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Abstract

This Thesis reports several novel algorithms for state observation, parameter identifica-

tion, and control of second-order plants. A stability proof for each novel result is included.

The primary contributions are adaptive algorithms for underwater vehicle (UV) plant pa-

rameter identification and model-based control. Where possible, comparative experimental

evaluations of the novel UV algorithms were conducted using the Johns Hopkins University

Hydrodynamic Test Facility.

The UV adaptive identification (AID) algorithms reported herein estimate the plant

parameters (hydrodynamic mass, quadratic drag, gravitational force, and buoyancy param-

eters) of second-order rigid-body UV plants under the influence of actuator forces and

torques. Previous adaptive parameter identification methods have focused on model-based

adaptive tracking controllers; however, these approaches are not applicable when the plant

is either uncontrolled, under open-loop control, or using any control law other than a spe-

cific adaptive tracking controller. The UV AID algorithms reported herein do not require

simultaneous reference trajectory-tracking control, nor do they require instrumentation of

linear acceleration or angular acceleration. Thus, these results are applicable in the com-
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monly occurring cases of uncontrolled vehicles, vehicles under open-loop control, vehicles

using control methods prescribed to meet other application-specific considerations, and

vehicles not instrumented to measure angular acceleration. In comparative experimental

evaluations, adaptively identified plant models (AIDPMs) were shown to accurately model

experimentally measured UV performance.

The UV model-based control (MBC) and adaptive model-based control (AMBC) al-

gorithms reported herein provide asymptotically exact trajectory-tracking for fully cou-

pled second-order rigid-body UV plants. In addition, the AMBC algorithm estimates the

plant parameters (hydrodynamic mass, quadratic drag, gravitational force, and buoyancy

parameters) for this class of plants. A two-step AMBC algorithm is also reported which

first identifies gravitational plant parameters to be used in a separate AMBC algorithm for

trajectory-tracking. We report a comparative experimental analysis of proportional deriva-

tive control (PDC) and AMBC during simultaneous motion in all degrees-of-freedom. This

analysis shows:

• AMBC (i.e. simultaneous adaptation of all plant parameter estimates) can be unstable

in the presence of unmodeled thruster dynamics

• two-step AMBC is robust to the presence of unmodeled thruster dynamics, and

• two-step AMBC provides 30% better position tracking performance and 8% worse

velocity tracking performance over PDC.

To the best of our knowledge, the reported comparative experimental evaluation of AMBC
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and PDC is the first to consider trajectory-tracking performance during simultaneous mo-

tion in all degrees-of-freedom.
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Chapter 1

Introduction

1.1 Motivation

Salt water covers over 70 % of the surface of the earth. The world’s oceans and seas

to exert a huge influence on global weather patterns, cover the longest mountain range

in the world, span 98% of the earth’s inhabitable volume, and contain several millennia

of ship wrecks. Recent advances in underwater vehicle (UV) capabilities have enabled

climatologists, geologists, biologists, and archaeologists to consider addressing research

topics previously thought impractical or impossible (see Figure 1.1 for examples). The goal

of this Thesis is to enable better utilization of these capabilities through the development

of novel algorithms for state estimation, parameter identification, and control. To this end,

each type of algorithm presented herein has its own motivating applications:

• State Estimation: New state estimation algorithms have the potential to improve

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Recent advances in underwater vehicle (UV) systems have enabled scientists
and engineers to consider complex, multifaceted UV missions previously thought imprac-
tical or impossible. These new missions include UV teams for environmental monitor-
ing, such as the team of 5 gliders shown; ship-based or on-shore operator monitoring and
re-tasking of UVs, such as the re-tasking of the AUV Sentry shown; and deployment of
UVs in delicate or dynamic environments, such as the ROV Jason operating near the plane
wreck shown. Improved state estimation algorithms can increase navigation accuracy and
lower the cost of UV teams. Improved parameter identification algorithms enable remote
operators to remotely diagnose failures and use forward simulation for in-situ mission re-
planning for UVs similar to Sentry. Improved control algorithms enable increased precision
of delicate or dynamic 6-DOF operation for ROVs such as Jason. Image credit: Paul Ober-
lander, WHOI.
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UV navigation for a wide range of applications. UVs operate in an environment with

available sensing modalities different from terrestrial, aerial, and on-orbit systems.

One consequence of these UV specific conditions is a reliance on dead-reckoning

algorithms for translational position estimates during 6-dimensional maneuvers. It is

plausible that state estimation algorithms which leverage the group structure rigid-

body motion can increase navigation accuracy during UV operation. Such state es-

timation algorithms have the potential to enable UV navigation with different sensor

suites than currently required.

• Parameter Identification: Knowledge of UV plant parameters enable utilization of

forward simulation and other model-based algorithms for a wide range of oceano-

graphic research deployments. The most commonly employed plant models for un-

derwater vehicles are finite dimensional lumped-parameter approximate models with

vehicle-specific plant parameter terms including mass and added mass parameters;

quadratic drag parameters; and gravity and buoyancy parameters. For real-world ve-

hicles it is impossible to compute these plant parameters analytically, thus the plant

parameters must be identified experimentally. Most previous studies of non-adaptive

plant parameter identification employ off-line conventional least-square methods re-

quiring instrumentation of the vehicle attitude; linear and angular velocity; linear

and angular acceleration; and applied force and moment. Since UVs are often not

instrumented to measure angular acceleration, adaptive methods may provide model

parameter estimates that could not be obtained by other standard methods, such as

3
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conventional least squares. Previous adaptive parameter identification methods have

focused on model-based adaptive tracking controllers; however these approaches are

not applicable when the plant is either uncontrolled, under open-loop control, or

using any control law other than a specific adaptive tracking controller. Such condi-

tions frequently occur on oceanographic research UV. With commercially available

vehicles, often the user can not replace the controller provided by the vehicle’s man-

ufacturer with an adaptive tracking control algorithm. Vehicle designers frequently

utilize UV passive stability of pitch and roll in the design of under-actuated vehicles.

Adaptive tracking controllers assume actuation in all degrees-of-freedom, making

adaptive tracking control inapplicable for either control or model identification of

under-actuated vehicles. Adaptive identification algorithms do not require simulta-

neous reference trajectory-tracking control, nor do they require instrumentation of

linear acceleration or angular acceleration.

• Trajectory-Tracking: Many of the missions recently enabled by advances in UV

technology, such as seafloor surveying and environmental monitoring, depend on

tracking a specified trajectory as closely as possible. To facilitate these missions,

novel UV control algorithms are required to provide improved trajectory-tracking

precision. Previous studies have shown experimentally that model-based control can

provide significant performance gains over proportional derivative control [45, 65].

For most UVs the drag parameters and mass parameters (which include both the

characteristics of the vehicle’s mass and those of the ambient fluid surrounding the
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vehicle) can not be computed analytically. Adaptive model-based control removes

the need for a-priori parameter estimates and could enable accurate long duration

trajectory tracking through continuous model retuning.

1.2 Thesis Outline

The main contributions of this Thesis are presented in Chapters 3, 4, and 5. A stability

analysis for each novel result is included.

Chapter 2 - Modeling Second-Order Mechanical Systems: This Chapter defines the no-

tation, functions, state representations, and second-order plant models used in this Thesis.

Chapter 3 - State Estimation and Parameter Identification for Simple Mechanical

Systems (SMS): The standard models for UV dynamic operation evolve on the set of

rigid-body transformations, SE(3). Thus, the first third of this Thesis is focused on utiliz-

ing the group structure of SO(3) and SE(3) in the development of one state observer and

two adaptive identification (AID) algorithms for simple mechanical system (SMS). These

results are the theoretical antecedents of the UV results reported in Chapters 4 and 5. The

plant of the angular velocity observer is a 3-degree-of-freedom (DOF) second-order rigid-

body rotating under the influence of an externally applied torque. Numerical simulations

of the novel angular velocity observer and two previously reported observers are included.

The simulation results show similar performance of all three observers for most angular

position trajectories and inertia tensors. A novel AID algorithm is reported for a 3-DOF

5
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second-order rigid body rotating under the influence of an externally applied torque, along

with a simulation study. An AID algorithm for open kinematic chains (OKCs) is also re-

ported.

Chapter 4 - Adaptive Identification (AID) for Underwater Vehicles (UV): The UV AID

algorithms reported herein estimate the plant parameters for hydrodynamic mass, quadratic

drag, gravitational force, and buoyancy for a second-order rigid-body plant under the influ-

ence of actuator forces and torques. An experimental comparison of AID and conventional

least squares identification (LS) is reported. The experimental results corroborate the an-

alytic stability analysis, showing that the adaptively estimated plant parameters are stable

and converge to values that provide plant-model input-output behavior closely approxi-

mating the input-output behavior of the actual experimental UV. The adaptively identi-

fied plant models (AIDPMs) are shown to be similar to the least squares identified plant

models (LSPMs) in their ability to match the actual vehicle’s input-output characteristics.

Chapter 5 - Adaptive Model-Based Control For Underwater Vehicles : This Chap-

ter reports two tracking controllers: a UV model-based control (MBC) algorithm which

provides asymptotically exact trajectory-tracking, and a novel UV adaptive model-based

control (AMBC) algorithm which provides asymptotically exact trajectory-tracking while

estimating the parameters for hydrodynamic mass, quadratic drag, gravitational force, and

buoyancy parameters for a fully-coupled second-order rigid-body UV plant model.

A comparative experimental evaluation of proportional derivative control (PDC) and

AMBC for UVs is reported. To the best of the author’s knowledge, this is the first such
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evaluation of model-based adaptive tracking control for underwater vehicles during simul-

taneous dynamic motion in all 6-DOF. This experimental evaluation revealed the pres-

ence of unmodeled thruster dynamics arising during reversals of the vehicle’s thrusters,

and that the unmodeled thruster dynamics can destabilize parameter adaptation. The three

major contributions of this experimental evaluation are: an experimental analysis of how

unmodeled thruster dynamics can destabilize parameter adaptation, a two-step adaptive

model-based control algorithm which is robust to the thruster modeling errors present, and

a comparative experimental evaluation of AMBC and PDC for fully-actuated underwater

vehicles preforming simultaneous 6-DOF trajectory-tracking.

Chapter 6 - Conclusion: Thesis results summarized and directions for future work pre-

sented.

Appendix A - Johns Hopkins University Hydrodynamic Test Facility: The details of

the Johns Hopkins University Hydrodynamic Test Facility and our experimental testing

methodologies are presented. This facility includes the Johns Hopkins University Re-

motely Controlled Vehicle (JHU ROV), a fully actuated UV used for the experimental

trials reported in Chapters 4 and 5.

Appendix B - Special Euclidean Group Velocity Jacobian: Details of the SE(3) Velocity

Jacobian are reported. These results are required for the UV MBC stability proof (Theorem

5.2.1).
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Chapter 2

Modeling Second-Order Rigid-Body

Mechanical Systems

This Chapter summarizes the notation, kinematic conventions, and plant models used

in this Thesis. With the exception of Section 2.3, the models, functions, state spaces, and

facts stated herein are commonly employed in the fields of geometric control, adaptive

control, and underwater robotics. Section 2.2 states the functions, norms, and positive

definite symmetric (PDS) matrix eigenvalue conventions used herein. Section 2.3 reports

a proof of Theorem 2.3.2, which allows general 3-by-3 matrices to be factored through the

skew symmetric operator. Sections 2.4.1 and 2.4.2 detail the position and velocity state

representations used herein for a rotating rigid-body and general rigid-body motion. The

analytic relationships between these state representations are also stated. This Chapter

presents second-order models for:

8
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• 3-degree-of-freedom (DOF) rotating rigid-body dynamics (Section 2.5.1),

• 3-DOF rotating underwater vehicle (UV) dynamics (Section 2.5.2),

• 6-DOF UV dynamics (Section 2.6), and

• n-link open kinematic chain (OKC) dynamics (Section 2.7).

For each of the four models, plant parameter properties and the model’s regressor matrix

factored form are also presented. Readers seeking a presentation of this material in greater

detail are referred to the texts cited in Section 2.1.

As noted in the summery above, we believe Theorem 2.3.2 is a novel result. This

Theorem states that AT ((Ax) × (Ay)) = det(A)(x × y) for all A ∈ R3×3 and x, y ∈ R3,

where × is the usual cross product operator for R3 and det( · ) is the matrix determinate.

This result is a generalization of the well known fact (Rx) × y = R(x × (Ry)) for all

x, y ∈ R3 and R ∈ SO(3), where SO(3) is the special orthogonal group for R(3). To the

best of our knowledge, this relation has not been proposed or proven previously.

2.1 Background Literature

The foundation of this Thesis is a set of good ideas and facts cherry picked from the

long history of research into modeling rigid-body dynamics. Those ideas and facts are sum-

marized in this Chapter. Readers requiring more information are referred to the following

texts for the reasons listed. Taylor’s Classical Mechanics [67] provides an excellent intro-
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duction to modeling rigid-body motion using non-inertial reference frames. In [12], Bullo

and Lewis provide both a rigorous development of and a compelling case for utilizing dif-

ferential geometry techniques in nonlinear control theory. Chapters 5, 6, and 7 from [16],

by Chirikjian and Kyatkin, and [50], by Murray, Li and Sastry, elucidate the representation

of rigid-body motion in the groups SO(3) and SE(3). A Short Introduction to Applications

of Quaternions, by A. G. Rawlings [56], presents different coordinate systems used to rep-

resent rigid-body rotations. Rawlings’s text also presents the intuition behind the individual

coordinate systems and the interconnections between those representations. Guidance and

Control of Ocean Vehicles by Fossen [18] and Advances in Six-Degree-of-Freedom Dy-

namics and Control of Underwater Vehicles by Martin [44] present the details of modeling

underwater vehicle (UV) dynamics.

2.2 Notation Conventions

We assume the readers are familiar with SO(3), the special orthogonal group for R3,

and SE(3), the special euclidean group for R3. We also assume readers are familiar with

their tangent spaces so(3) and se(3) respectively. Readers not familiar with these concepts

are referred to [50].

2.2.1 Function Definitions

Functions used throughout this text are defined as follows:

10
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• J : R3 → R3×3 is the mapping from R3 to so(3), the tangent space of SO(3), and is

defined by

J




ω1

ω2

ω3



 =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.1)

• ·̂ : R6 → R4×4 is the mapping from R6 to se(3), the tangent space of SE(3), and (for

ν, ω ∈ R3) is defined by ̂ ν

ω

 =

 J (ω) ν

01×3 0

 . (2.2)

• ad : R6 → R6×6 is the se(3) adjoint operator. For the vector

v =

 ν

ω

 (2.3)

the se(3) adjoint operator is defined as

adv =

 J (ω) J (ν)

03×3 J (ω)

 . (2.4)

• Ad : SE(3)→ R6×6 is the se(3) adjoint map, defined as

Ad


 R p

01×3 1


 =

 R J (p)R

03×3 R

 . (2.5)

• ⊗ : Rm×n × Rp×q → R(m∗p)×(n∗q) is the Kronecker product operator [21]. For
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matrices

A =



a11 a12 . . . a1n

a21 a22 a2n

... . . . ...

am1 am2 . . . amn


and B =



b11 b12 . . . b1q

b21 b22 b2q

... . . . ...

bp1 bp2 . . . bpq


(2.6)

the Kronecker product is defined as

A⊗B =



a11B a12B . . . a1nB

a21B a22B a2nB

... . . . ...

am1B am2B . . . amnB


. (2.7)

• · S : Rm×n → R(m∗n) is the stack operator. Using the definition ofA above, the stack

operator is defined by stacking the columns of A such that

AS =

[
a11 a21 · · · am1 a12 a22 · · · am2 · · · a1n a2n · · · amn

]T
.

(2.8)

This Thesis will also make use of

• the SO(3) exponential map, eSO(3) : so(3)→ SO(3)

• the SO(3) logarithmic map, logSO3 : SO(3)→ so(3)

• the SE(3) exponential map, eSE(3) : se(3)→ SE(3)

• the SE(3) logarithmic map, logSE3 : SE(3)→ se(3)

12
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See [50] for additional information, including closed form functions, for these maps.

2.2.2 Vector Norm, Matrix Norm, and Eigenvalue Con-

ventions

Let M ∈ Rn×n represent a PDS inertia tensor or hydrodynamic mass matrix. Note that

the eigenvalues of symmetric matrices are always real. This Thesis employs the following

conventions for the eigenvalues of such matrices: mn is the smallest and m1 is the largest

eigenvalues of the mass matrix, the other eigenvalues are labeled such that mi−1 ≤ mi ≤

mi+1 ∀i such that 2 ≤ i ≤ n − 1. This convention will also be used for any mass matrix

estimate or mass matrix error term, i.e. if M̂(t) is an estimate of a true mass matrix M

and ∆M(t) = M̂(t) − M then these eigenvalues will be ordered such that m̂i−1(t) ≤

m̂i(t) ≤ m̂i+1(t) and ∆mi−1(t) ≤ ∆mi(t) ≤ ∆mi+1(t). We assume that the eigenvalues

of physically realistic mass matrices are either constant or bounded for all time, i.e. there

exists a scalar a ∈ R+ such that m1 < a.

The `2 norm, or Euclidean norm, for x ∈ Rn is defined as ‖x‖ = (
∑n

i=1 x
2
i )

1/2. The

`2 induced matrix norm, also known as the spectral norm, for M ∈ Rn×n is defined as

‖M‖2 = max‖x‖=1 ‖Mx‖. Let aij be the individual entries of A ∈ Rn×n, the Frobenius

norm of A is defined as ‖A‖F =
(∑n

i,j=1 |aij|2
)1/2

. For more information on these norms

see [23]. We define the following matrix semi-norm

‖M‖min = min
‖x‖=1

‖Mx‖. (2.9)
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For a given mass matrix M , these definitions and the cross product property ‖x1 × x2‖ ≤

‖x1‖‖x2‖ give rise to the following properties

mn‖x‖ = ‖M‖min‖x‖ ≤ ‖Mx‖ ≤ ‖M‖2‖x‖ = m1‖x‖, (2.10)

‖ −Mx‖ ≤ −mn‖x‖, (2.11)

‖M−1/k‖2 = ‖M−1‖1/k
2 =

(
1

mn

)1/k

, (2.12)

‖ML‖2 ≤ ‖M‖2‖L‖2 = m1l1, and (2.13)

‖J (Mx1)x2‖ ≤ ‖Mx1‖‖x2‖ ≤ m1‖x1‖‖x2‖. (2.14)

2.3 Matrix Factorization Through the

Skew Symmetric Operator

Lemma 2.3.1 For all real orthogonal matrices U ∈ O(3) and a ∈ R3 the following equal-

ity holds

UJ (x)UT = det(U)J (Ua) (2.15)

Proof: Let x, y, z ∈ R3 be defined such that UT = [x y z]. The facts UUT = I and

xTJ (y) z = det(U) imply that J (y) z = det(U)x, J (z)x = det(U)y, and J (x) y =

14



CHAPTER 2. MODELING SECOND-ORDER MECHANICAL SYSTEMS

det(U)z. Note that ∀ ψ1, ψ2, a ∈ R3 we know ψT1 J (a)ψ2 = aTJ (ψ2)ψ1 and consider

UJ (a)UT =U

[
J (a)x J (a) y J (a) z

]

=


xTJ (a)x xTJ (a) y xTJ (a) z

yTJ (a)x yTJ (a) y yTJ (a) z

zTJ (a)x zTJ (a) y zTJ (a) z



=


0 aTJ (y)x aTJ (z)x

aTJ (x) y 0 aTJ (z) y

aTJ (x) z aTJ (y) z 0



=J




aTJ (y) z

aTJ (z)x

aTJ (x) y




= det(U)J (Ua) (2.16)

Lemma 2.3.2 For all diagonal matrices D ∈ R3×3 and x ∈ R3 the following equality

holds

DJ (Dx)D = det(D)J (x) (2.17)

Proof: Let λ1, λ2, λ3 ∈ R be the diagonal entries of D and x1, x2, x3 ∈ R be the entries of

x ∈ R3. Note that we have the equality det (D) = λ1λ2λ3, thus
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DJ (Dx)D =


λ1 0 0

0 λ2 0

0 0 λ3




0 −λ3x3 λ2x2

λ3x3 0 −λ1x1

−λ3x2 λ3x1 0




λ1 0 0

0 λ2 0

0 0 λ3



=


0 −λ1λ2λ3x3 λ1λ2λ3x2

λ1λ2λ3x3 0 −λ1λ2λ3x1

−λ1λ2λ3x2 λ1λ2λ3x1 0



=λ1λ2λ3


0 −x3 x2

x3 0 −x1

−x2 x1 0


= det(D)J (x) (2.18)

Theorem 2.3.3 For all matrices A ∈ R3×3 and x ∈ R3 the following equality holds

ATJ (Ax)A = det(A)J (x) (2.19)

Proof: Consider the following facts

• From Lemma 2.3.2, U ∈ O(3), and x ∈ R3 we know J (Ux) = det(U)UJ (x)UT .

• From Lemma 2.17, for all diagonal matrices Σ ∈ R3×3, and all x ∈ R3 we know

ΣTJ (Σ) Σ = det(Σ)J (x).

• For all A ∈ R3×3 there exists an SVD decomposition for which A = UΣV T where
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U ∈ R3×3 and V ∈ R3×3 are real orthogonal matrices, and Σ ∈ R3×3 is a diagonal

matrix with the singular values of A along its diagonal.

• det(A) = det(U) det(Σ) det(V ).

Thus

ATJ (Ax)A = V ΣUTJ
(
UΣV Tx

)
UΣV T

= det(U)V ΣUTUJ
(
ΣV Tx

)
UTUΣV T

= det(U)V ΣJ
(
ΣV Tx

)
ΣV T

= det(U) det(Σ)V J
(
V Tx

)
V T

= det(U) det(Σ) det(V )V V TJ (x)V V T

= det(A)J (x) (2.20)

Corollary 2.3.4 For all a, b, c, d ∈ R, x ∈ R3, and I ∈ R3×3 such that I is PDS, the

following equality holds

IaJ
(
Ibx
)
Ic = det(I)dIa−dJ

(
Ib−dx

)
Ic−d. (2.21)

Proof: Let λ1, λ2 and λ3 be the eigenvalues of I , where the λi are labeled without re-

gard to ordering for the largest or smallest eigenvalues. Since I is PDS, these eigen-

values are positive and there exists R ∈ SO(3) and PDS diagonal matrix D ∈ R3×3

such that λ1, λ2 and λ3 are the diagonal terms of D and I = RDRT . Note that for

d ∈ R we have the equality det(I)d = det(D)d = λd1λ
d
2λ

d
3, from Lemma 2.3.2 we
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know det(D)dD−dJ (x)D−d = J
(
Ddx

)
and for all R ∈ SO(3) we have the equality

RJ (x)RT = J (Rx). Thus

IaJ
(
Ibx
)
Ic =RDaRTJ

(
RDbRTx

)
RDcRT

=RDaJ
(
DbRTx

)
DcRT

=RDaJ
(
DdDb−dRTx

)
DcRT

=RDa
(
det
(
Dd
)
D−dJ

(
Db−dRTx

)
D−d

)
DcRT

= det
(
Id
)
RDa−dJ

(
Db−dRTx

)
Dc−dRT

= det
(
Id
)
RDa−dRTJ

(
RDb−dRTx

)
RDc−dRT

= det
(
Id
)
Ia−dJ

(
Ib−dx

)
Ic−d.

(2.22)

This completes the proof. In the following Chapters Corollary 2.3.4 is not explicitly

used, but has been useful in developing Lyapunov functions for second-order rotational

plants.

2.4 State Representations

2.4.1 Rotating Rigid-Body Kinematics

We use three state representations of rigid-body angular position and velocity:
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• q ∈ R3, the angular position in so(3) exponential coordinates,

• ω ∈ R3, the body-frame angular velocity, and

• R ∈ SO(3), the rotation matrix from the body-frame to the world-frame.

The relations between these state representations are given by

R =eJ (q) (2.23)

Ṙ =RJ (ω). (2.24)

Throughout this study we make use of the relation between the body-frame angular veloc-

ity, ω, and the time derivative of the exponential coordinate position, q̇, which takes the

form

ω = A(q)q̇. (2.25)

The closed form for the Jacobian A : R3 → R3×3 given by

A(q) = I +

(
1− cos ‖q‖
‖q‖

)
J (q)

‖q‖
+

(
1− sin ‖q‖

‖q‖

)
J (q)2

‖q‖2
. (2.26)

was first reported by Park in [55]. The inverse of this mapping,

q̇ = A−1(q)ω, (2.27)

A−1 : R3 → R3×3 also has a closed functional form given by

A−1(q) = I3×3 −
1

2
J (q) +

(
1− ‖q‖

2
cot
‖q‖
2

)
J (q)2

‖q‖2
. (2.28)

This inverse exists for ‖q‖ < π [55]. See [12, 16] for additional properties.

19



CHAPTER 2. MODELING SECOND-ORDER MECHANICAL SYSTEMS

2.4.2 Rotating and Translating Rigid-Body Kinematics

We use seven state representations of rigid-body pose and velocity:

• ψ ∈ R6, the pose in se(3) exponential coordinates,

• v ∈ R6, the body-frame velocity,

• H ∈ SE(3), the homogenious transform from the body-frame to the world-frame,

• R ∈ SO(3), the rotation matrix from the body-frame to the world-frame,

• p ∈ R3, the vector representing the body-frame’s origin in the world-frame,

• ν ∈ R3, the vehicle’s body-frame translational velocity, and

• ω ∈ R6, the vehicle’s body-frame angular velocity.

The relations between these state representations are given by

H =eψ̂, (2.29)

Ḣ =Hv̂, (2.30)

H =

 R p

01×3 1

 , and (2.31)

v =

 ν

ω

 . (2.32)
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We employ the inverse SE(3) velocity Jacobian, Â−1 : R6 → R6×6, as a relation

between the body-frame velocity and time derivative of exponential coordinate pose

ψ̇ = Â−1(ψ)v. (2.33)

In [13] the authors derive a closed form expression for this matrix valued function, reprinted

in Appendix B as (B.2). To the best of the author’s knowledge a closed form expression for

the SE(3) angular velocity Jacobian, Â (ψ), has not been reported. Appendix B provides

further information on this Jacobian, including the derivation of a simpler closed form

(B.5), proof that ψT
(
Â−T (ψ) + Â−1(ψ)

)
ψ = ψTψ (Appendix B.1), and an upper bound

for ‖Â−1(ψ)x‖ (Appendix B.2).

2.5 Rigid-Body Plants Subject to External Torques

This Section introduces the dynamics model for a second-order rotational plant and

rotating UV.

2.5.1 3-DOF Rotational Dynamics Model

The commonly accepted model of a rigid-body rotating under the influence of an exter-

nal torque τ ∈ R3 is given by
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Ṙ = Rω̂

ω̇ = I−1 (J (Iω)ω + τ) (2.34)

where ω ∈ R3 is the plant’s angular velocity, R ∈ SO(3) is the plant’s rotational position,

and I ∈ R3×3 is the plant’s PDS inertia tensor [67].

An alternate form of plant dynamics can be developed using a regressor matrix since

the second equality in (2.34) is linear I , the plant’s inertia tensor. Let λ1, · · · , λ6 ∈ R be

the six unique scalars in I such that I =

 λ1 λ2 λ3

λ2 λ4 λ5

λ3 λ5 λ6

. Defining the matrix PI as

PI =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (2.35)

and θI as

θI =

[
λ1 λ2 λ3 λ4 λ5 λ6

]T
(2.36)

we have the relation

IS = PIθI . (2.37)

The second equality in (2.34) can be factored as

τ(t) =
(
ω̇(t)T ⊗ I + ω(t)T ⊗ J (ω(t))

)
PIθI

= WI(ω, ω̇)θI , (2.38)
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where I ∈ R3×3 is the identity matrix and

WI(ω, ω̇) = ω̇(t)T ⊗ I + ω(t)T ⊗ J (ω(t))PI . (2.39)

2.5.2 3-DOF UV Rotational Dynamics Model

Modeling a submerged rotating rigid-body requires accounting for the surrounding

fluid. The most commonly employed plant models for UV are finite dimensional lumped-

parameter approximate models with vehicle-specific plant parameter terms including mass

and added mass parameters; quadratic drag parameters; and gravity and buoyancy param-

eters. Previous studies have shown that including explicit terms for the quadratic drag and

buoyancy torque within (2.34) results in a model which approximates the dynamics of a

rotating UV [45]. Therefore, we model the rotational dynamics of an UV as

Ṙ = RJ (ω)

ω̇ = I−1

(
J (Iω)ω +

(
3∑
i=1

|ωi|Ci

)
ω + J (b)RT e3 + τ

)
(2.40)

where I is the UV’s inertia tensor, e3 =

[
0 0 1

]T
, C1, C2, C3 ∈ R3×3 make up a gen-

eral three DOF coupled quadratic drag matrix, and b ∈ R3 represents the torque applied to

the vehicle due to the relative positions of the UV’s center-of-gravity (COG) and center-of-

buoyancy (COB). Quadratic drag is assumed to be dissipative thus, ωT
(∑3

i=1 |ωi|Ci
)
ω ≤

0 for all ω ∈ R3 — i.e. the symmetric part of
∑3

i=1 |ωi|Ci is negative definite.

