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Abstract 

Cracking the cytoarchitectural organization, activity patterns, and neurotransmitter 

nature of genetically-distinct cell types in the lateral hypothalamus is fundamental to 

understanding survival behaviors such as feeding. Here I revealed that chemogenetic 

inhibition of parvalbumin-positive neurons in the lateral hypothalamus increases food 

consumption and general arousal in sated mice. Moreover, functional imaging using two-

photon fluorescence endomicroscopy exhibited decreased activity of these neurons 

during food-deprived conditions, suggesting an unprecedented role in encoding for 

metabolic states. Furthermore, these neurons are fast-spiking similar to canonical 

inhibitory parvalbumin neurons in the neocortex and hippocampus, but unlike those cells, 

lateral hypothalamic parvalbumin neurons are excitatory. Finally, sensory detection of 

food rapidly increases the activity of these neurons. 
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1.1      Overview 

It has been argued that feeding and reproduction are the core drivers of the 

continuum of behavior for most vertebrate species (1); indeed, all behavior may exist to 

support an organism’s ability to survive as both an individual (energy balance) and as a 

species (reproduction).  This concept is not unique to researchers, one need only look to 

the wisdom of Dolly Parton: 

  “My weaknesses have always been food and men – in that order.”   

Ms. Parton’s instinctual understanding of the hierarchy of animal behavior exemplifies 

the findings of decades of research.  Indeed, feeding behaviors and their regulatory 

circuits interact with all other survival behaviors.   Survival behaviors, such as feeding, 

represent some of the most critical functions for survival and homeostasis in all species.   

Without survival behaviors we would not exist, and evolution may have taken a very 

different path, or perhaps no path at all.   

Natural behaviors include a broad family of behaviors which are required for survival 

including feeding, drinking, mating, arousal, aggression, and fear.  The brain does not 

drive such survival behaviors in complete seclusion, it integrates sensory information 

from the environment and peripheral organ systems to coordinate homeostasis and 

response to stimuli.  Although higher level brain function and peripheral inputs may 

interact with the manifestation and modulation of these behaviors, research throughout 

the past half century has consistently shown that the hypothalamus is the central 

regulator of homeostasis.  Research from the past 20 years has driven this field forward 

with alacrity due to significant advances in gene therapy and technology.   Such progress 
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has allowed scientists to identify specific neuronal circuits driving survival behaviors and 

to begin to piece together the chemical and temporal mechanisms by which they regulate 

these behaviors.  Hereafter, I will review the supporting historical information that will 

provide scope and context to the techniques and analytical approaches used in this 

dissertation. 

 

1.2      Historical context leading to current approaches in neuronal circuits 

Scientists had been probing the brain for centuries before modern theories of 

feeding behavior regulation were proposed.  Despite rudimentary methods, some of this 

work provided compelling observations long before technology allows the specificity we 

have today.  In the fifth century BCE, Alcmaeon became the first physician to use 

dissection to postulate his theory that the brain is the source of sensory perception (2).  

During the fourth and third centuries BCE, Hippocrates and his peers deducted that the 

brain is the center of pain, fear, and sleep via observations of patients with epilepsy (3).   

The role of the brain remained a matter of great debate until the rise of physiologists and 

anatomists in the 18th and 19th centuries CE.  For example, Charles Bell and François 

Magendie performed experiments in live animals to study motor responses and sensation 

(4, 5).  Around this same period, Camillo Golgi and Santiago Ramón y Cajal were studying 

the structure of nerve cells, and Emil du Bois-Reymond, Johannes Peter Müller, and 

Hermann von Helmholtz were studying the electrical function of neurons, driving our 

understanding of neuroscience at the cellular level (6).  However, a tremendous gap 

remained between anatomy and behavior.   
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Documented studies of behavior date back as far as the 17th century with René 

Descartes, but it was not until Charles Darwin’s studies of evolution that we began to 

consider the use of animals to model human behavior (7, 8).  Karl Wernicke and Paul Broca 

made enormous advances by identifying areas of the brain that were responsible for 

speech and language and in enumerating that these areas communicate using neuronal 

pathways (6).   In the mid-1900s animal models of behavior first introduced by Darwin, 

were refined and combined with the advent of surgical techniques to progress our 

understanding of how the brain drives feeding and other survival behaviors. 

Behavior does not occur spontaneously, it requires a stimulus of some sort from 

which motivation (i.e. the desire to complete an action or reach a goal) and drive (i.e. the 

result of unmet instinctual needs that ultimately induce motivation) develop.  The neural 

correlates of these processes are still being explored today, but the foundation of such 

work is rooted in the theories and findings of psychologist Clark L. Hull.  The work of Hull 

and his contemporaries introduced the concepts of conditioning and animal learning, 

which have provided a system which we now use to determine the contributions of 

neuronal circuits to the different motivating factors that shape survival behaviors.  Hull 

theorized that when animals are deprived of a resource, the deprivation generates a need 

which, in turn, activates a drive. This drive subsequently produces a behavior towards a 

goal that represents a specific value to the animal’s survival (Figure 1, (9)).  Around the 

same time, Karl Lashley’s work in studying motivation led him to conclude that behaviors 

such as feeding were not driven by a chain reaction of peripheral signals, as much of the 

field thought at the time.  Lashley hypothesized that behaviors were a result of motivation 
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and thus must be driven by the brain (10). Nikolaas Tinbergen expanded on these 

concepts and provided a framework for understanding survival behaviors and how they 

are interrelated.  He theorized that external stimuli generate motivation, which is stored 

in the brain.  Response to this motivation is blocked at several centers in the brain, each 

one gating the release of the signal to the next center in a cascade until the behavior 

ultimately results (11).  The work of Jean Mayer and Gordon C. Kennedy in the 1950s and 

1960s led to two competing hypotheses of energy balance: the glucostatic model and the 

lipostatic model.  The glucostatic model suggests that feeding is regulated by plasma 

glucose level; the lipostatic model suggests that feeding is a reflection of maintaining a 

homeostatic level of fat in the body (12, 13).  In time, both models were proven to be 

partially correct—the glucostatic model relating to short term feeding behavior and the 

lipostatic model being more important in long term feeding patterns.  Together, these 

theories shaped the way researchers conceptualized their discoveries throughout the 

middle of the 20th century, the period in which modern neuroscience was born. 

The experimental data to support a relationship between the brain and peripheral 

signals of nutrition emerged during the same period that these early conceptual models 

of neuronal circuits were emerging.  Observational and case studies were the only sources 

of information relating the brain to behavior until the invention of the stereotaxic surgical 

instrument in 1939, which facilitated performance of brain surgeries in animals with a 

high degree of precision.  A year later, A. W. Hetherington and S. W. Ranson showed that 

lesions to the ventromedial hypothalamus (VMH) were capable of driving obesity and 

thirst in rats (14).  Attempting to replicate these findings, John Brobeck and Bal Krishnan 
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Anand discovered that lesions in the hypothalamus of rats induced dramatic weight loss.  

Detailed histological analysis revealed that their lesions were much more extensive and 

incorporated the lateral hypothalamus (LH) rather than the more medial hypothalamic 

areas lesioned by Hetherington and Randon, which likely accounted for the observed 

difference in response (15).  These observations led to a generation of behavior 

researchers who experimented with the size and location of lesions and electrical 

stimulation of the brain.  These discoveries formed the basis of the “dual center theory” 

of feeding behavior and energy regulation, wherein the VMH functions as a “satiety 

center” and the LH functions as a “hunger center” (16). Years later, chemical lesions 

revealed that fibers of passage that emanated from, terminated in, and passed through 

the LH were also involved in regulating feeding, drinking, and body weight (17-21). These 

studies generated interest in the signals being used by the VMH to regulate feeding.   

G. R. Hervey used a unique approach to study the VMH in which he employed a 

technique called parabiosis, developed by Paul Bert in the mid-1800s, to surgically attach 

two rats together.  Hervey lesioned the VMH in one of the two rats prior to their “union” 

and made an enormously important discovery.  As expected, the lesioned rat grew obese, 

but more importantly, the non-lesioned conjoined rat stopped eating and became 

emaciated (Figure 2).  This result indicated that there was a factor produced in the blood 

of the lesioned rat that was being passed to the non-lesioned rat, and this factor was 

inhibiting food intake in the non-lesioned rat (22). Around the same time, a recessive 

mutation developed in a litter of mice in the laboratory of Ann Ingalls and colleagues.  This 

mutation led the mice to develop severe obesity and infertility, and Ingalls and her 
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colleagues called the mutation obese or ob/ob (23).   A few years later, Douglas Coleman 

identified another strain of obese mice, caused by a mutation in a gene on a different 

chromosome.  This mutation induced obesity as well as diabetes, and thus was called 

db/db.  Coleman performed parabiosis experiments with ob/ob and db/db mice, and 

determined that joining an ob/ob mouse with a normal mouse attenuated the weight gain 

in the obese partner.  Joining a db/db mouse with a normal mouse induced emaciation in 

the normal partner due to loss of appetite.  When a db/db and an ob/ob mouse were 

joined, the ob/ob mouse reduced its food intake and weight to that of a normal mouse, 

while the db/db mouse remained obese.  Coleman concluded that the db/db mice must 

be producing a circulating satiety factor that they were insensitive to, and the ob/ob mice 

have normal sensitivity to this satiety factor but have lost production of the factor itself 

(24, 25).  This theory was finally proven correct two decades later, when it was found that 

the ob gene encodes the satiety hormone leptin, while the db gene encodes the receptor 

for leptin (26, 27).  Leptin receptor-positive (LEPR) neurons have been identified in many 

areas of the brain, but especially in areas of the brain associated with driving feeding 

behaviors.  Ultimately, other feeding and satiety circuits throughout the hypothalamus in 

addition to the VMH and LH were identified using similar methods; these include the 

arcuate nucleus (ARC), the dorsomedial hypothalamus (DMH), and the paraventricular 

hypothalamus (PVN) (1, 28).    

The development of state-of-the-art techniques such as, patch-clamp 

electrophysiology, genetically-modified mice, fluorescent reporter genes, optogenetics, 

chemogenetics, and functional imaging has allowed researchers to establish causal 
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relationships between activity in specific cell types, circuit function, and animal behavior. 

Thus, the focus began to shift from studying “feeding centers” to understanding the role 

of genetically-identified cell types and circuits that drive motivated survival behaviors.    

 

1.3      Established feeding circuits 

The melanocortin system is perhaps the most well studied circuit driving feeding 

and energy balance (Figure 3).  Two juxtaposed populations of neurons within the ARC 

were identified in the 1980s to 1990s: a population of cells expressing 

proopiomelanocortin (POMC) and cocaine-amphetamine regulated transcript (CART) and 

a population expressing neuropeptide Y (NPY) and agouti related peptide (AGRP) (29-32).  

The POMC neurons and POMC cleavage products were found to reduce feeding and 

increase energy expenditure, while NPY/AGRP neurons as well as the peptides themselves 

induce feeding and reduce energy expenditure (31, 33-36).  AGRP is an antagonist of 

receptors for POMC cleavage products, and NPY neurons actively inhibit POMC cells, 

creating a local circuit for the regulating of feeding (31, 37). Dozens of areas of the brain 

have been shown to project to POMC and AGRP neurons in the ARC (38).  POMC and 

NPY/AGRP neurons have been shown to project to several areas of the brain known to be 

involved with feeding and energy expenditure, including (but not limited to) the PVN, LH, 

DMH, VMH, bed nucleus of the stria terminalis (BNST), paraventricular thalamic nucleus 

(PVT), and the periaqueductal gray matter (PAG) (38-45).  ARC NPY/AGRP projection sites 

are not innervated by the same neurons, rather, topographically distributed subgroups of 

this population project to different sites in parallel (39).  Recently, great strides in 
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understanding the function of ARC NPY/AGRP and POMC neurons have been made thanks 

to the advent of multiple approaches to recording the activity of these neurons in vivo 

during behavior.  Surprisingly, researchers discovered that the activity of AGRP neurons 

declines and the activity of POMC neurons increases rapidly and dramatically upon both, 

the sensory detection of food and nutrient ingestion (Figure 4, (46-49)).  It was shown 

that AGRP neuron activity in sated mice was inhibited 5 to 15 minutes following peripheral 

injection of ghrelin, a hormone released endogenously by the stomach to stimulate 

feeding (46).  Interestingly, injection of the satiety hormone leptin into fasted mice 

induced a delayed and attenuated shift in AGRP and POMC neuron activity, which was 

enhanced in leptin-deficient mice (49).  While this may seem counterintuitive, as it was 

previously shown that optogenetic stimulation of AGRP neurons drove voracious feeding, 

additional experiments have shown that AGRP neurons appear to be regulating food 

seeking rather than merely hunger (33, 50).  Therefore, the mechanism for gating AGRP 

and POMC activity in response to nutritional cues during different metabolic states is still 

a challenge for the feeding field.  

