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Abstract 

Mitochondria exhibit non-stationary unstable membrane potential (ΔΨm) when subjected 

to stress, such as during Ischemia/Reperfusion (I/R). Understanding mitochondrial instability in 

Ischemia Reperfusion injury is key to determining efficacy of interventions. Excess influx of 

mitochondrial Ca2+ and reactive oxygen species (ROS) accumulation are thought to be primary 

triggers of ΔΨm instability, but the underlying molecular mechanisms are still unclear.  

The goal of this thesis is to understand the contributions of mCa2+ and ROS in triggering 

ΔΨm instability. For this purpose, it was important to first define and characterize oscillatory 

patterns of non-stationary mitochondrial ΔΨm instability. A data analysis tool was developed 

based on wavelet transform functions to automate analysis of time-series data from microscopy 

images to detect ΔΨm changes in an unbiased and reproducible manner.  It is an ImageJ-MATLAB-

based workflow called ‘MitoWave’ to unravel dynamic mitochondrial ΔΨm changes that occur 

during ischemia and reperfusion. Features such as, time-points of ΔΨm depolarization during I/R, 

area of mitochondrial clusters and time-resolved frequency components during reperfusion were 

determined per cell and per mitochondrial cluster with this tool.  

We then used this tool to understand the role of Ca2+ and ROS in triggering ΔΨm instability. 

Physiologic Ca2+ entry via the Mitochondrial Calcium Uniporter (MCU) participates in energetic 

adaption to workload but is thought to contribute to cell death during I/R injury. We genetically 

knocked out the MCU to examine whether MCU-mediated mCa2+ uptake is required to trigger 

ΔΨm loss or oscillation during reperfusion in neonatal mouse ventricular myocyte (NMVM) 

monolayers. Our findings demonstrate that MCU knockout does not significantly alter mCa2+ 

import during I/R, nor does it affect ΔΨm recovery during Reperfusion. In contrast, blocking the 
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mitochondrial sodium-calcium exchange (mNCE) with CGP-37157 suppressed mCa2+ increase 

during Ischemia but did not affect ΔΨm recovery during reperfusion or the frequency of ∆Ψm 

oscillations, confirming that mitochondrial ΔΨm instability on reperfusion is not triggered by 

mCa2+. Interestingly, inhibition of mitochondrial electron transport and supplementation with 

antioxidants stabilized ΔΨm oscillations. The findings are consistent with mCa2+ overload being 

mediated by reverse-mode mNCE activity and support ROS-induced ROS release as the primary 

trigger of ΔΨm instability during reperfusion injury. 
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CHAPTER I: Introduction 
 

 
A Myocardial Infarction (MI) occurs when the blood flow to the heart is blocked by coronary 

occlusion, thus preventing the supply of blood to the ventricle. Ischemic Heart Disease is the 

leading cause of death world-wide (1).  Angioplasty or stenting is done to restore normal blood 

flow to the myocardium. Reperfusion itself, while indispensable, causes injury, in part through 

production of Reactive Oxygen Species ROS. This injury causes a cascade of effects causing 

damage at the cellular level and the final tip over point occurs when the mitochondrial 

permeability transition occurs, releasing cytochrome c and pro-apoptotic factors into the 

cytosol(2).  

 

Molecular Mechanisms of Ischemia and Reperfusion: cytosolic and mitochondrial changes in 

the cardiomyocyte 

During Ischemia, the lack of oxygen causes the myocyte to rely on anaerobic respiration, 

resulting in increased lactate production and decreased intracellular pH. While glycolysis may 

initially assist in energy production, it is not sustained, since acidification inhibits 

phosphofructokinase. There is a decrease in high-energy phosphate groups like creatine 

phosphate and ATP (3). Decrease in ATP inactivates the Na+/K+ ATPase, increasing cytosolic Na+. 

Acidification also prompts the Na+/H+ exchanger to extrude H+ in exchange for Na+, thus raising 

Na+ levels and leading to intracellular Na+ overload. As a consequence, the Na+/Ca2+ exchanger 

(NCX) is forced to work in reverse, extruding Na+ while importing Ca2+, leading to Ca2+ overload 

in the cell. Under these conditions of depleted ATP, xanthine is generated via xanthine oxidase, 
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a source of superoxide even under these low oxygen conditions. Lack of oxygen as the terminal 

electron acceptor in oxidative phosphorylation results in decreased ATP levels and accumulation 

of reducing equivalents in mitochondria. Ultimately, mitochondria are unable to maintain ΔΨm. 

Conditions of increased oxidative stress, along with dysregulation of matrix pH, mitochondrial 

Ca2+, and ATP production, cause the mitochondria during Ischemia to become increasingly 

impaired. The extent of mitochondrial damage during Ischemia heavily influences recovery 

during reperfusion. (4),(5),(6),(3). Under the acidic conditions of ischemia, the mitochondrial 

permeability transition pore does not open, but it is primed for opening on reperfusion, and the 

cardiomyocyte undergoes hypercontracture.  

During Reperfusion, the restoration of oxygen supply allows the electron transport chain 

to be activated, thus restoring NADH oxidation, proton pumping and ΔΨm. The Na-K+ ATPase and 

NCX get reactivated and Na+ is extruded. However, extrusion of Na+ via NCX promotes Ca2+ entry. 

Restoration of ΔΨm also allows Ca2+ entry into the mitochondria, which can cause mCa2+ 

overload. pH returns to normal and the Na+/H+ exchanger allows extrusion of H+.   The sudden 

shutdown (Ischemia) and start-up (reperfusion) of Oxidative Phosphorylation results in impaired 

redox balance, mitochondrial ROS accumulation and the activation of energy dissipating ion 

channel. Production of excess ROS, along with influx of Ca2+ and restoration of pH, makes 

conditions favorable for mPTP opening, which can trigger cell death. (7), (8), (9), (2). (Figure 1.1) 
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Figure 1.1: Molecular mechanisms in Ischemia/Reperfusion: Cytosolic and Mitochondrial changes 

During Ischemia, the lack of oxygen causes the cardiomyocyte to rely on anaerobic respiration instead of 

oxidative phosphorylation. This increases lactate production and decreases the pH. A decrease of ATP 

inhibits Na+/K+ ATPase, therefore increasing cytosolic Na+. Acidification causes Na+/H+ exchanger to 

extrude H+ and allow Na+ in, increasing of Na+ further. Together with loss of ΔΨm, this favors reverse-

mode Na+/Ca2+ exchange activity, increasing cytosolic Ca2+. Under low pH, the mitochondrial permeability 

transition pore (mPTP) is inhibited.  During reperfusion, the mitochondrial oxidative phosphorylation 

system is suddenly restarted leading to some ATP production along with increasing Reactive Oxygen 

Species. ATP production allows activation of the Na+/K+ pump, which can facilitate forward-mode 

plasmalemmal Na+/Ca2+ exchange, and SR Ca2+ pump activity, extruding Na+ and lowering Ca2; however, 

additional mitochondrial Ca2+ loading can occur as ΔΨm
 is restored. Recovery of pH, an increase in ROS, 

and mCa2+ loading can trigger mPTP opening and cell death.  
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Mitochondrial Oscillations 
 

Oscillatory behavior of mitochondria was discovered as early as 1965 by several 

groups(10),(11),(12),(13). Mitochondrial oscillations in ion fluxes and metabolic components, 

such as NADH, ROS, Ca2+, pH, and ΔΨm were observed. In response to stress, mitochondria exhibit 

various phenotypes that can be qualitatively and quantitatively measured such as changes in 

morphology, membrane potential, oxygen consumption, reactive oxygen species generation, 

mitochondrial DNA transcription and translation. 

Mitochondrial instability is a hallmark of pathological stress. Mitochondria are at the 

heart of ATP supply insufficiency causing electrophysiological changes, accumulation of excess 

Ca2+ and Na+ and excess ROS production under pathological conditions. Abrupt changes in 

mitochondrial membrane potentials, known as membrane potential oscillations are a 

reproducible phenomenon occurring under stress. They have been extensively studied in cardiac 

mitochondria by our group (14), (15),(16) 

Oscillations can be thought of as a read-out for the complex non-linear dynamic 

mitochondrial system. Studying oscillatory properties in terms of frequency, amplitude and 

coherence between oscillators under different conditions helps to reveal the important 

regulators of the mitochondrial system. Our lab was the first to demonstrate that mitochondrial 

ΔΨm heterogeneity has pathological consequences in ventricular fibrillation and tachycardia (17). 

Mitochondrial oscillations, when triggered under pathological conditions, scale up and trigger 

myocardium-level arrhythmias and precipitate sudden death (18).  

To understand the mechanism of mitochondrial oscillations, several questions need to be 

answered. First, how do we quantify and characterize mitochondrial oscillations when they 
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exhibit variable non-stationery behavior? Can we predict the occurrence of mitochondrial 

oscillation prior to their onset based on initial conditions?  What positive and negative feedback 

loops control oscillatory behavior? And the most important question: Can we tune these 

feedback loops and control oscillations to prevent pathology? This thesis attempts to answer 

these questions by first presenting the background on the origin of mitochondrial oscillations 

under physiological and pathological conditions (in Chapter I). Characterizing oscillatory patterns 

of non-stationary mitochondrial ΔΨm instability is advanced by developing a new data analysis 

method using wavelet transform functions (described in Chapter II). For this, we developed 

‘MitoWave’, an ImageJ and MATLAB based image-processing workflow, for extracting 

predominant frequencies, timepoints at which these frequencies are exhibited, and the area of 

oscillating mitochondrial clusters. We employed this tool to test potential candidates that could 

be ‘regulators’ (positive or negative) of ischemia-induced ΔΨm oscillations. We genetically 

knocked out the mitochondrial Ca2+ uniporter responsible for Ca2+ import into the mitochondria 

and boosted the antioxidant capacity of cardiomyocytes subjected to in vitro 

Ischemia/Reperfusion injury and analyzed the ΔΨm oscillatory response (described in Chapter III).  
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Mitochondrial Membrane Potential (ΔΨm) 
 

The principal function of the mitochondria is generation of ATP through oxidative 

phosphorylation. Electrons released from reducing pyridine nucleotide equivalents (NADH and 

FADH2) are faithfully transferred via the electron transport chain (ETC) complexes (Complex I-IV) 

to O2. While three of the ETC complexes (I, II and IV) pump H+ across the mitochondrial inner 

membrane, complex II (succinate dehydrogenase) does not. Pumping of protons produces an 

electrochemical gradient across the inner membrane with a proton motive force of ~180mV. A 

rotary catalysis mechanism by the ATP synthase (19) harnesses the proton motive force 

generated by the electrochemical gradient and couples it to ATP production. (Figure 1.2) 

A portion of the electrons entering the electron transport chain may be diverted to the 

single electron reduction of oxygen to generate superoxide, particularly when the ETC is defective 

or impaired. Superoxide is typically scavenged by Superoxide Dismutase to generate the reactive 

oxygen species, hydrogen peroxide (H2O2), which is then detoxified by peroxidase enzymes. In 

the ROS-induced ROS release hypothesis, disruption in the balance of ROS production and 

scavenging triggers the activation of energy dissipating channels that cause mitochondrial 

depolarization and an additional burst of ROS. This can happen cyclically during mitochondrial 

oscillation. 
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Figure 1.2: Mitochondrial Membrane Potential generation  

(A)The mitochondrial respiratory chain consists of proton translocating complexes (I, III and IV) that couple 

proton pumping to electron flow. Reducing equivalents (NADH and FADH2) feed electrons into complex I 

and II. Complex I transfers 2e- to the Ubiquinone pool (UQ) and pumps 4H+, Complex II transfers 2e- to the 

UQ pool without pumping any protons. Complex III translocates 2e- and 4H+. Complex IV translocates 2H+ 

and 2e- while reducing ½O2 to H2O. Thus, pumping of protons generates the proton motive force that is 

used by ATP synthase for ATP production. (Adapted from (19)) (B) TMRM is a lipophilic cationic dye that 

sequesters into energized mitochondria. Here, Neonatal ventricular myocytes have TMRM sequestered 

in them indicating polarized mitochondria.  

Protein structures from obtained from PDB: Complex I (5XTD)(20), Complex II (6MYO), Complex III 

(1BGY)(21), Complex IV (1OCC)(22), ATP Synthase (6QUM) (23) 
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Conditions that trigger mitochondrial oscillations 
 

Some of the earliest studies in our lab showed that when guinea-pig cardiomyocytes were 

subjected to fuel substrate deprivation (glucose starved), their sarcolemmal KATP channel 

currents displayed oscillations. This was correlated with cycles of oxidation and reduction of 

NADH. Increases in sarcolemmal KATP current followed the decrease of NADH, indicating that it 

was the change in energy metabolism that initiated the change in sarcolemmal KATP current. 

These oscillations  helped reduce energy consumption by reducing action potential duration and 

thus facilitated oscillations in action potential duration. (24). A mitochondrial origin for the 

oscillations was established when Romashko et. al found that oxidation-reduction cycles of 

mitochondrial flavoproteins were correlated with mitochondrial membrane potential 

depolarization and repolarization. These redox phenomena could encompass the whole myocyte 

or large clusters of mitochondria.  Redox waves were found to propagate from one myocyte to 

another, highlighting the importance of synchronization of mitochondrial network in the redox-

wave phenomena (25). Subsequent studies revealed that uncoupled mitochondria consume 

intracellular ATP stores thus resulting in low ATP/ADP ratio. This activates the ATP-sensitive K+ 

channel, affecting the action potential of the cardiomyocyte, thus linking mitochondrial 

metabolism to cardiomyocyte excitability (26).  

Aon et. al found that photooxidation of a small cluster of mitochondria in a cardiomyocyte 

could reliably trigger ΔΨm, NADH and ROS oscillations in the whole cell. (14). The  main driver for 

mitochondrial instability  was found to be ROS (27). Experiments with glutathione depletion also 

confirmed the main role ROS plays in triggering ΔΨm instability (28). ROS are formed when 

electrons leak from the ETC and are not scavenged by ROS scavenging mechanisms in the 
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intermembrane space  (cytochrome c and Cu/Zn-SOD) and in the matrix (Mn-SOD) (29) . These 

ROS can further cause damage by interacting with membranes and other proteins. They can thus 

escape through membranes and damage nearby organelles, through a phenomenon called ROS 

Induced ROS release (RIRR) (30).  When the antioxidant defenses are overwhelmed, ROS 

accumulation beyond a certain threshold occurs and causes the mitochondrial network to 

approach a ‘critical’ level. This phenomenon is called mitochondrial criticality (31). When 

criticality occurs, excess ROS is released through a channel in the mitochondrial inner membrane 

and causes instability of neighboring mitochondria. Other labs have observed superoxide 

oscillations occurring in single or small clusters of mitochondria and termed them 

‘mitoflashes’(32). This interpretation has been questioned because the mt-cpYFP probe used as 

an indicator for superoxide is also known to be sensitive to changes in pH, leading some to refer 

to the oscillatory behavior as pH transients (33). Whether all of these phenomena occur by 

different mechanisms or are the same fundamental process remains to be determined but all 

appear to involve RIRR.  

 

Mitochondrial channels and ΔΨm instability 
 

Mitochondrial Permeability transition pore (mPTP) 
 

The mitochondrial permeability transition pore is a non-specific large conductance pore 

located in the inner mitochondrial membrane that is normally closed (34). A physiological role 

for the mPTP, which is not firmly established, is that it may contribute to ion homeostasis when 

it opens transiently (35). Nevertheless, a pathological role in Ischemia/Reperfusion injury has 

been consistently observed (36). The molecular identity of the mPTP is currently debated, but 
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Cyclophilin D, Adenine Nucleotide Translocator, Phosphate Carrier, Bax and Bak are believed to 

be involved in the modulation of the mPTP, with the ATP synthase potentially comprising the 

pore domain (37). It is a large conductance channel of 0.9-1.3 nS that allows non-specific solutes 

up to 1.5kDa when open. Optimal conditions for the mitochondrial permeability transition to 

occur are: high Ca2+, oxidative stress (if matrix NADH and Glutathione are oxidized, or high ROS), 

elevated Pi and an optimal pH of above 7. Conditions that prevent mPTP opening are low pH, 

high proton motive force, Cyclosporine A (CsA), which binds to Cyclophilin D and Bongkrekic Acid 

(BKA) which inhibits the ANT (34).  

Given the established role of mPTP in I/R injury, it seemed like an obvious candidate for 

its role in triggering ΔΨm instability. Classical mPTP is defined as one that is blocked by CsA and 

high Ca2+. However, studies from our lab show that addition of CsA did not affect ΔΨm oscillations 

in guinea pig cardiomyocytes. Also, if mPTP was involved in these oscillations, the opening of the 

pore should allow large molecules (up to 1.5kDa) to pass through. Both CM-DCF (of ~ 600Da) and 

Calcein (of ~622 Da) were not released from the mitochondrial matrix during ΔΨm oscillations. 

Further, addition of 1mM EGTA to chelate Ca2+, or cellular Ca2+ depletion, did not affect laser-

flash induced ΔΨm oscillations, showing that Ca2+ was not a major factor in triggering oscillations 

(14). Further, CsA did not have any effect on arrhythmias after ischemia (17). Thus, from these 

studies, it indicated that mPTP was not involved in ΔΨm oscillations.  

 

 

 

 



11 
 

The Inner Membrane Anion Channel (IMAC) and Translocator protein (TSPO) 
 

An Inner Membrane Anion Channel (IMAC) in mitochondria was described in the 1980s (38) 

as a partially anion-selective pore that was sensitive to variety of amphipathic compounds. 

Although the molecular identity of IMAC is currently unknown, based on pharmacological 

evidence, we proposed that IMAC plays a role in ΔΨm instability and Action Potential Duration 

reduction under stress. IMAC is permeable to a number of inorganic anions (NO3
-, Cl-, Pi, 

superoxides) and organic anions (oxaloacetate, citrate, malate, ATP4-). In mitoplast patch clamp 

studies, a method for direct assessment of channels in the inner membrane, a prominent anion 

channel with a conductance of 108pS has been reported. Mg2+ and low pH decrease the 

probability of opening of this channel (O’Rourke, 2007)  (39). The TSPO, previously known as the 

peripheral benzodiazepine receptor for its high affinity for certain benzodiazepines and 

isoquinoline carboxamides, is now termed the mitochondrial translocator protein (40). Although 

it is located in the outer membrane in association with the voltage-dependent anion channel 

VDAC, it is thought to regulate IMAC and/or the mPTP. Another physiological role of TSPO is the 

regulation of cholesterol transport across the inner membrane and steroidogenesis. Although 

there are similarities in the pharmacological regulators of TSPO and IMAC, their relationship to 

each other is unclear. For example, the benzodiazepine, 4′-chlorodiazepam, inhibits IMAC flux 

(isolated mitochondria), as well as cellular mitochondrial depolarization under oxidative stress, 

and it is proposed that IMAC is the first to response to oxidative stress, while mPTP activates 

under more prolonged stress conditions (28), (41). During ischemia-reperfusion, 4′-

chlorodiazepam prevented ischemia-induced AP duration (APD) shortening and inexcitability, 

while the TSPO agonist FGIN-1-27 promoted APD shortening and conduction failure with 
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ischemia (17)(42). Cardiac-specific knockdown of TSPO in rats was also protective against 

arrhythmias after Ischemia in hypertensive rats (43). Since TSPO and IMAC are close to each 

other, and antagonists for TSPO, 4’-chlorodiazepam and PK11195, are known to block IMAC, 

genetic manipulation studies might be better at dissecting the exact mechanism of triggering 

ΔΨm instability and the chronology of the cascading events.  

 

 

Mitochondrial Ca2+ import and ΔΨm instability  
 

Ca2+ plays an important role in relaying cytosolic signals for energy demand to the 

mitochondria (44). Ca2+ is responsible for activating three enzymes involved in the Krebs cycle, 

namely the pyruvate dehydrogenase complex, isocitrate dehydrogenase and alpha-ketoglutarate 

dehydrogenase, which contributes to an increase in NADH production to match NADH oxidation 

during increased metabolic demand (45), . While mitochondria have a large capacity for buffering 

Ca2+ by forming calcium phosphate complexes (46), excess Ca2+ influx into mitochondria is 

pathological. When excess Ca2+ influx occurs along with excess ROS production in mitochondria, 

conditions are optimal for mPTP to occur. Under pathological conditions such as Ischemia/ 

Reperfusion injury, ion imbalance occurs and an increase in mCa2+ is observed (9). In isolated 

cardiomyocytes undergoing hypoxia/reoxygenation or anoxia/reoxygenation, those that 

accumulated 250-300nM of mCa2+ hypercontracted upon reperfusion (47), (48). Ca2+ import into 

mitochondria unconditionally requires ΔΨm (at -180mv or very close to it). Without ΔΨm Ca2+ 

does not enter mitochondria. But Ca2+ import into mitochondria is necessary for maintaining 

ΔΨm. Therefore Ca2+ and ΔΨm are intricately coupled (49). While the role of Ca2+ in cell death has 



13 
 

been established, its role in ΔΨm instability is still unclear. In chapter 3 of this thesis, we use a 

genetic knock-out model of the mitochondrial calcium uniporter to dissect out the role of Ca2+ 

and the role of Mitochondrial Calcium Uniporter in ΔΨm instability.  

 

Genetic Manipulation of Mitochondrial Calcium Uniporter and associated subunits in I/R injury 
 

The Mitochondrial Calcium uniporter is one of the main modes through which Ca2+ enters 

the mitochondria (50) (51). Molecular identification of the MCU pore by two independent groups 

in 2011 (52)(53), has allowed for several researchers to evaluate the role of MCU in pathological 

conditions via genetic manipulation.  