The second equality in (2.40) is linear in the plant parameters. Thus, an alternate form

of UV rotational dynamics can be developed using a regressor matrix. Let the UV R sub-
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script denote UV rotational dynamics and define θUV R ∈ R36 as

θUV R =
[
θTI (CS

1 )T (C2)T (CS
3 )T bT

]T
. (2.41)

Then the second equality in (2.40) can be factored as

τ(t) =

[
WI(ω, ω̇) −|ω1|ωT ⊗ I −|ω2|ωT ⊗ I −|ω3|ωT ⊗ I J (RT e3)

]
θUV R

= WUV R(ω, ω̇, R)θUV R (2.42)

where

WUV R =

[
WI(ω, ω̇) −|ω1|ωT ⊗ I −|ω2|ωT ⊗ I −|ω3|ωT ⊗ I J (RT e3)

]
.

(2.43)

2.6 6-DOF UV Dynamics Model

Using the state representation conventions of Section 2.4.2, we represent the pose and

velocity of an UV with H ∈ SE(3) and v ∈ R6 respectively. We model a UV as a rigid-

body with added hydrodynamic mass, quadratic drag, gravitational force, and buoyancy

torque moving under the influence of external torques τ ∈ R3 and forces f ∈ R3. The

commonly accepted second-order finite-dimensional lumped parameter dynamic model for

fully submerged rigid-body UV, written in the body-frame, is
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Ḣ =Hv̂

Mv̇ = adTv (Mv) +

(
6∑
i=1

|vi|Di

)
v + G(R) + u (2.44)

where G(R) =

 gRT e3

J (b)RT e3

, e3 =


0

0

1

, u =

 f

τ

, M ∈ R6×6 is the vehicle’s

mass matrix, the set Di ∈ R6×6 (i = 1 · · · 6) are the 6 DOF fully-coupled quadratic drag

coefficients, g ∈ R is the net vertical force acting on the vehicle due to gravity and buoy-

ancy (i.e. the net buoyancy), and b ∈ R3 is the torque applied to the vehicle due to the

relative positions of the COG and COB (which will vary as a function of the vehicle’s roll

and pitch) [18].

Although the model (2.44) is derived empirically, its structure is well established in the

literature [18]. Previous studies have demonstrated this model’s capacity to approximate

UV dynamics following typical operational trajectories and justified this model’s exclusion

of a linear drag term [45]. The parametersM ,D, g, and b are expected to have the following

properties:

• the mass matrix M is PDS, the sum of the vehicle’s rigid-body mass matrix and its

hydrodynamic added-mass matrix;

• the scalar g is the net difference of the force of gravity and force of buoyancy on the

vehicle and is reported in newtons;
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• the vector b ∈ R3 is the body-frame COB position multiplied by the force of buoy-

ancy added to the body-frame COG position multiplied by the force of gravity and is

reported in newton meters; and

• the quadratic drag D is dissipative (i.e. vT
(∑6

i=1 |vi|Di

)
v ≤ 0 for all v ∈ R6 or,

equivalently, the symmetric part of
∑6

i=1 |vi|Di is negative definite).

An alternate form of UV dynamics can be developed using a regressor matrix since the

second equality in (2.44) is linear in M , D, g, and b. Let {m1, · · · ,m21} be the 21 unique

scalar values in M such that

M =


m1 m2 m3 m4 m5 m6

m2 m7 m8 m9 m10 m11

m3 m8 m12 m13 m14 m15

m4 m9 m13 m16 m17 m18

m5 m10 m14 m17 m19 m20

m6 m11 m15 m18 m20 m21

 . (2.45)
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Defining the matrix PM as

PM =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



, (2.46)

and θM as a vector of the unique scalar terms mi from M in numerical order, we have the
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relation

MS = PMθM . (2.47)

Let the UV subscript denotes 6-DOF UV dynamics and define θUV as

θUV =

[
θTM (DS

1 )T (DS
2 )T (DS

3 )T (DS
4 )T (DS

5 )T (DS
6 )T g bT

]T
. (2.48)

Then the second equality in (2.44) can be factored as

u(t) =

[
WM(v, v̇) WD(v) Wgb(R)

]
θ

= WUV (v, v̇, R)θUV (2.49)

using the following definitions

• WM(v, v̇) =
(
v̇(t)T ⊗ I + vT ⊗ ad(v)

)
PM ,

• WDi(v) = −|vi|vT ⊗ I for all i ∈ {1, · · · , 6},

• WD(v) =

[
WD1(v) WD2(v) WD3(v) WD4(v) WD5(v) WD6(v)

]
,

• Wgb(R) =

 −RT e3 03×3

03×1 J (RT e3)

, and

• WUV =

[
WM(v, v̇) WD(v) Wgb(R)

]
.

2.7 Open Kinematic Chain Dynamics Model

In Section 3.4 a parameter identification algorithm for an n-link OKC is reported. Let

J ⊂ Rn be the joint space of a n-link OKC, a commonly accepted model for this plant is
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τ = M(q)q̈ + C(q, q̇)q̇ + g(q), (2.50)

where q ∈ J is the vector of OKC joint angles, τ ∈ Rn is the vector of torque inputs

applied at each joint, M ∈ J → Rn×n is the mass matrix, C ∈ J × Rn → Rn×n is the

Coriolis matrix, and g ∈ J → Rn is the gravity vector. Note that for all OKCs there exist

functions M(q), C(q, q̇), and g(q) such that M(q) is PDS and Ṁ(q) − 2C(q, q̇) is skew

symmetric [66]. In the parameter identification algorithm presented, I assume that there

exist r unknown scalar parameters which enter linearly into the functions M(q), C(q, q̇),

and g(q). This assumption is common in the robotics literature; applies to a wide class of

robotic manipulators; and allows (2.50) to be factored as

M(a)b+ C(a, c)d+ g(a) = WOKC(b, a, c, d)θOKC (2.51)

for all a, b, c, d ∈ Rn where θOKC ∈ Rr is a vector of the parameters in the manipulator

model [17].
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Chapter 3

State Estimation and Parameter

Identification for Simple Mechanical

Systems: Second-Order Rotational

Plants and Open Kinematic Chains

This Thesis reports advances in state estimation, parameter identification, and control

algorithms applicable to underwater vehicles (UVs). Chapters 4 and 5 present the develop-

ment and experimental evaluation of UV algorithms. However, the theoretical antecedents

of these algorithms are state and parameter estimation algorithms for a broader class of

simple mechanical systems (SMSs). This Chapter presents three separate algorithms: an

angular velocity observer for a second-order rotating rigid-body plant (Section 3.2); an
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adaptive identification algorithm for the inertia tensor of a second-order rotating rigid-body

plant (Section 3.3); and an adaptive identification algorithm for the dynamic parameters of

an open kinematic chain (OKC) (Section 3.4).

The angular velocity observer and the inertia tensor adaptive identification (AID) al-

gorithm address 3-degree-of-freedom (DOF) second-order rotating rigid-body plants. As

such, they are applicable for a number of space, air, and marine vehicle applications. The

AID algorithm for second-order rotational plants preforms dynamic estimation of the iner-

tia tensor from input-output signals. In a variety of undersea, space, and air vehicle mis-

sions, the vehicle inertia tensor varies dynamically as consumables and payload vary over

the duration of a mission. Thus dynamic inertia tensor estimation could facilitate forward

modeling and model-based control with such vehicles.

The OKC AID algorithm estimates the plant model dynamic parameters that enter lin-

early into a general class of nonlinear second-order holonomic plants, including robotic

manipulators. Dynamic parameters that enter linearly into the plant model such as mass,

inertia, and friction coefficients can be estimated. Most previously reported AID algorithms

methods for this class of plants have focused on model-based adaptive tracking controllers.

However these approaches are not applicable when the manipulator is either uncontrolled,

under open-loop control, under actuated, or is using any control law other than a spe-

cific adaptive tracking controller. The AID reported herein does not require any particular

control algorithm and is also suitable for uncontrolled plants. In the case of both AID al-

gorithms presented in this Chapter, continuous parameter monitoring of plant parameters
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may enable the detection of unexpected changes that indicate system failures.

The AID algorithm presented in Section 3.3.1 was originally reported in 2012 [47].

3.1 Literature Review

State estimation and parameter identification algorithms for simple mechanical systems

(SMSs) has been an active research area for over three decades. Controllers and observers

that do not require access to angular velocity have been developed for plants for the form

(2.34). Lizarralde and Wen reported an attitude controller for (2.34) that does not require

access to angular velocity [38]. In [60] Salcudean reported a stable velocity observer for

plants of the form (2.34) using unit quaternion representation of plant angular position.

In [2] the authors report general results for intrinsic observers on a broad class of La-

grangian systems. In [43] the authors use the general result of [2] to address the special

case of observers for mechanical systems on a Lie group. In [41, 42] the authors address

the problem of developing complementary filters for the special orthogonal group in the

presence of noisy velocity data. In [9] the authors apply the general approach of [41,42] to

develop observers for second-order SE(3) plants.

A broad class of nonlinear model-based trajectory tracking controllers developed since

the 1980’s — for example Koditschek’s nonlinear tracking controller for second-order ro-

tating plants [35] and exactly linearizing model-based trajectory tracking controllers for

OKCs [20, 39] — require exact knowledge of the plant’s kinematic and dynamic parame-
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ters. Although kinematic parameters are often easily obtained, dynamic parameters gen-

erally must be measured empirically. Most previously reported parameter identification

methods for OKCs employ one of two general approaches: (i) linear regression of experi-

mental data or (ii) adaptive model-based trajectory tracking control.

A variety of previously reported studies have employed least-squares, total least-squares,

or extended Kalman filters to identify plant parameters entering linearly into the plant equa-

tions of motion for robot manipulators [4,32], UV [3,14,44], and spacecraft [29,54]. Khalil

and Dombre provide a summary of this work [30].

The problem of adaptive model-based reference trajectory tracking is well understood

for several types of second-order holonomic nonlinear plants whose parameters enter lin-

early into the plant equations of motion, e.g., robot manipulator arms [17,59,63], UVs [27],

spacecraft [36, 62], and general mechanical systems [37]. The previously reported result

most closely related to the adaptive identifier reported herein is reported in [15], which ad-

dresses the specific problem of adaptive model-based tracking control of rotational plants

of the form (2.34). [24] reports an adaptive identification algorithm for OKCs that employs

a low pass filter approach for the parameter update law to avoid instrumenting joint accel-

eration, and reports a numerical simulation. Other than [24], although a great variety of

adaptive model-based trajectory tracking controllers have been developed, to the best of

our knowledge the corresponding model-based AID algorithm — without requiring simul-

taneous trajectory tracking control — have not been reported.

Adaptive methods for parameter identification of linear plants are well understood [6,
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51, 61] and have been employed for a few application-specific nonlinear models, such as

decoupled model for UVs [64]. To the best of our knowledge, the AID algorithm reported

in Section 3.3 is the first reported inertia tensor adaptive estimation method for rotational

plants of the form (2.34) without the additional need to simultaneously perform reference

trajectory tracking. Section 3.4 reports an AID algorithm which does not require joint

acceleration signals and provides physically feasible models.

3.2 Angular Velocity Observation for 3-DOF Ro-

tational Plants

This Section addresses the velocity observer problem for three-dimensional second-

order rotational plants of the form (2.34) when the signals of torque input and angular

position are available, but the signal of plant angular velocity is unavailable. Using the

input torque signal, angular position signal, and plant’s known inertia tensor the goal of

the velocity observer is to asymptotically exactly estimate the plant’s unknown angular

velocity.

This Section presents a novel angular velocity observer, along with an analysis of its

stability. A comparative analysis of the novel and two previously reported nonlinear angu-

lar velocity observers is presented. Numerical simulations of all three show convergence

of the observer state to the plant state and similar performance for most angular position

trajectories and inertia tensors.
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3.2.1 Velocity Observer from Body Frame

Consider the model of a rotating rigid-body under the influence of an external torque,

τ , of the form (2.34) with angular position, R, and angular velocity, ω, repeated here for

the reader as

Ṙ = Rω̂

ω̇ = I−1 (J (Iω)ω + τ) . (3.1)

Assume the plant’s positive definite symmetric (PDS) inertia tensor, I , input torque signal,

and angular position signal are known but the angular velocity signal is unknown. Without

loss of generality we can assume I is diagonal with eigenvalues 0 < λ3 ≤ λ2 ≤ λ1 < ∞

in some arbitrary order along the diagonal. We define the observer states as R̂ and ω̂,

estimates of the plant’s angular position R and angular velocity ω respectively. We define

the error signals as

∆R = R̂TR (3.2)

∆q = logSO(3)(∆R) (3.3)

ψ = ∆RT ω̂ (3.4)

∆ω = ω − ψ. (3.5)

35



CHAPTER 3. SMS STATE ESTIMATION AND PARAMETER IDENTIFICATION

The remainder of this Section analyzes the stability of the previously unreported nonlinear

angular velocity observer

˙̂
R =R̂J (ω̂ −∆RA(∆q)L∆q)

˙̂ω =∆R
(
I−1 (J (Iψ)ψ + τ + ∆q)− J (ψ)A(∆q)L∆q

)
(3.6)

where L ∈ R3×3 is a observer gain matrix (possibly a function of ψ) yet to be determined.

3.2.1.1 Error System

The time derivative of (3.2) is

∆Ṙ =
˙̂
RTR + R̂T Ṙ

= ∆RJ (∆ω +A(∆q)L∆q) (3.7)

thus

∆q̇ = A−1(∆q) (∆ω +A(∆q)L∆q)

= L∆q +A−1(∆q)∆ω. (3.8)

The time derivative of (3.5) is

∆ω̇ =ω̇ −∆ṘT ω̂ −∆RT ˙̂ω

=I−1 (J (Iω)ω + τ) + J (∆ω +A(∆q)L∆q)ψ

− I−1 (J (Iψ)ψ + τ + ∆q) + J (ψ)A(∆q)L∆q

=I−1 (J (Iω)ω + IJ (∆ω)ψ − J (Iψ)ψ)− I−1∆q

=− I−1∆q + I−1 (−IJ (ψ) + J (Iω)− J (ψ)I) ∆ω, (3.9)

36



CHAPTER 3. SMS STATE ESTIMATION AND PARAMETER IDENTIFICATION

where this final equality makes use of the fact that

J (Iω)ω + IJ (∆ω)ψ − J (Iψ)ψ = J (Iω) (∆ω + ψ)− IJ (ψ)∆ω − J (Iψ)ψ

= (J (Iω)− IJ (ψ)− J (ψ)I) ∆ω.

Define

B (ω, ψ) = −IJ (ψ) + J (Iω)− J (ψ)I, (3.10)

clearly BT (ω, ψ) = −B (ω, ψ) and thus B (ω, ψ) is skew-symmetric. Defining

x =

 ∆q

∆ω

 (3.11)

and

A(x, ω, ψ) =

 L A−1(∆q)

−I−1 I−1B(ω, ψ)

 , (3.12)

from (3.8) and (3.9), the full error system takes the form

ẋ = A(x, ω, ψ)x. (3.13)

3.2.1.2 Stability Analysis

Theorem 3.2.1 Consider the error system of the form of (3.13) with the following assump-

tions:

• The plant satisfies the condition 4λ3 > λ1, and

• L(ψ) in the observer is set such that L(ψ) = −E+F (ψ) whereE is a constant posi-

tive definite matrix, F (ψ) = −I1/2J (ψ)I−1/2 + I−1/2J (Iψ)I−1/2− I−1/2J (ψ)I1/2

and ψ = ∆RT ω̂.
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This error system is locally asymptotically stable in the sense of Lyapunov for a neighbor-

hood of x = ~0.

Proof: Note that for ε small enough the Lyapunov function

Lε =
1

2
xTPεx (3.14)

is

• positive definite

• equal to zero if and only if x = ~0

where

Pε =

 I −εI1/2

−εI1/2 I

 , (3.15)

I is the identity matrix, and I is the plant’s inertia tensor.

In the sequel the explicit functional dependencies ofA, B, andL are no longer specified.

This compact notation improves the clarity of the equations. However, in this and all future

equations: A denotes A(∆q), B denotes B(ψ, ω), and L denotes L(ψ). Consider L̇ε given
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by

L̇ε =
1

2
ẋTPεx+

1

2
xTPεẋ

=
1

2
xT
(
ATPε + PεA

)
x

=
1

2
xT

 LT + L+ 2εI−1/2 −εLT I1/2 − I +A−1 − εI−1/2B

A−T + εBI−1/2 − εI1/2L− I −εA−T I1/2 + BT − εI1/2A−1 + B

x

=
1

2
xT

 −2E + 2εI−1/2 −ε
(
−EI1/2 + I−1/2J (I∆ω)

)
−ε
(
−I1/2E − J (I∆ω) I−1/2

)
−ε
(
A−T I1/2 + I1/2A−1

)
x.

(3.16)

The equality LT + L + 2εI−1/2 = −2E + 2εI−1/2 is a consequence of F (ψ) being skew

symmetric. The equality −εA−T I1/2 + BT − εI1/2A−1 + B = −ε
(
A−T I1/2 + I1/2A−1

)
is a consequence of B(ω, ψ) being skew symmetric. The derivation of (3.16) also uses the

facts that A−1(∆q)∆q = A−T∆q = ∆q implies

∆qT
(
−I +A−1

)
∆ω = 0; (3.17)

−F (ψ)I1/2 + I−1/2B(ψ) = I−1/2J (I∆ω) implies

ε
(
LT I1/2 + I−1/2B

)
= −ε

(
−EI1/2 + I−1/2J (I∆ω)

)
; (3.18)

and

LT (ψ) = −E − F (ψ). (3.19)

Since L̇ε depends only on ∆q and ∆ω, L̇ε is bounded for all x such that ‖x‖ < π. First

consider the term −ε∆ωT
(
A−T I1/2 + I1/2A−1

)
∆ω. Noting the closed-form structure of
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A−1(∆q) from (2.28), the lower diagonal term of (3.16) obeys the following equality

A−T I1/2 + I1/2A−1 =2I1/2 +
1

2
(−J (∆q)I1/2 + I1/2J (∆q))+

1

‖∆q‖2

(
1− ‖∆q‖

2
cot

(
‖∆q‖

2

))(
J (∆q)2I1/2 + I1/2J (∆q)2

)
.

The inequalities (2.10) from Section 2.2.2 and the fact
(

1− ‖∆q‖
2

cot
(
‖∆q‖

2

))
< 1 ∀‖∆q‖ ≤

‖x‖ < π imply

−ε∆ωT
(
A−T I1/2 + I1/2A−1

)
∆ω ≤ ε(λ

1/2
1 ‖∆q‖+ λ

1/2
1 − 2λ

1/2
3 )‖∆ω‖2

∆qT
(
−2E + 2εI−1/2

)
∆q ≤ − (2e3 − ελ1) ‖∆q‖2

−ε∆qT
((
−E1I

1/2 + I−1/2J (I∆ω)
))

∆ω ≤ ε(e11λ1‖∆q‖‖∆ω‖+ λ
1/2
3 λ1‖∆q‖‖∆ω‖2).

In consequence

2L̇ε ≤− (2e13 − ελ1) ‖∆q‖2 + ε
(
λ

1/2
1 ‖∆q‖+ λ

1/2
1 − 2λ

1/2
3

)
‖∆ω‖2+

2ε(e11λ1‖∆q‖‖∆ω‖+ λ
1/2
3 λ1‖∆q‖‖∆ω‖2)

≤− (2e13 − ελ1) ‖∆q‖2 + ε(λ
1/2
1 − 2λ

1/2
3 )‖∆ω‖2+

ε(2e11λ1 + 2λ
1/2
3 λ1π + λ

1/2
1 π)‖∆q‖‖∆ω‖ (3.20)

∀‖∆ω‖ ≤ ‖x‖ < π. Define a1 = 2e11λ1 + 2λ
1/2
3 λ1π + λ

1/2
1 π, a2 = 2e13, a3 = λ1,

a4 = −λ1/2
1 + 2λ

1/2
3 , and observe that

2L̇ε ≤ −zTQz (3.21)

where

Q =

 a2 − εa3 − ε
2
a1

− ε
2
a1 εa4

 (3.22)
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and z =

 ‖∆q‖
‖∆ω‖

. Q is negative definite if λ1 < 4λ3 and ε < 4a4a2
‖4a4a3−a21‖

.

The local asymptotic stability of the angular velocity observer is proven. Note that

accounting for the presence of the matrix valued function (3.10) in the error dynamics

(3.13) as part of the stability analysis required careful selection of the Lyapunov function

(3.14) and matrix valued function F (ψ) from Theorem 3.2.1. Although Corollary 2.3.4

was not explicitly required for the stability analysis reported, the selections of L(t) and

F (ψ) were enabled by this Corollary.

3.2.2 Velocity Observer from World Frame

In [60] Salcudean reports a velocity observer of the form:

˙̂
R =J

(
R̂RT

(
ω̂ + kv sgn yoI

−1
B y
))
R̂

d

dt
(IBω̂) =

1

2
kpI

−1
B y sgn(yo) +RT τ (3.23)

where IB = R̂IR̂T ; ∆q̄ = logSO(3)(RR̂
T ); y = 1

‖∆q̄‖ sin ‖∆q‖
2

∆q̄; yo = cos ‖∆q̄‖
2

; and kv

and kp are positive scalar observer gains. Note that [60] uses the rotational error matrix

RR̂T . This rotational error matrix structure is different than the definition used in this

Section (3.2); it can not be interpreted as the transformation between the body-frame and

observer-frame. Possible rotational error matrix choices are discussed further in [13].

41



CHAPTER 3. SMS STATE ESTIMATION AND PARAMETER IDENTIFICATION

3.2.3 Velocity Observer from Coordinate Free Perspective

In [43] Maithripala, Berg, and Dayawansa use a methodology similar to techniques

from geometric control to develop an intrinsic observer on SO(3)×R3 as well as on similar

invariant Lie groups. This study employs contraction analysis to show convergence of the

observer state to plant state. This result relies on a more general intrinsic observer for

simple mechanical systems on a general Riemannian manifold [2]. This study reports an

intrinsic observer for a second-order rotational plant using exponential coordinates:

˙̂
R =R̂J (ω̂ − 2α∆q̃)

˙̂ω =I−1 (J (Iω̂) ω̂ + α (J (Iω̂) ∆q̃ + J (I∆q̃) ω̂))

− αJ (∆q̃) ω̂ − Γ(I−1τ,∆q̃)− J(ω̂,∆q̃)ω̂ − β∆q̃, (3.24)

where α and β are positive scalar observer gains and the error term is ∆q̃ = logSO(3)(R
T R̂).

Note that [43] uses the rotational error matrix RT R̂; this is the transpose of the defini-

tion used in this Section (3.2). Using index summation notation for the following defini-

tions Γ(Y, ξ) =
(
Y k − νkijY iξj

)
bk and J(ζ, ξ)η = bk

(
Rk
jabη

j(ζaξb − ζbξa)− νkijCi
abζ

aηj
)

where bk are a basis of the Lie algebra so(3), νkij are the Levi-Civita connection coefficients,

Ck
ji are the structure constants, and Rk

jab are the curvature coefficients. Note that Ck
ji, ν

k
ij ,

and Rk
jab are constant for a selected basis bk of so(3). The Γ(Y, ξ) uses the concept of

parallel transport to have the input torque τ act on this observer system in an equivalent

fashion to the effect of τ on (2.34).
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3.2.4 Angular Velocity Observer Comparative

Numerical Simulation Study

This Section reports a comparative analysis of numerical simulations for the three angu-

lar velocity observers described in Sections 3.2.1, 3.2.2, and 3.2.3. We assume the plant’s

inertia tensor, I , is known and the signals of the plant rotational position, q(t), and the plant

torque input, τ(t), are available.

Each observer’s performance was evaluated numerically using a fourth order Runge-

Kutta numerical solution with fifth order error control. In every case during simulation the

initial state of the observer was q̂(0) = ~0 and ω̂(0) = ~0.

Plant position trajectories and control inputs satisfying (2.34) were generated numeri-

cally. Plant position trajectories, q(t), were generated analytically as a sum of sines and

cosines, each with different frequencies and amplitudes, such that ‖q(t)‖ < π
2
. Corre-

sponding plant velocity signals q̇(t) and ω(t) were similarly generated analytically. Plant

signals ω̇(t) and τ(t) were computed numerically. In this simulation study we report

• the body-frame observer (3.6) as Observer A,

• the world-frame observer (3.23) as Observer B, and

• the coordinate free observer (3.24) as Observer C.

Feedback gains appearing in the three observers differ in form and dimension. In an

effort to achieve a fair comparison, we chose observer gains such that, when the observer
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Figure 3.1: Angular position and angular velocity simulation the plant, (2.34), and Ob-
server A, (3.6). Note convergence of Observer A state to plant state in each of the 6 DOF.

44



CHAPTER 3. SMS STATE ESTIMATION AND PARAMETER IDENTIFICATION

error systems were linearized about the equilibrium point ∆q = ∆q̄ = ∆q̃ = ~0 and

∆ω = ~0, the resulting linearized gain terms were approximately equal. Equality was be

achieved for the linearized error dynamics of Observers A and B. The gains of Observer C,

which differ in structure from A and B, were set such that the average of the eigenvalues of

the gain matrices of its linearized error dynamics were equal to the average eigenvalue of

the gain matrices of the linearized error dynamics of both Observers A and B. Given k ∈ R

such that k > 0 then each observer was proven to be locally convergent to the plant’s state

and the gain equivalence described was achieved by using the following formulas

• E = (k
2
)I−1 Observer A

• kp = 1 and kv = k Observer B

• α = k
4
gavg and β = 1

2
gavg for Observer C

where gavg is the average of the eigenvalues of I−1.

To evaluate and compare differences in observer convergence we simulated a number

of scenarios. For observer gains such that k > 0, all three observers were seen to be

asymptotically stable (i.e. state estimates converged to the state of the plant). For example

Figure 3.1 shows a typical case of Observer A converging to the plant’s state in all six DOF.

Figure 3.2 is a sample plot showing the magnitude of angular position error and angular

velocity error with respect to time for all three observers. For simulations of plants with

inertia tensor eigenvalues near or less than 1.0, the three observers seemed to converge in a

similar fashion. However, Figure 3.2 shows Observer B displaying under-damped behavior
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which slows its convergence. This behavior diminished as either the gain is increased or the

inertia is lowered. Figure 3.3 shows the average of 50 trials with inertia tensor eigenvalues

less than unity and, on average, you can see the similar behavior of the different velocity

observers.

3.2.5 Angular Velocity Observer Conclusions

This Section reports a comparative analysis of three angular velocity observers for

second-order rotational plants of the form (2.34) for which the inertia tensor is known,

and the signals of angular position and torque input are available. Two very different pre-

viously reports angular velocity observers were reviewed [43, 60]. We report one novel

angular velocity observer together with a proof of its local asymptotic stability. The results

of a comparative numerical simulation study of the three observers is reported. The ob-

servers were seen to provide similar performance over a range of inertia tensors, angular

position profiles, and feedback gains. For the range of inertia tensors used, each of the three

observers were analytically guaranteed to converge to the correct angular velocity estimate.

However, these analytic stability analyses do not provide information on the rate of conver-

gence. Each simulated observer’s angular velocity estimate converged to the plant state as

expected; however, the coordinate free and body-frame observers (though more complex

to implement) were not seen to display the underdamped behavior which appeared to de-

grade the world-frame observer’s state estimate convergence rate for some of the simulated
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Figure 3.2: Rotational error magnitude and angular velocity error magnitude between ob-
server state and plant state.
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position profile trials and inertia tensor eigenvalues less than one.
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comparisons in our ensemble of simulation studies. For simple second-order linear sys-

tems, underdamped behavior results from a poorly tuned combination of the proportional

and derivative gains; we would expect similar performance for each of the three observers

when state errors are small enough that the linearization assumptions used to match the

gains are valid. The lack of underdamped behavior in the coordinate free and body-frame

observers could indicate that the additional nonlinear terms improve performance of both

when the linearization assumptions are no longer valid. However, the difference in structure

of these three nonlinear observers makes it difficult to analytically prove the existence of

such benefits. Exploring these differences, as well as any link between the extra coordinate

free and body-frame terms, is a topic for further research.

