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DISSERTATION ABSTRACT 

Background: The scale-up of malaria control efforts has led to a global decline in malaria burden, but 

progress has stalled or reversed in high-transmission regions. In Zambia, malaria cases increased 

annually since 2009 despite extensive malaria control activities, and malaria remains the most common 

cause of child mortality. To achieve the goal of malaria elimination in Zambia by 2021, drivers of 

transmission in high-burden areas must be identified and new intervention strategies must be 

developed and evaluated.  

Methods: The study was conducted in Nchelenge District, a high-transmission area in northern Zambia. 

The region has two main malaria vectors, Anopheles funestus s.s. and An. gambiae s.s., whose 

distribution varies spatially and temporally. Household surveys were conducted bimonthly from April 

2012 to July 2017. Parasite prevalence was measured using rapid diagnostic tests (RDTs), and malaria 

vectors were collected with indoor light traps. Correlates of parasite prevalence and household vector 

abundance were identified, and the relationships between vector abundance and prevalence were 

defined. An evaluation was conducted to determine the impact of three years of targeted indoor 

residual spraying (IRS) with pirimiphos-methyl on vector abundance and parasite prevalence. Individual 

movement patterns were characterized using global positioning systems (GPS) data loggers and linked 

to malaria risk.  

Results: Parasite prevalence was approximately 50% across all participants, and an average of 7.0 An. 

funestus and 0.8 An. gambiae were collected per household. An. funestus counts were positively 

correlated with both rainy- and dry-season malaria transmission, and An. gambiae counts were 

positively associated with rainy-season transmission only. Within the area targeted for IRS, there was a 

28% decline in parasite prevalence in the rainy season, and a 51% and 36% decline in An. funestus and 

An. gambiae counts. Three-quarters of participants spent time in both sprayed and unsprayed areas, 

and half spent at least an hour away from home per night during times of peak vector biting activity.  
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Conclusions: Malaria transmission in Nchelenge District remains high with many barriers to control. 

Novel intervention strategies are needed to successfully reduce and interrupt transmission in high-

burden areas, including year-round comprehensive vector control. Population movement patterns have 

the potential to increase malaria risk and must be considered in malaria control activities.   
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Chapter 1: Introduction 

OVERVIEW 

Global malaria burden and control 

Malaria is a vector-borne disease caused by infection with the Plasmodium parasite and 

transmitted to humans by female Anopheles mosquitoes. Worldwide, there were an estimated 216 

million malaria cases and 445,000 deaths in 2016, with the majority of morbidity and mortality 

attributed to the species P. falciparum [1]. These values represent a 40% decline in malaria cases and a 

61% decline in malaria mortality since 2000 due to the global scale-up of funding and malaria control 

interventions following the launch of the Roll Back Malaria Initiative in 1998, the Global Fund to Fight 

AIDS, Tuberculosis, and Malaria (GFTAM) in 2002, and the President’s Malaria Initiative (PMI) in 2005 [2-

6].  

The World Health Organization (WHO) has goals to reduce malaria cases and deaths 90% by 

2030 and to eliminate transmission in 35 countries [7]. Current strategies to achieve these targets 

include expanded surveillance, enhanced vector control, improved case management, and 

chemoprevention [1, 7]. Vector control in particular has been identified as a key priority for malaria 

control, including increased coverage of long-lasting insecticide-treated nets (LLINs), expanded indoor 

residual spraying (IRS) and management of insecticide resistance [1, 7]. Larval source management or 

other environmental interventions can also be implemented where appropriate [8]. Current 

recommendations emphasize the integration of vector control methods into local health systems and 

the use of evidence-based methods to guide intervention strategies [9, 10].  

Priorities for case management include community and health provider education, prompt 

identification of infection through rapid diagnostic tests (RDTs), and the use of standardized artemisinin-

combination therapy (ACT) to ensure quality and slow the development of drug resistance [1, 7]. 
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Chemoprevention recommendations include intermittent preventive treatment (IPT) of pregnant 

women and children [1].  

Malaria in high-burden areas 

Despite the widespread expansion of malaria control, gains have been uneven both within and 

between countries. Approximately 90% of malaria cases and deaths continue to occur in sub-Saharan 

Africa, with 14 countries in this region accounting for 74% of all global cases (Figure 1.1) [1]. Progress in 

malaria control has occurred disproportionately in regions with low- to medium-transmission intensity, 

while areas with high baseline transmission have maintained large malaria burdens [11]. As of 2010, 

there continued to be 327 million people in sub-Saharan Africa living in high-risk areas for malaria, 

defined as having parasite prevalence above 40% among children aged 2-10 years [12].  Furthermore, 

the rate of progress has slowed or reversed in many areas. Global malaria incidence has increased yearly 

since 2015, largely in high-burden areas, and cases rose by approximately 5 million in 2016 for the first 

time since the 1990’s [1, 13]. To maintain and restore progress in global malaria control and achieve 

elimination targets, the epidemiology and control of malaria in high-transmission areas must be 

investigated further.   

Although there is a large degree of variation between sites, high-burden areas are characterized 

by stable parasite prevalence above 50% (hyperendemic) or 75% (holoendemic) among children aged 2-

10 years [14, 15]. Regions that support high baseline transmission tend to be tropical, with supportive 

climates for malaria vectors including warm or hot temperatures throughout the year, and have 

substantial precipitation during at least one rainy season [16]. High transmission can persist due to a 

multiplicity of factors including insufficient vector control, limited health and transportation 

infrastructure, lack of health services and trained staff, rural location, afebrile infections, multiple vector 

species, insecticide or drug resistance, and lack of funding or political will for comprehensive malaria 
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control [1, 17]. Socioeconomic hardship is a consistent characteristic of high-transmission regions, and 

high malaria transmission has been implicated as both a cause and effect of poverty [18].  

Challenges to malaria control in high-burden areas  

High indices of transmission   

There are many challenges to successful malaria control in areas with high parasite prevalence. 

In some regions, indices of malaria transmission are exceptionally high. The basic reproductive number 

R0, or expected number of secondary cases from an infectious individual in a susceptible population, has 

been estimated to be up to 3,000 in some regions of sub-Saharan Africa [19]. The number of infectious 

bites per person per time, or entomologic inoculation rate (EIR), has similarly been recorded in excess of 

1,000 per year [20], an average of almost three infectious bites per day. To interrupt transmission, it has 

been estimated that EIR must be less than 1 per year, and parasite prevalence rises rapidly above this 

value [20]. Prevalence over 50% has been recorded in sites where EIR is more than 15 per year, and 

prevalence between 15-40% has occasionally been recorded in areas with EIRs less than 1 per year [20, 

21]. Therefore, in settings with high EIRs, the infectious contact between people and vectors (vectorial 

capacity) must be reduced substantially to see a noticeable reduction in malaria burden (Figure 1.2) [20-

23]. Furthermore, multiplicity of infection is common in areas of high transmission [24]. If a considerable 

proportion of the population is exposed and superinfected with a new malaria parasite genotype before 

their previous infection has resolved, an extensive decline in transmission must occur before a decrease 

in cases is observed. Aggressive vector control measures will therefore be needed to reduce the burden 

of disease in these regions.  

Multispecies vector ecology poses another challenge to malaria control in high-transmission 

settings. The dominant malaria vectors in sub-Saharan Africa are An. funestus s.s., An. gambiae s.s., and 

An. arabiensis, all efficient disease vectors. An. funestus and An. gambiae particularly tend to be 
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anthropophilic (feed on humans), endophagic (bite indoors), and endophilic (rest indoors) [25, 26]. If 

several of these species contribute to malaria transmission in one location, parasite prevalence tends to 

be high and vector control may be complicated due to differences in ecology as well as breeding, host-

seeking, and biting behaviors between species [17]. For example, An. gambiae and An. funestus 

populations may peak at different times in relation to seasonal rains, making interventions harder to 

target temporally, and An. arabiensis often exhibits zoophilic behavior, which might confer some 

population-level resilience to indoor vector control measures [23, 27, 28]. In multispecies systems, the 

intersection of vector ecology and malaria epidemiology must be thoroughly investigated to inform 

appropriate control measures, otherwise interventions may inadvertently fail to address all sources of 

transmission.  

Due to this differing ecology, multispecies systems may have extended transmission into the dry 

season [17, 27, 28]. A longer period of transmission may result in more infections and ongoing 

transmission past the peak effect of interventions, since malaria control activities like IRS are generally 

timed to occur before the start of the rainy season to most effectively reduce rainy-season malaria 

transmission. As a result, residual transmission into the following dry season undermines malaria control 

activities and prevents progress towards elimination. Dry season transmission has therefore been 

identified as a contributing cause of malaria control failure in both modeling and field studies, including 

in low-transmission areas and those with a single transmission season [29-31]. In high-transmission 

regions, where dry-season malaria transmission may continue at high levels, it is unlikely that addressing 

only rainy-season transmission will be sufficient to significantly reduce the malaria burden.  

Intervention effectiveness 

Another barrier to malaria control in high-transmission areas stems from the limitations of 

current interventions. The majority of malaria control activities are focused on case management and 
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the reduction of adult vector populations [1, 7]. However, high-burden areas are characterized by a 

large proportion of asymptomatic or afebrile infections among adults and older children, which can 

reduce healthcare-seeking and thus lead to chronic infection and a large human reservoir for ongoing 

transmission [32]. Furthermore, vector control interventions such as IRS and LLINs are generally limited 

to indoor biting and resting behavior while participants are asleep. These strategies do not account for 

improper bed net use, outdoor biting, outdoor resting, or indoor biting when a person is active, which 

may increase exposure to infectious mosquitoes. Only 54% of people at risk are estimated to sleep 

under a bed net, and studies have shown substantial outdoor biting behavior among An. funestus and 

An. gambiae if people are outside during active biting hours [1, 23, 31, 33]. The presence of indoor 

vector control interventions has also been shown to influence outdoor and daytime biting behavior of 

these vectors, perhaps due to behavioral selection pressures or insecticide avoidance [34-37].  

In low- to moderate-burden areas, the efficacy of current methods may be adequate to 

interrupt transmission; however, in regions with high vector density and a large parasite reservoir in 

humans, the proportion of mosquitoes that avoid vector control measures may be sufficient to maintain 

high levels of transmission [23, 38]. Modeling studies have estimated that current vector control 

methods are insufficient to interrupt transmission in holoendemic areas, even at very high coverage 

levels [23, 29, 31, 39, 40]. Similarly, high vector pressure in these regions has led to rapid development 

of insecticide resistance, further reducing the effectiveness of vector control methods. The insecticidal 

action of DDT, pyrethroids, and carbamates has declined rapidly in sub-Saharan Africa in recent decades, 

leading to the need for novel chemicals to maintain the same level of vector control [1, 41]. The 

increased cost of these new formulations of insecticides may be prohibitive to achieving sufficient 

intervention coverage in many regions.  
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Human movement 

Human movement patterns are another potential barrier to malaria control. Movement 

between high- and low-transmission areas contributes to continuing malaria transmission due to 

introductions of infectious individuals, and failure to account for these behaviors has been implicated in 

the failure of malaria elimination efforts [42-45]. Cross-border movement can facilitate heterogeneous 

exposures across transmission gradients due to differing control activities in different countries, and the 

porousness of borders in much of sub-Saharan Africa make these behaviors hard to measure or address 

[45-47]. Most research on this topic has focused on the impact of movement in areas with a low burden. 

However, heterogeneities in transmission exist at both large and small spatial scales within high-

transmission regions; thus, local and cross-border movement patterns are expected to contribute to 

elevated malaria risk among individuals and populations [48-50]. Further investigation is warranted to 

determine the impact of population movement on malaria transmission in high-burden areas.  

Accessibility and cost 

Another challenge to malaria control in high-transmission regions is accessibility. Many regions 

with the highest malaria burdens are difficult to target for interventions due to political instability, poor 

transportation infrastructure, lack of sufficient health systems, or socioeconomic hardship [16, 51]. 

Provision of health care is challenging in remote settings, particularly during conflict, and local 

governments might not have the capacity to prioritize malaria interventions [52, 53]. The lack of 

maintained transportation networks makes delivery of medication and supplies difficult, especially for 

environmentally controlled insecticides, and this issue can be exacerbated due to flooding during 

seasonal rains. Indicators of poverty, such as housing construction and sanitation practices, may 

attenuate the impact of malaria control interventions, and financial constraints can reduce health-

seeking behaviors [18]. Scarcity of trained staff to administer clinical care or implement intervention 
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programs can be an obstacle to progress, and surveillance systems in these regions are often inadequate 

or absent [52-55]. Given these issues, sustained control programs are not presently feasible in many 

settings given current funding, manpower and infrastructure challenges. 

As a result of these overlapping factors, successful malaria control in high-transmission areas is 

expected to require an extremely high financial investment, which provides another significant barrier 

to control. The intensity of transmission necessitates high levels of intervention coverage, and the cost 

of implementation increases substantially as remaining hard-to-reach populations are sought out for 

inclusion. The need for novel insecticides will further increase required spending. A primary challenge 

for malaria control in these regions is the capacity for rapid resurgence of transmission if control 

measures lapse, and pre-intervention levels of parasite prevalence may return in a few years without 

sustained programs [56]. However, funding long-term interventions at sufficiently high coverage in high-

transmission areas is challenging and requires secure funding streams to ensure consistent provision of 

programs and services.  

Strategies for malaria control in high-burden areas 

Given these challenges and barriers, the question remains of how best to implement malaria 

control activities in high-transmission regions. As mentioned, modeling studies have demonstrated that 

current methods are insufficient to interrupt transmission in holoendemic areas, even with high 

coverage [16, 23, 29, 31, 39, 40]. However, some strategies can reduce disease burden substantially, 

particularly if multiple methods are used together for a synergistic effect. Vector control continues to be 

a key priority, and LLINs are estimated to be the most cost-effective method to reduce malaria burden 

[40]. Current vector control recommendations include rapid scale-up of LLIN coverage to at least 80% 

and twice-yearly IRS with at least 85% coverage, which would target all vector species and both rainy- 

and dry-season transmission [29, 30, 39]. Achieving this level of IRS coverage is difficult in remote areas, 
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and requires intensive planning and investment to train staff, develop logistics, secure equipment, and 

sensitize communities to the intervention.  

Vector control methods alone are expected to provide only a moderate reduction in prevalence 

in holoendemic settings, so steps must be taken to reduce the infectious human reservoir. Prompt 

diagnosis and treatment with ACTs should continue to be prioritized, but due to the high proportion of 

afebrile cases in high-transmission areas, treatment of only care-seeking individuals will be insufficient 

to appreciably reduce malaria prevalence [32]. Options to target asymptomatic individuals include IPT of 

pregnant women and children, mass screen and treat (MSAT), focal screen and treat (FSAT), and mass 

drug administration (MDA) [32, 40, 57]. MSAT aims to test all members of a population and treat 

parasitemic individuals with ACTs, FSAT does this for sub-populations that are thought to be at high risk, 

such as school children or migrant workers, and MDA aims to give a curative dose of ACTs to all 

members of a population without testing. MDA is anticipated to be more successful and cost-effective 

than MSAT in high-burden areas, and the inclusion of gametocidal drugs such as primaquine would 

further reduce transmission, although there are toxicity risks in some populations [40, 57-59].  

In past trials of MDA in high-burden areas, with or without combinations of other interventions, 

results have generally shown substantial but transitory decreases in malaria indices and failure to 

interrupt transmission [60-62]. For instance, in the Garki Project in Nigeria in the 1970’s, the addition of 

several rounds of MDA with sulfalene-pyrimethamine to a carbamate IRS campaign significantly reduced 

parasite prevalence and incidence more than IRS alone, but transmission returned to pre-intervention 

values within two years of stopping the intervention [60]. Due to the consistent risk of resurgence, MDA 

and all chemoprevention interventions must include multiple rounds with high coverage over a 

sustained period of time, and still may not fully interrupt transmission.  
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The combinations of these interventions over time are predicted to reduce parasite prevalence 

to approximately 10% in high-burden areas [29, 40]. Although not enough to interrupt transmission, this 

decline would represent a large number of cases averted and a massive reduction in malaria burden. 

However, it is predicted that this lower prevalence level would be unstable, necessitating indefinite 

continuation of control interventions to prevent resurgence and requiring a substantial financial 

investment over many years [29]. At this time, the WHO is not recommending MDA in high-transmission 

areas due to the risk of developing multi-drug resistance [63]; however, these strategies may be 

employed in the future with combination therapies if appropriate methods are developed. To further 

reduce transmission, vector control methods that target outdoor-biting or resting mosquitoes must be 

established to augment existing strategies [38]. These could include spatial or personal repellents, 

outdoor applications of insecticides, toxic sugar baits, odor-baited traps, and improved larval control 

[23, 38].  

Surveillance and evaluation 

Another noteworthy issue in high-transmission areas is the paucity of systematic malaria 

surveillance [54, 55], due in part to the aforementioned challenges in these regions. Due to the high risk 

of resurgence and the substantial investment required for malaria control in these regions, careful 

monitoring of parasite incidence and prevalence is essential to track progress or lapses in progress. In 

addition, high transmission may persist for a variety of reasons in different settings, and epidemiologic 

and entomologic investigations are needed in areas of differing ecology and economic development to 

discern the individual causes of residual transmission.  

In part due to the lack of long-term surveillance data, many studies investigating optimal 

intervention methods for high-transmission areas have been conducted using models of simulated data 

rather than direct observation. These models are essential to help prioritize which combinations of 

interventions should be implemented, but few rigorous epidemiologic field evaluations of intervention 
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strategies have been conducted in high-burden areas. To properly inform malaria control strategies, an 

increase in field-based intervention evaluations is needed to supplement and inform mathematical 

models. However, malaria and vector dynamics vary naturally over time due to seasonality, climactic 

variation, and temporal trends, so long time series of surveillance data are necessary to establish 

baseline patterns in advance of interventions. Evaluations should also occur at varying points 

throughout the year to control for these fluctuations, rather than immediately following an intervention, 

which may confound results.  

Furthermore, due to issues such as multiplicity of infection, high vector densities, and lack of 

symptoms, there are several epidemiologic challenges to accurately discern the impact of interventions 

in these regions [55]. Hospital and clinic records are an important benchmark of malaria surveillance and 

can provide information on changes in incident infections, but they are limited by health-seeking 

behavior, availability of accurate testing methods, and the proportion of afebrile infections. Conversely, 

serial community surveys using RDTs or microscopy can identify asymptomatic infections and determine 

changes in population disease burden over time, but they are prone to sampling bias and low diagnostic 

sensitivity for low-level parasitemia. Prevalence surveys also cannot identify the time of infection, which 

can attenuate the apparent impact of interventions. Emerging methods show promise for both 

surveillance and intervention evaluation. Genomic methods can provide information on transmission 

intensity and importations, and serologic surveys can provide markers of age at first infection and 

intensity of exposure [64-66]. 

Changes in vector abundance are typically measured through a series of household surveys 

before and after the intervention using baited or un-baited light traps, pyrethrum spray catches (PSCs), 

or vacuum aspiration. However, due to the difficulty of collecting live mosquitoes and the high degree of 

manpower required to process samples, these methods may suffer from low sensitivity and low sample 

sizes, and therefore may have low statistical power. Furthermore, despite the importance of 
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surveillance for both epidemiologic and entomologic outcomes, these data sources are rarely linked. As 

molecular methods for both parasite prevalence and vector identification improve, the interaction 

between vector dynamics and parasite prevalence must be further explored, particularly in the context 

of successful and unsuccessful malaria control. Given the limitations of these options, a variety of 

surveillance and evaluation methods are needed to accurately determine the impact of interventions in 

high-burden settings. 

DESCRIPTION OF CURRENT RESEARCH 

The aims of this research were to: 1) describe the dynamics of vector abundance and malaria 

epidemiology in a high-transmission setting in southern Africa and determine the relationship between 

vector abundance and malaria epidemiology; 2) evaluate a novel targeted IRS strategy in this region; and 

3) describe the impact of human movement on malaria risk in a high-transmission setting. These 

analyses were conducted within the context of the Southern and Central Africa International Centers of 

Excellence for Malaria Research (ICEMR) in Zambia.  

Malaria remains a leading cause of child morbidity and mortality in Zambia [1, 67]. Under 

Zambia’s National Malaria Control Programme, scale-up of malaria control measures has reduced 

transmission considerably since 2000, with key strategies including free malaria rapid testing and 

treatment, LLIN distribution in antenatal and vaccination clinics, and yearly IRS in selected areas [68, 69]. 

However, despite these activities, high-burden regions persist in the north of the country, and there has 

been a resurgence of cases in recent years (Figure 1.3) [70, 71]. The heterogeneity of malaria control 

under the same intervention policy, with reversal of progress in high-burden regions, indicates the need 

to further investigate risk factors for malaria transmission and barriers to control in different 

epidemiologic settings.  
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To investigate trends in malaria transmission and inform intervention policy, the Southern and 

Central Africa ICEMR conducts active and passive surveillance in Nchelenge District, Luapula Province, 

northern Zambia. Nchelenge District is a holoendemic area with year-round malaria transmission and a 

resurgence in cases in recent years. The prevalence of malaria increased from 38% in 2006 to 53% in 

2012 despite LLIN distributions and yearly IRS campaigns from 2008-2012 [72]. Since 2012, the 

prevalence of malaria by RDT averaged approximately 70% in school-age children, and the EIR is 

estimated to be 140 infective bites per year [73, 74]. The predominant malaria vectors in Nchelenge 

District are An. gambiae s.s. and An. funestus s.s., which peak at different times of year in relation to the 

single rainy season [75, 76]. Malaria control activities in this region are consistent with the national 

policy described above. In 2014, a targeted IRS campaign was initiated in Nchelenge District using a 

novel formulation of the organophosphate insecticide pirimiphos-methyl following identification of 

vector resistance to pyrethroids, DDT, and carbamates [72, 77-79].  

This setting provides an opportunity to conduct research in an area of ongoing high transmission 

despite active malaria control. Concurrent epidemiologic and entomologic active surveillance began in 

2012, providing a long time series of both vector abundance and malaria prevalence. To determine risk 

factors for transmission, demographic, geographic, and climatological predictors of vector abundance 

and parasite prevalence were identified, and the relationship between vector abundance by species and 

malaria epidemiology was described. An evaluation was conducted of a three-year targeted IRS 

intervention using two years of baseline surveillance data to determine the focal and district-level 

impact of this vector control strategy in a high-transmission setting. Global positioning systems (GPS) 

data loggers were used to describe patterns of population movement in Nchelenge District and 

investigate the impact of movement on malaria risk. The overall goals of this research were to 

contribute to the body of knowledge on malaria epidemiology in high-transmission areas and inform the 

timing and strategy of interventions in this setting.    
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Figure 1.1: Annual malaria incidence per thousand people per year among children aged 2-10 in sub-

Saharan Africa, data courtesy of Malaria Atlas Project 
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Figure 1.2: Relationship between annual EIR and prevalence of P. falciparum from 31 sites throughout 

Africa on A) linear and B) logarithmic scales, courtesy of: Beier, J.C., G.F. Killeen, and J.I. Githure, Short 

report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J 

Trop Med Hyg, 1999. 61(1): p. 109-13. 
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Figure 1.3: Annual malaria incidence rate per thousand people per year among children aged 2-10 in 

Zambia, data courtesy of Malaria Atlas Project 
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ABSTRACT 

Background: Malaria transmission is dependent on the density and distribution of mosquito vectors, but 

the relationship between vector abundance and malaria risk has not been adequately studied across a 

range of transmission settings. To inform intervention strategies for high-burden areas, further 

investigation is needed to identify predictors of vector abundance and to determine the impact of 

vector population dynamics on malaria epidemiology. 

Methods: Active household surveillance was conducted in Nchelenge District, northern Zambia, a high-

transmission setting with two dominant malaria vectors, Anopheles gambiae s.s. and An. funestus s.s. 

Between April 2012 and July 2017, mosquitoes were collected during household visits using Centers for 

Disease Control and Prevention (CDC) light traps, and malaria parasitemia was measured using rapid 

diagnostic tests (RDTs). Demographic, geographic, and climatological correlates of vector abundance 

and parasite prevalence were identified using regression models with robust standard errors. The 

relationship between household vector counts and parasite prevalence was estimated using regression 

models with appropriate time lags for vector counts, stratified by season. Variance in all models was 

adjusted for clustering of participants within households and repeat household visits. 

Results: Among 3,520 individual participants, parasite prevalence averaged 50% across all ages and 60% 

in children under 5 years. Nearly 14,000 female anopheline mosquitoes were collected from 1,724 

household visits, with a mean of 7 An. funestus and 0.8 An. gambiae per visit. Household vector counts 

were associated with parasite prevalence. In the rainy season, there was a 30% increase in the risk of 

parasitemia for each additional 10 An. gambiae mosquitoes, lagged by 1 month, and a 5% increase in 

risk with each additional 10 An. funestus mosquitoes, lagged by 4 months. In the dry season, there was a 

2% increase in risk with each additional 10 An. funestus mosquitoes but no association with An. 

gambiae. Parasitemia and vector counts were associated with residence in rural areas, rudimentary 
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household construction, and lack of vector control interventions, including long-lasting insecticide-

treated bed nets (LLINs) and indoor residual spraying (IRS).   

Conclusion: Malaria control activities must be informed by vector population dynamics. In high-burden 

areas with multiple vector species, the contribution of each vector to transmission may be complex, 

necessitating appropriate vector control measures to interrupt transmission. In Nchelenge District, dry 

season vector abundance was high, and both rainy and dry season vector abundance impacted rainy 

season parasite prevalence, indicating that vector control is required year-round to achieve successful 

malaria control. 
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INTRODUCTION 

Malaria transmission is dependent on the density and distribution of malaria vectors, and vector 

control has been identified as the key priority in reducing global malaria burden [1, 2]. Following the 

launch of the Roll Back Malaria Initiative in 1998, which pledged to halve the malaria burden by 2010 

and again by 2015, there was a worldwide scale-up of malaria control activities including significant 

expansion of vector control and improved case management [3, 4]. With the addition of the Global Fund 

to Fight AIDS, Tuberculosis, and Malaria (GFTAM) in 2002 and the President’s Malaria Initiative (PMI) in 

2005, global malaria funding increased substantially between 2000 and 2015 and malaria cases and 

deaths fell by 41% and 62% worldwide [4-6].  

While this reduction was substantial, the rate of progress fell short of stated goals, and gains in 

malaria control have been uneven both between and within countries. Regions with the highest burden 

have maintained high or resurgent transmission levels, and global cases have increased yearly since 

2015 [1, 7]. In 2016, malaria cases rose by an estimated 5 million from the previous year, the first yearly 

increase of this magnitude since the 1990’s [1, 8]. This reversal of progress indicates that current 

intervention strategies and coverage are not sufficient to reach global malaria reduction goals. In order 

to achieve successful malaria control, further research is needed to investigate appropriate and 

sustainable vector control methods across a variety of transmission settings. 

Current strategies and benchmarks for integrated vector control include improved coverage of 

long-lasting insecticide-treated bed nets (LLINs), expanded indoor residual spraying (IRS), and 

management of insecticide resistance using sustainable and evidence-based policies [2, 9-11]. Where 

appropriate, larval source management and personal protection are also integrated into malaria control 

policies [2, 12]. In combination with rapid diagnostic testing (RDTs), artemisinin-combination therapies 

(ACTs), and intermittent preventive treatment (IPT) of pregnant women and children, these strategies 

have led to substantial reductions in the malaria burden throughout sub-Saharan Africa [1, 10]. 
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However, improvements have occurred disproportionately in regions with low or moderate malaria 

transmission, with less success in high-transmission areas despite aggressive control activities [1, 7]. 

Moreover, increasing vector resistance to pyrethroid and carbamate insecticides and parasite resistance 

to artemisinins threatens to further reverse progress across epidemiologic settings [11, 13, 14].  

In response to continuing transmission in the presence of active vector control, further 

investigation is needed on the failures and limitations of vector control strategies in areas of high 

transmission. One knowledge gap that has yet to be fully explored is the relationship between vector 

population dynamics and malaria epidemiology. The distribution and abundance of different malaria 

vectors vary by time and space at both large and small scales, and these patterns have been shown in 

modeling analyses to impact individual malaria risk [15-17]. However, few studies have incorporated this 

level of spatial and temporal heterogeneity concurrently for both entomology and epidemiology. Indices 

of vector-to-human transmission, such as the entomologic inoculation rate (EIR, average infectious bites 

per person per year) or the sporozoite rate (proportion of mosquitoes testing positive for sporozoites), 

are generally defined as a single number over the entire population without respect to local ecology, 

seasonality, or other variations in risk. Conversely, studies that examine risk factors for household vector 

counts or vector population dynamics rarely link these data to human malaria indices, such as parasite 

prevalence or incidence. To better design vector control interventions for unique epidemiologic settings, 

the relationships between malaria transmission and complex vector dynamics must be further 

elucidated. 

The body of literature directly linking vector dynamics and malaria transmission is sparse. 

Modeling studies have included vector abundance or EIR as predictors of malaria transmission and have 

identified positive correlations between vector numbers and malaria risk [18-22]. However, these 

relationships have rarely been directly observed. Several papers show either observational or statistical 

correlations between vector abundance and parasite prevalence or incidence in Africa [23-27] and the 
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Amazon [28-32], but these associations are generally at the community level and are variable with 

regard to the duration of time investigated, vector collection, statistical methods, and incorporation of 

temporal delays between vector catches and malaria outcomes. Other studies using field-collected data 

failed to show a correlation or showed a negative correlation between vector abundance and malaria 

risk [33, 34].  

There are several explanations for the scarcity of these types of studies. Most importantly, 

sufficiently long-term time series of epidemiologic and entomologic surveillance data are rare and 

infrequently collected concurrently due to the differing methodologies between entomologic and 

epidemiologic investigations [35]. The lack of long time series is a barrier to accurate model 

parameterization and limits the ability to account for short-term anomalies and longer temporal trends. 

