 

10+* 14 (0.3) 6 (0.1) 57 (1.2) 29 (0.5) 

Regular degree     

0 4373 (81.8) 4565 (54.8) 4365 (90.5) 2675 (45.6) 

1 969 (18.1) 3758 (45.1) 453 (9.4) 3156 (53.8) 

2 6 (0.1) 7 (0.1) 3 (0.1) 33 (0.6) 

3 0 (0) 3 (0) 1 (0) 1 (0) 

KwaZulu-Natal 

Casual degree     

0 756 (50.3) 1602 (73.8) 550 (46.7) 1018 (63.0) 

1 501 (47.1) 273 (25.2) 355 (36.5) 217 (28.8) 

2 26 (2.5) 8 (2.9) 83 (8.9) 37 (3.1) 

3 1 (0.1) 2 (0.1) 32 (3.8) 16 (2.5) 

4 0 (0) 1 (0) 13 (1.7) 4 (0.2) 

5 0 (0) 0 (0) 5 (1.0) 2 (0.7) 

6 0 (0) 0 (0) 2 (0.9) 1 (0.3) 

7 0 (0) 0 (0) 3 (0.1) 1 (0.1) 

8 0 (0) 0 (0) 2 (0.1) 0 (0) 

9 0 (0) 3 (0.3) 1 (0) 11 (0.8) 

10+* 1 (0.1) 3 (0.3) 2 (0.2) 7 (0.5) 

Regular degree     

0 1146 (91.4) 1084 (64.4) 994 (93.6) 527 (56.7) 

1 186 (8.6) 868 (35.6) 83 (6.1) 808 (43.3) 

2 0 (0) 1 (0) 2 (0.3) 1 (0) 

3 0 (0) 0 (0) 0 (0) 0 (0) 

 

*Full casual degree data is utilized in our MCMC input, but due to small numbers, we 

condense for presentation purposes 
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Table S4.2: Additional data inputs for network MCMC simulation and parameters for 

epidemic simulations 

 Value 

Partnership characteristics  

Age difference (Male-Female) 3.67 years 

% Race Matching 97.0% 

% Education Matching 75.5% 

% Employment Matching 53.5% 

Individual characteristics  

Age* Mean (Median) 34.0 (32) 

Race  

Black 78.6% 

Coloured 9.3% 

Indian/Asian 2.7% 

White 9.3% 

Education  

Primary 29.1% 

Secondary 56.0% 

Tertiary 14.8% 

Employment Status  

Employed 39.2% 

Unemployed 60.8% 

Probability of HIV Transmission  

Regular (household) partnerships 0.1047955 [7, 9, 10] 

Casual (non-household) partnerships 0.06426394 [7, 9, 10] 

HIV Prevalence among FSW 59.6% [11] 
*All age data went into MCMC, mean/median presented here for ease of presentation 
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Table S4.3: Weighted logistic regression model predicting HIV status used in simulations 

Variable aOR 95% CI 

Sex 
  

Female Ref Ref 

Male 0.19 (0.08-0.44) 

Education   
Primary Ref Ref 

Secondary 0.98 (0.78-1.22) 

Tertiary 0.33 (0.2-0.56) 

Age   
15-20 Ref Ref 

21-25 5.03 (3.41-7.44) 

26-30 8.59 (5.69-12.95) 

31-35 12.78 (8.53-19.14) 

36-40 9.58 (6.38-14.38) 

41-45 6.99 (4.45-10.98) 

46-50 4.61 (3.03-7.04) 

51-55 3.23 (2.07-5.05) 

56-60 1.36 (0.79-2.32) 

61-65 0.88 (0.51-1.52) 

Race   
Black Ref Ref 

Coloured 0.13 (0.09-0.19) 

Indian/Asian 0.03 (0.01-0.07) 

White 0.02 (0-0.12) 

Employment   
Employed Ref Ref 

Unemployed 1.17 (0.91-1.5) 

Interactions with Male Sex 

Male*Education   
Primary Ref Ref 

Secondary 0.97 (0.66-1.42) 

Tertiary 0.85 (0.36-2) 

Male*Age   
15-20 Ref Ref 

21-25 2.03 (0.91-4.52) 

26-30 3.01 (1.32-6.84) 

31-35 3.11 (1.37-7.05) 

36-40 5 (2.16-11.6) 

41-45 3.66 (1.52-8.8) 

46-50 4.38 (1.84-10.44) 

51-55 5.98 (2.42-14.79) 

56-60 5.53 (1.98-15.48) 

61-65 10.98 (3.98-30.32) 

Male*Race   
Black Ref Ref 

Coloured 1.38 (0.74-2.59) 

Indian/Asian 1.16 (0.32-4.24) 

White 0.16 (0.01-2.6) 

Male*Employment   
Employed Ref Ref 

Unemployed 0.68 (0.46-1.01) 
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Table S4.4: Association of network structure characteristics with final epidemic size. 