3.3 Adaptive Identification for 3-DOF Rotational

Plants

This Section addresses the problem of estimation the inertia tensor of 3-DOF rotational

plants of the form (2.34). We report a novel AID algorithm which estimates the inertia

tensor for a rotating rigid-body using the signals of external torque and angular velocity.

A local stability proof of the new AID algorithm is reported. A numerical simulation

study investigates the effect of richness of the torque input signal on parameter estimation,

the effect of feedback gains, the effect of initial condition, and the domain of stability.

The simulation studies corroborate the analytic stability analysis, showing that the angular
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velocity estimate converges asymptotically to the actual angular velocity of the plant and

the adaptive estimate of the inertia tensor converges to a constant value. Additionally, the

simulation studies show that the inertia tensor estimate converges to the true plant inertia

tensor value in the presence of a sufficiently rich input torque signal. The simulation studies

reveal the actual domain of attraction to exceed the conservative bounds arising in the

stability proof, and identify practically useful ranges of feedback gains.

3.3.1 3-DOF Rotational Dynamics AID

Consider a rotating rigid-body under the influence of an external torque of the form

(2.34) where the plant’s input torque τ(t), angular position R(t), and angular velocity ω(t)

are accessible signals and the plant’s PDS inertia tensor is assumed constant but is un-

known. We consider the class of inputs τ(t) such that both τ(t) and the angular velocity

of the uncontrolled plant, ω(t), are bounded. Throughout this Section we will use the

following error signals

∆ω(t) = ω̂(t)− ω(t) (3.25)

∆I(t) = Î(t)− I. (3.26)

In this Section we will omit explicit notation of variable dependence on time except where

such dependence is required to discuss the initial condition of the AID algorithm.
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Theorem 3.3.1 Consider the following AID algorithm for plants of the form (2.34)

˙̂ω = Î−1J (Îω)ω − a∆ω + Î−1τ (3.27)

˙̂
I = −1

2

(
ψ1ω

T + ωψT1 −∆ωψT2 − ψ2∆ωT
)

(3.28)

where a ∈ R+, ψ1 = J (ω)∆ω, and ψ2 = Î−1
(
J
(
Îω
)
ω + τ

)
with the following as-

sumptions:

• τ(t) and ω(t) are bounded

• Î(t0) is PDS

• ω̂(t0) = ω(t0)

• ∃ε ∈ R+ such that ‖∆I(t0)‖F + ε ≤ λ3

Under these conditions limt→∞∆ω = ~0, i.e. the estimated angular velocity is asymptoti-

cally stable in the sense of Lyapunov, and limt→∞∆İ = 03×3, i.e. the estimated inertia ten-

sor will converge to a constant value. These limits imply that the plant estimate converges

to values that provide input/output behavior identical to that of the actual experimental

plant for the given input torque τ(t).

Note that since the initial parameter estimate is PDS and the parameter estimate law is

symmetric, both Î(t) and ∆I(t) will be symmetric ∀t > t0, and thus will have strictly real

eigenvalues.
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3.3.2 Error System

The time derivative of (3.26) is

∆̇I =
˙̂
I

= −1

2

(
ψ1ω

T + ωψT1 −∆ωψT2 − ψ2∆ωT
)
. (3.29)

We make use of the fact that IÎ−1 = I−∆IÎ−1, where I is the identity matrix, thus,

I∆̇ω =I
(

˙̂ω − ω̇
)

=− aI∆ω + IÎ−1J (Îω)ω + IÎ−1τ − J (Iω)ω − τ

=− aI∆ω +
(
I−∆IÎ−1

)
J (Îω)ω − J (Iω)ω −∆IÎ−1τ

=− aI∆ω − J (ω)∆Iω −∆IÎ−1
(
J (Îω)ω + τ

)
=− aI∆ω − J (ω)∆Iω −∆Iψ2. (3.30)

3.3.3 Stability Proof

Consider the following Lyapunov function candidate

V (t) =
1

2

(
∆ωT I∆ω + tr

(
∆I∆IT

))
. (3.31)

V (t) is positive definite and equal to zero if and only if ∆ω = ~0 and ∆I = 03×3. From

(3.30) and the fact that for any matrices A and B of appropriate dimension, tr(AB) =
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tr(BA), the time derivative of (3.31) is

V̇ (t) =
1

2

(
∆̇ω

T
I∆ω + ∆ωT I∆̇ω + tr

(
2∆I∆̇I

T
))

=− a∆ωT I∆ω +
1

2

(
ωT∆IJ (ω)∆ω

)
+ tr

(
∆I∆̇I

T
)

+
1

2

(
−ψT2 ∆I∆ω −∆ωTJ (ω)∆Iω −∆ωT∆Iψ2

)
=− a∆ωT I∆ω + tr

(
∆I∆̇I

T
)

+
1

2

(
ωT∆Iψ1 + ψT1 ∆Iω − ψT2 ∆I∆ω −∆ωT∆Iψ2

)
=− a∆ωT I∆ω + tr

(
∆I∆̇I

T
)

+
1

2
tr
(
∆I
(
ψ1ω

T + ωψT1 −∆ωψT2 − ψ2∆ωT
))
.

(3.32)

Using the update law (3.28) results in

V̇ (t) = −a∆ωT I∆ω, (3.33)

which is negative definite in ∆ω and negative semidefinite in the error coordinates ∆ω and

∆I . Lyapunov’s theorem and (3.31) - (3.33) imply that ∆ω and ∆I are bounded and stable.

The structure of V̇ (t) implies that ∆ω ∈ L2 or, equivalently, limt→∞

(∫ t
0

∆ωT∆ω
)1/2

<

∞. To ensure all the signals in (3.27) are bounded, we must ensure that both Î(t) and

Î−1(t) remain bounded. The facts 0 ≤ V (t) ≤ V (t0), ∆ω(t0) = ~0, ∆ωT (t)I∆ω(t) ≥ 0

for all t, and tr
(
∆I(t)∆IT (t)

)
=
∑3

i=1 |∆λi(t)|2 = ‖∆I(t)‖2
F imply that the following

inequality holds for all time:

‖∆I(t)‖F ≤ ‖∆I(to)‖F . (3.34)

By the Rayleigh-Ritz Theorem, min‖x‖=1 x
T Î(t)x = λ̂3(t). Additionally since Î(t) =
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I + ∆I(t) and by assumption ‖∆I(t0)‖F + ε ≤ λ3 the following inequalities hold

λ̂3(t) = min
‖x‖=1

(
xT Ix+ xT∆I(t)x

)
≥ min
‖x‖=1

(
xT Ix

)
− max
‖x‖=1

|xT∆I(t)x|

≥ λ3 − ‖∆I(t)‖2

≥ λ3 −

(
3∑
i=1

|∆λi(t)|2
)1/2

≥ λ3 − ‖∆I(t)‖F

≥ λ3 − ‖∆I(t0)‖F

≥ λ3 − (λ3 − ε)

≥ ε (3.35)

where ε is a finite positive scalar and we use the fact that ‖∆I(t)‖2
2 =

max(|∆λ1(t)|2, |∆λ3(t)|2) because the singular values of a symmetric matrix are equal to

the absolute values of its eigenvalues. The above inequality guarantees that all eigenvalues

of Î(t) are positive and bounded away from zero for all time. Similarly,

λ̂1(t) = max
‖x‖=1

(
xT Ix+ xT∆I(t)x

)
≤ λ1 + max

‖x‖=1
|
(
xT∆I(t)x

)
|

≤ λ1 +

(
3∑
i=1

|∆λi(t)|2
)1/2

≤ λ1 + λ3 − ε (3.36)

which implies that the eigenvalues of Î(t) are positive and bounded above for all time since

54



CHAPTER 3. SMS STATE ESTIMATION AND PARAMETER IDENTIFICATION

ε < λ3. Since the input τ and plant state ω are bounded by assumption, bounded ∆ω, Î ,

and Î−1 imply that ω̇ and ˙̂ω are bounded. The bounded angular velocities imply ∆ω̇ is

bounded. Note that bounded ∆ω̇ and ∆ω ∈ L2 implies

lim
t→∞

∆ω = ~0. (3.37)

Since every signal in ˙̂
I is bounded and limt→∞∆ω = ~0 this implies

lim
t→∞

˙̂
I = 03×3. (3.38)

Thus, the estimator’s angular velocity asymptotically converges to the angular velocity of

the actual plant, and the estimated inertial tensor, Î , asymptotically converges to a constant

value. The local stability of the AID algorithm for 3-DOF rotational plants is proven.

3.3.4 Simulation

This Section describes the performance of the proposed AID algorithm in numerical

simulation. The numerical results presented herein used a fourth order Runge-Kutta numer-

ical solution to simulate both the AID algorithm, (3.27) and (3.28), and the plant, (2.34).

Since the AID algorithm assumed access to both ω(t) and τ(t), without loss of generality

we choose ω̂(t0) = ω(t0). The input torque τ(t) was generated as a sum of sines and

cosines, each with different frequencies and amplitudes. In each trial the plant’s inertia

tensor, I , was chosen and the inertia tensor estimate was initialized to the identity matrix,

i.e. Î(t0) = I.
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3.3.4.1 Convergence of State and Parameter Estimates

To test the differences in identification performance we explored the effects of factors

including initial parameter error, input torque richness, and feedback gain. Figure 3.4 is

representative of simulated performance in the majority of cases. This representative sim-

ulation study used a feedback gain a = 1; an input torque of

τ(t) =

[
−2 cos(2t) −2 sin(t) 2cos(t)

]T
; (3.39)

an inertia tensor of I = 1.5I; and an estimate of Î(t0) = I (this was the initial inertia

tensor for every simulation study in this Section). This Figure explicitly shows state and

parameter convergence of the angular velocity and inertia tensor eigenvalue estimates. The

eigenvalues of the PDS inertia tensors are plotted to show parameter convergence.

3.3.4.2 Effect of Scalar feedback Gain Parameter a

Figure 3.5 shows how AID algorithm performance varies with changes of the scalar

gain a. In the case that a is large, the angular velocity error remains small for all time,

and the small angular velocity error limits the ability of this error signal to drive parameter

adaptation as seen in (3.28). For the case of very small values of a, the parameter conver-

gence is slow. In the limiting case of a = 0 the identifier is stable, but not asymptotically

stable.
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ω
ω

ω
λ

λ
λ

Figure 3.4: Data showing state and parameter convergence during a representative simu-

lation study. Estimated values are highlighted with circles. The top three plots show the

estimated angular velocity’s convergence to the true plant angular velocity in each DOF.

The bottom three plots show the eigenvalues of the estimated inertia tensor converging the

true inertia tensor eigenvalues.
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Δω

Δ

Figure 3.5: The effect of the feedback gain, a, on angular velocity and parameter conver-

gence. The upper graph plots the norm of the body angular velocity error versus time. The

lower graph plots the Frobenius norm of the inertia tensor error versus time. The cases of

AID for a = 0.01, a = 1.0, and a = 100 are shown. Parameter convergence deteriorates

for very large and very small gains.
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3.3.4.3 Effect of Input τ(t) Richness

Figure 3.6 demonstrates the well know fact that exact parameter identification requires

a sufficiently rich input torque signal. For these simulations we employed the following

values for the identification algorithm: a = 1, I = 1.5I, Î(t0) = I, and either τ(t) =[
−2 cos(2t) −2 sin(t) 2 cos(t)

]T
or τ(t) =

[
0 −2 sin(t) 0

]T
. In both cases the

estimated angular velocity converged to the true angular velocity. For the case of the richer

input signal, the inertia tensor estimate converged to the actual plant inertia tensor value.

For the case of the simple input signal, however, the inertia tensor estimate converged to

a value different from the plant’s inertia tensor value. Note that the inertia tensor estimate

still converged to a value that results in identical input-output behavior of the estimated

plant and actual plant for this simple input signal (where an estimated plant is a second-

order rotational plant of the form (2.34) with its inertia tensor equal to an inertia tensor

estimate).

3.3.4.4 Effect of Î(t0)

This Section examines the effect of initial parameter estimate error, ∆I(t0), on pa-

rameter convergence. Figure 3.7 shows parameter convergence for 30 simulated initial

conditions. In all cases Î(t0) = I and a = 1. In each case τ(t) was generated from sums of

sinusoids of different frequencies with randomly generated amplitudes. Three sets of ten

inertia tensors were used. Every inertia tensor was randomly generated such that it was a

59



CHAPTER 3. SMS STATE ESTIMATION AND PARAMETER IDENTIFICATION
Δω

τ

τ τ

Δ

τ τ

Figure 3.6: Two plots showing that parameter convergence requires a sufficiently rich

input signal. The upper graph plots the norm of the body angular velocity error ver-

sus time for two inputs τ(t). The lower graph plots the Frobenius norm of the iner-

tia tensor error versus time for both cases. The angular velocity estimate converges in

either case. τ(t) = [0 − 2 sin(t) 0] is not rich enough to force parameter conver-

gence for this initial condition, whereas parameter convergence occurs for input torque

τ(t) = [−2 cos(2t) − 2 sin(t) 2 cos(t)].
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non-diagonal PDS matrix with the eigenvalues greater than 0.5. Within each set the Frobe-

nius norm of ‖ΔI(t0)‖F was either 0.15, 0.5, or 1. Figure 3.7 plots parameter convergence

of the AID algorithm to every inertia tensor in each of the three sets. For sets one and two,

with ‖ΔI(t0)‖F = 0.15 and ‖ΔI(t0)‖F = 0.5, all conditions of Theorem 3.3.1 were met.

For set three, often ‖ΔI(t0)‖F > λ3 and thus the conditions of Theorem 3.3.1 were not

met. Despite this, every inertia tensor estimate converged to the true inertia tensor for each

randomly generated initial condition. This convergence corroborates our analytic result and

indicates that the condition requiring ‖ΔI(t0)‖F < λ3 from Theorem 3.3.1 is sufficient but

not necessary for asymptotic convergence.

Δ

Δ

Δ

Δ

Figure 3.7: Three sets of ten simulations showing parameter convergence. The Frobenius

norm of the inertia tensor error is plotted versus time. Each of the simulations used a

randomly selected inertia tensor for the system, but within each set the Frobenius norm of

the initial inertia error was a constant value for the entire set, either 0.15, 0.5, or 1.
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3.3.5 3-DOF Rotational Plant AID Conclusion

This Section reports an AID algorithm for the dynamic estimation of the inertia tensor

of rotating plants. The proof of Theorem 3.3.1 shows the local asymptotic stability of

the estimated angular velocity to the plant’s angular velocity and the local stability of the

estimated inertia tensor. Numerical simulations show that for a sufficiently rich external

torque signal the inertia tensor estimate value converges to the true inertia tensor value, and

the domain of attraction of Theorem 3.3.1 is conservative. In Chapter 4, Theorems 4.2.1

and 4.3.1 extend this result to plant models of UV dynamics.

3.4 Adaptive Identification for Open Kinematic

Chains

This Section addresses the problem of parameter estimation for an n-link open kine-

matic chain (OKC) of the form of (2.50). We report a novel AID algorithm which estimates

these plant parameters. This algorithm assumes the joint torque inputs, τ , joint positions,

q, and joint velocities, q̇, are accessible signals.

3.4.1 OKC State Error Coordinates

The AID algorithm presented herein uses the joint velocity estimate v ∈ Rn and the

parameter vector estimate θ̂OKC ∈ Rr as its state variables. Let J ⊂ Rn be the OKC’s joint
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space and note estimated plant terms M̂ , Ĉ, and ĝ can be factored as

M̂(a)b+ Ĉ(a, c)d+ ĝ(a) = WOKC(b, a, c, d)θ̂OKC (3.40)

for all a, b, c, d ∈ Rn where WOKC : Rn × J × Rn × Rn → Rn×r is often termed the

regressor. We employ the following joint velocity and inertia tensor error coordinates

∆v = v(t)− q̇(t) (3.41)

∆θOKC = θ̂OKC(t)− θOKC . (3.42)

Our goal is to develop an update law for v and θ̂OKC which, for initial values of θ̂OKC(t0)

in the neighborhood of θOKC , guarantees that limt→∞∆v = ~0 and limt→∞∆θ̇OKC = ~0.

Considering torque as the system input and joint velocity as the system output, the two

limits above imply the input-output behavior of the estimator asymptotically converges to

the input-output behavior of the plant.

3.4.2 Adaptive Identifier Description

Theorem 3.4.1 Consider the following AID algorithm for plants of the form (2.50):

v̇ = M̂−1(q)
(
τ − Ĉ(q, q̇)v − ĝ(q)−K∆v

)
(3.43)

˙̂
θOKC = WOKC(v̇, q, q̇, v)T∆v, (3.44)

where K ∈ Rn×n is PDS, with the following assumptions:

• τ , q and q̇ are bounded by assumption
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• v(t0) = q̇(t0)

• ∃ε ∈ R+ such that

‖∆θOKC(t0)‖2 ≤
1

√
aMr

(λm − ε) (3.45)

where λm is the smallest eigenvalue for M(q) in any configuration and

aM = max
θ̂∈{e1,e2,...,er}

(
max
q∈Rr

(
eig(M̂(q))

))
(3.46)

where the set {ei} are the standard unit length basis vectors of the space Rr (see

Section 3.4.5 for a complete development of aM ).

Under these conditions the joint velocity error will be asymptotically stable in the sense

of Lyapunov, i.e., limt→∞∆v = ~0, and the model using the estimated parameters will be

indistinguishable from the model using the true parameters for the given torque input, i.e.,

limt→∞∆θ̇OKC = 0.

3.4.3 Error System

Consider (2.50), (3.43), (2.51), and (3.42) as well as the fact that

(WOKC(b1, a, c, d1)−WOKC(b2, a, c, d2)) θOKC = M(a)(b1 − b2) + C(a, c)(d1 − d2)
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in the following equalities

0 = τ − τ

= WOKC(v̇, q, q̇, v)θ̂OKC +K∆v −WOKC(q̈, q, q̇, q̇)θOKC

= WOKC(v̇, q, q̇, v)∆θOKC +K∆v + (WOKC(v̇, q, q̇, v)−WOKC(q̈, q, q̇, q̇)) θOKC

= WOKC(v̇, q, q̇, v)∆θOKC +K∆v +M(q)∆v̇ + C(q, q̇)∆v. (3.47)

The final equality of (3.47) can be rewritten as

∆v̇ = M−1(q) (−C(q, q̇)∆v −K∆v −WOKC(v̇, q, q̇, v)∆θOKC) . (3.48)

3.4.4 Lyapunov Stability

Consider the following Lyapunov function candidate:

V (t) =
1

2
∆vTM(q)∆v +

1

2
∆θTOKC∆θOKC . (3.49)

V (t) is

• positive definite

• radially unbounded

• equal to zero if and only if ∆v = ~0 and ∆θOKC = ~0.
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Using (3.48) the time derivative of (3.49) is

V̇ (t) =∆vTM(q)∆v̇ +
1

2
∆vTṀ(q)∆v + ∆θTOKC∆θ̇OKC

=−∆vTK∆v + ∆vT
(

1

2
Ṁ(q)− C(q, q̇)

)
∆v

−∆vTWOKC(∆v̇, q, q̇,∆v)θOKC + ∆θTOKC∆θ̇OKC

Using the fact that Ṁ(q)− 2C(q, q̇) is skew symmetric and the update law (3.44) results in

V̇ (t) = −∆vTK∆v. (3.50)

V̇ (t) is negative definite in ∆v and negative semidefinite in the error coordinates ∆v

and ∆θOKC . Lyapunov’s theorem and (3.49) - (3.50) imply that ∆v and ∆θOKC are

bounded and stable. The structure of V̇ (t) implies that ∆v ∈ L2, or equivalently

limt→∞

(∫ t
0

∆vT∆v
)1/2

< ∞. To ensure all the signals in (3.43) are bounded, we must

ensure that both M̂−1(q) and M̂(q) remain bounded. Section 3.4.5 proves both are implied

by the conditions specified in Theorem 3.4.1. Since τ , q, and q̇ are bounded by assumption,

bounded ∆v, M̂(q), and M̂−1(q) imply that q̇ and ˙̂
θOKC are bounded. The bounded joint

velocities imply ∆v̇ is bounded. Note that bounded ∆v̇ and ∆v ∈ L2 implies

lim
t→∞

∆v = ~0. (3.51)

Moreover, since every signal in ˙̂
θOKC is bounded and limt→∞∆v = ~0 this implies

lim
t→∞

˙̂
θOKC = ~0. (3.52)

Thus the estimator’s joint velocity asymptotically converges to the joint velocity of the ac-

tual plant, and the estimated plant parameters, θ̂OKC , asymptotically converge to a constant
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value.

The local stability of this OKC AID algorithm is proven if condition (3.45) is sufficient

to bound the mass matrix estimate eigenvalues away from zero.

3.4.5 Bound for Estimated Inertia Matrix

The final requirement to prove Theorem 3.4.1 is that the condition ‖∆θOKC(t0)‖2 ≤

1√
aMr

(λm − ε) implies M̂(q, t) and M̂−1(q, t) are bounded for all time and all configu-

rations. Before showing the eigenvalues of M̂(q, t) are bounded both above and below

we need to further clarify some facts about manipulator mass matrices and define a useful

vector semi-norm.

Since M(q) is PDS we know its largest and smallest singular values are its largest

and smallest eigenvalues. Further, we know that for any physical manipulator every

eigenvalue of M(q) is both positive and bounded for every joint configuration, q, in

the manipulator’s joint space, J. In the sequel, we will use the following definitions:

let the constants λm, λM ∈ R+ be such that λm = minq∈J
(
min‖x‖2=1 x

TM(q)x
)

and

λM = maxq∈J ‖M(q)‖2. Since M(q) is assumed to be completely known up to the uncer-

tain base parameters, θOKCi, this knowledge allows the complete specification of a set of

functions Ai : Rn → Rn×n such that

M(q) =
r∑
i=1

θOKCiAi(q). (3.53)

Further, each Ai(q) is symmetric and bounded, i.e. ∀i ∃ai ≥ 0 such that ‖Ai(q)‖2 ≤ ai
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∀q ∈ J. Based on these non-negative bounding scalars we define the following vector

semi-norm

‖b‖a =
r∑
i=1

ai|bi| (3.54)

where b = [b1 · · · br]T ∈ Rr. Note that for any two vector norms there exists a constant,

p, such that ‖b‖a ≤ p‖b‖2 [23]. To find a conservative value for p in the case of ‖ • ‖a and

‖ • ‖2 we use that 0 ≤ (|bi− bj|)2 implies 2|bi||bj| ≤ |bi|2 + |bj|2 ∀i, j. Let aM be such that

∀i aM ≥ ai and consider

‖b‖2
a =

(
r∑
i=1

ai|bi|

)2

=
r∑
i=1

a2
i |bi|2 +

r−1∑
i=1

r∑
j=i+1

2aiaj|bi||bj|

≤
r∑
i=1

a2
M |bi|2 +

r−1∑
i=1

r∑
j=i+1

2a2
M |bi||bj|

≤ aM

(
r∑
i=1

|bi|2 +
r−1∑
i=1

r∑
j=i+1

(
|bi|2 + |bj|2

))

≤ aM

(
r∑
i=1

r|bi|2
)

≤ aMr‖b‖2
2. (3.55)

Since the square root is a strictly increasing function
√
aMr is a conservative value for p

because the previous inequality implies

‖b‖a ≤
√
aMr‖b‖2. (3.56)

Now let us turn to the task of bounding M̂(q, t). Note that the facts 0 ≤ V (t) ≤ V (t0),

∆v(t0) = ~0, and ∆vT (t)M(q)∆v(t) ≥ 0 for all t imply that the following inequality holds
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∀t ≥ t0:

‖∆θOKC(t)‖2 ≤ ‖∆θOKC(to)‖2. (3.57)

By defining Rayleigh-Ritz Theorem the minimum possible eigenvalue of M̂(q, t) at a cer-

tain time, λ̂m(t), is given by λ̂m(t) = minq∈J

(
min‖x‖=1 x

TM̂(q, t)x
)

. Defining ∆M such

that WOKC(a, b, c, d)∆θOKC = ∆M(b)a + ∆C(b, c)d + ∆g(b) note the implied equality

of M̂(q, t) = M(q) + ∆M(q, t). Consider the following,

λ̂m = min
q∈J

(
min
‖x‖=1

xT (M(q) + ∆M(q, t))x

)
≥ min

q∈J
min
‖x‖=1

xTM(q)x−max
q∈J

(
max
‖x‖=1

|xT∆M(q, t)x|
)

≥ λm −max
q∈J

(
max
‖x‖=1

|
r∑
i=1

∆θOKCi(t)x
TA(q)x|

)

≥ λm −max
q∈J

(
r∑
i=1

max
‖x‖=1

|∆θOKCi(t)||xTA(q)x|

)

≥ λm −
r∑
i=1

|∆θOKCi(t)|ai

≥ λm − ‖∆θOKC(t)‖a

≥ λm −
√
aMr‖∆θOKC(t)‖2

≥ λm −
√
aMr‖∆θOKC(t0)‖2

≥ λm −
√
aMr

(
1

√
aMr

(λm − ε)
)

≥ ε. (3.58)

The previous inequality shows that the condition ∃ε ∈ R+ such that ‖∆θOKC(t0)‖2 ≤
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1√
aMr

(λm − ε) implies that M(q) is invertible for all time. Similarly,

λ̂M = max
q∈J

(
max
‖x‖=1

xT (M(q) + ∆M(q, t))x

)
≤ λM + max

q∈J

(
max
‖x‖=1

|xT∆M(q, t)x|
)

≤ λM + ‖∆θOKC(t)‖a

≤ λM + (λm − ε) (3.59)

which implies that M̂(q, t) is bounded for all time since ε < λm.

3.4.6 Open Kinematic Chain Adaptive Identification Con-

clusion

In this Section an AID algorithm for a robotic manipulator is reported. The AID al-

gorithm presented herein has the advantages of being intuitive, having no requirement for

joint acceleration, and providing physically feasible plant parameter estimates. However,

an experimental comparison with proven linear regression techniques, such as the method

proposed by Khalil et al. [31], would be required to understand the comparative perfor-

mance of this adaptive identifier. We are interested in exploring AID of coupled UV OKC

systems with applications to work-class remotely operated vehicle (ROV) deployments.

With only a brief discussion of persistent excitation for open kinematic chain adaptive

identification algorithms reported thus far [24], we feel further consideration of persistent

excitation in the context of manipulator adaptive identification would clarify the compar-
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ative strengths and weaknesses between adaptive identification and the more established

methods.

3.5 Summary

This Chapter reports one state estimation and two parameter identification algorithms

for simple simple mechanical systems (SMSs). An angular velocity observer is reported

for a 3-DOF rotational plant, and a comparative analysis is reported between the novel and

two previously reported nonlinear angular velocity observers. In numerical simulation all

three show similar performance. An AID algorithm is reported for 3-DOF rotational plants.

Numerical simulations of the inertia tensor AID algorithm corroborate the analytical stabil-

ity analysis and investigate parameter convergence for varying initial conditions, feedback

gains, and input torques. An AID algorithm for OKCs is also reported; the local stability

analysis reveals that plant parameter estimates converge to values that provide plant model

input-output behavior identical to that of the actual second-order OKC plant.
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Adaptive Identification for Underwater

Vehicles

This Chapter addresses the problem of estimation of plant parameters for 6-degree-

of-freedom (DOF) rigid-body underwater vehicles (UVs). We report two novel adaptive

identification (AID) algorithms. Each algorithm estimates the parameters for a rigid-body

plant such as vehicle mass with added hydrodynamic mass; quadratic drag; and gravita-

tional and buoyancy parameters that arise in the dynamic models of rigid-body UVs. The

first AID algorithm identifies parameters to model 3-DOF UV rotational plant dynamics;

its development is a precursor to the second AID algorithm. The second algorithm, 6-DOF

underwater vehicle (UV) adaptive identification (AID), identifies parameters to model gen-

eral 6-DOF UV motion. For both AID algorithms a local stability proof is reported showing

velocity signal estimates converge asymptotically to the plant velocity signals; parameter
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estimates are stable; and parameter estimates converge asymptotically to values that pro-

vide input-output model behavior identical to that of the actual plant. The Johns Hopkins

University Remotely Controlled Vehicle (JHU ROV) was used for comparative experimen-

tal evaluations of both AID algorithms. Sections 4.5 and 4.6 report comparisons of an adap-

tively identified plant model (AIDPM) and a least squares identified plant model (LSPM)

in cross-validation experiments. Both models are shown to match closely the JHU ROV’s

experimentally observed input-output behavior.