The mitochondrial calcium uniporter (MCU) is a multisubunit complex, consisting of five 

other proteins (identified so far) that is associated with the pore (Figure 1.3). The MCU is a 40kDa 

protein consisting of two coil-coil domains and two transmembrane domains separated by a 

short loop enriched in acidic residues. The MCU can oligomerize to form a tetramer or hetero-

oligomerize with its paralog MCUb. MCUb has an amino-acid substitution in the loop region 

(E256V), which removes a negative charge and thus depress Ca2+ uptake by the mitochondria 

(54). 

Mice with global MCU knockout (MCU-gKO) were generated by a gene-trap method. They 

are smaller in size and exhibit no other outward phenotype. (55). Rapid mCa2+ uptake was 

severely affected, as expected. Mitochondria isolated from skeletal (55) and cardiac  muscle (56) 

from these mice have 25% of the Ca2+ levels as WT mice; it was not zero as expected. There were 

no differences in cell viability between WT and gKO MEFs when challenged with cell-death 

inducing reagents like hydrogen peroxide (oxidative stress), tunicamycin (ER stress) , doxorubicin 
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(DNA damage), c2-ceramide (activates apoptotic and necrotic pathways, thapsigargin (affects ER 

Ca2+ uptake) and there were no changes in cytochrome C levels upon hydrogen peroxide addition 

(apoptosis, I/R injury or protection effect), but MCU-gKO MEFs did not exhibit Ca2+ induced mPTP 

opening. MCU-gKO does not affect overall cardiac function at baseline and does not confer 

protection against I/R injury, (55). Acute knockdown of MCU in cells like NRVMs showed an 

increase in cytosolic Ca2+ levels and a reduction in beat-to-beat mCa2+ uptake (57).  

Cardiac specific KO (MCU-cKO) were generated by subjecting MCUfl/fl-MCM mice to a 

tamoxifen diet for four weeks (58), (59).  There were no differences in the general phenotype of 

the mice. mCa2+ levels in mitochondria isolated from the heart and from permeabilized cardiac 

cells were the same between WT and MCU-cKO. But acute mCa2+ uptake was reduced in cardiac-

specific KO, similar to the other studies and showed reduced oxygen consumption rate in 

response to isoproterenol (58). They also found reduction in Ca2+ induced mPTP opening in 

mitochondria isolated from MCU-cKO heart, where the mitochondria failed to swell with a Ca2+ 

bolus of 500µM.  They observed a 50% decrease in infarct size in MCU-cKO compared to WT (59).  

Another example with contrasting protection against I/R injury is seen in two studies with 

genetic manipulation of MCUb.  It is the dominant negative paralog of MCU, which can depress 

Ca2+ influx into mitochondria. Cardiac specific knock-in of dominant negative MCU (MCUb) 

(making the pore essentially non-functional) did not confer protection in I/R injury (60). However, 

Lambert et.al created a mouse line that conditionally expresses MCUb in the heart. They treated 

mice for 4 days to a tamoxifen diet to allow overexpression of MCUb. Mice with increased MCUb 

expression, showed protection against I/R injury (61). In both these studies, acute mCa2+ influx 

was abolished when MCUb expression increased.  
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MICU1 and MICU2 are EF-hand containing proteins present in the intermembrane space 

that modulate the open probability of MCU, acting as gatekeepers. MICU2 responds to low [Ca2+] 

< 1µM to suppress MCU activity (62)(63) and at high [Ca2+], Ca2+ binds to MICU1 and causes a 

conformational change to “open” the pore (64)(65) (66). Knockout out MICU1 in whole body 

results in mice with severe neurological and myopathic defects and in 70% perinatal deaths. Mice 

that survive improve over time (67).  Knockdown or knockout of MICU1 causes constitutive Ca2+ 

overload at baseline conditions.  Knockout of MICU1 results in high Ca2+ uptake rates under low 

Ca2+ conditions and reduces Ca2+ uptake rate under high Ca2+ conditions.  MICU2 knockout mice 

are born in mendelian ratios and survive more than 18 months. MICU2 knockout mitochondria 

exhibit slower rate of mCa2+ uptake at high [Ca2+] pulse and take up Ca2+ more rapidly under low 

[Ca2+ ] pulse. (68). These results are in line with the expected function of MICU1 and MICU2 as 

the MCU gatekeeper. 

Essential MCU Regulator, EMRE, located on the inner membrane is essential for MCU’s 

Ca2+  channel activity to keep MICU1/2 dimer attached to the MCU (69). When EMRE KO is 

generated in C57BL/6N, it results in embryonic lethality. EMRE KO mice are born with less 

frequency when generated in a mixed background, crossed with CD1. These mice have slightly 

lower body weight, but otherwise healthy phenotype (70). Knocking out EMRE, abolishes rapid 

Ca2+ uptake even if MCU is overexpressed (69). EMRE knockout does not affect I/R injury(70).  

Mitochondrial Calcium Uniporter Regulator 1, MCUR1, associates with MCU and 

regulates the Ruthenium sensitive mitochondrial Ca2+ uptake (71). Pups were born in the 

expected mendelian ratios. Lower mCa2+ uptake was observed in MCUR1 KO cardiac 

mitochondria (72). 
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Figure 1.3: Multisubunit Mitochondrial Calcium Uniporter Complex  

MCU is a tetramer associated with two copies of EMRE. MICU1 and MICU2 are two EF hand containing 

proteins which heterodimerize. EMRE helps to stabilize MICU1 and 2 and their interaction with MCU. The 

MCU pore regions also indicate a few important negatively charged amino acid residues (Aspartic Acid 

and Glutamatic acid). MICU1 has positively charged groups (Lysine and Arginine). Under low Ca2+ 

conditions, MICU1 occludes the MCU pore. Under high Ca2+ conditions, Ca2+ induces a conformational 

change in MICU and allows the pore in an open state, allowing Ca2+ into the mitochondrial matrix. 

(Adapted from (73)) 

 

Factors affecting [Ca2+] in mitochondria  
 

Some of the studies described above with different models of MCU-KO (global vs cardiac-

specific)(55) (58) contrasted in conferring protection against I/R injury. Nevertheless, in both 
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these models, basal mCa2+ levels were not close to 0 in MCU-KO. This suggests that there could 

be other regulatory mechanisms that overrule MCU’s role in mCa2+ influx. MCU in cardiac 

mitochondria is seen to have a lower current density than mitochondria from other tissues (74). 

The ratio of MCU:MCUb is varied among different tissues – e.g., in the heart it is 3:1 (MCU:MCUb) 

and in skeletal muscle it is 40:1 (75), thus resulting in differential regulation of Ca2+. In addition, 

other modes of Ca2+ entry into the mitochondria have also been observed: the mitochondrial 

ryanodine receptor (76), (77) and the LETM1- Ca2+ /H+ exchanger (78), (79) and the mitochondrial 

Na+/Ca2+/Li+ exchanger that is responsible for Ca2+  efflux may  work in reverse under Ischemic 

conditions (80) (Figure 1.4). These factors and modes of Ca2+ entry could come into play when 

MCU is compromised.  

 

 

 

 

 

 

Figure 1.4: Mitochondrial Ca2+ Influx/Efflux pathways 

The primary mode of Ca2+ import into mitochondria is the MCU. Other pathways such as mitochondrial 

Ryanodine Receptor (mtRyr) and leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1) 

have been suggested (81) (79). However, LETM1 was first proposed as a K+/H+ exchanger. The Na+/Li+/Ca2+ 

exchanger (NCLX) drives Ca2+ efflux under normal conditions, while importing Na+. Under pathological 

conditions, it is proposed that the NCLX may work in reverse. The Na+/H+ exchanger (NHE) uses the energy 
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of the proton gradient to extrude Na+ and maintains matrix [Na+] below cytosolic [Na+]. (Adapted from 

(82) 

ΔΨm oscillatory behavior in cardiomyocyte: Spatial characteristics and Implications 
 

The first report of oscillatory ΔΨm was by Berns et. al in the 1980s (83),(84), who 

discovered that, in cardiomyocytes, mitochondria excited by a laser flash exhibited ΔΨm 

oscillations. Since then, numerous studies have reported oscillatory phenomena in single 

mitochondria (85) and intact neonatal or adult cardiac cells and skeletal muscle, using a variety 

of techniques to trigger them(14) , (28), (16).  Studying mitochondrial network properties of 

synchronization, clustering, contiguity helps one to understand the dynamic relationships 

between elements in an intracellular network. Much of the information on mitochondrial 

dynamic network properties were obtained from adult cardiac myocytes, with well-developed 

mitochondrial network and sarcomeric proteins. 

Adult cardiomyocytes display cell-wide synchronization of ΔΨm oscillations (indicated by 

TMRM signal fluctuations) when subjected to metabolic or oxidative stress. However, individual 

mitochondria within a myocyte may behave differently in terms of their ΔΨm frequency and 

amplitude from the majority (16)(86). This varied behavior was shown to be a function of ROS 

release and ROS scavenging capacity at the local individual mitochondrial level. Synchronization 

of mitochondrial clusters occurs when there is a critical number of synchronized oscillators in an 

organized network: a phenomenon termed ‘mitochondrial criticality’. In lattice-like networks, 

this concept of synchronization is understood by application of ‘percolation theory’; i.e., stress in 

a sufficient number of network elements, the percolation threshold, results in synchronization of 

the components in the entire network. This value was experimentally observed in the ‘lattice-



19 
 

like’ cardiac mitochondria as well. When 60% of mitochondria had significantly increased ROS 

levels, there was a transition to myocyte-level synchronized oscillations (31).  

 The size of mitochondrial clusters negatively correlated with the frequency of the clusters, 

indicating that large clusters had slower oscillation frequencies (16). Kurz et. al (2015) showed 

that cluster size- frequency relationship changed according to cardiac myocyte metabolism or 

redox balance, revealing dynamic coupling behavior between mitochondria. For example, 

substrates that produce more reducing equivalents such as pyruvate and -hydroxybutyrate had 

higher rate of change of cluster size per mHz frequency (~ -4%/mHz) compared to substrates like 

compared to glucose and lactate (~-2%/ mHz). In addition, a wider range of cluster sizes, which 

occurred when pyruvate and -hydroxybutyrate were the substrates, indicated a fragmented, 

less well-coupled mitochondrial network. A wide range of frequency distribution (that occurred 

with pyruvate) indicated dyssynchronous clusters. Under oxidative stress conditions, the 

frequency distribution narrows and coalesces around slower, larger clusters. Rapid 

synchronization of mitochondrial clusters depends on the organization of mitochondria in the 

network and neighbor-neighbor interaction through ROS-induced ROS release, which recruits 

mitochondrial oscillators into a spanning cluster when they reach the percolation threshold (16), 

(87). Thus, information about the frequency, cluster size and sensitivity to oscillation can provide 

clues to the myocyte’s susceptibility to death.  
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Hypothesis 
 

Under pathological conditions such as Ischemia/ Reperfusion injury, excess Ca2+ influx into the 

mitochondria (presumably through the MCU) and excess ROS production due to dysfunction of 

the mitochondrial oxidative phosphorylation system leads to mitochondrial instability. ROS 

released from unstable mitochondria, mediates damage and propagation of dysfunction through 

the ROS-Induced-ROS-Release mechanism.  

Based on previous evidence that ΔΨm loss/oscillation might occur through either the Ca2+-

dependent mPTP opening or the ROS-mediated, Ca2+-independent mechanism (IMAC), we 

sought to determine which mechanism predominantly underlies ΔΨm instability during 

reperfusion by knocking out MCU or by boosting the antioxidant capacity, with the ultimate goal 

of determining how to stop the cascading pathology of reperfusion injury.    

 

 

 

 

 

 

 

Figure 1.5: Hypothesis 

Knocking out MCU to prevent excess mCa2+ accumulation or preventing Reactive Oxygen Species 

formation by scavenging excess ROS could prevent mitochondrial membrane potential instability during 

Reperfusion after Ischemic injury.  
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CHAPTER II: Spatio-temporal analysis of mitochondrial membrane 

potential fluctuations during ischemia-reperfusion 

 

 

 
Modified from: Deepthi Ashok & Brian O’Rourke. MitoWave: Spatio-temporal analysis of 

mitochondrial membrane potential fluctuations during ischemia-reperfusion. Submitted to 

Biophysical Journal in May 2020 

 

 

Introduction 
 

Spatio-temporal oscillations (electrical and contractile) are fundamental to normal 

cardiac function but are also a potential source of pathological instability and chaos (88). A stable 

supply of energy is required to prevent maladaptive emergent phenomena, and mitochondria 

are well-suited to dynamically adapt to the varying workloads of the organism. Nevertheless, 

both under physiological conditions (89) or after metabolic stress, mitochondrial oscillations (84), 

flickers(90),(91), transients(25), or fluctuations(92)(93)  have been observed, when parameters 

such as ∆Ψm, flavin or NADH redox potential, pH, or Reactive Oxygen Species (ROS) have been 

measured. For example, ΔΨm, ROS and NADH were shown to oscillate in a self-sustaining manner 

in adult cardiomyocytes subjected to substrate deprivation (24) or oxidative stress (14) in a 

frequency range spanning from ~1-40 mHz (16). Similarly, local mitochondrial superoxide 

oscillations (“mitoflashes”) in cardiomyocytes had a frequency of ~40mHz (32). As we have 

previously reported, ∆Ψm oscillation also reproducibly occurs upon reperfusion after ischemia in 
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neonatal rat ventricular myocyte monolayers (94). Importantly, interventions that suppressed 

mitochondrial ∆Ψm instability on reperfusion also abrogated cardiac arrhythmias, both in 

neonatal myocytes (94) and isolated perfused hearts(17),(95). Hence, understanding the 

mechanism of mitochondrial destabilization during oxidative stress or ischemia/reperfusion (I/R) 

injury is essential to develop novel therapeutic strategies to prevent cardiac arrhythmias and 

contractile dysfunction associated with metabolic stress.  

Determining the efficacy of interventions targeting spatiotemporal changes in 

mitochondria requires a robust, unbiased analytical approach, yet there are few reports 

describing methods for the automated analysis of non-stationary fluctuations observed in image 

time series. We have previously employed wavelet transform as a tool for characterizing ΔΨm 

oscillations and to describe dynamic mitochondrial clustering in adult cardiac myocytes by 

employing a mesh grid to outline individual mitochondrial clusters (86),(96). Here, we describe a 

workflow for characterizing spatially distributed ΔΨm loss and oscillation during I/R in terms of 

time-resolved frequency components, area of mitochondrial clusters, and times of reversible 

(ischemia) or irreversible (reperfusion) ΔΨm loss in neonatal cardiac cell monolayers. We apply 

discrete or continuous wavelet transform methods, followed by feature extraction, to analyze 

reperfusion-induced unsynchronized ΔΨm oscillations in neonatal ventricular myocytes. The 

method accurately identifies key transitions in mitochondrial behavior during I/R and quantifies 

the principal frequency components of mitochondrial instability and how they evolve over time. 

Moreover, the method is generalizable to the analysis of spatiotemporal variation of any 

parameter recorded during image time series. The method provides a workflow to automate 
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microscopy analysis and allows for unbiased, reproducible quantitation of complex nonstationary 

cellular phenomena.  

 

Methods:  
 

Neonatal cardiomyocyte isolation and cell culture 

Neonatal mouse cardiac myocytes (NMVMs) were isolated using the MACS cell separation kit 

(Miltenyi Biotec: Catalog #130-100-825 and #130-098-373). Briefly, hearts from 0-2 day old mice 

were excised, chopped into small pieces and digested using reagents supplied by the kit. A 

cardiomyocyte-rich cell suspension was obtained by separation of magnetically labelled non-

cardiac cells from total cell suspension upon application of a magnetic field. 1X106 NMVMs were 

plated on fibronectin-coated (10μg/ml) 35mm (D=20mm) glass coverslip dishes (NEST® catalog # 

801001) in Medium-199 supplemented with 25mM HEPES, 2μg/ml Vitamin B12, 50U/ml Pen-

strep, 1X non-essential 286 Amino acids and 10% FBS. The next day, the medium was changed to 

2% FBS medium. Ischemia/Reperfusion experiments and imaging were performed on the 5th- 

6th day of culture. 

 

Inducing Ischemia and Reperfusion and ΔΨm Imaging 

To monitor mitochondrial inner membrane potential (ΔΨm), 50nM Tetramethylrhodamine 

methylester (TMRM) was loaded for 30 min at 37°C prior to the start of the experiment and the 

media was then replaced with fresh Tyrode's buffer (130mM NaCl, 5mM KCl, 1mM MgCl2, 10mM 

NaHEPES, 1mM CaCl2 and 5mM Glucose). Experiment was performed at 37°C. A typical protocol 

included a baseline reading for 10 minutes followed by 60 minutes of regional ischemia induced 
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by placing a glass coverslip and followed by 60 minutes of reperfusion upon removal of the 

coverslip, as previously described in neonatal rat ventricular myocytes (94),(97) . During this 130-

minute period, images were obtained every 15 sec on a laser-scanning confocal microscope 

(Olympus FV3000RS). TMRM fluorescence was imaged using a 40X silicone-immersion objective 

(Olympus UPLSAPO40XS) with 561nm excitation/ 570-620nm emission. Cells were imaged in 

Galvano scanning mode without averaging. Each image was 16-bit with a size of 318.2X319.2 

microns (512X512 pixels). To minimize laser-induced damage during the long protocol, a neutral 

density filter of 10% was applied in the excitation path and the laser intensity was set by the 

software to 0.06% power (20 mW 561 nm LED laser). At the 15 sec image acquisition interval, 

only frequencies below 66.67mHz are resolvable based on Nyquist–Shannon sampling theorem 

(98).  

 

Image Analysis 

Image series of the time-course of Ischemia/Reperfusion experiments were analyzed using Fiji 

(https://imagej.net/Fiji/Downloads). A custom-built segmentation-analysis macro was generated 

to track each cell’s ΔΨm during the in-vitro I/R injury. ΔΨm response to I/R was analyzed at the 

cellular level by segmentation analysis (ImageJ). Steps for segmentation analysis included a pre-

processing step to align the images in the stack using a ‘StackReg’ plugin (99). Segmentation of 

each cell was done by applying a median filter (radius=2) to the first image of the stack and then 

applying an auto local threshold (Niblack). All particles above the radius of 60 were included in 

the analysis. TMRM fluorescence intensity for each cell over Ischemia and Reperfusion were 

obtained. Macros included in appendix.  

https://imagej.net/Fiji/Downloads
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Discrete and Continuous wavelet transform  

Limited information can be obtained through the use of frequency domain methods such as 

Fourier transform when analyzing complex biological signals that are non-stationary and time 

varying. Wavelet transform methods, on the other hand, permit resolution of the time of event 

occurrences and changes in the frequency relationship over time. Signal processing by wavelet 

transform generates coefficients that represent the best-fit as a selected “mother wavelet” 

function is scaled and shifted along the source signal(100). There are two kinds of wavelet 

transforms, Discrete and Continuous wavelet transforms. With Discrete Wavelet Transform 

(DWT), the signal is decomposed into discrete frequency bands, without overlap of the time-

frequency windows of the wavelet function. To detect major transitions that may be hidden in 

the noise of a physiological signal, the Maximal Overlap Discrete Wavelet Transform 

(MODWT)(100) can be employed. MODWT decomposes the signal into finer and finer frequency 

levels. As the level increases, large-scale approximations of the signal are obtained, and lower 

frequency components of the signal are well-resolved. MODWT of a signal allows for multi-

resolution analysis (MRA) that reconstructs the decomposed time series as a sum of several new 

series that are aligned in time with the original signal. MODWT-MRA effects a zero-phase filtering 

of the signal. Features are time-aligned, unlike MODWT alone. Continuous Wavelet Transform 

(CWT) involves transformation of the signal by continuously changing the scaling and shifting 

factors. Although this introduces some information redundancy, it presents a more detailed, high 

resolution view of the characteristics of the signal. Coefficients generated by CWT are 

represented by a scalogram that is a visual representation of the frequency components of the 

signal as they change over time. In our experiments on cardiomyocytes loaded with the 
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potentiometric fluorophore tetramethylrhodamine methyl ester (TMRM) and subjected to an in 

vitro I/R protocol, we used MODWT-MRA to identify the timing of the major ∆Ψm
 depolarization 

during ischemia for each cell. CWT was utilized to analyze the more complex time varying 

frequency components of the ∆Ψm oscillations observed in individual clusters of mitochondria 

during reperfusion. The image-processing and wavelet transform workflow, along with feature 

extraction from the images and scalograms obtained, allowed us to precisely determine the 

following: 1) the time point of ΔΨm loss for each cell during Ischemia, 2) the incidence of ∆Ψm 

oscillation for each mitochondrial cluster and its frequency throughout the reperfusion period, 

3) whether ∆Ψm stabilized or irreversibly collapsed during reperfusion, and 4) the size distribution 

of the oscillating mitochondrial clusters. 

(i) Identification of transition time-points of inner mitochondrial membrane potentials 

during Ischemia 

To analyze a time-series of the mitochondrial inner membrane potential, we used MODWT-MRA 

to identify time-localized changes in the TMRM signal (using MATLAB’s signal processing 

toolbox). The TMRM signal from each cell during the Ischemic period was transformed with a 

sym4 wavelet with four levels of decomposition. Lower level decompositions involve higher 

frequencies and higher-level decompositions involve slower frequencies. For example, Fig.2.1 

shows a raw TMRM signal from a single cell (A) decomposed into 4 levels using a sym4 wavelet 

transform (Fig. 2.1B). Level 1 has the frequency components between 0.033-0.017Hz, level 2 has 

0.017- 0.008 Hz, level 3 has 0.008-0.004 and level 4 has 0.004-0.002.  All levels of decompositions 

have associated relative energies. For our purpose of estimating the ΔΨm depolarization time, 

we removed all higher frequency components with lower relative energy and reconstructed the 
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signal by retaining the highest relative energy (of more than 99%) (Fig. 2.1C). We essentially filter 

out the ‘noise’ by this process. With this time-aligned reconstructed signal, we used the MATLAB 

function ‘findchangepoints’ to obtain the time point at which the reconstructed signal changed 

significantly (Fig. 2.1C). Time point of Ischemia depolarization can thus be automatically 

determined for several cells (Fig. 2. 1E).  
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Figure 2.1: Identification of Ischemic depolarization time.  