Several AGRP and POMC neuron projection sites were found to regulate food 

intake, but the arousal and energy expenditure effects of these neurons remain less well 

understood (38, 39).  Studies using numerous techniques have indicated that cells and 

pathways in the lateral hypothalamus LH play a role in feeding, arousal, energy 

expenditure, and motivation (28).  Several intermingled populations of cells have been 

identified in the LH which influence these behaviors.  These encompass a diverse 

collection of cell types, defined by the expression of classical neurotransmitters, 
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receptors, and neuropeptides, such as vesicular glutamate transporter type 2 (VGLUT2), 

vesicular GABA (GABA, -aminobutyric acid transporter (VGAT), LEPR, hypocretin/orexin 

(HCRT), parvalbumin (PV), and melanin-concentrating hormone (MCH) (28, 51, 52).  While 

some markers represent distinct populations, others are expressed in overlapping 

populations of neurons. For example, the intermingled and yet distinct populations of 

HCRT and MCH neurons both express VGLUT2, but MCH neurons have also been reported 

to express GABA-producing enzymes (53-56).  Meanwhile, GABAergic LEPR neurons in the 

LH do not overlap with MCH or HCRT neurons but are known to be intermingled with 

them.  LEPR neurons are thought to regulate metabolism and energy homeostasis both 

directly through the regulation of the mesolimbic dopamine system and indirectly via 

regulation of local HCRT neurons (51). HCRT neurons have been shown to drive arousal 

and increased food intake, but also play a role in reward, whereas MCH neurons promote 

REM sleep but are also thought to drive food intake (57-59).  HCRT and MCH neurons 

project to many of the same target sites, reciprocally synapse onto each other as well as 

other LH neurons, and yet drive differing effects on their targets (1).  Interestingly, 

optogenetic stimulation of LH GABAergic neurons was found to drive intense feeding; 

however, stimulation of LH glutamatergic neurons inhibits food intake (60, 61).  LH 

neurons project to diverse areas of the brain including the lateral habenula (LHb), an area 

typically associated with reward and aversion processing via downstream indirect 

regulation of VTA dopamine neurons (51, 57, 62, 63).  A subpopulation of LH 

glutamatergic neurons projecting to the LHb, an area not previously indicated to be 

involved with food intake, were recently discovered to inhibit food intake when 
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stimulated and drive increased food intake when inhibited (64).  Greater specificity 

regarding the molecular identities of subpopulations of neurons composing the LH 

glutamatergic population of neurons projecting to the LHb has not been determined to 

date. 

 

1.4      Parvalbumin neurons 

Parvalbumin (PVALB or PV) neurons have been shown to serve a variety of 

important functions throughout the brain, from regulating network dynamics in the 

cortex and hippocampus to modulating local microcircuit function (65).  PV is a high 

affinity calcium binding protein known to buffer intracellular calcium dynamics and 

regulate calcium localization (66).  PV is found in a diverse family of cells that are 

distinguished by location, site of axon targeting, neurotransmitter identity, cell 

morphology, and firing properties.  Throughout the central nervous system, PV-

expressing neurons are typically GABAergic interneurons with fast-spiking characteristics. 

Cortical GABAergic PV neurons regulate gamma oscillations in the cortex, which 

are critical for normal cortical function (67).  PV knockout mice are known to exhibit 

increased propensity for seizures, which is thought to result from asynchronicity in the 

absence of PV (68).  Additionally, PV dysfunction has been associated with cognitive 

deficits seen in schizophrenia (69). In animal models, PV neurons have also been found to 

regulate fear responses, mobility, reward-related behavioral flexibility, and attention (70-

73).  Thus, the potential clinical significance of PV neurons is vast.   
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1.5      Role of PV neurons in the neocortex and hippocampus 

The large majority of PV neurons are known to be fast-spiking, GABAergic 

interneurons that encompass the largest subgroup of interneurons in the cortex and 

hippocampus (74). In the cortex, PV labeling does not overlap with other common 

immunohistochemical markers such as somatostatin, calretinin, cholecystokinin, 

vasointestinal peptide, or neuropeptide Y (75). The thin yet extensive dendritic arbors of 

such cortical PV interneurons exhibit highly efficient responses to excitatory inputs.  This 

response is due to a high ratio of dendritic potassium (K+) to sodium (Na+) channels and 

strong AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) channels that 

receive excitatory signals from clustered presynaptic inputs.  In particular, the KV3 type 

K+ channels allow the elevated threshold and rapid activation/deactivation responses that 

are characteristic of PV neurons.  The most abundant classes of PV neurons, cortical 

basket and chandelier interneurons, send dense short-range axons to nearby neurons, 

typically pyramidal cells, and exert potent inhibitory control over these cells (basket (76); 

chandelier (77); in rat: (78-80)).   

 

1.6      Role of PV neurons in other brain regions 

Some populations of PV neurons have been shown to send long range projections 

throughout the brain.   Small numbers of PV positive projections have been identified in 

the corpus callosum and subcortical white matter (81).  Recently, a group of GABAergic 

PV neurons in the primary motor cortex with long range projections to the striatum were 

shown to inhibit motor output (71).  Additionally, populations of retrosplenial and 
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somatosensory GABAergic PV neurons have been shown to project to the caudal striatum 

(82).   
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1.7      Figures 

 

 
 

 

 

 

 

Figure 1 

Drive reduction theory model (based on (9)).  This model proposes that organisms are driven by biological 

need to perform goal-directed behaviors to reach a reward or homeostatic state.  When this goal is reached, 

the result is typically rewarding, and thus animals learn to associate the pleasurable reduction in an aversive 

drive with a specific behavior.  This is the cycle by which reinforcement can induce conditioned learning. 
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Figure 2 

Image of G. R. Hervey parabiotic experiment with VMH lesion ((22); Plate 2). The rodent on the left was 

given a lesion in the VMH, and grew obese; the non-lesioned, conjoined rat shown on the right stopped 

eating and became emaciated.  This indicated that there was a factor produced in the blood of the lesioned 

rat that was passed to the non-lesioned rat, and this factor was inhibiting food intake in the non-lesioned 

rat.   
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Figure 3 

Schematic illustration of the melanocortin system (Adapted from (83) Figure 1). The melanocortin system 

consists of two intermingled populations of GABAergic neurons in the arcuate nucleus: AGRP (NPY/AGRP) 

and POMC neurons. POMC neurons target cells in the same target nuclei as AGRP neurons, where 

AGRP/NPY and POMC cleavage products compete to bind to receptors and drive opposite behavioral 

effects.   
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Figure 4 

Sensory detection of food rapidly regulates AGRP and POMC neurons (Adapted from (47), Figure 3 H,I). (a) 

Calcium signals aligned to the initiation of feeding for AGRP and POMC neurons, changes in activity begin 

prior to the onset of feeding.  (b) Quantification of change in fluorescence that occurs before feeding is 

initiated versus the total change in the trial. 

  

a b 
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Chapter 2 

Functional properties of LHPV neurons 
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2.1      Introduction 

Survival behaviors such as feeding are regulated by the cooperative work of 

genetically-distinct neuronal populations scattered throughout the brain, particularly in 

the hypothalamic area (28, 33, 84). The hypothalamus contains a diverse collection of 

intermingled cell types defined by the expression of classical neurotransmitters and 

neuropeptides (85, 86). While extensive research has been done on hypothalamic 

neurons that express neuropeptides, such as agouti-related peptide (AGRP), pro-

opiomelanocortin (POMC) (33, 47, 48, 87), hypocretin (orexin; HCRT), melanin-

concentrating hormone (MCH) (88, 89), or on larger populations defined by 

neurotransmitter expression (e.g. vesicular GABA (-aminobutyric acid) transporter 

(Vgat) and vesicular glutamate transporter 2 (Vglut2)) (61), much less attention has been 

given to a small collection of neurons expressing the calcium-binding protein parvalbumin 

(PVALB; PV neurons) in the lateral hypothalamus (LHPV neurons) (90, 91).  

Throughout the central nervous system, PV-expressing neurons are typically 

GABAergic interneurons with fast-spiking characteristics (92). At the cellular and 

behavioral levels, these interneurons are necessary and sufficient for the generation of 

network oscillations in both the neocortex and hippocampus (65, 93). However, the 

fundamental electrophysiological properties, synaptic connections, and the functional 

roles of LHPV neurons have remained largely uncharacterized. Here, we used a 

combination of selective targeting and manipulation of neuronal activity, 
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electrophysiology, and in situ hybridization to determine that LHPV neurons embody a 

novel functional component within the LH.   
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2.2      Materials and methods 

2.2.1     Animals 

All experimental protocols were conducted in accordance with U.S. National 

Institutes of Health Guidelines for the Care and Use of Laboratory Animals and with the 

approval of the National Institute on Drug Abuse Animal Care and Use Committee. One 

to six-month-old male and female C57BL/6J (wild-type, Strain 664, The Jackson 

Laboratory, ME, USA), PvalbIREScre (C57BL/6 background, Strain 8069, The Jackson 

Laboratory), and PvalbIREScre crossed with Rosa26LSL-tdTomato (C57BL/6 background, Strain 

7909, The Jackson Laboratory) mice were used in this study. Prior to stereotaxic viral 

injection, mice were group housed with littermates in temperature and humidity 

controlled rooms with ad libitum access to water and rodent chow (PicoLab Rodent Diet 

20, 5053 tablet, LabDiet/Land O’Lakes Inc., MO, USA) on a 12 h light/dark cycle.  

 

2.2.2     Stereotaxic viral injection  

For brain slice electrophysiological recordings, two to five-month-old PvalbIREScre 

heterozygous mice were used. Mice were anesthetized with isoflurane and placed into a 

stereotaxic apparatus (David Kopf Instruments, CA, USA). After exposing the skull by a 

minor incision, small holes (< 1 mm diameter) were drilled bilaterally for virus injection. 

An adeno-associated virus (rAAV2/rh10-CAG-FLEX-rev-ChR2:tdTomato or rAAV2/1-CAG-

FLEX-rev-CHR2:tdTomato; titer: 8.43×1012 genomic copies/ml and 6.86×1012 genomic 

copies/ml, respectively; University of Pennsylvania Gene Therapy Program Vector Core, 

PA, USA) (33) was injected bilaterally (50100 nl; rate: 30 nl/min) into the lateral 
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hypothalamus (LH; bregma, 1.80 mm; midline, ±1.40 mm; dorsal surface, 5.4 mm) by a 

pulled glass pipette (2030 µm tip diameter) with a micromanipulator (Narishige 

International USA Inc., NY, USA) controlling the injection speed. Subsequently, the incision 

was stitched, and mice were individually housed for 25 weeks for post-surgical recovery 

and viral transduction.  

For mapping LHPV axonal projections, 8-week-old PvalbIREScre heterozygous mice 

were bilaterally injected with 30 nl of an adeno-associated virus (rAAV2/9-hEF1α-DIO-

hSyn-mCherry; titer: 1.0×1013 genomic copies/ml; Massachusetts Institute of Technology 

Viral Gene Transfer Core, Boston, MA, USA)(94) into the lateral hypothalamus as 

described above. After surgery, mice were individually housed for 6 weeks for post-

surgical recovery and viral transduction. 

 

2.2.3     Slice preparation and electrophysiology  

After cervical dislocation, mice were decapitated and their brains were rapidly 

removed and placed into an ice-cold N-methyl-D-glucamine (NMDG)-based slicing 

solution (95) containing (in mM): 92 NMDG, 20 HEPES, 25 glucose, 30 NaHCO3, 1.2 

NaH2PO4, 2.5 KCl, 5 sodium ascorbate, 3 sodium pyruvate, 2 thiourea, 10 MgSO4, and 0.5 

CaCl2, pH 7.4, and osmolarity of 304308 mOsm. Acute horizontal brain slices (200240 

m thick) containing the lateral hypothalamus were obtained using a vibratome (Leica 

VT1200, Leica Biosystems Inc., IL, USA). Brain slices were transferred to a holding chamber 

filled with a solution containing (in mM): 92 NaCl, 20 HEPES, 25 glucose, 30 NaHCO3, 1.2 

NaH2PO4, 2.5 KCl, 5 sodium ascorbate, 3 sodium pyruvate, 2 thiourea, 1 MgSO4, and 2 
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CaCl2 (pH 7.4, 304308 mOsm). For electrophysiological recordings, a single slice was 

submerged in artificial cerebrospinal fluid (aCSF, in mM: 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 

1 MgCl2 6H2O, 11 glucose, 26 NaHCO3, 2.4 CaCl2, pH 7.4, and osmolarity of 304308 

mOsm) in a recording chamber that was continuously perfused with a peristaltic pump 

(World Precision Instruments, FL, USA), at a flow rate of 1.5 to 2.0 ml/min. All solutions 

were saturated with 95% O2 and 5% CO2.  

Characterization of the intrinsic electrophysiological properties of lateral 

hypothalamic parvalbumin (LHPV) neurons was performed using PvalbIREScre;Rosa26LSL-

tdTomato mice (Pvalbcre/+;Rosa26tom/tom). Parvalbumin-tdTomato-positive lateral 

hypothalamic neurons were located in brain slices, first with epifluorescence, followed by 

infrared differential interference contrast (IR-DIC) optics, using an upright Olympus 

BX51WI microscope (Olympus Corporation, MA, USA). Whole-cell current-clamp 

recordings were performed using a MultiClamp 700B amplifier (5 kHz low-pass Bessel 

filter and 10 kHz digitization using a 1440A Digidata Digitizer) with pClamp 10.3 software 

(Molecular Devices LLC, CA, USA). Borosilicate glass patch pipettes (2.24.5 MΩ) 

containing (in mM): 135 potassium gluconate, 10 HEPES, 4 KCl, 4 MgATP, 0.3 Na3GTP, and 

0.2% biocytin (pH adjusted to 7.3 using KOH, and osmolarity of 290 mOsm). The holding 

potential was 70 mV and the whole-cell access resistances were ≤ 15 MΩ. All recordings 

were made at 32 °C. 

For channelrhodopsin (ChR2)-assisted circuit mapping (CRACM) of neurons 

synaptically connected to LHPV neurons, PvalbIREScre heterozygous mice were bilaterally 

injected with an adeno-associated virus into the LH as previously described. Horizontal 
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slices containing the LH from AAV-injected PvalbIREScre mice were used and 

ChR2:tdTomato-containing axons visualized in the LH. Whole-cell voltage-clamp 

recordings of LH neurons synaptically connected to LHPV neurons were performed using 

patch pipettes (3.04.5 MΩ) containing (in mM): 117 cesium methanesulfonate, 20 

HEPES, 0.4 EGTA, 2.8 NaCl, 5 TEA-Cl, 4 Mg-ATP, 0.4 Na-GTP, 3 QX-314, and 0.2% biocytin 

(pH adjusted to 7.3 using CsOH, and osmolality of 287 mOsm). Recorded cells were held 

at 70 mV and photocurrents were evoked by 1 ms blue (473 nm) light pulses (diode-

pumped solid state laser; OptoEngine LLC, UT, USA) delivered at a frequency of 0.1 Hz. 

