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Abstract  

 Epileptic seizures are commonly classified as either generalized (originating 

simultaneously in cortical neurons across the entire brain) or focal (originating in a subpopulation 

of cortical neurons in a focal brain region).  Focal seizures are further subdivided according to 

whether the seizure causes impaired awareness (focal impaired), or does not (focal aware).  Focal 

impaired awareness seizures cause more disability because patients cannot adequately react to their 

surroundings, increasing the risk of car crashes, burns, and other accidents.  FIA seizures can also 

be accompanied by automatic behaviors, such as undressing or running, which can be 

embarrassing or dangerous.  While treatments exist for epileptic patients with FIA seizures, 

tracking the efficacy of treatments can be difficult since patients often will not remember the 

episodes or recognize that one has occurred.  In order to effectively track FIA seizures in epileptic 

patients, active detection that does not hinder daily life is needed. 

 FIA seizures may originate in different regions of the brain and thus may have very 

different clinical manifestations across individuals.  However, most cause an increase in heart rate, 

likely through stimulation of sympathetic efferents in the hypothalamus, without a commensurate 

increase in physical activity.  Using a common consumer-grade smartwatch, the Apple Watch, we 

used a refined set of engineered features derived from the photoplethysmogram (PPG) heart rate 

sensor date and tri-axial accelerometer data to train neural networks to detect FIA seizures 

associated with an increase in heart rate.  This strategy was based on our judgment that FIA 

seizures without an increase in heart rate are not sufficiently stereotyped across patients to detect 

with any of the available sensors in consumer wearable devices. 

 A binary classification, artificial neural network was trained using leave-one-out cross-

validation (LOOCV).  Each of the models correctly identified the left-out FIA seizure within 30 
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seconds, but high false alarm rates prompted further development.  Further training and the use of 

accumulation filtering allowed for a neural network model with 90% specificity, identifying 27 

out of 30 total FIA seizures, and an overall false alarm rate of 1.65/hour with no false alarms during 

resting, running, or household chores. 
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Introduction 

Focal Impaired Awareness Seizures 

 Focal onset impaired awareness seizures are a specific category of epileptic seizures.  

These seizures have historically been called complex partial seizures, but were renamed in 2017 

to more clearly distinguish seizure categories.  These seizures are often referred to as focal 

impaired awareness (FIA) seizures or focal unaware seizures. 

 The focal onset portion of the term describes where the seizure starts in the brain.  FIA 

seizures originate from localized regions in the brain, usually in a single hemisphere (left or right).  

However, these seizures include those which originate at any depth or surface in the brain and can 

vary in terms of how much they spread across networks in the brain or whether they remain tightly 

localized.  The major distinction between focal onset and general onset seizures is that in general 

onset seizures, both sides of the brain, the right and left hemispheres, experience abnormal activity 

at the onset of the seizure. 

 The impaired awareness distinction of FIA seizures describes the observed physical 

manifestations of the seizure.  Patients become unaware of their surroundings and cannot properly 

react to their environment.  While individual patients will often have similar responses for each 

FIA seizure, these responses can vary considerably from patient to patient.  During a FIA seizure, 

patients will often perform automatisms – automatic, repetitive motions with no obvious purpose 

– such as smacking their lips or touching their face.  Patients could also simply continue simple 

tasks that they were already doing, for example watching television or cleaning dishes, or wander 

aimlessly.  FIA arrest seizures can also be present, where a patient becomes motionless regardless 

of their previous motor activity.   
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 FIA seizures are notably different from classic tonic-clonic (grand mal) seizures that are 

most often associated with epileptic seizures in the lay public.  While there are motor symptoms, 

the sharp stiffening tonic phase and convulsive clonic phase are not typically characteristics of 

focal impaired awareness seizures.  Generally, seizures are classified by their onset region and 

awareness level (Figure 1).  The seizures can be further described by their motor symptoms.   

 These three levels of distinction do not capture the full depth of different seizure types or 

how seizures can evolve from one category to another, but rather provide a high-level 

understanding of major differences between seizure types.  FIA seizures can also end up spreading 

to both hemispheres of the brain, resulting in focal to bilateral tonic-clonic seizures.  The events 

of the FIA and bilateral tonic-clonic portions of the seizure are distinct, but it can be difficult to 

recognize the focal impaired awareness symptoms as the tonic-clonic symptoms are more 

noticeable and severe. 

 

 

Figure 1. Basic seizure classification categories. 
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 The varying symptoms and behaviors experienced by patients with focal impaired 

awareness seizures largely depend on the brain region in which they originate and the degree to 

which the seizure spreads to other regions.  The experienced symptoms are closely tied with the 

normal functional properties of the affected brain region, showing the physical manifestations of 

the effective localized dysfunction. 