Raw TMRM signals during Ischemic period (A) are decomposed using Maximal Overlap Discrete Wavelet 

Transform (B) and reconstructed by retaining the signal with the highest relative energy (C). MATLAB’s 

‘findchangepoints’ function identifies the time point at which the signal changed significantly during 

Ischemia. Here, it is at time point 163. D) Example of a cell with the first image at baseline and 

subsequent images in the last phases of depolarization. Images are 15 seconds apart. TMRM intensity is 

abruptly diminished at time point 163. E) Example of Ischemia/ Reperfusion experiment with >100 cells 

where the black dots represent Ischemic depolarization time points.  
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(ii) Obtaining features and frequency components of ΔΨm oscillations during 

reperfusion 

Mitochondria exhibited non-stationary oscillatory behavior throughout reperfusion (Fig 2.2). We 

categorized ΔΨm oscillatory behavior based on our visual observations of 10 experiments. There 

were five outcomes that were observed based on the oscillatory state of ΔΨm throughout the 

reperfusion time period, i.e., (i) ΔΨm oscillations persisting throughout, (ii) No or very few ΔΨm 

oscillations, (iii) ΔΨm oscillations that stabilized after oscillating initially, (iv) ΔΨm oscillations that 

occurred, but there was early ΔΨm loss, and (v) No ΔΨm oscillations occurred, and there was early 

ΔΨm loss (Fig. 2.2). We used a continuous wavelet transform (sym8) (in MATLAB’s signal 

processing toolbox), to process the TMRM signal and observed that the signal processing tool 

readily detected transitions and frequencies depicting the behavior of mitochondrial ΔΨm 

changes. Figure 2, right panel, shows the scalograms obtained after performing a wavelet 

transform of the TMRM signal. We observed that an oscillating cluster has high coefficients 

concentrated in the scale of ~ 3 to 10, corresponding to a frequency of 4.3-45mHz, which does 

not exist in the scalogram of the non-oscillating cluster or during Ischemia.  
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Figure 2.2: Mitochondria exhibit different ΔΨm oscillatory behaviors upon reperfusion.  

ΔΨm signals (TMRM fluorescence) for representative mitochondrial clusters during ischemia and 

reperfusion are shown in the left panels and corresponding continuous wavelet transforms are shown in 

the righthand panels as scalograms. Frequencies and corresponding transition time points can be 

extracted from the scalograms. Mean TMRM Fluorescence intensities of an oscillating cluster (A), a non-

oscillating cluster (B), an oscillating cluster exhibiting ΔΨm loss (C), a cluster that oscillates before 

stabilizing (D), and a non-oscillating cluster exhibiting ΔΨm loss (E).  The oscillating cluster (A) has high 

coefficients concentrated in the scale of ~ 1 to 10, corresponding to a frequency of 4.3-45mHz, which is 

absent in the scalogram of a non-oscillating cluster or during Ischemia. 
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This wavelet tool was then applied to detect transitions, frequencies and times associated 

with these changes automatically for a large number of cells (>100 per experiment) and 

mitochondrial clusters (> 400 per experiment). MATLAB/ FIJI platform was used to perform 

feature extraction for ΔΨm changes throughout the reperfusion time period (Figure 2.3).  The 

procedure involved the following steps: (A) image acquisition with a confocal microscope using 

TMRM to monitor ΔΨm changes; (B) cellular segmentation using custom-made FIJI macros to 

separate each cell. The same thresholding method was applied to every image to outline each 

cell in the field of view; (C) By applying the threshold, each cell was separated into an image 

series; (D) creation of an image Differential Stack of the reperfusion phase of the image series by 

subtracting the nth image from the (n-1)th image. The sum of differentials in this stack could then 

be used to highlight the mitochondrial clusters that oscillate during the reperfusion period; (E) 

thresholding the z-projection of this differential image stack to obtain Regions of Interest (ROI) 

outlining oscillating mitochondrial clusters; (F) application of the ROIs to the reperfusion phase 

to obtain TMRM signals for each cluster through this time period; (G) continuous wavelet 

transform of the TMRM signal (with a sym 8 wavelet) to generate a coefficient matrix, visualized 

as a scalogram. The regions on the scalogram with large coefficients indicate where the mother 

wavelet fits the signal well. The x-axis represents the scaled time points and y-axis represents the 

scale (scale  1/ frequency). Usually an oscillating mitochondrion shows high coefficient peaks 

corresponding to the scale range from 3-10. ΔΨm can also undergo larger transitions throughout 

reperfusion and these changes are reflected in the scalograms as high coefficient peaks; (H) 

importation of the resulting coefficient matrix as a scalogram-image and extraction of 

predominant frequency features as a function of reperfusion time. X and Y co-ordinates of the 
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outlined maximum coefficients were obtained. The X-axis of the scalogram represents the time 

and the Y-axis, the scale (scale  1/ frequency); (I) Mitochondrial oscillators associated with time 

are classified into high/low frequency bands. If a mitochondrial cluster oscillates in a particular 

frequency band at multiple times during reperfusion phase, then, an average of the frequency 

and the time is obtained. Thus, patterns of oscillatory behavior are obtained. We will henceforth 

refer to this routine as the MitoWave Analysis. (ImageJ macros and MATLAB codes are included 

in appendix and on GitHub https://github.com/dashok1/MitoWave/releases/tag/v1.0.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic of Mito-wave analysis for ΔΨm feature extraction. 
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It involves the following steps: A) Image Acquisition with a Confocal microscope using TMRM to monitor 

ΔΨm changes, B-C) Cellular Segmentation using custom-made FIJI macros to separate each cell,  D) 

Differential stack Z-projection image for each cell is used to identify mitochondrial clusters that oscillate 

(MATLAB/FIJI Routine), E-F) TMRM fluorescence time course for each cluster is obtained, G) Scalograms 

are generated by continuous wavelet transform of the TMRM signal, H) Features and frequency 

components are extracted from the scalograms, and I) Mitochondrial oscillators are classified into 

high/low frequency bands to obtain patterns of oscillatory behavior as a function of reperfusion time.  
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Results 
 

Defining oscillatory behavior patterns during Reperfusion  

The behavior of each mitochondrial cluster was plotted into its corresponding frequency band, 

which varied over the reperfusion time period, represented as violin plots (Fig. 2.4). Frequencies 

were categorized as high frequency, ranging from 45 to 4.3 mHz (~22 seconds to 230 seconds), 

moderately fast frequencies ranging from 4.3-2.2 mHz (~ 230 seconds to 450 seconds), slow 

frequencies ranging from 2.2mHz to 1.8 mHz (~ 450 seconds to ~ 550 seconds) and below 1.8 

mHz. Mitochondrial oscillators typically were present in the 45-4.3 mHz band. We also plotted 

the time at which there was complete ΔΨm loss during the reperfusion period. Applying Mito-

Wave Analysis on ten in-vitro Ischemia/ Reperfusion experiments, we verified that our visual 

observations matched the quantitative analysis. In experiments where the mitochondrial 

oscillations persisted throughout the reperfusion period, high-frequency oscillators appeared at 

all time periods in the violin plots (Fig 2.4 A) and when mitochondria had few/ no oscillations, the 

presence of high-frequency oscillators tapered off near 20 minutes of reperfusion (Fig 2.4B). We 

also observed, in some experiments, that mitochondrial oscillations occurred in the beginning of 

reperfusion, but started losing their ΔΨm during mid-late reperfusion, so the high-frequency 

oscillations tapered off, but shows up in the band where there is ΔΨm loss (Fig 2.4C). We also 

observed in some experiments (Fig 2.4D), mitochondria exhibited few low amplitude or no 

oscillations at the beginning of reperfusion, so the number of high-frequency oscillators taper off 

around 20 minutes (similar to the distribution pattern of high frequency oscillators in Fig 2.4B), 

but they begin to lose their ΔΨm around 25 minutes of reperfusion. Finally, in some experiments 

we observed that mitochondria stabilize their ΔΨm oscillations throughout the reperfusion time 
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period (Fig 2.4E) where the presence of high-frequency oscillators taper off while ΔΨm is 

maintained during reperfusion. We then classified these experiments into the 5 different 

oscillation categories: Oscillating (2.4A), Non-Oscillating (2.4B), Oscillating with early ΔΨm 

loss(2.4C), Oscillating with early ΔΨm stabilization (2.4D) and Non-Oscillating with early ΔΨm loss 

(2.4E).  

 

Table 1 Visual Observations during reperfusion 

1 Oscillating mitochondrial clusters 

2 No Oscillations during reperfusion 

3 Oscillations with early ΔΨm loss 

4 Yes Oscillations, then stabilization 

5 No fast Oscillations, but show early ΔΨm loss 

 

Table 1. Visual Observations during reperfusion 
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Figure 2.4: Defining ΔΨm Oscillatory patterns during reperfusion qualitatively and quantitatively: 

Visual observations of the Ischemia/Reperfusion image stack can qualitatively classify oscillatory behavior 

patterns of mitochondrial clusters during reperfusion. We classified oscillatory patterns from 10 
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experiments into 5 groups: Oscillating, Not Oscillating, Oscillating with early ΔΨm loss, Oscillating with 

ΔΨm stabilization, and Non-Oscillating clusters with Early ΔΨm loss (Table 1). By subjecting the TMRM 

signal from each mitochondrial cluster to MitoWave Analysis, we characterize oscillatory behavior 

quantitatively with violin plots (Fig. 2.4A-E). Each dot represents a mitochondrial cluster oscillating at a 

certain frequency corresponding to a certain time point. Visual observations (Table 1) are corroborated 

by results from the quantitative MitoWave analysis routine (Fig 2.4A-E). We see that a mitochondrial 

cluster can change its oscillatory pattern throughout the reperfusion period, i.e., its frequency may change 

from one frequency band to another. Y-axis shows six frequency bands, as well as the time at which a 

mitochondrial cluster completely loses ΔΨm during reperfusion. X-axis represents the time of reperfusion.  

 

 

Predominant frequencies of mitochondrial clusters 

We obtained the predominant frequencies of mitochondrial clusters by considering the first, fast 

frequency band (8.6- 45mHz). If the mitochondrial cluster did not have a frequency in that band, 

the next frequency band was considered, and so on till the slowest frequency band. This way we 

could extract the frequencies that most closely represented mitochondrial oscillating 

frequencies. An average or a weighted average could be used since most mitochondrial clusters 

also have slow frequency components, but not all mitochondria have fast frequency components. 

Oscillating clusters have a frequency of 8.73±4.35mHz (1081 clusters), Non-Oscillating Clusters 

have 3.13±2.61mHz (732 clusters), Oscillating clusters with early ΔΨ loss have 9.56±3.66mHz 

(1402 clusters), Oscillating clusters with ΔΨm stabilization have 8.81±6.03mHz (1009 clusters) and 

Non-Oscillating clusters with Early ΔΨm loss have 6.82±4.63mHz (880 clusters) (Fig 2.5A).  
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Further, we analyzed the distribution of high frequency oscillators (in the 8.6-45mHz frequency 

band) to see how they vary throughout reperfusion time among the different categories. Clusters 

that didn’t have a frequency in this band (of 8.6-45mHz) were given a value of 0. We plotted the 

percentage of the different categories of oscillating clusters against time (Fig.2.5B). We observed 

that among the Oscillating category (blue line), 8-12% of mitochondria exhibited this high-

frequency oscillations from 15-40 minutes of reperfusion. This was absent in the Non-Oscillating 

(orange line), in the Oscillating with early ΔΨm stabilization (Violet line) and the Non-Oscillating 

with ΔΨm loss (green line) categories. The Oscillating with early ΔΨm loss (pink line) shows ~ 7-

15% of mitochondria exhibit high frequency only in the early reperfusion phase, till about 25 

minutes, after which they do not. Further, we also statistically analyzed the distribution of these 

high frequency oscillators. A Kolmogorov-Smirnov non-parametric two sample test (kstest2 on 

MATLAB) was performed to test the null hypothesis that distribution of various oscillation 

behaviors were not different during the reperfusion time period. KS-test show significant 

differences between the different categories, comparing Oscillating and Non-Oscillating clusters, 

Oscillating and Oscillating with early ΔΨm loss, Oscillating and ΔΨm stabilizing clusters, and 

Oscillating and Non-Oscillating with early ΔΨm loss (p<0.0001). Thus, we quantitatively confirm 

our visual observations that the distribution of oscillating mitochondrial clusters that change 

dynamically over time are different between different categories of oscillating experiments.  
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Figure 2.5:  Predominant frequencies exhibited by mitochondrial clusters during reperfusion. 

The predominant frequencies exhibited by mitochondrial clusters fell within the 8.6 to 45mHz band. A) 

The mean predominant frequency ± SEM for i) Oscillating clusters, 8.73±4.35mHz(1081 clusters); ii) Non-

Oscillating Clusters, 3.13±2.61mHz (732 clusters); iii) Oscillating cluster with early ΔΨm loss, 9.56±3.66mHz 

(1402 clusters); iv) Oscillating cluster with ΔΨm stabilization, 8.81±6.03mHz (1009 clusters); and v) Non-

Oscillating clusters with early ΔΨm loss, 6.82±4.63mHz (880 clusters). One-way ANOVA was performed to 
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determine statistical significance, * p <0.0001.  B) Percentage of mitochondrial clusters oscillating in the 

8.6-45mHz frequency band binned at 4-minute intervals during the reperfusion period.  

 

Frequency and mitochondrial cluster size are negatively correlated  

We observed that in experiments where there were no/ few oscillations, mitochondrial clusters 

seem larger than in experiments where mitochondria had persistent oscillations. Previous 

reports in adult cardiac myocytes also showed that larger clusters have slower oscillations (16). 

Therefore, we wanted to check if this was true in Neonatal Cardiac myocytes as well. The Mito-

Wave analysis of NMVMs subjected to I/R agreed with our visual observations. Oscillating 

mitochondria had the lowest area of 49.3μm2 vs a larger area of 65.92μm2 for non-oscillating 

mitochondria (Fig 2.6A). We performed non-parametric correlation coefficient analysis to 

understand the relationship between the size of mitochondrial clusters and its frequency. We 

found that there is a negative correlation between oscillating frequency and the size of the 

mitochondrial cluster, with a correlation coefficient of r= -0.58 (Fig. 2.6B). Mitochondrial cluster 

size decreased by ~4.56μm2 for every millihertz increase. This suggests that if mitochondria are 

organized in larger clusters, they undergo slower oscillations and may eventually stabilize ΔΨm 

and be protected against ΔΨm loss during reperfusion after Ischemia. 
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Figure 2.6: Mitochondrial Cluster size and Frequency relationship.  

A) Mitochondrial Cluster size and Frequency relationship.  Areas of mitochondrial clusters were compared 

for clusters exhibiting different oscillatory behaviors (across several experiments). (i) Oscillating clusters 

had an area of 49.78±40.64μm2 (1081 clusters); (ii) Non-Oscillating Clusters, 65.97±42.07 μm2 (732 

clusters); (iii) Oscillating cluster with early ΔΨ loss, 49.65±34.35μm2 (1402 clusters); (iv) Oscillating cluster 

with ΔΨ stabilization, 53.15± 39.38μm2 (1009 clusters); and (v) Non-Oscillating clusters with Early ΔΨm 

loss, 67.92±49.12μm2 (880 clusters). One-way ANOVA was performed to determine statistical significance, 

* p <0.0001. B) Frequency and cluster size show an inverse relationship. In Oscillating clusters, the area of 

the cluster decreases by ~4.56μm2 for every millihertz increase. 95% confidence intervals are plotted (red) 

with linear regression line (black). 

 

Time taken for ΔΨm loss during Ischemia and Reperfusion  

Time to ΔΨm loss (reversible during Ischemia and irreversible during reperfusion) is an important 

indicator for mitochondrial resistance to instability during reperfusion after ischemia. It helps to 

understand if interventions to prevent mitochondrial instability and hence reperfusion injury are 
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effective. We quantified the time to ΔΨm loss during Ischemia per cell (2.7A). The Oscillating 

category had a mean of 43.52±5.87 minutes to ΔΨm loss (i), Non-Oscillating took 46.36±9.17 

minutes(ii), Oscillating with early ΔΨm loss took 35.62±9.25 minutes(iii), Oscillating with ΔΨm 

stabilization took 52.84±11.17 minutes (iv) and Non-Oscillating clusters with Early ΔΨm loss took 

30.46±7.81 minutes(v). We also quantified the time to ΔΨm loss per mitochondrion during 

reperfusion (2.7B). We plotted the time against the percentage of mitochondria. Oscillating 

clusters take 58.71± 4.75 minutes to lose ΔΨm; Non-Oscillating clusters did not lose their ΔΨm till 

the end of reperfusion at 60.25 minutes; Oscillating clusters with early ΔΨm loss take 45.8±11.05 

minutes; Oscillating clusters with ΔΨm stabilization take 59.66±3.96 minutes and Non-Oscillating 

clusters with early ΔΨm loss take 53.38± 10.99 minutes.  

Figure 2.7:  Time taken for ΔΨm loss during Ischemia and Reperfusion 
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A) Time taken for ΔΨm loss during Ischemia versus the ensuing oscillatory behavior on reperfusion. (i) 

Oscillating clusters maintained ΔΨ
m 

until 43.52 ±5.87 minutes; (ii) Non-Oscillating clusters, 46.36±9.17 

minutes; (iii) Oscillating with early ΔΨm loss, 35.62±9.25 minutes (iv) Oscillating with early ΔΨm 

stabilization, 52.84±11.17 minutes and (v) Non-Oscillating clusters with Early ΔΨ
m 

loss, 30.46±7.81 

minutes. B) Percentage of mitochondrial clusters exhibiting irreversible ΔΨm loss during reperfusion. 

Oscillating clusters lost ΔΨm on average at 58.71± 4.75 minutes of reperfusion;  Non-Oscillating clusters 

maintained stable ΔΨm to the end of 60.25 minutes of reperfusion; Oscillating clusters with early ΔΨm 

loss depolarized at 45.8±11.05 minutes; Oscillating clusters with ΔΨm stabilization lasted 59.66±3.96 

minutes, and Non-Oscillating clusters with early ΔΨm loss depolarized at 53.38± 10.99 minutes 

 

Correlation between Ischemic depolarization time point and ΔΨm oscillation frequency 

We wanted to understand if there was any link between mitochondrial recovery during 

reperfusion and the time to ΔΨm loss during Ischemia. We compared the empirical cumulative 

distribution functions between different oscillation categories during Ischemia (2.8A) and 

reperfusion (2.8B).  We found that late ΔΨm loss during Ischemia correlated with mitochondrial 

ΔΨm stabilization during reperfusion.  

 

 

 



44 
 

 

 

Figure 2.8: Relationship between Ischemic ΔΨm depolarization time and Oscillatory behavior during 

Reperfusion 

A) Empirical Cumulative Distribution functions showing the probability of depolarization (F(x)) as a 

function of time (x) during Ischemia. B) Empirical Cumulative Distribution functions showing the 

probability of depolarization (F(x)) as a function of time (x) during Reperfusion. Mitochondrial stabilization 

during reperfusion correlated with late ΔΨm loss during Ischemia (purple line). 

 

A. ECDF: ΔΨm loss during Ischemia   

B. ECDFs: ΔΨm loss during Reperfusion   
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Discussion 
 

Over the course of ischemia-reperfusion, the mitochondrial networks of cultured 

neonatal mouse cardiomyocytes displayed complex spatiotemporal patterns, including bistability 

and time-varying oscillatory behavior, presenting significant challenges to analysis. The present 

work combined image segmentation with the versatility of wavelet transforms to quantify key 

transitions associated with the pathophysiology of I/R injury in an unbiased manner. Essential 

information could be captured in a semi-automated workflow, including the time-to-

mitochondrial depolarization during ischemia, frequency of ΔΨm oscillation of individual 

mitochondrial clusters upon reperfusion, and time to catastrophic loss of ΔΨm with prolonged 

reperfusion. Subsequent data reduction permits one to make statistical comparisons between 

different experiments to determine if a given treatment or intervention has significant effect on 

mitochondrial function (Fig 2.3).      