Linear mixed effects model regressions for final epidemic size for Method A. 
Network characteristic Unadjusted 

coefficient 

(95%CI) 

Adjusted coefficient (95% 

CI) 

Number of components -0.22 (-0.24, -0.21) - 

Percent of components size 5+ -6.17 (-6.65, -5.68) -0.40 (-1.03, 0.23) 

Percent of people in components size 5+ 0.86 (0.82, 0.90) - 

Size of largest component 0.09 (0.09, 0.10) - 

Percent of sexually active in largest 

component 

0.63 (0.60, 0.66) - 

Percent of those with 1 partner in 

largest component 

0.75 (0.72, 0.79) - 

Percent of those in the largest 

component with 1 partner 

0.89 (0.73, 1.04) - 

Diameter of largest component 3.06 (2.49, 3.62) - 

Edge Density 961 (887, 1035) 1240 (1121, 1359) 

Average coreness 0.39 (0.02, 0.75) -1.60 (-1.82, -1.37) 
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Table S4.5: Association of network structure characteristics with average number of 

secondary infections with increasing number of seeded infected individuals (1-500) – 

Method B. Linear regression models with quadratic terms for number of infected 

individuals seeded. 
Network 

Characteristic 

# Seeded # Seeded2 Net. Char. Net. Char * # 

Seeded 

Net. Char * # 

Seeded2 

Unadjusted Linear Regression Coefficients 

None 0.077 

(0.077,0.077) 

-1e-04 (-1e-

04,-1e-04) 

- - - 

# comp 0.1 

(0.099,0.11) 

-0.00017  

(-0.00018, 

-0.00016) 

-0.0049  

(-0.0065, 

-0.0033) 

-9.3e-05  

(-0.00011, 

-7.9e-05) 

2.4e-07  

(2.2e-07,2.7e-07) 

% comp 5+ 0.079 

(0.077,0.08) 

-0.00011  

(-0.00011, 

-1e-04) 

-0.0019  

(-0.028,0.024) 

-0.00034  

(-0.00058, 

-9.8e-05) 

7e-07  

(2.4e-07,1.2e-06) 

% ppl in comp 

5+ 

0.078 

(0.078,0.079) 

-1e-04  

(-0.00011, 

-1e-04) 

-0.0026  

(-0.0053, 

1e-04) 

-6.3e-05  

(-8.8e-05, 

-3.8e-05) 

1.3e-07  

(8.6e-08,1.8e-07) 

Lgst Comp N 0.078 

(0.077,0.079) 

-1e-04  

(-1e-04, 

-1e-04) 

-0.0091  

(-0.028, 

0.0094) 

-0.00027  

(-0.00044, 

-1e-04) 

5e-07  

(1.7e-07,8.3e-07) 

% lgst comp 0.078 

(0.078,0.079) 

-1e-04  

(-0.00011, 

-1e-04) 

-0.017  

(-0.045,0.012) 

-5e-04  

(-0.00076, 

-0.00024) 

9.8e-07  

(4.7e-07,1.5e-06) 

% deg 1 lgst 0.078 

(0.076,0.08) 

-1e-04  

(-0.00011, 

-1e-04) 

2.1e-05  

(-0.0032, 

0.0033) 

-1.6e-05  

(-4.6e-05, 

1.4e-05) 

3.1e-08  

(-2.7e-08,8.8e-08) 

% all deg 1’s 

lgst 

0.078 

(0.077,0.079) 

-1e-04  

(-1e-04, 

-1e-04) 

-0.0047  

(-0.018, 

0.0087) 

-6.9e-05  

(-0.00019, 

5.5e-05) 

1.3e-07  

(-1.1e-07,3.7e-07) 

Diameter 0.099 

(0.095,0.1) 