 Focal onset impaired awareness seizures most commonly originate in the temporal lobe, 

accounting for approximately 70%–90% of FIA seizures.  Temporal lobe FIA seizures are often 

accompanied by stereotyped automatisms.  The automatisms are unique to the patient and specific 

brain localization.  Automatisms are typically oral or manual, possibly with other automatic motor 

behavior.  Some patients experience more overt motor activities, ranging from walking or running 

to nondirected violent outbursts.  Patients who experience temporal lobe FIA seizures may go 

through  minutes of confusion before recovery. [1]  

 The second most common origin for FIA seizures is the frontal lobe.  Frontal lobe FIA 

seizures are often brief, lasting around 30 seconds, and occurring multiple times a day in 

succession.  Half of patients experience a loss of consciousness.  The seizures are often triggered 

while the patient is sleeping with minimal confusion following the seizure.  Hypermotor symptoms 

such as leg thrashing or pelvic thrusting can occur, or motor symptoms can be milder with 

abnormal posturing.  Vocal automatisms can also manifest.  [1] 

 Symptoms associated with parietal lobe onset focal impaired awareness seizures are not as 

physically pronounced.  Abnormal sensorimotor experiences and vestibular hallucinations can 

occur during a FIA seizure in the parietal lobe.  Visual or somatic illusions can be experienced as 

well as dizziness.  Parietal lobe FIA seizures can spread to other regions of the brain, causing 

automatisms and loss of consciousness.  [1] 
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 Focal impaired awareness seizures in the occipital lobe often cause visual auras.  

Uncontrolled eye movements, rapid blinking, and temporary loss of sight can also occur.  More 

in-depth visual hallucinations with well-formed images can arise from seizures originating in the 

occipital lobe.  The seizure can also further spread to other regions of the brain, resulting in further 

symptoms.  [1] 

 Figure 2 shows a summary of the basic symptoms for the common focal impaired 

awareness seizure onset localization mapped to their respective brain regions. 
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Figure 2. Common focal impaired awareness seizure  

onset regions and their characteristic symptoms. 
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 Patients with epilepsy who suffer from FIA seizures can have difficulty with living 

independently since episodes are often unpredictable and can result in compromising situations, 

leading to trauma and serious accidents.  FIA seizures have a higher rate of recurrence than 

generalized onset seizures.  Patients may suffer from anxiety due to the stress of anticipating a 

seizure.  Driving may not be possible due to the risk of having an episode while behind the wheel.  

Patients are at risk for sudden unexpected death in epilepsy (SUDEP) as well.  Epilepsy patients 

also have a mortality rate 2–3 times greater than those without epilepsy.  [1] 

 Treatments using medication, specialized diet, or surgery can be beneficial.  However, 

tracking the progress and efficacy of treatments can be difficult given the varied symptoms of FIA 

seizures, particularly the loss of consciousness and not remembering that an episode has even 

occurred.  Relying on caregivers or family members to be with the patient at all times is taxing.  

Seizures can also be missed if there is no one in the same room as the patient or if the symptoms 

do not reliably alert those monitoring the patient at home.  In order to better detect and track focal 

impaired awareness seizures in patients, a robust, automated detection strategy is needed. 

 

Current Seizure Detection Strategies 

 Specialized algorithms and machine learning strategies have been developed and refined 

for seizure detection.  Various modalities have been studied, balancing physiological information, 

impact on the patients’ daily life, reliability, and feasibility.  When studying a condition that affects 

the neural activity of the brain, measuring the electrical activity of the brain is an important method 

to consider.  However, other indirect measurement modalities have a greater potential for adoption 

outside of highly specialized clinical settings.   
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 Scalp-level electroencephalography (EEG) provides a noninvasive measure of electrical 

activity across the surface of the brain.  Detection of seizures by EEG greatly depends on the type 

of seizure, whether it is focal or more generalized, and how the specific features of a given episode 

present over time.  EEG-based detection schemes have shown to be reliable with sensitivities over 

75% and up to 90%.  False alarm rates are also acceptable with some as low as one every ten hours, 

but others are more taxing at five per hour.  Still, focal activity is often more difficult to reliably 

detect.  Using EEG for seizure detection is also limited to clinical settings.  Outpatient adoption is 

unlikely as patients would be unwilling to wear the EEG electrodes in daily life.  [2] 

 Electrocorticography (ECoG), a system with electrodes implanted in the brain, can also be 

used for seizure detection.  This method is far more invasive and thus limited to special cases.  The 

limited number of electrodes also restricts use to patients with one or two seizure foci, where the 

onset of the seizure reliably occurs.  Detection is based on repeatably observed abnormal activity 

at the seizure foci for each patient. [3] 

 Noninvasive seizure detection methods that have minimal impact on daily life are more 

tractable for outpatient care.  Video-based, mattress-embedded, and wearable sensors have all been 

used to detect seizures.  Video and mattress systems rely heavily on pronounced motor symptoms 

in order to detect seizures.  These are most useful for generalized tonic-clonic seizures, but are not 

reliable for focal impaired awareness seizures. [4] [5] 

 Wearable sensors that can monitor acceleration and physiological parameters such as heart 

rate are noninvasive and commonly used by the general population in everyday life.  The use of 

low-impact, wearable monitors is more likely to be adopted by patients at home during outpatient 

care, especially when common consumer-grade hardware is used.  Wrist-based wearable sensors 

have been used widely for development of seizure detection strategies for hypermotor and 
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generalized tonic-clonic seizures.  However, detection of seizures with minimal motor activity and 

FIA seizures have not been reliable and are often dismissed. [5]–[9]  Nonmotor seizure detection 

strategies have relied on heart rate features often without the active involvement of movement 

detection.  For nonmotor seizures characterized by an increase in heart rate, the seizure can be 

detected.  However, the most successful sensitivity rates, 70% [10] and 74% [11], also have the 

greatest false alarm rates, 50/day and 216/day, respectively [9]. 