As discussed in Section 3.1, a rich literature exists on the problem of model-based

adaptive trajectory-tracking control. These approaches are not applicable when the plant

is either uncontrolled, under open-loop control, or under the control of a control law other

than a specific adaptive tracking controller. In contrast, the AID algorithms reported herein

provide an approach to plant parameter estimation applicable to the commonly occurring

cases of uncontrolled plants, plants under open-loop control, and plants using control meth-

ods prescribed to meet considerations for an application.

Unlike least squares identification (LS) approaches, which requires actuator thrust, po-

sition, velocity, and acceleration signals, AID requires only actuator thrust, position, and

velocity signals. Several parameter identification methods have been reported which do not

require direction instrumentation of acceleration. [24] reports an AID algorithm for open

kinematic chains (OKCs) that employs a low pass filter approach to the parameter update

law that does not require joint acceleration signals, and reports a numerical simulation. UV

parameter identification algorithms not requiring acceleration signals have been reported
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which use adaptive methods [64] or numerical differentiation [7, 57]. These reported UV

algorithms, as presented, are for decoupled plants and have not been shown to generalize

to the fully-coupled UV models, such as (2.40) or (2.44). To the best of our knowledge,

Theorem 4.3.1 is the first reported adaptive method for parameter estimation of a fully cou-

pled 6-DOF UV model without the additional need to simultaneously perform reference

trajectory-tracking.

The need to dynamically estimate the rigid-body model parameters from input-output

signals arises in a variety of vehicle dynamics and control problems including space and air

missions, where the vehicle’s mass distribution may vary as fuel or payload are expended

over the duration of a mission. The issues of parameter identification are also important

for UVs; in comparison to rigid-body 6-DOF spacecraft models (where characterizing ve-

hicle inertia can require 10 scalar values), the effects of added mass, gravity, buoyancy,

and drag require additional parameter and model complexity to characterize UV dynamics

(full characterization of these effects during dynamic UV operation can require hundreds of

scalar parameter values). In addition, for most UVs the drag parameters and mass parame-

ters (which include both the characteristics of the vehicle’s mass and those of the ambient

fluid surrounding the vehicle) cannot be computed analytically, and thus must be identified

experimentally.

The solution to the identification problem reported herein may prove useful in appli-

cations with controlled or uncontrolled plants in which reference trajectory-tracking is im-

practical or infeasible. Of particular interest to the authors are two use case applications
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common in our UV field deployments. The first is the case of vehicles for which the user

does not have the ability to specify an adaptive tracking control algorithm. This can be

the case with commercially available vehicles because often the user can not replace the

controller provided by the vehicle’s manufacturer. The second is the case of under-actuated

vehicles. Adaptive tracking controllers require actuation in all DOF. Frequently vehi-

cle designers utilize UV passive stability of pitch and roll in the design of under-actuated

vehicles, making adaptive tracking control not applicable for either control or model identi-

fication. In these examples, the ability to estimate continuously the plant model parameters

from available input-output signals may enable improved model-based control. Continuous

parameter monitoring may also enable the detection of unexpected changes that indicate

system failures.

The UV rotational dynamics AID algorithm and its experimental evaluation were orig-

inally reported in 2012 [47]. The UV AID algorithm and its experimental evaluation were

originally reported in 2013 [48].

4.1 Problem Statements

In this Chapter we report two parameter AID algorithms, one for 3-DOF UV rotational

dynamics, and the other for 6-DOF UV dynamics. In both cases the AID algorithm esti-

mates the plant parameters using the UV state and control input signals. In these problem

statements, the torque and force signals are the plant inputs and the velocity signals are
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the plant outputs. The AID convergence proofs imply the input-output behavior of the es-

timator converges asymptotically to the input-output behavior of the plant. Below are the

precise problem statements for the two AID algorithms.

3-DOF UV Rotational Dynamics AID Problem Statement: Using the notation defined

in Section 2.5.2 to model a UV subjected to external torques with (2.40), the AID algorithm

reported in Section 4.2 addresses plants where R(t), ω(t), and τ(t) are accessible signals

and the parameters {I, C1, C2, C3, b} are constant but unknown. This AID algorithm

addresses the class of inputs τ(t) such that the input torque and output velocity signals

of the uncontrolled plant (τ(t) and ω(t)) are bounded. The algorithm uses an angular

velocity estimate ω̂(t) ∈ R3, inertia tensor estimate Î(t) ∈ R3×3, quadratic drag estimates

Ĉi(t) ∈ R3×3, and buoyancy torque estimate b̂(t) ∈ R3 as state variables. Defining the

error coordinates

∆ω(t) = ω̂(t)− ω(t) (4.1)

∆I(t) = Î(t)− I (4.2)

∆Ci(t) = Ĉi(t)− Ci (4.3)

∆b(t) = b̂(t)− b (4.4)

the goal is to develop update laws for ω̂(t), Î(t), Ĉi(t), and b̂(t) which, for initial parameter

values in the neighborhood of their respective true values, guarantee that limt→∞∆ω(t) =
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~0, limt→∞
˙̂
I(t) = 03×3, limt→∞

˙̂
Ci(t) = 03×3, and limt→∞

˙̂
b(t) = ~0.

6-DOF UV AID Problem Statement: Using the notation defined in Section 2.6 to model

a UV subjected to external forces and torques with (2.44), the AID algorithm reported in

Section 4.3 addresses plants where R(t), v(t), and u(t) are accessible signals and the pa-

rameters {M , Di for i = 1 · · · 6, g, b} are constant but unknown. This AID algorithm

addresses the class of inputs u(t) such that the input and output signals of the uncon-

trolled plant are bounded (i.e. u(t) and v(t), or equivalently f(t), τ(t) and ν(t), ω(t),

are bounded). The algorithm uses a vehicle velocity estimate v̂(t) ∈ R3, hydrodynamic

mass matrix estimate M̂(t) ∈ R6×6, quadratic drag estimates D̂i(t) ∈ R6×6, gravitational

constant estimate ĝ(t) ∈ R, and buoyancy torque estimate b̂(t) ∈ R3 as state variables.

Defining the error coordinates

∆v(t) = v̂(t)− v(t) (4.5)

∆M(t) = M̂(t)−M (4.6)

∆Di(t) = D̂i(t)−Di (4.7)

∆g(t) = ĝ(t)− g (4.8)

∆b(t) = b̂(t)− b (4.9)

the goal is to develop update laws for v̂(t), M̂(t), D̂i(t), ĝ(t), and b̂(t) which, for ini-

tial parameter values in the neighborhood of their respective true values, guarantee that

limt→∞∆v(t) = ~0, limt→∞
˙̂
M(t) = 06×6, limt→∞

˙̂
Di(t) = 06×6, limt→∞ ˙̂g(t) = ~0, and

limt→∞
˙̂
b(t) = ~0.
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In the remainder of this Chapter we omit explicit notation of variable dependence on

time except where such dependence is required to discuss the initial condition of the AID

algorithms.

4.2 3-DOF UV Rotational Dynamics AID

This Section reports a novel nonlinear AID algorithm for plants of the form (2.40), a

model of 3-DOF UV rotational dynamics. A local stability analysis is also included. This

proof of Theorem 4.2.1 is provided in two parts. First, in Section 4.2.1, the error system is

developed. Then, in Section 4.2.2, we prove the result.

Theorem 4.2.1 Consider the following AID algorithm for plants of the form (2.40):

˙̂ω =Î−1

(
J (Îω)ω +

3∑
i=1

|ωi|Ĉiω + J (b̂)RT e3 + τ

)
− a∆ω (4.10)

˙̂
I =− γ1

2

(
ψ4ω

T + ωψT4 −∆ωψT3 − ψ3∆ωT
)

(4.11)

˙̂
Ci =− γ2|ωi|∆ωωT (4.12)

˙̂
b =− γ3J (RT e3)∆ω (4.13)

with the following definitions:

• a, γ1, γ2, γ3 ∈ R+,

• ψ4 = J (ω)∆ω,

• ψ3 = Î−1
(
J (Îω)ω +

∑3
i=1 |ωi|Ĉiω + J (b̂)RT e3 + τ

)
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and the following assumptions:

• τ(t) is bounded by assumption

• Î(t0) is positive definite symmetric (PDS)

• ω̂(t0) = ω(t0)

• ∃ε ∈ R+ such that λ3 ≥
(
‖∆I(t0)‖2

F + γ1
γ2

∑3
i=1 ‖∆Ci(t0)‖2

F + γ1
γ3
‖∆b(t0)‖2

2

)1/2

+

ε.

Under these conditions the estimated angular velocity error will be asymptotically stable in

the sense of Lyapunov, i.e., limt→∞∆ω = ~0, and parameter estimates converge to constant

values.

This local stability result implies that the plant parameter estimates converge to values that

provide plant model input/output behavior identical to that of the actual experimental plant

for the given input torque τ(t).
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4.2.1 UV Rotational Dynamics AID Error System

Note that (4.2) implies IÎ−1 = I − ∆IÎ−1 and consider the following expression for

the angular velocity error dynamics

I∆ω̇ =IÎ−1

(
J
(
Îω
)
ω +

3∑
i=1

|ωi|Ĉiω + J
(
b̂
)
RT e3 + τ

)
− aI∆ω

− J (Iω)ω −
3∑
i=1

|ωi|Ciω − J (b)RT e3 − τ

=− aI∆ω − J (ω) ∆Iω −∆IÎ−1
(
J
(
Îω
)
ω + τ

)
+
(
I−∆IÎ−1

)( 3∑
i=1

|ωi|Ĉiω

)
−

(
3∑
i=1

|ωi|Ciω

)

+
(
I−∆IÎ−1

)
J
(
b̂
)
RT e3 − J (b)RT e3

=− aI∆ω − J (ω) ∆Iω +
3∑
i=1

|ωi|∆Ciω + J (∆b)RT e3

−∆IÎ−1

(
J
(
Îω
)
ω +

3∑
i=1

|ωi|Ĉiω + J
(
b̂
)
RT e3 + τ

)

=− aI∆ω − J (ω) ∆Iω + ∆Iψ3 +
3∑
i=1

|ωi|∆Ciω + J (∆b)RT e3 (4.14)

4.2.2 UV Rotational Dynamics AID Convergence Proof

Consider the following Lyapunov function candidate

V (t) =
1

2
∆ωT I∆ω +

1

2γ1

tr
(
∆I∆IT

)
+

1

2γ2

3∑
i=1

tr
(
∆Ci∆C

T
i

)
+

1

2γ3

∆bT∆b. (4.15)

V (t) is

• positive definite
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• equal to zero if and only if ∆ω = ~0, ∆I = 03×3, ∀i ∆Ci = 03×3, and ∆b = ~0.

From (4.14) and the facts that for any matricesA andB of appropriate dimension tr(AB) =

tr(BA) and for any x1, x2, x3 ∈ R3 xT1J (x2)x3 = xT2J (x3)x1, the time derivative of

(4.15) is

V̇ (t) =
1

2

(
∆ω̇T I∆ω + ∆ωT I∆ω̇

)
+

1

γ1

tr
(

∆I∆İT
)

+
1

γ2

3∑
i=1

tr
(

∆Ci∆Ċ
T
i

)
+

1

γ3

∆bT∆ḃ

=− a∆ωT I∆ω +
1

2

(
ωT∆IJ (ω) ∆ω −∆ωTJ (ω) ∆Iω − ψT3 ∆I∆ω −∆ωT∆Iψ3

)
+

1

γ1

tr
(

∆I∆İT
)

+ ∆ωT

(
3∑
i=1

|ωi|∆Ci

)
ω +

1

γ2

3∑
i=1

tr
(

∆Ci∆Ċ
T
i

)
+ ∆ωTJ (∆b)RT e3 +

1

γ3

∆bT∆ḃ

=− a∆ωT I∆ω +
1

2
tr
(
∆I
(
J (ω) ∆ωωT − ω∆ωTJ (ω)−∆ωψT3 − ψ3∆ωT

))
+

1

γ1

tr
(

∆I∆İT
)

+
3∑
i=1

tr
(
|ωi|∆Ciω∆ωT

)
+

1

γ2

3∑
i=1

tr
(

∆Ci∆Ċ
T
i

)
+ ∆bTJ

(
RT e3

)
∆ω +

1

γ3

∆bT∆ḃ (4.16)

Note the actual plant parameters are constant, thus ∆İ =
˙̂
I , ∆Ċi =

˙̂
Ci, and ∆ḃ =

˙̂
b. Using

the fact that ψ4 = J (ω) ∆ω and substituting (4.11)-(4.13) into (4.16) yields

V̇ (t) = −a∆ωT I∆ω, (4.17)

which is negative definite in ∆ω and negative semi-definite in the error coordinates ∆I ,

∆Ci, and ∆b. By Lyapunov’s direct method, (4.15) and (4.17) imply that all error coordi-

nates are bounded and stable. The structure of V̇ (t) implies that ∆ω ∈ L2 or, equivalently,

limt→∞

(∫ t
t0

∆ωT∆ω
)1/2

< ∞. We must ensure every signal in (4.10)-(4.13) is bounded.
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With ω, τ , ∆ω, ∆I , ∆Ci, and ∆b bounded, I , Ci, and b constant, and given (4.1)-(4.4)

we can conclude that ω̂, Î , Ĉi, and b̂ are bounded. All that remains is showing that Î−1 is

bounded. Note for ∀t > t0 the following hold:

• 1
γ2

∑3
i=1 tr

(
∆Ci(t)∆C

T
i (t)

)
≥ 0

• 1
γ3

∆bT (t)∆b(t) ≥ 0

• 0 ≤ V (t) ≤ V (t0)

• ∆ω(t0) = ~0

• ∆ωT (t)I∆ω(t) ≥ 0

• 1
γ1

tr
(
∆I(t)∆IT (t)

)
= 1

γ1

∑3
i=1 |∆λi(t)|2 = 1

γ1
‖∆I(t)‖2

F

These facts can be used to show

1

γ1

‖∆I(t)‖2
F ≤

1

γ1

tr
(
∆I(t)∆IT (t)

)
≤ 1

γ1

tr
(
∆I(t)∆IT (t)

)
+ ∆ωT (t)I∆ω(t) +

1

γ2

3∑
i=1

tr
(
∆Ci(t)∆C

T
i (t)

)
+

1

γ3

∆bT (t)∆b(t)

≤2V (t)

≤2V (t0)

≤ 1

γ1

‖∆I(t0)‖2
F +

1

γ2

3∑
i=1

‖∆Ci(t0)‖2
F +

1

γ3

‖∆b(t0)‖2. (4.18)
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or equivalently,

‖∆I(t)‖F ≤

(
‖∆I(t0)‖2

F +
γ1

γ2

3∑
i=1

‖∆Ci(t0)‖2
F +

γ1

γ3

‖∆b(t0)‖2

)1/2

. (4.19)

By the Rayleigh-Ritz Theorem, min‖x‖=1 x
T Î(t)x = λ̂3(t). Additionally since Î(t) = I +

∆I(t) and by assumption
(
‖∆I(t0)‖2

F + γ1
γ2

∑3
i=1 ‖∆Ci(t0)‖2

F + γ1
γ3
‖∆b(t0)‖2

)1/2

+ ε ≤

λ3, the following inequalities hold:

λ̂3(t) = min
‖x‖=1

(
xT Ix+ xT∆I(t)x

)
≥ min
‖x‖=1

(
xT Ix

)
− max
‖x‖=1

|xT∆I(t)x|

≥ λ3 − ‖∆I(t)‖2

≥ λ3 −

(
3∑
i=1

|∆λi(t)|2
)1/2

≥ λ3 − ‖∆I(t)‖F

≥ λ3 −

(
‖∆I(t0)‖2

F +
γ1

γ2

3∑
i=1

‖∆Ci(t0)‖2
F +

γ1

γ3

‖∆b(t0)‖2

)1/2

≥ λ3 − (λ3 − ε)

≥ ε (4.20)

where ε is a finite positive scalar and we use the fact that ‖∆I(t)‖2
2 =

max(|∆λ1(t)|2, |∆λ3(t)|2) because the singular values of a symmetric matrix are equal

to the absolute values of its eigenvalues. The above inequality guarantees that all eigenval-

ues of Î(t) are positive and bounded away from zero for all time. The fact that all signals

in (2.40) and (4.10) are bounded implies that ω̇ and ˙̂ω are bounded. These bounded signals
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imply that ∆ω̇ is bounded. Note that bounded ∆ω̇ and ∆ω ∈ L2 implies

lim
t→∞

∆ω = ~0. (4.21)

Since every signal in the parameter update equations (4.11)-(4.13) are bounded and

limt→∞∆ω = ~0 this implies

lim
t→∞

˙̂
I = 03×3,

lim
t→∞

˙̂
Ci = 03×3 ∀i ∈ {1, 2, 3} ,

lim
t→∞

˙̂
b = ~0. (4.22)

The estimator’s angular velocity asymptotically converge to the angular velocity of the

actual plant, and the estimated parameters converge to constant values. Thus, the local

stability of the reported AID algorithm for UV rotational dynamics is proven.

4.3 6-DOF UV AID

This Section reports a novel nonlinear AID algorithm for 6-DOF UV plant models of

the form (2.44). A local stability analysis is also included. This proof of Theorem 4.3.1

is provided in two parts. First, in Section 4.2.1, the error system is developed. Then, in

Section 4.2.2, we prove the result.
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Theorem 4.3.1 Consider the following AID algorithm for plants of the form (2.44):

˙̂v =M̂−1

(
adTv (M̂v) +

(
6∑
i=1

|vi|D̂i

)
v + Ĝ(R) + u

)
− a∆v (4.23)

˙̂
M =

γ1

2

(
−ψ1v

T − vψT1 + ∆vψT2 + ψ2∆vT
)

(4.24)

˙̂
Di =− γ2|vi|∆vvT (4.25)

˙̂g =− γ3∆νTRT e3 (4.26)

˙̂
b =γ4J (∆ω)RT e3 (4.27)

with the following definitions:

• a, γ1, γ2, γ3, γ4 ∈ R+

• Ĝ(R) =

 ĝRT e3

J (b̂)RT e3


• ψ1 = adv(∆v)

• ψ2 such that

ψ2 = ˙̂v + a∆v

=M̂−1

(
adTv (M̂v) +

(
6∑
i=1

|vi|D̂i

)
v + Ĝ(R) + u

)
(4.28)

and the following assumptions:

• u(t) is bounded by assumption

• M̂(t0) is PDS
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• v̂(t0) = v(t0)

• ∃ε ∈ R+ such that T (t0)1/2 + ε ≤ λ6 where

T (t0) = ‖∆M(t0)‖2
F +

γ1

γ2

6∑
i=1

‖∆Di(t0)‖2
F +

γ1

γ3

∆g(t0)2 +
γ1

γ4

‖∆b(t0)‖2. (4.29)

Under these conditions the estimated angular and linear velocities will be asymptoti-

cally stable in the sense of Lyapunov, i.e., limt→∞∆v = ~0, and the parameter esti-

mates will converge to constant values, i.e., limt→∞
˙̂
M(t) = 06×6, limt→∞

˙̂
Di(t) = 06×6,

limt→∞ ˙̂g(t) = 0, and limt→∞
˙̂
b(t) = ~0.

This local stability result implies that the plant parameter estimates converge to values

that provide plant model input-output behavior identical to that of the actual experimental

plant for the given input force and torque signals. Note that since the initial mass matrix

estimate is PDS and the parameter estimate law is symmetric, both M̂(t) and ∆M(t) will

be symmetric, and thus they will have strictly real eigenvalues.

4.3.1 UV AID Error System

Note the actual plant parameters are constant, thus ∆Ṁ =
˙̂
M , ∆Ḋi =

˙̂
Di, ∆ġ = ˙̂g,

and ∆ḃ =
˙̂
b. Using MM̂−1 = I−∆MM̂−1 (where I is the identity matrix) and ∆G(R) = ∆gRT e3

J (∆b)RT e3

 the expression for velocity error dynamics becomes
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M∆v̇ =M
(

˙̂v − v̇
)

=− aM∆v +MM̂−1

(
adTv (M̂v) +

(
6∑
i=1

|vi|D̂i

)
v + Ĝ(R) + u

)

−

(
adTv (Mv) +

(
6∑
i=1

|vi|Di

)
v + G(R) + u

)

=− aM∆v +

(
adTv (M̂v) +

(
6∑
i=1

|vi|D̂i

)
v + Ĝ(R) + u

)
−∆Mψ2

−

(
adTv (Mv) +

(
6∑
i=1

|vi|Di

)
v + G(R) + u

)

=− aM∆v −∆Mψ2 + adTv (∆Mv) +

(
6∑
i=1

|vi|∆Di

)
v + ∆G(R) (4.30)

4.3.2 UV AID Convergence Proof

Consider the following Lyapunov function candidate

V (t) =
1

2
∆vTM∆v+

1

2γ1

tr
(
∆M∆MT

)
+

1

2γ2

6∑
i=1

tr
(
∆Di∆D

T
i

)
+

1

2γ3

∆g2+
1

2γ4

∆bT∆b

(4.31)

V (t) is

• positive definite

• equal to zero if and only if ∆v = ~0, ∆M = 06×6,∀i ∆Di = 06×6, ∆g = 0, and

∆b = ~0.

From (4.30) and the facts that for any matricesA andB of appropriate dimension tr(AB) =

tr(BA) and for any x1, x2, x3 ∈ R3 xT1J (x2)x3 = −xT2J (x1)x3, the time derivative of
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(4.31) is

V̇ (t) =
1

2

(
∆v̇TM∆v + ∆vTM∆v̇

)
+

1

γ1

tr
(

∆M∆ṀT
)

+
1

γ2

6∑
i=1

tr
(

∆Di∆Ḋ
T
i

)
+

1

γ3

∆g∆ġ +
1

γ4

∆bT∆ḃ

=− a∆vTM∆v +
1

2

(
adTv (∆Mv)−∆Mψ2

)T
∆v +

1

2
∆vT

(
adTv (∆Mv)−∆Mψ2

)
+

1

γ1

tr
(

∆M∆ṀT
)

+ ∆vT

(
6∑
i=1

|vi|∆Di

)
v +

1

γ2

6∑
i=1

tr
(

∆Di∆Ḋ
T
i

)
+ ∆vT∆G(R) +

1

γ3

∆g∆ġ +
1

γ4

∆bT∆ḃ

=− a∆vTM∆v +
1

2

(
ψT1 ∆Mv −∆vT∆Mψ2

)
+

1

2

(
vT∆Mψ1 − ψT2 ∆M∆v

)
+

1

γ1

tr
(

∆M∆ṀT
)

+
1

γ2

6∑
i=1

tr
(

∆Di∆Ḋ
T
i

)
+

6∑
i=1

(
|vi|∆vT∆Div

)

+
1

γ3

∆g∆ġ +
1

γ4

∆bT∆ḃ+

[
∆νT∆ωT

] ∆gRT e3

J (∆b)RT e3


=− a∆vTM∆v +

1

γ1

tr
(

∆M∆ṀT
)

+
1

2
tr
(
∆M

(
ψ1v

T −∆vψT2 + vψT1 − ψ2∆vT
))

+
1

γ2

6∑
i=1

tr
(

∆Di∆Ḋ
T
i

)
+

6∑
i=1

tr
(
|vi|∆Div∆vT

)
+

1

γ3

∆g∆ġ + ∆νT∆gRT e3

+
1

γ4

∆bT∆ḃ+ ∆ωTJ (∆b)RT e3

=− a∆vTM∆v +
1

γ1

tr
(

∆M∆ṀT
)

+
1

2
tr
(

∆M
(
ψ1v

T −∆vψT2 + vψT1 − ψ2∆vT
)T)

+
1

γ2

6∑
i=1

tr
(

∆Di∆Ḋ
T
i

)
+

6∑
i=1

tr
(

∆Di

(
|vi|∆vvT

)T)
+

1

γ3

∆g∆ġ

+ ∆νT∆gRT e3 +
1

γ4

∆bT∆ḃ−∆bTJ (∆ω)RT e3 (4.32)
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The actual parameters are constant; thus substituting (4.24)-(4.27) into (4.32) yields

V̇ (t) = −a∆vTM∆v, (4.33)

which is negative definite in ∆v and negative semi-definite in the error coordinates ∆v,

∆M , ∆Di, ∆g, and ∆b. By Lyapunov’s direct method, (4.31) and (4.33) imply that all

error coordinates are bounded and stable. The structure of V̇ (t) implies that ∆v ∈ L2 or,

equivalently, limt→∞

(∫ t
t0

∆vT∆v
)1/2

<∞. We must ensure every signal in (4.23)-(4.27)

is bounded. With v, u, ∆v, ∆M , ∆Di, ∆g, and ∆b bounded and M , Di, g, and b constant,

and given (4.5)-(4.9) we can conclude that v̂, M̂ , D̂i, ĝ, and b̂ are bounded. All that remains

is showing that M̂−1 is bounded. Note for ∀t > t0 the following hold:

• 1
γ2

∑6
i=1 tr

(
∆Di(t)∆D

T
i (t)

)
≥ 0

• 1
γ3

∆g(t)2 ≥ 0

• 1
γ4

∆bT (t)∆b(t) ≥ 0

• 0 ≤ V (t) ≤ V (t0)

• ∆v(t0) = ~0

• ∆vT (t)M∆v(t) ≥ 0

• 1
γ1

tr
(
∆M(t)∆MT (t)

)
= 1

γ1

∑6
i=1 |∆λi(t)|2 = 1

γ1
‖∆M(t)‖2

F
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These facts can be used to show

1

γ1

‖∆M(t)‖2
F ≤

1

γ1

tr
(
∆M(t)∆MT (t)

)
≤ 1

γ1

tr
(
∆M(t)∆MT (t)

)
+ ∆vT (t)M∆v(t) +

1

γ2

6∑
i=1

tr
(
∆Di(t)∆D

T
i (t)

)
+

1

γ3

∆g(t)2 +
1

γ4

∆bT (t)∆b(t)

≤2V (t)

≤2V (t0)

≤ 1

γ1

‖∆M(t0)‖2
F +

1

γ2

6∑
i=1

‖∆Di(t0)‖2
F +

1

γ3

∆g(t0)2 +
1

γ4

‖∆b(t0)‖2,

(4.34)

or equivalently,

‖∆M(t)‖F ≤ T (t0)1/2. (4.35)
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By the Rayleigh-Ritz Theorem, min‖x‖=1 x
TM̂(t)x = λ̂6(t). Additionally since M̂(t) =

M + ∆M(t) and by assumption T (t0)1/2 + ε ≤ λ6, the following inequalities hold:

λ̂6(t) = min
‖x‖=1

(
xTMx+ xT∆M(t)x

)
≥ min
‖x‖=1

(
xTMx

)
− max
‖x‖=1

|xT∆M(t)x|

≥ λ6 − ‖∆M(t)‖2

≥ λ6 −

(
6∑
i=1

|∆λi(t)|2
)1/2

≥ λ6 − ‖∆M(t)‖F

≥ λ6 − T (t0)1/2

≥ λ6 − (λ6 − ε)

≥ ε (4.36)

where ε is a finite positive scalar and we use the fact that ‖∆M(t)‖2
2 =

max(|∆λ1(t)|2, |∆λ6(t)|2) because the singular values of a symmetric matrix are equal

to the absolute values of its eigenvalues. The above inequality guarantees that all eigenval-

ues of M̂(t) are positive and bounded away from zero for all time. The fact that all signals

in (2.44) and (4.23) are bounded implies that v̇ and ˙̂v are bounded. These bounded signals

imply that ∆v̇ is bounded. Note that bounded ∆v̇ and ∆v ∈ L2 implies

lim
t→∞

∆v = ~0. (4.37)
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Since every signal in the parameter update equations (4.24)-(4.27) are bounded and

limt→∞∆v = ~0 this implies

lim
t→∞

˙̂
M = 06×6,

lim
t→∞

˙̂
Di = 06×6 ∀i ∈ {1, · · · , 6} ,

lim
t→∞

˙̂g = 0, and

lim
t→∞

˙̂
b = ~0. (4.38)

The estimator’s angular and linear velocities asymptotically converge to the velocities of

the actual plant, and the estimated parameters converge to constant values. Thus, the local

stability of the reported AID algorithm for 6-DOF UV dynamics is proven.

4.4 UV Least Squares Parameter Identification

This Section reviews the method of least squares experimental identification of plant

parameters for two UV models. As shown in Section 2.5.2, the underwater vehicle rota-

tional dynamics plant model, (2.40), can be rewritten as

τ(t) = WUV R(ω, ω̇, R)θUV R (4.39)

where the UV R subscript denotes UV rotational dynamics, WUV R : R3 × R3 × SO(3)→

R3×36 is a regressor matrix, and θUV R ∈ R36 is a vector of the unique scalar parameter

values in I , C, and b. As shown in Section 2.6, the underwater vehicle plant model, (2.44),
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can be rewritten as

τ(t) = WUV (v, v̇, R)θUV (4.40)

where the UV subscript denotes 6-DOF UV dynamics, WUV : R6×R6×SO(3)→ R6×241

is a regressor matrix, and θUV ∈ R241 is a vector of the unique scalar parameter values in

M , D, g, and b.