We have previously reported that adult cardiomyocytes subjected to metabolic or 

oxidative stress undergo spontaneous oscillations in ΔΨm that occur either in small clusters or 

are synchronized across the whole cell (16). Cell wide ΔΨm  synchronization is observed after a 

critical number of mitochondria in the network show oxidative stress, a phenomenon we termed 

“mitochondrial criticality”(101). Synchronization of mitochondria in the organized array of the 

adult myocyte depends on ROS-dependent neighbor-neighbor interactions between organelles, 

with long range cluster interactions following the behavior of a percolation lattice(31). In 

neonatal myocytes, the mitochondrial network is less ordered and reperfusion-induced 

oscillations are less likely to be synchronized throughout the entire network (94), consistent with 

a short effective diffusion distance for ROS-induced ROS release(14). In contrast, when the 
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system is forced by a uniform environmental stress, such as ischemia, mitochondrial network 

depolarization occurs on a cell-by-cell basis, likely determined by the anaerobic ATP-generating 

capacity and glycogen store of the individual cells. The average time to ischemic ΔΨm 

depolarization for a given coverslip was compared to the oscillatory behavior of mitochondrial 

clusters on reperfusion (Fig. 2.7 & 2.8). Interestingly, early ΔΨm loss during ischemia correlated 

with early ΔΨm loss during reperfusion; however, this was equally true for both oscillating and 

non-oscillating clusters, suggesting that there is no specific protective advantage of the 

oscillatory behavior. In fact, there was a trend towards earlier depolarization during reperfusion 

for oscillating versus non-oscillating mitochondrial clusters. At least concerning mitochondrial 

recovery after reperfusion, these findings argue against the idea that oscillations in metabolism 

might preserve a higher average ATP/ADP ratio while decreasing free energy dissipation 

compared to steady state operation (102). Instead, mitochondrial ΔΨm oscillation could simply 

be an inevitable consequence of the nonlinear control properties of the nonlinear bioenergetic 

system. In addition, late ΔΨm loss during ischemia correlated with ΔΨm stabilization after 

oscillation on reperfusion. Together these data indicate that mitochondrial energetic recovery 

strongly depends on resistance to initial ischemic depolarization, consistent with data from intact 

perfused hearts(103).  

The present findings show that in NMVMs subjected to I/R, ΔΨm oscillation frequency is 

inversely correlated with cluster size (Fig. 2.6). This is in agreement with the negative correlation 

obtained by wavelet transform analysis of adult myocytes under oxidative stress, with large 

mitochondrial clusters showing slow ΔΨm oscillations that could span the entire cell with a 

stereotypical frequency of 1 - 10 mHz(16). Synchronization of a network of dynamically coupled 
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oscillators spanning a broad frequency range to a single dominant frequency is common to 

physical, chemical and biological systems. The lack of synchronization in NMVMs and the broader 

frequency distribution (Fig. 2.5) may be the result of the more disorganized arrangement of 

mitochondria in neonatal myocytes or weaker coupling between mitochondria in the immature 

cells.  

The method described here provides a way to uncover and quantify different 

mitochondrial responses to I/R stress that might otherwise be overlooked if one were to only 

examine the average behavior of a monolayer, of individual cells, or at single time points during 

a protocol (e.g., measuring lactate dehydrogenase release as an index of damage after 

reperfusion). A current limitation of the method is that it would be affected by significant 

movement of the objects being analyzed in the optical field, which was minimal in our 

experiments. In the future, it might be possible to further develop the approach by incorporating 

object tracking methods. Nevertheless, the approach is applicable to any spatially-distributed 

system of time varying oscillatory signals. Unlike Fourier transform analysis, the underlying 

oscillator frequencies and phases do not have to be time invariant and the method is largely 

immune to changes in signal offset (such as photobleaching) or background artifacts. This novel 

approach, which standardizes the quantitative analysis of complex biological signals, opens the 

door to in depth screening of the genes, proteins and mechanisms underlying metabolic recovery 

after ischemia-reperfusion.  
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CHAPTER 3: Mitochondrial Membrane Potential instability persists in 

Ischemia/Reperfusion injury in MCU-KO cardiomyocytes   

 

 

 

Introduction 
 

Physiologic Ca2+ import into mitochondria is essential for matching energy supply with 

demand. Ca2+ import activates three Ca2+-regulated dehydrogenases of the Krebs cycle (pyruvate 

dehydrogenase, 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase)(45)  Under 

pathological conditions, such as I/R injury, an excess of Ca2+ import damages mitochondria and 

triggers cell death, notably through mPTP opening and irreversible ΔΨm collapse. (9) 

The Mitochondrial Calcium uniporter (MCU) is thought to be the primary mechanism of 

Ca2+ import into mitochondria (50),(52) (53) (51) (104). The hypothesis that mitochondrial Ca2+ 

import via the MCU is detrimental in I/R injury has been tested using genetically engineered mice. 

In a first study, mice with germline deficiency of MCU did not show any protection or detriment 

following  I/R injury (55), whereas mice with inducible cardiomyocyte-specific deficiency of MCU  

to I/R injury were protected against I/R injury. (59) (58). In addition, a cardiac-specific 

overexpression of a dominant negative MCU, that renders the endogenous channel deficient, 

does not show any protection against I/R injury (60). 

While these experiments are highly informative in evaluating the implications of MCU 

impacting cardiomyocyte death in intact hearts, many mechanistic details regarding the 

preceding steps remain largely unexplored. Here, we wanted to further evaluate the cellular 

mechanisms of mCa2+ import and export using an in-vitro I/R injury model, where mCa2+ dynamics 
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and ΔΨm instability can be monitored in real time with genetically encoded mCa2+ probe, 

4mtd3cpv (MitoCam) and TMRM respectively. 

Instability of the mitochondrial membrane potential (ΔΨm) occurs during metabolic or 

oxidative stress and  is capable of triggering ventricular arrhythmias(17) (95) (25) (105), (106). 

During stress evoked by Ischemia/Reperfusion (I/R) injury, mitochondria undergo substrate and 

oxygen deprivation, as well as oxidative stress, triggering ΔΨm oscillations which lead to ΔΨm 

collapse. Interventions with 4’-chlorodiazepam prevented ventricular arrhythmias on 

reperfusion (17) and stabilized ΔΨm oscillations (94), potentially implicating the benzodiazepine-

sensitive Inner Membrane Anion Channel (IMAC) or the outer membrane Translocator Protein 

(TSPO, a.k.a., the mitochondrial benzodiazepine receptor) in this process. Similarly, interventions 

that suppress the mitochondrial ROS-Induced-ROS Release (RIRR) amplification mechanism also 

prevent ΔΨm oscillation (107) (14). In this paper, we examine if mCa2+, and, in particular, MCU, is 

involved in triggering ΔΨm oscillations and irreversible ΔΨm collapse in simulated I/R injury.  

Interestingly, we find that acutely knocking out MCU in neonatal mouse ventricular 

myocytes does not alter ΔΨm recovery during Reperfusion, instead it shortens the latency to 

ΔΨm depolarization during Ischemia. Moreover, in MCU-KO cardiac monolayers, ΔΨm instability 

after Ischemia persisted. An additional surprising finding was that MCU knockout did not affect 

mCa2+ import during I/R, although inhibition of the mitochondrial Na+/Ca2+ exchanger (mNCE) 

did, indicating that MCU is not the primary mode of mCa2+ import during ischemia. 
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Methods 
 

 

MCU mice model 

MCU Floxed mice were obtained from Dr. John Elrod’s group (59), (58). Briefly, MCU conditional 

knockout mice were generated by recombinant insertion of a targeting gene containing loxP sites 

flanking the 5th and 6th exon of the MCU gene in mouse embryonic stem cells. Breeding pairs 

were obtained from Dr. John Elrod and neonates were generated in our lab to prepare neonatal 

mouse ventricular myocytes. All animal procedures were approved by IACUC.  

 

Neonatal cardiomyocyte isolation, cell culture and Adenoviral Transfection: 

Neonatal mouse ventricular myocytes (NMVMs) were isolated using MACS Miltenyi Biotec kits 

(Catalog #130-100-825 and #130-098-373). Briefly, hearts from 0-2-day old mice were excised, 

chopped into small pieces and digested using reagents supplied by the kit. A cardiomyocyte-rich 

cell suspension was obtained by separation of magnetically labelled non-cardiac cells from the 

total cell suspension upon application of a magnetic field. 1X106 NMVMs were plated on 

fibronectin-coated (10μg/ml) 35mm (D=20mm) glass coverslip dishes (NEST® catalog # 801001) 

in Medium-199 supplemented with 25mM HEPES, 2μg/ml Vitamin B12, 50U/ml Pen-strep, Non-

essential 286 Amino acids and 10% FBS. The next day, the medium was changed to 2% FBS 

medium. Adenoviruses expressing CRE-Recombinase (to knock-out MCU) or adenoviruses with 

beta-galactosidase (as a control) were transduced into NMVMs. To monitor mitochondrial Ca2+, 

the cells were also transduced with adenoviruses expressing the mitochondrially-targeted 

ratiometric Ca2+ sensor 4mtd3cpv (108). Cells were transduced at a concentration of ~40 
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infectious particles per cell on the first or second day of isolation. Ischemia/Reperfusion 

experiments and imaging were performed on the 5th- 6th day of culture. 

 

Western blot 

MCU knock-out was confirmed by western-blot (MCU antibody from Cell Signaling #14997), and 

densitometry analysis using NMVM cell lysates 5-6 days after Ad-Cre transduction. (Figure 3.1) 

 

Inducing Ischemia and Reperfusion, ΔΨm and Ca2+ Imaging 

To monitor mitochondrial membrane potential (ΔΨm), 50nM Tetramethyl rhodamine 

methylester (TMRM) was loaded for 30 min at 37°C prior to the start of the experiment and 

replaced with fresh Tyrode's buffer (130mM NaCl, 5mM KCl, 1mM MgCl2, 10mM NaHEPES, 1mM 

CaCl2 and 5mM Glucose). A typical protocol included a baseline reading for 10 minutes followed 

by 60 minutes of regional ischemia induced by placing a 15mm glass coverslip, followed by 60 

minutes of reperfusion upon removal of the coverslip (previously described in NRVMs (97) (109) 

(94)). During this 130-minute period, images were obtained every 15 seconds on a laser-scanning 

confocal microscope (Olympus FLUOVIEW 3000), where both mitochondrial membrane potential 

and mitochondrial Ca2+ were monitored sequentially at 40X magnification using a silicone-

immersion objective (Olympus UPLSAPO40XS). A neutral density filter of 10% was applied to the 

excitation beam and cells were imaged with Galvano scanning mode without any averaging. Laser 

powers of 0.06% for TMRM and 2% for CFP/YFP FRET were used (Fig. 3.1 A and B) 
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Figure 3.1: Methods and Protocol 

(A) In vitro Ischemia and Reperfusion protocol on a neonatal ventricular myocyte monolayer.  

(B) Basic Cellular Response during baseline, Ischemia and Reperfusion. Mitochondrial Membrane 

Potential and mitochondrial Calcium were monitored with TMRM and a genetically-encoded MitoCam 

(4mtd3cpv) FRET probe targeted to the mitochondria, respectively. TMRM was excited at 560nm and 
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emission collected from 570-620nm. For MitoCam, CFP was excited at 445nm and emission was collected 

at 535nm. The FRET signal (YFP) was collected at 570nm. The ratio of the FRET signal to CFP after 

background subtraction indicated mCa2+ levels.  

 

Monitoring Mitochondrial Membrane Potential  

Excitation wavelength used for TMRM was 561 nm and the emitted fluorescence between 570-

620 nm was collected. Images were collected every 15 seconds. When mitochondria are 

depolarized, TMRM disperses into the cytoplasm from the mitochondria, causing a more diffuse 

distribution of TMRM fluorescence in the cell. Therefore we use the Spatial Dispersion of the 

signal as an indicator of mitochondrial polarization (110). This is a dimensionless value 

determined by calculating the coefficient of variation of the image fluorescence intensity (ratio 

of standard deviation to the mean). This measure minimizes potential artifacts related to 

bleaching, changes in dye load and illumination (94)(111).  

 

Monitoring mitochondrial Ca2+ and Calibration of the probe 

Mitochondrial Ca2+ was monitored using a genetically encoded FRET-probe, 4mtd3cpv. Originally 

developed by Palmer and Tsien (108), this probe has been characterized for use in cardiac 

myocytes by Wüst et.al  (112). It contains four mitochondrial targeting sequences and a circularly 

permuted venus group which makes it less susceptible to changes in pH (since pH changes are 

often seen during Ischemia/Reperfusion). We incorporated this probe into an adenovirus using 

Invitrogen’s Gateway® system. An excitation light of 445 to excite CFP and emission at 535nm 

and 570nm (for YFP, FRET signal) were collected.  
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Image Analysis 

Image series of the time-course of the Ischemia/Reperfusion experiment were analyzed using Fiji 

(https://imagej.net/Fiji/Downloads) (113). A custom-built segmentation-analysis macro was 

generated to track each cell’s ΔΨm and mCa2+ during the in-vitro I/R injury. For mCa2+, the ratio 

of YFP to CFP was obtained per cell using the ‘Ratio-Profiler’ plugin on Fiji.  

Depolarization Time estimation: TMRM signal from each cell was subjected to Multi-resolution 

wavelet decomposition to separate higher frequencies (noise) from large transitions in signal 

(ΔΨm depolarizations). Decomposed signals were used to find ‘transition points’ using MATLAB’s 

‘findchangepoints’ function.  

Oscillation Analysis: We followed the same protocol as described in Chapter II, called 

‘MitoWave’, currently available as a preprint (114). Briefly, to obtain the frequency of the 

oscillating clusters of mitochondria during reperfusion, each cell was separated by segmentation 

and a difference stack was generated to define its oscillating clusters (after a z-projection of the 

difference stack). A region-of-interest was defined for each oscillating cluster and the raw TMRM 

intensity was obtained for each cluster. This TMRM signal was subjected to a Continuous wavelet 

transform to obtain a scalogram using MATLAB’s Wavelet Transform toolbox. Each Scalogram 

was then subjected to ImageJ-based thresholding to obtain the co-ordinates of the highest 

coefficients. These coefficients provide the frequencies and the associated time of each 

oscillating cluster. Each oscillating cluster was categorized into different frequency bands 

throughout the reperfusion period. A violin plot visually represents the behavior of these 

oscillating clusters. Each cluster may change its frequency band during reperfusion depending on 

whether it stabilizes or not during reperfusion.  

https://imagej.net/Fiji/Downloads
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LDH Assay 

Supernatants were collected from cells subjected to Ischemia/Reperfusion and a Lactate 

Dehydrogenase Assay was performed to assess the level of cellular toxicity. CyQUANT™ LDH 

Cytotoxicity Assay from Thermo Fisher was used (Catalog number:  C20300).  LDH levels are 

expressed as a percentage of maximum LDH levels released from lysed cells.  

 

Statistical Analysis 

Data were analyzed with GraphPad Software, San Diego (version 8.0) and MATLAB and Statistics 

Toolbox Release 2019b.  Statistical significance between different treatments (genetic knockout 

or inhibitors) were evaluated with Kruskal-Wallis nonparametric test with Dunn’s multiple 

comparisons test for correction for multiple tests. Summary statistics are presented as mean +/- 

SEM.  Statistical analysis for estimating differences in Oscillation patterns were performed with 

non-parametric Kolmogorov-Smirnov test using an alpha of 0.001 to reject the null-hypothesis.   
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Results 
 

MCU is required for rapid Ca2+ uptake into mitochondria 

Ca2+ uptake into the mitochondria is driven by the electrochemical Ca2+ gradient and the negative 

membrane potential inside mitochondria (115) (104). MCU is the primary mode of Ca2+ entry into 

the mitochondria and is responsible for the rapid uptake of mCa2+ (50), (74), (51). Therefore, we 

wanted to confirm that knocking out ~80% of the MCU acutely (in 5 days) in culture (Figure 

3.2A&B) has functional consequences. We first measured mCa2+ levels in Neonatal Mouse 

Ventricular Myocytes using the genetically-encoded MitoCam FRET probe (Figure 3.4A). We 

recorded baseline mCa2+ levels in unstimulated cells for 10 minutes, acquiring an image every 15 

seconds. We found no difference between matrix Ca2+ levels in MCU-WT and KO cells, similar to  

observations in several other MCU knockout studies (59), (58), (116). We also wanted to check if 

blocking the mitochondrial Na+/ Ca2+ would alter mCa2+ levels at baseline and found that addition 

of the mNCE inhibitor CGP-37157 (10µM; CGP) did not alter baseline mCa2+ levels (Fig. 3.4A). 

However, when we measured beat-to-beat mCa2+ transient amplitudes in MCU-WT and MCU-KO 

myocytes (Fig. 3.3), we observed a 55% decrease in MCU-KO myocytes compared to WT (Fig. 

3.4B).  To see if there was any difference in mCa2+ uptake in response to a large rise in cytosolic 

Ca2+, we initiated caffeine-induced SR-Ca2+ release (117). Cells were superfused with Na+- and 

Ca2+ -free buffer to prevent Ca2+ extrusion via the Sarcolemmal Na+/Ca2+ exchanger (NCX). 20mM 

Caffeine was then added to release the SR-Ca2+ stores. Under these conditions, Ca2+ accumulation 

into the mitochondria was measured. We found that mCa2+ uptake into the mitochondria was 

significantly reduced by ~80% in MCU-KO cells (Fig. 3.4C).  We also calibrated the MitoCam probe 

in both WT and KO cells to obtain the minimum (Rmin) and maximum (Rmax) YFP/CFP FRET ratios 



57 
 

for calibrating the signal in different experiments. The Rmin and Rmax were not significantly 

different between MCU-WT and KO cells (Fig. 3.4D and 3.4E). Examples of the calibration traces 

are shown in Fig. 3.5. Further, since the mitochondria contribute to beat-to-beat buffering of 

systolic Ca2+ transients (57) via MCU, we also measured cytosolic Ca2+ transients using Fura-2. 

MCU-KO monolayers displayed a ~37% increase in cytosolic Ca2+ transient amplitude compared 

to WT. Adding 10M CGP to WT cells, which should also facilitate redistribution of Ca2+  from the 

mitochondrial compartment to the SR, increased cytosolic transient amplitude by ~24% 

compared to controls (Fig 3.4F). This demonstrates that CGP does not inhibit cytosolic Ca2+ cycling 

(important for the subsequent interpretation of its effect on I/R Ca2+).  

 These results confirm previous findings that although there is no difference in matrix Ca2+ 

levels at baseline between MCU-WT and KO, fast mCa2+ uptake is significantly reduced in MCU-

KO cells. 
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Figure 3.2: Addition of Ad-Cre results in knockout of MCU in 5 days in NMVMs 

(A) Cardiomyocytes from MCUfl/fl neonatal mice (NMVMs) were transduced with adenovirus expressing 

Cre-recombinase (Ad-Cre) or βgal (Ad-βgal) control virus. An 80% reduction in MCU protein (expected 

molecular weight of 30kDa) was seen on the 5th day of viral transduction in Ad-Cre treated cells. Below is 

the ponceau stain used as loading control.   

(B) Quantification of MCU antibody signal from western blots (n=6).  
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Figure 3.3: Functional effects of MCU knockout; representative mCa2+ transients in spontaneously 

beating MCU-WT and MCU-KO neonatal mouse ventricular myocytes.  

(A) Ratio of YFP/ CFP signal indicating mCa2+ levels. (B) Raw YFP signals (C) Raw CFP signals. 
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Figure 3.4: MCU is required for rapid Ca2+ uptake into mitochondria 
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(A) mCa2+ levels at baseline in Neonatal Mouse Ventricular Myocytes using MitoCam probe. mCa2+ levels 

are represented as a ratio of the FRET signal (YFP) to CFP. Baseline mCa2+ for MCU-WT, MCU-KO as well 

as MCU-WT with CGP vs MCU-KO with CGP are shown.  (B) mCa2+ transient amplitude in unstimulated 

cells in MCU-WT and KO. (C) mCa2+ uptake measured when SR-Ca2+ is released by caffeine in the presence 

of 0mM Na+ (Welch’s t test, WT= 7, KO= 5 cells). (D &E) Rmin and Rmax mCa2+ levels after calibrating the 

MitoCam probe signal. (F) Cytosolic Ca2+ transients measured using Fura-2, with and without CGP. N= 

more than 18 cells (Kruskal Wallis non-parametric test, with Dunn’s Multiple comparison. 

Experiments (and calibrations) were repeated at least 3 times. SEM is shown.  

 

 

Figure 3.5: 4mtd3cpv (MitoCam) FRET probe calibration trace 

NMVMs were incubated in Tyrode’s with 0mM Ca2+ and 0mM EGTA to begin with. Then it was switched 

to medium with 3mM EGTA and 0mM Ca2+. 5M Ionomycin was added to release intracellular Ca2+ stores. 

20M Digitonin was added to permeabilize the cells.  Rmin was noted at this stage. Then 1mM Ca2+ was 

added to NMVMs, Rmax was noted at this stage.  

 



62 
 

MCU knockout does not affect mitochondrial Calcium import during Ischemia and Reperfusion, 

but blocking mNCE with CGP-37157 prevents mCa2+ increase during Ischemia 

 

The phenomena of excess Ca2+ into mitochondria, triggering cell death pathways via mPTP has 

been well established (118). The hypothesis that preventing or reducing Ca2+ influx into 

mitochondria during Ischemia could be beneficial has given rise to multiple studies evaluating 

this effect. Given the conflicting reports of the role of MCU in in-vivo I/R injury(59) (58) (60), we 

next assessed the impact of genetic knockout of MCU in an in vitro model of I/R injury. 