Series resistance (1025 MΩ) was monitored with a 5 mV hyperpolarizing pulse given 

every 10 s, and only recordings that remained stable over the period of data collection 

were used. Light-evoked glutamatergic currents were blocked by perfusing the ionotropic 

glutamate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX; 10 µM) and D-(-

)-2-amino-5-phosphonopentanoic acid (D-AP5; 50 µM). The liquid junction potential for 

these measurements was not corrected. All recordings were made at 32 °C. All chemicals 

were obtained from Sigma-Aldrich (MO, USA) or Tocris Bioscience (Bristol, UK).   

 

2.2.4     Electrophysiological analysis 

Intrinsic membrane properties of LHPV neurons were characterized in current-

clamp configuration. Briefly, the resting membrane potential (Vrmp) and capacitance of the 

cell membrane (Cmem) were measured directly after obtaining whole-cell configuration. 

Both, the action potential (AP) and fast after-hyperpolarization (fAHP) amplitudes were 

determined relative to the AP threshold (i.e. membrane potential (Vm) at which dVm/dt 
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first reached 20 V/s). The fAHP latency was determined as the time difference between 

the AP threshold level and the largest fAHP peak. The AP properties were determined by 

applying a 500 ms depolarizing current steps in a range of 20100 pA in 20 pA increments. 

The respective AP parameters were determined from the first evoked AP. Both the action 

potential (AP) and fast after-hyperpolarization (fAHP) amplitudes were determined 

relative to the AP threshold (i.e. membrane potential (Vm) at which dVm/dt first reached 

20 V/s). The fAHP latency was determined as the time difference between the AP 

threshold level and the largest fAHP peak. AP latency was measured as the time difference 

between the current onset time and the time when the AP peak was reached, while the 

AP half-width (HW) was determined as the halfway duration between AP peak and the AP 

threshold level. AP broadening was measured at twice current amplitude of the first 

evoked AP and calculated according to (HW2 – HW1)/HW1, where HW1 and HW2 

correspond to the HW of the first and second APs, respectively. Further membrane 

properties and firing rate were determined by applying 500 ms current step injections 

ranging from 100 pA to 1500 pA in 2050 pA increments. Input resistance (Rin) was 

calculated from the slope of a linear regression fit to the steady-state voltage-current 

relation using a range of hyperpolarizing current steps. The membrane time constant () 

was determined by single exponential fit to the rising phase of a mean voltage response 

to a 100 pA current step. The sag ratio was determined according to Vsteady/Vhyp, where 

Vsteady and Vhyp correspond to the voltage response measured at the end of a 100 pA 

hyperpolarizing current step and the hyperpolarization peak, respectively. The maximal 
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firing frequency was determined as the spike frequency response to the largest 

depolarizing current step (500 ms) below that where AP failures were observed.  

To generate the If curves, we measured the firing rate by counting the number 

of spikes elicited in response to step depolarizing current injections during a 500 ms 

window. Note that each neuron was tested for a subset of current amplitudes from 0  

1200 pA. 

 

2.2.5     Immunohistochemistry 

Mice were deeply anesthetized with isoflurane and transcardially perfused with 

phosphate buffered saline (1× PBS) followed by 4% paraformaldehyde (PFA) in 1× PBS. 

Whole brains were removed and post-fixed in 4% PFA for 24 h at 4 °C and subsequently 

transferred to 1× PBS for storage at 4 °C. Horizontal brain sections (5070 µm thick) 

containing the LH were collected in 1× PBS using a vibrating tissue slicer (vibratome; Leica 

VT1200), and freely floating slices were immunostained for parvalbumin. First, slices were 

incubated in a solution of 1× PBS/0.3% Triton X-100 with 10% normal donkey serum (NDS) 

for 1 h at room temperature. Slices were then incubated with rabbit anti-parvalbumin 

antibody (1:500 PV25 or PV27; Swant, Marly, Switzerland) in a solution of 1× PBS/0.3% 

Triton X-100/2% NDS for 1418 h at 4 °C. Slices were washed in 1× PBS (4 × 10 min each) 

and then incubated for 3 h with secondary antibody (1:500 donkey anti-rabbit-AlexaFluor 

488 or AlexaFluor 647, Invitrogen, CA, USA) in 1× PBS/0.3% Triton X-100/2% NDS at room 

temperature. Following PBS washes (4 × 10 min each), slices were mounted onto 
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Superfrost Plus glass slides (VWR International, PA, USA) and coverslipped with DAPI-

Fluoromount-G aqueous mounting medium (Electron Microscopy Sciences, PA, USA). 

Images were taken with an AxioZoom.V16 fluorescence microscope and z-stacks 

were collected using an LSM700 laser scanning confocal microscope (Carl Zeiss 

Microscopy LLC, NY, USA). Stacks were imported into Vaa3D 3D visualization-assisted 

analysis software (96), and fluorescent neurons were counted bilaterally from every 

section.  Mice used for anterograde tracing were perfused 6 weeks after infection, brains 

were sliced and signal was enhanced by immunostaining for mCherry (rabbit anti-DsRed). 

 

2.2.6     Fluorescent in situ hybridization 

Following cervical dislocation, wildtype mice were decapitated, and brains were 

dissected and rapidly frozen in 80 °C isopentane then subsequently stored at 80 °C. 

Horizontal cryosections (16 µm) containing the lateral hypothalamus were sliced using a 

Leica CM3050 S cryostat (Leica Biosystems Inc.) and sections collected onto Superfrost 

Plus glass slides (VWR International). Slides were stored at 80 °C prior to processing. 

Fluorescent in situ hybridization was performed using the RNAscope® Multiplex 

Fluorescent Assay for fresh frozen tissue (Advanced Cell Diagnostics Inc., CA, USA). Briefly, 

sections were fixed in 4% PFA in PBS, dehydrated by ethanol series, and treated with 

Protease IV. Sections were incubated with target probes for mouse parvalbumin (Pvalb, 

accession number NM_013645.3, target region aa2-885), vesicular glutamate transporter 

2 (Slc17a6 (Vglut2), accession number NM_080853.3, target region aa1986-2998), and 

vesicular GABA transporter (Slc32a1 (Vgat), accession number NM_009508.2, target 
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region aa894-2037). After hybridization, a series of signal amplification steps (Amp1, 

Amp2, and Amp3) were performed per kit protocol followed by incubation with labels 

(Amp4B) for fluorescent visualization of each probe: Pvalb (Alexa488), Vglut2 (Atto550), 

and Vgat (Atto647). Slides were counterstained with DAPI and coverslipped with 

Fluoromount-G aqueous mounting medium (Electron Microscopy Systems). Z-stack 

images were obtained using an LSM700 confocal microscope (Carl Zeiss Microscopy). LHPV 

neurons were manually assessed for co-expression of Pvalb with Vglut2 or Vgat.  

 

2.2.7     Radioactive in situ hybridization and immunohistochemistry 

Wildtype mice were deeply anesthetized with isoflurane and transcardially 

perfused with 0.1 M phosphate buffer (PB) followed by 4% PFA in 0.1 M PB. Whole brains 

were removed and post-fixed in 4% PFA/PB for 2 h at 4 °C. Samples were washed with 0.1 

M PB (2 × 30 min each) at 4 °C, and then transferred to 18% sucrose in 0.1 M PB. Free-

floating coronal cryosections (14 µm) were sliced using a Leica CM3050 S cryostat. In situ 

hybridization was performed as previously detailed (97, 98). Steps are at room 

temperature unless otherwise noted. Sections were incubated for 3 × 10 min in 0.1 M 

PB/0.5% Triton X-100, rinsed with 0.1 M PB (3 × 10 min), treated with 0.2 N HCl for 15 

min, rinsed with 0.1 M PB (3 × 10 min), and then acetylated in 0.25% acetic anhydride/0.1 

M triethanolamine pH 8.0 for 10 min. Sections were rinsed for 3 × 10 min with 0.1 M PB, 

fixed with 4% PFA/PB for 10 min, washed again with 0.1 M PB (3 × 10 min), and then 

prehybridized for 2 h at 55 °C. Sections were hybridized for 16 h at 55 °C with [35S]- and 

[33P]-labeled (107 c.p.m./ml) antisense probe for either Vglut2 (nucleotides 317-2357; 
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Accession Number NM_053427) or Vgat (nucleotides 1-2814, Accession Number 

BC052020). After hybridization, sections were incubated in 2× SSC buffer/10 mM β-

mercaptoethanol (BME) for 30 min at room temperature. Sections were next treated with 

5 µg/ml RNase A in 10 mM Tris-HCl pH 7.9/10 mM NaCl/0.1 mM EDTA for 1 h at 37 °C, 

washed in 0.5× SSC/50% formamide/10 mM BME/0.5% sarkosyl for 2 h at 55 °C, washed 

in 0.1× SSC/10 mM BME/0.5% sarkosyl for 1 h at 60 °C, and rinsed with 0.1 M PB (3× 10 

min) prior to parvalbumin immunolabeling. 

For immunohistochemistry, sections were blocked with 0.1 M PB/4% bovine 

serum albumin (BSA)/3% Triton X-100 for 1 h. Sections were incubated with goat anti-

parvalbumin antibody (1:1000 PVG-213, Swant) in block solution overnight at 4 °C. After 

washing with 0.1 M PB (3 × 10 min), sections were incubated with biotinylated anti-goat 

IgG secondary antibody (1:200) in block solution, washed with 0.1 M PB (3 × 10 min), 

incubated for 1 h in avidin-biotinylated horseradish peroxidase (1:200, ABC kit; Vector 

Laboratories, CA, USA), rinsed with 0.1 M PB (3 × 10 min), and developed with 0.05% 3,3-

diaminobenzidine-4 HCl (DAB)/0.003% hydrogen peroxide/0.1 M PB for 10 min. Sections 

were washed with 0.1 M PB (3 × 10 min), mounted onto coated slides, dipped in Ilford K5 

nuclear tract emulsion (Harman Technology Ltd, TX, USA), and exposed in the dark at 4 °C 

for four weeks prior to development. 

Sections were imaged with brightfield and epiluminescence microscopy using a 

Leica DMR microscope with a 20× objective and cellSens Standard v1.11 software 

(Olympus Corporation). Neurons observed within the LHPV region were manually assessed 

for the co-expression of Vglut2 mRNA or Vgat mRNA with anti-parvalbumin 
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immunolabeled cells. Brightfield was used to determine whether a parvalbumin-

immunolabeled (brown DAB product) neuron contained the aggregates of silver grains for 

Vglut2 mRNA or Vgat mRNA, which were viewed under epiluminescence. 

 

2.2.8     Single-cell gene expression profiling and analysis 

Single-cell cytoplasm harvesting was performed as previously described (99). 

Brain slices were prepared from Pvalbcre/+;Rosa26tom/tom mice as described above. First, 

the fast-spiking firing pattern of a LHPV tdTomato-positive neuron was recorded during 

whole-cell configuration. Subsequently, the cytoplasm of the recorded neuron was 

harvested into the recording pipette. The stability of the gigaseal (i.e. seal between the 

neuron and the pipette) was constantly monitored to avoid extracellular contamination. 

The total recording time and harvesting of the intracellular content did not exceed more 

than 4 min. The content of the pipette tip containing the harvested cytoplasm was then 

expelled into an RNase-free PCR tube.  For positive control samples, we patched fast-

spiking parvalbumin-expressing (tdTomato-positive) basket cells in the hippocampus and 

performed the same procedure as described above.  

Single-cell extracts were processed using the Ambion® Single Cell-to-CT Kit 

(Thermo Fisher Scientific, MA, USA). Briefly, samples were incubated in lysis solution with 

DNase I. Reverse transcription was then performed followed by preamplification of all 

target genes using pooled TaqMan Gene Expression Assays (Thermo Fisher Scientific). 

Target genes in LHPV cells were detected using the recommended best coverage assays for 

Pvalb (Mm00443100_m1), Slc17a6 (Vglut2, Mm00499876_m1), Slc32a1 (Vgat, 
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Mm00494138_m1), Kcnc1 (Kv3.1, Mm00657708_m1), Kcnc2 (Kv3.2, Mm01234232_m1), 

and Hcn2 (Mm00468538_m1). qPCR was performed in 10 µl reactions in 96-well plates 

using an Applied Biosystems 7500 Fast Real-Time PCR System (Invitrogen, CA, USA) with 

the following cycling parameters: (1) 50 °C for 2 min, (2) 95 °C for 10 min, and (3) 40 

repeats of 95 °C for 15 s, 60 °C for 1 min. Reactions included TaqMan Gene Expression 

Master Mix, TaqMan probe, and cDNA according to manufacturer’s protocol (Thermo 

Fisher Scientific). Each plate was run with a negative control (no cDNA template) and a 

positive control (hippocampal basket cell positive for Pvalb, Vgat, Kv3.1, Kv3.2, and Hcn2). 

Technical replicates (triplicate) were performed for each sample-gene combination. Cycle 

threshold (Ct) values were determined using Applied Biosystems 7500 v2.0.6 software 

(Invitrogen). Amplification Ct values higher than 37 and samples lacking any amplification 

curves were designated below the limit of detection. Three out of eight LHPV cells lacked 

amplification curves for Kv3.2. These samples were excluded from the Kv3.2 analysis. For 

all other target genes, n = 8 cells. Gene expression was normalized to Pvalb and Vglut2 

using the 2−ΔΔCt method (100).  