 

Aim 

 The aim of this study was to reliably detect focal impaired awareness seizures with an 

increase in heart rate using sensors from a consumer-grade smartwatch.  The detector should not 

impose excessive false alarm rates while successfully identifying as many FIA seizures as possible.  

The algorithm ideally should also be lightweight enough to be deployed on consumer-grade 

devices. 

  

Data Collection 

 Patient data were collected over a 13-month period in conjunction with ongoing research 

studying a variety of seizure types at Johns Hopkins Hospital.  Patients with epilepsy are cared for 

in an epilepsy monitoring unit (EMU) for the purpose of diagnosing and providing treatment to 

patients.  Scalp EEG, general vitals, and video monitoring is used to collect data regarding 

observed seizures.  In addition to the standard collection of video-EEG data in the EMU, a 

consumer-grade wearable device, an Apple Watch, was worn by patients.   
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 Among the larger set of patients and varied seizures, 41 focal impaired awareness seizures 

from 17 patients were recognized by a team of epileptologists.  A characteristic increase in heart 

rate was evident by the sensors on the Apple Watch for 30 of the FIA seizures. 

 The only data streams directly used for this work were the heart rate measured by the 

photoplethysmogram (PPG) sensor and acceleration of the tri-axial accelerometers on the Apple 

Watch.  The PPG sensor measures changes in light absorption on the skin surface, which can in 

turn be used to infer blood volume changes due to pulsing blood flow, thereby effectively 

measuring the heart rate.  The practical realization of this process merits its own study as 

complications can arise from movement anomalies and other confounding factors.  Most solutions 

rely on windows of approximately seven seconds to measure the heart rate and account for factors 

that would otherwise affect a more naïve approach.  The Apple Watch uses an onboard system to 

directly produce a heart rate measure from the raw PPG sensor.  The resulting heart rate was used 

for deriving features for FIA seizure detection. 

 Accelerometer data from the Apple Watch are directly measured by accelerometers placed 

orthogonally across the three dimensions of space.  The x, y, and z axes of the wristwatch were 

defined as being along the length of the forearm, perpendicular to the forearm along the face of 

the watch, and perpendicular to the watch face, respectively.  General signal processing strategies 

were used to account for common issues with accelerometer data from wearable devices.  Each of 

the three accelerometer readings were effectively bandpass filtered.  A high-pass filter using a 

second-order Butterworth filter with a 0.5 Hz cutoff frequency was used to isolate the linear 

acceleration component of the signal from the gravitational portions while also filtering out other 

low-frequency artifacts [12].  High-frequency noise was filtered out with a low-pass, fourth-order 

Butterworth filter with a cutoff frequency at 20 Hz. 
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 General non-seizure data were also needed for this study.  While non-seizure data were 

collected, it was not representative of daily activities.  In order to properly train and validate against 

ambulatory settings and common real-world activities, open data sources were searched.  Given 

the rise in human activity recognition through applied machine learning and open datasets, there 

are multiple datasets available.  However, the data must be carefully selected so as to reasonably 

represent data that could be obtained in the same manner as the seizure data, i.e. with the wrist-

worn Apple Watch.    

 The PAMAP2 physical activity monitoring dataset contains a comprehensive group of 

motion and physiological sensor data during various activities including walking, running, and 

household chores [13].  The dataset provides over ten hours of physical activity monitoring for 

nine subjects.  Among the different sensor data in the PAMAP2 dataset is a wrist-worn, 3D 

accelerometer and heart rate recordings.  In order to account for different sampling rates between 

the seizure dataset and non-seizure dataset, data was down-sampled to the lowest sampling rate.  

Furthermore, the developed features used for training and seizure detection were designed to 

inherently account for dropped data points and to normalize across datasets.   

 

Seizure Criteria 

 Focal impaired awareness seizures were identified by epileptologists based on scalp-level 

EEG data and video recordings in an epilepsy monitoring unit.  Motor responses, dates with the 

time of day, and seizure duration were all recorded.  Analysis was restricted to FIA seizures with 

a characteristic increase in heart rate during or immediately preceding the seizure.  FIA seizures 

with no heart rate increase were not expected to be able to be reliably detected and would likely 
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inhibit overall seizure detection and result in greater false alarm during normal activities.  Figure 

3 shows examples of accepted and rejected FIA seizures. 

 

 
(a) 

 
(b) 

Figure 3.  Example of a FIA seizure with a characteristic increase in heart rate (a) used in the 

study versus one with no discernable heart rate peak during or preceding the seizure (b).  Orange, 

blue, and green traces correspond to the x, y, and z axes of the accelerometer, respectively.  The 

red trace denotes heart rate. 

 

 Furthermore, labeling of identified seizures should be based on the available data streams 

for model prediction: heart rate (from PPG sensor) and movement (from accelerometers).  

Depending on the timing of cardiovascular and motor symptoms with the seizure onset, it would 

be expected that detection could be delayed.  However, with only these secondary symptomatic 

data sources, training based on segments that yet show no symptoms would cause class confusion 

between seizure and non-seizure classes when training.  Therefore, labeled segments for model 

training were restricted to FIA seizure segments that included the initial increase in heart rate. 