Particularly, we wanted to understand the mechanisms of Ca2+ import into mitochondria during 

I/R. We tracked Ca2+ import into mitochondria during Ischemia and reperfusion while 

simultaneously monitoring ΔΨm. To monitor mitochondrial Ca2+, an adenovirus expressing 

MitoCam (4mtd3cpv) was transduced into these cells at least 48hr prior to imaging. mCa2+ and 

ΔΨm were monitored during 1hr of Ischemia (induced by placing a coverslip) followed by 1hr of 

Reperfusion (removing the coverslip). We wrote a custom-made macro to monitor signals from 

each cell in the CFP channel (donor) and the YFP (FRET channel). The ratio of the FRET signal to 

the donor signal after background subtraction was used as a measure of mCa2+ levels.  The FRET 

ratio was obtained for about 100 cells per experiment. The overall response of different cells with 

different levels of expression was considered to check if they behaved similarly, since high 

expression levels could potentially cause Ca2+ buffering. (Example traces of mCa2+ during I/R in 

MCU-WT and MCU-KO monolayer of cells are represented in Fig 3.6). We observed a rise in Ca2+ 

levels during early Ischemia up to ~25 minutes, after which mCa2+ levels declined in both MCU-

WT and MCU-KO cells (Fig. 3.7A and C), in parallel with loss of ΔΨm. At the end of Ischemia, mCa2+ 
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levels were slightly lower than at baseline. Immediately upon reperfusion, mCa2+ influx was 

observed in both MCU-WT and MCU-KO cardiomyocytes. No significant difference was found in 

mCa2+ levels between MCU-WT and MCU-KO cells at early, mid, or late Reperfusion phases 

(Fig.3.7C). We then subjected NMVMs to CGP-37157 to block mNCE, while monitoring mCa2+ and 

ΔΨm during I/R. We found that CGP-37157 abolished the rise of mCa2+ in early Ischemia and 

suppressed mCa2+ influx during reperfusion (Fig 3.7B and C). Although the ischemia-induced early 

rise in mCa2+ levels was suppressed, mCa2+ at the end of Ischemia was not significantly different 

in CGP-treated versus untreated cells. We also measured cytosolic Ca2+ with a genetically-

encoded cytoplasmic Ca2+ probe (d3cpv), with or without CGP to confirm that CGP did not affect 

cytoplasmic Ca2+ levels during Ischemia/Reperfusion (Fig 3.8). These results suggest that the 

mNCE mediates mitochondrial Ca2+ uptake during Ischemia. Indeed, Griffiths et. al., first 

proposed mNCE as a possible pathway for mitochondrial Ca2+ loading in adult cardiomyocytes 

subjected to hypoxia and re-oxygenation (47) based on inhibition by clonazepam. They 

hypothesized that, under conditions of reduced ΔΨm and changes in ΔpH, the mitochondrial 

mNCE could work in the reverse mode. Therefore, we also monitored ΔΨm changes 

simultaneously during the I/R period and confirmed that the observed changes in mCa2+ uptake 

in CGP-treated cells was not due to alterations in the driving force for mCa2+ uptake.  
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Figure 3.6: Example traces of mCa2+ during Ischemia/Reperfusion in MCU WT (top) and KO (bottom) 

monolayers. 

 

        Ischemia        Reperfusion 

        Ischemia        Reperfusion 
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Figure 3.7: MCU knockout does not affect mitochondrial Ca2+ import during Ischemia and Reperfusion, 

but blocking mNCE with CGP-37157 prevents mCa2+ during Ischemia 

(A) Mitochondrial Calcium monitored in Neonatal Mouse Ventricular Myocytes with WT-MCU or MCU-KO 

during 1hr of Ischemia and 1hr of reperfusion with a genetically encoded probe 4mtDd3cpv. mCa2+ for 

each cell was quantified by obtaining the ratio of the YFP signal to CFP and normalized to baseline before 

Ischemia (B) mCa2+ in MCU-WT and MCU-KO cells with CGP-37157. (C) Quantification of mCa2+ levels at 

different stages during Ischemia and Reperfusion. Number of experiments, WT (7), KO (6), WT+CGP (5), 

KO+CGP(5).    
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Figure 3.8: CGP-37157 effect on Cytoplasmic Ca2+  

Using a cytoplasmic genetically-encoded FRET probe (d3cpv), cytoplasmic Ca2+ (cCa2+) levels were 

monitored during IR in NMVMs treated with CGP. No significant differences in cCa2+ levels between CGP-

treated or untreated NMVMs were observed at baseline or during I/R. 
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MCU-KO does not protect against ΔΨm loss during I/R, nor does CGP 

ΔΨm was monitored using TMRM. TMRM fluorescence and spatial standard deviation was 

obtained per cell by segmentation analysis using custom-made macros on ImageJ.  The TMRM 

Dispersion (the ratio of spatial TMRM standard deviation to the average TMRM fluorescence) per 

cell is a normalized measure of cellular TMRM distribution and is used to assess ΔΨm changes 

throughout the time-period of Ischemia/Reperfusion (110), (119), (94). This measure minimizes 

potential artifacts due to dye loading variability and fluorescence decay over the experimental 

time-course. We obtained the measurements of TMRM fluorescence, Standard Deviation and 

Dispersion of ~100 cells per experiment. Dispersion decreased over the course of Ischemia 

indicating loss of ΔΨm, consistent with visual observations, and upon Reperfusion, dispersion 

was restored, indicating ΔΨm repolarization. When we compared the ΔΨm response in MCU-WT 

to MCU-KO NMVMs, or to CGP-treated monolayers, we did not find a noticeable difference in 

the pattern of behavior between the different groups (Figure 3.9A and B). Although MCU-KO 

showed a higher Dispersion, this we attributed to an increase in the spatial heterogeneity of the 

mitochondrial network within cells rather than an actual increase in ΔΨm in the KO cells. While 

dispersion may give us a broad representation of ΔΨm in all cells and accounts for dye bleaching 

over time, it does not facilitate identification of the transition states of ΔΨm polarization and 

depolarization in a cell. This prompted us to track each cell’s TMRM fluorescence and assess ΔΨm 

changes at the single-cell level during Ischemia and Reperfusion. We adopted a signal processing 

tool using wavelet transform to automatically detect transition points during Ischemia (114).  We 

found that MCU-KO accelerates the time to ΔΨm loss during Ischemia. CGP-37157 delayed the 

time to Ischemic ΔΨm loss in MCU-KO cells but not in MCU-WT cells (Figure 3.9C).  
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Next, we determined if modulating mCa2+ influx affects ΔΨm instability during reperfusion. ΔΨm 

instability during reperfusion is a hallmark of mitochondrial damage that could translate to a 

higher organ level arrhythmias (17). In addition to our visual observations of ΔΨm oscillations, we 

also developed an unbiased approach to quantitatively analyze and categorize ΔΨm oscillatory 

behavior during reperfusion. Since ΔΨm oscillations during reperfusion are non-stationary, a 

wavelet-transform based approach to characterize frequencies and associated time-periods was 

employed. Wavelet-transform based analysis to obtain ΔΨm oscillator frequencies has been 

previously used by our group in adult cardiomyocytes by F.Kurz et.al., (16). We adopted this 

method in a MATLAB-ImageJ based routine called ‘MitoWave’ (114) to obtain the frequencies 

during the reperfusion phase. We characterized ΔΨm oscillatory behaviors by separating them 

into frequency bands. High frequency oscillators fall into 45-4.3 mHz (~22 seconds to 230 

seconds), moderately fast frequencies range from 4.3-2.2 mHz (~230 seconds to 450 seconds), 

and low frequency oscillators were any oscillations below the 2.2 mHz frequency band (~ 450 

seconds and above). The time at which a mitochondrion undergoes irreversible ΔΨm collapse 

during reperfusion was also included in this characterization. We represent these data in a violin 

plot where each mitochondrion is classified into these frequency bands during the reperfusion 

time period. Importantly, knocking out MCU did not prevent high-frequency ΔΨm oscillations 

during reperfusion (Fig. 3.9E and F). Addition of CGP-37157 suppressed mCa2+ uptake during 

Ischemia as well as reperfusion, but this too did not prevent ΔΨm oscillations on reperfusion. 

There were no significant differences in the patterns of ΔΨm oscillatory behavior as well (Fig 3.9 

G and H). 
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 Taken together, these results suggest that: 1) knocking out MCU does not affect 

mitochondrial membrane potential instability during I/R injury. 2) MCU is not the primary mode 

of mCa2+ influx into mitochondria during Ischemia; instead, it is mediated by reverse-mode 

mitochondrial Na+/Ca2+ exchange, and 3) ΔΨm instability upon reperfusion is independent of 

mCa2+ influx.   
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Figure 3.9: MCU-KO does not protect against ΔΨm loss during I/R, nor does CGP  

(A) TMRM dispersion plots show ΔΨm changes in MCU-WT and MCU-KO myocytes throughout 

Ischemia/Reperfusion. (B) Dispersion plot comparing MCU-WT+CGP and MCU-KO+CGP myocytes 

throughout Ischemia/Reperfusion (C) ΔΨm depolarization time during Ischemia in WT, KO and CGP-

treated cells. (D) Representative scalograms of oscillating mitochondrial clusters in the 60-minute 

reperfusion phase showing the presence of peak coefficients in the low scale range of 1-10 (i.e., high-

frequency range) corresponding to 4.3-45 mHz. Insets (i), (ii), (iii) and (iv) show scalograms from 

mitochondrial clusters from WT, KO, WT+ CGP and KO+ CGP treated cells. (E), (F), (G) &(H) are violin plots 

showing the distribution of oscillating clusters throughout the reperfusion phase between six frequency 

Frequency in millihertz 
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bands ranging from the fastest (45-8.6mHz) to the slowest (Below 1.8mHz). The time to irreversible ΔΨm 

depolarization of an oscillating cluster is also indicated as the lowest band. (E) Frequency distribution 

during reperfusion of oscillating mitochondrial clusters from WT cells (4093 mitochondrial clusters were 

analyzed from 7 different I/R of monolayers); (F) Frequency distribution from oscillating mitochondrial 

clusters from MCU-KO cells (3643 clusters from 6 different I/R of monolayers); (G) from MCU-WT cells 

treated with CGP (3208 clusters from 5 different I/R of monolayers); (H) MCU-KO cells treated with CGP 

(2977 clusters from 5 different I/R of monolayers were analyzed).  

 

 

Blocking mitochondrial electron transport chain component complex I stabilizes ΔΨm 

oscillations during Reperfusion in WT cells.  

Complex-I is the first electron acceptor in the mitochondrial respiratory chain and a potential 

source of ROS production. During reperfusion after ischemic injury, ROS production from the 

mitochondrial respiratory chain is a major source of oxidative damage. Previously, we showed 

that rotenone treatment, as well as other electron transport chain inhibitors (except the Complex 

III inhibitor antimycin A), stabilized laser-induced ΔΨm oscillations in adult guinea pig cardiac-

myocytes while decreasing ROS (14). Knocking out of Ndufs4h of Complex-1 also reduced the 

number of mitochondrial ‘flashes’ in Langendorff perfused hearts (120). Therefore, we blocked 

mitochondrial complex I with 1µM rotenone acutely during reperfusion. ΔΨm oscillations were 

inhibited, with stabilization of ΔΨm, within the first 10 minutes of reperfusion (Fig. 3.10C and D). 

At around 20 minutes of reperfusion, mitochondria started to lose ΔΨm in the presence of 

rotenone, presumably because of loss of proton pumping by Complex I and depletion of 

alternative electron donors to the respiratory chain that may have supported ΔΨm (Fig. 3.10A 
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and D). Figure 4C is a scalogram of a representative mitochondrion during reperfusion. A large 

spike of scalogram coefficients occurs around the 110th time point corresponding to ~25 minutes 

of reperfusion, when the mitochondrion has undergone complete ΔΨm depolarization.  mCa2+ 

import was not affected when rotenone is added to the cells (Fig 3.10 B). We also added cell-

permeable dimethyl succinate, a substrate for Complex II, to bypass Complex-I in the presence 

of rotenone inhibition.  ΔΨm oscillations still occurred in some mitochondria under these 

conditions (Fig 3.10 G).  We observed a few low coefficient peaks in the scalogram before they 

undergo complete ΔΨm depolarization around 20-30 minutes. This suggests that bypassing 

Complex I and supplying electrons via Complex II can partially reactivate the oscillatory 

mechanism, perhaps by restoring ROS emission from complexes of the ETC downstream of 

Complex I, namely complexes II, III or IV.  
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Figure 3.10: Inhibiting mitochondrial electron transport chain component Complex I stabilizes ΔΨm 

oscillations during Reperfusion in MCU-WT cells.  
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(A) ΔΨm was monitored during I/R and 1M Rotenone was added acutely upon Reperfusion. 

(B) mCa2+ uptake is shown and mCa2+ uptake is reduced during Reperfusion. (C) Scalogram of a 

representative mitochondrial cluster showing oscillations stopping in 30 minutes of reperfusion.  

(D) Violin plots representing distribution of frequency of oscillating mitochondrial clusters during 

reperfusion. The presence of high frequency oscillators (in 4.3-45mHz bands) decreases in 10-15 minutes 

of reperfusion.   ΔΨm loss starts to occur around 20-30 minutes of reperfusion. (E) ΔΨm response when 

cells are incubated with 5mM Dimethyl Succinate and subjected to I/R. Rotenone was added acutely upon 

reperfusion. (F) mCa2+ uptake is shown and mCa2+ is reduced during Ischemia and Reperfusion. (G) 

Scalogram of a representative mitochondrial cluster showing some reduced low amplitude oscillations in 

the first 15 minutes, followed by ΔΨm loss around the 30th minute.   

(H) Violin plots representing distribution of frequency of oscillating mitochondrial clusters during 

reperfusion.   

The I/R with Rotenone experiment was repeated on 3 different coverslips and 1685 clusters were analyzed 

for their oscillation patterns; I/R with Dimethyl Succinate and Rotenone was done on 3 different 

experiments and 1319 clusters were analyzed for their oscillation patterns. Mean+SEM are shown on I/R 

time courses.  

 

 

Supplementing NMVMs with cell-permeable glutathione stabilizes ΔΨm oscillations during 

reperfusion 

To test the hypothesis that ROS is the primary trigger for ΔΨm oscillations on reperfusion, we 

examined the effects of the cell-permeable Reduced Glutathione ethyl ester (GSHee) to increase 

intracellular glutathione reserves. NMVMs were preincubated with 4mM GSHee for 3 hours 

before replacing the media with normal Tyrode’s to perform I/R while monitoring mCa2+ and 
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ΔΨm. We observed the initial rise of mCa2+ during Ischemia as expected and the increase in mCa2+ 

upon reperfusion as well (Fig 3.11B). The overall ΔΨm response throughout the I/R period was 

not different (Fig 3.11A); however, ΔΨm oscillations were stabilized after 20 minutes of 

reperfusion (Fig 3.11C and D).  

 

 

Figure 3.11: Addition of cell-permeable Glutathione ethyl ester (GSHee) reduces and eventually stops 

ΔΨm oscillations during reperfusion   

(A) ΔΨm during I/R. (B) GSHee did not alter mCa2+ during I/R. (C) Scalogram of a representative 

mitochondrial cluster showing oscillations up to 18 minutes (Time Point ~75) of reperfusion that 

then stabilized. (D) Violin plots showing all the oscillating mitochondrial clusters. High frequency 

oscillators (4.3-45 mHz) stabilize around 20 minutes of reperfusion, shown by the decreasing 
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number of oscillators in those bands. 4 coverslip experiments with 2020 mitochondrial clusters 

analyzed for oscillatory patterns.  

 

Addition of Cyclosporine A does not prevent ΔΨm oscillations.   

Mitochondrial permeability transition pore (mPTP) opening has been implicated in mitochondrial 

dysfunction to precipitate cell death during reperfusion. Cyclosporine A is an inhibitor of the 

mPTP (121), (36). We tested whether Cyclosporine A (CsA) improved ΔΨm recovery and mCa2+ 

changes during I/R and found no salutary effect (Figure 3.12A and B). CsA also did not stop ΔΨm 

oscillations (Figure 3.12C and D).  

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Addition of CsA does not affect ΔΨm oscillations.  

0.2uM CsA was added to NMVMs 10 minutes before the start of the I/R protocol. (A) ΔΨm during I/R is 

was significantly affected by CsA treatment. (B) mCa2+ with CsA was also not affected. (C) Scalogram of a 

representative mitochondrial cluster showing oscillations throughout reperfusion phase. (D) Violin plots 
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showing all oscillating mitochondrial clusters/High frequency oscillators (4.3-45mHz) are present 

throughout reperfusion phase. (2 coverslip experiments, with 1132 mitochondrial clusters analyzed for 

oscillation patterns).  

 

Behavior of high-frequency oscillators under different conditions 

We show in figures 3.9 E, F, G, H, 3.10 D, H, 3.11 D and 3.12D the overall behavior of ΔΨm 

oscillations during reperfusion. We separated mitochondrial oscillators into different frequency 

bands and observed that a mitochondrion can switch its frequency during the course of 

reperfusion. We observed that the high frequency oscillators are strongly influenced by either 

blocking electron transport chain with rotenone or by replenishing the glutathione pool with a 

cell-permeable glutathione ethyl ester. We further statistically analyzed the effect of different 

conditions on high-frequency oscillators (in the 8.6-45mHz frequency band) to see how they vary 

throughout reperfusion time. Empirical Cumulative Distribution functions, reflecting the 

cumulative probability of ΔΨm stabilization during reperfusion, were plotted against the 

reperfusion time (Fig 3.13). We performed a non-parametric Kolmogorov-Smirnov test, where 

the null hypothesis is that the distribution of mitochondrial oscillators under different treatments 

does not change over the course of reperfusion. We saw that while knocking out MCU or addition 

of CGP (essentially suppressing mCa2+ influx), did not affect these high frequency oscillators (p 

not significant, with alpha=0.001), while modulating ROS or the antioxidant capacity of the cells 

significantly influenced the high-frequency oscillators (p<0.000001). Over the course of 

reperfusion, we observed ΔΨm stabilization under conditions where ROS is scavenged by GSHee.  
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Figure 3.13: Empirical Cumulative Distribution Functions comparing different treatments on high-

frequency Δψm oscillators during reperfusion.  

The X axis represented by (x) is the time in minutes during reperfusion and Y axis represents the 

probability of stabilization during reperfusion.  

 

We further analyzed Lactate Dehydrogenase (LDH) levels as a marker for cytotoxicity in 

supernatants after reperfusion injury. LDH levels were not significantly different between MCU 

WT and KO cells. CGP or GSHee addition did not affect cytotoxicity levels. Addition of rotenone, 

although it stabilized early ΔΨm oscillations, significantly increased LDH levels, as expected since 

inhibition of the ETC inhibits oxidative phosphorylation and ATP production, and exacerbates 

irreversible ΔΨm loss on reperfusion.  

 

0 10 20 30 40 50 60

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

(x
)

ECDF of Fast Oscillators during Reperfusion

WT

KO

GSHee

WT+DMS+Rotenone

WT+Rotenone

WT+CGP

KO+CGP



79 
 

Taken together, these results show that ΔΨm oscillations that occur during reperfusion after 

Ischemia are triggered by ROS and not by mCa2+.  

 

 

 

 

 

 

 

 

 

Figure 3.14: LDH Assay as a measure of cytotoxicity at the end of Reperfusion after Ischemia. 

Supernatants were collected after reperfusion to measure Lactate Dehydrogenase levels. Positive control 

was supernatant from lysed NMVMs and was considered as 100% of LDH levels released (maximum). All 

other samples were scaled from this positive control. One-way ANOVA comparing WT with rotenone 

showed significantly high levels of LDH in rotenone treated cells. WT comparisons with other samples 

were not significantly different. 
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Discussion 
 

In the present work, we acutely knocked out the mitochondrial calcium uniporter in 

neonatal mouse cardiac myocytes and monitored mitochondrial Ca2+ and ΔΨm during in vitro 

Ischemia/Reperfusion injury. The main findings were that: 1) the primary trigger for ΔΨm 

instability during reperfusion is reactive oxygen species rather than Ca2+, and 2) under ischemic 

conditions, MCU is not the primary mode of Ca2+ import into mitochondria. Instead, reverse 

mode mitochondrial Na+/Ca2+ exchange mediates Ca2+ uptake. These findings challenge current 

paradigms of I/R injury, which may lead to new therapeutic approaches in the future.  

 

Role of MCU & mNCE during Ischemia/Reperfusion 

Excess accumulation of Ca2+ is thought to trigger mitochondrial permeability transition 

pore opening leading to cell death (122) (123) (124). Several studies have shown that during 

ischemia, Ca2+ in mitochondria increases (104). It has been generally assumed that Ca2+ overload 

of mitochondria, in this case, occurs through the mitochondrial calcium uniporter (50), (52), (53). 

In line with this thinking, it was shown that inhibiting the MCU either chemically, with Ru360, or 

genetically knocking out the cardiac-specific MCU had protective effects in IR injury (125), (58), 

(59). However global MCU-KO, or even cardiac-specific expression of a dominant negative MCU, 

did not show any protection in myocardial injury compared to WT mice (55), (60). Our approach 

was to acutely knockout (in ~5 days of cell culture) MCU to prevent any long-term adaptations in 

the hope of explaining this inconsistency. We found reduced mCa2+ transients in beating cells, 

consistent with findings from other laboratories showing suppression of mCa2+ transients in 

NRVMs with MCU knocked-down (57).  
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We found no differences in basal mCa2+ levels in our acute MCU-KO model. Similarly, 

Kwong et. al., also found no differences in matrix [Ca2+] in isolated cardiac mitochondria, as well 

as in permeabilized cardiomyocytes(58) in an adult cardiac-specific MCU-KO model. In contrast, 

Holmstorm et. al., found a 75% decrease in matrix Ca2+ levels in isolated mitochondria from global 

MCU KO cardiomyocytes. These data demonstrate that knocking out MCU does not necessarily 

eliminate Ca2+ influx into the mitochondria, indicating that there are other pathways that might 

contribute to mCa2+ influx.  

Indeed, Fieni et al., showed that the amount of Ca2+ uptake mediated by the MCU varies 

between tissues and MCU current density was the smallest in the heart mitochondria (74). 