Time series are also needed to adequately account for lags between vector collections and 

epidemiologic outcomes due to the length of mosquito and parasite life cycles and resulting delays 

between vector exposure and parasite detection. In addition, collection and processing of mosquitoes is 

labor-intensive, particularly for prolonged surveillance systems, and vector data are often difficult to 

statistically model due to the high number of zero counts and overdispersion. However, these basic 

relationships must be explored to properly time and target control measures for maximum impact.  

Zambia is a country of particular interest to identify optimal vector control strategies for malaria 

control and elimination. Despite country-wide scale up of malaria control activities, including 

widespread LLIN distributions, expanded IRS, and free rapid testing and treatment with ACTs, there was 

a resurgence of cases in 2009 after nearly a decade of steady decline [36]. Cases increased nearly every 

subsequent year, and the country reported 3.1 million cases and 7,000 deaths in 2016, an increase of 

nearly a million cases from 2010 [1]. This resurgence was largely driven by provinces northeast of the 

border with the Democratic Republic of the Congo (DRC), while prevalence in Lusaka and the southern 

provinces continued to decline [37-39]. The heterogeneity of malaria control under this comprehensive 



26 
 

vector control strategy and the growing burden of disease in the north indicates a need to further 

investigate vector dynamics across malaria transmission settings in Zambia. 

The primary malaria vectors in Zambia are members of the Anopheles funestus and An. gambiae 

complexes, which are predominantly anthropophilic (feed on humans), endophagic (bite indoors), and 

endophilic (rest indoors) [40, 41]. Ecologically, An. gambiae mosquitoes are dependent on rainfall, with 

populations typically peaking during the rainy season and breeding in temporary and man-made pools 

such as puddles, hoof prints, or tire tracks [40-43]. An. funestus mosquitoes prefer breeding in 

permanent bodies of fresh water, especially those with emergent or floating vegetation such as swamps, 

river banks, ponds, and marshlands [40, 41]. They are therefore more tolerant of dry weather conditions 

and can breed year-round in permissive environments, with populations often peaking directly after the 

rainy season ends [41-44]. Due to their preference for indoor biting and resting behavior, both mosquito 

species are vulnerable to indoor vector control interventions, including LLINs and IRS. However, 

increasing resistance to pyrethroids, DDT, and carbamate insecticides has reduced the efficacy of these 

interventions [39, 45].  

The Southern and Central Africa International Centers of Excellence for Malaria Research 

(ICEMR) conducts active malaria surveillance in Zambia [38]. This study was based at a high-transmission 

site in Nchelenge District, Luapula Province in northern Zambia. In Nchelenge District, concurrent 

epidemiologic and entomologic surveillance have been conducted since 2012, providing a rare 

opportunity to link these data streams in a high-burden, multi-vector area over time. This study aimed 

to determine correlates of household vector abundance and malaria prevalence in this setting, and to 

define the relationship between multispecies vector abundance and patterns in malaria prevalence to 

inform malaria control interventions.  
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METHODS 

Study Site 

This study was conducted in Nchelenge District, Zambia by the Southern and Central Africa 

ICEMR. The project is led by the Johns Hopkins Malaria Research Institute (JHMRI) in collaboration with 

the Zambian Ministry of Health’s Tropical Disease Research Center (TDRC), the Macha Research Trust 

(MRT), and other partners to investigate heterogeneity in malaria burden and transmission dynamics 

across distinct epidemiological settings in sub-Saharan Africa [46]. The study site in Nchelenge District 

represents high malaria transmission and ineffective control. As per Zambia’s National Malaria Control 

Programme, malaria control strategies in this region include free malaria rapid testing and treatment, 

LLIN distribution in antenatal and vaccination clinics, and yearly IRS in selected areas using pyrethroid 

(2008-2010), carbamate (2011-2012), and organophosphate insecticides (2014-present) [47, 48]. 

Despite these activities, this region continues to experience holoendemic transmission, with a 

resurgence of cases since 2009 and an average malaria prevalence of approximately 70% in children 

under 17 years [39, 49].  

Nchelenge District is located in the marshlands along Lake Mweru and the Luapula River, one of 

the early tributaries of the Congo River. These waterways form the border with the DRC to the west, and 

there is a land border to the north across which formal and informal movement is common. The inland 

area has an extensive stream network leading to the lake, and the lakeside and riverbank regions 

include swamplands that remain inundated with water throughout the year. This environment supports 

year-round malaria transmission due to the presence of both An. gambiae s.s. and An. funestus s.s., two 

highly efficient malaria vector species with differing ecologic patterns and distributions across the study 

area [50, 51]. Both vectors exhibit a strong preference for feeding on people and have relatively long 

adult life spans (mean of 23 days for An. gambiae, 28 days for An. funestus), which can facilitate rapid 

and widespread malaria transmission [40, 52, 53]. An. funestus is the principle vector in Nchelenge 
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District, with high household vector counts collected throughout the year and a peak immediately 

following the end of the rainy season, which lasts from October to April. An. gambiae peaks at smaller 

numbers during the rainy season, particularly in the areas near the lake. Across both species, the 

cumulative EIR is estimated to be 140 infective bites per year [54]. Household construction in this region 

is generally rudimentary, with most people living in huts with natural flooring and walls, thatch roofs, 

and open eaves, and a smaller number living in finished housing with metal roofs and concrete walls.  

Data Collection 

Households were selected for active surveillance through a modified cluster sampling design. 

Quickbird™ satellite images of the study areas were purchased (DigitalGlobal Services, Denver, CO), and 

a 1x1 kilometer grid was overlaid on the study area in ArcGIS Version 10.2 (ESRI, Redlands, CA). 

Households were enumerated (Figure 2.1), and grid quadrants were selected using spatially-balanced 

random sampling to ensure inclusion of the full range of population density and ecology in the region. 

Households were randomly selected into either cross-sectional or longitudinal cohorts using population 

proportional to size sampling. Each month, between 1 and 6 households were selected per grid 

quadrant. If a grid quadrant ran out of houses to sample, an adjacent grid quadrant was selected. For 

longitudinal cohorts, 25-30 households were visited every other month for one year and then replaced 

with a new longitudinal cohort. In each alternating month, approximately 25 new households were 

recruited into cross-sectional cohorts.  

At household visits, a questionnaire was administered to each consenting household member 

aged 16 and older and to guardians of children under 16 years. The questionnaire collected household 

coordinates, demographic information, history of recent malaria and treatment, reported LLIN use, 

history of household IRS, and malaria knowledge and practices. Participant temperature was taken using 

a digital ear thermometer, and a blood sample was collected by finger prick for hemoglobin testing, 
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RDTs to detect Plasmodium falciparum HRP-2 antigen, and dried blood spot collection for detection of P. 

falciparum DNA using polymerase chain reaction (PCR) to detect Pfcytb [55, 56]. Several RDTs were used 

throughout the study period in accordance with changing national policy; these included ICT (ICT 

Diagnostics, Cape Town, South Africa) from April 2012 to May 2013, First Response (Premier Medical 

Corporation LTD., Mumbai, India) from June to September 2013, and SD Bioline (Standard Diagnostics, 

Kyonggi, Republic of Korea) from October 2013 to the present. All participants with a positive RDT were 

treated with Coartem® (Novartis, Basel, Switzerland), the first-line standard of care in Zambia. 

Mosquitoes were collected at each household visit. The evening before, study staff visited the 

selected household and placed Centers for Disease Control (CDC) light traps (John W. Hock, Ltd, 

Gainesville, FL) in sleeping spaces of participating households to collect mosquito vectors overnight. 

Traps were hung by a bed covered with an LLIN, and household participants were instructed to turn 

traps on at 18:00 and turn them off at 6:00 the following morning. Traps were collected at the time of 

the study visit the following day and transported to the TDRC field station in Kashikishi township for 

preliminary processing. Mosquitoes were killed by freezing, identified morphologically to genus and sex, 

enumerated, and stored dry on silica. Samples were transported to TDRC headquarters in Ndola once 

per month for final laboratory identification using standard morphological keys [57, 58] and molecular 

identification methods [59, 60]. More detailed methods of vector identification are described elsewhere 

[51]. 

Climatological data were collected from a HOBO Micro Station (Onset Computer Corporation, 

Bourne, MA) located on the grounds of the TDRC field station and from the African Flood and Drought 

Monitor (AFDM) online tool [61, 62]. Climate data were aggregated by day from January 2012 to July 

2017. Both weather variables (rainfall in mm/day, minimum and maximum daily temperature in C°, 

windspeed in m/s) and hydrological variables (evaporation in mm/day, streamflow in m3/s, percent soil 

moisture) were collected.  
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Data management 

Survey and entomologic data collected at participating households were uploaded into REDCap 

secure file-sharing software and downloaded as .csv files [63]. Individual malaria status was determined 

by RDT results, and fever was defined as having a temperature above 38° C. Anemia was determined by 

WHO criteria for hemoglobin levels by age and sex [64].  

Household locations were plotted in ArcGIS (Figure 2.1), and geographic covariates were 

created. Population density was calculated as the number of households within a 500-meter buffer 

around each participating household. Household elevation, slope, and normalized difference vegetation 

index (NDVI) were extracted from raster files downloaded from the Shuttle Radar Topography Mission 

(SRTM) version 3 and from LandSat 5 data [49]. NDVI values range from -1 to +1, with negative values 

corresponding to bodies of water and positive values increasing with increasing photosynthetic 

vegetation, or “greenness.” Stream networks were developed using the SRTM elevation data in the 

ArcHydro Tools module of ArcGIS, as described previously [65]. Streams were classified as category 1-4 

using the Strahler classification system, in which the smallest streams are defined as category 1, which 

join to form a category 2 stream, and so on [66]. The distances to roads, health clinics, Lake Mweru, and 

category 1-4 streams were calculated for each household. To investigate spatial distributions, vector 

counts were merged to sampling grid quadrants and plotted over the study area as a function of 

absolute and relative abundance by species and season. 

Based on observed patterns in household density, households were classified as being in the 

lakeside area if they were within 3 km of Lake Mweru and as being in the inland area if they were 

further than 3 km from the lake. Shapefiles for the area targeted for IRS with pirimiphos-methyl were 

provided by the NGO Akros, based in Lusaka, Zambia [67].  
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Statistical analysis 

The primary aims of this analysis were to determine correlates of malaria prevalence and 

household vector counts by species in Nchelenge District, and to determine the relationships between 

vector abundance by species and malaria prevalence. Data were analyzed using STATA 13.1 (Stata-

Corporation, College Station, TX) and R version 3.4.2 (R Core Team, Vienna, Austria).  

All epidemiological, entomological, geographic, and climatological data were merged by 

household and day. Epidemiological analyses were restricted to cross-sectional households and the first 

visit to longitudinal households to identify prevalent infection with P. falciparum. Epidemiologic models 

were also stratified by season to account for the different transmission dynamics in the rainy and dry 

seasons. The start and end of the rainy season each year was defined as the first and last weeks in which 

the average rainfall exceed 1 mm. Sensitivity analyses using different cutoffs and time intervals were 

conducted to ensure that this definition best represented the epidemiologic and entomologic 

relationships in this region. Vector count analyses were not restricted to first household visit because 

repeat visits were not shown to impact vector counts in adjusted analyses, so vector data from all 

longitudinal and cross-sectional visits were included. To preserve analytical power, vector models were 

not stratified by season due to the high degree of variation and overdispersion in the vector counts. 

To explore correlates of household vector abundance, bivariate comparisons were conducted by 

species using negative binomial models with robust standard errors [68, 69]. The level of analysis was 

the household, with vector counts by species as the outcome. Generalized estimating equations (GEE) 

were used to account for repeat visits to longitudinal households [70, 71]. Potential household-level 

covariates included self-reported history of household IRS with pirimiphos-methyl, natural vs. finished 

household flooring, open vs. protected household water source, head of household (HOH) attending 

only primary school, HOH in permanent employment, roof type (thatch vs. metal) and presence of open 
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vs. closed household eaves. Geographic covariates as described above included households within 500 

m, NDVI, elevation, slope, and distances to roads, health clinics, Lake Mweru, and category 1-4 streams. 

Household demographics were also considered, including the number of household occupants, 

proportion of occupants who slept under a bed net, and the proportion of occupants who were male or 

under age 5 years. Multivariate vector models were also developed using GEE negative binomial 

regression with robust variances.    

To explore correlates of malaria prevalence, bivariate models were developed with individual 

malaria status by RDT as the outcome. Due to the high prevalence of malaria in the study population, 

the odds ratio estimated in logistic regression would overestimate the magnitude of relative risk, so 

models were run using the Poisson estimation of the binomial distribution with robust standard errors, 

which can directly estimate the prevalence rate ratio (PRR) [72-75]. Epidemiologic models also used GEE 

to account for clustering of individuals within households. All household-level and geographic variables 

described above were considered, as well as participant sex and age category (<5, 5-16, >16 years). 

Multivariate epidemiologic models were also developed using GEE Poisson models with robust 

variances.  

For both vector and epidemiologic multivariate models, weather and hydrology covariates were 

included to account for drivers of interannual variation and temporal trends. The impact of 

climatological variables was expected to be delayed due to the duration of vector and parasite life 

cycles, but the optimal time lags to predict vector density and malaria prevalence have not been 

explored in this setting. A cross-correlation framework was developed in previous studies to explore the 

impact of weather variables on vector-borne disease at various time intervals and lags, and this 

approach was adapted for this analysis [76, 77]. The average value of each weather and hydrology 

variable was calculated at time intervals of 1-12 weeks and lags of 1-12 weeks from each day of data 

collection, returning a total of 144 potential variables for each climatological factor. For each outcome 
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(vector counts by species or parasite prevalence by RDT), the most predictive combination of covariates 

was identified using random forest algorithms in in R version 3.4.2 (R Core Team, Vienna, Austria), which 

are designed to handle a large number of collinear variables [78, 79]. These variables were confirmed in 

fully adjusted models using stepwise regression and AIC optimization methods [80, 81]. The variables for 

roof type and household eaves were measured in only a subsample of visited households and were 

excluded from multivariate analyses. 

In preparation to fit models incorporating both vector counts and malaria prevalence, several 

challenges related to the vector data were encountered. Due to the lag between an infectious bite and 

malaria onset (approximately 6-23 days [82]) and the potentially long duration of prevalent infection 

[83], mosquitoes collected at the study visit were unlikely to have infected sampled participants. 

Therefore, simultaneous household vector counts may not be the most relevant measurement of vector 

abundance to predict malaria risk. However, due to the design of the surveillance system, vector 

collections were not conducted in the same household in consecutive months, so vector abundance 

from a more epidemiologically relevant time window was unknown. Furthermore, household vector 

counts may be underestimated due to the stochastic chance that any individual mosquito fails to be 

captured by the trap. To account for these discrepancies, several methods of spatial and temporal 

smoothing were performed with the intent to estimate household vector counts at the time of infection 

(Figure 2.2). 

The variance within and between sampling grid quadrants was compared by month and year of 

collection to determine if household vector counts were spatially correlated, such that households near 

the house of interest should be more similar than households farther away. To account for stochasticity 

in nightly mosquito catches, estimated vector counts per household were adjusted using a random 

intercept at the grid quadrant-level for the month of collection (Figure 2.2). The expected vector count 
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by species 𝐸(𝑀̂𝑗𝑘𝑡) for each household 𝑗, in grid quadrant 𝑘, at time 𝑡 was calculated as an exponential 

function of the grid quadrant-level average for that month 𝜇𝑘𝑡 plus a household-level offset 𝛽𝑗𝑘𝑡 

(Equation 1), which was normally distributed around zero with standard error 𝜎 (Equation 2). The 

observed vector count by species 𝑀𝑗𝑘𝑡 was assumed to follow a Poisson distribution around 𝐸(𝑀̂𝑗𝑘𝑡) 

(Equation 3). 

Equation 1:  𝐸(𝑀̂𝑗𝑘𝑡) =  exp (𝜇𝑘𝑡 + 𝛽𝑗𝑘𝑡) 

Equation 2:  𝛽𝑗𝑘𝑡 ~ 𝑁(0, 𝜎) 

Equation 3: 𝑀𝑗𝑘𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑀̂𝑗𝑘𝑡) 

Similarly, household vector abundance at the unknown time of infection 𝑀𝑗𝑘(𝑡−𝑛) at time 𝑡 

minus lag 𝑛 was assumed to be correlated with both the adjusted household vector count 𝑀̂𝑗𝑘𝑡 and the 

grid quadrant-level mean at the time of infection 𝜇𝑘(𝑡−𝑛). However, the optimal time lag 𝑛 to model 

vector abundance on malaria prevalence has not been defined for this setting, and the degree to which 

each factor should be weighted is unknown. Time lags were thus explored between 0-5 months, with 

each factor weighted at 10%, 25%, 50% 75%, or 90%. The weight for the adjusted value 𝑀̂𝑗𝑘𝑡 was 

defined as 𝛼1 and the weight for the grid-level average 𝜇𝑘(𝑡−𝑛) was defined as 𝛼2 = (1 − 𝛼1). These 30 

pairs of values were compared using a modified cross-correlation analysis by season with the probability 

of a positive RDT as the outcome. This process was repeated with the unadjusted observed household 

count 𝑀𝑗𝑘𝑡 as a sensitivity analysis. For each vector species, the estimated risk of malaria infection 

𝐸(𝑌𝑖𝑗𝑘𝑡) for individual 𝑖, in household 𝑗, in grid quadrant 𝑘, at time 𝑡 would be best predicted by 

(𝛼1𝑀̂𝑗𝑘𝑡 + 𝛼2𝜇𝑘(𝑡−𝑛)) in addition to any other relevant variables 𝑋 (Figure 2.2), modeled as:  

Equation 4: 𝑙𝑜𝑔𝐸(𝑌𝑖𝑗𝑘𝑡) ~ [𝛽0 +  𝛽1(𝛼1𝑀̂𝑗𝑘𝑡 +  𝛼2𝜇𝑘(𝑡−𝑛)) + 𝛽2𝑋2 + 𝛽3𝑋3 … ] 
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A simple mediation analysis was conducted to further guide the development of models. Several 

covariates were expected to be associated with parasite prevalence due in part to their direct effect on 

vector abundance, so these should be excluded from models investigating the impact of vector counts 

on malaria risk. To explore these relationships, each covariate that predicted either vector abundance or 

parasite prevalence at the P=0.1 level was individually added to robust Poisson GEE models with 

parasitemia by RDT as the outcome and containing only vector predictors. Any covariate that attenuated 

the relationship between vector abundance and parasite prevalence by more than 10% was excluded 

from further models to isolate the effect of the primary relationship of interest. Models were fit by 

season with the remaining covariates using stepwise regression and AIC optimization. As a sensitivity 

analysis, all relevant covariates were added back into the models to determine the overall best 

predictors of malaria prevalence in this population from all available data. 

RESULTS 

Climate and geography 

Over the course of the study period, there was a mean of 6.8 mm/day of precipitation in the 

rainy season (range 0-64.6) and 0.06 mm/day in the dry season (range 0-6.1). The daily minimum 

temperature averaged 19.7 ⁰C in the rainy season (range 11.4-25.3) and 15.7 ⁰C in the dry season (range 

10.2-23.7), and the daily maximum temperature averaged 29.2 ⁰C in the rainy season (range 19.4-34.1) 

and 28.4 ⁰C in the dry season (range 23.1-33.5). In the rainy season, there was an average of 56% soil 

moisture, 2.7 mm/day of evaporation, 1.5 m/s windspeed, and 2,983 m3/s of streamflow. In the dry 

season, there was an average of 26% soil moisture, 0.3 mm/day of evaporation, 2.5 m/s windspeed, and 

143 m3/s of streamflow. Household elevation ranged from 920 to 1,055 m, and household slope ranged 

from 0 to 10.4 degrees. NDVI ranged from 0.29 to 0.78. For each household, there were between 10 and 

1,021 households within 500 m.       



36 
 

Vector Abundance 

Vector species composition 

From April 2012 through July 2017, a total of 13,780 female anopheline mosquitoes were 

collected during 1,724 visits to 1,084 unique households. The species composition included 12,365 An. 

funestus, 1,371 An. gambiae, 43 An. coustani, and 1 An. maculipalpis. The distribution of household 

vector counts was highly skewed, with more than half of household visits yielding zero mosquitoes and 

5% yielding between 50 and 230. Overall, there were a mean of 7.8 female anophelines per household 

visit (range 0-230, median 0, IQR 0-3), including 7.0 An. funestus (range 0-226, median 0, IQR 0-2) and 

0.8 An. gambiae (range 0-35, median 0, IQR 0-0). 

Across the study area, a higher number of vectors were collected in inland areas throughout the 

year, with several large collections in the dry season along a large inland lagoon (Figure 2.3). As 

anticipated, An. funestus was the predominant vector, with higher household counts than An. gambiae 

in both rainy and dry seasons. An. funestus counts peaked shortly after rains ceased and remained high 

throughout the dry season (Figure 2.4.A). An. gambiae was nearly absent in the dry season and was 

found in low numbers throughout the study area in the rainy season. In the lakeside area, An. gambiae 

was the predominant vector in some grid quadrants during the rainy season, although overall numbers 

remained low. An. gambiae counts rose at the start of the rains and then generally increased 

throughout the rainy season.  

Correlates of household vector counts 

In bivariate analyses, household construction, household composition, and geography were 

associated with vector abundance (Table 2.1). For An. funestus, higher counts were found in households 

with natural floors, natural roofing, open eaves, or an unprotected water source. Higher counts were 

observed in households with more occupants and a higher percentage of occupants under 5 years. 
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Counts were higher in households on a steeper slope, at a lower elevation, and with higher NDVI. Counts 

were higher in households that were closer to category 2 streams and farther from category 4 streams. 

Residence in more rural areas was associated with increased An. funestus abundance. Counts were 

higher in households farther from Lake Mweru and health clinics, and counts were lower with increasing 

population density. History of IRS with pirimiphos-methyl was associated with lower An. funestus 

abundance.  

For An gambiae, higher counts were found in households with an unprotected water source and 

a higher percentage of occupants under 5 years, and counts were higher in households with higher NDVI 

and closer proximity to category 2 streams (Table 2.1). Residence in rural areas was also associated with 

An. gambiae abundance. Higher counts were observed with increasing distance from Lake Mweru, and 

lower counts were observed with increasing population density. There was no association between An. 

gambiae counts and history of IRS. Interestingly, higher numbers of both species were collected in 

households where more people slept under bed nets, potentially indicating that larger indoor vector 

populations encouraged bed net use.   

In multivariate models, An. funestus counts were positively correlated with NDVI and proximity 

to roads and category 1 streams (Table 2.2). Protective factors included a history of household IRS, 

residence in lakeside areas, high population density, high elevation, and steeper slope. Correlations with 

weather were complex. Counts of An. funestus were 71% lower for each additional 10 mm of rain in the 

2-week period lagged 2 weeks (IRR = 0.29, 95% CI = 0.17-0.47) and were 44% lower for each additional 

10 mm of rain in the 2-week period lagged 4 weeks (IRR = 0.56, 95% CI = 0.36-0.86). Counts were 8% 

higher for each 1⁰ C increase in maximum temperature for the 2-week period lagged 2 weeks (IRR = 

1.08, 95% CI = 1.00-1.2) but were 24% lower for each 1⁰ C increase in maximum temperature of the 8-

week period lagged 4 weeks (IRR = 0.76, 95% CI = 0.69-0.85), indicating a potentially different 

relationship with temperature at different life stages.  
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For An. gambiae, household counts were positively correlated with proximity to roads and 

category 1 streams and were negatively correlated with high population density (Table 2.2). An. 

gambiae counts were lower in lakeside areas; however, when this variable was included in models, 

increasing distance from Lake Mweru appeared protective. In models stratified by lakeside vs. inland 

areas, this association was consistent, indicating that within both the lakeside and inland zones, An. 

gambiae counts were lower in eastern areas of each region, but that counts were lower in the lakeside 

area overall (Figure 2.3). Counts of An. gambiae were 34% lower for each additional 10 mm of rain in the 

1-week period lagged 2 weeks (IRR = 0.66, 95% CI = 0.46-0.95) but were 230% higher for each additional 

10 mm of rain in the 7-week period lagged 3 weeks (IRR = 2.3, 95% CI = 1.4-3.8). Counts were 25% lower 

with each 1⁰ C increase in maximum temperature for the 4-week period lagged 3 weeks (IRR = 0.75, 95% 

CI = 0.68-0.82) but were 30% higher for each 1⁰ C increase in minimum temperature over this period 

(IRR = 1.3, 95% CI = 1.2-1.4), again indicating a complex relationship with temperature.  

Parasite Prevalence 

Study population 

A total of 3,520 individuals residing in 1,052 households participated in the study between April 

2014 and July 2017 (Table 2.3). Between 1 and 13 people participated per household, with a mean of 

3.3. Approximately 20% of participants were under 5 years, 34% were school age (between 5 and 16 

years), and 45% were male. Nearly 60% of participants reported sleeping under a bed net, and 22% 

reported household IRS with pirimiphos-methyl, which began in October 2014. Two thirds lived within 3 

km of Lake Mweru. This population reported evidence of substantial economic hardship. Nearly 90% 

had unfinished floors in their home, and half used an unprotected water source. Only 10% had a finished 

roof, and 8% had closed household eaves. Nearly 70% of participants lived in a house where the HOH 

had only a primary school education, and 7% had a HOH that was permanently employed. 
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The P. falciparum parasite prevalence by RDT among all participants was 50% at the time of the 

study visit, although only 2% had a fever, and 60% were anemic (Table 2.3). Twenty percent reported 

treatment for malaria in the past two weeks. Among children under 5 years, 60% were parasitemic, 6% 

had a fever, and 71% were anemic. Among school aged children, 71% were parasitemic, 3% had a fever, 

and 67% were anemic. Throughout the study period, parasite prevalence by month ranged from 21% to 

78% in the overall population and from 25% to 91% among children under 17 years (Figure 2.4.B). 

Among both adults and children, there were two yearly peaks in parasite prevalence despite there being 

only one rainy season, with this pattern most visible before IRS with pirimiphos-methyl was initiated. 

One peak occurred at the start of the rainy season and the other occurred shortly after the rains ceased.   

Correlates of parasite prevalence 

In bivariate analyses, individual-level risk factors for parasite prevalence in both rainy and dry 

seasons included age under 5 years and school age. Household-level risk factor included having natural 

floors in the home, an HOH with only a primary education, higher household occupancy, and proximity 

to roads and category 1 streams (Table 2.4). Additional risk factors in the rainy season included male 

sex, using an unprotected water source, higher NDVI, increasing distance from Lake Mweru and health 

centers, and increasing proximity to category 2 streams. Additional dry season risk factors included 

steeper slope and increasing distance from category 3 streams. Across seasons, the primary protective 

factors against parasite prevalence were sleeping under a bed net, finished roofing, closed eaves, and 

higher household density within 500 m. In the rainy season, a history of IRS with pirimiphos-methyl was 

also protective, and elevation was protective in the dry season.  

In multivariate models for the rainy season, parasite prevalence was positively correlated with 

age under 5 years, school age, male sex, and the HOH having only primary education (Table 2.5). 

Parasite prevalence was higher with increasing distance from health clinics and with increasing 
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proximity to roads and category 1 streams. Protective factors included sleeping under a bed net, history 

of IRS with pirimiphos-methyl, increasing population density within 500 m, and higher elevation. In the 

rainy season, parasite prevalence was positively correlated with minimum temperature, with a 10% 

increase in risk for each 1⁰ C increase in the 2-week period lagged 2 weeks (PRR = 1.1, 95% CI = 1.05-

1.2), but was negatively correlated with maximum temperature, with a 4% decrease in risk for each 1⁰ C 

increase over the 2-week period lagged 1 week (PRR = 0.96, 95% CI = 0.93-0.99). This again indicates 

that rainy season vectors may transmit best within specific temperature ranges, as found in the results 

for An. gambiae.  

In multivariate models for the dry season, parasite prevalence was positively correlated with age 

under 5 years, school age, having a dirt floor in their home, and HOH having primary education only 

(Table 2.5). Parasite prevalence was higher with increasing distance from health clinics and from 

category 3 streams. Protective factors included sleeping under a bed net, increased population density 

within 500 m, and higher elevation. In the dry season, parasite prevalence was positively correlated with 

maximum temperature, with a 20% increase in risk for each 1⁰ C increase for the 5-week period lagged 3 

weeks (PRR = 1.2, 95% CI = 1.1-1.3), and was negatively correlated with increased rainfall, with a 23% 

decrease in risk for each 10 mm increase in rain over the 6-week period lagged 5 weeks (PRR = 0.77, 95% 

CI = 0.64-0.94). This largely corresponded to the results presented for An. funestus.  

Relationships between vector abundance and parasite prevalence 

For both vector species across seasons, spatially adjusted estimates were stronger and more 

stable predictors of parasite prevalence than directly observed household counts. In the rainy season, 

the strongest predictors of parasite prevalence were spatially adjusted An. gambiae counts weighted 

90% by the grid quadrant mean at a 1-month lag, and spatially adjusted An. funestus counts weighted 

90% by the grid quadrant mean at a 4-month lag. In the dry season, the strongest predictor of parasite 
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prevalence was spatially adjusted An. funestus counts weighted 10% by the grid quadrant mean at a 1-

month lag. Based on these results, the relationship with rainy season parasite prevalence was largely 

predicted by average vector counts in previous months, and the relationship with dry season parasite 

prevalence was largely driven by observed values in the same month.    

In mediation analyses, a large proportion of potential covariates were found to attenuate the 

relationship between vector counts and parasite prevalence, indicating that at least some of the 

association between these covariates and malaria risk is mediated through their relationship with vector 

abundance. Covariates found to be on the same causal path included all weather variables (rainfall, 

minimum and maximum temperature), population density within 500 m, having natural floors, use of an 

open water source, history of household IRS, residence in the lakeside area, and proximity to Lake 

Mweru, clinics, roads, and streams. Having natural floors was likely identified due to the correlation with 

other household features, such as natural roofing and open eaves, since these covariates could not be 

included in final models. Covariates that did not attenuate the relationship between vector abundance 

and parasite prevalence included age, HOH education, bed net use, NDVI, elevation, and slope. These 

covariates were carried on into final model selection. 