 In order to standardize seizure labeling based on heart rate, labeled FIA seizure onset was 

set to the time when the heart rate increased to beyond two standard deviations from the mean over 

the past five minutes.  For the purposes of training the machine learning models, the detection of 

FIA seizures with cardiovascular symptoms can be thought of as detecting whether an increase in 
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heart rate is due to a FIA seizure or normal activity.  Figure 4 shows an example of a labeled FIA 

seizure segment with surrounding non-seizure segments. 

 

 

 From the total of 41 identified FIA seizures, 30 seizures (73%) were characterized by an 

increase in heart rate of at least two standard deviations from the running five-minute mean. 

 

 

 

Figure 4.  FIA seizure segment labeled based on heart rate increase of two standard deviations 

from the five-minute moving mean.  Orange, blue, and green traces correspond to the x, y, and z 

axes of the accelerometer, respectively.  The red trace denotes heart rate. 
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Analysis Software 

 Python 3 was used to analyze the data for this work.  The NumPy package was used for 

streamlined computing and data processing.  Data analysis across variable moving windows data 

organization for machine learning training was accomplished with the Pandas package for the 

Python programming language.  Data visualization was performed with Matplotlib package.  

Tensorflow 2 was used to create, train, and test machine learning models. 

  

Feature Engineering 

 Heart rate and tri-axial acceleration data were obtained from the wrists of patients using 

the Apple Watch.  From these four data streams, various features were created in order to enhance 

separability of focal impaired awareness seizures from a range of non-seizure activities.  For this 

work, the goal was to detect FIA seizures with an increase in heart rate without presenting high 

false alarm rates during ambulatory settings and everyday life.  The major premise/hypothesis that 

guided feature engineering was that the increase in heart rate would not be explainable by current 

or preceding physical activity.  This distinction is made because it is assumed that different types 

and intensities of physical activity will have somewhat proportional heart rate responses.  The 

benefit of using machine learning to separate FIA seizures from normal behavior is that every 

possible scenario does not need to have independent activation criteria.  An entirely complete 

equation using movement and heart rate with different permutations and relationships during all 

normal physical activities, and then yielding a probability that a FIA seizure is occurring, does not 

need to be manually formulated.  Instead, the analysis can be performed using a machine learning 

strategy.   
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 Raw data can be used for many machine learning applications and has previously been 

explored in the field of seizure detection.  However, raw data for seizure detection has mainly been 

restricted to EEG-based systems and still benefits from engineered or extracted features [14]–[16].  

Data consistency can become a major confounding factor when relying on raw data.  Consumer-

grade wearables, even with real-time heart rate and accelerometer data, are still susceptible to 

measurement failures, causing missing data segments. 

 In order to prevent reliance on single datum instances and account for the different 

sampling rates between acceleration and heart rate, time-windowed, statistical features were used.  

Translation of the model to similarly sampled heart rate and acceleration data using different 

hardware also becomes available. 

 Statistical measures of raw data are often used for classification tasks in machine learning.  

For time series data, statistical measures can be applied over a moving window to enhance the 

predictive potential of the model.  Typically, this is used for forecasting data — predicting the next 

value of the series before it is revealed or measured.  For the purpose of seizure detection, the 

future physiological measures (heart rate and movement used here) are not meant to be predicted.  

Instead, the current and previous physiological measures are used to classify the activity and detect 

seizures against normal activity. 

 Engineered features ideally capture different aspects of the data, but do not necessarily 

need to be without mutual information.  Rather, if two features are tightly coupled in class and 

become decoupled in another, this would be beneficial in creating separability during model 

training.  Over-specific features that can be used to independently predict the class can also lead 

to the model training towards a local minimum, for example created by a heavily influential class, 

rather than training towards the optimal, more generalizable solution.  This is often referred to as 
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the model finding a shortcut in the data.  Maintaining more general features that still capture the 

relevant domain knowledge also provide more generalizable results with previously unseen, new 

data.  Restricting to the fewest features that still result in optimal model performance further helps 

to reduce the memory and storage demands of the model, making it more available for deployment 

directly on wearable devices. 

 In order to maintain these principles for engineering the features, the only purely statistical 

measures performed on the heart rate and accelerometer data for feature engineering were moving 

means and standard deviations.  These measures alone do not provide the necessary information 

to create a reliable model.  There is no inherent history to the features nor can they be generalized 

across different patients with varying normal physiological levels.  The history of time series data 

can be captured by recurrent neural networks (RNN), but the history used is typically recent 

predictions rather than recent features.  Instead, selective time points in the recent past can be used 

for current features.    We selected the time points to be used in our model based on initial 

observations of time differences between movement and heart rate changes during normal 

activities and FIA seizures. These were further refined by incorporating larger time differences 

and retaining those with the greatest positive effect on separability between FIA seizures and non-

seizures while removing others. 

 The values of the statistical measures of heart rate and movement themselves are not 

particularly telling of whether a seizure is occurring.  Rather, the progression or evolution of the 

statistical measures in relation to one another allows for accurate prediction.  Since the watch can 

be worn in slightly different positions by each patient and automatisms and motor symptoms are 

often unique to a given patient, the L2 Euclidean norm of the three accelerometer values was used 



15 

 

to capture the meaningful component of motion and prevent confounding the model with 

misleading or unusable baselines.   