Hamilton et al., showed that in brain-mitochondria, deletion of the MCU only partially inhibits 

calcium uptake and initiation of the permeability transition (Hamilton et al., 2018). The ratio of 

MCU to its dominant negative form, MCUb, varies among different tissues. For example, in the 

heart it is 3:1 (MCU:MCUb) and in skeletal muscle it is 40:1 (Raffaello et al., 2013), thus resulting 

in differential regulation of Ca2+ into mitochondria. In addition, other modes of Ca2+ entry into 

the mitochondria have proposed; such as through the mitochondrial ryanodine receptor 

(Beutner et al., 2005), (Jakob et al., 2014) and the LETM1- Ca2+ /H+ exchanger (Jiang et al., 2013), 

(Tsai et al., 2014). Moreover, under ischemic conditions, reversal of the mitochondrial 

Na+/Ca2+/Li+ exchanger might allow Ca2+ entry into the mitochondria (Griffiths, 1999). Further, 

Nicholls et. al showed that above 10nmol Ca2+/mg of mitochondrial protein, Ca2+ is buffered in 

the matrix from 1-5µM and stays stable (126) despite additional uptake. Therefore, such multiple 

factors could take precedence in influencing mCa2+ uptake, especially when MCU is impaired.  
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Surprisingly, our in vitro Ischemia/ Reperfusion myocyte monolayer method showed no 

difference in Ca2+ uptake between MCU-KO and WT during ischemia, as well as during 

reperfusion. Ca2+ influx via MCU requires maintenance of ΔΨm (50), (127), which, in our 

experiments was lost after 30 minutes of ischemia; however, the maximum Ca2+  increase during 

ischemia occurred before loss of ΔΨm and this peak was also unaffected by MCU knockout. This 

suggests that other factors may be inhibiting MCU during ischemia, for example, Moreau and 

Parekh showed that acidification of the mitochondrial matrix inhibits the MCU (128).  In addition, 

our group previously showed that under conditions of elevated cytosolic Na+, Ca2+ influx into 

mitochondria was reduced  (129). Under Ischemic conditions, there is ΔΨm reduction, a decrease 

in pH because of ATP breakdown during increased metabolic demand, and elevated cytosolic Na+ 

(9). Therefore, ischemic conditions could favor suppression of MCU activity.  

When we added CGP-37157, an inhibitor of the mitochondrial Na+/Li+/Ca2+ exchanger 

(130), we found that the rise of mCa2+ during ischemia was almost completely eliminated and 

during reperfusion, mCa2+ was also suppressed. CGP-37157 is a benzothiazepine with a structure 

somewhat similar to Ca2+ channel blockers and there are some reports in the literature that it 

might also inhibit SR Ca2+ uptake, ryanodine receptors (131), or L-type Ca2+ channels (132). None 

of these potential off-target effects could explain our results, since there was no significant effect 

of CGP on the cytosolic Ca2+  response to I/R. Previously, Griffiths et al., showed that addition of 

clonazepam, a similar derivative of benzothiazepine that inhibits mNCE, blunted mCa2+ influx 

during hypoxic conditions, suggesting that mNCE could work in reverse during metabolic 

inhibition (47).  They also reported that that mitochondria in adult cardiomyocytes treated with 

Ruthenium Red (RuR) still took up Ca2+ under hypoxia. The explanation for this behavior was 
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attributed to the loss of ΔΨm during Ischemia, causing the electrochemical driving forces to favor 

mNCE reversal.  

The design of our experiments afforded us the rare opportunity to measure mCa2+ 

ratiometrically, and ΔΨm simultaneously, during I/R, which is not easily accomplished in other 

model systems. We saw that in MCU-WT and in MCU-KO monolayers, Ca2+ entered mitochondria 

during the time ΔΨm was still maintained and when ΔΨm was lost, mitochondrial Ca2+ levels 

rapidly decreased to a level below the normoxic baseline. With CGP treatment, although mCa2+ 

accumulation was largely suppressed, we did not see any remarkable change in the time at which 

ΔΨm loss occurred during ischemia in WT and KO cells; it still occurred at 30-40 minutes of 

ischemia. Hence, changes in ΔΨm could not account for the CGP effect on mitochondrial Ca2+. 

This brings us to the question, if mNCE reverses due to changes in electrochemical driving 

force during Ischemia, then why do we see a suppression of mCa2+ accumulation before ΔΨm 

loss? If mNCE is indeed electrogenic, shouldn’t we see a suppression only when ΔΨm depolarizes? 

If it’s not electrogenic, then it could work in reverse if the ion concentrations changed during 

pathological conditions. The electrogenic nature of NCLX is still debated. Some of the earliest 

studies favored an electrogenic nature for the exchanger when they found that Ca2+ efflux from 

the mitochondria was dependent on [Na+] and energy produced from respiration (133)(134). 

However, some studies favored electroneutral exchange, based on the observation that 

perturbing ΔΨm with an uncoupler did not change steady state Ca2+ efflux from the mitochondria 

(135) and that the Na+ mediated Ca2+ efflux process did not perturb ΔΨm (136).  Later studies 

supported the electrogenic nature of mNCE (137), (138), (139). Nevertheless, under conditions 

of Ischemia, changes in ΔΨm, [Na+], and [Ca2+] could all influence mNCX behavior. Lower Na+ and 
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higher free Ca2+ in the mitochondrial matrix versus the cytoplasm, together with ΔΨm, provide 

the electrochemical driving force to drive Ca2+ efflux out of the mitochondria under normal 

conditions, but under ischemic conditions, it is possible that an electroneutral mode of mNCE 

takes precedence, leaving only the chemical gradients to determine the direction of ion 

exchange. The Km for Na+ of NCLX has been reported to be ~7-10mM (140), (141), (142), and 

changes in cytosolic Na+ will affect efflux rates of Ca2+ via mNCE. During Ischemia, cytosolic [Na+] 

can reach ~ 40mM within a few minutes (9), but, unfortunately, we currently have no information 

about matrix [Na+], which will be affected by the pH gradient through an inner membrane Na+/H+ 

exchanger, by mNCE activity, and possibly also by Na+ leak across the membrane. Similarly, we 

do not precisely know what the concentration gradient of Ca2+ is across the inner membrane. It 

will be important in the future to get more quantitative information on these gradients to 

determine how the equilibrium potential for mNCE changes during ischemia.   

Based on our findings, it appears that reverse mode mNCE, not MCU, is the primary mode 

of Ca2+ entry during ischemia and early reperfusion, while beat-to-beat mitochondrial Ca2+ entry 

does require MCU.   

 

Ca2+ vs ROS in triggering ΔΨm instability during reperfusion 

ΔΨm instability upon reperfusion can translate to higher organ level fatal arrhythmias (17). The 

primary trigger for ΔΨm instability has been debated, with some groups in support of Ca2+-

induced mPTP as the primary mediator of ΔΨm instability or oscillation (32) (143) (144) (124), 

while others favor a mechanism involving RIRR, independent of Ca2+ (14) (27) (4) (15). Our data 

in NMVMs support ROS-mediated, Ca2+-independent, ΔΨm instability. ΔΨm instability/oscillation 
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characteristics, in terms of frequency or the time to ΔΨm stabilization, did not differ between 

MCU-KO and WT, ruling out MCU as the key mediator of oscillation. Furthermore, suppressing 

the influx of mCa2+ with CGP-37157 during ischemia and reperfusion did not alter ΔΨm instability, 

providing evidence that the process was Ca2+ independent. Indeed, the most effective and 

reproducible stabilizer of ΔΨm was inhibition of the electron transport chain at Complex I. A 

similar effect was observed when NDUFS4, a subunit of Complex I was knocked out in mice, i.e., 

the number of ‘mito-flashes’ was reduced (120). This is somewhat paradoxical, since, in highly 

reduced isolated mitochondria, inhibition of Complex I can increase ROS emission from this site. 

However, this finding was in agreement with our earlier studies of ΔΨm oscillations in adult 

cardiomyocytes, where inhibition of Complex I, Complex IV (with CN-), Complex III (at the Qo site 

with myxothiazol), or ANT (bongkrekic acid) where all capable of inhibiting oxidative stress and 

stabilizing whole cell ΔΨm oscillations (14). The exception was inhibition of Complex III with 

Antimycin A, which inhibits the Qi site and causes a large increase in superoxide production from 

Complex III. The interpretation of these data is that ETC inhibition either upstream or 

downstream of Complex III prevents RIRR by stopping the source of electron flow to superoxide, 

and, in turn, H2O2. The primacy of ROS in the process is also supported by the effects of 

supplementation of the cardiomyocytes with a cell-permeable version of reduced glutathione 

(glutathione ethyl ester; GSHEE), which stabilized ΔΨm within 20 minutes of reperfusion. Notably, 

ΔΨm oscillatory behavior in adult myocytes is also exquisitely sensitive to the cytoplasmic and 

mitochondrial GSH:GSSG ratio (28).   
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Conclusions 
 

We report that during Ischemia and Reperfusion, reverse-mode mitochondrial Na+/Ca2+ 

exchange, not the MCU, is the primary mode of Ca2+ import into the mitochondria in Mouse 

Neonatal Cardiac Myocytes. We also report that ΔΨm oscillations persist despite blocking mCa2+ 

influx with CGP, showing that ΔΨm oscillations are not triggered by mCa2+ influx.  We also show 

that blocking complex-I with rotenone suppresses ΔΨm oscillations, consistent with an RIRR 

mechanism. Replenishing the glutathione pool with a cell-permeable reduced glutathione ethyl 

ester to boost the anti-oxidant capacity of the system also stabilizes ΔΨm during reperfusion, 

reinforcing the conclusion that RIRR is the primary trigger for ΔΨm instability during reperfusion 

rather than mCa2+ influx.   
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CHAPTER 4: Future Directions 
 

 

Does activating Hypoxia Inducible Factor prior to I/R prevent mitochondrial 

instability? 

 

Motivation 
 

Based on our results so far implicating ROS in mitochondrial ΔΨm instability, we wondered if 

activating the Hypoxia Inducible Factor (HIF) would protect mitochondria against instability 

during I/R injury. HIFs are transcription regulators whose stabilization depends on [O2]. They can 

bind to hypoxia responsive elements and promote transcription of multiple genes involved in 

increasing oxygen supply to the affected tissue (145) (146). Since their discovery (147), (148), 

HIFs have been observed to promote efficient use of available O2 supply via angiogenesis and 

erythropoietin production to protect tissues from ischemic damage (149), (150).  

To test our hypothesis that stabilizing HIF could prevent mitochondrial instability upon 

reperfusion, we used a cell-permeable compound, Dimethyloxalylglycine (DMOG), a competitive 

inhibitor of prolyl hydroxylase (PH).  PH degrades HIF1 under normoxic conditions. Under 

hypoxic conditions, PH is inhibited and HIF1 is not targeted for degradation. (151), (152).  

 

Results and Discussion: 
 

We added 1mM DMOG to NMVMs for 8-12 hours overnight before performing I/R injury to cells. 

We observed that ΔΨm oscillations stopped around 15-20 minutes of reperfusion and the cells 

regained their beating (Fig 5D and F). In fact, with DMOG, mitochondria exhibited low amplitude 

high-frequency ΔΨm oscillations during Ischemia, which is a indicative of physiological oscillatory 
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behavior of mitochondria (153), (27). This leads us to speculate that promoting the expression of 

hypoxia responsive factors with DMOG equips myocytes to resist stress (i.e, ischemia) and 

therefore, during reperfusion, they are able to cope with increased oxidative stress. Alternatively, 

HIF1 activation promotes a shift towards glycolytic metabolism as opposed to oxidative 

metabolism(145). This could prime cells to function under limited O2 availability and recover 

quickly under favorable conditions. Performing these experiments on HIF1 or HIF2 knockout 

myocytes as well as on prolyl hydroxylase knockout myocytes would uncover protective 

mechanisms that HIFs implement under times of hypoxic stress.  
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Figure 4: Addition of DMOG stabilizes ΔΨm oscillations.  

A. ΔΨm during I/R is not affected. B. mCa2+ with DMOG is not affected. C. Scalogram of a representative 

mitochondrial cluster showing absence of oscillations throughout reperfusion phase. D. Violin plots 

showing all oscillating mitochondrial clusters/ High frequency oscillators (4.3-45mHz) stabilize during 

reperfusion, buts some myocytes resume beating. Therefore, the high-frequency oscillators do not taper 

off as they do with GSHee. (2 coverslip experiments, with 831 mitochondrial clusters analyzed for 

oscillation patterns). 
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Does knocking out mitochondrial Na+/Li+/Ca2+ exchanger affect mCa2+ import during 

Ischemia/Reperfusion? 

 

Motivation: 

Given our observation of mCa2+ suppression during I/R with CGP-37157 (Fig. 3.7), it would be of 

immediate interest to evaluate if a genetic knockout of SLC8B1, also known as NCLX, the 

presumed molecular component of mNCE, affects mCa2+ import during I/R. CGP-37157 has been 

shown to inhibit NCLX(130) and, in addition to our findings, reverse mode mNCE has been 

proposed to mediate mitochondrial Ca2+  entry during hypoxia/ reoxygenation in adult 

cardiomyocytes, based on pharmacological sensitivity to clonazepam, a benzothiazepine with a 

structure similar to CGP (47). Genetic knockout of NCLX may provide additional supporting 

evidence for the molecular mechanisms involved in mCa2+ influx during Ischemia and 

Reperfusion.  
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Appendices 
 

Appendix I: Macros and MATLAB codes for MitoWave Analysis Routine 
 

• This routine requires switching between ImageJ (OR FIJI)  and MATLAB. 

• Language written for ImageJ is ImageJ Macro or .ijm. They run on FIJI.  

• Comments and annotations are in //Green or %Green.  

• Modifications must be made if sampling rate is different from what we used. We 
sampled at the rate of 1 image every 15 seconds to get 241 images in a period of 60.25 
minutes. Modification points are highlighted in blue.  

• Arrays containing required data for Ischemia ΔΨm depolarization time, Average 
frequency of each cell, mitochondrial frequencies and associated timepoints, 
mitochondrial cluster areas, mitochondrial ΔΨm depolarization time, cellular 
depolarization time are in Bold and Highlighted in yellow.  

• Step III point 13 gives a summary of the final results with the names of the arrays where 
the relevant data are stored 

 
STEP I: CELLULAR SEGMENTATION (ON FIJI) 

1. Run StackReg plugin to align the images in the image stack 
 

2. Macro 1: Creating a mask 
run("Duplicate...", "title= MASK2 duplicate"); 
run("Duplicate...", "title=MASK1"); 
selectWindow(""); 
close(); 
run("Median...", "radius=2"); 
run("8-bit"); 
run("Enhance Contrast..."); 
run("Auto Local Threshold", "method=Niblack radius=40 parameter_1=0 parameter_2=0 
white"); 
selectWindow("MASK1"); 
run("Analyze Particles...", "size=60.00-Infinity display clear include add"); 
 
// save the ROIs after creating a mask of the segmented cells.  
// Apply this ROI to the image stack to obtain Fluorescence Intensity  
 

3. Macro 2: Obtain fluorescence intensity per cell 
run("Set Measurements...", "mean redirect=None decimal=3"); 
roiManager("Show None"); 
roiManager("Show All"); 
roiManager("Multi Measure"); 
 
STEP II: DETERMINATION OF ISCHEMIA DEPOLARIZATION TIME (ON MATLAB) 
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1. Input TMRM fluorescence intensity signal from each cell into MATLAB as an array. 
2. Run this code (Ischemia Depolarization time point results are in the array 

“IPT_2MAT_Depolarization_minutes” in minutes : 
 
TMRM_Ischemia=TMRM(42:282, :); % Change according to the time points of 

Ischemia 
%%Multi-level Signal Reconstruction 
numberofcells= size(TMRM_Ischemia,2); 
modwtc_2={}; 
for k= 1: numberofcells 
    k 
    local={}; 
    levelForReconstruction = [false, false, false, false, true]; 
    wt = modwt(TMRM_Ischemia(:,k), 'sym4', 4); 
    mra = modwtmra(wt, 'sym4'); 
    TMRM1 = sum(mra(levelForReconstruction,:),1); 
 %   n 
    local{k}= TMRM1; 
modwtc_2{k} = TMRM1; 
end 
modwtc_2= modwtc_2' 

  
%%findchangepoints 
IPTs_2={}; 
for k= 1: numberofcells 
    ipt1=findchangepts(modwtc_2{k}); 
    IPTs_2{k}=ipt1; 
end 
IPTs_2=IPTs_2'; 
%% 
%Plot Figure 
figure;histogram(cell2mat(IPTs_2), 'BinWidth', 5); 
ylabel({'Counts of Cells Depolarizing'}); 

  
% Create xlabel 
xlabel({'Time Points'}); 

  
% Create title 
title({'Time taken for \Delta \psim depolarization during Ischemia'}); 

  
%%  
% Finding the corresponding yvalue to plot the changed point 
IPTs_2_MAT=cell2mat(IPTs_2); 
IPT_2MAT_Depolarization_minutes= IPTs_2_MAT.*0.25; %% these are the values we 

need to determine the depolarization time point during Ischemia %change the 

multiplication factor based on the sampling period. I sampled @ 1 image every 

15 seconds.  
for x= 1: size(TMRM_Ischemia, 2) 
    local_corr_y(x)= TMRM_Ischemia(IPTs_2_MAT(x), x); 
end 
local_corr_y= local_corr_y'; 
IPT_2MAT_addbaseline= IPTs_2_MAT+42; 

  
%% 
%plotting the figure of the Ischemia depolarization moment on the TMRM 



106 
 

%Fluorescence 
figure; plot(TMRM,'DisplayName','TMRM') 
hold on; plot(IPT_2MAT_addbaseline, local_corr_y,  'k.', 'MarkerSize', 12); 

hold off 

 
 
STEP III: MITOCHONDRIAL ΔΨm OSCILLATION ANALYSIS 
 

1. Create 8 folders with the following names to save data from each step:  
(i) CroppedCells_1  // To separate each cell in the I/R imagestack and save 
(ii) ReperfusionStack_2 // Separate and save reperfusion phase for each cell 
(iii) DifferentialStack_3// Save Differential stack (n-(n+1)th image 
(iv) ROIofMitoClusters_4 
(v) AreaMean_5 
(vi) CWT_6 
(vii) CWTtoImageJ_7  
(viii) ApplyingThreshold_8; with 3 subfolders “Results”, “TIFF”, “ROI”. 

 
 

2. ON IMAGEJ: TO SEPARATE EACH CELL 
//CHANGE THE REPERFUSION DUPLICATE STACK ACCORDING TO WHEN REPERFUSION 
HAPPENED 
dir1 = getDirectory("Choose Directory "); // Choose the “CroppedCells_1” folder 
dir2 = getDirectory("Choose Directory "); // Choose the “ReperfusionStack_2” folder 
roicount= roiManager("count"); 
T=getTitle(); 
print(T); 
print(roicount); 
setBatchMode(true); 
for (i = 0; i < roicount; i++)  
{ 
 
selectWindow(T); 
run("Duplicate...", "title=[IR copy] duplicate"); 
roiManager("Select", i); 
run("Clear Outside", "stack"); 
roiManager("Select", i); 
run("Duplicate...", "title=copy duplicate"); 
selectWindow("IR copy"); 
roiManager("Select", i); 
run("Duplicate...", "title=[copy reperfusion] duplicate range=283-523"); 
selectWindow("copy"); 
saveAs("Tiff", dir1+"Cell_"+i+1); 
selectWindow("copy reperfusion"); 
saveAs("Tiff", dir2+"Reper_"+i+1); 
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selectWindow("IR copy"); 
close("IR copy"); 
selectWindow(T); 
} 
setBatchMode(false); 
 

3. ON MATLAB: TO CREATE A DIFFERENTIAL STACK 
  %%% change filenames of Reperfusion 
changefilename_dir= uigetdir; %% the “ReperfusionStack_2” folder 
filestochangenames = dir([ changefilename_dir '/*.tif']); 
 for l=1:length(filestochangenames) 
     l 
    oldFileName = filestochangenames(l).name; 
    oldFileName 
    startunderSym = strfind(oldFileName,'_'); 
    startPerSym  = strfind(oldFileName,'.'); 
    if ~isempty(startunderSym) && ~isempty(startPerSym) 
        fileNumber  = str2num(oldFileName(startunderSym(1)+1:startPerSym(1)-

1)); 
        fileNumber 
        newFileName = sprintf('Reper_%03d.tif',fileNumber); 
        newFileName 
        if exist(newFileName, 'file') 
               continue 
        else 
            movefile(oldFileName,newFileName); 

      
        end 
    end 
 end 

  
%%% WITH CORRECT FILENAME%%%%%% 
Image_folder= uigetdir; %% select the ReperfusionStack_2 folder 
Diff_stack_folder=uigetdir; %% select the DifferentialStack_3 folder 
Image_Dir=dir([Image_folder '/*.tif']); 
total_images=size(Image_Dir, 1); 
   for n= 1: total_images 
       n 
    filename= Image_Dir(n).name; 
    info = imfinfo(filename); 
    num_images = numel(info); 
         for k = 1:(num_images-1) 
    startunderSym = findstr(filename,'_'); 
    startPerSym  = findstr(filename,'.'); 
    if ~isempty(startunderSym) && ~isempty(startPerSym) 
        fileNumber  = str2num(filename(startunderSym(1)+1:startPerSym(1)-1)); 
        new_name = sprintf('test_%03d.tif',fileNumber); 
    end 
             fullDestination = fullfile(Diff_stack_folder,new_name); 
             A = imread(filename, k, 'Info', info); 
             B = imread(filename, k + 1, 'Info', info); 
             Q = A - B;   
             imshow(Q, []); 
             imwrite(Q,fullDestination,'WriteMode', 'append'); 
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         end 
         n 
   fclose('all'); 
   n 
   end 
   %%%%%%%%%%%%%%%%% 