 

2.2.9     Statistical analysis 

Data are reported as mean ± s.e.m. or mean ± s.d. unless otherwise noted. Individual 

data points are shown for qPCR. Statistical analyses were performed using the Analysis 

ToolPak of Microsoft Excel 2016 (Microsoft Corporation, WA, USA). Statistical significance 

(P values) for paired comparisons was determined by two-tailed Student’s t test (P < 0.05 

considered statistically significant). Statistical tests, n values for number of animals or 
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number of cells, exact P values, degrees of freedom and t values are reported in figure 

legends where pertinent. Data were assumed to have a normal distribution; however, this 

was not formally tested. No statistical methods were used to determine sample sizes, but 

sample sizes used are similar to other publications (101, 102). Experimenters were not 

blinded to groups. Data from electrophysiological recordings were analyzed with Clampfit 

v10.6 (Molecular Devices LLC, CA, USA), Origin Pro v9.2 (OriginLab Corporation, MA, USA) 

and MATLAB R2015A (The MathWorks Inc., MA, USA).   
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2.3      Results 

2.3.1     Anatomical and electrophysiological characteristics of LHPV neurons 

We first characterized the electrophysiological properties of LHPV neurons under 

current-clamp conditions. These neurons form a compact and small cluster in the LH 

medial to the optic tract (340 ± 10 neurons, n = 3 mice; bilateral; (Figure 5) and the 

number of cells was consistent with previous studies estimating 400 PV-immunoreactive 

neurons in the LH of mice (91). We performed whole-cell recordings from LHPV neurons 

(n = 34) identified by tdTomato fluorescence in brain slices sectioned horizontally from 

PvalbIREScre;Rosa26LSL-tdTomato mice.  We observed that these neurons fired action potentials 

at high-frequency and with little accommodation in response to depolarizing current 

injections (Figure 6a). This fast-spiking action potential phenotype and other 

electrophysiological characteristics such as the resting membrane potential (Vrmp), action 

potential half-width (APHW), and the maximal firing frequency (Table 1) are similar to the 

properties of both hippocampal and neocortical PV-positive GABAergic interneurons (65, 

93).  

 

2.3.2     LHPV neurons are equipped with ion channels that support their fast-

spiking phenotype 

Previous studies showed that fast-spiking interneurons can be characterized by 

the expression of a specific combination of ion channels that confer these 

electrophysiological properties as, for example, delayed rectifier voltage-gated potassium 
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channels (KV3.1 and KV3.2) and the hyperpolarization-activated cation channels (HCN) 

(92). Therefore, we sought to determine whether the expression of these channels is 

similar in LHPV neurons. Single-cell RT-qPCR analysis revealed that LHPV neurons express 

Kv3.1, Kv3.2, and Hcn2 subunit genes with comparable relative abundance (Figure 7a,b).   

Together, these results demonstrate that LHPV neurons are equipped with ion 

channels that are implicated in setting precise pacing of spiking activity to minimize 

accommodation during prolonged depolarization, with some electrophysiological 

diversity (Figures 8a,b) possibly attributed to the variations in the relative contributions 

of specific ion channels.  

 

2.3.3     LHPV neurons are glutamatergic 

Thus far, our results indicate that LHPV neurons have many common features with 

inhibitory interneurons.  Therefore, we predicted that these neurons may comprise a 

lateral hypothalamic inhibitory circuit that may be involved in the orchestration of 

appetitive and consummatory behaviors. To test this, we first sought to determine 

whether LHPV neurons are GABAergic. Surprisingly, a previous study has shown that 

parvalbumin can be found colocalized with glutamate immunohistochemically in both, 

rats and mouse (91). However, a quantification of the number of LHPV neurons expressing 

specific markers for glutamate and their ability to release the neurotransmitter and form 

functional synapses have not been determined. 

Therefore, we used several convergent approaches to unravel the 

neurotransmitter system used by LHPV neurons.  We first performed channelrhodopsin 
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(ChR2)-assisted circuit mapping (CRACM) to examine whether LHPV neurons are 

synaptically connected to other cells within the LH (Figure 6b, (40, 103).  We 

stereotaxically injected a Cre recombinase-dependent viral vector (40) bilaterally into the 

LH of PvalbIREScre transgenic mice to target channelrhodopsin-2 (ChR2) fused to the 

fluorophore tdTomato (ChR2:tdTomato) specifically to LHPV neurons.  We performed 

whole-cell recordings from individual neurons within the LH (n = 75) under voltage-clamp 

configuration (Figure 6b) and observed that photostimulation of ChR2-expressing LHPV 

neurons and axons evoked excitatory postsynaptic currents (EPSCs; 69.0 ± 5.0 pA) on the 

connected LH neurons (n = 13; 17.33 % connected).  Those EPSCs were blocked by 

selective antagonists of glutamate receptors (2.5 ± 0.4 pA). This demonstrates that rather 

than releasing GABA, LHPV neurons release the excitatory neurotransmitter glutamate. 

To determine whether LHPV neurons contained markers of glutamate or GABA 

neurons, we performed in situ hybridization assays to measure the expression of Slc17a6 

(Vglut2; vesicular glutamate transporter 2) and Slc32a1 (Vgat; vesicular GABA 

transporter) in these neurons (Figure 9 and Figure 10a-b).  We observed that Pvalb mRNA 

was predominantly detected in neurons that express Vglut2 (95 % Pvalb+/Vglut2+; 5 % 

Pvalb+/Vgat+; n = 4). Together, these results describe a cluster of glutamatergic fast-

spiking LHPV neurons that provide excitatory inputs to neuronal circuits within the LH.  

 

2.3.4   LHPV neurons send long range projections throughout the brain 

Previously, a Cre recombinase-dependent anterograde viral vector approach to 

labeling LHPV neurons has been employed.  Projections were seen in many areas 
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throughout the brain, with the strongest pathway in the PAG, but this approach does not 

distinguish between fibers of passage and synaptic terminals (52).  We stereotaxically 

injected a Cre recombinase-dependent viral vector that expresses synaptophysin fused to 

mCherry bilaterally into the LH of PvalbIREScre transgenic mice.  This approach allowed us 

to selectively label axon terminals of LHPV neurons throughout the brain.  We identified 

terminals in the LHb, parafascicular thalamic nucleus (PF) surrounding the retroflex 

fascicle (fr), submedius thalamic nucleus (Sub), PAG, reticulotegmental nucleus of the 

pons (RtTg), posterior hypothalamus (PH) and retromamillary nucleus (RMM) (Figure 11).  

These findings confirm several of the proposed projection sites seen by Celio et al. 

including the PAG, LHb, and PF (52).   
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2.4      Figures and tables 

 

 

 

 
Figure 5 

Immunohistochemical identification of parvalbumin-expressing neurons in a horizontal section of the 

mouse LH. Dotted lines highlight a cluster of immuno-positive LHPV neurons (green). Scale bar = 200 m. 

Abbreviations, fornix (f), optic tract (opt), lateral mammillary nucleus (LM), lateral (L), medial (M), rostral 

(R), and caudal (C). 
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Figure 6 

LHPV neurons exhibit fast-spiking characteristics and provide excitatory input to neurons within the LH. (a) 

Representative traces and firing pattern of a fast-spiking LHPV neuron in response to step hyperpolarizing 

(bottom traces; from 100 to 0 pA) and depolarizing current injections (upper traces; 900 pA) during a 500 

ms pulse. Resting membrane potential (Vrmp = 66 mV) and maximal firing frequency 264 Hz. (b) Traces of 

excitatory postsynaptic currents (EPSCs; gray) evoked by photostimulation (1 ms light pulses) of LHPV-ChR2+ 

neurons before and after bath application of DNQX and APV (black trace; AMPA-R and NMDA-R 

antagonists). Red and black traces are the average of ten consecutive sweeps. LH neuron was held at 70 

mV. Note schematic of ChR2-assisted circuit mapping (inset; upper left) from LHPV-ChR2+ neuron (red) onto 

a postsynaptic lateral hypothalamic neuron (gray) as well as arrow indicating the recorded postsynaptic LH 

neuron (inset; bottom right) filled with biocytin (green) surrounded by ChR2:tdTomato-expressing LHPV 

axons (red). Scale bar = 50 µm. 

 

 

a b 
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Table 1 

Electrophysiological properties of LHPV neurons. Data are reported as mean ± S.E.M. Descriptions of 

electrophysiological properties are explained in Materials and Methods 

 

 

 

 

 

 

 

 

 

Electrophysiological Property  

Vrmp (mV) −65.6 ± 1.2 

Cmem (pF) 40.2 ± 2.5 

Rin (MΩ) 327.3 ± 29.6 

m (ms) 21.3 ± 1.8 

Sag ratio 0.96 ± 0.004 

AP threshold (mV) −40.5 ± 1.1 

AP latency (ms) 49.5 ± 6.7 

AP amplitude (mV) 63.4 ± 1.3 

APHW (ms) 0.45 ± 0.02 

fAHP amplitude (mV) 21.9 ± 0.8 

fAHP latency (ms) 1.97 ± 0.13 

AP broadening 0.06 ± 0.01 

Maximal firing frequency (Hz) 193.6 ± 10.3 
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Figure 7 

LHPV neurons express KV3 and HCN channels. (a) Detection of Kv3.1, Kv3.2, and Hcn2 subunit genes by RT-

qPCR analysis after harvesting the cytoplasm from single LHPV neurons. (b) Relative abundance of Kv3.1, 

Kv3.2, and Hcn2 in single LHPV neurons. Box plots show mean (×), median, quartiles (boxes), and s.e.m. 

(whiskers). Circles indicate data from individual cells. Cycle threshold (Ct), relative abundance values, and 

sample sizes are explained in Materials and Methods. 
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Figure 8 

Characterization of firing rates of LHPV neurons in response to current injections. (a) Representative firing 

pattern of a fast-spiking LHPV neuron that displays spike frequency and amplitude accommodation during 

large depolarizing current injections (500 pA, 500 ms pulses). Note firing frequency and amplitude 

accommodation during the last 100 ms of the pulse. Resting membrane potential (Vrmp = 63 mV). (b) Firing 

rate of LHPV neurons in response to current injection (I–f curves) during 500 ms pulses. Each recorded 

neuron is color coded (n = 34). The red/gray dots show the average firing rate of the LHPV neurons and the 

standard deviation is indicated by the black vertical bar. The bigger dots depict the maximum current that 

can be injected on each neuron before they fall into depolarization block. These neurons display diversity 

in their I–f curves, which monotonically decrease as the output firing rate increases (data not shown). 
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Figure 9 

Fluorescent in situ hybridization assay for Vgat (green), Vglut2 (red), and Pvalb (white) with DAPI (blue) 

counterstain. Pvalb mRNA was predominantly detected in neurons that express Vglut2 (95 % 

Pvalb+/Vglut2+; 5% Pvalb+/Vgat+) Scale bar, 50 µm. Abbreviations, fornix (f), optic tract (opt), lateral 

mammillary nucleus (LM), lateral (L), medial (M), rostral (R), and caudal (C).  
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Figure 10 

LHPV neurons are Vglut2-positive. (a) Coronal sections showing that parvalbumin immunoreactive cells 

(brown; left panel) mainly colocalize with Vglut2 mRNA (95 %; green grain aggregates; right panel) but (b) 

not with Vgat mRNA (5 %; green grain aggregates; right panel). Scale bars = 50 µm.  
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Figure 11 

Axonal projections of LHPV neurons. (a)  Schematic and representative image depicting a bilateral injection 

of the Cre recombinase-dependent viral vector for anterograde tracing (rAAV2/9-hEf1α-DIO-

synaptophysin-mCherry) into the lateral hypothalamus (LH) of a PvalbIREScre mouse. Scale bar 500 µm. 

Projections to (b) the lateral habenula (LHb), (c) the submedius thalamic nucleus (Sub), (d) the 

parafascicular thalamic nucleus (PF) surrounding the fasciculus retroflexus (fr), (e) the posterior 

hypothalamus (PH), (f) the retromamillary nucleus (RMM), (g) the periaqueductal gray (PAG), and (h) the 

reticulotegmental nucleus of the pons (RtTg). (b-d-e-f) Scale bars (low magnification), 200 µm; Scale bars 

(high magnification), 25 µm (c-g-h) Scale bars (low magnification), 100 µm; Scale bars (high magnification), 

25 µm. (n = 3 mice)  
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Chapter 3 

LHPV neurons regulate feeding and general arousal 
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3.1      Introduction 

To further investigate the functional roles of LHPV neurons in vivo and during 

behavior, we tested whether these neurons regulate feeding by manipulating their 

activity using a chemogenetic approach.  Pioneering experiments have shown that the 

lateral hypothalamus is predominantly known to regulate food and water intake, arousal, 

mating, circadian rhythm, body temperature, and reward.  Early experiments using 

electrical self-stimulation of the LH showed that mice would perform work (i.e. press a 

lever) to receive electrical stimulation in the LH, which induced voracious feeding, 

demonstrating the rewarding effects of LH-induced feeding (104, 105).  Meanwhile, 

electrolytic lesions drive a hypophagic response (15).  The LH comprises a multitude of 

different cell types and fiber pathways, distinguished by expression of different molecular 

markers.  Both glutamatergic and GABAergic neurons are found within the LH.  Injection 

of glutamate receptor agonists as well as direct optogenetic stimulation of LH GABAergic 

(inhibitory) neurons have been shown to drive food intake (hyperphagia), yet both 

injection of GABA receptor agonists and optogenetic stimulation of LH glutamatergic 

(excitatory) neurons have been shown to decrease food intake (hypophagia) (61, 64, 106-

108).  More specific markers than just expression of GABA and glutamate or their 

receptors will be necessary to identify the subpopulations of neurons in the LH that drive 

different aspects of feeding behaviors.   