 In order to describe how these continuous, statistical features capture the onset and 

progression of FIA seizures, we used the following notation scheme.  The data before 

implementing statistical measures, the heart rate and acceleration magnitude, are each referred to 

as 𝑥.  The same methods were used on both data; therefore, a single representation is used to 

describe the feature engineering process for both.  Subscripts denote the time in seconds from the 

current point, 𝑥0.  Given that the necessary data are from the recent past, ranges of time are shown 

by colons to avoid confusion with negative values.  The past 10 seconds of data are denoted by 

𝑥0: 𝑥−10.  The 𝑓(𝑥) notation is used to represent the 𝑚𝑒𝑎𝑛(𝑥) and 𝑠𝑡𝑑(𝑥) statistical functions for 

the purpose of describing the sliding window and comparison with recent past. 

 In the process of selecting features, the length of the sliding window, which time points to 

compare, and different statistical measures were tested.  The final list of features was selected for 

brevity without sacrificing final selectivity of the resulting model.  For these features, the current 

10-second mean [𝑚𝑒𝑎𝑛(𝑥0: 𝑥−10)] is compared to the 10-second mean from 10 seconds ago 

[𝑚𝑒𝑎𝑛(𝑥−10: 𝑥−20)], 20 seconds ago [𝑚𝑒𝑎𝑛(𝑥−20: 𝑥−30)], 30 seconds ago [𝑚𝑒𝑎𝑛(𝑥−30: 𝑥−40)], 

1 minute ago [𝑚𝑒𝑎𝑛(𝑥−60: 𝑥−70)], and 2 minutes ago [𝑚𝑒𝑎𝑛(𝑥−120: 𝑥−130)].  This process is 

repeated for the current 10-second standard deviation.  Both processes were used for the heart rate 

and acceleration magnitude.  Table 1 shows a summary of the statistical measure comparisons 

applied.  Figure 3 gives a visualization of the process applied to a sample data instance at 𝑡0.  In 

practice and real-time implementation, the previous raw data do not need to be stored, but only the 

resulting statistical measures 𝑓(𝑥). 
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Table 1. Engineered features of the change in windowed statistical measures over time from 10 

seconds to 2 minutes for both heart rate and acceleration magnitude. 

Change in the Mean Change in the Standard Deviation 

𝑚𝑒𝑎𝑛(𝑥0: 𝑥−10) −  𝑚𝑒𝑎𝑛(𝑥−10: 𝑥−20) 𝑠𝑡𝑑(𝑥0: 𝑥−10) −  𝑠𝑡𝑑(𝑥−10: 𝑥−20) 

𝑚𝑒𝑎𝑛(𝑥0: 𝑥−10) −  𝑚𝑒𝑎𝑛(𝑥−20: 𝑥−30) 𝑠𝑡𝑑(𝑥0: 𝑥−10) −  𝑠𝑡𝑑(𝑥−20: 𝑥−30) 

𝑚𝑒𝑎𝑛(𝑥0: 𝑥−10) −  𝑚𝑒𝑎𝑛(𝑥−30: 𝑥−40) 𝑠𝑡𝑑(𝑥0: 𝑥−10) −  𝑠𝑡𝑑(𝑥−30: 𝑥−40) 

𝑚𝑒𝑎𝑛(𝑥0: 𝑥−10) −  𝑚𝑒𝑎𝑛(𝑥−60: 𝑥−70) 𝑠𝑡𝑑(𝑥0: 𝑥−10) −  𝑠𝑡𝑑(𝑥−60: 𝑥−70) 

𝑚𝑒𝑎𝑛(𝑥0: 𝑥−10) −  𝑚𝑒𝑎𝑛(𝑥−120: 𝑥−130) 𝑠𝑡𝑑(𝑥0: 𝑥−10) −  𝑠𝑡𝑑(𝑥−120: 𝑥−130) 
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Figure 5. Process of creating features for data at 𝑡0.  Selected 10-second sliding windows of the 

data are used.  The mean and standard deviation functions are represented by the 𝑓(𝑥) notation. 
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Machine Learning Model Design 

 Machine learning models have been applied to extensive fields for the purpose of analyzing 

data into meaningful results.  Models are often highly specific to the individual task at hand and 

must be designed to accommodate the type of input data and yield the proper output.  There is 

rarely, if ever, an agreed upon optimal model for a given task; many different designs will give 

comparable final results.  There are still general principles to follow when designing and testing a 

new model.  Tradeoffs must be made regarding complexity and computational demand versus 

predictive performance.  We found that a binary classification artificial neural network with seven 

layers produced reliable FIA seizure detection without overdue complexity or computational 

demand. 

 In order to accurately detect focal impaired awareness seizures using the Apple Watch, 

current physiological measures of cardiovascular activity and upper body movement must be 

categorized as either occurring during a FIA seizure or during normal activity.  The discrete 

measures of heart rate and wrist acceleration are being recorded continuously in time, creating 

time series data with multiple, concurrent channels.  This type of data is often used in the context 

of predicting future values in the time series rather than categorizing the segments of the data into 

different states or classes.  The data can also be analyzed in a manner similar to image classification 

tasks.  However, these methods focus on borrowing entire model designs from other tasks rather 

than designing a model to specifically fit the task domain from the bottom up.  Instead, engineered 

features that encode for the present and different time points in the recent past are continuously 

updated in time and used as first layer inputs in an artificial neural network. 