 
4. ON FIJI: TO CREATE OUTLINES FOR EACH MITOCHONDRIAL CLUSTER 

dir3 = getDirectory("Choose Directory "); // Choose the “DifferentialStack_3” folder 
dir4 = getDirectory("Choose Directory "); // Choose the “ROIofMitoClusters_4” folder 
list = getFileList(dir3); 
 
setBatchMode(true); 
for (i=0; i<list.length; i++) { 
file = dir3 + list[i]; 
open(dir3+list[i]); 
T= getTitle();  
selectWindow(T); 
run("Z Project...", "projection=[Max Intensity]"); 
run("Duplicate...", " "); 
run("Enhance Contrast...", "saturated=0.3"); 
run("8-bit"); 
run("Auto Local Threshold", "method=Niblack radius=15 parameter_1=0 parameter_2=0 
white"); 
run("Median...", "radius=2"); 
//run("Make Binary"); 
run("Watershed"); 
run("Analyze Particles...", "size=4-Infinity display clear include summarize add"); 
run("Set Measurements...", "mean redirect=None decimal=3"); 
roiManager("Show None"); 
roiManager("Show All"); 
roiManager("Multi Measure"); 
 
titleX=T+"_RoiSet.zip"; 
roiManager("Save", dir4+titleX); 
//saveAs("Results", dir4+titleY); 
close(T); 
roiManager("reset"); 
 
}; 
setBatchMode(false); 
 

5. ON FIJI : TO GET THE AREA AND MEAN FOR EACH MITOCHONDRIAL CLUSTER 
roiManager("reset"); 
dir_4 = getDirectory("Choose a Directory"); // Choose the “ROIofMitoClusters_4” folder 
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dir_2 = getDirectory("Choose a Directory");// Choose the “ReperfusionStack_2” folder 
dir_5 = getDirectory("Choose a Directory"); // Choose the “AreaMean_5” folder 
list = getFileList(dir_2); 
setBatchMode(true); 
 for (i=0; i<list.length; i++) { 
 showProgress(i, list.length); 
 fileR = dir_2 + list[i]; 
 open(dir_2+list[i]); 
 R=getTitle(); 
 selectWindow(R); 
 print(R); 
 print("The image title is " + R); 
 run("Set Measurements...", "mean redirect=None decimal=3"); 
 ROIlist= getFileList(dir_4); 
  run("ROI Manager..."); 
       roiManager("Open", dir_4+ROIlist[i]); 
       getInfo("selection.name"); 
       
 selectWindow(R); 
 roiManager("Show None"); 
 roiManager("Show All"); 
 roiManager("Multi Measure"); 
 run("Input/Output...", "jpeg=85 gif=-1 file=.csv use_file copy_column save_column"); 
 titleM=R+"_MeanResults.csv"; 
 saveAs("Results", dir_5+titleM); 
 run("Set Measurements...", "area redirect=None decimal=3"); 
 selectWindow(R); 
 roiManager("Show None"); 
 roiManager("Show All"); 
 roiManager("measure"); 
 titleA=R+"_AreaResults.csv"; 
 saveAs("Results", dir_5+titleA); 
roiManager("reset"); 
  
 selectWindow(R); 
 close(R); 
// close(M); 
  
 }; 
setBatchMode(false); 
 

6. ON MATLAB: IMPORT EACH MITO CLUSTER’S TMRM INTENSITY AND AREA INTO AND 
PERFORM CONTINUOUS WAVELET TRANSFORM OF THE TMRM SIGNAL.  
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%%GETTING AREA AND MEAN INTENSITY OF EACH CLUSTER DURING REPERFUSION INTO AN 

ARRAY FOR CWT 
EachCellsMitoROI=uigetdir; %% SELECT DIRECTORY “AreaMean_5” get the directory 

where every cell's mitochondria’s TMRM intensity and area, during reperfusion 

are saved as a .csv results file 
Reper_results_dir=dir([EachCellsMitoROI '/*MeanResults.csv']); 
zz=size(Reper_results_dir, 1); %% get the number of files in that folder, 

i.e. number of cells 
for z=1:zz 
    z 
AllcellsandMitos_Mean = sprintf('Reper_%03d.tif_MeanResults.csv', z); 
AllcellsandMitos_Mean 
AllcellsandMitos_Results{z} = importdata(AllcellsandMitos_Mean); 
end 

  
AllcellsandMitos_Resultsmat=cell2mat(AllcellsandMitos_Results); 

 
%% STEP_6: CWTC OF MITOCHONDRIA FROM EACH CELL 
numberofcells= size(AllcellsandMitos_Resultsmat,2); 
 cwtc={}; 
for k= 1: numberofcells 
    k 
    local={}; 
for n= 1:size(AllcellsandMitos_Resultsmat(k).data, 2) 
 %   n 
    local{n}= cwt(AllcellsandMitos_Resultsmat(k).data(:,n), 1:64, 'sym8'); 
end 
cwtc{k} = local; 
end 
cwtc= cwtc' 

  
%%% 

  
%% STEP_7: WRITE CWTs TO CSV (FOR IMAGEJ TO READ) 
selpath= uigetdir; %% CHOOSE DIRECTORY “CWT_6” 
[jc, jm] = size(cwtc); 
for k= 1: jc 
    k 
    eachrow= cwtc{k}; 
      for er=1:size(eachrow, 2) 
            er 
        ffs= fullfile(selpath, sprintf('Cell_%03d_Cluster_%02d.csv', k, er)); 
        csvwrite(ffs, eachrow{er}); 
      end 
end 

  
%%%% 

 

7. ON FIJI: OPENING THE COEFFICIENTS OF THE CWT AS AN IMAGE ON IMAGEJ 
dir1 = getDirectory("Choose Directory "); // CHOOSE DIRECTORY “CWT_6” with all the CWTs 
written as CSVs 
dir2 = getDirectory("Choose Directory "); // CHOOSE DIRECTORY “CWTtoImageJ_7 ” to save 
CWTs as a .tiff file for Imagej to read 
list = getFileList(dir1); 
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setBatchMode(true); 
for (i=0; i<list.length; i++) { 
 file = dir1 + list[i]; 
 run("Text Image... ", "open=&file"); 
 saveAs("Tiff", dir2+list[i]); 
}; 
setBatchMode(false); 
 

8. a. ON FIJI: APPLY THRESHOLD TO THE CWT SCALOGRAM IMAGES  
dir1 = getDirectory("Choose Directory "); // CHOOSE FOLDER “CWTtoImageJ_7” 
dir2 = getDirectory("Choose Directory "); // CHOOSE THE FOLDER “Results” INSIDE 
“ApplyingThreshold_8” folder to save .csv files 
dir3 = getDirectory("Choose Directory "); // CHOOSE THE FOLDER “Tiff” INSIDE 
“ApplyingThreshold_8” FOLDER to save .TIFF files  
dir4 = getDirectory("Choose Directory "); // CHOOSE THE FOLDER “ROI” INSIDE 
“ApplyingThreshold_8” FOLDER to save THE ROI files 
list = getFileList(dir1); 
setBatchMode(true); 
for (i=0; i<list.length; i++) { 
file = dir1 + list[i]; 
open(dir1+list[i]); 
T= getTitle();  
run("Flip Vertically"); 
run("Duplicate...", "title=Copy.tif "); 
selectWindow("Copy.tif"); 
run("16-bit"); 
selectWindow("Copy.tif"); 
run("Auto Threshold", "method=Mean white"); 
run("Set Measurements...", "area min centroid center perimeter bounding shape skewness 
stack invert redirect=None decimal=3"); 
run("Analyze Particles...", "display clear include add"); 
close("Copy.tif"); 
selectWindow(T); 
roiManager("Show None"); 
roiManager("Show All"); 
roiManager("multi-measure measure_all"); 
run("Input/Output...", "jpeg=85 gif=-1 file=.csv use_file copy_column save_column"); 
titleX=T+"_RoiSet.zip"; 
titleY=T+"_Results.csv"; 
saveAs("Tiff", dir3+list[i]); 
roiManager("Save", dir4+titleX); 
saveAs("Results", dir2+titleY); 
roiManager("reset"); 
}; 
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setBatchMode(false); 
 
 
8. b. ON FIJI: EXTRACTING CO-ORDINATES OF THE HIGEST COEFFICIENT PEAKS IN THE 
SCALOGRAM 
 
roiManager("reset"); 
dir1 = getDirectory("Choose Directory "); // CHOOSE THE FOLDER “Results” 
dir2 = getDirectory("Choose Directory "); // CHOOSE THE FOLDER “TIFF” 
dir3 = getDirectory("Choose Directory "); // CHOOSE THE FOLDER “ROI” 
list = getFileList(dir2); 
 
setBatchMode(true); 
for (i=0; i<list.length; i++) { 
 showProgress(i, list.length); 
  
file = dir2 + list[i]; 
open(dir2+list[i]);  
R=getTitle(); 
 selectWindow(R); 
 ROIlist= getFileList(dir3); 
  run("ROI Manager..."); 
      roiManager("Open", dir3+ROIlist[i]); 
      getInfo("selection.name"); 
 selectWindow(R); 
 roiManager("Show None"); 
roicount= roiManager("count"); 
//titleZ="/Test.txt"; 
titleZ= R+"_Brightest.txt"; 
fileZ=File.open(dir1+titleZ); 
 for (j = 0; j < roicount; j++) { 
  roiManager("Select", j); 
  getRawStatistics(nPixels, mean, min, max);  
  run("Find Maxima...", "noise="+max+" output=[Point Selection]");  
     getSelectionBounds(x, y, w, h);  
     print(fileZ,x+","+y+","+getPixel(x,y));  
  } 
  File.close(fileZ); 
  roiManager("reset"); 
} 
 

9. ON MATLAB: IMPORT DATA OF SCALOGRAM COEFFICIENTS INTO MATLAB 
 
%% convert brightest points .txt file to .csv file for importing into MATLAB 
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Brightestpoints=uigetdir 
Brightestpoints_dir= dir([Brightestpoints '/*Brightest.txt']); 
numberoffiles= size(Brightestpoints_dir,1); 
for m=1: numberofcells 
       m 
      eachrow= cwtc{m} 
      eachcell= {}; 
       for er = 1: size(eachrow, 2); 
           er 
myfilename = sprintf('Cell_%03d_Cluster_%02d.tif_Brightest.txt', m, er); 
myfilename 
fileID = fopen(myfilename,'r'); 
dataArray = textscan(fileID, '%n%n%n', 'Delimiter', ','); 
fclose(fileID); 
newfilename= sprintf('Cell_%03d_Cluster_%02d.tif_Brightest.csv', m, er); 
csvwrite(newfilename, dataArray) 
       end 
end 

  

  
%%%%%%% import CO-ORDINATES OF COEFFICIENT PEAKS THAT WERE THRESHOLDED ON 

IMAGEJ 

  
MeanThresholded=uigetdir 
MeanThresholded_dir= dir([MeanThresholded '/*.csv']); 
numberoffiles= size(MeanThresholded_dir,1); 
MeanThresholded_Results = {}; 
    for m=1: numberofcells 
       m 
      eachrow= cwtc{m} 
      eachcell= {}; 
       for er = 1: size(eachrow, 2); 
           er 
myfilename = sprintf('Cell_%03d_Cluster_%02d.tif_Results.csv', m, er); 
myfilename 
eachcell{er}= importdata(myfilename); 
       end 
    MeanThresholded_Results{m}= eachcell; 
    end 
 MeanThresholded_Results= MeanThresholded_Results' %% Contains the 

coordinates of the peak coefficients that were thresholded in the scalogram.  

  

  
%%%%%% import BRIGHTEST Point 

  
MeanThresholded=uigetdir 
MeanThresholded_dir= dir([MeanThresholded '/*.csv']); 
numberoffiles= size(MeanThresholded_dir,1); 
Brightest_Results = {}; 
    for m=1: numberofcells 
       m 
      eachrow= cwtc{m} 
      eachcell= {}; 
       for er = 1: size(eachrow, 2); 
           er 
myfilename = sprintf('Cell_%03d_Cluster_%02d.tif_Brightest.csv', m, er); 
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myfilename 
eachcell{er}= importdata(myfilename); 
       end 
    Brightest_Results{m}= eachcell; 
    end 
 Brightest_Results= Brightest_Results'  

  
%%% 
 

10. ON MATLAB: DATA REDUCTION PROCESS TO SEPARATE FREQUENCIES OF 
MITOCHONDRIAL CLUSTERS INTO 6 FREQUENCY BANDS AND OBTAIN THEIR 
ASSOCIATED TIME. (The final frequencies and associated time are averages within a 
particular frequency band).   

 
MeanThresholded_ResultsCopy= repmat(MeanThresholded_Results,1); %% duplicate 

the array containing co-ordinates of peak coefficients  
for i = 1:size(MeanThresholded_ResultsCopy,1) %% i= number of cells 
        dead_mito_count=0; %% assign as 0 and count if there are dead mitos 
        current_cell=MeanThresholded_ResultsCopy{i,1}; %% current_cell is the 

whole current cell with many mitos 
        current_brightest_cell= Brightest_Results{i, 1}; %% using the 

brightest points and not the centroid to obtain Xm and Ym 
        mito_death_time_array=[]; %% when each mito of a cell dies during 

reperfusion 
        for j = 1:size(current_cell,2) %% j is the number of columns, 

equivalent to the number of mitos in a cell 
            col_header=current_cell{1,j}.Properties.VariableNames; %%1 HAS 

BEEN ASSIGNED TO THEM- TO START THEM OFF.SOMETHING LIKE A PRE-ALLOCATION. 

AFTER THAT, DIFFERENT NUMBERS WILL BE ASSIGNED TO THEM BASED ON WHAT COMES 

OUT OF THE FORLOOP IN THE NEXT SET OF CODES. 
            col_Area=1; 
            col_BX=1; 
            col_Width=1; 
            col_max_coeff=1; 
            col_XM=1; 
            col_YM=1; 
            local_max=-1000; %% TO INITIALIZE; THIS IS THE LOWEST VALUE AND 

EVERY VALUE WE LOOK AT WILL BE ABOVE THIS 

             
            index=2; 

             
                for k=1:size(col_header,2) %% k is the number of columns of 

all the parameters from nanmean thresholded results (from 1 to 18). With this 

for loop we want to get the number assigned to a particular column. 
                     if strcmp(col_header{1,k},'Area') %% asking for which 

col_header matches 'Area'. Usually its the first column.  
                    col_Area=k; %% usually col_Area is 1.  
                     end 
                     if strcmp(col_header{1,k},'BX') 
                    col_BX=k; 
                     end 
                     if strcmp(col_header{1,k},'Width') 
                    col_Width=k; 
                     end 
                    if strcmp(col_header{1,k},'Max') 
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                    col_max_coeff=k; 
                    end 
                end 

             
            current_data1=current_cell{1,j};%% NOW WE WILL GO THROUGH EVERY 

MITO AND ITS CHARACTERESTICS OF A SIGNLE CELL. current_data has the 

information for a single mito  
            current_data = current_data1{:,1:12}; 

             
            current_brightest_data= current_brightest_cell{1, j}; %% 

current_brightest_cell has the information for a single mito, but has Xm and 

Ym from the brightest points, and not from the centroid/ center of maximum 

(since those are just averages and not the actual brightest points..   
           BX_Width_sum = current_data(:,9) + current_data(:,11); 
            for k = 1:size(BX_Width_sum) %% from the second largest area 

(leaving out the first because thats the begining of the reperfusion phase) 
                    if (local_max < BX_Width_sum(k)) 
                        local_max = BX_Width_sum(k); %% its considering the 

maximum coefficient after discarding the 1st maximum coefficient and the next 

maximum coeffient from the maximum area 
                        index = k 
                    end 
            end 
         relevant_max = -1000; 
         for k = 2:size(current_data,1) %% from the second largest area 

(leaving out the first because thats the begining of the reperfusion phase) 
                    if (k ~= index && relevant_max < 

current_data(k,col_max_coeff)) 
                        relevant_max = current_data(k,col_max_coeff);  
                    end 
            end 
            %%%%%%%%%%%%%%% 

          
             if (size(current_data,1)<=2 | (local_max==241 && 

relevant_max<=80)) 
           MeanThresholded_ResultsCopy{i,1}{1,j}(:,'classification') = 

{'dead'}; 
           %% if the max coefficient of the second or third largest area is 

less than 80, then the mito is dead. 
                mito_death_time=0; %% the mito death time is 0, because it 

has been dead from the begining 
                dead_mito_count=dead_mito_count+1; %% we start counting the 

dead mitos as 1 
            else  
                

MeanThresholded_ResultsCopy{i,1}{1,j}(:,'classification')={'not dead'}; %% if 

the coefficient of that largest area is more than 80, the mito is classified 

as 'not dead'. 

             
            local_max=-1000; 
            index = 2; 
                for k = 2:size(current_data,1) %% from the second largest 

area (leaving out the first because thats the begining of the reperfusion 

phase) 
                    if (current_data(k,col_Area)>=1000&& local_max < 

current_data(k,col_max_coeff)) 
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                        local_max = current_data(k,col_max_coeff); %% its 

considering the maximum coefficient after discarding the 1st maximum 

coefficient and the next maximum coeffient from the maximum area 
                        index = k 
                    end 
                end 
                

time_pt=current_data(index,col_BX)+current_data(index,col_Width);%% its 

finding the time point at which the mito dies, by considering the largest 

area's end X location 
                time_pt 
                if time_pt<= 240 %% depending on the time points of the 

reperfusion experiment, this value may need to be changed. If the time point 

is less than 240, then we need to know when the mito died.  
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'mito_death_time')={time_pt}; 
                    mito_death_time_array(j)=time_pt; 
                %cell_classification{i,2}=time_pt; 
                else 
                    

MeanThresholded_ResultsCopy{i,1}{1,j}(:,'mito_death_time')={241};%% if the 

mito didn't die, then just write 241 (or whatever the end of reperfusion time 

point is) 
                    mito_death_time_array(j)=241; 
                end 

                 
                osc_data_array=[];%% PREALLOCATING FOR WRITING IN THE 

LOCATION OF THE BRIGHTEST SPOTS IN THE CWT- WHICH CORRESPONDS TO THE SCALE 

AND TIME 
                osc_index=0; 
                for k = 2:size(current_data,1) %% considering only the rows 

that are not the begining or the ending (ones with largest areas and 

coefficients) 
                    

local_sum=current_data(k,col_BX)+current_data(k,col_Width); %% incase the 

mito dies during the experiment, we still need the scale and time before it 

dies. So this local_sum considers the points before the mito dies 
                    if (k~=index && local_sum<=time_pt) 
                        osc_index=osc_index+1; %% when the mito is not dead 

yet, then osc_index is atleast 1 (and not 0).  
                        

osc_data_array(osc_index,1)=current_brightest_data(k,1); %% takes the k-th 

row and the first column which has the X coordinate (for the time) 
                        osc_data_array(osc_index,2)=64-

current_brightest_data(k,2); %% takes the k- th row and the second column 

which has the Y co-ordinate for the scale. But since the Y-axis is inverted 

(a bug in image j??), we'd have to subtract the Y value from 64 to get the 

actual scale value corresponding to the time. 
                        osc_data_array(osc_index, 3)= 

current_brightest_data(k, 3); 
                    end 
                end 
                if (osc_index==0)  
                    

MeanThresholded_ResultsCopy{i,1}{1,j}(:,'classification')={'noise'}; 
                else 
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                    osc_data_avg_XM=nanmean(osc_data_array(:, 1)); %% for a 

particular mito, we get the average time (by getting the nanmean of all the 

rows in the first column, with X-cordinates) 
                    osc_data_std_XM=std(osc_data_array(:, 1));   
                    osc_data_avg_YM=nanmean(osc_data_array(:,2));%% for a 

particular mito, we get the average scale (by getting the nanmean of all the 

rows in the second column, with the Y-cordinates subtracted from 64)  
                    osc_data_std_YM=std(osc_data_array(:, 2)); 

                     
                    XM_list= osc_data_array(:, 1); 
                    YM_list= osc_data_array(:, 2); 
                    BrightestCoeff_list= osc_data_array(:, 3); 
                     YM_real_fast_mean= nanmean(YM_list(YM_list>=0. & 

YM_list<=5)); 
                   XM_real_fast_time =nanmean(XM_list(find(YM_list>=1 & 

YM_list<=5)));  
                   BrightestCoeff_real_fast_mean= 

nanmean(BrightestCoeff_list(find(YM_list>=1 & YM_list<=5))); 
                     YM_fast_mean    =nanmean(YM_list(YM_list>5 & 

YM_list<=10)); 
                   XM_fast_time      =nanmean(XM_list(find(YM_list>5 & 

YM_list<=10))); 
                   BrightestCoeff_fast_mean= 

nanmean(BrightestCoeff_list(find(YM_list>5 & YM_list<=10))); 
                    YM_moderate_mean =nanmean(YM_list(YM_list >10 & 

YM_list<=15)); 
                   XM_moderate_time  =nanmean(XM_list(find(YM_list >10 & 

YM_list<=15)));    
                   BrightestCoeff_moderate_mean= 

nanmean(BrightestCoeff_list(find(YM_list >10 & YM_list<=15)));  
                    YM_slow_mean     =nanmean(YM_list(YM_list>15 & 

YM_list<=20)); 
                   XM_slow_time      =nanmean(XM_list(find(YM_list>15 & 

YM_list<=20))); 
                   BrightestCoeff_slow_mean= 

nanmean(BrightestCoeff_list(find(YM_list>15 & YM_list<=20))); 
                    YM_slower_mean   =nanmean(YM_list(YM_list>20 & 