In multivariate models for the rainy season (Table 2.5), there was a 30% increase in risk of 

parasitemia for each additional 10 An. gambiae (90% 1-month lag) (PRR = 1.3, 95% CI = 1.1-1.5) and a 5% 

increase in risk for each 10 An. funestus (90% 4-month lag) (PRR = 1.05, 95% CI = 1.03-1.07). In 

multivariate models for the dry season, there was a 2% increase in risk for each 10 An. funestus (10% 1-

month lag) (PRR = 1.02, 95% CI = 1.01-1.03). These patterns were consistent with the observed time 

series data (Figures 2.5, 2.6), where a peak in prevalence in the rainy season (approximately October – 

April) coincided with an increase in household An. gambiae counts, and a peak in prevalence in the dry 

season (May-September) approximately coincided with a peak in household An. funestus counts.  
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In the rainy season, parasite prevalence remained positively correlated with age under 5 years, 

school age, male sex, and having an HOH with only primary education. Bed net use remained protective. 

In the dry season parasite prevalence remained positively correlated with age under 5 years, school age, 

and having an HOH with only primary education. Bed net use and higher elevation were protective. 

When all significant covariates were added back into models, vector covariates were no longer 

statistically correlated with parasite prevalence but contributed to model fit by AIC and likelihood 

methods, indicating that parasite prevalence was positively correlated with vector abundance but that 

the statistical relationship was not as strong as other measured covariates.  

DISCUSSION 

Vector abundance was a significant predictor of parasite prevalence in Nchelenge District. In the 

rainy season, the risk of parasitemia by RDT was positively correlated with both spatially adjusted An. 

gambiae and An. funestus at differing time lags. For each additional 10 An. gambiae mosquitoes 

predicted in the household the previous month, there was a 30% increase in risk of parasitemia with a 

high level of statistical significance, indicating a strong relationship between abundance of this vector 

and parasite prevalence. An. funestus was most strongly correlated with parasitemia at a 4-month time 

lag, with the risk increasing 5% for each additional 10 An. funestus mosquitoes. This result suggests that 

dry season vector abundance influences malaria prevalence in the rainy season but that concurrent An. 

funestus abundance does not, which is a surprising result biologically. Conversely, the risk of parasitemia 

in the dry season was most strongly correlated with spatially adjusted An. funestus counts at the time of 

collection and was not correlated with An. gambiae counts. With each additional 10 An. funestus 

mosquitoes captured in the household, weighted 10% by the grid quadrant mean the previous month, 

there was a 2% increase in the risk of parasitemia.  

These results further strengthen previous conclusions that rainy-season malaria transmission in 

Nchelenge District is driven by An. gambiae and dry-season transmission is driven by An. funestus [51]. 
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However, these results also suggest that dry-season An. funestus abundance is an unexpected driver of 

rainy-season malaria transmission, which has implications for the timing of interventions. Furthermore, 

given the uneven distribution of vector species, it is surprising that the impact of household An. gambiae 

abundance was much stronger per additional mosquito than An. funestus. Although An. funestus 

outnumber An. gambiae by approximately 10:1, the strength of the correlation for An. gambiae per 

additional collected mosquito was 6-15 times higher than for An. funestus. Explanations for this could 

include that a higher proportion of An. funestus transmission occurs outside or that the effect of An. 

funestus was saturated due to the extremely high number of mosquitoes found in some households. In a 

sensitivity analysis among the 43 dry-season households with 100-226 An. funestus collected in one visit, 

there was no additional risk of parasitemia associated with higher vector counts.  

These findings have important implications for malaria control in this setting. Since An. gambiae 

abundance has a disproportionate influence on malaria transmission, reducing this species through 

targeted vector control should have a large impact on rainy-season parasite prevalence. However, An. 

funestus was the sole vector correlated with the risk of parasitemia in the dry season and significantly 

contributed to risk in the rainy season, indicating that failure to reduce the abundance of this vector will 

undermine malaria control efforts in both rainy and dry seasons. In this setting, successful malaria 

control will therefore depend on significant reductions of vector abundance during both rainy and dry 

seasons. Furthermore, the high counts of An. funestus observed in this study suggest that aggressive 

vector control measures will be necessary to decrease vector abundance in the dry season.  

In addition to these relationships, other correlates of parasite prevalence and vector abundance 

have implications for malaria control in Nchelenge District. Among individual characteristics, younger 

age (children younger than 5 years and school-age children) and male sex were correlated with 

increased risk of parasitemia, as previously found in this setting [49, 84]. Among household-level and 

geographic characteristics, several consistent relationships were observed across outcomes. Markers of 
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socioeconomic status were strongly associated with both vector abundance and risk of parasitemia, 

including household construction, household water source, HOH education, and number of household 

occupants. Household construction particularly has been a consistent predictor of malaria and vector 

abundance across studies [85-90], and interventions to reduce mosquito entry could be impactful in 

future malaria control efforts. For example, interventions to close eaves have been shown to 

successfully reduce household entry by An. gambiae [90, 91].  

Residence in more rural areas was strongly associated with higher vector counts and parasite 

prevalence, with predictors including low population density within 500 m and increasing distance from 

health clinics and Lake Mweru. This indicates a clear disparity and healthcare need among residents in 

inland regions. In support of this finding, only 38% of inland resident reported sleeping under a bed net 

compared to 62% of lakeside residents, and IRS was primarily conducted along the lakeside (Figure 2.3). 

Furthermore, vector counts and parasite prevalence were associated with geographic features, such 

that interventions can be targeted to households in areas of greatest risk. Higher vector counts and 

parasite prevalence were measured in areas close to roads and small streams, which may serve as 

mosquito breeding sites, and higher counts of An. funestus were found in areas of high NDVI, where 

vegetation cover may provide protection and moisture for mosquitoes. Both An. funestus counts and 

parasite prevalence declined with increasing elevation. Many of these findings are consistent with the 

literature, including the proximity to breeding sites, roads, NDVI, elevation, and number of household 

residents, among others [42, 43, 87, 88, 92-94].  

Despite evidence of widespread pyrethroid resistance in this area [45], bed net use was 

consistently correlated with reduced parasite prevalence, indicating that this intervention continues to 

be successful and remains an important method of reducing vector-human contact. History of IRS with 

pirimiphos-methyl was also protective, with a 17% lower risk among sprayed households in the rainy 

season (the six months after application) and a 55% reduction in An. funestus counts. Despite being the 
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primary vector in the rainy season, there was no significant reduction in An. gambiae, potentially due to 

consistently low trap counts of this vector coupled with several outliers among sprayed households with 

very high An. gambiae counts. 

The relationships between climate and both epidemiologic and entomologic outcomes were 

complex, but correlations were generally consistent between each season and its primary vector. Across 

analyses, temperature was the strongest predictor of vector abundance and parasite prevalence. For 

both An. gambiae abundance and rainy-season parasite prevalence, risk increased with increasing 

minimum temperature and decreased with increasing maximum temperature, suggesting transmission 

occurred most efficiently within a defined temperature range. Increased rainfall was generally 

associated with large increases in An. gambiae abundance. However, increased rainfall was associated 

with lower counts at very short time lags, and no association was found between rainy-season parasite 

prevalence and rainfall. This could be due to saturation effects, or the differing impact of rainfall in 

different ecologic areas of the district. Similarly, both An. funestus abundance and dry-season parasite 

prevalence declined with increasing rainfall and were higher with increasing maximum temperature 

within the past month, but higher temperatures at longer time lags were associated with lower vector 

counts. These results for rainfall and temperature by species generally agree with the published 

literature [18, 42, 43, 89, 93, 95-100]. 

A major strength of this analyses is the availability of long time series of both epidemiologic and 

entomologic surveillance data collected concurrently. Vector abundance has rarely been directly linked 

to malaria outcomes, particularly at the individual level. Furthermore, the interaction between vector 

dynamics and malaria prevalence has not been adequately described in high-transmission areas or in 

complex multi-species systems. Many high-burden regions are difficult to access for long-term 

surveillance due to logistic difficulties or instability, and this dataset is therefore unusual in both 

duration and scope. The length and frequency of data collection allowed a comprehensive investigation 
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into appropriate time lags and weights for each vector across seasons, accounting for other covariates, 

to determine the best time window to predict parasite prevalence in individuals. This has direct 

relevance for evaluating future vector control interventions.  

In addition, this study clarified the vector-related drivers of the unique epidemiologic pattern in 

Nchelenge District. Despite having one rainy season, the presence of both An. funestus and An. gambiae 

generated two annual peaks in prevalence, and the synergy between these vectors leads to high 

transmission year-round. Although similar multispecies patterns have been described in Kenya and 

Cameroon [42, 43], most settings with two peaks in parasite prevalence are linked to bimodal annual 

rains [101], and the dynamics of this transmission pattern with a single rainy season have remained 

largely unexplored. The disproportionate contribution of An. gambiae to malaria transmission despite 

low numbers is another noteworthy result that may have been obscured without an individual-level 

study design, and the importance of both rainy- and dry-season vector abundance to rainy season 

parasite prevalence has direct implications for the timing of vector control interventions in this setting.    

This analysis also had several limitations. Due to the study design, vectors were not collected in 

individual households in consecutive months, and therefore household vector collections were not 

etiologically linked to concurrent parasite prevalence. To address this issue, spatial and temporal 

smoothing was performed to approximate the vector counts at the time of infection. However, these 

methods assumed that repeated vector counts from the same household would be correlated in 

consecutive months and that vector counts would be correlated among neighboring households. If not 

correct, these assumptions may attenuate the relationship between vector abundance and parasite 

prevalence. For An. funestus particularly, dry-season parasitemia was driven largely by observed An. 

funestus counts at the time of collection, which could indicate that lagged grid quadrant means are a 

poor predictor for true lagged household counts due to the high variability in An. funestus abundance 
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between households. The relationship between An. funestus abundance and parasitemia might 

therefore have been harder to determine, which could have attenuated the observed PRR. 

In addition, these analyses used vector abundance as the primary marker of vector-mediated 

transmission rather than EIR, a more commonly used metric of transmission intensity. The EIR is a 

function of both vector abundance and the sporozoite rate [102], so if the sporozoite rate varies 

independently from vector abundance throughout the year, vector counts would not be an accurate 

indicator of transmission intensity. Sporozoite data were not available, so the assumption was made 

that there was limited variability in sporozoite rates and that vector abundance was the primary driver 

of EIR, as reported in prior studies in high-transmission areas [103, 104]. If this assumption is incorrect, 

the relationship between vector abundance and parasite prevalence might not accurately reflect the 

underlying transmission processes. However, vector abundance was collected at the relatively fine 

temporal scale of one month, while EIR is generally measured over one year or a single transmission 

season, so the benefits of increasing the resolution of data collection may outweigh the drawbacks of 

these assumptions.       

Furthermore, although vector counts were correlated with parasite prevalence, vector variables 

were no longer statistically significant when covariates on the same causal pathway were added back 

into models. This could indicate that the measured and weighted household counts are not as strong 

predictors of parasitemia as higher-level common causes such as geography and weather, which could 

be caused by measurement error in mosquito collections, incorrect specification of time lags or weights, 

or other factors. Vector collection is prone to measurement error due to the inherent difficulty of 

measuring stochastic animal behavior, and it is possible that upstream factors such as climate could be 

stronger predictors of malaria risk since they are easier to measure. Indoor vector collections also do not 

account for outdoor transmission, which was found to be a significant driver of total malaria 
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transmission in other settings and may increase in the presence of vector control interventions [44, 105-

110].  

Another potential limitation of this study is the use of cross-sectional parasite prevalence rather 

than incidence as the main outcome. Due to the potentially long duration of parasitemia without 

treatment [83], the relationship between vector abundance and prevalence may be less direct, and 

therefore the strength of associations may be attenuated. Because new longitudinal cohorts were re-

enrolled yearly, reliable incidence data were not available in this population over sufficiently long time 

periods to conduct this analysis. However, time lags of up to 5 months were explored, which should 

somewhat account for this challenge.    

 

CONCLUSION 

Vector abundance was significantly correlated with parasite prevalence in Nchelenge District, 

Zambia. In the rainy season, parasitemia was associated with household counts of An. gambiae 

mosquitoes in the previous month and An. funestus mosquitoes four months prior, indicating that both 

rainy and dry season vector abundance influenced rainy season parasite prevalence. Dry season 

parasitemia was associated with household counts of An. funestus mosquitoes only. Although vector 

abundance was a significant predictor of parasite prevalence, geographic and climatological factors were 

more strongly associated with parasitemia, which highlights the difficulty of accurately collecting and 

modeling vector counts. These results have implications for vector control. Due to substantial dry season 

transmission and the contribution of dry season vectors to rainy season transmission, malaria control 

interventions in Nchelenge District should be conducted throughout the year with increased attention to 

rural areas.    
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Figure 2.1: Nchelenge District sampled and enumerated households from April 2012 – July 2017 
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Figure 2.2: Schematic for relationship between household vector counts and individual malaria prevalence  

 
If a one-month time lag is the most epidemiologically relevant, human malaria infection in household H1 in grid quadrant G1 at time T1 is caused by exposure to 

vectors in the same household at time T0. Household counts at T0 are affect by weather, geography, vector and parasite life cycles, and ongoing transmission. 

However, vector counts in H1 at T0 are not measured, so vector counts at this time are inferred through the measured average vector counts in G1 at time T0.  
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Figure 2.3 Distribution of An. funestus and An. gambiae in sampled grid quadrants throughout the study 

area in Nchelenge District, Zambia in A) rainy and B) dry seasons  

 

 

A 

B 
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Figure 2.4: Time series of A) An. funestus and An. gambiae (x10) counts by months, and B) parasite prevalence among the study population and 

among children under age 17 years 
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Table 2.1: Factors associated with household counts of An. funestus and An. gambiae using bivariate 

negative binomial models with robust standard errors and GEE clustered by household, N=1,732 

 An. funestus An. gambiae 

 IRR  95% CI P value IRR 95% CI P value 

HOUSEHOLD CHARACTERISTICS       
 History of IRS by self-report# 0.35 (0.25, 0.49) <0.001 0.92 (0.63, 1.3) 0.7 
 Dirt floor in home 4.3 (2.2, 8.2) <0.001 1.3 (0.78, 2.2) 0.3 
 Use unprotected water source 2.0 (1.4, 2.9) <0.001 1.9 (1.4, 2.7) <0.001 
 Longitudinal HH type 1.01 (0.62, 1.6) 0.9 0.73 (0.52, 1.03) 0.08 
 Metal roof* 0.20 (0.10, 0.39) <0.001 0.68 (0.40, 1.2) 0.2 
 Closed eaves* 0.23 (0.12, 0.46) <0.001 0.70 (0.40, 1.3) 0.2 
        
HOUSEHOLD DEMOGRAPHICS       
 Number of household participants 1.1 (1.04, 1.2) 0.001 1.03 (0.96, 1.1) 0.4 
 Proportion who use bed net (by 10%) 1.09 (1.05, 1.1) <0.001 1.06 (1.02, 1.1) 0.002 
 Proportion under 5 years (by 10%) 1.2 (1.1, 1.3) <0.001 1.1 (1.02, 1.2) 0.02 
 Proportion male (by 10%) 1.00 (0.97, 1.03) 0.9 0.99 (0.95, 1.03) 0.6 
       
GEOGRAPHIC VARIABLES       
 HHs within 500 m (by 100 HH)   0.61 (0.50, 0.73) <0.001 0.80 (0.74, 0.87) <0.001 
 Elevation (by 10 m)  0.86 (0.82, 0.90) <0.001 1.00 (0.93, 1.07) 0.9 
 Slope (by 1°) 1.1 (1.07, 1.2) <0.001 0.96 0.89, 1.05) 0.4 
 NDVI (by 10%) 2.1 (1.8, 2.5) <0.001 1.5 (1.2, 1.8) <0.001 
 Distance from Lake Mweru (in km)  1.2 (1.1, 1.2) <0.001 1.06 (1.02, 1.1) 0.002 
 Distance from health clinics (in km)  1.3 (1.2, 1.3) <0.001 1.09 (1.05, 1.1) <0.001 
 Distance from roads (in 100 m) 0.93 (0.82, 1.05) 0.2 0.89 (0.75, 1.05) 0.2 
 Distance from cat. 1 streams (in km) 0.63 (0.38, 1.04) 0.07 0.68 (0.40, 1.17) 0.2 
 Distance from cat. 2 streams (in km) 0.59 (0.47, 0.74) <0.001 0.78 (0.67, 0.91) 0.002 
 Distance from cat. 3 streams (in km) 0.82 (0.72, 0.95) 0.007 0.95 (0.85, 1.06) 0.4 
 Distance from cat. 4 streams (in km) 1.2 (1.06, 1.3) 0.001 1.08 (0.99, 1.2) 0.09 

IRR = incidence rate ratio, CI = confidence interval, HH = household 
# IRS with pirimiphos-methyl, *subsample of all households, N=1,383 
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Table 2.2: Negative binomial multivariate models of predicting An. funestus (N=1,665) and An. gambiae 

(N=1,732) counts per household, using robust standard errors and GEE clustered by household 

 An. funestus An. gambiae 

 IRR  95% CI P value IRR 95% CI P value 

History of IRS by self-report# 0.45 (0.32, 0.62) <0.001 -   
HH within 500 m (by 100 HH)   0.65 (0.54, 0.77) <0.001 0.82 (0.75, 0.89) <0.001 
Elevation (by 10 m)  0.53 (0.47, 0.61) <0.001 -   
Slope 0.88 (0.80, 0.97) 0.01 -   
NDVI (by 10%) 1.3 (1.08, 1.5) 0.004 -   
Lakeside  0.28 (0.16, 0.47) <0.001 0.25 (0.14, 0.43) <0.001 
Lake Distance (in km) -   0.82 (0.75, 0.89) <0.001 
Distance from roads (in 100 m) 0.80 (0.74, 0.86) <0.001 0.82 (0.74, 0.90) <0.001 
Distance from cat. 1 streams (in km) 0.52 (0.32, 0.84) 0.007 0.64 (0.46, 0.89) 0.007 
Lagged rainfall (by 10 mm) 1  0.29 (0.17, 0.47) <0.001 -   
Lagged rainfall (by 10 mm) 2 0.56 (0.36, 0.86) 0.008 -   
Lagged rainfall (by 10 mm) 3 -   0.66 (0.46, 0.95) 0.02 
Lagged rainfall (by 10 mm) 4 -   2.3 (1.4, 3.8) 0.002 
Lagged maximum temperature (in C°) 1 1.08 (1.00, 1.2) 0.05 -   
Lagged maximum temperature (in C°) 5 0.76 (0.69, 0.85) <0.001 -   
Lagged maximum temperature (in C°) 6 -   0.75 (0.68, 0.82) <0.001 
Lagged minimum temperature (in C°) 6 -   1.3 (1.2, 1.4) <0.001 

IRR = incidence rate ratio, CI = confidence interval, HH = household 
1 Interval=2 weeks, lag=2 weeks; 2 Interval=2 weeks, lag=4 weeks; 3 Interval=1 weeks, lag=2 weeks; 4 Interval=7 weeks, lag=3 

weeks; 5 Interval=8 weeks, lag=4 weeks; 6 Interval=4 weeks, lag=3 weeks 
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Table 2.3: Characteristics of study population (N=3,520) 

 n  % 

INDIVIDUAL CHARACHTERISTICS   
       Age <5 690 19.6% 
       Age 5-16 1,190 33.8% 
       Male 1,576 44.8% 
       Sleep under bed net 2,004 57.1% 
   
CLINICAL RESULTS   
       RDT positive 1,767 49.9% 
       Fever at visit 79 2.2% 
       Anemic at visit 2,125 60.4% 
       Taken Coartem in past 2 weeks 702 20.0% 
   
HOUSEHOLD CHARACTERISTICS   
       Longitudinal HH type 554 15.7% 
       History of IRS by self-report# 764 22.0% 
       Within 3 km of Lake Mweru 2,249 64.1% 
       Dirt floor in home 3,079 87.9% 
       Unprotected water source 1,711 48.7% 
       HOH primary school only 2,407 68.6% 
       HOH permanently employed 229 6.5% 
       Metal roof^ 261 10.1% 
       Closed eaves^ 202 7.8% 

^subsample of population (N=2,577) 
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Table 2.4: Factors associated with parasite prevalence by RDT using bivariate Poisson regression models 

with robust standard errors and GEE clustered by household, N=3,533 

 Rainy Season Dry Season 

 PRR  95% CI P value PRR 95% CI P value 

DEMOGRAPHIC VARIABLES       
 Age <5* 1.9 (1.7, 2.2) <0.001 2.02 (1.8, 2.3) <0.001 
 Age 5-16* 2.2 (2.0, 2.5) <0.001 2.5 (2.3, 2.9) <0.001 
 Male 1.3 (1.1, 1.4) <0.001 1.06 (0.96, 1.2) 0.2 
 Longitudinal HH type 0.96 (0.82, 1.1) 0.6 1.3 (1.1, 1.5) <0.001 
 Sleep under bed net 0.69 (0.62, 0.77) <0.001 0.70 (0.62, 0.78) <0.001 
 History of IRS by self-report# 0.80 (0.69, 0.92) 0.003 0.95 (0.80, 1.1) 0.5 
 Dirt floor in home 1.2 (1.02, 1.5) 0.03 1.4 (1.1, 1.8) 0.004 
 Unprotected water source 1.2 (1.08, 1.4) 0.001 0.99 (0.88, 1.1) 0.9 
 HOH primary school only 1.3 (1.1, 1.5) <0.001 1.4 (1.2, 1.6) <0.001 
 HOH permanently employed 0.87 (0.68, 1.1) 0.3 0.93 (0.72, 1.2) 0.6 
 Number of household participants 1.06 (1.04, 1.09) <0.001 1.07 (1.04, 1.1) <0.001 
 Metal roof^ 0.66 (0.50, 0.88) 0.004 0.63 (0.46, 0.85) 0.003 
 Closed eaves^ 0.54 (0.37, 0.80) 0.002 0.68 (0.50, 0.93) 0.02 
       
GEOGRAPHIC VARIABLES       
 HHs within 500 m (by 100 HH)   0.92 (0.90, 0.94) <0.001 0.95 (0.93, 0.98) <0.001 
 Elevation (by 10 m)  0.99 (0.96, 1.03) 0.7 0.95 (0.92, 0.99) 0.008 
 Slope (by 1°) 1.00 (0.97, 1.03) 0.9 1.03 (1.01, 1.06) 0.02 
 NDVI (by 10%) 1.08 (1.01, 1.2) 0.02 1.06 (0.98, 1.2) 0.1 
 Distance from Lake Mweru (in km)  1.03 (1.02, 1.05) <0.001 1.0 (0.98, 1.01) 0.7 
 Distance from health clinics (in km)  1.04 (1.03, 1.06) <0.001 1.01 (0.99, 1.03) 0.4 
 Distance from roads (in 100 m) 0.94 (0.91, 0.97) <0.001 0.93 (0.88, 1.00) 0.04 
 Distance from cat. 1 streams (in km) 0.82 (0.72, 0.93) 0.002 0.78 (0.67, 0.90) 0.001 
 Distance from cat. 2 streams (in km) 0.92 (0.87, 0.97) 0.002 1.02 (0.96, 1.08) 0.5 
 Distance from cat. 3 streams (in km) 0.98 (0.95, 1.00) 0.1 1.04 (1.01, 1.07) 0.02 
 Distance from cat. 4 streams (in km) 1.02 (0.99, 1.05) 0.2 1.00 (0.97, 1.03) 0.8 

PRR = prevalence rate ratio, CI = confidence interval, HOH = head of household, HH = household 

*Compared to adults aged >16, # IRS with pirimiphos-methyl, ^subset of study population N=2,589 
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Table 2.5: Poisson multivariate GEE models, clustered by household, investigating correlates of parasite 

prevalence by season using both non-vector and vector-based predictors (non-vector model N=3,477, 

vector model N=3,493) 

 Rainy Season Dry Season 

 PRR  95% CI P value PRR 95% CI P value 

NON-VECTOR MODEL       
 Age <5* 1.8 (1.6, 2.0) <0.001 2.0 (1.7, 2.3) <0.001 
 Age 5-16* 2.1 (1.9, 2.4) <0.001 2.5 (2.2, 2.8) <0.001 
 Male 1.2 (1.1, 1.3) <0.001 -   
 Sleep under bed net 0.82 (0.75, 0.91) <0.001 0.88 (0.80, 0.96) 0.006 
 History of IRS by self-report# 0.83 (0.73, 0.94) 0.005 -   
 Dirt floor in home -   1.2 (0.98, 1.5) 0.07 
 HOH primary school only 1.2 (1.03, 1.3) 0.01 1.2 (1.04, 1.3) 0.01 
 HH within 500 m (by 100 HH)   0.93 (0.90, 0.96) <0.001 0.96 (0.94, 0.99) 0.01 
 Elevation (by 10 m)  0.90 (0.86, 0.94) <0.001 0.91 (0.87, 0.95) <0.001 
 Distance from health clinics (in km)  1.05 (1.01, 1.08) 0.005 1.05 (1.02, 1.07) 0.003 
 Distance from roads (in 100 m) 0.95 (0.93, 0.98) <0.001 -   
 Distance from cat. 1 streams (in km) 0.91 (0.81, 1.02) 0.1 -   
 Distance from cat. 3 streams (in km) -   1.04 (1.02, 1.07) <0.001 
 Lagged rainfall (by 10 mm) 1  -   0.77 (0.64, 0.94) 0.01 
 Lagged minimum temperature (in C°) 2 1.1 (1.05, 1.2) <0.001 -   
 Lagged maximum temperature (in C°) 3 0.96 (0.93, 0.99) 0.03 -   
 Lagged maximum temperature (in C°) 4 -   1.2 (1.1, 1.3) <0.001 
       
VECTOR MODEL        
 An. gambiae (per 10) 5 1.3 (1.1, 1.5) <0.001 -   
 An. funestus (per 10) 6,7 1.05 (1.03, 1.07) <0.001 1.02 (1.01, 1.03) <0.001 
 Age <5* 1.8 (1.6, 2.1) <0.001 2.00 (1.7, 2.3) <0.001 
 Age 5-16* 2.1 (1.9, 2.4) <0.001 2.4 (2.2, 2.8) <0.001 
 Male 1.2 (1.08, 1.3) <0.001 -   
 Sleep under bed net 0.83 (0.75, 0.92) 0.001 0.89 (0.81, 0.98) 0.02 
 HOH primary school only 1.2 (1.1, 1.4) 0.001 1.3 (1.1, 1.5) <0.001 
 Elevation (by 10 m) -   0.96 (0.93, 0.99) 0.04 

PRR = prevalence rate ratio, CI = confidence interval, HOH = head of household, HH = household 

*Compared to adults aged >16, # IRS with pirimiphos-methyl 
1 Interval=6 weeks, lag=5 weeks; 2 interval=2 weeks, lag=2 weeks; 3 interval=2 weeks, lag=1 weeks; 4 interval=5 weeks, lag=3 

weeks; 5 adjusted by neighbors, weighted 90% by grid average lagged 1 month; 6 rainy season: adjusted by neighbors, weighted 

90% by grid average lagged 4 months; 6 dry season: adjusted by neighbors, weighted 10% by grid average lagged 1 month 
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Figure 2.5: Time series of both parasite prevalence and household counts of A) An. funestus and B) An. gambiae 
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Figure 2.6: Time series of both parasite prevalence and household counts of An. funestus and An. gambiae 
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ABSTRACT 

Background: The scale-up of malaria control efforts has led to a decline in the global malaria burden, 

but progress in some regions has stalled or reversed. Malaria transmission in northern Zambia increased 

in the past decade despite malaria control activities. Evidence-based intervention strategies are needed 

in this setting to effectively control and interrupt malaria transmission.  

Methods: Targeted indoor residual spraying (IRS) was conducted in Nchelenge District, Luapula 

Province, northern Zambia using the organophosphate insecticide pirimiphos-methyl. An evaluation of 

three years of the IRS campaign was conducted using actively detected malaria cases and indoor vector 

counts collected in bimonthly household surveys from April 2012 to July 2017. Parasite prevalence was 

measured using rapid diagnostic tests (RDTs) and vectors were collected with indoor Centers for Disease 

Control and Prevention (CDC) light traps. Changes in prevalence and vector abundance by species before 

vs. after IRS were assessed using regression models with robust standard errors, controlling for 

demographic, geographic, and climatological covariates. Variances in all models were adjusted for 

clustering of participants within households and repeat household visits.  

Results: Vector abundance and parasite prevalence decreased following IRS with pirimiphos-methyl. 

Anopheles funestus counts declined by 51% in both the areas targeted for IRS and the entire study area, 

and An. gambiae counts declined 36% in targeted areas and by 40% in the entire study area. Within the 

targeted area, An. funestus counts declined significantly in sprayed households but not unsprayed 

households, but the reverse was true for An. gambiae. Parasite prevalence declined by approximately 

25% in areas targeted for IRS during the rainy season but did not decline during the dry season or in 

areas not targeted for IRS. Within the targeted areas, parasite prevalence declined in both sprayed and 

unsprayed households, indicating that the intervention had both direct and indirect effects on malaria 

transmission.  
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Conclusion: As more countries move towards malaria elimination, high-transmission regions remain a 

challenge for malaria control. Novel intervention strategies are needed to successfully reduce and 

interrupt transmission in these settings. In Nchelenge District, the moderate decrease in vector density 

and parasite prevalence following three years of IRS indicates that IRS with pirimiphos-methyl is an 

effective malaria control measure, but a more comprehensive package of interventions is needed to 

reduce malaria burden in this setting. 
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INTRODUCTION 

Due to widespread scale-up of malaria control interventions and improved case management, 

there has been a substantial decrease in the global malaria burden following the launch of the Roll Back 

Malaria Initiative in 1998 and the President’s Malaria Initiative (PMI) in 2005. From 2000 to 2015, global 

malaria incidence fell 41% and malaria mortality rates declined by 62% [1]. However, these gains have 

been uneven both within and between countries, and the rate of progress has slowed or reversed in 

some regions [2].  