 Recurrent neural networks are a class of algorithms designed for handling time series data 

of variable lengths.  These networks can retain states of internal neurons and results from previous 
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time points in order to aid in prediction for future time points [17]–[19].  While the true transition 

from pre-seizure to seizure and then back to normal activity may be continuous, the data have only 

been labeled as one of the discrete selections, seizure or non-seizure.  Furthermore, the input 

segments are consistent in length and history has already been embedded in the engineered 

features.  

 

 

 The basic units of an artificial neural network are the individual neurons.  At each layer, 

the neurons take input from the neurons or engineered features from the previous layer.  A 

weighted sum of all inputs is performed and then mapped to an activation function for the given 

neuron.  The weights are systematically updated during training in order to optimize the 

Figure 6.  Diagram of a simplified neural network segment. 
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performance of the overall network.  Figure 6 shows a segment of simplified neural network.  

Notation of the weights 𝑤 shows the layer in the superscript and the input neuron followed by the 

output neuron in the subscript (𝑤𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛,   𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛
𝑙𝑎𝑦𝑒𝑟

).   

 The activation function 𝑎 is applied to the weighted sum input for each neuron.  As with 

the variable weights, the use of an activation helps to accommodate for interactions between input 

neurons.  Activation functions also support the model in addressing non-linearities needed to 

increase separability for the overall predictive performance.  For all of the neurons in the hidden 

layers, the rectified linear unit (ReLU) activation function was used.  The ReLU function allows 

for faster training during gradient descent with limited slopes of zero or one.  Variable bias terms 

for each neuron (i.e. where the linear unit portion reaches the x-axis) allow for non-linearities to 

be addressed. 

 

 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) 

Figure 7.  Rectified linear unit (ReLU) activation function. 
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  The depth of the artificial neural network should be deep enough to allow for sufficient 

interactions between inputs and effective model training without being so long as to create 

unnecessary computational demand with minimal to no improvement on performance.  More 

layers create further abstraction from the input data.  Since the input layer already uses domain-

specific engineered features, extensive abstraction is not needed.  Following the input layer of 

engineered features is a 10-neuron dense layer, three consecutive 30-neuron layers, then another 

10-neuron layer followed by a final single neuron layer. 

Figure 8.  Diagram of the binary classification neural network  

with activation functions and dropout shown. 
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 Dropout between layers during training prevents the model from overfitting and heavily 

relying on individual neurons or connections.  Connections can also be codependent without 

dropout, resulting in a lower learning potential.  During a given training phase, individual neurons 

and their associated connections are dropped or zeroed out. Dropout was used at a rate of 10% on 

the first two 30-unit layers, effectively creating layers of 27 neurons that interchange with each 

propagation of training. 

 The final layer of the neural network uses the more computational sigmoid function in 

order to separate the two classes, FIA seizure versus non-seizure, with a single neuron.  Combined 

with the binary cross-entropy loss function, the final layer allows for effective binary classification. 

 

 

 

 

 

𝜎(𝑥) =  
1

1 + 𝑒𝑥
 

Figure 9.  Sigmoid activation function. 
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 Due to the relatively low amount of FIA seizure data available, leave-one-out cross-

validation (LOOCV) was used to train the network.  In the LOOCV training paradigm, the model 

is trained on all but one of the data samples and then tested on the remaining one.  In order to 

simulate a new FIA seizure event and avoid training the model on part of a seizure that it would 

be tested on, an entire seizure was left out of training for validation, not just a segment of the 

seizure.  If part of the same seizure were to be used for training and validation, it would result in 

misleading results favoring improved predictive performance.  In total, 31 models were trained on 

the same architecture (Figure 8) for the 30 FIA seizures.  One model was trained on all of the 

available seizures to measure false alarm rates in a larger representative dataset of everyday 

activities including household chores and exercise [13]. 
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Results 

 The metrics used to train the model were limited to the optimization of accuracy through 

the binary cross-entropy loss function.  When evaluating the overall performance of the trained 

models, further analysis is needed.  The aim for seizure detection is to identify as many of the 

seizures as possible while minimizing the number of false alarms.  True positive (TP), false 

positive (FP), true negative (TN), and false negative (FN) metrics are used in terms of the positive 

detection of a FIA seizure, as labeled by 10-second binned increments.  These values were used to 

calculate the sensitivity, specificity, precision, and accuracy of each model with training and 

testing data.  The number of independent FIA seizures recognized is needed to understand if there 

are any missed seizures for a given model.  The false alarm rate, defined here as the number of 

false alarms during normal activity over a given period of time, is also used as it is more 

meaningful in practice than the false discovery rate, which does not account for time. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝑇𝑖𝑚𝑒
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 The performance of the binary classification artificial neural network was assessed in 

regards to how well focal impaired awareness seizures were identified against normal activities.  