The linearity of (4.39) and (4.40) in their respective parameters allows the use of a

number of methods to estimate these parameters. A common method is least squares

identification (LS). LS for (4.39) requires the signals τ(t), ω(t), ω̇(t), and R(t) to be

instrumented. Similarly, LS for (4.40) requires the signals f(t), τ(t), ν(t), ν̇(t), ω(t), ω̇(t),

and R(t) to be instrumented. One method of formulating the LS using the regressor matrix

WUV is to employ sampled experimental data of the form {f(ti), R(ti), v(ti), v̇(ti)},

ti ∈ {1, 2, · · ·n}. From (4.40) we have f(ti) = WUV (v(ti), v̇(ti), R(ti))θUV ∀i ∈

{1, 2, · · · , n}. Thus if we define F = [f(t1)T f(t2)T · · · f(tn)T ]T and

WUV =



WUV (v(t1), v̇(t1), R(t1))

WUV (v(t2), v̇(t2), R(t2))

...

WUV (v(tn), v̇(tn), R(tn))


, (4.41)

then the following relation holds

F =WUV θUV (4.42)

where F and WUV are know and θUV is unknown. The Moore-Penrose psudo inverse of
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WUV provides the best estimate of θUV in the least-squares sense through the formula

θUV =W†UV F. (4.43)

If WUV is full rank, then the solution θUV will be unique. A similar relationship can be

derived for θUV R.

In most plants angular acceleration, ω̇(t), is not instrumented directly and must be es-

timated by differentiating the angular velocity signal, ω(t), or twice differentiating angular

position signals. The LS algorithm was implemented using a single Moore-Penrose pseudo

inverse for Sections 4.5 and 4.6. In the experiments reported herein, the JHU ROV ex-

perienced angular velocities on the order of 10◦/s. Since the PHINS inertial navigation

system (INS) measures the vehicle’s angular velocity to within 0.01◦/s, we found that nu-

merical differentiation of the angular velocity signals provided angular acceleration signals

adequate for LS. Inertial-grade angular acceleration sensors are not widely available; many

UV are not equipped with angular velocity sensors accurate enough for precise numerical

differentiation. AID might be a better option over LS for some UV in the field. The UV

AID algorithm reported herein requires only the signals u(t), τ(t), R(t), ν(t), and ω(t).
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4.5 Experimental Evaluation:

3-DOF UV Rotational Dynamics AID

This Section reports a comparative experimental evaluation of AID and LS for the es-

timation of plant parameters for the rotational dynamics of a UV. We employed the Johns

Hopkins University Hydrodynamic Test Facility to evaluate each parameter identification

method’s capacity to identify parameter sets which accurately model UV dynamics. The

error between the predicted model performance and the experimentally observed perfor-

mance is reported as the mean absolute error (MAE) between the simulated plant roll,

pitch, and velocities and the actual experimental plant roll, pitch, and velocities. Appen-

dices A.1 and A.2 provide further details about our experimental setup and parameter eval-

uation method.

At the beginning of each experiment, the vehicle was positioned in the center of the

tank with the vehicle’s depth under closed loop control at about a 1 m depth with the x

and y DOF unactuated. During the experiment three sinusoidal torque commands (one

in the direction of each axis of the vehicle’s coordinate frame) actuated the angular po-

sition of the JHU ROV. Table 4.5 shows the details of two exogenous inputs, one for

system identification and one for cross validation. Hereafter we will refer to these ex-

periments as the experiment for parameter identification (IDDAT) and the experiment for

cross-validation (CROSS) respectively.

AID was implemented as a discrete time approximation of the continuous time algo-

95



CHAPTER 4. UV ADAPTIVE IDENTIFICATION

Table 4.1: Exogenous Inputs for UV Rotational Dynamics Parameter Identification
Experiments

Experiment IDDAT CROSS
Experiment Purpose Parameter Parameter

Identification Cross-Validation
Experiment Date 2012-04-14 2012-04-09

Experiment Run Time 22.0 min 21.7 min
Torque about Cos Freq 0.503 rad/sec 0.583 rad/sec

X Vector Cos Amp 40 N m 40 N m
Torque about Cos Freq 0.663 rad/sec 1.012 rad/sec

Y Vector Cos Amp 55 N m 55 N m
Torque about Cos Freq 1.043 rad/sec 0.733 rad/sec

Z Vector Cos Amp 70 N m 70 N m

Table 4.2: Numerical Values of the INITP used to initialize UV rotational dynamics AID.

Parameter Symbol initialization parameter set (INITP)

Î(t0)

 100.0 0 0
0 100.0 0
0 0 100.0


Ĉ1(t0)

 −100.0 0 0
0 −100.0 0
0 0 −100.0


Ĉ2(t0)

 −100.0 0 0
0 −100.0 0
0 0 −100.0


Ĉ3(t0)

 −100.0 0 0
0 −100.0 0
0 0 −100.0


b̂(t0)

 0
0

100.0


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rithm. Euler integration of (4.10)—(4.13) for 100ms time steps provided the time series of

parameter and angular velocity estimates. 100ms is one to two orders-of-magnitude smaller

than the state signal variation rates of 1 second or greater observed during quasi-periodic

JHU ROV operations. The experiments were designed to generate thruster commands vary-

ing slowly enough to admit the use of steady state thruster models. In practice, first-order

Euler integration provided performance similar to the 4th-order integration implemented in

simulation.

The AID algorithm was initialized with the measured angular position, measured an-

gular velocity, and initialization parameter set (INITP) in Table 4.2. Note that the INITP

was chosen such that each scalar parameter was within an order-of-magnitude of the value

to be identified. The choice of optimal adaptation gains is a long-standing open prob-

lem in adaptive systems theory [51, 52]. From simulations of this AID algorithm which

sparsely covered a roughly logarithmic scaling for a range of possible gains, we empiri-

cally chose angular velocity, inertia tensor, quadratic drag, and buoyancy torque adaption

gains of a = 10, γ1 = 5000, γ2 = 10000, and γ3 = 1000 respectively. Many of the gain

combinations considered provided parameter convergence rates comparable to the gains

used herein. Our simulation studies suggest similar results would be obtained for initial

condition and gain choices within an order-of-magnitude of the choices made.
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4.5.1 Experimental Results

The state measurements from the IDDAT dataset were used to identify the plant pa-

rameters of the plant model (2.40) with both the adaptive identification and least squares

methods. Table 4.4 reports two identified parameter sets: the adaptively identified param-

eter set (AIDP) estimated with AID (as per Section 4.2) and the least squares identified

parameter set (LSP) estimated with LS (as per Section 4.4).

The parameter sets AIDP, LSP, and INITP were used as parameter sets for three UV ro-

tational dynamics models; the adaptively identified plant model (AIDPM), the least squares

identified plant model (LSPM), and the initialization parameter set plant model (INITPM).

Using the torque input commands from the IDDAT and CROSS datasets, we compare simu-

lated JHU ROV performance from numerical simulations of AIDPM, LSPM, and INITPM

to the measured JHU ROV states for each experiment respectively.

Using the torque inputs from the CROSS dataset, Figures 4.1 — 4.4 compare the state

measurements from simulations of AIDPM, LSPM, and INITPM to the measured JHU

ROV states from the CROSS dataset. Each of these four Figures display three minute sub-

sets of the 20 minutes of state data generated by driving simulations of AIDPM, LSPM, and

INITPM using the torque data from the CROSS dataset. Similar simulations of AIDPM,

LSPM, and INITPM were created using the torque commands from the IDDAT dataset.

Table 4.3 summarizes the MAE between measured and simulated vehicle state for each

experimental dataset, UV vehicle model, and open-loop-stable DOF.
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Table 4.3: mean absolute errors (MAEs) between measured and simulated vehicle states
for all pairs of UV rotational dynamics experiments and UV rotational dynamics models.

UV Angular Pose Angular Velocity
Model Experiment Roll Pitch x DOF y DOF z DOF

AIDPM CROSS 4.11◦ 2.88◦ 6.16◦/s 2.83◦/s 3.44◦/s
LSPM CROSS 2.50◦ 2.65◦ 3.36◦/s 3.69◦/s 5.46◦/s

INITPM CROSS 13.3◦ 14.6◦ 8.86◦/s 12.9◦/s 7.00◦/s
AIDPM IDDAT 3.44◦ 2.06◦ 4.80◦/s 1.99◦/s 4.03◦/s
LSPM IDDAT 2.08◦ 1.76◦ 2.45◦/s 2.19◦/s 5.05◦/s

INITPM IDDAT 14.8◦ 17.1◦ 8.83◦/s 10.7◦/s 6.32◦/s

Table 4.4: The UV rotational dynamics parameter sets identified using the IDDAT dataset.
Parameter Symbol AIDP LSP

Î(tf )

 136.0 −12.7 2.89
−12.7 175.0 −1.06
2.89 −1.06 160.0

  31.9 −5.04 1.53
−5.04 55.9 −6.19
1.53 −6.19 96.3


Ĉ1(tf )

 −215.0 19.1 21.3
−23.0 −243.0 −10.1
7.16 −80.9 −129.0

  −297.0 4.14 1.32
7.6 −414.0 −28.1

150.0 −165.0 52.3


Ĉ2(tf )

 −137.0 39.8 46.5
−14.0 −367.0 −39.2
15.0 −117.0 −186.0

  −358.0 13.7 13.0
91.8 −266.0 −20.5
107.0 −181.0 −80.2


Ĉ3(tf )

 −80.6 38.4 −17.3
−2.0 −287.0 19.6
37.0 −52.1 −214.0

  3.4 18.9 −9.58
−9.27 −262.0 18.2
−70.0 34.8 −252.0


b̂(tf )

 1.57
−1.5
277.0

  1.38
1.11
235.0


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Figure 4.1: Representative data of experimental and simulated JHU ROV angular position
for the CROSS dataset. In the roll and pitch plots, the measured states are plotted together
with the states from simulating INITPM. For each DOF, the difference between the mea-
sured position and simulated position is shown.
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Figure 4.2: Representative data of experimental and simulated JHU ROV angular velocity
for the CROSS dataset. In the individual angular velocity plots, each measured velocity
is plotted together with the states from simulating INITPM. For each DOF error plots are
also included.
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Figure 4.3: Representative data of experimental and simulated JHU ROV angular position
for the CROSS dataset. In the roll and pitch plots, the measured position is plotted together
with the simulated position from two model simulations. The states from a simulation of
AIDPM are plotted in blue and marked with circles. The states from LSPM are plotted
in red and marked with triangles. For each DOF, the difference between the measured
positions from the CROSS dataset and the states from each model simulation is shown. For
each DOF, the difference between the measured position and simulated position is shown.
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Figure 4.4: Representative data of experimental and simulated JHU ROV angular velocity
for the CROSS dataset. In the individual angular velocity plots, each measured velocity is
plotted together with velocities from AIDPM and LSPM simulations. For each DOF error
plots are also included. See the caption of Figure 4.3 for further information.
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4.5.2 Analysis of Experimental Results

Compare the state estimate capacity of INITPM in Figures 4.1 and 4.2 to the state es-

timate capacity of AIDPM and LSPM Figures 4.3 and 4.4. Clearly the simulated plant

model’s capacity to match experimentally observed plant performance is dependent on

the model’s plant parameters. Comparing the states produced by simulating AIDPM and

LSPM with those from INITPM (a model which uses the arbitrarily chosen INITP param-

eter set), we see that both experimentally identified models are better at matching experi-

mentally observed dynamic plant behavior. Table 4.3 confirms that the AIDPM and LSPM

are better than the INITPM at modeling JHU ROV performance. In the case of both the

IDDAT and CROSS datasets, the performance of the AIDPM and LSPM were similar, i.e.

for some DOF the AIDPM states were on average closer to the experimentally measured

state values (as shown by smaller MAE values) and for other DOF the LSPM states were

on average closer to the experimentally measured values. Figures 4.3 and 4.4 show the

dynamic behavior of the two identified models match the experimentally observed JHU

ROV performance, though the data in Figure 4.3 suggests that the LSPM is slightly better

at matching the JHU ROV’s roll and pitch states. For some AIDPM and LSPM DOFs, each

model’s capacity to match measured states from the CROSS dataset is worse than their

capacity to match states from the IDDAT dataset; in Table 4.3 CROSS MAE values can

be up to 60% larger that the IDDAT MAE values for the equivalent DOF and UV model.

However, the representative sample of data plotted in Figures 4.3 and 4.4 indicate that

both AIDPM and LSPM capture the character character of JHU ROV performance during
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cross-validation.

From Figures 4.3 and 4.4 note that roll (motion about the x-axis) and the x-axis angular

velocity have a more complex motion than the other DOF. This is due to the coupling

between the DOF; for the JHU ROV we have observed that when considering angular

motion about the x, y, and z axes, x-axis motion is the most sensitive to angular motions

about the other axes. Figures 4.3, 4.4, and Table 4.3 show that angular motion about the

x-axis are the motions least accurately modeled by the AIDPM. There are several factors

we feel contribute to these larger errors. The first is that both thrusters used to achieve

torque about the x-axis are positioned within the frame of the vehicle whereas all other

thrusters are outside the frame of the vehicle. The internal structures of the vehicle may

impede the flow path of these thrusters and, in consequence, degrade their performance.

Additionally, vehicle rotation about the x-axis is the DOF with the least damping and least

control authority. Thus the lower energy dissipation for rotational motion about the x-axis

could lead to higher MAE values for this DOF.

4.6 Experimental Evaluation: 6-DOF UV AID

This Section reports a comparative experimental evaluation of AID and LS for the es-

timation of plant parameters for the dynamics of a 6-DOF UV. We employed the Johns

Hopkins University Hydrodynamic Test Facility to evaluate each parameter identification

method’s capacity to identify parameter sets which accurately model UV dynamics. The
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error between the predicted model performance and the experimentally observed perfor-

mance is reported as the MAE between the simulated plant roll, pitch, and velocity and the

actual experimental plant roll, pitch, and velocity. Appendices A.1 and A.2 provide further

details about our experimental setup and parameter evaluation method.

During an experiment, each of the six JHU ROV degree-of-freedom were independently

excited with either closed-loop control or open-loop sinusoidal commands. For those DOF

using closed-loop control, a sinusoidal reference trajectory was specified to the JHU ROV

control system. The reference signals for both experiments are given in Table 4.5.

Table 4.5: Input Specifications for 6-DOF UV Parameter Identification Experiments
Experiment IDDAT CROSS

Experiment Purpose Parameter Parameter
Identification Cross-Validation

Experiment Run Time 31.9 min 34.8 min
DOF Excitation Type Closed Loop Trajectory-Tracking

world x Cos Frequency 0.185 rad/sec 0.242 rad/sec
Cos Amplitude 0.60 m 0.60 m

DOF Excitation Type Closed Loop Trajectory-Tracking
world y Cos Frequency 0.286 rad/sec 0.210 rad/sec

Cos Amplitude 0.60 m 0.60 m
DOF Excitation Type Closed Loop Trajectory-Tracking

world z Cos Frequency 0.242 rad/sec 0.185 rad/sec
Cos Amplitude 0.50 m 0.50 m

Torque Excitation Type Open Loop Torque Input
about DOF Cos Frequency 0.262 rad/sec 0.224 rad/sec

body x Cos Amplitude 40 N m 40 N m
Torque Excitation Type Open Loop Torque Input

about DOF Cos Frequency 0.449 rad/sec 0.331 rad/sec
body y Cos Amplitude 55 N m 55 N m
DOF Excitation Type Closed Loop Trajectory-Tracking

heading Cos Frequency 0.210 rad/sec 0.286 rad/sec
Cos Amplitude 45◦ 45◦
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AID was implemented as a discrete time approximation of the continuous time algo-

rithm. Euler integration of (4.23)-(4.27) for 100ms time steps provided the time series of

parameter and angular velocity estimates. 100ms is one to two orders-of-magnitude smaller

than the state signal variation rates of 1 second or greater observed during quasi-periodic

JHU ROV operations. The experiments were designed to generate thruster commands vary-

ing slowly enough to admit the use of steady state thruster models. In practice, first-order

Euler integration provided performance similar to the 4th-order integration implemented in

simulation.

The AID algorithm was initialized with the measured angular position, measured an-

gular velocity, measured translational velocity, and initialization parameter set (INITP) in

Tables 4.6 and 4.7. Based on our previous studies with second-order rigid body adaptive

identification algorithms (Sections 3.3.4 and 4.5), we chose adaption gains of a = 10,

γ1 = 5000, γ2 = 20000, γ3 = 2000, and γ4 = 2000.

Table 4.6: UV mass and gravitational parameter values used to initialize AID.
Parameter Symbol INITP Values

M̂(t0)


100.0 0 0 0 0 0

0 100.0 0 0 0 0
0 0 100.0 0 0 0
0 0 0 100.0 0 0
0 0 0 0 100.0 0
0 0 0 0 0 100.0


ĝ(t0) 0.0

b̂(t0)

 0
0

100.0


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Table 4.7: The UV drag parameter values used to initialize AID.
Parameter Symbol INITP Values

D̂1(t0)


−100.0 0 0 0 0 0

0 −100.0 0 0 0 0
0 0 −100.0 0 0 0
0 0 0 −100.0 0 0
0 0 0 0 −100.0 0
0 0 0 0 0 −100.0



D̂2(t0)


−100.0 0 0 0 0 0

0 −100.0 0 0 0 0
0 0 −100.0 0 0 0
0 0 0 −100.0 0 0
0 0 0 0 −100.0 0
0 0 0 0 0 −100.0



D̂3(t0)


−100.0 0 0 0 0 0

0 −100.0 0 0 0 0
0 0 −100.0 0 0 0
0 0 0 −100.0 0 0
0 0 0 0 −100.0 0
0 0 0 0 0 −100.0



D̂4(t0)


−100.0 0 0 0 0 0

0 −100.0 0 0 0 0
0 0 −100.0 0 0 0
0 0 0 −100.0 0 0
0 0 0 0 −100.0 0
0 0 0 0 0 −100.0



D̂5(t0)


−100.0 0 0 0 0 0

0 −100.0 0 0 0 0
0 0 −100.0 0 0 0
0 0 0 −100.0 0 0
0 0 0 0 −100.0 0
0 0 0 0 0 −100.0



D̂6(t0)


−100.0 0 0 0 0 0

0 −100.0 0 0 0 0
0 0 −100.0 0 0 0
0 0 0 −100.0 0 0
0 0 0 0 −100.0 0
0 0 0 0 0 −100.0



108



CHAPTER 4. UV ADAPTIVE IDENTIFICATION

4.6.1 Experimental Results

Table 4.8: The UV mass and gravitational parameters identified using AID and the IDDAT
dataset.

Parameter Symbol AIDP Values

M̂(tf )


996.9 −6.166 9.118 53.64 −76.78 111.7
−6.166 1275.0 14.23 −56.45 41.07 −43.3
9.118 14.23 1378.0 −17.57 69.42 43.95
53.64 −56.45 −17.57 308.7 21.87 39.99
−76.78 41.07 69.42 21.87 322.3 −48.32
111.7 −43.3 43.95 39.99 −48.32 467.4


ĝ(tf ) -21.77

b̂(tf )

 5.966
−0.9802

342.8



The IDDAT dataset was used to identify plant parameters of the 6-DOF plant model

(2.44) with both the adaptive identification and least squares algorithms. Tables 4.8 and 4.9

report the adaptively identified parameter set (AIDP) estimated using 6-DOF UV AID (as

per Section 4.3). Tables 4.10 and 4.11 report the least squares identified parameter set

(LSP) estimated using 6-DOF UV LS (as per Section 4.4). The parameter sets AIDP,

LSP, and INITP were used as parameter sets for three 6-DOF UV models; the adaptively

identified plant model (AIDPM), the least squares identified plant model (LSPM), and the

initialization parameter set plant model (INITPM).

Using the force and torque inputs from the CROSS dataset, Figures 4.5 to 4.7 compare

the states from simulations of AIDPM, LSPM, and INITPM to the measured JHU ROV

states from the CROSS dataset. Each of these Figures display three minute subsets of 30

minutes of state data generated by driving simulations of AIDPM, LSPM, and INITPM
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Table 4.9: The UV drag parameters identified using AID and the IDDAT data.
Parameter Symbol AIDP Values

D̂1(tf )


−466.7 4.902 −14.54 −19.92 −0.3734 −3.236
71.43 −331.6 −27.36 119.8 −13.05 12.08
−67.64 −1.584 −528.8 −11.23 42.6 −22.18
0.03723 −12.6 97.29 −270.7 19.31 −56.57
17.39 −14.41 −47.56 −19.17 −51.29 6.865
−36.24 5.508 −3.391 44.59 −13.47 −155.7



D̂2(tf )


−342.9 15.59 35.52 −19.45 −30.78 −27.73
−16.96 −618.6 68.14 107.7 −37.52 42.93
7.135 19.27 −578.9 19.15 49.08 −21.97
−11.15 49.91 69.85 −279.2 30.13 −19.8
52.72 −63.28 −11.81 −22.2 −42.57 38.04
−31.44 43.94 −40.48 77.72 −16.38 −150.4



D̂3(tf )


−373.0 9.072 43.92 −9.852 −26.69 7.863
−12.09 −466.7 6.452 138.2 −11.46 67.43
−31.76 52.37 −685.6 −1.646 20.42 −2.191
−21.4 3.283 146.3 −261.8 32.96 −33.43
4.241 −32.42 −17.53 −30.22 −56.54 −11.55
−45.66 24.02 −38.2 40.72 −28.91 −241.1



D̂4(tf )


−292.8 −10.59 35.93 −8.17 −18.11 −25.44
4.436 −342.0 13.63 190.4 −3.024 45.74
9.531 −6.416 −362.0 −19.08 23.41 −14.81
2.579 32.18 62.65 −207.2 16.85 2.63
4.186 −6.082 −7.507 −22.97 −73.4 5.957
3.196 20.58 1.016 62.8 −19.93 −142.3



D̂5(tf )


−212.3 −16.1 7.133 −15.9 −21.23 −4.932
19.71 −242.1 −6.173 44.77 −7.459 19.94
−9.7 −17.81 −248.4 0.08174 32.39 −5.403
−2.604 11.03 39.88 −162.8 24.41 −9.847
4.528 −3.59 −16.11 −10.59 −66.71 17.56
−11.06 −4.563 0.2745 19.88 −14.07 −148.7



D̂6(tf )


−398.9 −8.592 −25.27 −11.01 −43.3 −25.29
−53.06 −602.1 24.9 133.0 −28.92 70.24
4.612 −16.02 −582.0 −0.02913 77.21 −53.36
−3.501 13.71 115.5 −283.3 25.63 −153.0

11.5 −44.13 −35.11 −25.37 −41.52 −18.43
−57.68 33.12 −49.59 76.05 −17.43 −109.2


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Table 4.10: The UV mass and gravitational parameters identified using LS and the IDDAT
dataset.

Parameter Symbol LSP Values

M̂(tf )


446.7 13.29 35.18 20.74 −27.2 37.66
13.29 669.5 −0.2402 −14.65 2.878 −21.9
35.18 −0.2402 896.2 −16.36 11.14 35.23
20.74 −14.65 −16.36 39.53 −7.008 17.43
−27.2 2.878 11.14 −7.008 65.47 −2.574
37.66 −21.9 35.23 17.43 −2.574 116.8


ĝ(tf ) -19.7

b̂(tf )

 0.7842
6.807
279.8



using the torque data from the CROSS dataset. Similar simulations of AIDPM, LSPM,

and INITPM were created using the force and torque commands from the IDDAT dataset.

Tables 4.12 and 4.13 summarize the MAE between measured and simulated vehicle state

for each experimental dataset, 6-DOF UV model, and open-loop-stable DOF.

4.6.2 Analysis of Experimental Results

Figures 4.5 to 4.7 reveal that the ability of a simulated plant model to match experimen-

tally observed plant performance is dependent on the model’s plant parameters. Comparing

the states produced by simulating AIDPM and LSPM with those from INITPM (a model

which uses the arbitrarily chosen INITP parameter set), we see that both experimentally

identified models are better at matching experimentally observed dynamic plant behavior.
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Table 4.11: The UV drag parameters identified using LS and the IDDAT dataset.
Parameter Symbol LSP Values

D̂1(tf )


−640.7 29.14 −77.14 −206.0 399.7 −57.4
426.7 −146.6 −191.1 −53.18 310.4 −242.6
50.05 −65.4 −1078.0 216.5 32.88 −108.7
−2.037 35.94 4.818 −557.7 −19.11 58.69
60.09 65.24 −2.878 78.19 −108.7 74.52
−32.74 15.27 −19.89 −77.99 81.52 −82.61



D̂2(tf )


−416.7 −54.12 88.38 −53.97 −79.78 −63.98
−20.42 −575.1 101.8 −75.27 −260.0 67.67
−25.36 −75.01 −979.1 429.8 −130.5 −45.88
−37.62 69.31 0.004228 −318.2 73.01 16.12
52.75 −31.51 −40.18 −32.51 −183.8 10.49
−62.16 −15.68 −89.55 33.62 243.3 −220.9



D̂3(tf )


−894.2 293.0 42.96 −203.4 −424.3 15.49
−115.2 −1247.0 −215.0 164.9 283.9 131.6
−120.7 165.4 −901.3 72.91 −150.7 168.2
−25.58 84.36 195.6 −318.2 −40.94 26.2
145.6 −164.2 −46.79 73.39 −321.2 27.31
−115.2 164.7 −143.7 −67.74 −72.01 −514.8



D̂4(tf )


−22.32 −55.78 266.5 233.5 −737.6 258.0
−445.6 −242.8 463.0 1680.0 255.3 −128.4
61.74 −83.5 −454.2 −943.5 −53.48 −144.2
45.38 149.0 −167.4 235.8 −10.58 40.72
89.95 −16.57 −114.2 −32.4 −58.5 −80.68
−39.36 −14.35 135.3 278.7 −508.8 −114.7



D̂5(tf )


−541.9 −201.2 −218.5 −4.108 −1155.0 338.4
802.6 −1098.0 −648.5 −353.1 −46.14 −232.1
123.8 −116.6 −1045.0 209.3 −203.8 −111.9
−81.21 59.62 6.686 −450.4 90.86 44.2
11.35 45.01 96.38 −126.6 216.3 41.87
−41.39 −1.279 223.2 −8.406 −221.2 −42.09



D̂6(tf )


−310.2 98.97 −39.83 86.85 22.8 −142.3
−172.0 −730.8 113.5 166.2 −560.2 266.3

1.31 −43.02 −536.0 166.4 370.4 68.14
−22.85 1.085 16.88 −247.2 −57.23 −76.39
−28.74 −68.49 −109.2 28.06 −310.4 17.32
−155.9 21.63 −77.06 −27.19 40.62 −24.28


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Table 4.12: mean absolute errors (MAEs) between measured and simulated angular posi-
tion states for all pairs of 6-DOF UV experiments and 6-DOF UV models.

UV
Model Experiment Rol Pit
AIDPM CROSS 2◦ 2.1◦

LSPM CROSS 1.38◦ 1.65◦

INITPM CROSS 9.9◦ 15.0◦

AIDPM IDDAT 1.96◦ 2.3◦

LSPM IDDAT 1.30◦ 1.50◦

INITPM IDDAT 10.0◦ 15.2◦

Table 4.13: mean absolute errors (MAEs) between simulated and measured velocity states
for all pairs of 6-DOF UV experiments and 6-DOF UV models.