In Zambia, malaria remains the leading non-neonatal cause of child mortality, and the World 

Health Organization (WHO) estimated there were 3.1 million cases and 7,000 deaths in 2016, an 

increase of almost a million cases since 2010 [2, 3]. Both in-patient malaria cases and deaths in Zambia 

declined by approximately two thirds between 2000 and 2008 following a highly successful malaria 

control campaign that supported universal access to rapid diagnostic testing (RDTs), artemisinin-

combination therapy (ACT), long-lasting insecticide-treated nets (LLINs), and expanded indoor residual 

spraying (IRS) [4]. However, these achievements were not equal across the country, with large gains 

made in Lusaka and southern Zambia but a high burden of malaria continuing in the northern and 

eastern regions of the country [5]. In subsequent years, low transmission was maintained in the south, 

but declining funds and intervention effectiveness led to an increase in malaria cases in northeast 

Zambia in 2009, and cases continued to increase nearly every subsequent year [2, 5-7]. By 2014, Luapula 

Province in the north reported over 50% malaria prevalence and increasing severe malaria in children 

under 5 years old, while Lusaka and the southern provinces reported parasite prevalence of <1% to 14% 

in children this age [4, 7]. This striking heterogeneity of malaria control under the same intervention 

policy, with reversal of progress in northern Zambia, indicates a need to continue to develop new 

intervention strategies for different epidemiologic settings. 
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Malaria epidemiology is highly dependent on the distribution and abundance of mosquito 

vectors, and integrated vector management (IVM) is a key priority for Zambia’s national malaria control 

strategy [2, 8, 9]. The main malaria vectors in Zambia are Anopheles gambiae sensu stricto (s.s.), An. 

arabiensis, and An. funestus s.s., all highly efficient disease vectors that may be anthropophilic (feed on 

humans), endophagic (bite indoors), and endophilic (rest indoors) [4, 10, 11]. Due to these behaviors, 

IRS in combination with other interventions has historically been a successful and cost-effective malaria 

control strategy in Zambia [4, 10, 12]. However, increasing resistance to DDT, pyrethroid, and carbamate 

insecticides has reduced the efficacy of this intervention and may be partly responsible for the rebound 

in cases in northern Zambia over the past decade [7, 10].  

In response to this trend, a novel formulation of the organophosphate insecticide pirimiphos-

methyl (Actellic 300CS) underwent sensitivity testing in 2013 in preparation for a national IRS campaign 

and was found to be 100% effective against the malaria vectors in Luapula Province [13, 14]. The 

standard for IRS is blanket coverage within a district, in which all household structures are sprayed; 

however, the increased cost of pirimiphos-methyl introduced resource constraints which limited the 

number of districts that could receive IRS. In an effort to maximize the impact of the intervention given 

limited resources, the Government of Zambia in collaboration with PMI and the African Indoor Residual 

Spraying (AIRS) project implemented targeted IRS in selected districts within Zambia in 2014 [15].  

Targeted IRS is an emerging strategy in low-resource settings that has gained interest in recent 

years due in part to the high cost of new insecticide formulations [16]. The approach focuses spraying 

activities on transmission hotspots with high population density and high numbers of reported cases so 

that resources can be concentrated on clusters of households that have the most impact in sustaining 

local transmission [16]. The proposed advantages of this strategy include potential cost savings and 

logistical ease.  



70 
 

Although the need for targeted malaria control interventions has been discussed broadly [17-

19], the body of published literature on targeted IRS is sparse. The current WHO recommendation is to 

use targeted IRS in areas of low endemicity for residual foci of high transmission, and several studies 

have evaluated the impact of this strategy [20-26]. Targeted IRS in meso-endemic valleys in Burundi in 

2002-2005 resulted in substantial reductions in parasite prevalence and vector densities in targeted 

areas [21, 22], and targeted IRS in western Kenya in 2005, 2007, and 2016 produced similar beneficial 

results [23-25]. In northwest Tanzania, IRS targeted to epidemic-prone villages in 2007 was associated 

with reduced malaria prevalence in both targeted and neighboring villages [26]. However, studies have 

not previously been conducted in high-transmission settings and have not conclusively demonstrated 

interruption of transmission outside targeted areas. In Burundi, vector density but not parasite 

prevalence declined slightly in nearby untargeted highlands, and the most recent Kenya study found no 

impact of the targeted intervention outside the sprayed area.  

As global interest in targeted interventions increases, research is needed to determine the 

effectiveness of this strategy in different settings. The continued rise in malaria transmission in northern 

Zambia despite active malaria control highlights the need for evidence-based intervention strategies. 

The objective of this study was to evaluate the impact of three consecutive years of targeted IRS on 

vector counts and malaria prevalence in Nchelenge District, Luapula Province, a high-transmission area 

in northern Zambia. Nchelenge District is one of the surveillance sites for the Southern and Central 

Africa International Centers of Excellence for Malaria Research (ICEMR) and was among the districts in 

Zambia selected for targeted IRS with pirimiphos-methyl from 2014-2016.  

METHODS 

Study Site 
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This study was conducted by the Southern and Central Africa ICEMR led by the Johns Hopkins 

Malaria Research Institute (JHMRI), in collaboration with the Zambian Ministry of Health’s Tropical 

Disease Research Center (TDRC) and other partners [6]. The project uses active and passive surveillance 

to investigate heterogeneity in malaria burden across four distinct epidemiological settings and inform 

intervention policies [27]. Nchelenge District is one of these study sites, representing a setting of high 

transmission. Nchelenge District is located in the marshlands of the Luapula River along the banks of 

Lake Mweru, which forms the border with Haut-Katanga Province of the Democratic Republic of the 

Congo (DRC). There are approximately 150,000 residents with an average of 4.7 people per household 

[28]. There is a single rainy season from October to April, followed by a dry season with little to no rain. 

Nchelenge District experiences holoendemic malaria with year-round transmission and a resurgence in 

cases in recent years. The prevalence of malaria increased from 38% in 2006 to 53% in 2012 despite LLIN 

distributions and annual IRS campaigns from 2008-2012 [7]. Since 2012, the prevalence of malaria by 

RDT averaged approximately 70% in school-age children, and the entomological inoculation rate (EIR) is 

estimated to be 140 infective bites per year [29, 30].  

The predominant malaria vectors in Nchelenge District are An. gambiae s.s. and An. funestus 

s.s., and the distribution of these vectors varies across small spatial scales [31, 32]. An. gambiae 

breeding sites are typically found in shallow temporary pools such as wheel ruts and hoof prints, making 

this species dependent on rainfall, while An. funestus breeding sites are more frequently found in 

permanent bodies of water with emergent vegetation, such as marshlands and river banks, and are thus 

more robust to dry weather conditions [11, 33]. An. funestus is the predominant vector throughout the 

year in in both lakeside and inland areas, with a large peak in abundance in the dry season once rains 

have ceased, and An. gambiae abundance peaks in lakeside areas shortly after the start of the rainy 

season [31, 32]. The differing ecology of these vectors and the suitability of local breeding sites in 

Nchelenge District supports year-round malaria transmission. 
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Targeted IRS Campaign 

In Zambia, PMI-supported IRS campaigns were conducted yearly in Nchelenge District from 

2008-2012. Different formulations of pyrethroid insecticides were used from 2008-2010, and carbamate 

insecticides were used in 2011 and 2012 following identification of pyrethroid resistance [9]. During this 

time, the strategy for vector control was to use IRS in highly populated urban and peri-urban areas and 

to distribute LLINs in rural areas. No spraying occurred in Nchelenge District in 2013.  

In 2014, Zambian IRS activities were transitioned to the AIRS program with Abt Associates as an 

implementing partner [34, 35]. Forty high-burden districts were identified in five provinces in Zambia, 

and sub-district areas were selected for targeted IRS with pirimiphos-methyl. Detailed methods for 

selecting targeted areas were described elsewhere [15, 16, 36]. In brief, structures were enumerated 

using publicly available satellite images and classified into clusters of >25 households. These clusters 

were linked to health center catchment areas and assigned a level of malaria burden based on the 

health center’s malaria incidence reports and population size. The clusters were then ranked by malaria 

burden, and high-ranking clusters of sufficient population density were targeted for IRS. Spraying was 

initiated in October 2014 ahead of the rainy season with the goal of at least 85% coverage of targeted 

structures [15]. This strategy was repeated in 2015 and 2016 in fewer districts, with expanded criteria 

for selecting targeted areas [37, 38]. Specifically, low-population areas with high transmission adjacent 

to targeted clusters were included where logistically feasible, with the objective of linking isolated 

targeted areas. During this time, LLINs continued to be distributed in antenatal and vaccination clinics 

[9].    

Data Collection 

The study area is located along the banks of Lake Mweru in the center of Nchelenge District and 

constitutes about 20% of the land area of the district (Figure 3.1). Households in the study area were 
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enumerated using Quickbird™ satellite images (DigitalGlobal Services, Denver, CO). A 1x1 kilometer grid 

was overlaid on the study area and grid quadrants were randomly selected to represent the full range of 

ecology in the study area. Household sampling and data collection began in April 2012 and is ongoing. 

Households were randomly selected within each quadrant using population proportional to size 

sampling and were recruited into longitudinal or cross-sectional cohorts, with sampling alternating 

between cohorts every other month. In cross-sectional cohorts, approximately 25 new households were 

recruited each bimonthly period. Longitudinal cohorts were comprised of 25-30 households visited 

bimonthly six times over a year and then were replaced with a new longitudinal cohort.  

At each study visit, household coordinates were recorded, and a questionnaire was 

administered to each consenting household member aged 16 and older and to guardians of residents 

under 16 years. The questionnaire gathered demographic data, history of recent malaria and treatment, 

reported LLIN use, history of household IRS, and malaria knowledge and practices. Participant 

temperature was taken using a digital ear thermometer, and a blood sample was collected by finger 

prick for hemoglobin testing, Plasmodium falciparum HRP-2 RDT, and dried blood spots for downstream 

cytochrome b (cytb) polymerase chain reaction (PCR) to detect P. falciparum DNA [39, 40]. In 

accordance with Zambian national policy, the RDT brands used throughout the study period were ICT 

(ICT Diagnostics, Cape Town, South Africa) from April 2012 to May 2013, First Response (Premier 

Medical Corporation LTD., Mumbai, India) from June to September 2013, and SD Bioline (Standard 

Diagnostics, Kyonggi, Republic of Korea) from October 2013 to the present. All participants positive for 

P. falciparum by RDT were offered treatment with Coartem® (Novartis, Basel, Switzerland), the first-line 

standard of care in Zambia. The day before each study visit, Centers for Disease Control (CDC) light traps 

(John W. Hock, Ltd, Gainesville, FL) were placed in participating households to collect mosquito vectors 

overnight. Traps were placed near a sleeping space with an LLIN, and participants were instructed to 

turn them on at 18:00 and off at 6:00 the following morning. Traps were collected at the time of the 
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study visit the following day. The number of Anopheles mosquitoes were counted and speciated 

morphologically and by PCR [32, 41, 42]. Additional details of study methods are described elsewhere 

[31, 32, 43]. 

Data Management 

Data collected electronically at participating households were uploaded into REDCap secure file-

sharing software and downloaded as .csv files [44]. Malaria status was determined by individual RDT 

results. Participants were defined to have a fever if their temperature exceeded 38 C°, and anemia was 

determined by WHO criteria for hemoglobin levels by age and sex [45]. Participating households were 

plotted in ArcGIS Version 10.2 (ESRI, Redlands, CA), and population density for each household was 

calculated as the total number of enumerated households within a 500-meter buffer. Geographic 

variables were created from previously developed geolocated raster and shapefiles for roads, stream 

networks, elevation, slope, and normalized difference vegetation index (NDVI) for the study area [43]. 

Streams were categorized using the Strahler classification system, in which two small category 1 streams 

join to form a category 2 stream, which joins another to form a category 3 stream, and so on [46]. 

Distances to Lake Mweru, health centers, roads, and category 1-4 streams were calculated for each 

household, and households were categorized as lakeside (rather than inland) if they were within 3 km of 

the lake. Residence in the area targeted for spraying in each year was determined using shapefiles 

provided by the NGO partner Akros based in Lusaka [16].  

Meteorological and hydrological data were collected from a HOBO Micro Station (Onset 

Computer Corporation, Bourne, MA) located near TDRC offices in Kashikishi township and from the 

African Flood and Drought Monitor (AFDM) online tool [47, 48]. These variables included rainfall in 

mm/day, evaporation in mm/day, minimum and maximum daily temperature in C°, windspeed in m/s, 

streamflow in m3/s, and percent soil moisture.  
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Statistical Analysis 

The primary outcomes for this evaluation were the differences in malaria parasite prevalence 

and household vector abundance by species before vs. after IRS with pirimiphos-methyl. Due to the 

differing malaria transmission dynamics in lakeside and inland regions of Nchelenge District and the 

disproportionate targeting of IRS to lakeside areas, a direct comparison between sprayed and unsprayed 

areas would be biased and was not conducted. Epidemiological analyses were restricted to cross-

sectional households and the first visit to longitudinal households to identify prevalent malaria 

infections. Analyses on vector density used data collected from all cross-sectional and longitudinal 

households, as household type and repeat visits were not shown to impact vector counts in adjusted 

analyses. Analyses were conducted for the overall study area as well as restricted to the area targeted 

for spraying. All epidemiological models were stratified by season. The start and end of the rainy season 

each year was defined as the first and last weeks in which the average rainfall exceed 1 mm. Sensitivity 

analyses using different cutoffs and time intervals were performed to ensure that this definition best 

represented the epidemiologic and entomologic relationships in this region. Vector abundance models 

were not stratified by season due to the high degree of variation in the data and a lack of power to run 

stratified analyses. 

Data were analyzed using STATA 13.1 (Stata-Corporation, College Station, TX) and R version 

3.4.2 (R Core Team, Vienna, Austria). Bivariate comparisons using demographic and geographic variables 

were conducted using chi-square tests and bivariate regression models. Demographic variables collected 

from the questionnaire included sex, age category (<5, 5-16, >16 years), reported LLIN use, natural vs. 

finished household flooring, open vs. protected household water source, head of household (HOH) 

attending only primary school, HOH in permanent employment, roof type (thatch vs. metal) and 

presence of open vs. closed household eaves. Geographic variables developed using ArcGIS were 

defined above. 
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For the epidemiologic analyses, multivariable regression models were fit comparing the 

probability of a positive RDT before vs. after IRS with pirimiphos-methyl, with the study participant as 

the unit of analysis. Standard logistic regression models are not ideal in this setting because malaria 

prevalence in Nchelenge District averages 50%, so models were fit using the Poisson estimation of the 

binomial distribution with robust standard errors, which can directly estimate the prevalence rate ratio 

(PRR) [49-52]. Multivariate regression models for vector analyses compared household vector counts 

before vs. after IRS with pirimiphos-methyl, stratified by species. Negative binomial regression models 

with robust standard errors were used to account for overdispersion [53, 54]. For all bivariate and 

multivariate models, generalized estimating equations (GEE) were used to account for clustering of 

participants within households in the epidemiological analyses and for repeat visits to households in 

vector analyses [55, 56].  

For both the epidemiologic and vector analyses, preliminary multivariate models were fit with 

demographic and geographic variables as appropriate using stepwise regression and AIC optimization 

methods [57, 58]. The variables for roof type and household eaves could not be included in multivariate 

analyses since they were measured in only a subsample of the study population. Final models were fit 

with meteorological and hydrological covariates to explain inter-annual variation in malaria 

transmission. Due to the length of vector and parasite life cycles, the impact of climatological factors is 

expected to be lagged; however, optimum time lags have not been investigated for this setting. Previous 

studies introduced a matrix framework for investigating the impact of weather variables on malaria and 

vector densities at various time intervals and lags [59, 60], and this approach was adapted for this 

analysis. The mean values of each weather and hydrology factor were calculated at intervals of 1-12 

weeks and lags of 1-12 weeks prior to each day of data collection. Final models were fit using random 

forest algorithms to control for the large number of collinear weather and hydrology variables [61, 62], 

and were confirmed using stepwise regression and AIC optimization methods. Indirect effects of the IRS 
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intervention within the sprayed area were investigated using fully parameterized models stratified by 

self-reported history of household IRS with pirimiphos-methyl.  

A difference-in-differences analysis was conducted to further account for secular trends in 

malaria transmission. This analysis assumes that, although parasite prevalence and vector abundance 

were different in the sprayed and unsprayed areas, the proportionate change in these parameters over 

time would be equal if the IRS campaign had not been performed. The change in each outcome before 

vs. after the IRS intervention was compared between the sprayed and unsprayed areas using an 

interaction term. The value of this interaction term is interpreted as the ratio of risk ratios, or the ratio 

of the change in prevalence or vector density in the sprayed area and the change in the unsprayed area. 

RESULTS 

Characteristics of targeted IRS 

Targeted IRS with pirimiphos-methyl started in Nchelenge District on October 20th in 2014, 

September 28th in 2015, and September 26th in 2016 and ran for 7-10 weeks [15, 37, 38]. Most areas 

targeted for IRS were in the peri-urban lakeside area where population density was highest (Figure 3.2). 

The number of targeted households in Nchelenge District increased from 18,315 in 2014 to 

approximately 26,000 in 2015 and 2016 [37, 38, 63]. Quality assurance activities conducted in five 

sentinel sites showed 100% mortality of An. funestus 24 hours after spraying in cone bioassays, declining 

to less than 80% mortality after five months in most sites [9].  

Vector Abundance 

Vector species composition 

From April 2012 to July 2017, 13,780 female anopheline mosquitoes were collected from 1,724 

visits to 1,084 cross-sectional and longitudinal households. These included 12,365 An. funestus, 1,371 
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An. gambiae, and 44 anophelines of other species. As expected, An. funestus abundance peaked in the 

dry season and An. gambiae peaked in the rainy season (Figure 3.3). Across all visits, households had an 

average of 7.2 and a median of 0 An. funestus (range = 0-226, IQR 0-2), and an average of 0.8 and a 

median of 0 An. gambiae (range = 0-35, IQR 0-0). There were a high number of households with counts 

of zero mosquitoes. No An. funestus were collected in 60.7% of household visits, and no An. gambiae 

were collected in 77.5% of household visits. Fifty three percent of household visits yielded no 

anopheline mosquitoes.       

Impact of targeted IRS on vector densities 

Over the entire study area, an average of 10.6 An. funestus and 0.96 An. gambiae were collected 

per household visit before the IRS campaign, which declined to 4.2 and 0.65 per visit, respectively, after 

IRS. Since more than half of households had no Anopheles mosquitos collected, the median values did 

not change; however, in Wilcoxon rank-sum tests, An. funestus counts were significantly lower after the 

intervention (P=0.01) but An. gambiae counts were not (P=0.6). In bivariate negative binomial models, 

which control for clustering within household but do not account for other covariates, there was a 58% 

decrease in household An. funestus counts (IRR = 0.42, 95% CI = 0.31-0.59) and a 31% decrease in 

household An. gambiae counts across the study area after targeted IRS (IRR = 0.69, 95% CI = 0.50-0.96). 

In bivariate models stratified by residence within the area targeted for IRS, An. funestus counts declined 

after the IRS intervention by 68% in the sprayed area (IRR = 0.32, 95% CI = 0.22-0.48) and by 50% in the 

unsprayed area (IRR = 0.50, 95% CI = 0.30-0.85), and this difference was statistically significant (P<0.001) 

(Table 3.1).  In contrast, An. gambiae counts did not decline significantly in the sprayed area after the 

IRS intervention (IRR = 0.73, 95% CI = 0.49-1.08), but unexpectedly declined by 49% in the unsprayed 

area (IRR = 0.51, 95% CI = 0.28-0.94). 
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In multivariate models for the entire study area controlling for geographic and climate variables, 

there was a 51.0% decrease in An. funestus counts per household (IRR = 0.49, 95% CI = 0.29-0.82) and a 

40.0% decrease in An. gambiae counts per household (IRR = 0.60, 95% CI = 0.44-0.80) over three years 

of IRS (Table 3.2). These results indicate that there was an overall decline in household vector counts 

throughout the study area following the IRS campaign.  

In final multivariate models restricted to the sprayed area and controlling for all covariates, 

there was a 51% decrease in An. funestus counts (IRR = 0.49, 95% CI = 0.29-0.82) and a 36% decrease in 

An. gambiae counts (IRR = 0.64, 95% CI = 0.42-0.96) over three years of IRS with pirimiphos-methyl. 

(Table 3.3). For An. funestus, there were no significant differences from year to year (Figure 3.4), but 

there was a trend towards a larger change in year three. The impact on An. gambiae density was 

significantly higher in the first year of the IRS campaign, which had a 72% reduction, compared to the 

second and third years, which had 6% and 31% reductions, respectively. The addition of covariates and 

climatological factors did not substantially change the point estimates, however, there was a slight 

attenuation of the effect for An. funestus and a slightly increased effect for An. gambiae in the adjusted 

models (Figure 3.4).    

Indirect effects of IRS 

To investigate direct and indirect effects of the IRS intervention on household vector densities, 

models restricted to the sprayed area were further stratified by self-reported history of IRS. In 

unadjusted bivariate negative binomial models, there was 68% reduction in An. funestus counts in 

households that reported having been sprayed with pirimiphos-methyl (IRR = 0.32, 95% CI = 0.21-0.50), 

and a 65% reduction in households that reported not having been sprayed (IRR = 0.35, 95% CI = 0.22-

0.54) (Table 3.1). These values were similar to the overall reduction in An. funestus counts in the sprayed 

area. In fully adjusted multivariate models, An. funestus counts decreased 67% in households that 
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reported IRS with pirimiphos-methyl (IRR = 0.33, 95% CI = 0.20-0.52), but did not decrease significantly 

in households that reported no history of IRS (IRR = 0.64, 95% CI = 0.32-1.27). 

Within the area targeted for spraying, there was no significant reduction in An. gambiae counts 

among households that reported a history of IRS with pirimiphos-methyl in either adjusted or 

unadjusted models (unadjusted IRR = 0.90, 95% CI = 0.57-1.41; adjusted IRR = 0.74, 95% CI = 0.46-1.18). 

However, in households within the sprayed area that reported no history of IRS, An. gambiae counts 

decreased 41% and 48% in unadjusted and adjusted models, respectively, compared to household 

counts prior to the IRS campaign (unadjusted IRR = 0.59, 95% CI = 0.35-0.98; adjusted IRR = 0.48, 95% CI 

= 0.29-0.78).  

Difference-in-differences analysis 

Although household vector counts within the sprayed area were shown to decline after IRS with 

pirimiphos-methyl, there was no evidence of a significant impact of the intervention itself in the 

difference-in-differences analysis. As described above, these models include an interaction term which 

represents the ratio of the risk ratios for vector density before vs. after the IRS intervention in sprayed 

vs. unsprayed areas. For both species, vector counts were significantly lower post-IRS, but this decrease 

was only larger in the sprayed area for An. funestus, and the interaction term was not significant for 

either species (An. funestus = 0.67, 95% CI = 0.31-1.42; An. gambiae = 1.2, 95% CI = 0.62-2.40). These 

results indicate that there was a study area-wide reduction in vector counts, that this reduction was 

larger for An. funestus within sprayed areas, but that there was no significant difference in the change in 

vector counts between sprayed and unsprayed areas for either species. This suggests that the decrease 

in vector counts may not have been attributable solely to the IRS intervention, or that these models may 

not have the power to conclusively estimate these effects.  
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Impact of Covariates on Vector Abundance 

In addition to the IRS campaign, several other factors were associated with household vector 

counts (Tables 2.1, 2.3). In both adjusted and unadjusted analyses, higher household density and 

increasing distance from category 1 streams was associated with lower vector abundance for both 

species, and increasing NDVI was associated with increased vector abundance. For An. funestus, higher 

elevation and steeper slope were associated with lower vector counts, and increasing distance from 

Lake Mweru and category 4 streams were associated with increased vector counts. For An. gambiae, 

household use of an open water source was associated with higher vector abundance. In unadjusted 

models, closed household eaves and metal roof type were additionally associated with lower An. 

funestus counts; however, these could not be included in final models since they were measured in only 

a subsample of the study population. Additional factors were associated with malaria risk in unadjusted 

models that no longer contributed to model fit in final multivariate models (Table 3.1).  

The climatological variables that best predicted vector abundance were lagged rainfall and 

temperature (Table 3.3). For An. funestus, there was a 76% decrease in vector counts for each 10 mm 

increase in average daily rainfall over a two-week interval, lagged two weeks (IRR = 0.27, 95% CI = 0.16, 

0.48). There was a 14% increase in vector counts for each 1° C increase in maximum temperature in the 

one-week period lagged 2 weeks (IRR = 1.14, 95% CI = 1.03-1.26), and a 21% decrease in vector counts 

for each 1° C increase in maximum temperature in the eight-week period immediately prior to this (IRR 

= 0.79, 95% CI = 0.66-0.94), indicating a more complex relationship with temperature depending on 

stage of life cycle and other factors. For An. gambiae, there was a 32% decrease in vector counts for 

each 10 mm increase in average daily rainfall over the two-week interval, lagged two weeks (IRR = 0.68, 

95% CI = 0.47-0.99), but a nearly 400% increase in vector counts for each 10 mm increase in average 

daily rainfall for the prior ten-week period (IRR = 3.96, 95% CI = 1.88-8.37). There was a 21% decrease in 

vector counts for each 1° C increase in maximum temperature in the seven-week interval lagged two 
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weeks (IRR = 0.79, 95% CI = 0.67-0.92), and a 32% increase in vector counts for each one-degree C° 

increase in minimum temperature for this same time period (IRR = 1.32, 95% CI = 1.18-1.48), indicating 

that An. gambiae may survive and reproduce best within a specific temperature window. 

Parasite Prevalence 

Study population 

A total of 3,309 individuals residing in 1,025 households participated in the study between April 

2012 and July 2017, including 2,446 participants from within the area targeted for IRS and 863 

participants outside the targeted area. Approximately 45% of participants were male, 19% were younger 

than 5 years, and 34% were school age (between 6 and 16 years). Sixty percent of participants were 

anemic and 2% had a fever at the time of the study visit. The overall parasite prevalence by RDT in the 

population over the duration of the study was 49.8%, with 59% prevalence in children under 5 years and 

72% prevalence among school age children. Overall parasite prevalence ranged from 20% to 80% in the 

sprayed area and 22% to 78% in the unsprayed area (Figure 3.3). In most years there were two annual 

peaks in parasite prevalence, the first of which occurred soon after the start of the rainy season and the 

second occurring during the dry season, consistent with the changes in vector populations. Due to 

sampling issues, no households from the unsprayed area participated from November 2016 to March 

2017. Over the three years of IRS, 54% of study households in the targeted areas reported that they 

were sprayed, corresponding to 55% of participants. By year, the proportion of eligible households in 

targeted areas that reported being sprayed was 56% in year 1, 48% in year 2, and 57% in year 3. 

There were some demographic differences in the study population before and after the start of 

targeted IRS with pirimiphos-methyl (Table 3.4). Across the study population, there was a decrease in 

the proportion of participants with natural flooring and whose HOH was in permanent employment, and 

an increase in participants whose HOH had only primary school education. In sprayed areas, there was a 
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decrease in children under five years. In unsprayed areas, there was a decrease in participants using an 

open water source and an increase in participants who reported sleeping under a bed net.  

Impact of targeted IRS on parasite prevalence 

In analyses over the entire study area, there was no change in parasite prevalence by RDT 

before vs. after IRS in either unadjusted or adjusted analyses. This result was consistent in chi-squared 

analyses (OR = 0.99, 95% CI = 0.87-1.14) and in multivariate Poisson models stratified by season and 

adjusting for all covariates (rainy season PRR = 0.90, 95% CI = 0.80-1.02; dry season PRR = 0.99, 95% CI = 

0.89-1.10). 

Further analyses were restricted to the area targeted for IRS. In unadjusted chi-squared 

analyses, there was a 16% decrease in parasite prevalence in the sprayed area compared to a 46% 

increase in parasite prevalence in the unsprayed area (Table 3.4). In the sprayed area, there was also a 

66% decrease in fever, a 30% decrease in history of taking malaria medication, but a 73% increase in 

anemia. In unadjusted bivariate Poisson models, however, which controlled for clustering within 

household but did not account for other covariates, the change in parasite prevalence after IRS with 

pirimiphos-methyl was not statistically significant for either rainy (PRR = 0.90, 95% CI = 0.78-1.06) or dry 

seasons (PRR = 0.89, 95% CI = 0.76-1.03) (Table 3.3). Similarly, when only demographic and geographic 

variables were included in models, there was no statistically significant change in parasite prevalence 

after IRS in rainy (PRR = 0.88, 95% CI = 0.77-1.01) or dry seasons (PRR = 0.94, 95% CI = 0.82-1.08) (Figure 

3.5). 

In final multivariate Poisson models for the sprayed area, which included weather and hydrology 

covariates, IRS with pirimiphos-methyl was associated with a 28% decrease in parasite prevalence in the 

rainy season (PRR = 0.72, 95% CI = 0.62-0.84), but was not significantly associated with decreased 

malaria risk in the dry season (PRR = 0.91, 95% CI = 0.80-1.05) (Table 3.6). There was no significant 
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difference year-to-year; however, there was a non-significant trend toward a greater impact of IRS with 

each subsequent year when climatological factors were included in models (Figure 3.5).  