Here I used a chemogenetic approach to specifically excite and inhibit LHPV 

neurons. We found that inhibition of those neurons in sated mice during the light phase 

significantly increased food intake by 60% demonstrating that LHPV neurons play a role 
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in regulating feeding.  Additionally, we found that such inhibition also significantly 

increased general arousal by 44% over the course of the experiment.   
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3.2      Materials and methods 

3.2.1     Stereotaxic viral injection 

For behavioral experiments, four to twelve-week-old PvalbIREScre heterozygous 

mice were used. Mice were anesthetized with isoflurane and placed into a stereotaxic 

apparatus (David Kopf Instruments, CA, USA). After exposing the skull by a minor incision, 

small holes (< 1 mm diameter) were drilled bilaterally for virus injection. An adeno-

associated virus (rAAV2/rh10-hSyn-DIO-hM3D(Gq):mCherry, rAAV2/rh10-hSyn-DIO-

hM4D(Gi):mCherry; titer: 3×1012 virus molecules/ml each virus; University of North 

Carolina Vector Core, NC, USA or rAAV2/9-CAG-FLEX-rev-eGFP-WPRE-bGH; titer: 

2.28×1013 GC/ml; University of Pennsylvania Gene Therapy Program Vector Core, PA, 

USA) (34) was injected into the lateral hypothalamus (LH; bregma, 1.80 mm; midline, 

±1.40 mm; dorsal surface, 5.4 mm) by a pulled glass pipette (2030 µm tip diameter) 

with a micromanipulator (Narishige International USA Inc., NY, USA) controlling the 

injection speed. Subsequently, the incision was stitched, and mice were individually 

housed for 25 weeks for post-surgical recovery and viral transduction.  

 

3.2.2     Behavioral experiments 

3.2.2.1  Feeding assay 

Male and female PvalbIREScre heterozygous mice injected with either hM4D, hM3D, 

or GFP control virus in LHPV neurons were given ad libitum access to rodent chow (PicoLab 

Rodent Diet 20, 5053 tablet, LabDiet/Land O’Lakes Inc., MO, USA) in home cages prior to 
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testing. For behavioral testing, mice were transferred to experimental cages with 

automatic food pellet dispensers (Coulbourn Instruments LLC, PA, USA) and supplied with 

pellets (20 mg each) of identical composition to the food in the home cage. Pellet removal 

was sensed by the offset of a beam break, and an additional pellet was administered after 

a delay (10 s). Water was available ad libitum during the experiment and water spout licks 

were sensed by optical detection (Coulbourn Instruments). Both food consumption and 

water spout licks were monitored continuously using Graphic State v4 software 

(Coulbourn Instruments). In addition, water bottles were manually weighed every 24 h to 

quantify water intake.  Mice were acclimated to experimental cages for 2–3 days before 

initiating experimental protocols.  

Mice were tested for evoked food and water intake during both light and dark 

periods (lights on at 7:00 a.m. and off at 7:00 p.m.). Light period testing began at 9:00 

a.m., 2 h following light onset, and dark period testing began at 7:00 p.m.  Food intake 

was recorded continuously for 24 h following control (sterile water) or 3.0 mg/kg 

clozapine-N-oxide (CNO) intraperitoneal (i.p.) injection on two consecutive days.  CNO or 

water was injected 5–10 min before the start of the experiment. The order of water and 

CNO injection days was counterbalanced between mice.  During an additional set of 

experiments, male and female PvalbIREScre heterozygous mice injected with hM3D virus in 

LHPV neurons were food deprived for 10 h during light phase (9:00 a.m.7:00 p.m.) before 

testing for chemogenetic excitation to further increase their drive to eat during the dark 

cycle.  Access to food was introduced ad libitum from 7:00 p.m. until 9:00 a.m. Mice were 

i.p. injected 5–10 min prior to the onset of dark phase with either control (sterile water) 
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or 3.0 mg/kg CNO.  Activity was recorded and tracked for 4 h following injections using 

ANY-maze behavior tracking software version 4.9 (Stoelting Co., IL, USA).   

A separate group of PvalbIREScre mice (LHPV/GFP) served as a control population for 

behavioral effects of CNO injection.  These mice were bilaterally injected with a Cre 

recombinase-dependent viral vector that drives the expression of green fluorescent 

protein (GFP). The hyperphagic effects upon inhibition of LHPV neurons were not a side 

effect of CNO, as injection of CNO did not induce a significant change in food intake in 

LHPV/GFP mice during light phase or dark phase (Figure 16).  General arousal (measured as 

time spent mobile, including grooming and locomotion) was significantly decreased 

following injection of CNO in sated mice during the light cycle (Figure 17a-c, *P =0.0483).  

General arousal was not altered following injections of CNO in sated or fasted mice during 

the dark cycle (Figure 17d-i).  Thus, we did not observe a sedative-like behavior after CNO 

administration in any of the cohorts (i.e. LHPV/hM3D, LHPV/hM4D, and LHPV/GFP mice) as 

reported by a recent study (109). 

 

3.2.3     Histology and immunohistochemistry for behavior animals 

Mice were deeply anesthetized with isoflurane and transcardially perfused with 

1× PBS followed by 4% PFA in 1× PBS.  Whole brains were removed and post-fixed in 4% 

PFA/PBS for 2 h at 4 °C and subsequently transferred to 1× PBS for 1 to 48 h for storage 

at 4 °C until further processing.  Coronal brain sections (50 µm thick) containing the LH 

were collected in 1× PBS using a vibrating tissue slicer (vibratome; Leica VT1200), and 

freely floating slices were immunostained for parvalbumin (PVALB) and RFP.  Sections 
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were incubated with a blocking solution of 1× PBS/0.2% Triton X-100 (PBT) plus 25% 

normal donkey serum (NDS) for 1 h. Sections were then incubated with the primary 

antibodies (rabbit anti-PVALB, 1:500 PV25; Swant) and guinea pig anti-RFP, 1:40,000 (gift 

from J.N. Betley, University of Pennsylvania, PA, USA) (39)  in PBT/2% NDS overnight at 4 

°C.  After rinsing 4 × 10 min in 1× PBS, sections were incubated for 2 h with secondary 

antibodies donkey anti-rabbit-Alexa Fluor 647 (1:500; Invitrogen, CA, USA) and donkey 

anti-guinea pig-Alexa Fluor 488 (1:500; Jackson ImmunoResearch Inc., PA, USA) in PBT/2% 

NDS at room temperature and washed with 1× PBS (4 × 10 min).  Sections were mounted 

with DAPI-Fluoromount-G aqueous mounting medium (Electron Microscopy Sciences) 

onto Superfrost Plus glass slides (VWR International). Images were taken with an 

AxioZoom.V16 fluorescence microscope and z-stacks were collected using an LSM700 

laser scanning confocal microscope (Carl Zeiss Micrsocopy LLC, NY, USA). Animals with 

mistargeted viral injections were excluded from analysis (n = 3).   

Transduced cells expressing mCherry on every other coronal brain slice from 

bregma 1.3 to 2.3 were counted.  Slices from two mice used in behavior experiments 

were excluded from cell counts due to poor quality of a significant portion of the slices, 

but expression in the LHPV nucleus was confirmed, and therefore, their behavior data were 

included in this work. 
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3.3      Results 

3.3.1     Chemogenetic inhibition of LHPV neurons increases food intake and 

general arousal 

To perform these loss-of-function like measurements, I targeted neurons in the 

LH of PvalbIREScre mice (LHPV/hM4D) by bilaterally injecting a Cre recombinase-dependent 

viral vector that drives the expression of the inhibitory G-protein-coupled receptor hM4D 

fused to mCherry (110). I inhibited LHPV/hM4D neurons in sated mice by intraperitoneally 

injecting 3.0 mg/kg clozapine-N-oxide (CNO) during the early light phase, when mice 

normally eat little (Figure 12a).  Chemogenetic inhibition of LHPV/hM4D neurons significantly 

increased food intake by 60% during the first 4 h after CNO injection compared to vehicle 

control (Figure 12c,d) demonstrating that LHPV neuron activity is necessary for regulating 

feeding.  The magnitude of the feeding response was related to the number of hM4D-

expressing LHPV cells (Figure 13a,b).   

I observed that chemogenetic inhibition of LHPV neurons did not affect water 

intake in water-sated mice (Figure 14b) suggesting that inhibition of LHPV neurons 

selectively stimulated food rather than water intake.  Moreover, I did not observe 

significant changes in feeding or drinking during inhibition of LHPV neurons during the dark 

cycle, when mice normally eat (Figure14e, Figure 15a-c).   

During the same experiments, I monitored general arousal (measured as time 

spent mobile, including grooming and locomotion) of the animals for 4 h following 

injection of CNO or vehicle.  General arousal was significantly elevated by 44% in the 4 h 
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following chemogenetic inhibition of LHPV neurons in sated mice during the light phase 

(Figure 12e,f, *P = 0.0265).   

General arousal was increased by 46% following inhibition of LHPV neurons at the 

onset of dark phase in sated mice (Figure 15d,e).  Thus, the increase in arousal was not 

solely due to increase in food intake, as there was no significant change in food intake 

during this same period.   

 

3.3.2  Chemogenetic activation of LHPV neurons does not affect food intake 

but decreases general arousal 

In contrast, activation using the CNO-responsive excitatory receptor hM3D in LHPV 

neurons (LHPV/hM3D) did not affect food or water consumption in sated mice during the 

light cycle (Figure 12h,i, Figure 14b,c). I did not observe significant changes in feeding or 

drinking when testing whether activation of LHPV neurons would affect food and water 

intake during the dark cycle, when mice normally eat (Figure 15g,h, Figure 14f,g).   

Chemogenetic excitation of LHPV neurons induced a 37% decrease in general 

arousal in sated mice at 4 h following injection during light phase (Figure 12j-k, n = 8, *P 

= 0.0363).   
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3.4      Figures and tables 

 
Figure 12 

Inhibition of LHPV neurons increases food intake and arousal in sated mice. (a) Experimental design of 

behavioral assays. Mice received ad libitum access to food and water before and during testing. 
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Intraperitoneal injections (i.p.) of CNO or vehicle were performed in the early of the light cycle. (b) 

Representative image showing bilateral hM4D:mCherry expression (red) in LHPV neurons. Scale bar = 500 

µm. Section was counterstained with DAPI (blue). (c) Chemogenetic inhibition of LHPV neurons significantly 

increased food intake during the first 4 h after CNO injection (60% increase; n = 11; *P = 0.0085, **P = 

0.0031). (d) Summary bar graphs showing the cumulative food intake during control and after inhibition of 

LHPV neurons at 4 h. (e) Cumulative arousal in the 4 h following injection in sated LHPV/hM4D mice during the 

early light cycle (n = 11, *P = 0.0265).  (f) Arousal increased 44% by 4 h following injection in sated LHPV/hM4D 

mice during the early light cycle (n = 11, *P = 0.0265).  (g) Representative image showing bilateral 

hM3D:mCherry expression (red) in LHPV neurons. Scale bar = 500 µm. Section was counterstained with DAPI 

(blue). (h) Chemogenetic activation of LHPV neurons does not affect food intake (n = 8; P = 0.6904). (i) 

Summary bar graphs showing that the cumulative food intake is unaffected during activation of LHPV 

neurons at 4 h. Bars represent mean ± s.e.m.; circles indicate data from individual mice. (j) Cumulative 

arousal in the 4 h following injection in sated LHPV/hM3D mice during the early light cycle (n = 8, *P < 0.05).  

(k) Arousal decreased 28% by 4 h following injection in sated LHPV/hM3D mice during the early light cycle (n = 

8, *P = 0.0363).   Bars represent mean ± s.e.m.; circles indicate data from individual mice. 
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Figure 13  

Food intake was dependent on the number of hM4D-expressing LHPV (LHPV/hM4D) neurons. (a) Schematics 

depicting the number of LHPV/hM4D neurons counted bilaterally for 4 representative mice. (b) Graph showing 

the relationship between the magnitude of food intake and the number of LHPV/hM4D neurons. The variability 

on baseline food intake between mice was accounted by calculating the amount of food consumed at 4 h 

as the difference between CNO and vehicle injection. Circles indicate food intake at 4 h for individual mice 

(n = 11). Red line shows Pearson correlation *P = 0.0004; r(11) = 0.874. 
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Figure 14 

Chemogenetic inhibition and excitation of LHPV neurons did not affect water intake in water-sated mice. (a) 

Experimental design of behavioral assays in the light cycle. Mice received ad libitum access to food and 

water prior to and during testing. Intraperitoneal injections (i.p.) of CNO or vehicle were performed at the 
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beginning of the light cycle. (b) Summary bar graphs showing the cumulative water intake after inhibition 

and (c) excitation of LHPV neurons at 24 h (n = 11; P = 0.3802 and n = 8; P = 0.84518, respectively). (d) 

Experimental design of LHPV/hM4D behavioral assays in the dark cycle. Mice received ad libitum access to food 

and water prior to and during testing. Intraperitoneal injections (i.p.) of CNO or vehicle were performed at 

the beginning of the dark cycle. (e) Summary bar graph showing cumulative water intake at 24 h for 

LHPV/hM4D mice injected with CNO or vehicle during the dark cycle (n = 6; P = 0.31494). (f) Experimental 

design of LHPV/hM3D behavioral assays in the dark cycle. Mice were food restricted for 10 h prior to testing to 

eat during the dark cycle.  Intraperitoneal injections (i.p.) of CNO or vehicle were performed at the beginning 

of the dark cycle. (g) Summary bar graphs showing the cumulative water intake after excitation at 

24 h (n = 7; P = 0.081).   Bars represent mean ± s.e.m.; circles indicate data from individual mice.  
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Figure 15 

Food intake and arousal in response to chemogenetic inhibition and excitation of LHPV neurons during the 

dark cycle. (a,f) Experimental design of behavioral assays.  Mice received ad libitum access to food and 

water prior to and during testing for inhibition (a) and were food restricted 10 h prior to testing for 
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excitation to further increase their drive to eat during the dark cycle (f). Intraperitoneal injections (i.p.) of 

CNO or vehicle were performed at the beginning of the dark cycle. (b) Chemogenetic inhibition of LHPV 

neurons did not affect food intake during the first 4 h after CNO injection (n = 6; P = 0.37818). (c) Summary 

bar graphs showing the cumulative food intake after inhibition of LHPV neurons at 4 h. (d) Cumulative 

arousal in the 4 h following injection in sated LHPV/hM4D mice during the early dark cycle (n = 6, *P < 0.05).  