-0.00016  

(-0.00016, 

-0.00015) 

-14 (-18,-9.6) -0.26 (-0.3, 

-0.22) 

0.00069 

(0.00061,0.00077) 

Edge density 0.079 

(0.078,0.08) 

-1e-04  

(-0.00011, 

-1e-04) 

-0.03  

(-0.074, 

0.014) 

-0.00067  

(-0.0011, 

-0.00026) 

1.4e-06  

(5.8e-07,2.1e-06) 

Avg path l 0.1 (0.097,0.1) -0.00016  

(-0.00017, 

-0.00016) 

-1.8 (-2.4, 

-1.2) 

-0.035  

(-0.04,-0.029) 

9e-05  

(8e-05,1e-04) 

Avg coreness 0.078 

(0.077,0.078) 

-1e-04  

(-1e-04, 

-1e-04) 

-0.023  

(-0.05, 

0.0037) 

-0.00054  

(-0.00078, 

-0.00029) 

1.1e-06  

(6.7e-07,1.6e-06) 

Avg betw 0.082 

(0.08,0.084) 

-0.00011  

(-0.00012, 

-0.00011) 

-0.0077  

(-0.022, 

0.0064) 

-0.00029  

(-0.00042, 

-0.00016) 

6.3e-07  

(3.8e-07,8.9e-07) 

 

Network Characteristic Net. Char. Net. Char * # Seeded Net. Char * # Seeded2 

Adjusted Linear Regression Coefficients 

None (# Seeded) 

- 0.11 (0.1,0.11) 

-0.00017 (-0.00019, 

-0.00016) 

# comp 

-0.0095 (-0.029,0.01) 

-0.00025 (-0.00043, 

-6.7e-05) 

4.8e-07 (1.3e-07, 

8.3e-07) 

% comp 5+ 0.11 (0.073,0.14) - -7.3e-07 (-1e-06, 
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-4.3e-07) 

% ppl in comp 5+ 

-0.043 (-0.068,-0.017) 

-0.00027 (-0.00045, 

-9.2e-05) 

7e-07 (3.3e-07, 

1.1e-06) 

Lgst Comp N - - - 

% lgst comp 

-0.26 (-0.34,-0.17) 

-0.00091 (-0.0012, 

-0.00057) 

1.6e-06 (9.5e-07, 

2.3e-06) 

% deg 1 lgst 0.31 (0.22,0.4) - - 

% all deg 1’s lgst -0.0089 (-0.013, 

-0.0053) 

-6.1e-06 (-1.5e-05, 

2.3e-06) - 

Diameter 

0.0067 (-0.016,0.03) 

0.00035 

(0.00015,0.00055) 

-8.2e-07 (-1.2e-06, 

-4.4e-07) 

Edge density -38 (-120,44) -0.71 (-1.4,0.035) 0.0015 (2.3e-05,0.0029) 

Avg path l 0.14 (0.05,0.22) - - 

Avg coreness 6 (-10,22) 0.15 (-0.0027,0.3) - 

Avg betw 

- - 

-0.00027 (-0.00056, 

2e-05) 
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Figure S4.1: Example of plotted simulated network (sexually active population), true 

reporting 
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Figure S4.2: Fitted degree distribution compared to data for true reporting algorithm 
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Figure S4.3: Further description of simulated networks. Asterisks (*) indicate a 

statistically significant difference from true reporting algorithm. 

 
 

  



 

 165 

Figure S4.4: Pairwise correlation between network structure statistics in “true reporting” 

networks. a) Number of components, b) percent of components size 5+, c) percent of 

sexually active population in components size 5+, d) number of people in largest 

component, e) percent of sexually active in the largest component, f) percent of those 

with 1 partner in the largest component, g) percent of largest component with 1 partner, 

h) diameter of the largest component, i) percent edge density, j) average path length, k) 

percent average coreness, l) average betweenness. 
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Figure S4.5: Network structure comparing networks fitted to KwaZulu-Natal data with all 

of South Africa data. Asterisks (*) indicate a statistically significant difference between 

All RSA and KZN. 
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Figure S4.6: Full plot of trajectories for epidemic simulation (method A) 
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Figure S4.7: Full plot of trajectories for epidemic simulation (method B) 
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Figure S4.8: Full plot of trajectories for transmission potential in KwaZulu-Natal 

 

 
 

 

  



 

 172 

4.7.6. Appendix References 

1. Ramjee G, Williams B, Gouws E, Van Dyck E, De Deken B, Karim SA. The 

impact of incident and prevalent herpes simplex virus-2 infection on the incidence of 

HIV-1 infection among commercial sex workers in South Africa. Journal of acquired 

immune deficiency syndromes. 2005;39(3):333-9. 