In all analyses, there was a trend towards a decrease in malaria prevalence after the IRS 

intervention, although which covariates were included had a large effect on the magnitude of the 

outcome. The addition of weather and hydrological covariates had a substantial impact on model 

precision and effect size (Figure 3.4). The rationale for including these variables in the model was to 

account for inter-annual differences in malaria risk based on climatological variation, and these results 

suggest that these patterns must be taken into account to accurately model the impact of malaria 

control interventions in this setting.     

Indirect effects of targeted IRS on parasite prevalence 

To investigate direct and indirect effects of the IRS intervention on parasite prevalence, models 

restricted to the sprayed area were stratified by self-reported history of IRS. In unadjusted Poisson 

models, parasite prevalence in the rainy season decreased 18% among participants who reported IRS 

with pirimiphos-methyl (PRR = 0.82, 95% CI = 0.69-0.97), but there was no significant change among 

participants who reported no IRS (PRR = 1.02, 95% CI = 0.84-1.21). In the dry season, there was no 

significant change in parasite prevalence among participants who reported IRS with pirimiphos-methyl 

(PRR = 0.93, 95% CI = 0.77-1.11) or those who did not (PRR = 0.86, 95% CI = 0.71-1.05).   

In fully adjusted Poisson models restricted to the sprayed area, parasite prevalence in the rainy 

season decreased 33% among participants who reported IRS with pirimiphos-methyl (PRR = 0.67, 95% CI 

= 0.63-0.87) and 26% among participants who reported no IRS (PRR = 0.74, 95% CI = 0.63-0.87), 

compared to parasite prevalence prior to the IRS campaign. This indicates both direct and indirect 

effects of IRS with pirimiphos-methyl within the sprayed areas. In the dry season, there was no 
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significant change in parasite prevalence in either sprayed (PR = 0.88, 95% CI = 0.74-1.05) or unsprayed 

households (PR = 0.98, 95% CI = 0.83-1.15) within the targeted areas. 

Difference-in-differences analysis 

The difference-in-differences analysis was conducted to further control for secular trends and to 

account for the apparent increase in malaria prevalence in unsprayed areas (Table 3.4). As described 

above, the interaction term in these models is the ratio of the risk ratios for malaria prevalence before 

and after IRS with pirimiphos-methyl in the sprayed vs. unsprayed areas. For the rainy season, the value 

of this interaction term was 0.77 (95% CI = 0.62-0.95) indicating that there was a 23% larger decrease in 

parasite prevalence in the sprayed area compared to the unsprayed area. For the dry season, the 

interaction term was not statistically significant (PRR = 0.83, 95% CI = 0.65-1.05). 

Impact of Covariates on Malaria Prevalence 

In addition to the IRS intervention, several other factors were associated with parasite 

prevalence (Tables 3.5, 3.6). In both adjusted and unadjusted analyses across seasons, the strongest risk 

factors for RDT positivity were male sex, school age, and age under five years. The strongest protective 

factors were sleeping under a bed net, residence in areas with high population density, and higher 

elevation. The large protective effect of sleeping under a bed net is noteworthy given the high levels of 

pyrethroid resistance among vectors in this setting. Having a HOH with only a primary school education 

was another risk factor and contributed to model fit across analyses. In the rainy season, increasing 

distance from Lake Mweru was associated with increased malaria risk. In the dry season, increasing 

distance from Lake Mweru and category 1 streams was associated with decreased malaria risk, and 

increasing distance from health clinics was associated with increased malaria risk. In unadjusted models, 

closed household eaves and metal roof type were associated with lower malaria prevalence in both 

rainy and dry seasons, but these variables could not be included in final models since they were only 
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measured in a subsample of the study population. Additional factors were associated with malaria risk in 

unadjusted models that no longer contributed to model fit in final multivariate models (Table 3.5). 

The climatological variables that best predicted malaria risk in the rainy season were lagged 

rainfall and minimum temperature (Table 3.6). There was a 24% increase in malaria risk for each 10 mm 

increase in average daily rainfall over a two-week interval and lagged three weeks (PRR = 1.24, 95% CI = 

1.06-1.45). There was a 15% increase in risk for each 1° C increase in minimum daily temperature 

averaged over a three-week interval, lagged two weeks (PRR = 1.15, 95% CI = 1.08-1.22). In the dry 

season, the climatological variables that predicted malaria risk were lagged maximum temperature and 

streamflow. Malaria risk increased 17% for each 1° C increase in daily maximum temperature averaged 

over a five-week interval and lagged three weeks (PRR = 1.17, 95% CI = 1.09-1.17). Malaria risk 

decreased 10% for each 1000 m3/s increase in streamflow over a two-week interval and lagged four 

weeks (PR = 0.90, 95% CI = 0.83-0.97). 

DISCUSSION 

After three years of targeted IRS with pirimiphos-methyl in Nchelenge District, Zambia, there 

was a decrease in both vector abundance and parasite prevalence in the area targeted for spraying. 

Household vector counts but not parasite prevalence decreased over the entire study area, and parasite 

prevalence in the targeted area decreased only within the first six months after IRS. 

In all analyses, An. funestus counts per household decreased after the IRS intervention. This 

result was consistent in unadjusted analyses and in analyses adjusting for geographic and climatological 

covariates. Vector counts declined by approximately 50% over the entire study area, including both the 

sprayed and unsprayed areas. While there was a slightly larger decrease in the sprayed area than the 

unsprayed area, the ratio of risk ratios was not statistically significant in the difference-in-differences 

analysis, indicating that the change in vector counts post-intervention was not meaningfully larger in the 
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area targeted for IRS. However, within the targeted area, the decline in An. funestus vector abundance 

was twice as large in sprayed households as in unsprayed households.  

Similarly, An. gambiae counts per household decreased after the IRS intervention by 40% in the 

entire study area and by approximately 36% in the area targeted for spraying. However, this result was 

less consistent across analyses, likely because of small sample sizes and resulting wide confidence 

intervals. The decline in the unsprayed area was larger than in the sprayed area, and therefore the ratio 

of risk ratios was not statistically significant in the difference-in-differences analysis. Furthermore, when 

households within the targeted area were stratified by history of IRS, households that had not been 

sprayed unexpectedly showed a larger decline in vector abundance after the intervention than 

households that had been sprayed.  

These results generally indicate that there was a significant overall reduction in indoor An. 

funestus and An. gambiae abundance in the study area following IRS with pirimiphos-methyl, but that 

the cause of this decline is likely multifactorial and may not be wholly due to the intervention itself. 

Although it is feasible that the IRS intervention reduced vector counts district-wide due to unexpectedly 

long flight distances among host-seeking Anopheles mosquitoes [64], sampled unsprayed households 

were often 5-10 km away from the sprayed area and would not be expected to experience a large 

impact of IRS at these distances. The absence of a larger effect in the sprayed area than the unsprayed 

area is surprising, particularly for An. gambiae, as is the absence of a significant decline in An. gambiae 

counts in sprayed households.  

Both unexpected findings may be explained in part by the high variability in the vector data and 

the large number of zero counts, which may reduce model stability and may increase the impact of 

outliers. For example, in the small inland lagoon area within the sprayed zone (Figure 3.2), both An. 

funestus and An. gambiae counts after the intervention averaged three times higher than in lakeside 



88 
 

sprayed areas, which may have had a disproportionate effect on model outcomes. Due to lack of power, 

models could not be further stratified to isolate the effects in different geographical areas, and these 

outliers were not excluded from analyses in order to provide a comprehensive evaluation of the 

intervention throughout sprayed areas in the district. Given these challenges, it is possible that these 

models lack the power to conclusively demonstrate the isolated effect of the intervention on vector 

abundance in Nchelenge District as compared with other factors.  

The impact of the intervention on parasite prevalence was more readily interpretable. Over 

three years of IRS with pirimiphos-methyl in Nchelenge District, there was an approximately 25% 

decrease in rainy season malaria parasite prevalence in areas targeted for spraying. This result was 

consistent across adjusted analyses. Households with a self-reported history of IRS had a 32% larger 

effect size than unsprayed households within the sprayed area, but both sets of households experienced 

a decline in prevalence. This demonstrates that IRS with pirimiphos-methyl had both direct and indirect 

effects on malaria transmission in the targeted area. However, there was no impact of the IRS 

intervention on parasite prevalence in the dry season or at the district level. These results indicate that 

there was a moderate impact of targeted IRS with pirimiphos-methyl on parasite prevalence in 

Nchelenge District in the six months following the intervention, but only within the targeted area.  

Although there was a significant reduction in parasite prevalence and vector abundance 

following the IRS intervention, the size of the impact was not as large as anticipated given the scale of 

the intervention and the efficacy of the insecticide used. While a 25% decrease in prevalence 

corresponds to a large number of cases averted in this high-transmission region, this result was 

observed for only half of the year, and malaria burden continues to be substantial in Nchelenge District. 

Furthermore, although overall vector abundance declined after IRS, high vector counts continued to be 

collected from sprayed households, with up to 93 An. funestus and 35 An. gambiae collected from single 
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sprayed households in the six months after the intervention. Several potential explanations for the 

lower than expected impact are explored below.   

Nchelenge District is a particularly challenging setting for malaria control with many barriers to 

intervention effectiveness. Year-round transmission and high EIRs lead to a high force of infection, and 

the predominance of asymptomatic infections may result in a large untreated parasite reservoir. The 

population in Nchelenge is highly mobile, and movement between the inland and lakeside areas or 

across the border to the neighboring DRC can increase exposure to infected mosquitoes for people 

residing in intervention areas. There is only one paved road in the district, and flooding is common 

throughout much of the year, which creates substantial barriers to provision of malaria interventions 

and health services to the remote rural population. Furthermore, studies in other areas have shown An. 

funestus and An. gambiae may have substantial outdoor biting behavior if people are outside during 

peak hours [65-67]. This can reduce the effectiveness of many vector control activities, including IRS and 

LLINs, if people are outside in early mornings or late evenings. In fact, outdoor and daytime biting 

behavior of An. funestus and An. gambiae has been shown to increase after the implementation of 

vector control activities, which may select for this behavior in mosquito populations [68-71].  

In addition to these structural barriers, there may be limitations of the current IRS strategy for 

this setting. Although pirimiphos-methyl was highly effective against malaria vectors in the region, 

studies have shown that this formulation produces only 5-8 months of insecticidal activity, with a 

particularly short duration of efficacy on the natural or mud walls common in this region of northern 

Zambia [13, 38, 72-74]. Since Nchelenge District experiences year-round transmission and An. funestus 

populations peak in the dry season, a single annual application of insecticide at the start of the rainy 

season would impact only rainy season malaria transmission and would not affect transmission by An. 

funestus for the other half of the year. This evaluation supports this hypothesis, as there was no 

significant impact of pirimiphos-methyl on parasite prevalence in the dry season, which typically started 
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6 months after IRS application. In addition, high parasite prevalence and vector densities exist in the 

areas not targeted for IRS. Prior to the intervention, approximately half of participants in unsprayed 

areas were RDT positive, but these regions were not included in the IRS campaign due to low population 

density and logistical challenges. Since the entire district has a high malaria burden, targeted IRS would 

not be expected to interrupt transmission in this setting. 

There were additional challenges of the IRS campaign that may have limited the effectiveness of 

the intervention. In the active surveillance data, only 54% of participating households in IRS-targeted 

areas reported that their house had been sprayed, which corresponds to 55% of targeted participants 

and 42% of all participants in the study area. The 2015 Malaria Indicator Survey similarly reported that 

only 32% of households in Luapula Province received IRS in the past 12 months [75]. This level of 

coverage is substantially lower than the goal of 85% and would not be expected to reduce the impact of 

the IRS campaign [15]. Furthermore, in several years, IRS began after the first rainfall and continued into 

mid-November in all three years. The extension of spray operations into the rainy season could 

attenuate the impact of the intervention, since many households in the targeted area would not have 

been sprayed until after vector populations started to increase. The long duration of the spray campaign 

could also reduce acceptability of the intervention in the community, since home preparation for IRS 

includes placing all household items outside, which would be less tolerated during rainy weather. This 

could have contributed to the low household coverage by either active refusals or passive non-

participation, in which household members are intentionally absent for the day of spray operations. In 

official reports, PMI confirmed that the inconvenience of home preparation contributed to low 

acceptability of IRS in Nchelenge District, among other factors [38].  

Given these substantial barriers and challenges, the question remains of how best to implement 

malaria control activities in this high-transmission region. Zambia has stated the goal of national malaria 

elimination by 2021 [9], however this objective will be difficult to achieve in Nchelenge District with the 
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current rate of progress. To this end, a substantial increase in resources and intervention coverage will 

be needed if interruption of transmission in this area is going to be achieved.  

In high-transmission areas, vectorial capacity must be reduced substantially to interrupt 

transmission [66, 76, 77]. To achieve this, IRS must be performed consistently at high coverage and for 

multiple years to have a considerable impact on parasite prevalence [78, 79]. Furthermore, dry season 

malaria transmission has been implicated in failure of malaria control, even in low-transmission areas 

and those with a single primary transmission season [65, 79, 80]. Mathematical models have 

demonstrated that once-yearly IRS is insufficient to substantially reduce malaria prevalence in high-

transmission areas, although twice-yearly IRS in combination with other interventions could reduce 

prevalence to 10% [79]. These results indicate that the high degree of dry season transmission in 

Nchelenge District will undermine intervention effectiveness if malaria control measures are 

concentrated on rainy season transmission only.  

Due to these factors, IRS should continue to be used in Nchelenge District as one of a suite of 

malaria control activities, but spraying must be conducted twice yearly with at least 85% coverage 

across the district to have a substantial impact on malaria burden. The significant reduction in parasite 

prevalence given the current strategy indicates that IRS can be an important part of an integrated vector 

management plan in this high-transmission setting and that much larger gains could be made if 

interventions were scaled up and coverage was increased. The evidence of indirect effects of IRS further 

suggests that the impact might increase disproportionately at high levels of coverage. In keeping with 

Zambia’s current policy, monitoring for insecticide resistance should continue to ensure that IRS remains 

effective [8, 9]. Although achieving these goals will require overcoming substantial economic and 

logistical barriers, this level of investment will be required to achieve successful malaria control and 

elimination in Nchelenge District by 2021.  



92 
 

This evaluation had several strengths. The study included a long time series of both 

epidemiologic and entomologic surveillance, the combination of which is rare in areas of high 

transmission. This time series allows for the investigation of seasonality, inter-annual variation, and 

long-term temporal trends of parasite prevalence and vector abundance. Although both vector and 

epidemiologic data sets include a large degree of noise and variation due to sampling probabilities, 

natural fluctuations in weather, and life cycles of parasites and vectors, the availability of six years of 

data helps control for these effects in statistical models. If the evaluation were conducted for only the 

year before and after the start of the intervention, the decrease in vector abundance and parasite 

prevalence would be overestimated. The long time series furthermore allows for the inclusion of 

weather and hydrological covariates, which are known to have a large impact on vector abundance and 

malaria risk, but are often omitted due to the lack of appropriate multi-year data to parameterize 

models. This analysis shows that inclusion of these climatological factors was important to properly 

evaluate the impact of the IRS intervention. When climate variables were not included, the effect of the 

intervention was attenuated.  

Another strength of this evaluation was the use of active surveillance data. Although health 

center case reports are one of the cornerstones of malaria surveillance, there are limitations to these 

data that active surveillance circumvents. In a high-transmission area like Nchelenge District, malaria is 

frequently asymptomatic or sub-clinical, particularly in older age groups. In this study population, fever 

was recorded in only 8% of RDT positive children under five years and in only 3% of all RDT positive 

participants. This low proportion of febrile illness in infected individuals indicates that people are less 

likely to seek health care, and thus will not be recorded as a case. Therefore, relying on health center 

incidence reports alone may lead to underestimation of the malaria burden. 

Furthermore, although malaria testing and treatment is free of charge in Zambia, health centers 

in remote areas often experience stockouts of RDTs and antimalarial drugs, which can impact malaria 
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diagnosis and reporting. Over the course of this study in Nchelenge District, among 11 health centers 

that reported weekly case counts, RDT stockouts occurred in at least one health center in 60% of 

reported weeks, and stockouts occurred in at least six health centers in 13% of reported weeks. During 

these times, the number of confirmed cases declined but the number of patients treated for malaria 

increased, presumably because febrile patients were treated presumptively without confirmation 

(Figure 3.7). For this reason, health center data from Nchelenge District on either confirmed or 

suspected cases are unreliable to assess the impact of IRS with pirimiphos-methyl. In exploratory 

regression analyses clustered by health center, there was no apparent impact of the IRS intervention 

using either the number or percent of RDT positives in sprayed or unsprayed areas. The availability of 

active surveillance data allows for a comprehensive evaluation of the IRS intervention in this area 

without these limitations.    

This study also had several limitations. Because the overall ICEMR study was designed as a 

surveillance system without this specific intervention in mind, there was limited power to investigate 

the impact of this IRS campaign at finer spatial and temporal scales. This was a particular limitation for 

the vector data, which had a large number of zero counts and was overdispersed, limiting the ability to 

examine intervention effects by season and geography and leading to large confidence intervals. A 

larger sample size would aid in performing intervention evaluations with vector data, but this is 

extremely labor- and laboratory-intensive and was not possible for the present study nor 

programmatically feasible for ongoing surveillance. Furthermore, although it is generally a strength of 

this analysis, the use of active surveillance data limits the generalizability of the evaluation to other 

areas of Zambia that have only health center-based surveillance. Although RDT stockouts precluded a 

comprehensive evaluation of the IRS intervention in Nchelenge District using passive surveillance, health 

center reports must be an integral part of large-scale intervention evaluations in Zambia.  
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Another limitation of this analysis is the inability to conclusively link declines in vector 

populations to declines in parasite prevalence. Vector counts per household decreased across the study 

area and were difficult to link to the intervention explicitly. In contrast, malaria prevalence decreased 

moderately in the area targeted for spraying only. This can once more be partially explained by the high 

degree of variation and difficulty modeling vector count data, which limits the inferential power of the 

vector analyses. Furthermore, EIRs must be reduced to very low numbers to have a large impact on 

malaria prevalence, and therefore reductions in vector density in Nchelenge District would need to be 

large before a direct relationship with parasite prevalence is observed.  

The use of cross-sectional parasite prevalence data rather than malaria incidence data is 

another potential limitation, since prevalence is a less direct indicator of recent malaria transmission 

due to the long potential duration of natural infection. Using prevalence rather than incidence may 

therefore attenuate the calculated impact of the IRS intervention because the time of initial infection is 

unknown. However, the long time series of data collected post-intervention should somewhat mitigate 

the difference in metrics since reduced malaria transmission will ultimately result in reduced prevalence. 

Prevalence is also a useful indicator of population disease burden and therefore provides a 

programmatically relevant metric of intervention effectiveness.  

Various sources of measurement error could also have impacted study outcomes. For low-level 

infections, RDTs may return false negatives due to low sensitivity or HRP-2 deletions, and frequent 

infection in high-transmission areas may result in false positives due to persistent HRP-2 antigenemia 

[81-84]. Although not available for the full period of this evaluation, future analyses will include PCR 

results to help control for these issues. In addition, the use of light traps may underestimate true indoor 

vector counts. For each individual host-seeking mosquito, there is a chance that it will not be captured 

and observed in the trap due to a variety of natural stochastic processes. Mathematically, this would 

have a larger impact for households with low vector abundance and may have contributed to the high 
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number of zero counts and thereby model instability. However, underestimation of household counts 

can occur with any vector collection method, and the considerable benefits of using light traps for active 

surveillance, including logistical ease, low cost, and high acceptability, outweigh any drawbacks in 

comparison to other methods of vector collection that are more time- and laboratory-intensive and 

costly [85].  

CONCLUSION 

Indoor residual spraying continues to be an important element of integrated vector control. 

Three years of targeted IRS with pirimiphos-methyl was associated with significant reductions in malaria 

parasite prevalence and indoor vector abundance within intervention areas in Nchelenge District, 

Zambia. Vector abundance also decreased in nearby unsprayed areas, although parasite prevalence did 

not. Across analyses, declines were not as large as anticipated due a variety of structural and logistical 

challenges. It is expected that substantial financial and logistical investments must be made in this 

region to interrupt malaria transmission, including twice-yearly IRS with high coverage across the 

district.   



96 
 

Figure 3.1: Nchelenge District sampled and enumerated households from April 2012 – July 2017 
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Figure 3.2: Areas in Nchelenge District targeted for IRS in year 1 (2014) and years 2 and 3 (2015, 2016) 
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Figure 3.3 Time series of A) An. funestus and B) An. gambiae average counts per household in sprayed and unsprayed areas in Nchelenge District 
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Table 3.1: Factors associated with household counts of An. funestus and An. gambiae within the areas 

targeted for spraying using bivariate negative binomial models with robust standard errors and GEE 

clustered by household, N=1,271 

 An. funestus An. gambiae 

 IRR  95% CI P value IRR 95% CI P value 

IRS VARIABLES 
 Post-IRS 

 
0.32 

 
(0.22, 0.47) 

 
<0.001 

 
0.73 

 
(0.49, 1.08) 

 
0.1 

 Self-reported history of IRS# 0.32 (0.21, 0.50) <0.001 0.90 (0.57, 1.41) 0.6 
 Self-reported history of no IRS# 0.35 (0.22, 0.54) <0.001 0.59 (0.35, 0.98) 0.04 
       
DEMOGRAPHIC VARIABLES       
 Number of household participants 1.10 (1.03, 1.19) 0.008 1.00 (0.92, 1.08) 0.9 
 Longitudinal HH type 1.13 (0.63, 2.07) 0.7 0.62 (0.42, 0.92) 0.02 
 Dirt floor in home 4.70 (2.59, 8.53) <0.001 1.49 (0.89, 2.52) 0.1 
 Unprotected water source 1.62 (1.02, 2.58) 0.04 2.11 (1.40, 3.16) <0.001 
 Metal roof* 0.23 (0.11, 0.47) <0.001 0.71 (0.40, 1.26) 0.2 
 Closed eaves* 0.27 (0.13, 0.55) <0.001 0.74 (0.40, 1.36) 0.3 
       
GEOGRAPHIC VARIABLES       
 HHs within 500 m (by 100 HH)   0.53 (0.46, 0.62) <0.001 0.78 (0.70, 0.86) <0.001 
 Elevation (by 10 m)  1.21 (1.11, 1.32) <0.001 1.05 (0.95, 1.16) 0.4 
 Slope (by 1°) 0.90 (0.82, 0.99) <0.001 0.94 (0.84, 1.05) 0.3 
 NDVI (by 10%) 2.03 (1.63, 2.53) <0.001 1.51 (1.17, 1.95) 0.002 
 Distance from Lake Mweru (in km)  1.22 (1.16, 1.30) <0.001 1.08 (1.03, 1.14) 0.004 
 Distance from health clinics (in km)  1.47 (1.37, 1.57) <0.001 1.16 (1.10, 1.22) <0.001 
 Distance from roads (in 100 m) 0.58 (0.43, 0.80) 0.001 0.82 (0.53, 1.26) 0.4 
 Distance from cat. 1 streams (in km) 0.27 (0.13, 0.58) 0.001 0.62 (0.30, 1.27) 0.2 
 Distance from cat. 2 streams (in km) 0.63 (0.47, 0.82) 0.001 0.76 (0.62, 0.92) 0.004 
 Distance from cat. 3 streams (in km) 0.92 (0.76, 1.11) 0.4 1.02 (0.87, 1.19) 0.8 
 Distance from cat. 4 streams (in km) 1.39 (1.23, 1.56) <0.001 1.12 (0.99, 1.26) 0.07 

IRR = incidence rate ratio, CI = confidence interval, HH = household 
# Comparison group is malaria prevalence pre-IRS, *subsample of all households, N=1,334 
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Table 3.2: Negative binomial multivariate models of the impact of targeted IRS with pirimiphos-methyl 

on An. funestus and An. gambiae counts per household over the entire study area, using robust 

standard errors and GEE clustered by household, N=1,724 

 An. funestus An. gambiae 

 IRR  95% CI P value IRR 95% CI P value 

Post-IRS 0.49 (0.30, 0.82) 0.007 0.60 (0.44, 0.80) 0.01 
HH within 500 m (by 100 HH)   0.66 (0.54, 0.81) <0.001 0.82 (0.75, 0.89) <0.001 
Elevation (by 10 m)  0.53 (0.46, 0.61) <0.001 -   
Slope 0.88 (0.80, 0.97) 0.007 -   
NDVI (by 10%) 1.24 (1.03, 1.49) 0.02 -   
Lakeside  0.24 (0.14, 0.41) <0.001 0.29 (0.16, 0.50) <0.001 
Distance from Lake Mweru (in km) -   0.83 (0.77, 0.89) <0.001 
Distance from roads (in 100 m) 0.80 (0.74, 0.86) <0.001 0.82 (0.75, 0.91) <0.001 
Distance from cat. 1 streams (in km) 0.55 (0.31, 0.98) 0.04 0.56 (0.41, 0.78) <0.001 
Lagged rainfall (by 10 mm) 1  0.27 (0.16, 0.48) <0.001 -   
Lagged rainfall (by 10 mm) 2 0.62 (0.39, 0.96) 0.03 -   
Lagged rainfall (by 10 mm) 3 -   0.67 (0.48, 0.94) 0.02 
Lagged rainfall (by 10 mm) 4 -   2.33 (1.40, 3.86) 0.001 
Lagged maximum temperature (in C°) 1 1.08 (1.01, 1.16) 0.03 -   
Lagged maximum temperature (in C°) 5 0.80 (0.69, 0.92) 0.003 -   
Lagged maximum temperature (in C°) 6 -   0.81 (0.73, 0.90) <0.001 
Lagged minimum temperature (in C°) 6 -   1.30 (1.20, 1.41) <0.001 

IRR = incidence rate ratio, CI = confidence interval, HH = household 
1 Interval=2 weeks, lag=2 weeks; 2 Interval=2 weeks, lag=4 weeks; 3 Interval=1 weeks, lag=2 weeks; 4 Interval=7 weeks, lag=3 

weeks; 5 interval=8 weeks, lag=4 weeks; 6 interval=4 weeks, lag=3 weeks 
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Table 3.3: Negative binomial multivariate models of the impact of targeted IRS with pirimiphos-methyl 

on An. funestus and An. gambiae counts per household within the areas targeted for spraying, using 

robust standard errors and GEE clustered by household, N=1,271 

 An. funestus An. gambiae 

 IRR  95% CI P value IRR 95% CI P value 

Post-IRS 0.49 (0.29, 0.81) 0.005 0.64 (0.42, 0.96) 0.03 
Open water source -   1.41 (1.02, 1.95) 0.04 
HH within 500 m (by 100 HH)   0.60 (0.51, 0.70) <0.001 0.81 (0.75, 0.88) <0.001 
Elevation (by 10 m)  0.43 (0.33, 0.55) <0.001 -   
Slope 0.82 (0.73, 0.92) 0.001 -   
NDVI (by 10%) 1.29 (0.99, 1.66) 0.06 1.23 (1.00, 1.52) 0.05 
Distance from Lake Mweru (in km)  1.12 (1.03, 1.21) 0.005 -   
Distance from cat. 1 streams (in km) 0.55 (0.31, 0.98) 0.04 0.49 (0.34, 0.73) <0.001 
Distance from cat. 4 streams (in km) 1.42 (1.18, 1.71) <0.001 -   
Lagged rainfall (by 10 mm) 1  0.24 (0.13, 0.47) <0.001 0.68 (0.47, 0.99) 0.05 
Lagged rainfall (by 10 mm) 2 -   3.96 (1.88, 8.37) 0.001 
Lagged maximum temperature (in C°) 3 1.14 (1.03, 1.26) 0.01 -   
Lagged maximum temperature (in C°) 4 0.79 (0.66, 0.94) 0.007 -   
Lagged maximum temperature (in C°) 5 -   0.79 (0.67, 0.92) 0.002 
Lagged minimum temperature (in C°) 5 -   1.32 (1.18, 1.48) <0.001 

PRR = prevalence rate ratio, CI = confidence interval, HOH = head of household, HH = household 
1 Interval=2 weeks, lag=2 weeks; 2 Interval=10 weeks, lag=4 weeks; 3 interval=1 weeks, lag=2 weeks; 4 interval=8 weeks, lag=3 

weeks; 5 interval=7 weeks, lag=2 weeks 
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Figure 3.4: Adjusted and unadjusted percent reduction in vector densities by year compared to pre-IRS 

time period in A) An. funestus and B) An. gambiae 
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Figure 3.5: Time series of parasite prevalence among active surveillance participants in sprayed and unsprayed areas in Nchelenge District 
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Table 3.4: Demographic and clinical characteristics of participants, before and after IRS with pirimiphos-

methyl in sprayed and unsprayed areas, N=3,309 

 Sprayed area Unsprayed Area 

 Pre-IRS 
N=1,281 

Post-IRS 
N=1,165 

P value* Pre-IRS 
N=353 

Post-IRS 
N=510 

P value* 

DEMOGRAPHIC VARIABLES       
 Male 592 (46.2%) 514 (44.1%) 0.3 160 (45.3%) 216 (41.4%) 0.2 
 Age <5 278 (21.7%) 181 (15.5%) <0.001 78 (22.1%) 107 (20.5%) 0.6 
 Age 5-16 425 (33.2%) 422 (36.2%) 0.1 115 (32.6%) 160 (30.7%) 0.5 
 Sleep under bed net 671 (52.4%) 652 (56.0%) 0.08 210 (59.5%) 349 (70.0%) 0.02 
 Dirt floor in home 1,134 (89.1%) 918 (79.3%) <0.001 347 (99.7%) 501 (96.0%) 0.001 
 Unprotected water source 474 (37.0%) 437 (37.7%) 0.7 322 (91.2%) 396 (75.9%) <0.001 
 HOH primary school only 799 (62.6%) 811 (70.1%) <0.001 252 (71.4%) 412 (79.2%) 0.008 
 HOH permanently employed 96 (7.5%) 63 (5.4%) 0.04 30 (8.5%) 12 (2.3%) <0.001 
 
CLINICAL RESULTS 

      