The same architecture was trained on 30 combinations, each with 29/30 of the FIA seizures using 

leave-one-out cross-validation.  When local minima resulting in below 70% training accuracy 

prevented further training, the given model was retrained with a new initialization.  Metrics of the 

training sets show how well the given neural network converged towards optimal separation of the 

two classes, seizure and non-seizure.  The performance of each model on the remaining FIA 

seizure during validation tests showed how well each model can generalize to new data.  This was 

used to estimate how well the models would perform when applied to new patients.   

 The artificial neural networks were trained over 60 epochs in an effort to capture when the 

performance of the model reached its maximum.  Figure 10 shows the average accuracy and loss 

of the models over each training epoch with one standard deviation highlighted.  Most models 

reached near their optimal accuracy at 30-40 epochs.  However, the trend towards improved 

accuracy continued into 60 epochs of training, albeit with severely diminished returns per epoch.  

A similar trend is apparent in the binary cross-entropy loss function as it is minimized over the 

epochs.  At 60 epochs an average training accuracy of 84% is reached and the average binary 

cross-entropy loss goes to 0.553. 
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(a) 

 
(b) 

Figure 10.  Average training accuracy and loss over 60 epochs  

with one standard deviation errors highlighted for the 30 LOOCV neural networks. 

 

 

 

 

 

 
 

(a) 
 

(b) 

Figure 11.  Boxplot (a) and histogram (b) of the final training accuracies  

after 60 epochs for the 30 LOOCV neural networks. 
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 The average training accuracy and standard deviation does not clearly show the disparity 

in final training accuracies across the models.  A boxplot and histogram of the final training 

accuracies is presented in Figure 10.  The majority of training accuracies fall between 82% and 

88% with the maximum reaching as high as 90%.  There are three outliers among the neural 

networks with accuracies of 73%–74%. 

 In an effort to obtain the greatest separability between FIA seizures and normal activity, 

the binary classification neural network was also trained on all available seizure data without 

withholding a separate validation or test set.  This would be expected to yield the lowest false 

alarm rate and greatest FIA seizure detection accuracy, but is highly susceptible to overfitting.  

Without a validation or test set of the artificial neural network, the presence of overfitting cannot 

be ruled out.  As shown later, the best-performing networks trained using LOOCV were able to 

perform similarly to the best-performing iterations of the network trained on all available data. 

 Figure 12 shows the sensitivity, specificity, precision, and accuracy for 10 iterations of the 

binary classification neural network.  Local minima in the loss function were present, including 

one resulting in an accuracy of 55% that the model was not able to escape when reached.  Due to 

this and other expected local minima, models trained to accuracies below 70% were retrained. 

 The results of the fully-trained model show variable sensitivity, suggesting that some 

seizures could have been entirely missed in certain models.  Still, average sensitivity for the 

networks was 80%, with the highest reaching 91%.  Specificity, precision, and accuracy, all 

showed good performance with average values of 93%, 94%, and 86%, respectively.  The top-

performing model trained with all of the available data was able to identify every seizure, as 

expected, and had a false alarm rate of 1/hour for normal activity including walking, running, and 

household chores.  However, it is expected that this model could be overfit and not perform well 
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if presented with new data.  In order to address this concern, LOOCV was used to train further 

neural networks. 

 

 

Figure 12.  Metrics from 10 iterations of the binary classification neural network  

trained on all available with no separate validation data. 

 

 

 The training dataset results are able to show how each of the neural networks converge to 

a final combination of weights between neurons in an attempt to optimize the final accuracy 

through the binary cross-entropy loss function.  These do not show how well the models would 

perform on unseen data.  For this, each neural network was tested on the FIA seizure that it was 
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not trained on.  Note that these are not randomized segments of seizures, but completely 

independent seizures, simulating an entirely new FIA seizure event for each of the models. 

 Figure 13 shows the summary of the validation set results for the 30 LOOCV neural 

networks.  The final results are disparate in terms of the final metrics.  This can be due to both how 

the model converged on a final set of weights and the individual seizures they were each validated 

against.  Still, each model was able to identify the respective previously unseen FIA seizure.  

However, the individual seizure length labels vary from 6 minutes to 40 seconds, allowing for 

greater FN rates in longer seizures given that all seizures were still identified.  Furthermore, 25 

FIA seizures were detected directly at the onset of the labeled seizure based on heart rate increase, 

which would follow the 10-second delay due to feature windows.  Four of the seizures were 

detected at the second binned window, 20 seconds following the initial increase in heart rate from 

the FIA seizure, and the remaining seizure was identified after 30 seconds.  This strategy was 

useful in rejecting non-seizure activity at rest, with false alarm rates as low as 1/hour.  However, 

when tested against the larger validation set including a range of normal activity, the false alarm 

rate was shown to be rather high at 83/hour.   

 The false alarm rate can be greatly reduced using accumulation filtering.  Accumulation 

filtering is applied after the artificial neural network has made its predictions regarding where the 

time segments will be identified as FIA seizure events or non-seizure events.  The final 

identification of a FIA seizure with accumulation filtering requires that continuous 10-second 

segments are identified as seizures.  For a 30-second accumulation filter, the neural network would 

need three positive predictions in a row for the segment to be identified as a seizure. 
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Figure 13.  Validation set results for the 30 LOOCV neural networks  

tested on complete FIA seizures that were not trained on. 