UV Translational Velocity Angular Velocity
Model Exp BodVelX BodVelY BodVelZ AngVelX AngVelY AngVelZ
AIDPM CROSS 0.062m/s 0.058m/s 0.037m/s 1.39◦/s 1.35◦/s 5.0◦/s
LSPM CROSS 0.050m/s 0.052m/s 0.024m/s 1.38◦/s 1.39◦/s 6.3◦/s
INITPM CROSS 0.165m/s 0.26m/s 0.25m/s 5.1◦/s 3.3◦/s 3.9◦/s
AIDPM IDDAT 0.061m/s 0.06m/s 0.039m/s 1.62◦/s 1.43◦/s 3.4◦/s
LSPM IDDAT 0.045m/s 0.048m/s 0.026m/s 1.58◦/s 1.25◦/s 4.1◦/s
INITPM IDDAT 0.156m/s 0.27m/s 0.29m/s 6.8◦/s 3.4◦/s 3.8◦/s
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Figure 4.5: Representative data of experimental and simulated JHU ROV states for the
CROSS dataset. In the pitch and roll plots, the measured state is plotted together with the
simulation state from three model simulations. The states from AIDPM are plotted in blue
and marked with circles. The states from LSPM are plotted in green and marked with stars.
The states from INITPM are plotted in red and marked with triangles. For each DOF, the
error between the measured positions and their estimates is shown.
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Figure 4.6: Representative data of experimental and simulated JHU ROV states for the
CROSS dataset. In the x, y and z body velocity, the measured state is plotted together with
the simulation state from three model simulations. The states from AIDPM are plotted in
blue and marked with circles. The states from LSPM are plotted in green and marked with
stars. The states from INITPM are plotted in red and marked with triangles. For each DOF,
the error between the measured positions and their estimates is shown.
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Figure 4.7: Representative data of experimental and simulated JHU ROV states for the
CROSS dataset. In the x, y and z angular velocity plots, the measured state is plotted
together with the simulation state from three model simulations. The states from AIDPM
are plotted in blue and marked with circles. The states from LSPM are plotted in green and
marked with stars. The states from INITPM are plotted in red and marked with triangles.
For each DOF, the error between the measured positions and their estimates is shown.
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Tables 4.12 and 4.13 confirm that the AIDPM and LSPM match JHU ROV performance

better than the INITPM.

Tables 4.12 and 4.13 suggest that both identified models provide similar MAE values

for the IDDAT dataset. However, since this experiment was used to identify both models,

the question arises “How will each model reproduce vehicle performance for experiments

not used for model identification?” The rest of this discussion addresses this important

question, focusing on which (if any) of the identified models are better at matching JHU

ROV performance in cross-validation (as per Appendix A.2). MAE values from comparing

simulated and measured states for the CROSS dataset show that modeling the JHU ROV

using the least squares identified plant model (LSPM) is marginally better than modeling

the JHU ROV using the adaptively identified plant model (AIDPM), as seen in the angular

position MAEs in Table 4.12 and translational velocity MAEs in Table 4.13. Both Fig-

ure 4.7 and Table 4.13 indicate that the AIDPM and LSPM provide a similar capacity to

estimate the JHU ROV’s angular velocity. In Figures 4.5 to 4.7 the LSPM and AIDPM

accurately reproduce the experimentally observed states, failing only to reproduce the very

highest frequency fluctuations observed experimentally (such as those seen in the x angular

velocity subplots of Figure 4.7). Taken together Figures 4.5 to 4.7 and Tables 4.12 and 4.13

indicate that the character of JHU ROV performance is captured well by both the LSPM

and AIDPM.
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4.7 Summary

This Chapter reported two adaptive identification (AID) algorithms for the dynamic

estimation of underwater vehicle (UV) plant parameters. The adaptive identification algo-

rithms require the signals of the plant’s velocity, position, and external inputs force, but

it does not require any specific controller, in contrast to previously reported model-based

adaptive tracking controllers. Many underwater vehicle systems do not allow for adaptive

tracking controllers because they are under-actuated or have other control constraints. Sec-

tions 4.5 and 4.6 report comparative experimental evaluations of the adaptive identification

algorithms. Both the least squares identified plant model and adaptively identified plant

model were shown to match closely the experimentally observed underwater vehicle input-

output behavior. Future work could address less conservative bounds for the initial error

in the parameter estimates, characterize more precisely conditions for asymptotic parame-

ter convergence, and compare the relative strengths and weaknesses of adaptive and least

squares parameter identification methods.
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Chapter 5

Adaptive Model-Based Control of

Underwater Vehicles

This Chapter addresses the problem of adaptive model-based trajectory tracking con-

trol of underwater vehicles (UVs) for dynamic 6-degree-of-freedom (DOF) motion. The

approach employed herein, adaptive model-based control (AMBC), estimates plant pa-

rameters during the trajectory-tracking control process. The adaptive controller estimates

parameters for a rigid-body plant such as vehicle mass and added hydrodynamic mass pa-

rameters; quadratic drag parameters; and gravitational force and buoyancy parameters that

arise in the dynamic models of rigid-body UVs. We report a non-adaptive model-based

control algorithm for trajectory-tracking control of fully-actuated rigid-body underwater

vehicles, its adaptive extension, and mathematical analysis of the stability of the result-

ing closed-loop systems. We report a comparative experimental evaluation of AMBC and
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proportional derivative control (PDC) in full scale vehicle trials utilizing the Johns Hopkins

University Hydrodynamic Test Facility and Johns Hopkins University Remotely Controlled

Vehicle (JHU ROV) (Appendix A.1). The experimental evaluation shows that AMBC pro-

vides better position tracking performance (30%) and marginally worse velocity tracking

performance (8%) over PDC. To the best of the authors’ knowledge, this is the first exper-

imental comparison of AMBC and PDC UVs during simultaneous motion in all six DOF.

This Chapter is in two parts. Section 5.2 reports a non-adaptive model-based control

(MBC) algorithm and an AMBC algorithm for UVs. Section 5.3 reports results indicat-

ing that unmodeled thruster dynamics can destabilize parameter adaptation and a two-step

AMBC algorithm which is robust to unmodeled thruster dynamics.

The results from Sections 5.2.6 and 5.3 are reported in a paper submitted to the 2014

International Conference on Robotics and Automation [49].

5.1 Literature Review

Adaptive controllers for linear plants are well understood [51]. Adaptive reference

trajectory-tracking is well understood for several types of second-order holonomic nonlin-

ear plants whose parameters enter linearly into the plant equations of motion, e.g. robot

manipulator arms [17, 59, 63], spacecraft [36, 62], and rigid-body rotational plants [15].

Comparative experimental evaluations of AMBC for robot manipulator arms have been

reported, e.g. [53, 69].
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The structure of the MBC algorithm reported herein was inspired by the proportional

derivative tracking control algorithm for rigid-body motion in free space reported by Bullo

and Murray [13]. Our controller can be seen as a specialization of this result for UV con-

trol; we use their error coordinate structure with a fully-coupled lumped-parameter plant

model of UV dynamics, (2.44). Fully-coupled lumped-parameter plant models for UVs use

a finite set of plant parameters which have been shown empirically to be a good approxi-

mation for the complex dynamics of a rigid-body and associated fluid-vehicle interaction.

Lumped-parameter models of UV dynamics are used in previously reported MBC algo-

rithms. In [18], Fossen summarizes lumped-parameter modeling of UV dynamics and UV

MBC using a lumped-parameter modeling and traditional error coordinates. [65] reports

and experimentally evaluates single DOF UV MBC algorithms for control of the x, y,

depth, and heading DOF. [46] reports and experimentally evaluates a UV MBC algorithm

assuming a fully-coupled lumped-parameter model; this comparative experimental evalua-

tion of MBC and PDC included reference trajectories requiring simultaneous motion in all

DOF and was conducted using the Johns Hopkins University Hydrodynamic Test Facility

(Appendix A).

Previous studies have utilized a lumped-parameter UV models in the development of

tracking control algorithms which are robust to model parameter uncertainty. In [72] a

sliding mode controller and numerical simulations of performance in X, Y, and heading is

reported. In [73] a discrete time parameter adaptation algorithm is reported with a numer-

ical simulation study. In [19] the authors report a hybrid (adaptive and sliding) nonlinear

121



CHAPTER 5. UV ADAPTIVE MODEL-BASED CONTROL

UV controller which explicitly handles multiplicative uncertainty in the input mapping.

Experimental evaluations of AMBC algorithms have also been reported. Yoerger et al.

reported the first experimental evaluation of nonlinear adaptive sliding-mode control on an

UV [71]. In [74] an experimental evaluation of UV AMBC performance in the presence

of noisy position readings is reported. In [5] an experimental evaluation of an AMBC is

reported for simultaneous motion in the translational DOFs. Comparative experimental

evaluations of linear controllers, model-based controllers, and their adaptive extensions for

UV single DOF motion have been reported [40, 65]. In [75] a comparative experimen-

tal evaluation in the presence of a common external disturbance for proportional integral

derivative control, disturbance observer control and the adaptive extensions of both is re-

ported. In each of these previously reported experimental evaluations at most two DOF

had a non-zero reference velocity at a given moment, and in all cases at most set-point

regulation was reported in the pitch and roll DOF.

5.2 Adaptive Model-Based Tracking Control of

Underwater Vehicles

Recent advances in enabling technologies for UVs including in-situ sensing, power

storage, and communication modalities have enabled the development of UVs which can

accomplish missions previously thought impractical or impossible. Many of these mis-

sions, such as seafloor surveying and environmental monitoring, can depend on tracking a
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specified trajectory as closely as possible. To facilitate these missions, novel UV control

algorithms may provide improved trajectory-tracking precision. UV MBC has been shown

experimentally to provide significant performance gains over PDC [46], however MBC re-

quires model parameters to be known a priori. UV adaptive model-based control (AMBC)

removes the need for a previously identified model. In this Section we report novel MBC

and AMBC algorithms for a fully-coupled UV plant model.

This Section is organized as follows: Sections 5.2.1, 5.2.2, and 5.2.3 present the state

representations, UV plant model, and error coordinates used through the rest of this Section.

Section 5.2.4 reports a UV MBC algorithm. Section 5.2.5 reports a novel UV AMBC al-

gorithm. Both assume a model of rigid-body UV dynamics parametrized by hydrodynamic

mass parameters; quadratic drag parameters; gravitational force and buoyancy parameters.

For both results, a local stability proof is reported showing that the vehicle position and

velocity states asymptotically converge to the desired reference trajectory. For the AMBC

algorithm reported, the parameter estimates are shown to be stable and converge asymptoti-

cally to values that provide input-output model behavior identical to that of the actual plant.

Section 5.2.6 reports how the MBC and AMBC algorithms reported herein can be used to

identify subsets of plant parameters if other parameters are known. This Section also re-

ports a two-step AMBC algorithm shown experimentally in Section 5.3.5 to be robust to

actuator modeling errors observed in our experimental vehicle.

This Section omits explicit notation of variable dependence on time except where such

dependence is required to discuss the initial condition of a controller.
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5.2.1 UV States: Actual and Desired

Throughout this Section we will be concerned with two state trajectories in SE(3): the

actual state trajectory of the vehicle and the desired or reference state trajectory of the

vehicle. We denote the actual state (i.e. 6-DOF pose and velocity) with the subscript a and

denote the desired reference state of the vehicle with d. These states will be represented

in three reference frames: states represented in the (assumed inertial) world-frame will

be indicated using a leading superscript w, states represented in the actual body-frame

will be indicated using a leading superscript a, and states represented in the desired body-

frame will be indicated using a leading superscript d. Homogeneous transforms between

these different reference frames will use leading superscripts and subscripts to indicate the

transform being preformed, for instance the homogeneous matrix w
aH , when multiplied by

a vector represented in the actual vehicle reference frame, would provide that vector’s world

reference frame coordinates, e.g. wx = w
aH

ax. We represent the actual pose of the vehicle

in exponential coordinates as ψa ∈ R6 and the actual velocity of the vehicle as ava ∈ R6.

Note that for w
aR ∈ SO(3), the rotation matrix from the actual body-frame to the world-

frame, and pa ∈ R3, the position of the vehicle, we have w
aH =

 w
aR pa

01×3 1

 = eψ̂a .

Note that for aνa ∈ R3, the vehicle’s body-frame translational velocity, and aωa ∈ R3,

the vehicle’s body-frame angular velocity, we have the equality ava =

[
aνTa

aωTa

]T
.

We similarly represent the desired pose and velocity of the vehicle as ψd ∈ R6 and dvd ∈

R6 with the desired-frame homogeneous matrix, rotation matrix, position, translational
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velocity, and angular velocity represented as wdH , wdR, pd, dνd, and dωd, respectively.

5.2.2 UV Dynamics

We make the common assumption of modeling a UV as a rigid-body with added hydro-

dynamic mass, quadratic drag, gravitational force, and buoyancy moving under the influ-

ence of external control torques τ ∈ R3 and control forces f ∈ R3 applied by the vehicle’s

thrusters. Section 2.6 presents this second-order finite-dimensional lumped-parameter dy-

namic model for a fully submerged rigid-body UV, written in the body-frame (2.44). Using

the state representation conventions from Section 5.2.1, the model (2.44) can be written as

w
a Ḣ =w

aH
âva

Mav̇a = adTavaM
ava +D(ava) + G(waH) + u. (5.1)

where D(v) =
∑6

i=1 |vi|Div. Note (5.1) is linear in {M, D, g, b} and be parametrized

by θUV as defined in (2.48). Further information on the functions, parameters, and state

representations of (5.1) are described in Sections 2.2.1 and 2.6.

5.2.3 Error Coordinates

The tracking control algorithms presented herein use the error coordinates ∆H , ∆ψ,

∆v, and ∆θ. We define ∆H as

∆H = w
dH

−1w
aH. (5.2)
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Note that ∆H is the transform from the actual to desired vehicle frame since ∆H =

d
wH

w
aH = d

aH . We define the position tracking error (∆ψ), velocity tracking error (∆v),

and parameter error vector (∆θ) as, respectively,

∆ψ = logSE(3) (∆H) , (5.3)

∆v =ava − avd, (5.4)

x =

 ∆ψ

∆v

 , and (5.5)

∆θ =θ̂UV − θUV (5.6)

where avd = Ad∆H−1
dvd is defined using the adjoint map, Ad : SE(3) → R6×6 defined

in (2.5), which transforms SE(3) velocity vectors between reference frames. Using the fact

that ∀v ∈ R6 and ∀H ∈ SE(3) Hv̂H−1 = ÂdH v the time derivative of ∆H is

∆Ḣ =w
dH

−1w
a Ḣ + w

d Ḣ
−1w

aH

=∆H âva − d̂vd∆H

=∆H âva −∆H∆H−1d̂vd∆H

=∆H
(
ava − Ad∆H−1

dvd
)̂

=∆H∆̂v. (5.7)

The equality (5.7) implies that

∆ψ̇ = Â−1(∆ψ)∆v (5.8)
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where Â−1 : R6 → R6×6 is the inverse SE(3) velocity Jacobian. The reader is directed to

Appendix B for further information about this Jacobian.

We now develop a useful expression for ∆v̇. Note from (5.4) that ∆̂v = âva −

∆H−1d̂vd∆H . Consider the following expression for ∆v̇,

∆̂v̇ =âv̇a −∆H−1d̂v̇d∆H −∆Ḣ−1d̂vd∆H −∆H−1d̂vd∆Ḣ

=âv̇a −∆H−1d̂v̇d∆H + ∆̂v∆H−1d̂vd∆H −∆H−1d̂vd∆H∆̂v

=âv̇a −
(
Ad∆H−1

dv̇d
)̂

+ ∆̂v
(
Ad∆H−1

dvd
)̂
−
(
Ad∆H−1

dvd
)̂

∆̂v. (5.9)

Note that the last two terms (5.9) are the Lie bracket of ∆v and avd. Using the se(3)

adjoint operator, ad : R6 → R6×6 defined in (2.4), with R6 representation of velocities

is analytically equivalent to the Lie bracket operation on their se(3) representations, i.e.

∀x, y ∈ R6 we know âdx y = x̂ŷ − ŷx̂. Thus, from (5.9), we have

∆v̇ = av̇a − av̇d + ad∆v
avd. (5.10)

5.2.4 UV MBC

This Section reports a linearizing tracking controller for mechanical plants of the form

(5.1). Note that this controller requires exact a priori parameter knowledge. A local stabil-

ity analysis is also included. Section 5.2.4.1 explicitly states the goal for UV MBC. The

proof that Theorem 5.2.1 satisfies these conditions is provided in two parts. First, in Sec-

tion 5.2.4.3, the dynamics of the controlled plant is developed. Then, in Section 5.2.4.4, we
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prove the result. Section 5.2.5 reports an adaptive extension to the MBC algorithm reported

in this Section.

5.2.4.1 UV MBC Goal

Given a desired reference trajectory {wdH, dvd, dv̇d} for a plant of the form (5.1), where

the signals {waH, ava, u} are accessible and the parameters {M, D, g, b} are known,

our goal is to develop a control law u : SE(3)×R6 × SE(3)×R6 × R6 → R6 which

guarantees that all signals remain bounded and provides asymptotically exact reference

trajectory tracking, i.e. limt→∞∆ψ(t) = ~0 and limt→∞∆v(t) = ~0.

5.2.4.2 UV MBC Theorem

Theorem 5.2.1 For plants of the form (5.1), when the plant parameters {M,D, g, b} are

known, the control law

u
(
w
aH,

ava,
w
dH,

dvd,
dv̇d
)

= −(kpÂ−T (∆ψ) + kd∆v) + WMBC(av̇d,∆v,
avd,

w
aH)θUV ,

(5.11)

where the regressor matrix WMBC : R6×R6×R6× SE(3)→ R6×241 is defined such that

WMBC(av̇d,∆v,
avd,

w
aH)θUV = Mav̇d −M ad∆v

avd − adTavaM
ava −D(ava)− G(waH),

(5.12)

provides asymptotically stable trajectory tracking in the sense of Lyapunov, i.e.

limt→∞∆ψ(t) = ~0 and limt→∞∆v(t) = ~0, if the following conditions are met:
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• the signals {wdH, dvd, dv̇d} ∈ {SE(3),R6,R6} are continuous and bounded

• kd, kp ∈ R+

• ‖x(t0)‖ <
√

ελ12
ελ1

π for the state error vector x defined in (5.5)

where, as per the eigenvalue ordering conventions from Section 2.2.2, ελi are the eigenval-

ues ofMε from (5.19).

5.2.4.3 UV MBC Controlled Plant

The controlled plant is of the form

Mav̇a = adTavaM
ava +D(ava) + G(waH)− (kpÂ−T (∆ψ) + kd∆v)

+ WMBC(av̇d,∆v,
avd,

w
aH)θUV

=Mav̇d −M ad∆v
avd − (kpÂ−T (∆ψ) + kd∆v) (5.13)

From (5.10) we get

M∆v̇ = −(kpÂ−T (∆ψ) + kd∆v). (5.14)

Using the system error vector x ∈ R12 defined in (5.5) as

x =

 ∆ψ

∆v

 (5.15)

and the matrix valued function Â : R6 → R12 × R12 defined as

Â(∆ψ) =

 06×6 Â−1(∆ψ)

−kpM−1Â−T (∆ψ) −kdM−1

 (5.16)
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then from (5.8), (5.14), (5.5), and (5.16) we see that the equation for the error dynamics of

the system is

ẋ = Â(∆ψ)x. (5.17)

5.2.4.4 UV MBC Stability Proof

Consider the following Lyapunov function candidate

V1(t) =
1

2
xTMεx (5.18)

where

Mε =

 kpI6×6 εM

εM M

 . (5.19)

Consider that ∀x

V1(t) ≥ 1

2

[
‖∆ψ‖ ‖∆v‖

] kp −ελ1

−ελ1 λ6


 ‖∆ψ‖
‖∆v‖

 (5.20)

where

 kp −ελ1

−ελ1 λ6

 is positive definite symmetric (PDS) if

ε ≤

√
kpλ6

λ2
1

. (5.21)

Thus

• V1(t) is positive definite and

• V1(t) is equal to zero if and only if x = ~0.
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The time derivative of (5.18) is

V̇1(t) =
1

2
xT
(
ÂT (∆ψ)Mε +MεÂ(∆ψ)

)
x. (5.22)

Note that ∃c ∈ R+ for which ‖Â−1(ψ)x‖ ≤ c‖x‖ ∀ψ ∈ R6 such that ‖ψ‖ < π (See

Appendix B.2). Therefore ∀∆ψ such that ‖∆ψ‖ < π we have

∆vT
(
Â−T (∆ψ)M +MÂ−1(∆ψ)

)
∆v ≤ 2λ1c‖∆v‖2. (5.23)

Using this bound and the equality ∆ψT
(
Â−T + Â−1

)
∆ψ = ∆ψT∆ψ (shown in Ap-

pendix B.1), we have

V̇1(t) =
1

2
xT

 −εkp
(
Â−T + Â−1

)
−εkdI6×6

−εkdI6×6

(
Â−TM +MÂ−1

)
− 2kdI6×6

x

=
1

2
xT

 −ε2kpI6×6 −εkdI6×6

−εkdI6×6

(
Â−TM +MÂ−1

)
− 2kdI6×6

x
≤− εkp‖∆ψ‖2 + εkd‖∆ψ‖‖∆v‖+

ε

2
λ1c‖∆v‖2 − kd‖∆v‖2

≤1

2

[
‖∆ψ‖ ‖∆v‖

] −ε2kp εkd

εkd ελ1c− 2kd


 ‖∆ψ‖
‖∆v‖

 . (5.24)

∀∆ψ such that ‖∆ψ‖ < π. Since

 −ε2kp εkd

εkd ελ1c− 2kd

 is negative definite symmetric

if

ε ≤ 4kpkd
2λ1kpc+ k2

d

, (5.25)

and V̇1(t) is negative definite if this condition on ε. We are free to choose ε such that

ε ≤ min
(

4kpkd
2λ1kpc+k2d

,
√

kpλ6
λ21

)
, thus we conclude that the system is locally asymptotically
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stable, i.e. limt→∞∆ψ(t) = ~0 and limt→∞∆v(t) = ~0.

This result is local because we require ‖∆ψ(t)‖ < π ∀t ≥ t0. To justify this as-

sumption note that ∀t ∈ R we know ‖∆ψ(t)‖ ≤ ‖x(t)‖ and consider the condition

‖x(t0)‖ <
√

ελ12
ελ1

π. Since ελ12 ≤ ελ1, this condition implies ‖x(t0)‖ < π. By the Lya-

punov stability proof above, V1(t) ≤ V1(t0) for all t ≥ t0, thus

ελ12‖x(t)‖2 ≤x(t)TMεx(t)

≤V1(t)

≤V1(t0)

≤x(t0)TMεx(t0)

≤ελ1‖x(t0)‖2

<ελ1

(√
ελ12

ελ1

π

)2

. (5.26)

This inequality implies ‖∆ψ(t)‖ ≤ ‖x(t)‖ < π for all t ≥ t0. The assumption is justified

and local asymptotic stability is proven.

5.2.5 UV AMBC

This Section reports a nonlinear novel linearizing tracking controller for mechanical

plants of the form (5.1) without requiring perfect knowledge of the plant parameters. A

local stability analysis is also included. Section 5.2.5.1 explicitly states the goal for UV

MBC. The proof that Theorem 5.2.2 satisfies these conditions is presented in Section

5.2.5.3. This result is an adaptive extension of the MBC algorithm reported in Section
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5.2.4.

5.2.5.1 UV AMBC Goal

Given a desired reference trajectory {wdH, dvd,
dv̇d} for a plant of the form (5.1),

where the signals {waH, ava, u} are accessible and the parameters {M, D, g, b} are

constant but unknown, our goal is to develop a control law u : SE(3)×R6 × SE(3)×R6 ×

R6×R241 → R6 and parameter update law ˙̂
θUV : SE(3)×R6×SE(3)×R6×R6 → ×R241

which guarantee that all signals remain bounded and provide asymptotically exact reference

trajectory-tracking, i.e. limt→∞∆ψ(t) = ~0 and limt→∞∆v(t) = ~0.

5.2.5.2 UV AMBC Theorem

Theorem 5.2.2 For plants of the form (5.1) where the plant parameters, θUV ∈ R241, are

unknown and the regressor matrix, WMBC : R6 × R6 × R6 × SE(3)→ R6×241, is defined

in (5.12), the control and parameter update laws

u(waH,
ava,

w
dH,

dvd,
dv̇d, θ̂UV ) =− (kpÂ−T (∆ψ) + kd∆v) + WMBC(av̇d,∆v,

avd,
w
aH)θ̂UV

(5.27)

˙̂
θUV (waH,

ava,
w
dH,

dvd,
dv̇d) =−KθWT

MBC(av̇d,∆v,
avd,

w
aH)(ε∆ψ + ∆v) (5.28)

provide asymptotically stable trajectory-tracking in the sense of Lyapunov, i.e.

limt→∞∆ψ(t) = ~0 and limt→∞∆v(t) = ~0, and parameter estimates which converge to

constant values, i.e. limt→∞
˙̂
θ(t) = 0241×1, if the following conditions are met:
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• the signals {wdH, dvd, dv̇d} ∈ {SE(3),R6,R6} are continuous and bounded

• kd, kp ∈ R+

• Kθ is PDS

• ε < min
(

4kpkd
2λ1kpc+k2d

,
√

kpλ6
λ21

)
•
√

ελ1
ελ12
‖x(t0)‖2 + kθ

ελ12
‖∆θ(t0)‖2 < π for the state error vector (5.5) and parame-

ter error vector (5.6)

where kθ = 1
min eigKθ

, ελi are the eigenvalues of Mε, and λi are the eigenvalues of M

(noting the eigenvalue conventions from Section 2.2.2).

5.2.5.3 UV AMBC Stability Proof

The controlled plant equation takes the form

Mav̇a = adTavaM
ava +D(ava) + G(waH)

− (kpÂ−T (∆ψ) + kd∆v) + WMBC(av̇d,∆v,
avd,

w
aH)θ̂UV

= adTavaM
ava +D(ava) + G(waH)− (kpÂ−T (∆ψ) + kd∆v)

+ WMBC(av̇d,∆v,
avd,

w
aH) (∆θUV + θ)

=Mav̇d −M ad∆v
avd − (kpÂ−T (∆ψ) + kd∆v) + WMBC(av̇d,∆v,

avd,
w
aH)∆θ.

(5.29)

From equation (5.10) we have

M∆v̇ = −(kpÂ−T (∆ψ) + kd∆v) + WMBC(av̇d,∆v,
avd,

w
aH)∆θ (5.30)
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which provides the error system

ẋ = Â(∆ψ)x+

 06×1

M−1WMBC(av̇d,∆v,
avd,

w
aH)∆θ

 . (5.31)

Consider the following candidate Lyapunov equation

V2(t) =
1

2
xTMεx+

1

2
∆θTK−1

θ ∆θ

=V1(t) +
1

2
∆θTK−1

θ ∆θ. (5.32)

Since we assume ε ≤
√

kpλ6
λ21

and Kθ is PDS; we know V2(t) is positive definite and equal

to zero if and only if x = ~0 and ∆θ = ~0. The time derivative of V2(t) is

V̇2(t) =
1

2
xT
(
ÂT (∆ψ)Mε +MεÂ(∆ψ)

)
x+ ∆θTK−1

θ ∆θ̇+

∆θT
[
εWT

MBC(av̇d,∆v,
avd,

w
aH) WT

MBC(av̇d,∆v,
avd,

w
aH)

]
x. (5.33)

Using the update law (5.28) results in

V̇2(t) =
1

2
xT
(
ÂT (∆ψ)Mε +MεÂ(∆ψ)

)
x

=V̇1(t). (5.34)

As with (5.24), if ε < min
(

4kpkd
2λ1kpc+k2d

,
√

kpλ6
λ21

)
and ‖∆ψ‖ < π we know V̇2(t) < 0 ∀t ≥

t0. Therefore V̇2 is negative definite in x and negative semidefinite in ∆θ assuming

‖∆ψ(t)‖ < π ∀t ≥ t0 (a fact shown at the end of this Section). By Lyapunov’s di-

rect method, (5.32) and (5.34) imply that all error coordinates are bounded and stable. The

structure of V̇2(t) implies that x ∈ L2 or, equivalently, limt→∞

(∫ t
0
xTx

)1/2

< ∞. We

must ensure every signal in (5.31) and (5.28) is bounded and (5.27) well defined for all
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time. The facts that ψd, ∆ψ, dvd, ∆v, dv̇d, and ∆θ are bounded, θUV is constant, and (5.3)-

(5.6) imply that ψa, ava, and θ̂UV are bounded. If ‖∆ψ(t)‖ < π then Â−1, and therefore

Â, is bounded. Since every signal in (5.31) is bounded we know ẋ is bounded. Note that

bounded ẋ and x ∈ L2 implies limt→∞ x = ~0. Since every signal in (5.28) being bounded

and limt→∞ x = ~0 implies that limt→∞
˙̂
θ = ~0. Thus local stability of the system is shown,

the UV state asymptotically converges to the desired reference trajectory, and the estimated

parameters converge to constant values.

Above we require ‖∆ψ(t)‖ < π ∀t ≥ t0. To justify this assumption consider that the

inequality

ελ12‖x(t)‖2 ≤x(t)TMεx(t)

≤V2(t)

≤V2(t0)

≤ελ1‖x(t0)‖2 + kθ‖∆θ(t0)‖2 (5.35)

and the final condition from Theorem 5.2.2 imply that ‖x(t)‖ < π for all t ≥ t0, guaran-

teeing that ‖∆ψ(t)‖ < π for all t ≥ t0.