 RDT positive 643 (50.2%) 534 (45.8%) 0.03 172 (48.7%) 303 (58.1%) 0.007 
 Taken Coartem in past month 294 (23.0%) 200 (17.2%) <0.001 68 (19.3%) 98 (18.8%) 0.9 
 Fever 37 (2.9%) 15 (1.3%) 0.006 7 (2.0%) 11 (2.1%) 0.9 
 Anemic 674 (52.6%) 766 (65.8%) <0.001 196 (55.5%) 368 (80.5%) <0.001 

*P value is from chi-squared analyses, HOH = head of household 
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Table 3.5: Factors associated with parasite prevalence by RDT within the areas targeted for IRS using 

bivariate Poisson regression models with robust standard errors and GEE clustered by household, 

N=2,446 

 Rainy Season Dry Season 

 PRR  95% CI P value PRR 95% CI P value 

IRS VARIABLES 
 Post-IRS 

 
0.90 

 
(0.78, 1.06) 

 
0.2 

 
0.89 

 
(0.76, 1.03) 

 
0.1 

 Self-reported history of IRS# 0.82 (0.68, 0.99) 0.04 0.93 (0.77, 1.11) 0.4 
 Self-reported history of no IRS# 1.02 (0.85, 1.21) 0.9 0.86 (0.71, 1.05) 0.1 
       
DEMOGRAPHIC VARIABLES       
 Male 1.25 (1.12, 1.40) <0.001 1.07 (0.95, 1.20) 0.3 
 Age <5* 1.83 (1.54, 2.17) <0.001 1.91 (1.63, 2.25) <0.001 
 Age 5-16* 2.33 (2.03, 2.67) <0.001 2.43 (2.12, 2.80) <0.001 
 Longitudinal HH type 0.97 (0.78, 1.22) 0.8 1.40 (1.19, 1.65) <0.001 
 Sleep under bed net 0.64 (0.55, 0.74) <0.001 0.67 (0.59, 0.77) <0.001 
 Dirt floor in home 1.19 (0.95, 1.49) 0.1 1.39 (1.08, 1.77) 0.01 
 Unprotected water source 1.23 (1.07, 1.43) 0.005 0.93 (0.80, 1.09) 0.4 
 HOH primary school only 1.28 (1.08, 1.52) 0.005 1.32 (1.11, 1.56) 0.001 
 HOH permanently employed 0.90 (0.63, 1.29) 0.6 1.00 (0.74, 1.36) 0.9 
 Metal roof^ 0.72 (0.53, 0.96) 0.03 0.67 (0.50, 0.91) 0.01 
 Closed eaves^ 0.59 (0.39, 0.89) 0.01 0.73 (0.54, 1.00) 0.05 
       
GEOGRAPHIC VARIABLES       
 HHs within 500 m (by 100 HH)   0.92 (0.89, 0.94) <0.001 0.94 (0.91, 0.97) <0.001 
 Elevation (by 10 m)  0.97 (0.92, 1.02) 0.2 0.88 (0.84, 0.92) <0.001 
 Slope (by 1°) 1.00 (0.96, 1.04) 0.8 1.04 (1.00, 1.07) 0.04 
 NDVI (by 10%) 1.07 (0.97, 1.12) 0.2 1.15 (1.04, 1.26) 0.006 
 Distance from Lake Mweru (in km)  1.03 (1.01, 1.05) 0.001 0.98 (0.96, 1.01) 0.3 
 Distance from health clinics (in km)  1.05 (1.03, 1.07) <0.001 1.02 (0.99, 1.06) 0.2 
 Distance from roads (in km) 0.83 (0.29, 2.42) 0.7 0.56 (0.23, 1.36) 0.2 
 Distance from cat. 1 streams (in km) 0.77 (0.65, 0.91) 0.002 0.72 (0.60, 0.87) 0.001 
 Distance from cat. 2 streams (in km) 0.91 (0.85, 0.98) 0.01 1.06 (0.98, 1.14) 0.1 
 Distance from cat. 3 streams (in km) 0.99 (0.95, 1.03) 0.7 1.05 (1.01, 1.10) 0.02 
 Distance from cat. 4 streams (in km) 1.04 (1.00, 1.09) 0.05 0.99 (0.95, 1.03) 0.7 

PRR = prevalence rate ratio, CI = confidence interval, HOH = head of household, HH = household 
#Comparison group is malaria prevalence pre-IRS, *Compared to adults aged >16, ^subset of study population N=1,384 
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Table 3.6: Poisson multivariate models of the impact of targeted IRS with pirimiphos-methyl on malaria 

prevalence by season within the area targeted for spraying, using robust standard errors and GEE 

clustered by household, N=2,446 

 Rainy Season Dry Season 

 PRR  95% CI P value PRR 95% CI P value 

Post-IRS 0.72  (0.62, 0.84) <0.001 0.91 (0.80, 1.05) 0.2 
Male 1.16  (1.05, 1.29) 0.004 -   
Age <5 1.70  (1.44, 2.01) <0.001 1.88 (1.61, 2.20) <0.001 
Age 5-16 2.12  (1.84, 2.45) <0.001 2.32 (2.02, 2.67) <0.001 
Sleep under bed net 0.75  (0.66, 0.86) <0.001 0.87 (0.78, 0.97) 0.01 
HOH primary school only 1.16 (1.01, 1.34) 0.04 1.17 (0.97, 1.29) 0.1 
HH within 500 m (by 100 HH)   0.92 (0.89, 0.95) <0.001 0.95 (0.92, 0.98) 0.003 
Elevation (by 10 m)  0.88 (0.83, 0.93) <0.001 0.90 (0.85, 0.95) <0.001 
Distance from Lake Mweru (in km)  1.04 (1.02, 1.07) 0.001 0.95 (0.91, 0.99) 0.02 
Distance from health clinics (in km)  -   1.07 (1.02, 1.12) 0.006 
Distance from cat. 1 streams (in km) -   0.85 (0.72, 1.01) 0.07 
Lagged rainfall (by 10 mm) 1  1.24  (1.06, 1.45) 0.007 -   
Lagged minimum temperature (in C°) 2 1.15 (1.08, 1.22) <0.001 -   
Lagged maximum temperature (in C°) 3 -   1.17 (1.09, 1.17) <0.001 
Lagged streamflow (in m3/s) 4 -   0.90 (0.83, 0.97) 0.005 

PRR = prevalence rate ratio, CI = confidence interval, HOH = head of household, HH = household 
1 Interval=2 weeks, lag=3 weeks; 2 interval=3 weeks, lag=2 weeks; 3 interval=5 weeks, lag=3 weeks; 4 interval=2 weeks, lag=4 

weeks 
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Figure 3.6: Adjusted and unadjusted reduction in parasite prevalence compared to pre-IRS time period 

in A) rainy and B) dry seasons 
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Figure 3.7: Time series from 11 health centers in Nchelenge District for A) total treated for malaria vs. total RDT positive, and B) percent RDT 
positive in sprayed and unsprayed areas 
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ABSTRACT 

Background: Human movement is a driver of malaria transmission and has implications for sustainable 

malaria control. However, little research has been done on the impact of fine-scale movement, 

especially in high-transmission settings. In particular, the effect of individual movement patterns on 

targeted intervention strategies has not been investigated. As interest in targeted malaria control 

increases, evaluations are needed to determine the appropriateness of these strategies in the context of 

human mobility across a variety of settings. 

Methods: A GPS data logger study was conducted in Nchelenge District, a high-transmission setting in 

northern Zambia. Over one year, 84 participants were recruited from ongoing active surveillance 

cohorts to wear a data logger for one month during all daily activity. Participants completed a survey 

and malaria testing and treatment at logger distribution and collection, and incident malaria infections 

were identified using polymerase chain reaction (PCR). Participant movement was characterized 

throughout the study area and across areas targeted for an indoor residual spraying (IRS) intervention. 

Participant movement patterns were compared by incident parasitemia and demographic characteristics 

using movement intensity maps, activity space plots, and statistical analyses. Malaria risk was 

characterized across participants using risk maps and time spent away from the home during peak 

vector biting hours. 

Results: Movement data was collected from 82 participants, and 63 completed a second visit, for a loss 

to follow-up of 25%. Participants exhibited diverse mobility patterns across ecological zones and in and 

out of areas targeted for IRS, with implications for malaria control in this region. Movement patterns did 

not differ significantly by season of participation or age, but male participants traveled longer distances 

and spent more time away from home. By PCR, malaria incidence was 22%. Participants with incident 

parasitemia traveled a shorter distance and spent more time away from home during peak biting hours, 

but these relationships were not statistically significant. Malaria risk was characterized to be high across 
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participants and did not differ by parasitemia incidence. Time spent outside during peak biting hours 

was identified as a likely source of malaria transmission in this setting.  

Conclusion: Individual movement patterns in Nchelenge District had significant implications for malaria 

control and the effectiveness of a targeted IRS campaign. Large and fine-scale population mobility must 

be considered when planning intervention strategies across transmission settings.  
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INTRODUCTION 

Human population movement is increasingly known to be an important driver of malaria 

transmission. The movement of infected individuals between high and low-transmission settings has 

long been recognized as a source of ongoing disease introductions and continued transmission, and 

cross-border movement has been shown to facilitate the spread of drug resistance [1-6]. These types of 

movement patterns have been cited as contributing causes for the failure of the Global Malaria 

Eradication Program (GMEP) in the 1950s and 60s [7, 8].  

Following the end of the GMEP in 1969, a number of studies were published on the impact of 

human mobility on malaria control [3, 8-10]. These described large-scale population movements across 

borders and between urban and rural areas, which resulted in reimportation and reemergence of 

malaria in areas with previously successful malaria control. Common socioeconomic factors contributing 

to these types of movement included economic migration, agricultural labor, familial networks, 

displacement, and tourism. These studies broadly demonstrated that accounting for large-scale human 

mobility is necessary for sustainable malaria control. If high-transmission regions continue to exist, there 

remains a risk of local reintroductions from incoming visitors or returning residents. In an area with 

competent vectors, this can lead to a rapid resurgence of malaria transmission in the absence of ongoing 

malaria control activities [10]. Therefore, successful malaria control in an area receptive to transmission 

can be unstable. Studies in recent years have further strengthened this conclusion using novel methods 

of characterizing human mobility patterns, including anonymized cellular phone records, census-based 

migration data, and records of ticketed travel [11-17]. 

Despite the recognized importance of large-scale movement to malaria control and elimination 

efforts, little is known about how small-scale movement patterns affect malaria risk [8]. There is 

evidence of heterogeneity in malaria transmission across relatively fine spatial and temporal scales, and 

mathematical models have shown that heterogeneity in individual disease risk for vector-borne 
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pathogens can increase population-level transmission [18-22]. Consequently, individual movement 

patterns are likely to contribute to both personal and population-level malaria risk. In support of this 

hypothesis, mathematical models have shown that daily movement increases heterogeneity of vector-

borne disease risk for individuals, which in turn can lead to an overall increase in transmission for the 

population [20, 23, 24]. In one modelling study, individual movement patterns during times of active 

vector biting were a more significant predictor of disease risk than vector density in the individual’s 

home [20]. However, these relationships have rarely been directly observed.  

Small-scale movement may also impact the effectiveness of malaria control activities. While 

large-scale movement has been shown to undermine interventions at the national and sub-national 

levels, mobility between areas of heterogeneous malaria control at finer levels of spatial resolution 

could also be expected to adversely affect intervention effectiveness. This is particularly relevant amid 

increasing interest in targeted malaria control strategies, in which hotspots of malaria transmission are 

preferentially selected for malaria interventions with the intention of interrupting transmission in a 

wider area [25-27]. This approach has the potential to reduce cost, time, and manpower. However, if 

not all transmission hotspots are successfully targeted, and areas of residual high transmission remain, 

this strategy could unintentionally increase transmission heterogeneity at the local level. Small-scale 

population mobility between areas of differing malaria control could then attenuate the impact of the 

targeted intervention through inward movement of infected people from neighboring non-intervention 

areas and outward movement from intervention areas into areas with greater risk of exposure. Targeted 

intervention strategies must therefore be designed and assessed within the framework of human 

mobility patterns. 

While the connection between human movement and malaria has been explored in the context 

of low-transmission and elimination settings, few studies have investigated the importance of human 

mobility to malaria risk in high-transmission settings. For areas with continued high burden despite 
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malaria control efforts, the individual drivers of transmission must be more clearly delineated to better 

inform intervention strategies. This is particularly urgent for countries with local elimination goals and 

areas at risk of spreading artemisinin resistance [28]. Further work is therefore needed to investigate 

the association between fine-scale, individual mobility patterns and malaria risk across a variety of 

transmission settings.   

Several methods have been explored to investigate the impact of individual movement on 

infectious disease transmission, most notably travel histories, cellular phone data, and portable 

geographic positioning systems (GPS) devices [8, 14, 29-33]. Each method has strengths and limitations. 

Cellular phone data are limited to people who own a phone in an area with reliable cellular service, 

which excludes some groups by rural residence or socioeconomic status [34]. Cellular phone studies are 

not linked to individual users, can only present data at the spatial level of the cell tower, and are 

generally conducted within a single country due to network restrictions that prevent the capture of 

cross-border movement [14]. Travel histories, in contrast, collect data on individuals at potentially 

detailed spatial levels, but are prone to recall bias and are difficult to validate [14, 29, 35].  

Commercially available GPS devices can provide data at a much finer level of spatial and 

temporal resolution. These devices allow for collection of demographic and household data for 

individuals, have been shown to be acceptable to study participants, and have high reliability in rural 

settings [30, 36, 37]. Several studies using GPS data loggers successfully demonstrated the impact of 

individual movement patterns on transmission of vector-borne and parasitic diseases, such as malaria, 

dengue, schistosomiasis, and hookworm [31, 38-40]. Most notably, recent studies in Iquitos, Peru and 

Choma District, Zambia explored the use of GPS data loggers to quantify human movement patterns at a 

fine scale in resource-poor environments with the aim of explaining epidemiologic patterns of disease 

transmission [31, 40]. In both settings, detailed data on movement behavior was found to be 

informative in explaining transmission patterns of vector-borne disease. Particularly in the low-burden 
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setting in southern Zambia, mobility patterns were correlated with seasonal increases in clinical cases 

and reinforced concerns about the risk of importation from neighboring areas [40].   

Informed by the methodology and results of these studies, a population movement study was 

conducted in Nchelenge District, Luapula Province, Zambia using commercially available GPS data 

loggers. The aims of this study were to describe human movement patterns in a remote rural area of 

sub-Saharan Africa, to assess the relationships between movement and malaria risk in a high-

transmission setting, and to investigate the impact of fine-scale mobility on a targeted indoor residual 

spraying (IRS) campaign.  

METHODS 

Study site 

This study was conducted by the Southern and Central Africa International Centers of Excellence 

for Malaria Research (ICEMR) in Nchelenge District, Luapula Province, Zambia [41], in collaboration with 

the Zambian Ministry of Health’s Tropical Disease Research Center (TDRC), the Macha Research Trust 

(MRT), and the Johns Hopkins Malaria Research Institute (JHMRI). The Southern and Central Africa 

ICEMR collects active and passive malaria surveillance data from four distinct epidemiological settings to 

monitor trends in malaria transmission and inform national and international policies [42].  

One of these research sites is located in Nchelenge District, a setting with holoendemic 

transmission and ineffective malaria control. Despite national policies to provide universal access to 

long-lasting insecticide-treated bed nets (LLINs), rapid diagnostic tests (RDTs), and artemisinin-

combination therapy (ACTs), malaria cases in Nchelenge District increased steadily from 2007-2012 [43]. 

Parasite prevalence with Plasmodium falciparum continues to average almost 70% in children under 17 

years, and residents receive approximately 140 infective bites per year [44-46]. The district is located in 

the marshlands surrounding the Luapula River along the bank of Lake Mweru, and year-round 
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transmission is sustained by environmental suitability and the presence of two effective mosquito 

vectors with differing ecology. Anopheles funestus is the dominant vector and has a distinct peak in the 

dry season from May to September, and An. gambiae s.s. populations peak near the lake during the 

rainy season from October to April [47, 48]. Both vectors have shown high resistance to pyrethroid and 

carbamate insecticides, and their distributions vary across the study area at relatively small spatial scales 

[43, 48, 49]. The population of Nchelenge District is largely agrarian, with fishing in Lake Mweru as the 

main economic activity during the dry season and agricultural practices occurring further inland during 

the rainy season when an annual fishing ban is imposed [48]. Nchelenge District and Lake Mweru form 

the border with Haut-Katanga Province of the Democratic Republic of the Congo (DRC), and a large 

degree of formal and informal movement across this border is presumed to occur.  

In October 2014, a targeted IRS campaign using the organophosphate insecticide pirimiphos-

methyl was conducted in Nchelenge District and other high-burden districts in northern Zambia [50]. 

Targeted areas were selected using population density and case reports of nearby health centers [50, 

51]. In Nchelenge District, spray activities occurred mostly in the highly-populated peri-urban areas 

along Lake Mweru and the main road. Targeted IRS with pirimiphos-methyl was repeated annually in 

subsequent years and continues to be the strategy in this region. Bed nets were distributed in antenatal 

and vaccination clinics throughout the study period.   

GPS data loggers 

The GPS data loggers used were IgotU® GT-600 devices (Mobile Action Technology, New Taipei 

City, Taiwan). These were selected based on their acceptability for field study, which included ease in 

programming, light weight (37 grams), large memory (>250,000 points), long battery life (30 hours of 

continuous use), water resistance, and relatively low cost [36]. Outside under open sky, they are 

accurate within 20 m more than 90% of the time, and they have an average error of 4.4 m while 
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stationary and of 10.3 m while in motion [30, 36]. Data loggers were programmed to record geographic 

position, date, time, and altitude every 2.5 minutes. They were password protected, and recorded data 

could only be accessed with a specific software program and unique connection cable, which were kept 

at the locked field station in Kashikishi. Therefore, if a logger was lost in the field, the data on the device 

could not be accessed by anyone other than the field manager. To extend battery life, data loggers were 

programmed to be motion activated, so no points were logged if the participant was asleep or 

stationary. To reduce errors, the power button was disabled so participants could not accidentally turn 

off the device.   

Study population and recruitment 

The population for the GPS data logger study was recruited from the Southern and Central 

Africa ICEMR active surveillance cohorts. Households were originally enumerated in 2012 using 

Quickbird™ satellite images (DigitalGlobal Services, Denver, CO) and 1x1 kilometer grid quadrants were 

randomly selected to represent the full range of ecology in the study area. Beginning in April 2012, 

households were randomly selected within quadrants using population proportional to size sampling 

and were recruited into longitudinal or cross-sectional cohorts with alternating frequency. 

Approximately 25 new households were recruited bimonthly into cross-sectional cohorts, and 25-30 

households were recruited into longitudinal cohorts to be visited six times over a year and then replaced 

with a new longitudinal cohort.   

Sensitization activities for the data logger study occurred in June 2014, coinciding with 

enrollment of a new longitudinal cohort. New households were visited by study teams, were recruited 

into the longitudinal cohort, and were informed of the additional option to participate in the data logger 

study in the following year. Study procedures were explained, including the purpose of the study and 

protection of confidentiality, and pamphlets describing the study were distributed in Bemba as 
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appropriate. Consent was obtained from participating household members or the parents of children 

under 16 years.  

Recruitment for the data logger study occurred every other month from August 2014 to June 

2015. During each bimonthly study visit, a convenience sample of 12-15 participants aged 13 years and 

older were recruited to wear a data logger for approximately 30 days, with no more than two household 

members participating concurrently. Participants were recruited from the longitudinal cohort only from 

August 2014 to January 2015; however, due to some refusals and absences among longitudinal 

participants, cross-sectional participants also were recruited starting in February 2015 to maintain the 

desired sample size. Participants were instructed to wear the data logger at all times during their normal 

daily activity, except when bathing or engaging in other activity where the logger could be submerged in 

water. Data loggers could be worn around the wrist like a watch, around the neck on a lanyard, or in a 

pocket or bag. Wrist straps and lanyards were provided to participants according to their preference. To 

ensure battery life, the first data logger distributed to each participant was collected after 15 days and 

replaced with a fully charged one to be worn for another 15 days. If participants were not available at 

the time of logger replacement or final collection, the study team returned to the household until the 

logger was located or confirmed to be lost. Data logger serial numbers were matched to unique 

participant ID numbers, and the date and time were recorded at each logger distribution and collection 

for every participant. 

As part of the standard longitudinal study visit at data logger distribution, consenting household 

members completed a survey to collect information on demographic characteristics, history of recent 

malaria and treatment, reported LLIN use, history of household IRS, and malaria knowledge and 

practices. Participant temperature was measured using a digital ear thermometer, and household 

coordinates were recorded on a handheld tablet. Blood samples were collected by finger prick for 

hemoglobin testing, Plasmodium falciparum HRP-2 RDT (Standard Diagnostics, Kyonggi, Republic of 
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Korea) and spotted onto filter paper (Whatman 903™ Protein Saver card) as dried blood spots (DBS) for 

polymerase chain reaction (PCR) detection of P. falciparum DNA [52]. Participants with a positive RDT 

were offered treatment with Coartem® (Novartis, Basel, Switzerland), the first-line standard of care in 

Zambia.  

To identify incident malaria parasitemia, these procedures were repeated at the final data 

logger collection with the aim of having two complete study visits approximately 30 days apart, referred 

to as visit 1 and visit 2. Positive test results at visit 2 were considered incident malaria infections, as 

preexisting infections confirmed by RDT were identified and treated at logger distribution.  Thus, this 

study design permitted assessment of both movement patterns and incident parasitemia in the same 

individual. 

Laboratory procedures 

Filter paper with DBS were sealed in plastic bags containing a desiccant and stored at the field 

station at -20 oC. They were transported to the TDRC laboratory in Ndola, where they were stored at -20 

oC prior to DNA extraction and PCR. Chelex® extraction was used to recover parasite DNA from DBS 

within one year of sample collection [53]. Within one month of DNA extraction, a nested PCR assay was 

conducted to detect asexual stage P. falciparum DNA targeting a segment of the mitochondrial 

cytochrome b gene (cytb) [54]. Reactions were run in a GeneAmp PCR System 9700 thermal cycler 

(Applied Biosystems, Foster City, CA). Amplified product was detected by electrophoresis on 1% agarose 

gel and viewed under UV light as an 815-base pair DNA band [52]. 

Data management and processing 

Data from returned GPS data loggers were uploaded onto a password-protected computer in 

the Kashikishi field office using the @trip software developed for use with IgotU products (Mobile Action 

Technology, New Taipei City, Taiwan) and exported as .csv files. De-identified files were sent to the data 
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manager at Macha Research Trust, who checked the raw data for errors or inconsistencies and removed 

data points not within the appropriate time interval for each participant. Cleaned data logger files and 

survey data from visits 1 and 2 were uploaded into REDCap secure file-sharing software and 

downloaded as .csv files [55].  

Participant data logger files and geolocated household locations were uploaded into ArcGIS 

Version 10.2 (ESRI, Redlands, CA). Logger data were cleaned using a software extension developed for 

GPS-based trajectory analysis in ArcGIS, which removes potentially erroneous data points based on 

improbable speeds or abrupt changes in direction [56]. For each participant, the distances from each 

logged point to their household and to Lake Mweru were calculated. Several participants had two 

households due to seasonal agricultural practices. For these participants, distance was calculated to the 

household closest to the logged point. Distance was also calculated from the participant’s household at 

logger distribution to Lake Mweru and to the nearest health center.  

Images of participant data points and movement intensity plots were developed using the 

ArcGIS extension software and plotted on high definition satellite maps of the study area. Intensity plots 

indicate the cumulative time spent in each location using color and height, and were created by month 

of data collection and season. Data points were projected over shapefiles of the targeted IRS 

intervention to visualize the degree of movement in and out of targeted areas. Data points were also 

projected onto previously created malaria risk maps of the study area, which were created from the first 

two years of active surveillance data in Nchelenge District from 2012-2014. To produce these maps, 

environmental correlates of household malaria prevalence by RDT were identified, and kriging methods 

were used to create a prediction surface of malaria risk across the study area as a high-resolution raster 

file, stratified by rainy or dry season [57]. For each geolocated data logger point, the value of the 

appropriate underlying raster pixel was extracted to obtain a measure of calculated malaria risk for that 

location, 𝑅𝑘.   
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Data analysis and activity space 

Datasets developed in ArcGIS were exported as .csv files and loaded into STATA 13.1 (Stata-

Corporation, College Station, TX). Movement data were merged by participant ID and date to household 

survey data for visits 1 and 2. Malaria status at each visit was determined by RDT and PCR results, with 

positive malaria results at visit 2 considered incident infections. Participants were defined to have a 

fever if their temperature exceeded 38 C°, and anemia was determined by WHO criteria for hemoglobin 

levels by age and sex [58]. Differences in characteristics between retained participants and participants 

lost to follow-up were calculated using chi squared tests to assess differential loss to follow-up. 

Individual and household-level correlates of PCR results at visits 1 and 2 were identified using chi 

squared tests. 

For each individual 𝑖, the total time carrying each of their two data loggers 𝜆𝑖1 and 𝜆𝑖2 was 

calculated as the time difference between logger distribution and logger collection or battery death for 

each device, as noted in the field and verified in ArcGIS. Total participation time 𝑇𝑖 was defined as the 

sum of 𝜆𝑖1 + 𝜆𝑖2. This excludes missing time between the two logger distributions caused by early 

battery failure or other complications. The amount of time spent at each logged point location 𝜏𝑖𝑗  was 

estimated to be half the time between the previous and subsequent points. The proportion of 

participant time spent at each logged point location was calculated as the ratio of the time spent at the 

point over the total participation time for that participant (𝜏𝑖𝑗 𝛵𝑖)⁄ . Similarly, participation time during 

peak vector biting hours 𝛵̅𝑖 was calculated as all participation time between the hours of 6 pm and 6 am 

[59-61], and the proportion of peak biting time at each location was calculated correspondingly as 

𝜏𝑖𝑗 𝛵̅𝑖⁄ .  

For each participant, the total distance, maximum distance, and average daily distance traveled 

were calculated for the total time recorded 𝑇𝑖 and for peak biting hours 𝛵̅𝑖. To determine whether 
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participants were at home, sensitivity analyses were conducted using different radii from the household, 

and 50 m was identified as the distance that most accurately captured movement and epidemiological 

patterns. Participants were therefore classified to be at home if they were within 50 m of their 

household; however, due to limitations in the precision of GPS devices, it could not be confirmed 

whether participants were inside or directly outside the home. Values were calculated for the number of 

hours per day and proportion of time spent at home, within 3 km of the lakeside, and within areas 

targeted for IRS for both total time 𝑇𝑖 and peak biting hours 𝛵̅𝑖. These values were stratified by sex, age, 

and parasite positivity at visits 1 and 2, and were compared using Wilcoxon rank-sum tests to account 

for non-normality of the data.   

To further describe participant activity space, plots were created of the cumulative proportion 

of time spent at increasing distances from the household and lakeside, stratified by sex, age, season, and 

incident parasitemia at visit 2. For total time contributed, activity space plots were examined at the full 

spatial extent of distance travelled to compare patterns of large-scale movement. For peak biting hours, 

activity space plots were examined within 1 km of the household to better compare patterns of fine-

scale movement and time spent near the home when at risk of malaria transmission.    

Using the risk maps describe above [62], the study area was divided into quartiles of malaria 

risk. After risk values 𝑅𝑘 were extracted for each logger point, the proportion of time spent at each 

quartile of risk was calculated and compared by demographic factors and parasite positivity at visits 1 

and 2 using Wilcoxon rank-sum tests. Each individual was then assigned a risk score 𝑅𝑖, calculated by 

multiplying the time spent at each logged point by the extracted risk value for that point, summing these 

risks over the time of individual’s participation, and dividing by the number of days contributed:  

𝑅𝑖 =
∑ (𝜏𝑖𝑗 ∗ 𝑅𝑘)𝑛

𝑗=1

𝛵
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Calculating this value as an average daily risk controls for different participation times per person. 

Nighttime risk 𝑅̅𝑖 was calculated similarly, using total participation time during peak biting hours 𝛵̅𝑖. To 

help control for the impact of malaria control interventions, including use of LLINs and IRS, outdoor 

nightly risk 𝑅̿𝑖 was also calculated for the total time spent farther than 50 m from the participant’s 

household during peak biting hours 𝛵̿𝑖. For all calculations involving risk scores, time outside the study 

area was censored due to lack of information.  

A risk analysis was also conducted using data from multiple studies on reported indoor vs. 

outdoor vector biting rates [61, 63-66]. For An. funestus and An. gambiae, the mean biting rate across 

sites was calculated for each hour between 6 pm and 6 am. From these studies, the proportion of 

outdoor vs. indoor biting rates was determined for each species every hour and overall. In Nchelenge 

District, approximately 10 times as many An. funestus as An. gambiae were collected in indoor light 

traps throughout the year, and this ratio was assumed to be similar outdoors [48]. Using these values, 

and assuming that each vector species is equally likely to be infectious, the potential indoor vs. outdoor 

risk across species was calculated for this setting. The proportion of participant time farther than 50 m 

from any household during peak biting hours was determined, during which participants were assumed 

to be outside, and the resulting proportion of malaria risk caused by time spent outdoors was 

calculated. This value was then adjusted for the proportion of participants that report sleeping under a 

bed net, assuming either 100% or 50% protection for peak biting time spent at home.    

RESULTS 

Participant characteristics 

Over six recruitment periods from August 2014 to June 2015, 84 participants were enrolled from 

44 unique households. Sixty-one participants were recruited from longitudinal households and 23 were 

recruited from cross-sectional households (Figure 4.1). At least one participant was enrolled from each 
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longitudinal household. Data loggers with usable movement tracks were collected from 82 participants. 

Full data from the second visit, including movement data and a blood sample, was collected from 63 

participants, for a loss to follow-up of 25%. Data loggers were successfully collected from participants 

without a second visit because the device was left at the house or was returned from other locations by 

a family member. Despite the loss to follow-up, acceptability of the data logger study was high among 

participants, with approximately 10% refusals among approached participants and few questions or 

concerns reported by the field team.   