(e) Cumulative arousal in the 4 h following injection in sated LHPV/hM4D mice during the early dark cycle (n = 

6, *P < 0.05).  (f) Experimental design of behavioral assays for LHPV/hM3D mice.  (g)  Chemogenetic 

activation of LHPV neurons did not affect food intake (n = 7; P = 0.974). (h) Summary bar graphs 

showing that the cumulative food intake is unaffected during activation of LHPV neurons at 4 h. (i) 

Cumulative arousal was not altered by 4 h following injection in food restricted LHPV/hM3D mice during the 

early dark cycle (n = 7, P = 0.8691).  (j) Arousal was not altered by 4 h following injection in food restricted 

LHPV/hM3D mice during the early dark cycle (n = 7, P = 0.8691).  Bars represent mean ± s.e.m.; circles indicate 

data from individual mice. 
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Figure 16 

Food and water intake were unaffected by injection of CNO in LHPV/GFP mice during the light or dark cycle. 

(a,e,i) Experimental designs of all behavioral assays for LHPV/GFP mice. Mice received ad libitum access to 

food and water prior to and during testing (a) in the light cycle.  Intraperitoneal injections (i.p.) of CNO or 

vehicle were performed at the beginning of the light cycle. For dark cycle testing, mice received ad libitum 

access to food and water prior to and during testing (e) or were food restricted 10 h prior to testing (i) to 

further increase their drive to eat during the dark cycle.  Intraperitoneal injections (i.p.) of CNO or vehicle 

were performed at the beginning of the dark cycle. (b) Injection of CNO does not affect food intake (n = 4; 

P = 0.2999). (c) Summary bar graphs showing that that cumulative food intake is unaffected following 



62 
 

injection of CNO at 4 h. (d) Water intake at 24 h for LHPV/GFP mice injected with CNO or vehicle during the 

light cycle (n = 4, P =0.1631). (e) Experimental design of dark phase ad libitum food and water behavioral 

assays. (f) CNO did not affect food intake during the first 4 h after CNO versus vehicle injection (n = 4; P = 

0.7847). (g) Summary bar graphs showing the cumulative food intake after injection of CNO versus vehicle 

at 4 h. (h) Summary bar graphs showing the cumulative water intake after injection of CNO versus vehicle 

at 24 h (n = 4; P = 0.1955). (i) Experimental design of dark phase behavioral assays following 10 h food 

restriction.  (j) CNO injection after food restriction did not affect food intake after injection of CNO versus 

vehicle at 4 h (n = 4; P = 0.1109). (k) Summary bar graphs showing the cumulative food intake after injection 

of CNO versus vehicle at 4 h.  (l) Summary bar graphs showing the cumulative water intake after injection 

of CNO versus vehicle at 24 h (n = 4; P = 0.7719). Bars represent mean ± s.e.m.; circles indicate data from 

individual mice. 
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Figure 17 

General arousal following injection of vehicle and CNO in LHPV/GFP mice during the light and dark cycle. 

(a,d,g) Experimental designs of all behavioral assays for LHPV/GFP mice. Mice received ad libitum access to 

food and water prior to and during testing (a) in the light cycle.  Intraperitoneal injections (i.p.) of CNO or 

vehicle were performed at the beginning of the light cycle. For dark cycle testing, mice received ad libitum 

access to food and water prior to and during testing (d) or were food restricted 10 h prior to testing (g) to 

further increase their drive to eat during the dark cycle.  Intraperitoneal injections (i.p.) of CNO or vehicle 

were performed at the beginning of the dark cycle. (b) Cumulative arousal in the 4 h following injection in 

sated LHPV/GFP mice during the early light cycle (n = 4, *P = 0.0272).  (c)  Arousal decreased 26% by 4 h 

following injection of CNO in sated LHPV/GFP mice during the early light cycle (n = 4, *P = 0.0272).  (d) 

Experimental design of dark phase ad libitum food and water behavioral assays. (e) Cumulative arousal in 

the 4 h following injection in sated LHPV/GFP mice during the early dark cycle (n = 4, P = 0.7356).  (f) Arousal 

was not altered by 4 h following injection in sated LHPV/GFP mice during the early dark cycle (n = 4, P = 

0.7356).  (g) Experimental design of dark phase behavioral assays following 10 h food restriction.  (h) 
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Cumulative arousal was not altered by 4 h following injection in food restricted LHPV/GFP mice during the 

early dark cycle (n = 4, P = 0.93803).  (i) Arousal was not altered by 4 h following injection in food 

restricted LHPV/GFP mice during the early dark cycle (n = 4, P = 0.93803).   Bars represent mean ± s.e.m.; 

circles indicate data from individual mice. 
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Chapter 4 

Functional imaging of neuronal activity of LHPV cells 

using two-photon fluorescence endomicroscopy 
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4.1      Introduction 

 A fundamental goal of neuroscience research is to understand how dynamics in 

neuronal circuits control behavioral outputs. To date, experiments have largely been 

unable to determine when specific cell types are active to provide quantitative 

relationships between circuit activity and behavior.  Studies in rats and primates have 

used electrophysiology methods to record the action potential firing activity of cells in the 

lateral hypothalamus during different metabolic states such as satiety and hunger (111, 

112). These studies revealed a wide range of activity patterns, including increases and 

decreases in firing rate during hunger as well as different time courses of activity relative 

to feeding initiation. These experiments were performed with traditional extracellular 

electrophysiology methods and could not identify the cell types of the recorded neurons. 

Therefore, the feeding-related activity patterns of the genetically-distinct cell types in the 

lateral hypothalamus remain unknown.  

An understanding of the neuronal activity of specific cell types during feeding-

related behaviors would elucidate the functions performed by the components of the 

lateral hypothalamic circuit and thus provide insight into how the lateral hypothalamus 

drives feeding.  The development of new methods that enable optical or 

electrophysiological recordings from genetically-identified cell types at deep brain 

regions and in freely-moving mice or rats have recently begun to emerge.    

The combination of fiber photometry or in vivo endomicroscopy with genetically 

encoded calcium indicators (GCaMPs) enables the analysis of fluctuations in the intensity 

of calcium-sensitive fluorophores as an indicator of neuronal activity.  Initially, the 
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targeting of deep brain structures was limited, as traditional two photon microscopes 

were restricted to image depths of 1 mm from the surface (113).  The use of two photon 

endomicroscopy to image deep brain structures has been made possible due to the 

advent of gradient refractive index (GRIN) lenses (114-117).     

Single-photon endomicroscopy and fiber photometry have recently been utilized 

to record changes in activity in AGRP neurons in the arcuate nucleus (ARCAGRP; (46, 47, 

50)).  This work has revealed surprising results that have spurred the field to reformulate 

theories on the functional role of these neurons.  It was previously known that 

optogenetic stimulation of ARCAGRP neurons induced voracious feeding (33).  Yet, initial in 

vivo single-photon recordings of ARCAGRP neurons revealed that activity of these cells was 

elevated during fasting compared to satiety, and this activity dramatically decreased 

within seconds upon feeding.  Betley et al. demonstrated that these neurons exhibited 

increased activity in response to peripheral ghrelin administration(46).  Additionally, they 

showed that these neurons responded similarly to the mere expectation of food, 

indicating that ARCAGRP neurons may not be driving feeding or hunger as they were 

traditionally regarded (46).  These results were further supported by similar studies from 

fiber photometry recordings of ARCAGRP neurons (47, 50).  Chen et al. went a step further, 

to demonstrate that ARCAGRP activity dramatically decreased upon the sensory detection 

of food (47).  This led to the determination that ARCAGRP neurons must be driving food 

seeking, or a hunger drive, rather than just hunger (47, 50).  However, more recent 

investigations into the activity of ARCAGRP neurons have provided further complexity to 

this model. Nutrient ingestion has now been shown to drive similar shifts in ARCAGRP 
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activity over the course of several minutes in proportion to caloric value, regardless of the 

individual nutrient or metabolic state of the animal.  Additionally, peripheral leptin 

injection has been shown to induce a much more gradual shift in the activity of ARCAGRP 

neurons, on the scale of hours rather than seconds or minutes (49).  The differences in 

the time courses of response to varying stimuli reveal that ARCAGRP neurons are capable 

of integrating both central and peripheral sensory information regarding food availability 

and metabolic state, and they respond differentially based on these factors. 

To date, the dynamics of LHPV neurons in vivo remain unknown.  I used two photon 

fluorescence endomicroscopy to image the activity of LHPV neurons in awake, head-fixed 

mice during different metabolic states.  These findings reveal decreased calcium signals 

from LHPV neurons during food-deprived conditions.  Moreover, LHPV neurons rapidly 

respond to the sensory detection of food. 
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4.2      Materials and methods 

4.2.1    Stereotaxic viral injection and GRIN lens or guide cannula 

implantation 

For GRIN lens and GRIN lens cannula implantation surgeries, six to eight-week-old 

PvalbIREScre heterozygous mice were used. Mice were anesthetized with isoflurane and 

placed into a stereotaxic apparatus (David Kopf Instruments, CA, USA). After exposing the 

skull by a minor incision, a small hole (< 1 mm diameter) was drilled for virus injection and 

subsequent GRIN lens or cannula implantation. First, a beveled 25-gauge needle was 

inserted into the hole to create a guide path for the lens or cannula (needle: bregma, 

1.80 mm; midline, ±1.40 mm; dorsal surface, 5.20 mm). Next, an adeno-associated 

virus (rAAV2.9/CAG.FLEX-GCaMP6s.WPRE.SV40, titer: 1.34×1013 genomic copies/ml; 

University of Pennsylvania Gene Therapy Program Vector Core, PA, USA) (Chen et al., 

2013) was injected (100 nl; rate: 30 nl/min) into the lateral hypothalamus (injection: 

bregma, 1.80 mm; midline, ±1.40 mm; dorsal surface, 5.40 mm) by a pulled glass 

pipette (2030 µm tip diameter) with a micromanipulator (Narishige International USA 

Inc., NY, USA) controlling the injection speed. After injection, either a GRIN lens (ILW-050-

P146-055-NC; Go!Foton Corporaton, NJ, USA) or a cannula (MGC_560/610_5.2_v2.1; 

Bocarsly et al., 2015; Doric Lenses Inc., QC, Canada) was lowered into position above the 

injection site (lens/cannula: bregma, 1.80 mm; midline, ±1.40 mm; dorsal surface, 5.25 

mm). A head bar was attached to the skull surface with cyanoacrylate and dental cement 

(C&B Metabond Adhesive Cement, Parkell Inc., NY, USA) was spread around the lens or 

cannula and inside the head bar to hold everything in place. A final layer of black dental 
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cement (Contemporary Ortho-Jet, Lang Dental Manufacturing Company Inc., IL, USA) was 

applied around the lens or cannula on top of the previous layer of cement. A small piece 

of Parafilm was used to cover the GRIN lens or cannula, and the inside of the head bar 

was filled with Kwik-Sil or Kwik-Cast (World Precision Instruments, FL, USA). After surgery, 

mice were individually housed for 4 weeks for post-surgical recovery, inflammatory 

response reduction, and viral transduction (117).  

 

4.2.2     Two-photon endomicroscopy system and mice habituation  

We used both singlet (ILW-050-P146-055-NC; Go!Foton Corporaton) and doublet 

(NEM-050-25-10-860-DM; GRINTECH GmbH, Jena, Germany) GRIN lenses for deep tissue 

imaging in mice. The singlet lens has a working distance of approximately 130 µm on the 

object side.  The doublet lens and guide cannula designs were previously described (117).  

The numerical aperture (NA) of 0.5 provides sufficient 3D resolution for functional 

imaging of neuronal cell bodies.  

The GRIN lens was incorporated into a two-photon fluorescence microscope 

equipped with a 5× air objective of 0.16 NA (Zeiss), which generated the initial focus of 

the excitation light (of 0.2 NA, to match the 0.19 NA of the GRIN lens on the image side) 

to be relayed by the GRIN lens to the sample side. The two-photon fluorescence signal 

was collected and transported back to the microscope by the GRIN lens and detected with 

a photomultiplier tube (H7422; Hamamatsu Corporation, NJ, USA).  A Ti:Sapphire 

femtosecond oscillator (Mai Tai HP; Spectra-Physics, CA, USA) tuned to 910 nm was used 

as the excitation light source for all experiments.   
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Three weeks after surgery, mice were habituated to head-restraint in a custom-

built restraint system. Mice were habituated to head-restraint during escalating durations 

from 5 to 40 minutes over a period of 3 to 5 days.  Following habituation to head fixation, 

mice were habituated to the in vivo imaging environment. The head-restrained mouse 

was placed under the two-photon microscope objective and the empty food holding plate 

was placed approximately 2-5 mm in front of its nose and left in place for varying 

durations (5 times per session, 3-10 minutes per placement) during two habituation 

sessions.   ScanImage 3.8 (Vidrio Technologies LLC, VA, USA) was used to collect in vivo 

imaging videos at 1.5 Hz for all mice and additionally at 3.0 Hz for a subset of mice.  Laser 

power was set to 50% to 70% power (i.e. 45 to 48 mW measured 13 mm below the 

objective. For each mouse, the power setting was consistent among all recordings to 

avoid brain tissue damage by heat.  All data acquisition sessions were performed during 

the light phase and at the same time of day for each mouse.   Experiments in two mice 

were performed at multiple imaging speeds (1.5 Hz and 3.0 Hz), and showed the same 

trends in activity regardless of acquisition speed (data not shown).  Acquisition speed was 

limited to 1.5 to 3.0 Hz by the scanning stage galvanometer.   