 

 Using a 30-second accumulation filter, all but one of the FIA seizures are still able to be 

identified for the given model.  The single missed seizure was the one with the shortest labeled 

segment, lasting only 30 seconds itself.  In order for this seizure to be identified, it would need 

each 10-second interval to be properly identified.  The false positive rate is reduced from 83/hour 

to 11.7/hour when using the accumulation filtering.  This would still be approximately one false 

alarm every five minutes.  Furthermore, false alarms were set off during some of the least physical 

activities including lying down, sitting, and standing.  A false alarm every five minutes would 

likely be cumbersome for the patient and could easily result in user rejection.  The false alarm 
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occurrence for activities with low physical demand should be preferably lower than when the user 

is active. 

 In order to reduce the false alarm rate to a manageable value that would not cause undue 

strain on the user, an acceptable balance between identifying every FIA seizure as quickly as 

possible and maintaining a low false alarm rate is needed.  Ideally, every seizure would be 

identified and there would be no false alarms.  However, this is not reasonably expected and would 

rather suggest strong overfitting of the data to the training and test sets. 

 The final model with a balanced FIA seizure detection sensitivity and false alarm rate had 

per-seizure sensitivity of 90%, identifying 27 out of 30 FIA seizures with a cardiovascular 

component.  The false alarm rate for the model, based on validation time segments unseen during 

training, was 1.65/hour, or one every 36.45 minutes.  The false alarm rate was even more promising 

when analyzing results from the activity-labeled PAMAP2 dataset for further possible false alarms.   

 No false alarms were present while subjects were lying down, sitting, or standing.  

However, there were false alarms during periods when subjects got up from after lying down at an 

event-based rate of 25% for the limited number of eight recorded events.  There was a limited 

number of the transient events since the dataset was intended for the recording of discrete activities 

rather than the transition between activities.  Lying down and sitting up were back-to-back events, 

each with considerably more data (Table 2), but recordings of the transition allowed for the capture 

of how the models react during transitions. 

 The majority of false alarms occurred while subjects were ascending stairs with a false 

alarm rate of 0.41/minute, or one every two minutes and 26 seconds.  This is reasonable occurrence 

based on the motivation of the engineered features.  There would likely be an increase in heart rate 

that is higher for the given wrist movements when compared to other physical activities.  This 
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would also be an event that the patients would be more alert to the alert of a predicted seizure with 

few distractions.  The remaining false alarms occurred during cycling at a rate of 2.19/hour.  Table 

2 shows a summary of the false alarm rate for the final model with accumulation filtering broken 

down by each activity as labeled in the PAMAP2 dataset. 

 

Table 2.  False alarm rates of the final neural network with accumulation filtering  

broken down by activity for the available data labeled by activity. 

Activity Time (s) Events FAR 

Lying down 1925 8 0 

Sitting 1851 8 0 

Standing 1899 8 0 

Walking 2387 8 0 

Running 981 6 0 

Cycling 1645 7 0.04/min 

Nordic walking 1881 7 0 

Computer work 3099 4 0 

Ascending Stairs 1172 8 0.41/min 

Descending Stairs 1049 8 0 

Vacuuming 1753 8 0 

Ironing 2386 8 0 

Folding laundry 998 4 0 

Cleaning 1871 5 0 

Jumping Rope 493 6 0 

Getting up from lying down 430 8 25% 

Remaining transient/unlabeled 6610 - 0 

        FAR – false alarm rate 
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Conclusions 

 A binary classification, artificial neural network architecture was used to create a focal 

impaired awareness seizure detector using sensors from a smartwatch, the Apple Watch.  Focal 

impaired awareness seizures were limited to those with a characteristic increase in heart rate.  

Custom features were engineered from heart rate and wrist acceleration in order to capture the 

difference between heart rate spikes due to FIA seizures versus normal activity including walking, 

running, and household chores.  Leave-one-out cross-validation was used to ensure reliable testing 

of the model and prevent overfitting.  Results of the network depend on how training progresses 

using the binary cross-entropy loss function.  Each of the models trained with LOOCV were able 

to identify the left-out FIA seizure within 30 seconds, 12 seconds on average.  However, high false 

alarm rates are persistent across models optimized for identifying every FIA seizure with a 

cardiovascular component.  A balance between identifying as many FIA seizures as possible while 

maintaining acceptable false alarm rates was made with a neural network and accumulation 

filtering that resulted in 90% precision on a per-seizure basis and an overall false alarm rate of 

1.65/hour with the majority of false alarms occurring during ascending stairs.  No false alarms 

were present during resting, running, or household chores.  Despite validation on separate data 

from training, overfitting is still a concern, as with all neural networks.  The premise for FIA 

seizure detection with a cardiovascular component using a consumer-grade smartwatch was shown 

using a transferrable model for real-time deployment. 

 This work is a novel step in accessible seizure detection, expanding from current detectors 

which focus on generalized tonic-clonic seizures with dramatic motor symptoms, allowing for 

detection of focal impaired awareness seizures with heart rate symptoms and often minimal motor 

symptoms.  Future work will be needed in transferring the model to wearable devices, such as the 
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Apple Watch.  Using a pretrained model on mobile devices is currently accessible.  Still, real-time 

testing is needed for validation.  The model is designed to easily use real-time data with minimal 

memory restraints.  Performance metrics are needed for both the performance of the model and 

the resources it consumes when used on consumer-grade wearable devices. 
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