At the first visit, 37% of participants were male and the median age was 33 years, with age 

ranging from 13-72 years (IQR 20-47 years) (Table 4.1). Fifty-seven percent of participants lived within 3 

km of Lake Mweru, and 41% lived within a 30-minute walk from a health clinic. Nearly 40% of 

participants reported residing in another household for part of the year, with the most common reason 

being farming (80%), followed by the other household being the primary home (7%), and one participant 

reported sleeping away from home in the past month. Health-related behaviors were common, with 

86% of participants reporting sleeping under a bed net, 19% reporting a history of household IRS with 

pirimiphos-methyl, and 56% reporting a visit to a health center in the past month. More than half (55%) 

of participants were anemic, 4% had a fever, and 28% reported having a fever in the past two weeks. 

Thirty-five percent of participants tested positive for malaria by RDT and 51% tested positive by PCR. At 

visit 1, there were no significant differences between participants who completed the second visit and 

those who were lost to follow-up.  

Participant characteristics were compared by presence or absence of parasitemia by PCR (Table 

4.2). Head of household employment, floor type, and history of sleeping away from home were 

excluded from bivariate analyses due to lack of variability. At visit 1, individuals with parasitemia by PCR 

were more likely than those without to live more than 3 km from Lake Mweru, to live more than 30 

minutes from a health center, and to use an unprotected water source, but were less likely to have a 
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history of household IRS with pirimiphos-methyl. Although not statistically significant, individuals with a 

positive PCR were more likely to be younger than 18 years.  

Malaria incidence 

At visit 2, 38% of participants tested positive for parasitemia by RDT and 22% tested positive by 

PCR (Table 4.1). Due to the discrepancy between RDT and PCR results, only PCR results are reported for 

further analyses. Because participants with a positive RDT at visit 1 were treated with Coartem, 

participants with parasitemia by PCR at visit 2 were considered incident malaria infections, so the 1-

month malaria incidence in the study population was 22%. There were no statistically significant 

differences in participant characteristics between individuals with a positive and negative PCR at visit 2 

(Table 4.2), however confidence intervals were wide due to the small sample size. 

Overall participant movement patterns 

A total of 179,443 geolocated GPS data points were collected from 82 participants, comprising 

2,407 days of data and covering a combined distance of 11,456 km. Individual participants contributed a 

median of 1,882 GPS points (IQR = 888-2,989; range = 101-6,388), and 31.1 days of data (IQR = 25.0-

34.0; range = 9.9-48.4). The average distance traveled per day ranged from 0.1 – 42.7 km/day, with a 

median of 3.1 km/day (IQR=1.6-6.9). The maximum distance participants travelled from their home 

ranged from 0.1 – 212.4 km, with a median of 4.2 km (IQR=1.9-10.1). Participants spent a median of 4.7 

hours away from home per day (IQR=1.9-8.4, range=0.1-23.9), and a median of 1.6 hours away per night 

during peak biting hours (IQR=0.6-4.3, range=0.01-12.0). Forty-six participants (56%) spent at least 10% 

of peak biting time away from home. Five participants averaged >20 hours away from home per day and 

>11 hours away from home per night, suggesting they had a second household that was unknown to the 

study team or they regularly slept at another location.  
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Maps of participant movement patterns were created using all logged points overlaid on 

satellite imagery of the study area and the areas targeted for IRS (Figure 4.2.A). Movement is visible 

across the study area, including between lakeside and inland areas and between sprayed and unsprayed 

areas. Using a boundary of 3 km from Lake Mweru as the dividing line, 40 participants (49%) spent time 

in both lakeside and inland areas and made between 1 and 19 round trips between them (median=3, 

IQR=2-4). Thirty participants (36.6%) spent time in both lakeside and inland areas during peak biting 

hours. Similarly, 59 participants (72%) spent time in both sprayed and unsprayed areas and made 

between 2 and 144 round trips between them (median=17, IQR=8-30). Thirty-eight participants (46%) 

spent time in both sprayed and unsprayed areas during peak biting hours. Participants were more likely 

to travel between sprayed and unsprayed areas if they lived within the sprayed areas, both for total 

time and peak biting hours (P=0.01, P=0.008).  

Some participants also traveled longer distances (Figure 4.2.A inset). Eight participants (10%) 

made trips outside Nchelenge District, and at least one trip was made in each sampled month except 

February. Time outside the district borders ranged from 3 hours to 17 days, and five participants spent 

at least 24 cumulative hours outside the district. The number of trips outside the district during the 

study period ranged from 1-14 (median=4). Of these, the two persons with the highest number of trips 

were fisherman, who left the borders of the district 14 and 7 times, respectively, to go onto the lake in 

boats (Figure 4.2.A). No participants left Luapula Province. By distance, 21 participants made trips of at 

least 10 km away from their homes, with the number of trips of this distance ranging from 1-9. Nine 

participants traveled at least 20 km from their homes (1-3 trips), 5 participants traveled at least 30 km 

away from home (1-2 trips), and 2 participants travelled at least 100 km from their homes (1 trip).  

Additional information on movement patterns was collected from participant surveys. Between 

visits 1 and 2, eight participants reported sleeping away from home in the past month. Three of these 

traveled for work, two visited friends or family, two traveled for funerals, and one travelled to buy or sell 
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goods. All eight reported sleeping in the homes of friends or family while they were away, and trips 

lasted a median of 7 nights (range=1-14 nights). Six participants reported staying in another village in the 

district and two reported staying in another district within Luapula Province. These reports are not 

entirely consistent with the GPS data because participants who left Nchelenge District were more likely 

to be lost to follow up.  

Seasonal movement patterns 

Maps of seasonal movement patterns were created using logged points overlaid on the study 

area and stratified by season (Figure 4.3). Contrary to expectations, participants frequently moved 

throughout the study area during both dry and rainy seasons. Due to agricultural practices, it was 

anticipated that movement would concentrate along Lake Mweru during the fishing period in the dry 

season but would concentrate in the inland area during the rainy season when fishing was banned. 

Fishing in Lake Mweru was observed in the dry season (Figure 4.3.A), but movement occurred across the 

district in both seasons, and participants with two known households went back and forth between 

them throughout the year.  

In movement intensity plots by month and season (Figure 4.4, 4.5), most participant time was 

spent in the high-population density area near the lake in both seasons, but local maxima were 

observed throughout the study area across all months and seasons. In these plots, straight line 

segments indicate high speeds and thus longer distances between points, for example travel in a car, 

and this type of travel was also observed throughout the year. Fishing activity was observed in the dry 

season in August (Figure 4.4.A) and June (Figure 4.4.F).  

Participants also engaged in long-distance movement throughout the year. In both dry and rainy 

seasons, participants travelled outside Nchelenge District, although longer distances were traveled in 

the dry season (Figure 4.3.A, 4.3.B insets). Activity space plots of total time contributed also show that 
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participants traveled a longer distance in the dry season, and they indicate that participants spent a 

larger proportion of time near their home in the rainy season (Figure 4.6). Activity space plots of peak 

biting hours, shown within 1 km of participant households, further confirm that participants spent a 

larger proportion of time near their home in the rainy season (Figure 4.7). 

In statistical comparisons, no significant seasonal differences were observed between rainy and 

dry seasons for the number of points, total time contributed, total or maximum distance travelled, or 

average hours spent away from home, for either total time or peak biting hours.  

Movement patterns by sex and age 

Male participants contributed a higher mean number of points than female participants 

(P=0.008), but not a higher mean number of days. Male participants also traveled longer total distances, 

longer distances per day, farther from home, and spent more hours away from home during both total 

time and peak biting hours (Table 4.3). Male participants were more likely to travel between lakeside 

and inland areas (P=0.05) but were not more likely to travel in and out of areas targeted for IRS. Male 

participants were also more likely to travel more than 10 km away from home (P=0.005), but there was 

no difference at longer distances, and half of the participants who travelled outside Nchelenge District 

were women. There were no significant differences in these metrics by age. 

In activity space plots for total time contributed, male and female participants travelled similar 

distances, but female participants spent a greater proportion of time near the home (Figure 4.6), as 

noted in statistical analyses. Female participants also spent a higher proportion of time near the home 

during peak biting hours, while male participants spent most of this time within 200 m of the home 

(Figure 4.7). In activity space plots for total time contributed, adult participants traveled further and 

spent less time near the home than adolescent participants between 13 and 17 years (Figure 4.6), but 

both age groups spent a similar proportion of time near the home during peak biting hours (Figure 4.7).  
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Movement patterns and malaria incidence 

In statistical comparisons, movement patterns were not associated with incident infections in 

this population (Table 4.3). No significant differences were observed between participants with and 

without incident parasitemia by PCR at visit 2, including the number of points per participant, time 

contributed, total or maximum distance travelled, or average hours spent away from home, for both 

total time contributed and peak biting hours. Furthermore, no significant differences were observed in 

the probability of traveling between lakeside and inland areas or into and out of areas targeted for IRS, 

and there was no difference in the probability of having travelled various distances from home. 

However, all participants who travelled at least 20 km away from home were PCR negative at visit 2. 

These metrics also did not differ by PCR status at visit 1. 

Although there were no significant differences in movement patterns by incident parasitemia in 

statistical analyses, several patterns were evident in plots of participant activity space (Figure 4.8). 

Participants with incident parasitemia traveled shorter distances than those without. However, at a finer 

spatial scale, participants with incident parasitemia spent a smaller proportion of peak biting hours at 

home, suggesting that these individuals spent more time outside the home during times of increased 

risk. Furthermore, although participants with both positive and negative PCRs travelled throughout the 

study area, participants with incident parasitemia spent less time within one km of the lakeside and 

spent slightly more time farther than 5 km from the lake. Patterns during peak biting hours were similar.  

Movement patterns and malaria risk 

Participant movement was largely concentrated in areas that were at highest risk for malaria 

(Figure 4.2.B). Approximately 70% of all participant time was spent in areas within the top two quartiles 

of malaria risk, and this value was consistent during peak biting hours and across demographic groups. 

Risk scores were calculated for individuals during peak biting hours and for time spent outside during 



134 
 

peak biting hours. There were no differences in risk score between individuals with parasitemia by PCR 

and those without at visits 1 or 2 (Figure 4.9), consistent with the statistical analyses. In general, malaria 

risk was determined to be high for all participant movement patterns in this high transmission setting. 

Participants spent an average of 10.3% of time away from all households during peak biting 

hours. Based on previous estimates of vector biting rates across various sites, approximately 46% of An. 

funestus and 27% of An. gambiae bite outside. As described, there are on average 10 times as many An. 

funestus as An. gambiae throughout the year [48]. Assuming that each vector species has an equal 

chance of being infectious, and assuming that participants are inside when they are within 50 m of a 

household, the proportion of malaria risk from time spent outside during peak biting hours is 

approximately 8%. Reported bed net usage in this population is 86%, so if bed net usage perfectly 

protects people for all times they are inside, this would remove 86% of the household-related risk, and 

outdoor risk would proportionally increase to 37% of total malaria risk. However, if bed net use protects 

only 50% of household-related risk due to time spent outside the net or improper net usage, bed nets 

would remove only 43% of indoor risk, and outdoor risk would proportionally increase to 12% of total 

malaria risk.    

DISCUSSION 

In this high-transmission setting in northern Zambia, participants exhibited a high degree of 

mobility at both small- and large-scales throughout the year. A large proportion of time was spent near 

the home and in the densely populated area near the lake, including in areas targeted for IRS with 

pirimiphos-methyl, but half of participants traveled between lakeside and inland regions, and nearly 

three quarters spent time in both sprayed and unsprayed areas. During their month of participation, 

10% of participants traveled outside the district. One third of participants resided in multiple homes, 

and movement between homes was common throughout the year, contrary to expectations based on 

local agricultural practices. In general, movement was less seasonal than anticipated, with both intra-
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district travel and long-distance trips occurring with similar frequency throughout the year despite the 

known occurrence of flooding during the rainy season.  

Movement patterns during peak biting hours were particularly informative for assessing the 

effectiveness of malaria control activities. Participants spent an average of 27% of time at risk away from 

the home. One third spent time in both lakeside and inland areas during peak biting hours, and nearly 

half spent time in both sprayed and unsprayed areas during these times. Male and adult participants 

spent more time away from home during peak biting hours, and males exhibited higher overall 

nighttime mobility. Long-distance movement patterns during peak biting hours were similar to overall 

patterns, likely due to overnight trips in other districts. Participants furthermore spent nearly three-

quarters of peak biting time in areas predicted to be at high risk for malaria.  

These movement patterns have clear implications for malaria control in this population. In 

particular, the high degree of movement observed into and out of areas targeted for IRS raises concerns 

about the effectiveness of a targeted intervention strategy in this setting. Due to the proximity of and 

continuing high transmission in unsprayed areas [57], this frequency of circulation between sprayed and 

unsprayed areas would be expected to attenuate the impact of the intervention because of the ongoing 

risk of reintroductions and exposures. The year-round transmission in Nchelenge District and the lack of 

clear seasonality of movement patterns may further exacerbate this relationship, since there is no 

prolonged period of low transmission or reduced movement during which interventions can be 

conducted. In addition, the presence of multiple households and lack of firm seasonal residence 

patterns may undermine malaria control efforts because people might not be at a particular home to 

consent to and receive interventions such as household IRS. Given these factors, the movement patterns 

observed in Nchelenge District likely decrease the effectiveness of targeted IRS and highlight the need to 

better understand such movement patterns when targeting malaria control interventions. 
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The observed 10% of time spent away from home during peak biting hours may also reduce the 

effect of indoor vector control interventions. Given the high vector density in this region [47, 48] and 

reports of outdoor biting from other research sites [61, 63-66], time spent outside during peak biting 

hours is likely to contribute to malaria transmission. Without accounting for the impact of bed nets, 

outdoor transmission was calculated to be 8% of total transmission among this population, representing 

a large number of infections in a high-burden area. If LLINs provide only 50% protection for time spent 

at home, outdoor transmission was calculated to comprise 12% of total malaria transmission. In 

addition, the time spent outside is probably underestimated due to the inability of GPS data to discern 

whether participants are inside or outside their home with sufficient precision. Time considered at the 

home would consequently include both indoor and outdoor fractions, so the true proportion of time 

spent outside is likely higher than 10% and would therefore contribute an even greater degree to 

malaria transmission in this region. 

The frequency of long-distance travel among the study population is also of great interest due to 

the risk of both imported and exported malaria. In this high transmission area, it is likely that outbound 

travelers serve as a source of malaria introductions in regions with lower transmission, for example in 

the provincial capital Mansa. Although no trips outside of the province were observed, the high mobility 

of this population indicates that longer-distance travel may reasonably be expected at lower 

frequencies, with implications for malaria elimination in Zambia. The large proportion of participants 

that spent time in both lakeside and inland areas could furthermore be expected to increase 

heterogeneity of risk due to the differing patterns of ecology across study area.  

At the individual level, there was a 22% monthly malaria incidence by PCR among participants 

with a second visit. For a short period of follow-up, this indicates a very high level of transmission. 

Different movement patterns were expected to emerge among those with or without incident malaria, 

however, few clear relationships were evident. In plots of the activity space, participants with 
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parasitemia by PCR at visit 2 spent more time away from home during peak biting hours and did not 

travel more than 20 km, but these relationships were not statistically significant.  

There are several potential explanations for this result. Due to the small sample size and short 

follow-up time, only 14 participants were PCR positive at visit 2, which resulted in wide confidence 

intervals and limited the ability to draw inferences between groups. One possible explanation is that the 

study may have lacked sufficient power to compare movement patterns at the individual level, and that 

true relationships exist that would be observable with a larger study population. Alternatively, if these 

results are not due to chance, it would denote that there is no strong relationship between mobility 

patterns and malaria transmission in this high-burden setting, perhaps due to lack of variation between 

participants or saturation of malaria risk. If transmission is sufficiently high, movement patterns may not 

emerge as a significant predictor of individual risk. This hypothesis is supported by the comparison of 

malaria incidence by individual risk score (Figure 4.9), which showed a high level of risk across 

participants which did not vary significantly between those with and without parasitemia by PCR at 

either visit 1 or 2.  

This study had several limitations. The sample size was not sufficiently large to conduct all 

statistical comparisons with precision, particularly between participants with and without incident 

parasitemia. This limitation was exacerbated by a 25% loss to follow-up for the second visit. Participants 

who were lost to follow-up did not differ from retained participants by demographic or clinical 

characteristics at visit 1, but their movement data indicated that they were more likely to travel longer 

distances, so they may not be fully comparable. Overall, a larger sample size and greater retention 

would have improved the inferential power. 

A further limitation was the exclusion of young children and the use of non-probability sampling, 

so the study population may not fully represent the underlying population at risk. In Nchelenge District, 



138 
 

children aged 5-16 years have the highest malaria prevalence; however, children younger than 13 years 

were excluded from participation due to concerns about logger care, so a large proportion of the 

population at greatest risk was not accounted for in this analysis. Children aged 13-17 years and adult 

men were also sampled at lower proportions than the underlying population due to lack of availability in 

homes at recruitment, so these groups were somewhat underrepresented in this study.  

Furthermore, although fishing activity and long-distance movement up to 200 km were 

observed, the study did not capture movement outside of Luapula Province or cross-border movement 

into the DRC, which is presumed to be common in this population due to porous borders. Potential 

explanations for this outcome include the short duration of participation time and low sample size. Since 

participants needed to be available at two-week intervals to swap out and return data loggers, this may 

have excluded people who were planning longer trips. If these movement patterns are relatively rare, a 

higher sample size may also have improved the chances of capturing these behaviors.  

Another limitation was the potential for inaccuracies in the GPS logger data caused by 

imprecision and user error. Although data loggers performed well in rural areas in previous field tests, 

points recorded from within a household had some random scatter. After sensitivity analyses, logger 

data were not considered accurate to more than 50 m while the participant was at the home, limiting 

the precision with which they could be classified as inside or outside. As mentioned above, this had an 

impact on the indoor vs. outdoor risk calculation, and the proportion of outdoor risk is likely higher than 

reported. GPS data may also have been incorrect if the logger was forgotten at home, intentionally not 

used, or used by another participant. Since these scenarios were difficult to verify, logger data was 

analyzed as collected unless a specific issue was reported to the field team. 

A further concern was the high level of discordance between RDT and PCR results for both visits 

1 and 2. At visit 1, RDT results underestimated true parasite prevalence by PCR by 31%, and several PCR 
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positive individuals were not treated at their first visit as a result. Although 80% of these infections 

resolved by visit 2, two participants were RDT-/PCR+ at visit 1 and remained PCR+ at visit 2, so it is 

unknown if these were new or persistent infections. If these two people were excluded, the 1-month 

incidence in this population was 20%. These participants were classified as PCR positive in analyses, but 

sensitivity analyses were conducted to ensure that their inclusion in this group did not impact 

inferences. The main causes of false negatives among RDTs are infections below the level of detection 

(approximately 100 parasites/μL), or HRP-2 deletions [67]. HRP-2 deletions have not been found in 

Nchelenge District [Kobayashi, unpublished data], so false negatives are likely due to low-level 

parasitemia, which corroborates the spontaneous resolution of infection among most discordant 

participants as described above. Conversely, RDT results overestimated malaria incidence by PCR by 73% 

at visit 2. Several studies have reported false positives among RDTs after a prior malaria infection due to 

HRP-2 antigen persistence, and therefore a one-month interval may not be long enough to detect 

incident infections with RDTs in this high-transmission setting [67-70]. PCR results were therefore used 

for all analyses involving malaria incidence.  

Despite these limitations, this study had considerable strengths. The project built off research 

conducted in Peru and Southern Zambia, but was the first to attempt to link movement patterns with 

disease incidence through a second study visit. Although loss to follow up occurred, incident malaria 

infection was identified in 1 of 5 participants, indicating that this study design is feasible in high-

transmission settings. Also, despite the small sample size, a large amount of geolocated data was 

collected over a year in a challenging research setting. High-burden rural populations in sub-Saharan 

Africa are often difficult to access for logistical or political reasons, and so this dataset is unique among 

human movement studies. Moreover, a wide variety of movement patterns were captured with direct 

implications for targeted malaria control. High acceptability was observed among study participants, 

suggesting that a larger sample size or longer follow-up would be feasible.  
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CONCLUSION 

Population movement has significant implications for malaria control at both large and small 

spatial scales. Over one month of participation in a GPS data logger study, residents of Nchelenge 

District, Zambia spent a large proportion of time in high-risk areas and exhibited a wide range of 

movement patterns. These behaviors can increase individual malaria exposures, amplify population-

level transmission, and attenuate targeted interventions. In this high-transmission setting, movement 

patterns are thought to attenuate the impact of a targeted IRS strategy due to frequent movement in 

and out of targeted areas. This is the first time that fine-scale movement data has been directly linked to 

malaria incidence, and although there was insufficient power to conclusively draw inferences at the 

individual level, this study provides evidence of the importance of individual movement patterns for 

malaria transmission and the feasibility of similar investigations to inform malaria control policy. Overall, 

human mobility should be considered when selecting intervention strategies for similar high-

transmission settings, particularly when designing targeted control strategies.  
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Figure 4.1: Flowchart of participation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81 eligible participants in original 

longitudinal cohort 

              20 not participated 

• 8 refused 

• 4 moved 

• 8 not available, not asked, or 

not eligible due to other 

participants in household 61 participated (75%) 

23 added from cross-sectional cohort 

in Feb-Jun 2015 
84 total participants – completed 

survey and blood collection at visit 1 

82 participants with usable logger 

data (98%) 

63 completed survey and blood 

collection at visit 2 (75%) 
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Table 4.1: Participant characteristics at visit 1 (N=84) 

 n  % 

Demographics   
       Age < 18 12 14.3% 
       Male 31 36.9% 
Household visit type   
       First ICEMR visit 40 47.6% 
       Follow-up visit 44 52.4% 
Household characteristics   
       Within 3 km of lakeside 49 58.3% 
       Within 30-minute walk^ of health clinic 34 40.5% 
       Reside in different home part of year 31 36.9% 
       Head of household permanently employed 6 7.1% 
       Household uses open water source 37 44.1% 
       Household has dirt floor 81 96.4% 
Health-related behaviors   
       Sleeps under bed net 72 85.7% 
       House sprayed with pirimiphos-methyl 16 19.3% 
       Visited health center in past 6 months* 47 56.0% 
       Slept away from home in past month* 1 1.2% 
Clinical results   
       RDT positive 29 34.5% 
       PCR positive* 43 51.2% 
       Fever at visit 3 3.6% 
       Report fever in past 2 weeks 23 27.7% 
       Anemic at visit 46 55.4% 

*Significant difference between visit 1 and visit 2 in chi squared analysis at P<0.05 

^2.5 km 
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Table 4.2: Bivariate comparisons of PCR status by participant characteristics at visits 1 and 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Chi squared P<0.05, ** P<0.01 ***P<0.001 

 

 

 Visit 1  Visit 2 

 PCR +  
n (%) 
N=43 

PCR –  
n (%) 
N=40 

  
OR (95% CI) 

 PCR +  
n (%) 
N=14 

PCR –  
n (%) 
N=49 

 
OR (95% CI) 

Age        
     Age < 18 9 (75.0%) 3 (25.0%) 3.2 (0.8, 13.1)  2 (25.0%) 6 (75.0%) 1.2 (0.2, 6.8) 
     Age >=18 34 (47.9%) 37 (52.1%) ref  12 (21.4%) 44 (78.6%) ref 

Sex        
     Male 16 (53.3%) 14 (46.7%) 1.1 (0.5, 2.7)  6 (25.0%) 18 (75.0%) 1.3 (0.4, 4.3) 
     Female 27 (50.9%) 26 (49.1%) ref  8 (20.5%) 31 (79.5%) ref 

Household visit type        
     First ICEMR visit 25 (62.5%) 15 (37.5%) 2.3 (0.96, 5.6)     
     Follow-up visit 18 (41.9%) 25 (58.1%) ref  14 (22.2%) 49 (77.8%) - 

Distance to lakeside        
     Lakeside < 3 km 20 (40.8%) 29 (59.2%) 0.3 (0.1, 0.8)*  9 (22.5%) 31 (77.5%) 1.0 (0.3, 3.6) 
     Lakeside >= 3 km 23 (67.7%) 11 (32.4%) ref  5 (21.7%) 18 (78.3%) ref 

Distance to health center        
     Health center < 30-minute walk 10 (29.4%) 24 (70.6%) 0.2 (0.08, 0.5)***  7 (24.1%) 22 (75.9%) 1.2 (0.4, 4.0) 
     Health center >= 30-minute walk 33 (67.4%) 16 (32.6%) ref  7 (20.6%) 27 (79.4%) ref 

Reside in different home part of year        
    Yes 15 (50.0%) 15 (50.0%) 0.9 (0.3, 2.2)  2 (9.1%) 20 (90.9%) 0.2 (0.05, 1.2) 
    No 28 (52.8%) 25 (47.2%) ref  12 (29.3%) 29 (70.7%) ref 

Household uses open water source        
     Yes 25 (67.6%) 12 (32.4%) 3.2 (1.3, 8.0)**  7 (30.4%) 16 (69.6%) 2.0 (0.6, 6.7) 
     No 18 (39.1%) 28 (60.9%) ref  7 (18.0%) 32 (82.0%) ref 

Sleeps under bed net       
     Yes 36 (50.7%) 35 (49.3%) 0.7 (0.2, 2.5)  11 (22.0%) 39 (78.0%) 0.9 (0.2, 4.0) 
     No 7 (58.3%) 5 (41.7%) ref  3 (23.1%) 10 (76.9%) ref 

House sprayed with Actellic        
     Yes 3 (18.8%) 13 (81.2%) 0.2 (0.04, 0.6)**  2 (20.0%) 8 (80.0%) 0.9 (0.2, 5.0) 
     No 39 (59.1%) 27 (40.9%) ref  11 (21.2%) 41 (78.8%) ref 
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Figure 4.2: All GPS data logger points recorded from August 2014 to July 2015 in Nchelenge District 

overlaid on A) the study area with IRS targeted areas highlighted and B) a malaria risk in the study area 
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  Figure 4.3: GPS data logger points stratified by A) dry season and B) rainy season. Boat travel on Lake 

Mweru is visible for two dry season participants 
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Figure 4.4: Intensity maps of population movement in Nchelenge District from August 2014 – June 2015 by month in A) August 2014, B) October 

2014, C) December 2014, D) February 2015, E) April 2015, and F) June 2015. Boat travel on Lake Mweru is visible for panels A and F. 
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Figure 4.5: Three-dimensional intensity maps of population movement in Nchelenge District in A) dry 

season, and B) rainy season 
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Table 4.3: Metrics of movement patterns among participants, stratified by sex, PCR positivity at visit 2, and vector peak biting hours 

 Males Females  

 Median (IQR) Range Median (IQR) Range P value* 

OVERALL      
Total distance traveled (km) 145.0 (58.3 – 255.5) 14.0 – 1,169.0 79.7 (28.9 – 158.2) 2.1 – 511.8 0.01 
Average distance per day (km) 5.9 (2.4 – 8.9) 0.7 – 42.7 2.4 (1.0 – 4.5) 0.1 – 15.5 0.003 
Maximum distance from home (km) 8.7 (2.0 – 14.1) 0.2 – 165.9 3.2 (1.5 – 7.1) 0.1 – 212.4 0.03 
Average hours away from home per 
day (>50m) 

6.4 (2.6 – 14.3) 0.5 – 23.9 3.8  (1.4 – 6.5) 0.1 – 23.8 0.02 

      
PEAK BITING HOURS^      
Total distance traveled  26.8 (14.2 – 42.7) 1.9 – 174.8 17.3 (7.9 – 34.1) 0.9 – 74.8 0.04 
Average distance per day 2.4 (1.3 – 3.1) 0.2 – 11.7 1.4 (0.6 – 2.2) 0.1 – 9.2 0.01 
Maximum distance from home 2.4 (0.6 – 9.2) 0.06 – 154.9 1.7 (0.4 – 3.4) 0.07 – 212.4 0.2 
Average hours away from home per 
night (>50m) 

2.9 (0.9 – 6.3) 0.01 – 12.0 1.3 (0.5 – 2.5) 0.1 – 12.0 0.06 

      
 PCR + PCR -  

 Median (IQR) Range Median (IQR) Range P value* 

OVERALL      
Total distance traveled (km) 78.3 (28.2 – 130.0) 7.4 – 346.1 88.2 (52.8 – 181.7) 6.7 – 1,169.0 0.4 
Average distance per day (km) 3.0 (1.2 – 3.9) 0.3 – 10.1 2.8 (1.8 - 6.5) 0.3 – 42.7 0.4 
Maximum distance from home (km) 4.2 (2.3 – 8.0) 0.3 – 16.4 3.7 (1.9 – 8.8) 0.2 – 212.4 0.9 
Average hours away from home per 
day (>50m) 

2.6 (1.3 – 6.4) 0.5 – 10.0 4.5 (2.3 – 6.8) 0.8 – 23.9 0.3 

      
PEAK BITING HOURS^      
Total distance traveled  15.9 (8.3 – 30.1) 2.2 – 58.4 21.6 (10.1 – 37.0) 1.9 – 174.8 0.7 
Average distance per day 1.8 (0.6 – 2.2) 0.2 – 3.9 1.8 (0.8 – 2.6) 0.2 – 11.7 0.6 
Maximum distance from home 2.2 (0.7 – 4.0) 0.1 – 9.2 1.8 (0.6 – 4.0) 0.1 – 212.4 0.7 
Average hours away from home per 
night (>50m) 

1.0 (0.5 – 2.7) 0.2 – 5.0 1.6 (0.8 – 2.8) 0.01 – 12.0 0.5 

*Wilcoxon rank sum test 

^Peak biting hours from 6 pm to 6 am 
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Figure 4.6: Activity space plots for participants showing proportion of time spent by distance from 

participant household, stratified by season of participation, sex, and age 
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Figure 4.7: Activity space plots for participants showing proportion of peak vector biting time spent by 

distance from participant household, stratified by season of participation, sex, and age 
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Figure 4.8: Activity space plots for participants showing proportion of time spent by distance from 

participant household or Lake Mweru, stratified by season of PCR positivity at visit 2 
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Figure 4.9: Boxplots and histograms of average nightly malaria risk assigned to participants for A) all 

peak vector biting times and B) time spent away from the household during peak vector biting times 
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Chapter 5: Conclusions 

SUMMARY OF FINDINGS 

In Nchelenge District, northern Zambia, many factors contributed to persistent high malaria 

transmission despite standard control interventions (Figure 5.1). The presence of a permissive 

environment and two efficient vectors, An. funestus s.s. and An. gambiae s.s., with differing ecology and 

breeding behavior resulted in year-round transmission. People had a high parasite prevalence, averaging 

approximately 50% by rapid diagnostic test (RDT), but only 4% were febrile, signifying a large 

asymptomatic or afebrile human reservoir. High levels of poverty were associated with malaria risk as 

approximately 90% of study participants lived in rudimentary housing with dirt floors, thatch roofs, and 

open eaves, facilitating the entry of mosquitoes, and half of residents used an unprotected water source 

such as streams, ponds, or surface water. Only 7% of residents lived in a home with a head of household 

in formal full-time employment, indicating economic insecurity, and only 30% of heads of household 

completed more than primary school education. Furthermore, people in this area were highly mobile 

and many had two homes due to seasonal agricultural cycles, which complicated the implementation of 

targeted malaria control interventions.  