YM_list<=25)); 
                   XM_slower_time    =nanmean(XM_list(find(YM_list>20 & 

YM_list<=25))); 
                   BrightestCoeff_slower_mean= 

nanmean(BrightestCoeff_list(find(YM_list>20 & YM_list<=25))); 
                    YM_nonoscillating_mean=nanmean(YM_list(YM_list>25)); 
                   XM_nonoscillating_time=nanmean(XM_list(find(YM_list>25))); 
                   BrightestCoeff_nonoscillating_mean= 

nanmean(BrightestCoeff_list(find(YM_list>25))); 
                    real_fast_XM= osc_data_array(osc_data_array(:, 2)>1 & 

osc_data_array(:, 2)<5); %finds the corresponding Xms; finding scale values 

of only fast oscillations (scale below 5) 

                     
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'Real_fast_mean')= {YM_real_fast_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'Real_fast_TIME')={XM_real_fast_time}; 
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                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'BrightestCoeff_real_fast_mean')={BrightestCoeff_real_fast_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 'Fast_mean')= 

{YM_fast_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'Fast_TIME')={XM_fast_time}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'BrightestCoeff_fast_mean')={BrightestCoeff_fast_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'Moderate_mean')= {YM_moderate_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'Moderate_TIME')= {XM_moderate_time}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'BrightestCoeff_moderate_mean')={BrightestCoeff_moderate_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 'Slow_mean')= 

{YM_slow_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 'Slow_TIME')={ 

XM_slow_time}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'BrightestCoeff_slow_mean')= {BrightestCoeff_slow_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 'Slower_mean')= 

{YM_slower_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'Slower_TIME')={XM_slower_time}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'BrightestCoeff_slower_mean')={BrightestCoeff_slower_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'NonOscillating_mean')= {YM_nonoscillating_mean}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'NonOscillating_TIME')={XM_nonoscillating_time}; 
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 

'BrightestCoeff_nonoscillating_mean')={BrightestCoeff_nonoscillating_mean}; 

        
                    MeanThresholded_ResultsCopy{i,1}{1,j}(:, 'avg_osc_XM')= 

{osc_data_avg_XM}; %% with this line, we are introducing the parameters of 

scale and time to save along with every mito 
                    

MeanThresholded_ResultsCopy{i,1}{1,j}(:,'std_osc_XM')={osc_data_std_XM}; 
                    

MeanThresholded_ResultsCopy{i,1}{1,j}(:,'avg_osc_YM')={osc_data_avg_YM}; 
                    

MeanThresholded_ResultsCopy{i,1}{1,j}(:,'std_osc_YM')={osc_data_std_YM}; 

                     
                    if (osc_data_avg_YM < 15) %% we classify every mito as 

'slow', 'fast' or 'non oscillating' based on the average scale value we 

obtain  
                        

MeanThresholded_ResultsCopy{i,1}{1,j}(:,'osc_classification')={'fast'}; 
                    else 
                        if (15<=osc_data_avg_YM && osc_data_avg_YM<=25) 
                            

MeanThresholded_ResultsCopy{i,1}{1,j}(:,'osc_classification')={'slow'}; 
                        else 
                            

MeanThresholded_ResultsCopy{i,1}{1,j}(:,'osc_classification')={'non 

oscillating'}; 
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                        end 
                    end 
                end 
            end 
        end 
        if dead_mito_count/size(MeanThresholded_ResultsCopy{i,1},2) >= 0.6 %% 

if more than 60% of the mitos in each cell are dead, then the whole cell is 

considered as dead 
            cell_classification{i,1}='dead'; %% we have a separate 

cell_classification array to record which cells are dead and when they died. 
            cell_classification{i,2} = 0; 
        else 
            cell_classification{i,1}='not dead'; %% if more than 60% of the 

mitos of a cell are not dead, then the whole cell is considered as alive. If 

some of the mitos did die along the way, their mito_death_time were 

considered and the mito that held out the longest was used as the time for 

the cell death 
            cell_classification{i,2} = max(mito_death_time_array); 
        end 
end 

 
11. ON MATLAB: COMPILING REQUIRED INFORMATION FROM ABOVE DATA REDUCTION 

PROCESS 
 
%% 
Cell_YMs= {}; 
for i= 1: size(MeanThresholded_ResultsCopy, 1); 
        local_cell_YMs={}; 
        for j= 1: size(MeanThresholded_ResultsCopy{i,1}, 2) 
            if 

strcmp(MeanThresholded_ResultsCopy{i,1}{1,j}.('classification')(1,1),'not 

dead') 
                local_cell_YMs{j, 1}= 

MeanThresholded_ResultsCopy{i,1}{1,j}.('Real_fast_mean')(1); 
                local_cell_YMs{j, 2}= 

MeanThresholded_ResultsCopy{i,1}{1,j}.('Fast_mean')(1); 
                local_cell_YMs{j, 3}= 

MeanThresholded_ResultsCopy{i,1}{1,j}.('Moderate_mean')(1); 
                local_cell_YMs{j, 4}= 

MeanThresholded_ResultsCopy{i,1}{1,j}.('Slow_mean')(1); 
                local_cell_YMs{j, 5}= 

MeanThresholded_ResultsCopy{i,1}{1,j}.('Slower_mean')(1); 
                local_cell_YMs{j, 6}= 

MeanThresholded_ResultsCopy{i,1}{1,j}.('NonOscillating_mean')(1); 
            else 
                local_cell_YMs{j, 1}= NaN;%% changed from 'dead' to NaN, 

since the term 'dead' is not compatible with an Array for the next step 
                local_cell_YMs{j, 2}= NaN; 
                local_cell_YMs{j, 3}= NaN; 
                local_cell_YMs{j, 4}= NaN; 
                local_cell_YMs{j, 5}= NaN; 
                local_cell_YMs{j, 6}= NaN; 
            end 
        end 
        Cell_YMs{i}=local_cell_YMs; 
end 
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Cell_YMs= Cell_YMs'; 
%%%     
Cell_YM_averages=-ones(size(Cell_YMs, 1),1); 
for i= 1: size(Cell_YMs, 1) 
    current_YM_array= []; 
    YM_array_index=0; 
    for j= 1: size(Cell_YMs{i, 1}, 2) 
        if strcmp(cell_classification{i, 1}, 'dead') 
            continue 
        else  
            YM_array_index= YM_array_index+1; 
            current_YM_array(YM_array_index)= Cell_YMs{i,1}{1,j}; 
        end 
    end 
    if (size(current_YM_array) >0) 
        Cell_YM_averages(i)= nanmean(current_YM_array); 
    end 
end 
Cell_YM_averages_withNaN= Cell_YM_averages; 
Cell_YM_averages_withNaN(Cell_YM_averages_withNaN==-1)=NaN; 

  
%%%%%%%%%%%%%%%%%% 

  
for i= 1: size(Cell_YMs, 1) 
    cell_classification{i,3}=Cell_YM_averages(i); 
end 

  

  
%%%%%%%%%%% 
all_dead_count=0; 
dead_with_some_alive=[]; 
some_alive_index=0; 
not_dead=[]; 
not_dead_index=0; 
for i= 1: size(cell_classification, 1) 
    if cell_classification{i,2}==0 
        if cell_classification{i,3}==-1 
            all_dead_count=all_dead_count+1; 
        else 
            some_alive_index=some_alive_index+1; 
            dead_with_some_alive(some_alive_index)=cell_classification{i,3}; 
        end 
    else 
        not_dead_index=not_dead_index+1; 
        not_dead(not_dead_index)=cell_classification{i,3}; 
    end    
end 
dead_with_some_alive_avg=nanmean(dead_with_some_alive); 
not_dead_avg=nanmean(not_dead); 

  
%% 
%MITO DEATH TIME 
mitodeathtime_percell={}; 
for i= 1: size(MeanThresholded_ResultsCopy, 1); 
        local_cell_mitodeathtime={}; 
        for j= 1: size(MeanThresholded_ResultsCopy{i,1}, 2) 
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            if 

strcmp(MeanThresholded_ResultsCopy{i,1}{1,j}.('classification')(1,1),'not 

dead') 
                local_cell_mitodeathtime{j}= 

MeanThresholded_ResultsCopy{i,1}{1,j}.('mito_death_time')(1); 
            else 
                local_cell_mitodeathtime{j}=0; 
            end 
        end 
        mitodeathtime_percell{i}=local_cell_mitodeathtime; 
end 
%% 
%GETTING THE TIME ASSOCIATED WITH DIFFERENT FREQUENCIES AND CONVERTING SCALE 

TO PSEUDOFREQUENCIES 
death_timefornotdeadcell=[]; 
death_timefornotdeadmito=[]; 
freq_notdeadcell=[]; 
freq_notdeadmito=[]; 
cellindex=0; 
cellindex 
mitoindex=0; 
mitoindex 
for i= 1: size(cell_classification, 1) 
    i 
    if cell_classification{i,2}~=0 
        cellindex=cellindex+1; 
        cellindex 
        death_timefornotdeadcell(cellindex)=cell_classification{i,2}; 
        death_timefornotdeadcell(cellindex) 
        freq_notdeadcell(cellindex)=cell_classification{i,3}; 
        freq_notdeadcell(cellindex) 
        for j= 1: size(MeanThresholded_ResultsCopy{i,1}, 2) 
            j 
            if 

strcmp(MeanThresholded_ResultsCopy{i,1}{1,j}.('classification')(1,1),'not 

dead') 
                mitoindex=mitoindex+1; 
                mitoindex 
                death_timefornotdeadmito(mitoindex)= 

MeanThresholded_ResultsCopy{i,1}{1,j}.('mito_death_time')(1); 
                

freq_notdeadmito(mitoindex,1)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Real_fa

st_mean')(1); 
                

freq_notdeadmito(mitoindex,2)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Real_fa

st_TIME')(1); 
                

freq_notdeadmito(mitoindex,3)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Fast_me

an')(1); 
                

freq_notdeadmito(mitoindex,4)=MeanThresholded_ResultsCopy{i,1}{1,j}.( 

'Fast_TIME')(1); 
                

freq_notdeadmito(mitoindex,5)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Moderat

e_mean')(1); 
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freq_notdeadmito(mitoindex,6)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Moderat

e_TIME')(1); 
                

freq_notdeadmito(mitoindex,7)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Slow_me

an')(1); 
                

freq_notdeadmito(mitoindex,8)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Slow_TI

ME')(1); 
                

freq_notdeadmito(mitoindex,9)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Slower_

mean')(1); 
                

freq_notdeadmito(mitoindex,10)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Slower

_TIME')(1); 
                

freq_notdeadmito(mitoindex,11)=MeanThresholded_ResultsCopy{i,1}{1,j}.('NonOsc

illating_mean')(1); 
                

freq_notdeadmito(mitoindex,12)=MeanThresholded_ResultsCopy{i,1}{1,j}.('NonOsc

illating_TIME')(1); 
                freq_notdeadmito(mitoindex,13)= MitoAreas{1,i}(j, 1); 
                

freq_notdeadmito(mitoindex,14)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Bright

estCoeff_real_fast_mean')(1); 
                

freq_notdeadmito(mitoindex,15)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Bright

estCoeff_fast_mean')(1); 
                

freq_notdeadmito(mitoindex,16)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Bright

estCoeff_moderate_mean')(1); 
                

freq_notdeadmito(mitoindex,17)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Bright

estCoeff_slow_mean')(1); 
                

freq_notdeadmito(mitoindex,18)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Bright

estCoeff_slower_mean')(1); 
                

freq_notdeadmito(mitoindex,19)=MeanThresholded_ResultsCopy{i,1}{1,j}.('Bright

estCoeff_nonoscillating_mean')(1); 

                 
            end 
        end 
    end 
end 

  

  
 time_points= 1:time_pt; 
 time_points=time_points'; 
 time=time_points.*.25; 
 death_timefornotdeadmito=death_timefornotdeadmito'; 
 Freqconvertedfromscale_MITO_real_fast=scal2frq(freq_notdeadmito(:,1), 

'sym8', 15); 
 Freqconvertedfromscale_MITO_fast=scal2frq(freq_notdeadmito(:,3), 'sym8', 

15); 
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 Freqconvertedfromscale_MITO_moderate=scal2frq(freq_notdeadmito(:,5), 'sym8', 

15); 
 Freqconvertedfromscale_MITO_slow=scal2frq(freq_notdeadmito(:,7), 'sym8', 

15); 
 Freqconvertedfromscale_MITO_slower=scal2frq(freq_notdeadmito(:,9), 'sym8', 

15); 
 Freqconvertedfromscale_MITO_nonoscillating=scal2frq(freq_notdeadmito(:,11), 

'sym8', 15); 

  
 BrightestCoeff_RF_MITO=freq_notdeadmito(:, 14); 
 BrightestCoeff_F_MITO=freq_notdeadmito(:, 15); 
 BrightestCoeff_M_MITO=freq_notdeadmito(:, 16); 
 BrightestCoeff_S_MITO=freq_notdeadmito(:, 17); 
 BrightestCoeff_RS_MITO=freq_notdeadmito(:, 18); 
 BrightestCoeff_NO_MITO=freq_notdeadmito(:, 19); 

  
Freqconvertedfromscale_CELL=scal2frq(Cell_YM_averages_withNaN, 'sym8', 15); 

%change according to sampling rate 
MitoAreasArray=freq_notdeadmito(:,13); %% Mitochondrial Cluster Area 
death_timefornotdeadmito_minutes= death_timefornotdeadmito.*.25; %change 

according to sampling rate 
death_timefornotdeadcell= death_timefornotdeadcell'; 
death_timefornotdeadcell_minutes= death_timefornotdeadcell.*0.25; %change 

according to sampling rate 
%% To get Time Component of the different oscillation frequencies 
Freq_associated_time= freq_notdeadmito(:, [2:2:12]); 
Freq_associated_time_minutes= Freq_associated_time.*.25; 

 
Freqconvertedfromscale_MITO=cat(2, Freqconvertedfromscale_MITO_real_fast, 

Freqconvertedfromscale_MITO_fast, Freqconvertedfromscale_MITO_moderate, 

Freqconvertedfromscale_MITO_slow, Freqconvertedfromscale_MITO_slower, 

Freqconvertedfromscale_MITO_nonoscillating); 

 
Freq_average_MITO= nanmean(Freqconvertedfromscale_MITO, 2); 

 
BrightestCoeff_AllFreq_MITO=cat(2, BrightestCoeff_RF_MITO, 

BrightestCoeff_F_MITO, BrightestCoeff_M_MITO, BrightestCoeff_S_MITO, 

BrightestCoeff_RS_MITO,BrightestCoeff_NO_MITO); 
MultiplicationofFreqCoeff= 

Freqconvertedfromscale_MITO.*(abs(BrightestCoeff_AllFreq_MITO)); 
WeightedMean_Hz= nansum(MultiplicationofFreqCoeff, 2)./ 

nansum(abs(BrightestCoeff_AllFreq_MITO), 2); 
WeightedMean_mHz= WeightedMean_Hz.*1000; 

  
%FIGURE 
figure; histogram(Freqconvertedfromscale_MITO_real_fast,'DisplayName','real 

fast', 'FaceColor',[1 0.701960784313725 0], 'BinWidth',0.00025);hold on; 

histogram(Freqconvertedfromscale_MITO_fast,'DisplayName','fast','FaceColor',[

1 0 0],  'BinWidth',0.00025);hold on; 

histogram(Freqconvertedfromscale_MITO_moderate,'DisplayName','moderate','Face

Color',[1 1 0],  'BinWidth',0.00025); hold on; 

histogram(Freqconvertedfromscale_MITO_slow,'DisplayName','slow','FaceColor',[

0 0 1],  'BinWidth',0.00025);hold on; 

histogram(Freqconvertedfromscale_MITO_slower,'DisplayName','slower','FaceColo

r',[1 1 1],  'BinWidth',0.00025); hold on; 
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histogram(Freqconvertedfromscale_MITO_nonoscillating,'DisplayName','non-

oscillating','FaceColor',[1 0 1],  'BinWidth',0.00025); 

 
Freqconvertedfromscale_MITO_mHz= Freqconvertedfromscale_MITO.*1000; 
Freq_MITO= Freqconvertedfromscale_MITO_mHz(:, 1); 
indexNaN= find((isnan(Freq_MITO))); 
Freq_MITO(isnan(Freq_MITO))= Freqconvertedfromscale_MITO_mHz(indexNaN, 2); 
indexNaN= find((isnan(Freq_MITO))); 
Freq_MITO(isnan(Freq_MITO))= Freqconvertedfromscale_MITO_mHz(indexNaN, 3); 
indexNaN= find((isnan(Freq_MITO))); 
Freq_MITO(isnan(Freq_MITO))= Freqconvertedfromscale_MITO_mHz(indexNaN, 4); 
indexNaN= find((isnan(Freq_MITO))); 
Freq_MITO(isnan(Freq_MITO))= Freqconvertedfromscale_MITO_mHz(indexNaN, 5); 
indexNaN= find((isnan(Freq_MITO))); 
Freq_MITO(isnan(Freq_MITO))= Freqconvertedfromscale_MITO_mHz(indexNaN, 6); 

  

12. ON MATLAB: CLEARING VARIABLES THAT ARE NOT REQUIRED 
 
%%% CLEARING UNECESSARY VARIABLES FROM WORKSPACE 
clear EachCellsMitoROI 
clear eachrow 
clear er 
clear ffs 
clear jc 
clear jm 
clear local 
clear Reper_results_dir 
clear selpath 
clear z 
clear zz 
%%% 
clear ans 
clear dataArray 
clear eachcell 
clear eachrow 
clear er 
clear fileID 
clear k 
clear m 
clear myfilename 
clear n 
clear newfilename 
clear AllcellsandMitos_Mean 
clear Brightestpoints 
clear MeanThresholded 
clear current_brightest_cell 
clear current_brightest_data 
clear col_Area 
clear col_BX 
clear col_header 
clear col_max_coeff 
clear col_Width 
clear col_XM 
clear col_YM 
clear current_cell 
clear current_data 
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clear i 
clear index 
clear j 
clear k 
clear local_max 
clear local_sum 
clear YM_array_index 
clear osc_index 
clear local_cell_mitodeathtime 
clear fileNumber 
clear changefilename_dir 
clear Brightestpoints_dir 

  
clear Brightestpoints_dir 
clear changefilename_dir 
clear current_YM_array 
clear fileNumber 
clear local_cell_mitodeathtime 
clear local_cell_YMs 
clear MeanThresholded_dir 
clear total_images 
clear numberoffiles 

  
clear A 
clear B 
clear filename 
clear filestochangenames 
clear fullDestination 
clear i 
clear Image_Dir 
clear Image_folder 
clear index 
clear info 
clear j 
clear k 
clear l 
clear local_max 
clear local_sum 
clear Diff_stack_folder 
clear new_name 
clear newFileName 
clear num_images 
clear oldFileName 
clear Q 
clear startPerSym 
clear startunderSym 

  
%% if you want to check/ debug, then don't delete these variables. Go through 

them to check where there may be a problem 
clear osc_data_avg_XM 
clear osc_data_avg_YM 
clear osc_data_std_XM 
clear osc_data_std_YM 
clear some_alive_index 
clear XM_fast_time 
clear XM_nonoscillating_time 
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clear XM_moderate_time 
clear XM_real_fast_time 
clear XM_slow_time 
clear XM_slower_time 
clear YM_fast_mean 
clear YM_moderate_mean 
clear YM_nonoscillating_mean 
clear YM_real_fast_mean 
clear YM_slow_mean  
clear YM_slower_mean 
clear localArea 
clear current_data1 
clear real_fast_XM 
clear XM_list  
clear YM_list 
clear time_pt 
%%% 
clear delimiter 
clear startRow 
clear CabcksubRatio 
clear CabcksubRatio_dir 
clear CacliumCalibration 
clear CalciumCalib_dir 

 

 

13. RESULTS ARE IN THE FOLLOWING ARRAYS: 
 

(i) IPT_2MAT_Depolarization_minutes – Has the time point at which a 

cell depolarized during Ischemia  

 

(ii) cell_classification – Column 1 has the state of each cell at the 

beginning of reperfusion, Column 2 has the time at which the cell 

depolarized (based on if 60% of mitochondria depolarized in that 

cell), Column 3 has the average frequency of that cell (based on 

average frequency of the oscillating clusters) 

 

 

(iii) death_timefornotdeadmito_minutes – Has the timepoint at which a 

mitochondrial cluster exhibited irreversible ΔΨm depolarization 

during Reperfusion 

 

(iv) Freqconvertedfromscale_MITO- Has the average frequency of a 

mitochondrial cluster separated into different frequency bands 

and associated with a particular timepoint during reperfusion. 

Column 1 has frequencies ranging from 8.6-45mHz, Column 2 has 

8.6-4.3mHz, Column 3 has 4.3-3mHz, Column 4 has 3-2.2 mHz, Column 

5 has 2.2-1.8mHz and Column 6 has frequencies below 1.8 mHz.  

 

(v) Freq_associated_time_minutes - Has the timepoint associated with 

the particular frequency of a mitochondrial cluster. Column 1 has 

frequencies ranging from 8.6-45mHz, Column 2 has 8.6-4.3mHz, 

Column 3 has 4.3-3mHz, Column 4 has 3-2.2 mHz, Column 5 has 2.2-

1.8mHz and Column 6 has frequencies below 1.8 mHz. Along with the 

ΔΨm depolarization time, these values are used to make the violin 
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plots to obtain a complete graphical visualization of the dynamic 

oscillatory behavior of mitochondrial ΔΨm.  

 

(vi) MitoAreasArray – Contain area of each mitochondrial cluster 

 

(vii) Freq_MITO – Has the predominant frequency exhibited by the 
mitochondrial cluster 
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