 

4.2.3    Two-photon endomicroscopy metabolic state recordings 

Functional images from LHPV/GCaMP6s neurons were acquired for each mouse (31 

neurons, n = 7 mice; unilateral) during sated and food-deprived states in sessions of 5 

minutes/day.    One to eleven neurons were imaged per mouse. For the first batch of mice 

(n = 3 mice, 17 neurons), we recorded one session during both metabolic states.  For the 
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second batch of mice (n = 4 mice, 14 neurons), we recorded two sessions during both 

metabolic states.  Of note, we only recorded one session from the first cohort.  By the 

time data analysis was completed for the initial ROIs and we decided to image for multiple 

sessions, GCaMP6s expression had diminished and we were unable to obtain second data 

sets for the same ROIs.  No sensory stimuli were presented during the metabolic state 

sessions (Figures 18-20).   

 

4.2.4     Two-photon endomicroscopy sensory stimuli presentation 

All mice were given a 0.4 g serving of peanut butter in their home cage 20 to 48 h 

prior to sensory stimuli experiments, consumption of the peanut butter was confirmed 

for each mouse (Figures 22-23).  Sensory stimuli experiments were performed two times 

per condition for each mouse to confirm reproducibility of effects.  A 15 min rest period 

was given following each exposure to sensory stimuli, to ensure return to baseline and 

allow for dissipation of olfactory cues.   

Mice were imaged during light phase following either ad libitum food and water 

(sated) or 24 h food deprivation with ad libitum water (food deprived). During olfactory 

sensory stimulation experiments, a 5 to 10 min video was recorded wherein a 2 min 

period of baseline images was collected before a metal plate was placed in front of the 

animal’s nose.  The plate was left in place for the remainder of the recording.  On the 

plate directly in front of the nose was either no food, moistened regular chow, or peanut 

butter (Heinz Co., Pittsburgh, PA, USA).  The order of sensory stimuli presentation was 

randomized.  Plate position was confirmed at the end of each placement, to ensure that 
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the desired alignment and distance from the nose were achieved. Replicates were 

performed to ensure reproducibility of response.   

A subset of mice was also exposed to a novel sound following 24 h food 

deprivation. Fluorescence was recorded during a 2 min period of baseline images, after 

which a novel two tone sound was played (85 dB), video recording continued for an 

additional 3 min following the sound. 

 

4.2.5     Histology for functional imaging animals 

Mice were deeply anesthetized with isoflurane and transcardially perfused with 

1× PBS followed by 4% PFA in 1× PBS.  Head bars and GRIN lens were carefully removed 

to avoid damaging brain tissue. Whole brains were removed and post-fixed in 4% PFA/PBS 

for 2 h at 4 °C and subsequently transferred to 1× PBS for 1 to 48 h for storage at 4 °C until 

further processing.  Coronal brain sections (50 µm thick) containing the LH were collected 

in 1× PBS using a vibrating tissue slicer (vibratome; Leica VT1200), and freely floating slices 

were immunostained for parvalbumin (PVALB) and green fluorescent protein (GFP).  

Sections were incubated with a blocking solution of 1× PBS/0.2% Triton X-100 (PBT) plus 

25% normal donkey serum (NDS) for 1 h. Sections were then incubated with the primary 

antibodies rabbit anti-PVALB (1:500 PV25; Swant) and chicken anti-GFP (1:1000 GFP-

1020; Aves Labs, OR, USA) in PBT/2% NDS overnight at 4 °C.  After rinsing 4 × 10 min in 1× 

PBS, sections were incubated for 2 h with secondary antibodies donkey anti-rabbit-Alexa 

Fluor 647 (1:500; Invitrogen, CA, USA) and donkey anti-chicken-Alexa Fluor 594 (1:500; 

Invitrogen) in PBT/2% NDS at room temperature and washed with 1× PBS (4 × 10 min).  



74 
 

Sections were mounted with DAPI-Fluoromount-G aqueous mounting medium (Electron 

Microscopy Sciences) onto Superfrost Plus glass slides (VWR International). Images were 

taken with an AxioZoom.V16 fluorescence microscope and z-stacks were collected using 

an LSM700 laser scanning confocal microscope (Carl Zeiss Microscopy LLC). 

 

4.2.6     Two-photon data analysis 

Videos were motion corrected using custom MATLAB R2016B (The MathWorks 

Inc., MA, USA) scripts generously provided by the Laboratory of Chris Harvey (Harvard 

University, Boston, MA, USA).  Videos were then manually screened for frames containing 

aberrations due to movement that could not be corrected, and such frames were noted 

and redacted from analysis.  A composite image of the maximum fluorescence signal from 

the standard deviation of every 10 frames was created for every video of each animal 

(ImageJ (118)).  Signal for each video was compared to identify well-defined and 

consistently represented somas, from which a region of interest (ROI) map was created 

to mark each soma as well as a random control area with no defined soma for each animal 

(ImageJ).  The same ROI map was used for all videos of each mouse.  The mean gray value 

(MGV) for each ROI was extracted for every frame of each video (ImageJ).  The change in 

fluorescence (∆F/F) over time calculated as [MGV – (median MGV of baseline)/(median 

MGV of baseline)] for each ROI was calculated for each frame. For sensory stimuli 

experiments baseline was considered the 30 s prior to stimuli presentation.  For videos 

with no sensory stimuli, the median fluorescence of each respective ROI for the entire 

video was used as the baseline value.  Data were displayed as heatmaps and mean traces 
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± s.e.m. based on custom MATLAB scripts generously provided by Zhenwei Su (Laboratory 

of J. Nicholas Betley, University of Pennsylvania, PA, USA).  Heatmap data were aligned 

by sensory stimuli presentation (red vertical line) and trimmed to a total of 100 frames 

(45 frames leading up to stimuli, 55 frames following onset of stimuli) for heatmap figures 

shown in this chapter.  Recordings that did not have sensory stimuli are shown with the 

full length heatmap. 

Thresholding of data was performed to examine changes in fluorescence between 

metabolic states.  Change in fluorescence (∆F/F) data were thresholded to the top 25% of 

peak values for each video.  The total number of frames above this threshold for each ROI 

was summed and compared for each metabolic state as an indication of activity for 

recordings with no sensory stimuli.  Events were randomly distributed between cells and 

normally distributed over the range of change in fluorescence, with the majority of 

difference between sated and food deprived states occurring in the right arm of the 

distribution (Figure 19).   

 

4.2.7     Slice preparation for electrophysiology and analysis 

After cervical dislocation, mice were decapitated and their brains were rapidly 

removed and placed into an ice-cold N-methyl-D-glucamine (NMDG)-based slicing 

solution (95) containing (in mM): 92 NMDG, 20 HEPES, 25 glucose, 30 NaHCO3, 1.2 

NaH2PO4, 2.5 KCl, 5 sodium ascorbate, 3 sodium pyruvate, 2 thiourea, 10 MgSO4, and 0.5 

CaCl2, pH 7.4, and osmolarity of 304308 mOsm. Acute horizontal brain slices (200240 

m thick) containing the lateral hypothalamus were obtained using a vibratome (Leica 
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VT1200, Leica Biosystems Inc., IL, USA). Brain slices were transferred to a holding chamber 

filled with a solution containing (in mM): 92 NaCl, 20 HEPES, 25 glucose, 30 NaHCO3, 1.2 

NaH2PO4, 2.5 KCl, 5 sodium ascorbate, 3 sodium pyruvate, 2 thiourea, 1 MgSO4, and 2 

CaCl2 (pH 7.4, 304308 mOsm). For electrophysiological recordings, a single slice was 

submerged in artificial cerebrospinal fluid (aCSF, in mM: 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 

1 MgCl2 6H2O, 11 glucose, 26 NaHCO3, 2.4 CaCl2, pH 7.4, and osmolarity of 304308 

mOsm) in a recording chamber that was continuously perfused with a peristaltic pump 

(World Precision Instruments, FL, USA), at a flow rate of 1.5 to 2.0 ml/min. All solutions 

were saturated with 95% O2 and 5% CO2.  

Characterization of the excitation/inhibition ratio of lateral hypothalamic 

parvalbumin (LHPV) neurons was performed using PvalbIREScre;Rosa26LSL-tdTomato mice 

(Pvalbcre/+;Rosa26tom/tom). Parvalbumin-tdTomato-positive lateral hypothalamic neurons 

were located in brain slices, first with epifluorescence, followed by infrared differential 

interference contrast (IR-DIC) optics, using an upright Olympus BX51WI microscope 

(Olympus Corporation, MA, USA). Voltage-clamp recordings were made using a 

MultiClamp 700B amplifier (5 kHz low-pass Bessel filter and 10 kHz digitization using a 

1440A Digidata Digitizer) with pClamp 10.3 software (Molecular Devices LLC, CA, USA). 

Borosilicate glass patch pipettes (2.0-3.0 MΩ) containing (in mM): 135 potassium 

gluconate, 10 HEPES, 4 KCl, 4 MgATP, 0.3 Na3GTP, and 0.2% biocytin (pH adjusted to 7.3 

using KOH, and osmolarity of 290 mOsm). The holding potential was 70 mV, and the 

whole-cell access resistances were 10-20 MΩ. All recordings were made at 32 °C.  Input 

and series resistance were continually measured online; if either parameter changed by 
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more than 20%, data were not included in the analysis.  Membrane potentials were not 

corrected for liquid junction potentials (estimated to the 10 mV).  Excitatory and 

inhibitory afferents were stimulated at 0.1 Hz with a bipolar stimulating electrode placed 

100-300 um rostral to the recording electrode.  Horizontal slices containing the LH from 

Pvalbcre/+;Rosa26tom/tom mice were used and tdTomato-containing cells were visualized in 

the LH.  

The inhibition/excitation ratio experiments were performed having D-AP5 (50 µM) 

throughout the experiment while isolating AMPA-R-mediated currents at the reversal 

potential for GABAA IPSCs (-70 mV).  Subsequently, the cells were depolarized to the 

reversal potential for EPSCs (0 mV) and DNQX (10 μM) was applied in order to block 

AMPA-Rs and leave a residual current mediated by monosynaptic inhibition through 

GABA-Rs.  The nature of the GABAergic transmission isolated at 0 mV was verified at the 

end of each experiment by adding picrotoxin (100 μM) to the bath.  The 

inhibition/excitation ratio was then calculated by dividing peak AMPA-R current by peak 

GABA-R current.  All chemicals were obtained from Sigma-Aldrich (MO, USA) or Tocris 

Bioscience (Bristol, UK).   

 

4.2.8     Statistical analysis 

Data are reported as mean ± s.e.m. or mean ± s.d. unless otherwise noted. 

Statistical analyses were performed using the Analysis ToolPak of Microsoft Excel 2016 

(Microsoft Corporation, WA, USA). Statistical significance (P values) for paired 

comparisons was determined by two-tailed Student’s t test (P < 0.05 considered 
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statistically significant). Statistical tests, n values for number of animals or number of cells, 

and exact P values are presented in figure legends. (101, 102). Two photon data were 

analyzed with the Analysis ToolPak of Microsoft Excel 2016, Origin Pro v9.2, and MATLAB 

R2016B. 
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4.3      Results 

I imaged changes in fluorescence as an indicator of activity in 31 LHPV neurons 

from 7 awake head-fixed mice.   

 

4.3.1      Modulation of LHPV neuronal activity by metabolic states 

Even though the non-laminated cytoarchitecture of these neurons in the LH 

represented a challenge, I successfully recorded fluorescence signals from LHPV/GCaMP6s 

neurons (31 neurons, n = 7 mice; unilateral; Figure 18).  I recorded calcium fluctuations 

for 5 minute trials while mice were sated and also following 24 h food deprivation (Figure 

18b,c).  LHPV neurons exhibited a 64% increase in activity on average across all neurons 

during satiety compared to food deprivation (Figure 18d, *P = 0.021).  An increase in 

activity was found in 23 of 31 neurons across 7 mice during satiety, and on average, 73% 

of neurons exhibited this trend in each mouse (Figure 18d, Figure 19).  The number of 

events was increased by 25% during satiety; 55% of recorded neurons exhibited this trend 

(Figure 20a-b).  We also observed increased inhibitory inputs on LHPV neurons after 24 h 

of food deprivation compared to satiety state during brain slice electrophysiology 

experiments (Figure 21, *P < 0.05).  Together, these data show that LHPV neurons exhibit 

reduced activity during food deprivation.  This suggests an unprecedented role for LHPV 

neurons in encoding for metabolic states. 
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4.3.2     LHPV neurons respond to the sensory detection of food 

Having observed that inhibition of these neurons induces food intake in sated 

mice and that these cells exhibit fluctuations in activity patterns with metabolic state, I 

next determined how these neurons responded to the sensory detection of food.  

Mice were habituated to the placement of an empty food holding plate 2  5 

mm in front of their nose. Next, I imaged the activity of LHPV neurons during exposure to 

a) empty food plate as a control, b) regular chow, and c) peanut butter during satiety 

and after 24 h of food deprivation (Figure 22). Of note, mice were previously exposed to 

both regular chow and a highly palatable food (i.e. peanut butter) in their home cages.  

Additionally, a subset of mice were exposed to a novel auditory cue after 24 h food 

deprivation (Figure 24). 

I found that these neurons are more responsive to the smell of both regular chow 

and highly palatable food than the empty plate during satiety (Figure 22a-c, Figure 23a).  

These neurons exhibit a mean 43% increase in the response to the regular chow when 

sated compared to the empty plate (Figure 22a-b, Figure 23a, n = 14 cells, P = 0.2784). 