Malaria control activities in Nchelenge District were extensive. Under Zambia’s National Malaria 

Elimination Programme, malaria testing and treatment were free of cost at health centers, and LLINs 

were distributed at antenatal and vaccination clinics. Most recently, a targeted IRS campaign with a 

novel formulation of pirimiphos-methyl was conducted in Nchelenge District. However, these 

interventions were not sufficient to interrupt transmission. Use of LLINs was associated with a 12-25% 

reduction in malaria risk across adjusted analyses, including a 24% decline in households with IRS in the 

prior 6 months, but less than 60% of the population reported sleeping under a net. Over three rounds of 

targeted IRS, there was a 51% decrease in indoor counts of An. funestus, a 36% decrease in indoor 

counts of An. gambiae, and a 28% reduction in parasite prevalence by RDT in sprayed areas. However, 
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the effect on parasite prevalence was only evident during the six months after IRS, and there was no 

impact in untargeted areas or during the dry season. Unexpectedly, household vector counts decreased 

throughout the study area, indicating that factors other than IRS may have caused the decline in 

mosquitoes, and high counts of malaria vectors continued to be collected in some sprayed households. 

Limitations to the IRS intervention may have reduced its impact. Despite high malaria burden 

throughout the study area, IRS was targeted only to areas with high population density, allowing 

continuing transmission in untargeted regions. Furthermore, coverage within targeted areas averaged 

only 54% of eligible households across the three years, far below the goal of 85%, resulting in protection 

of only 55% of residents of targeted areas and 42% of all residents of the district.  

The high mobility of the population and participant movement patterns further served to 

attenuate the effectiveness of malaria control interventions. Nearly half of participants spent time in 

both the sprayed and unsprayed areas during peak biting hours, and 56% of participants spent at least 

10% of peak biting time outside the home, both of which should reduce the impact of indoor vector 

management interventions. Movement was common between sprayed and unsprayed areas, lakeside 

and inland areas, and outside the study area, which increased the heterogeneity of malaria risk and 

potential exposure to infectious vectors.  

PUBLIC HEALTH SIGNIFICANCE AND RECOMMENDATIONS FOR MALARIA CONTROL 

In this high transmission setting in northern Zambia, ongoing obstacles to malaria control 

include the high baseline rate of transmission, low intervention coverage, high population mobility, and 

the low proportion of symptomatic infections. Given current strategies, interruption of transmission is 

unlikely to occur by the 2021 Zambian national malaria elimination goal. However, scale-up of malaria 

control interventions could reduce transmission substantially. Given the moderate impact of the 

targeted IRS intervention at low levels of coverage, a higher impact would be expected if coverage were 

increased. Moreover, evidence of indirect effects of IRS suggests that the population-level impact of the 
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intervention will increase non-linearly with increasing coverage, so higher coverage levels may have a 

larger impact than expected. Increasing coverage of LLINs will also reduce malaria transmission on both 

an individual and population level, particularly among school-age children, children under five years, and 

adult men, for whom parasite prevalence is highest. For future interventions, coverage of at least 85% 

for both LLINs and IRS will be necessary to see a sustained impact on parasite prevalence.  

Furthermore, IRS in Zambia has historically been conducted in urban or peri-urban areas due to 

logistical ease and lack of surveillance in more rural regions. The recent IRS campaign with pirimiphos-

methyl was the first to use systematic methods to maximize the impact of IRS; however, IRS activities in 

Nchelenge District continued to be concentrated in areas with the highest population density despite a 

high malaria burden in surrounding rural areas. These more rural, inland residents have lower LLIN 

coverage and lower socioeconomic indicators that increase malaria risk, including a higher proportion of 

natural housing construction and open water sources and lower education attainment. To reduce 

malaria transmission throughout Nchelenge District, a significant increase in resources must be 

allocated to rural, inland regions, including IRS throughout the district, LLIN distributions, and improved 

surveillance, such as through the malaria indicator surveys (MIS), community health workers, or 

additional health centers. Also, movement between sprayed and unsprayed regions was common, and 

residents of sprayed areas spent a significant amount of peak vector biting time in unsprayed rural 

areas, undermining the effectiveness of targeted IRS.  

In addition, due to year-round transmission, vector control interventions in Nchelenge District 

should be conducted in both rainy and dry seasons. Current IRS policy includes once-yearly application 

of pirimiphos-methyl in targeted areas, which is expected to only affect rainy season transmission due to 

the short insecticidal action of residual pirimiphos-methyl. This strategy does not impact the substantial 

degree of dry season transmission. Dry season An. funestus populations were also found to impact 

parasite prevalence in the rainy season, so neither rainy nor dry season transmission can be interrupted 
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without vector control interventions targeted to dry season transmission. Therefore, IRS must be 

conducted twice per year or longer-lasting insecticides must be used in Nchelenge District to provide 

continuous protection.    

Another significant barrier to malaria control in this region is the high proportion of 

asymptomatic or afebrile infections, which would reduce health-seeking and maintain a large parasite 

reservoir. Although these analyses did not specifically address this issue, successful malaria control in 

this region may necessitate enhanced chemoprevention methods to reduce the parasite population. 

Due to the high prevalence, mass drug administration (MDA) among the whole population or high-risk 

groups may be instrumental in reducing the malaria burden. For example, school age children were 

found to have the highest parasite prevalence, and school-based MDA twice per year may improve 

indicators and reduce sub-clinical incident infections in this population. However, these methods have 

not previously been shown to interrupt transmission in high-burden settings, and new strategies must 

be developed to maintain high coverage and sustainability over time to ensure a lasting impact. 

A further issue in this region is the limitations of routine passive surveillance to monitor trends 

and evaluate interventions. Routine data collection in Nchelenge District occurs through 11 health 

centers, which provide free testing and treatment to patients and send monthly case counts to the 

Ministry of Health. Clinical surveillance data is an important benchmark of malaria surveillance and can 

provide information on incident infections over time. However, in high-transmission areas, these data 

are limited by health-seeking behavior, which may underrepresent true incidence due to the high 

proportion of afebrile infections. The availability of accurate testing methods has also been an issue in 

Nchelenge District, and frequent stockouts of RDTs have limited the usefulness of these data to evaluate 

interventions. Furthermore, the health centers in this district are along the main road near Lake Mweru, 

which could overrepresent people in this region and underrepresent people in more rural areas, who 

may have to travel 15-20 km to reach the nearest health facility. Additional health centers in the inland 
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region or an enhanced role of community healthcare workers would provide services for a neglected 

population. Ensuring that all clinics have consistent supplies of RDTs and medications would enable 

these data to be used more accurately to monitor long-term trends.  

Overall, malaria control recommendations for this region include ensuring 85% coverage of 

LLINs and IRS with pirimiphos-methyl twice per year across the entire district, with efforts particularly 

focused in rural areas. Monitoring insecticide resistance must be a priority, due to the rapid 

development of resistance to pyrethroids and carbamates in this area in the past. Improved surveillance 

would further inform malaria control interventions. If sustainable and scientifically sound methods are 

developed to ensure high coverage, these strategies can be supplemented by MDA or other 

chemoprevention methods. The financial and logistical investment required to accomplish these goals 

will be substantial, and therefore additional sources of funding will be required to carry out these 

recommendations. However, without this investment, substantial reductions in malaria transmission are 

unlikely to occur in this high-burden area. 

STRENGTHS AND LIMITATIONS 

A major strength of these analyses was the use of five consecutive years of epidemiologic and 

entomologic active surveillance data, which are rarely collected concurrently. These long time series 

allowed for the investigation of seasonality, inter-annual variation, and long-term temporal trends in 

parasite prevalence and vector abundance, as well as the interaction between vector counts and malaria 

risk. The use of active surveillance data facilitated the identification of asymptomatic infections and 

helped ensure representativeness of results for the target population due to the use of random 

sampling techniques. Furthermore, the ongoing relationship between study staff and the local 

population increased study participation and compliance, including in an individual population 

movement study that required sustained participant involvement over a month. Finally, the findings of 
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these studies contribute to the body of knowledge of malaria in high-transmission areas and may help 

inform future malaria control policy in this region and other similar settings. 

Limitations of these studies included a low sample size for some comparisons, particularly in 

rural, inland areas. Due to the logistical difficulties of conducting research in this region and the time- 

and laboratory-intensive nature of active surveillance, the number of households sampled per month 

was restricted. This issue was particularly limiting for the population movement study, which required a 

large additional time investment per participant. This was compounded by underrepresentation of 

males and older children due to work and school, which could lead to underestimates of risk due to the 

high parasite prevalence among these groups. Models were particularly challenging for entomologic 

analyses due to the high variability and overdispersion of vector count data, which limited statistical 

power. The use of cross-sectional prevalence data rather than incidence may also have attenuated some 

associations due to the unknown original time of infection and resulting dilution of causal relationships. 

FURTHER RESEARCH QUESTIONS 

The results of these analyses highlight ongoing gaps in knowledge for Nchelenge District and 

other high-transmission areas in rural sub-Saharan Africa. Given the challenges highlighted in these 

studies, the primary remaining question is how to identify optimal combinations of interventions to 

successfully reduce malaria transmission in similar settings. Ongoing active surveillance will allow future 

evaluations of new interventions as they are implemented, and modeling studies can make predictions 

of the anticipated impact of different combinations of interventions at various levels of coverage. The 

synergy between these methods can be leveraged to optimize intervention strategy in this region. For 

example, evidence of indirect effects of IRS in Nchelenge District in active surveillance data can inform 

modeling analyses to identify the level of coverage needed to reduce or interrupt transmission. 



163 
 

Outdoor transmission is expected to be a considerable source of malaria transmission in high-

burden areas, but it has not been investigated in this setting. Also, although these studies used vector 

abundance as a proxy for EIR, measuring time-varying sporozoite rates would more accurately inform 

each species’ proportionate contribution to malaria transmission. Future studies will conduct outdoor 

vector collections to determine the importance of outdoor transmission and will investigate sporozoite 

rates by species to further elucidate transmission patterns in this region. This information will help 

inform vector control interventions.  

The impact of population movement on malaria risk in this region requires further investigation. 

The low sample size limited inference in this study, but future work using other methods could enroll a 

higher number of participants over a longer time period in order to capture long-distance and cross-

border movement. As GPS and cellular technology improves, new GPS devices will be developed with 

longer battery life, better accuracy, and higher acceptability to populations, and cell phone-based 

methods will become more accessible to people across socioeconomic settings as cell coverage expands 

and costs decline. These emerging technologies can therefore be used to measure more extensive 

movement behaviors in this population. Parasite genotyping is another novel method to measure 

movements of people and parasites. As genetic signatures of local parasite populations are identified 

across settings, parasite introductions from other regions can be recognized and investigated to 

ultimately build a network of mobile transmission.  
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Figure 5.1: Schematic for factors influencing parasite prevalence in Nchelenge District, Zambia 

 
A) Climactic factors, including rainfall and temperature, and B) geographic factors, such as distance to breeding sites, impact C) vector life cycles and 

regional vector abundance. Regional vector abundance, D) household construction, and E) neighboring vector abundance impact F) household vector 

abundance, which impacts G) individual parasite prevalence. Parasite prevalence is also impacted by H) short- and long-distance movement patterns 

and malaria control interventions. 
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• Conducting multivariate and spatio-temporal analyses on malaria in rural Zambia as part of Southern 
and Central Africa International Centers of Excellence in Malaria Research surveillance studies  

• Additional international projects: review on cholera in refugee camps, data entry and quality control 
for international cholera mapping project, analysis on influenza transmission in China 

• Baltimore based projects: development of spatial sampling frame for street-based recruitment and 
analysis of risk and health outcomes among high risk women for HIV in Baltimore 

Teaching Assistant – Drs. Kenrad Nelson, David Dowdy, Rosa Crum, Susan Sherman 

• Assisted with Epidemiology of Infectious Disease (3 years), Epidemiology Methods 3, Principles of 
Epidemiology, and Survey Research Methods courses and labs 

 
Centers for Disease Control and Prevention (CDC), Atlanta, GA                                May 2011-April 2013 
Epidemiologist, Violence against Children Surveillance Team, Health Systems Reconstruction Office 

• Co-investigator on nationally representative quantitative Violence Against Children Surveys in Haiti, 
Cambodia, Malawi to investigate physical, sexual, and emotional violence among girls and boys 

- Studies each enrolled over 2,000 children 13-24 years old in 188x35 cluster design survey 
- Duties included secondary data analysis, questionnaire and survey tool development, on-site 

supervision of implementing partners for pilot, mapping and listing, survey implementation 

• Co-researcher to design and implement novel laboratory-enhanced sentinel surveillance system in 4 
hospitals in Haiti to investigate pathogenesis of priority syndromes (acute watery diarrhea, AFI, ARI)  

• Named official CDC Assistant to Incident Commander for 2011 Horn of Africa Famine Response  
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Centers for Disease Control and Prevention (CDC), Atlanta, GA                                         August 2010-May 2011 
Student Research Assistant, International Emergency and Refugee Health Branch                                                                           

• Data entry and analysis for 150-person case-control study on Nodding Syndrome in Uganda 

• Data interpretation, entry, and weekly reporting for acute watery diarrhea outbreak Pakistan 2010 

• Quantitative analysis of HIV KAP survey among 667 UN military peacekeepers stationed in Liberia 

• Analysis of data for novel infant formula-feeding centers established after earthquake in Haiti 

• Assisted medical countermeasures team in the Emergency Operations Center for cholera in Haiti 

• Translated technical documents into Spanish for public health course in Tunisia 
 
Emory University, Rollins School of Public Health, Atlanta, GA                                           August 2009-May 2011 
Student Research Assistant - Dr. Patrick Sullivan and Dr. Rob Stephenson        

• Organized venue time-space sampling dataframe for longitudinal cohort study investigating racial 
disparities in HIV incidence among MSM, recruited participants using venue-based sampling 

• Coordinated research team and venue-based participant recruitment for 5 focus groups on 
interpersonal violence (IPV) among MSM in Atlanta metro area 

• Developed, coordinated, and implemented qualitative study on IPV and acceptability of couples HIV 
testing among MSM in Namibia including leading 7 focus groups and 7 in-depth interviews in 5 cities 

Teaching Assistant 

• Coordinated two team-taught courses taught cooperatively between CDC and Emory: Health in 
complex humanitarian emergencies, Epidemiology methods in complex humanitarian emergencies 

 
The BODY Project, NYU Medical Center, New York, NY                                    February-December 2008 
Research Assistant, Unit Supervisor              

• Served as supervisor/team leader for one of two schools participating in research project testing 500 
New York public high school students for metabolic syndrome in school-based health centers 

• Coordinated medical screens with fasting blood draws and proctored surveys in English and Spanish  

• Assisted in design and delivery of personalized health reports for students, developed databases, 
performed data entry and abstraction of data collection forms for analysis 

 
PEER REVIEWED PUBLICATIONS AND REPORTS                                                                                                                  

Sherman, S., Hast, M., Flyn, C., Holtgrave, D., German, D. 2018. Correlates of transactional sex among high-
risk heterosexuals in Baltimore. AIDS Care. 1-9.  

Gilbert, L., Reza, A., Mercy, J., Lea, V., Lee, J., Xu, L., Marcelin, L.H., Hast, M., Vertefeuille, J., Domercant, J.W. 
2017. The experience of violence against children in domestic servitude in Haiti: Results from the Violence 
Against Children Survey, Haiti 2012. Child Abuse & Neglect. 76: 184-193.  

Jiang, CQ, Lessler, J., Kim, L., Kwok, KO, Read, J., Wang, S., Tan, L., Hast, M., Zhu, H., Guan, Y., Riley, S., 
Cummings, D. 2016. Cohort Profile: A study of influenza immunity in urban and rural Guangzhou region of 
China, the Fluscape Study. International Journal of Epidemiology. 46 (2): e16. 

Stephenson, R., Hast, MA, Finneran, C., Sineath RC. 2014. Intimate Partner, Familial and Community Violence 
among Men who have sex with Men in Namibia. Culture, Health, and Sexuality. 16 (5): 473-487.  

Steenland, MW, Joseph, AG, Lucien, MAB, Freeman, N, Hast, MA, Nygren, BL, Leshem, E, Juin, S, Parsons, MB, 

Talkington, DF, Mintz, ED, Vertefeuille, J, Balajee, SA, Boncy, J, Katz, MA, 2013. Laboratory-Confirmed Cholera 

and Rotavirus among Patients with Acute Diarrhea in Four Hospitals in Haiti, 2012-2013. American Journal of 

Tropical Medicine and Hygiene. 89 (4): 641-646. 
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Boncy, J., Rossignol, E., Dahourou, G., Hast, MA, Buteau, J., Stanislas, M., Moffett, D., Bopp, C., Balajee, A., 
2013. Performance and utility of a rapid diagnostic test for the diagnosis of cholera: notes from Haiti. 
Diagnostic Microbiology and Infectious Disease. 76 (4): 521-523. 

Boyle, WA, Ganong, CN, Clark, DB, and Hast, MA. 2008. Density, Distribution, and Attributes of Tree Cavities 
in an Old-Growth Tropical Rain Forest. Biotropica. 40: 241-245  

Cambodia Ministry of Women’s Affairs, UNICEF Cambodia, US Centers for Disease Control and Prevention. 
2014. Findings from Cambodia’s Violence Against Children Survey 2013 (Listed as co-investigator) 
http://www.unicef.org/cambodia/UNICEF_VAC_Full_Report_English.pdf 

Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, PEPFAR, 
Republic of Haiti, Together for Girls, and Interuniversity Institute for Research and Development. 2014. 
Violence Against Children in Haiti: Findings from a National Survey, 2012. (Listed as co-investigator) 
http://www.togetherforgirls.org/wp-content/uploads/Haiti_Final-Report_English.pdf 

Centers for Disease Control and Prevention, Interuniversity Institute for Research and Development. 2011. 
Report for the Comité de Coordination: Findings of Focus Groups to Inform the Violence Against Children 
Survey (VACS) in Haiti. (Listed as co-investigator) 

POSTERS PRESENTED AT SCIENTIFIC CONFERENCES                                                                                                          

Hast, MA, M. Chaponda, J. Lupiya, M. Muleba, JB Kabuya, T. Kobayashi, T. Shields, F. Curriero, J. Lessler, M. 
Mulenga, JC Stevenson, DE Norris, WJ Moss. Evaluating three years of a targeted IRS campaign in a high 
transmission area of northern Zambia.  

• American Society of Tropical Medicine and Hygiene Annual Meeting, Baltimore, MD 2017 

• Johns Hopkins Malaria Research Institute Future of Malaria Research Symposium, Baltimore, MD 2017 

• GIS Day Poster Session, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 2017  

• World Malaria Day Symposium, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 2017 

Hast, MA, JC Stevenson, M. Muleba, M. Chaponda, JB Kabuya, M. Mulenga, CM Jones, J Lessler, T. Shields, WJ 
Moss, DE Norris. Characterizing the impact of dynamic vector abundance on individual malaria prevalence in 
a high transmission area of northern Zambia  

• Epidemics International Conference on Infectious Disease Dynamics, Sitges, Spain 2017 

• American Society of Tropical Medicine and Hygiene Annual Meeting, Atlanta, GA 2016 

• Johns Hopkins Malaria Research Institute Future of Malaria Research Symposium, Rockville, MD 2016  

• GIS Day Poster Session, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 2016 

Hast, MA, M. Chaponda, K. Searle, J. Lupiya, T. Kobayashi, T. Shields, M. Mulenga, F. Curriero, W.J. Moss. The 
effectiveness of a targeted indoor residual spray campaign with pirimiphos-methyl in Nchelenge District, 
northern Zambia.  

• American Society of Tropical Medicine and Hygiene Annual Meeting, Philadelphia, PA 2015 

• Johns Hopkins Malaria Research Institute Future of Malaria Research Symposium, Rockville, MD 2015  

Hast, MA, M. Chaponda, K. Searle, J. Lupiya, J. Lubinda, T. Kobayashi, T. Shields, M. Mulenga, F. Curriero, W.J. 
Moss. The use of GPS data loggers to describe spatio-temporal movement patterns and correlations with 
malaria risk in an area of hyperendemic malaria in northern Zambia.  

• American Society of Tropical Medicine and Hygiene Annual Meeting, Philadelphia, PA 2015 

• Epidemics International Conference on Infectious Disease Dynamics, Clearwater, FL 2015 

• GIS Day Poster Session, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 2015 

• World Malaria Day Symposium, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 2016 
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Desormeaux, MA, M. Steenland, M. A. B. Lucien, S. Juin, N. Freeman, R. Emmanuel, M. Hast, A. Balajee, J. 
Boncy, G. Joseph, M.A. Katz. Burden, epidemiology and seasonality of Cholera and Rotavirus among Patients 
with Acute Diarrhea in Four Hospitals in Haiti, 2012-2013.  

• American Society of Tropical Medicine and Hygiene Annual Meeting, Washington, D.C. 2013  

Desormeaux, MA, M. Steenland, M. A. B. Lucien, S. Juin, N. Freeman, R. Emmanuel, M. Hast, A. Balajee, J. 
Boncy, G. Joseph, M.A. Katz. Etiology of acute febrile illness in four hospitals in Haiti, April 2012-January 2013.  

• American Society of Tropical Medicine and Hygiene Annual Meeting, Washington, D.C. 2013  

Steenland, MW, Joseph, AG, Lucien, MAB, Freeman, N, Hast, MA, Nygren, BL, Leshem, E, Juin, S, Parsons, MB, 
Talkington, DF, Mintz, ED, Vertefeuille, J, Balajee, SA, Boncy, J, Katz, MA Laboratory-Confirmed Cholera 
among Patients with Acute Diarrhea in Four Hospitals in Haiti, 2012.  

• American Society of Tropical Medicine and Hygiene Annual Meeting, Washington, D.C. 2013  

Little, K., Harrison, C., Kanago, M., Hast, M., Thornton, A. Extra Hands in Emergencies: Emory’s Student 
Outbreak and Response Team and Mutually Beneficial Collaborations with Public Health Partners.  

• Public Health Preparedness Summit, Atlanta, GA 2011 

Hast, M., Interpersonal Violence among Men who Have Sex with Men in Namibia  

• Public Health Scholars event, Emory University, Atlanta, GA 2011 

Hast, M., Investigating the Disparities in HIV Incidence and Prevalence among White and Black MSM.  

• Public Health Scholars event, Emory University, Atlanta, GA 2010 

ACADEMIC AND PROFESSIONAL HONORS                                                                                                                       a 

2018 Selected for 68th Lindau Noel Laureate Meeting for young scientists 
2017 Accepted into 2018 Epidemics Intelligence Service Cohort 
2015 R. Bradley Sack Family Scholarship Award, Johns Hopkins Bloomberg School of Public Health 
2015 Miriam E. Brailey Fund award, Department of Epidemiology, Johns Hopkins University 
2015 Health Resources and Services Administration Trainee Fellow, Office of Public Health Practice and 

Training, Johns Hopkins University 
2015 Student Assembly Merit Award, Johns Hopkins Bloomberg School of Public Health 
2014  Global Health Established Field Placement Grant recipient, Johns Hopkins University 
2013     Mary B. Meyer Memorial Fund Award recipient, Johns Hopkins University 
2013  CDC National Center for Injury Prevention and Control Honor Award for Excellence in Surveillance 

and Health Monitoring presented to Violence Against Children Survey Team 
2012 CDC Center for Global Health Director’s Medal of Excellence in Global Health 
2012  CDC Center for Global Health Honor Award for Excellence in Partnering presented to DB Contractors 

working in Haiti 
2012  DB Consulting Group Certificate of Achievement 
2011  CDC Center for Global Health Certificate of Appreciation for Excellence in Emergency Response 

presented to Haiti Emergency Response Team 
2011  CDC & ATSDR Honor Award for Public Health Impact presented to Haiti Cholera Response Team 
2011 DB Consulting Group Certificate of Appreciation presented to Health Systems Reconstruction Office 
2011  Graduate Certificate in Global Complex Humanitarian Emergencies, Emory University 
2010  Global Field Experience grant recipient, Emory University 
2009  Merit Scholar Awards Program, Emory Rollins School of Public Health 
2006  Sc.B. Awarded Magna cum Laude, Brown University 
2005  Research Experience for Undergraduates grant recipient, Organization for Tropical Studies 
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GRANTS                                                                                                                                                                                    s            

Impact of Targeted IRS and Population Movement on Malaria in Northern Zambia, National Institutes of 
Health F31AI124645, Ruth L. Kirschstein National Research Service Award (NRSA), Individual Predoctoral 
Fellowship to Promote Diversity in Health, 7/01/2016 – 6/30/2018 

Malaria Transmission and the Impact of Control Efforts in Southern Zambia, National Institutes of Health 
3U19AI089680-06S1, Research Supplements to Promote Diversity in Health-Related Research, 8/25/2015 – 
6/30/2016  
 
TEACHING EXPERIENCE                                                                                                                                                        a              

Instructor, Université Protestante au Congo, Kinshasa, Democratic Republic of Congo 

• Principles of Epidemiology 1-week intensive course for medical fellows, 2017  

Teaching assistant, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 

• Infectious Disease Epidemiology, 2014 – 2016 

• Principles of Epidemiology, 2015 

• Epidemiologic Methods III, 2015 

• Survey Research Methods, 2014 

Health Teacher, Commodore Johns Rogers School, Baltimore Maryland 

• Co-taught 1 semester health class to 8th grade students, 2016 

Teaching assistant, Emory University Rollins School of Public Health, Atlanta, GA 

• Health in complex humanitarian emergencies, 2011 

• Epidemiology methods in complex humanitarian emergencies, 2011 

Math and science tutor, various organizations 

• Seven Tepees After-School Program, San Francisco CA, 2006-2007 

• Students Teaching Students, Providence RI, 2003-2004 

• National Honors Society tutoring program, Boulder High School, Boulder, CO, 2001-2002 

VOLUNTEER EXPERIENCE                                                                                                                                                     a 

2016  Volunteer Health Teacher, Commodore John Rodgers Middle School, Baltimore MD 
2014-current Student Outbreak Response Team, Johns Hopkins University 
2009-2011  Logistics officer, Student Outbreak Response Team, Emory University 
2009-2010  Volunteer HIV Tester and Counselor, AID Atlanta, Atlanta GA 
2009            Community and Advocacy Volunteer, Refugee Women’s Network, Atlanta GA 
2008    Clinical Assistant, Early Options Women’s Health, New York, NY 
2006-2007  Math and Science Tutor, Seven Tepees After-School Program, San Francisco CA 
2004   International Health Care Volunteer, St. Joseph Hospital, Moshi Tanzania 
2003-2004  Math Tutor, Students Teaching Students, Providence RI 
2003   Health Care Volunteer, Peoples Clinic, Boulder CO 

LANGUAGE SKILLS                                                                                                                                                                 a 

Spanish: Fluent       
French: Beginner 
 
CERTIFICATIONS, TRAININGS AND MEMBERSHIPS                                                                                                        s 

• Member of American Society for Tropical Medicine and Hygiene 

• Member of Society for Epidemiologic Research 
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• Member of Johns Hopkins Biomedical Scholars for underrepresented minorities in the sciences 

• Completed the Meaningful Modeling in Epidemiological Data Program through the University of 
Florida and African Institute for Math Sciences 2016 

• Completed three courses of the University of Washington Summer Institute in Statistics and 
Modeling in Infectious Disease 2016 

• Recipient of Graduate Certificate in Global Complex Humanitarian Emergencies 2011 

• NIMS certified, completed ICS trainings 100, 200, 300, 700, 800 

• Completed CITI Trainings and Johns Hopkins HIPAA trainings 

• Completed Red Cross disaster training, Master the Disaster trainings 1-2 with DeKalb Board of Health 

• Certified HIV Counselor/Tester, completed training in HIV rapid testing and AIDS 101  

COMPUTER AND RESEARCH SKILLS                                                                                                                                   a 

• Skilled in SAS and STATA statistical software, Microsoft Office Suite, ArcGIS  

• Proficient with statistical packages R, SUDAAN, EpiInfo, JMP 

• Extensive experience with research into primary scientific and medical literature 

• International field research experience in Zambia, Zimbabwe, Democratic Republic of the Congo, 
Haiti, Cambodia, Namibia, Costa Rica, Tanzania 

• Experience with diverse populations in medical and educational settings, including people of varied 
income, ethnicity, sexual preference and gender identity 

 
 