2. Merrigan MB, Tafuma TA, Okui LA, Lebelonyane R, Bolebantswe JM, 

Makhaola K, et al. HIV Prevalence and Risk Behaviors Among Female Sex Workers in 

Botswana: Results from the 2012 HIV/STI Bio-Behavioral Study. AIDS and behavior. 

2015;19(5):899-908. 

3. Chohan V, Baeten JM, Benki S, Graham SM, Lavreys L, Mandaliya K, et al. A 

prospective study of risk factors for herpes simplex virus type 2 acquisition among high-

risk HIV-1 seronegative women in Kenya. Sexually transmitted infections. 

2009;85(7):489-92. 

4. Matovu JK, Ssebadduka BN. Sexual risk behaviours, condom use and sexually 

transmitted infection treatment-seeking behaviours among female sex workers and truck 

drivers in Uganda. International journal of STD & AIDS. 2012;23(4):267-73. 

5. Konstant TL, Rangasami J, Stacey MJ, Stewart ML, Nogoduka C. Estimating the 

number of sex workers in South Africa: rapid population size estimation. AIDS and 

behavior. 2015;19 Suppl 1:S3-15. 

6. South African National AIDS Council. Estimating the size of the sex worker 

population in South Africa, 2013 2013 Available: http://www.sweat.org.za/wp-

content/uploads/2016/02/Sex-Workers-Size-Estimation-Study-2013.pdf. 



 

 173 

7. Grabowski MK, Lessler J, Redd AD, Kagaayi J, Laeyendecker O, Ndyanabo A, et 

al. The role of viral introductions in sustaining community-based HIV epidemics in rural 

Uganda: evidence from spatial clustering, phylogenetics, and egocentric transmission 

models. PLoS medicine. 2014;11(3):e1001610. 

8. Patel P, Borkowf CB, Brooks JT, Lasry A, Lansky A, Mermin J. Estimating per-

act HIV transmission risk: a systematic review. Aids. 2014;28(10):1509-19. 

9. Morris M, Epstein H, Wawer M. Timing is everything: international variations in 

historical sexual partnership concurrency and HIV prevalence. PloS one. 

2010;5(11):e14092. 

10. Shisana O, Rehle T, Simbayi LC, Parker W, Zuma K, Bhana A, et al. South 

African National HIV Prevalence, HIV Incidence, Behaviours and Communication 

Survey. Cape Town: HSRC Press; 2005. 

11. van Loggerenberg F, Mlisana K, Williamson C, Auld SC, Morris L, Gray CM, et 

al. Establishing a cohort at high risk of HIV infection in South Africa: challenges and 

experiences of the CAPRISA 002 acute infection study. PloS one. 2008;3(4):e1954. 

 



 

 174 

5. Conclusions 

 

In this dissertation, we examine sexual behavior, sexual mixing patterns and 

sexual networks derived from a nationally representative survey of South Africans 

conducted in 2012.  Our results suggest that there is a tremendous amount of 

heterogeneity across the South African population in sexual behavior and sexual mixing 

and that this heterogeneity could have a great impact on HIV transmission. In South 

Africa, the country bearing the world’s largest burden of HIV[1], our findings suggest 

there are several areas where an understanding of sexual behavior, sexual mixing and 

sexual networks could inform the implementation of HIV interventions. 

In Chapter 2, we find that sexual behavior is more conservative among 

individuals living with HIV on ART, compared to among those living with HIV not on 

ART. This contributes to other evidence suggesting the importance of individuals living 

with HIV not on ART contributing disproportionately to HIV transmission[2].  Our 

findings suggest the importance for interventions to target individuals living with HIV 

but not on ART to engage them not only in HIV care and treatment but also in risk 

reduction interventions. 