However, there was a far greater response to highly palatable food when sated.  The 

exposure to highly palatable food induced an 82% increase in response to highly palatable 

food compared to the empty plate (Figure 22a,c, Figure 23a, n = 21 cells, P = 0.0916).  The 

magnitude of response to highly palatable food was 8% greater than the response to 

regular chow (Figure 23a, n = 14 cells, P = 0.8184).   Thus, LHPV neurons respond to the 

sensory detection of food during satiety and are sensitive to the palatability/reward value 

of the food. 
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LHPV neurons are also responsive to the smell of both regular chow and highly 

palatable food than the empty plate during food deprivation.   When the mice are food 

deprived, there is a 20% decrease in the mean response to the regular food compared to 

the empty plate (Figure 22d-e, Figure 23a, n = 14 cells, P = 0.6830). Thus, response to the 

sensory detection of regular food when food deprived induces a mild decrease in 

response in LHPV neurons.  However, response to highly palatable food was enhanced by 

food deprivation, where highly palatable food induced at 126% increase in response 

compared to the empty plate (Figure 22d-f, Figure 23a, n = 31 cells, *P = 0.0009). The 

response to highly palatable food was 385% greater than the response to regular chow 

when food deprived (Figure 22e-f, Figure 23a, n = 14, P = 0.0666).  74% of LHPV neurons 

exhibited an increase in the mean change in fluorescence when exposed to highly 

palatable food while food deprived, whereas only 67% of neurons exhibited an increase 

while sated (Figure 22c,f, Figure 23a).  Increases were seen in all 7 mice in response to 

the sensory detection of highly palatable food during food deprivation.  LHPV neurons did 

not respond to a novel auditory cue during food deprivation, indicating that the 

aforementioned responses are specific to food-related cues (Figure 24).  There was an 

average 94% increase in the change in activity from the sated to food deprived state upon 

the sensory detection of highly palatable food (Figure 23a, n = 21 cells, *P = 0.0323).  The 

onset of response to all stimuli was consistently seen within 10 s of stimuli onset, but 

returned to baseline within 10 s except when exposed to peanut butter following food 

deprivation (Figure 23b).  Thus, LHPV neurons exhibit enhanced responses to the sensory 
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detection of food during food deprivation and are more sensitive to the 

palatability/reward value of the food (Figure 25). 
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4.4      Figures 

 

Figure 18 

In vivo two-photon fluorescence endomicroscopy of LHPV neurons from head-fixed awake mice. (a) 

Representative in vivo image showing LHPV neurons expressing the neuronal activity reporter GCaMP6s 

(LHPV/GCaMP6s). Arrows indicate the recorded LHPV/GCaMP6s neurons. Note the scattered cytoarchitecture of 

these neurons. (b-c) Heat maps depicting LHPV/GCaMP6s neuronal activity as measured by the changes in 

fluorescence (F/F) over time during sated (top panel) and food-deprived states (bottom panel). Each row 

represents a neuron.  White column on the right groups neurons by animal.   (d) Mean change in 

fluorescence revealed that LHPV neurons exhibited decreased activity during food-deprived states (n = 31; 

*P = 0.021). Bars represent mean ± s.e.m.; circles indicate data from individual cells.  
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Figure 19 

 Differences in the change in fluorescence during sated and food-deprived states were driven by increases 

in fluorescence in many cells during satiety.  Distribution of changes in fluorescence (∆F/F) for individual 

cells during (a) sated and (b) food deprived states depicting that the greatest changes in fluorescence were 

not driven by a minority of cells throughout the population.  Colors are used to differentiate separate cells, 

but have no other value.  (c) Histogram showing the changes in fluorescence (∆F/F) for all cells combined 

during sated (blue) and food-deprived (brown) states.  Note the greater number of fluctuations in 

fluorescence during satiety, calculated as the the number of frames per bin, particularly at the higher (inset) 

end of the spectrum of change in fluorescence.  Thus, the relative increase in mean change in fluorescence 

during satiety compared to food deprivation was driven by a greater number of increases in fluorescence 
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during satiety rather than by a greater number of decreases in fluorescence during food deprivation. Y-axis 

= number of frames, x-axis= 40 ∆F/F bins ranging from -1 to 1, z-axis = cell number.   
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Figure 20 

LHPV/GCaMP6s neurons exhibited a greater number of increased-fluorescence events during satiety compared 

to food deprivation.  (a) Heatmaps showing the number of events above (yellow) and below (blue) threshold 

(i.e. an arbitrary value assigned to estimate the number of events across time) for each cell while sated and 

following 24 h food deprivation at ∆F/F threshold of 0.21 (chosen because values greater than this represent 

the average greatest 25% of increases in fluorescence across time).  White column on the right groups 

neurons by animal.   (b) Quantification of the number of frames above ∆F/F threshold of 0.21 during each 

metabolic state. Error bars represent s.e.m.    
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Figure 21 

Decreased excitation-inhibition ratio in LHPV neurons during food deprivation.  (a) Diagram depicting brain 

slice electrophysiology recordings from LHPV neurons and bipolar electrodes’ placement (150 um) near the 

recorded cells to electrically evoke AMPA-R (70 mV) and GABA-R (0 mV) mediated currents.  (b) 

Representative trace of electrically evoked AMPA-R (70 mV) and GABA-R (0 mV) mediated currents.  (c) 

Quantification of excitation/inhibition ratio from sated (n = 9 cells; 5 mice) and 24 h food deprived (n = 5 

cells; 4 mice) animals (*P <0.05).  Error bars represent s.e.m.    
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Figure 22 

Heatmaps for each cell displaying the change in fluorescence (∆F/F) upon sensory detection of food.  

Heatmaps display 30s leading up to placement of stimulus (red vertical line), followed by the first 40s of 

exposure to the stimulus.  (a) Sated, empty plate (non-food) (n = 31), (b) sated, regular food (n = 14), (c) 

sated, peanut butter, (n = 21), (d)  food deprived, empty plate (non-food), (n = 31), (e) food deprived, regular 

food (n = 14), (f) food deprived, peanut butter (n = 31).  
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Figure 23 

Quantification of magnitude of the effect of regular and highly palatable food on LHPV response. (a)  Mean 

change in ∆F/F of all cells combined in each condition (n = 14-31 cells, *p = 0.0323, **P = 0.0009).   

 Error bars represent s.e.m.  (b)  Mean ∆F/F before and after placement of each stimuli (red vertical line) 

while sated and food deprived.  Note that the response to palatable food remains elevated when food 

deprived.  Translucent areas represent s.e.m. 
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Figure 24 

LHPV neurons do not respond to novel auditory stimuli following 24 h food deprivation.  (a) 

Heatmap for each cell (n = 14) displaying the change in fluorescence (∆F/F) upon response to a 2 s novel 

auditory cue.  Heatmap displays 30s leading up to onset of stimulus (red vertical line), followed by the first 

40s following exposure to the stimulus. (b) Quantification of magnitude of the effect of auditory stimuli 

(noise) compared to response to no food, regular food, and highly palatable food (peanut butter) on LHPV 

response following 24 h food deprivation.  Mean change in ∆F/F of all cells combined in each condition (n = 

14-31 cells).  Translucent areas represent s.e.m. 
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Figure 25 

Schematic summary of LHPV neuronal manipulations. (left) Effects of chemogenetic manipulations on food 

consumption, general arousal, and water intake during light and dark cycles. (right) functional imaging of 

LHPV neurons during different metabolic states. Note decreased activity during food-deprived conditions. 

LHPV neuronal activity fluctuates during sensory detection of food. The combination of metabolic states 

and food value orchestrate the magnitude of neuronal activity responses.   
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Chapter 5 

Discussion and future directions 
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5.1       Discussion and future directions 

Our work shows for the first time a detailed characterization of the properties of 

LHPV neurons. We first established the electrophysiological and histological properties of 

these neurons.  My subsequent results (described in Chapters 34) have expanded upon 

these findings to describe a functional role for these cells in behavior and have provided 

mechanistic insights which were previously unexplored. 

First, we found that LHPV neurons exhibit a fast-spiking action potential phenotype 

and electrophysiological characteristics similar to the properties of both hippocampal and 

neocortical parvalbumin-positive GABAergic interneurons (65, 93).  Subsequently, using 

a combination of optogenetic, electrophysiology, and in situ hybridization approaches, 

we found that LHPV neurons are glutamatergic and provide excitatory input within 

neuronal circuits of the lateral hypothalamus.  Though a previous study showed 

parvalbumin colocalized with glutamate immunohistochemically in both, rats and mouse 

LH (91), our work provides quantitative measurements of the percentage of LHPV neurons 

that express Vglut2 and demonstrates that these cells release glutamate and form 

functional excitatory synapses within the LH. Remarkably, our findings and those of others 

(70, 119), challenge long-standing conceptualizations that fast-spiking neurons are 

exclusively GABAergic, suggesting conservation of the fast-spiking phenotype across at 

least two neurotransmitter systems. 

Our finding that chemogenetic inhibition of LHPV neurons significantly increases 

food intake in sated mice, directly implicates LHPV neurons in the regulation of feeding.  

This data therefore suggest that these neurons normally act to encode for satiety states. 
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Thus, consistent with this finding, LHPV neuron activity is reduced during food deprivation, 

which further support the idea that these neurons might encode for metabolic states.  It 

is thus possible that similarly to the signaling properties of hippocampal and neocortical 

fast-spiking interneurons, LHPV neurons provide fast and temporally precise modulation 

to their downstream targets and hence regulate feeding.  Furthermore, our findings 

support the idea that inhibitory inputs specifically innervating and suppressing 

glutamatergic neurons in the lateral hypothalamus promote feeding (61).  This previous 

study showed that inhibitory projections from the extended amygdala preferentially 

inhibit glutamatergic neurons in the lateral hypothalamus to drive feeding.  These results 

demonstrated that lateral hypothalamic glutamatergic neurons are critical for regulating 

food consumption.  Importantly, these neurons are located in a more lateral region of the 

LH than the areas ablated in lesion studies, which were found to drive decreases in food 

intake (14).  Here, we have found and given identity to a new element belonging to the 

glutamatergic circuitry within the lateral hypothalamus.    

In addition, my work provides a key piece of data which is the activity dynamics of 

these neurons in vivo. In the LH, fluctuations in neuronal activity have been reported in 

unspecified (111) and GABAergic (60) neurons during different metabolic states and 

during appetitive and consummatory behaviors.  It is possible that LHPV neurons play a 

role in driving sensory detection of food or contextual cues of feeding behaviors.  An 

understanding of the fluctuations in neuronal activity of specific cell types during 

metabolic states and food rewards would provide insight into how the lateral 

hypothalamic circuitry drives appetitive and consummatory behaviors. This is supported 
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by recent studies showing that the activity of neurons in the arcuate nucleus of the 

hypothalamus can be rapidly modulated by the sensory detection (i.e. sight and smell) of 

food (46-48, 50). Furthermore, those fluctuations in neuronal activity were dependent on 

food availability, palatability, consumption, and nutritional states Those studies 

suggested that AGRP/POMC neurons may play a primary role in driving food seeking.  

In accordance with this, I observed significant increases in general arousal during 

inhibition of LHPV neurons and reduced arousal during excitation of LHPV neurons.  The 

increases in arousal seen during chemogenetic inhibition occur even in the absence of 

increased food consumption, indicating that arousal was neither the primary cause nor a 

secondary consequence of feeding.  Our findings on general arousal fluctuations during 

manipulations of LHPV neurons suggest that those neurons might also be involved in 

sensing for food availability.  Perhaps feeding and food seeking are not always bound to 

one another, and the two may be separable depending on the metabolic state of the 

animal.   

I used two photon endomicroscopy to provide insights into the function of LHPV 

neurons in vivo during different metabolic states.  I found that on average LHPV neurons 

are significantly more active during satiety than during food deprivation.  I found that this 

population of neurons is not uniform, in fact, 27% of neurons showed no change or 

exhibited increased activity during food deprivation, though such increases were modest.  

Chen et al. reported that ARCAGRP neurons also exhibit cell-to-cell variability in response 

to metabolic state (50).  These findings support my behavioral results, in that 

chemogenetic inhibition of LHPV neurons drove feeding, perhaps by instituting a food-
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deprived-like state.  Furthermore, these findings also may explain why chemogenetic 

excitation of LHPV neurons did not significantly alter food intake in sated mice, because 

these neurons were likely already active.   

I decided to delve further into this line of thinking, by investigating the response 

of these neurons to sensory stimuli, to determine whether the sensory detection of food 

may alter activity of LHPV neurons in vivo.  Prior work has shown that AGRP neurons 

respond rapidly to the consumption of food, but even more surprising was the finding 

that they also respond to the mere sensory detection of food (46-48, 50).  Similarly, I 

found that 74% of LHPV neurons exhibited increased activity in response to the sensory 

detection of peanut butter.  The activity of these neurons remained elevated for an 

average of 2 to 5 minutes after the initial onset of exposure (data not shown).  

Additionally, these neurons did not respond to a novel auditory stimulus, revealing that 

LHPV neurons are specifically sensitive to food-related sensory stimuli. Thus, LHPV neurons 

exhibited a robust response to the sensory detection of food which was influenced by the 

metabolic state of the animal.   

The dramatic increase in magnitude of response to the sensory detection of highly 

palatable food compared to regular chow may be reflective of the valuation of the food 

identity.  It is possible that LHPV neurons may also play a role in adjusting the valuation of 

food based on drive, as the degree of response to highly palatable food versus regular 

chow shifts during different metabolic states.  Altogether, the experiments I have 

performed have revealed a novel role for LHPV neurons in orchestrating feeding behaviors 

and provided further insight into how a diverse collection of genetically-identified cells 
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types within the lateral hypothalamus regulate neuronal circuits and behavior. Our 

findings will serve as a base for future revision of models of the lateral hypothalamic 

feeding circuitry and may yield potential therapeutic targets in the treatment of feeding 

disorders   
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