5.2.6 Two-Step AMBC

In the sequel we will find it convenient to adaptively identify subsets of plant param-

eters. Note that (5.12) is linear in the parameters, thus there exists a set of functions
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WMBCi : R6 × R6 × R6 × SE(3)→ R6 such that

241∑
i=1

WMBCi(
av̇d,∆v,

avd,
w
aH)θUVi = WMBC(av̇d,∆v,

avd,
w
aH)θUV . (5.36)

If a subset of parameter values in θUV is known a priori then, based on Theorems 5.2.1

and 5.2.2, an AMBC can be developed to estimate the remaining unknown parameters.

Any AMBCs of this form achieve asymptotically exact trajectory-tracking canceling the

contribution to vehicle dynamics due to known parameters (as shown in Section 5.2.1) and

use parameter update laws to adaptively estimate of the unknown parameters (as shown in

Section 5.2.2). IfKθ is assumed to be diagonal, each AMBC of this form will be equivalent

to using the AMBC from Theorem 5.2.2, with each known parameter initialized to its

known value and its associated parameter gain within Kθ set to zero. A two-step AMBC

algorithm presented herein independently estimates two disparate sets of parameters in two

successive experimental trials.

The structure of (5.1) allows the identification of dynamic and gravitational parameters

to be conducted in a two-step process. The first step is identifying g and b estimates during

quasi-static motion in pitch and roll. For quasi-static motion (i.e. nearly zero velocity and

acceleration) in these DOF, the following model is sufficient to describe vehicle dynamics

0 = G(waH) + u (5.37)

where all inertial and drag terms are assumed to be negligible because they are either

quadratic in velocity or linear in acceleration. The validity of this model implies using

the adaptive tracking controller from Theorem 5.2.2 to track a slow reference trajectory in
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pitch and roll will identify estimates of g and b without requiring the simultaneous estima-

tion of mass and drag parameters.

The second step AMBC algorithm estimates the inertial and drag parameters (i.e. M

and D) while using the gravitational parameter values identified in step one. Using the

controller from Theorem 5.2.2 with constant b̂ and ĝ set to their previously identified values,

this controller can be used to track any reference trajectory while identifying estimates of

the vehicle’s mass and drag. This partitioning of the parameter identification process will

be important in the sequel when we consider the effects of unmodeled thruster dynamics

on AMBC.

5.3 Experimental Evaluation of UV AMBC

with Unmodeled Actuator Dynamics

This Section reports a comparative experimental evaluation between UV AMBC and

UV PDC for typical operational maneuvers. Although experimental implementations of

UV AMBC algorithms have been reported [5, 40, 65, 71, 74, 75], to the best of our knowl-

edge experimental evaluations of AMBC during simultaneous motion in all DOF has not

previously been reported. The comparative experimental evaluation of AMBC and PDC

during simultaneous 6-DOF maneuvers reported herein shows that AMBC can provide

better position tracking performance than PDC.

This Section is organized as follows: Section 5.3.2 shows how direct implementation of
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the AMBC from Theorem 5.2.2 exhibits unstable parameter adaptation in the presence of

unmodeled thrust reversal dynamics. Section 5.3.4 presents two experiments where AMBC

is used to follow a pitch-only reference trajectory. The range of motion is changed such

that one pitch-only reference trajectory requires thrust reversals and the other pitch-only

reference trajectory does not. A comparative analysis of these parameter adaption processes

details how unmodeled dynamics arising from thrust reversals can cause unstable parameter

adaptation. Finally, Section 5.3.5 reports an experimental evaluation of the two-step AMBC

algorithm reported in Section 5.2.6, and an experimental comparison of two-step AMBC

and PDC.

5.3.1 Experimental Setup

We employed the Johns Hopkins University Hydrodynamic Test Facility (Appendix A)

to evaluate UV AMBC. To compare the trajectory-tracking performance of controllers we

consider the mean normal of error vectors (MNE) for vectors such as the position error

(∆ψ) and velocity error (∆v). We also report the mean absolute error (MAE) between the

measured and reference values for the 12 position and velocity signals. A smaller MNE

or MAE value means the controller is doing a better job tracking the reference trajectory.

As with the adaptively identified UV models in Sections 4.5 and 4.6, identified UV models

are evaluated by error between simulated model performance and the experimentally ob-

served performance. MAE values between the simulated plant states and experimentally

measured states are reported. Appendix A provides further details about our hydrodynamic
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test facility and algorithm evaluation methods.

The fully-coupled model of UV dynamics used in (5.1) requires 241 independent pa-

rameter values. To simplify and clarify the experimental analysis of UV AMBC in the

presence of unmodeled thruster dynamics, we have implemented a controller which em-

ploys an uncoupled model using 16 scalar terms: 6 hydrodynamic mass, 6 quadratic drag

terms (one for each DOF which we will label as mi and di respectively), and the 4 gravi-

tational parameters g and b. For a diagonal parameter adaptation gain matrix Kθ, we can

label the individual mass parameter gains as γmi , the individual drag parameter gains as

γdi , the individual buoyancy parameter gains as γbi and the gravitational parameter gain as

γg. Both the AMBC control process and parameter update process where implemented as

a discrete time approximation of the continuous time algorithm. Every 100ms the com-

manded torque and commanded force were recalculated using (5.27) as well as the most

recent state measurements, reference state values, and parameter estimates. These inputs

signals are therefore piecewise constant. Euler integration of (5.28) for 100ms time steps

provided the time series of parameter estimates. The 100ms JHU ROV control system cy-

cle period is one to two orders-of-magnitude smaller than the JHU ROV state variation rate

of 1 second or greater observed during dynamic operation. In practice the discrete time

approximations were seen to provide similar performance to the continuous time algorithm

implemented in simulation.

Sinusoidal reference trajectories are used in this study. Table 5.1 lists the frequencies

and amplitudes for the 6-DOF reference trajectories used.
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Table 5.1: Reference Trajectory Information
RefTraj1 RefTraj2

Reference Trajectory Trajectory Control Parameter
Purpose Evaluation Cross-Validation

DOF Excitation Trajectory-Tracking
world x Cos Freq 0.242 rad/sec 0.185 rad/sec

Cos Amp 0.50 m 0.50 m
DOF Excitation Trajectory-Tracking

world y Cos Freq 0.210 rad/sec 0.286 rad/sec
Cos Amp 0.50 m 0.50 m

DOF Excitation Trajectory-Tracking
world z Cos Freq 0.185 rad/sec 0.242 rad/sec

Cos Amp 0.30 m 0.30 m
DOF Excitation Trajectory-Tracking Torque Input
roll Cos Frequency 0.5 rad/sec 0.55 rad/sec

Cos Amplitude 6.9◦ 35 N m
DOF Excitation Trajectory-Tracking Torque Input
pitch Cos Freq 0.6 rad/sec 0.65 rad/sec

Cos Amp 8.6◦ 30 N m
DOF Excitation Trajectory-Tracking

heading Cos Freq 0.210 rad/sec 0.0824 rad/sec
Cos Amp 135◦ 135◦
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5.3.2 UV AMBC Instability During 6-DOF Motion

This Section reports an experimental evaluation of AMBC during simultaneous motion

in all DOF which results in unstable parameter adaptation. In the experiment the mass,

drag, and gravitational terms were initialized to parameters previously identified to model

vehicle performance (tabulated in Tables 5.4 and 5.5). The reference trajectory specified

was RefTraj1 from Table 5.1. The gains used were kp = 300, kd = 100 γmi = 1000,

γdi = 5000, γg = γb1 = γb2 = 0.5 and γb3 = 10.0.

Tables 5.2 and 5.3 tabulate the initial and final parameters identified. Over this two-

hour duration experiment most parameter values oscillated near their previously identified

values, however b̂3(t), m̂4(t), and m̂5(t) adapted away from their previously identified val-

ues. As seen in Figure 5.1, these mass estimates adapt to physically unrealistic negative

values and show no signs of asymptotic behavior. The instability observed in this exper-

iment motivated us to examine the role of unmodeled thruster dynamics in the m̂4(t) and

m̂5(t) adaptation process.

Table 5.2: Gravitational Parameters Identified During Unstable Parameter Adaptation
g b1 b2 b3

N N m N m N m
Init 3.63 1.017 3.02 300

Final -5.71 2.6 3.53 261
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Table 5.3: Mass and Drag Parameters Identified During Unstable Parameter Adaptation
mi(to) mi(tf ) di(to) di(tf )

Trans X DOF 583 kg 583 kg -1245 N s2
m2 -1005 N s2

m2

Trans Y DOF 873 kg 769 kg -1426 N s2
m2 -1400 N s2

m2

Trans Z DOF 1021 kg 1031 kg -3060 N s2
m2 -3039 N s2

m2

Angular X DOF 103.5 kg m2 -1.348 kg m2 -728.4 N s2 -761.5 N s2

Angular Y DOF 137.1 kg m2 42.5 kg m2 -769.1 N s2 -681.4 N s2

Angular Z DOF 106.4 kg m2 41 kg m2 -376.2 N s2 -393.3 N s2
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Figure 5.1: The time evolution of Angular X DOF and Angular Y DOF mass estimates
from AMBC during 6-DOF dynamic maneuvers. These mass estimates adapt to physically
unrealistic negative values and show no signs of asymptotic behavior.
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5.3.3 Unmodeled Thruster Dynamics within

the UV Control Process

The JHU ROV control system uses the common assumption of steady-state thruster

operation when calculating the actuator commands (see Appendix A.1). In steady-state

operation at zero advance velocity the axial thrust of a bladed-propeller marine thruster

is linearly proportional to the applied shaft torque, and is also linearly proportional to

the signed-square of the shaft angular-velocity [68]. The parameters of these steady-state

thruster models cannot be determined analytically, but are easily estimated with simple

steady-state experiments. Research has shown that the transient performance of marine

thrusters can be accurately approximated by a finite-dimensional second-order plant model

of propeller-fluid interaction. The plant parameters of these dynamic thruster models can-

not be determined analytically, and are difficult to estimate experimentally because such

identification requires highly instrumented measurements of the thruster thrust, prop angu-

lar velocity, and fluid flow velocity in unsteady operation [8, 22, 33, 70].

Because unsteady thruster model parameters are difficult to obtain experimentally, in

the design of marine vehicle control systems it is common practice to employ easily-

obtained steady-state thruster models. This approach works extremely well for steady-state

or slowly time-varying vehicle motion, but results in the presence of unmodeled thruster

dynamics during highly dynamic vehicle maneuvering. In 1984, Rohrs et al. famously

showed that stable adaptive controllers for linear time-invariant plants can be destabilized
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by the presence of unmodeled plant dynamics [58]. To the best of our knowledge, this

is the first observation of unmodeled thruster dynamics resulting in the destabilization of

AMBC.

5.3.4 Comparative Experimental Evaluation of AMBC

During Pitch-Only Motion in the Presence

of Unmodeled Thruster Dynamics

This Section reports two experiments using AMBC to control the JHU ROV. In the first

experiment parameter adaptation is unstable; in the second experiment parameter adapta-

tion is stable. In both experiments the vehicle follows a pitch-only reference trajectory;

the mass, drag, and gravitational terms were initialized to parameters previously identified

to model vehicle performance (tabulated in Tables 5.4 and 5.5); and the gains used were

kp = 300, kd = 100 γmi = 1000, γdi = 5000, γg = γb1 = γb2 = 0.5 and γb3 = 10.0. In

the first experiment, the pitch-only reference trajectory oscillates about zero pitch. In the

second experiment, pitch-only reference trajectory oscillates about a mean pitch of 5◦ with

an amplitude of 3◦. The first experiment requires thrust reversals to follow the specified

reference trajectory, and the second experiment does not require thrust reversals.

Figure 5.2 plots the pitch, angular velocity, thrust commands, and mass estimate deriva-

tive for the experiment with thrust reversals. In the thrust subplots the four lines are plot-

ted, the commanded and estimated thrusts are shown for the two thrusters actuating vehicle
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pitch. Note that the thrust is estimated using a thruster’s measured angular velocity as de-

tailed in Appendix A.1. Note that for both thrusters as the commanded thrust crosses zero,

the measured output remains zero until the commanded thrust reaches 5 Newtons. The

buoyancy torque’s influence causes the pitch and y angular velocity to significantly deviate

from their respective reference trajectories. From the perspective of the AMBC algorithm,

these deviations from the position and velocity reference trajectories are indistinguishable

from the deviations which would occur if the estimated pitch inertia were too large, thus

the parameter estimate update for this term, ˙̂m5, has a large negative spike after each thrust

reversal. Over a multi-hour experiment this systematic error causes pitch and roll mass

estimates to adapt to physically unrealistic negative values.

Figure 5.3 plots the pitch, angular velocity, thrust commands, and mass estimate deriva-

tive for the experiment without thrust reversals. Without thrust reversals, the chain of events

leading to a large negative spike in the pitch mass update law are not present. The balanced

parameter adaptation seen in this third experiment leads to pitch mass convergence to a

physically realistic value.

5.3.5 Experimental Evaluation of Two-Step Method

In this Section we report an experimental evaluation of the two-step algorithm reported

in Section 5.2.6.

The first step is identifying the gravitational and buoyancy parameters for the UV using
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Figure 5.2: Fifty five seconds of data from a experiment where AMBC was used to follow
a single DOF reference trajectory in pitch. Following the reference trajectory required
thrust reversals. Thruster force was estimated using measured propeller angular velocity.
In the commanded/estimated thruster subplot, a short period of thruster stiction is seen at
each thrust reversal. The effects of thruster stiction are seen in both the pitch and angular
velocity plots as deviations from each state’s respective reference trajectory. In the pitch
mass estimate derivative, the parameter update law is seen to have a large negative spike
after each thrust reversal.
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Figure 5.3: Eighteen seconds of data from a experiment where AMBC was used to follow a
single DOF reference trajectory in pitch. Following the reference trajectory did not require
thrust reversals. Thruster force was estimated using measured propeller angular velocity.
In the commanded/estimated thruster subplot thruster stiction is not observed. The chain
of events leading to a large negative spike in the pitch mass update law are not present in
this experiment.

148



CHAPTER 5. UV ADAPTIVE MODEL-BASED CONTROL

the adaptive tracking controller for plant model (5.37). The reference trajectory was con-

stant in translational position and heading, with slow changes in pitch and roll to provide

quasi-static motion. For this experiment we used a sinusoidal pitch reference trajectory

with a magnitude of 0.2 rad and frequency of 34 Hz and a sinusoidal roll reference trajec-

tory with a magnitude of 0.15 rad and frequency of 42 Hz. The gains used were kp = 300,

kd = 100, γg = γb1 = γb2 = 0.5, and γb3 = 10.0. Over a 90 minute experiment the gravita-

tional and buoyancy parameters were stable and converged to the physically realistic values

shown in Table 5.4.

Table 5.4: Gravitational Parameters Identified During Quasi-Static Motion
g b1 b2 b3

N N m N m N m
Final 3.59 1.696 3.09 300

The second step uses the identified parameters from Table 5.4 in a AMBC which esti-

mates the mass and drag parameters, as described in Section 5.2.6. In the second step of the

two-step AMBC algorithm the reference trajectory specified was RefTraj1 from Table 5.1;

the mass and drag parameters were initialized to zero; and the gains used were kp = 300,

kd = 1000, γmi = 1000, and γdi = 5000. Over a four and a half hour experiment all 12

mass and drag parameters were observed to be stable and converge to physically realistic

values. Table 5.5 records the initial and final states for each dynamic parameter estimate.
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Table 5.5: Parameters Identified with two-step AMBC during Dynamic Motion Trajectory-
Tracking

mi(to) mi(tf ) di(to) di(tf )

Trans X DOF 0.0 kg 628 kg 0.0 N s2
m2 -1259 N s2

m2

Trans Y DOF 0.0 kg 791 kg 0.0 N s2
m2 -1429 N s2

m2

Trans Z DOF 0.0 kg 1043 kg 0.0 N s2
m2 -3083 N s2

m2

Angular X DOF 0.0 kg m2 95.7 kg m2 0.0 N s2 -727.1 N s2

Angular Y DOF 0.0 kg m2 145.3 kg m2 0.0 N s2 -783.4 N s2

Angular Z DOF 0.0 kg m2 110.2 kg m2 0.0 N s2 -465.6 N s2

5.3.5.1 Two-Step AMBC Trajectory Tracking Performance

Figure 5.4 compares the performance of the second step of the two-step AMBC to a

PDC with comparable gains. These two plots contain the exponential position and velocity

MNE for the PDC and two-step AMBC experimental run. Both controllers were following

the reference trajectory RefTraj1 from Table 5.1 as well as using kp = 300 and kd =

100. The PDC MNEs values were calculated using 10 minutes of data. The two-step

AMBC MNEs values were calculated for consecutive 15 minutes windows. Note that after

parameter convergence the two-step AMBC provides 30% better position tracking and 8%

worse velocity tracking than PDC with similar gains.

Table 5.6 reports the trajectory tracking MAE values of individual DOF for both the

PDC and two-step AMBC experiments. The PDC MAEs values were calculated using

10 minutes of data. The two-step AMBC MAEs values were calculated for consecutive

15 minutes windows. For each of the position DOF, two-step AMBC MAE values were

smaller than PDC values. With the exception of heading, two-step AMBC position trajec-

tory tracking improved in each DOF as the parameter adaptation process progressed. Of
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the velocity DOF, two-step AMBC only outperformed PDC in the x and y angular veloc-

ity DOF. With the exception of y angular velocity, two-step AMBC velocity trajectory-

tracking performance degraded slightly as the parameter adaptation process occurred. For

the DOF in which trajectory-tracking is not improving, this could be an effect of unmod-

eled thruster dynamics or other dynamics which are not included in the uncoupled lumped-

parameter model of UV dynamics used in our AMBC algorithm. However, taken as a

whole, this experimental evaluation indicates that AMBC can provide increased trajectory-

tracking performance in the presence of unmodeled thruster dynamics.
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Figure 5.4: Exponential position and velocity MNE values for the experimental evaluations
of two controllers, PDC and two-step AMBC. Both controllers were following the same
reference trajectory (RefTraj1 from Table 5.1) as well as using the gains kp = 300 and
kd = 100. The PDC MNE values were calculated using 10 minutes of data, this single
value is plotted in green across the entire figure. The two-step AMBC MNE values were
calculated for consecutive 15 minute windows and plotted in blue.
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5.3.5.2 Two-Step AMBC Parameter Cross-Validation

In addition to providing trajectory-tracking, AMBC has also been proposed to identify

UV models. Two questions arise:

• “How good is the identified model at reproducing vehicle performance?”

• “Considering the time series of parameter estimates, do the resulting plant models

get better at matching JHU ROV performance as the parameter adaptation process

progresses?”

To address these questions we preformed a cross-validation experiment (Appendix A.2)

by driving the JHU ROV to follow RefTraj2 from Table 5.1. Figures 5.5 to 5.7 show

the ability of the identified model to match vehicle performance in forward simulation in-

creases during parameter adaptation. Each Figure shows experimentally measured states

verses the states from numerical simulations; each numerical simulation uses a model iden-

tified by the two-step AMBC after a set amount of time. Each JHU ROV simulation used

the thrust inputs recorded and initial JHU ROV states to create a forward simulation. All

eight open-loop-stable states are plotted. In both the plots and listed MAE values, the ca-

pacity of the identified parameters to model vehicle performance in every DOF increases

as time progresses. The fact that the parameter estimates are progressively improving sug-

gests that the parameter adaptation process is working despite the presence of unmodeled

thruster dynamics.
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As was seen with adaptive identification (AID) and least squares identification (LS) in

Sections 4.5 and 4.6, the models identified using two-step AMBC were not able to repro-

duce the highest frequency fluctuation’s observed experimentally (such as those seen in the

x angular velocity subplots of Figure 5.6). However, the states shown from simulating a

model using the “5000 sec” parameter set (the final parameter set included in this analy-

sis) indicate that AMBC can produce parameter estimates which result in accurate plant

models.

5.3.6 The Effects of Unmodeled Thruster Dynamics on

AMBC

The experiment reported in Section 5.3.2 shows, curiously, a clear differentiation in

parameter adaptation performance; unstable parameter adaption occurred only in the pa-

rameter estimates associated with pitch and roll dynamics. To further explore this effect,

in Section 5.3.4 we investigated parameter adaptation during pitch-only reference trajec-

tory excitation. These data show thrust reversals cause parameter instability. Further, the

thruster angular velocity data indicate a difference between the actual and commanded

torques applied to the vehicle. Based on our knowledge of the JHU ROV control system

and thruster design, the data from these pitch-only experiments suggest that unmodeled

thruster dynamics are present during thrust reversals. Without further experimental anal-

ysis we can not specify if the specific mechanism causing unstable parameter adaptation
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Figure 5.5: Representative data of experimental and simulated JHU ROV states during
6-DOF dynamic operation. In the roll and pitch plots the measured state is plotted to-
gether with the position estimates from three JHU ROV simulations. The three parameter
sets were taken from the time history of parameter adaptation recorded during the two-
step AMBC experiment. The ’250s’ forward simulation (plotted in blue and marked with
circles) models JHU ROV performance using parameters identified after 250 seconds of pa-
rameter adaptation. Similarly the ’1000s’ forward simulation (plotted in green and marked
with stars) and ’5000s’ forward simulation (plotted in red and marked with triangles) use
parameters identified after 1000 and 5000 seconds of parameter adaptation respectively.
For each DOF, the error between the measured positions and their estimates is shown.
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Figure 5.6: Representative data of experimental and simulated JHU ROV states during 6-
DOF dynamic operation. In the three angular velocity plots, the measured state is plotted
together with the velocity estimates from three JHU ROV simulations. The three parameter
sets were taken from the time history of parameter adaptation recorded during the two-step
AMBC experiment. See Figure 5.5 caption for further information on each parameter set.
For each DOF, the error between the measured positions and their estimates is shown.
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Figure 5.7: Representative data of experimental and simulated JHU ROV states during
6-DOF dynamic operation. In the three body velocity plots, the measured state is plotted
together with the velocity estimates from three JHU ROV simulations. The three parameter
sets were taken from the time history of parameter adaptation recorded during the two-step
AMBC experiment. See Figure 5.5 caption for further information on each parameter set.
For each DOF, the error between the measured positions and their estimates is shown.
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is unmodeled thruster mechanical dynamics, fluid dynamics, mechanical friction during

thrust reversals, or some combination of these mechanisms. Regardless of the underlying

source of modeling error, these experiments suggest that unstable parameter adaptation will

occur in parameters associated with a given DOF if the following three conditions are met:

• mass and gravitational parameter estimates are adapting,

• there exists of a single attractive stability point for that DOF, and

• unmodeled thruster dynamics are present.

The success of two-step parameter adaptation supports this hypothesis. Implementing

the parameter estimation process in two steps removed the need for simultaneous adap-

tation of the mass and buoyancy terms. By separating parameter adaptation in this way,

an ambiguity in the adaptation process was removed. Note the three factors listed imply

that both the buoyancy and mass parameter estimates will be affected in the same way by

unmodeled thruster dynamics during thrust reversals. From the perspective of the AMBC

algorithm, the deviations from the position and velocity reference trajectories caused by

unmodeled thruster dynamics are indistinguishable from the deviations which would occur

if either of these parameter estimates (the buoyancy torque estimate or the inertia estimate)

were too large. The effects of the inertia tensor and buoyancy torque parameters on vehicle

position and velocity are also coupled. For instance there will be similarities between the

dynamics of a UV with a large mass and large buoyancy torque and a UV with a small mass

and small buoyancy torque for a proper scaling of these properties. During each period of
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unmodeled thruster dynamics, the simultaneous unstable adaptation of the inertia and buoy-

ancy estimates was difficult for the AMBC algorithm to overcome because the estimate of

vehicle dynamics was only slightly degraded by the physically unrealistic changes in these

parameter estimates. Setting the buoyancy torque estimate to a fixed value during dynamic

maneuvers removes the possibility of simultaneous adaptation to physically unrealistic val-

ues.

5.4 Conclusion

This Chapter presents both theoretical and experimental results concerning UV AMBC.

Section 5.2 reports MBC and AMBC algorithms, along with a local proofs of stability. Sec-

tion 5.3 reports an experimental investigation of a previously unreported UV AMBC failure

mode where unmodeled thruster dynamics during thrust reversals cause unstable parameter

adaptation. The Section also reports a novel two-step AMBC algorithm which is shown ex-

perimentally to provide stable trajectory tracking and parameter adaptation in the presence

of the unmodeled thruster dynamics of our system. Finally, it reports a comparative experi-

mental analysis of the two-step AMBC algorithm with PDC. This experimental evaluation

shows that two-step AMBC provides 30% better position tracking performance and 8%

worse velocity tracking performance over PDC.
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Chapter 6

Conclusion

6.1 Thesis Summary

This Thesis reports algorithms for state estimation, adaptive parameter identification,

and model-based control principally for underwater vehicle (UV) applications. An analyti-

cal proof of stability is included for every reported algorithm. Chapter 3 reports an angular

velocity observer for rotating rigid-bodies, an adaptive identification (AID) algorithm for

rotating rigid-bodies, and an AID algorithm for open kinematic chains (OKCs). Numer-

ical simulations of the AID algorithm for rotating rigid-bodies corroborate the analytical

stability analysis and investigate parameter convergence with varying initial conditions,

adaptation gains, and input torques. Chapter 3 also reports a comparative analysis of three

nonlinear angular velocity observer for rotating rigid-bodies; in numeric simulations the

novel angular velocity observer (Theorem 3.2.1) is shown to provide performance similar
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to that of the two previously reported observers.

Chapter 4 reports two AID algorithms for the dynamic estimation of UV plant pa-

rameters. Chapter 4 also reports two comparative experimental evaluations of adaptive

identification and least squares identification. Both the adaptively identified plant models

(AIDPMs) and the least squares identified plant models (LSPMs) are shown to match

closely the experimentally observed UV input-output behavior. Adaptive identification

algorithms do not require simultaneous reference trajectory-tracking control, nor do they

require instrumentation of linear acceleration or angular acceleration. Together, these facts

make adaptive identification applicable to a wider class of UVs than previously reported

methods. Chapter 5 reports an UV model-based control (MBC) algorithm and UV adaptive

model-based control (AMBC) algorithm. Chapter 5 also reports an experimental evalua-

tion of the destabilizing effects of unmodeled thruster dynamics on AMBC and a two-step

AMBC algorithm which is shown experimentally to be robust in the presence of unmodeled

thruster dynamics. A comparative experimental analysis of the two-step AMBC and pro-

portional derivative control (PDC) is reported; it showed that AMBC provides 30% better

position tracking performance and marginally worse (8%) velocity tracking performance

over PDC.
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6.2 Future Work

In addition to the straightforward applications of UV AID and UV AMBC discussed in

Chapter 1, these algorithms could also enable complex, multifaceted UV missions by using

AID for fault detection and AMBC for fault compensation.

As shown in Chapter 4, UV AID dynamically estimates parameters assumed to be con-

stant. When applying UV AID for fault detection, parameter adaptation is monitored for

changes indicative of UV component failures. Different parameters can be monitored for

different types of failures. For example, drag parameters could be used to detect entangle-

ment, mass parameters could be used to detect flooded housings or detached components,

and a general force/torque vector could be used to detect unanticipated UV collisions.

As shown in Chapter 5, AMBC uses plant parameter estimates for model-based

trajectory-tracking and these plant parameter estimates are iteratively improved in a process

similar to AID. Since AMBC algorithms evolve parameter estimates in a process similar

to AID, they are naturally robust to UV component failures. Designing a suite of AMBC

algorithms which compensate for particular component failures and using a collection of

AID algorithms to switch between these AMBC algorithms could allow fast, effective fault

compensation.

Current UV control systems rely on engineers to detect remotely and compensate for

vehicle component failures. As UV mission complexity has increased, this component fail-

ure detection and compensation method has become a barrier limiting future deployments.

Using AID and AMBC to automate failure detection and failure compensation has the po-
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tential to i) lower the amount of time lost due to mission aborts, ii) limit the possibility of

losing a vehicle, and iii) enable new missions which are currently impossible due to vehicle

safety concerns. Missions benefiting could include:

• Long Duration Unsupervised Deployments: Some UVs are capable of deployments

lasting from days to weeks [10, 28]. The capacity to detect and compensate for UV

component failures increases the likelihood of successful unsupervised deployments.

• Semi-Autonomous UV Operations: Semi-autonomous missions use human direction

and data interpretation to accomplish actions too complex to automate. Automated

failure detection will allow engineers to understand the vehicle’s current state and

predict its future capabilities.