We show sexual assortativity along a number of different characteristics and 

characterize sexual partner degree distributions in Chapter 3. Among household partners, 

we see some evidence of assortativity by degree and ART status, as well as dramatic 

assortativity by race and age.  Previous theoretical work has shown the importance of 

mixing patterns on epidemic trajectories, but has shown that the influence of assortativity 

depends on the stage of the epidemic and a variety of other characteristics[3, 4]. An 
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important next step to take using these results is to assess the impact that the documented 

levels of assortativity would have on an epidemic at South Africa’s epidemic stage when 

we implement future HIV combination prevention interventions.  

In Chapter 4, we present a novel nonparametric method for generating full 

network characteristics using limited egocentric and household partnership data. The 

methods allow for us to synthesize the space of sociometric networks that are consistent 

with these limited network data, without the extensive effort and costs inherent to a full 

sociometric study. We find that our method produces consistent networks that show a 

relatively narrow degree of variability on higher order network statistics, such as 

component size, average path length, or average betweenness.  However, when we 

compare methods to balance male and female sexual partnership numbers, we find that 

the method used to balance these distributions matters a great deal. We find that if we 

assume all excess male partnerships are among sex workers, we find that sexual networks 

become much more highly connected and that the network can sustain a higher number of 

HIV cases, when compared to a network where we assume that all females have a 

consistent level of underreporting.  Our results reinforce the importance of capturing high 

risk individuals, like sex workers, in serosurvey data in order to truly understand HIV 

transmission. It also suggests that the effectiveness of interventions to reduce HIV in 

populations will vary by our understanding of the spread of HIV, and that therefore this 

understanding should inform the selection of intervention approaches. In networks 

influenced dramatically by sex workers we will need to have a particularly targeted 

approach, but in the absence of a sex working or other much higher risk population our 

efforts will be more diffuse across the population. 
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This dissertation had a number of both strengths and weaknesses. Its largest 

weakness is the reliance on self-reported sexual behavior data for almost all of our 

findings. As self-reported data has been documented to have a range of biases[5-9], but 

biases that do not consistently trend in one direction or the other, our results are limited 

by the necessity to assume that self-reports are largely accurate.  We do assess the impact 

of differential reporting by sex on our sexual networks in Chapter 4, which provides a 

small measure of assessment of the strength of our assumption. We additionally are 

limited by our exclusion of same-sex partnerships, excluded due to potential for bias. 

Same-sex partnerships (particularly men who have sex with men and transgender 

women) likely mix with and influence generalized heterosexual epidemics like that of 

South Africa[10]. Further, our study design likely does not capture migrant workers 

(while the single-sex hostels that migrant workers frequently live in were not explicitly 

excluded, the study was not designed to incorporate this population) or prisoners, who are 

explicitly excluded in the study design (SABSSM IV included non-institutionalized 

populations). Our study also has a number of strengths. First, we utilize a nationally 

representative sample of South Africans, which provides a wealth of data to characterize 

individuals across the country.  Second, we utilize novel methods to generate sexual 

networks in Chapter 4 which expand upon previous modeling methods[11]. The 

nonparametric approach that we utilize gives nuanced understanding of sexual networks 

and can be extended to additional situations and fitting data. This method allowed for a 

principled assessment of balancing degree scenarios, an area that has largely been 

ignored by the body of network modeling research with a few notable exceptions[12]. 
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Sexual networks can influence the potential effectiveness of combination HIV 

prevention interventions[13, 14].   In a time when research and programmatic dollars are 

ever decreasing, and the continuation of vital programs such as the President’s 

Emergency Plan for AIDS Relief (PEPFAR) are in doubt[15], implementing programs in 

the way that will maximize our impact while minimizing costs is paramount. Using our 

improved understanding of the HIV epidemic based on sexual behavior and sexual 

networks to implement interventions that can have the greatest impact on curbing 

transmission is a key step at this time. Previous optimism regarding the potential for HIV 

treatment as prevention (TasP) to rapidly eliminate HIV transmission[16] has faced 

challenges in the context of difficulties linking individuals in South Africa to care[17, 

18], a necessary second step for any treatment as prevention policy. Next steps include 

using our simulated sexual networks to assess network structure impacts on the 

effectiveness of HIV TasP, based on our understanding of differential uptake of TasP by 

the same characteristics that describe sexual mixing and networks. Using the findings 

from this dissertation and the body of work upon which it builds, we can design and 

implement interventions with the greatest impact to those most in need to combat South 

Africa’s HIV epidemic. 
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