• Under Ice Operations: The Polar Remotely Operated Vehicle (PROV) is currently

being developed for under ice operation [11, 26], where surfacing in the event of a

failure is not an option. PROV’s thruster redundancy will allow continued operation

with multiple thruster failures. However, utilizing this redundancy requires detecting

the failures.

In short, this Thesis reports adaptive algorithms which enable better utilization of cur-

rent UVs. These results are also the starting point for algorithms which enable complex,

multifaceted missions of both the current generation of UVs and those to come.
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Appendix A

UV Experimental Facility

and Algorithm Evaluation Methods

A.1 JHU Hydrodynamic Test Facility

The Johns Hopkins Hydrodynamic Test Facility [34] contains an indoor fresh water

tank measuring 7.75 m in diameter and 4.25 m deep, as shown in Figure A.1. The facility

is equipped with the JHU ROV, a fully instrumented underwater vehicle (UV) designed

for navigation and control research. The JHU ROV displaces 150 kg and is actuated by

six 1.5 kWh DC brushless electric direct drive thrusters providing full control authority

for 6-degree-of-freedom (DOF) maneuvers. Each thruster is controlled with a current-

mode amplifier. The JHU ROV control system generates the command current for each
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(a) Johns Hopkins University Hydrodynamic Test Facility

(b) JHU ROV starboard side view (c) JHU ROV stern view

Figure A.1: Johns Hopkins University Hydrodynamic Test Facility and Johns Hopkins
University Remotely Controlled Vehicle (JHU ROV).

thruster using data from a-priori steady-state thruster calibration experiments; no feedback

is used in generating the commanded current. The angular velocity of each thruster is

instrumented. This measured thruster angular velocity (ωth) can be used to estimate the

thruster force (fth) using the empirically validated steady state relation fth = kthωth|ωth|,

where kth is an empirically identified constant [68]. The vehicle’s control system is capable

of actively controlling 6-DOF vehicle motion. During an experiment, each of the 6 JHU

ROV DOF were independently actuated using either closed-loop control or open-loop sinu-

soidal commanded torques. For the DOFs using closed-loop control, a sinusoidal reference
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trajectory was specified to the JHU ROV control system.

Figure A.2: The world-frame’s orthonormal x, y, and z basis vectors point from the frame’s
origin towards in the directions north, east, and down respectively. The body-frame’s or-
thonormal x, y, and z basis vectors point from the vehicles origin to the vehicle’s bow side,
starboard side and keel location respectively. Note the arrows showing positive rotation
about each body axis.

The coordinate frames employed herein are depicted in Figure A.2. The world-frame’s

orthonormal x, y, and z basis vectors point from the frame’s origin towards the direction

north, east, and down respectively. Employing standard navel architecture conventions, the

body-frame’s orthonormal x, y, and z basis vectors point, respectively, from the vehicle’s

origin to the vehicle’s bow, starboard side and keel. The Euler angles heading, pitch, and

roll express the relationship between the world-frame and body-frame as follows: rotating

the world-frame about its +z-axis through an angle heading, then rotating the resulting

frame about its +y-axis through an angle pitch, then rotating the resulting-frame around its

+x-axis through an angle roll provides the body-frame.
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Table A.1: JHU ROV state measurement sources, resolutions, and accuracies
Measurement

State Source Update Rate Precision/Std Dev
(Standard Deviation)

XY Translational DVLNAV 10 Hz Resolution >0.5% of
Position Translational Distance Traveled

Z Translational Digiquartz 7 Hz Resolution
Position >0.75% as calculated
Heading PHINS III 10 Hz 0.13◦ Std Dev

Pitch, Roll PHINS III 10 Hz 0.01◦ Std Dev
Translational 1200 kHz 6 Hz >0.003 m/s Std Dev

Velocity DVL
Angular Velocity PHINS III 10 Hz 0.01◦/s Std Dev

The sensors used in all experimental evaluations are recorded in Table A.1. The JHU

ROV is instrumented by a PHINS III inertial navigation system (INS) (IXSEA SAS, Marly-

le-Roi, France), 1200 kHz bottom-lock Doppler sonar (RD Instruments, San Diego, CA),

and 8CDP010-1 Digiquartz Depth Sensor (Paroscientific Inc., Redmond, WA). The PHINS

III INS includes a three-axis north-seeking fiber-optic gyrocompass, and inertial grade ac-

celerometers whose data is used to estimate angular velocity, pitch, roll, and heading states

at a rate of 10 Hz. For our PHINS configuration, the measurement error standard deviations

are 0.01◦/s for angular velocity estimates, 0.13◦ for heading estimates, and 0.01◦ for pitch

and roll estimates [25]. The Doppler sonar measures the three dimensional linear velocity

in the instrument’s frame with a standard deviation of less than 0.003 m/s, an update rate

of 6 Hz, and zero bias [1]. The Digiquartz has a maximum depth of 10 m and, as currently

configured, has an update rate of 7 Hz, and provides pressure measurements at a resolu-

tion of 2 parts-per-million. Translational position estimates are provided by the DVLNAV
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control software which integrates the the sensor signals reported above to provide dead

reckoning XY translational position estimates better than 0.5% of distance traveled.

A.2 Parameter Identification Evaluation

To evaluate the performance of the identified plant models we employ an approach that

we refer to as cross-validation. We use the plant model experimentally identified from one

vehicle experimental trial to predict, in a numerical simulation, the performance of the plant

in a different experimental trial whose trajectories differ from the identification trial. The

class of plants given by (2.40) and (2.44) are open-loop-stable in their velocity signals as

a consequence of hydrodynamic damping. In the presence of significant buoyancy torque

due to center-of-buoyancy (COB) to center-of-gravity (COG) separation, both classes of

plants are also open-loop-stable in roll and pitch. Because these open-loop signals are

stable, we can employ these signals to compare a model plant’s predicted performance to

the actual plant’s experimentally observed performance. The error between the predicted

model performance and the experimentally observed performance is reported as the mean

absolute error (MAE) between the simulated plant roll, pitch, and velocity and the actual

experimental plant roll, pitch, and velocity.
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SE(3) Velocity Jacobian

This Section derives several facts about the inverse SE(3) velocity Jacobian. This matrix

valued function, Â−1 : R6 → R6×6, relates the body-frame velocity and time derivative of

exponential coordinate pose by the equality

ψ̇ = Â−1(ψ)v. (B.1)

In [13] the authors derive the following closed form equation for this matrix valued function

Â−1


 ξ

q


 = I6×6+

1

2
ad


 ξ

q


+B1 (‖q‖) ad2


 ξ

q


+B2 (‖q‖) ad4


 ξ

q




(B.2)

where

y2B1 (y) = 2 (1− α(y)) +
1

2
(α(y)− β(y)) (B.3)

y4B2 (y) = (1− α(y)) +
1

2
(α(y)− β(y)) (B.4)
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with α(y) = y
2

cot
(
y
2

)
and β(y) =

(
y
2

)2 1

sin( y2 )
2 . Using the fact that J (q)3 = −‖q‖2J (q),

(B.2) can be shown to be equivalent to

Â−1


 ξ

q


 =

 A−1(q) 1
2
J (ξ) + 1−α(‖q‖)

‖q‖2 B4 (ξ, q) + B2(‖q‖)B3 (ξ, q)

03×3 A−1(q)

 (B.5)

where B4 : R3 × R3 → R3×3 is defined by B4(ξ, q) = J (ξ)J (q) + J (q)J (ξ) and

B3 : R3 × R3 → R3×3 is defined by B3(ξ, q) = J (q)J (ξ)J (q)2 + J (q)2 J (ξ)J (q).

To the best of the author’s knowledge a closed form expression for the SE(3) velocity

Jacobian, Â (ψ), has not been reported.

B.1 SE(3) Velocity Jacobian Bilinear se(3) Pose

Multiplication Simplification

In this Section we prove

ψT
(
Â−T (ψ) + Â−1(ψ)

)
ψ = ψTψ. (B.6)

Consider inserting (B.5) into the left side of (B.6). Note that the definition ofA−1 in (2.28)

and J (q) q = ~0 imply the following facts:

• A−1(q)q = q,

• 1−α(‖q‖)
‖q‖2 J (ξ)J (q) q = ~0, and

• B2(‖q‖)B3 (ξ, q) q = ~0.
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These facts imply

ψT
(
Â−1(ψ)

)
ψ = ψT

 A−1(q) 1−α(‖q‖)
‖q‖2 J (q)J (ξ)

03×3 03×3

ψ. (B.7)

From which we can see

1

2
ψT
(
Â−1(ψ) + Â−T (ψ)

)
ψ =

1

2
ξT
(
A−1(q) +A−T (q)

)
ξ+

1− α(‖q‖)
2‖q‖2

(
ξTJ (q)J (ξ) q + qTJ (ξ)J (q) ξ

)
+ qT q

=ξT ξ + qT q+

1− α(‖q‖)
2‖q‖2

(
2ξTJ (q)2 ξ − 2ξTJ (q)J (q) ξ

)
=ψTψ

B.2 Bounding ‖Â−1(ψ)x‖

In this Section we show there ∃c ∈ R+ such that ∀ψ, x ∈ R6 for which ‖ψ‖ < π we

have ‖Â−1(ψ)x‖ < c‖x‖. Specifically, we prove c = 6 + 5π
2

+ π2

8
satisfies this inequality.

Let ξ, q, x1 x2 ∈ R3 such that ψ = [ξT qT ]T and x = [xT1 xT2 ]T , then

‖Â−1(ψ)x‖ ≤‖A−1(q)x1‖+ ‖A−1(q)x2‖

+ ‖
(

1

2
J (ξ) +

1− α(‖q‖)
‖q‖2

B4 (ξ, q) + B2(‖q‖)B3 (ξ, q)

)
x2‖. (B.8)

Note that ‖x1‖ ≤ ‖x‖, ‖x2‖ ≤ ‖x‖, ‖ξ‖ ≤ ‖ψ‖ < π, and ‖q‖ ≤ ‖ψ‖ < π. Consider

‖A−1(q)xi‖ ≤‖xi‖+ ‖J (q)xi‖+ ‖ (1− α(‖q‖)) J (q)2

‖q‖2
xi‖

≤‖xi‖+ ‖q‖‖xi‖+ | (1− α(‖q‖)) | ‖xi‖. (B.9)
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For q such that ‖q‖ < π consider the value of |(1− α(‖q‖)|. Note that for y = π
2

we know

1−y cot(y) = 1; by l’Hospital’s rule we know limy→0+ y cot(y) = limy→0+
cos(y)−y sin(y)

cos(y)
=

1; and for y ∈
(
0, π

2

)
we know d

dy
(1− y cot(y)) > 0. These imply ∀y ∈

[
0, π

2

)
|1 −

y cot(y)| ≤ 1 and therefore ‖A−1(q)xi‖ < (2 + π) ‖xi‖.

A similar analysis can be used to bound other terms in (B.8). Using l’Hospital’s rule

and differiation it can be shown limy→0+
1−α(y)

y
= 0, 1−α(π)

π
= 1

π
, and the function 1−α(y)

y
is

strictly increasing for y ∈ (0, π); these facts and previous definitions are used to show

‖1− α(‖q‖)
‖q‖2

B4 (ξ, q)x2‖ =‖1− α(‖q‖)
‖q‖

B4

(
ξ,

q

‖q‖

)
x2‖

≤|1− α(‖q‖)
‖q‖

| ‖ξ‖‖x2‖

<‖x2‖.

Using l’Hospital’s rule and differiation it can be shown limy→0+
α(y)−β(y)

2y
= 0, α(π)−β(π)

2π
=

−π
8

, and the function α(y)−β(y)
2y

is strictly decreasing for y ∈ (0, π); these facts and previous

definitions are used to show

‖B2(‖q‖)B3 (ξ, q)x2‖ =‖
(1− α(‖q‖)) + 1

2
(α(‖q‖)− β(‖q‖))
‖q‖

B3

(
ξ,

q

‖q‖

)
x2‖

≤
(
|1− α(‖q‖)
‖q‖

|+ |α(‖q‖)− β(‖q‖)
2‖q‖

|
)
‖ξ‖‖x2‖

<

(
1 +

π2

8

)
‖x2‖. (B.10)

Therefore, using the bounds above, from (B.8) we have

‖Â−1(ψ)x‖ < (2 + π) ‖x1‖+
1

2
‖ξ‖‖x2‖+ ‖x2‖+

(
1 +

π2

8

)
‖x2‖+ (2 + π) ‖x2‖

<

(
6 +

5π

2
+
π2

8

)
‖x‖ (B.11)

172



Bibliography

[1] “Workhorse navigator datasheet,” Teledyne RD Instruments,
http://www.rdinstruments.com/navigator.aspx.

[2] N. Aghannan and P. Rouchon, “An intrinsic observer for a class of Lagrangian sys-
tems,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 936–945, 2003.

[3] A. Alessandri, M. Caccia, G. Indiveri, and G. Veruggio, “Application of LS and EKF
techniques to the identification of underwater vehicles,” in Proceedings of the IEEE
International Conference on Control Applications, Trieste, Italy, 1998, pp. 1084–
1088.

[4] C. H. An, C. G. Atkeson, and J. M. Hollerbach, Model-Based Control of a Robot
Manipulator. Cambridge, MA, USA: MIT Press, 1988.

[5] G. Antonelli, S. Chiaverini, N. Sarkar, and M. West, “Adaptive control of an au-
tonomous underwater vehicle: Experimental results on ODIN,” IEEE Transactions
on Control Systems Technology, vol. 9, no. 5, pp. 756–65, September 2001.

[6] K. J. Astrom, Adaptive Control. Addison-Wesley, 1989.

[7] J. Avila, J. Adamowski, N. Maruyama, F. Takase, and M. Saito, “Modeling and iden-
tification of an open-frame underwater vehicle: The yaw motion dynamics,” Journal
of Intelligent & Robotic Systems, vol. 66, no. 1, pp. 37–56, 2012.

[8] R. Bachmayer, L. L. Whitcomb, and M. Grosenbaugh, “An accurate finite-
dimensional dynamical model for the unsteady dynamics of marine thrusters,” IEEE
Journal of Oceanic Engineering, vol. 25, no. 1, pp. 146–159, January 2000.

[9] G. Baldwin, R. Mahony, and J. Trumpf, “A nonlinear observer for 6 DOF pose esti-
mation from inertial and bearing measurements,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, 2009, pp. 2237–2242.

173



BIBLIOGRAPHY

[10] J. Bellingham, Y. Zhang, J. Kerwin, J. Erikson, B. Hobson, B. Kieft, M. Godin,
R. McEwen, T. Hoover, J. Paul, A. Hamilton, J. Franklin, and A. Banka, “Effi-
cient propulsion for the Tethys long-range autonomous underwater vehicle,” in Au-
tonomous Underwater Vehicles (AUV), 2010 IEEE/OES, sept. 2010, pp. 1 –7.

[11] A. Bowen, M. Jakuba, D. Yoerger, C. German, J. Kinsey, L. Whitcomb, and L. Mayer,
“Lightly tethered unmanned underwater vehicle for under-ice exploration,” in 2012
IEEE Aerospace Conference, march 2012, pp. 1 –12.

[12] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems. New York,
NY: Springer, 2004.

[13] F. Bullo and R. M. Murray, “Proportional derivative (PD) control on the Euclidean
group,” California Institute of Technology, Tech. Rep., 08 1995.

[14] M. Caccia, G. Indiveri, and G. Veruggio, “Modeling and identification of open-frame
variable configuration underwater vehicles,” IEEE Journal of Oceanic Engineering,
vol. 25, no. 2, pp. 227–240, April 2000.

[15] N. Chaturvedi, D. Bernstein, J. Ahmed, F. Bacconi, and N. McClamroch, “Globally
convergent adaptive tracking of angular velocity and inertia identification for a 3-DOF
rigid body,” IEEE Transactions on Control Systems Technology, vol. 14, no. 5, pp. 841
–853, Sept. 2006.

[16] G. S. Chirikjian and A. B. Kyatkin, Engineering Applications of Noncommutative
Harmonic Analysis. Boca Raton, FL: CRC Press, 2000.

[17] J. J. Craig, P. Hsu, and S. Sastry, “Adaptive control of mechanical manipulators,” The
International Journal of Robotics Research, vol. 6, no. 2, pp. 16–28, Summer 1987.

[18] T. I. Fossen, Guidance and Control of Ocean Vehicles. New York: John Wiley and
Sons, 1994.

[19] T. Fossen and S. Sagatun, “Adaptive control of nonlinear underwater robotic systems,”
in Proceedings of the IEEE International Conference on Robotics and Automation,
apr 1991, pp. 1687 –1694 vol.2.

[20] E. Freund, “Fast nonlinear control with arbitrary pole placement for industrial robots
and manipulators,” The International Journal of Robotics Research, vol. 1, no. 1, pp.
65–78, 1983.

[21] A. Graham, Kronecker Products and Matrix Calculus With Applications. New York:
Halsted Press, John Wiley and Sons, 1981.

174



BIBLIOGRAPHY

[22] A. J. Healey, S. M. Rock, S. Cody, D. Miles, and J. P. Brown, “Toward an improved
understanding of thruster dyamics for underwater vehicles,” IEEE Journal of Oceanic
Engineering, vol. 20, no. 4, pp. 354–61, October 1995.

[23] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 2006.

[24] P. Hsu, M. Bodson, S. Sastry, and B. Paden, “Adaptive indentification and control
for manipulators without using joint accelerations,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, Raleigh, NC, USA, 1987, pp.
1210–1215.

[25] IXSEA, PHINS III User Guide, 5th ed., IXSEA, July 2008.

[26] M. Jakuba, L. Whitcomb, D. Yoerger, and A. Bowen, “Toward under-ice operations
with hybrid underwater robotic vehicles,” in Autonomous Underwater Vehicles, 2008.
AUV 2008. IEEE/OES, oct. 2008, pp. 1 –9.

[27] M. Jordan and J. Bustamante, “A speed-gradient adaptive control with
state/disturbance observer for autonomous subaquatic vehicles,” in Proceedings of
the IEEE Conference on Decision and Control, Dec. 2006, pp. 2008 –2013.

[28] C. Kaminski, T. Crees, J. Ferguson, A. Forrest, J. Williams, D. Hopkin, and G. Heard,
“12 days under ice - an historic AUV deployment in the canadian high arctic,” in
Autonomous Underwater Vehicles (AUV), 2010 IEEE/OES, sept. 2010, pp. 1 –11.

[29] J. Keim, A. Behcet Acikmese, and J. Shields, “Spacecraft inertia estimation via con-
strained least squares,” in 2014 IEEE Aerospace Conference, 0-0 2006, p. 6 pp.

[30] W. Khalil and E. Dombre, Modeling, Identification & Control of Robots. New York,
NY: Taylor & Francis, 2002.

[31] W. Khalil, M. Gautier, and P. Lemoine, “Identification of the payload inertial parame-
ters of industrial manipulators,” in Proceedings of the IEEE International Conference
on Robotics and Automation, 2007, pp. 4943–4948.

[32] P. K. Khosla and T. Kanade, “Parameter identification of robot dynamics,” in IEEE
Conference on Decision and Control, vol. 24, dec. 1985, pp. 1754 –1760.

[33] J. Kim and W. K. Chung, “Accurate and practical thruster modeling for underwater
vehicles,” Ocean Engineering, vol. 33, no. 5, pp. 566–586, 2006.

[34] J. Kinsey, D. Smallwood, and L. Whitcomb, “A new hydrodynamics test facility for
uuv dynamics and control research,” in Proceedings of MTS/IEEE Oceans, vol. 1,
2003, pp. 356–361 Vol.1.

175



BIBLIOGRAPHY

[35] D. E. Koditschek, “Application of a new Lyapunov function to global adaptive attitude
tracking,” in Proceedings of the IEEE Conference on Decision and Control, 1988, pp.
63–68.

[36] ——, “Adaptive strategies for the control of natural motion,” in IEEE Proceedings
24th Conference on Decision and Control, Fort Lauderdale, Dec 1985, pp. 1405–
1409.

[37] K.-Y. Lian, L.-S. Wang, and L.-C. Fu, “Globally valid adaptive controllers of me-
chanical systems,” IEEE Transactions on Automatic Control, vol. 42, no. 8, pp. 1149
–1154, aug 1997.

[38] F. Lizarralde and J. T. Wen, “Attitude control without angular velocity measurement:
a passivity approach,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp.
468–472, 1996.

[39] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “Resolved acceleration control of
mechanical manipulators,” IEEE Transactions on Automatic Control, vol. AC-25, pp.
468–474, 1980.

[40] D. Maalouf, I. Tamanaja, E. Campos, A. Chemori, V. Creuze, J. Torres, L. Rogelio
et al., “From PD to nonlinear adaptive depth-control of a tethered autonomous under-
water vehicle,” in IFAC Joint conference 2013, 2013.

[41] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Complementary filter design on the special
orthogonal group SO(3),” in Proceedings of the 2005 IEEE Conference on Decision
and Control and 2005 European Control Conference (2005 CDC-ECC), 2005, pp.
1477–1484.

[42] ——, “Nonlinear complementary filters on the special orthogonal group,” IEEE
Transactions on Automatic Control, vol. 53, no. 5, pp. 1203–1218, 2008.

[43] D. H. S. Maithripala, J. M. Berg, and W. P. Dayawansa, “An intrinsic observer for a
class of simple mechanical systems on a Lie group,” in Proceedings of the American
Control Conference, vol. 2, 2004, pp. 1546–1551.

[44] S. C. Martin, “Advances in six-degree-of-freedom dynamics and control of underwa-
ter vehicles,” Ph.D. dissertation, The Johns Hopkins University, Baltimore, MD USA,
September 2008.

[45] S. C. Martin and L. L. Whitcomb, “Preliminary experiments in comparative exper-
imental identification of six degree-of-freedom coupled dynamic plant models for
underwater robot vehicles,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Karlsruhe, Germany, May 2013.

176



BIBLIOGRAPHY

[46] ——, “Preliminary experiments in fully actuated model based control with six degree-
of-freedom coupled dynamical plant models for underwater vehicles,” in Proceedings
of the IEEE International Conference on Robotics and Automation, Karlsruhe, Ger-
many, May 2013.

[47] C. J. McFarland and L. L. Whitcomb, “A new adaptive identifier for second-order ro-
tational plants with applications to underwater vehicles,” in Proceedings of MTS/IEEE
Oceans, Hampton Roads, VA, October 2012, pp. 1–9.

[48] ——, “Comparative experimental evaluation of a new adaptive identifier for under-
water vehicles,” in Proceedings of the IEEE International Conference on Robotics
and Automation, Karlsruhe, Germany, May 2013.

[49] ——, “Experimental evaluation of adaptive model-based control for underwater ve-
hicles in the presence of unmodeled actuator dynamics,” in Proceedings of the IEEE
International Conference on Robotics and Automation, May 2014, submitted for re-
view.

[50] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Ma-
nipulation. Boca Raton: CRC Press, 1994.

[51] K. Narendra and A. Annaswamy, Stable Adaptive Systems. NY: Prentice-Hall, 1988.

[52] N. Nguyen and A. Ishihara, “Robust adaptive optimal control modification with large
adaptive gain,” in American Control Conference, 2009. ACC ’09., june 2009, pp. 2581
–2586.

[53] G. Niemeyer and J.-J. E. Slotine, “Performance in adaptive manipulator control,” The
International Journal of Robotics Research, vol. 10, no. 2, pp. 149–161, April 1991.

[54] M. C. Norman, M. A. Peck, and D. J. O’Shaughnessy, “In-orbit estimation of inertia
and momentum-actuator alignment parameters,” in AAS 11-164, AAS/AIAA Space
Flight Mechanics Meeting, Feb 2011.

[55] F. Park, “The optimal kinematic design of mechanisms,” Ph.D. dissertation, Harvard
University, Cambridge, MA, 1991.

[56] A. G. Rawlings, A Short Introduction to the Applications of Quaternions.

[57] P. Ridao, A. Tiano, A. El-Fakdi, M. Carreras, and A. Zirilli, “On the identification of
non-linear models of unmanned underwater vehicles,” Control Engineering Practice,
vol. 12, no. 12, pp. 1483–1499, 2004.

[58] C. Rohrs, L. Valavani, M. Athans, and G. Stein, “Robustness of continuous-time adap-
tive control algorithms in the presence of unmodeled dynamics,” IEEE Transactions
on Automatic Control, vol. 30, no. 9, pp. 881–889, 1985.

177



BIBLIOGRAPHY

[59] N. Sadegh and R. Horowitz, “Stability and robustness analysis of a class of adaptive
controllers for robotic manipulators,” The International Journal of Robotics Research,
vol. 9, no. 3, pp. 74–92, June 1990.

[60] S. Salcudean, “A globally convergent angular velocity observer for rigid body mo-
tion,” IEEE Transactions on Automatic Control, vol. 36, no. 12, pp. 1493–1497, 1991.

[61] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness.
Prentice-Hall, 1989.

[62] J.-E. Slotine and M. Di Benedetto, “Hamiltonian adaptive control of spacecraft,” IEEE
Transactions on Automatic Control, vol. 35, no. 7, pp. 848 –852, jul 1990.

[63] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,” The Inter-
national Journal of Robotics Research, vol. 6, no. 3, pp. 49–59, Fall 1987.

[64] D. A. Smallwood and L. L. Whitcomb, “Adaptive identification of dynamically posi-
tioned underwater robotic vehicles,” IEEE Transactions on Control Systems Technol-
ogy, vol. 11, no. 4, pp. 505–515, 2003.

[65] ——, “Model-based dynamic positioning of underwater robotic vehicles: theory and
experiment,” IEEE Journal of Oceanic Engineering, vol. 29, no. 1, pp. 169–186,
2004.

[66] M. Takegaki and S. Arimoto, “A new feedback method for dynamic control of manip-
ulators,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 103, p.
119, 1981.

[67] J. Taylor, Classical Mechanics. Univ Science Books, 2005.

[68] J. D. Van Manen and P. Van Ossanen, Principles of Naval Architecture, Second Re-
vision, Volume II: Resistance, Propulsion, and Vibration. Jersey City, New Jersey
USA: Society of Naval Architects and Marine Engineers, 1988, e. V. Lewis, Editor.

[69] L. L. Whitcomb, A. Rizzi, and D. E. Koditschek, “Comparative experiments with a
new adaptive controller for robot arms,” IEEE Transactions on Robotics and Automa-
tion, vol. 9, no. 1, pp. 59–70, February 1993.

[70] D. R. Yoerger, J. G. Cooke, and J. E. Slotine, “The influence of thruster dynamics
on underwater vehicle behavior and their incorporation into control system design,”
IEEE Journal of Oceanic Engineering, vol. 15, no. 3, pp. 167–178, June 1990.

[71] D. R. Yoerger and J. E. Slotine, “Adaptive sliding control of an experimental under-
water vehicle,” in Proceedings of the IEEE International Conference on Robotics and
Automation, Sacremento, CA, USA, April 1991, pp. 2746–2751.

178



BIBLIOGRAPHY

[72] D. R. Yoerger and J.-J. E. Slotine, “Robust trajectory control of underwater vehicles,”
IEEE Journal of Oceanic Engineering, vol. OE-10, no. 4, pp. 462–70, October 1985.

[73] J. Yuh, “Modeling and control of underwater robotic vehicles,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 20, no. 6, pp. 1475 –1483, nov/dec 1990.

[74] J. Yuh, J. Nie, and C. S. G. Lee, “Experimental study on adaptive control of under-
water robots,” in Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 1, 1999, pp. 393–398 vol.1.

[75] S. Zhao and J. Yuh, “Experimental study on advanced underwater robot control,”
IEEE Transactions on Robotics, vol. 21, no. 4, pp. 695–703, 2005.

179



Vita

Christopher J. McFarland was born in Tulsa, Oklahoma in

1983. From 2002 to 2007 he participated in the Dual-Degree pro-

gram between the University of Puget Sound in Tacoma, Washing-

ton and Washington University in St. Louis, Missouri. Christopher

attended both institutions, receiving both a B. A. in Physics with

a minor in Math from the University of Puget Sound and a B. S.

in Mechanical Engineering from Washington University in May

2007. In August 2007 he enrolled in the Mechanical Engineering

Ph.D. program at Johns Hopkins University.

Christopher has been recognized with several distinctions including Eagle Scout by

the Boy Scouts of America in 2000; a Brown Fellowship for Dual-Degree Engineer-

ing Students from 2005-2007; NSF Graduate Research Fellowship honorable mention in

2007 and 2008; Johns Hopkins University Mechanical Engineering Department Fellowship

2007-2008; National Defense Science and Engineering Graduate Fellowship 2008-2011;

Link Foundation Doctoral Research Fellowship in Ocean Engineering and Instrumentation

2012-2013; and Achievement Rewards for College Scientists Fellowship 2012-2013.

180




